writeback: reset wb_domain->dirty_limit[_tstmp] when memcg domain size changes
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
d1a4c0b3 68#include <net/tcp_memcontrol.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
a181b0e8 78#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 79static struct mem_cgroup *root_mem_cgroup __read_mostly;
56161634 80struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
8cdea7c0 81
21afa38e 82/* Whether the swap controller is active */
c255a458 83#ifdef CONFIG_MEMCG_SWAP
c077719b 84int do_swap_account __read_mostly;
c077719b 85#else
a0db00fc 86#define do_swap_account 0
c077719b
KH
87#endif
88
af7c4b0e
JW
89static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
b070e65c 92 "rss_huge",
af7c4b0e 93 "mapped_file",
c4843a75 94 "dirty",
3ea67d06 95 "writeback",
af7c4b0e
JW
96 "swap",
97};
98
af7c4b0e
JW
99static const char * const mem_cgroup_events_names[] = {
100 "pgpgin",
101 "pgpgout",
102 "pgfault",
103 "pgmajfault",
104};
105
58cf188e
SZ
106static const char * const mem_cgroup_lru_names[] = {
107 "inactive_anon",
108 "active_anon",
109 "inactive_file",
110 "active_file",
111 "unevictable",
112};
113
7a159cc9
JW
114/*
115 * Per memcg event counter is incremented at every pagein/pageout. With THP,
116 * it will be incremated by the number of pages. This counter is used for
117 * for trigger some periodic events. This is straightforward and better
118 * than using jiffies etc. to handle periodic memcg event.
119 */
120enum mem_cgroup_events_target {
121 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 122 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 123 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
124 MEM_CGROUP_NTARGETS,
125};
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
d52aa412 130struct mem_cgroup_stat_cpu {
7a159cc9 131 long count[MEM_CGROUP_STAT_NSTATS];
241994ed 132 unsigned long events[MEMCG_NR_EVENTS];
13114716 133 unsigned long nr_page_events;
7a159cc9 134 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
135};
136
5ac8fb31
JW
137struct reclaim_iter {
138 struct mem_cgroup *position;
527a5ec9
JW
139 /* scan generation, increased every round-trip */
140 unsigned int generation;
141};
142
6d12e2d8
KH
143/*
144 * per-zone information in memory controller.
145 */
6d12e2d8 146struct mem_cgroup_per_zone {
6290df54 147 struct lruvec lruvec;
1eb49272 148 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 149
5ac8fb31 150 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 151
bb4cc1a8 152 struct rb_node tree_node; /* RB tree node */
3e32cb2e 153 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
154 /* the soft limit is exceeded*/
155 bool on_tree;
d79154bb 156 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 157 /* use container_of */
6d12e2d8 158};
6d12e2d8
KH
159
160struct mem_cgroup_per_node {
161 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
162};
163
bb4cc1a8
AM
164/*
165 * Cgroups above their limits are maintained in a RB-Tree, independent of
166 * their hierarchy representation
167 */
168
169struct mem_cgroup_tree_per_zone {
170 struct rb_root rb_root;
171 spinlock_t lock;
172};
173
174struct mem_cgroup_tree_per_node {
175 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
176};
177
178struct mem_cgroup_tree {
179 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
180};
181
182static struct mem_cgroup_tree soft_limit_tree __read_mostly;
183
2e72b634
KS
184struct mem_cgroup_threshold {
185 struct eventfd_ctx *eventfd;
3e32cb2e 186 unsigned long threshold;
2e72b634
KS
187};
188
9490ff27 189/* For threshold */
2e72b634 190struct mem_cgroup_threshold_ary {
748dad36 191 /* An array index points to threshold just below or equal to usage. */
5407a562 192 int current_threshold;
2e72b634
KS
193 /* Size of entries[] */
194 unsigned int size;
195 /* Array of thresholds */
196 struct mem_cgroup_threshold entries[0];
197};
2c488db2
KS
198
199struct mem_cgroup_thresholds {
200 /* Primary thresholds array */
201 struct mem_cgroup_threshold_ary *primary;
202 /*
203 * Spare threshold array.
204 * This is needed to make mem_cgroup_unregister_event() "never fail".
205 * It must be able to store at least primary->size - 1 entries.
206 */
207 struct mem_cgroup_threshold_ary *spare;
208};
209
9490ff27
KH
210/* for OOM */
211struct mem_cgroup_eventfd_list {
212 struct list_head list;
213 struct eventfd_ctx *eventfd;
214};
2e72b634 215
79bd9814
TH
216/*
217 * cgroup_event represents events which userspace want to receive.
218 */
3bc942f3 219struct mem_cgroup_event {
79bd9814 220 /*
59b6f873 221 * memcg which the event belongs to.
79bd9814 222 */
59b6f873 223 struct mem_cgroup *memcg;
79bd9814
TH
224 /*
225 * eventfd to signal userspace about the event.
226 */
227 struct eventfd_ctx *eventfd;
228 /*
229 * Each of these stored in a list by the cgroup.
230 */
231 struct list_head list;
fba94807
TH
232 /*
233 * register_event() callback will be used to add new userspace
234 * waiter for changes related to this event. Use eventfd_signal()
235 * on eventfd to send notification to userspace.
236 */
59b6f873 237 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 238 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
239 /*
240 * unregister_event() callback will be called when userspace closes
241 * the eventfd or on cgroup removing. This callback must be set,
242 * if you want provide notification functionality.
243 */
59b6f873 244 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 245 struct eventfd_ctx *eventfd);
79bd9814
TH
246 /*
247 * All fields below needed to unregister event when
248 * userspace closes eventfd.
249 */
250 poll_table pt;
251 wait_queue_head_t *wqh;
252 wait_queue_t wait;
253 struct work_struct remove;
254};
255
c0ff4b85
R
256static void mem_cgroup_threshold(struct mem_cgroup *memcg);
257static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 258
8cdea7c0
BS
259/*
260 * The memory controller data structure. The memory controller controls both
261 * page cache and RSS per cgroup. We would eventually like to provide
262 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
263 * to help the administrator determine what knobs to tune.
8cdea7c0
BS
264 */
265struct mem_cgroup {
266 struct cgroup_subsys_state css;
3e32cb2e
JW
267
268 /* Accounted resources */
269 struct page_counter memory;
270 struct page_counter memsw;
271 struct page_counter kmem;
272
241994ed
JW
273 /* Normal memory consumption range */
274 unsigned long low;
275 unsigned long high;
276
3e32cb2e 277 unsigned long soft_limit;
59927fb9 278
70ddf637
AV
279 /* vmpressure notifications */
280 struct vmpressure vmpressure;
281
2f7dd7a4
JW
282 /* css_online() has been completed */
283 int initialized;
284
18f59ea7
BS
285 /*
286 * Should the accounting and control be hierarchical, per subtree?
287 */
288 bool use_hierarchy;
79dfdacc
MH
289
290 bool oom_lock;
291 atomic_t under_oom;
3812c8c8 292 atomic_t oom_wakeups;
79dfdacc 293
1f4c025b 294 int swappiness;
3c11ecf4
KH
295 /* OOM-Killer disable */
296 int oom_kill_disable;
a7885eb8 297
2e72b634
KS
298 /* protect arrays of thresholds */
299 struct mutex thresholds_lock;
300
301 /* thresholds for memory usage. RCU-protected */
2c488db2 302 struct mem_cgroup_thresholds thresholds;
907860ed 303
2e72b634 304 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 305 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 306
9490ff27
KH
307 /* For oom notifier event fd */
308 struct list_head oom_notify;
185efc0f 309
7dc74be0
DN
310 /*
311 * Should we move charges of a task when a task is moved into this
312 * mem_cgroup ? And what type of charges should we move ?
313 */
f894ffa8 314 unsigned long move_charge_at_immigrate;
619d094b
KH
315 /*
316 * set > 0 if pages under this cgroup are moving to other cgroup.
317 */
6de22619 318 atomic_t moving_account;
312734c0 319 /* taken only while moving_account > 0 */
6de22619
JW
320 spinlock_t move_lock;
321 struct task_struct *move_lock_task;
322 unsigned long move_lock_flags;
d52aa412 323 /*
c62b1a3b 324 * percpu counter.
d52aa412 325 */
3a7951b4 326 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c 327 spinlock_t pcp_counter_lock;
d1a4c0b3 328
4bd2c1ee 329#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 330 struct cg_proto tcp_mem;
d1a4c0b3 331#endif
2633d7a0 332#if defined(CONFIG_MEMCG_KMEM)
f7ce3190 333 /* Index in the kmem_cache->memcg_params.memcg_caches array */
2633d7a0 334 int kmemcg_id;
2788cf0c 335 bool kmem_acct_activated;
2a4db7eb 336 bool kmem_acct_active;
2633d7a0 337#endif
45cf7ebd
GC
338
339 int last_scanned_node;
340#if MAX_NUMNODES > 1
341 nodemask_t scan_nodes;
342 atomic_t numainfo_events;
343 atomic_t numainfo_updating;
344#endif
70ddf637 345
52ebea74
TH
346#ifdef CONFIG_CGROUP_WRITEBACK
347 struct list_head cgwb_list;
841710aa 348 struct wb_domain cgwb_domain;
52ebea74
TH
349#endif
350
fba94807
TH
351 /* List of events which userspace want to receive */
352 struct list_head event_list;
353 spinlock_t event_list_lock;
354
54f72fe0
JW
355 struct mem_cgroup_per_node *nodeinfo[0];
356 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
357};
358
510fc4e1 359#ifdef CONFIG_MEMCG_KMEM
cb731d6c 360bool memcg_kmem_is_active(struct mem_cgroup *memcg)
7de37682 361{
2a4db7eb 362 return memcg->kmem_acct_active;
7de37682 363}
510fc4e1
GC
364#endif
365
7dc74be0
DN
366/* Stuffs for move charges at task migration. */
367/*
1dfab5ab 368 * Types of charges to be moved.
7dc74be0 369 */
1dfab5ab
JW
370#define MOVE_ANON 0x1U
371#define MOVE_FILE 0x2U
372#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 373
4ffef5fe
DN
374/* "mc" and its members are protected by cgroup_mutex */
375static struct move_charge_struct {
b1dd693e 376 spinlock_t lock; /* for from, to */
4ffef5fe
DN
377 struct mem_cgroup *from;
378 struct mem_cgroup *to;
1dfab5ab 379 unsigned long flags;
4ffef5fe 380 unsigned long precharge;
854ffa8d 381 unsigned long moved_charge;
483c30b5 382 unsigned long moved_swap;
8033b97c
DN
383 struct task_struct *moving_task; /* a task moving charges */
384 wait_queue_head_t waitq; /* a waitq for other context */
385} mc = {
2bd9bb20 386 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
387 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
388};
4ffef5fe 389
4e416953
BS
390/*
391 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
392 * limit reclaim to prevent infinite loops, if they ever occur.
393 */
a0db00fc 394#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 395#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 396
217bc319
KH
397enum charge_type {
398 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 399 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 400 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 401 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
402 NR_CHARGE_TYPE,
403};
404
8c7c6e34 405/* for encoding cft->private value on file */
86ae53e1
GC
406enum res_type {
407 _MEM,
408 _MEMSWAP,
409 _OOM_TYPE,
510fc4e1 410 _KMEM,
86ae53e1
GC
411};
412
a0db00fc
KS
413#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
414#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 415#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
416/* Used for OOM nofiier */
417#define OOM_CONTROL (0)
8c7c6e34 418
0999821b
GC
419/*
420 * The memcg_create_mutex will be held whenever a new cgroup is created.
421 * As a consequence, any change that needs to protect against new child cgroups
422 * appearing has to hold it as well.
423 */
424static DEFINE_MUTEX(memcg_create_mutex);
425
b2145145
WL
426struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
427{
a7c6d554 428 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
429}
430
70ddf637
AV
431/* Some nice accessors for the vmpressure. */
432struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
433{
434 if (!memcg)
435 memcg = root_mem_cgroup;
436 return &memcg->vmpressure;
437}
438
439struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
440{
441 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
442}
443
7ffc0edc
MH
444static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
445{
446 return (memcg == root_mem_cgroup);
447}
448
4219b2da
LZ
449/*
450 * We restrict the id in the range of [1, 65535], so it can fit into
451 * an unsigned short.
452 */
453#define MEM_CGROUP_ID_MAX USHRT_MAX
454
34c00c31
LZ
455static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
456{
15a4c835 457 return memcg->css.id;
34c00c31
LZ
458}
459
adbe427b
VD
460/*
461 * A helper function to get mem_cgroup from ID. must be called under
462 * rcu_read_lock(). The caller is responsible for calling
463 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
464 * refcnt from swap can be called against removed memcg.)
465 */
34c00c31
LZ
466static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
467{
468 struct cgroup_subsys_state *css;
469
7d699ddb 470 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
471 return mem_cgroup_from_css(css);
472}
473
e1aab161 474/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 475#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 476
e1aab161
GC
477void sock_update_memcg(struct sock *sk)
478{
376be5ff 479 if (mem_cgroup_sockets_enabled) {
e1aab161 480 struct mem_cgroup *memcg;
3f134619 481 struct cg_proto *cg_proto;
e1aab161
GC
482
483 BUG_ON(!sk->sk_prot->proto_cgroup);
484
f3f511e1
GC
485 /* Socket cloning can throw us here with sk_cgrp already
486 * filled. It won't however, necessarily happen from
487 * process context. So the test for root memcg given
488 * the current task's memcg won't help us in this case.
489 *
490 * Respecting the original socket's memcg is a better
491 * decision in this case.
492 */
493 if (sk->sk_cgrp) {
494 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 495 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
496 return;
497 }
498
e1aab161
GC
499 rcu_read_lock();
500 memcg = mem_cgroup_from_task(current);
3f134619 501 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 502 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
503 memcg_proto_active(cg_proto) &&
504 css_tryget_online(&memcg->css)) {
3f134619 505 sk->sk_cgrp = cg_proto;
e1aab161
GC
506 }
507 rcu_read_unlock();
508 }
509}
510EXPORT_SYMBOL(sock_update_memcg);
511
512void sock_release_memcg(struct sock *sk)
513{
376be5ff 514 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
515 struct mem_cgroup *memcg;
516 WARN_ON(!sk->sk_cgrp->memcg);
517 memcg = sk->sk_cgrp->memcg;
5347e5ae 518 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
519 }
520}
d1a4c0b3
GC
521
522struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
523{
524 if (!memcg || mem_cgroup_is_root(memcg))
525 return NULL;
526
2e685cad 527 return &memcg->tcp_mem;
d1a4c0b3
GC
528}
529EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 530
3f134619
GC
531#endif
532
a8964b9b 533#ifdef CONFIG_MEMCG_KMEM
55007d84 534/*
f7ce3190 535 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
536 * The main reason for not using cgroup id for this:
537 * this works better in sparse environments, where we have a lot of memcgs,
538 * but only a few kmem-limited. Or also, if we have, for instance, 200
539 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
540 * 200 entry array for that.
55007d84 541 *
dbcf73e2
VD
542 * The current size of the caches array is stored in memcg_nr_cache_ids. It
543 * will double each time we have to increase it.
55007d84 544 */
dbcf73e2
VD
545static DEFINE_IDA(memcg_cache_ida);
546int memcg_nr_cache_ids;
749c5415 547
05257a1a
VD
548/* Protects memcg_nr_cache_ids */
549static DECLARE_RWSEM(memcg_cache_ids_sem);
550
551void memcg_get_cache_ids(void)
552{
553 down_read(&memcg_cache_ids_sem);
554}
555
556void memcg_put_cache_ids(void)
557{
558 up_read(&memcg_cache_ids_sem);
559}
560
55007d84
GC
561/*
562 * MIN_SIZE is different than 1, because we would like to avoid going through
563 * the alloc/free process all the time. In a small machine, 4 kmem-limited
564 * cgroups is a reasonable guess. In the future, it could be a parameter or
565 * tunable, but that is strictly not necessary.
566 *
b8627835 567 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
568 * this constant directly from cgroup, but it is understandable that this is
569 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 570 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
571 * increase ours as well if it increases.
572 */
573#define MEMCG_CACHES_MIN_SIZE 4
b8627835 574#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 575
d7f25f8a
GC
576/*
577 * A lot of the calls to the cache allocation functions are expected to be
578 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
579 * conditional to this static branch, we'll have to allow modules that does
580 * kmem_cache_alloc and the such to see this symbol as well
581 */
a8964b9b 582struct static_key memcg_kmem_enabled_key;
d7f25f8a 583EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 584
a8964b9b
GC
585#endif /* CONFIG_MEMCG_KMEM */
586
f64c3f54 587static struct mem_cgroup_per_zone *
e231875b 588mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 589{
e231875b
JZ
590 int nid = zone_to_nid(zone);
591 int zid = zone_idx(zone);
592
54f72fe0 593 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
594}
595
c0ff4b85 596struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 597{
c0ff4b85 598 return &memcg->css;
d324236b
WF
599}
600
ad7fa852
TH
601/**
602 * mem_cgroup_css_from_page - css of the memcg associated with a page
603 * @page: page of interest
604 *
605 * If memcg is bound to the default hierarchy, css of the memcg associated
606 * with @page is returned. The returned css remains associated with @page
607 * until it is released.
608 *
609 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
610 * is returned.
611 *
612 * XXX: The above description of behavior on the default hierarchy isn't
613 * strictly true yet as replace_page_cache_page() can modify the
614 * association before @page is released even on the default hierarchy;
615 * however, the current and planned usages don't mix the the two functions
616 * and replace_page_cache_page() will soon be updated to make the invariant
617 * actually true.
618 */
619struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
620{
621 struct mem_cgroup *memcg;
622
623 rcu_read_lock();
624
625 memcg = page->mem_cgroup;
626
627 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
628 memcg = root_mem_cgroup;
629
630 rcu_read_unlock();
631 return &memcg->css;
632}
633
f64c3f54 634static struct mem_cgroup_per_zone *
e231875b 635mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 636{
97a6c37b
JW
637 int nid = page_to_nid(page);
638 int zid = page_zonenum(page);
f64c3f54 639
e231875b 640 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
641}
642
bb4cc1a8
AM
643static struct mem_cgroup_tree_per_zone *
644soft_limit_tree_node_zone(int nid, int zid)
645{
646 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
647}
648
649static struct mem_cgroup_tree_per_zone *
650soft_limit_tree_from_page(struct page *page)
651{
652 int nid = page_to_nid(page);
653 int zid = page_zonenum(page);
654
655 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
656}
657
cf2c8127
JW
658static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
659 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 660 unsigned long new_usage_in_excess)
bb4cc1a8
AM
661{
662 struct rb_node **p = &mctz->rb_root.rb_node;
663 struct rb_node *parent = NULL;
664 struct mem_cgroup_per_zone *mz_node;
665
666 if (mz->on_tree)
667 return;
668
669 mz->usage_in_excess = new_usage_in_excess;
670 if (!mz->usage_in_excess)
671 return;
672 while (*p) {
673 parent = *p;
674 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
675 tree_node);
676 if (mz->usage_in_excess < mz_node->usage_in_excess)
677 p = &(*p)->rb_left;
678 /*
679 * We can't avoid mem cgroups that are over their soft
680 * limit by the same amount
681 */
682 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
683 p = &(*p)->rb_right;
684 }
685 rb_link_node(&mz->tree_node, parent, p);
686 rb_insert_color(&mz->tree_node, &mctz->rb_root);
687 mz->on_tree = true;
688}
689
cf2c8127
JW
690static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
691 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
692{
693 if (!mz->on_tree)
694 return;
695 rb_erase(&mz->tree_node, &mctz->rb_root);
696 mz->on_tree = false;
697}
698
cf2c8127
JW
699static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
700 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 701{
0a31bc97
JW
702 unsigned long flags;
703
704 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 705 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 706 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
707}
708
3e32cb2e
JW
709static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
710{
711 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 712 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
713 unsigned long excess = 0;
714
715 if (nr_pages > soft_limit)
716 excess = nr_pages - soft_limit;
717
718 return excess;
719}
bb4cc1a8
AM
720
721static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
722{
3e32cb2e 723 unsigned long excess;
bb4cc1a8
AM
724 struct mem_cgroup_per_zone *mz;
725 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 726
e231875b 727 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
728 /*
729 * Necessary to update all ancestors when hierarchy is used.
730 * because their event counter is not touched.
731 */
732 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 733 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 734 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
735 /*
736 * We have to update the tree if mz is on RB-tree or
737 * mem is over its softlimit.
738 */
739 if (excess || mz->on_tree) {
0a31bc97
JW
740 unsigned long flags;
741
742 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
743 /* if on-tree, remove it */
744 if (mz->on_tree)
cf2c8127 745 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
746 /*
747 * Insert again. mz->usage_in_excess will be updated.
748 * If excess is 0, no tree ops.
749 */
cf2c8127 750 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 751 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
752 }
753 }
754}
755
756static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
757{
bb4cc1a8 758 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
759 struct mem_cgroup_per_zone *mz;
760 int nid, zid;
bb4cc1a8 761
e231875b
JZ
762 for_each_node(nid) {
763 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
764 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
765 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 766 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
767 }
768 }
769}
770
771static struct mem_cgroup_per_zone *
772__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
773{
774 struct rb_node *rightmost = NULL;
775 struct mem_cgroup_per_zone *mz;
776
777retry:
778 mz = NULL;
779 rightmost = rb_last(&mctz->rb_root);
780 if (!rightmost)
781 goto done; /* Nothing to reclaim from */
782
783 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
784 /*
785 * Remove the node now but someone else can add it back,
786 * we will to add it back at the end of reclaim to its correct
787 * position in the tree.
788 */
cf2c8127 789 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 790 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 791 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
792 goto retry;
793done:
794 return mz;
795}
796
797static struct mem_cgroup_per_zone *
798mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
799{
800 struct mem_cgroup_per_zone *mz;
801
0a31bc97 802 spin_lock_irq(&mctz->lock);
bb4cc1a8 803 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 804 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
805 return mz;
806}
807
711d3d2c
KH
808/*
809 * Implementation Note: reading percpu statistics for memcg.
810 *
811 * Both of vmstat[] and percpu_counter has threshold and do periodic
812 * synchronization to implement "quick" read. There are trade-off between
813 * reading cost and precision of value. Then, we may have a chance to implement
814 * a periodic synchronizion of counter in memcg's counter.
815 *
816 * But this _read() function is used for user interface now. The user accounts
817 * memory usage by memory cgroup and he _always_ requires exact value because
818 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
819 * have to visit all online cpus and make sum. So, for now, unnecessary
820 * synchronization is not implemented. (just implemented for cpu hotplug)
821 *
822 * If there are kernel internal actions which can make use of some not-exact
823 * value, and reading all cpu value can be performance bottleneck in some
824 * common workload, threashold and synchonization as vmstat[] should be
825 * implemented.
826 */
c0ff4b85 827static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 828 enum mem_cgroup_stat_index idx)
c62b1a3b 829{
7a159cc9 830 long val = 0;
c62b1a3b 831 int cpu;
c62b1a3b 832
733a572e 833 for_each_possible_cpu(cpu)
c0ff4b85 834 val += per_cpu(memcg->stat->count[idx], cpu);
c62b1a3b
KH
835 return val;
836}
837
c0ff4b85 838static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
839 enum mem_cgroup_events_index idx)
840{
841 unsigned long val = 0;
842 int cpu;
843
733a572e 844 for_each_possible_cpu(cpu)
c0ff4b85 845 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
846 return val;
847}
848
c0ff4b85 849static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 850 struct page *page,
0a31bc97 851 int nr_pages)
d52aa412 852{
b2402857
KH
853 /*
854 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
855 * counted as CACHE even if it's on ANON LRU.
856 */
0a31bc97 857 if (PageAnon(page))
b2402857 858 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 859 nr_pages);
d52aa412 860 else
b2402857 861 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 862 nr_pages);
55e462b0 863
b070e65c
DR
864 if (PageTransHuge(page))
865 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
866 nr_pages);
867
e401f176
KH
868 /* pagein of a big page is an event. So, ignore page size */
869 if (nr_pages > 0)
c0ff4b85 870 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 871 else {
c0ff4b85 872 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
873 nr_pages = -nr_pages; /* for event */
874 }
e401f176 875
13114716 876 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
877}
878
e231875b 879unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
880{
881 struct mem_cgroup_per_zone *mz;
882
883 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
884 return mz->lru_size[lru];
885}
886
e231875b
JZ
887static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
888 int nid,
889 unsigned int lru_mask)
bb2a0de9 890{
e231875b 891 unsigned long nr = 0;
889976db
YH
892 int zid;
893
e231875b 894 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 895
e231875b
JZ
896 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
897 struct mem_cgroup_per_zone *mz;
898 enum lru_list lru;
899
900 for_each_lru(lru) {
901 if (!(BIT(lru) & lru_mask))
902 continue;
903 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
904 nr += mz->lru_size[lru];
905 }
906 }
907 return nr;
889976db 908}
bb2a0de9 909
c0ff4b85 910static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 911 unsigned int lru_mask)
6d12e2d8 912{
e231875b 913 unsigned long nr = 0;
889976db 914 int nid;
6d12e2d8 915
31aaea4a 916 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
917 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
918 return nr;
d52aa412
KH
919}
920
f53d7ce3
JW
921static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
922 enum mem_cgroup_events_target target)
7a159cc9
JW
923{
924 unsigned long val, next;
925
13114716 926 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 927 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 928 /* from time_after() in jiffies.h */
f53d7ce3
JW
929 if ((long)next - (long)val < 0) {
930 switch (target) {
931 case MEM_CGROUP_TARGET_THRESH:
932 next = val + THRESHOLDS_EVENTS_TARGET;
933 break;
bb4cc1a8
AM
934 case MEM_CGROUP_TARGET_SOFTLIMIT:
935 next = val + SOFTLIMIT_EVENTS_TARGET;
936 break;
f53d7ce3
JW
937 case MEM_CGROUP_TARGET_NUMAINFO:
938 next = val + NUMAINFO_EVENTS_TARGET;
939 break;
940 default:
941 break;
942 }
943 __this_cpu_write(memcg->stat->targets[target], next);
944 return true;
7a159cc9 945 }
f53d7ce3 946 return false;
d2265e6f
KH
947}
948
949/*
950 * Check events in order.
951 *
952 */
c0ff4b85 953static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
954{
955 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
956 if (unlikely(mem_cgroup_event_ratelimit(memcg,
957 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 958 bool do_softlimit;
82b3f2a7 959 bool do_numainfo __maybe_unused;
f53d7ce3 960
bb4cc1a8
AM
961 do_softlimit = mem_cgroup_event_ratelimit(memcg,
962 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
963#if MAX_NUMNODES > 1
964 do_numainfo = mem_cgroup_event_ratelimit(memcg,
965 MEM_CGROUP_TARGET_NUMAINFO);
966#endif
c0ff4b85 967 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
968 if (unlikely(do_softlimit))
969 mem_cgroup_update_tree(memcg, page);
453a9bf3 970#if MAX_NUMNODES > 1
f53d7ce3 971 if (unlikely(do_numainfo))
c0ff4b85 972 atomic_inc(&memcg->numainfo_events);
453a9bf3 973#endif
0a31bc97 974 }
d2265e6f
KH
975}
976
cf475ad2 977struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 978{
31a78f23
BS
979 /*
980 * mm_update_next_owner() may clear mm->owner to NULL
981 * if it races with swapoff, page migration, etc.
982 * So this can be called with p == NULL.
983 */
984 if (unlikely(!p))
985 return NULL;
986
073219e9 987 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
988}
989
df381975 990static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 991{
c0ff4b85 992 struct mem_cgroup *memcg = NULL;
0b7f569e 993
54595fe2
KH
994 rcu_read_lock();
995 do {
6f6acb00
MH
996 /*
997 * Page cache insertions can happen withou an
998 * actual mm context, e.g. during disk probing
999 * on boot, loopback IO, acct() writes etc.
1000 */
1001 if (unlikely(!mm))
df381975 1002 memcg = root_mem_cgroup;
6f6acb00
MH
1003 else {
1004 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1005 if (unlikely(!memcg))
1006 memcg = root_mem_cgroup;
1007 }
ec903c0c 1008 } while (!css_tryget_online(&memcg->css));
54595fe2 1009 rcu_read_unlock();
c0ff4b85 1010 return memcg;
54595fe2
KH
1011}
1012
5660048c
JW
1013/**
1014 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1015 * @root: hierarchy root
1016 * @prev: previously returned memcg, NULL on first invocation
1017 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1018 *
1019 * Returns references to children of the hierarchy below @root, or
1020 * @root itself, or %NULL after a full round-trip.
1021 *
1022 * Caller must pass the return value in @prev on subsequent
1023 * invocations for reference counting, or use mem_cgroup_iter_break()
1024 * to cancel a hierarchy walk before the round-trip is complete.
1025 *
1026 * Reclaimers can specify a zone and a priority level in @reclaim to
1027 * divide up the memcgs in the hierarchy among all concurrent
1028 * reclaimers operating on the same zone and priority.
1029 */
694fbc0f 1030struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1031 struct mem_cgroup *prev,
694fbc0f 1032 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1033{
5ac8fb31
JW
1034 struct reclaim_iter *uninitialized_var(iter);
1035 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1036 struct mem_cgroup *memcg = NULL;
5ac8fb31 1037 struct mem_cgroup *pos = NULL;
711d3d2c 1038
694fbc0f
AM
1039 if (mem_cgroup_disabled())
1040 return NULL;
5660048c 1041
9f3a0d09
JW
1042 if (!root)
1043 root = root_mem_cgroup;
7d74b06f 1044
9f3a0d09 1045 if (prev && !reclaim)
5ac8fb31 1046 pos = prev;
14067bb3 1047
9f3a0d09
JW
1048 if (!root->use_hierarchy && root != root_mem_cgroup) {
1049 if (prev)
5ac8fb31 1050 goto out;
694fbc0f 1051 return root;
9f3a0d09 1052 }
14067bb3 1053
542f85f9 1054 rcu_read_lock();
5f578161 1055
5ac8fb31
JW
1056 if (reclaim) {
1057 struct mem_cgroup_per_zone *mz;
1058
1059 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1060 iter = &mz->iter[reclaim->priority];
1061
1062 if (prev && reclaim->generation != iter->generation)
1063 goto out_unlock;
1064
1065 do {
4db0c3c2 1066 pos = READ_ONCE(iter->position);
5ac8fb31
JW
1067 /*
1068 * A racing update may change the position and
1069 * put the last reference, hence css_tryget(),
1070 * or retry to see the updated position.
1071 */
1072 } while (pos && !css_tryget(&pos->css));
1073 }
1074
1075 if (pos)
1076 css = &pos->css;
1077
1078 for (;;) {
1079 css = css_next_descendant_pre(css, &root->css);
1080 if (!css) {
1081 /*
1082 * Reclaimers share the hierarchy walk, and a
1083 * new one might jump in right at the end of
1084 * the hierarchy - make sure they see at least
1085 * one group and restart from the beginning.
1086 */
1087 if (!prev)
1088 continue;
1089 break;
527a5ec9 1090 }
7d74b06f 1091
5ac8fb31
JW
1092 /*
1093 * Verify the css and acquire a reference. The root
1094 * is provided by the caller, so we know it's alive
1095 * and kicking, and don't take an extra reference.
1096 */
1097 memcg = mem_cgroup_from_css(css);
14067bb3 1098
5ac8fb31
JW
1099 if (css == &root->css)
1100 break;
14067bb3 1101
b2052564 1102 if (css_tryget(css)) {
5ac8fb31
JW
1103 /*
1104 * Make sure the memcg is initialized:
1105 * mem_cgroup_css_online() orders the the
1106 * initialization against setting the flag.
1107 */
1108 if (smp_load_acquire(&memcg->initialized))
1109 break;
542f85f9 1110
5ac8fb31 1111 css_put(css);
527a5ec9 1112 }
9f3a0d09 1113
5ac8fb31 1114 memcg = NULL;
9f3a0d09 1115 }
5ac8fb31
JW
1116
1117 if (reclaim) {
1118 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1119 if (memcg)
1120 css_get(&memcg->css);
1121 if (pos)
1122 css_put(&pos->css);
1123 }
1124
1125 /*
1126 * pairs with css_tryget when dereferencing iter->position
1127 * above.
1128 */
1129 if (pos)
1130 css_put(&pos->css);
1131
1132 if (!memcg)
1133 iter->generation++;
1134 else if (!prev)
1135 reclaim->generation = iter->generation;
9f3a0d09 1136 }
5ac8fb31 1137
542f85f9
MH
1138out_unlock:
1139 rcu_read_unlock();
5ac8fb31 1140out:
c40046f3
MH
1141 if (prev && prev != root)
1142 css_put(&prev->css);
1143
9f3a0d09 1144 return memcg;
14067bb3 1145}
7d74b06f 1146
5660048c
JW
1147/**
1148 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1149 * @root: hierarchy root
1150 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1151 */
1152void mem_cgroup_iter_break(struct mem_cgroup *root,
1153 struct mem_cgroup *prev)
9f3a0d09
JW
1154{
1155 if (!root)
1156 root = root_mem_cgroup;
1157 if (prev && prev != root)
1158 css_put(&prev->css);
1159}
7d74b06f 1160
9f3a0d09
JW
1161/*
1162 * Iteration constructs for visiting all cgroups (under a tree). If
1163 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1164 * be used for reference counting.
1165 */
1166#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1167 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1168 iter != NULL; \
527a5ec9 1169 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1170
9f3a0d09 1171#define for_each_mem_cgroup(iter) \
527a5ec9 1172 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1173 iter != NULL; \
527a5ec9 1174 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1175
68ae564b 1176void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1177{
c0ff4b85 1178 struct mem_cgroup *memcg;
456f998e 1179
456f998e 1180 rcu_read_lock();
c0ff4b85
R
1181 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1182 if (unlikely(!memcg))
456f998e
YH
1183 goto out;
1184
1185 switch (idx) {
456f998e 1186 case PGFAULT:
0e574a93
JW
1187 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1188 break;
1189 case PGMAJFAULT:
1190 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1191 break;
1192 default:
1193 BUG();
1194 }
1195out:
1196 rcu_read_unlock();
1197}
68ae564b 1198EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1199
925b7673
JW
1200/**
1201 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1202 * @zone: zone of the wanted lruvec
fa9add64 1203 * @memcg: memcg of the wanted lruvec
925b7673
JW
1204 *
1205 * Returns the lru list vector holding pages for the given @zone and
1206 * @mem. This can be the global zone lruvec, if the memory controller
1207 * is disabled.
1208 */
1209struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1210 struct mem_cgroup *memcg)
1211{
1212 struct mem_cgroup_per_zone *mz;
bea8c150 1213 struct lruvec *lruvec;
925b7673 1214
bea8c150
HD
1215 if (mem_cgroup_disabled()) {
1216 lruvec = &zone->lruvec;
1217 goto out;
1218 }
925b7673 1219
e231875b 1220 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1221 lruvec = &mz->lruvec;
1222out:
1223 /*
1224 * Since a node can be onlined after the mem_cgroup was created,
1225 * we have to be prepared to initialize lruvec->zone here;
1226 * and if offlined then reonlined, we need to reinitialize it.
1227 */
1228 if (unlikely(lruvec->zone != zone))
1229 lruvec->zone = zone;
1230 return lruvec;
925b7673
JW
1231}
1232
925b7673 1233/**
dfe0e773 1234 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1235 * @page: the page
fa9add64 1236 * @zone: zone of the page
dfe0e773
JW
1237 *
1238 * This function is only safe when following the LRU page isolation
1239 * and putback protocol: the LRU lock must be held, and the page must
1240 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1241 */
fa9add64 1242struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1243{
08e552c6 1244 struct mem_cgroup_per_zone *mz;
925b7673 1245 struct mem_cgroup *memcg;
bea8c150 1246 struct lruvec *lruvec;
6d12e2d8 1247
bea8c150
HD
1248 if (mem_cgroup_disabled()) {
1249 lruvec = &zone->lruvec;
1250 goto out;
1251 }
925b7673 1252
1306a85a 1253 memcg = page->mem_cgroup;
7512102c 1254 /*
dfe0e773 1255 * Swapcache readahead pages are added to the LRU - and
29833315 1256 * possibly migrated - before they are charged.
7512102c 1257 */
29833315
JW
1258 if (!memcg)
1259 memcg = root_mem_cgroup;
7512102c 1260
e231875b 1261 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1262 lruvec = &mz->lruvec;
1263out:
1264 /*
1265 * Since a node can be onlined after the mem_cgroup was created,
1266 * we have to be prepared to initialize lruvec->zone here;
1267 * and if offlined then reonlined, we need to reinitialize it.
1268 */
1269 if (unlikely(lruvec->zone != zone))
1270 lruvec->zone = zone;
1271 return lruvec;
08e552c6 1272}
b69408e8 1273
925b7673 1274/**
fa9add64
HD
1275 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1276 * @lruvec: mem_cgroup per zone lru vector
1277 * @lru: index of lru list the page is sitting on
1278 * @nr_pages: positive when adding or negative when removing
925b7673 1279 *
fa9add64
HD
1280 * This function must be called when a page is added to or removed from an
1281 * lru list.
3f58a829 1282 */
fa9add64
HD
1283void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1284 int nr_pages)
3f58a829
MK
1285{
1286 struct mem_cgroup_per_zone *mz;
fa9add64 1287 unsigned long *lru_size;
3f58a829
MK
1288
1289 if (mem_cgroup_disabled())
1290 return;
1291
fa9add64
HD
1292 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1293 lru_size = mz->lru_size + lru;
1294 *lru_size += nr_pages;
1295 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1296}
544122e5 1297
2314b42d 1298bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1299{
2314b42d 1300 if (root == memcg)
91c63734 1301 return true;
2314b42d 1302 if (!root->use_hierarchy)
91c63734 1303 return false;
2314b42d 1304 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1305}
1306
2314b42d 1307bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1308{
2314b42d 1309 struct mem_cgroup *task_memcg;
158e0a2d 1310 struct task_struct *p;
ffbdccf5 1311 bool ret;
4c4a2214 1312
158e0a2d 1313 p = find_lock_task_mm(task);
de077d22 1314 if (p) {
2314b42d 1315 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1316 task_unlock(p);
1317 } else {
1318 /*
1319 * All threads may have already detached their mm's, but the oom
1320 * killer still needs to detect if they have already been oom
1321 * killed to prevent needlessly killing additional tasks.
1322 */
ffbdccf5 1323 rcu_read_lock();
2314b42d
JW
1324 task_memcg = mem_cgroup_from_task(task);
1325 css_get(&task_memcg->css);
ffbdccf5 1326 rcu_read_unlock();
de077d22 1327 }
2314b42d
JW
1328 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1329 css_put(&task_memcg->css);
4c4a2214
DR
1330 return ret;
1331}
1332
c56d5c7d 1333int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1334{
9b272977 1335 unsigned long inactive_ratio;
14797e23 1336 unsigned long inactive;
9b272977 1337 unsigned long active;
c772be93 1338 unsigned long gb;
14797e23 1339
4d7dcca2
HD
1340 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1341 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1342
c772be93
KM
1343 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1344 if (gb)
1345 inactive_ratio = int_sqrt(10 * gb);
1346 else
1347 inactive_ratio = 1;
1348
9b272977 1349 return inactive * inactive_ratio < active;
14797e23
KM
1350}
1351
90cbc250
VD
1352bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1353{
1354 struct mem_cgroup_per_zone *mz;
1355 struct mem_cgroup *memcg;
1356
1357 if (mem_cgroup_disabled())
1358 return true;
1359
1360 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1361 memcg = mz->memcg;
1362
1363 return !!(memcg->css.flags & CSS_ONLINE);
1364}
1365
3e32cb2e 1366#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1367 container_of(counter, struct mem_cgroup, member)
1368
19942822 1369/**
9d11ea9f 1370 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1371 * @memcg: the memory cgroup
19942822 1372 *
9d11ea9f 1373 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1374 * pages.
19942822 1375 */
c0ff4b85 1376static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1377{
3e32cb2e
JW
1378 unsigned long margin = 0;
1379 unsigned long count;
1380 unsigned long limit;
9d11ea9f 1381
3e32cb2e 1382 count = page_counter_read(&memcg->memory);
4db0c3c2 1383 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1384 if (count < limit)
1385 margin = limit - count;
1386
1387 if (do_swap_account) {
1388 count = page_counter_read(&memcg->memsw);
4db0c3c2 1389 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1390 if (count <= limit)
1391 margin = min(margin, limit - count);
1392 }
1393
1394 return margin;
19942822
JW
1395}
1396
1f4c025b 1397int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1398{
a7885eb8 1399 /* root ? */
14208b0e 1400 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1401 return vm_swappiness;
1402
bf1ff263 1403 return memcg->swappiness;
a7885eb8
KM
1404}
1405
32047e2a 1406/*
bdcbb659 1407 * A routine for checking "mem" is under move_account() or not.
32047e2a 1408 *
bdcbb659
QH
1409 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1410 * moving cgroups. This is for waiting at high-memory pressure
1411 * caused by "move".
32047e2a 1412 */
c0ff4b85 1413static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1414{
2bd9bb20
KH
1415 struct mem_cgroup *from;
1416 struct mem_cgroup *to;
4b534334 1417 bool ret = false;
2bd9bb20
KH
1418 /*
1419 * Unlike task_move routines, we access mc.to, mc.from not under
1420 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1421 */
1422 spin_lock(&mc.lock);
1423 from = mc.from;
1424 to = mc.to;
1425 if (!from)
1426 goto unlock;
3e92041d 1427
2314b42d
JW
1428 ret = mem_cgroup_is_descendant(from, memcg) ||
1429 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1430unlock:
1431 spin_unlock(&mc.lock);
4b534334
KH
1432 return ret;
1433}
1434
c0ff4b85 1435static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1436{
1437 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1438 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1439 DEFINE_WAIT(wait);
1440 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1441 /* moving charge context might have finished. */
1442 if (mc.moving_task)
1443 schedule();
1444 finish_wait(&mc.waitq, &wait);
1445 return true;
1446 }
1447 }
1448 return false;
1449}
1450
58cf188e 1451#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1452/**
58cf188e 1453 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1454 * @memcg: The memory cgroup that went over limit
1455 * @p: Task that is going to be killed
1456 *
1457 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1458 * enabled
1459 */
1460void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1461{
e61734c5 1462 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1463 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1464 struct mem_cgroup *iter;
1465 unsigned int i;
e222432b 1466
08088cb9 1467 mutex_lock(&oom_info_lock);
e222432b
BS
1468 rcu_read_lock();
1469
2415b9f5
BV
1470 if (p) {
1471 pr_info("Task in ");
1472 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1473 pr_cont(" killed as a result of limit of ");
1474 } else {
1475 pr_info("Memory limit reached of cgroup ");
1476 }
1477
e61734c5 1478 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1479 pr_cont("\n");
e222432b 1480
e222432b
BS
1481 rcu_read_unlock();
1482
3e32cb2e
JW
1483 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1484 K((u64)page_counter_read(&memcg->memory)),
1485 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1486 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1487 K((u64)page_counter_read(&memcg->memsw)),
1488 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1489 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1490 K((u64)page_counter_read(&memcg->kmem)),
1491 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1492
1493 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1494 pr_info("Memory cgroup stats for ");
1495 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1496 pr_cont(":");
1497
1498 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1499 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1500 continue;
1501 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1502 K(mem_cgroup_read_stat(iter, i)));
1503 }
1504
1505 for (i = 0; i < NR_LRU_LISTS; i++)
1506 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1507 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1508
1509 pr_cont("\n");
1510 }
08088cb9 1511 mutex_unlock(&oom_info_lock);
e222432b
BS
1512}
1513
81d39c20
KH
1514/*
1515 * This function returns the number of memcg under hierarchy tree. Returns
1516 * 1(self count) if no children.
1517 */
c0ff4b85 1518static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1519{
1520 int num = 0;
7d74b06f
KH
1521 struct mem_cgroup *iter;
1522
c0ff4b85 1523 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1524 num++;
81d39c20
KH
1525 return num;
1526}
1527
a63d83f4
DR
1528/*
1529 * Return the memory (and swap, if configured) limit for a memcg.
1530 */
3e32cb2e 1531static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1532{
3e32cb2e 1533 unsigned long limit;
f3e8eb70 1534
3e32cb2e 1535 limit = memcg->memory.limit;
9a5a8f19 1536 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1537 unsigned long memsw_limit;
9a5a8f19 1538
3e32cb2e
JW
1539 memsw_limit = memcg->memsw.limit;
1540 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1541 }
9a5a8f19 1542 return limit;
a63d83f4
DR
1543}
1544
19965460
DR
1545static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1546 int order)
9cbb78bb
DR
1547{
1548 struct mem_cgroup *iter;
1549 unsigned long chosen_points = 0;
1550 unsigned long totalpages;
1551 unsigned int points = 0;
1552 struct task_struct *chosen = NULL;
1553
876aafbf 1554 /*
465adcf1
DR
1555 * If current has a pending SIGKILL or is exiting, then automatically
1556 * select it. The goal is to allow it to allocate so that it may
1557 * quickly exit and free its memory.
876aafbf 1558 */
d003f371 1559 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
49550b60 1560 mark_tsk_oom_victim(current);
876aafbf
DR
1561 return;
1562 }
1563
2415b9f5 1564 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
3e32cb2e 1565 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1566 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1567 struct css_task_iter it;
9cbb78bb
DR
1568 struct task_struct *task;
1569
72ec7029
TH
1570 css_task_iter_start(&iter->css, &it);
1571 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1572 switch (oom_scan_process_thread(task, totalpages, NULL,
1573 false)) {
1574 case OOM_SCAN_SELECT:
1575 if (chosen)
1576 put_task_struct(chosen);
1577 chosen = task;
1578 chosen_points = ULONG_MAX;
1579 get_task_struct(chosen);
1580 /* fall through */
1581 case OOM_SCAN_CONTINUE:
1582 continue;
1583 case OOM_SCAN_ABORT:
72ec7029 1584 css_task_iter_end(&it);
9cbb78bb
DR
1585 mem_cgroup_iter_break(memcg, iter);
1586 if (chosen)
1587 put_task_struct(chosen);
1588 return;
1589 case OOM_SCAN_OK:
1590 break;
1591 };
1592 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1593 if (!points || points < chosen_points)
1594 continue;
1595 /* Prefer thread group leaders for display purposes */
1596 if (points == chosen_points &&
1597 thread_group_leader(chosen))
1598 continue;
1599
1600 if (chosen)
1601 put_task_struct(chosen);
1602 chosen = task;
1603 chosen_points = points;
1604 get_task_struct(chosen);
9cbb78bb 1605 }
72ec7029 1606 css_task_iter_end(&it);
9cbb78bb
DR
1607 }
1608
1609 if (!chosen)
1610 return;
1611 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1612 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1613 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1614}
1615
ae6e71d3
MC
1616#if MAX_NUMNODES > 1
1617
4d0c066d
KH
1618/**
1619 * test_mem_cgroup_node_reclaimable
dad7557e 1620 * @memcg: the target memcg
4d0c066d
KH
1621 * @nid: the node ID to be checked.
1622 * @noswap : specify true here if the user wants flle only information.
1623 *
1624 * This function returns whether the specified memcg contains any
1625 * reclaimable pages on a node. Returns true if there are any reclaimable
1626 * pages in the node.
1627 */
c0ff4b85 1628static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1629 int nid, bool noswap)
1630{
c0ff4b85 1631 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1632 return true;
1633 if (noswap || !total_swap_pages)
1634 return false;
c0ff4b85 1635 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1636 return true;
1637 return false;
1638
1639}
889976db
YH
1640
1641/*
1642 * Always updating the nodemask is not very good - even if we have an empty
1643 * list or the wrong list here, we can start from some node and traverse all
1644 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1645 *
1646 */
c0ff4b85 1647static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1648{
1649 int nid;
453a9bf3
KH
1650 /*
1651 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1652 * pagein/pageout changes since the last update.
1653 */
c0ff4b85 1654 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1655 return;
c0ff4b85 1656 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1657 return;
1658
889976db 1659 /* make a nodemask where this memcg uses memory from */
31aaea4a 1660 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1661
31aaea4a 1662 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1663
c0ff4b85
R
1664 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1665 node_clear(nid, memcg->scan_nodes);
889976db 1666 }
453a9bf3 1667
c0ff4b85
R
1668 atomic_set(&memcg->numainfo_events, 0);
1669 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1670}
1671
1672/*
1673 * Selecting a node where we start reclaim from. Because what we need is just
1674 * reducing usage counter, start from anywhere is O,K. Considering
1675 * memory reclaim from current node, there are pros. and cons.
1676 *
1677 * Freeing memory from current node means freeing memory from a node which
1678 * we'll use or we've used. So, it may make LRU bad. And if several threads
1679 * hit limits, it will see a contention on a node. But freeing from remote
1680 * node means more costs for memory reclaim because of memory latency.
1681 *
1682 * Now, we use round-robin. Better algorithm is welcomed.
1683 */
c0ff4b85 1684int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1685{
1686 int node;
1687
c0ff4b85
R
1688 mem_cgroup_may_update_nodemask(memcg);
1689 node = memcg->last_scanned_node;
889976db 1690
c0ff4b85 1691 node = next_node(node, memcg->scan_nodes);
889976db 1692 if (node == MAX_NUMNODES)
c0ff4b85 1693 node = first_node(memcg->scan_nodes);
889976db
YH
1694 /*
1695 * We call this when we hit limit, not when pages are added to LRU.
1696 * No LRU may hold pages because all pages are UNEVICTABLE or
1697 * memcg is too small and all pages are not on LRU. In that case,
1698 * we use curret node.
1699 */
1700 if (unlikely(node == MAX_NUMNODES))
1701 node = numa_node_id();
1702
c0ff4b85 1703 memcg->last_scanned_node = node;
889976db
YH
1704 return node;
1705}
889976db 1706#else
c0ff4b85 1707int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1708{
1709 return 0;
1710}
1711#endif
1712
0608f43d
AM
1713static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1714 struct zone *zone,
1715 gfp_t gfp_mask,
1716 unsigned long *total_scanned)
1717{
1718 struct mem_cgroup *victim = NULL;
1719 int total = 0;
1720 int loop = 0;
1721 unsigned long excess;
1722 unsigned long nr_scanned;
1723 struct mem_cgroup_reclaim_cookie reclaim = {
1724 .zone = zone,
1725 .priority = 0,
1726 };
1727
3e32cb2e 1728 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1729
1730 while (1) {
1731 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1732 if (!victim) {
1733 loop++;
1734 if (loop >= 2) {
1735 /*
1736 * If we have not been able to reclaim
1737 * anything, it might because there are
1738 * no reclaimable pages under this hierarchy
1739 */
1740 if (!total)
1741 break;
1742 /*
1743 * We want to do more targeted reclaim.
1744 * excess >> 2 is not to excessive so as to
1745 * reclaim too much, nor too less that we keep
1746 * coming back to reclaim from this cgroup
1747 */
1748 if (total >= (excess >> 2) ||
1749 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1750 break;
1751 }
1752 continue;
1753 }
0608f43d
AM
1754 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1755 zone, &nr_scanned);
1756 *total_scanned += nr_scanned;
3e32cb2e 1757 if (!soft_limit_excess(root_memcg))
0608f43d 1758 break;
6d61ef40 1759 }
0608f43d
AM
1760 mem_cgroup_iter_break(root_memcg, victim);
1761 return total;
6d61ef40
BS
1762}
1763
0056f4e6
JW
1764#ifdef CONFIG_LOCKDEP
1765static struct lockdep_map memcg_oom_lock_dep_map = {
1766 .name = "memcg_oom_lock",
1767};
1768#endif
1769
fb2a6fc5
JW
1770static DEFINE_SPINLOCK(memcg_oom_lock);
1771
867578cb
KH
1772/*
1773 * Check OOM-Killer is already running under our hierarchy.
1774 * If someone is running, return false.
1775 */
fb2a6fc5 1776static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1777{
79dfdacc 1778 struct mem_cgroup *iter, *failed = NULL;
a636b327 1779
fb2a6fc5
JW
1780 spin_lock(&memcg_oom_lock);
1781
9f3a0d09 1782 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1783 if (iter->oom_lock) {
79dfdacc
MH
1784 /*
1785 * this subtree of our hierarchy is already locked
1786 * so we cannot give a lock.
1787 */
79dfdacc 1788 failed = iter;
9f3a0d09
JW
1789 mem_cgroup_iter_break(memcg, iter);
1790 break;
23751be0
JW
1791 } else
1792 iter->oom_lock = true;
7d74b06f 1793 }
867578cb 1794
fb2a6fc5
JW
1795 if (failed) {
1796 /*
1797 * OK, we failed to lock the whole subtree so we have
1798 * to clean up what we set up to the failing subtree
1799 */
1800 for_each_mem_cgroup_tree(iter, memcg) {
1801 if (iter == failed) {
1802 mem_cgroup_iter_break(memcg, iter);
1803 break;
1804 }
1805 iter->oom_lock = false;
79dfdacc 1806 }
0056f4e6
JW
1807 } else
1808 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1809
1810 spin_unlock(&memcg_oom_lock);
1811
1812 return !failed;
a636b327 1813}
0b7f569e 1814
fb2a6fc5 1815static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1816{
7d74b06f
KH
1817 struct mem_cgroup *iter;
1818
fb2a6fc5 1819 spin_lock(&memcg_oom_lock);
0056f4e6 1820 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1821 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1822 iter->oom_lock = false;
fb2a6fc5 1823 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1824}
1825
c0ff4b85 1826static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1827{
1828 struct mem_cgroup *iter;
1829
c0ff4b85 1830 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1831 atomic_inc(&iter->under_oom);
1832}
1833
c0ff4b85 1834static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1835{
1836 struct mem_cgroup *iter;
1837
867578cb
KH
1838 /*
1839 * When a new child is created while the hierarchy is under oom,
1840 * mem_cgroup_oom_lock() may not be called. We have to use
1841 * atomic_add_unless() here.
1842 */
c0ff4b85 1843 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1844 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1845}
1846
867578cb
KH
1847static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1848
dc98df5a 1849struct oom_wait_info {
d79154bb 1850 struct mem_cgroup *memcg;
dc98df5a
KH
1851 wait_queue_t wait;
1852};
1853
1854static int memcg_oom_wake_function(wait_queue_t *wait,
1855 unsigned mode, int sync, void *arg)
1856{
d79154bb
HD
1857 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1858 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1859 struct oom_wait_info *oom_wait_info;
1860
1861 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1862 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1863
2314b42d
JW
1864 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1865 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1866 return 0;
dc98df5a
KH
1867 return autoremove_wake_function(wait, mode, sync, arg);
1868}
1869
c0ff4b85 1870static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1871{
3812c8c8 1872 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1873 /* for filtering, pass "memcg" as argument. */
1874 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1875}
1876
c0ff4b85 1877static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1878{
c0ff4b85
R
1879 if (memcg && atomic_read(&memcg->under_oom))
1880 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1881}
1882
3812c8c8 1883static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1884{
3812c8c8
JW
1885 if (!current->memcg_oom.may_oom)
1886 return;
867578cb 1887 /*
49426420
JW
1888 * We are in the middle of the charge context here, so we
1889 * don't want to block when potentially sitting on a callstack
1890 * that holds all kinds of filesystem and mm locks.
1891 *
1892 * Also, the caller may handle a failed allocation gracefully
1893 * (like optional page cache readahead) and so an OOM killer
1894 * invocation might not even be necessary.
1895 *
1896 * That's why we don't do anything here except remember the
1897 * OOM context and then deal with it at the end of the page
1898 * fault when the stack is unwound, the locks are released,
1899 * and when we know whether the fault was overall successful.
867578cb 1900 */
49426420
JW
1901 css_get(&memcg->css);
1902 current->memcg_oom.memcg = memcg;
1903 current->memcg_oom.gfp_mask = mask;
1904 current->memcg_oom.order = order;
3812c8c8
JW
1905}
1906
1907/**
1908 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1909 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1910 *
49426420
JW
1911 * This has to be called at the end of a page fault if the memcg OOM
1912 * handler was enabled.
3812c8c8 1913 *
49426420 1914 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1915 * sleep on a waitqueue until the userspace task resolves the
1916 * situation. Sleeping directly in the charge context with all kinds
1917 * of locks held is not a good idea, instead we remember an OOM state
1918 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1919 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1920 *
1921 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1922 * completed, %false otherwise.
3812c8c8 1923 */
49426420 1924bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1925{
49426420 1926 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1927 struct oom_wait_info owait;
49426420 1928 bool locked;
3812c8c8
JW
1929
1930 /* OOM is global, do not handle */
3812c8c8 1931 if (!memcg)
49426420 1932 return false;
3812c8c8 1933
c32b3cbe 1934 if (!handle || oom_killer_disabled)
49426420 1935 goto cleanup;
3812c8c8
JW
1936
1937 owait.memcg = memcg;
1938 owait.wait.flags = 0;
1939 owait.wait.func = memcg_oom_wake_function;
1940 owait.wait.private = current;
1941 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1942
3812c8c8 1943 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1944 mem_cgroup_mark_under_oom(memcg);
1945
1946 locked = mem_cgroup_oom_trylock(memcg);
1947
1948 if (locked)
1949 mem_cgroup_oom_notify(memcg);
1950
1951 if (locked && !memcg->oom_kill_disable) {
1952 mem_cgroup_unmark_under_oom(memcg);
1953 finish_wait(&memcg_oom_waitq, &owait.wait);
1954 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1955 current->memcg_oom.order);
1956 } else {
3812c8c8 1957 schedule();
49426420
JW
1958 mem_cgroup_unmark_under_oom(memcg);
1959 finish_wait(&memcg_oom_waitq, &owait.wait);
1960 }
1961
1962 if (locked) {
fb2a6fc5
JW
1963 mem_cgroup_oom_unlock(memcg);
1964 /*
1965 * There is no guarantee that an OOM-lock contender
1966 * sees the wakeups triggered by the OOM kill
1967 * uncharges. Wake any sleepers explicitely.
1968 */
1969 memcg_oom_recover(memcg);
1970 }
49426420
JW
1971cleanup:
1972 current->memcg_oom.memcg = NULL;
3812c8c8 1973 css_put(&memcg->css);
867578cb 1974 return true;
0b7f569e
KH
1975}
1976
d7365e78
JW
1977/**
1978 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1979 * @page: page that is going to change accounted state
32047e2a 1980 *
d7365e78
JW
1981 * This function must mark the beginning of an accounted page state
1982 * change to prevent double accounting when the page is concurrently
1983 * being moved to another memcg:
32047e2a 1984 *
6de22619 1985 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1986 * if (TestClearPageState(page))
1987 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1988 * mem_cgroup_end_page_stat(memcg);
d69b042f 1989 */
6de22619 1990struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1991{
1992 struct mem_cgroup *memcg;
6de22619 1993 unsigned long flags;
89c06bd5 1994
6de22619
JW
1995 /*
1996 * The RCU lock is held throughout the transaction. The fast
1997 * path can get away without acquiring the memcg->move_lock
1998 * because page moving starts with an RCU grace period.
1999 *
2000 * The RCU lock also protects the memcg from being freed when
2001 * the page state that is going to change is the only thing
2002 * preventing the page from being uncharged.
2003 * E.g. end-writeback clearing PageWriteback(), which allows
2004 * migration to go ahead and uncharge the page before the
2005 * account transaction might be complete.
2006 */
d7365e78
JW
2007 rcu_read_lock();
2008
2009 if (mem_cgroup_disabled())
2010 return NULL;
89c06bd5 2011again:
1306a85a 2012 memcg = page->mem_cgroup;
29833315 2013 if (unlikely(!memcg))
d7365e78
JW
2014 return NULL;
2015
bdcbb659 2016 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2017 return memcg;
89c06bd5 2018
6de22619 2019 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2020 if (memcg != page->mem_cgroup) {
6de22619 2021 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2022 goto again;
2023 }
6de22619
JW
2024
2025 /*
2026 * When charge migration first begins, we can have locked and
2027 * unlocked page stat updates happening concurrently. Track
2028 * the task who has the lock for mem_cgroup_end_page_stat().
2029 */
2030 memcg->move_lock_task = current;
2031 memcg->move_lock_flags = flags;
d7365e78
JW
2032
2033 return memcg;
89c06bd5 2034}
c4843a75 2035EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 2036
d7365e78
JW
2037/**
2038 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2039 * @memcg: the memcg that was accounted against
d7365e78 2040 */
6de22619 2041void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 2042{
6de22619
JW
2043 if (memcg && memcg->move_lock_task == current) {
2044 unsigned long flags = memcg->move_lock_flags;
2045
2046 memcg->move_lock_task = NULL;
2047 memcg->move_lock_flags = 0;
2048
2049 spin_unlock_irqrestore(&memcg->move_lock, flags);
2050 }
89c06bd5 2051
d7365e78 2052 rcu_read_unlock();
89c06bd5 2053}
c4843a75 2054EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 2055
d7365e78
JW
2056/**
2057 * mem_cgroup_update_page_stat - update page state statistics
2058 * @memcg: memcg to account against
2059 * @idx: page state item to account
2060 * @val: number of pages (positive or negative)
2061 *
2062 * See mem_cgroup_begin_page_stat() for locking requirements.
2063 */
2064void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2065 enum mem_cgroup_stat_index idx, int val)
d69b042f 2066{
658b72c5 2067 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2068
d7365e78
JW
2069 if (memcg)
2070 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2071}
26174efd 2072
cdec2e42
KH
2073/*
2074 * size of first charge trial. "32" comes from vmscan.c's magic value.
2075 * TODO: maybe necessary to use big numbers in big irons.
2076 */
7ec99d62 2077#define CHARGE_BATCH 32U
cdec2e42
KH
2078struct memcg_stock_pcp {
2079 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2080 unsigned int nr_pages;
cdec2e42 2081 struct work_struct work;
26fe6168 2082 unsigned long flags;
a0db00fc 2083#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2084};
2085static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2086static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2087
a0956d54
SS
2088/**
2089 * consume_stock: Try to consume stocked charge on this cpu.
2090 * @memcg: memcg to consume from.
2091 * @nr_pages: how many pages to charge.
2092 *
2093 * The charges will only happen if @memcg matches the current cpu's memcg
2094 * stock, and at least @nr_pages are available in that stock. Failure to
2095 * service an allocation will refill the stock.
2096 *
2097 * returns true if successful, false otherwise.
cdec2e42 2098 */
a0956d54 2099static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2100{
2101 struct memcg_stock_pcp *stock;
3e32cb2e 2102 bool ret = false;
cdec2e42 2103
a0956d54 2104 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2105 return ret;
a0956d54 2106
cdec2e42 2107 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2108 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2109 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2110 ret = true;
2111 }
cdec2e42
KH
2112 put_cpu_var(memcg_stock);
2113 return ret;
2114}
2115
2116/*
3e32cb2e 2117 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2118 */
2119static void drain_stock(struct memcg_stock_pcp *stock)
2120{
2121 struct mem_cgroup *old = stock->cached;
2122
11c9ea4e 2123 if (stock->nr_pages) {
3e32cb2e 2124 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2125 if (do_swap_account)
3e32cb2e 2126 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2127 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2128 stock->nr_pages = 0;
cdec2e42
KH
2129 }
2130 stock->cached = NULL;
cdec2e42
KH
2131}
2132
2133/*
2134 * This must be called under preempt disabled or must be called by
2135 * a thread which is pinned to local cpu.
2136 */
2137static void drain_local_stock(struct work_struct *dummy)
2138{
7c8e0181 2139 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2140 drain_stock(stock);
26fe6168 2141 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2142}
2143
2144/*
3e32cb2e 2145 * Cache charges(val) to local per_cpu area.
320cc51d 2146 * This will be consumed by consume_stock() function, later.
cdec2e42 2147 */
c0ff4b85 2148static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2149{
2150 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2151
c0ff4b85 2152 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2153 drain_stock(stock);
c0ff4b85 2154 stock->cached = memcg;
cdec2e42 2155 }
11c9ea4e 2156 stock->nr_pages += nr_pages;
cdec2e42
KH
2157 put_cpu_var(memcg_stock);
2158}
2159
2160/*
c0ff4b85 2161 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2162 * of the hierarchy under it.
cdec2e42 2163 */
6d3d6aa2 2164static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2165{
26fe6168 2166 int cpu, curcpu;
d38144b7 2167
6d3d6aa2
JW
2168 /* If someone's already draining, avoid adding running more workers. */
2169 if (!mutex_trylock(&percpu_charge_mutex))
2170 return;
cdec2e42 2171 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2172 get_online_cpus();
5af12d0e 2173 curcpu = get_cpu();
cdec2e42
KH
2174 for_each_online_cpu(cpu) {
2175 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2176 struct mem_cgroup *memcg;
26fe6168 2177
c0ff4b85
R
2178 memcg = stock->cached;
2179 if (!memcg || !stock->nr_pages)
26fe6168 2180 continue;
2314b42d 2181 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2182 continue;
d1a05b69
MH
2183 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2184 if (cpu == curcpu)
2185 drain_local_stock(&stock->work);
2186 else
2187 schedule_work_on(cpu, &stock->work);
2188 }
cdec2e42 2189 }
5af12d0e 2190 put_cpu();
f894ffa8 2191 put_online_cpus();
9f50fad6 2192 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2193}
2194
0db0628d 2195static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2196 unsigned long action,
2197 void *hcpu)
2198{
2199 int cpu = (unsigned long)hcpu;
2200 struct memcg_stock_pcp *stock;
2201
619d094b 2202 if (action == CPU_ONLINE)
1489ebad 2203 return NOTIFY_OK;
1489ebad 2204
d833049b 2205 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2206 return NOTIFY_OK;
711d3d2c 2207
cdec2e42
KH
2208 stock = &per_cpu(memcg_stock, cpu);
2209 drain_stock(stock);
2210 return NOTIFY_OK;
2211}
2212
00501b53
JW
2213static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2214 unsigned int nr_pages)
8a9f3ccd 2215{
7ec99d62 2216 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2217 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2218 struct mem_cgroup *mem_over_limit;
3e32cb2e 2219 struct page_counter *counter;
6539cc05 2220 unsigned long nr_reclaimed;
b70a2a21
JW
2221 bool may_swap = true;
2222 bool drained = false;
05b84301 2223 int ret = 0;
a636b327 2224
ce00a967
JW
2225 if (mem_cgroup_is_root(memcg))
2226 goto done;
6539cc05 2227retry:
b6b6cc72
MH
2228 if (consume_stock(memcg, nr_pages))
2229 goto done;
8a9f3ccd 2230
3fbe7244 2231 if (!do_swap_account ||
3e32cb2e
JW
2232 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2233 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2234 goto done_restock;
3fbe7244 2235 if (do_swap_account)
3e32cb2e
JW
2236 page_counter_uncharge(&memcg->memsw, batch);
2237 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2238 } else {
3e32cb2e 2239 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2240 may_swap = false;
3fbe7244 2241 }
7a81b88c 2242
6539cc05
JW
2243 if (batch > nr_pages) {
2244 batch = nr_pages;
2245 goto retry;
2246 }
6d61ef40 2247
06b078fc
JW
2248 /*
2249 * Unlike in global OOM situations, memcg is not in a physical
2250 * memory shortage. Allow dying and OOM-killed tasks to
2251 * bypass the last charges so that they can exit quickly and
2252 * free their memory.
2253 */
2254 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2255 fatal_signal_pending(current) ||
2256 current->flags & PF_EXITING))
2257 goto bypass;
2258
2259 if (unlikely(task_in_memcg_oom(current)))
2260 goto nomem;
2261
6539cc05
JW
2262 if (!(gfp_mask & __GFP_WAIT))
2263 goto nomem;
4b534334 2264
241994ed
JW
2265 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2266
b70a2a21
JW
2267 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2268 gfp_mask, may_swap);
6539cc05 2269
61e02c74 2270 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2271 goto retry;
28c34c29 2272
b70a2a21 2273 if (!drained) {
6d3d6aa2 2274 drain_all_stock(mem_over_limit);
b70a2a21
JW
2275 drained = true;
2276 goto retry;
2277 }
2278
28c34c29
JW
2279 if (gfp_mask & __GFP_NORETRY)
2280 goto nomem;
6539cc05
JW
2281 /*
2282 * Even though the limit is exceeded at this point, reclaim
2283 * may have been able to free some pages. Retry the charge
2284 * before killing the task.
2285 *
2286 * Only for regular pages, though: huge pages are rather
2287 * unlikely to succeed so close to the limit, and we fall back
2288 * to regular pages anyway in case of failure.
2289 */
61e02c74 2290 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2291 goto retry;
2292 /*
2293 * At task move, charge accounts can be doubly counted. So, it's
2294 * better to wait until the end of task_move if something is going on.
2295 */
2296 if (mem_cgroup_wait_acct_move(mem_over_limit))
2297 goto retry;
2298
9b130619
JW
2299 if (nr_retries--)
2300 goto retry;
2301
06b078fc
JW
2302 if (gfp_mask & __GFP_NOFAIL)
2303 goto bypass;
2304
6539cc05
JW
2305 if (fatal_signal_pending(current))
2306 goto bypass;
2307
241994ed
JW
2308 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2309
61e02c74 2310 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2311nomem:
6d1fdc48 2312 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2313 return -ENOMEM;
867578cb 2314bypass:
ce00a967 2315 return -EINTR;
6539cc05
JW
2316
2317done_restock:
e8ea14cc 2318 css_get_many(&memcg->css, batch);
6539cc05
JW
2319 if (batch > nr_pages)
2320 refill_stock(memcg, batch - nr_pages);
241994ed
JW
2321 /*
2322 * If the hierarchy is above the normal consumption range,
2323 * make the charging task trim their excess contribution.
2324 */
2325 do {
2326 if (page_counter_read(&memcg->memory) <= memcg->high)
2327 continue;
2328 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2329 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2330 } while ((memcg = parent_mem_cgroup(memcg)));
6539cc05 2331done:
05b84301 2332 return ret;
7a81b88c 2333}
8a9f3ccd 2334
00501b53 2335static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2336{
ce00a967
JW
2337 if (mem_cgroup_is_root(memcg))
2338 return;
2339
3e32cb2e 2340 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2341 if (do_swap_account)
3e32cb2e 2342 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2343
e8ea14cc 2344 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2345}
2346
0a31bc97
JW
2347/*
2348 * try_get_mem_cgroup_from_page - look up page's memcg association
2349 * @page: the page
2350 *
2351 * Look up, get a css reference, and return the memcg that owns @page.
2352 *
2353 * The page must be locked to prevent racing with swap-in and page
2354 * cache charges. If coming from an unlocked page table, the caller
2355 * must ensure the page is on the LRU or this can race with charging.
2356 */
e42d9d5d 2357struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2358{
29833315 2359 struct mem_cgroup *memcg;
a3b2d692 2360 unsigned short id;
b5a84319
KH
2361 swp_entry_t ent;
2362
309381fe 2363 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2364
1306a85a 2365 memcg = page->mem_cgroup;
29833315
JW
2366 if (memcg) {
2367 if (!css_tryget_online(&memcg->css))
c0ff4b85 2368 memcg = NULL;
e42d9d5d 2369 } else if (PageSwapCache(page)) {
3c776e64 2370 ent.val = page_private(page);
9fb4b7cc 2371 id = lookup_swap_cgroup_id(ent);
a3b2d692 2372 rcu_read_lock();
adbe427b 2373 memcg = mem_cgroup_from_id(id);
ec903c0c 2374 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2375 memcg = NULL;
a3b2d692 2376 rcu_read_unlock();
3c776e64 2377 }
c0ff4b85 2378 return memcg;
b5a84319
KH
2379}
2380
0a31bc97
JW
2381static void lock_page_lru(struct page *page, int *isolated)
2382{
2383 struct zone *zone = page_zone(page);
2384
2385 spin_lock_irq(&zone->lru_lock);
2386 if (PageLRU(page)) {
2387 struct lruvec *lruvec;
2388
2389 lruvec = mem_cgroup_page_lruvec(page, zone);
2390 ClearPageLRU(page);
2391 del_page_from_lru_list(page, lruvec, page_lru(page));
2392 *isolated = 1;
2393 } else
2394 *isolated = 0;
2395}
2396
2397static void unlock_page_lru(struct page *page, int isolated)
2398{
2399 struct zone *zone = page_zone(page);
2400
2401 if (isolated) {
2402 struct lruvec *lruvec;
2403
2404 lruvec = mem_cgroup_page_lruvec(page, zone);
2405 VM_BUG_ON_PAGE(PageLRU(page), page);
2406 SetPageLRU(page);
2407 add_page_to_lru_list(page, lruvec, page_lru(page));
2408 }
2409 spin_unlock_irq(&zone->lru_lock);
2410}
2411
00501b53 2412static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2413 bool lrucare)
7a81b88c 2414{
0a31bc97 2415 int isolated;
9ce70c02 2416
1306a85a 2417 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2418
2419 /*
2420 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2421 * may already be on some other mem_cgroup's LRU. Take care of it.
2422 */
0a31bc97
JW
2423 if (lrucare)
2424 lock_page_lru(page, &isolated);
9ce70c02 2425
0a31bc97
JW
2426 /*
2427 * Nobody should be changing or seriously looking at
1306a85a 2428 * page->mem_cgroup at this point:
0a31bc97
JW
2429 *
2430 * - the page is uncharged
2431 *
2432 * - the page is off-LRU
2433 *
2434 * - an anonymous fault has exclusive page access, except for
2435 * a locked page table
2436 *
2437 * - a page cache insertion, a swapin fault, or a migration
2438 * have the page locked
2439 */
1306a85a 2440 page->mem_cgroup = memcg;
9ce70c02 2441
0a31bc97
JW
2442 if (lrucare)
2443 unlock_page_lru(page, isolated);
7a81b88c 2444}
66e1707b 2445
7ae1e1d0 2446#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2447int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2448 unsigned long nr_pages)
7ae1e1d0 2449{
3e32cb2e 2450 struct page_counter *counter;
7ae1e1d0 2451 int ret = 0;
7ae1e1d0 2452
3e32cb2e
JW
2453 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2454 if (ret < 0)
7ae1e1d0
GC
2455 return ret;
2456
3e32cb2e 2457 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2458 if (ret == -EINTR) {
2459 /*
00501b53
JW
2460 * try_charge() chose to bypass to root due to OOM kill or
2461 * fatal signal. Since our only options are to either fail
2462 * the allocation or charge it to this cgroup, do it as a
2463 * temporary condition. But we can't fail. From a kmem/slab
2464 * perspective, the cache has already been selected, by
2465 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2466 * our minds.
2467 *
2468 * This condition will only trigger if the task entered
00501b53
JW
2469 * memcg_charge_kmem in a sane state, but was OOM-killed
2470 * during try_charge() above. Tasks that were already dying
2471 * when the allocation triggers should have been already
7ae1e1d0
GC
2472 * directed to the root cgroup in memcontrol.h
2473 */
3e32cb2e 2474 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2475 if (do_swap_account)
3e32cb2e 2476 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2477 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2478 ret = 0;
2479 } else if (ret)
3e32cb2e 2480 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2481
2482 return ret;
2483}
2484
dbf22eb6 2485void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2486{
3e32cb2e 2487 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2488 if (do_swap_account)
3e32cb2e 2489 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2490
64f21993 2491 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2492
e8ea14cc 2493 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2494}
2495
2633d7a0
GC
2496/*
2497 * helper for acessing a memcg's index. It will be used as an index in the
2498 * child cache array in kmem_cache, and also to derive its name. This function
2499 * will return -1 when this is not a kmem-limited memcg.
2500 */
2501int memcg_cache_id(struct mem_cgroup *memcg)
2502{
2503 return memcg ? memcg->kmemcg_id : -1;
2504}
2505
f3bb3043 2506static int memcg_alloc_cache_id(void)
55007d84 2507{
f3bb3043
VD
2508 int id, size;
2509 int err;
2510
dbcf73e2 2511 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2512 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2513 if (id < 0)
2514 return id;
55007d84 2515
dbcf73e2 2516 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2517 return id;
2518
2519 /*
2520 * There's no space for the new id in memcg_caches arrays,
2521 * so we have to grow them.
2522 */
05257a1a 2523 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2524
2525 size = 2 * (id + 1);
55007d84
GC
2526 if (size < MEMCG_CACHES_MIN_SIZE)
2527 size = MEMCG_CACHES_MIN_SIZE;
2528 else if (size > MEMCG_CACHES_MAX_SIZE)
2529 size = MEMCG_CACHES_MAX_SIZE;
2530
f3bb3043 2531 err = memcg_update_all_caches(size);
60d3fd32
VD
2532 if (!err)
2533 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2534 if (!err)
2535 memcg_nr_cache_ids = size;
2536
2537 up_write(&memcg_cache_ids_sem);
2538
f3bb3043 2539 if (err) {
dbcf73e2 2540 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2541 return err;
2542 }
2543 return id;
2544}
2545
2546static void memcg_free_cache_id(int id)
2547{
dbcf73e2 2548 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2549}
2550
d5b3cf71 2551struct memcg_kmem_cache_create_work {
5722d094
VD
2552 struct mem_cgroup *memcg;
2553 struct kmem_cache *cachep;
2554 struct work_struct work;
2555};
2556
d5b3cf71 2557static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2558{
d5b3cf71
VD
2559 struct memcg_kmem_cache_create_work *cw =
2560 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2561 struct mem_cgroup *memcg = cw->memcg;
2562 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2563
d5b3cf71 2564 memcg_create_kmem_cache(memcg, cachep);
bd673145 2565
5722d094 2566 css_put(&memcg->css);
d7f25f8a
GC
2567 kfree(cw);
2568}
2569
2570/*
2571 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2572 */
d5b3cf71
VD
2573static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2574 struct kmem_cache *cachep)
d7f25f8a 2575{
d5b3cf71 2576 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2577
776ed0f0 2578 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2579 if (!cw)
d7f25f8a 2580 return;
8135be5a
VD
2581
2582 css_get(&memcg->css);
d7f25f8a
GC
2583
2584 cw->memcg = memcg;
2585 cw->cachep = cachep;
d5b3cf71 2586 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2587
d7f25f8a
GC
2588 schedule_work(&cw->work);
2589}
2590
d5b3cf71
VD
2591static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2592 struct kmem_cache *cachep)
0e9d92f2
GC
2593{
2594 /*
2595 * We need to stop accounting when we kmalloc, because if the
2596 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2597 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2598 *
2599 * However, it is better to enclose the whole function. Depending on
2600 * the debugging options enabled, INIT_WORK(), for instance, can
2601 * trigger an allocation. This too, will make us recurse. Because at
2602 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2603 * the safest choice is to do it like this, wrapping the whole function.
2604 */
6f185c29 2605 current->memcg_kmem_skip_account = 1;
d5b3cf71 2606 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2607 current->memcg_kmem_skip_account = 0;
0e9d92f2 2608}
c67a8a68 2609
d7f25f8a
GC
2610/*
2611 * Return the kmem_cache we're supposed to use for a slab allocation.
2612 * We try to use the current memcg's version of the cache.
2613 *
2614 * If the cache does not exist yet, if we are the first user of it,
2615 * we either create it immediately, if possible, or create it asynchronously
2616 * in a workqueue.
2617 * In the latter case, we will let the current allocation go through with
2618 * the original cache.
2619 *
2620 * Can't be called in interrupt context or from kernel threads.
2621 * This function needs to be called with rcu_read_lock() held.
2622 */
056b7cce 2623struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2624{
2625 struct mem_cgroup *memcg;
959c8963 2626 struct kmem_cache *memcg_cachep;
2a4db7eb 2627 int kmemcg_id;
d7f25f8a 2628
f7ce3190 2629 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2630
9d100c5e 2631 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2632 return cachep;
2633
8135be5a 2634 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2635 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2636 if (kmemcg_id < 0)
ca0dde97 2637 goto out;
d7f25f8a 2638
2a4db7eb 2639 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2640 if (likely(memcg_cachep))
2641 return memcg_cachep;
ca0dde97
LZ
2642
2643 /*
2644 * If we are in a safe context (can wait, and not in interrupt
2645 * context), we could be be predictable and return right away.
2646 * This would guarantee that the allocation being performed
2647 * already belongs in the new cache.
2648 *
2649 * However, there are some clashes that can arrive from locking.
2650 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2651 * memcg_create_kmem_cache, this means no further allocation
2652 * could happen with the slab_mutex held. So it's better to
2653 * defer everything.
ca0dde97 2654 */
d5b3cf71 2655 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2656out:
8135be5a 2657 css_put(&memcg->css);
ca0dde97 2658 return cachep;
d7f25f8a 2659}
d7f25f8a 2660
8135be5a
VD
2661void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2662{
2663 if (!is_root_cache(cachep))
f7ce3190 2664 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2665}
2666
7ae1e1d0
GC
2667/*
2668 * We need to verify if the allocation against current->mm->owner's memcg is
2669 * possible for the given order. But the page is not allocated yet, so we'll
2670 * need a further commit step to do the final arrangements.
2671 *
2672 * It is possible for the task to switch cgroups in this mean time, so at
2673 * commit time, we can't rely on task conversion any longer. We'll then use
2674 * the handle argument to return to the caller which cgroup we should commit
2675 * against. We could also return the memcg directly and avoid the pointer
2676 * passing, but a boolean return value gives better semantics considering
2677 * the compiled-out case as well.
2678 *
2679 * Returning true means the allocation is possible.
2680 */
2681bool
2682__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2683{
2684 struct mem_cgroup *memcg;
2685 int ret;
2686
2687 *_memcg = NULL;
6d42c232 2688
df381975 2689 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2690
cf2b8fbf 2691 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2692 css_put(&memcg->css);
2693 return true;
2694 }
2695
3e32cb2e 2696 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2697 if (!ret)
2698 *_memcg = memcg;
7ae1e1d0
GC
2699
2700 css_put(&memcg->css);
2701 return (ret == 0);
2702}
2703
2704void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2705 int order)
2706{
7ae1e1d0
GC
2707 VM_BUG_ON(mem_cgroup_is_root(memcg));
2708
2709 /* The page allocation failed. Revert */
2710 if (!page) {
3e32cb2e 2711 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2712 return;
2713 }
1306a85a 2714 page->mem_cgroup = memcg;
7ae1e1d0
GC
2715}
2716
2717void __memcg_kmem_uncharge_pages(struct page *page, int order)
2718{
1306a85a 2719 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2720
7ae1e1d0
GC
2721 if (!memcg)
2722 return;
2723
309381fe 2724 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2725
3e32cb2e 2726 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2727 page->mem_cgroup = NULL;
7ae1e1d0 2728}
60d3fd32
VD
2729
2730struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2731{
2732 struct mem_cgroup *memcg = NULL;
2733 struct kmem_cache *cachep;
2734 struct page *page;
2735
2736 page = virt_to_head_page(ptr);
2737 if (PageSlab(page)) {
2738 cachep = page->slab_cache;
2739 if (!is_root_cache(cachep))
f7ce3190 2740 memcg = cachep->memcg_params.memcg;
60d3fd32
VD
2741 } else
2742 /* page allocated by alloc_kmem_pages */
2743 memcg = page->mem_cgroup;
2744
2745 return memcg;
2746}
7ae1e1d0
GC
2747#endif /* CONFIG_MEMCG_KMEM */
2748
ca3e0214
KH
2749#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2750
ca3e0214
KH
2751/*
2752 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2753 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2754 * charge/uncharge will be never happen and move_account() is done under
2755 * compound_lock(), so we don't have to take care of races.
ca3e0214 2756 */
e94c8a9c 2757void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2758{
e94c8a9c 2759 int i;
ca3e0214 2760
3d37c4a9
KH
2761 if (mem_cgroup_disabled())
2762 return;
b070e65c 2763
29833315 2764 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2765 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2766
1306a85a 2767 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2768 HPAGE_PMD_NR);
ca3e0214 2769}
12d27107 2770#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2771
c255a458 2772#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2773static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2774 bool charge)
d13d1443 2775{
0a31bc97
JW
2776 int val = (charge) ? 1 : -1;
2777 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2778}
02491447
DN
2779
2780/**
2781 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2782 * @entry: swap entry to be moved
2783 * @from: mem_cgroup which the entry is moved from
2784 * @to: mem_cgroup which the entry is moved to
2785 *
2786 * It succeeds only when the swap_cgroup's record for this entry is the same
2787 * as the mem_cgroup's id of @from.
2788 *
2789 * Returns 0 on success, -EINVAL on failure.
2790 *
3e32cb2e 2791 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2792 * both res and memsw, and called css_get().
2793 */
2794static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2795 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2796{
2797 unsigned short old_id, new_id;
2798
34c00c31
LZ
2799 old_id = mem_cgroup_id(from);
2800 new_id = mem_cgroup_id(to);
02491447
DN
2801
2802 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2803 mem_cgroup_swap_statistics(from, false);
483c30b5 2804 mem_cgroup_swap_statistics(to, true);
02491447
DN
2805 return 0;
2806 }
2807 return -EINVAL;
2808}
2809#else
2810static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2811 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2812{
2813 return -EINVAL;
2814}
8c7c6e34 2815#endif
d13d1443 2816
3e32cb2e 2817static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2818
d38d2a75 2819static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2820 unsigned long limit)
628f4235 2821{
3e32cb2e
JW
2822 unsigned long curusage;
2823 unsigned long oldusage;
2824 bool enlarge = false;
81d39c20 2825 int retry_count;
3e32cb2e 2826 int ret;
81d39c20
KH
2827
2828 /*
2829 * For keeping hierarchical_reclaim simple, how long we should retry
2830 * is depends on callers. We set our retry-count to be function
2831 * of # of children which we should visit in this loop.
2832 */
3e32cb2e
JW
2833 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2834 mem_cgroup_count_children(memcg);
81d39c20 2835
3e32cb2e 2836 oldusage = page_counter_read(&memcg->memory);
628f4235 2837
3e32cb2e 2838 do {
628f4235
KH
2839 if (signal_pending(current)) {
2840 ret = -EINTR;
2841 break;
2842 }
3e32cb2e
JW
2843
2844 mutex_lock(&memcg_limit_mutex);
2845 if (limit > memcg->memsw.limit) {
2846 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2847 ret = -EINVAL;
628f4235
KH
2848 break;
2849 }
3e32cb2e
JW
2850 if (limit > memcg->memory.limit)
2851 enlarge = true;
2852 ret = page_counter_limit(&memcg->memory, limit);
2853 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2854
2855 if (!ret)
2856 break;
2857
b70a2a21
JW
2858 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2859
3e32cb2e 2860 curusage = page_counter_read(&memcg->memory);
81d39c20 2861 /* Usage is reduced ? */
f894ffa8 2862 if (curusage >= oldusage)
81d39c20
KH
2863 retry_count--;
2864 else
2865 oldusage = curusage;
3e32cb2e
JW
2866 } while (retry_count);
2867
3c11ecf4
KH
2868 if (!ret && enlarge)
2869 memcg_oom_recover(memcg);
14797e23 2870
8c7c6e34
KH
2871 return ret;
2872}
2873
338c8431 2874static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2875 unsigned long limit)
8c7c6e34 2876{
3e32cb2e
JW
2877 unsigned long curusage;
2878 unsigned long oldusage;
2879 bool enlarge = false;
81d39c20 2880 int retry_count;
3e32cb2e 2881 int ret;
8c7c6e34 2882
81d39c20 2883 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2884 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2885 mem_cgroup_count_children(memcg);
2886
2887 oldusage = page_counter_read(&memcg->memsw);
2888
2889 do {
8c7c6e34
KH
2890 if (signal_pending(current)) {
2891 ret = -EINTR;
2892 break;
2893 }
3e32cb2e
JW
2894
2895 mutex_lock(&memcg_limit_mutex);
2896 if (limit < memcg->memory.limit) {
2897 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2898 ret = -EINVAL;
8c7c6e34
KH
2899 break;
2900 }
3e32cb2e
JW
2901 if (limit > memcg->memsw.limit)
2902 enlarge = true;
2903 ret = page_counter_limit(&memcg->memsw, limit);
2904 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2905
2906 if (!ret)
2907 break;
2908
b70a2a21
JW
2909 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2910
3e32cb2e 2911 curusage = page_counter_read(&memcg->memsw);
81d39c20 2912 /* Usage is reduced ? */
8c7c6e34 2913 if (curusage >= oldusage)
628f4235 2914 retry_count--;
81d39c20
KH
2915 else
2916 oldusage = curusage;
3e32cb2e
JW
2917 } while (retry_count);
2918
3c11ecf4
KH
2919 if (!ret && enlarge)
2920 memcg_oom_recover(memcg);
3e32cb2e 2921
628f4235
KH
2922 return ret;
2923}
2924
0608f43d
AM
2925unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2926 gfp_t gfp_mask,
2927 unsigned long *total_scanned)
2928{
2929 unsigned long nr_reclaimed = 0;
2930 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2931 unsigned long reclaimed;
2932 int loop = 0;
2933 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2934 unsigned long excess;
0608f43d
AM
2935 unsigned long nr_scanned;
2936
2937 if (order > 0)
2938 return 0;
2939
2940 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2941 /*
2942 * This loop can run a while, specially if mem_cgroup's continuously
2943 * keep exceeding their soft limit and putting the system under
2944 * pressure
2945 */
2946 do {
2947 if (next_mz)
2948 mz = next_mz;
2949 else
2950 mz = mem_cgroup_largest_soft_limit_node(mctz);
2951 if (!mz)
2952 break;
2953
2954 nr_scanned = 0;
2955 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2956 gfp_mask, &nr_scanned);
2957 nr_reclaimed += reclaimed;
2958 *total_scanned += nr_scanned;
0a31bc97 2959 spin_lock_irq(&mctz->lock);
bc2f2e7f 2960 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2961
2962 /*
2963 * If we failed to reclaim anything from this memory cgroup
2964 * it is time to move on to the next cgroup
2965 */
2966 next_mz = NULL;
bc2f2e7f
VD
2967 if (!reclaimed)
2968 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2969
3e32cb2e 2970 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2971 /*
2972 * One school of thought says that we should not add
2973 * back the node to the tree if reclaim returns 0.
2974 * But our reclaim could return 0, simply because due
2975 * to priority we are exposing a smaller subset of
2976 * memory to reclaim from. Consider this as a longer
2977 * term TODO.
2978 */
2979 /* If excess == 0, no tree ops */
cf2c8127 2980 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2981 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2982 css_put(&mz->memcg->css);
2983 loop++;
2984 /*
2985 * Could not reclaim anything and there are no more
2986 * mem cgroups to try or we seem to be looping without
2987 * reclaiming anything.
2988 */
2989 if (!nr_reclaimed &&
2990 (next_mz == NULL ||
2991 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2992 break;
2993 } while (!nr_reclaimed);
2994 if (next_mz)
2995 css_put(&next_mz->memcg->css);
2996 return nr_reclaimed;
2997}
2998
ea280e7b
TH
2999/*
3000 * Test whether @memcg has children, dead or alive. Note that this
3001 * function doesn't care whether @memcg has use_hierarchy enabled and
3002 * returns %true if there are child csses according to the cgroup
3003 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3004 */
b5f99b53
GC
3005static inline bool memcg_has_children(struct mem_cgroup *memcg)
3006{
ea280e7b
TH
3007 bool ret;
3008
696ac172 3009 /*
ea280e7b
TH
3010 * The lock does not prevent addition or deletion of children, but
3011 * it prevents a new child from being initialized based on this
3012 * parent in css_online(), so it's enough to decide whether
3013 * hierarchically inherited attributes can still be changed or not.
696ac172 3014 */
ea280e7b
TH
3015 lockdep_assert_held(&memcg_create_mutex);
3016
3017 rcu_read_lock();
3018 ret = css_next_child(NULL, &memcg->css);
3019 rcu_read_unlock();
3020 return ret;
b5f99b53
GC
3021}
3022
c26251f9
MH
3023/*
3024 * Reclaims as many pages from the given memcg as possible and moves
3025 * the rest to the parent.
3026 *
3027 * Caller is responsible for holding css reference for memcg.
3028 */
3029static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3030{
3031 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3032
c1e862c1
KH
3033 /* we call try-to-free pages for make this cgroup empty */
3034 lru_add_drain_all();
f817ed48 3035 /* try to free all pages in this cgroup */
3e32cb2e 3036 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3037 int progress;
c1e862c1 3038
c26251f9
MH
3039 if (signal_pending(current))
3040 return -EINTR;
3041
b70a2a21
JW
3042 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3043 GFP_KERNEL, true);
c1e862c1 3044 if (!progress) {
f817ed48 3045 nr_retries--;
c1e862c1 3046 /* maybe some writeback is necessary */
8aa7e847 3047 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3048 }
f817ed48
KH
3049
3050 }
ab5196c2
MH
3051
3052 return 0;
cc847582
KH
3053}
3054
6770c64e
TH
3055static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3056 char *buf, size_t nbytes,
3057 loff_t off)
c1e862c1 3058{
6770c64e 3059 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3060
d8423011
MH
3061 if (mem_cgroup_is_root(memcg))
3062 return -EINVAL;
6770c64e 3063 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3064}
3065
182446d0
TH
3066static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3067 struct cftype *cft)
18f59ea7 3068{
182446d0 3069 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3070}
3071
182446d0
TH
3072static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3073 struct cftype *cft, u64 val)
18f59ea7
BS
3074{
3075 int retval = 0;
182446d0 3076 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3077 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3078
0999821b 3079 mutex_lock(&memcg_create_mutex);
567fb435
GC
3080
3081 if (memcg->use_hierarchy == val)
3082 goto out;
3083
18f59ea7 3084 /*
af901ca1 3085 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3086 * in the child subtrees. If it is unset, then the change can
3087 * occur, provided the current cgroup has no children.
3088 *
3089 * For the root cgroup, parent_mem is NULL, we allow value to be
3090 * set if there are no children.
3091 */
c0ff4b85 3092 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3093 (val == 1 || val == 0)) {
ea280e7b 3094 if (!memcg_has_children(memcg))
c0ff4b85 3095 memcg->use_hierarchy = val;
18f59ea7
BS
3096 else
3097 retval = -EBUSY;
3098 } else
3099 retval = -EINVAL;
567fb435
GC
3100
3101out:
0999821b 3102 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3103
3104 return retval;
3105}
3106
3e32cb2e
JW
3107static unsigned long tree_stat(struct mem_cgroup *memcg,
3108 enum mem_cgroup_stat_index idx)
ce00a967
JW
3109{
3110 struct mem_cgroup *iter;
3111 long val = 0;
3112
3113 /* Per-cpu values can be negative, use a signed accumulator */
3114 for_each_mem_cgroup_tree(iter, memcg)
3115 val += mem_cgroup_read_stat(iter, idx);
3116
3117 if (val < 0) /* race ? */
3118 val = 0;
3119 return val;
3120}
3121
3122static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3123{
3124 u64 val;
3125
3e32cb2e
JW
3126 if (mem_cgroup_is_root(memcg)) {
3127 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3128 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3129 if (swap)
3130 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3131 } else {
ce00a967 3132 if (!swap)
3e32cb2e 3133 val = page_counter_read(&memcg->memory);
ce00a967 3134 else
3e32cb2e 3135 val = page_counter_read(&memcg->memsw);
ce00a967 3136 }
ce00a967
JW
3137 return val << PAGE_SHIFT;
3138}
3139
3e32cb2e
JW
3140enum {
3141 RES_USAGE,
3142 RES_LIMIT,
3143 RES_MAX_USAGE,
3144 RES_FAILCNT,
3145 RES_SOFT_LIMIT,
3146};
ce00a967 3147
791badbd 3148static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3149 struct cftype *cft)
8cdea7c0 3150{
182446d0 3151 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3152 struct page_counter *counter;
af36f906 3153
3e32cb2e 3154 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3155 case _MEM:
3e32cb2e
JW
3156 counter = &memcg->memory;
3157 break;
8c7c6e34 3158 case _MEMSWAP:
3e32cb2e
JW
3159 counter = &memcg->memsw;
3160 break;
510fc4e1 3161 case _KMEM:
3e32cb2e 3162 counter = &memcg->kmem;
510fc4e1 3163 break;
8c7c6e34
KH
3164 default:
3165 BUG();
8c7c6e34 3166 }
3e32cb2e
JW
3167
3168 switch (MEMFILE_ATTR(cft->private)) {
3169 case RES_USAGE:
3170 if (counter == &memcg->memory)
3171 return mem_cgroup_usage(memcg, false);
3172 if (counter == &memcg->memsw)
3173 return mem_cgroup_usage(memcg, true);
3174 return (u64)page_counter_read(counter) * PAGE_SIZE;
3175 case RES_LIMIT:
3176 return (u64)counter->limit * PAGE_SIZE;
3177 case RES_MAX_USAGE:
3178 return (u64)counter->watermark * PAGE_SIZE;
3179 case RES_FAILCNT:
3180 return counter->failcnt;
3181 case RES_SOFT_LIMIT:
3182 return (u64)memcg->soft_limit * PAGE_SIZE;
3183 default:
3184 BUG();
3185 }
8cdea7c0 3186}
510fc4e1 3187
510fc4e1 3188#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3189static int memcg_activate_kmem(struct mem_cgroup *memcg,
3190 unsigned long nr_pages)
d6441637
VD
3191{
3192 int err = 0;
3193 int memcg_id;
3194
2a4db7eb 3195 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 3196 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 3197 BUG_ON(memcg->kmem_acct_active);
d6441637 3198
510fc4e1
GC
3199 /*
3200 * For simplicity, we won't allow this to be disabled. It also can't
3201 * be changed if the cgroup has children already, or if tasks had
3202 * already joined.
3203 *
3204 * If tasks join before we set the limit, a person looking at
3205 * kmem.usage_in_bytes will have no way to determine when it took
3206 * place, which makes the value quite meaningless.
3207 *
3208 * After it first became limited, changes in the value of the limit are
3209 * of course permitted.
510fc4e1 3210 */
0999821b 3211 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3212 if (cgroup_has_tasks(memcg->css.cgroup) ||
3213 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3214 err = -EBUSY;
3215 mutex_unlock(&memcg_create_mutex);
3216 if (err)
3217 goto out;
510fc4e1 3218
f3bb3043 3219 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3220 if (memcg_id < 0) {
3221 err = memcg_id;
3222 goto out;
3223 }
3224
d6441637 3225 /*
900a38f0
VD
3226 * We couldn't have accounted to this cgroup, because it hasn't got
3227 * activated yet, so this should succeed.
d6441637 3228 */
3e32cb2e 3229 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3230 VM_BUG_ON(err);
3231
3232 static_key_slow_inc(&memcg_kmem_enabled_key);
3233 /*
900a38f0
VD
3234 * A memory cgroup is considered kmem-active as soon as it gets
3235 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3236 * guarantee no one starts accounting before all call sites are
3237 * patched.
3238 */
900a38f0 3239 memcg->kmemcg_id = memcg_id;
2788cf0c 3240 memcg->kmem_acct_activated = true;
2a4db7eb 3241 memcg->kmem_acct_active = true;
510fc4e1 3242out:
d6441637 3243 return err;
d6441637
VD
3244}
3245
d6441637 3246static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3247 unsigned long limit)
d6441637
VD
3248{
3249 int ret;
3250
3e32cb2e 3251 mutex_lock(&memcg_limit_mutex);
d6441637 3252 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3253 ret = memcg_activate_kmem(memcg, limit);
d6441637 3254 else
3e32cb2e
JW
3255 ret = page_counter_limit(&memcg->kmem, limit);
3256 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3257 return ret;
3258}
3259
55007d84 3260static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3261{
55007d84 3262 int ret = 0;
510fc4e1 3263 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3264
d6441637
VD
3265 if (!parent)
3266 return 0;
55007d84 3267
8c0145b6 3268 mutex_lock(&memcg_limit_mutex);
55007d84 3269 /*
d6441637
VD
3270 * If the parent cgroup is not kmem-active now, it cannot be activated
3271 * after this point, because it has at least one child already.
55007d84 3272 */
d6441637 3273 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3274 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3275 mutex_unlock(&memcg_limit_mutex);
55007d84 3276 return ret;
510fc4e1 3277}
d6441637
VD
3278#else
3279static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3280 unsigned long limit)
d6441637
VD
3281{
3282 return -EINVAL;
3283}
6d043990 3284#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3285
628f4235
KH
3286/*
3287 * The user of this function is...
3288 * RES_LIMIT.
3289 */
451af504
TH
3290static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3291 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3292{
451af504 3293 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3294 unsigned long nr_pages;
628f4235
KH
3295 int ret;
3296
451af504 3297 buf = strstrip(buf);
650c5e56 3298 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3299 if (ret)
3300 return ret;
af36f906 3301
3e32cb2e 3302 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3303 case RES_LIMIT:
4b3bde4c
BS
3304 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3305 ret = -EINVAL;
3306 break;
3307 }
3e32cb2e
JW
3308 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3309 case _MEM:
3310 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3311 break;
3e32cb2e
JW
3312 case _MEMSWAP:
3313 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3314 break;
3e32cb2e
JW
3315 case _KMEM:
3316 ret = memcg_update_kmem_limit(memcg, nr_pages);
3317 break;
3318 }
296c81d8 3319 break;
3e32cb2e
JW
3320 case RES_SOFT_LIMIT:
3321 memcg->soft_limit = nr_pages;
3322 ret = 0;
628f4235
KH
3323 break;
3324 }
451af504 3325 return ret ?: nbytes;
8cdea7c0
BS
3326}
3327
6770c64e
TH
3328static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3329 size_t nbytes, loff_t off)
c84872e1 3330{
6770c64e 3331 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3332 struct page_counter *counter;
c84872e1 3333
3e32cb2e
JW
3334 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3335 case _MEM:
3336 counter = &memcg->memory;
3337 break;
3338 case _MEMSWAP:
3339 counter = &memcg->memsw;
3340 break;
3341 case _KMEM:
3342 counter = &memcg->kmem;
3343 break;
3344 default:
3345 BUG();
3346 }
af36f906 3347
3e32cb2e 3348 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3349 case RES_MAX_USAGE:
3e32cb2e 3350 page_counter_reset_watermark(counter);
29f2a4da
PE
3351 break;
3352 case RES_FAILCNT:
3e32cb2e 3353 counter->failcnt = 0;
29f2a4da 3354 break;
3e32cb2e
JW
3355 default:
3356 BUG();
29f2a4da 3357 }
f64c3f54 3358
6770c64e 3359 return nbytes;
c84872e1
PE
3360}
3361
182446d0 3362static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3363 struct cftype *cft)
3364{
182446d0 3365 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3366}
3367
02491447 3368#ifdef CONFIG_MMU
182446d0 3369static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3370 struct cftype *cft, u64 val)
3371{
182446d0 3372 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3373
1dfab5ab 3374 if (val & ~MOVE_MASK)
7dc74be0 3375 return -EINVAL;
ee5e8472 3376
7dc74be0 3377 /*
ee5e8472
GC
3378 * No kind of locking is needed in here, because ->can_attach() will
3379 * check this value once in the beginning of the process, and then carry
3380 * on with stale data. This means that changes to this value will only
3381 * affect task migrations starting after the change.
7dc74be0 3382 */
c0ff4b85 3383 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3384 return 0;
3385}
02491447 3386#else
182446d0 3387static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3388 struct cftype *cft, u64 val)
3389{
3390 return -ENOSYS;
3391}
3392#endif
7dc74be0 3393
406eb0c9 3394#ifdef CONFIG_NUMA
2da8ca82 3395static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3396{
25485de6
GT
3397 struct numa_stat {
3398 const char *name;
3399 unsigned int lru_mask;
3400 };
3401
3402 static const struct numa_stat stats[] = {
3403 { "total", LRU_ALL },
3404 { "file", LRU_ALL_FILE },
3405 { "anon", LRU_ALL_ANON },
3406 { "unevictable", BIT(LRU_UNEVICTABLE) },
3407 };
3408 const struct numa_stat *stat;
406eb0c9 3409 int nid;
25485de6 3410 unsigned long nr;
2da8ca82 3411 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3412
25485de6
GT
3413 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3414 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3415 seq_printf(m, "%s=%lu", stat->name, nr);
3416 for_each_node_state(nid, N_MEMORY) {
3417 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3418 stat->lru_mask);
3419 seq_printf(m, " N%d=%lu", nid, nr);
3420 }
3421 seq_putc(m, '\n');
406eb0c9 3422 }
406eb0c9 3423
071aee13
YH
3424 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3425 struct mem_cgroup *iter;
3426
3427 nr = 0;
3428 for_each_mem_cgroup_tree(iter, memcg)
3429 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3430 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3431 for_each_node_state(nid, N_MEMORY) {
3432 nr = 0;
3433 for_each_mem_cgroup_tree(iter, memcg)
3434 nr += mem_cgroup_node_nr_lru_pages(
3435 iter, nid, stat->lru_mask);
3436 seq_printf(m, " N%d=%lu", nid, nr);
3437 }
3438 seq_putc(m, '\n');
406eb0c9 3439 }
406eb0c9 3440
406eb0c9
YH
3441 return 0;
3442}
3443#endif /* CONFIG_NUMA */
3444
2da8ca82 3445static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3446{
2da8ca82 3447 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3448 unsigned long memory, memsw;
af7c4b0e
JW
3449 struct mem_cgroup *mi;
3450 unsigned int i;
406eb0c9 3451
0ca44b14
GT
3452 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3453 MEM_CGROUP_STAT_NSTATS);
3454 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3455 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3456 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3457
af7c4b0e 3458 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3459 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3460 continue;
af7c4b0e
JW
3461 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3462 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3463 }
7b854121 3464
af7c4b0e
JW
3465 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3466 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3467 mem_cgroup_read_events(memcg, i));
3468
3469 for (i = 0; i < NR_LRU_LISTS; i++)
3470 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3471 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3472
14067bb3 3473 /* Hierarchical information */
3e32cb2e
JW
3474 memory = memsw = PAGE_COUNTER_MAX;
3475 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3476 memory = min(memory, mi->memory.limit);
3477 memsw = min(memsw, mi->memsw.limit);
fee7b548 3478 }
3e32cb2e
JW
3479 seq_printf(m, "hierarchical_memory_limit %llu\n",
3480 (u64)memory * PAGE_SIZE);
3481 if (do_swap_account)
3482 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3483 (u64)memsw * PAGE_SIZE);
7f016ee8 3484
af7c4b0e
JW
3485 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3486 long long val = 0;
3487
bff6bb83 3488 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3489 continue;
af7c4b0e
JW
3490 for_each_mem_cgroup_tree(mi, memcg)
3491 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3492 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3493 }
3494
3495 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3496 unsigned long long val = 0;
3497
3498 for_each_mem_cgroup_tree(mi, memcg)
3499 val += mem_cgroup_read_events(mi, i);
3500 seq_printf(m, "total_%s %llu\n",
3501 mem_cgroup_events_names[i], val);
3502 }
3503
3504 for (i = 0; i < NR_LRU_LISTS; i++) {
3505 unsigned long long val = 0;
3506
3507 for_each_mem_cgroup_tree(mi, memcg)
3508 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3509 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3510 }
14067bb3 3511
7f016ee8 3512#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3513 {
3514 int nid, zid;
3515 struct mem_cgroup_per_zone *mz;
89abfab1 3516 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3517 unsigned long recent_rotated[2] = {0, 0};
3518 unsigned long recent_scanned[2] = {0, 0};
3519
3520 for_each_online_node(nid)
3521 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3522 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3523 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3524
89abfab1
HD
3525 recent_rotated[0] += rstat->recent_rotated[0];
3526 recent_rotated[1] += rstat->recent_rotated[1];
3527 recent_scanned[0] += rstat->recent_scanned[0];
3528 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3529 }
78ccf5b5
JW
3530 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3531 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3532 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3533 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3534 }
3535#endif
3536
d2ceb9b7
KH
3537 return 0;
3538}
3539
182446d0
TH
3540static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3541 struct cftype *cft)
a7885eb8 3542{
182446d0 3543 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3544
1f4c025b 3545 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3546}
3547
182446d0
TH
3548static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3549 struct cftype *cft, u64 val)
a7885eb8 3550{
182446d0 3551 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3552
3dae7fec 3553 if (val > 100)
a7885eb8
KM
3554 return -EINVAL;
3555
14208b0e 3556 if (css->parent)
3dae7fec
JW
3557 memcg->swappiness = val;
3558 else
3559 vm_swappiness = val;
068b38c1 3560
a7885eb8
KM
3561 return 0;
3562}
3563
2e72b634
KS
3564static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3565{
3566 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3567 unsigned long usage;
2e72b634
KS
3568 int i;
3569
3570 rcu_read_lock();
3571 if (!swap)
2c488db2 3572 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3573 else
2c488db2 3574 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3575
3576 if (!t)
3577 goto unlock;
3578
ce00a967 3579 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3580
3581 /*
748dad36 3582 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3583 * If it's not true, a threshold was crossed after last
3584 * call of __mem_cgroup_threshold().
3585 */
5407a562 3586 i = t->current_threshold;
2e72b634
KS
3587
3588 /*
3589 * Iterate backward over array of thresholds starting from
3590 * current_threshold and check if a threshold is crossed.
3591 * If none of thresholds below usage is crossed, we read
3592 * only one element of the array here.
3593 */
3594 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3595 eventfd_signal(t->entries[i].eventfd, 1);
3596
3597 /* i = current_threshold + 1 */
3598 i++;
3599
3600 /*
3601 * Iterate forward over array of thresholds starting from
3602 * current_threshold+1 and check if a threshold is crossed.
3603 * If none of thresholds above usage is crossed, we read
3604 * only one element of the array here.
3605 */
3606 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3607 eventfd_signal(t->entries[i].eventfd, 1);
3608
3609 /* Update current_threshold */
5407a562 3610 t->current_threshold = i - 1;
2e72b634
KS
3611unlock:
3612 rcu_read_unlock();
3613}
3614
3615static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3616{
ad4ca5f4
KS
3617 while (memcg) {
3618 __mem_cgroup_threshold(memcg, false);
3619 if (do_swap_account)
3620 __mem_cgroup_threshold(memcg, true);
3621
3622 memcg = parent_mem_cgroup(memcg);
3623 }
2e72b634
KS
3624}
3625
3626static int compare_thresholds(const void *a, const void *b)
3627{
3628 const struct mem_cgroup_threshold *_a = a;
3629 const struct mem_cgroup_threshold *_b = b;
3630
2bff24a3
GT
3631 if (_a->threshold > _b->threshold)
3632 return 1;
3633
3634 if (_a->threshold < _b->threshold)
3635 return -1;
3636
3637 return 0;
2e72b634
KS
3638}
3639
c0ff4b85 3640static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3641{
3642 struct mem_cgroup_eventfd_list *ev;
3643
2bcf2e92
MH
3644 spin_lock(&memcg_oom_lock);
3645
c0ff4b85 3646 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3647 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3648
3649 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3650 return 0;
3651}
3652
c0ff4b85 3653static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3654{
7d74b06f
KH
3655 struct mem_cgroup *iter;
3656
c0ff4b85 3657 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3658 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3659}
3660
59b6f873 3661static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3662 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3663{
2c488db2
KS
3664 struct mem_cgroup_thresholds *thresholds;
3665 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3666 unsigned long threshold;
3667 unsigned long usage;
2c488db2 3668 int i, size, ret;
2e72b634 3669
650c5e56 3670 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3671 if (ret)
3672 return ret;
3673
3674 mutex_lock(&memcg->thresholds_lock);
2c488db2 3675
05b84301 3676 if (type == _MEM) {
2c488db2 3677 thresholds = &memcg->thresholds;
ce00a967 3678 usage = mem_cgroup_usage(memcg, false);
05b84301 3679 } else if (type == _MEMSWAP) {
2c488db2 3680 thresholds = &memcg->memsw_thresholds;
ce00a967 3681 usage = mem_cgroup_usage(memcg, true);
05b84301 3682 } else
2e72b634
KS
3683 BUG();
3684
2e72b634 3685 /* Check if a threshold crossed before adding a new one */
2c488db2 3686 if (thresholds->primary)
2e72b634
KS
3687 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3688
2c488db2 3689 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3690
3691 /* Allocate memory for new array of thresholds */
2c488db2 3692 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3693 GFP_KERNEL);
2c488db2 3694 if (!new) {
2e72b634
KS
3695 ret = -ENOMEM;
3696 goto unlock;
3697 }
2c488db2 3698 new->size = size;
2e72b634
KS
3699
3700 /* Copy thresholds (if any) to new array */
2c488db2
KS
3701 if (thresholds->primary) {
3702 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3703 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3704 }
3705
2e72b634 3706 /* Add new threshold */
2c488db2
KS
3707 new->entries[size - 1].eventfd = eventfd;
3708 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3709
3710 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3711 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3712 compare_thresholds, NULL);
3713
3714 /* Find current threshold */
2c488db2 3715 new->current_threshold = -1;
2e72b634 3716 for (i = 0; i < size; i++) {
748dad36 3717 if (new->entries[i].threshold <= usage) {
2e72b634 3718 /*
2c488db2
KS
3719 * new->current_threshold will not be used until
3720 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3721 * it here.
3722 */
2c488db2 3723 ++new->current_threshold;
748dad36
SZ
3724 } else
3725 break;
2e72b634
KS
3726 }
3727
2c488db2
KS
3728 /* Free old spare buffer and save old primary buffer as spare */
3729 kfree(thresholds->spare);
3730 thresholds->spare = thresholds->primary;
3731
3732 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3733
907860ed 3734 /* To be sure that nobody uses thresholds */
2e72b634
KS
3735 synchronize_rcu();
3736
2e72b634
KS
3737unlock:
3738 mutex_unlock(&memcg->thresholds_lock);
3739
3740 return ret;
3741}
3742
59b6f873 3743static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3744 struct eventfd_ctx *eventfd, const char *args)
3745{
59b6f873 3746 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3747}
3748
59b6f873 3749static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3750 struct eventfd_ctx *eventfd, const char *args)
3751{
59b6f873 3752 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3753}
3754
59b6f873 3755static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3756 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3757{
2c488db2
KS
3758 struct mem_cgroup_thresholds *thresholds;
3759 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3760 unsigned long usage;
2c488db2 3761 int i, j, size;
2e72b634
KS
3762
3763 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3764
3765 if (type == _MEM) {
2c488db2 3766 thresholds = &memcg->thresholds;
ce00a967 3767 usage = mem_cgroup_usage(memcg, false);
05b84301 3768 } else if (type == _MEMSWAP) {
2c488db2 3769 thresholds = &memcg->memsw_thresholds;
ce00a967 3770 usage = mem_cgroup_usage(memcg, true);
05b84301 3771 } else
2e72b634
KS
3772 BUG();
3773
371528ca
AV
3774 if (!thresholds->primary)
3775 goto unlock;
3776
2e72b634
KS
3777 /* Check if a threshold crossed before removing */
3778 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3779
3780 /* Calculate new number of threshold */
2c488db2
KS
3781 size = 0;
3782 for (i = 0; i < thresholds->primary->size; i++) {
3783 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3784 size++;
3785 }
3786
2c488db2 3787 new = thresholds->spare;
907860ed 3788
2e72b634
KS
3789 /* Set thresholds array to NULL if we don't have thresholds */
3790 if (!size) {
2c488db2
KS
3791 kfree(new);
3792 new = NULL;
907860ed 3793 goto swap_buffers;
2e72b634
KS
3794 }
3795
2c488db2 3796 new->size = size;
2e72b634
KS
3797
3798 /* Copy thresholds and find current threshold */
2c488db2
KS
3799 new->current_threshold = -1;
3800 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3801 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3802 continue;
3803
2c488db2 3804 new->entries[j] = thresholds->primary->entries[i];
748dad36 3805 if (new->entries[j].threshold <= usage) {
2e72b634 3806 /*
2c488db2 3807 * new->current_threshold will not be used
2e72b634
KS
3808 * until rcu_assign_pointer(), so it's safe to increment
3809 * it here.
3810 */
2c488db2 3811 ++new->current_threshold;
2e72b634
KS
3812 }
3813 j++;
3814 }
3815
907860ed 3816swap_buffers:
2c488db2
KS
3817 /* Swap primary and spare array */
3818 thresholds->spare = thresholds->primary;
8c757763
SZ
3819 /* If all events are unregistered, free the spare array */
3820 if (!new) {
3821 kfree(thresholds->spare);
3822 thresholds->spare = NULL;
3823 }
3824
2c488db2 3825 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3826
907860ed 3827 /* To be sure that nobody uses thresholds */
2e72b634 3828 synchronize_rcu();
371528ca 3829unlock:
2e72b634 3830 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3831}
c1e862c1 3832
59b6f873 3833static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3834 struct eventfd_ctx *eventfd)
3835{
59b6f873 3836 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3837}
3838
59b6f873 3839static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3840 struct eventfd_ctx *eventfd)
3841{
59b6f873 3842 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3843}
3844
59b6f873 3845static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3846 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3847{
9490ff27 3848 struct mem_cgroup_eventfd_list *event;
9490ff27 3849
9490ff27
KH
3850 event = kmalloc(sizeof(*event), GFP_KERNEL);
3851 if (!event)
3852 return -ENOMEM;
3853
1af8efe9 3854 spin_lock(&memcg_oom_lock);
9490ff27
KH
3855
3856 event->eventfd = eventfd;
3857 list_add(&event->list, &memcg->oom_notify);
3858
3859 /* already in OOM ? */
79dfdacc 3860 if (atomic_read(&memcg->under_oom))
9490ff27 3861 eventfd_signal(eventfd, 1);
1af8efe9 3862 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3863
3864 return 0;
3865}
3866
59b6f873 3867static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3868 struct eventfd_ctx *eventfd)
9490ff27 3869{
9490ff27 3870 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3871
1af8efe9 3872 spin_lock(&memcg_oom_lock);
9490ff27 3873
c0ff4b85 3874 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3875 if (ev->eventfd == eventfd) {
3876 list_del(&ev->list);
3877 kfree(ev);
3878 }
3879 }
3880
1af8efe9 3881 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3882}
3883
2da8ca82 3884static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3885{
2da8ca82 3886 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3887
791badbd
TH
3888 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3889 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
3890 return 0;
3891}
3892
182446d0 3893static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3894 struct cftype *cft, u64 val)
3895{
182446d0 3896 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3897
3898 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3899 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3900 return -EINVAL;
3901
c0ff4b85 3902 memcg->oom_kill_disable = val;
4d845ebf 3903 if (!val)
c0ff4b85 3904 memcg_oom_recover(memcg);
3dae7fec 3905
3c11ecf4
KH
3906 return 0;
3907}
3908
c255a458 3909#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3910static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3911{
55007d84
GC
3912 int ret;
3913
55007d84
GC
3914 ret = memcg_propagate_kmem(memcg);
3915 if (ret)
3916 return ret;
2633d7a0 3917
1d62e436 3918 return mem_cgroup_sockets_init(memcg, ss);
573b400d 3919}
e5671dfa 3920
2a4db7eb
VD
3921static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3922{
2788cf0c
VD
3923 struct cgroup_subsys_state *css;
3924 struct mem_cgroup *parent, *child;
3925 int kmemcg_id;
3926
2a4db7eb
VD
3927 if (!memcg->kmem_acct_active)
3928 return;
3929
3930 /*
3931 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3932 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3933 * guarantees no cache will be created for this cgroup after we are
3934 * done (see memcg_create_kmem_cache()).
3935 */
3936 memcg->kmem_acct_active = false;
3937
3938 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3939
3940 kmemcg_id = memcg->kmemcg_id;
3941 BUG_ON(kmemcg_id < 0);
3942
3943 parent = parent_mem_cgroup(memcg);
3944 if (!parent)
3945 parent = root_mem_cgroup;
3946
3947 /*
3948 * Change kmemcg_id of this cgroup and all its descendants to the
3949 * parent's id, and then move all entries from this cgroup's list_lrus
3950 * to ones of the parent. After we have finished, all list_lrus
3951 * corresponding to this cgroup are guaranteed to remain empty. The
3952 * ordering is imposed by list_lru_node->lock taken by
3953 * memcg_drain_all_list_lrus().
3954 */
3955 css_for_each_descendant_pre(css, &memcg->css) {
3956 child = mem_cgroup_from_css(css);
3957 BUG_ON(child->kmemcg_id != kmemcg_id);
3958 child->kmemcg_id = parent->kmemcg_id;
3959 if (!memcg->use_hierarchy)
3960 break;
3961 }
3962 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3963
3964 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3965}
3966
10d5ebf4 3967static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3968{
f48b80a5
VD
3969 if (memcg->kmem_acct_activated) {
3970 memcg_destroy_kmem_caches(memcg);
3971 static_key_slow_dec(&memcg_kmem_enabled_key);
3972 WARN_ON(page_counter_read(&memcg->kmem));
3973 }
1d62e436 3974 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 3975}
e5671dfa 3976#else
cbe128e3 3977static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3978{
3979 return 0;
3980}
d1a4c0b3 3981
2a4db7eb
VD
3982static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3983{
3984}
3985
10d5ebf4
LZ
3986static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3987{
3988}
e5671dfa
GC
3989#endif
3990
52ebea74
TH
3991#ifdef CONFIG_CGROUP_WRITEBACK
3992
3993struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3994{
3995 return &memcg->cgwb_list;
3996}
3997
841710aa
TH
3998static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3999{
4000 return wb_domain_init(&memcg->cgwb_domain, gfp);
4001}
4002
4003static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4004{
4005 wb_domain_exit(&memcg->cgwb_domain);
4006}
4007
2529bb3a
TH
4008static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4009{
4010 wb_domain_size_changed(&memcg->cgwb_domain);
4011}
4012
841710aa
TH
4013struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4014{
4015 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4016
4017 if (!memcg->css.parent)
4018 return NULL;
4019
4020 return &memcg->cgwb_domain;
4021}
4022
4023#else /* CONFIG_CGROUP_WRITEBACK */
4024
4025static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4026{
4027 return 0;
4028}
4029
4030static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4031{
4032}
4033
2529bb3a
TH
4034static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4035{
4036}
4037
52ebea74
TH
4038#endif /* CONFIG_CGROUP_WRITEBACK */
4039
3bc942f3
TH
4040/*
4041 * DO NOT USE IN NEW FILES.
4042 *
4043 * "cgroup.event_control" implementation.
4044 *
4045 * This is way over-engineered. It tries to support fully configurable
4046 * events for each user. Such level of flexibility is completely
4047 * unnecessary especially in the light of the planned unified hierarchy.
4048 *
4049 * Please deprecate this and replace with something simpler if at all
4050 * possible.
4051 */
4052
79bd9814
TH
4053/*
4054 * Unregister event and free resources.
4055 *
4056 * Gets called from workqueue.
4057 */
3bc942f3 4058static void memcg_event_remove(struct work_struct *work)
79bd9814 4059{
3bc942f3
TH
4060 struct mem_cgroup_event *event =
4061 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4062 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4063
4064 remove_wait_queue(event->wqh, &event->wait);
4065
59b6f873 4066 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4067
4068 /* Notify userspace the event is going away. */
4069 eventfd_signal(event->eventfd, 1);
4070
4071 eventfd_ctx_put(event->eventfd);
4072 kfree(event);
59b6f873 4073 css_put(&memcg->css);
79bd9814
TH
4074}
4075
4076/*
4077 * Gets called on POLLHUP on eventfd when user closes it.
4078 *
4079 * Called with wqh->lock held and interrupts disabled.
4080 */
3bc942f3
TH
4081static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4082 int sync, void *key)
79bd9814 4083{
3bc942f3
TH
4084 struct mem_cgroup_event *event =
4085 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4086 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4087 unsigned long flags = (unsigned long)key;
4088
4089 if (flags & POLLHUP) {
4090 /*
4091 * If the event has been detached at cgroup removal, we
4092 * can simply return knowing the other side will cleanup
4093 * for us.
4094 *
4095 * We can't race against event freeing since the other
4096 * side will require wqh->lock via remove_wait_queue(),
4097 * which we hold.
4098 */
fba94807 4099 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4100 if (!list_empty(&event->list)) {
4101 list_del_init(&event->list);
4102 /*
4103 * We are in atomic context, but cgroup_event_remove()
4104 * may sleep, so we have to call it in workqueue.
4105 */
4106 schedule_work(&event->remove);
4107 }
fba94807 4108 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4109 }
4110
4111 return 0;
4112}
4113
3bc942f3 4114static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4115 wait_queue_head_t *wqh, poll_table *pt)
4116{
3bc942f3
TH
4117 struct mem_cgroup_event *event =
4118 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4119
4120 event->wqh = wqh;
4121 add_wait_queue(wqh, &event->wait);
4122}
4123
4124/*
3bc942f3
TH
4125 * DO NOT USE IN NEW FILES.
4126 *
79bd9814
TH
4127 * Parse input and register new cgroup event handler.
4128 *
4129 * Input must be in format '<event_fd> <control_fd> <args>'.
4130 * Interpretation of args is defined by control file implementation.
4131 */
451af504
TH
4132static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4133 char *buf, size_t nbytes, loff_t off)
79bd9814 4134{
451af504 4135 struct cgroup_subsys_state *css = of_css(of);
fba94807 4136 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4137 struct mem_cgroup_event *event;
79bd9814
TH
4138 struct cgroup_subsys_state *cfile_css;
4139 unsigned int efd, cfd;
4140 struct fd efile;
4141 struct fd cfile;
fba94807 4142 const char *name;
79bd9814
TH
4143 char *endp;
4144 int ret;
4145
451af504
TH
4146 buf = strstrip(buf);
4147
4148 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4149 if (*endp != ' ')
4150 return -EINVAL;
451af504 4151 buf = endp + 1;
79bd9814 4152
451af504 4153 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4154 if ((*endp != ' ') && (*endp != '\0'))
4155 return -EINVAL;
451af504 4156 buf = endp + 1;
79bd9814
TH
4157
4158 event = kzalloc(sizeof(*event), GFP_KERNEL);
4159 if (!event)
4160 return -ENOMEM;
4161
59b6f873 4162 event->memcg = memcg;
79bd9814 4163 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4164 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4165 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4166 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4167
4168 efile = fdget(efd);
4169 if (!efile.file) {
4170 ret = -EBADF;
4171 goto out_kfree;
4172 }
4173
4174 event->eventfd = eventfd_ctx_fileget(efile.file);
4175 if (IS_ERR(event->eventfd)) {
4176 ret = PTR_ERR(event->eventfd);
4177 goto out_put_efile;
4178 }
4179
4180 cfile = fdget(cfd);
4181 if (!cfile.file) {
4182 ret = -EBADF;
4183 goto out_put_eventfd;
4184 }
4185
4186 /* the process need read permission on control file */
4187 /* AV: shouldn't we check that it's been opened for read instead? */
4188 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4189 if (ret < 0)
4190 goto out_put_cfile;
4191
fba94807
TH
4192 /*
4193 * Determine the event callbacks and set them in @event. This used
4194 * to be done via struct cftype but cgroup core no longer knows
4195 * about these events. The following is crude but the whole thing
4196 * is for compatibility anyway.
3bc942f3
TH
4197 *
4198 * DO NOT ADD NEW FILES.
fba94807 4199 */
b583043e 4200 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4201
4202 if (!strcmp(name, "memory.usage_in_bytes")) {
4203 event->register_event = mem_cgroup_usage_register_event;
4204 event->unregister_event = mem_cgroup_usage_unregister_event;
4205 } else if (!strcmp(name, "memory.oom_control")) {
4206 event->register_event = mem_cgroup_oom_register_event;
4207 event->unregister_event = mem_cgroup_oom_unregister_event;
4208 } else if (!strcmp(name, "memory.pressure_level")) {
4209 event->register_event = vmpressure_register_event;
4210 event->unregister_event = vmpressure_unregister_event;
4211 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4212 event->register_event = memsw_cgroup_usage_register_event;
4213 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4214 } else {
4215 ret = -EINVAL;
4216 goto out_put_cfile;
4217 }
4218
79bd9814 4219 /*
b5557c4c
TH
4220 * Verify @cfile should belong to @css. Also, remaining events are
4221 * automatically removed on cgroup destruction but the removal is
4222 * asynchronous, so take an extra ref on @css.
79bd9814 4223 */
b583043e 4224 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4225 &memory_cgrp_subsys);
79bd9814 4226 ret = -EINVAL;
5a17f543 4227 if (IS_ERR(cfile_css))
79bd9814 4228 goto out_put_cfile;
5a17f543
TH
4229 if (cfile_css != css) {
4230 css_put(cfile_css);
79bd9814 4231 goto out_put_cfile;
5a17f543 4232 }
79bd9814 4233
451af504 4234 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4235 if (ret)
4236 goto out_put_css;
4237
4238 efile.file->f_op->poll(efile.file, &event->pt);
4239
fba94807
TH
4240 spin_lock(&memcg->event_list_lock);
4241 list_add(&event->list, &memcg->event_list);
4242 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4243
4244 fdput(cfile);
4245 fdput(efile);
4246
451af504 4247 return nbytes;
79bd9814
TH
4248
4249out_put_css:
b5557c4c 4250 css_put(css);
79bd9814
TH
4251out_put_cfile:
4252 fdput(cfile);
4253out_put_eventfd:
4254 eventfd_ctx_put(event->eventfd);
4255out_put_efile:
4256 fdput(efile);
4257out_kfree:
4258 kfree(event);
4259
4260 return ret;
4261}
4262
241994ed 4263static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4264 {
0eea1030 4265 .name = "usage_in_bytes",
8c7c6e34 4266 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4267 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4268 },
c84872e1
PE
4269 {
4270 .name = "max_usage_in_bytes",
8c7c6e34 4271 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4272 .write = mem_cgroup_reset,
791badbd 4273 .read_u64 = mem_cgroup_read_u64,
c84872e1 4274 },
8cdea7c0 4275 {
0eea1030 4276 .name = "limit_in_bytes",
8c7c6e34 4277 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4278 .write = mem_cgroup_write,
791badbd 4279 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4280 },
296c81d8
BS
4281 {
4282 .name = "soft_limit_in_bytes",
4283 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4284 .write = mem_cgroup_write,
791badbd 4285 .read_u64 = mem_cgroup_read_u64,
296c81d8 4286 },
8cdea7c0
BS
4287 {
4288 .name = "failcnt",
8c7c6e34 4289 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4290 .write = mem_cgroup_reset,
791badbd 4291 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4292 },
d2ceb9b7
KH
4293 {
4294 .name = "stat",
2da8ca82 4295 .seq_show = memcg_stat_show,
d2ceb9b7 4296 },
c1e862c1
KH
4297 {
4298 .name = "force_empty",
6770c64e 4299 .write = mem_cgroup_force_empty_write,
c1e862c1 4300 },
18f59ea7
BS
4301 {
4302 .name = "use_hierarchy",
4303 .write_u64 = mem_cgroup_hierarchy_write,
4304 .read_u64 = mem_cgroup_hierarchy_read,
4305 },
79bd9814 4306 {
3bc942f3 4307 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4308 .write = memcg_write_event_control,
79bd9814
TH
4309 .flags = CFTYPE_NO_PREFIX,
4310 .mode = S_IWUGO,
4311 },
a7885eb8
KM
4312 {
4313 .name = "swappiness",
4314 .read_u64 = mem_cgroup_swappiness_read,
4315 .write_u64 = mem_cgroup_swappiness_write,
4316 },
7dc74be0
DN
4317 {
4318 .name = "move_charge_at_immigrate",
4319 .read_u64 = mem_cgroup_move_charge_read,
4320 .write_u64 = mem_cgroup_move_charge_write,
4321 },
9490ff27
KH
4322 {
4323 .name = "oom_control",
2da8ca82 4324 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4325 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4326 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4327 },
70ddf637
AV
4328 {
4329 .name = "pressure_level",
70ddf637 4330 },
406eb0c9
YH
4331#ifdef CONFIG_NUMA
4332 {
4333 .name = "numa_stat",
2da8ca82 4334 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4335 },
4336#endif
510fc4e1
GC
4337#ifdef CONFIG_MEMCG_KMEM
4338 {
4339 .name = "kmem.limit_in_bytes",
4340 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4341 .write = mem_cgroup_write,
791badbd 4342 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4343 },
4344 {
4345 .name = "kmem.usage_in_bytes",
4346 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4347 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4348 },
4349 {
4350 .name = "kmem.failcnt",
4351 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4352 .write = mem_cgroup_reset,
791badbd 4353 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4354 },
4355 {
4356 .name = "kmem.max_usage_in_bytes",
4357 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4358 .write = mem_cgroup_reset,
791badbd 4359 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4360 },
749c5415
GC
4361#ifdef CONFIG_SLABINFO
4362 {
4363 .name = "kmem.slabinfo",
b047501c
VD
4364 .seq_start = slab_start,
4365 .seq_next = slab_next,
4366 .seq_stop = slab_stop,
4367 .seq_show = memcg_slab_show,
749c5415
GC
4368 },
4369#endif
8c7c6e34 4370#endif
6bc10349 4371 { }, /* terminate */
af36f906 4372};
8c7c6e34 4373
c0ff4b85 4374static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4375{
4376 struct mem_cgroup_per_node *pn;
1ecaab2b 4377 struct mem_cgroup_per_zone *mz;
41e3355d 4378 int zone, tmp = node;
1ecaab2b
KH
4379 /*
4380 * This routine is called against possible nodes.
4381 * But it's BUG to call kmalloc() against offline node.
4382 *
4383 * TODO: this routine can waste much memory for nodes which will
4384 * never be onlined. It's better to use memory hotplug callback
4385 * function.
4386 */
41e3355d
KH
4387 if (!node_state(node, N_NORMAL_MEMORY))
4388 tmp = -1;
17295c88 4389 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4390 if (!pn)
4391 return 1;
1ecaab2b 4392
1ecaab2b
KH
4393 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4394 mz = &pn->zoneinfo[zone];
bea8c150 4395 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4396 mz->usage_in_excess = 0;
4397 mz->on_tree = false;
d79154bb 4398 mz->memcg = memcg;
1ecaab2b 4399 }
54f72fe0 4400 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4401 return 0;
4402}
4403
c0ff4b85 4404static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4405{
54f72fe0 4406 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4407}
4408
33327948
KH
4409static struct mem_cgroup *mem_cgroup_alloc(void)
4410{
d79154bb 4411 struct mem_cgroup *memcg;
8ff69e2c 4412 size_t size;
33327948 4413
8ff69e2c
VD
4414 size = sizeof(struct mem_cgroup);
4415 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4416
8ff69e2c 4417 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4418 if (!memcg)
e7bbcdf3
DC
4419 return NULL;
4420
d79154bb
HD
4421 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4422 if (!memcg->stat)
d2e61b8d 4423 goto out_free;
841710aa
TH
4424
4425 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4426 goto out_free_stat;
4427
d79154bb
HD
4428 spin_lock_init(&memcg->pcp_counter_lock);
4429 return memcg;
d2e61b8d 4430
841710aa
TH
4431out_free_stat:
4432 free_percpu(memcg->stat);
d2e61b8d 4433out_free:
8ff69e2c 4434 kfree(memcg);
d2e61b8d 4435 return NULL;
33327948
KH
4436}
4437
59927fb9 4438/*
c8b2a36f
GC
4439 * At destroying mem_cgroup, references from swap_cgroup can remain.
4440 * (scanning all at force_empty is too costly...)
4441 *
4442 * Instead of clearing all references at force_empty, we remember
4443 * the number of reference from swap_cgroup and free mem_cgroup when
4444 * it goes down to 0.
4445 *
4446 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4447 */
c8b2a36f
GC
4448
4449static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4450{
c8b2a36f 4451 int node;
59927fb9 4452
bb4cc1a8 4453 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4454
4455 for_each_node(node)
4456 free_mem_cgroup_per_zone_info(memcg, node);
4457
4458 free_percpu(memcg->stat);
841710aa 4459 memcg_wb_domain_exit(memcg);
8ff69e2c 4460 kfree(memcg);
59927fb9 4461}
3afe36b1 4462
7bcc1bb1
DN
4463/*
4464 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4465 */
e1aab161 4466struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4467{
3e32cb2e 4468 if (!memcg->memory.parent)
7bcc1bb1 4469 return NULL;
3e32cb2e 4470 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4471}
e1aab161 4472EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4473
0eb253e2 4474static struct cgroup_subsys_state * __ref
eb95419b 4475mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4476{
d142e3e6 4477 struct mem_cgroup *memcg;
04046e1a 4478 long error = -ENOMEM;
6d12e2d8 4479 int node;
8cdea7c0 4480
c0ff4b85
R
4481 memcg = mem_cgroup_alloc();
4482 if (!memcg)
04046e1a 4483 return ERR_PTR(error);
78fb7466 4484
3ed28fa1 4485 for_each_node(node)
c0ff4b85 4486 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4487 goto free_out;
f64c3f54 4488
c077719b 4489 /* root ? */
eb95419b 4490 if (parent_css == NULL) {
a41c58a6 4491 root_mem_cgroup = memcg;
56161634 4492 mem_cgroup_root_css = &memcg->css;
3e32cb2e 4493 page_counter_init(&memcg->memory, NULL);
241994ed 4494 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4495 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4496 page_counter_init(&memcg->memsw, NULL);
4497 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4498 }
28dbc4b6 4499
d142e3e6
GC
4500 memcg->last_scanned_node = MAX_NUMNODES;
4501 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4502 memcg->move_charge_at_immigrate = 0;
4503 mutex_init(&memcg->thresholds_lock);
4504 spin_lock_init(&memcg->move_lock);
70ddf637 4505 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4506 INIT_LIST_HEAD(&memcg->event_list);
4507 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4508#ifdef CONFIG_MEMCG_KMEM
4509 memcg->kmemcg_id = -1;
900a38f0 4510#endif
52ebea74
TH
4511#ifdef CONFIG_CGROUP_WRITEBACK
4512 INIT_LIST_HEAD(&memcg->cgwb_list);
4513#endif
d142e3e6
GC
4514 return &memcg->css;
4515
4516free_out:
4517 __mem_cgroup_free(memcg);
4518 return ERR_PTR(error);
4519}
4520
4521static int
eb95419b 4522mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4523{
eb95419b 4524 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4525 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4526 int ret;
d142e3e6 4527
15a4c835 4528 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4529 return -ENOSPC;
4530
63876986 4531 if (!parent)
d142e3e6
GC
4532 return 0;
4533
0999821b 4534 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4535
4536 memcg->use_hierarchy = parent->use_hierarchy;
4537 memcg->oom_kill_disable = parent->oom_kill_disable;
4538 memcg->swappiness = mem_cgroup_swappiness(parent);
4539
4540 if (parent->use_hierarchy) {
3e32cb2e 4541 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4542 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4543 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4544 page_counter_init(&memcg->memsw, &parent->memsw);
4545 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4546
7bcc1bb1 4547 /*
8d76a979
LZ
4548 * No need to take a reference to the parent because cgroup
4549 * core guarantees its existence.
7bcc1bb1 4550 */
18f59ea7 4551 } else {
3e32cb2e 4552 page_counter_init(&memcg->memory, NULL);
241994ed 4553 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4554 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4555 page_counter_init(&memcg->memsw, NULL);
4556 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4557 /*
4558 * Deeper hierachy with use_hierarchy == false doesn't make
4559 * much sense so let cgroup subsystem know about this
4560 * unfortunate state in our controller.
4561 */
d142e3e6 4562 if (parent != root_mem_cgroup)
073219e9 4563 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4564 }
0999821b 4565 mutex_unlock(&memcg_create_mutex);
d6441637 4566
2f7dd7a4
JW
4567 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4568 if (ret)
4569 return ret;
4570
4571 /*
4572 * Make sure the memcg is initialized: mem_cgroup_iter()
4573 * orders reading memcg->initialized against its callers
4574 * reading the memcg members.
4575 */
4576 smp_store_release(&memcg->initialized, 1);
4577
4578 return 0;
8cdea7c0
BS
4579}
4580
eb95419b 4581static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4582{
eb95419b 4583 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4584 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4585
4586 /*
4587 * Unregister events and notify userspace.
4588 * Notify userspace about cgroup removing only after rmdir of cgroup
4589 * directory to avoid race between userspace and kernelspace.
4590 */
fba94807
TH
4591 spin_lock(&memcg->event_list_lock);
4592 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4593 list_del_init(&event->list);
4594 schedule_work(&event->remove);
4595 }
fba94807 4596 spin_unlock(&memcg->event_list_lock);
ec64f515 4597
33cb876e 4598 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4599
4600 memcg_deactivate_kmem(memcg);
52ebea74
TH
4601
4602 wb_memcg_offline(memcg);
df878fb0
KH
4603}
4604
eb95419b 4605static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4606{
eb95419b 4607 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4608
10d5ebf4 4609 memcg_destroy_kmem(memcg);
465939a1 4610 __mem_cgroup_free(memcg);
8cdea7c0
BS
4611}
4612
1ced953b
TH
4613/**
4614 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4615 * @css: the target css
4616 *
4617 * Reset the states of the mem_cgroup associated with @css. This is
4618 * invoked when the userland requests disabling on the default hierarchy
4619 * but the memcg is pinned through dependency. The memcg should stop
4620 * applying policies and should revert to the vanilla state as it may be
4621 * made visible again.
4622 *
4623 * The current implementation only resets the essential configurations.
4624 * This needs to be expanded to cover all the visible parts.
4625 */
4626static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4627{
4628 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4629
3e32cb2e
JW
4630 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4631 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4632 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4633 memcg->low = 0;
4634 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4635 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4636 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4637}
4638
02491447 4639#ifdef CONFIG_MMU
7dc74be0 4640/* Handlers for move charge at task migration. */
854ffa8d 4641static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4642{
05b84301 4643 int ret;
9476db97
JW
4644
4645 /* Try a single bulk charge without reclaim first */
00501b53 4646 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4647 if (!ret) {
854ffa8d 4648 mc.precharge += count;
854ffa8d
DN
4649 return ret;
4650 }
692e7c45 4651 if (ret == -EINTR) {
00501b53 4652 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4653 return ret;
4654 }
9476db97
JW
4655
4656 /* Try charges one by one with reclaim */
854ffa8d 4657 while (count--) {
00501b53 4658 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4659 /*
4660 * In case of failure, any residual charges against
4661 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4662 * later on. However, cancel any charges that are
4663 * bypassed to root right away or they'll be lost.
9476db97 4664 */
692e7c45 4665 if (ret == -EINTR)
00501b53 4666 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4667 if (ret)
38c5d72f 4668 return ret;
854ffa8d 4669 mc.precharge++;
9476db97 4670 cond_resched();
854ffa8d 4671 }
9476db97 4672 return 0;
4ffef5fe
DN
4673}
4674
4675/**
8d32ff84 4676 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4677 * @vma: the vma the pte to be checked belongs
4678 * @addr: the address corresponding to the pte to be checked
4679 * @ptent: the pte to be checked
02491447 4680 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4681 *
4682 * Returns
4683 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4684 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4685 * move charge. if @target is not NULL, the page is stored in target->page
4686 * with extra refcnt got(Callers should handle it).
02491447
DN
4687 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4688 * target for charge migration. if @target is not NULL, the entry is stored
4689 * in target->ent.
4ffef5fe
DN
4690 *
4691 * Called with pte lock held.
4692 */
4ffef5fe
DN
4693union mc_target {
4694 struct page *page;
02491447 4695 swp_entry_t ent;
4ffef5fe
DN
4696};
4697
4ffef5fe 4698enum mc_target_type {
8d32ff84 4699 MC_TARGET_NONE = 0,
4ffef5fe 4700 MC_TARGET_PAGE,
02491447 4701 MC_TARGET_SWAP,
4ffef5fe
DN
4702};
4703
90254a65
DN
4704static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4705 unsigned long addr, pte_t ptent)
4ffef5fe 4706{
90254a65 4707 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4708
90254a65
DN
4709 if (!page || !page_mapped(page))
4710 return NULL;
4711 if (PageAnon(page)) {
1dfab5ab 4712 if (!(mc.flags & MOVE_ANON))
90254a65 4713 return NULL;
1dfab5ab
JW
4714 } else {
4715 if (!(mc.flags & MOVE_FILE))
4716 return NULL;
4717 }
90254a65
DN
4718 if (!get_page_unless_zero(page))
4719 return NULL;
4720
4721 return page;
4722}
4723
4b91355e 4724#ifdef CONFIG_SWAP
90254a65
DN
4725static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4726 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4727{
90254a65
DN
4728 struct page *page = NULL;
4729 swp_entry_t ent = pte_to_swp_entry(ptent);
4730
1dfab5ab 4731 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4732 return NULL;
4b91355e
KH
4733 /*
4734 * Because lookup_swap_cache() updates some statistics counter,
4735 * we call find_get_page() with swapper_space directly.
4736 */
33806f06 4737 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4738 if (do_swap_account)
4739 entry->val = ent.val;
4740
4741 return page;
4742}
4b91355e
KH
4743#else
4744static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4745 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4746{
4747 return NULL;
4748}
4749#endif
90254a65 4750
87946a72
DN
4751static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4752 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4753{
4754 struct page *page = NULL;
87946a72
DN
4755 struct address_space *mapping;
4756 pgoff_t pgoff;
4757
4758 if (!vma->vm_file) /* anonymous vma */
4759 return NULL;
1dfab5ab 4760 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4761 return NULL;
4762
87946a72 4763 mapping = vma->vm_file->f_mapping;
0661a336 4764 pgoff = linear_page_index(vma, addr);
87946a72
DN
4765
4766 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4767#ifdef CONFIG_SWAP
4768 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4769 if (shmem_mapping(mapping)) {
4770 page = find_get_entry(mapping, pgoff);
4771 if (radix_tree_exceptional_entry(page)) {
4772 swp_entry_t swp = radix_to_swp_entry(page);
4773 if (do_swap_account)
4774 *entry = swp;
4775 page = find_get_page(swap_address_space(swp), swp.val);
4776 }
4777 } else
4778 page = find_get_page(mapping, pgoff);
4779#else
4780 page = find_get_page(mapping, pgoff);
aa3b1895 4781#endif
87946a72
DN
4782 return page;
4783}
4784
b1b0deab
CG
4785/**
4786 * mem_cgroup_move_account - move account of the page
4787 * @page: the page
4788 * @nr_pages: number of regular pages (>1 for huge pages)
4789 * @from: mem_cgroup which the page is moved from.
4790 * @to: mem_cgroup which the page is moved to. @from != @to.
4791 *
4792 * The caller must confirm following.
4793 * - page is not on LRU (isolate_page() is useful.)
4794 * - compound_lock is held when nr_pages > 1
4795 *
4796 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4797 * from old cgroup.
4798 */
4799static int mem_cgroup_move_account(struct page *page,
4800 unsigned int nr_pages,
4801 struct mem_cgroup *from,
4802 struct mem_cgroup *to)
4803{
4804 unsigned long flags;
4805 int ret;
c4843a75 4806 bool anon;
b1b0deab
CG
4807
4808 VM_BUG_ON(from == to);
4809 VM_BUG_ON_PAGE(PageLRU(page), page);
4810 /*
4811 * The page is isolated from LRU. So, collapse function
4812 * will not handle this page. But page splitting can happen.
4813 * Do this check under compound_page_lock(). The caller should
4814 * hold it.
4815 */
4816 ret = -EBUSY;
4817 if (nr_pages > 1 && !PageTransHuge(page))
4818 goto out;
4819
4820 /*
4821 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4822 * of its source page while we change it: page migration takes
4823 * both pages off the LRU, but page cache replacement doesn't.
4824 */
4825 if (!trylock_page(page))
4826 goto out;
4827
4828 ret = -EINVAL;
4829 if (page->mem_cgroup != from)
4830 goto out_unlock;
4831
c4843a75
GT
4832 anon = PageAnon(page);
4833
b1b0deab
CG
4834 spin_lock_irqsave(&from->move_lock, flags);
4835
c4843a75 4836 if (!anon && page_mapped(page)) {
b1b0deab
CG
4837 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4838 nr_pages);
4839 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4840 nr_pages);
4841 }
4842
c4843a75
GT
4843 /*
4844 * move_lock grabbed above and caller set from->moving_account, so
4845 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4846 * So mapping should be stable for dirty pages.
4847 */
4848 if (!anon && PageDirty(page)) {
4849 struct address_space *mapping = page_mapping(page);
4850
4851 if (mapping_cap_account_dirty(mapping)) {
4852 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4853 nr_pages);
4854 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4855 nr_pages);
4856 }
4857 }
4858
b1b0deab
CG
4859 if (PageWriteback(page)) {
4860 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4861 nr_pages);
4862 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4863 nr_pages);
4864 }
4865
4866 /*
4867 * It is safe to change page->mem_cgroup here because the page
4868 * is referenced, charged, and isolated - we can't race with
4869 * uncharging, charging, migration, or LRU putback.
4870 */
4871
4872 /* caller should have done css_get */
4873 page->mem_cgroup = to;
4874 spin_unlock_irqrestore(&from->move_lock, flags);
4875
4876 ret = 0;
4877
4878 local_irq_disable();
4879 mem_cgroup_charge_statistics(to, page, nr_pages);
4880 memcg_check_events(to, page);
4881 mem_cgroup_charge_statistics(from, page, -nr_pages);
4882 memcg_check_events(from, page);
4883 local_irq_enable();
4884out_unlock:
4885 unlock_page(page);
4886out:
4887 return ret;
4888}
4889
8d32ff84 4890static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4891 unsigned long addr, pte_t ptent, union mc_target *target)
4892{
4893 struct page *page = NULL;
8d32ff84 4894 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4895 swp_entry_t ent = { .val = 0 };
4896
4897 if (pte_present(ptent))
4898 page = mc_handle_present_pte(vma, addr, ptent);
4899 else if (is_swap_pte(ptent))
4900 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4901 else if (pte_none(ptent))
87946a72 4902 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4903
4904 if (!page && !ent.val)
8d32ff84 4905 return ret;
02491447 4906 if (page) {
02491447 4907 /*
0a31bc97 4908 * Do only loose check w/o serialization.
1306a85a 4909 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4910 * not under LRU exclusion.
02491447 4911 */
1306a85a 4912 if (page->mem_cgroup == mc.from) {
02491447
DN
4913 ret = MC_TARGET_PAGE;
4914 if (target)
4915 target->page = page;
4916 }
4917 if (!ret || !target)
4918 put_page(page);
4919 }
90254a65
DN
4920 /* There is a swap entry and a page doesn't exist or isn't charged */
4921 if (ent.val && !ret &&
34c00c31 4922 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4923 ret = MC_TARGET_SWAP;
4924 if (target)
4925 target->ent = ent;
4ffef5fe 4926 }
4ffef5fe
DN
4927 return ret;
4928}
4929
12724850
NH
4930#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4931/*
4932 * We don't consider swapping or file mapped pages because THP does not
4933 * support them for now.
4934 * Caller should make sure that pmd_trans_huge(pmd) is true.
4935 */
4936static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4937 unsigned long addr, pmd_t pmd, union mc_target *target)
4938{
4939 struct page *page = NULL;
12724850
NH
4940 enum mc_target_type ret = MC_TARGET_NONE;
4941
4942 page = pmd_page(pmd);
309381fe 4943 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4944 if (!(mc.flags & MOVE_ANON))
12724850 4945 return ret;
1306a85a 4946 if (page->mem_cgroup == mc.from) {
12724850
NH
4947 ret = MC_TARGET_PAGE;
4948 if (target) {
4949 get_page(page);
4950 target->page = page;
4951 }
4952 }
4953 return ret;
4954}
4955#else
4956static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4957 unsigned long addr, pmd_t pmd, union mc_target *target)
4958{
4959 return MC_TARGET_NONE;
4960}
4961#endif
4962
4ffef5fe
DN
4963static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4964 unsigned long addr, unsigned long end,
4965 struct mm_walk *walk)
4966{
26bcd64a 4967 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4968 pte_t *pte;
4969 spinlock_t *ptl;
4970
bf929152 4971 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4972 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4973 mc.precharge += HPAGE_PMD_NR;
bf929152 4974 spin_unlock(ptl);
1a5a9906 4975 return 0;
12724850 4976 }
03319327 4977
45f83cef
AA
4978 if (pmd_trans_unstable(pmd))
4979 return 0;
4ffef5fe
DN
4980 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4981 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4982 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4983 mc.precharge++; /* increment precharge temporarily */
4984 pte_unmap_unlock(pte - 1, ptl);
4985 cond_resched();
4986
7dc74be0
DN
4987 return 0;
4988}
4989
4ffef5fe
DN
4990static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4991{
4992 unsigned long precharge;
4ffef5fe 4993
26bcd64a
NH
4994 struct mm_walk mem_cgroup_count_precharge_walk = {
4995 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4996 .mm = mm,
4997 };
dfe076b0 4998 down_read(&mm->mmap_sem);
26bcd64a 4999 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 5000 up_read(&mm->mmap_sem);
4ffef5fe
DN
5001
5002 precharge = mc.precharge;
5003 mc.precharge = 0;
5004
5005 return precharge;
5006}
5007
4ffef5fe
DN
5008static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5009{
dfe076b0
DN
5010 unsigned long precharge = mem_cgroup_count_precharge(mm);
5011
5012 VM_BUG_ON(mc.moving_task);
5013 mc.moving_task = current;
5014 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5015}
5016
dfe076b0
DN
5017/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5018static void __mem_cgroup_clear_mc(void)
4ffef5fe 5019{
2bd9bb20
KH
5020 struct mem_cgroup *from = mc.from;
5021 struct mem_cgroup *to = mc.to;
5022
4ffef5fe 5023 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5024 if (mc.precharge) {
00501b53 5025 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5026 mc.precharge = 0;
5027 }
5028 /*
5029 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5030 * we must uncharge here.
5031 */
5032 if (mc.moved_charge) {
00501b53 5033 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5034 mc.moved_charge = 0;
4ffef5fe 5035 }
483c30b5
DN
5036 /* we must fixup refcnts and charges */
5037 if (mc.moved_swap) {
483c30b5 5038 /* uncharge swap account from the old cgroup */
ce00a967 5039 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5040 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5041
05b84301 5042 /*
3e32cb2e
JW
5043 * we charged both to->memory and to->memsw, so we
5044 * should uncharge to->memory.
05b84301 5045 */
ce00a967 5046 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5047 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5048
e8ea14cc 5049 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5050
4050377b 5051 /* we've already done css_get(mc.to) */
483c30b5
DN
5052 mc.moved_swap = 0;
5053 }
dfe076b0
DN
5054 memcg_oom_recover(from);
5055 memcg_oom_recover(to);
5056 wake_up_all(&mc.waitq);
5057}
5058
5059static void mem_cgroup_clear_mc(void)
5060{
dfe076b0
DN
5061 /*
5062 * we must clear moving_task before waking up waiters at the end of
5063 * task migration.
5064 */
5065 mc.moving_task = NULL;
5066 __mem_cgroup_clear_mc();
2bd9bb20 5067 spin_lock(&mc.lock);
4ffef5fe
DN
5068 mc.from = NULL;
5069 mc.to = NULL;
2bd9bb20 5070 spin_unlock(&mc.lock);
4ffef5fe
DN
5071}
5072
eb95419b 5073static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5074 struct cgroup_taskset *tset)
7dc74be0 5075{
2f7ee569 5076 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5077 int ret = 0;
eb95419b 5078 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1dfab5ab 5079 unsigned long move_flags;
7dc74be0 5080
ee5e8472
GC
5081 /*
5082 * We are now commited to this value whatever it is. Changes in this
5083 * tunable will only affect upcoming migrations, not the current one.
5084 * So we need to save it, and keep it going.
5085 */
4db0c3c2 5086 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
1dfab5ab 5087 if (move_flags) {
7dc74be0
DN
5088 struct mm_struct *mm;
5089 struct mem_cgroup *from = mem_cgroup_from_task(p);
5090
c0ff4b85 5091 VM_BUG_ON(from == memcg);
7dc74be0
DN
5092
5093 mm = get_task_mm(p);
5094 if (!mm)
5095 return 0;
7dc74be0 5096 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5097 if (mm->owner == p) {
5098 VM_BUG_ON(mc.from);
5099 VM_BUG_ON(mc.to);
5100 VM_BUG_ON(mc.precharge);
854ffa8d 5101 VM_BUG_ON(mc.moved_charge);
483c30b5 5102 VM_BUG_ON(mc.moved_swap);
247b1447 5103
2bd9bb20 5104 spin_lock(&mc.lock);
4ffef5fe 5105 mc.from = from;
c0ff4b85 5106 mc.to = memcg;
1dfab5ab 5107 mc.flags = move_flags;
2bd9bb20 5108 spin_unlock(&mc.lock);
dfe076b0 5109 /* We set mc.moving_task later */
4ffef5fe
DN
5110
5111 ret = mem_cgroup_precharge_mc(mm);
5112 if (ret)
5113 mem_cgroup_clear_mc();
dfe076b0
DN
5114 }
5115 mmput(mm);
7dc74be0
DN
5116 }
5117 return ret;
5118}
5119
eb95419b 5120static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5121 struct cgroup_taskset *tset)
7dc74be0 5122{
4e2f245d
JW
5123 if (mc.to)
5124 mem_cgroup_clear_mc();
7dc74be0
DN
5125}
5126
4ffef5fe
DN
5127static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5128 unsigned long addr, unsigned long end,
5129 struct mm_walk *walk)
7dc74be0 5130{
4ffef5fe 5131 int ret = 0;
26bcd64a 5132 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5133 pte_t *pte;
5134 spinlock_t *ptl;
12724850
NH
5135 enum mc_target_type target_type;
5136 union mc_target target;
5137 struct page *page;
4ffef5fe 5138
12724850
NH
5139 /*
5140 * We don't take compound_lock() here but no race with splitting thp
5141 * happens because:
5142 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5143 * under splitting, which means there's no concurrent thp split,
5144 * - if another thread runs into split_huge_page() just after we
5145 * entered this if-block, the thread must wait for page table lock
5146 * to be unlocked in __split_huge_page_splitting(), where the main
5147 * part of thp split is not executed yet.
5148 */
bf929152 5149 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5150 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5151 spin_unlock(ptl);
12724850
NH
5152 return 0;
5153 }
5154 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5155 if (target_type == MC_TARGET_PAGE) {
5156 page = target.page;
5157 if (!isolate_lru_page(page)) {
12724850 5158 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5159 mc.from, mc.to)) {
12724850
NH
5160 mc.precharge -= HPAGE_PMD_NR;
5161 mc.moved_charge += HPAGE_PMD_NR;
5162 }
5163 putback_lru_page(page);
5164 }
5165 put_page(page);
5166 }
bf929152 5167 spin_unlock(ptl);
1a5a9906 5168 return 0;
12724850
NH
5169 }
5170
45f83cef
AA
5171 if (pmd_trans_unstable(pmd))
5172 return 0;
4ffef5fe
DN
5173retry:
5174 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5175 for (; addr != end; addr += PAGE_SIZE) {
5176 pte_t ptent = *(pte++);
02491447 5177 swp_entry_t ent;
4ffef5fe
DN
5178
5179 if (!mc.precharge)
5180 break;
5181
8d32ff84 5182 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5183 case MC_TARGET_PAGE:
5184 page = target.page;
5185 if (isolate_lru_page(page))
5186 goto put;
1306a85a 5187 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5188 mc.precharge--;
854ffa8d
DN
5189 /* we uncharge from mc.from later. */
5190 mc.moved_charge++;
4ffef5fe
DN
5191 }
5192 putback_lru_page(page);
8d32ff84 5193put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5194 put_page(page);
5195 break;
02491447
DN
5196 case MC_TARGET_SWAP:
5197 ent = target.ent;
e91cbb42 5198 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5199 mc.precharge--;
483c30b5
DN
5200 /* we fixup refcnts and charges later. */
5201 mc.moved_swap++;
5202 }
02491447 5203 break;
4ffef5fe
DN
5204 default:
5205 break;
5206 }
5207 }
5208 pte_unmap_unlock(pte - 1, ptl);
5209 cond_resched();
5210
5211 if (addr != end) {
5212 /*
5213 * We have consumed all precharges we got in can_attach().
5214 * We try charge one by one, but don't do any additional
5215 * charges to mc.to if we have failed in charge once in attach()
5216 * phase.
5217 */
854ffa8d 5218 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5219 if (!ret)
5220 goto retry;
5221 }
5222
5223 return ret;
5224}
5225
5226static void mem_cgroup_move_charge(struct mm_struct *mm)
5227{
26bcd64a
NH
5228 struct mm_walk mem_cgroup_move_charge_walk = {
5229 .pmd_entry = mem_cgroup_move_charge_pte_range,
5230 .mm = mm,
5231 };
4ffef5fe
DN
5232
5233 lru_add_drain_all();
312722cb
JW
5234 /*
5235 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5236 * move_lock while we're moving its pages to another memcg.
5237 * Then wait for already started RCU-only updates to finish.
5238 */
5239 atomic_inc(&mc.from->moving_account);
5240 synchronize_rcu();
dfe076b0
DN
5241retry:
5242 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5243 /*
5244 * Someone who are holding the mmap_sem might be waiting in
5245 * waitq. So we cancel all extra charges, wake up all waiters,
5246 * and retry. Because we cancel precharges, we might not be able
5247 * to move enough charges, but moving charge is a best-effort
5248 * feature anyway, so it wouldn't be a big problem.
5249 */
5250 __mem_cgroup_clear_mc();
5251 cond_resched();
5252 goto retry;
5253 }
26bcd64a
NH
5254 /*
5255 * When we have consumed all precharges and failed in doing
5256 * additional charge, the page walk just aborts.
5257 */
5258 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5259 up_read(&mm->mmap_sem);
312722cb 5260 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5261}
5262
eb95419b 5263static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5264 struct cgroup_taskset *tset)
67e465a7 5265{
2f7ee569 5266 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5267 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5268
dfe076b0 5269 if (mm) {
a433658c
KM
5270 if (mc.to)
5271 mem_cgroup_move_charge(mm);
dfe076b0
DN
5272 mmput(mm);
5273 }
a433658c
KM
5274 if (mc.to)
5275 mem_cgroup_clear_mc();
67e465a7 5276}
5cfb80a7 5277#else /* !CONFIG_MMU */
eb95419b 5278static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5279 struct cgroup_taskset *tset)
5cfb80a7
DN
5280{
5281 return 0;
5282}
eb95419b 5283static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5284 struct cgroup_taskset *tset)
5cfb80a7
DN
5285{
5286}
eb95419b 5287static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5288 struct cgroup_taskset *tset)
5cfb80a7
DN
5289{
5290}
5291#endif
67e465a7 5292
f00baae7
TH
5293/*
5294 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5295 * to verify whether we're attached to the default hierarchy on each mount
5296 * attempt.
f00baae7 5297 */
eb95419b 5298static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5299{
5300 /*
aa6ec29b 5301 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5302 * guarantees that @root doesn't have any children, so turning it
5303 * on for the root memcg is enough.
5304 */
aa6ec29b 5305 if (cgroup_on_dfl(root_css->cgroup))
7feee590
VD
5306 root_mem_cgroup->use_hierarchy = true;
5307 else
5308 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5309}
5310
241994ed
JW
5311static u64 memory_current_read(struct cgroup_subsys_state *css,
5312 struct cftype *cft)
5313{
5314 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5315}
5316
5317static int memory_low_show(struct seq_file *m, void *v)
5318{
5319 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5320 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5321
5322 if (low == PAGE_COUNTER_MAX)
d2973697 5323 seq_puts(m, "max\n");
241994ed
JW
5324 else
5325 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5326
5327 return 0;
5328}
5329
5330static ssize_t memory_low_write(struct kernfs_open_file *of,
5331 char *buf, size_t nbytes, loff_t off)
5332{
5333 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5334 unsigned long low;
5335 int err;
5336
5337 buf = strstrip(buf);
d2973697 5338 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5339 if (err)
5340 return err;
5341
5342 memcg->low = low;
5343
5344 return nbytes;
5345}
5346
5347static int memory_high_show(struct seq_file *m, void *v)
5348{
5349 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5350 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5351
5352 if (high == PAGE_COUNTER_MAX)
d2973697 5353 seq_puts(m, "max\n");
241994ed
JW
5354 else
5355 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5356
5357 return 0;
5358}
5359
5360static ssize_t memory_high_write(struct kernfs_open_file *of,
5361 char *buf, size_t nbytes, loff_t off)
5362{
5363 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5364 unsigned long high;
5365 int err;
5366
5367 buf = strstrip(buf);
d2973697 5368 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5369 if (err)
5370 return err;
5371
5372 memcg->high = high;
5373
2529bb3a 5374 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5375 return nbytes;
5376}
5377
5378static int memory_max_show(struct seq_file *m, void *v)
5379{
5380 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5381 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5382
5383 if (max == PAGE_COUNTER_MAX)
d2973697 5384 seq_puts(m, "max\n");
241994ed
JW
5385 else
5386 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5387
5388 return 0;
5389}
5390
5391static ssize_t memory_max_write(struct kernfs_open_file *of,
5392 char *buf, size_t nbytes, loff_t off)
5393{
5394 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5395 unsigned long max;
5396 int err;
5397
5398 buf = strstrip(buf);
d2973697 5399 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5400 if (err)
5401 return err;
5402
5403 err = mem_cgroup_resize_limit(memcg, max);
5404 if (err)
5405 return err;
5406
2529bb3a 5407 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5408 return nbytes;
5409}
5410
5411static int memory_events_show(struct seq_file *m, void *v)
5412{
5413 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5414
5415 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5416 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5417 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5418 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5419
5420 return 0;
5421}
5422
5423static struct cftype memory_files[] = {
5424 {
5425 .name = "current",
5426 .read_u64 = memory_current_read,
5427 },
5428 {
5429 .name = "low",
5430 .flags = CFTYPE_NOT_ON_ROOT,
5431 .seq_show = memory_low_show,
5432 .write = memory_low_write,
5433 },
5434 {
5435 .name = "high",
5436 .flags = CFTYPE_NOT_ON_ROOT,
5437 .seq_show = memory_high_show,
5438 .write = memory_high_write,
5439 },
5440 {
5441 .name = "max",
5442 .flags = CFTYPE_NOT_ON_ROOT,
5443 .seq_show = memory_max_show,
5444 .write = memory_max_write,
5445 },
5446 {
5447 .name = "events",
5448 .flags = CFTYPE_NOT_ON_ROOT,
5449 .seq_show = memory_events_show,
5450 },
5451 { } /* terminate */
5452};
5453
073219e9 5454struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5455 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5456 .css_online = mem_cgroup_css_online,
92fb9748
TH
5457 .css_offline = mem_cgroup_css_offline,
5458 .css_free = mem_cgroup_css_free,
1ced953b 5459 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5460 .can_attach = mem_cgroup_can_attach,
5461 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5462 .attach = mem_cgroup_move_task,
f00baae7 5463 .bind = mem_cgroup_bind,
241994ed
JW
5464 .dfl_cftypes = memory_files,
5465 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5466 .early_init = 0,
8cdea7c0 5467};
c077719b 5468
241994ed
JW
5469/**
5470 * mem_cgroup_events - count memory events against a cgroup
5471 * @memcg: the memory cgroup
5472 * @idx: the event index
5473 * @nr: the number of events to account for
5474 */
5475void mem_cgroup_events(struct mem_cgroup *memcg,
5476 enum mem_cgroup_events_index idx,
5477 unsigned int nr)
5478{
5479 this_cpu_add(memcg->stat->events[idx], nr);
5480}
5481
5482/**
5483 * mem_cgroup_low - check if memory consumption is below the normal range
5484 * @root: the highest ancestor to consider
5485 * @memcg: the memory cgroup to check
5486 *
5487 * Returns %true if memory consumption of @memcg, and that of all
5488 * configurable ancestors up to @root, is below the normal range.
5489 */
5490bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5491{
5492 if (mem_cgroup_disabled())
5493 return false;
5494
5495 /*
5496 * The toplevel group doesn't have a configurable range, so
5497 * it's never low when looked at directly, and it is not
5498 * considered an ancestor when assessing the hierarchy.
5499 */
5500
5501 if (memcg == root_mem_cgroup)
5502 return false;
5503
4e54dede 5504 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5505 return false;
5506
5507 while (memcg != root) {
5508 memcg = parent_mem_cgroup(memcg);
5509
5510 if (memcg == root_mem_cgroup)
5511 break;
5512
4e54dede 5513 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5514 return false;
5515 }
5516 return true;
5517}
5518
00501b53
JW
5519/**
5520 * mem_cgroup_try_charge - try charging a page
5521 * @page: page to charge
5522 * @mm: mm context of the victim
5523 * @gfp_mask: reclaim mode
5524 * @memcgp: charged memcg return
5525 *
5526 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5527 * pages according to @gfp_mask if necessary.
5528 *
5529 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5530 * Otherwise, an error code is returned.
5531 *
5532 * After page->mapping has been set up, the caller must finalize the
5533 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5534 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5535 */
5536int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5537 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5538{
5539 struct mem_cgroup *memcg = NULL;
5540 unsigned int nr_pages = 1;
5541 int ret = 0;
5542
5543 if (mem_cgroup_disabled())
5544 goto out;
5545
5546 if (PageSwapCache(page)) {
00501b53
JW
5547 /*
5548 * Every swap fault against a single page tries to charge the
5549 * page, bail as early as possible. shmem_unuse() encounters
5550 * already charged pages, too. The USED bit is protected by
5551 * the page lock, which serializes swap cache removal, which
5552 * in turn serializes uncharging.
5553 */
1306a85a 5554 if (page->mem_cgroup)
00501b53
JW
5555 goto out;
5556 }
5557
5558 if (PageTransHuge(page)) {
5559 nr_pages <<= compound_order(page);
5560 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5561 }
5562
5563 if (do_swap_account && PageSwapCache(page))
5564 memcg = try_get_mem_cgroup_from_page(page);
5565 if (!memcg)
5566 memcg = get_mem_cgroup_from_mm(mm);
5567
5568 ret = try_charge(memcg, gfp_mask, nr_pages);
5569
5570 css_put(&memcg->css);
5571
5572 if (ret == -EINTR) {
5573 memcg = root_mem_cgroup;
5574 ret = 0;
5575 }
5576out:
5577 *memcgp = memcg;
5578 return ret;
5579}
5580
5581/**
5582 * mem_cgroup_commit_charge - commit a page charge
5583 * @page: page to charge
5584 * @memcg: memcg to charge the page to
5585 * @lrucare: page might be on LRU already
5586 *
5587 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5588 * after page->mapping has been set up. This must happen atomically
5589 * as part of the page instantiation, i.e. under the page table lock
5590 * for anonymous pages, under the page lock for page and swap cache.
5591 *
5592 * In addition, the page must not be on the LRU during the commit, to
5593 * prevent racing with task migration. If it might be, use @lrucare.
5594 *
5595 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5596 */
5597void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5598 bool lrucare)
5599{
5600 unsigned int nr_pages = 1;
5601
5602 VM_BUG_ON_PAGE(!page->mapping, page);
5603 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5604
5605 if (mem_cgroup_disabled())
5606 return;
5607 /*
5608 * Swap faults will attempt to charge the same page multiple
5609 * times. But reuse_swap_page() might have removed the page
5610 * from swapcache already, so we can't check PageSwapCache().
5611 */
5612 if (!memcg)
5613 return;
5614
6abb5a86
JW
5615 commit_charge(page, memcg, lrucare);
5616
00501b53
JW
5617 if (PageTransHuge(page)) {
5618 nr_pages <<= compound_order(page);
5619 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5620 }
5621
6abb5a86
JW
5622 local_irq_disable();
5623 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5624 memcg_check_events(memcg, page);
5625 local_irq_enable();
00501b53
JW
5626
5627 if (do_swap_account && PageSwapCache(page)) {
5628 swp_entry_t entry = { .val = page_private(page) };
5629 /*
5630 * The swap entry might not get freed for a long time,
5631 * let's not wait for it. The page already received a
5632 * memory+swap charge, drop the swap entry duplicate.
5633 */
5634 mem_cgroup_uncharge_swap(entry);
5635 }
5636}
5637
5638/**
5639 * mem_cgroup_cancel_charge - cancel a page charge
5640 * @page: page to charge
5641 * @memcg: memcg to charge the page to
5642 *
5643 * Cancel a charge transaction started by mem_cgroup_try_charge().
5644 */
5645void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5646{
5647 unsigned int nr_pages = 1;
5648
5649 if (mem_cgroup_disabled())
5650 return;
5651 /*
5652 * Swap faults will attempt to charge the same page multiple
5653 * times. But reuse_swap_page() might have removed the page
5654 * from swapcache already, so we can't check PageSwapCache().
5655 */
5656 if (!memcg)
5657 return;
5658
5659 if (PageTransHuge(page)) {
5660 nr_pages <<= compound_order(page);
5661 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5662 }
5663
5664 cancel_charge(memcg, nr_pages);
5665}
5666
747db954 5667static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5668 unsigned long nr_anon, unsigned long nr_file,
5669 unsigned long nr_huge, struct page *dummy_page)
5670{
18eca2e6 5671 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5672 unsigned long flags;
5673
ce00a967 5674 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5675 page_counter_uncharge(&memcg->memory, nr_pages);
5676 if (do_swap_account)
5677 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5678 memcg_oom_recover(memcg);
5679 }
747db954
JW
5680
5681 local_irq_save(flags);
5682 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5683 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5684 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5685 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5686 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5687 memcg_check_events(memcg, dummy_page);
5688 local_irq_restore(flags);
e8ea14cc
JW
5689
5690 if (!mem_cgroup_is_root(memcg))
18eca2e6 5691 css_put_many(&memcg->css, nr_pages);
747db954
JW
5692}
5693
5694static void uncharge_list(struct list_head *page_list)
5695{
5696 struct mem_cgroup *memcg = NULL;
747db954
JW
5697 unsigned long nr_anon = 0;
5698 unsigned long nr_file = 0;
5699 unsigned long nr_huge = 0;
5700 unsigned long pgpgout = 0;
747db954
JW
5701 struct list_head *next;
5702 struct page *page;
5703
5704 next = page_list->next;
5705 do {
5706 unsigned int nr_pages = 1;
747db954
JW
5707
5708 page = list_entry(next, struct page, lru);
5709 next = page->lru.next;
5710
5711 VM_BUG_ON_PAGE(PageLRU(page), page);
5712 VM_BUG_ON_PAGE(page_count(page), page);
5713
1306a85a 5714 if (!page->mem_cgroup)
747db954
JW
5715 continue;
5716
5717 /*
5718 * Nobody should be changing or seriously looking at
1306a85a 5719 * page->mem_cgroup at this point, we have fully
29833315 5720 * exclusive access to the page.
747db954
JW
5721 */
5722
1306a85a 5723 if (memcg != page->mem_cgroup) {
747db954 5724 if (memcg) {
18eca2e6
JW
5725 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5726 nr_huge, page);
5727 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5728 }
1306a85a 5729 memcg = page->mem_cgroup;
747db954
JW
5730 }
5731
5732 if (PageTransHuge(page)) {
5733 nr_pages <<= compound_order(page);
5734 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5735 nr_huge += nr_pages;
5736 }
5737
5738 if (PageAnon(page))
5739 nr_anon += nr_pages;
5740 else
5741 nr_file += nr_pages;
5742
1306a85a 5743 page->mem_cgroup = NULL;
747db954
JW
5744
5745 pgpgout++;
5746 } while (next != page_list);
5747
5748 if (memcg)
18eca2e6
JW
5749 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5750 nr_huge, page);
747db954
JW
5751}
5752
0a31bc97
JW
5753/**
5754 * mem_cgroup_uncharge - uncharge a page
5755 * @page: page to uncharge
5756 *
5757 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5758 * mem_cgroup_commit_charge().
5759 */
5760void mem_cgroup_uncharge(struct page *page)
5761{
0a31bc97
JW
5762 if (mem_cgroup_disabled())
5763 return;
5764
747db954 5765 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5766 if (!page->mem_cgroup)
0a31bc97
JW
5767 return;
5768
747db954
JW
5769 INIT_LIST_HEAD(&page->lru);
5770 uncharge_list(&page->lru);
5771}
0a31bc97 5772
747db954
JW
5773/**
5774 * mem_cgroup_uncharge_list - uncharge a list of page
5775 * @page_list: list of pages to uncharge
5776 *
5777 * Uncharge a list of pages previously charged with
5778 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5779 */
5780void mem_cgroup_uncharge_list(struct list_head *page_list)
5781{
5782 if (mem_cgroup_disabled())
5783 return;
0a31bc97 5784
747db954
JW
5785 if (!list_empty(page_list))
5786 uncharge_list(page_list);
0a31bc97
JW
5787}
5788
5789/**
5790 * mem_cgroup_migrate - migrate a charge to another page
5791 * @oldpage: currently charged page
5792 * @newpage: page to transfer the charge to
f5e03a49 5793 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5794 *
5795 * Migrate the charge from @oldpage to @newpage.
5796 *
5797 * Both pages must be locked, @newpage->mapping must be set up.
5798 */
5799void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5800 bool lrucare)
5801{
29833315 5802 struct mem_cgroup *memcg;
0a31bc97
JW
5803 int isolated;
5804
5805 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5806 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5807 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5808 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5809 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5810 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5811 newpage);
0a31bc97
JW
5812
5813 if (mem_cgroup_disabled())
5814 return;
5815
5816 /* Page cache replacement: new page already charged? */
1306a85a 5817 if (newpage->mem_cgroup)
0a31bc97
JW
5818 return;
5819
7d5e3245
JW
5820 /*
5821 * Swapcache readahead pages can get migrated before being
5822 * charged, and migration from compaction can happen to an
5823 * uncharged page when the PFN walker finds a page that
5824 * reclaim just put back on the LRU but has not released yet.
5825 */
1306a85a 5826 memcg = oldpage->mem_cgroup;
29833315 5827 if (!memcg)
0a31bc97
JW
5828 return;
5829
0a31bc97
JW
5830 if (lrucare)
5831 lock_page_lru(oldpage, &isolated);
5832
1306a85a 5833 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5834
5835 if (lrucare)
5836 unlock_page_lru(oldpage, isolated);
5837
29833315 5838 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5839}
5840
2d11085e 5841/*
1081312f
MH
5842 * subsys_initcall() for memory controller.
5843 *
5844 * Some parts like hotcpu_notifier() have to be initialized from this context
5845 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5846 * everything that doesn't depend on a specific mem_cgroup structure should
5847 * be initialized from here.
2d11085e
MH
5848 */
5849static int __init mem_cgroup_init(void)
5850{
95a045f6
JW
5851 int cpu, node;
5852
2d11085e 5853 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5854
5855 for_each_possible_cpu(cpu)
5856 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5857 drain_local_stock);
5858
5859 for_each_node(node) {
5860 struct mem_cgroup_tree_per_node *rtpn;
5861 int zone;
5862
5863 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5864 node_online(node) ? node : NUMA_NO_NODE);
5865
5866 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5867 struct mem_cgroup_tree_per_zone *rtpz;
5868
5869 rtpz = &rtpn->rb_tree_per_zone[zone];
5870 rtpz->rb_root = RB_ROOT;
5871 spin_lock_init(&rtpz->lock);
5872 }
5873 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5874 }
5875
2d11085e
MH
5876 return 0;
5877}
5878subsys_initcall(mem_cgroup_init);
21afa38e
JW
5879
5880#ifdef CONFIG_MEMCG_SWAP
5881/**
5882 * mem_cgroup_swapout - transfer a memsw charge to swap
5883 * @page: page whose memsw charge to transfer
5884 * @entry: swap entry to move the charge to
5885 *
5886 * Transfer the memsw charge of @page to @entry.
5887 */
5888void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5889{
5890 struct mem_cgroup *memcg;
5891 unsigned short oldid;
5892
5893 VM_BUG_ON_PAGE(PageLRU(page), page);
5894 VM_BUG_ON_PAGE(page_count(page), page);
5895
5896 if (!do_swap_account)
5897 return;
5898
5899 memcg = page->mem_cgroup;
5900
5901 /* Readahead page, never charged */
5902 if (!memcg)
5903 return;
5904
5905 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5906 VM_BUG_ON_PAGE(oldid, page);
5907 mem_cgroup_swap_statistics(memcg, true);
5908
5909 page->mem_cgroup = NULL;
5910
5911 if (!mem_cgroup_is_root(memcg))
5912 page_counter_uncharge(&memcg->memory, 1);
5913
5914 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5915 VM_BUG_ON(!irqs_disabled());
5916
5917 mem_cgroup_charge_statistics(memcg, page, -1);
5918 memcg_check_events(memcg, page);
5919}
5920
5921/**
5922 * mem_cgroup_uncharge_swap - uncharge a swap entry
5923 * @entry: swap entry to uncharge
5924 *
5925 * Drop the memsw charge associated with @entry.
5926 */
5927void mem_cgroup_uncharge_swap(swp_entry_t entry)
5928{
5929 struct mem_cgroup *memcg;
5930 unsigned short id;
5931
5932 if (!do_swap_account)
5933 return;
5934
5935 id = swap_cgroup_record(entry, 0);
5936 rcu_read_lock();
adbe427b 5937 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5938 if (memcg) {
5939 if (!mem_cgroup_is_root(memcg))
5940 page_counter_uncharge(&memcg->memsw, 1);
5941 mem_cgroup_swap_statistics(memcg, false);
5942 css_put(&memcg->css);
5943 }
5944 rcu_read_unlock();
5945}
5946
5947/* for remember boot option*/
5948#ifdef CONFIG_MEMCG_SWAP_ENABLED
5949static int really_do_swap_account __initdata = 1;
5950#else
5951static int really_do_swap_account __initdata;
5952#endif
5953
5954static int __init enable_swap_account(char *s)
5955{
5956 if (!strcmp(s, "1"))
5957 really_do_swap_account = 1;
5958 else if (!strcmp(s, "0"))
5959 really_do_swap_account = 0;
5960 return 1;
5961}
5962__setup("swapaccount=", enable_swap_account);
5963
5964static struct cftype memsw_cgroup_files[] = {
5965 {
5966 .name = "memsw.usage_in_bytes",
5967 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5968 .read_u64 = mem_cgroup_read_u64,
5969 },
5970 {
5971 .name = "memsw.max_usage_in_bytes",
5972 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5973 .write = mem_cgroup_reset,
5974 .read_u64 = mem_cgroup_read_u64,
5975 },
5976 {
5977 .name = "memsw.limit_in_bytes",
5978 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5979 .write = mem_cgroup_write,
5980 .read_u64 = mem_cgroup_read_u64,
5981 },
5982 {
5983 .name = "memsw.failcnt",
5984 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5985 .write = mem_cgroup_reset,
5986 .read_u64 = mem_cgroup_read_u64,
5987 },
5988 { }, /* terminate */
5989};
5990
5991static int __init mem_cgroup_swap_init(void)
5992{
5993 if (!mem_cgroup_disabled() && really_do_swap_account) {
5994 do_swap_account = 1;
5995 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5996 memsw_cgroup_files));
5997 }
5998 return 0;
5999}
6000subsys_initcall(mem_cgroup_swap_init);
6001
6002#endif /* CONFIG_MEMCG_SWAP */
This page took 1.226645 seconds and 5 git commands to generate.