import gdb-1999-12-21 snapshot
[deliverable/binutils-gdb.git] / gdb / target.h
CommitLineData
c906108c
SS
1/* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 91, 92, 93, 94, 1999 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by John Gilmore.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#if !defined (TARGET_H)
23#define TARGET_H
24
25/* This include file defines the interface between the main part
26 of the debugger, and the part which is target-specific, or
27 specific to the communications interface between us and the
28 target.
29
30 A TARGET is an interface between the debugger and a particular
31 kind of file or process. Targets can be STACKED in STRATA,
32 so that more than one target can potentially respond to a request.
33 In particular, memory accesses will walk down the stack of targets
34 until they find a target that is interested in handling that particular
35 address. STRATA are artificial boundaries on the stack, within
36 which particular kinds of targets live. Strata exist so that
37 people don't get confused by pushing e.g. a process target and then
38 a file target, and wondering why they can't see the current values
39 of variables any more (the file target is handling them and they
40 never get to the process target). So when you push a file target,
41 it goes into the file stratum, which is always below the process
42 stratum. */
43
44#include "bfd.h"
45#include "symtab.h"
46
c5aa993b
JM
47enum strata
48 {
49 dummy_stratum, /* The lowest of the low */
50 file_stratum, /* Executable files, etc */
51 core_stratum, /* Core dump files */
52 download_stratum, /* Downloading of remote targets */
d4f3574e
SS
53 process_stratum, /* Executing processes */
54 thread_stratum /* Executing threads */
c5aa993b 55 };
c906108c 56
c5aa993b
JM
57enum thread_control_capabilities
58 {
59 tc_none = 0, /* Default: can't control thread execution. */
60 tc_schedlock = 1, /* Can lock the thread scheduler. */
61 tc_switch = 2 /* Can switch the running thread on demand. */
62 };
c906108c
SS
63
64/* Stuff for target_wait. */
65
66/* Generally, what has the program done? */
c5aa993b
JM
67enum target_waitkind
68 {
69 /* The program has exited. The exit status is in value.integer. */
70 TARGET_WAITKIND_EXITED,
c906108c 71
c5aa993b
JM
72 /* The program has stopped with a signal. Which signal is in value.sig. */
73 TARGET_WAITKIND_STOPPED,
c906108c 74
c5aa993b
JM
75 /* The program has terminated with a signal. Which signal is in
76 value.sig. */
77 TARGET_WAITKIND_SIGNALLED,
c906108c 78
c5aa993b
JM
79 /* The program is letting us know that it dynamically loaded something
80 (e.g. it called load(2) on AIX). */
81 TARGET_WAITKIND_LOADED,
c906108c 82
c5aa993b
JM
83 /* The program has forked. A "related" process' ID is in value.related_pid.
84 I.e., if the child forks, value.related_pid is the parent's ID.
c906108c 85 */
c5aa993b 86 TARGET_WAITKIND_FORKED,
c906108c 87
c5aa993b 88 /* The program has vforked. A "related" process's ID is in value.related_pid.
c906108c 89 */
c5aa993b 90 TARGET_WAITKIND_VFORKED,
c906108c 91
c5aa993b
JM
92 /* The program has exec'ed a new executable file. The new file's pathname
93 is pointed to by value.execd_pathname.
c906108c 94 */
c5aa993b 95 TARGET_WAITKIND_EXECD,
c906108c 96
c5aa993b
JM
97 /* The program has entered or returned from a system call. On HP-UX, this
98 is used in the hardware watchpoint implementation. The syscall's unique
99 integer ID number is in value.syscall_id;
c906108c 100 */
c5aa993b
JM
101 TARGET_WAITKIND_SYSCALL_ENTRY,
102 TARGET_WAITKIND_SYSCALL_RETURN,
c906108c 103
c5aa993b
JM
104 /* Nothing happened, but we stopped anyway. This perhaps should be handled
105 within target_wait, but I'm not sure target_wait should be resuming the
106 inferior. */
c4093a6a
JM
107 TARGET_WAITKIND_SPURIOUS,
108
109 /* This is used for target async and extended-async
110 only. Remote_async_wait() returns this when there is an event
111 on the inferior, but the rest of the world is not interested in
112 it. The inferior has not stopped, but has just sent some output
113 to the console, for instance. In this case, we want to go back
114 to the event loop and wait there for another event from the
115 inferior, rather than being stuck in the remote_async_wait()
116 function. This way the event loop is responsive to other events,
117 like for instance the user typing. */
118 TARGET_WAITKIND_IGNORE
c906108c
SS
119 };
120
121/* The numbering of these signals is chosen to match traditional unix
122 signals (insofar as various unices use the same numbers, anyway).
123 It is also the numbering of the GDB remote protocol. Other remote
124 protocols, if they use a different numbering, should make sure to
cd0fc7c3 125 translate appropriately.
c906108c 126
cd0fc7c3
SS
127 Since these numbers have actually made it out into other software
128 (stubs, etc.), you mustn't disturb the assigned numbering. If you
129 need to add new signals here, add them to the end of the explicitly
130 numbered signals.
131
132 This is based strongly on Unix/POSIX signals for several reasons:
c906108c
SS
133 (1) This set of signals represents a widely-accepted attempt to
134 represent events of this sort in a portable fashion, (2) we want a
135 signal to make it from wait to child_wait to the user intact, (3) many
136 remote protocols use a similar encoding. However, it is
137 recognized that this set of signals has limitations (such as not
138 distinguishing between various kinds of SIGSEGV, or not
139 distinguishing hitting a breakpoint from finishing a single step).
140 So in the future we may get around this either by adding additional
141 signals for breakpoint, single-step, etc., or by adding signal
142 codes; the latter seems more in the spirit of what BSD, System V,
143 etc. are doing to address these issues. */
144
145/* For an explanation of what each signal means, see
146 target_signal_to_string. */
147
c5aa993b
JM
148enum target_signal
149 {
150 /* Used some places (e.g. stop_signal) to record the concept that
151 there is no signal. */
152 TARGET_SIGNAL_0 = 0,
153 TARGET_SIGNAL_FIRST = 0,
154 TARGET_SIGNAL_HUP = 1,
155 TARGET_SIGNAL_INT = 2,
156 TARGET_SIGNAL_QUIT = 3,
157 TARGET_SIGNAL_ILL = 4,
158 TARGET_SIGNAL_TRAP = 5,
159 TARGET_SIGNAL_ABRT = 6,
160 TARGET_SIGNAL_EMT = 7,
161 TARGET_SIGNAL_FPE = 8,
162 TARGET_SIGNAL_KILL = 9,
163 TARGET_SIGNAL_BUS = 10,
164 TARGET_SIGNAL_SEGV = 11,
165 TARGET_SIGNAL_SYS = 12,
166 TARGET_SIGNAL_PIPE = 13,
167 TARGET_SIGNAL_ALRM = 14,
168 TARGET_SIGNAL_TERM = 15,
169 TARGET_SIGNAL_URG = 16,
170 TARGET_SIGNAL_STOP = 17,
171 TARGET_SIGNAL_TSTP = 18,
172 TARGET_SIGNAL_CONT = 19,
173 TARGET_SIGNAL_CHLD = 20,
174 TARGET_SIGNAL_TTIN = 21,
175 TARGET_SIGNAL_TTOU = 22,
176 TARGET_SIGNAL_IO = 23,
177 TARGET_SIGNAL_XCPU = 24,
178 TARGET_SIGNAL_XFSZ = 25,
179 TARGET_SIGNAL_VTALRM = 26,
180 TARGET_SIGNAL_PROF = 27,
181 TARGET_SIGNAL_WINCH = 28,
182 TARGET_SIGNAL_LOST = 29,
183 TARGET_SIGNAL_USR1 = 30,
184 TARGET_SIGNAL_USR2 = 31,
185 TARGET_SIGNAL_PWR = 32,
186 /* Similar to SIGIO. Perhaps they should have the same number. */
187 TARGET_SIGNAL_POLL = 33,
188 TARGET_SIGNAL_WIND = 34,
189 TARGET_SIGNAL_PHONE = 35,
190 TARGET_SIGNAL_WAITING = 36,
191 TARGET_SIGNAL_LWP = 37,
192 TARGET_SIGNAL_DANGER = 38,
193 TARGET_SIGNAL_GRANT = 39,
194 TARGET_SIGNAL_RETRACT = 40,
195 TARGET_SIGNAL_MSG = 41,
196 TARGET_SIGNAL_SOUND = 42,
197 TARGET_SIGNAL_SAK = 43,
198 TARGET_SIGNAL_PRIO = 44,
199 TARGET_SIGNAL_REALTIME_33 = 45,
200 TARGET_SIGNAL_REALTIME_34 = 46,
201 TARGET_SIGNAL_REALTIME_35 = 47,
202 TARGET_SIGNAL_REALTIME_36 = 48,
203 TARGET_SIGNAL_REALTIME_37 = 49,
204 TARGET_SIGNAL_REALTIME_38 = 50,
205 TARGET_SIGNAL_REALTIME_39 = 51,
206 TARGET_SIGNAL_REALTIME_40 = 52,
207 TARGET_SIGNAL_REALTIME_41 = 53,
208 TARGET_SIGNAL_REALTIME_42 = 54,
209 TARGET_SIGNAL_REALTIME_43 = 55,
210 TARGET_SIGNAL_REALTIME_44 = 56,
211 TARGET_SIGNAL_REALTIME_45 = 57,
212 TARGET_SIGNAL_REALTIME_46 = 58,
213 TARGET_SIGNAL_REALTIME_47 = 59,
214 TARGET_SIGNAL_REALTIME_48 = 60,
215 TARGET_SIGNAL_REALTIME_49 = 61,
216 TARGET_SIGNAL_REALTIME_50 = 62,
217 TARGET_SIGNAL_REALTIME_51 = 63,
218 TARGET_SIGNAL_REALTIME_52 = 64,
219 TARGET_SIGNAL_REALTIME_53 = 65,
220 TARGET_SIGNAL_REALTIME_54 = 66,
221 TARGET_SIGNAL_REALTIME_55 = 67,
222 TARGET_SIGNAL_REALTIME_56 = 68,
223 TARGET_SIGNAL_REALTIME_57 = 69,
224 TARGET_SIGNAL_REALTIME_58 = 70,
225 TARGET_SIGNAL_REALTIME_59 = 71,
226 TARGET_SIGNAL_REALTIME_60 = 72,
227 TARGET_SIGNAL_REALTIME_61 = 73,
228 TARGET_SIGNAL_REALTIME_62 = 74,
229 TARGET_SIGNAL_REALTIME_63 = 75,
230
231 /* Used internally by Solaris threads. See signal(5) on Solaris. */
232 TARGET_SIGNAL_CANCEL = 76,
cd0fc7c3 233
d4f3574e
SS
234 /* Yes, this pains me, too. But LynxOS didn't have SIG32, and now
235 Linux does, and we can't disturb the numbering, since it's part
236 of the protocol. Note that in some GDB's TARGET_SIGNAL_REALTIME_32
237 is number 76. */
238 TARGET_SIGNAL_REALTIME_32,
239
c906108c 240#if defined(MACH) || defined(__MACH__)
c5aa993b
JM
241 /* Mach exceptions */
242 TARGET_EXC_BAD_ACCESS,
243 TARGET_EXC_BAD_INSTRUCTION,
244 TARGET_EXC_ARITHMETIC,
245 TARGET_EXC_EMULATION,
246 TARGET_EXC_SOFTWARE,
247 TARGET_EXC_BREAKPOINT,
c906108c 248#endif
c5aa993b 249 TARGET_SIGNAL_INFO,
c906108c 250
c5aa993b
JM
251 /* Some signal we don't know about. */
252 TARGET_SIGNAL_UNKNOWN,
c906108c 253
c5aa993b
JM
254 /* Use whatever signal we use when one is not specifically specified
255 (for passing to proceed and so on). */
256 TARGET_SIGNAL_DEFAULT,
c906108c 257
c5aa993b
JM
258 /* Last and unused enum value, for sizing arrays, etc. */
259 TARGET_SIGNAL_LAST
260 };
c906108c 261
c5aa993b
JM
262struct target_waitstatus
263 {
264 enum target_waitkind kind;
265
266 /* Forked child pid, execd pathname, exit status or signal number. */
267 union
268 {
269 int integer;
270 enum target_signal sig;
271 int related_pid;
272 char *execd_pathname;
273 int syscall_id;
274 }
275 value;
276 };
c906108c 277
2acceee2
JM
278/* Possible types of events that the inferior handler will have to
279 deal with. */
280enum inferior_event_type
281 {
282 /* There is a request to quit the inferior, abandon it. */
283 INF_QUIT_REQ,
284 /* Process a normal inferior event which will result in target_wait
285 being called. */
286 INF_REG_EVENT,
287 /* Deal with an error on the inferior. */
288 INF_ERROR,
289 /* We are called because a timer went off. */
290 INF_TIMER,
291 /* We are called to do stuff after the inferior stops. */
c2d11a7d
JM
292 INF_EXEC_COMPLETE,
293 /* We are called to do some stuff after the inferior stops, but we
294 are expected to reenter the proceed() and
295 handle_inferior_event() functions. This is used only in case of
296 'step n' like commands. */
297 INF_EXEC_CONTINUE
2acceee2
JM
298 };
299
c906108c
SS
300/* Return the string for a signal. */
301extern char *target_signal_to_string PARAMS ((enum target_signal));
302
303/* Return the name (SIGHUP, etc.) for a signal. */
304extern char *target_signal_to_name PARAMS ((enum target_signal));
305
306/* Given a name (SIGHUP, etc.), return its signal. */
307enum target_signal target_signal_from_name PARAMS ((char *));
c906108c 308\f
c5aa993b 309
c906108c
SS
310/* If certain kinds of activity happen, target_wait should perform
311 callbacks. */
312/* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
313 on TARGET_ACTIVITY_FD. */
314extern int target_activity_fd;
315/* Returns zero to leave the inferior alone, one to interrupt it. */
316extern int (*target_activity_function) PARAMS ((void));
317\f
318struct target_ops
c5aa993b
JM
319 {
320 char *to_shortname; /* Name this target type */
321 char *to_longname; /* Name for printing */
322 char *to_doc; /* Documentation. Does not include trailing
c906108c
SS
323 newline, and starts with a one-line descrip-
324 tion (probably similar to to_longname). */
c5aa993b
JM
325 void (*to_open) PARAMS ((char *, int));
326 void (*to_close) PARAMS ((int));
327 void (*to_attach) PARAMS ((char *, int));
328 void (*to_post_attach) PARAMS ((int));
329 void (*to_require_attach) PARAMS ((char *, int));
330 void (*to_detach) PARAMS ((char *, int));
331 void (*to_require_detach) PARAMS ((int, char *, int));
332 void (*to_resume) PARAMS ((int, int, enum target_signal));
333 int (*to_wait) PARAMS ((int, struct target_waitstatus *));
334 void (*to_post_wait) PARAMS ((int, int));
335 void (*to_fetch_registers) PARAMS ((int));
336 void (*to_store_registers) PARAMS ((int));
337 void (*to_prepare_to_store) PARAMS ((void));
338
339 /* Transfer LEN bytes of memory between GDB address MYADDR and
340 target address MEMADDR. If WRITE, transfer them to the target, else
341 transfer them from the target. TARGET is the target from which we
342 get this function.
343
344 Return value, N, is one of the following:
345
346 0 means that we can't handle this. If errno has been set, it is the
347 error which prevented us from doing it (FIXME: What about bfd_error?).
348
349 positive (call it N) means that we have transferred N bytes
350 starting at MEMADDR. We might be able to handle more bytes
351 beyond this length, but no promises.
352
353 negative (call its absolute value N) means that we cannot
354 transfer right at MEMADDR, but we could transfer at least
355 something at MEMADDR + N. */
356
357 int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
358 int len, int write,
359 struct target_ops * target));
c906108c
SS
360
361#if 0
c5aa993b 362 /* Enable this after 4.12. */
c906108c 363
c5aa993b
JM
364 /* Search target memory. Start at STARTADDR and take LEN bytes of
365 target memory, and them with MASK, and compare to DATA. If they
366 match, set *ADDR_FOUND to the address we found it at, store the data
367 we found at LEN bytes starting at DATA_FOUND, and return. If
368 not, add INCREMENT to the search address and keep trying until
369 the search address is outside of the range [LORANGE,HIRANGE).
c906108c 370
c5aa993b
JM
371 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return. */
372 void (*to_search) PARAMS ((int len, char *data, char *mask,
373 CORE_ADDR startaddr, int increment,
374 CORE_ADDR lorange, CORE_ADDR hirange,
375 CORE_ADDR * addr_found, char *data_found));
c906108c
SS
376
377#define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
378 (*current_target.to_search) (len, data, mask, startaddr, increment, \
379 lorange, hirange, addr_found, data_found)
c5aa993b
JM
380#endif /* 0 */
381
382 void (*to_files_info) PARAMS ((struct target_ops *));
383 int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
384 int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
385 void (*to_terminal_init) PARAMS ((void));
386 void (*to_terminal_inferior) PARAMS ((void));
387 void (*to_terminal_ours_for_output) PARAMS ((void));
388 void (*to_terminal_ours) PARAMS ((void));
389 void (*to_terminal_info) PARAMS ((char *, int));
390 void (*to_kill) PARAMS ((void));
391 void (*to_load) PARAMS ((char *, int));
392 int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
393 void (*to_create_inferior) PARAMS ((char *, char *, char **));
394 void (*to_post_startup_inferior) PARAMS ((int));
395 void (*to_acknowledge_created_inferior) PARAMS ((int));
396 void (*to_clone_and_follow_inferior) PARAMS ((int, int *));
397 void (*to_post_follow_inferior_by_clone) PARAMS ((void));
398 int (*to_insert_fork_catchpoint) PARAMS ((int));
399 int (*to_remove_fork_catchpoint) PARAMS ((int));
400 int (*to_insert_vfork_catchpoint) PARAMS ((int));
401 int (*to_remove_vfork_catchpoint) PARAMS ((int));
402 int (*to_has_forked) PARAMS ((int, int *));
403 int (*to_has_vforked) PARAMS ((int, int *));
404 int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
405 void (*to_post_follow_vfork) PARAMS ((int, int, int, int));
406 int (*to_insert_exec_catchpoint) PARAMS ((int));
407 int (*to_remove_exec_catchpoint) PARAMS ((int));
408 int (*to_has_execd) PARAMS ((int, char **));
409 int (*to_reported_exec_events_per_exec_call) PARAMS ((void));
410 int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
411 int (*to_has_exited) PARAMS ((int, int, int *));
412 void (*to_mourn_inferior) PARAMS ((void));
413 int (*to_can_run) PARAMS ((void));
414 void (*to_notice_signals) PARAMS ((int pid));
415 int (*to_thread_alive) PARAMS ((int pid));
416 void (*to_find_new_threads) PARAMS ((void));
417 void (*to_stop) PARAMS ((void));
418 int (*to_query) PARAMS ((int /*char */ , char *, char *, int *));
96baa820 419 void (*to_rcmd) (char *command, struct gdb_file *output);
c5aa993b
JM
420 struct symtab_and_line *(*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
421 struct exception_event_record *(*to_get_current_exception_event) PARAMS ((void));
422 char *(*to_pid_to_exec_file) PARAMS ((int pid));
423 char *(*to_core_file_to_sym_file) PARAMS ((char *));
424 enum strata to_stratum;
425 struct target_ops
426 *DONT_USE; /* formerly to_next */
427 int to_has_all_memory;
428 int to_has_memory;
429 int to_has_stack;
430 int to_has_registers;
431 int to_has_execution;
432 int to_has_thread_control; /* control thread execution */
c5aa993b
JM
433 struct section_table
434 *to_sections;
435 struct section_table
436 *to_sections_end;
6426a772
JM
437 /* ASYNC target controls */
438 int (*to_can_async_p) (void);
439 int (*to_is_async_p) (void);
2acceee2 440 void (*to_async) (void (*cb) (enum inferior_event_type, void *context), void *context);
c5aa993b
JM
441 int to_magic;
442 /* Need sub-structure for target machine related rather than comm related? */
443 };
c906108c
SS
444
445/* Magic number for checking ops size. If a struct doesn't end with this
446 number, somebody changed the declaration but didn't change all the
447 places that initialize one. */
448
449#define OPS_MAGIC 3840
450
451/* The ops structure for our "current" target process. This should
452 never be NULL. If there is no target, it points to the dummy_target. */
453
c5aa993b 454extern struct target_ops current_target;
c906108c
SS
455
456/* An item on the target stack. */
457
458struct target_stack_item
c5aa993b
JM
459 {
460 struct target_stack_item *next;
461 struct target_ops *target_ops;
462 };
c906108c
SS
463
464/* The target stack. */
465
466extern struct target_stack_item *target_stack;
467
468/* Define easy words for doing these operations on our current target. */
469
470#define target_shortname (current_target.to_shortname)
471#define target_longname (current_target.to_longname)
472
473/* The open routine takes the rest of the parameters from the command,
474 and (if successful) pushes a new target onto the stack.
475 Targets should supply this routine, if only to provide an error message. */
476#define target_open(name, from_tty) \
477 (*current_target.to_open) (name, from_tty)
478
479/* Does whatever cleanup is required for a target that we are no longer
480 going to be calling. Argument says whether we are quitting gdb and
481 should not get hung in case of errors, or whether we want a clean
482 termination even if it takes a while. This routine is automatically
483 always called just before a routine is popped off the target stack.
484 Closing file descriptors and freeing memory are typical things it should
485 do. */
486
487#define target_close(quitting) \
488 (*current_target.to_close) (quitting)
489
490/* Attaches to a process on the target side. Arguments are as passed
491 to the `attach' command by the user. This routine can be called
492 when the target is not on the target-stack, if the target_can_run
493 routine returns 1; in that case, it must push itself onto the stack.
494 Upon exit, the target should be ready for normal operations, and
495 should be ready to deliver the status of the process immediately
496 (without waiting) to an upcoming target_wait call. */
497
498#define target_attach(args, from_tty) \
499 (*current_target.to_attach) (args, from_tty)
500
501/* The target_attach operation places a process under debugger control,
502 and stops the process.
503
504 This operation provides a target-specific hook that allows the
505 necessary bookkeeping to be performed after an attach completes.
c5aa993b 506 */
c906108c
SS
507#define target_post_attach(pid) \
508 (*current_target.to_post_attach) (pid)
509
510/* Attaches to a process on the target side, if not already attached.
511 (If already attached, takes no action.)
512
513 This operation can be used to follow the child process of a fork.
514 On some targets, such child processes of an original inferior process
515 are automatically under debugger control, and thus do not require an
516 actual attach operation. */
517
518#define target_require_attach(args, from_tty) \
519 (*current_target.to_require_attach) (args, from_tty)
520
521/* Takes a program previously attached to and detaches it.
522 The program may resume execution (some targets do, some don't) and will
523 no longer stop on signals, etc. We better not have left any breakpoints
524 in the program or it'll die when it hits one. ARGS is arguments
525 typed by the user (e.g. a signal to send the process). FROM_TTY
526 says whether to be verbose or not. */
527
528extern void
529target_detach PARAMS ((char *, int));
530
531/* Detaches from a process on the target side, if not already dettached.
532 (If already detached, takes no action.)
533
534 This operation can be used to follow the parent process of a fork.
535 On some targets, such child processes of an original inferior process
536 are automatically under debugger control, and thus do require an actual
537 detach operation.
538
539 PID is the process id of the child to detach from.
540 ARGS is arguments typed by the user (e.g. a signal to send the process).
541 FROM_TTY says whether to be verbose or not. */
542
543#define target_require_detach(pid, args, from_tty) \
544 (*current_target.to_require_detach) (pid, args, from_tty)
545
546/* Resume execution of the target process PID. STEP says whether to
547 single-step or to run free; SIGGNAL is the signal to be given to
548 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
549 pass TARGET_SIGNAL_DEFAULT. */
550
551#define target_resume(pid, step, siggnal) \
552 (*current_target.to_resume) (pid, step, siggnal)
553
554/* Wait for process pid to do something. Pid = -1 to wait for any pid
555 to do something. Return pid of child, or -1 in case of error;
556 store status through argument pointer STATUS. Note that it is
557 *not* OK to return_to_top_level out of target_wait without popping
558 the debugging target from the stack; GDB isn't prepared to get back
559 to the prompt with a debugging target but without the frame cache,
560 stop_pc, etc., set up. */
561
562#define target_wait(pid, status) \
563 (*current_target.to_wait) (pid, status)
564
565/* The target_wait operation waits for a process event to occur, and
566 thereby stop the process.
567
568 On some targets, certain events may happen in sequences. gdb's
569 correct response to any single event of such a sequence may require
570 knowledge of what earlier events in the sequence have been seen.
571
572 This operation provides a target-specific hook that allows the
573 necessary bookkeeping to be performed to track such sequences.
c5aa993b 574 */
c906108c
SS
575
576#define target_post_wait(pid, status) \
577 (*current_target.to_post_wait) (pid, status)
578
579/* Fetch register REGNO, or all regs if regno == -1. No result. */
580
581#define target_fetch_registers(regno) \
582 (*current_target.to_fetch_registers) (regno)
583
584/* Store at least register REGNO, or all regs if REGNO == -1.
585 It can store as many registers as it wants to, so target_prepare_to_store
586 must have been previously called. Calls error() if there are problems. */
587
588#define target_store_registers(regs) \
589 (*current_target.to_store_registers) (regs)
590
591/* Get ready to modify the registers array. On machines which store
592 individual registers, this doesn't need to do anything. On machines
593 which store all the registers in one fell swoop, this makes sure
594 that REGISTERS contains all the registers from the program being
595 debugged. */
596
597#define target_prepare_to_store() \
598 (*current_target.to_prepare_to_store) ()
599
600extern int target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
601
602extern int
603target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
604
605extern int
606target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
c5aa993b 607 asection * bfd_section));
c906108c 608
c906108c
SS
609extern int
610target_write_memory PARAMS ((CORE_ADDR, char *, int));
611
612extern int
613xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
614
615extern int
616child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
617
917317f4
JM
618/* Make a single attempt at transfering LEN bytes. On a successful
619 transfer, the number of bytes actually transfered is returned and
620 ERR is set to 0. When a transfer fails, -1 is returned (the number
621 of bytes actually transfered is not defined) and ERR is set to a
622 non-zero error indication. */
623
624extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
625
626extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
627
c906108c 628extern char *
c5aa993b 629 child_pid_to_exec_file PARAMS ((int));
c906108c
SS
630
631extern char *
c5aa993b 632 child_core_file_to_sym_file PARAMS ((char *));
c906108c
SS
633
634#if defined(CHILD_POST_ATTACH)
635extern void
636child_post_attach PARAMS ((int));
637#endif
638
639extern void
640child_post_wait PARAMS ((int, int));
641
642extern void
643child_post_startup_inferior PARAMS ((int));
644
645extern void
646child_acknowledge_created_inferior PARAMS ((int));
647
648extern void
649child_clone_and_follow_inferior PARAMS ((int, int *));
650
651extern void
652child_post_follow_inferior_by_clone PARAMS ((void));
653
654extern int
655child_insert_fork_catchpoint PARAMS ((int));
656
657extern int
658child_remove_fork_catchpoint PARAMS ((int));
659
660extern int
661child_insert_vfork_catchpoint PARAMS ((int));
662
663extern int
664child_remove_vfork_catchpoint PARAMS ((int));
665
666extern int
667child_has_forked PARAMS ((int, int *));
668
669extern int
670child_has_vforked PARAMS ((int, int *));
671
672extern void
673child_acknowledge_created_inferior PARAMS ((int));
674
675extern int
676child_can_follow_vfork_prior_to_exec PARAMS ((void));
677
678extern void
679child_post_follow_vfork PARAMS ((int, int, int, int));
680
681extern int
682child_insert_exec_catchpoint PARAMS ((int));
683
684extern int
685child_remove_exec_catchpoint PARAMS ((int));
686
687extern int
688child_has_execd PARAMS ((int, char **));
689
690extern int
691child_reported_exec_events_per_exec_call PARAMS ((void));
692
693extern int
694child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
695
696extern int
697child_has_exited PARAMS ((int, int, int *));
698
699extern int
700child_thread_alive PARAMS ((int));
701
702/* From exec.c */
703
704extern void
705print_section_info PARAMS ((struct target_ops *, bfd *));
706
707/* Print a line about the current target. */
708
709#define target_files_info() \
710 (*current_target.to_files_info) (&current_target)
711
712/* Insert a breakpoint at address ADDR in the target machine.
713 SAVE is a pointer to memory allocated for saving the
714 target contents. It is guaranteed by the caller to be long enough
715 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
716 an errno value. */
717
718#define target_insert_breakpoint(addr, save) \
719 (*current_target.to_insert_breakpoint) (addr, save)
720
721/* Remove a breakpoint at address ADDR in the target machine.
722 SAVE is a pointer to the same save area
723 that was previously passed to target_insert_breakpoint.
724 Result is 0 for success, or an errno value. */
725
726#define target_remove_breakpoint(addr, save) \
727 (*current_target.to_remove_breakpoint) (addr, save)
728
729/* Initialize the terminal settings we record for the inferior,
730 before we actually run the inferior. */
731
732#define target_terminal_init() \
733 (*current_target.to_terminal_init) ()
734
735/* Put the inferior's terminal settings into effect.
736 This is preparation for starting or resuming the inferior. */
737
738#define target_terminal_inferior() \
739 (*current_target.to_terminal_inferior) ()
740
741/* Put some of our terminal settings into effect,
742 enough to get proper results from our output,
743 but do not change into or out of RAW mode
744 so that no input is discarded.
745
746 After doing this, either terminal_ours or terminal_inferior
747 should be called to get back to a normal state of affairs. */
748
749#define target_terminal_ours_for_output() \
750 (*current_target.to_terminal_ours_for_output) ()
751
752/* Put our terminal settings into effect.
753 First record the inferior's terminal settings
754 so they can be restored properly later. */
755
756#define target_terminal_ours() \
757 (*current_target.to_terminal_ours) ()
758
759/* Print useful information about our terminal status, if such a thing
760 exists. */
761
762#define target_terminal_info(arg, from_tty) \
763 (*current_target.to_terminal_info) (arg, from_tty)
764
765/* Kill the inferior process. Make it go away. */
766
767#define target_kill() \
768 (*current_target.to_kill) ()
769
770/* Load an executable file into the target process. This is expected to
771 not only bring new code into the target process, but also to update
772 GDB's symbol tables to match. */
773
11cf8741 774extern void target_load (char *arg, int from_tty);
c906108c
SS
775
776/* Look up a symbol in the target's symbol table. NAME is the symbol
777 name. ADDRP is a CORE_ADDR * pointing to where the value of the symbol
778 should be returned. The result is 0 if successful, nonzero if the
779 symbol does not exist in the target environment. This function should
780 not call error() if communication with the target is interrupted, since
781 it is called from symbol reading, but should return nonzero, possibly
782 doing a complain(). */
783
784#define target_lookup_symbol(name, addrp) \
785 (*current_target.to_lookup_symbol) (name, addrp)
786
787/* Start an inferior process and set inferior_pid to its pid.
788 EXEC_FILE is the file to run.
789 ALLARGS is a string containing the arguments to the program.
790 ENV is the environment vector to pass. Errors reported with error().
791 On VxWorks and various standalone systems, we ignore exec_file. */
c5aa993b 792
c906108c
SS
793#define target_create_inferior(exec_file, args, env) \
794 (*current_target.to_create_inferior) (exec_file, args, env)
795
796
797/* Some targets (such as ttrace-based HPUX) don't allow us to request
798 notification of inferior events such as fork and vork immediately
799 after the inferior is created. (This because of how gdb gets an
800 inferior created via invoking a shell to do it. In such a scenario,
801 if the shell init file has commands in it, the shell will fork and
802 exec for each of those commands, and we will see each such fork
803 event. Very bad.)
c5aa993b 804
c906108c 805 Such targets will supply an appropriate definition for this function.
c5aa993b 806 */
c906108c
SS
807#define target_post_startup_inferior(pid) \
808 (*current_target.to_post_startup_inferior) (pid)
809
810/* On some targets, the sequence of starting up an inferior requires
811 some synchronization between gdb and the new inferior process, PID.
c5aa993b 812 */
c906108c
SS
813#define target_acknowledge_created_inferior(pid) \
814 (*current_target.to_acknowledge_created_inferior) (pid)
815
816/* An inferior process has been created via a fork() or similar
817 system call. This function will clone the debugger, then ensure
818 that CHILD_PID is attached to by that debugger.
819
820 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
821 and FALSE otherwise. (The original and clone debuggers can use this
822 to determine which they are, if need be.)
823
824 (This is not a terribly useful feature without a GUI to prevent
825 the two debuggers from competing for shell input.)
c5aa993b 826 */
c906108c
SS
827#define target_clone_and_follow_inferior(child_pid,followed_child) \
828 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
829
830/* This operation is intended to be used as the last in a sequence of
831 steps taken when following both parent and child of a fork. This
832 is used by a clone of the debugger, which will follow the child.
833
834 The original debugger has detached from this process, and the
835 clone has attached to it.
836
837 On some targets, this requires a bit of cleanup to make it work
838 correctly.
c5aa993b 839 */
c906108c
SS
840#define target_post_follow_inferior_by_clone() \
841 (*current_target.to_post_follow_inferior_by_clone) ()
842
843/* On some targets, we can catch an inferior fork or vfork event when it
844 occurs. These functions insert/remove an already-created catchpoint for
845 such events.
c5aa993b 846 */
c906108c
SS
847#define target_insert_fork_catchpoint(pid) \
848 (*current_target.to_insert_fork_catchpoint) (pid)
849
850#define target_remove_fork_catchpoint(pid) \
851 (*current_target.to_remove_fork_catchpoint) (pid)
852
853#define target_insert_vfork_catchpoint(pid) \
854 (*current_target.to_insert_vfork_catchpoint) (pid)
855
856#define target_remove_vfork_catchpoint(pid) \
857 (*current_target.to_remove_vfork_catchpoint) (pid)
858
859/* Returns TRUE if PID has invoked the fork() system call. And,
860 also sets CHILD_PID to the process id of the other ("child")
861 inferior process that was created by that call.
c5aa993b 862 */
c906108c
SS
863#define target_has_forked(pid,child_pid) \
864 (*current_target.to_has_forked) (pid,child_pid)
865
866/* Returns TRUE if PID has invoked the vfork() system call. And,
867 also sets CHILD_PID to the process id of the other ("child")
868 inferior process that was created by that call.
c5aa993b 869 */
c906108c
SS
870#define target_has_vforked(pid,child_pid) \
871 (*current_target.to_has_vforked) (pid,child_pid)
872
873/* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
874 anything to a vforked child before it subsequently calls exec().
875 On such platforms, we say that the debugger cannot "follow" the
876 child until it has vforked.
877
878 This function should be defined to return 1 by those targets
879 which can allow the debugger to immediately follow a vforked
880 child, and 0 if they cannot.
c5aa993b 881 */
c906108c
SS
882#define target_can_follow_vfork_prior_to_exec() \
883 (*current_target.to_can_follow_vfork_prior_to_exec) ()
884
885/* An inferior process has been created via a vfork() system call.
886 The debugger has followed the parent, the child, or both. The
887 process of setting up for that follow may have required some
888 target-specific trickery to track the sequence of reported events.
889 If so, this function should be defined by those targets that
890 require the debugger to perform cleanup or initialization after
891 the vfork follow.
c5aa993b 892 */
c906108c
SS
893#define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
894 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
895
896/* On some targets, we can catch an inferior exec event when it
897 occurs. These functions insert/remove an already-created catchpoint
898 for such events.
c5aa993b 899 */
c906108c
SS
900#define target_insert_exec_catchpoint(pid) \
901 (*current_target.to_insert_exec_catchpoint) (pid)
c5aa993b 902
c906108c
SS
903#define target_remove_exec_catchpoint(pid) \
904 (*current_target.to_remove_exec_catchpoint) (pid)
905
906/* Returns TRUE if PID has invoked a flavor of the exec() system call.
907 And, also sets EXECD_PATHNAME to the pathname of the executable file
908 that was passed to exec(), and is now being executed.
c5aa993b 909 */
c906108c
SS
910#define target_has_execd(pid,execd_pathname) \
911 (*current_target.to_has_execd) (pid,execd_pathname)
912
913/* Returns the number of exec events that are reported when a process
914 invokes a flavor of the exec() system call on this target, if exec
915 events are being reported.
c5aa993b 916 */
c906108c
SS
917#define target_reported_exec_events_per_exec_call() \
918 (*current_target.to_reported_exec_events_per_exec_call) ()
919
920/* Returns TRUE if PID has reported a syscall event. And, also sets
921 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
922 the unique integer ID of the syscall.
c5aa993b 923 */
c906108c
SS
924#define target_has_syscall_event(pid,kind,syscall_id) \
925 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
926
927/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
928 exit code of PID, if any.
c5aa993b 929 */
c906108c
SS
930#define target_has_exited(pid,wait_status,exit_status) \
931 (*current_target.to_has_exited) (pid,wait_status,exit_status)
932
933/* The debugger has completed a blocking wait() call. There is now
934 some process event that must be processed. This function should
935 be defined by those targets that require the debugger to perform
936 cleanup or internal state changes in response to the process event.
c5aa993b 937 */
c906108c
SS
938
939/* The inferior process has died. Do what is right. */
940
941#define target_mourn_inferior() \
942 (*current_target.to_mourn_inferior) ()
943
944/* Does target have enough data to do a run or attach command? */
945
946#define target_can_run(t) \
947 ((t)->to_can_run) ()
948
949/* post process changes to signal handling in the inferior. */
950
951#define target_notice_signals(pid) \
952 (*current_target.to_notice_signals) (pid)
953
954/* Check to see if a thread is still alive. */
955
956#define target_thread_alive(pid) \
957 (*current_target.to_thread_alive) (pid)
958
b83266a0
SS
959/* Query for new threads and add them to the thread list. */
960
961#define target_find_new_threads() \
962 do { \
963 if (current_target.to_find_new_threads) \
964 (*current_target.to_find_new_threads) (); \
965 } while (0);
966
c906108c
SS
967/* Make target stop in a continuable fashion. (For instance, under Unix, this
968 should act like SIGSTOP). This function is normally used by GUIs to
969 implement a stop button. */
970
971#define target_stop current_target.to_stop
972
973/* Queries the target side for some information. The first argument is a
974 letter specifying the type of the query, which is used to determine who
975 should process it. The second argument is a string that specifies which
976 information is desired and the third is a buffer that carries back the
977 response from the target side. The fourth parameter is the size of the
978 output buffer supplied. */
c5aa993b 979
c906108c
SS
980#define target_query(query_type, query, resp_buffer, bufffer_size) \
981 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
982
96baa820
JM
983/* Send the specified COMMAND to the target's monitor
984 (shell,interpreter) for execution. The result of the query is
985 placed in OUTBUF. */
986
987#define target_rcmd(command, outbuf) \
988 (*current_target.to_rcmd) (command, outbuf)
989
990
c906108c
SS
991/* Get the symbol information for a breakpointable routine called when
992 an exception event occurs.
993 Intended mainly for C++, and for those
994 platforms/implementations where such a callback mechanism is available,
995 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
996 different mechanisms for debugging exceptions. */
997
998#define target_enable_exception_callback(kind, enable) \
999 (*current_target.to_enable_exception_callback) (kind, enable)
1000
1001/* Get the current exception event kind -- throw or catch, etc. */
c5aa993b 1002
c906108c
SS
1003#define target_get_current_exception_event() \
1004 (*current_target.to_get_current_exception_event) ()
1005
1006/* Pointer to next target in the chain, e.g. a core file and an exec file. */
1007
1008#define target_next \
1009 (current_target.to_next)
1010
1011/* Does the target include all of memory, or only part of it? This
1012 determines whether we look up the target chain for other parts of
1013 memory if this target can't satisfy a request. */
1014
1015#define target_has_all_memory \
1016 (current_target.to_has_all_memory)
1017
1018/* Does the target include memory? (Dummy targets don't.) */
1019
1020#define target_has_memory \
1021 (current_target.to_has_memory)
1022
1023/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1024 we start a process.) */
c5aa993b 1025
c906108c
SS
1026#define target_has_stack \
1027 (current_target.to_has_stack)
1028
1029/* Does the target have registers? (Exec files don't.) */
1030
1031#define target_has_registers \
1032 (current_target.to_has_registers)
1033
1034/* Does the target have execution? Can we make it jump (through
1035 hoops), or pop its stack a few times? FIXME: If this is to work that
1036 way, it needs to check whether an inferior actually exists.
1037 remote-udi.c and probably other targets can be the current target
1038 when the inferior doesn't actually exist at the moment. Right now
1039 this just tells us whether this target is *capable* of execution. */
1040
1041#define target_has_execution \
1042 (current_target.to_has_execution)
1043
1044/* Can the target support the debugger control of thread execution?
1045 a) Can it lock the thread scheduler?
1046 b) Can it switch the currently running thread? */
1047
1048#define target_can_lock_scheduler \
1049 (current_target.to_has_thread_control & tc_schedlock)
1050
1051#define target_can_switch_threads \
1052 (current_target.to_has_thread_control & tc_switch)
1053
6426a772
JM
1054/* Can the target support asynchronous execution? */
1055#define target_can_async_p() (current_target.to_can_async_p ())
1056
1057/* Is the target in asynchronous execution mode? */
1058#define target_is_async_p() (current_target.to_is_async_p())
1059
1060/* Put the target in async mode with the specified callback function. */
1061#define target_async(CALLBACK,CONTEXT) (current_target.to_async((CALLBACK), (CONTEXT)))
43ff13b4 1062
c906108c
SS
1063extern void target_link PARAMS ((char *, CORE_ADDR *));
1064
1065/* Converts a process id to a string. Usually, the string just contains
1066 `process xyz', but on some systems it may contain
1067 `process xyz thread abc'. */
1068
1069#ifndef target_pid_to_str
1070#define target_pid_to_str(PID) \
1071 normal_pid_to_str (PID)
1072extern char *normal_pid_to_str PARAMS ((int pid));
1073#endif
1074
1075#ifndef target_tid_to_str
1076#define target_tid_to_str(PID) \
1077 normal_pid_to_str (PID)
1078extern char *normal_pid_to_str PARAMS ((int pid));
1079#endif
c5aa993b 1080
11cf8741
JM
1081/*
1082 * New Objfile Event Hook:
1083 *
1084 * Sometimes a GDB component wants to get notified whenever a new
1085 * objfile is loaded. Mainly this is used by thread-debugging
1086 * implementations that need to know when symbols for the target
1087 * thread implemenation are available.
1088 *
1089 * The old way of doing this is to define a macro 'target_new_objfile'
1090 * that points to the function that you want to be called on every
1091 * objfile/shlib load.
1092 *
1093 * The new way is to grab the function pointer, 'target_new_objfile_hook',
1094 * and point it to the function that you want to be called on every
1095 * objfile/shlib load.
1096 *
1097 * If multiple clients are willing to be cooperative, they can each
1098 * save a pointer to the previous value of target_new_objfile_hook
1099 * before modifying it, and arrange for their function to call the
1100 * previous function in the chain. In that way, multiple clients
1101 * can receive this notification (something like with signal handlers).
1102 */
c906108c 1103
11cf8741 1104extern void (*target_new_objfile_hook) PARAMS ((struct objfile *));
c906108c
SS
1105
1106#ifndef target_pid_or_tid_to_str
1107#define target_pid_or_tid_to_str(ID) \
1108 normal_pid_to_str (ID)
1109#endif
1110
1111/* Attempts to find the pathname of the executable file
1112 that was run to create a specified process.
1113
1114 The process PID must be stopped when this operation is used.
c5aa993b 1115
c906108c
SS
1116 If the executable file cannot be determined, NULL is returned.
1117
1118 Else, a pointer to a character string containing the pathname
1119 is returned. This string should be copied into a buffer by
1120 the client if the string will not be immediately used, or if
1121 it must persist.
c5aa993b 1122 */
c906108c
SS
1123
1124#define target_pid_to_exec_file(pid) \
1125 (current_target.to_pid_to_exec_file) (pid)
1126
1127/* Hook to call target-dependant code after reading in a new symbol table. */
1128
1129#ifndef TARGET_SYMFILE_POSTREAD
1130#define TARGET_SYMFILE_POSTREAD(OBJFILE)
1131#endif
1132
1133/* Hook to call target dependant code just after inferior target process has
1134 started. */
1135
1136#ifndef TARGET_CREATE_INFERIOR_HOOK
1137#define TARGET_CREATE_INFERIOR_HOOK(PID)
1138#endif
1139
1140/* Hardware watchpoint interfaces. */
1141
1142/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1143 write). */
1144
1145#ifndef STOPPED_BY_WATCHPOINT
1146#define STOPPED_BY_WATCHPOINT(w) 0
1147#endif
1148
1149/* HP-UX supplies these operations, which respectively disable and enable
1150 the memory page-protections that are used to implement hardware watchpoints
1151 on that platform. See wait_for_inferior's use of these.
c5aa993b 1152 */
c906108c
SS
1153#if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1154#define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1155#endif
1156
1157#if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1158#define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1159#endif
1160
1161/* Provide defaults for systems that don't support hardware watchpoints. */
1162
1163#ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1164
1165/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1166 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1167 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1168 (including this one?). OTHERTYPE is who knows what... */
1169
1170#define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1171
1172#if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1173#define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1174 (LONGEST)(byte_count) <= REGISTER_SIZE
1175#endif
1176
1177/* However, some addresses may not be profitable to use hardware to watch,
1178 or may be difficult to understand when the addressed object is out of
1179 scope, and hence should be unwatched. On some targets, this may have
1180 severe performance penalties, such that we might as well use regular
1181 watchpoints, and save (possibly precious) hardware watchpoints for other
1182 locations.
c5aa993b 1183 */
c906108c
SS
1184#if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1185#define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1186#endif
1187
1188
1189/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1190 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1191 success, non-zero for failure. */
1192
1193#define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1194#define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1195
1196#endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1197
1198#ifndef target_insert_hw_breakpoint
1199#define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1200#define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1201#endif
1202
1203#ifndef target_stopped_data_address
1204#define target_stopped_data_address() 0
1205#endif
1206
1207/* If defined, then we need to decr pc by this much after a hardware break-
1208 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1209
1210#ifndef DECR_PC_AFTER_HW_BREAK
1211#define DECR_PC_AFTER_HW_BREAK 0
1212#endif
1213
1214/* Sometimes gdb may pick up what appears to be a valid target address
1215 from a minimal symbol, but the value really means, essentially,
1216 "This is an index into a table which is populated when the inferior
1217 is run. Therefore, do not attempt to use this as a PC."
c5aa993b 1218 */
c906108c
SS
1219#if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1220#define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1221#endif
1222
1223/* This will only be defined by a target that supports catching vfork events,
1224 such as HP-UX.
1225
1226 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1227 child process after it has exec'd, causes the parent process to resume as
1228 well. To prevent the parent from running spontaneously, such targets should
1229 define this to a function that prevents that from happening.
c5aa993b 1230 */
c906108c
SS
1231#if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1232#define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1233#endif
1234
1235/* This will only be defined by a target that supports catching vfork events,
1236 such as HP-UX.
1237
1238 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1239 process must be resumed when it delivers its exec event, before the parent
1240 vfork event will be delivered to us.
c5aa993b 1241 */
c906108c
SS
1242#if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1243#define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1244#endif
1245
1246/* Routines for maintenance of the target structures...
1247
1248 add_target: Add a target to the list of all possible targets.
1249
1250 push_target: Make this target the top of the stack of currently used
c5aa993b
JM
1251 targets, within its particular stratum of the stack. Result
1252 is 0 if now atop the stack, nonzero if not on top (maybe
1253 should warn user).
c906108c
SS
1254
1255 unpush_target: Remove this from the stack of currently used targets,
c5aa993b
JM
1256 no matter where it is on the list. Returns 0 if no
1257 change, 1 if removed from stack.
c906108c 1258
c5aa993b 1259 pop_target: Remove the top thing on the stack of current targets. */
c906108c
SS
1260
1261extern void
1262add_target PARAMS ((struct target_ops *));
1263
1264extern int
1265push_target PARAMS ((struct target_ops *));
1266
1267extern int
1268unpush_target PARAMS ((struct target_ops *));
1269
1270extern void
1271target_preopen PARAMS ((int));
1272
1273extern void
1274pop_target PARAMS ((void));
1275
1276/* Struct section_table maps address ranges to file sections. It is
1277 mostly used with BFD files, but can be used without (e.g. for handling
1278 raw disks, or files not in formats handled by BFD). */
1279
c5aa993b
JM
1280struct section_table
1281 {
1282 CORE_ADDR addr; /* Lowest address in section */
1283 CORE_ADDR endaddr; /* 1+highest address in section */
c906108c 1284
c5aa993b 1285 sec_ptr the_bfd_section;
c906108c 1286
c5aa993b
JM
1287 bfd *bfd; /* BFD file pointer */
1288 };
c906108c
SS
1289
1290/* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1291 Returns 0 if OK, 1 on error. */
1292
1293extern int
1294build_section_table PARAMS ((bfd *, struct section_table **,
1295 struct section_table **));
1296
1297/* From mem-break.c */
1298
1299extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1300
1301extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1302
917317f4
JM
1303extern int default_memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1304
1305extern int default_memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1306
c906108c
SS
1307extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1308#ifndef BREAKPOINT_FROM_PC
1309#define BREAKPOINT_FROM_PC(pcptr, lenptr) memory_breakpoint_from_pc (pcptr, lenptr)
1310#endif
1311
1312
1313/* From target.c */
1314
1315extern void
1316initialize_targets PARAMS ((void));
1317
1318extern void
1319noprocess PARAMS ((void));
1320
1321extern void
1322find_default_attach PARAMS ((char *, int));
1323
1324void
1325find_default_require_attach PARAMS ((char *, int));
1326
1327void
1328find_default_require_detach PARAMS ((int, char *, int));
1329
1330extern void
1331find_default_create_inferior PARAMS ((char *, char *, char **));
1332
1333void
1334find_default_clone_and_follow_inferior PARAMS ((int, int *));
1335
7a292a7a
SS
1336extern struct target_ops *find_run_target PARAMS ((void));
1337
c906108c 1338extern struct target_ops *
c5aa993b 1339 find_core_target PARAMS ((void));
6426a772
JM
1340
1341int
1342target_resize_to_sections PARAMS ((struct target_ops *target, int num_added));
c906108c
SS
1343\f
1344/* Stuff that should be shared among the various remote targets. */
1345
1346/* Debugging level. 0 is off, and non-zero values mean to print some debug
1347 information (higher values, more information). */
1348extern int remote_debug;
1349
1350/* Speed in bits per second, or -1 which means don't mess with the speed. */
1351extern int baud_rate;
1352/* Timeout limit for response from target. */
1353extern int remote_timeout;
1354
1355extern asection *target_memory_bfd_section;
1356\f
1357/* Functions for helping to write a native target. */
1358
1359/* This is for native targets which use a unix/POSIX-style waitstatus. */
1360extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1361
c2d11a7d
JM
1362/* Predicate to target_signal_to_host(). Return non-zero if the enum
1363 targ_signal SIGNO has an equivalent ``host'' representation. */
1364/* FIXME: cagney/1999-11-22: The name below was chosen in preference
1365 to the shorter target_signal_p() because it is far less ambigious.
1366 In this context ``target_signal'' refers to GDB's internal
1367 representation of the target's set of signals while ``host signal''
1368 refers to the target operating system's signal. Confused? */
1369extern int target_signal_to_host_p (enum target_signal signo);
1370
1371/* Convert between host signal numbers and enum target_signal's.
1372 target_signal_to_host() returns 0 and prints a warning() on GDB's
1373 console if SIGNO has no equivalent host representation. */
1374/* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1375 refering to the target operating system's signal numbering.
1376 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1377 gdb_signal'' would probably be better as it is refering to GDB's
1378 internal representation of a target operating system's signal. */
c906108c
SS
1379extern enum target_signal target_signal_from_host PARAMS ((int));
1380extern int target_signal_to_host PARAMS ((enum target_signal));
1381
1382/* Convert from a number used in a GDB command to an enum target_signal. */
1383extern enum target_signal target_signal_from_command PARAMS ((int));
1384
1385/* Any target can call this to switch to remote protocol (in remote.c). */
1386extern void push_remote_target PARAMS ((char *name, int from_tty));
1387\f
1388/* Imported from machine dependent code */
1389
1390#ifndef SOFTWARE_SINGLE_STEP_P
1391#define SOFTWARE_SINGLE_STEP_P 0
11cf8741 1392#define SOFTWARE_SINGLE_STEP(sig,bp_p) (internal_error ("SOFTWARE_SINGLE_STEP"), 0)
c906108c
SS
1393#endif /* SOFTWARE_SINGLE_STEP_P */
1394
1395/* Blank target vector entries are initialized to target_ignore. */
1396void target_ignore PARAMS ((void));
1397
1398/* Macro for getting target's idea of a frame pointer.
1399 FIXME: GDB's whole scheme for dealing with "frames" and
1400 "frame pointers" needs a serious shakedown. */
1401#ifndef TARGET_VIRTUAL_FRAME_POINTER
1402#define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1403 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1404#endif /* TARGET_VIRTUAL_FRAME_POINTER */
1405
c5aa993b 1406#endif /* !defined (TARGET_H) */
This page took 0.092986 seconds and 4 git commands to generate.