* elf32-spu.c (spu_elf_find_overlays): Don't use .ovl.init lma as
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
6aba47ca 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
0fb0cc75 4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
f6519ebc 5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
c5aa993b 14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b 21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
da3331ec
AC
27struct objfile;
28struct ui_file;
29struct mem_attrib;
1e3ff5ad 30struct target_ops;
8181d85f 31struct bp_target_info;
56be3814 32struct regcache;
da3331ec 33
c906108c
SS
34/* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
2146d243
RM
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53#include "bfd.h"
54#include "symtab.h"
4930751a 55#include "dcache.h"
29e57380 56#include "memattr.h"
fd79ecee 57#include "vec.h"
2aecd87f 58#include "gdb_signals.h"
c906108c 59
c5aa993b
JM
60enum strata
61 {
62 dummy_stratum, /* The lowest of the low */
63 file_stratum, /* Executable files, etc */
4d8ac244 64 core_stratum, /* Core dump files */
d4f3574e 65 process_stratum, /* Executing processes */
81e64f55
HZ
66 thread_stratum, /* Executing threads */
67 record_stratum /* Support record debugging */
c5aa993b 68 };
c906108c 69
c5aa993b
JM
70enum thread_control_capabilities
71 {
0d06e24b
JM
72 tc_none = 0, /* Default: can't control thread execution. */
73 tc_schedlock = 1, /* Can lock the thread scheduler. */
c5aa993b 74 };
c906108c
SS
75
76/* Stuff for target_wait. */
77
78/* Generally, what has the program done? */
c5aa993b
JM
79enum target_waitkind
80 {
81 /* The program has exited. The exit status is in value.integer. */
82 TARGET_WAITKIND_EXITED,
c906108c 83
0d06e24b
JM
84 /* The program has stopped with a signal. Which signal is in
85 value.sig. */
c5aa993b 86 TARGET_WAITKIND_STOPPED,
c906108c 87
c5aa993b
JM
88 /* The program has terminated with a signal. Which signal is in
89 value.sig. */
90 TARGET_WAITKIND_SIGNALLED,
c906108c 91
c5aa993b
JM
92 /* The program is letting us know that it dynamically loaded something
93 (e.g. it called load(2) on AIX). */
94 TARGET_WAITKIND_LOADED,
c906108c 95
3a3e9ee3 96 /* The program has forked. A "related" process' PTID is in
0d06e24b
JM
97 value.related_pid. I.e., if the child forks, value.related_pid
98 is the parent's ID. */
99
c5aa993b 100 TARGET_WAITKIND_FORKED,
c906108c 101
3a3e9ee3 102 /* The program has vforked. A "related" process's PTID is in
0d06e24b
JM
103 value.related_pid. */
104
c5aa993b 105 TARGET_WAITKIND_VFORKED,
c906108c 106
0d06e24b
JM
107 /* The program has exec'ed a new executable file. The new file's
108 pathname is pointed to by value.execd_pathname. */
109
c5aa993b 110 TARGET_WAITKIND_EXECD,
c906108c 111
0d06e24b
JM
112 /* The program has entered or returned from a system call. On
113 HP-UX, this is used in the hardware watchpoint implementation.
114 The syscall's unique integer ID number is in value.syscall_id */
115
c5aa993b
JM
116 TARGET_WAITKIND_SYSCALL_ENTRY,
117 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 118
c5aa993b
JM
119 /* Nothing happened, but we stopped anyway. This perhaps should be handled
120 within target_wait, but I'm not sure target_wait should be resuming the
121 inferior. */
c4093a6a
JM
122 TARGET_WAITKIND_SPURIOUS,
123
8e7d2c16
DJ
124 /* An event has occured, but we should wait again.
125 Remote_async_wait() returns this when there is an event
c4093a6a
JM
126 on the inferior, but the rest of the world is not interested in
127 it. The inferior has not stopped, but has just sent some output
128 to the console, for instance. In this case, we want to go back
129 to the event loop and wait there for another event from the
130 inferior, rather than being stuck in the remote_async_wait()
131 function. This way the event loop is responsive to other events,
0d06e24b 132 like for instance the user typing. */
b2175913
MS
133 TARGET_WAITKIND_IGNORE,
134
135 /* The target has run out of history information,
136 and cannot run backward any further. */
137 TARGET_WAITKIND_NO_HISTORY
c906108c
SS
138 };
139
c5aa993b
JM
140struct target_waitstatus
141 {
142 enum target_waitkind kind;
143
144 /* Forked child pid, execd pathname, exit status or signal number. */
145 union
146 {
147 int integer;
148 enum target_signal sig;
3a3e9ee3 149 ptid_t related_pid;
c5aa993b
JM
150 char *execd_pathname;
151 int syscall_id;
152 }
153 value;
154 };
c906108c 155
f00150c9
DE
156/* Return a pretty printed form of target_waitstatus.
157 Space for the result is malloc'd, caller must free. */
158extern char *target_waitstatus_to_string (const struct target_waitstatus *);
159
2acceee2 160/* Possible types of events that the inferior handler will have to
0d06e24b 161 deal with. */
2acceee2
JM
162enum inferior_event_type
163 {
0d06e24b 164 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
165 INF_QUIT_REQ,
166 /* Process a normal inferior event which will result in target_wait
0d06e24b 167 being called. */
2146d243 168 INF_REG_EVENT,
0d06e24b 169 /* Deal with an error on the inferior. */
2acceee2 170 INF_ERROR,
0d06e24b 171 /* We are called because a timer went off. */
2acceee2 172 INF_TIMER,
0d06e24b 173 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
174 INF_EXEC_COMPLETE,
175 /* We are called to do some stuff after the inferior stops, but we
176 are expected to reenter the proceed() and
177 handle_inferior_event() functions. This is used only in case of
0d06e24b 178 'step n' like commands. */
c2d11a7d 179 INF_EXEC_CONTINUE
2acceee2 180 };
c906108c 181\f
13547ab6
DJ
182/* Target objects which can be transfered using target_read,
183 target_write, et cetera. */
1e3ff5ad
AC
184
185enum target_object
186{
1e3ff5ad
AC
187 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
188 TARGET_OBJECT_AVR,
23d964e7
UW
189 /* SPU target specific transfer. See "spu-tdep.c". */
190 TARGET_OBJECT_SPU,
1e3ff5ad 191 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e 192 TARGET_OBJECT_MEMORY,
cf7a04e8
DJ
193 /* Memory, avoiding GDB's data cache and trusting the executable.
194 Target implementations of to_xfer_partial never need to handle
195 this object, and most callers should not use it. */
196 TARGET_OBJECT_RAW_MEMORY,
287a334e
JJ
197 /* Kernel Unwind Table. See "ia64-tdep.c". */
198 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
199 /* Transfer auxilliary vector. */
200 TARGET_OBJECT_AUXV,
baf92889 201 /* StackGhost cookie. See "sparc-tdep.c". */
fd79ecee
DJ
202 TARGET_OBJECT_WCOOKIE,
203 /* Target memory map in XML format. */
204 TARGET_OBJECT_MEMORY_MAP,
a76d924d
DJ
205 /* Flash memory. This object can be used to write contents to
206 a previously erased flash memory. Using it without erasing
207 flash can have unexpected results. Addresses are physical
208 address on target, and not relative to flash start. */
23181151
DJ
209 TARGET_OBJECT_FLASH,
210 /* Available target-specific features, e.g. registers and coprocessors.
211 See "target-descriptions.c". ANNEX should never be empty. */
cfa9d6d9
DJ
212 TARGET_OBJECT_AVAILABLE_FEATURES,
213 /* Currently loaded libraries, in XML format. */
07e059b5
VP
214 TARGET_OBJECT_LIBRARIES,
215 /* Get OS specific data. The ANNEX specifies the type (running
216 processes, etc.). */
4aa995e1
PA
217 TARGET_OBJECT_OSDATA,
218 /* Extra signal info. Usually the contents of `siginfo_t' on unix
219 platforms. */
220 TARGET_OBJECT_SIGNAL_INFO,
07e059b5 221 /* Possible future objects: TARGET_OBJECT_FILE, ... */
1e3ff5ad
AC
222};
223
13547ab6
DJ
224/* Request that OPS transfer up to LEN 8-bit bytes of the target's
225 OBJECT. The OFFSET, for a seekable object, specifies the
226 starting point. The ANNEX can be used to provide additional
227 data-specific information to the target.
1e3ff5ad 228
13547ab6
DJ
229 Return the number of bytes actually transfered, or -1 if the
230 transfer is not supported or otherwise fails. Return of a positive
231 value less than LEN indicates that no further transfer is possible.
232 Unlike the raw to_xfer_partial interface, callers of these
233 functions do not need to retry partial transfers. */
1e3ff5ad 234
1e3ff5ad
AC
235extern LONGEST target_read (struct target_ops *ops,
236 enum target_object object,
1b0ba102 237 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
238 ULONGEST offset, LONGEST len);
239
d5086790
VP
240extern LONGEST target_read_until_error (struct target_ops *ops,
241 enum target_object object,
242 const char *annex, gdb_byte *buf,
243 ULONGEST offset, LONGEST len);
244
1e3ff5ad
AC
245extern LONGEST target_write (struct target_ops *ops,
246 enum target_object object,
1b0ba102 247 const char *annex, const gdb_byte *buf,
1e3ff5ad 248 ULONGEST offset, LONGEST len);
b6591e8b 249
a76d924d
DJ
250/* Similar to target_write, except that it also calls PROGRESS with
251 the number of bytes written and the opaque BATON after every
252 successful partial write (and before the first write). This is
253 useful for progress reporting and user interaction while writing
254 data. To abort the transfer, the progress callback can throw an
255 exception. */
256
cf7a04e8
DJ
257LONGEST target_write_with_progress (struct target_ops *ops,
258 enum target_object object,
259 const char *annex, const gdb_byte *buf,
260 ULONGEST offset, LONGEST len,
261 void (*progress) (ULONGEST, void *),
262 void *baton);
263
13547ab6
DJ
264/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
265 be read using OPS. The return value will be -1 if the transfer
266 fails or is not supported; 0 if the object is empty; or the length
267 of the object otherwise. If a positive value is returned, a
268 sufficiently large buffer will be allocated using xmalloc and
269 returned in *BUF_P containing the contents of the object.
270
271 This method should be used for objects sufficiently small to store
272 in a single xmalloc'd buffer, when no fixed bound on the object's
273 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
274 through this function. */
275
276extern LONGEST target_read_alloc (struct target_ops *ops,
277 enum target_object object,
278 const char *annex, gdb_byte **buf_p);
279
159f81f3
DJ
280/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
281 returned as a string, allocated using xmalloc. If an error occurs
282 or the transfer is unsupported, NULL is returned. Empty objects
283 are returned as allocated but empty strings. A warning is issued
284 if the result contains any embedded NUL bytes. */
285
286extern char *target_read_stralloc (struct target_ops *ops,
287 enum target_object object,
288 const char *annex);
289
b6591e8b
AC
290/* Wrappers to target read/write that perform memory transfers. They
291 throw an error if the memory transfer fails.
292
293 NOTE: cagney/2003-10-23: The naming schema is lifted from
294 "frame.h". The parameter order is lifted from get_frame_memory,
295 which in turn lifted it from read_memory. */
296
297extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 298 gdb_byte *buf, LONGEST len);
b6591e8b
AC
299extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
300 CORE_ADDR addr, int len);
1e3ff5ad 301\f
0d06e24b
JM
302struct thread_info; /* fwd decl for parameter list below: */
303
c906108c 304struct target_ops
c5aa993b 305 {
258b763a 306 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
307 char *to_shortname; /* Name this target type */
308 char *to_longname; /* Name for printing */
309 char *to_doc; /* Documentation. Does not include trailing
c906108c 310 newline, and starts with a one-line descrip-
0d06e24b 311 tion (probably similar to to_longname). */
bba2d28d
AC
312 /* Per-target scratch pad. */
313 void *to_data;
f1c07ab0
AC
314 /* The open routine takes the rest of the parameters from the
315 command, and (if successful) pushes a new target onto the
316 stack. Targets should supply this routine, if only to provide
317 an error message. */
507f3c78 318 void (*to_open) (char *, int);
f1c07ab0
AC
319 /* Old targets with a static target vector provide "to_close".
320 New re-entrant targets provide "to_xclose" and that is expected
321 to xfree everything (including the "struct target_ops"). */
322 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78 323 void (*to_close) (int);
136d6dae 324 void (*to_attach) (struct target_ops *ops, char *, int);
507f3c78 325 void (*to_post_attach) (int);
136d6dae 326 void (*to_detach) (struct target_ops *ops, char *, int);
597320e7 327 void (*to_disconnect) (struct target_ops *, char *, int);
28439f5e 328 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
117de6a9
PA
329 ptid_t (*to_wait) (struct target_ops *,
330 ptid_t, struct target_waitstatus *);
28439f5e
PA
331 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
332 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
316f2060 333 void (*to_prepare_to_store) (struct regcache *);
c5aa993b
JM
334
335 /* Transfer LEN bytes of memory between GDB address MYADDR and
336 target address MEMADDR. If WRITE, transfer them to the target, else
337 transfer them from the target. TARGET is the target from which we
338 get this function.
339
340 Return value, N, is one of the following:
341
342 0 means that we can't handle this. If errno has been set, it is the
343 error which prevented us from doing it (FIXME: What about bfd_error?).
344
345 positive (call it N) means that we have transferred N bytes
346 starting at MEMADDR. We might be able to handle more bytes
347 beyond this length, but no promises.
348
349 negative (call its absolute value N) means that we cannot
350 transfer right at MEMADDR, but we could transfer at least
c8e73a31 351 something at MEMADDR + N.
c5aa993b 352
c8e73a31
AC
353 NOTE: cagney/2004-10-01: This has been entirely superseeded by
354 to_xfer_partial and inferior inheritance. */
355
1b0ba102 356 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
357 int len, int write,
358 struct mem_attrib *attrib,
359 struct target_ops *target);
c906108c 360
507f3c78 361 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
362 int (*to_insert_breakpoint) (struct bp_target_info *);
363 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 364 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
365 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
366 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
367 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
368 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
369 int (*to_stopped_by_watchpoint) (void);
74174d2e 370 int to_have_steppable_watchpoint;
7df1a324 371 int to_have_continuable_watchpoint;
4aa7a7f5 372 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
5009afc5
AS
373 int (*to_watchpoint_addr_within_range) (struct target_ops *,
374 CORE_ADDR, CORE_ADDR, int);
e0d24f8d 375 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
376 void (*to_terminal_init) (void);
377 void (*to_terminal_inferior) (void);
378 void (*to_terminal_ours_for_output) (void);
379 void (*to_terminal_ours) (void);
a790ad35 380 void (*to_terminal_save_ours) (void);
507f3c78 381 void (*to_terminal_info) (char *, int);
7d85a9c0 382 void (*to_kill) (struct target_ops *);
507f3c78
KB
383 void (*to_load) (char *, int);
384 int (*to_lookup_symbol) (char *, CORE_ADDR *);
136d6dae
VP
385 void (*to_create_inferior) (struct target_ops *,
386 char *, char *, char **, int);
39f77062 387 void (*to_post_startup_inferior) (ptid_t);
507f3c78 388 void (*to_acknowledge_created_inferior) (int);
fa113d1a 389 void (*to_insert_fork_catchpoint) (int);
507f3c78 390 int (*to_remove_fork_catchpoint) (int);
fa113d1a 391 void (*to_insert_vfork_catchpoint) (int);
507f3c78 392 int (*to_remove_vfork_catchpoint) (int);
ee057212 393 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 394 void (*to_insert_exec_catchpoint) (int);
507f3c78 395 int (*to_remove_exec_catchpoint) (int);
507f3c78 396 int (*to_has_exited) (int, int, int *);
136d6dae 397 void (*to_mourn_inferior) (struct target_ops *);
507f3c78 398 int (*to_can_run) (void);
39f77062 399 void (*to_notice_signals) (ptid_t ptid);
28439f5e
PA
400 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
401 void (*to_find_new_threads) (struct target_ops *);
117de6a9 402 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
507f3c78 403 char *(*to_extra_thread_info) (struct thread_info *);
94cc34af 404 void (*to_stop) (ptid_t);
d9fcf2fb 405 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78 406 char *(*to_pid_to_exec_file) (int pid);
49d03eab 407 void (*to_log_command) (const char *);
c5aa993b 408 enum strata to_stratum;
c5aa993b
JM
409 int to_has_all_memory;
410 int to_has_memory;
411 int to_has_stack;
412 int to_has_registers;
413 int to_has_execution;
414 int to_has_thread_control; /* control thread execution */
dc177b7a 415 int to_attach_no_wait;
c5aa993b
JM
416 struct section_table
417 *to_sections;
418 struct section_table
419 *to_sections_end;
6426a772
JM
420 /* ASYNC target controls */
421 int (*to_can_async_p) (void);
422 int (*to_is_async_p) (void);
b84876c2
PA
423 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
424 int (*to_async_mask) (int);
9908b566 425 int (*to_supports_non_stop) (void);
2146d243
RM
426 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
427 unsigned long,
428 int, int, int,
429 void *),
be4d1333
MS
430 void *);
431 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
432
433 /* Return the thread-local address at OFFSET in the
434 thread-local storage for the thread PTID and the shared library
435 or executable file given by OBJFILE. If that block of
436 thread-local storage hasn't been allocated yet, this function
437 may return an error. */
117de6a9
PA
438 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
439 ptid_t ptid,
b2756930 440 CORE_ADDR load_module_addr,
3f47be5c
EZ
441 CORE_ADDR offset);
442
13547ab6
DJ
443 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
444 OBJECT. The OFFSET, for a seekable object, specifies the
445 starting point. The ANNEX can be used to provide additional
446 data-specific information to the target.
447
448 Return the number of bytes actually transfered, zero when no
449 further transfer is possible, and -1 when the transfer is not
450 supported. Return of a positive value smaller than LEN does
451 not indicate the end of the object, only the end of the
452 transfer; higher level code should continue transferring if
453 desired. This is handled in target.c.
454
455 The interface does not support a "retry" mechanism. Instead it
456 assumes that at least one byte will be transfered on each
457 successful call.
458
459 NOTE: cagney/2003-10-17: The current interface can lead to
460 fragmented transfers. Lower target levels should not implement
461 hacks, such as enlarging the transfer, in an attempt to
462 compensate for this. Instead, the target stack should be
463 extended so that it implements supply/collect methods and a
464 look-aside object cache. With that available, the lowest
465 target can safely and freely "push" data up the stack.
466
467 See target_read and target_write for more information. One,
468 and only one, of readbuf or writebuf must be non-NULL. */
469
4b8a223f 470 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 471 enum target_object object, const char *annex,
1b0ba102 472 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 473 ULONGEST offset, LONGEST len);
1e3ff5ad 474
fd79ecee
DJ
475 /* Returns the memory map for the target. A return value of NULL
476 means that no memory map is available. If a memory address
477 does not fall within any returned regions, it's assumed to be
478 RAM. The returned memory regions should not overlap.
479
480 The order of regions does not matter; target_memory_map will
481 sort regions by starting address. For that reason, this
482 function should not be called directly except via
483 target_memory_map.
484
485 This method should not cache data; if the memory map could
486 change unexpectedly, it should be invalidated, and higher
487 layers will re-fetch it. */
488 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
489
a76d924d
DJ
490 /* Erases the region of flash memory starting at ADDRESS, of
491 length LENGTH.
492
493 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
494 on flash block boundaries, as reported by 'to_memory_map'. */
495 void (*to_flash_erase) (struct target_ops *,
496 ULONGEST address, LONGEST length);
497
498 /* Finishes a flash memory write sequence. After this operation
499 all flash memory should be available for writing and the result
500 of reading from areas written by 'to_flash_write' should be
501 equal to what was written. */
502 void (*to_flash_done) (struct target_ops *);
503
424163ea
DJ
504 /* Describe the architecture-specific features of this target.
505 Returns the description found, or NULL if no description
506 was available. */
507 const struct target_desc *(*to_read_description) (struct target_ops *ops);
508
0ef643c8
JB
509 /* Build the PTID of the thread on which a given task is running,
510 based on LWP and THREAD. These values are extracted from the
511 task Private_Data section of the Ada Task Control Block, and
512 their interpretation depends on the target. */
513 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
514
c47ffbe3
VP
515 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
516 Return 0 if *READPTR is already at the end of the buffer.
517 Return -1 if there is insufficient buffer for a whole entry.
518 Return 1 if an entry was read into *TYPEP and *VALP. */
519 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
520 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
521
08388c79
DE
522 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
523 sequence of bytes in PATTERN with length PATTERN_LEN.
524
525 The result is 1 if found, 0 if not found, and -1 if there was an error
526 requiring halting of the search (e.g. memory read error).
527 If the pattern is found the address is recorded in FOUND_ADDRP. */
528 int (*to_search_memory) (struct target_ops *ops,
529 CORE_ADDR start_addr, ULONGEST search_space_len,
530 const gdb_byte *pattern, ULONGEST pattern_len,
531 CORE_ADDR *found_addrp);
532
b2175913 533 /* Can target execute in reverse? */
2c0b251b 534 int (*to_can_execute_reverse) (void);
b2175913 535
8a305172
PA
536 /* Does this target support debugging multiple processes
537 simultaneously? */
538 int (*to_supports_multi_process) (void);
539
c5aa993b 540 int to_magic;
0d06e24b
JM
541 /* Need sub-structure for target machine related rather than comm related?
542 */
c5aa993b 543 };
c906108c
SS
544
545/* Magic number for checking ops size. If a struct doesn't end with this
546 number, somebody changed the declaration but didn't change all the
547 places that initialize one. */
548
549#define OPS_MAGIC 3840
550
551/* The ops structure for our "current" target process. This should
552 never be NULL. If there is no target, it points to the dummy_target. */
553
c5aa993b 554extern struct target_ops current_target;
c906108c 555
c906108c
SS
556/* Define easy words for doing these operations on our current target. */
557
558#define target_shortname (current_target.to_shortname)
559#define target_longname (current_target.to_longname)
560
f1c07ab0
AC
561/* Does whatever cleanup is required for a target that we are no
562 longer going to be calling. QUITTING indicates that GDB is exiting
563 and should not get hung on an error (otherwise it is important to
564 perform clean termination, even if it takes a while). This routine
565 is automatically always called when popping the target off the
566 target stack (to_beneath is undefined). Closing file descriptors
567 and freeing all memory allocated memory are typical things it
568 should do. */
569
570void target_close (struct target_ops *targ, int quitting);
c906108c
SS
571
572/* Attaches to a process on the target side. Arguments are as passed
573 to the `attach' command by the user. This routine can be called
574 when the target is not on the target-stack, if the target_can_run
2146d243 575 routine returns 1; in that case, it must push itself onto the stack.
c906108c 576 Upon exit, the target should be ready for normal operations, and
2146d243 577 should be ready to deliver the status of the process immediately
c906108c
SS
578 (without waiting) to an upcoming target_wait call. */
579
136d6dae 580void target_attach (char *, int);
c906108c 581
dc177b7a
PA
582/* Some targets don't generate traps when attaching to the inferior,
583 or their target_attach implementation takes care of the waiting.
584 These targets must set to_attach_no_wait. */
585
586#define target_attach_no_wait \
587 (current_target.to_attach_no_wait)
588
c906108c
SS
589/* The target_attach operation places a process under debugger control,
590 and stops the process.
591
592 This operation provides a target-specific hook that allows the
0d06e24b 593 necessary bookkeeping to be performed after an attach completes. */
c906108c 594#define target_post_attach(pid) \
0d06e24b 595 (*current_target.to_post_attach) (pid)
c906108c 596
c906108c
SS
597/* Takes a program previously attached to and detaches it.
598 The program may resume execution (some targets do, some don't) and will
599 no longer stop on signals, etc. We better not have left any breakpoints
600 in the program or it'll die when it hits one. ARGS is arguments
601 typed by the user (e.g. a signal to send the process). FROM_TTY
602 says whether to be verbose or not. */
603
a14ed312 604extern void target_detach (char *, int);
c906108c 605
6ad8ae5c
DJ
606/* Disconnect from the current target without resuming it (leaving it
607 waiting for a debugger). */
608
609extern void target_disconnect (char *, int);
610
39f77062 611/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
612 single-step or to run free; SIGGNAL is the signal to be given to
613 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
614 pass TARGET_SIGNAL_DEFAULT. */
615
e1ac3328 616extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
c906108c 617
b5a2688f
AC
618/* Wait for process pid to do something. PTID = -1 to wait for any
619 pid to do something. Return pid of child, or -1 in case of error;
c906108c 620 store status through argument pointer STATUS. Note that it is
b5a2688f 621 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
622 the debugging target from the stack; GDB isn't prepared to get back
623 to the prompt with a debugging target but without the frame cache,
624 stop_pc, etc., set up. */
625
117de6a9 626extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status);
c906108c 627
17dee195 628/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c 629
28439f5e 630extern void target_fetch_registers (struct regcache *regcache, int regno);
c906108c
SS
631
632/* Store at least register REGNO, or all regs if REGNO == -1.
633 It can store as many registers as it wants to, so target_prepare_to_store
634 must have been previously called. Calls error() if there are problems. */
635
28439f5e 636extern void target_store_registers (struct regcache *regcache, int regs);
c906108c
SS
637
638/* Get ready to modify the registers array. On machines which store
639 individual registers, this doesn't need to do anything. On machines
640 which store all the registers in one fell swoop, this makes sure
641 that REGISTERS contains all the registers from the program being
642 debugged. */
643
316f2060
UW
644#define target_prepare_to_store(regcache) \
645 (*current_target.to_prepare_to_store) (regcache)
c906108c 646
8a305172
PA
647/* Returns true if this target can debug multiple processes
648 simultaneously. */
649
650#define target_supports_multi_process() \
651 (*current_target.to_supports_multi_process) ()
652
4930751a
C
653extern DCACHE *target_dcache;
654
a14ed312 655extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 656
fc1a4b47 657extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 658
fc1a4b47 659extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 660 int len);
c906108c 661
1b0ba102 662extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 663 struct mem_attrib *, struct target_ops *);
c906108c 664
fd79ecee
DJ
665/* Fetches the target's memory map. If one is found it is sorted
666 and returned, after some consistency checking. Otherwise, NULL
667 is returned. */
668VEC(mem_region_s) *target_memory_map (void);
669
a76d924d
DJ
670/* Erase the specified flash region. */
671void target_flash_erase (ULONGEST address, LONGEST length);
672
673/* Finish a sequence of flash operations. */
674void target_flash_done (void);
675
676/* Describes a request for a memory write operation. */
677struct memory_write_request
678 {
679 /* Begining address that must be written. */
680 ULONGEST begin;
681 /* Past-the-end address. */
682 ULONGEST end;
683 /* The data to write. */
684 gdb_byte *data;
685 /* A callback baton for progress reporting for this request. */
686 void *baton;
687 };
688typedef struct memory_write_request memory_write_request_s;
689DEF_VEC_O(memory_write_request_s);
690
691/* Enumeration specifying different flash preservation behaviour. */
692enum flash_preserve_mode
693 {
694 flash_preserve,
695 flash_discard
696 };
697
698/* Write several memory blocks at once. This version can be more
699 efficient than making several calls to target_write_memory, in
700 particular because it can optimize accesses to flash memory.
701
702 Moreover, this is currently the only memory access function in gdb
703 that supports writing to flash memory, and it should be used for
704 all cases where access to flash memory is desirable.
705
706 REQUESTS is the vector (see vec.h) of memory_write_request.
707 PRESERVE_FLASH_P indicates what to do with blocks which must be
708 erased, but not completely rewritten.
709 PROGRESS_CB is a function that will be periodically called to provide
710 feedback to user. It will be called with the baton corresponding
711 to the request currently being written. It may also be called
712 with a NULL baton, when preserved flash sectors are being rewritten.
713
714 The function returns 0 on success, and error otherwise. */
715int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
716 enum flash_preserve_mode preserve_flash_p,
717 void (*progress_cb) (ULONGEST, void *));
718
47932f85
DJ
719/* From infrun.c. */
720
3a3e9ee3 721extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
47932f85 722
3a3e9ee3 723extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
47932f85 724
3a3e9ee3 725extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
47932f85 726
c906108c
SS
727/* From exec.c */
728
a14ed312 729extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
730
731/* Print a line about the current target. */
732
733#define target_files_info() \
0d06e24b 734 (*current_target.to_files_info) (&current_target)
c906108c 735
8181d85f
DJ
736/* Insert a breakpoint at address BP_TGT->placed_address in the target
737 machine. Result is 0 for success, or an errno value. */
c906108c 738
8181d85f
DJ
739#define target_insert_breakpoint(bp_tgt) \
740 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 741
8181d85f
DJ
742/* Remove a breakpoint at address BP_TGT->placed_address in the target
743 machine. Result is 0 for success, or an errno value. */
c906108c 744
8181d85f
DJ
745#define target_remove_breakpoint(bp_tgt) \
746 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
747
748/* Initialize the terminal settings we record for the inferior,
749 before we actually run the inferior. */
750
751#define target_terminal_init() \
0d06e24b 752 (*current_target.to_terminal_init) ()
c906108c
SS
753
754/* Put the inferior's terminal settings into effect.
755 This is preparation for starting or resuming the inferior. */
756
757#define target_terminal_inferior() \
0d06e24b 758 (*current_target.to_terminal_inferior) ()
c906108c
SS
759
760/* Put some of our terminal settings into effect,
761 enough to get proper results from our output,
762 but do not change into or out of RAW mode
763 so that no input is discarded.
764
765 After doing this, either terminal_ours or terminal_inferior
766 should be called to get back to a normal state of affairs. */
767
768#define target_terminal_ours_for_output() \
0d06e24b 769 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
770
771/* Put our terminal settings into effect.
772 First record the inferior's terminal settings
773 so they can be restored properly later. */
774
775#define target_terminal_ours() \
0d06e24b 776 (*current_target.to_terminal_ours) ()
c906108c 777
a790ad35
SC
778/* Save our terminal settings.
779 This is called from TUI after entering or leaving the curses
780 mode. Since curses modifies our terminal this call is here
781 to take this change into account. */
782
783#define target_terminal_save_ours() \
784 (*current_target.to_terminal_save_ours) ()
785
c906108c
SS
786/* Print useful information about our terminal status, if such a thing
787 exists. */
788
789#define target_terminal_info(arg, from_tty) \
0d06e24b 790 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
791
792/* Kill the inferior process. Make it go away. */
793
7d85a9c0 794extern void target_kill (void);
c906108c 795
0d06e24b
JM
796/* Load an executable file into the target process. This is expected
797 to not only bring new code into the target process, but also to
1986bccd
AS
798 update GDB's symbol tables to match.
799
800 ARG contains command-line arguments, to be broken down with
801 buildargv (). The first non-switch argument is the filename to
802 load, FILE; the second is a number (as parsed by strtoul (..., ...,
803 0)), which is an offset to apply to the load addresses of FILE's
804 sections. The target may define switches, or other non-switch
805 arguments, as it pleases. */
c906108c 806
11cf8741 807extern void target_load (char *arg, int from_tty);
c906108c
SS
808
809/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
810 name. ADDRP is a CORE_ADDR * pointing to where the value of the
811 symbol should be returned. The result is 0 if successful, nonzero
812 if the symbol does not exist in the target environment. This
813 function should not call error() if communication with the target
814 is interrupted, since it is called from symbol reading, but should
815 return nonzero, possibly doing a complain(). */
c906108c 816
0d06e24b
JM
817#define target_lookup_symbol(name, addrp) \
818 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 819
39f77062 820/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
821 EXEC_FILE is the file to run.
822 ALLARGS is a string containing the arguments to the program.
823 ENV is the environment vector to pass. Errors reported with error().
824 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 825
136d6dae
VP
826void target_create_inferior (char *exec_file, char *args,
827 char **env, int from_tty);
c906108c
SS
828
829/* Some targets (such as ttrace-based HPUX) don't allow us to request
830 notification of inferior events such as fork and vork immediately
831 after the inferior is created. (This because of how gdb gets an
832 inferior created via invoking a shell to do it. In such a scenario,
833 if the shell init file has commands in it, the shell will fork and
834 exec for each of those commands, and we will see each such fork
835 event. Very bad.)
c5aa993b 836
0d06e24b
JM
837 Such targets will supply an appropriate definition for this function. */
838
39f77062
KB
839#define target_post_startup_inferior(ptid) \
840 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
841
842/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
843 some synchronization between gdb and the new inferior process, PID. */
844
c906108c 845#define target_acknowledge_created_inferior(pid) \
0d06e24b 846 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 847
0d06e24b
JM
848/* On some targets, we can catch an inferior fork or vfork event when
849 it occurs. These functions insert/remove an already-created
850 catchpoint for such events. */
c906108c 851
c906108c 852#define target_insert_fork_catchpoint(pid) \
0d06e24b 853 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
854
855#define target_remove_fork_catchpoint(pid) \
0d06e24b 856 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
857
858#define target_insert_vfork_catchpoint(pid) \
0d06e24b 859 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
860
861#define target_remove_vfork_catchpoint(pid) \
0d06e24b 862 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 863
6604731b
DJ
864/* If the inferior forks or vforks, this function will be called at
865 the next resume in order to perform any bookkeeping and fiddling
866 necessary to continue debugging either the parent or child, as
867 requested, and releasing the other. Information about the fork
868 or vfork event is available via get_last_target_status ().
869 This function returns 1 if the inferior should not be resumed
870 (i.e. there is another event pending). */
0d06e24b 871
ee057212 872int target_follow_fork (int follow_child);
c906108c
SS
873
874/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
875 occurs. These functions insert/remove an already-created
876 catchpoint for such events. */
877
c906108c 878#define target_insert_exec_catchpoint(pid) \
0d06e24b 879 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 880
c906108c 881#define target_remove_exec_catchpoint(pid) \
0d06e24b 882 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 883
c906108c 884/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
885 exit code of PID, if any. */
886
c906108c 887#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 888 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
889
890/* The debugger has completed a blocking wait() call. There is now
2146d243 891 some process event that must be processed. This function should
c906108c 892 be defined by those targets that require the debugger to perform
0d06e24b 893 cleanup or internal state changes in response to the process event. */
c906108c
SS
894
895/* The inferior process has died. Do what is right. */
896
136d6dae 897void target_mourn_inferior (void);
c906108c
SS
898
899/* Does target have enough data to do a run or attach command? */
900
901#define target_can_run(t) \
0d06e24b 902 ((t)->to_can_run) ()
c906108c
SS
903
904/* post process changes to signal handling in the inferior. */
905
39f77062
KB
906#define target_notice_signals(ptid) \
907 (*current_target.to_notice_signals) (ptid)
c906108c
SS
908
909/* Check to see if a thread is still alive. */
910
28439f5e 911extern int target_thread_alive (ptid_t ptid);
c906108c 912
b83266a0
SS
913/* Query for new threads and add them to the thread list. */
914
28439f5e 915extern void target_find_new_threads (void);
b83266a0 916
0d06e24b
JM
917/* Make target stop in a continuable fashion. (For instance, under
918 Unix, this should act like SIGSTOP). This function is normally
919 used by GUIs to implement a stop button. */
c906108c 920
94cc34af 921#define target_stop(ptid) (*current_target.to_stop) (ptid)
c906108c 922
96baa820
JM
923/* Send the specified COMMAND to the target's monitor
924 (shell,interpreter) for execution. The result of the query is
0d06e24b 925 placed in OUTBUF. */
96baa820
JM
926
927#define target_rcmd(command, outbuf) \
928 (*current_target.to_rcmd) (command, outbuf)
929
930
c906108c
SS
931/* Does the target include all of memory, or only part of it? This
932 determines whether we look up the target chain for other parts of
933 memory if this target can't satisfy a request. */
934
935#define target_has_all_memory \
0d06e24b 936 (current_target.to_has_all_memory)
c906108c
SS
937
938/* Does the target include memory? (Dummy targets don't.) */
939
940#define target_has_memory \
0d06e24b 941 (current_target.to_has_memory)
c906108c
SS
942
943/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
944 we start a process.) */
c5aa993b 945
c906108c 946#define target_has_stack \
0d06e24b 947 (current_target.to_has_stack)
c906108c
SS
948
949/* Does the target have registers? (Exec files don't.) */
950
951#define target_has_registers \
0d06e24b 952 (current_target.to_has_registers)
c906108c
SS
953
954/* Does the target have execution? Can we make it jump (through
52bb452f
DJ
955 hoops), or pop its stack a few times? This means that the current
956 target is currently executing; for some targets, that's the same as
957 whether or not the target is capable of execution, but there are
958 also targets which can be current while not executing. In that
959 case this will become true after target_create_inferior or
960 target_attach. */
c906108c
SS
961
962#define target_has_execution \
0d06e24b 963 (current_target.to_has_execution)
c906108c
SS
964
965/* Can the target support the debugger control of thread execution?
d6350901 966 Can it lock the thread scheduler? */
c906108c
SS
967
968#define target_can_lock_scheduler \
0d06e24b 969 (current_target.to_has_thread_control & tc_schedlock)
c906108c 970
c6ebd6cf
VP
971/* Should the target enable async mode if it is supported? Temporary
972 cludge until async mode is a strict superset of sync mode. */
973extern int target_async_permitted;
974
6426a772
JM
975/* Can the target support asynchronous execution? */
976#define target_can_async_p() (current_target.to_can_async_p ())
977
978/* Is the target in asynchronous execution mode? */
b84876c2 979#define target_is_async_p() (current_target.to_is_async_p ())
6426a772 980
9908b566
VP
981int target_supports_non_stop (void);
982
6426a772 983/* Put the target in async mode with the specified callback function. */
0d06e24b 984#define target_async(CALLBACK,CONTEXT) \
b84876c2 985 (current_target.to_async ((CALLBACK), (CONTEXT)))
43ff13b4 986
04714b91
AC
987/* This is to be used ONLY within call_function_by_hand(). It provides
988 a workaround, to have inferior function calls done in sychronous
989 mode, even though the target is asynchronous. After
ed9a39eb
JM
990 target_async_mask(0) is called, calls to target_can_async_p() will
991 return FALSE , so that target_resume() will not try to start the
992 target asynchronously. After the inferior stops, we IMMEDIATELY
993 restore the previous nature of the target, by calling
994 target_async_mask(1). After that, target_can_async_p() will return
04714b91 995 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
996
997 FIXME ezannoni 1999-12-13: we won't need this once we move
998 the turning async on and off to the single execution commands,
0d06e24b 999 from where it is done currently, in remote_resume(). */
ed9a39eb 1000
b84876c2
PA
1001#define target_async_mask(MASK) \
1002 (current_target.to_async_mask (MASK))
ed9a39eb 1003
c906108c
SS
1004/* Converts a process id to a string. Usually, the string just contains
1005 `process xyz', but on some systems it may contain
1006 `process xyz thread abc'. */
1007
117de6a9 1008extern char *target_pid_to_str (ptid_t ptid);
c906108c 1009
39f77062 1010extern char *normal_pid_to_str (ptid_t ptid);
c5aa993b 1011
0d06e24b
JM
1012/* Return a short string describing extra information about PID,
1013 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1014 is okay. */
1015
1016#define target_extra_thread_info(TP) \
1017 (current_target.to_extra_thread_info (TP))
ed9a39eb 1018
c906108c
SS
1019/* Attempts to find the pathname of the executable file
1020 that was run to create a specified process.
1021
1022 The process PID must be stopped when this operation is used.
c5aa993b 1023
c906108c
SS
1024 If the executable file cannot be determined, NULL is returned.
1025
1026 Else, a pointer to a character string containing the pathname
1027 is returned. This string should be copied into a buffer by
1028 the client if the string will not be immediately used, or if
0d06e24b 1029 it must persist. */
c906108c
SS
1030
1031#define target_pid_to_exec_file(pid) \
0d06e24b 1032 (current_target.to_pid_to_exec_file) (pid)
c906108c 1033
be4d1333
MS
1034/*
1035 * Iterator function for target memory regions.
1036 * Calls a callback function once for each memory region 'mapped'
1037 * in the child process. Defined as a simple macro rather than
2146d243 1038 * as a function macro so that it can be tested for nullity.
be4d1333
MS
1039 */
1040
1041#define target_find_memory_regions(FUNC, DATA) \
1042 (current_target.to_find_memory_regions) (FUNC, DATA)
1043
1044/*
1045 * Compose corefile .note section.
1046 */
1047
1048#define target_make_corefile_notes(BFD, SIZE_P) \
1049 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1050
c906108c
SS
1051/* Hardware watchpoint interfaces. */
1052
1053/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1054 write). */
1055
ccaa32c7
GS
1056#define STOPPED_BY_WATCHPOINT(w) \
1057 (*current_target.to_stopped_by_watchpoint) ()
7df1a324 1058
74174d2e
UW
1059/* Non-zero if we have steppable watchpoints */
1060
74174d2e
UW
1061#define HAVE_STEPPABLE_WATCHPOINT \
1062 (current_target.to_have_steppable_watchpoint)
74174d2e 1063
7df1a324
KW
1064/* Non-zero if we have continuable watchpoints */
1065
7df1a324
KW
1066#define HAVE_CONTINUABLE_WATCHPOINT \
1067 (current_target.to_have_continuable_watchpoint)
c906108c 1068
ccaa32c7 1069/* Provide defaults for hardware watchpoint functions. */
c906108c 1070
2146d243 1071/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1072 elsewhere use the definitions in the target vector. */
c906108c
SS
1073
1074/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1075 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1076 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1077 (including this one?). OTHERTYPE is who knows what... */
1078
ccaa32c7
GS
1079#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1080 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
c906108c 1081
e0d24f8d
WZ
1082#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1083 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
e0d24f8d 1084
c906108c
SS
1085
1086/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1087 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1088 success, non-zero for failure. */
1089
ccaa32c7
GS
1090#define target_insert_watchpoint(addr, len, type) \
1091 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1092
ccaa32c7
GS
1093#define target_remove_watchpoint(addr, len, type) \
1094 (*current_target.to_remove_watchpoint) (addr, len, type)
c906108c 1095
8181d85f
DJ
1096#define target_insert_hw_breakpoint(bp_tgt) \
1097 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1098
8181d85f
DJ
1099#define target_remove_hw_breakpoint(bp_tgt) \
1100 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c 1101
4aa7a7f5
JJ
1102#define target_stopped_data_address(target, x) \
1103 (*target.to_stopped_data_address) (target, x)
c906108c 1104
5009afc5
AS
1105#define target_watchpoint_addr_within_range(target, addr, start, length) \
1106 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1107
b2175913
MS
1108/* Target can execute in reverse? */
1109#define target_can_execute_reverse \
1110 (current_target.to_can_execute_reverse ? \
1111 current_target.to_can_execute_reverse () : 0)
1112
424163ea
DJ
1113extern const struct target_desc *target_read_description (struct target_ops *);
1114
0ef643c8
JB
1115#define target_get_ada_task_ptid(lwp, tid) \
1116 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1117
08388c79
DE
1118/* Utility implementation of searching memory. */
1119extern int simple_search_memory (struct target_ops* ops,
1120 CORE_ADDR start_addr,
1121 ULONGEST search_space_len,
1122 const gdb_byte *pattern,
1123 ULONGEST pattern_len,
1124 CORE_ADDR *found_addrp);
1125
1126/* Main entry point for searching memory. */
1127extern int target_search_memory (CORE_ADDR start_addr,
1128 ULONGEST search_space_len,
1129 const gdb_byte *pattern,
1130 ULONGEST pattern_len,
1131 CORE_ADDR *found_addrp);
1132
49d03eab
MR
1133/* Command logging facility. */
1134
1135#define target_log_command(p) \
1136 do \
1137 if (current_target.to_log_command) \
1138 (*current_target.to_log_command) (p); \
1139 while (0)
1140
c906108c
SS
1141/* Routines for maintenance of the target structures...
1142
1143 add_target: Add a target to the list of all possible targets.
1144
1145 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1146 targets, within its particular stratum of the stack. Result
1147 is 0 if now atop the stack, nonzero if not on top (maybe
1148 should warn user).
c906108c
SS
1149
1150 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1151 no matter where it is on the list. Returns 0 if no
1152 change, 1 if removed from stack.
c906108c 1153
c5aa993b 1154 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1155
a14ed312 1156extern void add_target (struct target_ops *);
c906108c 1157
a14ed312 1158extern int push_target (struct target_ops *);
c906108c 1159
a14ed312 1160extern int unpush_target (struct target_ops *);
c906108c 1161
fd79ecee
DJ
1162extern void target_pre_inferior (int);
1163
a14ed312 1164extern void target_preopen (int);
c906108c 1165
a14ed312 1166extern void pop_target (void);
c906108c 1167
aa76d38d
PA
1168/* Does whatever cleanup is required to get rid of all pushed targets.
1169 QUITTING is propagated to target_close; it indicates that GDB is
1170 exiting and should not get hung on an error (otherwise it is
1171 important to perform clean termination, even if it takes a
1172 while). */
1173extern void pop_all_targets (int quitting);
1174
87ab71f0
PA
1175/* Like pop_all_targets, but pops only targets whose stratum is
1176 strictly above ABOVE_STRATUM. */
1177extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1178
9e35dae4
DJ
1179extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1180 CORE_ADDR offset);
1181
52bb452f
DJ
1182/* Mark a pushed target as running or exited, for targets which do not
1183 automatically pop when not active. */
1184
1185void target_mark_running (struct target_ops *);
1186
1187void target_mark_exited (struct target_ops *);
1188
c906108c
SS
1189/* Struct section_table maps address ranges to file sections. It is
1190 mostly used with BFD files, but can be used without (e.g. for handling
1191 raw disks, or files not in formats handled by BFD). */
1192
c5aa993b
JM
1193struct section_table
1194 {
1195 CORE_ADDR addr; /* Lowest address in section */
1196 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1197
7be0c536 1198 struct bfd_section *the_bfd_section;
c906108c 1199
c5aa993b
JM
1200 bfd *bfd; /* BFD file pointer */
1201 };
c906108c 1202
8db32d44
AC
1203/* Return the "section" containing the specified address. */
1204struct section_table *target_section_by_addr (struct target_ops *target,
1205 CORE_ADDR addr);
1206
1207
c906108c
SS
1208/* From mem-break.c */
1209
8181d85f 1210extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1211
8181d85f 1212extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1213
ae4b2284 1214extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1215
ae4b2284 1216extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
917317f4 1217
c906108c
SS
1218
1219/* From target.c */
1220
a14ed312 1221extern void initialize_targets (void);
c906108c 1222
117de6a9 1223extern NORETURN void noprocess (void) ATTR_NORETURN;
c906108c 1224
8edfe269
DJ
1225extern void target_require_runnable (void);
1226
136d6dae 1227extern void find_default_attach (struct target_ops *, char *, int);
c906108c 1228
136d6dae
VP
1229extern void find_default_create_inferior (struct target_ops *,
1230 char *, char *, char **, int);
c906108c 1231
a14ed312 1232extern struct target_ops *find_run_target (void);
7a292a7a 1233
a14ed312 1234extern struct target_ops *find_core_target (void);
6426a772 1235
a14ed312 1236extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1237
570b8f7c
AC
1238extern int target_resize_to_sections (struct target_ops *target,
1239 int num_added);
07cd4b97
JB
1240
1241extern void remove_target_sections (bfd *abfd);
1242
e0665bc8
PA
1243/* Read OS data object of type TYPE from the target, and return it in
1244 XML format. The result is NUL-terminated and returned as a string,
1245 allocated using xmalloc. If an error occurs or the transfer is
1246 unsupported, NULL is returned. Empty objects are returned as
1247 allocated but empty strings. */
1248
07e059b5
VP
1249extern char *target_get_osdata (const char *type);
1250
c906108c
SS
1251\f
1252/* Stuff that should be shared among the various remote targets. */
1253
1254/* Debugging level. 0 is off, and non-zero values mean to print some debug
1255 information (higher values, more information). */
1256extern int remote_debug;
1257
1258/* Speed in bits per second, or -1 which means don't mess with the speed. */
1259extern int baud_rate;
1260/* Timeout limit for response from target. */
1261extern int remote_timeout;
1262
c906108c
SS
1263\f
1264/* Functions for helping to write a native target. */
1265
1266/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1267extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1268
2aecd87f 1269/* These are in common/signals.c, but they're only used by gdb. */
1cded358
AR
1270extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1271 int);
1272extern int default_target_signal_to_host (struct gdbarch *,
1273 enum target_signal);
1274
c906108c 1275/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1276extern enum target_signal target_signal_from_command (int);
2aecd87f 1277/* End of files in common/signals.c. */
c906108c 1278
8defab1a
DJ
1279/* Set the show memory breakpoints mode to show, and installs a cleanup
1280 to restore it back to the current value. */
1281extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1282
c906108c
SS
1283\f
1284/* Imported from machine dependent code */
1285
c906108c 1286/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1287void target_ignore (void);
c906108c 1288
1df84f13 1289extern struct target_ops deprecated_child_ops;
5ac10fd1 1290
c5aa993b 1291#endif /* !defined (TARGET_H) */
This page took 0.956725 seconds and 4 git commands to generate.