* elf32-mips.c, elf64-mips.c, elfn32-mips.c
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
0088c768 2
197e01b6 3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
f6519ebc
MK
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
0088c768 6
c906108c
SS
7 Contributed by Cygnus Support. Written by John Gilmore.
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
197e01b6
EZ
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
c906108c
SS
25
26#if !defined (TARGET_H)
27#define TARGET_H
28
da3331ec
AC
29struct objfile;
30struct ui_file;
31struct mem_attrib;
1e3ff5ad 32struct target_ops;
8181d85f 33struct bp_target_info;
da3331ec 34
c906108c
SS
35/* This include file defines the interface between the main part
36 of the debugger, and the part which is target-specific, or
37 specific to the communications interface between us and the
38 target.
39
2146d243
RM
40 A TARGET is an interface between the debugger and a particular
41 kind of file or process. Targets can be STACKED in STRATA,
c906108c
SS
42 so that more than one target can potentially respond to a request.
43 In particular, memory accesses will walk down the stack of targets
44 until they find a target that is interested in handling that particular
45 address. STRATA are artificial boundaries on the stack, within
46 which particular kinds of targets live. Strata exist so that
47 people don't get confused by pushing e.g. a process target and then
48 a file target, and wondering why they can't see the current values
49 of variables any more (the file target is handling them and they
50 never get to the process target). So when you push a file target,
51 it goes into the file stratum, which is always below the process
52 stratum. */
53
54#include "bfd.h"
55#include "symtab.h"
4930751a 56#include "dcache.h"
29e57380 57#include "memattr.h"
c906108c 58
c5aa993b
JM
59enum strata
60 {
61 dummy_stratum, /* The lowest of the low */
62 file_stratum, /* Executable files, etc */
63 core_stratum, /* Core dump files */
64 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
65 process_stratum, /* Executing processes */
66 thread_stratum /* Executing threads */
c5aa993b 67 };
c906108c 68
c5aa993b
JM
69enum thread_control_capabilities
70 {
0d06e24b
JM
71 tc_none = 0, /* Default: can't control thread execution. */
72 tc_schedlock = 1, /* Can lock the thread scheduler. */
73 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 74 };
c906108c
SS
75
76/* Stuff for target_wait. */
77
78/* Generally, what has the program done? */
c5aa993b
JM
79enum target_waitkind
80 {
81 /* The program has exited. The exit status is in value.integer. */
82 TARGET_WAITKIND_EXITED,
c906108c 83
0d06e24b
JM
84 /* The program has stopped with a signal. Which signal is in
85 value.sig. */
c5aa993b 86 TARGET_WAITKIND_STOPPED,
c906108c 87
c5aa993b
JM
88 /* The program has terminated with a signal. Which signal is in
89 value.sig. */
90 TARGET_WAITKIND_SIGNALLED,
c906108c 91
c5aa993b
JM
92 /* The program is letting us know that it dynamically loaded something
93 (e.g. it called load(2) on AIX). */
94 TARGET_WAITKIND_LOADED,
c906108c 95
0d06e24b
JM
96 /* The program has forked. A "related" process' ID is in
97 value.related_pid. I.e., if the child forks, value.related_pid
98 is the parent's ID. */
99
c5aa993b 100 TARGET_WAITKIND_FORKED,
c906108c 101
0d06e24b
JM
102 /* The program has vforked. A "related" process's ID is in
103 value.related_pid. */
104
c5aa993b 105 TARGET_WAITKIND_VFORKED,
c906108c 106
0d06e24b
JM
107 /* The program has exec'ed a new executable file. The new file's
108 pathname is pointed to by value.execd_pathname. */
109
c5aa993b 110 TARGET_WAITKIND_EXECD,
c906108c 111
0d06e24b
JM
112 /* The program has entered or returned from a system call. On
113 HP-UX, this is used in the hardware watchpoint implementation.
114 The syscall's unique integer ID number is in value.syscall_id */
115
c5aa993b
JM
116 TARGET_WAITKIND_SYSCALL_ENTRY,
117 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 118
c5aa993b
JM
119 /* Nothing happened, but we stopped anyway. This perhaps should be handled
120 within target_wait, but I'm not sure target_wait should be resuming the
121 inferior. */
c4093a6a
JM
122 TARGET_WAITKIND_SPURIOUS,
123
8e7d2c16
DJ
124 /* An event has occured, but we should wait again.
125 Remote_async_wait() returns this when there is an event
c4093a6a
JM
126 on the inferior, but the rest of the world is not interested in
127 it. The inferior has not stopped, but has just sent some output
128 to the console, for instance. In this case, we want to go back
129 to the event loop and wait there for another event from the
130 inferior, rather than being stuck in the remote_async_wait()
131 function. This way the event loop is responsive to other events,
0d06e24b 132 like for instance the user typing. */
c4093a6a 133 TARGET_WAITKIND_IGNORE
c906108c
SS
134 };
135
c5aa993b
JM
136struct target_waitstatus
137 {
138 enum target_waitkind kind;
139
140 /* Forked child pid, execd pathname, exit status or signal number. */
141 union
142 {
143 int integer;
144 enum target_signal sig;
145 int related_pid;
146 char *execd_pathname;
147 int syscall_id;
148 }
149 value;
150 };
c906108c 151
2acceee2 152/* Possible types of events that the inferior handler will have to
0d06e24b 153 deal with. */
2acceee2
JM
154enum inferior_event_type
155 {
0d06e24b 156 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
157 INF_QUIT_REQ,
158 /* Process a normal inferior event which will result in target_wait
0d06e24b 159 being called. */
2146d243 160 INF_REG_EVENT,
0d06e24b 161 /* Deal with an error on the inferior. */
2acceee2 162 INF_ERROR,
0d06e24b 163 /* We are called because a timer went off. */
2acceee2 164 INF_TIMER,
0d06e24b 165 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
166 INF_EXEC_COMPLETE,
167 /* We are called to do some stuff after the inferior stops, but we
168 are expected to reenter the proceed() and
169 handle_inferior_event() functions. This is used only in case of
0d06e24b 170 'step n' like commands. */
c2d11a7d 171 INF_EXEC_CONTINUE
2acceee2
JM
172 };
173
c906108c 174/* Return the string for a signal. */
a14ed312 175extern char *target_signal_to_string (enum target_signal);
c906108c
SS
176
177/* Return the name (SIGHUP, etc.) for a signal. */
a14ed312 178extern char *target_signal_to_name (enum target_signal);
c906108c
SS
179
180/* Given a name (SIGHUP, etc.), return its signal. */
a14ed312 181enum target_signal target_signal_from_name (char *);
c906108c 182\f
13547ab6
DJ
183/* Target objects which can be transfered using target_read,
184 target_write, et cetera. */
1e3ff5ad
AC
185
186enum target_object
187{
1e3ff5ad
AC
188 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
189 TARGET_OBJECT_AVR,
190 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
287a334e
JJ
191 TARGET_OBJECT_MEMORY,
192 /* Kernel Unwind Table. See "ia64-tdep.c". */
193 TARGET_OBJECT_UNWIND_TABLE,
2146d243
RM
194 /* Transfer auxilliary vector. */
195 TARGET_OBJECT_AUXV,
baf92889
MK
196 /* StackGhost cookie. See "sparc-tdep.c". */
197 TARGET_OBJECT_WCOOKIE
2146d243
RM
198
199 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
1e3ff5ad
AC
200};
201
13547ab6
DJ
202/* Request that OPS transfer up to LEN 8-bit bytes of the target's
203 OBJECT. The OFFSET, for a seekable object, specifies the
204 starting point. The ANNEX can be used to provide additional
205 data-specific information to the target.
1e3ff5ad 206
13547ab6
DJ
207 Return the number of bytes actually transfered, or -1 if the
208 transfer is not supported or otherwise fails. Return of a positive
209 value less than LEN indicates that no further transfer is possible.
210 Unlike the raw to_xfer_partial interface, callers of these
211 functions do not need to retry partial transfers. */
1e3ff5ad 212
1e3ff5ad
AC
213extern LONGEST target_read (struct target_ops *ops,
214 enum target_object object,
1b0ba102 215 const char *annex, gdb_byte *buf,
1e3ff5ad
AC
216 ULONGEST offset, LONGEST len);
217
218extern LONGEST target_write (struct target_ops *ops,
219 enum target_object object,
1b0ba102 220 const char *annex, const gdb_byte *buf,
1e3ff5ad 221 ULONGEST offset, LONGEST len);
b6591e8b 222
13547ab6
DJ
223/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
224 be read using OPS. The return value will be -1 if the transfer
225 fails or is not supported; 0 if the object is empty; or the length
226 of the object otherwise. If a positive value is returned, a
227 sufficiently large buffer will be allocated using xmalloc and
228 returned in *BUF_P containing the contents of the object.
229
230 This method should be used for objects sufficiently small to store
231 in a single xmalloc'd buffer, when no fixed bound on the object's
232 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
233 through this function. */
234
235extern LONGEST target_read_alloc (struct target_ops *ops,
236 enum target_object object,
237 const char *annex, gdb_byte **buf_p);
238
159f81f3
DJ
239/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
240 returned as a string, allocated using xmalloc. If an error occurs
241 or the transfer is unsupported, NULL is returned. Empty objects
242 are returned as allocated but empty strings. A warning is issued
243 if the result contains any embedded NUL bytes. */
244
245extern char *target_read_stralloc (struct target_ops *ops,
246 enum target_object object,
247 const char *annex);
248
b6591e8b
AC
249/* Wrappers to target read/write that perform memory transfers. They
250 throw an error if the memory transfer fails.
251
252 NOTE: cagney/2003-10-23: The naming schema is lifted from
253 "frame.h". The parameter order is lifted from get_frame_memory,
254 which in turn lifted it from read_memory. */
255
256extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
1b0ba102 257 gdb_byte *buf, LONGEST len);
b6591e8b
AC
258extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
259 CORE_ADDR addr, int len);
1e3ff5ad 260\f
c5aa993b 261
c906108c
SS
262/* If certain kinds of activity happen, target_wait should perform
263 callbacks. */
264/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 265 on TARGET_ACTIVITY_FD. */
c906108c
SS
266extern int target_activity_fd;
267/* Returns zero to leave the inferior alone, one to interrupt it. */
507f3c78 268extern int (*target_activity_function) (void);
c906108c 269\f
0d06e24b
JM
270struct thread_info; /* fwd decl for parameter list below: */
271
c906108c 272struct target_ops
c5aa993b 273 {
258b763a 274 struct target_ops *beneath; /* To the target under this one. */
c5aa993b
JM
275 char *to_shortname; /* Name this target type */
276 char *to_longname; /* Name for printing */
277 char *to_doc; /* Documentation. Does not include trailing
c906108c 278 newline, and starts with a one-line descrip-
0d06e24b 279 tion (probably similar to to_longname). */
bba2d28d
AC
280 /* Per-target scratch pad. */
281 void *to_data;
f1c07ab0
AC
282 /* The open routine takes the rest of the parameters from the
283 command, and (if successful) pushes a new target onto the
284 stack. Targets should supply this routine, if only to provide
285 an error message. */
507f3c78 286 void (*to_open) (char *, int);
f1c07ab0
AC
287 /* Old targets with a static target vector provide "to_close".
288 New re-entrant targets provide "to_xclose" and that is expected
289 to xfree everything (including the "struct target_ops"). */
290 void (*to_xclose) (struct target_ops *targ, int quitting);
507f3c78
KB
291 void (*to_close) (int);
292 void (*to_attach) (char *, int);
293 void (*to_post_attach) (int);
507f3c78 294 void (*to_detach) (char *, int);
597320e7 295 void (*to_disconnect) (struct target_ops *, char *, int);
39f77062
KB
296 void (*to_resume) (ptid_t, int, enum target_signal);
297 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
507f3c78
KB
298 void (*to_fetch_registers) (int);
299 void (*to_store_registers) (int);
300 void (*to_prepare_to_store) (void);
c5aa993b
JM
301
302 /* Transfer LEN bytes of memory between GDB address MYADDR and
303 target address MEMADDR. If WRITE, transfer them to the target, else
304 transfer them from the target. TARGET is the target from which we
305 get this function.
306
307 Return value, N, is one of the following:
308
309 0 means that we can't handle this. If errno has been set, it is the
310 error which prevented us from doing it (FIXME: What about bfd_error?).
311
312 positive (call it N) means that we have transferred N bytes
313 starting at MEMADDR. We might be able to handle more bytes
314 beyond this length, but no promises.
315
316 negative (call its absolute value N) means that we cannot
317 transfer right at MEMADDR, but we could transfer at least
c8e73a31 318 something at MEMADDR + N.
c5aa993b 319
c8e73a31
AC
320 NOTE: cagney/2004-10-01: This has been entirely superseeded by
321 to_xfer_partial and inferior inheritance. */
322
1b0ba102 323 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
c8e73a31
AC
324 int len, int write,
325 struct mem_attrib *attrib,
326 struct target_ops *target);
c906108c 327
507f3c78 328 void (*to_files_info) (struct target_ops *);
8181d85f
DJ
329 int (*to_insert_breakpoint) (struct bp_target_info *);
330 int (*to_remove_breakpoint) (struct bp_target_info *);
ccaa32c7 331 int (*to_can_use_hw_breakpoint) (int, int, int);
8181d85f
DJ
332 int (*to_insert_hw_breakpoint) (struct bp_target_info *);
333 int (*to_remove_hw_breakpoint) (struct bp_target_info *);
ccaa32c7
GS
334 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
335 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
336 int (*to_stopped_by_watchpoint) (void);
7df1a324 337 int to_have_continuable_watchpoint;
4aa7a7f5 338 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
e0d24f8d 339 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
507f3c78
KB
340 void (*to_terminal_init) (void);
341 void (*to_terminal_inferior) (void);
342 void (*to_terminal_ours_for_output) (void);
343 void (*to_terminal_ours) (void);
a790ad35 344 void (*to_terminal_save_ours) (void);
507f3c78
KB
345 void (*to_terminal_info) (char *, int);
346 void (*to_kill) (void);
347 void (*to_load) (char *, int);
348 int (*to_lookup_symbol) (char *, CORE_ADDR *);
c27cda74 349 void (*to_create_inferior) (char *, char *, char **, int);
39f77062 350 void (*to_post_startup_inferior) (ptid_t);
507f3c78 351 void (*to_acknowledge_created_inferior) (int);
fa113d1a 352 void (*to_insert_fork_catchpoint) (int);
507f3c78 353 int (*to_remove_fork_catchpoint) (int);
fa113d1a 354 void (*to_insert_vfork_catchpoint) (int);
507f3c78 355 int (*to_remove_vfork_catchpoint) (int);
ee057212 356 int (*to_follow_fork) (struct target_ops *, int);
fa113d1a 357 void (*to_insert_exec_catchpoint) (int);
507f3c78 358 int (*to_remove_exec_catchpoint) (int);
507f3c78 359 int (*to_reported_exec_events_per_exec_call) (void);
507f3c78
KB
360 int (*to_has_exited) (int, int, int *);
361 void (*to_mourn_inferior) (void);
362 int (*to_can_run) (void);
39f77062
KB
363 void (*to_notice_signals) (ptid_t ptid);
364 int (*to_thread_alive) (ptid_t ptid);
507f3c78 365 void (*to_find_new_threads) (void);
39f77062 366 char *(*to_pid_to_str) (ptid_t);
507f3c78
KB
367 char *(*to_extra_thread_info) (struct thread_info *);
368 void (*to_stop) (void);
d9fcf2fb 369 void (*to_rcmd) (char *command, struct ui_file *output);
507f3c78
KB
370 struct symtab_and_line *(*to_enable_exception_callback) (enum
371 exception_event_kind,
372 int);
373 struct exception_event_record *(*to_get_current_exception_event) (void);
374 char *(*to_pid_to_exec_file) (int pid);
c5aa993b 375 enum strata to_stratum;
c5aa993b
JM
376 int to_has_all_memory;
377 int to_has_memory;
378 int to_has_stack;
379 int to_has_registers;
380 int to_has_execution;
381 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
382 struct section_table
383 *to_sections;
384 struct section_table
385 *to_sections_end;
6426a772
JM
386 /* ASYNC target controls */
387 int (*to_can_async_p) (void);
388 int (*to_is_async_p) (void);
0d06e24b
JM
389 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
390 void *context);
ed9a39eb 391 int to_async_mask_value;
2146d243
RM
392 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
393 unsigned long,
394 int, int, int,
395 void *),
be4d1333
MS
396 void *);
397 char * (*to_make_corefile_notes) (bfd *, int *);
3f47be5c
EZ
398
399 /* Return the thread-local address at OFFSET in the
400 thread-local storage for the thread PTID and the shared library
401 or executable file given by OBJFILE. If that block of
402 thread-local storage hasn't been allocated yet, this function
403 may return an error. */
404 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
b2756930 405 CORE_ADDR load_module_addr,
3f47be5c
EZ
406 CORE_ADDR offset);
407
13547ab6
DJ
408 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
409 OBJECT. The OFFSET, for a seekable object, specifies the
410 starting point. The ANNEX can be used to provide additional
411 data-specific information to the target.
412
413 Return the number of bytes actually transfered, zero when no
414 further transfer is possible, and -1 when the transfer is not
415 supported. Return of a positive value smaller than LEN does
416 not indicate the end of the object, only the end of the
417 transfer; higher level code should continue transferring if
418 desired. This is handled in target.c.
419
420 The interface does not support a "retry" mechanism. Instead it
421 assumes that at least one byte will be transfered on each
422 successful call.
423
424 NOTE: cagney/2003-10-17: The current interface can lead to
425 fragmented transfers. Lower target levels should not implement
426 hacks, such as enlarging the transfer, in an attempt to
427 compensate for this. Instead, the target stack should be
428 extended so that it implements supply/collect methods and a
429 look-aside object cache. With that available, the lowest
430 target can safely and freely "push" data up the stack.
431
432 See target_read and target_write for more information. One,
433 and only one, of readbuf or writebuf must be non-NULL. */
434
4b8a223f 435 LONGEST (*to_xfer_partial) (struct target_ops *ops,
8aa91c1e 436 enum target_object object, const char *annex,
1b0ba102 437 gdb_byte *readbuf, const gdb_byte *writebuf,
8aa91c1e 438 ULONGEST offset, LONGEST len);
1e3ff5ad 439
c5aa993b 440 int to_magic;
0d06e24b
JM
441 /* Need sub-structure for target machine related rather than comm related?
442 */
c5aa993b 443 };
c906108c
SS
444
445/* Magic number for checking ops size. If a struct doesn't end with this
446 number, somebody changed the declaration but didn't change all the
447 places that initialize one. */
448
449#define OPS_MAGIC 3840
450
451/* The ops structure for our "current" target process. This should
452 never be NULL. If there is no target, it points to the dummy_target. */
453
c5aa993b 454extern struct target_ops current_target;
c906108c 455
c906108c
SS
456/* Define easy words for doing these operations on our current target. */
457
458#define target_shortname (current_target.to_shortname)
459#define target_longname (current_target.to_longname)
460
f1c07ab0
AC
461/* Does whatever cleanup is required for a target that we are no
462 longer going to be calling. QUITTING indicates that GDB is exiting
463 and should not get hung on an error (otherwise it is important to
464 perform clean termination, even if it takes a while). This routine
465 is automatically always called when popping the target off the
466 target stack (to_beneath is undefined). Closing file descriptors
467 and freeing all memory allocated memory are typical things it
468 should do. */
469
470void target_close (struct target_ops *targ, int quitting);
c906108c
SS
471
472/* Attaches to a process on the target side. Arguments are as passed
473 to the `attach' command by the user. This routine can be called
474 when the target is not on the target-stack, if the target_can_run
2146d243 475 routine returns 1; in that case, it must push itself onto the stack.
c906108c 476 Upon exit, the target should be ready for normal operations, and
2146d243 477 should be ready to deliver the status of the process immediately
c906108c
SS
478 (without waiting) to an upcoming target_wait call. */
479
480#define target_attach(args, from_tty) \
0d06e24b 481 (*current_target.to_attach) (args, from_tty)
c906108c
SS
482
483/* The target_attach operation places a process under debugger control,
484 and stops the process.
485
486 This operation provides a target-specific hook that allows the
0d06e24b 487 necessary bookkeeping to be performed after an attach completes. */
c906108c 488#define target_post_attach(pid) \
0d06e24b 489 (*current_target.to_post_attach) (pid)
c906108c 490
c906108c
SS
491/* Takes a program previously attached to and detaches it.
492 The program may resume execution (some targets do, some don't) and will
493 no longer stop on signals, etc. We better not have left any breakpoints
494 in the program or it'll die when it hits one. ARGS is arguments
495 typed by the user (e.g. a signal to send the process). FROM_TTY
496 says whether to be verbose or not. */
497
a14ed312 498extern void target_detach (char *, int);
c906108c 499
6ad8ae5c
DJ
500/* Disconnect from the current target without resuming it (leaving it
501 waiting for a debugger). */
502
503extern void target_disconnect (char *, int);
504
39f77062 505/* Resume execution of the target process PTID. STEP says whether to
c906108c
SS
506 single-step or to run free; SIGGNAL is the signal to be given to
507 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
508 pass TARGET_SIGNAL_DEFAULT. */
509
39f77062 510#define target_resume(ptid, step, siggnal) \
4930751a
C
511 do { \
512 dcache_invalidate(target_dcache); \
39f77062 513 (*current_target.to_resume) (ptid, step, siggnal); \
4930751a 514 } while (0)
c906108c 515
b5a2688f
AC
516/* Wait for process pid to do something. PTID = -1 to wait for any
517 pid to do something. Return pid of child, or -1 in case of error;
c906108c 518 store status through argument pointer STATUS. Note that it is
b5a2688f 519 _NOT_ OK to throw_exception() out of target_wait() without popping
c906108c
SS
520 the debugging target from the stack; GDB isn't prepared to get back
521 to the prompt with a debugging target but without the frame cache,
522 stop_pc, etc., set up. */
523
39f77062
KB
524#define target_wait(ptid, status) \
525 (*current_target.to_wait) (ptid, status)
c906108c 526
17dee195 527/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
c906108c
SS
528
529#define target_fetch_registers(regno) \
0d06e24b 530 (*current_target.to_fetch_registers) (regno)
c906108c
SS
531
532/* Store at least register REGNO, or all regs if REGNO == -1.
533 It can store as many registers as it wants to, so target_prepare_to_store
534 must have been previously called. Calls error() if there are problems. */
535
536#define target_store_registers(regs) \
0d06e24b 537 (*current_target.to_store_registers) (regs)
c906108c
SS
538
539/* Get ready to modify the registers array. On machines which store
540 individual registers, this doesn't need to do anything. On machines
541 which store all the registers in one fell swoop, this makes sure
542 that REGISTERS contains all the registers from the program being
543 debugged. */
544
545#define target_prepare_to_store() \
0d06e24b 546 (*current_target.to_prepare_to_store) ()
c906108c 547
4930751a
C
548extern DCACHE *target_dcache;
549
1b0ba102
AC
550extern int do_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
551 int write, struct mem_attrib *attrib);
4930751a 552
a14ed312 553extern int target_read_string (CORE_ADDR, char **, int, int *);
c906108c 554
fc1a4b47 555extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
c906108c 556
fc1a4b47 557extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
10e2d419 558 int len);
c906108c 559
1b0ba102 560extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 561 struct mem_attrib *, struct target_ops *);
c906108c 562
6c932e54 563extern int child_xfer_memory (CORE_ADDR, gdb_byte *, int, int,
29e57380 564 struct mem_attrib *, struct target_ops *);
c906108c 565
917317f4
JM
566/* Make a single attempt at transfering LEN bytes. On a successful
567 transfer, the number of bytes actually transfered is returned and
568 ERR is set to 0. When a transfer fails, -1 is returned (the number
569 of bytes actually transfered is not defined) and ERR is set to a
0d06e24b 570 non-zero error indication. */
917317f4 571
f6519ebc
MK
572extern int target_read_memory_partial (CORE_ADDR addr, gdb_byte *buf,
573 int len, int *err);
917317f4 574
f6519ebc
MK
575extern int target_write_memory_partial (CORE_ADDR addr, gdb_byte *buf,
576 int len, int *err);
917317f4 577
a14ed312 578extern char *child_pid_to_exec_file (int);
c906108c 579
a14ed312 580extern char *child_core_file_to_sym_file (char *);
c906108c
SS
581
582#if defined(CHILD_POST_ATTACH)
a14ed312 583extern void child_post_attach (int);
c906108c
SS
584#endif
585
39f77062 586extern void child_post_startup_inferior (ptid_t);
c906108c 587
a14ed312 588extern void child_acknowledge_created_inferior (int);
c906108c 589
fa113d1a 590extern void child_insert_fork_catchpoint (int);
c906108c 591
a14ed312 592extern int child_remove_fork_catchpoint (int);
c906108c 593
fa113d1a 594extern void child_insert_vfork_catchpoint (int);
c906108c 595
a14ed312 596extern int child_remove_vfork_catchpoint (int);
c906108c 597
a14ed312 598extern void child_acknowledge_created_inferior (int);
c906108c 599
ee057212 600extern int child_follow_fork (struct target_ops *, int);
c906108c 601
fa113d1a 602extern void child_insert_exec_catchpoint (int);
c906108c 603
a14ed312 604extern int child_remove_exec_catchpoint (int);
c906108c 605
a14ed312 606extern int child_reported_exec_events_per_exec_call (void);
c906108c 607
a14ed312 608extern int child_has_exited (int, int, int *);
c906108c 609
39f77062 610extern int child_thread_alive (ptid_t);
c906108c 611
47932f85
DJ
612/* From infrun.c. */
613
614extern int inferior_has_forked (int pid, int *child_pid);
615
616extern int inferior_has_vforked (int pid, int *child_pid);
617
618extern int inferior_has_execd (int pid, char **execd_pathname);
619
c906108c
SS
620/* From exec.c */
621
a14ed312 622extern void print_section_info (struct target_ops *, bfd *);
c906108c
SS
623
624/* Print a line about the current target. */
625
626#define target_files_info() \
0d06e24b 627 (*current_target.to_files_info) (&current_target)
c906108c 628
8181d85f
DJ
629/* Insert a breakpoint at address BP_TGT->placed_address in the target
630 machine. Result is 0 for success, or an errno value. */
c906108c 631
8181d85f
DJ
632#define target_insert_breakpoint(bp_tgt) \
633 (*current_target.to_insert_breakpoint) (bp_tgt)
c906108c 634
8181d85f
DJ
635/* Remove a breakpoint at address BP_TGT->placed_address in the target
636 machine. Result is 0 for success, or an errno value. */
c906108c 637
8181d85f
DJ
638#define target_remove_breakpoint(bp_tgt) \
639 (*current_target.to_remove_breakpoint) (bp_tgt)
c906108c
SS
640
641/* Initialize the terminal settings we record for the inferior,
642 before we actually run the inferior. */
643
644#define target_terminal_init() \
0d06e24b 645 (*current_target.to_terminal_init) ()
c906108c
SS
646
647/* Put the inferior's terminal settings into effect.
648 This is preparation for starting or resuming the inferior. */
649
650#define target_terminal_inferior() \
0d06e24b 651 (*current_target.to_terminal_inferior) ()
c906108c
SS
652
653/* Put some of our terminal settings into effect,
654 enough to get proper results from our output,
655 but do not change into or out of RAW mode
656 so that no input is discarded.
657
658 After doing this, either terminal_ours or terminal_inferior
659 should be called to get back to a normal state of affairs. */
660
661#define target_terminal_ours_for_output() \
0d06e24b 662 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
663
664/* Put our terminal settings into effect.
665 First record the inferior's terminal settings
666 so they can be restored properly later. */
667
668#define target_terminal_ours() \
0d06e24b 669 (*current_target.to_terminal_ours) ()
c906108c 670
a790ad35
SC
671/* Save our terminal settings.
672 This is called from TUI after entering or leaving the curses
673 mode. Since curses modifies our terminal this call is here
674 to take this change into account. */
675
676#define target_terminal_save_ours() \
677 (*current_target.to_terminal_save_ours) ()
678
c906108c
SS
679/* Print useful information about our terminal status, if such a thing
680 exists. */
681
682#define target_terminal_info(arg, from_tty) \
0d06e24b 683 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
684
685/* Kill the inferior process. Make it go away. */
686
687#define target_kill() \
0d06e24b 688 (*current_target.to_kill) ()
c906108c 689
0d06e24b
JM
690/* Load an executable file into the target process. This is expected
691 to not only bring new code into the target process, but also to
1986bccd
AS
692 update GDB's symbol tables to match.
693
694 ARG contains command-line arguments, to be broken down with
695 buildargv (). The first non-switch argument is the filename to
696 load, FILE; the second is a number (as parsed by strtoul (..., ...,
697 0)), which is an offset to apply to the load addresses of FILE's
698 sections. The target may define switches, or other non-switch
699 arguments, as it pleases. */
c906108c 700
11cf8741 701extern void target_load (char *arg, int from_tty);
c906108c
SS
702
703/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
704 name. ADDRP is a CORE_ADDR * pointing to where the value of the
705 symbol should be returned. The result is 0 if successful, nonzero
706 if the symbol does not exist in the target environment. This
707 function should not call error() if communication with the target
708 is interrupted, since it is called from symbol reading, but should
709 return nonzero, possibly doing a complain(). */
c906108c 710
0d06e24b
JM
711#define target_lookup_symbol(name, addrp) \
712 (*current_target.to_lookup_symbol) (name, addrp)
c906108c 713
39f77062 714/* Start an inferior process and set inferior_ptid to its pid.
c906108c
SS
715 EXEC_FILE is the file to run.
716 ALLARGS is a string containing the arguments to the program.
717 ENV is the environment vector to pass. Errors reported with error().
718 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 719
c27cda74
AC
720#define target_create_inferior(exec_file, args, env, FROM_TTY) \
721 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
c906108c
SS
722
723
724/* Some targets (such as ttrace-based HPUX) don't allow us to request
725 notification of inferior events such as fork and vork immediately
726 after the inferior is created. (This because of how gdb gets an
727 inferior created via invoking a shell to do it. In such a scenario,
728 if the shell init file has commands in it, the shell will fork and
729 exec for each of those commands, and we will see each such fork
730 event. Very bad.)
c5aa993b 731
0d06e24b
JM
732 Such targets will supply an appropriate definition for this function. */
733
39f77062
KB
734#define target_post_startup_inferior(ptid) \
735 (*current_target.to_post_startup_inferior) (ptid)
c906108c
SS
736
737/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
738 some synchronization between gdb and the new inferior process, PID. */
739
c906108c 740#define target_acknowledge_created_inferior(pid) \
0d06e24b 741 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c 742
0d06e24b
JM
743/* On some targets, we can catch an inferior fork or vfork event when
744 it occurs. These functions insert/remove an already-created
745 catchpoint for such events. */
c906108c 746
c906108c 747#define target_insert_fork_catchpoint(pid) \
0d06e24b 748 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
749
750#define target_remove_fork_catchpoint(pid) \
0d06e24b 751 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
752
753#define target_insert_vfork_catchpoint(pid) \
0d06e24b 754 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
755
756#define target_remove_vfork_catchpoint(pid) \
0d06e24b 757 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c 758
6604731b
DJ
759/* If the inferior forks or vforks, this function will be called at
760 the next resume in order to perform any bookkeeping and fiddling
761 necessary to continue debugging either the parent or child, as
762 requested, and releasing the other. Information about the fork
763 or vfork event is available via get_last_target_status ().
764 This function returns 1 if the inferior should not be resumed
765 (i.e. there is another event pending). */
0d06e24b 766
ee057212 767int target_follow_fork (int follow_child);
c906108c
SS
768
769/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
770 occurs. These functions insert/remove an already-created
771 catchpoint for such events. */
772
c906108c 773#define target_insert_exec_catchpoint(pid) \
0d06e24b 774 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 775
c906108c 776#define target_remove_exec_catchpoint(pid) \
0d06e24b 777 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c 778
c906108c
SS
779/* Returns the number of exec events that are reported when a process
780 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
781 events are being reported. */
782
c906108c 783#define target_reported_exec_events_per_exec_call() \
0d06e24b 784 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c 785
c906108c 786/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
787 exit code of PID, if any. */
788
c906108c 789#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 790 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
791
792/* The debugger has completed a blocking wait() call. There is now
2146d243 793 some process event that must be processed. This function should
c906108c 794 be defined by those targets that require the debugger to perform
0d06e24b 795 cleanup or internal state changes in response to the process event. */
c906108c
SS
796
797/* The inferior process has died. Do what is right. */
798
799#define target_mourn_inferior() \
0d06e24b 800 (*current_target.to_mourn_inferior) ()
c906108c
SS
801
802/* Does target have enough data to do a run or attach command? */
803
804#define target_can_run(t) \
0d06e24b 805 ((t)->to_can_run) ()
c906108c
SS
806
807/* post process changes to signal handling in the inferior. */
808
39f77062
KB
809#define target_notice_signals(ptid) \
810 (*current_target.to_notice_signals) (ptid)
c906108c
SS
811
812/* Check to see if a thread is still alive. */
813
39f77062
KB
814#define target_thread_alive(ptid) \
815 (*current_target.to_thread_alive) (ptid)
c906108c 816
b83266a0
SS
817/* Query for new threads and add them to the thread list. */
818
819#define target_find_new_threads() \
0d06e24b 820 (*current_target.to_find_new_threads) (); \
b83266a0 821
0d06e24b
JM
822/* Make target stop in a continuable fashion. (For instance, under
823 Unix, this should act like SIGSTOP). This function is normally
824 used by GUIs to implement a stop button. */
c906108c
SS
825
826#define target_stop current_target.to_stop
827
96baa820
JM
828/* Send the specified COMMAND to the target's monitor
829 (shell,interpreter) for execution. The result of the query is
0d06e24b 830 placed in OUTBUF. */
96baa820
JM
831
832#define target_rcmd(command, outbuf) \
833 (*current_target.to_rcmd) (command, outbuf)
834
835
c906108c 836/* Get the symbol information for a breakpointable routine called when
2146d243 837 an exception event occurs.
c906108c
SS
838 Intended mainly for C++, and for those
839 platforms/implementations where such a callback mechanism is available,
840 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 841 different mechanisms for debugging exceptions. */
c906108c
SS
842
843#define target_enable_exception_callback(kind, enable) \
0d06e24b 844 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 845
0d06e24b 846/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 847
c906108c 848#define target_get_current_exception_event() \
0d06e24b 849 (*current_target.to_get_current_exception_event) ()
c906108c 850
c906108c
SS
851/* Does the target include all of memory, or only part of it? This
852 determines whether we look up the target chain for other parts of
853 memory if this target can't satisfy a request. */
854
855#define target_has_all_memory \
0d06e24b 856 (current_target.to_has_all_memory)
c906108c
SS
857
858/* Does the target include memory? (Dummy targets don't.) */
859
860#define target_has_memory \
0d06e24b 861 (current_target.to_has_memory)
c906108c
SS
862
863/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
864 we start a process.) */
c5aa993b 865
c906108c 866#define target_has_stack \
0d06e24b 867 (current_target.to_has_stack)
c906108c
SS
868
869/* Does the target have registers? (Exec files don't.) */
870
871#define target_has_registers \
0d06e24b 872 (current_target.to_has_registers)
c906108c
SS
873
874/* Does the target have execution? Can we make it jump (through
875 hoops), or pop its stack a few times? FIXME: If this is to work that
876 way, it needs to check whether an inferior actually exists.
877 remote-udi.c and probably other targets can be the current target
878 when the inferior doesn't actually exist at the moment. Right now
879 this just tells us whether this target is *capable* of execution. */
880
881#define target_has_execution \
0d06e24b 882 (current_target.to_has_execution)
c906108c
SS
883
884/* Can the target support the debugger control of thread execution?
885 a) Can it lock the thread scheduler?
886 b) Can it switch the currently running thread? */
887
888#define target_can_lock_scheduler \
0d06e24b 889 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
890
891#define target_can_switch_threads \
0d06e24b 892 (current_target.to_has_thread_control & tc_switch)
c906108c 893
6426a772
JM
894/* Can the target support asynchronous execution? */
895#define target_can_async_p() (current_target.to_can_async_p ())
896
897/* Is the target in asynchronous execution mode? */
898#define target_is_async_p() (current_target.to_is_async_p())
899
900/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
901#define target_async(CALLBACK,CONTEXT) \
902 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 903
04714b91
AC
904/* This is to be used ONLY within call_function_by_hand(). It provides
905 a workaround, to have inferior function calls done in sychronous
906 mode, even though the target is asynchronous. After
ed9a39eb
JM
907 target_async_mask(0) is called, calls to target_can_async_p() will
908 return FALSE , so that target_resume() will not try to start the
909 target asynchronously. After the inferior stops, we IMMEDIATELY
910 restore the previous nature of the target, by calling
911 target_async_mask(1). After that, target_can_async_p() will return
04714b91 912 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
ed9a39eb
JM
913
914 FIXME ezannoni 1999-12-13: we won't need this once we move
915 the turning async on and off to the single execution commands,
0d06e24b 916 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
917
918#define target_async_mask_value \
0d06e24b 919 (current_target.to_async_mask_value)
ed9a39eb 920
2146d243 921extern int target_async_mask (int mask);
ed9a39eb 922
c906108c
SS
923/* Converts a process id to a string. Usually, the string just contains
924 `process xyz', but on some systems it may contain
925 `process xyz thread abc'. */
926
ed9a39eb
JM
927#undef target_pid_to_str
928#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
929
930#ifndef target_tid_to_str
931#define target_tid_to_str(PID) \
0d06e24b 932 target_pid_to_str (PID)
39f77062 933extern char *normal_pid_to_str (ptid_t ptid);
c906108c 934#endif
c5aa993b 935
0d06e24b
JM
936/* Return a short string describing extra information about PID,
937 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
938 is okay. */
939
940#define target_extra_thread_info(TP) \
941 (current_target.to_extra_thread_info (TP))
ed9a39eb 942
11cf8741
JM
943/*
944 * New Objfile Event Hook:
945 *
946 * Sometimes a GDB component wants to get notified whenever a new
2146d243 947 * objfile is loaded. Mainly this is used by thread-debugging
11cf8741
JM
948 * implementations that need to know when symbols for the target
949 * thread implemenation are available.
950 *
951 * The old way of doing this is to define a macro 'target_new_objfile'
952 * that points to the function that you want to be called on every
953 * objfile/shlib load.
9a4105ab
AC
954
955 The new way is to grab the function pointer,
956 'deprecated_target_new_objfile_hook', and point it to the function
957 that you want to be called on every objfile/shlib load.
958
959 If multiple clients are willing to be cooperative, they can each
960 save a pointer to the previous value of
961 deprecated_target_new_objfile_hook before modifying it, and arrange
962 for their function to call the previous function in the chain. In
963 that way, multiple clients can receive this notification (something
964 like with signal handlers). */
965
966extern void (*deprecated_target_new_objfile_hook) (struct objfile *);
c906108c
SS
967
968#ifndef target_pid_or_tid_to_str
969#define target_pid_or_tid_to_str(ID) \
0d06e24b 970 target_pid_to_str (ID)
c906108c
SS
971#endif
972
973/* Attempts to find the pathname of the executable file
974 that was run to create a specified process.
975
976 The process PID must be stopped when this operation is used.
c5aa993b 977
c906108c
SS
978 If the executable file cannot be determined, NULL is returned.
979
980 Else, a pointer to a character string containing the pathname
981 is returned. This string should be copied into a buffer by
982 the client if the string will not be immediately used, or if
0d06e24b 983 it must persist. */
c906108c
SS
984
985#define target_pid_to_exec_file(pid) \
0d06e24b 986 (current_target.to_pid_to_exec_file) (pid)
c906108c 987
be4d1333
MS
988/*
989 * Iterator function for target memory regions.
990 * Calls a callback function once for each memory region 'mapped'
991 * in the child process. Defined as a simple macro rather than
2146d243 992 * as a function macro so that it can be tested for nullity.
be4d1333
MS
993 */
994
995#define target_find_memory_regions(FUNC, DATA) \
996 (current_target.to_find_memory_regions) (FUNC, DATA)
997
998/*
999 * Compose corefile .note section.
1000 */
1001
1002#define target_make_corefile_notes(BFD, SIZE_P) \
1003 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1004
3f47be5c
EZ
1005/* Thread-local values. */
1006#define target_get_thread_local_address \
1007 (current_target.to_get_thread_local_address)
1008#define target_get_thread_local_address_p() \
1009 (target_get_thread_local_address != NULL)
1010
9d8a64cb 1011/* Hook to call target dependent code just after inferior target process has
c906108c
SS
1012 started. */
1013
1014#ifndef TARGET_CREATE_INFERIOR_HOOK
1015#define TARGET_CREATE_INFERIOR_HOOK(PID)
1016#endif
1017
1018/* Hardware watchpoint interfaces. */
1019
1020/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1021 write). */
1022
1023#ifndef STOPPED_BY_WATCHPOINT
ccaa32c7
GS
1024#define STOPPED_BY_WATCHPOINT(w) \
1025 (*current_target.to_stopped_by_watchpoint) ()
c906108c 1026#endif
7df1a324
KW
1027
1028/* Non-zero if we have continuable watchpoints */
1029
1030#ifndef HAVE_CONTINUABLE_WATCHPOINT
1031#define HAVE_CONTINUABLE_WATCHPOINT \
1032 (current_target.to_have_continuable_watchpoint)
1033#endif
c906108c 1034
ccaa32c7 1035/* Provide defaults for hardware watchpoint functions. */
c906108c 1036
2146d243 1037/* If the *_hw_beakpoint functions have not been defined
ccaa32c7 1038 elsewhere use the definitions in the target vector. */
c906108c
SS
1039
1040/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1041 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1042 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1043 (including this one?). OTHERTYPE is who knows what... */
1044
ccaa32c7
GS
1045#ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1046#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1047 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1048#endif
c906108c 1049
e0d24f8d
WZ
1050#ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1051#define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1052 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1053#endif
1054
c906108c
SS
1055
1056/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1057 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1058 success, non-zero for failure. */
1059
ccaa32c7
GS
1060#ifndef target_insert_watchpoint
1061#define target_insert_watchpoint(addr, len, type) \
1062 (*current_target.to_insert_watchpoint) (addr, len, type)
c906108c 1063
ccaa32c7
GS
1064#define target_remove_watchpoint(addr, len, type) \
1065 (*current_target.to_remove_watchpoint) (addr, len, type)
1066#endif
c906108c
SS
1067
1068#ifndef target_insert_hw_breakpoint
8181d85f
DJ
1069#define target_insert_hw_breakpoint(bp_tgt) \
1070 (*current_target.to_insert_hw_breakpoint) (bp_tgt)
ccaa32c7 1071
8181d85f
DJ
1072#define target_remove_hw_breakpoint(bp_tgt) \
1073 (*current_target.to_remove_hw_breakpoint) (bp_tgt)
c906108c
SS
1074#endif
1075
4aa7a7f5
JJ
1076extern int target_stopped_data_address_p (struct target_ops *);
1077
c906108c 1078#ifndef target_stopped_data_address
4aa7a7f5
JJ
1079#define target_stopped_data_address(target, x) \
1080 (*target.to_stopped_data_address) (target, x)
1081#else
1082/* Horrible hack to get around existing macros :-(. */
1083#define target_stopped_data_address_p(CURRENT_TARGET) (1)
c906108c
SS
1084#endif
1085
c906108c
SS
1086/* This will only be defined by a target that supports catching vfork events,
1087 such as HP-UX.
1088
1089 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1090 child process after it has exec'd, causes the parent process to resume as
1091 well. To prevent the parent from running spontaneously, such targets should
0d06e24b 1092 define this to a function that prevents that from happening. */
c906108c
SS
1093#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1094#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1095#endif
1096
1097/* This will only be defined by a target that supports catching vfork events,
1098 such as HP-UX.
1099
1100 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1101 process must be resumed when it delivers its exec event, before the parent
0d06e24b
JM
1102 vfork event will be delivered to us. */
1103
c906108c
SS
1104#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1105#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1106#endif
1107
1108/* Routines for maintenance of the target structures...
1109
1110 add_target: Add a target to the list of all possible targets.
1111
1112 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1113 targets, within its particular stratum of the stack. Result
1114 is 0 if now atop the stack, nonzero if not on top (maybe
1115 should warn user).
c906108c
SS
1116
1117 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1118 no matter where it is on the list. Returns 0 if no
1119 change, 1 if removed from stack.
c906108c 1120
c5aa993b 1121 pop_target: Remove the top thing on the stack of current targets. */
c906108c 1122
a14ed312 1123extern void add_target (struct target_ops *);
c906108c 1124
a14ed312 1125extern int push_target (struct target_ops *);
c906108c 1126
a14ed312 1127extern int unpush_target (struct target_ops *);
c906108c 1128
a14ed312 1129extern void target_preopen (int);
c906108c 1130
a14ed312 1131extern void pop_target (void);
c906108c
SS
1132
1133/* Struct section_table maps address ranges to file sections. It is
1134 mostly used with BFD files, but can be used without (e.g. for handling
1135 raw disks, or files not in formats handled by BFD). */
1136
c5aa993b
JM
1137struct section_table
1138 {
1139 CORE_ADDR addr; /* Lowest address in section */
1140 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1141
7be0c536 1142 struct bfd_section *the_bfd_section;
c906108c 1143
c5aa993b
JM
1144 bfd *bfd; /* BFD file pointer */
1145 };
c906108c 1146
8db32d44
AC
1147/* Return the "section" containing the specified address. */
1148struct section_table *target_section_by_addr (struct target_ops *target,
1149 CORE_ADDR addr);
1150
1151
c906108c
SS
1152/* From mem-break.c */
1153
8181d85f 1154extern int memory_remove_breakpoint (struct bp_target_info *);
c906108c 1155
8181d85f 1156extern int memory_insert_breakpoint (struct bp_target_info *);
c906108c 1157
8181d85f 1158extern int default_memory_remove_breakpoint (struct bp_target_info *);
917317f4 1159
8181d85f 1160extern int default_memory_insert_breakpoint (struct bp_target_info *);
917317f4 1161
c906108c
SS
1162
1163/* From target.c */
1164
a14ed312 1165extern void initialize_targets (void);
c906108c 1166
a14ed312 1167extern void noprocess (void);
c906108c 1168
a14ed312 1169extern void find_default_attach (char *, int);
c906108c 1170
c27cda74 1171extern void find_default_create_inferior (char *, char *, char **, int);
c906108c 1172
a14ed312 1173extern struct target_ops *find_run_target (void);
7a292a7a 1174
a14ed312 1175extern struct target_ops *find_core_target (void);
6426a772 1176
a14ed312 1177extern struct target_ops *find_target_beneath (struct target_ops *);
ed9a39eb 1178
570b8f7c
AC
1179extern int target_resize_to_sections (struct target_ops *target,
1180 int num_added);
07cd4b97
JB
1181
1182extern void remove_target_sections (bfd *abfd);
1183
c906108c
SS
1184\f
1185/* Stuff that should be shared among the various remote targets. */
1186
1187/* Debugging level. 0 is off, and non-zero values mean to print some debug
1188 information (higher values, more information). */
1189extern int remote_debug;
1190
1191/* Speed in bits per second, or -1 which means don't mess with the speed. */
1192extern int baud_rate;
1193/* Timeout limit for response from target. */
1194extern int remote_timeout;
1195
c906108c
SS
1196\f
1197/* Functions for helping to write a native target. */
1198
1199/* This is for native targets which use a unix/POSIX-style waitstatus. */
a14ed312 1200extern void store_waitstatus (struct target_waitstatus *, int);
c906108c 1201
c2d11a7d 1202/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1203 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1204/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1205 to the shorter target_signal_p() because it is far less ambigious.
1206 In this context ``target_signal'' refers to GDB's internal
1207 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1208 refers to the target operating system's signal. Confused? */
1209
c2d11a7d
JM
1210extern int target_signal_to_host_p (enum target_signal signo);
1211
1212/* Convert between host signal numbers and enum target_signal's.
1213 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1214 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1215/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1216 refering to the target operating system's signal numbering.
1217 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1218 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1219 internal representation of a target operating system's signal. */
1220
a14ed312
KB
1221extern enum target_signal target_signal_from_host (int);
1222extern int target_signal_to_host (enum target_signal);
c906108c
SS
1223
1224/* Convert from a number used in a GDB command to an enum target_signal. */
a14ed312 1225extern enum target_signal target_signal_from_command (int);
c906108c
SS
1226
1227/* Any target can call this to switch to remote protocol (in remote.c). */
a14ed312 1228extern void push_remote_target (char *name, int from_tty);
c906108c
SS
1229\f
1230/* Imported from machine dependent code */
1231
c906108c 1232/* Blank target vector entries are initialized to target_ignore. */
a14ed312 1233void target_ignore (void);
c906108c 1234
1df84f13 1235extern struct target_ops deprecated_child_ops;
5ac10fd1 1236
c5aa993b 1237#endif /* !defined (TARGET_H) */
This page took 0.806461 seconds and 4 git commands to generate.