mm: memcontrol: move socket code for unified hierarchy accounting
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
d1a4c0b3 69#include <net/tcp_memcontrol.h>
f35c3a8e 70#include "slab.h"
8cdea7c0 71
8697d331
BS
72#include <asm/uaccess.h>
73
cc8e970c
KM
74#include <trace/events/vmscan.h>
75
073219e9
TH
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 78
7d828602
JW
79struct mem_cgroup *root_mem_cgroup __read_mostly;
80
a181b0e8 81#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 82
21afa38e 83/* Whether the swap controller is active */
c255a458 84#ifdef CONFIG_MEMCG_SWAP
c077719b 85int do_swap_account __read_mostly;
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
7941d214
JW
90/* Whether legacy memory+swap accounting is active */
91static bool do_memsw_account(void)
92{
93 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
94}
95
af7c4b0e
JW
96static const char * const mem_cgroup_stat_names[] = {
97 "cache",
98 "rss",
b070e65c 99 "rss_huge",
af7c4b0e 100 "mapped_file",
c4843a75 101 "dirty",
3ea67d06 102 "writeback",
af7c4b0e
JW
103 "swap",
104};
105
af7c4b0e
JW
106static const char * const mem_cgroup_events_names[] = {
107 "pgpgin",
108 "pgpgout",
109 "pgfault",
110 "pgmajfault",
111};
112
58cf188e
SZ
113static const char * const mem_cgroup_lru_names[] = {
114 "inactive_anon",
115 "active_anon",
116 "inactive_file",
117 "active_file",
118 "unevictable",
119};
120
a0db00fc
KS
121#define THRESHOLDS_EVENTS_TARGET 128
122#define SOFTLIMIT_EVENTS_TARGET 1024
123#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 124
bb4cc1a8
AM
125/*
126 * Cgroups above their limits are maintained in a RB-Tree, independent of
127 * their hierarchy representation
128 */
129
130struct mem_cgroup_tree_per_zone {
131 struct rb_root rb_root;
132 spinlock_t lock;
133};
134
135struct mem_cgroup_tree_per_node {
136 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
137};
138
139struct mem_cgroup_tree {
140 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
141};
142
143static struct mem_cgroup_tree soft_limit_tree __read_mostly;
144
9490ff27
KH
145/* for OOM */
146struct mem_cgroup_eventfd_list {
147 struct list_head list;
148 struct eventfd_ctx *eventfd;
149};
2e72b634 150
79bd9814
TH
151/*
152 * cgroup_event represents events which userspace want to receive.
153 */
3bc942f3 154struct mem_cgroup_event {
79bd9814 155 /*
59b6f873 156 * memcg which the event belongs to.
79bd9814 157 */
59b6f873 158 struct mem_cgroup *memcg;
79bd9814
TH
159 /*
160 * eventfd to signal userspace about the event.
161 */
162 struct eventfd_ctx *eventfd;
163 /*
164 * Each of these stored in a list by the cgroup.
165 */
166 struct list_head list;
fba94807
TH
167 /*
168 * register_event() callback will be used to add new userspace
169 * waiter for changes related to this event. Use eventfd_signal()
170 * on eventfd to send notification to userspace.
171 */
59b6f873 172 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 173 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
174 /*
175 * unregister_event() callback will be called when userspace closes
176 * the eventfd or on cgroup removing. This callback must be set,
177 * if you want provide notification functionality.
178 */
59b6f873 179 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 180 struct eventfd_ctx *eventfd);
79bd9814
TH
181 /*
182 * All fields below needed to unregister event when
183 * userspace closes eventfd.
184 */
185 poll_table pt;
186 wait_queue_head_t *wqh;
187 wait_queue_t wait;
188 struct work_struct remove;
189};
190
c0ff4b85
R
191static void mem_cgroup_threshold(struct mem_cgroup *memcg);
192static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 193
7dc74be0
DN
194/* Stuffs for move charges at task migration. */
195/*
1dfab5ab 196 * Types of charges to be moved.
7dc74be0 197 */
1dfab5ab
JW
198#define MOVE_ANON 0x1U
199#define MOVE_FILE 0x2U
200#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 201
4ffef5fe
DN
202/* "mc" and its members are protected by cgroup_mutex */
203static struct move_charge_struct {
b1dd693e 204 spinlock_t lock; /* for from, to */
4ffef5fe
DN
205 struct mem_cgroup *from;
206 struct mem_cgroup *to;
1dfab5ab 207 unsigned long flags;
4ffef5fe 208 unsigned long precharge;
854ffa8d 209 unsigned long moved_charge;
483c30b5 210 unsigned long moved_swap;
8033b97c
DN
211 struct task_struct *moving_task; /* a task moving charges */
212 wait_queue_head_t waitq; /* a waitq for other context */
213} mc = {
2bd9bb20 214 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
215 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
216};
4ffef5fe 217
4e416953
BS
218/*
219 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
220 * limit reclaim to prevent infinite loops, if they ever occur.
221 */
a0db00fc 222#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 223#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 224
217bc319
KH
225enum charge_type {
226 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 227 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 228 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 229 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
230 NR_CHARGE_TYPE,
231};
232
8c7c6e34 233/* for encoding cft->private value on file */
86ae53e1
GC
234enum res_type {
235 _MEM,
236 _MEMSWAP,
237 _OOM_TYPE,
510fc4e1 238 _KMEM,
86ae53e1
GC
239};
240
a0db00fc
KS
241#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
242#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 243#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
244/* Used for OOM nofiier */
245#define OOM_CONTROL (0)
8c7c6e34 246
0999821b
GC
247/*
248 * The memcg_create_mutex will be held whenever a new cgroup is created.
249 * As a consequence, any change that needs to protect against new child cgroups
250 * appearing has to hold it as well.
251 */
252static DEFINE_MUTEX(memcg_create_mutex);
253
70ddf637
AV
254/* Some nice accessors for the vmpressure. */
255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256{
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260}
261
262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263{
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265}
266
7ffc0edc
MH
267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268{
269 return (memcg == root_mem_cgroup);
270}
271
4219b2da
LZ
272/*
273 * We restrict the id in the range of [1, 65535], so it can fit into
274 * an unsigned short.
275 */
276#define MEM_CGROUP_ID_MAX USHRT_MAX
277
34c00c31
LZ
278static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
279{
15a4c835 280 return memcg->css.id;
34c00c31
LZ
281}
282
adbe427b
VD
283/*
284 * A helper function to get mem_cgroup from ID. must be called under
285 * rcu_read_lock(). The caller is responsible for calling
286 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
287 * refcnt from swap can be called against removed memcg.)
288 */
34c00c31
LZ
289static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
290{
291 struct cgroup_subsys_state *css;
292
7d699ddb 293 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
294 return mem_cgroup_from_css(css);
295}
296
a8964b9b 297#ifdef CONFIG_MEMCG_KMEM
55007d84 298/*
f7ce3190 299 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
300 * The main reason for not using cgroup id for this:
301 * this works better in sparse environments, where we have a lot of memcgs,
302 * but only a few kmem-limited. Or also, if we have, for instance, 200
303 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
304 * 200 entry array for that.
55007d84 305 *
dbcf73e2
VD
306 * The current size of the caches array is stored in memcg_nr_cache_ids. It
307 * will double each time we have to increase it.
55007d84 308 */
dbcf73e2
VD
309static DEFINE_IDA(memcg_cache_ida);
310int memcg_nr_cache_ids;
749c5415 311
05257a1a
VD
312/* Protects memcg_nr_cache_ids */
313static DECLARE_RWSEM(memcg_cache_ids_sem);
314
315void memcg_get_cache_ids(void)
316{
317 down_read(&memcg_cache_ids_sem);
318}
319
320void memcg_put_cache_ids(void)
321{
322 up_read(&memcg_cache_ids_sem);
323}
324
55007d84
GC
325/*
326 * MIN_SIZE is different than 1, because we would like to avoid going through
327 * the alloc/free process all the time. In a small machine, 4 kmem-limited
328 * cgroups is a reasonable guess. In the future, it could be a parameter or
329 * tunable, but that is strictly not necessary.
330 *
b8627835 331 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
332 * this constant directly from cgroup, but it is understandable that this is
333 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 334 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
335 * increase ours as well if it increases.
336 */
337#define MEMCG_CACHES_MIN_SIZE 4
b8627835 338#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 339
d7f25f8a
GC
340/*
341 * A lot of the calls to the cache allocation functions are expected to be
342 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
343 * conditional to this static branch, we'll have to allow modules that does
344 * kmem_cache_alloc and the such to see this symbol as well
345 */
a8964b9b 346struct static_key memcg_kmem_enabled_key;
d7f25f8a 347EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 348
a8964b9b
GC
349#endif /* CONFIG_MEMCG_KMEM */
350
f64c3f54 351static struct mem_cgroup_per_zone *
e231875b 352mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 353{
e231875b
JZ
354 int nid = zone_to_nid(zone);
355 int zid = zone_idx(zone);
356
54f72fe0 357 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
358}
359
ad7fa852
TH
360/**
361 * mem_cgroup_css_from_page - css of the memcg associated with a page
362 * @page: page of interest
363 *
364 * If memcg is bound to the default hierarchy, css of the memcg associated
365 * with @page is returned. The returned css remains associated with @page
366 * until it is released.
367 *
368 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
369 * is returned.
370 *
371 * XXX: The above description of behavior on the default hierarchy isn't
372 * strictly true yet as replace_page_cache_page() can modify the
373 * association before @page is released even on the default hierarchy;
374 * however, the current and planned usages don't mix the the two functions
375 * and replace_page_cache_page() will soon be updated to make the invariant
376 * actually true.
377 */
378struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
379{
380 struct mem_cgroup *memcg;
381
382 rcu_read_lock();
383
384 memcg = page->mem_cgroup;
385
9e10a130 386 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
387 memcg = root_mem_cgroup;
388
389 rcu_read_unlock();
390 return &memcg->css;
391}
392
2fc04524
VD
393/**
394 * page_cgroup_ino - return inode number of the memcg a page is charged to
395 * @page: the page
396 *
397 * Look up the closest online ancestor of the memory cgroup @page is charged to
398 * and return its inode number or 0 if @page is not charged to any cgroup. It
399 * is safe to call this function without holding a reference to @page.
400 *
401 * Note, this function is inherently racy, because there is nothing to prevent
402 * the cgroup inode from getting torn down and potentially reallocated a moment
403 * after page_cgroup_ino() returns, so it only should be used by callers that
404 * do not care (such as procfs interfaces).
405 */
406ino_t page_cgroup_ino(struct page *page)
407{
408 struct mem_cgroup *memcg;
409 unsigned long ino = 0;
410
411 rcu_read_lock();
412 memcg = READ_ONCE(page->mem_cgroup);
413 while (memcg && !(memcg->css.flags & CSS_ONLINE))
414 memcg = parent_mem_cgroup(memcg);
415 if (memcg)
416 ino = cgroup_ino(memcg->css.cgroup);
417 rcu_read_unlock();
418 return ino;
419}
420
f64c3f54 421static struct mem_cgroup_per_zone *
e231875b 422mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 423{
97a6c37b
JW
424 int nid = page_to_nid(page);
425 int zid = page_zonenum(page);
f64c3f54 426
e231875b 427 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
428}
429
bb4cc1a8
AM
430static struct mem_cgroup_tree_per_zone *
431soft_limit_tree_node_zone(int nid, int zid)
432{
433 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
434}
435
436static struct mem_cgroup_tree_per_zone *
437soft_limit_tree_from_page(struct page *page)
438{
439 int nid = page_to_nid(page);
440 int zid = page_zonenum(page);
441
442 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
443}
444
cf2c8127
JW
445static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
446 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 447 unsigned long new_usage_in_excess)
bb4cc1a8
AM
448{
449 struct rb_node **p = &mctz->rb_root.rb_node;
450 struct rb_node *parent = NULL;
451 struct mem_cgroup_per_zone *mz_node;
452
453 if (mz->on_tree)
454 return;
455
456 mz->usage_in_excess = new_usage_in_excess;
457 if (!mz->usage_in_excess)
458 return;
459 while (*p) {
460 parent = *p;
461 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
462 tree_node);
463 if (mz->usage_in_excess < mz_node->usage_in_excess)
464 p = &(*p)->rb_left;
465 /*
466 * We can't avoid mem cgroups that are over their soft
467 * limit by the same amount
468 */
469 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
470 p = &(*p)->rb_right;
471 }
472 rb_link_node(&mz->tree_node, parent, p);
473 rb_insert_color(&mz->tree_node, &mctz->rb_root);
474 mz->on_tree = true;
475}
476
cf2c8127
JW
477static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
478 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
479{
480 if (!mz->on_tree)
481 return;
482 rb_erase(&mz->tree_node, &mctz->rb_root);
483 mz->on_tree = false;
484}
485
cf2c8127
JW
486static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
487 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 488{
0a31bc97
JW
489 unsigned long flags;
490
491 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 492 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 493 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
494}
495
3e32cb2e
JW
496static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
497{
498 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 499 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
500 unsigned long excess = 0;
501
502 if (nr_pages > soft_limit)
503 excess = nr_pages - soft_limit;
504
505 return excess;
506}
bb4cc1a8
AM
507
508static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
509{
3e32cb2e 510 unsigned long excess;
bb4cc1a8
AM
511 struct mem_cgroup_per_zone *mz;
512 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 513
e231875b 514 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
515 /*
516 * Necessary to update all ancestors when hierarchy is used.
517 * because their event counter is not touched.
518 */
519 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 520 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 521 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
522 /*
523 * We have to update the tree if mz is on RB-tree or
524 * mem is over its softlimit.
525 */
526 if (excess || mz->on_tree) {
0a31bc97
JW
527 unsigned long flags;
528
529 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
530 /* if on-tree, remove it */
531 if (mz->on_tree)
cf2c8127 532 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
533 /*
534 * Insert again. mz->usage_in_excess will be updated.
535 * If excess is 0, no tree ops.
536 */
cf2c8127 537 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 538 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
539 }
540 }
541}
542
543static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
544{
bb4cc1a8 545 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
546 struct mem_cgroup_per_zone *mz;
547 int nid, zid;
bb4cc1a8 548
e231875b
JZ
549 for_each_node(nid) {
550 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
551 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
552 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 553 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
554 }
555 }
556}
557
558static struct mem_cgroup_per_zone *
559__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
560{
561 struct rb_node *rightmost = NULL;
562 struct mem_cgroup_per_zone *mz;
563
564retry:
565 mz = NULL;
566 rightmost = rb_last(&mctz->rb_root);
567 if (!rightmost)
568 goto done; /* Nothing to reclaim from */
569
570 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
571 /*
572 * Remove the node now but someone else can add it back,
573 * we will to add it back at the end of reclaim to its correct
574 * position in the tree.
575 */
cf2c8127 576 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 577 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 578 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
579 goto retry;
580done:
581 return mz;
582}
583
584static struct mem_cgroup_per_zone *
585mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
586{
587 struct mem_cgroup_per_zone *mz;
588
0a31bc97 589 spin_lock_irq(&mctz->lock);
bb4cc1a8 590 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 591 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
592 return mz;
593}
594
711d3d2c 595/*
484ebb3b
GT
596 * Return page count for single (non recursive) @memcg.
597 *
711d3d2c
KH
598 * Implementation Note: reading percpu statistics for memcg.
599 *
600 * Both of vmstat[] and percpu_counter has threshold and do periodic
601 * synchronization to implement "quick" read. There are trade-off between
602 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 603 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
604 *
605 * But this _read() function is used for user interface now. The user accounts
606 * memory usage by memory cgroup and he _always_ requires exact value because
607 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
608 * have to visit all online cpus and make sum. So, for now, unnecessary
609 * synchronization is not implemented. (just implemented for cpu hotplug)
610 *
611 * If there are kernel internal actions which can make use of some not-exact
612 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 613 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
614 * implemented.
615 */
484ebb3b
GT
616static unsigned long
617mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 618{
7a159cc9 619 long val = 0;
c62b1a3b 620 int cpu;
c62b1a3b 621
484ebb3b 622 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 623 for_each_possible_cpu(cpu)
c0ff4b85 624 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
625 /*
626 * Summing races with updates, so val may be negative. Avoid exposing
627 * transient negative values.
628 */
629 if (val < 0)
630 val = 0;
c62b1a3b
KH
631 return val;
632}
633
c0ff4b85 634static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
635 enum mem_cgroup_events_index idx)
636{
637 unsigned long val = 0;
638 int cpu;
639
733a572e 640 for_each_possible_cpu(cpu)
c0ff4b85 641 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
642 return val;
643}
644
c0ff4b85 645static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 646 struct page *page,
0a31bc97 647 int nr_pages)
d52aa412 648{
b2402857
KH
649 /*
650 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
651 * counted as CACHE even if it's on ANON LRU.
652 */
0a31bc97 653 if (PageAnon(page))
b2402857 654 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 655 nr_pages);
d52aa412 656 else
b2402857 657 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 658 nr_pages);
55e462b0 659
b070e65c
DR
660 if (PageTransHuge(page))
661 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
662 nr_pages);
663
e401f176
KH
664 /* pagein of a big page is an event. So, ignore page size */
665 if (nr_pages > 0)
c0ff4b85 666 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 667 else {
c0ff4b85 668 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
669 nr_pages = -nr_pages; /* for event */
670 }
e401f176 671
13114716 672 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
673}
674
e231875b
JZ
675static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
676 int nid,
677 unsigned int lru_mask)
bb2a0de9 678{
e231875b 679 unsigned long nr = 0;
889976db
YH
680 int zid;
681
e231875b 682 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 683
e231875b
JZ
684 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
685 struct mem_cgroup_per_zone *mz;
686 enum lru_list lru;
687
688 for_each_lru(lru) {
689 if (!(BIT(lru) & lru_mask))
690 continue;
691 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
692 nr += mz->lru_size[lru];
693 }
694 }
695 return nr;
889976db 696}
bb2a0de9 697
c0ff4b85 698static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 699 unsigned int lru_mask)
6d12e2d8 700{
e231875b 701 unsigned long nr = 0;
889976db 702 int nid;
6d12e2d8 703
31aaea4a 704 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
705 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
706 return nr;
d52aa412
KH
707}
708
f53d7ce3
JW
709static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
710 enum mem_cgroup_events_target target)
7a159cc9
JW
711{
712 unsigned long val, next;
713
13114716 714 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 715 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 716 /* from time_after() in jiffies.h */
f53d7ce3
JW
717 if ((long)next - (long)val < 0) {
718 switch (target) {
719 case MEM_CGROUP_TARGET_THRESH:
720 next = val + THRESHOLDS_EVENTS_TARGET;
721 break;
bb4cc1a8
AM
722 case MEM_CGROUP_TARGET_SOFTLIMIT:
723 next = val + SOFTLIMIT_EVENTS_TARGET;
724 break;
f53d7ce3
JW
725 case MEM_CGROUP_TARGET_NUMAINFO:
726 next = val + NUMAINFO_EVENTS_TARGET;
727 break;
728 default:
729 break;
730 }
731 __this_cpu_write(memcg->stat->targets[target], next);
732 return true;
7a159cc9 733 }
f53d7ce3 734 return false;
d2265e6f
KH
735}
736
737/*
738 * Check events in order.
739 *
740 */
c0ff4b85 741static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
742{
743 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
744 if (unlikely(mem_cgroup_event_ratelimit(memcg,
745 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 746 bool do_softlimit;
82b3f2a7 747 bool do_numainfo __maybe_unused;
f53d7ce3 748
bb4cc1a8
AM
749 do_softlimit = mem_cgroup_event_ratelimit(memcg,
750 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
751#if MAX_NUMNODES > 1
752 do_numainfo = mem_cgroup_event_ratelimit(memcg,
753 MEM_CGROUP_TARGET_NUMAINFO);
754#endif
c0ff4b85 755 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
756 if (unlikely(do_softlimit))
757 mem_cgroup_update_tree(memcg, page);
453a9bf3 758#if MAX_NUMNODES > 1
f53d7ce3 759 if (unlikely(do_numainfo))
c0ff4b85 760 atomic_inc(&memcg->numainfo_events);
453a9bf3 761#endif
0a31bc97 762 }
d2265e6f
KH
763}
764
cf475ad2 765struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 766{
31a78f23
BS
767 /*
768 * mm_update_next_owner() may clear mm->owner to NULL
769 * if it races with swapoff, page migration, etc.
770 * So this can be called with p == NULL.
771 */
772 if (unlikely(!p))
773 return NULL;
774
073219e9 775 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 776}
33398cf2 777EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 778
df381975 779static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 780{
c0ff4b85 781 struct mem_cgroup *memcg = NULL;
0b7f569e 782
54595fe2
KH
783 rcu_read_lock();
784 do {
6f6acb00
MH
785 /*
786 * Page cache insertions can happen withou an
787 * actual mm context, e.g. during disk probing
788 * on boot, loopback IO, acct() writes etc.
789 */
790 if (unlikely(!mm))
df381975 791 memcg = root_mem_cgroup;
6f6acb00
MH
792 else {
793 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
794 if (unlikely(!memcg))
795 memcg = root_mem_cgroup;
796 }
ec903c0c 797 } while (!css_tryget_online(&memcg->css));
54595fe2 798 rcu_read_unlock();
c0ff4b85 799 return memcg;
54595fe2
KH
800}
801
5660048c
JW
802/**
803 * mem_cgroup_iter - iterate over memory cgroup hierarchy
804 * @root: hierarchy root
805 * @prev: previously returned memcg, NULL on first invocation
806 * @reclaim: cookie for shared reclaim walks, NULL for full walks
807 *
808 * Returns references to children of the hierarchy below @root, or
809 * @root itself, or %NULL after a full round-trip.
810 *
811 * Caller must pass the return value in @prev on subsequent
812 * invocations for reference counting, or use mem_cgroup_iter_break()
813 * to cancel a hierarchy walk before the round-trip is complete.
814 *
815 * Reclaimers can specify a zone and a priority level in @reclaim to
816 * divide up the memcgs in the hierarchy among all concurrent
817 * reclaimers operating on the same zone and priority.
818 */
694fbc0f 819struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 820 struct mem_cgroup *prev,
694fbc0f 821 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 822{
33398cf2 823 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 824 struct cgroup_subsys_state *css = NULL;
9f3a0d09 825 struct mem_cgroup *memcg = NULL;
5ac8fb31 826 struct mem_cgroup *pos = NULL;
711d3d2c 827
694fbc0f
AM
828 if (mem_cgroup_disabled())
829 return NULL;
5660048c 830
9f3a0d09
JW
831 if (!root)
832 root = root_mem_cgroup;
7d74b06f 833
9f3a0d09 834 if (prev && !reclaim)
5ac8fb31 835 pos = prev;
14067bb3 836
9f3a0d09
JW
837 if (!root->use_hierarchy && root != root_mem_cgroup) {
838 if (prev)
5ac8fb31 839 goto out;
694fbc0f 840 return root;
9f3a0d09 841 }
14067bb3 842
542f85f9 843 rcu_read_lock();
5f578161 844
5ac8fb31
JW
845 if (reclaim) {
846 struct mem_cgroup_per_zone *mz;
847
848 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
849 iter = &mz->iter[reclaim->priority];
850
851 if (prev && reclaim->generation != iter->generation)
852 goto out_unlock;
853
6df38689 854 while (1) {
4db0c3c2 855 pos = READ_ONCE(iter->position);
6df38689
VD
856 if (!pos || css_tryget(&pos->css))
857 break;
5ac8fb31 858 /*
6df38689
VD
859 * css reference reached zero, so iter->position will
860 * be cleared by ->css_released. However, we should not
861 * rely on this happening soon, because ->css_released
862 * is called from a work queue, and by busy-waiting we
863 * might block it. So we clear iter->position right
864 * away.
5ac8fb31 865 */
6df38689
VD
866 (void)cmpxchg(&iter->position, pos, NULL);
867 }
5ac8fb31
JW
868 }
869
870 if (pos)
871 css = &pos->css;
872
873 for (;;) {
874 css = css_next_descendant_pre(css, &root->css);
875 if (!css) {
876 /*
877 * Reclaimers share the hierarchy walk, and a
878 * new one might jump in right at the end of
879 * the hierarchy - make sure they see at least
880 * one group and restart from the beginning.
881 */
882 if (!prev)
883 continue;
884 break;
527a5ec9 885 }
7d74b06f 886
5ac8fb31
JW
887 /*
888 * Verify the css and acquire a reference. The root
889 * is provided by the caller, so we know it's alive
890 * and kicking, and don't take an extra reference.
891 */
892 memcg = mem_cgroup_from_css(css);
14067bb3 893
5ac8fb31
JW
894 if (css == &root->css)
895 break;
14067bb3 896
b2052564 897 if (css_tryget(css)) {
5ac8fb31
JW
898 /*
899 * Make sure the memcg is initialized:
900 * mem_cgroup_css_online() orders the the
901 * initialization against setting the flag.
902 */
903 if (smp_load_acquire(&memcg->initialized))
904 break;
542f85f9 905
5ac8fb31 906 css_put(css);
527a5ec9 907 }
9f3a0d09 908
5ac8fb31 909 memcg = NULL;
9f3a0d09 910 }
5ac8fb31
JW
911
912 if (reclaim) {
5ac8fb31 913 /*
6df38689
VD
914 * The position could have already been updated by a competing
915 * thread, so check that the value hasn't changed since we read
916 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 917 */
6df38689
VD
918 (void)cmpxchg(&iter->position, pos, memcg);
919
5ac8fb31
JW
920 if (pos)
921 css_put(&pos->css);
922
923 if (!memcg)
924 iter->generation++;
925 else if (!prev)
926 reclaim->generation = iter->generation;
9f3a0d09 927 }
5ac8fb31 928
542f85f9
MH
929out_unlock:
930 rcu_read_unlock();
5ac8fb31 931out:
c40046f3
MH
932 if (prev && prev != root)
933 css_put(&prev->css);
934
9f3a0d09 935 return memcg;
14067bb3 936}
7d74b06f 937
5660048c
JW
938/**
939 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
940 * @root: hierarchy root
941 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
942 */
943void mem_cgroup_iter_break(struct mem_cgroup *root,
944 struct mem_cgroup *prev)
9f3a0d09
JW
945{
946 if (!root)
947 root = root_mem_cgroup;
948 if (prev && prev != root)
949 css_put(&prev->css);
950}
7d74b06f 951
6df38689
VD
952static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
953{
954 struct mem_cgroup *memcg = dead_memcg;
955 struct mem_cgroup_reclaim_iter *iter;
956 struct mem_cgroup_per_zone *mz;
957 int nid, zid;
958 int i;
959
960 while ((memcg = parent_mem_cgroup(memcg))) {
961 for_each_node(nid) {
962 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
963 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
964 for (i = 0; i <= DEF_PRIORITY; i++) {
965 iter = &mz->iter[i];
966 cmpxchg(&iter->position,
967 dead_memcg, NULL);
968 }
969 }
970 }
971 }
972}
973
9f3a0d09
JW
974/*
975 * Iteration constructs for visiting all cgroups (under a tree). If
976 * loops are exited prematurely (break), mem_cgroup_iter_break() must
977 * be used for reference counting.
978 */
979#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 980 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 981 iter != NULL; \
527a5ec9 982 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 983
9f3a0d09 984#define for_each_mem_cgroup(iter) \
527a5ec9 985 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 986 iter != NULL; \
527a5ec9 987 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 988
925b7673
JW
989/**
990 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
991 * @zone: zone of the wanted lruvec
fa9add64 992 * @memcg: memcg of the wanted lruvec
925b7673
JW
993 *
994 * Returns the lru list vector holding pages for the given @zone and
995 * @mem. This can be the global zone lruvec, if the memory controller
996 * is disabled.
997 */
998struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
999 struct mem_cgroup *memcg)
1000{
1001 struct mem_cgroup_per_zone *mz;
bea8c150 1002 struct lruvec *lruvec;
925b7673 1003
bea8c150
HD
1004 if (mem_cgroup_disabled()) {
1005 lruvec = &zone->lruvec;
1006 goto out;
1007 }
925b7673 1008
e231875b 1009 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1010 lruvec = &mz->lruvec;
1011out:
1012 /*
1013 * Since a node can be onlined after the mem_cgroup was created,
1014 * we have to be prepared to initialize lruvec->zone here;
1015 * and if offlined then reonlined, we need to reinitialize it.
1016 */
1017 if (unlikely(lruvec->zone != zone))
1018 lruvec->zone = zone;
1019 return lruvec;
925b7673
JW
1020}
1021
925b7673 1022/**
dfe0e773 1023 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1024 * @page: the page
fa9add64 1025 * @zone: zone of the page
dfe0e773
JW
1026 *
1027 * This function is only safe when following the LRU page isolation
1028 * and putback protocol: the LRU lock must be held, and the page must
1029 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1030 */
fa9add64 1031struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1032{
08e552c6 1033 struct mem_cgroup_per_zone *mz;
925b7673 1034 struct mem_cgroup *memcg;
bea8c150 1035 struct lruvec *lruvec;
6d12e2d8 1036
bea8c150
HD
1037 if (mem_cgroup_disabled()) {
1038 lruvec = &zone->lruvec;
1039 goto out;
1040 }
925b7673 1041
1306a85a 1042 memcg = page->mem_cgroup;
7512102c 1043 /*
dfe0e773 1044 * Swapcache readahead pages are added to the LRU - and
29833315 1045 * possibly migrated - before they are charged.
7512102c 1046 */
29833315
JW
1047 if (!memcg)
1048 memcg = root_mem_cgroup;
7512102c 1049
e231875b 1050 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1051 lruvec = &mz->lruvec;
1052out:
1053 /*
1054 * Since a node can be onlined after the mem_cgroup was created,
1055 * we have to be prepared to initialize lruvec->zone here;
1056 * and if offlined then reonlined, we need to reinitialize it.
1057 */
1058 if (unlikely(lruvec->zone != zone))
1059 lruvec->zone = zone;
1060 return lruvec;
08e552c6 1061}
b69408e8 1062
925b7673 1063/**
fa9add64
HD
1064 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1065 * @lruvec: mem_cgroup per zone lru vector
1066 * @lru: index of lru list the page is sitting on
1067 * @nr_pages: positive when adding or negative when removing
925b7673 1068 *
fa9add64
HD
1069 * This function must be called when a page is added to or removed from an
1070 * lru list.
3f58a829 1071 */
fa9add64
HD
1072void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1073 int nr_pages)
3f58a829
MK
1074{
1075 struct mem_cgroup_per_zone *mz;
fa9add64 1076 unsigned long *lru_size;
3f58a829
MK
1077
1078 if (mem_cgroup_disabled())
1079 return;
1080
fa9add64
HD
1081 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1082 lru_size = mz->lru_size + lru;
1083 *lru_size += nr_pages;
1084 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1085}
544122e5 1086
2314b42d 1087bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1088{
2314b42d 1089 struct mem_cgroup *task_memcg;
158e0a2d 1090 struct task_struct *p;
ffbdccf5 1091 bool ret;
4c4a2214 1092
158e0a2d 1093 p = find_lock_task_mm(task);
de077d22 1094 if (p) {
2314b42d 1095 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1096 task_unlock(p);
1097 } else {
1098 /*
1099 * All threads may have already detached their mm's, but the oom
1100 * killer still needs to detect if they have already been oom
1101 * killed to prevent needlessly killing additional tasks.
1102 */
ffbdccf5 1103 rcu_read_lock();
2314b42d
JW
1104 task_memcg = mem_cgroup_from_task(task);
1105 css_get(&task_memcg->css);
ffbdccf5 1106 rcu_read_unlock();
de077d22 1107 }
2314b42d
JW
1108 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1109 css_put(&task_memcg->css);
4c4a2214
DR
1110 return ret;
1111}
1112
3e32cb2e 1113#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1114 container_of(counter, struct mem_cgroup, member)
1115
19942822 1116/**
9d11ea9f 1117 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1118 * @memcg: the memory cgroup
19942822 1119 *
9d11ea9f 1120 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1121 * pages.
19942822 1122 */
c0ff4b85 1123static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1124{
3e32cb2e
JW
1125 unsigned long margin = 0;
1126 unsigned long count;
1127 unsigned long limit;
9d11ea9f 1128
3e32cb2e 1129 count = page_counter_read(&memcg->memory);
4db0c3c2 1130 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1131 if (count < limit)
1132 margin = limit - count;
1133
7941d214 1134 if (do_memsw_account()) {
3e32cb2e 1135 count = page_counter_read(&memcg->memsw);
4db0c3c2 1136 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1137 if (count <= limit)
1138 margin = min(margin, limit - count);
1139 }
1140
1141 return margin;
19942822
JW
1142}
1143
32047e2a 1144/*
bdcbb659 1145 * A routine for checking "mem" is under move_account() or not.
32047e2a 1146 *
bdcbb659
QH
1147 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1148 * moving cgroups. This is for waiting at high-memory pressure
1149 * caused by "move".
32047e2a 1150 */
c0ff4b85 1151static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1152{
2bd9bb20
KH
1153 struct mem_cgroup *from;
1154 struct mem_cgroup *to;
4b534334 1155 bool ret = false;
2bd9bb20
KH
1156 /*
1157 * Unlike task_move routines, we access mc.to, mc.from not under
1158 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1159 */
1160 spin_lock(&mc.lock);
1161 from = mc.from;
1162 to = mc.to;
1163 if (!from)
1164 goto unlock;
3e92041d 1165
2314b42d
JW
1166 ret = mem_cgroup_is_descendant(from, memcg) ||
1167 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1168unlock:
1169 spin_unlock(&mc.lock);
4b534334
KH
1170 return ret;
1171}
1172
c0ff4b85 1173static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1174{
1175 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1176 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1177 DEFINE_WAIT(wait);
1178 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1179 /* moving charge context might have finished. */
1180 if (mc.moving_task)
1181 schedule();
1182 finish_wait(&mc.waitq, &wait);
1183 return true;
1184 }
1185 }
1186 return false;
1187}
1188
58cf188e 1189#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1190/**
58cf188e 1191 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1192 * @memcg: The memory cgroup that went over limit
1193 * @p: Task that is going to be killed
1194 *
1195 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1196 * enabled
1197 */
1198void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1199{
e61734c5 1200 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1201 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1202 struct mem_cgroup *iter;
1203 unsigned int i;
e222432b 1204
08088cb9 1205 mutex_lock(&oom_info_lock);
e222432b
BS
1206 rcu_read_lock();
1207
2415b9f5
BV
1208 if (p) {
1209 pr_info("Task in ");
1210 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1211 pr_cont(" killed as a result of limit of ");
1212 } else {
1213 pr_info("Memory limit reached of cgroup ");
1214 }
1215
e61734c5 1216 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1217 pr_cont("\n");
e222432b 1218
e222432b
BS
1219 rcu_read_unlock();
1220
3e32cb2e
JW
1221 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1222 K((u64)page_counter_read(&memcg->memory)),
1223 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1224 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1225 K((u64)page_counter_read(&memcg->memsw)),
1226 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1227 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1228 K((u64)page_counter_read(&memcg->kmem)),
1229 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1230
1231 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1232 pr_info("Memory cgroup stats for ");
1233 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1234 pr_cont(":");
1235
1236 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 1237 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
58cf188e 1238 continue;
484ebb3b 1239 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1240 K(mem_cgroup_read_stat(iter, i)));
1241 }
1242
1243 for (i = 0; i < NR_LRU_LISTS; i++)
1244 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1245 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1246
1247 pr_cont("\n");
1248 }
08088cb9 1249 mutex_unlock(&oom_info_lock);
e222432b
BS
1250}
1251
81d39c20
KH
1252/*
1253 * This function returns the number of memcg under hierarchy tree. Returns
1254 * 1(self count) if no children.
1255 */
c0ff4b85 1256static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1257{
1258 int num = 0;
7d74b06f
KH
1259 struct mem_cgroup *iter;
1260
c0ff4b85 1261 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1262 num++;
81d39c20
KH
1263 return num;
1264}
1265
a63d83f4
DR
1266/*
1267 * Return the memory (and swap, if configured) limit for a memcg.
1268 */
3e32cb2e 1269static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1270{
3e32cb2e 1271 unsigned long limit;
f3e8eb70 1272
3e32cb2e 1273 limit = memcg->memory.limit;
9a5a8f19 1274 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1275 unsigned long memsw_limit;
9a5a8f19 1276
3e32cb2e
JW
1277 memsw_limit = memcg->memsw.limit;
1278 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1279 }
9a5a8f19 1280 return limit;
a63d83f4
DR
1281}
1282
19965460
DR
1283static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1284 int order)
9cbb78bb 1285{
6e0fc46d
DR
1286 struct oom_control oc = {
1287 .zonelist = NULL,
1288 .nodemask = NULL,
1289 .gfp_mask = gfp_mask,
1290 .order = order,
6e0fc46d 1291 };
9cbb78bb
DR
1292 struct mem_cgroup *iter;
1293 unsigned long chosen_points = 0;
1294 unsigned long totalpages;
1295 unsigned int points = 0;
1296 struct task_struct *chosen = NULL;
1297
dc56401f
JW
1298 mutex_lock(&oom_lock);
1299
876aafbf 1300 /*
465adcf1
DR
1301 * If current has a pending SIGKILL or is exiting, then automatically
1302 * select it. The goal is to allow it to allocate so that it may
1303 * quickly exit and free its memory.
876aafbf 1304 */
d003f371 1305 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1306 mark_oom_victim(current);
dc56401f 1307 goto unlock;
876aafbf
DR
1308 }
1309
6e0fc46d 1310 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1311 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1312 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1313 struct css_task_iter it;
9cbb78bb
DR
1314 struct task_struct *task;
1315
72ec7029
TH
1316 css_task_iter_start(&iter->css, &it);
1317 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1318 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1319 case OOM_SCAN_SELECT:
1320 if (chosen)
1321 put_task_struct(chosen);
1322 chosen = task;
1323 chosen_points = ULONG_MAX;
1324 get_task_struct(chosen);
1325 /* fall through */
1326 case OOM_SCAN_CONTINUE:
1327 continue;
1328 case OOM_SCAN_ABORT:
72ec7029 1329 css_task_iter_end(&it);
9cbb78bb
DR
1330 mem_cgroup_iter_break(memcg, iter);
1331 if (chosen)
1332 put_task_struct(chosen);
dc56401f 1333 goto unlock;
9cbb78bb
DR
1334 case OOM_SCAN_OK:
1335 break;
1336 };
1337 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1338 if (!points || points < chosen_points)
1339 continue;
1340 /* Prefer thread group leaders for display purposes */
1341 if (points == chosen_points &&
1342 thread_group_leader(chosen))
1343 continue;
1344
1345 if (chosen)
1346 put_task_struct(chosen);
1347 chosen = task;
1348 chosen_points = points;
1349 get_task_struct(chosen);
9cbb78bb 1350 }
72ec7029 1351 css_task_iter_end(&it);
9cbb78bb
DR
1352 }
1353
dc56401f
JW
1354 if (chosen) {
1355 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1356 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1357 "Memory cgroup out of memory");
dc56401f
JW
1358 }
1359unlock:
1360 mutex_unlock(&oom_lock);
9cbb78bb
DR
1361}
1362
ae6e71d3
MC
1363#if MAX_NUMNODES > 1
1364
4d0c066d
KH
1365/**
1366 * test_mem_cgroup_node_reclaimable
dad7557e 1367 * @memcg: the target memcg
4d0c066d
KH
1368 * @nid: the node ID to be checked.
1369 * @noswap : specify true here if the user wants flle only information.
1370 *
1371 * This function returns whether the specified memcg contains any
1372 * reclaimable pages on a node. Returns true if there are any reclaimable
1373 * pages in the node.
1374 */
c0ff4b85 1375static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1376 int nid, bool noswap)
1377{
c0ff4b85 1378 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1379 return true;
1380 if (noswap || !total_swap_pages)
1381 return false;
c0ff4b85 1382 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1383 return true;
1384 return false;
1385
1386}
889976db
YH
1387
1388/*
1389 * Always updating the nodemask is not very good - even if we have an empty
1390 * list or the wrong list here, we can start from some node and traverse all
1391 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1392 *
1393 */
c0ff4b85 1394static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1395{
1396 int nid;
453a9bf3
KH
1397 /*
1398 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1399 * pagein/pageout changes since the last update.
1400 */
c0ff4b85 1401 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1402 return;
c0ff4b85 1403 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1404 return;
1405
889976db 1406 /* make a nodemask where this memcg uses memory from */
31aaea4a 1407 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1408
31aaea4a 1409 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1410
c0ff4b85
R
1411 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1412 node_clear(nid, memcg->scan_nodes);
889976db 1413 }
453a9bf3 1414
c0ff4b85
R
1415 atomic_set(&memcg->numainfo_events, 0);
1416 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1417}
1418
1419/*
1420 * Selecting a node where we start reclaim from. Because what we need is just
1421 * reducing usage counter, start from anywhere is O,K. Considering
1422 * memory reclaim from current node, there are pros. and cons.
1423 *
1424 * Freeing memory from current node means freeing memory from a node which
1425 * we'll use or we've used. So, it may make LRU bad. And if several threads
1426 * hit limits, it will see a contention on a node. But freeing from remote
1427 * node means more costs for memory reclaim because of memory latency.
1428 *
1429 * Now, we use round-robin. Better algorithm is welcomed.
1430 */
c0ff4b85 1431int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1432{
1433 int node;
1434
c0ff4b85
R
1435 mem_cgroup_may_update_nodemask(memcg);
1436 node = memcg->last_scanned_node;
889976db 1437
c0ff4b85 1438 node = next_node(node, memcg->scan_nodes);
889976db 1439 if (node == MAX_NUMNODES)
c0ff4b85 1440 node = first_node(memcg->scan_nodes);
889976db
YH
1441 /*
1442 * We call this when we hit limit, not when pages are added to LRU.
1443 * No LRU may hold pages because all pages are UNEVICTABLE or
1444 * memcg is too small and all pages are not on LRU. In that case,
1445 * we use curret node.
1446 */
1447 if (unlikely(node == MAX_NUMNODES))
1448 node = numa_node_id();
1449
c0ff4b85 1450 memcg->last_scanned_node = node;
889976db
YH
1451 return node;
1452}
889976db 1453#else
c0ff4b85 1454int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1455{
1456 return 0;
1457}
1458#endif
1459
0608f43d
AM
1460static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1461 struct zone *zone,
1462 gfp_t gfp_mask,
1463 unsigned long *total_scanned)
1464{
1465 struct mem_cgroup *victim = NULL;
1466 int total = 0;
1467 int loop = 0;
1468 unsigned long excess;
1469 unsigned long nr_scanned;
1470 struct mem_cgroup_reclaim_cookie reclaim = {
1471 .zone = zone,
1472 .priority = 0,
1473 };
1474
3e32cb2e 1475 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1476
1477 while (1) {
1478 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1479 if (!victim) {
1480 loop++;
1481 if (loop >= 2) {
1482 /*
1483 * If we have not been able to reclaim
1484 * anything, it might because there are
1485 * no reclaimable pages under this hierarchy
1486 */
1487 if (!total)
1488 break;
1489 /*
1490 * We want to do more targeted reclaim.
1491 * excess >> 2 is not to excessive so as to
1492 * reclaim too much, nor too less that we keep
1493 * coming back to reclaim from this cgroup
1494 */
1495 if (total >= (excess >> 2) ||
1496 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1497 break;
1498 }
1499 continue;
1500 }
0608f43d
AM
1501 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1502 zone, &nr_scanned);
1503 *total_scanned += nr_scanned;
3e32cb2e 1504 if (!soft_limit_excess(root_memcg))
0608f43d 1505 break;
6d61ef40 1506 }
0608f43d
AM
1507 mem_cgroup_iter_break(root_memcg, victim);
1508 return total;
6d61ef40
BS
1509}
1510
0056f4e6
JW
1511#ifdef CONFIG_LOCKDEP
1512static struct lockdep_map memcg_oom_lock_dep_map = {
1513 .name = "memcg_oom_lock",
1514};
1515#endif
1516
fb2a6fc5
JW
1517static DEFINE_SPINLOCK(memcg_oom_lock);
1518
867578cb
KH
1519/*
1520 * Check OOM-Killer is already running under our hierarchy.
1521 * If someone is running, return false.
1522 */
fb2a6fc5 1523static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1524{
79dfdacc 1525 struct mem_cgroup *iter, *failed = NULL;
a636b327 1526
fb2a6fc5
JW
1527 spin_lock(&memcg_oom_lock);
1528
9f3a0d09 1529 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1530 if (iter->oom_lock) {
79dfdacc
MH
1531 /*
1532 * this subtree of our hierarchy is already locked
1533 * so we cannot give a lock.
1534 */
79dfdacc 1535 failed = iter;
9f3a0d09
JW
1536 mem_cgroup_iter_break(memcg, iter);
1537 break;
23751be0
JW
1538 } else
1539 iter->oom_lock = true;
7d74b06f 1540 }
867578cb 1541
fb2a6fc5
JW
1542 if (failed) {
1543 /*
1544 * OK, we failed to lock the whole subtree so we have
1545 * to clean up what we set up to the failing subtree
1546 */
1547 for_each_mem_cgroup_tree(iter, memcg) {
1548 if (iter == failed) {
1549 mem_cgroup_iter_break(memcg, iter);
1550 break;
1551 }
1552 iter->oom_lock = false;
79dfdacc 1553 }
0056f4e6
JW
1554 } else
1555 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1556
1557 spin_unlock(&memcg_oom_lock);
1558
1559 return !failed;
a636b327 1560}
0b7f569e 1561
fb2a6fc5 1562static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1563{
7d74b06f
KH
1564 struct mem_cgroup *iter;
1565
fb2a6fc5 1566 spin_lock(&memcg_oom_lock);
0056f4e6 1567 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1568 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1569 iter->oom_lock = false;
fb2a6fc5 1570 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1571}
1572
c0ff4b85 1573static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1574{
1575 struct mem_cgroup *iter;
1576
c2b42d3c 1577 spin_lock(&memcg_oom_lock);
c0ff4b85 1578 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1579 iter->under_oom++;
1580 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1581}
1582
c0ff4b85 1583static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1584{
1585 struct mem_cgroup *iter;
1586
867578cb
KH
1587 /*
1588 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1589 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1590 */
c2b42d3c 1591 spin_lock(&memcg_oom_lock);
c0ff4b85 1592 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1593 if (iter->under_oom > 0)
1594 iter->under_oom--;
1595 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1596}
1597
867578cb
KH
1598static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1599
dc98df5a 1600struct oom_wait_info {
d79154bb 1601 struct mem_cgroup *memcg;
dc98df5a
KH
1602 wait_queue_t wait;
1603};
1604
1605static int memcg_oom_wake_function(wait_queue_t *wait,
1606 unsigned mode, int sync, void *arg)
1607{
d79154bb
HD
1608 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1609 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1610 struct oom_wait_info *oom_wait_info;
1611
1612 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1613 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1614
2314b42d
JW
1615 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1616 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1617 return 0;
dc98df5a
KH
1618 return autoremove_wake_function(wait, mode, sync, arg);
1619}
1620
c0ff4b85 1621static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1622{
c2b42d3c
TH
1623 /*
1624 * For the following lockless ->under_oom test, the only required
1625 * guarantee is that it must see the state asserted by an OOM when
1626 * this function is called as a result of userland actions
1627 * triggered by the notification of the OOM. This is trivially
1628 * achieved by invoking mem_cgroup_mark_under_oom() before
1629 * triggering notification.
1630 */
1631 if (memcg && memcg->under_oom)
f4b90b70 1632 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1633}
1634
3812c8c8 1635static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1636{
626ebc41 1637 if (!current->memcg_may_oom)
3812c8c8 1638 return;
867578cb 1639 /*
49426420
JW
1640 * We are in the middle of the charge context here, so we
1641 * don't want to block when potentially sitting on a callstack
1642 * that holds all kinds of filesystem and mm locks.
1643 *
1644 * Also, the caller may handle a failed allocation gracefully
1645 * (like optional page cache readahead) and so an OOM killer
1646 * invocation might not even be necessary.
1647 *
1648 * That's why we don't do anything here except remember the
1649 * OOM context and then deal with it at the end of the page
1650 * fault when the stack is unwound, the locks are released,
1651 * and when we know whether the fault was overall successful.
867578cb 1652 */
49426420 1653 css_get(&memcg->css);
626ebc41
TH
1654 current->memcg_in_oom = memcg;
1655 current->memcg_oom_gfp_mask = mask;
1656 current->memcg_oom_order = order;
3812c8c8
JW
1657}
1658
1659/**
1660 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1661 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1662 *
49426420
JW
1663 * This has to be called at the end of a page fault if the memcg OOM
1664 * handler was enabled.
3812c8c8 1665 *
49426420 1666 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1667 * sleep on a waitqueue until the userspace task resolves the
1668 * situation. Sleeping directly in the charge context with all kinds
1669 * of locks held is not a good idea, instead we remember an OOM state
1670 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1671 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1672 *
1673 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1674 * completed, %false otherwise.
3812c8c8 1675 */
49426420 1676bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1677{
626ebc41 1678 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1679 struct oom_wait_info owait;
49426420 1680 bool locked;
3812c8c8
JW
1681
1682 /* OOM is global, do not handle */
3812c8c8 1683 if (!memcg)
49426420 1684 return false;
3812c8c8 1685
c32b3cbe 1686 if (!handle || oom_killer_disabled)
49426420 1687 goto cleanup;
3812c8c8
JW
1688
1689 owait.memcg = memcg;
1690 owait.wait.flags = 0;
1691 owait.wait.func = memcg_oom_wake_function;
1692 owait.wait.private = current;
1693 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1694
3812c8c8 1695 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1696 mem_cgroup_mark_under_oom(memcg);
1697
1698 locked = mem_cgroup_oom_trylock(memcg);
1699
1700 if (locked)
1701 mem_cgroup_oom_notify(memcg);
1702
1703 if (locked && !memcg->oom_kill_disable) {
1704 mem_cgroup_unmark_under_oom(memcg);
1705 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1706 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1707 current->memcg_oom_order);
49426420 1708 } else {
3812c8c8 1709 schedule();
49426420
JW
1710 mem_cgroup_unmark_under_oom(memcg);
1711 finish_wait(&memcg_oom_waitq, &owait.wait);
1712 }
1713
1714 if (locked) {
fb2a6fc5
JW
1715 mem_cgroup_oom_unlock(memcg);
1716 /*
1717 * There is no guarantee that an OOM-lock contender
1718 * sees the wakeups triggered by the OOM kill
1719 * uncharges. Wake any sleepers explicitely.
1720 */
1721 memcg_oom_recover(memcg);
1722 }
49426420 1723cleanup:
626ebc41 1724 current->memcg_in_oom = NULL;
3812c8c8 1725 css_put(&memcg->css);
867578cb 1726 return true;
0b7f569e
KH
1727}
1728
d7365e78
JW
1729/**
1730 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1731 * @page: page that is going to change accounted state
32047e2a 1732 *
d7365e78
JW
1733 * This function must mark the beginning of an accounted page state
1734 * change to prevent double accounting when the page is concurrently
1735 * being moved to another memcg:
32047e2a 1736 *
6de22619 1737 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1738 * if (TestClearPageState(page))
1739 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1740 * mem_cgroup_end_page_stat(memcg);
d69b042f 1741 */
6de22619 1742struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1743{
1744 struct mem_cgroup *memcg;
6de22619 1745 unsigned long flags;
89c06bd5 1746
6de22619
JW
1747 /*
1748 * The RCU lock is held throughout the transaction. The fast
1749 * path can get away without acquiring the memcg->move_lock
1750 * because page moving starts with an RCU grace period.
1751 *
1752 * The RCU lock also protects the memcg from being freed when
1753 * the page state that is going to change is the only thing
1754 * preventing the page from being uncharged.
1755 * E.g. end-writeback clearing PageWriteback(), which allows
1756 * migration to go ahead and uncharge the page before the
1757 * account transaction might be complete.
1758 */
d7365e78
JW
1759 rcu_read_lock();
1760
1761 if (mem_cgroup_disabled())
1762 return NULL;
89c06bd5 1763again:
1306a85a 1764 memcg = page->mem_cgroup;
29833315 1765 if (unlikely(!memcg))
d7365e78
JW
1766 return NULL;
1767
bdcbb659 1768 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1769 return memcg;
89c06bd5 1770
6de22619 1771 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1772 if (memcg != page->mem_cgroup) {
6de22619 1773 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1774 goto again;
1775 }
6de22619
JW
1776
1777 /*
1778 * When charge migration first begins, we can have locked and
1779 * unlocked page stat updates happening concurrently. Track
1780 * the task who has the lock for mem_cgroup_end_page_stat().
1781 */
1782 memcg->move_lock_task = current;
1783 memcg->move_lock_flags = flags;
d7365e78
JW
1784
1785 return memcg;
89c06bd5 1786}
c4843a75 1787EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 1788
d7365e78
JW
1789/**
1790 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1791 * @memcg: the memcg that was accounted against
d7365e78 1792 */
6de22619 1793void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 1794{
6de22619
JW
1795 if (memcg && memcg->move_lock_task == current) {
1796 unsigned long flags = memcg->move_lock_flags;
1797
1798 memcg->move_lock_task = NULL;
1799 memcg->move_lock_flags = 0;
1800
1801 spin_unlock_irqrestore(&memcg->move_lock, flags);
1802 }
89c06bd5 1803
d7365e78 1804 rcu_read_unlock();
89c06bd5 1805}
c4843a75 1806EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 1807
cdec2e42
KH
1808/*
1809 * size of first charge trial. "32" comes from vmscan.c's magic value.
1810 * TODO: maybe necessary to use big numbers in big irons.
1811 */
7ec99d62 1812#define CHARGE_BATCH 32U
cdec2e42
KH
1813struct memcg_stock_pcp {
1814 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1815 unsigned int nr_pages;
cdec2e42 1816 struct work_struct work;
26fe6168 1817 unsigned long flags;
a0db00fc 1818#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1819};
1820static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1821static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1822
a0956d54
SS
1823/**
1824 * consume_stock: Try to consume stocked charge on this cpu.
1825 * @memcg: memcg to consume from.
1826 * @nr_pages: how many pages to charge.
1827 *
1828 * The charges will only happen if @memcg matches the current cpu's memcg
1829 * stock, and at least @nr_pages are available in that stock. Failure to
1830 * service an allocation will refill the stock.
1831 *
1832 * returns true if successful, false otherwise.
cdec2e42 1833 */
a0956d54 1834static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1835{
1836 struct memcg_stock_pcp *stock;
3e32cb2e 1837 bool ret = false;
cdec2e42 1838
a0956d54 1839 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1840 return ret;
a0956d54 1841
cdec2e42 1842 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1843 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1844 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1845 ret = true;
1846 }
cdec2e42
KH
1847 put_cpu_var(memcg_stock);
1848 return ret;
1849}
1850
1851/*
3e32cb2e 1852 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1853 */
1854static void drain_stock(struct memcg_stock_pcp *stock)
1855{
1856 struct mem_cgroup *old = stock->cached;
1857
11c9ea4e 1858 if (stock->nr_pages) {
3e32cb2e 1859 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1860 if (do_memsw_account())
3e32cb2e 1861 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1862 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1863 stock->nr_pages = 0;
cdec2e42
KH
1864 }
1865 stock->cached = NULL;
cdec2e42
KH
1866}
1867
1868/*
1869 * This must be called under preempt disabled or must be called by
1870 * a thread which is pinned to local cpu.
1871 */
1872static void drain_local_stock(struct work_struct *dummy)
1873{
7c8e0181 1874 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1875 drain_stock(stock);
26fe6168 1876 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1877}
1878
1879/*
3e32cb2e 1880 * Cache charges(val) to local per_cpu area.
320cc51d 1881 * This will be consumed by consume_stock() function, later.
cdec2e42 1882 */
c0ff4b85 1883static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1884{
1885 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1886
c0ff4b85 1887 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1888 drain_stock(stock);
c0ff4b85 1889 stock->cached = memcg;
cdec2e42 1890 }
11c9ea4e 1891 stock->nr_pages += nr_pages;
cdec2e42
KH
1892 put_cpu_var(memcg_stock);
1893}
1894
1895/*
c0ff4b85 1896 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1897 * of the hierarchy under it.
cdec2e42 1898 */
6d3d6aa2 1899static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1900{
26fe6168 1901 int cpu, curcpu;
d38144b7 1902
6d3d6aa2
JW
1903 /* If someone's already draining, avoid adding running more workers. */
1904 if (!mutex_trylock(&percpu_charge_mutex))
1905 return;
cdec2e42 1906 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1907 get_online_cpus();
5af12d0e 1908 curcpu = get_cpu();
cdec2e42
KH
1909 for_each_online_cpu(cpu) {
1910 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1911 struct mem_cgroup *memcg;
26fe6168 1912
c0ff4b85
R
1913 memcg = stock->cached;
1914 if (!memcg || !stock->nr_pages)
26fe6168 1915 continue;
2314b42d 1916 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1917 continue;
d1a05b69
MH
1918 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1919 if (cpu == curcpu)
1920 drain_local_stock(&stock->work);
1921 else
1922 schedule_work_on(cpu, &stock->work);
1923 }
cdec2e42 1924 }
5af12d0e 1925 put_cpu();
f894ffa8 1926 put_online_cpus();
9f50fad6 1927 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1928}
1929
0db0628d 1930static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1931 unsigned long action,
1932 void *hcpu)
1933{
1934 int cpu = (unsigned long)hcpu;
1935 struct memcg_stock_pcp *stock;
1936
619d094b 1937 if (action == CPU_ONLINE)
1489ebad 1938 return NOTIFY_OK;
1489ebad 1939
d833049b 1940 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1941 return NOTIFY_OK;
711d3d2c 1942
cdec2e42
KH
1943 stock = &per_cpu(memcg_stock, cpu);
1944 drain_stock(stock);
1945 return NOTIFY_OK;
1946}
1947
b23afb93
TH
1948/*
1949 * Scheduled by try_charge() to be executed from the userland return path
1950 * and reclaims memory over the high limit.
1951 */
1952void mem_cgroup_handle_over_high(void)
1953{
1954 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1955 struct mem_cgroup *memcg, *pos;
1956
1957 if (likely(!nr_pages))
1958 return;
1959
1960 pos = memcg = get_mem_cgroup_from_mm(current->mm);
1961
1962 do {
1963 if (page_counter_read(&pos->memory) <= pos->high)
1964 continue;
1965 mem_cgroup_events(pos, MEMCG_HIGH, 1);
1966 try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
1967 } while ((pos = parent_mem_cgroup(pos)));
1968
1969 css_put(&memcg->css);
1970 current->memcg_nr_pages_over_high = 0;
1971}
1972
00501b53
JW
1973static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1974 unsigned int nr_pages)
8a9f3ccd 1975{
7ec99d62 1976 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1977 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1978 struct mem_cgroup *mem_over_limit;
3e32cb2e 1979 struct page_counter *counter;
6539cc05 1980 unsigned long nr_reclaimed;
b70a2a21
JW
1981 bool may_swap = true;
1982 bool drained = false;
a636b327 1983
ce00a967 1984 if (mem_cgroup_is_root(memcg))
10d53c74 1985 return 0;
6539cc05 1986retry:
b6b6cc72 1987 if (consume_stock(memcg, nr_pages))
10d53c74 1988 return 0;
8a9f3ccd 1989
7941d214 1990 if (!do_memsw_account() ||
6071ca52
JW
1991 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1992 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1993 goto done_restock;
7941d214 1994 if (do_memsw_account())
3e32cb2e
JW
1995 page_counter_uncharge(&memcg->memsw, batch);
1996 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1997 } else {
3e32cb2e 1998 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1999 may_swap = false;
3fbe7244 2000 }
7a81b88c 2001
6539cc05
JW
2002 if (batch > nr_pages) {
2003 batch = nr_pages;
2004 goto retry;
2005 }
6d61ef40 2006
06b078fc
JW
2007 /*
2008 * Unlike in global OOM situations, memcg is not in a physical
2009 * memory shortage. Allow dying and OOM-killed tasks to
2010 * bypass the last charges so that they can exit quickly and
2011 * free their memory.
2012 */
2013 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2014 fatal_signal_pending(current) ||
2015 current->flags & PF_EXITING))
10d53c74 2016 goto force;
06b078fc
JW
2017
2018 if (unlikely(task_in_memcg_oom(current)))
2019 goto nomem;
2020
d0164adc 2021 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2022 goto nomem;
4b534334 2023
241994ed
JW
2024 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2025
b70a2a21
JW
2026 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2027 gfp_mask, may_swap);
6539cc05 2028
61e02c74 2029 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2030 goto retry;
28c34c29 2031
b70a2a21 2032 if (!drained) {
6d3d6aa2 2033 drain_all_stock(mem_over_limit);
b70a2a21
JW
2034 drained = true;
2035 goto retry;
2036 }
2037
28c34c29
JW
2038 if (gfp_mask & __GFP_NORETRY)
2039 goto nomem;
6539cc05
JW
2040 /*
2041 * Even though the limit is exceeded at this point, reclaim
2042 * may have been able to free some pages. Retry the charge
2043 * before killing the task.
2044 *
2045 * Only for regular pages, though: huge pages are rather
2046 * unlikely to succeed so close to the limit, and we fall back
2047 * to regular pages anyway in case of failure.
2048 */
61e02c74 2049 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2050 goto retry;
2051 /*
2052 * At task move, charge accounts can be doubly counted. So, it's
2053 * better to wait until the end of task_move if something is going on.
2054 */
2055 if (mem_cgroup_wait_acct_move(mem_over_limit))
2056 goto retry;
2057
9b130619
JW
2058 if (nr_retries--)
2059 goto retry;
2060
06b078fc 2061 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2062 goto force;
06b078fc 2063
6539cc05 2064 if (fatal_signal_pending(current))
10d53c74 2065 goto force;
6539cc05 2066
241994ed
JW
2067 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2068
3608de07
JM
2069 mem_cgroup_oom(mem_over_limit, gfp_mask,
2070 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2071nomem:
6d1fdc48 2072 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2073 return -ENOMEM;
10d53c74
TH
2074force:
2075 /*
2076 * The allocation either can't fail or will lead to more memory
2077 * being freed very soon. Allow memory usage go over the limit
2078 * temporarily by force charging it.
2079 */
2080 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2081 if (do_memsw_account())
10d53c74
TH
2082 page_counter_charge(&memcg->memsw, nr_pages);
2083 css_get_many(&memcg->css, nr_pages);
2084
2085 return 0;
6539cc05
JW
2086
2087done_restock:
e8ea14cc 2088 css_get_many(&memcg->css, batch);
6539cc05
JW
2089 if (batch > nr_pages)
2090 refill_stock(memcg, batch - nr_pages);
b23afb93 2091
241994ed 2092 /*
b23afb93
TH
2093 * If the hierarchy is above the normal consumption range, schedule
2094 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2095 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2096 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2097 * not recorded as it most likely matches current's and won't
2098 * change in the meantime. As high limit is checked again before
2099 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2100 */
2101 do {
b23afb93 2102 if (page_counter_read(&memcg->memory) > memcg->high) {
9516a18a 2103 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2104 set_notify_resume(current);
2105 break;
2106 }
241994ed 2107 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2108
2109 return 0;
7a81b88c 2110}
8a9f3ccd 2111
00501b53 2112static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2113{
ce00a967
JW
2114 if (mem_cgroup_is_root(memcg))
2115 return;
2116
3e32cb2e 2117 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2118 if (do_memsw_account())
3e32cb2e 2119 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2120
e8ea14cc 2121 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2122}
2123
0a31bc97
JW
2124static void lock_page_lru(struct page *page, int *isolated)
2125{
2126 struct zone *zone = page_zone(page);
2127
2128 spin_lock_irq(&zone->lru_lock);
2129 if (PageLRU(page)) {
2130 struct lruvec *lruvec;
2131
2132 lruvec = mem_cgroup_page_lruvec(page, zone);
2133 ClearPageLRU(page);
2134 del_page_from_lru_list(page, lruvec, page_lru(page));
2135 *isolated = 1;
2136 } else
2137 *isolated = 0;
2138}
2139
2140static void unlock_page_lru(struct page *page, int isolated)
2141{
2142 struct zone *zone = page_zone(page);
2143
2144 if (isolated) {
2145 struct lruvec *lruvec;
2146
2147 lruvec = mem_cgroup_page_lruvec(page, zone);
2148 VM_BUG_ON_PAGE(PageLRU(page), page);
2149 SetPageLRU(page);
2150 add_page_to_lru_list(page, lruvec, page_lru(page));
2151 }
2152 spin_unlock_irq(&zone->lru_lock);
2153}
2154
00501b53 2155static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2156 bool lrucare)
7a81b88c 2157{
0a31bc97 2158 int isolated;
9ce70c02 2159
1306a85a 2160 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2161
2162 /*
2163 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2164 * may already be on some other mem_cgroup's LRU. Take care of it.
2165 */
0a31bc97
JW
2166 if (lrucare)
2167 lock_page_lru(page, &isolated);
9ce70c02 2168
0a31bc97
JW
2169 /*
2170 * Nobody should be changing or seriously looking at
1306a85a 2171 * page->mem_cgroup at this point:
0a31bc97
JW
2172 *
2173 * - the page is uncharged
2174 *
2175 * - the page is off-LRU
2176 *
2177 * - an anonymous fault has exclusive page access, except for
2178 * a locked page table
2179 *
2180 * - a page cache insertion, a swapin fault, or a migration
2181 * have the page locked
2182 */
1306a85a 2183 page->mem_cgroup = memcg;
9ce70c02 2184
0a31bc97
JW
2185 if (lrucare)
2186 unlock_page_lru(page, isolated);
7a81b88c 2187}
66e1707b 2188
7ae1e1d0 2189#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2190static int memcg_alloc_cache_id(void)
55007d84 2191{
f3bb3043
VD
2192 int id, size;
2193 int err;
2194
dbcf73e2 2195 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2196 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2197 if (id < 0)
2198 return id;
55007d84 2199
dbcf73e2 2200 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2201 return id;
2202
2203 /*
2204 * There's no space for the new id in memcg_caches arrays,
2205 * so we have to grow them.
2206 */
05257a1a 2207 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2208
2209 size = 2 * (id + 1);
55007d84
GC
2210 if (size < MEMCG_CACHES_MIN_SIZE)
2211 size = MEMCG_CACHES_MIN_SIZE;
2212 else if (size > MEMCG_CACHES_MAX_SIZE)
2213 size = MEMCG_CACHES_MAX_SIZE;
2214
f3bb3043 2215 err = memcg_update_all_caches(size);
60d3fd32
VD
2216 if (!err)
2217 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2218 if (!err)
2219 memcg_nr_cache_ids = size;
2220
2221 up_write(&memcg_cache_ids_sem);
2222
f3bb3043 2223 if (err) {
dbcf73e2 2224 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2225 return err;
2226 }
2227 return id;
2228}
2229
2230static void memcg_free_cache_id(int id)
2231{
dbcf73e2 2232 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2233}
2234
d5b3cf71 2235struct memcg_kmem_cache_create_work {
5722d094
VD
2236 struct mem_cgroup *memcg;
2237 struct kmem_cache *cachep;
2238 struct work_struct work;
2239};
2240
d5b3cf71 2241static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2242{
d5b3cf71
VD
2243 struct memcg_kmem_cache_create_work *cw =
2244 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2245 struct mem_cgroup *memcg = cw->memcg;
2246 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2247
d5b3cf71 2248 memcg_create_kmem_cache(memcg, cachep);
bd673145 2249
5722d094 2250 css_put(&memcg->css);
d7f25f8a
GC
2251 kfree(cw);
2252}
2253
2254/*
2255 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2256 */
d5b3cf71
VD
2257static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2258 struct kmem_cache *cachep)
d7f25f8a 2259{
d5b3cf71 2260 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2261
776ed0f0 2262 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2263 if (!cw)
d7f25f8a 2264 return;
8135be5a
VD
2265
2266 css_get(&memcg->css);
d7f25f8a
GC
2267
2268 cw->memcg = memcg;
2269 cw->cachep = cachep;
d5b3cf71 2270 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2271
d7f25f8a
GC
2272 schedule_work(&cw->work);
2273}
2274
d5b3cf71
VD
2275static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2276 struct kmem_cache *cachep)
0e9d92f2
GC
2277{
2278 /*
2279 * We need to stop accounting when we kmalloc, because if the
2280 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2281 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2282 *
2283 * However, it is better to enclose the whole function. Depending on
2284 * the debugging options enabled, INIT_WORK(), for instance, can
2285 * trigger an allocation. This too, will make us recurse. Because at
2286 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2287 * the safest choice is to do it like this, wrapping the whole function.
2288 */
6f185c29 2289 current->memcg_kmem_skip_account = 1;
d5b3cf71 2290 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2291 current->memcg_kmem_skip_account = 0;
0e9d92f2 2292}
c67a8a68 2293
d7f25f8a
GC
2294/*
2295 * Return the kmem_cache we're supposed to use for a slab allocation.
2296 * We try to use the current memcg's version of the cache.
2297 *
2298 * If the cache does not exist yet, if we are the first user of it,
2299 * we either create it immediately, if possible, or create it asynchronously
2300 * in a workqueue.
2301 * In the latter case, we will let the current allocation go through with
2302 * the original cache.
2303 *
2304 * Can't be called in interrupt context or from kernel threads.
2305 * This function needs to be called with rcu_read_lock() held.
2306 */
230e9fc2 2307struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2308{
2309 struct mem_cgroup *memcg;
959c8963 2310 struct kmem_cache *memcg_cachep;
2a4db7eb 2311 int kmemcg_id;
d7f25f8a 2312
f7ce3190 2313 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2314
230e9fc2
VD
2315 if (cachep->flags & SLAB_ACCOUNT)
2316 gfp |= __GFP_ACCOUNT;
2317
2318 if (!(gfp & __GFP_ACCOUNT))
2319 return cachep;
2320
9d100c5e 2321 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2322 return cachep;
2323
8135be5a 2324 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2325 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2326 if (kmemcg_id < 0)
ca0dde97 2327 goto out;
d7f25f8a 2328
2a4db7eb 2329 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2330 if (likely(memcg_cachep))
2331 return memcg_cachep;
ca0dde97
LZ
2332
2333 /*
2334 * If we are in a safe context (can wait, and not in interrupt
2335 * context), we could be be predictable and return right away.
2336 * This would guarantee that the allocation being performed
2337 * already belongs in the new cache.
2338 *
2339 * However, there are some clashes that can arrive from locking.
2340 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2341 * memcg_create_kmem_cache, this means no further allocation
2342 * could happen with the slab_mutex held. So it's better to
2343 * defer everything.
ca0dde97 2344 */
d5b3cf71 2345 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2346out:
8135be5a 2347 css_put(&memcg->css);
ca0dde97 2348 return cachep;
d7f25f8a 2349}
d7f25f8a 2350
8135be5a
VD
2351void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2352{
2353 if (!is_root_cache(cachep))
f7ce3190 2354 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2355}
2356
f3ccb2c4
VD
2357int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2358 struct mem_cgroup *memcg)
7ae1e1d0 2359{
f3ccb2c4
VD
2360 unsigned int nr_pages = 1 << order;
2361 struct page_counter *counter;
7ae1e1d0
GC
2362 int ret;
2363
f3ccb2c4 2364 if (!memcg_kmem_is_active(memcg))
d05e83a6 2365 return 0;
6d42c232 2366
6071ca52
JW
2367 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2368 return -ENOMEM;
7ae1e1d0 2369
f3ccb2c4
VD
2370 ret = try_charge(memcg, gfp, nr_pages);
2371 if (ret) {
2372 page_counter_uncharge(&memcg->kmem, nr_pages);
2373 return ret;
7ae1e1d0
GC
2374 }
2375
f3ccb2c4 2376 page->mem_cgroup = memcg;
7ae1e1d0 2377
f3ccb2c4 2378 return 0;
7ae1e1d0
GC
2379}
2380
f3ccb2c4 2381int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2382{
f3ccb2c4
VD
2383 struct mem_cgroup *memcg;
2384 int ret;
7ae1e1d0 2385
f3ccb2c4
VD
2386 memcg = get_mem_cgroup_from_mm(current->mm);
2387 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2388 css_put(&memcg->css);
d05e83a6 2389 return ret;
7ae1e1d0
GC
2390}
2391
d05e83a6 2392void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2393{
1306a85a 2394 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2395 unsigned int nr_pages = 1 << order;
7ae1e1d0 2396
7ae1e1d0
GC
2397 if (!memcg)
2398 return;
2399
309381fe 2400 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2401
f3ccb2c4
VD
2402 page_counter_uncharge(&memcg->kmem, nr_pages);
2403 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2404 if (do_memsw_account())
f3ccb2c4 2405 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2406
1306a85a 2407 page->mem_cgroup = NULL;
f3ccb2c4 2408 css_put_many(&memcg->css, nr_pages);
60d3fd32 2409}
7ae1e1d0
GC
2410#endif /* CONFIG_MEMCG_KMEM */
2411
ca3e0214
KH
2412#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2413
ca3e0214
KH
2414/*
2415 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2416 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2417 * charge/uncharge will be never happen and move_account() is done under
2418 * compound_lock(), so we don't have to take care of races.
ca3e0214 2419 */
e94c8a9c 2420void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2421{
e94c8a9c 2422 int i;
ca3e0214 2423
3d37c4a9
KH
2424 if (mem_cgroup_disabled())
2425 return;
b070e65c 2426
29833315 2427 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2428 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2429
1306a85a 2430 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2431 HPAGE_PMD_NR);
ca3e0214 2432}
12d27107 2433#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2434
c255a458 2435#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2436static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2437 bool charge)
d13d1443 2438{
0a31bc97
JW
2439 int val = (charge) ? 1 : -1;
2440 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2441}
02491447
DN
2442
2443/**
2444 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2445 * @entry: swap entry to be moved
2446 * @from: mem_cgroup which the entry is moved from
2447 * @to: mem_cgroup which the entry is moved to
2448 *
2449 * It succeeds only when the swap_cgroup's record for this entry is the same
2450 * as the mem_cgroup's id of @from.
2451 *
2452 * Returns 0 on success, -EINVAL on failure.
2453 *
3e32cb2e 2454 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2455 * both res and memsw, and called css_get().
2456 */
2457static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2458 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2459{
2460 unsigned short old_id, new_id;
2461
34c00c31
LZ
2462 old_id = mem_cgroup_id(from);
2463 new_id = mem_cgroup_id(to);
02491447
DN
2464
2465 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2466 mem_cgroup_swap_statistics(from, false);
483c30b5 2467 mem_cgroup_swap_statistics(to, true);
02491447
DN
2468 return 0;
2469 }
2470 return -EINVAL;
2471}
2472#else
2473static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2474 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2475{
2476 return -EINVAL;
2477}
8c7c6e34 2478#endif
d13d1443 2479
3e32cb2e 2480static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2481
d38d2a75 2482static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2483 unsigned long limit)
628f4235 2484{
3e32cb2e
JW
2485 unsigned long curusage;
2486 unsigned long oldusage;
2487 bool enlarge = false;
81d39c20 2488 int retry_count;
3e32cb2e 2489 int ret;
81d39c20
KH
2490
2491 /*
2492 * For keeping hierarchical_reclaim simple, how long we should retry
2493 * is depends on callers. We set our retry-count to be function
2494 * of # of children which we should visit in this loop.
2495 */
3e32cb2e
JW
2496 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2497 mem_cgroup_count_children(memcg);
81d39c20 2498
3e32cb2e 2499 oldusage = page_counter_read(&memcg->memory);
628f4235 2500
3e32cb2e 2501 do {
628f4235
KH
2502 if (signal_pending(current)) {
2503 ret = -EINTR;
2504 break;
2505 }
3e32cb2e
JW
2506
2507 mutex_lock(&memcg_limit_mutex);
2508 if (limit > memcg->memsw.limit) {
2509 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2510 ret = -EINVAL;
628f4235
KH
2511 break;
2512 }
3e32cb2e
JW
2513 if (limit > memcg->memory.limit)
2514 enlarge = true;
2515 ret = page_counter_limit(&memcg->memory, limit);
2516 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2517
2518 if (!ret)
2519 break;
2520
b70a2a21
JW
2521 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2522
3e32cb2e 2523 curusage = page_counter_read(&memcg->memory);
81d39c20 2524 /* Usage is reduced ? */
f894ffa8 2525 if (curusage >= oldusage)
81d39c20
KH
2526 retry_count--;
2527 else
2528 oldusage = curusage;
3e32cb2e
JW
2529 } while (retry_count);
2530
3c11ecf4
KH
2531 if (!ret && enlarge)
2532 memcg_oom_recover(memcg);
14797e23 2533
8c7c6e34
KH
2534 return ret;
2535}
2536
338c8431 2537static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2538 unsigned long limit)
8c7c6e34 2539{
3e32cb2e
JW
2540 unsigned long curusage;
2541 unsigned long oldusage;
2542 bool enlarge = false;
81d39c20 2543 int retry_count;
3e32cb2e 2544 int ret;
8c7c6e34 2545
81d39c20 2546 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2547 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2548 mem_cgroup_count_children(memcg);
2549
2550 oldusage = page_counter_read(&memcg->memsw);
2551
2552 do {
8c7c6e34
KH
2553 if (signal_pending(current)) {
2554 ret = -EINTR;
2555 break;
2556 }
3e32cb2e
JW
2557
2558 mutex_lock(&memcg_limit_mutex);
2559 if (limit < memcg->memory.limit) {
2560 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2561 ret = -EINVAL;
8c7c6e34
KH
2562 break;
2563 }
3e32cb2e
JW
2564 if (limit > memcg->memsw.limit)
2565 enlarge = true;
2566 ret = page_counter_limit(&memcg->memsw, limit);
2567 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2568
2569 if (!ret)
2570 break;
2571
b70a2a21
JW
2572 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2573
3e32cb2e 2574 curusage = page_counter_read(&memcg->memsw);
81d39c20 2575 /* Usage is reduced ? */
8c7c6e34 2576 if (curusage >= oldusage)
628f4235 2577 retry_count--;
81d39c20
KH
2578 else
2579 oldusage = curusage;
3e32cb2e
JW
2580 } while (retry_count);
2581
3c11ecf4
KH
2582 if (!ret && enlarge)
2583 memcg_oom_recover(memcg);
3e32cb2e 2584
628f4235
KH
2585 return ret;
2586}
2587
0608f43d
AM
2588unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2589 gfp_t gfp_mask,
2590 unsigned long *total_scanned)
2591{
2592 unsigned long nr_reclaimed = 0;
2593 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2594 unsigned long reclaimed;
2595 int loop = 0;
2596 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2597 unsigned long excess;
0608f43d
AM
2598 unsigned long nr_scanned;
2599
2600 if (order > 0)
2601 return 0;
2602
2603 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2604 /*
2605 * This loop can run a while, specially if mem_cgroup's continuously
2606 * keep exceeding their soft limit and putting the system under
2607 * pressure
2608 */
2609 do {
2610 if (next_mz)
2611 mz = next_mz;
2612 else
2613 mz = mem_cgroup_largest_soft_limit_node(mctz);
2614 if (!mz)
2615 break;
2616
2617 nr_scanned = 0;
2618 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2619 gfp_mask, &nr_scanned);
2620 nr_reclaimed += reclaimed;
2621 *total_scanned += nr_scanned;
0a31bc97 2622 spin_lock_irq(&mctz->lock);
bc2f2e7f 2623 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2624
2625 /*
2626 * If we failed to reclaim anything from this memory cgroup
2627 * it is time to move on to the next cgroup
2628 */
2629 next_mz = NULL;
bc2f2e7f
VD
2630 if (!reclaimed)
2631 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2632
3e32cb2e 2633 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2634 /*
2635 * One school of thought says that we should not add
2636 * back the node to the tree if reclaim returns 0.
2637 * But our reclaim could return 0, simply because due
2638 * to priority we are exposing a smaller subset of
2639 * memory to reclaim from. Consider this as a longer
2640 * term TODO.
2641 */
2642 /* If excess == 0, no tree ops */
cf2c8127 2643 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2644 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2645 css_put(&mz->memcg->css);
2646 loop++;
2647 /*
2648 * Could not reclaim anything and there are no more
2649 * mem cgroups to try or we seem to be looping without
2650 * reclaiming anything.
2651 */
2652 if (!nr_reclaimed &&
2653 (next_mz == NULL ||
2654 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2655 break;
2656 } while (!nr_reclaimed);
2657 if (next_mz)
2658 css_put(&next_mz->memcg->css);
2659 return nr_reclaimed;
2660}
2661
ea280e7b
TH
2662/*
2663 * Test whether @memcg has children, dead or alive. Note that this
2664 * function doesn't care whether @memcg has use_hierarchy enabled and
2665 * returns %true if there are child csses according to the cgroup
2666 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2667 */
b5f99b53
GC
2668static inline bool memcg_has_children(struct mem_cgroup *memcg)
2669{
ea280e7b
TH
2670 bool ret;
2671
696ac172 2672 /*
ea280e7b
TH
2673 * The lock does not prevent addition or deletion of children, but
2674 * it prevents a new child from being initialized based on this
2675 * parent in css_online(), so it's enough to decide whether
2676 * hierarchically inherited attributes can still be changed or not.
696ac172 2677 */
ea280e7b
TH
2678 lockdep_assert_held(&memcg_create_mutex);
2679
2680 rcu_read_lock();
2681 ret = css_next_child(NULL, &memcg->css);
2682 rcu_read_unlock();
2683 return ret;
b5f99b53
GC
2684}
2685
c26251f9
MH
2686/*
2687 * Reclaims as many pages from the given memcg as possible and moves
2688 * the rest to the parent.
2689 *
2690 * Caller is responsible for holding css reference for memcg.
2691 */
2692static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2693{
2694 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2695
c1e862c1
KH
2696 /* we call try-to-free pages for make this cgroup empty */
2697 lru_add_drain_all();
f817ed48 2698 /* try to free all pages in this cgroup */
3e32cb2e 2699 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2700 int progress;
c1e862c1 2701
c26251f9
MH
2702 if (signal_pending(current))
2703 return -EINTR;
2704
b70a2a21
JW
2705 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2706 GFP_KERNEL, true);
c1e862c1 2707 if (!progress) {
f817ed48 2708 nr_retries--;
c1e862c1 2709 /* maybe some writeback is necessary */
8aa7e847 2710 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2711 }
f817ed48
KH
2712
2713 }
ab5196c2
MH
2714
2715 return 0;
cc847582
KH
2716}
2717
6770c64e
TH
2718static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2719 char *buf, size_t nbytes,
2720 loff_t off)
c1e862c1 2721{
6770c64e 2722 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2723
d8423011
MH
2724 if (mem_cgroup_is_root(memcg))
2725 return -EINVAL;
6770c64e 2726 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2727}
2728
182446d0
TH
2729static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2730 struct cftype *cft)
18f59ea7 2731{
182446d0 2732 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2733}
2734
182446d0
TH
2735static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2736 struct cftype *cft, u64 val)
18f59ea7
BS
2737{
2738 int retval = 0;
182446d0 2739 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2740 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2741
0999821b 2742 mutex_lock(&memcg_create_mutex);
567fb435
GC
2743
2744 if (memcg->use_hierarchy == val)
2745 goto out;
2746
18f59ea7 2747 /*
af901ca1 2748 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2749 * in the child subtrees. If it is unset, then the change can
2750 * occur, provided the current cgroup has no children.
2751 *
2752 * For the root cgroup, parent_mem is NULL, we allow value to be
2753 * set if there are no children.
2754 */
c0ff4b85 2755 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2756 (val == 1 || val == 0)) {
ea280e7b 2757 if (!memcg_has_children(memcg))
c0ff4b85 2758 memcg->use_hierarchy = val;
18f59ea7
BS
2759 else
2760 retval = -EBUSY;
2761 } else
2762 retval = -EINVAL;
567fb435
GC
2763
2764out:
0999821b 2765 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
2766
2767 return retval;
2768}
2769
3e32cb2e
JW
2770static unsigned long tree_stat(struct mem_cgroup *memcg,
2771 enum mem_cgroup_stat_index idx)
ce00a967
JW
2772{
2773 struct mem_cgroup *iter;
484ebb3b 2774 unsigned long val = 0;
ce00a967 2775
ce00a967
JW
2776 for_each_mem_cgroup_tree(iter, memcg)
2777 val += mem_cgroup_read_stat(iter, idx);
2778
ce00a967
JW
2779 return val;
2780}
2781
6f646156 2782static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2783{
c12176d3 2784 unsigned long val;
ce00a967 2785
3e32cb2e
JW
2786 if (mem_cgroup_is_root(memcg)) {
2787 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2788 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2789 if (swap)
2790 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2791 } else {
ce00a967 2792 if (!swap)
3e32cb2e 2793 val = page_counter_read(&memcg->memory);
ce00a967 2794 else
3e32cb2e 2795 val = page_counter_read(&memcg->memsw);
ce00a967 2796 }
c12176d3 2797 return val;
ce00a967
JW
2798}
2799
3e32cb2e
JW
2800enum {
2801 RES_USAGE,
2802 RES_LIMIT,
2803 RES_MAX_USAGE,
2804 RES_FAILCNT,
2805 RES_SOFT_LIMIT,
2806};
ce00a967 2807
791badbd 2808static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2809 struct cftype *cft)
8cdea7c0 2810{
182446d0 2811 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2812 struct page_counter *counter;
af36f906 2813
3e32cb2e 2814 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2815 case _MEM:
3e32cb2e
JW
2816 counter = &memcg->memory;
2817 break;
8c7c6e34 2818 case _MEMSWAP:
3e32cb2e
JW
2819 counter = &memcg->memsw;
2820 break;
510fc4e1 2821 case _KMEM:
3e32cb2e 2822 counter = &memcg->kmem;
510fc4e1 2823 break;
8c7c6e34
KH
2824 default:
2825 BUG();
8c7c6e34 2826 }
3e32cb2e
JW
2827
2828 switch (MEMFILE_ATTR(cft->private)) {
2829 case RES_USAGE:
2830 if (counter == &memcg->memory)
c12176d3 2831 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2832 if (counter == &memcg->memsw)
c12176d3 2833 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2834 return (u64)page_counter_read(counter) * PAGE_SIZE;
2835 case RES_LIMIT:
2836 return (u64)counter->limit * PAGE_SIZE;
2837 case RES_MAX_USAGE:
2838 return (u64)counter->watermark * PAGE_SIZE;
2839 case RES_FAILCNT:
2840 return counter->failcnt;
2841 case RES_SOFT_LIMIT:
2842 return (u64)memcg->soft_limit * PAGE_SIZE;
2843 default:
2844 BUG();
2845 }
8cdea7c0 2846}
510fc4e1 2847
510fc4e1 2848#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
2849static int memcg_activate_kmem(struct mem_cgroup *memcg,
2850 unsigned long nr_pages)
d6441637
VD
2851{
2852 int err = 0;
2853 int memcg_id;
2854
2a4db7eb 2855 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 2856 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 2857 BUG_ON(memcg->kmem_acct_active);
d6441637 2858
510fc4e1
GC
2859 /*
2860 * For simplicity, we won't allow this to be disabled. It also can't
2861 * be changed if the cgroup has children already, or if tasks had
2862 * already joined.
2863 *
2864 * If tasks join before we set the limit, a person looking at
2865 * kmem.usage_in_bytes will have no way to determine when it took
2866 * place, which makes the value quite meaningless.
2867 *
2868 * After it first became limited, changes in the value of the limit are
2869 * of course permitted.
510fc4e1 2870 */
0999821b 2871 mutex_lock(&memcg_create_mutex);
27bd4dbb 2872 if (cgroup_is_populated(memcg->css.cgroup) ||
ea280e7b 2873 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
2874 err = -EBUSY;
2875 mutex_unlock(&memcg_create_mutex);
2876 if (err)
2877 goto out;
510fc4e1 2878
f3bb3043 2879 memcg_id = memcg_alloc_cache_id();
d6441637
VD
2880 if (memcg_id < 0) {
2881 err = memcg_id;
2882 goto out;
2883 }
2884
d6441637 2885 /*
900a38f0
VD
2886 * We couldn't have accounted to this cgroup, because it hasn't got
2887 * activated yet, so this should succeed.
d6441637 2888 */
3e32cb2e 2889 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
2890 VM_BUG_ON(err);
2891
2892 static_key_slow_inc(&memcg_kmem_enabled_key);
2893 /*
900a38f0
VD
2894 * A memory cgroup is considered kmem-active as soon as it gets
2895 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2896 * guarantee no one starts accounting before all call sites are
2897 * patched.
2898 */
900a38f0 2899 memcg->kmemcg_id = memcg_id;
2788cf0c 2900 memcg->kmem_acct_activated = true;
2a4db7eb 2901 memcg->kmem_acct_active = true;
510fc4e1 2902out:
d6441637 2903 return err;
d6441637
VD
2904}
2905
d6441637 2906static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2907 unsigned long limit)
d6441637
VD
2908{
2909 int ret;
2910
3e32cb2e 2911 mutex_lock(&memcg_limit_mutex);
d6441637 2912 if (!memcg_kmem_is_active(memcg))
3e32cb2e 2913 ret = memcg_activate_kmem(memcg, limit);
d6441637 2914 else
3e32cb2e
JW
2915 ret = page_counter_limit(&memcg->kmem, limit);
2916 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
2917 return ret;
2918}
2919
55007d84 2920static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 2921{
55007d84 2922 int ret = 0;
510fc4e1 2923 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 2924
d6441637
VD
2925 if (!parent)
2926 return 0;
55007d84 2927
8c0145b6 2928 mutex_lock(&memcg_limit_mutex);
55007d84 2929 /*
d6441637
VD
2930 * If the parent cgroup is not kmem-active now, it cannot be activated
2931 * after this point, because it has at least one child already.
55007d84 2932 */
d6441637 2933 if (memcg_kmem_is_active(parent))
8c0145b6
VD
2934 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2935 mutex_unlock(&memcg_limit_mutex);
55007d84 2936 return ret;
510fc4e1 2937}
d6441637
VD
2938#else
2939static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2940 unsigned long limit)
d6441637
VD
2941{
2942 return -EINVAL;
2943}
6d043990 2944#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 2945
628f4235
KH
2946/*
2947 * The user of this function is...
2948 * RES_LIMIT.
2949 */
451af504
TH
2950static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2951 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2952{
451af504 2953 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2954 unsigned long nr_pages;
628f4235
KH
2955 int ret;
2956
451af504 2957 buf = strstrip(buf);
650c5e56 2958 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2959 if (ret)
2960 return ret;
af36f906 2961
3e32cb2e 2962 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2963 case RES_LIMIT:
4b3bde4c
BS
2964 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2965 ret = -EINVAL;
2966 break;
2967 }
3e32cb2e
JW
2968 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2969 case _MEM:
2970 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2971 break;
3e32cb2e
JW
2972 case _MEMSWAP:
2973 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 2974 break;
3e32cb2e
JW
2975 case _KMEM:
2976 ret = memcg_update_kmem_limit(memcg, nr_pages);
2977 break;
2978 }
296c81d8 2979 break;
3e32cb2e
JW
2980 case RES_SOFT_LIMIT:
2981 memcg->soft_limit = nr_pages;
2982 ret = 0;
628f4235
KH
2983 break;
2984 }
451af504 2985 return ret ?: nbytes;
8cdea7c0
BS
2986}
2987
6770c64e
TH
2988static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2989 size_t nbytes, loff_t off)
c84872e1 2990{
6770c64e 2991 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2992 struct page_counter *counter;
c84872e1 2993
3e32cb2e
JW
2994 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2995 case _MEM:
2996 counter = &memcg->memory;
2997 break;
2998 case _MEMSWAP:
2999 counter = &memcg->memsw;
3000 break;
3001 case _KMEM:
3002 counter = &memcg->kmem;
3003 break;
3004 default:
3005 BUG();
3006 }
af36f906 3007
3e32cb2e 3008 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3009 case RES_MAX_USAGE:
3e32cb2e 3010 page_counter_reset_watermark(counter);
29f2a4da
PE
3011 break;
3012 case RES_FAILCNT:
3e32cb2e 3013 counter->failcnt = 0;
29f2a4da 3014 break;
3e32cb2e
JW
3015 default:
3016 BUG();
29f2a4da 3017 }
f64c3f54 3018
6770c64e 3019 return nbytes;
c84872e1
PE
3020}
3021
182446d0 3022static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3023 struct cftype *cft)
3024{
182446d0 3025 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3026}
3027
02491447 3028#ifdef CONFIG_MMU
182446d0 3029static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3030 struct cftype *cft, u64 val)
3031{
182446d0 3032 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3033
1dfab5ab 3034 if (val & ~MOVE_MASK)
7dc74be0 3035 return -EINVAL;
ee5e8472 3036
7dc74be0 3037 /*
ee5e8472
GC
3038 * No kind of locking is needed in here, because ->can_attach() will
3039 * check this value once in the beginning of the process, and then carry
3040 * on with stale data. This means that changes to this value will only
3041 * affect task migrations starting after the change.
7dc74be0 3042 */
c0ff4b85 3043 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3044 return 0;
3045}
02491447 3046#else
182446d0 3047static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3048 struct cftype *cft, u64 val)
3049{
3050 return -ENOSYS;
3051}
3052#endif
7dc74be0 3053
406eb0c9 3054#ifdef CONFIG_NUMA
2da8ca82 3055static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3056{
25485de6
GT
3057 struct numa_stat {
3058 const char *name;
3059 unsigned int lru_mask;
3060 };
3061
3062 static const struct numa_stat stats[] = {
3063 { "total", LRU_ALL },
3064 { "file", LRU_ALL_FILE },
3065 { "anon", LRU_ALL_ANON },
3066 { "unevictable", BIT(LRU_UNEVICTABLE) },
3067 };
3068 const struct numa_stat *stat;
406eb0c9 3069 int nid;
25485de6 3070 unsigned long nr;
2da8ca82 3071 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3072
25485de6
GT
3073 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3074 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3075 seq_printf(m, "%s=%lu", stat->name, nr);
3076 for_each_node_state(nid, N_MEMORY) {
3077 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3078 stat->lru_mask);
3079 seq_printf(m, " N%d=%lu", nid, nr);
3080 }
3081 seq_putc(m, '\n');
406eb0c9 3082 }
406eb0c9 3083
071aee13
YH
3084 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3085 struct mem_cgroup *iter;
3086
3087 nr = 0;
3088 for_each_mem_cgroup_tree(iter, memcg)
3089 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3090 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3091 for_each_node_state(nid, N_MEMORY) {
3092 nr = 0;
3093 for_each_mem_cgroup_tree(iter, memcg)
3094 nr += mem_cgroup_node_nr_lru_pages(
3095 iter, nid, stat->lru_mask);
3096 seq_printf(m, " N%d=%lu", nid, nr);
3097 }
3098 seq_putc(m, '\n');
406eb0c9 3099 }
406eb0c9 3100
406eb0c9
YH
3101 return 0;
3102}
3103#endif /* CONFIG_NUMA */
3104
2da8ca82 3105static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3106{
2da8ca82 3107 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3108 unsigned long memory, memsw;
af7c4b0e
JW
3109 struct mem_cgroup *mi;
3110 unsigned int i;
406eb0c9 3111
0ca44b14
GT
3112 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3113 MEM_CGROUP_STAT_NSTATS);
3114 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3115 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3116 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3117
af7c4b0e 3118 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3119 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3120 continue;
484ebb3b 3121 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3122 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3123 }
7b854121 3124
af7c4b0e
JW
3125 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3126 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3127 mem_cgroup_read_events(memcg, i));
3128
3129 for (i = 0; i < NR_LRU_LISTS; i++)
3130 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3131 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3132
14067bb3 3133 /* Hierarchical information */
3e32cb2e
JW
3134 memory = memsw = PAGE_COUNTER_MAX;
3135 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3136 memory = min(memory, mi->memory.limit);
3137 memsw = min(memsw, mi->memsw.limit);
fee7b548 3138 }
3e32cb2e
JW
3139 seq_printf(m, "hierarchical_memory_limit %llu\n",
3140 (u64)memory * PAGE_SIZE);
7941d214 3141 if (do_memsw_account())
3e32cb2e
JW
3142 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3143 (u64)memsw * PAGE_SIZE);
7f016ee8 3144
af7c4b0e 3145 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3146 unsigned long long val = 0;
af7c4b0e 3147
7941d214 3148 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3149 continue;
af7c4b0e
JW
3150 for_each_mem_cgroup_tree(mi, memcg)
3151 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3152 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3153 }
3154
3155 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3156 unsigned long long val = 0;
3157
3158 for_each_mem_cgroup_tree(mi, memcg)
3159 val += mem_cgroup_read_events(mi, i);
3160 seq_printf(m, "total_%s %llu\n",
3161 mem_cgroup_events_names[i], val);
3162 }
3163
3164 for (i = 0; i < NR_LRU_LISTS; i++) {
3165 unsigned long long val = 0;
3166
3167 for_each_mem_cgroup_tree(mi, memcg)
3168 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3169 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3170 }
14067bb3 3171
7f016ee8 3172#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3173 {
3174 int nid, zid;
3175 struct mem_cgroup_per_zone *mz;
89abfab1 3176 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3177 unsigned long recent_rotated[2] = {0, 0};
3178 unsigned long recent_scanned[2] = {0, 0};
3179
3180 for_each_online_node(nid)
3181 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3182 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3183 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3184
89abfab1
HD
3185 recent_rotated[0] += rstat->recent_rotated[0];
3186 recent_rotated[1] += rstat->recent_rotated[1];
3187 recent_scanned[0] += rstat->recent_scanned[0];
3188 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3189 }
78ccf5b5
JW
3190 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3191 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3192 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3193 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3194 }
3195#endif
3196
d2ceb9b7
KH
3197 return 0;
3198}
3199
182446d0
TH
3200static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3201 struct cftype *cft)
a7885eb8 3202{
182446d0 3203 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3204
1f4c025b 3205 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3206}
3207
182446d0
TH
3208static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3209 struct cftype *cft, u64 val)
a7885eb8 3210{
182446d0 3211 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3212
3dae7fec 3213 if (val > 100)
a7885eb8
KM
3214 return -EINVAL;
3215
14208b0e 3216 if (css->parent)
3dae7fec
JW
3217 memcg->swappiness = val;
3218 else
3219 vm_swappiness = val;
068b38c1 3220
a7885eb8
KM
3221 return 0;
3222}
3223
2e72b634
KS
3224static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3225{
3226 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3227 unsigned long usage;
2e72b634
KS
3228 int i;
3229
3230 rcu_read_lock();
3231 if (!swap)
2c488db2 3232 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3233 else
2c488db2 3234 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3235
3236 if (!t)
3237 goto unlock;
3238
ce00a967 3239 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3240
3241 /*
748dad36 3242 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3243 * If it's not true, a threshold was crossed after last
3244 * call of __mem_cgroup_threshold().
3245 */
5407a562 3246 i = t->current_threshold;
2e72b634
KS
3247
3248 /*
3249 * Iterate backward over array of thresholds starting from
3250 * current_threshold and check if a threshold is crossed.
3251 * If none of thresholds below usage is crossed, we read
3252 * only one element of the array here.
3253 */
3254 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3255 eventfd_signal(t->entries[i].eventfd, 1);
3256
3257 /* i = current_threshold + 1 */
3258 i++;
3259
3260 /*
3261 * Iterate forward over array of thresholds starting from
3262 * current_threshold+1 and check if a threshold is crossed.
3263 * If none of thresholds above usage is crossed, we read
3264 * only one element of the array here.
3265 */
3266 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3267 eventfd_signal(t->entries[i].eventfd, 1);
3268
3269 /* Update current_threshold */
5407a562 3270 t->current_threshold = i - 1;
2e72b634
KS
3271unlock:
3272 rcu_read_unlock();
3273}
3274
3275static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3276{
ad4ca5f4
KS
3277 while (memcg) {
3278 __mem_cgroup_threshold(memcg, false);
7941d214 3279 if (do_memsw_account())
ad4ca5f4
KS
3280 __mem_cgroup_threshold(memcg, true);
3281
3282 memcg = parent_mem_cgroup(memcg);
3283 }
2e72b634
KS
3284}
3285
3286static int compare_thresholds(const void *a, const void *b)
3287{
3288 const struct mem_cgroup_threshold *_a = a;
3289 const struct mem_cgroup_threshold *_b = b;
3290
2bff24a3
GT
3291 if (_a->threshold > _b->threshold)
3292 return 1;
3293
3294 if (_a->threshold < _b->threshold)
3295 return -1;
3296
3297 return 0;
2e72b634
KS
3298}
3299
c0ff4b85 3300static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3301{
3302 struct mem_cgroup_eventfd_list *ev;
3303
2bcf2e92
MH
3304 spin_lock(&memcg_oom_lock);
3305
c0ff4b85 3306 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3307 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3308
3309 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3310 return 0;
3311}
3312
c0ff4b85 3313static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3314{
7d74b06f
KH
3315 struct mem_cgroup *iter;
3316
c0ff4b85 3317 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3318 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3319}
3320
59b6f873 3321static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3322 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3323{
2c488db2
KS
3324 struct mem_cgroup_thresholds *thresholds;
3325 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3326 unsigned long threshold;
3327 unsigned long usage;
2c488db2 3328 int i, size, ret;
2e72b634 3329
650c5e56 3330 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3331 if (ret)
3332 return ret;
3333
3334 mutex_lock(&memcg->thresholds_lock);
2c488db2 3335
05b84301 3336 if (type == _MEM) {
2c488db2 3337 thresholds = &memcg->thresholds;
ce00a967 3338 usage = mem_cgroup_usage(memcg, false);
05b84301 3339 } else if (type == _MEMSWAP) {
2c488db2 3340 thresholds = &memcg->memsw_thresholds;
ce00a967 3341 usage = mem_cgroup_usage(memcg, true);
05b84301 3342 } else
2e72b634
KS
3343 BUG();
3344
2e72b634 3345 /* Check if a threshold crossed before adding a new one */
2c488db2 3346 if (thresholds->primary)
2e72b634
KS
3347 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3348
2c488db2 3349 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3350
3351 /* Allocate memory for new array of thresholds */
2c488db2 3352 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3353 GFP_KERNEL);
2c488db2 3354 if (!new) {
2e72b634
KS
3355 ret = -ENOMEM;
3356 goto unlock;
3357 }
2c488db2 3358 new->size = size;
2e72b634
KS
3359
3360 /* Copy thresholds (if any) to new array */
2c488db2
KS
3361 if (thresholds->primary) {
3362 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3363 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3364 }
3365
2e72b634 3366 /* Add new threshold */
2c488db2
KS
3367 new->entries[size - 1].eventfd = eventfd;
3368 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3369
3370 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3371 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3372 compare_thresholds, NULL);
3373
3374 /* Find current threshold */
2c488db2 3375 new->current_threshold = -1;
2e72b634 3376 for (i = 0; i < size; i++) {
748dad36 3377 if (new->entries[i].threshold <= usage) {
2e72b634 3378 /*
2c488db2
KS
3379 * new->current_threshold will not be used until
3380 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3381 * it here.
3382 */
2c488db2 3383 ++new->current_threshold;
748dad36
SZ
3384 } else
3385 break;
2e72b634
KS
3386 }
3387
2c488db2
KS
3388 /* Free old spare buffer and save old primary buffer as spare */
3389 kfree(thresholds->spare);
3390 thresholds->spare = thresholds->primary;
3391
3392 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3393
907860ed 3394 /* To be sure that nobody uses thresholds */
2e72b634
KS
3395 synchronize_rcu();
3396
2e72b634
KS
3397unlock:
3398 mutex_unlock(&memcg->thresholds_lock);
3399
3400 return ret;
3401}
3402
59b6f873 3403static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3404 struct eventfd_ctx *eventfd, const char *args)
3405{
59b6f873 3406 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3407}
3408
59b6f873 3409static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3410 struct eventfd_ctx *eventfd, const char *args)
3411{
59b6f873 3412 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3413}
3414
59b6f873 3415static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3416 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3417{
2c488db2
KS
3418 struct mem_cgroup_thresholds *thresholds;
3419 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3420 unsigned long usage;
2c488db2 3421 int i, j, size;
2e72b634
KS
3422
3423 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3424
3425 if (type == _MEM) {
2c488db2 3426 thresholds = &memcg->thresholds;
ce00a967 3427 usage = mem_cgroup_usage(memcg, false);
05b84301 3428 } else if (type == _MEMSWAP) {
2c488db2 3429 thresholds = &memcg->memsw_thresholds;
ce00a967 3430 usage = mem_cgroup_usage(memcg, true);
05b84301 3431 } else
2e72b634
KS
3432 BUG();
3433
371528ca
AV
3434 if (!thresholds->primary)
3435 goto unlock;
3436
2e72b634
KS
3437 /* Check if a threshold crossed before removing */
3438 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3439
3440 /* Calculate new number of threshold */
2c488db2
KS
3441 size = 0;
3442 for (i = 0; i < thresholds->primary->size; i++) {
3443 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3444 size++;
3445 }
3446
2c488db2 3447 new = thresholds->spare;
907860ed 3448
2e72b634
KS
3449 /* Set thresholds array to NULL if we don't have thresholds */
3450 if (!size) {
2c488db2
KS
3451 kfree(new);
3452 new = NULL;
907860ed 3453 goto swap_buffers;
2e72b634
KS
3454 }
3455
2c488db2 3456 new->size = size;
2e72b634
KS
3457
3458 /* Copy thresholds and find current threshold */
2c488db2
KS
3459 new->current_threshold = -1;
3460 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3461 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3462 continue;
3463
2c488db2 3464 new->entries[j] = thresholds->primary->entries[i];
748dad36 3465 if (new->entries[j].threshold <= usage) {
2e72b634 3466 /*
2c488db2 3467 * new->current_threshold will not be used
2e72b634
KS
3468 * until rcu_assign_pointer(), so it's safe to increment
3469 * it here.
3470 */
2c488db2 3471 ++new->current_threshold;
2e72b634
KS
3472 }
3473 j++;
3474 }
3475
907860ed 3476swap_buffers:
2c488db2
KS
3477 /* Swap primary and spare array */
3478 thresholds->spare = thresholds->primary;
8c757763
SZ
3479 /* If all events are unregistered, free the spare array */
3480 if (!new) {
3481 kfree(thresholds->spare);
3482 thresholds->spare = NULL;
3483 }
3484
2c488db2 3485 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3486
907860ed 3487 /* To be sure that nobody uses thresholds */
2e72b634 3488 synchronize_rcu();
371528ca 3489unlock:
2e72b634 3490 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3491}
c1e862c1 3492
59b6f873 3493static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3494 struct eventfd_ctx *eventfd)
3495{
59b6f873 3496 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3497}
3498
59b6f873 3499static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3500 struct eventfd_ctx *eventfd)
3501{
59b6f873 3502 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3503}
3504
59b6f873 3505static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3506 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3507{
9490ff27 3508 struct mem_cgroup_eventfd_list *event;
9490ff27 3509
9490ff27
KH
3510 event = kmalloc(sizeof(*event), GFP_KERNEL);
3511 if (!event)
3512 return -ENOMEM;
3513
1af8efe9 3514 spin_lock(&memcg_oom_lock);
9490ff27
KH
3515
3516 event->eventfd = eventfd;
3517 list_add(&event->list, &memcg->oom_notify);
3518
3519 /* already in OOM ? */
c2b42d3c 3520 if (memcg->under_oom)
9490ff27 3521 eventfd_signal(eventfd, 1);
1af8efe9 3522 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3523
3524 return 0;
3525}
3526
59b6f873 3527static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3528 struct eventfd_ctx *eventfd)
9490ff27 3529{
9490ff27 3530 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3531
1af8efe9 3532 spin_lock(&memcg_oom_lock);
9490ff27 3533
c0ff4b85 3534 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3535 if (ev->eventfd == eventfd) {
3536 list_del(&ev->list);
3537 kfree(ev);
3538 }
3539 }
3540
1af8efe9 3541 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3542}
3543
2da8ca82 3544static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3545{
2da8ca82 3546 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3547
791badbd 3548 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3549 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3550 return 0;
3551}
3552
182446d0 3553static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3554 struct cftype *cft, u64 val)
3555{
182446d0 3556 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3557
3558 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3559 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3560 return -EINVAL;
3561
c0ff4b85 3562 memcg->oom_kill_disable = val;
4d845ebf 3563 if (!val)
c0ff4b85 3564 memcg_oom_recover(memcg);
3dae7fec 3565
3c11ecf4
KH
3566 return 0;
3567}
3568
c255a458 3569#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3570static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3571{
55007d84
GC
3572 int ret;
3573
55007d84
GC
3574 ret = memcg_propagate_kmem(memcg);
3575 if (ret)
3576 return ret;
2633d7a0 3577
baac50bb 3578 return tcp_init_cgroup(memcg, ss);
573b400d 3579}
e5671dfa 3580
2a4db7eb
VD
3581static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3582{
2788cf0c
VD
3583 struct cgroup_subsys_state *css;
3584 struct mem_cgroup *parent, *child;
3585 int kmemcg_id;
3586
2a4db7eb
VD
3587 if (!memcg->kmem_acct_active)
3588 return;
3589
3590 /*
3591 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3592 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3593 * guarantees no cache will be created for this cgroup after we are
3594 * done (see memcg_create_kmem_cache()).
3595 */
3596 memcg->kmem_acct_active = false;
3597
3598 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3599
3600 kmemcg_id = memcg->kmemcg_id;
3601 BUG_ON(kmemcg_id < 0);
3602
3603 parent = parent_mem_cgroup(memcg);
3604 if (!parent)
3605 parent = root_mem_cgroup;
3606
3607 /*
3608 * Change kmemcg_id of this cgroup and all its descendants to the
3609 * parent's id, and then move all entries from this cgroup's list_lrus
3610 * to ones of the parent. After we have finished, all list_lrus
3611 * corresponding to this cgroup are guaranteed to remain empty. The
3612 * ordering is imposed by list_lru_node->lock taken by
3613 * memcg_drain_all_list_lrus().
3614 */
3615 css_for_each_descendant_pre(css, &memcg->css) {
3616 child = mem_cgroup_from_css(css);
3617 BUG_ON(child->kmemcg_id != kmemcg_id);
3618 child->kmemcg_id = parent->kmemcg_id;
3619 if (!memcg->use_hierarchy)
3620 break;
3621 }
3622 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3623
3624 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3625}
3626
10d5ebf4 3627static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3628{
f48b80a5
VD
3629 if (memcg->kmem_acct_activated) {
3630 memcg_destroy_kmem_caches(memcg);
3631 static_key_slow_dec(&memcg_kmem_enabled_key);
3632 WARN_ON(page_counter_read(&memcg->kmem));
3633 }
baac50bb 3634 tcp_destroy_cgroup(memcg);
10d5ebf4 3635}
e5671dfa 3636#else
cbe128e3 3637static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3638{
3639 return 0;
3640}
d1a4c0b3 3641
2a4db7eb
VD
3642static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3643{
3644}
3645
10d5ebf4
LZ
3646static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3647{
3648}
e5671dfa
GC
3649#endif
3650
52ebea74
TH
3651#ifdef CONFIG_CGROUP_WRITEBACK
3652
3653struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3654{
3655 return &memcg->cgwb_list;
3656}
3657
841710aa
TH
3658static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3659{
3660 return wb_domain_init(&memcg->cgwb_domain, gfp);
3661}
3662
3663static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3664{
3665 wb_domain_exit(&memcg->cgwb_domain);
3666}
3667
2529bb3a
TH
3668static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3669{
3670 wb_domain_size_changed(&memcg->cgwb_domain);
3671}
3672
841710aa
TH
3673struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3674{
3675 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3676
3677 if (!memcg->css.parent)
3678 return NULL;
3679
3680 return &memcg->cgwb_domain;
3681}
3682
c2aa723a
TH
3683/**
3684 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3685 * @wb: bdi_writeback in question
c5edf9cd
TH
3686 * @pfilepages: out parameter for number of file pages
3687 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3688 * @pdirty: out parameter for number of dirty pages
3689 * @pwriteback: out parameter for number of pages under writeback
3690 *
c5edf9cd
TH
3691 * Determine the numbers of file, headroom, dirty, and writeback pages in
3692 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3693 * is a bit more involved.
c2aa723a 3694 *
c5edf9cd
TH
3695 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3696 * headroom is calculated as the lowest headroom of itself and the
3697 * ancestors. Note that this doesn't consider the actual amount of
3698 * available memory in the system. The caller should further cap
3699 * *@pheadroom accordingly.
c2aa723a 3700 */
c5edf9cd
TH
3701void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3702 unsigned long *pheadroom, unsigned long *pdirty,
3703 unsigned long *pwriteback)
c2aa723a
TH
3704{
3705 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3706 struct mem_cgroup *parent;
c2aa723a
TH
3707
3708 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3709
3710 /* this should eventually include NR_UNSTABLE_NFS */
3711 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3712 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3713 (1 << LRU_ACTIVE_FILE));
3714 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3715
c2aa723a
TH
3716 while ((parent = parent_mem_cgroup(memcg))) {
3717 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3718 unsigned long used = page_counter_read(&memcg->memory);
3719
c5edf9cd 3720 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3721 memcg = parent;
3722 }
c2aa723a
TH
3723}
3724
841710aa
TH
3725#else /* CONFIG_CGROUP_WRITEBACK */
3726
3727static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3728{
3729 return 0;
3730}
3731
3732static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3733{
3734}
3735
2529bb3a
TH
3736static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3737{
3738}
3739
52ebea74
TH
3740#endif /* CONFIG_CGROUP_WRITEBACK */
3741
3bc942f3
TH
3742/*
3743 * DO NOT USE IN NEW FILES.
3744 *
3745 * "cgroup.event_control" implementation.
3746 *
3747 * This is way over-engineered. It tries to support fully configurable
3748 * events for each user. Such level of flexibility is completely
3749 * unnecessary especially in the light of the planned unified hierarchy.
3750 *
3751 * Please deprecate this and replace with something simpler if at all
3752 * possible.
3753 */
3754
79bd9814
TH
3755/*
3756 * Unregister event and free resources.
3757 *
3758 * Gets called from workqueue.
3759 */
3bc942f3 3760static void memcg_event_remove(struct work_struct *work)
79bd9814 3761{
3bc942f3
TH
3762 struct mem_cgroup_event *event =
3763 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3764 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3765
3766 remove_wait_queue(event->wqh, &event->wait);
3767
59b6f873 3768 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3769
3770 /* Notify userspace the event is going away. */
3771 eventfd_signal(event->eventfd, 1);
3772
3773 eventfd_ctx_put(event->eventfd);
3774 kfree(event);
59b6f873 3775 css_put(&memcg->css);
79bd9814
TH
3776}
3777
3778/*
3779 * Gets called on POLLHUP on eventfd when user closes it.
3780 *
3781 * Called with wqh->lock held and interrupts disabled.
3782 */
3bc942f3
TH
3783static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3784 int sync, void *key)
79bd9814 3785{
3bc942f3
TH
3786 struct mem_cgroup_event *event =
3787 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3788 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3789 unsigned long flags = (unsigned long)key;
3790
3791 if (flags & POLLHUP) {
3792 /*
3793 * If the event has been detached at cgroup removal, we
3794 * can simply return knowing the other side will cleanup
3795 * for us.
3796 *
3797 * We can't race against event freeing since the other
3798 * side will require wqh->lock via remove_wait_queue(),
3799 * which we hold.
3800 */
fba94807 3801 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3802 if (!list_empty(&event->list)) {
3803 list_del_init(&event->list);
3804 /*
3805 * We are in atomic context, but cgroup_event_remove()
3806 * may sleep, so we have to call it in workqueue.
3807 */
3808 schedule_work(&event->remove);
3809 }
fba94807 3810 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3811 }
3812
3813 return 0;
3814}
3815
3bc942f3 3816static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3817 wait_queue_head_t *wqh, poll_table *pt)
3818{
3bc942f3
TH
3819 struct mem_cgroup_event *event =
3820 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3821
3822 event->wqh = wqh;
3823 add_wait_queue(wqh, &event->wait);
3824}
3825
3826/*
3bc942f3
TH
3827 * DO NOT USE IN NEW FILES.
3828 *
79bd9814
TH
3829 * Parse input and register new cgroup event handler.
3830 *
3831 * Input must be in format '<event_fd> <control_fd> <args>'.
3832 * Interpretation of args is defined by control file implementation.
3833 */
451af504
TH
3834static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3835 char *buf, size_t nbytes, loff_t off)
79bd9814 3836{
451af504 3837 struct cgroup_subsys_state *css = of_css(of);
fba94807 3838 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3839 struct mem_cgroup_event *event;
79bd9814
TH
3840 struct cgroup_subsys_state *cfile_css;
3841 unsigned int efd, cfd;
3842 struct fd efile;
3843 struct fd cfile;
fba94807 3844 const char *name;
79bd9814
TH
3845 char *endp;
3846 int ret;
3847
451af504
TH
3848 buf = strstrip(buf);
3849
3850 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3851 if (*endp != ' ')
3852 return -EINVAL;
451af504 3853 buf = endp + 1;
79bd9814 3854
451af504 3855 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3856 if ((*endp != ' ') && (*endp != '\0'))
3857 return -EINVAL;
451af504 3858 buf = endp + 1;
79bd9814
TH
3859
3860 event = kzalloc(sizeof(*event), GFP_KERNEL);
3861 if (!event)
3862 return -ENOMEM;
3863
59b6f873 3864 event->memcg = memcg;
79bd9814 3865 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3866 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3867 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3868 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3869
3870 efile = fdget(efd);
3871 if (!efile.file) {
3872 ret = -EBADF;
3873 goto out_kfree;
3874 }
3875
3876 event->eventfd = eventfd_ctx_fileget(efile.file);
3877 if (IS_ERR(event->eventfd)) {
3878 ret = PTR_ERR(event->eventfd);
3879 goto out_put_efile;
3880 }
3881
3882 cfile = fdget(cfd);
3883 if (!cfile.file) {
3884 ret = -EBADF;
3885 goto out_put_eventfd;
3886 }
3887
3888 /* the process need read permission on control file */
3889 /* AV: shouldn't we check that it's been opened for read instead? */
3890 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3891 if (ret < 0)
3892 goto out_put_cfile;
3893
fba94807
TH
3894 /*
3895 * Determine the event callbacks and set them in @event. This used
3896 * to be done via struct cftype but cgroup core no longer knows
3897 * about these events. The following is crude but the whole thing
3898 * is for compatibility anyway.
3bc942f3
TH
3899 *
3900 * DO NOT ADD NEW FILES.
fba94807 3901 */
b583043e 3902 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3903
3904 if (!strcmp(name, "memory.usage_in_bytes")) {
3905 event->register_event = mem_cgroup_usage_register_event;
3906 event->unregister_event = mem_cgroup_usage_unregister_event;
3907 } else if (!strcmp(name, "memory.oom_control")) {
3908 event->register_event = mem_cgroup_oom_register_event;
3909 event->unregister_event = mem_cgroup_oom_unregister_event;
3910 } else if (!strcmp(name, "memory.pressure_level")) {
3911 event->register_event = vmpressure_register_event;
3912 event->unregister_event = vmpressure_unregister_event;
3913 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3914 event->register_event = memsw_cgroup_usage_register_event;
3915 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3916 } else {
3917 ret = -EINVAL;
3918 goto out_put_cfile;
3919 }
3920
79bd9814 3921 /*
b5557c4c
TH
3922 * Verify @cfile should belong to @css. Also, remaining events are
3923 * automatically removed on cgroup destruction but the removal is
3924 * asynchronous, so take an extra ref on @css.
79bd9814 3925 */
b583043e 3926 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3927 &memory_cgrp_subsys);
79bd9814 3928 ret = -EINVAL;
5a17f543 3929 if (IS_ERR(cfile_css))
79bd9814 3930 goto out_put_cfile;
5a17f543
TH
3931 if (cfile_css != css) {
3932 css_put(cfile_css);
79bd9814 3933 goto out_put_cfile;
5a17f543 3934 }
79bd9814 3935
451af504 3936 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3937 if (ret)
3938 goto out_put_css;
3939
3940 efile.file->f_op->poll(efile.file, &event->pt);
3941
fba94807
TH
3942 spin_lock(&memcg->event_list_lock);
3943 list_add(&event->list, &memcg->event_list);
3944 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3945
3946 fdput(cfile);
3947 fdput(efile);
3948
451af504 3949 return nbytes;
79bd9814
TH
3950
3951out_put_css:
b5557c4c 3952 css_put(css);
79bd9814
TH
3953out_put_cfile:
3954 fdput(cfile);
3955out_put_eventfd:
3956 eventfd_ctx_put(event->eventfd);
3957out_put_efile:
3958 fdput(efile);
3959out_kfree:
3960 kfree(event);
3961
3962 return ret;
3963}
3964
241994ed 3965static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3966 {
0eea1030 3967 .name = "usage_in_bytes",
8c7c6e34 3968 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3969 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3970 },
c84872e1
PE
3971 {
3972 .name = "max_usage_in_bytes",
8c7c6e34 3973 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3974 .write = mem_cgroup_reset,
791badbd 3975 .read_u64 = mem_cgroup_read_u64,
c84872e1 3976 },
8cdea7c0 3977 {
0eea1030 3978 .name = "limit_in_bytes",
8c7c6e34 3979 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3980 .write = mem_cgroup_write,
791badbd 3981 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3982 },
296c81d8
BS
3983 {
3984 .name = "soft_limit_in_bytes",
3985 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3986 .write = mem_cgroup_write,
791badbd 3987 .read_u64 = mem_cgroup_read_u64,
296c81d8 3988 },
8cdea7c0
BS
3989 {
3990 .name = "failcnt",
8c7c6e34 3991 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3992 .write = mem_cgroup_reset,
791badbd 3993 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3994 },
d2ceb9b7
KH
3995 {
3996 .name = "stat",
2da8ca82 3997 .seq_show = memcg_stat_show,
d2ceb9b7 3998 },
c1e862c1
KH
3999 {
4000 .name = "force_empty",
6770c64e 4001 .write = mem_cgroup_force_empty_write,
c1e862c1 4002 },
18f59ea7
BS
4003 {
4004 .name = "use_hierarchy",
4005 .write_u64 = mem_cgroup_hierarchy_write,
4006 .read_u64 = mem_cgroup_hierarchy_read,
4007 },
79bd9814 4008 {
3bc942f3 4009 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4010 .write = memcg_write_event_control,
7dbdb199 4011 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4012 },
a7885eb8
KM
4013 {
4014 .name = "swappiness",
4015 .read_u64 = mem_cgroup_swappiness_read,
4016 .write_u64 = mem_cgroup_swappiness_write,
4017 },
7dc74be0
DN
4018 {
4019 .name = "move_charge_at_immigrate",
4020 .read_u64 = mem_cgroup_move_charge_read,
4021 .write_u64 = mem_cgroup_move_charge_write,
4022 },
9490ff27
KH
4023 {
4024 .name = "oom_control",
2da8ca82 4025 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4026 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4027 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4028 },
70ddf637
AV
4029 {
4030 .name = "pressure_level",
70ddf637 4031 },
406eb0c9
YH
4032#ifdef CONFIG_NUMA
4033 {
4034 .name = "numa_stat",
2da8ca82 4035 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4036 },
4037#endif
510fc4e1
GC
4038#ifdef CONFIG_MEMCG_KMEM
4039 {
4040 .name = "kmem.limit_in_bytes",
4041 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4042 .write = mem_cgroup_write,
791badbd 4043 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4044 },
4045 {
4046 .name = "kmem.usage_in_bytes",
4047 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4048 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4049 },
4050 {
4051 .name = "kmem.failcnt",
4052 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4053 .write = mem_cgroup_reset,
791badbd 4054 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4055 },
4056 {
4057 .name = "kmem.max_usage_in_bytes",
4058 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4059 .write = mem_cgroup_reset,
791badbd 4060 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4061 },
749c5415
GC
4062#ifdef CONFIG_SLABINFO
4063 {
4064 .name = "kmem.slabinfo",
b047501c
VD
4065 .seq_start = slab_start,
4066 .seq_next = slab_next,
4067 .seq_stop = slab_stop,
4068 .seq_show = memcg_slab_show,
749c5415
GC
4069 },
4070#endif
8c7c6e34 4071#endif
6bc10349 4072 { }, /* terminate */
af36f906 4073};
8c7c6e34 4074
c0ff4b85 4075static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4076{
4077 struct mem_cgroup_per_node *pn;
1ecaab2b 4078 struct mem_cgroup_per_zone *mz;
41e3355d 4079 int zone, tmp = node;
1ecaab2b
KH
4080 /*
4081 * This routine is called against possible nodes.
4082 * But it's BUG to call kmalloc() against offline node.
4083 *
4084 * TODO: this routine can waste much memory for nodes which will
4085 * never be onlined. It's better to use memory hotplug callback
4086 * function.
4087 */
41e3355d
KH
4088 if (!node_state(node, N_NORMAL_MEMORY))
4089 tmp = -1;
17295c88 4090 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4091 if (!pn)
4092 return 1;
1ecaab2b 4093
1ecaab2b
KH
4094 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4095 mz = &pn->zoneinfo[zone];
bea8c150 4096 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4097 mz->usage_in_excess = 0;
4098 mz->on_tree = false;
d79154bb 4099 mz->memcg = memcg;
1ecaab2b 4100 }
54f72fe0 4101 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4102 return 0;
4103}
4104
c0ff4b85 4105static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4106{
54f72fe0 4107 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4108}
4109
33327948
KH
4110static struct mem_cgroup *mem_cgroup_alloc(void)
4111{
d79154bb 4112 struct mem_cgroup *memcg;
8ff69e2c 4113 size_t size;
33327948 4114
8ff69e2c
VD
4115 size = sizeof(struct mem_cgroup);
4116 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4117
8ff69e2c 4118 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4119 if (!memcg)
e7bbcdf3
DC
4120 return NULL;
4121
d79154bb
HD
4122 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4123 if (!memcg->stat)
d2e61b8d 4124 goto out_free;
841710aa
TH
4125
4126 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4127 goto out_free_stat;
4128
d79154bb 4129 return memcg;
d2e61b8d 4130
841710aa
TH
4131out_free_stat:
4132 free_percpu(memcg->stat);
d2e61b8d 4133out_free:
8ff69e2c 4134 kfree(memcg);
d2e61b8d 4135 return NULL;
33327948
KH
4136}
4137
59927fb9 4138/*
c8b2a36f
GC
4139 * At destroying mem_cgroup, references from swap_cgroup can remain.
4140 * (scanning all at force_empty is too costly...)
4141 *
4142 * Instead of clearing all references at force_empty, we remember
4143 * the number of reference from swap_cgroup and free mem_cgroup when
4144 * it goes down to 0.
4145 *
4146 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4147 */
c8b2a36f
GC
4148
4149static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4150{
c8b2a36f 4151 int node;
59927fb9 4152
bb4cc1a8 4153 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4154
4155 for_each_node(node)
4156 free_mem_cgroup_per_zone_info(memcg, node);
4157
4158 free_percpu(memcg->stat);
841710aa 4159 memcg_wb_domain_exit(memcg);
8ff69e2c 4160 kfree(memcg);
59927fb9 4161}
3afe36b1 4162
7bcc1bb1
DN
4163/*
4164 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4165 */
e1aab161 4166struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4167{
3e32cb2e 4168 if (!memcg->memory.parent)
7bcc1bb1 4169 return NULL;
3e32cb2e 4170 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4171}
e1aab161 4172EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4173
0eb253e2 4174static struct cgroup_subsys_state * __ref
eb95419b 4175mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4176{
d142e3e6 4177 struct mem_cgroup *memcg;
04046e1a 4178 long error = -ENOMEM;
6d12e2d8 4179 int node;
8cdea7c0 4180
c0ff4b85
R
4181 memcg = mem_cgroup_alloc();
4182 if (!memcg)
04046e1a 4183 return ERR_PTR(error);
78fb7466 4184
3ed28fa1 4185 for_each_node(node)
c0ff4b85 4186 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4187 goto free_out;
f64c3f54 4188
c077719b 4189 /* root ? */
eb95419b 4190 if (parent_css == NULL) {
a41c58a6 4191 root_mem_cgroup = memcg;
3e32cb2e 4192 page_counter_init(&memcg->memory, NULL);
241994ed 4193 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4194 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4195 page_counter_init(&memcg->memsw, NULL);
4196 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4197 }
28dbc4b6 4198
d142e3e6
GC
4199 memcg->last_scanned_node = MAX_NUMNODES;
4200 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4201 memcg->move_charge_at_immigrate = 0;
4202 mutex_init(&memcg->thresholds_lock);
4203 spin_lock_init(&memcg->move_lock);
70ddf637 4204 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4205 INIT_LIST_HEAD(&memcg->event_list);
4206 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4207#ifdef CONFIG_MEMCG_KMEM
4208 memcg->kmemcg_id = -1;
900a38f0 4209#endif
52ebea74
TH
4210#ifdef CONFIG_CGROUP_WRITEBACK
4211 INIT_LIST_HEAD(&memcg->cgwb_list);
4212#endif
d142e3e6
GC
4213 return &memcg->css;
4214
4215free_out:
4216 __mem_cgroup_free(memcg);
4217 return ERR_PTR(error);
4218}
4219
4220static int
eb95419b 4221mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4222{
eb95419b 4223 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4224 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4225 int ret;
d142e3e6 4226
15a4c835 4227 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4228 return -ENOSPC;
4229
63876986 4230 if (!parent)
d142e3e6
GC
4231 return 0;
4232
0999821b 4233 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4234
4235 memcg->use_hierarchy = parent->use_hierarchy;
4236 memcg->oom_kill_disable = parent->oom_kill_disable;
4237 memcg->swappiness = mem_cgroup_swappiness(parent);
4238
4239 if (parent->use_hierarchy) {
3e32cb2e 4240 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4241 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4242 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4243 page_counter_init(&memcg->memsw, &parent->memsw);
4244 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4245
7bcc1bb1 4246 /*
8d76a979
LZ
4247 * No need to take a reference to the parent because cgroup
4248 * core guarantees its existence.
7bcc1bb1 4249 */
18f59ea7 4250 } else {
3e32cb2e 4251 page_counter_init(&memcg->memory, NULL);
241994ed 4252 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4253 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4254 page_counter_init(&memcg->memsw, NULL);
4255 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4256 /*
4257 * Deeper hierachy with use_hierarchy == false doesn't make
4258 * much sense so let cgroup subsystem know about this
4259 * unfortunate state in our controller.
4260 */
d142e3e6 4261 if (parent != root_mem_cgroup)
073219e9 4262 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4263 }
0999821b 4264 mutex_unlock(&memcg_create_mutex);
d6441637 4265
2f7dd7a4
JW
4266 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4267 if (ret)
4268 return ret;
4269
4270 /*
4271 * Make sure the memcg is initialized: mem_cgroup_iter()
4272 * orders reading memcg->initialized against its callers
4273 * reading the memcg members.
4274 */
4275 smp_store_release(&memcg->initialized, 1);
4276
4277 return 0;
8cdea7c0
BS
4278}
4279
eb95419b 4280static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4281{
eb95419b 4282 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4283 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4284
4285 /*
4286 * Unregister events and notify userspace.
4287 * Notify userspace about cgroup removing only after rmdir of cgroup
4288 * directory to avoid race between userspace and kernelspace.
4289 */
fba94807
TH
4290 spin_lock(&memcg->event_list_lock);
4291 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4292 list_del_init(&event->list);
4293 schedule_work(&event->remove);
4294 }
fba94807 4295 spin_unlock(&memcg->event_list_lock);
ec64f515 4296
33cb876e 4297 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4298
4299 memcg_deactivate_kmem(memcg);
52ebea74
TH
4300
4301 wb_memcg_offline(memcg);
df878fb0
KH
4302}
4303
6df38689
VD
4304static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4305{
4306 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4307
4308 invalidate_reclaim_iterators(memcg);
4309}
4310
eb95419b 4311static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4312{
eb95419b 4313 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4314
10d5ebf4 4315 memcg_destroy_kmem(memcg);
465939a1 4316 __mem_cgroup_free(memcg);
8cdea7c0
BS
4317}
4318
1ced953b
TH
4319/**
4320 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4321 * @css: the target css
4322 *
4323 * Reset the states of the mem_cgroup associated with @css. This is
4324 * invoked when the userland requests disabling on the default hierarchy
4325 * but the memcg is pinned through dependency. The memcg should stop
4326 * applying policies and should revert to the vanilla state as it may be
4327 * made visible again.
4328 *
4329 * The current implementation only resets the essential configurations.
4330 * This needs to be expanded to cover all the visible parts.
4331 */
4332static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4333{
4334 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4335
3e32cb2e
JW
4336 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4337 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4338 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4339 memcg->low = 0;
4340 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4341 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4342 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4343}
4344
02491447 4345#ifdef CONFIG_MMU
7dc74be0 4346/* Handlers for move charge at task migration. */
854ffa8d 4347static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4348{
05b84301 4349 int ret;
9476db97 4350
d0164adc
MG
4351 /* Try a single bulk charge without reclaim first, kswapd may wake */
4352 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4353 if (!ret) {
854ffa8d 4354 mc.precharge += count;
854ffa8d
DN
4355 return ret;
4356 }
9476db97
JW
4357
4358 /* Try charges one by one with reclaim */
854ffa8d 4359 while (count--) {
00501b53 4360 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4361 if (ret)
38c5d72f 4362 return ret;
854ffa8d 4363 mc.precharge++;
9476db97 4364 cond_resched();
854ffa8d 4365 }
9476db97 4366 return 0;
4ffef5fe
DN
4367}
4368
4369/**
8d32ff84 4370 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4371 * @vma: the vma the pte to be checked belongs
4372 * @addr: the address corresponding to the pte to be checked
4373 * @ptent: the pte to be checked
02491447 4374 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4375 *
4376 * Returns
4377 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4378 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4379 * move charge. if @target is not NULL, the page is stored in target->page
4380 * with extra refcnt got(Callers should handle it).
02491447
DN
4381 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4382 * target for charge migration. if @target is not NULL, the entry is stored
4383 * in target->ent.
4ffef5fe
DN
4384 *
4385 * Called with pte lock held.
4386 */
4ffef5fe
DN
4387union mc_target {
4388 struct page *page;
02491447 4389 swp_entry_t ent;
4ffef5fe
DN
4390};
4391
4ffef5fe 4392enum mc_target_type {
8d32ff84 4393 MC_TARGET_NONE = 0,
4ffef5fe 4394 MC_TARGET_PAGE,
02491447 4395 MC_TARGET_SWAP,
4ffef5fe
DN
4396};
4397
90254a65
DN
4398static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4399 unsigned long addr, pte_t ptent)
4ffef5fe 4400{
90254a65 4401 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4402
90254a65
DN
4403 if (!page || !page_mapped(page))
4404 return NULL;
4405 if (PageAnon(page)) {
1dfab5ab 4406 if (!(mc.flags & MOVE_ANON))
90254a65 4407 return NULL;
1dfab5ab
JW
4408 } else {
4409 if (!(mc.flags & MOVE_FILE))
4410 return NULL;
4411 }
90254a65
DN
4412 if (!get_page_unless_zero(page))
4413 return NULL;
4414
4415 return page;
4416}
4417
4b91355e 4418#ifdef CONFIG_SWAP
90254a65
DN
4419static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4420 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4421{
90254a65
DN
4422 struct page *page = NULL;
4423 swp_entry_t ent = pte_to_swp_entry(ptent);
4424
1dfab5ab 4425 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4426 return NULL;
4b91355e
KH
4427 /*
4428 * Because lookup_swap_cache() updates some statistics counter,
4429 * we call find_get_page() with swapper_space directly.
4430 */
33806f06 4431 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4432 if (do_memsw_account())
90254a65
DN
4433 entry->val = ent.val;
4434
4435 return page;
4436}
4b91355e
KH
4437#else
4438static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4439 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4440{
4441 return NULL;
4442}
4443#endif
90254a65 4444
87946a72
DN
4445static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4446 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4447{
4448 struct page *page = NULL;
87946a72
DN
4449 struct address_space *mapping;
4450 pgoff_t pgoff;
4451
4452 if (!vma->vm_file) /* anonymous vma */
4453 return NULL;
1dfab5ab 4454 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4455 return NULL;
4456
87946a72 4457 mapping = vma->vm_file->f_mapping;
0661a336 4458 pgoff = linear_page_index(vma, addr);
87946a72
DN
4459
4460 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4461#ifdef CONFIG_SWAP
4462 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4463 if (shmem_mapping(mapping)) {
4464 page = find_get_entry(mapping, pgoff);
4465 if (radix_tree_exceptional_entry(page)) {
4466 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4467 if (do_memsw_account())
139b6a6f
JW
4468 *entry = swp;
4469 page = find_get_page(swap_address_space(swp), swp.val);
4470 }
4471 } else
4472 page = find_get_page(mapping, pgoff);
4473#else
4474 page = find_get_page(mapping, pgoff);
aa3b1895 4475#endif
87946a72
DN
4476 return page;
4477}
4478
b1b0deab
CG
4479/**
4480 * mem_cgroup_move_account - move account of the page
4481 * @page: the page
4482 * @nr_pages: number of regular pages (>1 for huge pages)
4483 * @from: mem_cgroup which the page is moved from.
4484 * @to: mem_cgroup which the page is moved to. @from != @to.
4485 *
4486 * The caller must confirm following.
4487 * - page is not on LRU (isolate_page() is useful.)
4488 * - compound_lock is held when nr_pages > 1
4489 *
4490 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4491 * from old cgroup.
4492 */
4493static int mem_cgroup_move_account(struct page *page,
4494 unsigned int nr_pages,
4495 struct mem_cgroup *from,
4496 struct mem_cgroup *to)
4497{
4498 unsigned long flags;
4499 int ret;
c4843a75 4500 bool anon;
b1b0deab
CG
4501
4502 VM_BUG_ON(from == to);
4503 VM_BUG_ON_PAGE(PageLRU(page), page);
4504 /*
4505 * The page is isolated from LRU. So, collapse function
4506 * will not handle this page. But page splitting can happen.
4507 * Do this check under compound_page_lock(). The caller should
4508 * hold it.
4509 */
4510 ret = -EBUSY;
4511 if (nr_pages > 1 && !PageTransHuge(page))
4512 goto out;
4513
4514 /*
45637bab
HD
4515 * Prevent mem_cgroup_replace_page() from looking at
4516 * page->mem_cgroup of its source page while we change it.
b1b0deab
CG
4517 */
4518 if (!trylock_page(page))
4519 goto out;
4520
4521 ret = -EINVAL;
4522 if (page->mem_cgroup != from)
4523 goto out_unlock;
4524
c4843a75
GT
4525 anon = PageAnon(page);
4526
b1b0deab
CG
4527 spin_lock_irqsave(&from->move_lock, flags);
4528
c4843a75 4529 if (!anon && page_mapped(page)) {
b1b0deab
CG
4530 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4531 nr_pages);
4532 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4533 nr_pages);
4534 }
4535
c4843a75
GT
4536 /*
4537 * move_lock grabbed above and caller set from->moving_account, so
4538 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4539 * So mapping should be stable for dirty pages.
4540 */
4541 if (!anon && PageDirty(page)) {
4542 struct address_space *mapping = page_mapping(page);
4543
4544 if (mapping_cap_account_dirty(mapping)) {
4545 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4546 nr_pages);
4547 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4548 nr_pages);
4549 }
4550 }
4551
b1b0deab
CG
4552 if (PageWriteback(page)) {
4553 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4554 nr_pages);
4555 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4556 nr_pages);
4557 }
4558
4559 /*
4560 * It is safe to change page->mem_cgroup here because the page
4561 * is referenced, charged, and isolated - we can't race with
4562 * uncharging, charging, migration, or LRU putback.
4563 */
4564
4565 /* caller should have done css_get */
4566 page->mem_cgroup = to;
4567 spin_unlock_irqrestore(&from->move_lock, flags);
4568
4569 ret = 0;
4570
4571 local_irq_disable();
4572 mem_cgroup_charge_statistics(to, page, nr_pages);
4573 memcg_check_events(to, page);
4574 mem_cgroup_charge_statistics(from, page, -nr_pages);
4575 memcg_check_events(from, page);
4576 local_irq_enable();
4577out_unlock:
4578 unlock_page(page);
4579out:
4580 return ret;
4581}
4582
8d32ff84 4583static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4584 unsigned long addr, pte_t ptent, union mc_target *target)
4585{
4586 struct page *page = NULL;
8d32ff84 4587 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4588 swp_entry_t ent = { .val = 0 };
4589
4590 if (pte_present(ptent))
4591 page = mc_handle_present_pte(vma, addr, ptent);
4592 else if (is_swap_pte(ptent))
4593 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4594 else if (pte_none(ptent))
87946a72 4595 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4596
4597 if (!page && !ent.val)
8d32ff84 4598 return ret;
02491447 4599 if (page) {
02491447 4600 /*
0a31bc97 4601 * Do only loose check w/o serialization.
1306a85a 4602 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4603 * not under LRU exclusion.
02491447 4604 */
1306a85a 4605 if (page->mem_cgroup == mc.from) {
02491447
DN
4606 ret = MC_TARGET_PAGE;
4607 if (target)
4608 target->page = page;
4609 }
4610 if (!ret || !target)
4611 put_page(page);
4612 }
90254a65
DN
4613 /* There is a swap entry and a page doesn't exist or isn't charged */
4614 if (ent.val && !ret &&
34c00c31 4615 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4616 ret = MC_TARGET_SWAP;
4617 if (target)
4618 target->ent = ent;
4ffef5fe 4619 }
4ffef5fe
DN
4620 return ret;
4621}
4622
12724850
NH
4623#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4624/*
4625 * We don't consider swapping or file mapped pages because THP does not
4626 * support them for now.
4627 * Caller should make sure that pmd_trans_huge(pmd) is true.
4628 */
4629static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4630 unsigned long addr, pmd_t pmd, union mc_target *target)
4631{
4632 struct page *page = NULL;
12724850
NH
4633 enum mc_target_type ret = MC_TARGET_NONE;
4634
4635 page = pmd_page(pmd);
309381fe 4636 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4637 if (!(mc.flags & MOVE_ANON))
12724850 4638 return ret;
1306a85a 4639 if (page->mem_cgroup == mc.from) {
12724850
NH
4640 ret = MC_TARGET_PAGE;
4641 if (target) {
4642 get_page(page);
4643 target->page = page;
4644 }
4645 }
4646 return ret;
4647}
4648#else
4649static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4650 unsigned long addr, pmd_t pmd, union mc_target *target)
4651{
4652 return MC_TARGET_NONE;
4653}
4654#endif
4655
4ffef5fe
DN
4656static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4657 unsigned long addr, unsigned long end,
4658 struct mm_walk *walk)
4659{
26bcd64a 4660 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4661 pte_t *pte;
4662 spinlock_t *ptl;
4663
bf929152 4664 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4665 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4666 mc.precharge += HPAGE_PMD_NR;
bf929152 4667 spin_unlock(ptl);
1a5a9906 4668 return 0;
12724850 4669 }
03319327 4670
45f83cef
AA
4671 if (pmd_trans_unstable(pmd))
4672 return 0;
4ffef5fe
DN
4673 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4674 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4675 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4676 mc.precharge++; /* increment precharge temporarily */
4677 pte_unmap_unlock(pte - 1, ptl);
4678 cond_resched();
4679
7dc74be0
DN
4680 return 0;
4681}
4682
4ffef5fe
DN
4683static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4684{
4685 unsigned long precharge;
4ffef5fe 4686
26bcd64a
NH
4687 struct mm_walk mem_cgroup_count_precharge_walk = {
4688 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4689 .mm = mm,
4690 };
dfe076b0 4691 down_read(&mm->mmap_sem);
26bcd64a 4692 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4693 up_read(&mm->mmap_sem);
4ffef5fe
DN
4694
4695 precharge = mc.precharge;
4696 mc.precharge = 0;
4697
4698 return precharge;
4699}
4700
4ffef5fe
DN
4701static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4702{
dfe076b0
DN
4703 unsigned long precharge = mem_cgroup_count_precharge(mm);
4704
4705 VM_BUG_ON(mc.moving_task);
4706 mc.moving_task = current;
4707 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4708}
4709
dfe076b0
DN
4710/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4711static void __mem_cgroup_clear_mc(void)
4ffef5fe 4712{
2bd9bb20
KH
4713 struct mem_cgroup *from = mc.from;
4714 struct mem_cgroup *to = mc.to;
4715
4ffef5fe 4716 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4717 if (mc.precharge) {
00501b53 4718 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4719 mc.precharge = 0;
4720 }
4721 /*
4722 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4723 * we must uncharge here.
4724 */
4725 if (mc.moved_charge) {
00501b53 4726 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4727 mc.moved_charge = 0;
4ffef5fe 4728 }
483c30b5
DN
4729 /* we must fixup refcnts and charges */
4730 if (mc.moved_swap) {
483c30b5 4731 /* uncharge swap account from the old cgroup */
ce00a967 4732 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4733 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4734
05b84301 4735 /*
3e32cb2e
JW
4736 * we charged both to->memory and to->memsw, so we
4737 * should uncharge to->memory.
05b84301 4738 */
ce00a967 4739 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4740 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4741
e8ea14cc 4742 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4743
4050377b 4744 /* we've already done css_get(mc.to) */
483c30b5
DN
4745 mc.moved_swap = 0;
4746 }
dfe076b0
DN
4747 memcg_oom_recover(from);
4748 memcg_oom_recover(to);
4749 wake_up_all(&mc.waitq);
4750}
4751
4752static void mem_cgroup_clear_mc(void)
4753{
dfe076b0
DN
4754 /*
4755 * we must clear moving_task before waking up waiters at the end of
4756 * task migration.
4757 */
4758 mc.moving_task = NULL;
4759 __mem_cgroup_clear_mc();
2bd9bb20 4760 spin_lock(&mc.lock);
4ffef5fe
DN
4761 mc.from = NULL;
4762 mc.to = NULL;
2bd9bb20 4763 spin_unlock(&mc.lock);
4ffef5fe
DN
4764}
4765
1f7dd3e5 4766static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4767{
1f7dd3e5 4768 struct cgroup_subsys_state *css;
eed67d75 4769 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4770 struct mem_cgroup *from;
4530eddb 4771 struct task_struct *leader, *p;
9f2115f9 4772 struct mm_struct *mm;
1dfab5ab 4773 unsigned long move_flags;
9f2115f9 4774 int ret = 0;
7dc74be0 4775
1f7dd3e5
TH
4776 /* charge immigration isn't supported on the default hierarchy */
4777 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4778 return 0;
4779
4530eddb
TH
4780 /*
4781 * Multi-process migrations only happen on the default hierarchy
4782 * where charge immigration is not used. Perform charge
4783 * immigration if @tset contains a leader and whine if there are
4784 * multiple.
4785 */
4786 p = NULL;
1f7dd3e5 4787 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4788 WARN_ON_ONCE(p);
4789 p = leader;
1f7dd3e5 4790 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4791 }
4792 if (!p)
4793 return 0;
4794
1f7dd3e5
TH
4795 /*
4796 * We are now commited to this value whatever it is. Changes in this
4797 * tunable will only affect upcoming migrations, not the current one.
4798 * So we need to save it, and keep it going.
4799 */
4800 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4801 if (!move_flags)
4802 return 0;
4803
9f2115f9
TH
4804 from = mem_cgroup_from_task(p);
4805
4806 VM_BUG_ON(from == memcg);
4807
4808 mm = get_task_mm(p);
4809 if (!mm)
4810 return 0;
4811 /* We move charges only when we move a owner of the mm */
4812 if (mm->owner == p) {
4813 VM_BUG_ON(mc.from);
4814 VM_BUG_ON(mc.to);
4815 VM_BUG_ON(mc.precharge);
4816 VM_BUG_ON(mc.moved_charge);
4817 VM_BUG_ON(mc.moved_swap);
4818
4819 spin_lock(&mc.lock);
4820 mc.from = from;
4821 mc.to = memcg;
4822 mc.flags = move_flags;
4823 spin_unlock(&mc.lock);
4824 /* We set mc.moving_task later */
4825
4826 ret = mem_cgroup_precharge_mc(mm);
4827 if (ret)
4828 mem_cgroup_clear_mc();
7dc74be0 4829 }
9f2115f9 4830 mmput(mm);
7dc74be0
DN
4831 return ret;
4832}
4833
1f7dd3e5 4834static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4835{
4e2f245d
JW
4836 if (mc.to)
4837 mem_cgroup_clear_mc();
7dc74be0
DN
4838}
4839
4ffef5fe
DN
4840static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4841 unsigned long addr, unsigned long end,
4842 struct mm_walk *walk)
7dc74be0 4843{
4ffef5fe 4844 int ret = 0;
26bcd64a 4845 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4846 pte_t *pte;
4847 spinlock_t *ptl;
12724850
NH
4848 enum mc_target_type target_type;
4849 union mc_target target;
4850 struct page *page;
4ffef5fe 4851
12724850
NH
4852 /*
4853 * We don't take compound_lock() here but no race with splitting thp
4854 * happens because:
4855 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4856 * under splitting, which means there's no concurrent thp split,
4857 * - if another thread runs into split_huge_page() just after we
4858 * entered this if-block, the thread must wait for page table lock
4859 * to be unlocked in __split_huge_page_splitting(), where the main
4860 * part of thp split is not executed yet.
4861 */
bf929152 4862 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 4863 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4864 spin_unlock(ptl);
12724850
NH
4865 return 0;
4866 }
4867 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4868 if (target_type == MC_TARGET_PAGE) {
4869 page = target.page;
4870 if (!isolate_lru_page(page)) {
12724850 4871 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 4872 mc.from, mc.to)) {
12724850
NH
4873 mc.precharge -= HPAGE_PMD_NR;
4874 mc.moved_charge += HPAGE_PMD_NR;
4875 }
4876 putback_lru_page(page);
4877 }
4878 put_page(page);
4879 }
bf929152 4880 spin_unlock(ptl);
1a5a9906 4881 return 0;
12724850
NH
4882 }
4883
45f83cef
AA
4884 if (pmd_trans_unstable(pmd))
4885 return 0;
4ffef5fe
DN
4886retry:
4887 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4888 for (; addr != end; addr += PAGE_SIZE) {
4889 pte_t ptent = *(pte++);
02491447 4890 swp_entry_t ent;
4ffef5fe
DN
4891
4892 if (!mc.precharge)
4893 break;
4894
8d32ff84 4895 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4896 case MC_TARGET_PAGE:
4897 page = target.page;
4898 if (isolate_lru_page(page))
4899 goto put;
1306a85a 4900 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 4901 mc.precharge--;
854ffa8d
DN
4902 /* we uncharge from mc.from later. */
4903 mc.moved_charge++;
4ffef5fe
DN
4904 }
4905 putback_lru_page(page);
8d32ff84 4906put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4907 put_page(page);
4908 break;
02491447
DN
4909 case MC_TARGET_SWAP:
4910 ent = target.ent;
e91cbb42 4911 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4912 mc.precharge--;
483c30b5
DN
4913 /* we fixup refcnts and charges later. */
4914 mc.moved_swap++;
4915 }
02491447 4916 break;
4ffef5fe
DN
4917 default:
4918 break;
4919 }
4920 }
4921 pte_unmap_unlock(pte - 1, ptl);
4922 cond_resched();
4923
4924 if (addr != end) {
4925 /*
4926 * We have consumed all precharges we got in can_attach().
4927 * We try charge one by one, but don't do any additional
4928 * charges to mc.to if we have failed in charge once in attach()
4929 * phase.
4930 */
854ffa8d 4931 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4932 if (!ret)
4933 goto retry;
4934 }
4935
4936 return ret;
4937}
4938
4939static void mem_cgroup_move_charge(struct mm_struct *mm)
4940{
26bcd64a
NH
4941 struct mm_walk mem_cgroup_move_charge_walk = {
4942 .pmd_entry = mem_cgroup_move_charge_pte_range,
4943 .mm = mm,
4944 };
4ffef5fe
DN
4945
4946 lru_add_drain_all();
312722cb
JW
4947 /*
4948 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4949 * move_lock while we're moving its pages to another memcg.
4950 * Then wait for already started RCU-only updates to finish.
4951 */
4952 atomic_inc(&mc.from->moving_account);
4953 synchronize_rcu();
dfe076b0
DN
4954retry:
4955 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4956 /*
4957 * Someone who are holding the mmap_sem might be waiting in
4958 * waitq. So we cancel all extra charges, wake up all waiters,
4959 * and retry. Because we cancel precharges, we might not be able
4960 * to move enough charges, but moving charge is a best-effort
4961 * feature anyway, so it wouldn't be a big problem.
4962 */
4963 __mem_cgroup_clear_mc();
4964 cond_resched();
4965 goto retry;
4966 }
26bcd64a
NH
4967 /*
4968 * When we have consumed all precharges and failed in doing
4969 * additional charge, the page walk just aborts.
4970 */
4971 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 4972 up_read(&mm->mmap_sem);
312722cb 4973 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4974}
4975
1f7dd3e5 4976static void mem_cgroup_move_task(struct cgroup_taskset *tset)
67e465a7 4977{
1f7dd3e5
TH
4978 struct cgroup_subsys_state *css;
4979 struct task_struct *p = cgroup_taskset_first(tset, &css);
a433658c 4980 struct mm_struct *mm = get_task_mm(p);
dfe076b0 4981
dfe076b0 4982 if (mm) {
a433658c
KM
4983 if (mc.to)
4984 mem_cgroup_move_charge(mm);
dfe076b0
DN
4985 mmput(mm);
4986 }
a433658c
KM
4987 if (mc.to)
4988 mem_cgroup_clear_mc();
67e465a7 4989}
5cfb80a7 4990#else /* !CONFIG_MMU */
1f7dd3e5 4991static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4992{
4993 return 0;
4994}
1f7dd3e5 4995static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4996{
4997}
1f7dd3e5 4998static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5cfb80a7
DN
4999{
5000}
5001#endif
67e465a7 5002
f00baae7
TH
5003/*
5004 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5005 * to verify whether we're attached to the default hierarchy on each mount
5006 * attempt.
f00baae7 5007 */
eb95419b 5008static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5009{
5010 /*
aa6ec29b 5011 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5012 * guarantees that @root doesn't have any children, so turning it
5013 * on for the root memcg is enough.
5014 */
9e10a130 5015 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5016 root_mem_cgroup->use_hierarchy = true;
5017 else
5018 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5019}
5020
241994ed
JW
5021static u64 memory_current_read(struct cgroup_subsys_state *css,
5022 struct cftype *cft)
5023{
f5fc3c5d
JW
5024 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5025
5026 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5027}
5028
5029static int memory_low_show(struct seq_file *m, void *v)
5030{
5031 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5032 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5033
5034 if (low == PAGE_COUNTER_MAX)
d2973697 5035 seq_puts(m, "max\n");
241994ed
JW
5036 else
5037 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5038
5039 return 0;
5040}
5041
5042static ssize_t memory_low_write(struct kernfs_open_file *of,
5043 char *buf, size_t nbytes, loff_t off)
5044{
5045 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5046 unsigned long low;
5047 int err;
5048
5049 buf = strstrip(buf);
d2973697 5050 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5051 if (err)
5052 return err;
5053
5054 memcg->low = low;
5055
5056 return nbytes;
5057}
5058
5059static int memory_high_show(struct seq_file *m, void *v)
5060{
5061 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5062 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5063
5064 if (high == PAGE_COUNTER_MAX)
d2973697 5065 seq_puts(m, "max\n");
241994ed
JW
5066 else
5067 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5068
5069 return 0;
5070}
5071
5072static ssize_t memory_high_write(struct kernfs_open_file *of,
5073 char *buf, size_t nbytes, loff_t off)
5074{
5075 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5076 unsigned long high;
5077 int err;
5078
5079 buf = strstrip(buf);
d2973697 5080 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5081 if (err)
5082 return err;
5083
5084 memcg->high = high;
5085
2529bb3a 5086 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5087 return nbytes;
5088}
5089
5090static int memory_max_show(struct seq_file *m, void *v)
5091{
5092 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5093 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5094
5095 if (max == PAGE_COUNTER_MAX)
d2973697 5096 seq_puts(m, "max\n");
241994ed
JW
5097 else
5098 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5099
5100 return 0;
5101}
5102
5103static ssize_t memory_max_write(struct kernfs_open_file *of,
5104 char *buf, size_t nbytes, loff_t off)
5105{
5106 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5107 unsigned long max;
5108 int err;
5109
5110 buf = strstrip(buf);
d2973697 5111 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5112 if (err)
5113 return err;
5114
5115 err = mem_cgroup_resize_limit(memcg, max);
5116 if (err)
5117 return err;
5118
2529bb3a 5119 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5120 return nbytes;
5121}
5122
5123static int memory_events_show(struct seq_file *m, void *v)
5124{
5125 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5126
5127 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5128 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5129 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5130 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5131
5132 return 0;
5133}
5134
5135static struct cftype memory_files[] = {
5136 {
5137 .name = "current",
f5fc3c5d 5138 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5139 .read_u64 = memory_current_read,
5140 },
5141 {
5142 .name = "low",
5143 .flags = CFTYPE_NOT_ON_ROOT,
5144 .seq_show = memory_low_show,
5145 .write = memory_low_write,
5146 },
5147 {
5148 .name = "high",
5149 .flags = CFTYPE_NOT_ON_ROOT,
5150 .seq_show = memory_high_show,
5151 .write = memory_high_write,
5152 },
5153 {
5154 .name = "max",
5155 .flags = CFTYPE_NOT_ON_ROOT,
5156 .seq_show = memory_max_show,
5157 .write = memory_max_write,
5158 },
5159 {
5160 .name = "events",
5161 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5162 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5163 .seq_show = memory_events_show,
5164 },
5165 { } /* terminate */
5166};
5167
073219e9 5168struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5169 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5170 .css_online = mem_cgroup_css_online,
92fb9748 5171 .css_offline = mem_cgroup_css_offline,
6df38689 5172 .css_released = mem_cgroup_css_released,
92fb9748 5173 .css_free = mem_cgroup_css_free,
1ced953b 5174 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5175 .can_attach = mem_cgroup_can_attach,
5176 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5177 .attach = mem_cgroup_move_task,
f00baae7 5178 .bind = mem_cgroup_bind,
241994ed
JW
5179 .dfl_cftypes = memory_files,
5180 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5181 .early_init = 0,
8cdea7c0 5182};
c077719b 5183
241994ed
JW
5184/**
5185 * mem_cgroup_low - check if memory consumption is below the normal range
5186 * @root: the highest ancestor to consider
5187 * @memcg: the memory cgroup to check
5188 *
5189 * Returns %true if memory consumption of @memcg, and that of all
5190 * configurable ancestors up to @root, is below the normal range.
5191 */
5192bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5193{
5194 if (mem_cgroup_disabled())
5195 return false;
5196
5197 /*
5198 * The toplevel group doesn't have a configurable range, so
5199 * it's never low when looked at directly, and it is not
5200 * considered an ancestor when assessing the hierarchy.
5201 */
5202
5203 if (memcg == root_mem_cgroup)
5204 return false;
5205
4e54dede 5206 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5207 return false;
5208
5209 while (memcg != root) {
5210 memcg = parent_mem_cgroup(memcg);
5211
5212 if (memcg == root_mem_cgroup)
5213 break;
5214
4e54dede 5215 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5216 return false;
5217 }
5218 return true;
5219}
5220
00501b53
JW
5221/**
5222 * mem_cgroup_try_charge - try charging a page
5223 * @page: page to charge
5224 * @mm: mm context of the victim
5225 * @gfp_mask: reclaim mode
5226 * @memcgp: charged memcg return
5227 *
5228 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5229 * pages according to @gfp_mask if necessary.
5230 *
5231 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5232 * Otherwise, an error code is returned.
5233 *
5234 * After page->mapping has been set up, the caller must finalize the
5235 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5236 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5237 */
5238int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5239 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5240{
5241 struct mem_cgroup *memcg = NULL;
5242 unsigned int nr_pages = 1;
5243 int ret = 0;
5244
5245 if (mem_cgroup_disabled())
5246 goto out;
5247
5248 if (PageSwapCache(page)) {
00501b53
JW
5249 /*
5250 * Every swap fault against a single page tries to charge the
5251 * page, bail as early as possible. shmem_unuse() encounters
5252 * already charged pages, too. The USED bit is protected by
5253 * the page lock, which serializes swap cache removal, which
5254 * in turn serializes uncharging.
5255 */
e993d905 5256 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5257 if (page->mem_cgroup)
00501b53 5258 goto out;
e993d905 5259
7941d214 5260 if (do_memsw_account()) {
e993d905
VD
5261 swp_entry_t ent = { .val = page_private(page), };
5262 unsigned short id = lookup_swap_cgroup_id(ent);
5263
5264 rcu_read_lock();
5265 memcg = mem_cgroup_from_id(id);
5266 if (memcg && !css_tryget_online(&memcg->css))
5267 memcg = NULL;
5268 rcu_read_unlock();
5269 }
00501b53
JW
5270 }
5271
5272 if (PageTransHuge(page)) {
5273 nr_pages <<= compound_order(page);
5274 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5275 }
5276
00501b53
JW
5277 if (!memcg)
5278 memcg = get_mem_cgroup_from_mm(mm);
5279
5280 ret = try_charge(memcg, gfp_mask, nr_pages);
5281
5282 css_put(&memcg->css);
00501b53
JW
5283out:
5284 *memcgp = memcg;
5285 return ret;
5286}
5287
5288/**
5289 * mem_cgroup_commit_charge - commit a page charge
5290 * @page: page to charge
5291 * @memcg: memcg to charge the page to
5292 * @lrucare: page might be on LRU already
5293 *
5294 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5295 * after page->mapping has been set up. This must happen atomically
5296 * as part of the page instantiation, i.e. under the page table lock
5297 * for anonymous pages, under the page lock for page and swap cache.
5298 *
5299 * In addition, the page must not be on the LRU during the commit, to
5300 * prevent racing with task migration. If it might be, use @lrucare.
5301 *
5302 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5303 */
5304void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5305 bool lrucare)
5306{
5307 unsigned int nr_pages = 1;
5308
5309 VM_BUG_ON_PAGE(!page->mapping, page);
5310 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5311
5312 if (mem_cgroup_disabled())
5313 return;
5314 /*
5315 * Swap faults will attempt to charge the same page multiple
5316 * times. But reuse_swap_page() might have removed the page
5317 * from swapcache already, so we can't check PageSwapCache().
5318 */
5319 if (!memcg)
5320 return;
5321
6abb5a86
JW
5322 commit_charge(page, memcg, lrucare);
5323
00501b53
JW
5324 if (PageTransHuge(page)) {
5325 nr_pages <<= compound_order(page);
5326 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5327 }
5328
6abb5a86
JW
5329 local_irq_disable();
5330 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5331 memcg_check_events(memcg, page);
5332 local_irq_enable();
00501b53 5333
7941d214 5334 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5335 swp_entry_t entry = { .val = page_private(page) };
5336 /*
5337 * The swap entry might not get freed for a long time,
5338 * let's not wait for it. The page already received a
5339 * memory+swap charge, drop the swap entry duplicate.
5340 */
5341 mem_cgroup_uncharge_swap(entry);
5342 }
5343}
5344
5345/**
5346 * mem_cgroup_cancel_charge - cancel a page charge
5347 * @page: page to charge
5348 * @memcg: memcg to charge the page to
5349 *
5350 * Cancel a charge transaction started by mem_cgroup_try_charge().
5351 */
5352void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5353{
5354 unsigned int nr_pages = 1;
5355
5356 if (mem_cgroup_disabled())
5357 return;
5358 /*
5359 * Swap faults will attempt to charge the same page multiple
5360 * times. But reuse_swap_page() might have removed the page
5361 * from swapcache already, so we can't check PageSwapCache().
5362 */
5363 if (!memcg)
5364 return;
5365
5366 if (PageTransHuge(page)) {
5367 nr_pages <<= compound_order(page);
5368 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5369 }
5370
5371 cancel_charge(memcg, nr_pages);
5372}
5373
747db954 5374static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5375 unsigned long nr_anon, unsigned long nr_file,
5376 unsigned long nr_huge, struct page *dummy_page)
5377{
18eca2e6 5378 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5379 unsigned long flags;
5380
ce00a967 5381 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5382 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5383 if (do_memsw_account())
18eca2e6 5384 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5385 memcg_oom_recover(memcg);
5386 }
747db954
JW
5387
5388 local_irq_save(flags);
5389 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5390 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5391 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5392 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5393 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5394 memcg_check_events(memcg, dummy_page);
5395 local_irq_restore(flags);
e8ea14cc
JW
5396
5397 if (!mem_cgroup_is_root(memcg))
18eca2e6 5398 css_put_many(&memcg->css, nr_pages);
747db954
JW
5399}
5400
5401static void uncharge_list(struct list_head *page_list)
5402{
5403 struct mem_cgroup *memcg = NULL;
747db954
JW
5404 unsigned long nr_anon = 0;
5405 unsigned long nr_file = 0;
5406 unsigned long nr_huge = 0;
5407 unsigned long pgpgout = 0;
747db954
JW
5408 struct list_head *next;
5409 struct page *page;
5410
5411 next = page_list->next;
5412 do {
5413 unsigned int nr_pages = 1;
747db954
JW
5414
5415 page = list_entry(next, struct page, lru);
5416 next = page->lru.next;
5417
5418 VM_BUG_ON_PAGE(PageLRU(page), page);
5419 VM_BUG_ON_PAGE(page_count(page), page);
5420
1306a85a 5421 if (!page->mem_cgroup)
747db954
JW
5422 continue;
5423
5424 /*
5425 * Nobody should be changing or seriously looking at
1306a85a 5426 * page->mem_cgroup at this point, we have fully
29833315 5427 * exclusive access to the page.
747db954
JW
5428 */
5429
1306a85a 5430 if (memcg != page->mem_cgroup) {
747db954 5431 if (memcg) {
18eca2e6
JW
5432 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5433 nr_huge, page);
5434 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5435 }
1306a85a 5436 memcg = page->mem_cgroup;
747db954
JW
5437 }
5438
5439 if (PageTransHuge(page)) {
5440 nr_pages <<= compound_order(page);
5441 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5442 nr_huge += nr_pages;
5443 }
5444
5445 if (PageAnon(page))
5446 nr_anon += nr_pages;
5447 else
5448 nr_file += nr_pages;
5449
1306a85a 5450 page->mem_cgroup = NULL;
747db954
JW
5451
5452 pgpgout++;
5453 } while (next != page_list);
5454
5455 if (memcg)
18eca2e6
JW
5456 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5457 nr_huge, page);
747db954
JW
5458}
5459
0a31bc97
JW
5460/**
5461 * mem_cgroup_uncharge - uncharge a page
5462 * @page: page to uncharge
5463 *
5464 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5465 * mem_cgroup_commit_charge().
5466 */
5467void mem_cgroup_uncharge(struct page *page)
5468{
0a31bc97
JW
5469 if (mem_cgroup_disabled())
5470 return;
5471
747db954 5472 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5473 if (!page->mem_cgroup)
0a31bc97
JW
5474 return;
5475
747db954
JW
5476 INIT_LIST_HEAD(&page->lru);
5477 uncharge_list(&page->lru);
5478}
0a31bc97 5479
747db954
JW
5480/**
5481 * mem_cgroup_uncharge_list - uncharge a list of page
5482 * @page_list: list of pages to uncharge
5483 *
5484 * Uncharge a list of pages previously charged with
5485 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5486 */
5487void mem_cgroup_uncharge_list(struct list_head *page_list)
5488{
5489 if (mem_cgroup_disabled())
5490 return;
0a31bc97 5491
747db954
JW
5492 if (!list_empty(page_list))
5493 uncharge_list(page_list);
0a31bc97
JW
5494}
5495
5496/**
45637bab 5497 * mem_cgroup_replace_page - migrate a charge to another page
0a31bc97
JW
5498 * @oldpage: currently charged page
5499 * @newpage: page to transfer the charge to
0a31bc97
JW
5500 *
5501 * Migrate the charge from @oldpage to @newpage.
5502 *
5503 * Both pages must be locked, @newpage->mapping must be set up.
25be6a65 5504 * Either or both pages might be on the LRU already.
0a31bc97 5505 */
45637bab 5506void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
0a31bc97 5507{
29833315 5508 struct mem_cgroup *memcg;
0a31bc97
JW
5509 int isolated;
5510
5511 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5512 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5513 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5514 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5515 newpage);
0a31bc97
JW
5516
5517 if (mem_cgroup_disabled())
5518 return;
5519
5520 /* Page cache replacement: new page already charged? */
1306a85a 5521 if (newpage->mem_cgroup)
0a31bc97
JW
5522 return;
5523
45637bab 5524 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5525 memcg = oldpage->mem_cgroup;
29833315 5526 if (!memcg)
0a31bc97
JW
5527 return;
5528
45637bab 5529 lock_page_lru(oldpage, &isolated);
1306a85a 5530 oldpage->mem_cgroup = NULL;
45637bab 5531 unlock_page_lru(oldpage, isolated);
0a31bc97 5532
45637bab 5533 commit_charge(newpage, memcg, true);
0a31bc97
JW
5534}
5535
11092087
JW
5536/* Writing them here to avoid exposing memcg's inner layout */
5537#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
5538
5539struct static_key memcg_sockets_enabled_key;
5540EXPORT_SYMBOL(memcg_sockets_enabled_key);
5541
5542void sock_update_memcg(struct sock *sk)
5543{
5544 struct mem_cgroup *memcg;
5545
5546 /* Socket cloning can throw us here with sk_cgrp already
5547 * filled. It won't however, necessarily happen from
5548 * process context. So the test for root memcg given
5549 * the current task's memcg won't help us in this case.
5550 *
5551 * Respecting the original socket's memcg is a better
5552 * decision in this case.
5553 */
5554 if (sk->sk_memcg) {
5555 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5556 css_get(&sk->sk_memcg->css);
5557 return;
5558 }
5559
5560 rcu_read_lock();
5561 memcg = mem_cgroup_from_task(current);
5562 if (memcg != root_mem_cgroup &&
5563 memcg->tcp_mem.active &&
5564 css_tryget_online(&memcg->css))
5565 sk->sk_memcg = memcg;
5566 rcu_read_unlock();
5567}
5568EXPORT_SYMBOL(sock_update_memcg);
5569
5570void sock_release_memcg(struct sock *sk)
5571{
5572 WARN_ON(!sk->sk_memcg);
5573 css_put(&sk->sk_memcg->css);
5574}
5575
5576/**
5577 * mem_cgroup_charge_skmem - charge socket memory
5578 * @memcg: memcg to charge
5579 * @nr_pages: number of pages to charge
5580 *
5581 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5582 * @memcg's configured limit, %false if the charge had to be forced.
5583 */
5584bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5585{
5586 struct page_counter *counter;
5587
5588 if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
5589 nr_pages, &counter)) {
5590 memcg->tcp_mem.memory_pressure = 0;
5591 return true;
5592 }
5593 page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
5594 memcg->tcp_mem.memory_pressure = 1;
5595 return false;
5596}
5597
5598/**
5599 * mem_cgroup_uncharge_skmem - uncharge socket memory
5600 * @memcg - memcg to uncharge
5601 * @nr_pages - number of pages to uncharge
5602 */
5603void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5604{
5605 page_counter_uncharge(&memcg->tcp_mem.memory_allocated, nr_pages);
5606}
5607
5608#endif
5609
2d11085e 5610/*
1081312f
MH
5611 * subsys_initcall() for memory controller.
5612 *
5613 * Some parts like hotcpu_notifier() have to be initialized from this context
5614 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5615 * everything that doesn't depend on a specific mem_cgroup structure should
5616 * be initialized from here.
2d11085e
MH
5617 */
5618static int __init mem_cgroup_init(void)
5619{
95a045f6
JW
5620 int cpu, node;
5621
2d11085e 5622 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5623
5624 for_each_possible_cpu(cpu)
5625 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5626 drain_local_stock);
5627
5628 for_each_node(node) {
5629 struct mem_cgroup_tree_per_node *rtpn;
5630 int zone;
5631
5632 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5633 node_online(node) ? node : NUMA_NO_NODE);
5634
5635 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5636 struct mem_cgroup_tree_per_zone *rtpz;
5637
5638 rtpz = &rtpn->rb_tree_per_zone[zone];
5639 rtpz->rb_root = RB_ROOT;
5640 spin_lock_init(&rtpz->lock);
5641 }
5642 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5643 }
5644
2d11085e
MH
5645 return 0;
5646}
5647subsys_initcall(mem_cgroup_init);
21afa38e
JW
5648
5649#ifdef CONFIG_MEMCG_SWAP
5650/**
5651 * mem_cgroup_swapout - transfer a memsw charge to swap
5652 * @page: page whose memsw charge to transfer
5653 * @entry: swap entry to move the charge to
5654 *
5655 * Transfer the memsw charge of @page to @entry.
5656 */
5657void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5658{
5659 struct mem_cgroup *memcg;
5660 unsigned short oldid;
5661
5662 VM_BUG_ON_PAGE(PageLRU(page), page);
5663 VM_BUG_ON_PAGE(page_count(page), page);
5664
7941d214 5665 if (!do_memsw_account())
21afa38e
JW
5666 return;
5667
5668 memcg = page->mem_cgroup;
5669
5670 /* Readahead page, never charged */
5671 if (!memcg)
5672 return;
5673
5674 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5675 VM_BUG_ON_PAGE(oldid, page);
5676 mem_cgroup_swap_statistics(memcg, true);
5677
5678 page->mem_cgroup = NULL;
5679
5680 if (!mem_cgroup_is_root(memcg))
5681 page_counter_uncharge(&memcg->memory, 1);
5682
ce9ce665
SAS
5683 /*
5684 * Interrupts should be disabled here because the caller holds the
5685 * mapping->tree_lock lock which is taken with interrupts-off. It is
5686 * important here to have the interrupts disabled because it is the
5687 * only synchronisation we have for udpating the per-CPU variables.
5688 */
5689 VM_BUG_ON(!irqs_disabled());
21afa38e
JW
5690 mem_cgroup_charge_statistics(memcg, page, -1);
5691 memcg_check_events(memcg, page);
5692}
5693
5694/**
5695 * mem_cgroup_uncharge_swap - uncharge a swap entry
5696 * @entry: swap entry to uncharge
5697 *
5698 * Drop the memsw charge associated with @entry.
5699 */
5700void mem_cgroup_uncharge_swap(swp_entry_t entry)
5701{
5702 struct mem_cgroup *memcg;
5703 unsigned short id;
5704
7941d214 5705 if (!do_memsw_account())
21afa38e
JW
5706 return;
5707
5708 id = swap_cgroup_record(entry, 0);
5709 rcu_read_lock();
adbe427b 5710 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5711 if (memcg) {
5712 if (!mem_cgroup_is_root(memcg))
5713 page_counter_uncharge(&memcg->memsw, 1);
5714 mem_cgroup_swap_statistics(memcg, false);
5715 css_put(&memcg->css);
5716 }
5717 rcu_read_unlock();
5718}
5719
5720/* for remember boot option*/
5721#ifdef CONFIG_MEMCG_SWAP_ENABLED
5722static int really_do_swap_account __initdata = 1;
5723#else
5724static int really_do_swap_account __initdata;
5725#endif
5726
5727static int __init enable_swap_account(char *s)
5728{
5729 if (!strcmp(s, "1"))
5730 really_do_swap_account = 1;
5731 else if (!strcmp(s, "0"))
5732 really_do_swap_account = 0;
5733 return 1;
5734}
5735__setup("swapaccount=", enable_swap_account);
5736
5737static struct cftype memsw_cgroup_files[] = {
5738 {
5739 .name = "memsw.usage_in_bytes",
5740 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5741 .read_u64 = mem_cgroup_read_u64,
5742 },
5743 {
5744 .name = "memsw.max_usage_in_bytes",
5745 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5746 .write = mem_cgroup_reset,
5747 .read_u64 = mem_cgroup_read_u64,
5748 },
5749 {
5750 .name = "memsw.limit_in_bytes",
5751 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5752 .write = mem_cgroup_write,
5753 .read_u64 = mem_cgroup_read_u64,
5754 },
5755 {
5756 .name = "memsw.failcnt",
5757 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5758 .write = mem_cgroup_reset,
5759 .read_u64 = mem_cgroup_read_u64,
5760 },
5761 { }, /* terminate */
5762};
5763
5764static int __init mem_cgroup_swap_init(void)
5765{
5766 if (!mem_cgroup_disabled() && really_do_swap_account) {
5767 do_swap_account = 1;
5768 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5769 memsw_cgroup_files));
5770 }
5771 return 0;
5772}
5773subsys_initcall(mem_cgroup_swap_init);
5774
5775#endif /* CONFIG_MEMCG_SWAP */
This page took 1.641259 seconds and 5 git commands to generate.