[__GO32__]: Include <pc.h>.
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c 1/* Interface between GDB and target environments, including files and processes
d9fcf2fb 2 Copyright 1990-1994, 1999, 2000 Free Software Foundation, Inc.
c906108c
SS
3 Contributed by Cygnus Support. Written by John Gilmore.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#if !defined (TARGET_H)
23#define TARGET_H
24
25/* This include file defines the interface between the main part
26 of the debugger, and the part which is target-specific, or
27 specific to the communications interface between us and the
28 target.
29
30 A TARGET is an interface between the debugger and a particular
31 kind of file or process. Targets can be STACKED in STRATA,
32 so that more than one target can potentially respond to a request.
33 In particular, memory accesses will walk down the stack of targets
34 until they find a target that is interested in handling that particular
35 address. STRATA are artificial boundaries on the stack, within
36 which particular kinds of targets live. Strata exist so that
37 people don't get confused by pushing e.g. a process target and then
38 a file target, and wondering why they can't see the current values
39 of variables any more (the file target is handling them and they
40 never get to the process target). So when you push a file target,
41 it goes into the file stratum, which is always below the process
42 stratum. */
43
44#include "bfd.h"
45#include "symtab.h"
46
c5aa993b
JM
47enum strata
48 {
49 dummy_stratum, /* The lowest of the low */
50 file_stratum, /* Executable files, etc */
51 core_stratum, /* Core dump files */
52 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
53 process_stratum, /* Executing processes */
54 thread_stratum /* Executing threads */
c5aa993b 55 };
c906108c 56
c5aa993b
JM
57enum thread_control_capabilities
58 {
0d06e24b
JM
59 tc_none = 0, /* Default: can't control thread execution. */
60 tc_schedlock = 1, /* Can lock the thread scheduler. */
61 tc_switch = 2 /* Can switch the running thread on demand. */
c5aa993b 62 };
c906108c
SS
63
64/* Stuff for target_wait. */
65
66/* Generally, what has the program done? */
c5aa993b
JM
67enum target_waitkind
68 {
69 /* The program has exited. The exit status is in value.integer. */
70 TARGET_WAITKIND_EXITED,
c906108c 71
0d06e24b
JM
72 /* The program has stopped with a signal. Which signal is in
73 value.sig. */
c5aa993b 74 TARGET_WAITKIND_STOPPED,
c906108c 75
c5aa993b
JM
76 /* The program has terminated with a signal. Which signal is in
77 value.sig. */
78 TARGET_WAITKIND_SIGNALLED,
c906108c 79
c5aa993b
JM
80 /* The program is letting us know that it dynamically loaded something
81 (e.g. it called load(2) on AIX). */
82 TARGET_WAITKIND_LOADED,
c906108c 83
0d06e24b
JM
84 /* The program has forked. A "related" process' ID is in
85 value.related_pid. I.e., if the child forks, value.related_pid
86 is the parent's ID. */
87
c5aa993b 88 TARGET_WAITKIND_FORKED,
c906108c 89
0d06e24b
JM
90 /* The program has vforked. A "related" process's ID is in
91 value.related_pid. */
92
c5aa993b 93 TARGET_WAITKIND_VFORKED,
c906108c 94
0d06e24b
JM
95 /* The program has exec'ed a new executable file. The new file's
96 pathname is pointed to by value.execd_pathname. */
97
c5aa993b 98 TARGET_WAITKIND_EXECD,
c906108c 99
0d06e24b
JM
100 /* The program has entered or returned from a system call. On
101 HP-UX, this is used in the hardware watchpoint implementation.
102 The syscall's unique integer ID number is in value.syscall_id */
103
c5aa993b
JM
104 TARGET_WAITKIND_SYSCALL_ENTRY,
105 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 106
c5aa993b
JM
107 /* Nothing happened, but we stopped anyway. This perhaps should be handled
108 within target_wait, but I'm not sure target_wait should be resuming the
109 inferior. */
c4093a6a
JM
110 TARGET_WAITKIND_SPURIOUS,
111
112 /* This is used for target async and extended-async
113 only. Remote_async_wait() returns this when there is an event
114 on the inferior, but the rest of the world is not interested in
115 it. The inferior has not stopped, but has just sent some output
116 to the console, for instance. In this case, we want to go back
117 to the event loop and wait there for another event from the
118 inferior, rather than being stuck in the remote_async_wait()
119 function. This way the event loop is responsive to other events,
0d06e24b 120 like for instance the user typing. */
c4093a6a 121 TARGET_WAITKIND_IGNORE
c906108c
SS
122 };
123
124/* The numbering of these signals is chosen to match traditional unix
125 signals (insofar as various unices use the same numbers, anyway).
126 It is also the numbering of the GDB remote protocol. Other remote
127 protocols, if they use a different numbering, should make sure to
cd0fc7c3 128 translate appropriately.
c906108c 129
cd0fc7c3
SS
130 Since these numbers have actually made it out into other software
131 (stubs, etc.), you mustn't disturb the assigned numbering. If you
132 need to add new signals here, add them to the end of the explicitly
133 numbered signals.
134
135 This is based strongly on Unix/POSIX signals for several reasons:
c906108c
SS
136 (1) This set of signals represents a widely-accepted attempt to
137 represent events of this sort in a portable fashion, (2) we want a
138 signal to make it from wait to child_wait to the user intact, (3) many
139 remote protocols use a similar encoding. However, it is
140 recognized that this set of signals has limitations (such as not
141 distinguishing between various kinds of SIGSEGV, or not
142 distinguishing hitting a breakpoint from finishing a single step).
143 So in the future we may get around this either by adding additional
144 signals for breakpoint, single-step, etc., or by adding signal
145 codes; the latter seems more in the spirit of what BSD, System V,
146 etc. are doing to address these issues. */
147
148/* For an explanation of what each signal means, see
149 target_signal_to_string. */
150
c5aa993b
JM
151enum target_signal
152 {
153 /* Used some places (e.g. stop_signal) to record the concept that
154 there is no signal. */
155 TARGET_SIGNAL_0 = 0,
156 TARGET_SIGNAL_FIRST = 0,
157 TARGET_SIGNAL_HUP = 1,
158 TARGET_SIGNAL_INT = 2,
159 TARGET_SIGNAL_QUIT = 3,
160 TARGET_SIGNAL_ILL = 4,
161 TARGET_SIGNAL_TRAP = 5,
162 TARGET_SIGNAL_ABRT = 6,
163 TARGET_SIGNAL_EMT = 7,
164 TARGET_SIGNAL_FPE = 8,
165 TARGET_SIGNAL_KILL = 9,
166 TARGET_SIGNAL_BUS = 10,
167 TARGET_SIGNAL_SEGV = 11,
168 TARGET_SIGNAL_SYS = 12,
169 TARGET_SIGNAL_PIPE = 13,
170 TARGET_SIGNAL_ALRM = 14,
171 TARGET_SIGNAL_TERM = 15,
172 TARGET_SIGNAL_URG = 16,
173 TARGET_SIGNAL_STOP = 17,
174 TARGET_SIGNAL_TSTP = 18,
175 TARGET_SIGNAL_CONT = 19,
176 TARGET_SIGNAL_CHLD = 20,
177 TARGET_SIGNAL_TTIN = 21,
178 TARGET_SIGNAL_TTOU = 22,
179 TARGET_SIGNAL_IO = 23,
180 TARGET_SIGNAL_XCPU = 24,
181 TARGET_SIGNAL_XFSZ = 25,
182 TARGET_SIGNAL_VTALRM = 26,
183 TARGET_SIGNAL_PROF = 27,
184 TARGET_SIGNAL_WINCH = 28,
185 TARGET_SIGNAL_LOST = 29,
186 TARGET_SIGNAL_USR1 = 30,
187 TARGET_SIGNAL_USR2 = 31,
188 TARGET_SIGNAL_PWR = 32,
189 /* Similar to SIGIO. Perhaps they should have the same number. */
190 TARGET_SIGNAL_POLL = 33,
191 TARGET_SIGNAL_WIND = 34,
192 TARGET_SIGNAL_PHONE = 35,
193 TARGET_SIGNAL_WAITING = 36,
194 TARGET_SIGNAL_LWP = 37,
195 TARGET_SIGNAL_DANGER = 38,
196 TARGET_SIGNAL_GRANT = 39,
197 TARGET_SIGNAL_RETRACT = 40,
198 TARGET_SIGNAL_MSG = 41,
199 TARGET_SIGNAL_SOUND = 42,
200 TARGET_SIGNAL_SAK = 43,
201 TARGET_SIGNAL_PRIO = 44,
202 TARGET_SIGNAL_REALTIME_33 = 45,
203 TARGET_SIGNAL_REALTIME_34 = 46,
204 TARGET_SIGNAL_REALTIME_35 = 47,
205 TARGET_SIGNAL_REALTIME_36 = 48,
206 TARGET_SIGNAL_REALTIME_37 = 49,
207 TARGET_SIGNAL_REALTIME_38 = 50,
208 TARGET_SIGNAL_REALTIME_39 = 51,
209 TARGET_SIGNAL_REALTIME_40 = 52,
210 TARGET_SIGNAL_REALTIME_41 = 53,
211 TARGET_SIGNAL_REALTIME_42 = 54,
212 TARGET_SIGNAL_REALTIME_43 = 55,
213 TARGET_SIGNAL_REALTIME_44 = 56,
214 TARGET_SIGNAL_REALTIME_45 = 57,
215 TARGET_SIGNAL_REALTIME_46 = 58,
216 TARGET_SIGNAL_REALTIME_47 = 59,
217 TARGET_SIGNAL_REALTIME_48 = 60,
218 TARGET_SIGNAL_REALTIME_49 = 61,
219 TARGET_SIGNAL_REALTIME_50 = 62,
220 TARGET_SIGNAL_REALTIME_51 = 63,
221 TARGET_SIGNAL_REALTIME_52 = 64,
222 TARGET_SIGNAL_REALTIME_53 = 65,
223 TARGET_SIGNAL_REALTIME_54 = 66,
224 TARGET_SIGNAL_REALTIME_55 = 67,
225 TARGET_SIGNAL_REALTIME_56 = 68,
226 TARGET_SIGNAL_REALTIME_57 = 69,
227 TARGET_SIGNAL_REALTIME_58 = 70,
228 TARGET_SIGNAL_REALTIME_59 = 71,
229 TARGET_SIGNAL_REALTIME_60 = 72,
230 TARGET_SIGNAL_REALTIME_61 = 73,
231 TARGET_SIGNAL_REALTIME_62 = 74,
232 TARGET_SIGNAL_REALTIME_63 = 75,
233
234 /* Used internally by Solaris threads. See signal(5) on Solaris. */
235 TARGET_SIGNAL_CANCEL = 76,
cd0fc7c3 236
d4f3574e
SS
237 /* Yes, this pains me, too. But LynxOS didn't have SIG32, and now
238 Linux does, and we can't disturb the numbering, since it's part
239 of the protocol. Note that in some GDB's TARGET_SIGNAL_REALTIME_32
240 is number 76. */
241 TARGET_SIGNAL_REALTIME_32,
242
c906108c 243#if defined(MACH) || defined(__MACH__)
c5aa993b
JM
244 /* Mach exceptions */
245 TARGET_EXC_BAD_ACCESS,
246 TARGET_EXC_BAD_INSTRUCTION,
247 TARGET_EXC_ARITHMETIC,
248 TARGET_EXC_EMULATION,
249 TARGET_EXC_SOFTWARE,
250 TARGET_EXC_BREAKPOINT,
c906108c 251#endif
c5aa993b 252 TARGET_SIGNAL_INFO,
c906108c 253
c5aa993b
JM
254 /* Some signal we don't know about. */
255 TARGET_SIGNAL_UNKNOWN,
c906108c 256
c5aa993b
JM
257 /* Use whatever signal we use when one is not specifically specified
258 (for passing to proceed and so on). */
259 TARGET_SIGNAL_DEFAULT,
c906108c 260
c5aa993b
JM
261 /* Last and unused enum value, for sizing arrays, etc. */
262 TARGET_SIGNAL_LAST
263 };
c906108c 264
c5aa993b
JM
265struct target_waitstatus
266 {
267 enum target_waitkind kind;
268
269 /* Forked child pid, execd pathname, exit status or signal number. */
270 union
271 {
272 int integer;
273 enum target_signal sig;
274 int related_pid;
275 char *execd_pathname;
276 int syscall_id;
277 }
278 value;
279 };
c906108c 280
2acceee2 281/* Possible types of events that the inferior handler will have to
0d06e24b 282 deal with. */
2acceee2
JM
283enum inferior_event_type
284 {
0d06e24b 285 /* There is a request to quit the inferior, abandon it. */
2acceee2
JM
286 INF_QUIT_REQ,
287 /* Process a normal inferior event which will result in target_wait
0d06e24b 288 being called. */
2acceee2 289 INF_REG_EVENT,
0d06e24b 290 /* Deal with an error on the inferior. */
2acceee2 291 INF_ERROR,
0d06e24b 292 /* We are called because a timer went off. */
2acceee2 293 INF_TIMER,
0d06e24b 294 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
295 INF_EXEC_COMPLETE,
296 /* We are called to do some stuff after the inferior stops, but we
297 are expected to reenter the proceed() and
298 handle_inferior_event() functions. This is used only in case of
0d06e24b 299 'step n' like commands. */
c2d11a7d 300 INF_EXEC_CONTINUE
2acceee2
JM
301 };
302
c906108c
SS
303/* Return the string for a signal. */
304extern char *target_signal_to_string PARAMS ((enum target_signal));
305
306/* Return the name (SIGHUP, etc.) for a signal. */
307extern char *target_signal_to_name PARAMS ((enum target_signal));
308
309/* Given a name (SIGHUP, etc.), return its signal. */
310enum target_signal target_signal_from_name PARAMS ((char *));
c906108c 311\f
c5aa993b 312
c906108c
SS
313/* If certain kinds of activity happen, target_wait should perform
314 callbacks. */
315/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
0d06e24b 316 on TARGET_ACTIVITY_FD. */
c906108c
SS
317extern int target_activity_fd;
318/* Returns zero to leave the inferior alone, one to interrupt it. */
319extern int (*target_activity_function) PARAMS ((void));
320\f
0d06e24b
JM
321struct thread_info; /* fwd decl for parameter list below: */
322
c906108c 323struct target_ops
c5aa993b
JM
324 {
325 char *to_shortname; /* Name this target type */
326 char *to_longname; /* Name for printing */
327 char *to_doc; /* Documentation. Does not include trailing
c906108c 328 newline, and starts with a one-line descrip-
0d06e24b 329 tion (probably similar to to_longname). */
c5aa993b
JM
330 void (*to_open) PARAMS ((char *, int));
331 void (*to_close) PARAMS ((int));
332 void (*to_attach) PARAMS ((char *, int));
333 void (*to_post_attach) PARAMS ((int));
334 void (*to_require_attach) PARAMS ((char *, int));
335 void (*to_detach) PARAMS ((char *, int));
336 void (*to_require_detach) PARAMS ((int, char *, int));
337 void (*to_resume) PARAMS ((int, int, enum target_signal));
338 int (*to_wait) PARAMS ((int, struct target_waitstatus *));
339 void (*to_post_wait) PARAMS ((int, int));
340 void (*to_fetch_registers) PARAMS ((int));
341 void (*to_store_registers) PARAMS ((int));
342 void (*to_prepare_to_store) PARAMS ((void));
343
344 /* Transfer LEN bytes of memory between GDB address MYADDR and
345 target address MEMADDR. If WRITE, transfer them to the target, else
346 transfer them from the target. TARGET is the target from which we
347 get this function.
348
349 Return value, N, is one of the following:
350
351 0 means that we can't handle this. If errno has been set, it is the
352 error which prevented us from doing it (FIXME: What about bfd_error?).
353
354 positive (call it N) means that we have transferred N bytes
355 starting at MEMADDR. We might be able to handle more bytes
356 beyond this length, but no promises.
357
358 negative (call its absolute value N) means that we cannot
359 transfer right at MEMADDR, but we could transfer at least
360 something at MEMADDR + N. */
361
362 int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
363 int len, int write,
364 struct target_ops * target));
c906108c
SS
365
366#if 0
c5aa993b 367 /* Enable this after 4.12. */
c906108c 368
c5aa993b
JM
369 /* Search target memory. Start at STARTADDR and take LEN bytes of
370 target memory, and them with MASK, and compare to DATA. If they
371 match, set *ADDR_FOUND to the address we found it at, store the data
372 we found at LEN bytes starting at DATA_FOUND, and return. If
373 not, add INCREMENT to the search address and keep trying until
374 the search address is outside of the range [LORANGE,HIRANGE).
c906108c 375
0d06e24b
JM
376 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
377 return. */
378
c5aa993b
JM
379 void (*to_search) PARAMS ((int len, char *data, char *mask,
380 CORE_ADDR startaddr, int increment,
381 CORE_ADDR lorange, CORE_ADDR hirange,
382 CORE_ADDR * addr_found, char *data_found));
c906108c
SS
383
384#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
0d06e24b
JM
385 (*current_target.to_search) (len, data, mask, startaddr, increment, \
386 lorange, hirange, addr_found, data_found)
c5aa993b
JM
387#endif /* 0 */
388
389 void (*to_files_info) PARAMS ((struct target_ops *));
390 int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
391 int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
392 void (*to_terminal_init) PARAMS ((void));
393 void (*to_terminal_inferior) PARAMS ((void));
394 void (*to_terminal_ours_for_output) PARAMS ((void));
395 void (*to_terminal_ours) PARAMS ((void));
396 void (*to_terminal_info) PARAMS ((char *, int));
397 void (*to_kill) PARAMS ((void));
398 void (*to_load) PARAMS ((char *, int));
399 int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
400 void (*to_create_inferior) PARAMS ((char *, char *, char **));
401 void (*to_post_startup_inferior) PARAMS ((int));
402 void (*to_acknowledge_created_inferior) PARAMS ((int));
403 void (*to_clone_and_follow_inferior) PARAMS ((int, int *));
404 void (*to_post_follow_inferior_by_clone) PARAMS ((void));
405 int (*to_insert_fork_catchpoint) PARAMS ((int));
406 int (*to_remove_fork_catchpoint) PARAMS ((int));
407 int (*to_insert_vfork_catchpoint) PARAMS ((int));
408 int (*to_remove_vfork_catchpoint) PARAMS ((int));
409 int (*to_has_forked) PARAMS ((int, int *));
410 int (*to_has_vforked) PARAMS ((int, int *));
411 int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
412 void (*to_post_follow_vfork) PARAMS ((int, int, int, int));
413 int (*to_insert_exec_catchpoint) PARAMS ((int));
414 int (*to_remove_exec_catchpoint) PARAMS ((int));
415 int (*to_has_execd) PARAMS ((int, char **));
416 int (*to_reported_exec_events_per_exec_call) PARAMS ((void));
417 int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
418 int (*to_has_exited) PARAMS ((int, int, int *));
419 void (*to_mourn_inferior) PARAMS ((void));
420 int (*to_can_run) PARAMS ((void));
421 void (*to_notice_signals) PARAMS ((int pid));
422 int (*to_thread_alive) PARAMS ((int pid));
423 void (*to_find_new_threads) PARAMS ((void));
ed9a39eb 424 char *(*to_pid_to_str) PARAMS ((int));
0d06e24b 425 char *(*to_extra_thread_info) PARAMS ((struct thread_info *));
c5aa993b
JM
426 void (*to_stop) PARAMS ((void));
427 int (*to_query) PARAMS ((int /*char */ , char *, char *, int *));
d9fcf2fb 428 void (*to_rcmd) (char *command, struct ui_file *output);
c5aa993b
JM
429 struct symtab_and_line *(*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
430 struct exception_event_record *(*to_get_current_exception_event) PARAMS ((void));
431 char *(*to_pid_to_exec_file) PARAMS ((int pid));
432 char *(*to_core_file_to_sym_file) PARAMS ((char *));
433 enum strata to_stratum;
434 struct target_ops
435 *DONT_USE; /* formerly to_next */
436 int to_has_all_memory;
437 int to_has_memory;
438 int to_has_stack;
439 int to_has_registers;
440 int to_has_execution;
441 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
442 struct section_table
443 *to_sections;
444 struct section_table
445 *to_sections_end;
6426a772
JM
446 /* ASYNC target controls */
447 int (*to_can_async_p) (void);
448 int (*to_is_async_p) (void);
0d06e24b
JM
449 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
450 void *context);
ed9a39eb 451 int to_async_mask_value;
c5aa993b 452 int to_magic;
0d06e24b
JM
453 /* Need sub-structure for target machine related rather than comm related?
454 */
c5aa993b 455 };
c906108c
SS
456
457/* Magic number for checking ops size. If a struct doesn't end with this
458 number, somebody changed the declaration but didn't change all the
459 places that initialize one. */
460
461#define OPS_MAGIC 3840
462
463/* The ops structure for our "current" target process. This should
464 never be NULL. If there is no target, it points to the dummy_target. */
465
c5aa993b 466extern struct target_ops current_target;
c906108c
SS
467
468/* An item on the target stack. */
469
470struct target_stack_item
c5aa993b
JM
471 {
472 struct target_stack_item *next;
473 struct target_ops *target_ops;
474 };
c906108c
SS
475
476/* The target stack. */
477
478extern struct target_stack_item *target_stack;
479
480/* Define easy words for doing these operations on our current target. */
481
482#define target_shortname (current_target.to_shortname)
483#define target_longname (current_target.to_longname)
484
485/* The open routine takes the rest of the parameters from the command,
486 and (if successful) pushes a new target onto the stack.
487 Targets should supply this routine, if only to provide an error message. */
0d06e24b 488
c906108c 489#define target_open(name, from_tty) \
0d06e24b 490 (*current_target.to_open) (name, from_tty)
c906108c
SS
491
492/* Does whatever cleanup is required for a target that we are no longer
493 going to be calling. Argument says whether we are quitting gdb and
494 should not get hung in case of errors, or whether we want a clean
495 termination even if it takes a while. This routine is automatically
496 always called just before a routine is popped off the target stack.
497 Closing file descriptors and freeing memory are typical things it should
498 do. */
499
500#define target_close(quitting) \
0d06e24b 501 (*current_target.to_close) (quitting)
c906108c
SS
502
503/* Attaches to a process on the target side. Arguments are as passed
504 to the `attach' command by the user. This routine can be called
505 when the target is not on the target-stack, if the target_can_run
506 routine returns 1; in that case, it must push itself onto the stack.
507 Upon exit, the target should be ready for normal operations, and
508 should be ready to deliver the status of the process immediately
509 (without waiting) to an upcoming target_wait call. */
510
511#define target_attach(args, from_tty) \
0d06e24b 512 (*current_target.to_attach) (args, from_tty)
c906108c
SS
513
514/* The target_attach operation places a process under debugger control,
515 and stops the process.
516
517 This operation provides a target-specific hook that allows the
0d06e24b 518 necessary bookkeeping to be performed after an attach completes. */
c906108c 519#define target_post_attach(pid) \
0d06e24b 520 (*current_target.to_post_attach) (pid)
c906108c
SS
521
522/* Attaches to a process on the target side, if not already attached.
523 (If already attached, takes no action.)
524
525 This operation can be used to follow the child process of a fork.
526 On some targets, such child processes of an original inferior process
527 are automatically under debugger control, and thus do not require an
528 actual attach operation. */
529
530#define target_require_attach(args, from_tty) \
0d06e24b 531 (*current_target.to_require_attach) (args, from_tty)
c906108c
SS
532
533/* Takes a program previously attached to and detaches it.
534 The program may resume execution (some targets do, some don't) and will
535 no longer stop on signals, etc. We better not have left any breakpoints
536 in the program or it'll die when it hits one. ARGS is arguments
537 typed by the user (e.g. a signal to send the process). FROM_TTY
538 says whether to be verbose or not. */
539
540extern void
541target_detach PARAMS ((char *, int));
542
543/* Detaches from a process on the target side, if not already dettached.
544 (If already detached, takes no action.)
545
546 This operation can be used to follow the parent process of a fork.
547 On some targets, such child processes of an original inferior process
548 are automatically under debugger control, and thus do require an actual
549 detach operation.
550
551 PID is the process id of the child to detach from.
552 ARGS is arguments typed by the user (e.g. a signal to send the process).
553 FROM_TTY says whether to be verbose or not. */
554
0d06e24b
JM
555#define target_require_detach(pid, args, from_tty) \
556 (*current_target.to_require_detach) (pid, args, from_tty)
c906108c
SS
557
558/* Resume execution of the target process PID. STEP says whether to
559 single-step or to run free; SIGGNAL is the signal to be given to
560 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
561 pass TARGET_SIGNAL_DEFAULT. */
562
563#define target_resume(pid, step, siggnal) \
0d06e24b 564 (*current_target.to_resume) (pid, step, siggnal)
c906108c
SS
565
566/* Wait for process pid to do something. Pid = -1 to wait for any pid
567 to do something. Return pid of child, or -1 in case of error;
568 store status through argument pointer STATUS. Note that it is
569 *not* OK to return_to_top_level out of target_wait without popping
570 the debugging target from the stack; GDB isn't prepared to get back
571 to the prompt with a debugging target but without the frame cache,
572 stop_pc, etc., set up. */
573
574#define target_wait(pid, status) \
0d06e24b 575 (*current_target.to_wait) (pid, status)
c906108c
SS
576
577/* The target_wait operation waits for a process event to occur, and
578 thereby stop the process.
579
580 On some targets, certain events may happen in sequences. gdb's
581 correct response to any single event of such a sequence may require
582 knowledge of what earlier events in the sequence have been seen.
583
584 This operation provides a target-specific hook that allows the
0d06e24b 585 necessary bookkeeping to be performed to track such sequences. */
c906108c
SS
586
587#define target_post_wait(pid, status) \
0d06e24b 588 (*current_target.to_post_wait) (pid, status)
c906108c
SS
589
590/* Fetch register REGNO, or all regs if regno == -1. No result. */
591
592#define target_fetch_registers(regno) \
0d06e24b 593 (*current_target.to_fetch_registers) (regno)
c906108c
SS
594
595/* Store at least register REGNO, or all regs if REGNO == -1.
596 It can store as many registers as it wants to, so target_prepare_to_store
597 must have been previously called. Calls error() if there are problems. */
598
599#define target_store_registers(regs) \
0d06e24b 600 (*current_target.to_store_registers) (regs)
c906108c
SS
601
602/* Get ready to modify the registers array. On machines which store
603 individual registers, this doesn't need to do anything. On machines
604 which store all the registers in one fell swoop, this makes sure
605 that REGISTERS contains all the registers from the program being
606 debugged. */
607
608#define target_prepare_to_store() \
0d06e24b 609 (*current_target.to_prepare_to_store) ()
c906108c 610
ed9a39eb
JM
611extern int
612target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
c906108c
SS
613
614extern int
615target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
616
617extern int
618target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
c5aa993b 619 asection * bfd_section));
c906108c 620
c906108c
SS
621extern int
622target_write_memory PARAMS ((CORE_ADDR, char *, int));
623
624extern int
625xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
626
627extern int
628child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
629
917317f4
JM
630/* Make a single attempt at transfering LEN bytes. On a successful
631 transfer, the number of bytes actually transfered is returned and
632 ERR is set to 0. When a transfer fails, -1 is returned (the number
633 of bytes actually transfered is not defined) and ERR is set to a
0d06e24b 634 non-zero error indication. */
917317f4 635
ed9a39eb
JM
636extern int
637target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 638
ed9a39eb
JM
639extern int
640target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
917317f4 641
c906108c 642extern char *
ed9a39eb 643child_pid_to_exec_file PARAMS ((int));
c906108c
SS
644
645extern char *
ed9a39eb 646child_core_file_to_sym_file PARAMS ((char *));
c906108c
SS
647
648#if defined(CHILD_POST_ATTACH)
649extern void
650child_post_attach PARAMS ((int));
651#endif
652
653extern void
654child_post_wait PARAMS ((int, int));
655
656extern void
657child_post_startup_inferior PARAMS ((int));
658
659extern void
660child_acknowledge_created_inferior PARAMS ((int));
661
662extern void
663child_clone_and_follow_inferior PARAMS ((int, int *));
664
665extern void
666child_post_follow_inferior_by_clone PARAMS ((void));
667
668extern int
669child_insert_fork_catchpoint PARAMS ((int));
670
671extern int
672child_remove_fork_catchpoint PARAMS ((int));
673
674extern int
675child_insert_vfork_catchpoint PARAMS ((int));
676
677extern int
678child_remove_vfork_catchpoint PARAMS ((int));
679
680extern int
681child_has_forked PARAMS ((int, int *));
682
683extern int
684child_has_vforked PARAMS ((int, int *));
685
686extern void
687child_acknowledge_created_inferior PARAMS ((int));
688
689extern int
690child_can_follow_vfork_prior_to_exec PARAMS ((void));
691
692extern void
693child_post_follow_vfork PARAMS ((int, int, int, int));
694
695extern int
696child_insert_exec_catchpoint PARAMS ((int));
697
698extern int
699child_remove_exec_catchpoint PARAMS ((int));
700
701extern int
702child_has_execd PARAMS ((int, char **));
703
704extern int
705child_reported_exec_events_per_exec_call PARAMS ((void));
706
707extern int
708child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
709
710extern int
711child_has_exited PARAMS ((int, int, int *));
712
713extern int
714child_thread_alive PARAMS ((int));
715
716/* From exec.c */
717
718extern void
719print_section_info PARAMS ((struct target_ops *, bfd *));
720
721/* Print a line about the current target. */
722
723#define target_files_info() \
0d06e24b 724 (*current_target.to_files_info) (&current_target)
c906108c
SS
725
726/* Insert a breakpoint at address ADDR in the target machine.
727 SAVE is a pointer to memory allocated for saving the
728 target contents. It is guaranteed by the caller to be long enough
729 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
730 an errno value. */
731
732#define target_insert_breakpoint(addr, save) \
0d06e24b 733 (*current_target.to_insert_breakpoint) (addr, save)
c906108c
SS
734
735/* Remove a breakpoint at address ADDR in the target machine.
736 SAVE is a pointer to the same save area
737 that was previously passed to target_insert_breakpoint.
738 Result is 0 for success, or an errno value. */
739
740#define target_remove_breakpoint(addr, save) \
0d06e24b 741 (*current_target.to_remove_breakpoint) (addr, save)
c906108c
SS
742
743/* Initialize the terminal settings we record for the inferior,
744 before we actually run the inferior. */
745
746#define target_terminal_init() \
0d06e24b 747 (*current_target.to_terminal_init) ()
c906108c
SS
748
749/* Put the inferior's terminal settings into effect.
750 This is preparation for starting or resuming the inferior. */
751
752#define target_terminal_inferior() \
0d06e24b 753 (*current_target.to_terminal_inferior) ()
c906108c
SS
754
755/* Put some of our terminal settings into effect,
756 enough to get proper results from our output,
757 but do not change into or out of RAW mode
758 so that no input is discarded.
759
760 After doing this, either terminal_ours or terminal_inferior
761 should be called to get back to a normal state of affairs. */
762
763#define target_terminal_ours_for_output() \
0d06e24b 764 (*current_target.to_terminal_ours_for_output) ()
c906108c
SS
765
766/* Put our terminal settings into effect.
767 First record the inferior's terminal settings
768 so they can be restored properly later. */
769
770#define target_terminal_ours() \
0d06e24b 771 (*current_target.to_terminal_ours) ()
c906108c
SS
772
773/* Print useful information about our terminal status, if such a thing
774 exists. */
775
776#define target_terminal_info(arg, from_tty) \
0d06e24b 777 (*current_target.to_terminal_info) (arg, from_tty)
c906108c
SS
778
779/* Kill the inferior process. Make it go away. */
780
781#define target_kill() \
0d06e24b 782 (*current_target.to_kill) ()
c906108c 783
0d06e24b
JM
784/* Load an executable file into the target process. This is expected
785 to not only bring new code into the target process, but also to
786 update GDB's symbol tables to match. */
c906108c 787
11cf8741 788extern void target_load (char *arg, int from_tty);
c906108c
SS
789
790/* Look up a symbol in the target's symbol table. NAME is the symbol
0d06e24b
JM
791 name. ADDRP is a CORE_ADDR * pointing to where the value of the
792 symbol should be returned. The result is 0 if successful, nonzero
793 if the symbol does not exist in the target environment. This
794 function should not call error() if communication with the target
795 is interrupted, since it is called from symbol reading, but should
796 return nonzero, possibly doing a complain(). */
c906108c 797
0d06e24b
JM
798#define target_lookup_symbol(name, addrp) \
799 (*current_target.to_lookup_symbol) (name, addrp)
c906108c
SS
800
801/* Start an inferior process and set inferior_pid to its pid.
802 EXEC_FILE is the file to run.
803 ALLARGS is a string containing the arguments to the program.
804 ENV is the environment vector to pass. Errors reported with error().
805 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 806
c906108c 807#define target_create_inferior(exec_file, args, env) \
0d06e24b 808 (*current_target.to_create_inferior) (exec_file, args, env)
c906108c
SS
809
810
811/* Some targets (such as ttrace-based HPUX) don't allow us to request
812 notification of inferior events such as fork and vork immediately
813 after the inferior is created. (This because of how gdb gets an
814 inferior created via invoking a shell to do it. In such a scenario,
815 if the shell init file has commands in it, the shell will fork and
816 exec for each of those commands, and we will see each such fork
817 event. Very bad.)
c5aa993b 818
0d06e24b
JM
819 Such targets will supply an appropriate definition for this function. */
820
c906108c 821#define target_post_startup_inferior(pid) \
0d06e24b 822 (*current_target.to_post_startup_inferior) (pid)
c906108c
SS
823
824/* On some targets, the sequence of starting up an inferior requires
0d06e24b
JM
825 some synchronization between gdb and the new inferior process, PID. */
826
c906108c 827#define target_acknowledge_created_inferior(pid) \
0d06e24b 828 (*current_target.to_acknowledge_created_inferior) (pid)
c906108c
SS
829
830/* An inferior process has been created via a fork() or similar
831 system call. This function will clone the debugger, then ensure
832 that CHILD_PID is attached to by that debugger.
833
834 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
835 and FALSE otherwise. (The original and clone debuggers can use this
836 to determine which they are, if need be.)
837
838 (This is not a terribly useful feature without a GUI to prevent
0d06e24b
JM
839 the two debuggers from competing for shell input.) */
840
c906108c 841#define target_clone_and_follow_inferior(child_pid,followed_child) \
0d06e24b 842 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
c906108c
SS
843
844/* This operation is intended to be used as the last in a sequence of
845 steps taken when following both parent and child of a fork. This
846 is used by a clone of the debugger, which will follow the child.
847
848 The original debugger has detached from this process, and the
849 clone has attached to it.
850
851 On some targets, this requires a bit of cleanup to make it work
0d06e24b
JM
852 correctly. */
853
c906108c 854#define target_post_follow_inferior_by_clone() \
0d06e24b
JM
855 (*current_target.to_post_follow_inferior_by_clone) ()
856
857/* On some targets, we can catch an inferior fork or vfork event when
858 it occurs. These functions insert/remove an already-created
859 catchpoint for such events. */
c906108c 860
c906108c 861#define target_insert_fork_catchpoint(pid) \
0d06e24b 862 (*current_target.to_insert_fork_catchpoint) (pid)
c906108c
SS
863
864#define target_remove_fork_catchpoint(pid) \
0d06e24b 865 (*current_target.to_remove_fork_catchpoint) (pid)
c906108c
SS
866
867#define target_insert_vfork_catchpoint(pid) \
0d06e24b 868 (*current_target.to_insert_vfork_catchpoint) (pid)
c906108c
SS
869
870#define target_remove_vfork_catchpoint(pid) \
0d06e24b 871 (*current_target.to_remove_vfork_catchpoint) (pid)
c906108c
SS
872
873/* Returns TRUE if PID has invoked the fork() system call. And,
874 also sets CHILD_PID to the process id of the other ("child")
0d06e24b
JM
875 inferior process that was created by that call. */
876
c906108c 877#define target_has_forked(pid,child_pid) \
0d06e24b
JM
878 (*current_target.to_has_forked) (pid,child_pid)
879
880/* Returns TRUE if PID has invoked the vfork() system call. And,
881 also sets CHILD_PID to the process id of the other ("child")
882 inferior process that was created by that call. */
c906108c 883
c906108c 884#define target_has_vforked(pid,child_pid) \
0d06e24b 885 (*current_target.to_has_vforked) (pid,child_pid)
c906108c
SS
886
887/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
888 anything to a vforked child before it subsequently calls exec().
889 On such platforms, we say that the debugger cannot "follow" the
890 child until it has vforked.
891
892 This function should be defined to return 1 by those targets
893 which can allow the debugger to immediately follow a vforked
0d06e24b
JM
894 child, and 0 if they cannot. */
895
c906108c 896#define target_can_follow_vfork_prior_to_exec() \
0d06e24b 897 (*current_target.to_can_follow_vfork_prior_to_exec) ()
c906108c
SS
898
899/* An inferior process has been created via a vfork() system call.
900 The debugger has followed the parent, the child, or both. The
901 process of setting up for that follow may have required some
902 target-specific trickery to track the sequence of reported events.
903 If so, this function should be defined by those targets that
904 require the debugger to perform cleanup or initialization after
0d06e24b
JM
905 the vfork follow. */
906
c906108c 907#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
0d06e24b 908 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
c906108c
SS
909
910/* On some targets, we can catch an inferior exec event when it
0d06e24b
JM
911 occurs. These functions insert/remove an already-created
912 catchpoint for such events. */
913
c906108c 914#define target_insert_exec_catchpoint(pid) \
0d06e24b 915 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 916
c906108c 917#define target_remove_exec_catchpoint(pid) \
0d06e24b 918 (*current_target.to_remove_exec_catchpoint) (pid)
c906108c
SS
919
920/* Returns TRUE if PID has invoked a flavor of the exec() system call.
0d06e24b
JM
921 And, also sets EXECD_PATHNAME to the pathname of the executable
922 file that was passed to exec(), and is now being executed. */
923
c906108c 924#define target_has_execd(pid,execd_pathname) \
0d06e24b 925 (*current_target.to_has_execd) (pid,execd_pathname)
c906108c
SS
926
927/* Returns the number of exec events that are reported when a process
928 invokes a flavor of the exec() system call on this target, if exec
0d06e24b
JM
929 events are being reported. */
930
c906108c 931#define target_reported_exec_events_per_exec_call() \
0d06e24b 932 (*current_target.to_reported_exec_events_per_exec_call) ()
c906108c
SS
933
934/* Returns TRUE if PID has reported a syscall event. And, also sets
935 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
0d06e24b
JM
936 the unique integer ID of the syscall. */
937
c906108c 938#define target_has_syscall_event(pid,kind,syscall_id) \
0d06e24b 939 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
c906108c
SS
940
941/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
0d06e24b
JM
942 exit code of PID, if any. */
943
c906108c 944#define target_has_exited(pid,wait_status,exit_status) \
0d06e24b 945 (*current_target.to_has_exited) (pid,wait_status,exit_status)
c906108c
SS
946
947/* The debugger has completed a blocking wait() call. There is now
0d06e24b 948 some process event that must be processed. This function should
c906108c 949 be defined by those targets that require the debugger to perform
0d06e24b 950 cleanup or internal state changes in response to the process event. */
c906108c
SS
951
952/* The inferior process has died. Do what is right. */
953
954#define target_mourn_inferior() \
0d06e24b 955 (*current_target.to_mourn_inferior) ()
c906108c
SS
956
957/* Does target have enough data to do a run or attach command? */
958
959#define target_can_run(t) \
0d06e24b 960 ((t)->to_can_run) ()
c906108c
SS
961
962/* post process changes to signal handling in the inferior. */
963
964#define target_notice_signals(pid) \
0d06e24b 965 (*current_target.to_notice_signals) (pid)
c906108c
SS
966
967/* Check to see if a thread is still alive. */
968
969#define target_thread_alive(pid) \
0d06e24b 970 (*current_target.to_thread_alive) (pid)
c906108c 971
b83266a0
SS
972/* Query for new threads and add them to the thread list. */
973
974#define target_find_new_threads() \
0d06e24b 975 (*current_target.to_find_new_threads) (); \
b83266a0 976
0d06e24b
JM
977/* Make target stop in a continuable fashion. (For instance, under
978 Unix, this should act like SIGSTOP). This function is normally
979 used by GUIs to implement a stop button. */
c906108c
SS
980
981#define target_stop current_target.to_stop
982
983/* Queries the target side for some information. The first argument is a
984 letter specifying the type of the query, which is used to determine who
985 should process it. The second argument is a string that specifies which
986 information is desired and the third is a buffer that carries back the
987 response from the target side. The fourth parameter is the size of the
0d06e24b 988 output buffer supplied. */
c5aa993b 989
c906108c 990#define target_query(query_type, query, resp_buffer, bufffer_size) \
0d06e24b 991 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
c906108c 992
96baa820
JM
993/* Send the specified COMMAND to the target's monitor
994 (shell,interpreter) for execution. The result of the query is
0d06e24b 995 placed in OUTBUF. */
96baa820
JM
996
997#define target_rcmd(command, outbuf) \
998 (*current_target.to_rcmd) (command, outbuf)
999
1000
c906108c
SS
1001/* Get the symbol information for a breakpointable routine called when
1002 an exception event occurs.
1003 Intended mainly for C++, and for those
1004 platforms/implementations where such a callback mechanism is available,
1005 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
0d06e24b 1006 different mechanisms for debugging exceptions. */
c906108c
SS
1007
1008#define target_enable_exception_callback(kind, enable) \
0d06e24b 1009 (*current_target.to_enable_exception_callback) (kind, enable)
c906108c 1010
0d06e24b 1011/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 1012
c906108c 1013#define target_get_current_exception_event() \
0d06e24b 1014 (*current_target.to_get_current_exception_event) ()
c906108c
SS
1015
1016/* Pointer to next target in the chain, e.g. a core file and an exec file. */
1017
1018#define target_next \
0d06e24b 1019 (current_target.to_next)
c906108c
SS
1020
1021/* Does the target include all of memory, or only part of it? This
1022 determines whether we look up the target chain for other parts of
1023 memory if this target can't satisfy a request. */
1024
1025#define target_has_all_memory \
0d06e24b 1026 (current_target.to_has_all_memory)
c906108c
SS
1027
1028/* Does the target include memory? (Dummy targets don't.) */
1029
1030#define target_has_memory \
0d06e24b 1031 (current_target.to_has_memory)
c906108c
SS
1032
1033/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1034 we start a process.) */
c5aa993b 1035
c906108c 1036#define target_has_stack \
0d06e24b 1037 (current_target.to_has_stack)
c906108c
SS
1038
1039/* Does the target have registers? (Exec files don't.) */
1040
1041#define target_has_registers \
0d06e24b 1042 (current_target.to_has_registers)
c906108c
SS
1043
1044/* Does the target have execution? Can we make it jump (through
1045 hoops), or pop its stack a few times? FIXME: If this is to work that
1046 way, it needs to check whether an inferior actually exists.
1047 remote-udi.c and probably other targets can be the current target
1048 when the inferior doesn't actually exist at the moment. Right now
1049 this just tells us whether this target is *capable* of execution. */
1050
1051#define target_has_execution \
0d06e24b 1052 (current_target.to_has_execution)
c906108c
SS
1053
1054/* Can the target support the debugger control of thread execution?
1055 a) Can it lock the thread scheduler?
1056 b) Can it switch the currently running thread? */
1057
1058#define target_can_lock_scheduler \
0d06e24b 1059 (current_target.to_has_thread_control & tc_schedlock)
c906108c
SS
1060
1061#define target_can_switch_threads \
0d06e24b 1062 (current_target.to_has_thread_control & tc_switch)
c906108c 1063
6426a772
JM
1064/* Can the target support asynchronous execution? */
1065#define target_can_async_p() (current_target.to_can_async_p ())
1066
1067/* Is the target in asynchronous execution mode? */
1068#define target_is_async_p() (current_target.to_is_async_p())
1069
1070/* Put the target in async mode with the specified callback function. */
0d06e24b
JM
1071#define target_async(CALLBACK,CONTEXT) \
1072 (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 1073
ed9a39eb
JM
1074/* This is to be used ONLY within run_stack_dummy(). It
1075 provides a workaround, to have inferior function calls done in
1076 sychronous mode, even though the target is asynchronous. After
1077 target_async_mask(0) is called, calls to target_can_async_p() will
1078 return FALSE , so that target_resume() will not try to start the
1079 target asynchronously. After the inferior stops, we IMMEDIATELY
1080 restore the previous nature of the target, by calling
1081 target_async_mask(1). After that, target_can_async_p() will return
1082 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1083
1084 FIXME ezannoni 1999-12-13: we won't need this once we move
1085 the turning async on and off to the single execution commands,
0d06e24b 1086 from where it is done currently, in remote_resume(). */
ed9a39eb
JM
1087
1088#define target_async_mask_value \
0d06e24b 1089 (current_target.to_async_mask_value)
ed9a39eb
JM
1090
1091extern int target_async_mask (int mask);
1092
c906108c
SS
1093extern void target_link PARAMS ((char *, CORE_ADDR *));
1094
1095/* Converts a process id to a string. Usually, the string just contains
1096 `process xyz', but on some systems it may contain
1097 `process xyz thread abc'. */
1098
ed9a39eb
JM
1099#undef target_pid_to_str
1100#define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
c906108c
SS
1101
1102#ifndef target_tid_to_str
1103#define target_tid_to_str(PID) \
0d06e24b 1104 target_pid_to_str (PID)
c906108c
SS
1105extern char *normal_pid_to_str PARAMS ((int pid));
1106#endif
c5aa993b 1107
0d06e24b
JM
1108/* Return a short string describing extra information about PID,
1109 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1110 is okay. */
1111
1112#define target_extra_thread_info(TP) \
1113 (current_target.to_extra_thread_info (TP))
ed9a39eb 1114
11cf8741
JM
1115/*
1116 * New Objfile Event Hook:
1117 *
1118 * Sometimes a GDB component wants to get notified whenever a new
1119 * objfile is loaded. Mainly this is used by thread-debugging
1120 * implementations that need to know when symbols for the target
1121 * thread implemenation are available.
1122 *
1123 * The old way of doing this is to define a macro 'target_new_objfile'
1124 * that points to the function that you want to be called on every
1125 * objfile/shlib load.
1126 *
1127 * The new way is to grab the function pointer, 'target_new_objfile_hook',
1128 * and point it to the function that you want to be called on every
1129 * objfile/shlib load.
1130 *
1131 * If multiple clients are willing to be cooperative, they can each
1132 * save a pointer to the previous value of target_new_objfile_hook
1133 * before modifying it, and arrange for their function to call the
1134 * previous function in the chain. In that way, multiple clients
1135 * can receive this notification (something like with signal handlers).
1136 */
c906108c 1137
11cf8741 1138extern void (*target_new_objfile_hook) PARAMS ((struct objfile *));
c906108c
SS
1139
1140#ifndef target_pid_or_tid_to_str
1141#define target_pid_or_tid_to_str(ID) \
0d06e24b 1142 target_pid_to_str (ID)
c906108c
SS
1143#endif
1144
1145/* Attempts to find the pathname of the executable file
1146 that was run to create a specified process.
1147
1148 The process PID must be stopped when this operation is used.
c5aa993b 1149
c906108c
SS
1150 If the executable file cannot be determined, NULL is returned.
1151
1152 Else, a pointer to a character string containing the pathname
1153 is returned. This string should be copied into a buffer by
1154 the client if the string will not be immediately used, or if
0d06e24b 1155 it must persist. */
c906108c
SS
1156
1157#define target_pid_to_exec_file(pid) \
0d06e24b 1158 (current_target.to_pid_to_exec_file) (pid)
c906108c 1159
0d06e24b 1160/* Hook to call target-dependant code after reading in a new symbol table. */
c906108c
SS
1161
1162#ifndef TARGET_SYMFILE_POSTREAD
1163#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1164#endif
1165
1166/* Hook to call target dependant code just after inferior target process has
1167 started. */
1168
1169#ifndef TARGET_CREATE_INFERIOR_HOOK
1170#define TARGET_CREATE_INFERIOR_HOOK(PID)
1171#endif
1172
1173/* Hardware watchpoint interfaces. */
1174
1175/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1176 write). */
1177
1178#ifndef STOPPED_BY_WATCHPOINT
1179#define STOPPED_BY_WATCHPOINT(w) 0
1180#endif
1181
1182/* HP-UX supplies these operations, which respectively disable and enable
1183 the memory page-protections that are used to implement hardware watchpoints
0d06e24b
JM
1184 on that platform. See wait_for_inferior's use of these. */
1185
c906108c
SS
1186#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1187#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1188#endif
1189
1190#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1191#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1192#endif
1193
0d06e24b 1194/* Provide defaults for systems that don't support hardware watchpoints. */
c906108c
SS
1195
1196#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1197
1198/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1199 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1200 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1201 (including this one?). OTHERTYPE is who knows what... */
1202
1203#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1204
1205#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1206#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
0d06e24b 1207 (LONGEST)(byte_count) <= REGISTER_SIZE
c906108c
SS
1208#endif
1209
1210/* However, some addresses may not be profitable to use hardware to watch,
1211 or may be difficult to understand when the addressed object is out of
1212 scope, and hence should be unwatched. On some targets, this may have
1213 severe performance penalties, such that we might as well use regular
1214 watchpoints, and save (possibly precious) hardware watchpoints for other
0d06e24b
JM
1215 locations. */
1216
c906108c
SS
1217#if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1218#define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1219#endif
1220
1221
1222/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1223 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1224 success, non-zero for failure. */
1225
1226#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1227#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1228
1229#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1230
1231#ifndef target_insert_hw_breakpoint
1232#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1233#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1234#endif
1235
1236#ifndef target_stopped_data_address
1237#define target_stopped_data_address() 0
1238#endif
1239
1240/* If defined, then we need to decr pc by this much after a hardware break-
1241 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1242
1243#ifndef DECR_PC_AFTER_HW_BREAK
1244#define DECR_PC_AFTER_HW_BREAK 0
1245#endif
1246
1247/* Sometimes gdb may pick up what appears to be a valid target address
1248 from a minimal symbol, but the value really means, essentially,
1249 "This is an index into a table which is populated when the inferior
0d06e24b
JM
1250 is run. Therefore, do not attempt to use this as a PC." */
1251
c906108c
SS
1252#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1253#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1254#endif
1255
1256/* This will only be defined by a target that supports catching vfork events,
1257 such as HP-UX.
1258
1259 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1260 child process after it has exec'd, causes the parent process to resume as
1261 well. To prevent the parent from running spontaneously, such targets should
0d06e24b 1262 define this to a function that prevents that from happening. */
c906108c
SS
1263#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1264#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1265#endif
1266
1267/* This will only be defined by a target that supports catching vfork events,
1268 such as HP-UX.
1269
1270 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1271 process must be resumed when it delivers its exec event, before the parent
0d06e24b
JM
1272 vfork event will be delivered to us. */
1273
c906108c
SS
1274#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1275#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1276#endif
1277
1278/* Routines for maintenance of the target structures...
1279
1280 add_target: Add a target to the list of all possible targets.
1281
1282 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1283 targets, within its particular stratum of the stack. Result
1284 is 0 if now atop the stack, nonzero if not on top (maybe
1285 should warn user).
c906108c
SS
1286
1287 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1288 no matter where it is on the list. Returns 0 if no
1289 change, 1 if removed from stack.
c906108c 1290
c5aa993b 1291 pop_target: Remove the top thing on the stack of current targets. */
c906108c
SS
1292
1293extern void
1294add_target PARAMS ((struct target_ops *));
1295
1296extern int
1297push_target PARAMS ((struct target_ops *));
1298
1299extern int
1300unpush_target PARAMS ((struct target_ops *));
1301
1302extern void
1303target_preopen PARAMS ((int));
1304
1305extern void
1306pop_target PARAMS ((void));
1307
1308/* Struct section_table maps address ranges to file sections. It is
1309 mostly used with BFD files, but can be used without (e.g. for handling
1310 raw disks, or files not in formats handled by BFD). */
1311
c5aa993b
JM
1312struct section_table
1313 {
1314 CORE_ADDR addr; /* Lowest address in section */
1315 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1316
c5aa993b 1317 sec_ptr the_bfd_section;
c906108c 1318
c5aa993b
JM
1319 bfd *bfd; /* BFD file pointer */
1320 };
c906108c
SS
1321
1322/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1323 Returns 0 if OK, 1 on error. */
1324
1325extern int
1326build_section_table PARAMS ((bfd *, struct section_table **,
1327 struct section_table **));
1328
1329/* From mem-break.c */
1330
1331extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1332
1333extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1334
917317f4
JM
1335extern int default_memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1336
1337extern int default_memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1338
c906108c
SS
1339extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1340#ifndef BREAKPOINT_FROM_PC
0d06e24b
JM
1341#define BREAKPOINT_FROM_PC(pcptr, lenptr) \
1342 memory_breakpoint_from_pc (pcptr, lenptr)
c906108c
SS
1343#endif
1344
1345
1346/* From target.c */
1347
1348extern void
1349initialize_targets PARAMS ((void));
1350
1351extern void
1352noprocess PARAMS ((void));
1353
1354extern void
1355find_default_attach PARAMS ((char *, int));
1356
ed9a39eb 1357extern void
c906108c
SS
1358find_default_require_attach PARAMS ((char *, int));
1359
ed9a39eb 1360extern void
c906108c
SS
1361find_default_require_detach PARAMS ((int, char *, int));
1362
1363extern void
1364find_default_create_inferior PARAMS ((char *, char *, char **));
1365
ed9a39eb 1366extern void
c906108c
SS
1367find_default_clone_and_follow_inferior PARAMS ((int, int *));
1368
ed9a39eb
JM
1369extern struct target_ops *
1370find_run_target PARAMS ((void));
7a292a7a 1371
c906108c 1372extern struct target_ops *
ed9a39eb 1373find_core_target PARAMS ((void));
6426a772 1374
ed9a39eb
JM
1375extern struct target_ops *
1376find_target_beneath PARAMS ((struct target_ops *));
1377
1378extern int
6426a772 1379target_resize_to_sections PARAMS ((struct target_ops *target, int num_added));
c906108c
SS
1380\f
1381/* Stuff that should be shared among the various remote targets. */
1382
1383/* Debugging level. 0 is off, and non-zero values mean to print some debug
1384 information (higher values, more information). */
1385extern int remote_debug;
1386
1387/* Speed in bits per second, or -1 which means don't mess with the speed. */
1388extern int baud_rate;
1389/* Timeout limit for response from target. */
1390extern int remote_timeout;
1391
1392extern asection *target_memory_bfd_section;
1393\f
1394/* Functions for helping to write a native target. */
1395
1396/* This is for native targets which use a unix/POSIX-style waitstatus. */
1397extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1398
c2d11a7d 1399/* Predicate to target_signal_to_host(). Return non-zero if the enum
0d06e24b 1400 targ_signal SIGNO has an equivalent ``host'' representation. */
c2d11a7d
JM
1401/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1402 to the shorter target_signal_p() because it is far less ambigious.
1403 In this context ``target_signal'' refers to GDB's internal
1404 representation of the target's set of signals while ``host signal''
0d06e24b
JM
1405 refers to the target operating system's signal. Confused? */
1406
c2d11a7d
JM
1407extern int target_signal_to_host_p (enum target_signal signo);
1408
1409/* Convert between host signal numbers and enum target_signal's.
1410 target_signal_to_host() returns 0 and prints a warning() on GDB's
0d06e24b 1411 console if SIGNO has no equivalent host representation. */
c2d11a7d
JM
1412/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1413 refering to the target operating system's signal numbering.
1414 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1415 gdb_signal'' would probably be better as it is refering to GDB's
0d06e24b
JM
1416 internal representation of a target operating system's signal. */
1417
c906108c
SS
1418extern enum target_signal target_signal_from_host PARAMS ((int));
1419extern int target_signal_to_host PARAMS ((enum target_signal));
1420
1421/* Convert from a number used in a GDB command to an enum target_signal. */
1422extern enum target_signal target_signal_from_command PARAMS ((int));
1423
1424/* Any target can call this to switch to remote protocol (in remote.c). */
1425extern void push_remote_target PARAMS ((char *name, int from_tty));
1426\f
1427/* Imported from machine dependent code */
1428
1429#ifndef SOFTWARE_SINGLE_STEP_P
1430#define SOFTWARE_SINGLE_STEP_P 0
0d06e24b
JM
1431#define SOFTWARE_SINGLE_STEP(sig,bp_p) \
1432 (internal_error ("SOFTWARE_SINGLE_STEP"), 0)
c906108c
SS
1433#endif /* SOFTWARE_SINGLE_STEP_P */
1434
1435/* Blank target vector entries are initialized to target_ignore. */
1436void target_ignore PARAMS ((void));
1437
1438/* Macro for getting target's idea of a frame pointer.
1439 FIXME: GDB's whole scheme for dealing with "frames" and
1440 "frame pointers" needs a serious shakedown. */
1441#ifndef TARGET_VIRTUAL_FRAME_POINTER
1442#define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1443 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1444#endif /* TARGET_VIRTUAL_FRAME_POINTER */
1445
c5aa993b 1446#endif /* !defined (TARGET_H) */
This page took 0.108546 seconds and 4 git commands to generate.