memcg: add page_cgroup_ino helper
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
d1a4c0b3 68#include <net/tcp_memcontrol.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
a181b0e8 78#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 79static struct mem_cgroup *root_mem_cgroup __read_mostly;
56161634 80struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
8cdea7c0 81
21afa38e 82/* Whether the swap controller is active */
c255a458 83#ifdef CONFIG_MEMCG_SWAP
c077719b 84int do_swap_account __read_mostly;
c077719b 85#else
a0db00fc 86#define do_swap_account 0
c077719b
KH
87#endif
88
af7c4b0e
JW
89static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
b070e65c 92 "rss_huge",
af7c4b0e 93 "mapped_file",
c4843a75 94 "dirty",
3ea67d06 95 "writeback",
af7c4b0e
JW
96 "swap",
97};
98
af7c4b0e
JW
99static const char * const mem_cgroup_events_names[] = {
100 "pgpgin",
101 "pgpgout",
102 "pgfault",
103 "pgmajfault",
104};
105
58cf188e
SZ
106static const char * const mem_cgroup_lru_names[] = {
107 "inactive_anon",
108 "active_anon",
109 "inactive_file",
110 "active_file",
111 "unevictable",
112};
113
a0db00fc
KS
114#define THRESHOLDS_EVENTS_TARGET 128
115#define SOFTLIMIT_EVENTS_TARGET 1024
116#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 117
bb4cc1a8
AM
118/*
119 * Cgroups above their limits are maintained in a RB-Tree, independent of
120 * their hierarchy representation
121 */
122
123struct mem_cgroup_tree_per_zone {
124 struct rb_root rb_root;
125 spinlock_t lock;
126};
127
128struct mem_cgroup_tree_per_node {
129 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
130};
131
132struct mem_cgroup_tree {
133 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
134};
135
136static struct mem_cgroup_tree soft_limit_tree __read_mostly;
137
9490ff27
KH
138/* for OOM */
139struct mem_cgroup_eventfd_list {
140 struct list_head list;
141 struct eventfd_ctx *eventfd;
142};
2e72b634 143
79bd9814
TH
144/*
145 * cgroup_event represents events which userspace want to receive.
146 */
3bc942f3 147struct mem_cgroup_event {
79bd9814 148 /*
59b6f873 149 * memcg which the event belongs to.
79bd9814 150 */
59b6f873 151 struct mem_cgroup *memcg;
79bd9814
TH
152 /*
153 * eventfd to signal userspace about the event.
154 */
155 struct eventfd_ctx *eventfd;
156 /*
157 * Each of these stored in a list by the cgroup.
158 */
159 struct list_head list;
fba94807
TH
160 /*
161 * register_event() callback will be used to add new userspace
162 * waiter for changes related to this event. Use eventfd_signal()
163 * on eventfd to send notification to userspace.
164 */
59b6f873 165 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 166 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
167 /*
168 * unregister_event() callback will be called when userspace closes
169 * the eventfd or on cgroup removing. This callback must be set,
170 * if you want provide notification functionality.
171 */
59b6f873 172 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 173 struct eventfd_ctx *eventfd);
79bd9814
TH
174 /*
175 * All fields below needed to unregister event when
176 * userspace closes eventfd.
177 */
178 poll_table pt;
179 wait_queue_head_t *wqh;
180 wait_queue_t wait;
181 struct work_struct remove;
182};
183
c0ff4b85
R
184static void mem_cgroup_threshold(struct mem_cgroup *memcg);
185static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 186
7dc74be0
DN
187/* Stuffs for move charges at task migration. */
188/*
1dfab5ab 189 * Types of charges to be moved.
7dc74be0 190 */
1dfab5ab
JW
191#define MOVE_ANON 0x1U
192#define MOVE_FILE 0x2U
193#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 194
4ffef5fe
DN
195/* "mc" and its members are protected by cgroup_mutex */
196static struct move_charge_struct {
b1dd693e 197 spinlock_t lock; /* for from, to */
4ffef5fe
DN
198 struct mem_cgroup *from;
199 struct mem_cgroup *to;
1dfab5ab 200 unsigned long flags;
4ffef5fe 201 unsigned long precharge;
854ffa8d 202 unsigned long moved_charge;
483c30b5 203 unsigned long moved_swap;
8033b97c
DN
204 struct task_struct *moving_task; /* a task moving charges */
205 wait_queue_head_t waitq; /* a waitq for other context */
206} mc = {
2bd9bb20 207 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
208 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
209};
4ffef5fe 210
4e416953
BS
211/*
212 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
213 * limit reclaim to prevent infinite loops, if they ever occur.
214 */
a0db00fc 215#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 216#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 217
217bc319
KH
218enum charge_type {
219 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 220 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 221 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 222 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
223 NR_CHARGE_TYPE,
224};
225
8c7c6e34 226/* for encoding cft->private value on file */
86ae53e1
GC
227enum res_type {
228 _MEM,
229 _MEMSWAP,
230 _OOM_TYPE,
510fc4e1 231 _KMEM,
86ae53e1
GC
232};
233
a0db00fc
KS
234#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
235#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 236#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
237/* Used for OOM nofiier */
238#define OOM_CONTROL (0)
8c7c6e34 239
0999821b
GC
240/*
241 * The memcg_create_mutex will be held whenever a new cgroup is created.
242 * As a consequence, any change that needs to protect against new child cgroups
243 * appearing has to hold it as well.
244 */
245static DEFINE_MUTEX(memcg_create_mutex);
246
70ddf637
AV
247/* Some nice accessors for the vmpressure. */
248struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
249{
250 if (!memcg)
251 memcg = root_mem_cgroup;
252 return &memcg->vmpressure;
253}
254
255struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
256{
257 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
258}
259
7ffc0edc
MH
260static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
261{
262 return (memcg == root_mem_cgroup);
263}
264
4219b2da
LZ
265/*
266 * We restrict the id in the range of [1, 65535], so it can fit into
267 * an unsigned short.
268 */
269#define MEM_CGROUP_ID_MAX USHRT_MAX
270
34c00c31
LZ
271static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
272{
15a4c835 273 return memcg->css.id;
34c00c31
LZ
274}
275
adbe427b
VD
276/*
277 * A helper function to get mem_cgroup from ID. must be called under
278 * rcu_read_lock(). The caller is responsible for calling
279 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
280 * refcnt from swap can be called against removed memcg.)
281 */
34c00c31
LZ
282static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
283{
284 struct cgroup_subsys_state *css;
285
7d699ddb 286 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
287 return mem_cgroup_from_css(css);
288}
289
e1aab161 290/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 291#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 292
e1aab161
GC
293void sock_update_memcg(struct sock *sk)
294{
376be5ff 295 if (mem_cgroup_sockets_enabled) {
e1aab161 296 struct mem_cgroup *memcg;
3f134619 297 struct cg_proto *cg_proto;
e1aab161
GC
298
299 BUG_ON(!sk->sk_prot->proto_cgroup);
300
f3f511e1
GC
301 /* Socket cloning can throw us here with sk_cgrp already
302 * filled. It won't however, necessarily happen from
303 * process context. So the test for root memcg given
304 * the current task's memcg won't help us in this case.
305 *
306 * Respecting the original socket's memcg is a better
307 * decision in this case.
308 */
309 if (sk->sk_cgrp) {
310 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 311 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
312 return;
313 }
314
e1aab161
GC
315 rcu_read_lock();
316 memcg = mem_cgroup_from_task(current);
3f134619 317 cg_proto = sk->sk_prot->proto_cgroup(memcg);
e752eb68 318 if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
ec903c0c 319 css_tryget_online(&memcg->css)) {
3f134619 320 sk->sk_cgrp = cg_proto;
e1aab161
GC
321 }
322 rcu_read_unlock();
323 }
324}
325EXPORT_SYMBOL(sock_update_memcg);
326
327void sock_release_memcg(struct sock *sk)
328{
376be5ff 329 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
330 struct mem_cgroup *memcg;
331 WARN_ON(!sk->sk_cgrp->memcg);
332 memcg = sk->sk_cgrp->memcg;
5347e5ae 333 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
334 }
335}
d1a4c0b3
GC
336
337struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
338{
339 if (!memcg || mem_cgroup_is_root(memcg))
340 return NULL;
341
2e685cad 342 return &memcg->tcp_mem;
d1a4c0b3
GC
343}
344EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 345
3f134619
GC
346#endif
347
a8964b9b 348#ifdef CONFIG_MEMCG_KMEM
55007d84 349/*
f7ce3190 350 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
351 * The main reason for not using cgroup id for this:
352 * this works better in sparse environments, where we have a lot of memcgs,
353 * but only a few kmem-limited. Or also, if we have, for instance, 200
354 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
355 * 200 entry array for that.
55007d84 356 *
dbcf73e2
VD
357 * The current size of the caches array is stored in memcg_nr_cache_ids. It
358 * will double each time we have to increase it.
55007d84 359 */
dbcf73e2
VD
360static DEFINE_IDA(memcg_cache_ida);
361int memcg_nr_cache_ids;
749c5415 362
05257a1a
VD
363/* Protects memcg_nr_cache_ids */
364static DECLARE_RWSEM(memcg_cache_ids_sem);
365
366void memcg_get_cache_ids(void)
367{
368 down_read(&memcg_cache_ids_sem);
369}
370
371void memcg_put_cache_ids(void)
372{
373 up_read(&memcg_cache_ids_sem);
374}
375
55007d84
GC
376/*
377 * MIN_SIZE is different than 1, because we would like to avoid going through
378 * the alloc/free process all the time. In a small machine, 4 kmem-limited
379 * cgroups is a reasonable guess. In the future, it could be a parameter or
380 * tunable, but that is strictly not necessary.
381 *
b8627835 382 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
383 * this constant directly from cgroup, but it is understandable that this is
384 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 385 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
386 * increase ours as well if it increases.
387 */
388#define MEMCG_CACHES_MIN_SIZE 4
b8627835 389#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 390
d7f25f8a
GC
391/*
392 * A lot of the calls to the cache allocation functions are expected to be
393 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
394 * conditional to this static branch, we'll have to allow modules that does
395 * kmem_cache_alloc and the such to see this symbol as well
396 */
a8964b9b 397struct static_key memcg_kmem_enabled_key;
d7f25f8a 398EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 399
a8964b9b
GC
400#endif /* CONFIG_MEMCG_KMEM */
401
f64c3f54 402static struct mem_cgroup_per_zone *
e231875b 403mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 404{
e231875b
JZ
405 int nid = zone_to_nid(zone);
406 int zid = zone_idx(zone);
407
54f72fe0 408 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
409}
410
ad7fa852
TH
411/**
412 * mem_cgroup_css_from_page - css of the memcg associated with a page
413 * @page: page of interest
414 *
415 * If memcg is bound to the default hierarchy, css of the memcg associated
416 * with @page is returned. The returned css remains associated with @page
417 * until it is released.
418 *
419 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
420 * is returned.
421 *
422 * XXX: The above description of behavior on the default hierarchy isn't
423 * strictly true yet as replace_page_cache_page() can modify the
424 * association before @page is released even on the default hierarchy;
425 * however, the current and planned usages don't mix the the two functions
426 * and replace_page_cache_page() will soon be updated to make the invariant
427 * actually true.
428 */
429struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
430{
431 struct mem_cgroup *memcg;
432
433 rcu_read_lock();
434
435 memcg = page->mem_cgroup;
436
437 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
438 memcg = root_mem_cgroup;
439
440 rcu_read_unlock();
441 return &memcg->css;
442}
443
2fc04524
VD
444/**
445 * page_cgroup_ino - return inode number of the memcg a page is charged to
446 * @page: the page
447 *
448 * Look up the closest online ancestor of the memory cgroup @page is charged to
449 * and return its inode number or 0 if @page is not charged to any cgroup. It
450 * is safe to call this function without holding a reference to @page.
451 *
452 * Note, this function is inherently racy, because there is nothing to prevent
453 * the cgroup inode from getting torn down and potentially reallocated a moment
454 * after page_cgroup_ino() returns, so it only should be used by callers that
455 * do not care (such as procfs interfaces).
456 */
457ino_t page_cgroup_ino(struct page *page)
458{
459 struct mem_cgroup *memcg;
460 unsigned long ino = 0;
461
462 rcu_read_lock();
463 memcg = READ_ONCE(page->mem_cgroup);
464 while (memcg && !(memcg->css.flags & CSS_ONLINE))
465 memcg = parent_mem_cgroup(memcg);
466 if (memcg)
467 ino = cgroup_ino(memcg->css.cgroup);
468 rcu_read_unlock();
469 return ino;
470}
471
f64c3f54 472static struct mem_cgroup_per_zone *
e231875b 473mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 474{
97a6c37b
JW
475 int nid = page_to_nid(page);
476 int zid = page_zonenum(page);
f64c3f54 477
e231875b 478 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
479}
480
bb4cc1a8
AM
481static struct mem_cgroup_tree_per_zone *
482soft_limit_tree_node_zone(int nid, int zid)
483{
484 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
485}
486
487static struct mem_cgroup_tree_per_zone *
488soft_limit_tree_from_page(struct page *page)
489{
490 int nid = page_to_nid(page);
491 int zid = page_zonenum(page);
492
493 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
494}
495
cf2c8127
JW
496static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
497 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 498 unsigned long new_usage_in_excess)
bb4cc1a8
AM
499{
500 struct rb_node **p = &mctz->rb_root.rb_node;
501 struct rb_node *parent = NULL;
502 struct mem_cgroup_per_zone *mz_node;
503
504 if (mz->on_tree)
505 return;
506
507 mz->usage_in_excess = new_usage_in_excess;
508 if (!mz->usage_in_excess)
509 return;
510 while (*p) {
511 parent = *p;
512 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 tree_node);
514 if (mz->usage_in_excess < mz_node->usage_in_excess)
515 p = &(*p)->rb_left;
516 /*
517 * We can't avoid mem cgroups that are over their soft
518 * limit by the same amount
519 */
520 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 p = &(*p)->rb_right;
522 }
523 rb_link_node(&mz->tree_node, parent, p);
524 rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 mz->on_tree = true;
526}
527
cf2c8127
JW
528static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
529 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
530{
531 if (!mz->on_tree)
532 return;
533 rb_erase(&mz->tree_node, &mctz->rb_root);
534 mz->on_tree = false;
535}
536
cf2c8127
JW
537static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
538 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 539{
0a31bc97
JW
540 unsigned long flags;
541
542 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 543 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 544 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
545}
546
3e32cb2e
JW
547static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
548{
549 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 550 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
551 unsigned long excess = 0;
552
553 if (nr_pages > soft_limit)
554 excess = nr_pages - soft_limit;
555
556 return excess;
557}
bb4cc1a8
AM
558
559static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
560{
3e32cb2e 561 unsigned long excess;
bb4cc1a8
AM
562 struct mem_cgroup_per_zone *mz;
563 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 564
e231875b 565 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
566 /*
567 * Necessary to update all ancestors when hierarchy is used.
568 * because their event counter is not touched.
569 */
570 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 571 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 572 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
573 /*
574 * We have to update the tree if mz is on RB-tree or
575 * mem is over its softlimit.
576 */
577 if (excess || mz->on_tree) {
0a31bc97
JW
578 unsigned long flags;
579
580 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
581 /* if on-tree, remove it */
582 if (mz->on_tree)
cf2c8127 583 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
584 /*
585 * Insert again. mz->usage_in_excess will be updated.
586 * If excess is 0, no tree ops.
587 */
cf2c8127 588 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 589 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
590 }
591 }
592}
593
594static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
595{
bb4cc1a8 596 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
597 struct mem_cgroup_per_zone *mz;
598 int nid, zid;
bb4cc1a8 599
e231875b
JZ
600 for_each_node(nid) {
601 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
602 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
603 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 604 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
605 }
606 }
607}
608
609static struct mem_cgroup_per_zone *
610__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
611{
612 struct rb_node *rightmost = NULL;
613 struct mem_cgroup_per_zone *mz;
614
615retry:
616 mz = NULL;
617 rightmost = rb_last(&mctz->rb_root);
618 if (!rightmost)
619 goto done; /* Nothing to reclaim from */
620
621 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
622 /*
623 * Remove the node now but someone else can add it back,
624 * we will to add it back at the end of reclaim to its correct
625 * position in the tree.
626 */
cf2c8127 627 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 628 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 629 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
630 goto retry;
631done:
632 return mz;
633}
634
635static struct mem_cgroup_per_zone *
636mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
637{
638 struct mem_cgroup_per_zone *mz;
639
0a31bc97 640 spin_lock_irq(&mctz->lock);
bb4cc1a8 641 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 642 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
643 return mz;
644}
645
711d3d2c
KH
646/*
647 * Implementation Note: reading percpu statistics for memcg.
648 *
649 * Both of vmstat[] and percpu_counter has threshold and do periodic
650 * synchronization to implement "quick" read. There are trade-off between
651 * reading cost and precision of value. Then, we may have a chance to implement
652 * a periodic synchronizion of counter in memcg's counter.
653 *
654 * But this _read() function is used for user interface now. The user accounts
655 * memory usage by memory cgroup and he _always_ requires exact value because
656 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
657 * have to visit all online cpus and make sum. So, for now, unnecessary
658 * synchronization is not implemented. (just implemented for cpu hotplug)
659 *
660 * If there are kernel internal actions which can make use of some not-exact
661 * value, and reading all cpu value can be performance bottleneck in some
662 * common workload, threashold and synchonization as vmstat[] should be
663 * implemented.
664 */
c0ff4b85 665static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 666 enum mem_cgroup_stat_index idx)
c62b1a3b 667{
7a159cc9 668 long val = 0;
c62b1a3b 669 int cpu;
c62b1a3b 670
733a572e 671 for_each_possible_cpu(cpu)
c0ff4b85 672 val += per_cpu(memcg->stat->count[idx], cpu);
c62b1a3b
KH
673 return val;
674}
675
c0ff4b85 676static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
677 enum mem_cgroup_events_index idx)
678{
679 unsigned long val = 0;
680 int cpu;
681
733a572e 682 for_each_possible_cpu(cpu)
c0ff4b85 683 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
684 return val;
685}
686
c0ff4b85 687static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 688 struct page *page,
0a31bc97 689 int nr_pages)
d52aa412 690{
b2402857
KH
691 /*
692 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
693 * counted as CACHE even if it's on ANON LRU.
694 */
0a31bc97 695 if (PageAnon(page))
b2402857 696 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 697 nr_pages);
d52aa412 698 else
b2402857 699 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 700 nr_pages);
55e462b0 701
b070e65c
DR
702 if (PageTransHuge(page))
703 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
704 nr_pages);
705
e401f176
KH
706 /* pagein of a big page is an event. So, ignore page size */
707 if (nr_pages > 0)
c0ff4b85 708 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 709 else {
c0ff4b85 710 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
711 nr_pages = -nr_pages; /* for event */
712 }
e401f176 713
13114716 714 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
715}
716
e231875b
JZ
717static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 int nid,
719 unsigned int lru_mask)
bb2a0de9 720{
e231875b 721 unsigned long nr = 0;
889976db
YH
722 int zid;
723
e231875b 724 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 725
e231875b
JZ
726 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
727 struct mem_cgroup_per_zone *mz;
728 enum lru_list lru;
729
730 for_each_lru(lru) {
731 if (!(BIT(lru) & lru_mask))
732 continue;
733 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
734 nr += mz->lru_size[lru];
735 }
736 }
737 return nr;
889976db 738}
bb2a0de9 739
c0ff4b85 740static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 741 unsigned int lru_mask)
6d12e2d8 742{
e231875b 743 unsigned long nr = 0;
889976db 744 int nid;
6d12e2d8 745
31aaea4a 746 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
747 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
748 return nr;
d52aa412
KH
749}
750
f53d7ce3
JW
751static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
752 enum mem_cgroup_events_target target)
7a159cc9
JW
753{
754 unsigned long val, next;
755
13114716 756 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 757 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 758 /* from time_after() in jiffies.h */
f53d7ce3
JW
759 if ((long)next - (long)val < 0) {
760 switch (target) {
761 case MEM_CGROUP_TARGET_THRESH:
762 next = val + THRESHOLDS_EVENTS_TARGET;
763 break;
bb4cc1a8
AM
764 case MEM_CGROUP_TARGET_SOFTLIMIT:
765 next = val + SOFTLIMIT_EVENTS_TARGET;
766 break;
f53d7ce3
JW
767 case MEM_CGROUP_TARGET_NUMAINFO:
768 next = val + NUMAINFO_EVENTS_TARGET;
769 break;
770 default:
771 break;
772 }
773 __this_cpu_write(memcg->stat->targets[target], next);
774 return true;
7a159cc9 775 }
f53d7ce3 776 return false;
d2265e6f
KH
777}
778
779/*
780 * Check events in order.
781 *
782 */
c0ff4b85 783static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
784{
785 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
786 if (unlikely(mem_cgroup_event_ratelimit(memcg,
787 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 788 bool do_softlimit;
82b3f2a7 789 bool do_numainfo __maybe_unused;
f53d7ce3 790
bb4cc1a8
AM
791 do_softlimit = mem_cgroup_event_ratelimit(memcg,
792 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
793#if MAX_NUMNODES > 1
794 do_numainfo = mem_cgroup_event_ratelimit(memcg,
795 MEM_CGROUP_TARGET_NUMAINFO);
796#endif
c0ff4b85 797 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
798 if (unlikely(do_softlimit))
799 mem_cgroup_update_tree(memcg, page);
453a9bf3 800#if MAX_NUMNODES > 1
f53d7ce3 801 if (unlikely(do_numainfo))
c0ff4b85 802 atomic_inc(&memcg->numainfo_events);
453a9bf3 803#endif
0a31bc97 804 }
d2265e6f
KH
805}
806
cf475ad2 807struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 808{
31a78f23
BS
809 /*
810 * mm_update_next_owner() may clear mm->owner to NULL
811 * if it races with swapoff, page migration, etc.
812 * So this can be called with p == NULL.
813 */
814 if (unlikely(!p))
815 return NULL;
816
073219e9 817 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 818}
33398cf2 819EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 820
df381975 821static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 822{
c0ff4b85 823 struct mem_cgroup *memcg = NULL;
0b7f569e 824
54595fe2
KH
825 rcu_read_lock();
826 do {
6f6acb00
MH
827 /*
828 * Page cache insertions can happen withou an
829 * actual mm context, e.g. during disk probing
830 * on boot, loopback IO, acct() writes etc.
831 */
832 if (unlikely(!mm))
df381975 833 memcg = root_mem_cgroup;
6f6acb00
MH
834 else {
835 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
836 if (unlikely(!memcg))
837 memcg = root_mem_cgroup;
838 }
ec903c0c 839 } while (!css_tryget_online(&memcg->css));
54595fe2 840 rcu_read_unlock();
c0ff4b85 841 return memcg;
54595fe2
KH
842}
843
5660048c
JW
844/**
845 * mem_cgroup_iter - iterate over memory cgroup hierarchy
846 * @root: hierarchy root
847 * @prev: previously returned memcg, NULL on first invocation
848 * @reclaim: cookie for shared reclaim walks, NULL for full walks
849 *
850 * Returns references to children of the hierarchy below @root, or
851 * @root itself, or %NULL after a full round-trip.
852 *
853 * Caller must pass the return value in @prev on subsequent
854 * invocations for reference counting, or use mem_cgroup_iter_break()
855 * to cancel a hierarchy walk before the round-trip is complete.
856 *
857 * Reclaimers can specify a zone and a priority level in @reclaim to
858 * divide up the memcgs in the hierarchy among all concurrent
859 * reclaimers operating on the same zone and priority.
860 */
694fbc0f 861struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 862 struct mem_cgroup *prev,
694fbc0f 863 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 864{
33398cf2 865 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 866 struct cgroup_subsys_state *css = NULL;
9f3a0d09 867 struct mem_cgroup *memcg = NULL;
5ac8fb31 868 struct mem_cgroup *pos = NULL;
711d3d2c 869
694fbc0f
AM
870 if (mem_cgroup_disabled())
871 return NULL;
5660048c 872
9f3a0d09
JW
873 if (!root)
874 root = root_mem_cgroup;
7d74b06f 875
9f3a0d09 876 if (prev && !reclaim)
5ac8fb31 877 pos = prev;
14067bb3 878
9f3a0d09
JW
879 if (!root->use_hierarchy && root != root_mem_cgroup) {
880 if (prev)
5ac8fb31 881 goto out;
694fbc0f 882 return root;
9f3a0d09 883 }
14067bb3 884
542f85f9 885 rcu_read_lock();
5f578161 886
5ac8fb31
JW
887 if (reclaim) {
888 struct mem_cgroup_per_zone *mz;
889
890 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
891 iter = &mz->iter[reclaim->priority];
892
893 if (prev && reclaim->generation != iter->generation)
894 goto out_unlock;
895
896 do {
4db0c3c2 897 pos = READ_ONCE(iter->position);
5ac8fb31
JW
898 /*
899 * A racing update may change the position and
900 * put the last reference, hence css_tryget(),
901 * or retry to see the updated position.
902 */
903 } while (pos && !css_tryget(&pos->css));
904 }
905
906 if (pos)
907 css = &pos->css;
908
909 for (;;) {
910 css = css_next_descendant_pre(css, &root->css);
911 if (!css) {
912 /*
913 * Reclaimers share the hierarchy walk, and a
914 * new one might jump in right at the end of
915 * the hierarchy - make sure they see at least
916 * one group and restart from the beginning.
917 */
918 if (!prev)
919 continue;
920 break;
527a5ec9 921 }
7d74b06f 922
5ac8fb31
JW
923 /*
924 * Verify the css and acquire a reference. The root
925 * is provided by the caller, so we know it's alive
926 * and kicking, and don't take an extra reference.
927 */
928 memcg = mem_cgroup_from_css(css);
14067bb3 929
5ac8fb31
JW
930 if (css == &root->css)
931 break;
14067bb3 932
b2052564 933 if (css_tryget(css)) {
5ac8fb31
JW
934 /*
935 * Make sure the memcg is initialized:
936 * mem_cgroup_css_online() orders the the
937 * initialization against setting the flag.
938 */
939 if (smp_load_acquire(&memcg->initialized))
940 break;
542f85f9 941
5ac8fb31 942 css_put(css);
527a5ec9 943 }
9f3a0d09 944
5ac8fb31 945 memcg = NULL;
9f3a0d09 946 }
5ac8fb31
JW
947
948 if (reclaim) {
949 if (cmpxchg(&iter->position, pos, memcg) == pos) {
950 if (memcg)
951 css_get(&memcg->css);
952 if (pos)
953 css_put(&pos->css);
954 }
955
956 /*
957 * pairs with css_tryget when dereferencing iter->position
958 * above.
959 */
960 if (pos)
961 css_put(&pos->css);
962
963 if (!memcg)
964 iter->generation++;
965 else if (!prev)
966 reclaim->generation = iter->generation;
9f3a0d09 967 }
5ac8fb31 968
542f85f9
MH
969out_unlock:
970 rcu_read_unlock();
5ac8fb31 971out:
c40046f3
MH
972 if (prev && prev != root)
973 css_put(&prev->css);
974
9f3a0d09 975 return memcg;
14067bb3 976}
7d74b06f 977
5660048c
JW
978/**
979 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
980 * @root: hierarchy root
981 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
982 */
983void mem_cgroup_iter_break(struct mem_cgroup *root,
984 struct mem_cgroup *prev)
9f3a0d09
JW
985{
986 if (!root)
987 root = root_mem_cgroup;
988 if (prev && prev != root)
989 css_put(&prev->css);
990}
7d74b06f 991
9f3a0d09
JW
992/*
993 * Iteration constructs for visiting all cgroups (under a tree). If
994 * loops are exited prematurely (break), mem_cgroup_iter_break() must
995 * be used for reference counting.
996 */
997#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 998 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 999 iter != NULL; \
527a5ec9 1000 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1001
9f3a0d09 1002#define for_each_mem_cgroup(iter) \
527a5ec9 1003 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1004 iter != NULL; \
527a5ec9 1005 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1006
925b7673
JW
1007/**
1008 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1009 * @zone: zone of the wanted lruvec
fa9add64 1010 * @memcg: memcg of the wanted lruvec
925b7673
JW
1011 *
1012 * Returns the lru list vector holding pages for the given @zone and
1013 * @mem. This can be the global zone lruvec, if the memory controller
1014 * is disabled.
1015 */
1016struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1017 struct mem_cgroup *memcg)
1018{
1019 struct mem_cgroup_per_zone *mz;
bea8c150 1020 struct lruvec *lruvec;
925b7673 1021
bea8c150
HD
1022 if (mem_cgroup_disabled()) {
1023 lruvec = &zone->lruvec;
1024 goto out;
1025 }
925b7673 1026
e231875b 1027 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1028 lruvec = &mz->lruvec;
1029out:
1030 /*
1031 * Since a node can be onlined after the mem_cgroup was created,
1032 * we have to be prepared to initialize lruvec->zone here;
1033 * and if offlined then reonlined, we need to reinitialize it.
1034 */
1035 if (unlikely(lruvec->zone != zone))
1036 lruvec->zone = zone;
1037 return lruvec;
925b7673
JW
1038}
1039
925b7673 1040/**
dfe0e773 1041 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1042 * @page: the page
fa9add64 1043 * @zone: zone of the page
dfe0e773
JW
1044 *
1045 * This function is only safe when following the LRU page isolation
1046 * and putback protocol: the LRU lock must be held, and the page must
1047 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1048 */
fa9add64 1049struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1050{
08e552c6 1051 struct mem_cgroup_per_zone *mz;
925b7673 1052 struct mem_cgroup *memcg;
bea8c150 1053 struct lruvec *lruvec;
6d12e2d8 1054
bea8c150
HD
1055 if (mem_cgroup_disabled()) {
1056 lruvec = &zone->lruvec;
1057 goto out;
1058 }
925b7673 1059
1306a85a 1060 memcg = page->mem_cgroup;
7512102c 1061 /*
dfe0e773 1062 * Swapcache readahead pages are added to the LRU - and
29833315 1063 * possibly migrated - before they are charged.
7512102c 1064 */
29833315
JW
1065 if (!memcg)
1066 memcg = root_mem_cgroup;
7512102c 1067
e231875b 1068 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1069 lruvec = &mz->lruvec;
1070out:
1071 /*
1072 * Since a node can be onlined after the mem_cgroup was created,
1073 * we have to be prepared to initialize lruvec->zone here;
1074 * and if offlined then reonlined, we need to reinitialize it.
1075 */
1076 if (unlikely(lruvec->zone != zone))
1077 lruvec->zone = zone;
1078 return lruvec;
08e552c6 1079}
b69408e8 1080
925b7673 1081/**
fa9add64
HD
1082 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1083 * @lruvec: mem_cgroup per zone lru vector
1084 * @lru: index of lru list the page is sitting on
1085 * @nr_pages: positive when adding or negative when removing
925b7673 1086 *
fa9add64
HD
1087 * This function must be called when a page is added to or removed from an
1088 * lru list.
3f58a829 1089 */
fa9add64
HD
1090void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1091 int nr_pages)
3f58a829
MK
1092{
1093 struct mem_cgroup_per_zone *mz;
fa9add64 1094 unsigned long *lru_size;
3f58a829
MK
1095
1096 if (mem_cgroup_disabled())
1097 return;
1098
fa9add64
HD
1099 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1100 lru_size = mz->lru_size + lru;
1101 *lru_size += nr_pages;
1102 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1103}
544122e5 1104
2314b42d 1105bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1106{
2314b42d 1107 struct mem_cgroup *task_memcg;
158e0a2d 1108 struct task_struct *p;
ffbdccf5 1109 bool ret;
4c4a2214 1110
158e0a2d 1111 p = find_lock_task_mm(task);
de077d22 1112 if (p) {
2314b42d 1113 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1114 task_unlock(p);
1115 } else {
1116 /*
1117 * All threads may have already detached their mm's, but the oom
1118 * killer still needs to detect if they have already been oom
1119 * killed to prevent needlessly killing additional tasks.
1120 */
ffbdccf5 1121 rcu_read_lock();
2314b42d
JW
1122 task_memcg = mem_cgroup_from_task(task);
1123 css_get(&task_memcg->css);
ffbdccf5 1124 rcu_read_unlock();
de077d22 1125 }
2314b42d
JW
1126 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1127 css_put(&task_memcg->css);
4c4a2214
DR
1128 return ret;
1129}
1130
3e32cb2e 1131#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1132 container_of(counter, struct mem_cgroup, member)
1133
19942822 1134/**
9d11ea9f 1135 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1136 * @memcg: the memory cgroup
19942822 1137 *
9d11ea9f 1138 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1139 * pages.
19942822 1140 */
c0ff4b85 1141static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1142{
3e32cb2e
JW
1143 unsigned long margin = 0;
1144 unsigned long count;
1145 unsigned long limit;
9d11ea9f 1146
3e32cb2e 1147 count = page_counter_read(&memcg->memory);
4db0c3c2 1148 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1149 if (count < limit)
1150 margin = limit - count;
1151
1152 if (do_swap_account) {
1153 count = page_counter_read(&memcg->memsw);
4db0c3c2 1154 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1155 if (count <= limit)
1156 margin = min(margin, limit - count);
1157 }
1158
1159 return margin;
19942822
JW
1160}
1161
32047e2a 1162/*
bdcbb659 1163 * A routine for checking "mem" is under move_account() or not.
32047e2a 1164 *
bdcbb659
QH
1165 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1166 * moving cgroups. This is for waiting at high-memory pressure
1167 * caused by "move".
32047e2a 1168 */
c0ff4b85 1169static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1170{
2bd9bb20
KH
1171 struct mem_cgroup *from;
1172 struct mem_cgroup *to;
4b534334 1173 bool ret = false;
2bd9bb20
KH
1174 /*
1175 * Unlike task_move routines, we access mc.to, mc.from not under
1176 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1177 */
1178 spin_lock(&mc.lock);
1179 from = mc.from;
1180 to = mc.to;
1181 if (!from)
1182 goto unlock;
3e92041d 1183
2314b42d
JW
1184 ret = mem_cgroup_is_descendant(from, memcg) ||
1185 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1186unlock:
1187 spin_unlock(&mc.lock);
4b534334
KH
1188 return ret;
1189}
1190
c0ff4b85 1191static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1192{
1193 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1194 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1195 DEFINE_WAIT(wait);
1196 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1197 /* moving charge context might have finished. */
1198 if (mc.moving_task)
1199 schedule();
1200 finish_wait(&mc.waitq, &wait);
1201 return true;
1202 }
1203 }
1204 return false;
1205}
1206
58cf188e 1207#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1208/**
58cf188e 1209 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1210 * @memcg: The memory cgroup that went over limit
1211 * @p: Task that is going to be killed
1212 *
1213 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1214 * enabled
1215 */
1216void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1217{
e61734c5 1218 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1219 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1220 struct mem_cgroup *iter;
1221 unsigned int i;
e222432b 1222
08088cb9 1223 mutex_lock(&oom_info_lock);
e222432b
BS
1224 rcu_read_lock();
1225
2415b9f5
BV
1226 if (p) {
1227 pr_info("Task in ");
1228 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1229 pr_cont(" killed as a result of limit of ");
1230 } else {
1231 pr_info("Memory limit reached of cgroup ");
1232 }
1233
e61734c5 1234 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1235 pr_cont("\n");
e222432b 1236
e222432b
BS
1237 rcu_read_unlock();
1238
3e32cb2e
JW
1239 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1240 K((u64)page_counter_read(&memcg->memory)),
1241 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1242 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1243 K((u64)page_counter_read(&memcg->memsw)),
1244 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1245 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1246 K((u64)page_counter_read(&memcg->kmem)),
1247 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1248
1249 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1250 pr_info("Memory cgroup stats for ");
1251 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1252 pr_cont(":");
1253
1254 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1255 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1256 continue;
1257 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1258 K(mem_cgroup_read_stat(iter, i)));
1259 }
1260
1261 for (i = 0; i < NR_LRU_LISTS; i++)
1262 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1263 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1264
1265 pr_cont("\n");
1266 }
08088cb9 1267 mutex_unlock(&oom_info_lock);
e222432b
BS
1268}
1269
81d39c20
KH
1270/*
1271 * This function returns the number of memcg under hierarchy tree. Returns
1272 * 1(self count) if no children.
1273 */
c0ff4b85 1274static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1275{
1276 int num = 0;
7d74b06f
KH
1277 struct mem_cgroup *iter;
1278
c0ff4b85 1279 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1280 num++;
81d39c20
KH
1281 return num;
1282}
1283
a63d83f4
DR
1284/*
1285 * Return the memory (and swap, if configured) limit for a memcg.
1286 */
3e32cb2e 1287static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1288{
3e32cb2e 1289 unsigned long limit;
f3e8eb70 1290
3e32cb2e 1291 limit = memcg->memory.limit;
9a5a8f19 1292 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1293 unsigned long memsw_limit;
9a5a8f19 1294
3e32cb2e
JW
1295 memsw_limit = memcg->memsw.limit;
1296 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1297 }
9a5a8f19 1298 return limit;
a63d83f4
DR
1299}
1300
19965460
DR
1301static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1302 int order)
9cbb78bb 1303{
6e0fc46d
DR
1304 struct oom_control oc = {
1305 .zonelist = NULL,
1306 .nodemask = NULL,
1307 .gfp_mask = gfp_mask,
1308 .order = order,
6e0fc46d 1309 };
9cbb78bb
DR
1310 struct mem_cgroup *iter;
1311 unsigned long chosen_points = 0;
1312 unsigned long totalpages;
1313 unsigned int points = 0;
1314 struct task_struct *chosen = NULL;
1315
dc56401f
JW
1316 mutex_lock(&oom_lock);
1317
876aafbf 1318 /*
465adcf1
DR
1319 * If current has a pending SIGKILL or is exiting, then automatically
1320 * select it. The goal is to allow it to allocate so that it may
1321 * quickly exit and free its memory.
876aafbf 1322 */
d003f371 1323 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1324 mark_oom_victim(current);
dc56401f 1325 goto unlock;
876aafbf
DR
1326 }
1327
6e0fc46d 1328 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1329 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1330 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1331 struct css_task_iter it;
9cbb78bb
DR
1332 struct task_struct *task;
1333
72ec7029
TH
1334 css_task_iter_start(&iter->css, &it);
1335 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1336 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1337 case OOM_SCAN_SELECT:
1338 if (chosen)
1339 put_task_struct(chosen);
1340 chosen = task;
1341 chosen_points = ULONG_MAX;
1342 get_task_struct(chosen);
1343 /* fall through */
1344 case OOM_SCAN_CONTINUE:
1345 continue;
1346 case OOM_SCAN_ABORT:
72ec7029 1347 css_task_iter_end(&it);
9cbb78bb
DR
1348 mem_cgroup_iter_break(memcg, iter);
1349 if (chosen)
1350 put_task_struct(chosen);
dc56401f 1351 goto unlock;
9cbb78bb
DR
1352 case OOM_SCAN_OK:
1353 break;
1354 };
1355 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1356 if (!points || points < chosen_points)
1357 continue;
1358 /* Prefer thread group leaders for display purposes */
1359 if (points == chosen_points &&
1360 thread_group_leader(chosen))
1361 continue;
1362
1363 if (chosen)
1364 put_task_struct(chosen);
1365 chosen = task;
1366 chosen_points = points;
1367 get_task_struct(chosen);
9cbb78bb 1368 }
72ec7029 1369 css_task_iter_end(&it);
9cbb78bb
DR
1370 }
1371
dc56401f
JW
1372 if (chosen) {
1373 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1374 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1375 "Memory cgroup out of memory");
dc56401f
JW
1376 }
1377unlock:
1378 mutex_unlock(&oom_lock);
9cbb78bb
DR
1379}
1380
ae6e71d3
MC
1381#if MAX_NUMNODES > 1
1382
4d0c066d
KH
1383/**
1384 * test_mem_cgroup_node_reclaimable
dad7557e 1385 * @memcg: the target memcg
4d0c066d
KH
1386 * @nid: the node ID to be checked.
1387 * @noswap : specify true here if the user wants flle only information.
1388 *
1389 * This function returns whether the specified memcg contains any
1390 * reclaimable pages on a node. Returns true if there are any reclaimable
1391 * pages in the node.
1392 */
c0ff4b85 1393static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1394 int nid, bool noswap)
1395{
c0ff4b85 1396 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1397 return true;
1398 if (noswap || !total_swap_pages)
1399 return false;
c0ff4b85 1400 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1401 return true;
1402 return false;
1403
1404}
889976db
YH
1405
1406/*
1407 * Always updating the nodemask is not very good - even if we have an empty
1408 * list or the wrong list here, we can start from some node and traverse all
1409 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1410 *
1411 */
c0ff4b85 1412static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1413{
1414 int nid;
453a9bf3
KH
1415 /*
1416 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1417 * pagein/pageout changes since the last update.
1418 */
c0ff4b85 1419 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1420 return;
c0ff4b85 1421 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1422 return;
1423
889976db 1424 /* make a nodemask where this memcg uses memory from */
31aaea4a 1425 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1426
31aaea4a 1427 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1428
c0ff4b85
R
1429 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1430 node_clear(nid, memcg->scan_nodes);
889976db 1431 }
453a9bf3 1432
c0ff4b85
R
1433 atomic_set(&memcg->numainfo_events, 0);
1434 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1435}
1436
1437/*
1438 * Selecting a node where we start reclaim from. Because what we need is just
1439 * reducing usage counter, start from anywhere is O,K. Considering
1440 * memory reclaim from current node, there are pros. and cons.
1441 *
1442 * Freeing memory from current node means freeing memory from a node which
1443 * we'll use or we've used. So, it may make LRU bad. And if several threads
1444 * hit limits, it will see a contention on a node. But freeing from remote
1445 * node means more costs for memory reclaim because of memory latency.
1446 *
1447 * Now, we use round-robin. Better algorithm is welcomed.
1448 */
c0ff4b85 1449int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1450{
1451 int node;
1452
c0ff4b85
R
1453 mem_cgroup_may_update_nodemask(memcg);
1454 node = memcg->last_scanned_node;
889976db 1455
c0ff4b85 1456 node = next_node(node, memcg->scan_nodes);
889976db 1457 if (node == MAX_NUMNODES)
c0ff4b85 1458 node = first_node(memcg->scan_nodes);
889976db
YH
1459 /*
1460 * We call this when we hit limit, not when pages are added to LRU.
1461 * No LRU may hold pages because all pages are UNEVICTABLE or
1462 * memcg is too small and all pages are not on LRU. In that case,
1463 * we use curret node.
1464 */
1465 if (unlikely(node == MAX_NUMNODES))
1466 node = numa_node_id();
1467
c0ff4b85 1468 memcg->last_scanned_node = node;
889976db
YH
1469 return node;
1470}
889976db 1471#else
c0ff4b85 1472int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1473{
1474 return 0;
1475}
1476#endif
1477
0608f43d
AM
1478static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1479 struct zone *zone,
1480 gfp_t gfp_mask,
1481 unsigned long *total_scanned)
1482{
1483 struct mem_cgroup *victim = NULL;
1484 int total = 0;
1485 int loop = 0;
1486 unsigned long excess;
1487 unsigned long nr_scanned;
1488 struct mem_cgroup_reclaim_cookie reclaim = {
1489 .zone = zone,
1490 .priority = 0,
1491 };
1492
3e32cb2e 1493 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1494
1495 while (1) {
1496 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1497 if (!victim) {
1498 loop++;
1499 if (loop >= 2) {
1500 /*
1501 * If we have not been able to reclaim
1502 * anything, it might because there are
1503 * no reclaimable pages under this hierarchy
1504 */
1505 if (!total)
1506 break;
1507 /*
1508 * We want to do more targeted reclaim.
1509 * excess >> 2 is not to excessive so as to
1510 * reclaim too much, nor too less that we keep
1511 * coming back to reclaim from this cgroup
1512 */
1513 if (total >= (excess >> 2) ||
1514 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1515 break;
1516 }
1517 continue;
1518 }
0608f43d
AM
1519 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1520 zone, &nr_scanned);
1521 *total_scanned += nr_scanned;
3e32cb2e 1522 if (!soft_limit_excess(root_memcg))
0608f43d 1523 break;
6d61ef40 1524 }
0608f43d
AM
1525 mem_cgroup_iter_break(root_memcg, victim);
1526 return total;
6d61ef40
BS
1527}
1528
0056f4e6
JW
1529#ifdef CONFIG_LOCKDEP
1530static struct lockdep_map memcg_oom_lock_dep_map = {
1531 .name = "memcg_oom_lock",
1532};
1533#endif
1534
fb2a6fc5
JW
1535static DEFINE_SPINLOCK(memcg_oom_lock);
1536
867578cb
KH
1537/*
1538 * Check OOM-Killer is already running under our hierarchy.
1539 * If someone is running, return false.
1540 */
fb2a6fc5 1541static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1542{
79dfdacc 1543 struct mem_cgroup *iter, *failed = NULL;
a636b327 1544
fb2a6fc5
JW
1545 spin_lock(&memcg_oom_lock);
1546
9f3a0d09 1547 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1548 if (iter->oom_lock) {
79dfdacc
MH
1549 /*
1550 * this subtree of our hierarchy is already locked
1551 * so we cannot give a lock.
1552 */
79dfdacc 1553 failed = iter;
9f3a0d09
JW
1554 mem_cgroup_iter_break(memcg, iter);
1555 break;
23751be0
JW
1556 } else
1557 iter->oom_lock = true;
7d74b06f 1558 }
867578cb 1559
fb2a6fc5
JW
1560 if (failed) {
1561 /*
1562 * OK, we failed to lock the whole subtree so we have
1563 * to clean up what we set up to the failing subtree
1564 */
1565 for_each_mem_cgroup_tree(iter, memcg) {
1566 if (iter == failed) {
1567 mem_cgroup_iter_break(memcg, iter);
1568 break;
1569 }
1570 iter->oom_lock = false;
79dfdacc 1571 }
0056f4e6
JW
1572 } else
1573 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1574
1575 spin_unlock(&memcg_oom_lock);
1576
1577 return !failed;
a636b327 1578}
0b7f569e 1579
fb2a6fc5 1580static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1581{
7d74b06f
KH
1582 struct mem_cgroup *iter;
1583
fb2a6fc5 1584 spin_lock(&memcg_oom_lock);
0056f4e6 1585 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1586 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1587 iter->oom_lock = false;
fb2a6fc5 1588 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1589}
1590
c0ff4b85 1591static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1592{
1593 struct mem_cgroup *iter;
1594
c2b42d3c 1595 spin_lock(&memcg_oom_lock);
c0ff4b85 1596 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1597 iter->under_oom++;
1598 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1599}
1600
c0ff4b85 1601static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1602{
1603 struct mem_cgroup *iter;
1604
867578cb
KH
1605 /*
1606 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1607 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1608 */
c2b42d3c 1609 spin_lock(&memcg_oom_lock);
c0ff4b85 1610 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1611 if (iter->under_oom > 0)
1612 iter->under_oom--;
1613 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1614}
1615
867578cb
KH
1616static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1617
dc98df5a 1618struct oom_wait_info {
d79154bb 1619 struct mem_cgroup *memcg;
dc98df5a
KH
1620 wait_queue_t wait;
1621};
1622
1623static int memcg_oom_wake_function(wait_queue_t *wait,
1624 unsigned mode, int sync, void *arg)
1625{
d79154bb
HD
1626 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1627 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1628 struct oom_wait_info *oom_wait_info;
1629
1630 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1631 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1632
2314b42d
JW
1633 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1634 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1635 return 0;
dc98df5a
KH
1636 return autoremove_wake_function(wait, mode, sync, arg);
1637}
1638
c0ff4b85 1639static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1640{
c2b42d3c
TH
1641 /*
1642 * For the following lockless ->under_oom test, the only required
1643 * guarantee is that it must see the state asserted by an OOM when
1644 * this function is called as a result of userland actions
1645 * triggered by the notification of the OOM. This is trivially
1646 * achieved by invoking mem_cgroup_mark_under_oom() before
1647 * triggering notification.
1648 */
1649 if (memcg && memcg->under_oom)
f4b90b70 1650 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1651}
1652
3812c8c8 1653static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1654{
3812c8c8
JW
1655 if (!current->memcg_oom.may_oom)
1656 return;
867578cb 1657 /*
49426420
JW
1658 * We are in the middle of the charge context here, so we
1659 * don't want to block when potentially sitting on a callstack
1660 * that holds all kinds of filesystem and mm locks.
1661 *
1662 * Also, the caller may handle a failed allocation gracefully
1663 * (like optional page cache readahead) and so an OOM killer
1664 * invocation might not even be necessary.
1665 *
1666 * That's why we don't do anything here except remember the
1667 * OOM context and then deal with it at the end of the page
1668 * fault when the stack is unwound, the locks are released,
1669 * and when we know whether the fault was overall successful.
867578cb 1670 */
49426420
JW
1671 css_get(&memcg->css);
1672 current->memcg_oom.memcg = memcg;
1673 current->memcg_oom.gfp_mask = mask;
1674 current->memcg_oom.order = order;
3812c8c8
JW
1675}
1676
1677/**
1678 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1679 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1680 *
49426420
JW
1681 * This has to be called at the end of a page fault if the memcg OOM
1682 * handler was enabled.
3812c8c8 1683 *
49426420 1684 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1685 * sleep on a waitqueue until the userspace task resolves the
1686 * situation. Sleeping directly in the charge context with all kinds
1687 * of locks held is not a good idea, instead we remember an OOM state
1688 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1689 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1690 *
1691 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1692 * completed, %false otherwise.
3812c8c8 1693 */
49426420 1694bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1695{
49426420 1696 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1697 struct oom_wait_info owait;
49426420 1698 bool locked;
3812c8c8
JW
1699
1700 /* OOM is global, do not handle */
3812c8c8 1701 if (!memcg)
49426420 1702 return false;
3812c8c8 1703
c32b3cbe 1704 if (!handle || oom_killer_disabled)
49426420 1705 goto cleanup;
3812c8c8
JW
1706
1707 owait.memcg = memcg;
1708 owait.wait.flags = 0;
1709 owait.wait.func = memcg_oom_wake_function;
1710 owait.wait.private = current;
1711 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1712
3812c8c8 1713 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1714 mem_cgroup_mark_under_oom(memcg);
1715
1716 locked = mem_cgroup_oom_trylock(memcg);
1717
1718 if (locked)
1719 mem_cgroup_oom_notify(memcg);
1720
1721 if (locked && !memcg->oom_kill_disable) {
1722 mem_cgroup_unmark_under_oom(memcg);
1723 finish_wait(&memcg_oom_waitq, &owait.wait);
1724 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1725 current->memcg_oom.order);
1726 } else {
3812c8c8 1727 schedule();
49426420
JW
1728 mem_cgroup_unmark_under_oom(memcg);
1729 finish_wait(&memcg_oom_waitq, &owait.wait);
1730 }
1731
1732 if (locked) {
fb2a6fc5
JW
1733 mem_cgroup_oom_unlock(memcg);
1734 /*
1735 * There is no guarantee that an OOM-lock contender
1736 * sees the wakeups triggered by the OOM kill
1737 * uncharges. Wake any sleepers explicitely.
1738 */
1739 memcg_oom_recover(memcg);
1740 }
49426420
JW
1741cleanup:
1742 current->memcg_oom.memcg = NULL;
3812c8c8 1743 css_put(&memcg->css);
867578cb 1744 return true;
0b7f569e
KH
1745}
1746
d7365e78
JW
1747/**
1748 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1749 * @page: page that is going to change accounted state
32047e2a 1750 *
d7365e78
JW
1751 * This function must mark the beginning of an accounted page state
1752 * change to prevent double accounting when the page is concurrently
1753 * being moved to another memcg:
32047e2a 1754 *
6de22619 1755 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1756 * if (TestClearPageState(page))
1757 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1758 * mem_cgroup_end_page_stat(memcg);
d69b042f 1759 */
6de22619 1760struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1761{
1762 struct mem_cgroup *memcg;
6de22619 1763 unsigned long flags;
89c06bd5 1764
6de22619
JW
1765 /*
1766 * The RCU lock is held throughout the transaction. The fast
1767 * path can get away without acquiring the memcg->move_lock
1768 * because page moving starts with an RCU grace period.
1769 *
1770 * The RCU lock also protects the memcg from being freed when
1771 * the page state that is going to change is the only thing
1772 * preventing the page from being uncharged.
1773 * E.g. end-writeback clearing PageWriteback(), which allows
1774 * migration to go ahead and uncharge the page before the
1775 * account transaction might be complete.
1776 */
d7365e78
JW
1777 rcu_read_lock();
1778
1779 if (mem_cgroup_disabled())
1780 return NULL;
89c06bd5 1781again:
1306a85a 1782 memcg = page->mem_cgroup;
29833315 1783 if (unlikely(!memcg))
d7365e78
JW
1784 return NULL;
1785
bdcbb659 1786 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1787 return memcg;
89c06bd5 1788
6de22619 1789 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1790 if (memcg != page->mem_cgroup) {
6de22619 1791 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1792 goto again;
1793 }
6de22619
JW
1794
1795 /*
1796 * When charge migration first begins, we can have locked and
1797 * unlocked page stat updates happening concurrently. Track
1798 * the task who has the lock for mem_cgroup_end_page_stat().
1799 */
1800 memcg->move_lock_task = current;
1801 memcg->move_lock_flags = flags;
d7365e78
JW
1802
1803 return memcg;
89c06bd5 1804}
c4843a75 1805EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 1806
d7365e78
JW
1807/**
1808 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1809 * @memcg: the memcg that was accounted against
d7365e78 1810 */
6de22619 1811void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 1812{
6de22619
JW
1813 if (memcg && memcg->move_lock_task == current) {
1814 unsigned long flags = memcg->move_lock_flags;
1815
1816 memcg->move_lock_task = NULL;
1817 memcg->move_lock_flags = 0;
1818
1819 spin_unlock_irqrestore(&memcg->move_lock, flags);
1820 }
89c06bd5 1821
d7365e78 1822 rcu_read_unlock();
89c06bd5 1823}
c4843a75 1824EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 1825
cdec2e42
KH
1826/*
1827 * size of first charge trial. "32" comes from vmscan.c's magic value.
1828 * TODO: maybe necessary to use big numbers in big irons.
1829 */
7ec99d62 1830#define CHARGE_BATCH 32U
cdec2e42
KH
1831struct memcg_stock_pcp {
1832 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1833 unsigned int nr_pages;
cdec2e42 1834 struct work_struct work;
26fe6168 1835 unsigned long flags;
a0db00fc 1836#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1837};
1838static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1839static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1840
a0956d54
SS
1841/**
1842 * consume_stock: Try to consume stocked charge on this cpu.
1843 * @memcg: memcg to consume from.
1844 * @nr_pages: how many pages to charge.
1845 *
1846 * The charges will only happen if @memcg matches the current cpu's memcg
1847 * stock, and at least @nr_pages are available in that stock. Failure to
1848 * service an allocation will refill the stock.
1849 *
1850 * returns true if successful, false otherwise.
cdec2e42 1851 */
a0956d54 1852static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1853{
1854 struct memcg_stock_pcp *stock;
3e32cb2e 1855 bool ret = false;
cdec2e42 1856
a0956d54 1857 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1858 return ret;
a0956d54 1859
cdec2e42 1860 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1861 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1862 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1863 ret = true;
1864 }
cdec2e42
KH
1865 put_cpu_var(memcg_stock);
1866 return ret;
1867}
1868
1869/*
3e32cb2e 1870 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1871 */
1872static void drain_stock(struct memcg_stock_pcp *stock)
1873{
1874 struct mem_cgroup *old = stock->cached;
1875
11c9ea4e 1876 if (stock->nr_pages) {
3e32cb2e 1877 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 1878 if (do_swap_account)
3e32cb2e 1879 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1880 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1881 stock->nr_pages = 0;
cdec2e42
KH
1882 }
1883 stock->cached = NULL;
cdec2e42
KH
1884}
1885
1886/*
1887 * This must be called under preempt disabled or must be called by
1888 * a thread which is pinned to local cpu.
1889 */
1890static void drain_local_stock(struct work_struct *dummy)
1891{
7c8e0181 1892 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1893 drain_stock(stock);
26fe6168 1894 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1895}
1896
1897/*
3e32cb2e 1898 * Cache charges(val) to local per_cpu area.
320cc51d 1899 * This will be consumed by consume_stock() function, later.
cdec2e42 1900 */
c0ff4b85 1901static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1902{
1903 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1904
c0ff4b85 1905 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1906 drain_stock(stock);
c0ff4b85 1907 stock->cached = memcg;
cdec2e42 1908 }
11c9ea4e 1909 stock->nr_pages += nr_pages;
cdec2e42
KH
1910 put_cpu_var(memcg_stock);
1911}
1912
1913/*
c0ff4b85 1914 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1915 * of the hierarchy under it.
cdec2e42 1916 */
6d3d6aa2 1917static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1918{
26fe6168 1919 int cpu, curcpu;
d38144b7 1920
6d3d6aa2
JW
1921 /* If someone's already draining, avoid adding running more workers. */
1922 if (!mutex_trylock(&percpu_charge_mutex))
1923 return;
cdec2e42 1924 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1925 get_online_cpus();
5af12d0e 1926 curcpu = get_cpu();
cdec2e42
KH
1927 for_each_online_cpu(cpu) {
1928 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1929 struct mem_cgroup *memcg;
26fe6168 1930
c0ff4b85
R
1931 memcg = stock->cached;
1932 if (!memcg || !stock->nr_pages)
26fe6168 1933 continue;
2314b42d 1934 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1935 continue;
d1a05b69
MH
1936 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1937 if (cpu == curcpu)
1938 drain_local_stock(&stock->work);
1939 else
1940 schedule_work_on(cpu, &stock->work);
1941 }
cdec2e42 1942 }
5af12d0e 1943 put_cpu();
f894ffa8 1944 put_online_cpus();
9f50fad6 1945 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1946}
1947
0db0628d 1948static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1949 unsigned long action,
1950 void *hcpu)
1951{
1952 int cpu = (unsigned long)hcpu;
1953 struct memcg_stock_pcp *stock;
1954
619d094b 1955 if (action == CPU_ONLINE)
1489ebad 1956 return NOTIFY_OK;
1489ebad 1957
d833049b 1958 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1959 return NOTIFY_OK;
711d3d2c 1960
cdec2e42
KH
1961 stock = &per_cpu(memcg_stock, cpu);
1962 drain_stock(stock);
1963 return NOTIFY_OK;
1964}
1965
00501b53
JW
1966static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1967 unsigned int nr_pages)
8a9f3ccd 1968{
7ec99d62 1969 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1970 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1971 struct mem_cgroup *mem_over_limit;
3e32cb2e 1972 struct page_counter *counter;
6539cc05 1973 unsigned long nr_reclaimed;
b70a2a21
JW
1974 bool may_swap = true;
1975 bool drained = false;
05b84301 1976 int ret = 0;
a636b327 1977
ce00a967
JW
1978 if (mem_cgroup_is_root(memcg))
1979 goto done;
6539cc05 1980retry:
b6b6cc72
MH
1981 if (consume_stock(memcg, nr_pages))
1982 goto done;
8a9f3ccd 1983
3fbe7244 1984 if (!do_swap_account ||
3e32cb2e
JW
1985 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1986 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1987 goto done_restock;
3fbe7244 1988 if (do_swap_account)
3e32cb2e
JW
1989 page_counter_uncharge(&memcg->memsw, batch);
1990 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1991 } else {
3e32cb2e 1992 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1993 may_swap = false;
3fbe7244 1994 }
7a81b88c 1995
6539cc05
JW
1996 if (batch > nr_pages) {
1997 batch = nr_pages;
1998 goto retry;
1999 }
6d61ef40 2000
06b078fc
JW
2001 /*
2002 * Unlike in global OOM situations, memcg is not in a physical
2003 * memory shortage. Allow dying and OOM-killed tasks to
2004 * bypass the last charges so that they can exit quickly and
2005 * free their memory.
2006 */
2007 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2008 fatal_signal_pending(current) ||
2009 current->flags & PF_EXITING))
2010 goto bypass;
2011
2012 if (unlikely(task_in_memcg_oom(current)))
2013 goto nomem;
2014
6539cc05
JW
2015 if (!(gfp_mask & __GFP_WAIT))
2016 goto nomem;
4b534334 2017
241994ed
JW
2018 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2019
b70a2a21
JW
2020 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2021 gfp_mask, may_swap);
6539cc05 2022
61e02c74 2023 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2024 goto retry;
28c34c29 2025
b70a2a21 2026 if (!drained) {
6d3d6aa2 2027 drain_all_stock(mem_over_limit);
b70a2a21
JW
2028 drained = true;
2029 goto retry;
2030 }
2031
28c34c29
JW
2032 if (gfp_mask & __GFP_NORETRY)
2033 goto nomem;
6539cc05
JW
2034 /*
2035 * Even though the limit is exceeded at this point, reclaim
2036 * may have been able to free some pages. Retry the charge
2037 * before killing the task.
2038 *
2039 * Only for regular pages, though: huge pages are rather
2040 * unlikely to succeed so close to the limit, and we fall back
2041 * to regular pages anyway in case of failure.
2042 */
61e02c74 2043 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2044 goto retry;
2045 /*
2046 * At task move, charge accounts can be doubly counted. So, it's
2047 * better to wait until the end of task_move if something is going on.
2048 */
2049 if (mem_cgroup_wait_acct_move(mem_over_limit))
2050 goto retry;
2051
9b130619
JW
2052 if (nr_retries--)
2053 goto retry;
2054
06b078fc
JW
2055 if (gfp_mask & __GFP_NOFAIL)
2056 goto bypass;
2057
6539cc05
JW
2058 if (fatal_signal_pending(current))
2059 goto bypass;
2060
241994ed
JW
2061 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2062
61e02c74 2063 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2064nomem:
6d1fdc48 2065 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2066 return -ENOMEM;
867578cb 2067bypass:
ce00a967 2068 return -EINTR;
6539cc05
JW
2069
2070done_restock:
e8ea14cc 2071 css_get_many(&memcg->css, batch);
6539cc05
JW
2072 if (batch > nr_pages)
2073 refill_stock(memcg, batch - nr_pages);
7d638093
VD
2074 if (!(gfp_mask & __GFP_WAIT))
2075 goto done;
241994ed
JW
2076 /*
2077 * If the hierarchy is above the normal consumption range,
2078 * make the charging task trim their excess contribution.
2079 */
2080 do {
2081 if (page_counter_read(&memcg->memory) <= memcg->high)
2082 continue;
2083 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2084 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2085 } while ((memcg = parent_mem_cgroup(memcg)));
6539cc05 2086done:
05b84301 2087 return ret;
7a81b88c 2088}
8a9f3ccd 2089
00501b53 2090static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2091{
ce00a967
JW
2092 if (mem_cgroup_is_root(memcg))
2093 return;
2094
3e32cb2e 2095 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2096 if (do_swap_account)
3e32cb2e 2097 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2098
e8ea14cc 2099 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2100}
2101
0a31bc97
JW
2102/*
2103 * try_get_mem_cgroup_from_page - look up page's memcg association
2104 * @page: the page
2105 *
2106 * Look up, get a css reference, and return the memcg that owns @page.
2107 *
2108 * The page must be locked to prevent racing with swap-in and page
2109 * cache charges. If coming from an unlocked page table, the caller
2110 * must ensure the page is on the LRU or this can race with charging.
2111 */
e42d9d5d 2112struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2113{
29833315 2114 struct mem_cgroup *memcg;
a3b2d692 2115 unsigned short id;
b5a84319
KH
2116 swp_entry_t ent;
2117
309381fe 2118 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2119
1306a85a 2120 memcg = page->mem_cgroup;
29833315
JW
2121 if (memcg) {
2122 if (!css_tryget_online(&memcg->css))
c0ff4b85 2123 memcg = NULL;
e42d9d5d 2124 } else if (PageSwapCache(page)) {
3c776e64 2125 ent.val = page_private(page);
9fb4b7cc 2126 id = lookup_swap_cgroup_id(ent);
a3b2d692 2127 rcu_read_lock();
adbe427b 2128 memcg = mem_cgroup_from_id(id);
ec903c0c 2129 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2130 memcg = NULL;
a3b2d692 2131 rcu_read_unlock();
3c776e64 2132 }
c0ff4b85 2133 return memcg;
b5a84319
KH
2134}
2135
0a31bc97
JW
2136static void lock_page_lru(struct page *page, int *isolated)
2137{
2138 struct zone *zone = page_zone(page);
2139
2140 spin_lock_irq(&zone->lru_lock);
2141 if (PageLRU(page)) {
2142 struct lruvec *lruvec;
2143
2144 lruvec = mem_cgroup_page_lruvec(page, zone);
2145 ClearPageLRU(page);
2146 del_page_from_lru_list(page, lruvec, page_lru(page));
2147 *isolated = 1;
2148 } else
2149 *isolated = 0;
2150}
2151
2152static void unlock_page_lru(struct page *page, int isolated)
2153{
2154 struct zone *zone = page_zone(page);
2155
2156 if (isolated) {
2157 struct lruvec *lruvec;
2158
2159 lruvec = mem_cgroup_page_lruvec(page, zone);
2160 VM_BUG_ON_PAGE(PageLRU(page), page);
2161 SetPageLRU(page);
2162 add_page_to_lru_list(page, lruvec, page_lru(page));
2163 }
2164 spin_unlock_irq(&zone->lru_lock);
2165}
2166
00501b53 2167static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2168 bool lrucare)
7a81b88c 2169{
0a31bc97 2170 int isolated;
9ce70c02 2171
1306a85a 2172 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2173
2174 /*
2175 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2176 * may already be on some other mem_cgroup's LRU. Take care of it.
2177 */
0a31bc97
JW
2178 if (lrucare)
2179 lock_page_lru(page, &isolated);
9ce70c02 2180
0a31bc97
JW
2181 /*
2182 * Nobody should be changing or seriously looking at
1306a85a 2183 * page->mem_cgroup at this point:
0a31bc97
JW
2184 *
2185 * - the page is uncharged
2186 *
2187 * - the page is off-LRU
2188 *
2189 * - an anonymous fault has exclusive page access, except for
2190 * a locked page table
2191 *
2192 * - a page cache insertion, a swapin fault, or a migration
2193 * have the page locked
2194 */
1306a85a 2195 page->mem_cgroup = memcg;
9ce70c02 2196
0a31bc97
JW
2197 if (lrucare)
2198 unlock_page_lru(page, isolated);
7a81b88c 2199}
66e1707b 2200
7ae1e1d0 2201#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2202int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2203 unsigned long nr_pages)
7ae1e1d0 2204{
3e32cb2e 2205 struct page_counter *counter;
7ae1e1d0 2206 int ret = 0;
7ae1e1d0 2207
3e32cb2e
JW
2208 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2209 if (ret < 0)
7ae1e1d0
GC
2210 return ret;
2211
3e32cb2e 2212 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2213 if (ret == -EINTR) {
2214 /*
00501b53
JW
2215 * try_charge() chose to bypass to root due to OOM kill or
2216 * fatal signal. Since our only options are to either fail
2217 * the allocation or charge it to this cgroup, do it as a
2218 * temporary condition. But we can't fail. From a kmem/slab
2219 * perspective, the cache has already been selected, by
2220 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2221 * our minds.
2222 *
2223 * This condition will only trigger if the task entered
00501b53
JW
2224 * memcg_charge_kmem in a sane state, but was OOM-killed
2225 * during try_charge() above. Tasks that were already dying
2226 * when the allocation triggers should have been already
7ae1e1d0
GC
2227 * directed to the root cgroup in memcontrol.h
2228 */
3e32cb2e 2229 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2230 if (do_swap_account)
3e32cb2e 2231 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2232 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2233 ret = 0;
2234 } else if (ret)
3e32cb2e 2235 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2236
2237 return ret;
2238}
2239
dbf22eb6 2240void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2241{
3e32cb2e 2242 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2243 if (do_swap_account)
3e32cb2e 2244 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2245
64f21993 2246 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2247
e8ea14cc 2248 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2249}
2250
f3bb3043 2251static int memcg_alloc_cache_id(void)
55007d84 2252{
f3bb3043
VD
2253 int id, size;
2254 int err;
2255
dbcf73e2 2256 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2257 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2258 if (id < 0)
2259 return id;
55007d84 2260
dbcf73e2 2261 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2262 return id;
2263
2264 /*
2265 * There's no space for the new id in memcg_caches arrays,
2266 * so we have to grow them.
2267 */
05257a1a 2268 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2269
2270 size = 2 * (id + 1);
55007d84
GC
2271 if (size < MEMCG_CACHES_MIN_SIZE)
2272 size = MEMCG_CACHES_MIN_SIZE;
2273 else if (size > MEMCG_CACHES_MAX_SIZE)
2274 size = MEMCG_CACHES_MAX_SIZE;
2275
f3bb3043 2276 err = memcg_update_all_caches(size);
60d3fd32
VD
2277 if (!err)
2278 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2279 if (!err)
2280 memcg_nr_cache_ids = size;
2281
2282 up_write(&memcg_cache_ids_sem);
2283
f3bb3043 2284 if (err) {
dbcf73e2 2285 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2286 return err;
2287 }
2288 return id;
2289}
2290
2291static void memcg_free_cache_id(int id)
2292{
dbcf73e2 2293 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2294}
2295
d5b3cf71 2296struct memcg_kmem_cache_create_work {
5722d094
VD
2297 struct mem_cgroup *memcg;
2298 struct kmem_cache *cachep;
2299 struct work_struct work;
2300};
2301
d5b3cf71 2302static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2303{
d5b3cf71
VD
2304 struct memcg_kmem_cache_create_work *cw =
2305 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2306 struct mem_cgroup *memcg = cw->memcg;
2307 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2308
d5b3cf71 2309 memcg_create_kmem_cache(memcg, cachep);
bd673145 2310
5722d094 2311 css_put(&memcg->css);
d7f25f8a
GC
2312 kfree(cw);
2313}
2314
2315/*
2316 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2317 */
d5b3cf71
VD
2318static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2319 struct kmem_cache *cachep)
d7f25f8a 2320{
d5b3cf71 2321 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2322
776ed0f0 2323 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2324 if (!cw)
d7f25f8a 2325 return;
8135be5a
VD
2326
2327 css_get(&memcg->css);
d7f25f8a
GC
2328
2329 cw->memcg = memcg;
2330 cw->cachep = cachep;
d5b3cf71 2331 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2332
d7f25f8a
GC
2333 schedule_work(&cw->work);
2334}
2335
d5b3cf71
VD
2336static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2337 struct kmem_cache *cachep)
0e9d92f2
GC
2338{
2339 /*
2340 * We need to stop accounting when we kmalloc, because if the
2341 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2342 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2343 *
2344 * However, it is better to enclose the whole function. Depending on
2345 * the debugging options enabled, INIT_WORK(), for instance, can
2346 * trigger an allocation. This too, will make us recurse. Because at
2347 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2348 * the safest choice is to do it like this, wrapping the whole function.
2349 */
6f185c29 2350 current->memcg_kmem_skip_account = 1;
d5b3cf71 2351 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2352 current->memcg_kmem_skip_account = 0;
0e9d92f2 2353}
c67a8a68 2354
d7f25f8a
GC
2355/*
2356 * Return the kmem_cache we're supposed to use for a slab allocation.
2357 * We try to use the current memcg's version of the cache.
2358 *
2359 * If the cache does not exist yet, if we are the first user of it,
2360 * we either create it immediately, if possible, or create it asynchronously
2361 * in a workqueue.
2362 * In the latter case, we will let the current allocation go through with
2363 * the original cache.
2364 *
2365 * Can't be called in interrupt context or from kernel threads.
2366 * This function needs to be called with rcu_read_lock() held.
2367 */
056b7cce 2368struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2369{
2370 struct mem_cgroup *memcg;
959c8963 2371 struct kmem_cache *memcg_cachep;
2a4db7eb 2372 int kmemcg_id;
d7f25f8a 2373
f7ce3190 2374 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2375
9d100c5e 2376 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2377 return cachep;
2378
8135be5a 2379 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2380 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2381 if (kmemcg_id < 0)
ca0dde97 2382 goto out;
d7f25f8a 2383
2a4db7eb 2384 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2385 if (likely(memcg_cachep))
2386 return memcg_cachep;
ca0dde97
LZ
2387
2388 /*
2389 * If we are in a safe context (can wait, and not in interrupt
2390 * context), we could be be predictable and return right away.
2391 * This would guarantee that the allocation being performed
2392 * already belongs in the new cache.
2393 *
2394 * However, there are some clashes that can arrive from locking.
2395 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2396 * memcg_create_kmem_cache, this means no further allocation
2397 * could happen with the slab_mutex held. So it's better to
2398 * defer everything.
ca0dde97 2399 */
d5b3cf71 2400 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2401out:
8135be5a 2402 css_put(&memcg->css);
ca0dde97 2403 return cachep;
d7f25f8a 2404}
d7f25f8a 2405
8135be5a
VD
2406void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2407{
2408 if (!is_root_cache(cachep))
f7ce3190 2409 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2410}
2411
7ae1e1d0
GC
2412/*
2413 * We need to verify if the allocation against current->mm->owner's memcg is
2414 * possible for the given order. But the page is not allocated yet, so we'll
2415 * need a further commit step to do the final arrangements.
2416 *
2417 * It is possible for the task to switch cgroups in this mean time, so at
2418 * commit time, we can't rely on task conversion any longer. We'll then use
2419 * the handle argument to return to the caller which cgroup we should commit
2420 * against. We could also return the memcg directly and avoid the pointer
2421 * passing, but a boolean return value gives better semantics considering
2422 * the compiled-out case as well.
2423 *
2424 * Returning true means the allocation is possible.
2425 */
2426bool
2427__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2428{
2429 struct mem_cgroup *memcg;
2430 int ret;
2431
2432 *_memcg = NULL;
6d42c232 2433
df381975 2434 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2435
cf2b8fbf 2436 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2437 css_put(&memcg->css);
2438 return true;
2439 }
2440
3e32cb2e 2441 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2442 if (!ret)
2443 *_memcg = memcg;
7ae1e1d0
GC
2444
2445 css_put(&memcg->css);
2446 return (ret == 0);
2447}
2448
2449void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2450 int order)
2451{
7ae1e1d0
GC
2452 VM_BUG_ON(mem_cgroup_is_root(memcg));
2453
2454 /* The page allocation failed. Revert */
2455 if (!page) {
3e32cb2e 2456 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2457 return;
2458 }
1306a85a 2459 page->mem_cgroup = memcg;
7ae1e1d0
GC
2460}
2461
2462void __memcg_kmem_uncharge_pages(struct page *page, int order)
2463{
1306a85a 2464 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2465
7ae1e1d0
GC
2466 if (!memcg)
2467 return;
2468
309381fe 2469 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2470
3e32cb2e 2471 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2472 page->mem_cgroup = NULL;
7ae1e1d0 2473}
60d3fd32
VD
2474
2475struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2476{
2477 struct mem_cgroup *memcg = NULL;
2478 struct kmem_cache *cachep;
2479 struct page *page;
2480
2481 page = virt_to_head_page(ptr);
2482 if (PageSlab(page)) {
2483 cachep = page->slab_cache;
2484 if (!is_root_cache(cachep))
f7ce3190 2485 memcg = cachep->memcg_params.memcg;
60d3fd32
VD
2486 } else
2487 /* page allocated by alloc_kmem_pages */
2488 memcg = page->mem_cgroup;
2489
2490 return memcg;
2491}
7ae1e1d0
GC
2492#endif /* CONFIG_MEMCG_KMEM */
2493
ca3e0214
KH
2494#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2495
ca3e0214
KH
2496/*
2497 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2498 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2499 * charge/uncharge will be never happen and move_account() is done under
2500 * compound_lock(), so we don't have to take care of races.
ca3e0214 2501 */
e94c8a9c 2502void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2503{
e94c8a9c 2504 int i;
ca3e0214 2505
3d37c4a9
KH
2506 if (mem_cgroup_disabled())
2507 return;
b070e65c 2508
29833315 2509 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2510 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2511
1306a85a 2512 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2513 HPAGE_PMD_NR);
ca3e0214 2514}
12d27107 2515#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2516
c255a458 2517#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2518static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2519 bool charge)
d13d1443 2520{
0a31bc97
JW
2521 int val = (charge) ? 1 : -1;
2522 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2523}
02491447
DN
2524
2525/**
2526 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2527 * @entry: swap entry to be moved
2528 * @from: mem_cgroup which the entry is moved from
2529 * @to: mem_cgroup which the entry is moved to
2530 *
2531 * It succeeds only when the swap_cgroup's record for this entry is the same
2532 * as the mem_cgroup's id of @from.
2533 *
2534 * Returns 0 on success, -EINVAL on failure.
2535 *
3e32cb2e 2536 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2537 * both res and memsw, and called css_get().
2538 */
2539static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2540 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2541{
2542 unsigned short old_id, new_id;
2543
34c00c31
LZ
2544 old_id = mem_cgroup_id(from);
2545 new_id = mem_cgroup_id(to);
02491447
DN
2546
2547 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2548 mem_cgroup_swap_statistics(from, false);
483c30b5 2549 mem_cgroup_swap_statistics(to, true);
02491447
DN
2550 return 0;
2551 }
2552 return -EINVAL;
2553}
2554#else
2555static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2556 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2557{
2558 return -EINVAL;
2559}
8c7c6e34 2560#endif
d13d1443 2561
3e32cb2e 2562static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2563
d38d2a75 2564static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2565 unsigned long limit)
628f4235 2566{
3e32cb2e
JW
2567 unsigned long curusage;
2568 unsigned long oldusage;
2569 bool enlarge = false;
81d39c20 2570 int retry_count;
3e32cb2e 2571 int ret;
81d39c20
KH
2572
2573 /*
2574 * For keeping hierarchical_reclaim simple, how long we should retry
2575 * is depends on callers. We set our retry-count to be function
2576 * of # of children which we should visit in this loop.
2577 */
3e32cb2e
JW
2578 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2579 mem_cgroup_count_children(memcg);
81d39c20 2580
3e32cb2e 2581 oldusage = page_counter_read(&memcg->memory);
628f4235 2582
3e32cb2e 2583 do {
628f4235
KH
2584 if (signal_pending(current)) {
2585 ret = -EINTR;
2586 break;
2587 }
3e32cb2e
JW
2588
2589 mutex_lock(&memcg_limit_mutex);
2590 if (limit > memcg->memsw.limit) {
2591 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2592 ret = -EINVAL;
628f4235
KH
2593 break;
2594 }
3e32cb2e
JW
2595 if (limit > memcg->memory.limit)
2596 enlarge = true;
2597 ret = page_counter_limit(&memcg->memory, limit);
2598 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2599
2600 if (!ret)
2601 break;
2602
b70a2a21
JW
2603 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2604
3e32cb2e 2605 curusage = page_counter_read(&memcg->memory);
81d39c20 2606 /* Usage is reduced ? */
f894ffa8 2607 if (curusage >= oldusage)
81d39c20
KH
2608 retry_count--;
2609 else
2610 oldusage = curusage;
3e32cb2e
JW
2611 } while (retry_count);
2612
3c11ecf4
KH
2613 if (!ret && enlarge)
2614 memcg_oom_recover(memcg);
14797e23 2615
8c7c6e34
KH
2616 return ret;
2617}
2618
338c8431 2619static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2620 unsigned long limit)
8c7c6e34 2621{
3e32cb2e
JW
2622 unsigned long curusage;
2623 unsigned long oldusage;
2624 bool enlarge = false;
81d39c20 2625 int retry_count;
3e32cb2e 2626 int ret;
8c7c6e34 2627
81d39c20 2628 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2629 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2630 mem_cgroup_count_children(memcg);
2631
2632 oldusage = page_counter_read(&memcg->memsw);
2633
2634 do {
8c7c6e34
KH
2635 if (signal_pending(current)) {
2636 ret = -EINTR;
2637 break;
2638 }
3e32cb2e
JW
2639
2640 mutex_lock(&memcg_limit_mutex);
2641 if (limit < memcg->memory.limit) {
2642 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2643 ret = -EINVAL;
8c7c6e34
KH
2644 break;
2645 }
3e32cb2e
JW
2646 if (limit > memcg->memsw.limit)
2647 enlarge = true;
2648 ret = page_counter_limit(&memcg->memsw, limit);
2649 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2650
2651 if (!ret)
2652 break;
2653
b70a2a21
JW
2654 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2655
3e32cb2e 2656 curusage = page_counter_read(&memcg->memsw);
81d39c20 2657 /* Usage is reduced ? */
8c7c6e34 2658 if (curusage >= oldusage)
628f4235 2659 retry_count--;
81d39c20
KH
2660 else
2661 oldusage = curusage;
3e32cb2e
JW
2662 } while (retry_count);
2663
3c11ecf4
KH
2664 if (!ret && enlarge)
2665 memcg_oom_recover(memcg);
3e32cb2e 2666
628f4235
KH
2667 return ret;
2668}
2669
0608f43d
AM
2670unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2671 gfp_t gfp_mask,
2672 unsigned long *total_scanned)
2673{
2674 unsigned long nr_reclaimed = 0;
2675 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2676 unsigned long reclaimed;
2677 int loop = 0;
2678 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2679 unsigned long excess;
0608f43d
AM
2680 unsigned long nr_scanned;
2681
2682 if (order > 0)
2683 return 0;
2684
2685 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2686 /*
2687 * This loop can run a while, specially if mem_cgroup's continuously
2688 * keep exceeding their soft limit and putting the system under
2689 * pressure
2690 */
2691 do {
2692 if (next_mz)
2693 mz = next_mz;
2694 else
2695 mz = mem_cgroup_largest_soft_limit_node(mctz);
2696 if (!mz)
2697 break;
2698
2699 nr_scanned = 0;
2700 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2701 gfp_mask, &nr_scanned);
2702 nr_reclaimed += reclaimed;
2703 *total_scanned += nr_scanned;
0a31bc97 2704 spin_lock_irq(&mctz->lock);
bc2f2e7f 2705 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2706
2707 /*
2708 * If we failed to reclaim anything from this memory cgroup
2709 * it is time to move on to the next cgroup
2710 */
2711 next_mz = NULL;
bc2f2e7f
VD
2712 if (!reclaimed)
2713 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2714
3e32cb2e 2715 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2716 /*
2717 * One school of thought says that we should not add
2718 * back the node to the tree if reclaim returns 0.
2719 * But our reclaim could return 0, simply because due
2720 * to priority we are exposing a smaller subset of
2721 * memory to reclaim from. Consider this as a longer
2722 * term TODO.
2723 */
2724 /* If excess == 0, no tree ops */
cf2c8127 2725 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2726 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2727 css_put(&mz->memcg->css);
2728 loop++;
2729 /*
2730 * Could not reclaim anything and there are no more
2731 * mem cgroups to try or we seem to be looping without
2732 * reclaiming anything.
2733 */
2734 if (!nr_reclaimed &&
2735 (next_mz == NULL ||
2736 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2737 break;
2738 } while (!nr_reclaimed);
2739 if (next_mz)
2740 css_put(&next_mz->memcg->css);
2741 return nr_reclaimed;
2742}
2743
ea280e7b
TH
2744/*
2745 * Test whether @memcg has children, dead or alive. Note that this
2746 * function doesn't care whether @memcg has use_hierarchy enabled and
2747 * returns %true if there are child csses according to the cgroup
2748 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2749 */
b5f99b53
GC
2750static inline bool memcg_has_children(struct mem_cgroup *memcg)
2751{
ea280e7b
TH
2752 bool ret;
2753
696ac172 2754 /*
ea280e7b
TH
2755 * The lock does not prevent addition or deletion of children, but
2756 * it prevents a new child from being initialized based on this
2757 * parent in css_online(), so it's enough to decide whether
2758 * hierarchically inherited attributes can still be changed or not.
696ac172 2759 */
ea280e7b
TH
2760 lockdep_assert_held(&memcg_create_mutex);
2761
2762 rcu_read_lock();
2763 ret = css_next_child(NULL, &memcg->css);
2764 rcu_read_unlock();
2765 return ret;
b5f99b53
GC
2766}
2767
c26251f9
MH
2768/*
2769 * Reclaims as many pages from the given memcg as possible and moves
2770 * the rest to the parent.
2771 *
2772 * Caller is responsible for holding css reference for memcg.
2773 */
2774static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2775{
2776 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2777
c1e862c1
KH
2778 /* we call try-to-free pages for make this cgroup empty */
2779 lru_add_drain_all();
f817ed48 2780 /* try to free all pages in this cgroup */
3e32cb2e 2781 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2782 int progress;
c1e862c1 2783
c26251f9
MH
2784 if (signal_pending(current))
2785 return -EINTR;
2786
b70a2a21
JW
2787 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2788 GFP_KERNEL, true);
c1e862c1 2789 if (!progress) {
f817ed48 2790 nr_retries--;
c1e862c1 2791 /* maybe some writeback is necessary */
8aa7e847 2792 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2793 }
f817ed48
KH
2794
2795 }
ab5196c2
MH
2796
2797 return 0;
cc847582
KH
2798}
2799
6770c64e
TH
2800static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2801 char *buf, size_t nbytes,
2802 loff_t off)
c1e862c1 2803{
6770c64e 2804 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2805
d8423011
MH
2806 if (mem_cgroup_is_root(memcg))
2807 return -EINVAL;
6770c64e 2808 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2809}
2810
182446d0
TH
2811static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2812 struct cftype *cft)
18f59ea7 2813{
182446d0 2814 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2815}
2816
182446d0
TH
2817static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2818 struct cftype *cft, u64 val)
18f59ea7
BS
2819{
2820 int retval = 0;
182446d0 2821 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2822 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2823
0999821b 2824 mutex_lock(&memcg_create_mutex);
567fb435
GC
2825
2826 if (memcg->use_hierarchy == val)
2827 goto out;
2828
18f59ea7 2829 /*
af901ca1 2830 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2831 * in the child subtrees. If it is unset, then the change can
2832 * occur, provided the current cgroup has no children.
2833 *
2834 * For the root cgroup, parent_mem is NULL, we allow value to be
2835 * set if there are no children.
2836 */
c0ff4b85 2837 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2838 (val == 1 || val == 0)) {
ea280e7b 2839 if (!memcg_has_children(memcg))
c0ff4b85 2840 memcg->use_hierarchy = val;
18f59ea7
BS
2841 else
2842 retval = -EBUSY;
2843 } else
2844 retval = -EINVAL;
567fb435
GC
2845
2846out:
0999821b 2847 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
2848
2849 return retval;
2850}
2851
3e32cb2e
JW
2852static unsigned long tree_stat(struct mem_cgroup *memcg,
2853 enum mem_cgroup_stat_index idx)
ce00a967
JW
2854{
2855 struct mem_cgroup *iter;
2856 long val = 0;
2857
2858 /* Per-cpu values can be negative, use a signed accumulator */
2859 for_each_mem_cgroup_tree(iter, memcg)
2860 val += mem_cgroup_read_stat(iter, idx);
2861
2862 if (val < 0) /* race ? */
2863 val = 0;
2864 return val;
2865}
2866
2867static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2868{
2869 u64 val;
2870
3e32cb2e
JW
2871 if (mem_cgroup_is_root(memcg)) {
2872 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2873 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2874 if (swap)
2875 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2876 } else {
ce00a967 2877 if (!swap)
3e32cb2e 2878 val = page_counter_read(&memcg->memory);
ce00a967 2879 else
3e32cb2e 2880 val = page_counter_read(&memcg->memsw);
ce00a967 2881 }
ce00a967
JW
2882 return val << PAGE_SHIFT;
2883}
2884
3e32cb2e
JW
2885enum {
2886 RES_USAGE,
2887 RES_LIMIT,
2888 RES_MAX_USAGE,
2889 RES_FAILCNT,
2890 RES_SOFT_LIMIT,
2891};
ce00a967 2892
791badbd 2893static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2894 struct cftype *cft)
8cdea7c0 2895{
182446d0 2896 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2897 struct page_counter *counter;
af36f906 2898
3e32cb2e 2899 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2900 case _MEM:
3e32cb2e
JW
2901 counter = &memcg->memory;
2902 break;
8c7c6e34 2903 case _MEMSWAP:
3e32cb2e
JW
2904 counter = &memcg->memsw;
2905 break;
510fc4e1 2906 case _KMEM:
3e32cb2e 2907 counter = &memcg->kmem;
510fc4e1 2908 break;
8c7c6e34
KH
2909 default:
2910 BUG();
8c7c6e34 2911 }
3e32cb2e
JW
2912
2913 switch (MEMFILE_ATTR(cft->private)) {
2914 case RES_USAGE:
2915 if (counter == &memcg->memory)
2916 return mem_cgroup_usage(memcg, false);
2917 if (counter == &memcg->memsw)
2918 return mem_cgroup_usage(memcg, true);
2919 return (u64)page_counter_read(counter) * PAGE_SIZE;
2920 case RES_LIMIT:
2921 return (u64)counter->limit * PAGE_SIZE;
2922 case RES_MAX_USAGE:
2923 return (u64)counter->watermark * PAGE_SIZE;
2924 case RES_FAILCNT:
2925 return counter->failcnt;
2926 case RES_SOFT_LIMIT:
2927 return (u64)memcg->soft_limit * PAGE_SIZE;
2928 default:
2929 BUG();
2930 }
8cdea7c0 2931}
510fc4e1 2932
510fc4e1 2933#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
2934static int memcg_activate_kmem(struct mem_cgroup *memcg,
2935 unsigned long nr_pages)
d6441637
VD
2936{
2937 int err = 0;
2938 int memcg_id;
2939
2a4db7eb 2940 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 2941 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 2942 BUG_ON(memcg->kmem_acct_active);
d6441637 2943
510fc4e1
GC
2944 /*
2945 * For simplicity, we won't allow this to be disabled. It also can't
2946 * be changed if the cgroup has children already, or if tasks had
2947 * already joined.
2948 *
2949 * If tasks join before we set the limit, a person looking at
2950 * kmem.usage_in_bytes will have no way to determine when it took
2951 * place, which makes the value quite meaningless.
2952 *
2953 * After it first became limited, changes in the value of the limit are
2954 * of course permitted.
510fc4e1 2955 */
0999821b 2956 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
2957 if (cgroup_has_tasks(memcg->css.cgroup) ||
2958 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
2959 err = -EBUSY;
2960 mutex_unlock(&memcg_create_mutex);
2961 if (err)
2962 goto out;
510fc4e1 2963
f3bb3043 2964 memcg_id = memcg_alloc_cache_id();
d6441637
VD
2965 if (memcg_id < 0) {
2966 err = memcg_id;
2967 goto out;
2968 }
2969
d6441637 2970 /*
900a38f0
VD
2971 * We couldn't have accounted to this cgroup, because it hasn't got
2972 * activated yet, so this should succeed.
d6441637 2973 */
3e32cb2e 2974 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
2975 VM_BUG_ON(err);
2976
2977 static_key_slow_inc(&memcg_kmem_enabled_key);
2978 /*
900a38f0
VD
2979 * A memory cgroup is considered kmem-active as soon as it gets
2980 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2981 * guarantee no one starts accounting before all call sites are
2982 * patched.
2983 */
900a38f0 2984 memcg->kmemcg_id = memcg_id;
2788cf0c 2985 memcg->kmem_acct_activated = true;
2a4db7eb 2986 memcg->kmem_acct_active = true;
510fc4e1 2987out:
d6441637 2988 return err;
d6441637
VD
2989}
2990
d6441637 2991static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2992 unsigned long limit)
d6441637
VD
2993{
2994 int ret;
2995
3e32cb2e 2996 mutex_lock(&memcg_limit_mutex);
d6441637 2997 if (!memcg_kmem_is_active(memcg))
3e32cb2e 2998 ret = memcg_activate_kmem(memcg, limit);
d6441637 2999 else
3e32cb2e
JW
3000 ret = page_counter_limit(&memcg->kmem, limit);
3001 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3002 return ret;
3003}
3004
55007d84 3005static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3006{
55007d84 3007 int ret = 0;
510fc4e1 3008 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3009
d6441637
VD
3010 if (!parent)
3011 return 0;
55007d84 3012
8c0145b6 3013 mutex_lock(&memcg_limit_mutex);
55007d84 3014 /*
d6441637
VD
3015 * If the parent cgroup is not kmem-active now, it cannot be activated
3016 * after this point, because it has at least one child already.
55007d84 3017 */
d6441637 3018 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3019 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3020 mutex_unlock(&memcg_limit_mutex);
55007d84 3021 return ret;
510fc4e1 3022}
d6441637
VD
3023#else
3024static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3025 unsigned long limit)
d6441637
VD
3026{
3027 return -EINVAL;
3028}
6d043990 3029#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3030
628f4235
KH
3031/*
3032 * The user of this function is...
3033 * RES_LIMIT.
3034 */
451af504
TH
3035static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3036 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3037{
451af504 3038 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3039 unsigned long nr_pages;
628f4235
KH
3040 int ret;
3041
451af504 3042 buf = strstrip(buf);
650c5e56 3043 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3044 if (ret)
3045 return ret;
af36f906 3046
3e32cb2e 3047 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3048 case RES_LIMIT:
4b3bde4c
BS
3049 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3050 ret = -EINVAL;
3051 break;
3052 }
3e32cb2e
JW
3053 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3054 case _MEM:
3055 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3056 break;
3e32cb2e
JW
3057 case _MEMSWAP:
3058 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3059 break;
3e32cb2e
JW
3060 case _KMEM:
3061 ret = memcg_update_kmem_limit(memcg, nr_pages);
3062 break;
3063 }
296c81d8 3064 break;
3e32cb2e
JW
3065 case RES_SOFT_LIMIT:
3066 memcg->soft_limit = nr_pages;
3067 ret = 0;
628f4235
KH
3068 break;
3069 }
451af504 3070 return ret ?: nbytes;
8cdea7c0
BS
3071}
3072
6770c64e
TH
3073static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3074 size_t nbytes, loff_t off)
c84872e1 3075{
6770c64e 3076 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3077 struct page_counter *counter;
c84872e1 3078
3e32cb2e
JW
3079 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3080 case _MEM:
3081 counter = &memcg->memory;
3082 break;
3083 case _MEMSWAP:
3084 counter = &memcg->memsw;
3085 break;
3086 case _KMEM:
3087 counter = &memcg->kmem;
3088 break;
3089 default:
3090 BUG();
3091 }
af36f906 3092
3e32cb2e 3093 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3094 case RES_MAX_USAGE:
3e32cb2e 3095 page_counter_reset_watermark(counter);
29f2a4da
PE
3096 break;
3097 case RES_FAILCNT:
3e32cb2e 3098 counter->failcnt = 0;
29f2a4da 3099 break;
3e32cb2e
JW
3100 default:
3101 BUG();
29f2a4da 3102 }
f64c3f54 3103
6770c64e 3104 return nbytes;
c84872e1
PE
3105}
3106
182446d0 3107static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3108 struct cftype *cft)
3109{
182446d0 3110 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3111}
3112
02491447 3113#ifdef CONFIG_MMU
182446d0 3114static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3115 struct cftype *cft, u64 val)
3116{
182446d0 3117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3118
1dfab5ab 3119 if (val & ~MOVE_MASK)
7dc74be0 3120 return -EINVAL;
ee5e8472 3121
7dc74be0 3122 /*
ee5e8472
GC
3123 * No kind of locking is needed in here, because ->can_attach() will
3124 * check this value once in the beginning of the process, and then carry
3125 * on with stale data. This means that changes to this value will only
3126 * affect task migrations starting after the change.
7dc74be0 3127 */
c0ff4b85 3128 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3129 return 0;
3130}
02491447 3131#else
182446d0 3132static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3133 struct cftype *cft, u64 val)
3134{
3135 return -ENOSYS;
3136}
3137#endif
7dc74be0 3138
406eb0c9 3139#ifdef CONFIG_NUMA
2da8ca82 3140static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3141{
25485de6
GT
3142 struct numa_stat {
3143 const char *name;
3144 unsigned int lru_mask;
3145 };
3146
3147 static const struct numa_stat stats[] = {
3148 { "total", LRU_ALL },
3149 { "file", LRU_ALL_FILE },
3150 { "anon", LRU_ALL_ANON },
3151 { "unevictable", BIT(LRU_UNEVICTABLE) },
3152 };
3153 const struct numa_stat *stat;
406eb0c9 3154 int nid;
25485de6 3155 unsigned long nr;
2da8ca82 3156 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3157
25485de6
GT
3158 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3159 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3160 seq_printf(m, "%s=%lu", stat->name, nr);
3161 for_each_node_state(nid, N_MEMORY) {
3162 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3163 stat->lru_mask);
3164 seq_printf(m, " N%d=%lu", nid, nr);
3165 }
3166 seq_putc(m, '\n');
406eb0c9 3167 }
406eb0c9 3168
071aee13
YH
3169 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3170 struct mem_cgroup *iter;
3171
3172 nr = 0;
3173 for_each_mem_cgroup_tree(iter, memcg)
3174 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3175 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3176 for_each_node_state(nid, N_MEMORY) {
3177 nr = 0;
3178 for_each_mem_cgroup_tree(iter, memcg)
3179 nr += mem_cgroup_node_nr_lru_pages(
3180 iter, nid, stat->lru_mask);
3181 seq_printf(m, " N%d=%lu", nid, nr);
3182 }
3183 seq_putc(m, '\n');
406eb0c9 3184 }
406eb0c9 3185
406eb0c9
YH
3186 return 0;
3187}
3188#endif /* CONFIG_NUMA */
3189
2da8ca82 3190static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3191{
2da8ca82 3192 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3193 unsigned long memory, memsw;
af7c4b0e
JW
3194 struct mem_cgroup *mi;
3195 unsigned int i;
406eb0c9 3196
0ca44b14
GT
3197 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3198 MEM_CGROUP_STAT_NSTATS);
3199 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3200 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3201 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3202
af7c4b0e 3203 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3204 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3205 continue;
af7c4b0e
JW
3206 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3207 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3208 }
7b854121 3209
af7c4b0e
JW
3210 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3211 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3212 mem_cgroup_read_events(memcg, i));
3213
3214 for (i = 0; i < NR_LRU_LISTS; i++)
3215 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3216 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3217
14067bb3 3218 /* Hierarchical information */
3e32cb2e
JW
3219 memory = memsw = PAGE_COUNTER_MAX;
3220 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3221 memory = min(memory, mi->memory.limit);
3222 memsw = min(memsw, mi->memsw.limit);
fee7b548 3223 }
3e32cb2e
JW
3224 seq_printf(m, "hierarchical_memory_limit %llu\n",
3225 (u64)memory * PAGE_SIZE);
3226 if (do_swap_account)
3227 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3228 (u64)memsw * PAGE_SIZE);
7f016ee8 3229
af7c4b0e
JW
3230 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3231 long long val = 0;
3232
bff6bb83 3233 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3234 continue;
af7c4b0e
JW
3235 for_each_mem_cgroup_tree(mi, memcg)
3236 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3237 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3238 }
3239
3240 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3241 unsigned long long val = 0;
3242
3243 for_each_mem_cgroup_tree(mi, memcg)
3244 val += mem_cgroup_read_events(mi, i);
3245 seq_printf(m, "total_%s %llu\n",
3246 mem_cgroup_events_names[i], val);
3247 }
3248
3249 for (i = 0; i < NR_LRU_LISTS; i++) {
3250 unsigned long long val = 0;
3251
3252 for_each_mem_cgroup_tree(mi, memcg)
3253 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3254 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3255 }
14067bb3 3256
7f016ee8 3257#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3258 {
3259 int nid, zid;
3260 struct mem_cgroup_per_zone *mz;
89abfab1 3261 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3262 unsigned long recent_rotated[2] = {0, 0};
3263 unsigned long recent_scanned[2] = {0, 0};
3264
3265 for_each_online_node(nid)
3266 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3267 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3268 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3269
89abfab1
HD
3270 recent_rotated[0] += rstat->recent_rotated[0];
3271 recent_rotated[1] += rstat->recent_rotated[1];
3272 recent_scanned[0] += rstat->recent_scanned[0];
3273 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3274 }
78ccf5b5
JW
3275 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3276 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3277 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3278 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3279 }
3280#endif
3281
d2ceb9b7
KH
3282 return 0;
3283}
3284
182446d0
TH
3285static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3286 struct cftype *cft)
a7885eb8 3287{
182446d0 3288 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3289
1f4c025b 3290 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3291}
3292
182446d0
TH
3293static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3294 struct cftype *cft, u64 val)
a7885eb8 3295{
182446d0 3296 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3297
3dae7fec 3298 if (val > 100)
a7885eb8
KM
3299 return -EINVAL;
3300
14208b0e 3301 if (css->parent)
3dae7fec
JW
3302 memcg->swappiness = val;
3303 else
3304 vm_swappiness = val;
068b38c1 3305
a7885eb8
KM
3306 return 0;
3307}
3308
2e72b634
KS
3309static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3310{
3311 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3312 unsigned long usage;
2e72b634
KS
3313 int i;
3314
3315 rcu_read_lock();
3316 if (!swap)
2c488db2 3317 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3318 else
2c488db2 3319 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3320
3321 if (!t)
3322 goto unlock;
3323
ce00a967 3324 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3325
3326 /*
748dad36 3327 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3328 * If it's not true, a threshold was crossed after last
3329 * call of __mem_cgroup_threshold().
3330 */
5407a562 3331 i = t->current_threshold;
2e72b634
KS
3332
3333 /*
3334 * Iterate backward over array of thresholds starting from
3335 * current_threshold and check if a threshold is crossed.
3336 * If none of thresholds below usage is crossed, we read
3337 * only one element of the array here.
3338 */
3339 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3340 eventfd_signal(t->entries[i].eventfd, 1);
3341
3342 /* i = current_threshold + 1 */
3343 i++;
3344
3345 /*
3346 * Iterate forward over array of thresholds starting from
3347 * current_threshold+1 and check if a threshold is crossed.
3348 * If none of thresholds above usage is crossed, we read
3349 * only one element of the array here.
3350 */
3351 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3352 eventfd_signal(t->entries[i].eventfd, 1);
3353
3354 /* Update current_threshold */
5407a562 3355 t->current_threshold = i - 1;
2e72b634
KS
3356unlock:
3357 rcu_read_unlock();
3358}
3359
3360static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3361{
ad4ca5f4
KS
3362 while (memcg) {
3363 __mem_cgroup_threshold(memcg, false);
3364 if (do_swap_account)
3365 __mem_cgroup_threshold(memcg, true);
3366
3367 memcg = parent_mem_cgroup(memcg);
3368 }
2e72b634
KS
3369}
3370
3371static int compare_thresholds(const void *a, const void *b)
3372{
3373 const struct mem_cgroup_threshold *_a = a;
3374 const struct mem_cgroup_threshold *_b = b;
3375
2bff24a3
GT
3376 if (_a->threshold > _b->threshold)
3377 return 1;
3378
3379 if (_a->threshold < _b->threshold)
3380 return -1;
3381
3382 return 0;
2e72b634
KS
3383}
3384
c0ff4b85 3385static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3386{
3387 struct mem_cgroup_eventfd_list *ev;
3388
2bcf2e92
MH
3389 spin_lock(&memcg_oom_lock);
3390
c0ff4b85 3391 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3392 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3393
3394 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3395 return 0;
3396}
3397
c0ff4b85 3398static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3399{
7d74b06f
KH
3400 struct mem_cgroup *iter;
3401
c0ff4b85 3402 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3403 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3404}
3405
59b6f873 3406static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3407 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3408{
2c488db2
KS
3409 struct mem_cgroup_thresholds *thresholds;
3410 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3411 unsigned long threshold;
3412 unsigned long usage;
2c488db2 3413 int i, size, ret;
2e72b634 3414
650c5e56 3415 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3416 if (ret)
3417 return ret;
3418
3419 mutex_lock(&memcg->thresholds_lock);
2c488db2 3420
05b84301 3421 if (type == _MEM) {
2c488db2 3422 thresholds = &memcg->thresholds;
ce00a967 3423 usage = mem_cgroup_usage(memcg, false);
05b84301 3424 } else if (type == _MEMSWAP) {
2c488db2 3425 thresholds = &memcg->memsw_thresholds;
ce00a967 3426 usage = mem_cgroup_usage(memcg, true);
05b84301 3427 } else
2e72b634
KS
3428 BUG();
3429
2e72b634 3430 /* Check if a threshold crossed before adding a new one */
2c488db2 3431 if (thresholds->primary)
2e72b634
KS
3432 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3433
2c488db2 3434 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3435
3436 /* Allocate memory for new array of thresholds */
2c488db2 3437 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3438 GFP_KERNEL);
2c488db2 3439 if (!new) {
2e72b634
KS
3440 ret = -ENOMEM;
3441 goto unlock;
3442 }
2c488db2 3443 new->size = size;
2e72b634
KS
3444
3445 /* Copy thresholds (if any) to new array */
2c488db2
KS
3446 if (thresholds->primary) {
3447 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3448 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3449 }
3450
2e72b634 3451 /* Add new threshold */
2c488db2
KS
3452 new->entries[size - 1].eventfd = eventfd;
3453 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3454
3455 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3456 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3457 compare_thresholds, NULL);
3458
3459 /* Find current threshold */
2c488db2 3460 new->current_threshold = -1;
2e72b634 3461 for (i = 0; i < size; i++) {
748dad36 3462 if (new->entries[i].threshold <= usage) {
2e72b634 3463 /*
2c488db2
KS
3464 * new->current_threshold will not be used until
3465 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3466 * it here.
3467 */
2c488db2 3468 ++new->current_threshold;
748dad36
SZ
3469 } else
3470 break;
2e72b634
KS
3471 }
3472
2c488db2
KS
3473 /* Free old spare buffer and save old primary buffer as spare */
3474 kfree(thresholds->spare);
3475 thresholds->spare = thresholds->primary;
3476
3477 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3478
907860ed 3479 /* To be sure that nobody uses thresholds */
2e72b634
KS
3480 synchronize_rcu();
3481
2e72b634
KS
3482unlock:
3483 mutex_unlock(&memcg->thresholds_lock);
3484
3485 return ret;
3486}
3487
59b6f873 3488static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3489 struct eventfd_ctx *eventfd, const char *args)
3490{
59b6f873 3491 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3492}
3493
59b6f873 3494static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3495 struct eventfd_ctx *eventfd, const char *args)
3496{
59b6f873 3497 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3498}
3499
59b6f873 3500static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3501 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3502{
2c488db2
KS
3503 struct mem_cgroup_thresholds *thresholds;
3504 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3505 unsigned long usage;
2c488db2 3506 int i, j, size;
2e72b634
KS
3507
3508 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3509
3510 if (type == _MEM) {
2c488db2 3511 thresholds = &memcg->thresholds;
ce00a967 3512 usage = mem_cgroup_usage(memcg, false);
05b84301 3513 } else if (type == _MEMSWAP) {
2c488db2 3514 thresholds = &memcg->memsw_thresholds;
ce00a967 3515 usage = mem_cgroup_usage(memcg, true);
05b84301 3516 } else
2e72b634
KS
3517 BUG();
3518
371528ca
AV
3519 if (!thresholds->primary)
3520 goto unlock;
3521
2e72b634
KS
3522 /* Check if a threshold crossed before removing */
3523 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3524
3525 /* Calculate new number of threshold */
2c488db2
KS
3526 size = 0;
3527 for (i = 0; i < thresholds->primary->size; i++) {
3528 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3529 size++;
3530 }
3531
2c488db2 3532 new = thresholds->spare;
907860ed 3533
2e72b634
KS
3534 /* Set thresholds array to NULL if we don't have thresholds */
3535 if (!size) {
2c488db2
KS
3536 kfree(new);
3537 new = NULL;
907860ed 3538 goto swap_buffers;
2e72b634
KS
3539 }
3540
2c488db2 3541 new->size = size;
2e72b634
KS
3542
3543 /* Copy thresholds and find current threshold */
2c488db2
KS
3544 new->current_threshold = -1;
3545 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3546 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3547 continue;
3548
2c488db2 3549 new->entries[j] = thresholds->primary->entries[i];
748dad36 3550 if (new->entries[j].threshold <= usage) {
2e72b634 3551 /*
2c488db2 3552 * new->current_threshold will not be used
2e72b634
KS
3553 * until rcu_assign_pointer(), so it's safe to increment
3554 * it here.
3555 */
2c488db2 3556 ++new->current_threshold;
2e72b634
KS
3557 }
3558 j++;
3559 }
3560
907860ed 3561swap_buffers:
2c488db2
KS
3562 /* Swap primary and spare array */
3563 thresholds->spare = thresholds->primary;
8c757763
SZ
3564 /* If all events are unregistered, free the spare array */
3565 if (!new) {
3566 kfree(thresholds->spare);
3567 thresholds->spare = NULL;
3568 }
3569
2c488db2 3570 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3571
907860ed 3572 /* To be sure that nobody uses thresholds */
2e72b634 3573 synchronize_rcu();
371528ca 3574unlock:
2e72b634 3575 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3576}
c1e862c1 3577
59b6f873 3578static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3579 struct eventfd_ctx *eventfd)
3580{
59b6f873 3581 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3582}
3583
59b6f873 3584static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3585 struct eventfd_ctx *eventfd)
3586{
59b6f873 3587 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3588}
3589
59b6f873 3590static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3591 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3592{
9490ff27 3593 struct mem_cgroup_eventfd_list *event;
9490ff27 3594
9490ff27
KH
3595 event = kmalloc(sizeof(*event), GFP_KERNEL);
3596 if (!event)
3597 return -ENOMEM;
3598
1af8efe9 3599 spin_lock(&memcg_oom_lock);
9490ff27
KH
3600
3601 event->eventfd = eventfd;
3602 list_add(&event->list, &memcg->oom_notify);
3603
3604 /* already in OOM ? */
c2b42d3c 3605 if (memcg->under_oom)
9490ff27 3606 eventfd_signal(eventfd, 1);
1af8efe9 3607 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3608
3609 return 0;
3610}
3611
59b6f873 3612static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3613 struct eventfd_ctx *eventfd)
9490ff27 3614{
9490ff27 3615 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3616
1af8efe9 3617 spin_lock(&memcg_oom_lock);
9490ff27 3618
c0ff4b85 3619 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3620 if (ev->eventfd == eventfd) {
3621 list_del(&ev->list);
3622 kfree(ev);
3623 }
3624 }
3625
1af8efe9 3626 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3627}
3628
2da8ca82 3629static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3630{
2da8ca82 3631 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3632
791badbd 3633 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3634 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3635 return 0;
3636}
3637
182446d0 3638static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3639 struct cftype *cft, u64 val)
3640{
182446d0 3641 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3642
3643 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3644 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3645 return -EINVAL;
3646
c0ff4b85 3647 memcg->oom_kill_disable = val;
4d845ebf 3648 if (!val)
c0ff4b85 3649 memcg_oom_recover(memcg);
3dae7fec 3650
3c11ecf4
KH
3651 return 0;
3652}
3653
c255a458 3654#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3655static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3656{
55007d84
GC
3657 int ret;
3658
55007d84
GC
3659 ret = memcg_propagate_kmem(memcg);
3660 if (ret)
3661 return ret;
2633d7a0 3662
1d62e436 3663 return mem_cgroup_sockets_init(memcg, ss);
573b400d 3664}
e5671dfa 3665
2a4db7eb
VD
3666static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3667{
2788cf0c
VD
3668 struct cgroup_subsys_state *css;
3669 struct mem_cgroup *parent, *child;
3670 int kmemcg_id;
3671
2a4db7eb
VD
3672 if (!memcg->kmem_acct_active)
3673 return;
3674
3675 /*
3676 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3677 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3678 * guarantees no cache will be created for this cgroup after we are
3679 * done (see memcg_create_kmem_cache()).
3680 */
3681 memcg->kmem_acct_active = false;
3682
3683 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3684
3685 kmemcg_id = memcg->kmemcg_id;
3686 BUG_ON(kmemcg_id < 0);
3687
3688 parent = parent_mem_cgroup(memcg);
3689 if (!parent)
3690 parent = root_mem_cgroup;
3691
3692 /*
3693 * Change kmemcg_id of this cgroup and all its descendants to the
3694 * parent's id, and then move all entries from this cgroup's list_lrus
3695 * to ones of the parent. After we have finished, all list_lrus
3696 * corresponding to this cgroup are guaranteed to remain empty. The
3697 * ordering is imposed by list_lru_node->lock taken by
3698 * memcg_drain_all_list_lrus().
3699 */
3700 css_for_each_descendant_pre(css, &memcg->css) {
3701 child = mem_cgroup_from_css(css);
3702 BUG_ON(child->kmemcg_id != kmemcg_id);
3703 child->kmemcg_id = parent->kmemcg_id;
3704 if (!memcg->use_hierarchy)
3705 break;
3706 }
3707 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3708
3709 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3710}
3711
10d5ebf4 3712static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3713{
f48b80a5
VD
3714 if (memcg->kmem_acct_activated) {
3715 memcg_destroy_kmem_caches(memcg);
3716 static_key_slow_dec(&memcg_kmem_enabled_key);
3717 WARN_ON(page_counter_read(&memcg->kmem));
3718 }
1d62e436 3719 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 3720}
e5671dfa 3721#else
cbe128e3 3722static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3723{
3724 return 0;
3725}
d1a4c0b3 3726
2a4db7eb
VD
3727static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3728{
3729}
3730
10d5ebf4
LZ
3731static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3732{
3733}
e5671dfa
GC
3734#endif
3735
52ebea74
TH
3736#ifdef CONFIG_CGROUP_WRITEBACK
3737
3738struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3739{
3740 return &memcg->cgwb_list;
3741}
3742
841710aa
TH
3743static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3744{
3745 return wb_domain_init(&memcg->cgwb_domain, gfp);
3746}
3747
3748static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3749{
3750 wb_domain_exit(&memcg->cgwb_domain);
3751}
3752
2529bb3a
TH
3753static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3754{
3755 wb_domain_size_changed(&memcg->cgwb_domain);
3756}
3757
841710aa
TH
3758struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3759{
3760 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3761
3762 if (!memcg->css.parent)
3763 return NULL;
3764
3765 return &memcg->cgwb_domain;
3766}
3767
c2aa723a
TH
3768/**
3769 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3770 * @wb: bdi_writeback in question
3771 * @pavail: out parameter for number of available pages
3772 * @pdirty: out parameter for number of dirty pages
3773 * @pwriteback: out parameter for number of pages under writeback
3774 *
3775 * Determine the numbers of available, dirty, and writeback pages in @wb's
3776 * memcg. Dirty and writeback are self-explanatory. Available is a bit
3777 * more involved.
3778 *
3779 * A memcg's headroom is "min(max, high) - used". The available memory is
3780 * calculated as the lowest headroom of itself and the ancestors plus the
3781 * number of pages already being used for file pages. Note that this
3782 * doesn't consider the actual amount of available memory in the system.
3783 * The caller should further cap *@pavail accordingly.
3784 */
3785void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
3786 unsigned long *pdirty, unsigned long *pwriteback)
3787{
3788 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3789 struct mem_cgroup *parent;
3790 unsigned long head_room = PAGE_COUNTER_MAX;
3791 unsigned long file_pages;
3792
3793 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3794
3795 /* this should eventually include NR_UNSTABLE_NFS */
3796 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3797
3798 file_pages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3799 (1 << LRU_ACTIVE_FILE));
3800 while ((parent = parent_mem_cgroup(memcg))) {
3801 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3802 unsigned long used = page_counter_read(&memcg->memory);
3803
3804 head_room = min(head_room, ceiling - min(ceiling, used));
3805 memcg = parent;
3806 }
3807
3808 *pavail = file_pages + head_room;
3809}
3810
841710aa
TH
3811#else /* CONFIG_CGROUP_WRITEBACK */
3812
3813static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3814{
3815 return 0;
3816}
3817
3818static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3819{
3820}
3821
2529bb3a
TH
3822static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3823{
3824}
3825
52ebea74
TH
3826#endif /* CONFIG_CGROUP_WRITEBACK */
3827
3bc942f3
TH
3828/*
3829 * DO NOT USE IN NEW FILES.
3830 *
3831 * "cgroup.event_control" implementation.
3832 *
3833 * This is way over-engineered. It tries to support fully configurable
3834 * events for each user. Such level of flexibility is completely
3835 * unnecessary especially in the light of the planned unified hierarchy.
3836 *
3837 * Please deprecate this and replace with something simpler if at all
3838 * possible.
3839 */
3840
79bd9814
TH
3841/*
3842 * Unregister event and free resources.
3843 *
3844 * Gets called from workqueue.
3845 */
3bc942f3 3846static void memcg_event_remove(struct work_struct *work)
79bd9814 3847{
3bc942f3
TH
3848 struct mem_cgroup_event *event =
3849 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3850 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3851
3852 remove_wait_queue(event->wqh, &event->wait);
3853
59b6f873 3854 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3855
3856 /* Notify userspace the event is going away. */
3857 eventfd_signal(event->eventfd, 1);
3858
3859 eventfd_ctx_put(event->eventfd);
3860 kfree(event);
59b6f873 3861 css_put(&memcg->css);
79bd9814
TH
3862}
3863
3864/*
3865 * Gets called on POLLHUP on eventfd when user closes it.
3866 *
3867 * Called with wqh->lock held and interrupts disabled.
3868 */
3bc942f3
TH
3869static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3870 int sync, void *key)
79bd9814 3871{
3bc942f3
TH
3872 struct mem_cgroup_event *event =
3873 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3874 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3875 unsigned long flags = (unsigned long)key;
3876
3877 if (flags & POLLHUP) {
3878 /*
3879 * If the event has been detached at cgroup removal, we
3880 * can simply return knowing the other side will cleanup
3881 * for us.
3882 *
3883 * We can't race against event freeing since the other
3884 * side will require wqh->lock via remove_wait_queue(),
3885 * which we hold.
3886 */
fba94807 3887 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3888 if (!list_empty(&event->list)) {
3889 list_del_init(&event->list);
3890 /*
3891 * We are in atomic context, but cgroup_event_remove()
3892 * may sleep, so we have to call it in workqueue.
3893 */
3894 schedule_work(&event->remove);
3895 }
fba94807 3896 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3897 }
3898
3899 return 0;
3900}
3901
3bc942f3 3902static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3903 wait_queue_head_t *wqh, poll_table *pt)
3904{
3bc942f3
TH
3905 struct mem_cgroup_event *event =
3906 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3907
3908 event->wqh = wqh;
3909 add_wait_queue(wqh, &event->wait);
3910}
3911
3912/*
3bc942f3
TH
3913 * DO NOT USE IN NEW FILES.
3914 *
79bd9814
TH
3915 * Parse input and register new cgroup event handler.
3916 *
3917 * Input must be in format '<event_fd> <control_fd> <args>'.
3918 * Interpretation of args is defined by control file implementation.
3919 */
451af504
TH
3920static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3921 char *buf, size_t nbytes, loff_t off)
79bd9814 3922{
451af504 3923 struct cgroup_subsys_state *css = of_css(of);
fba94807 3924 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3925 struct mem_cgroup_event *event;
79bd9814
TH
3926 struct cgroup_subsys_state *cfile_css;
3927 unsigned int efd, cfd;
3928 struct fd efile;
3929 struct fd cfile;
fba94807 3930 const char *name;
79bd9814
TH
3931 char *endp;
3932 int ret;
3933
451af504
TH
3934 buf = strstrip(buf);
3935
3936 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3937 if (*endp != ' ')
3938 return -EINVAL;
451af504 3939 buf = endp + 1;
79bd9814 3940
451af504 3941 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3942 if ((*endp != ' ') && (*endp != '\0'))
3943 return -EINVAL;
451af504 3944 buf = endp + 1;
79bd9814
TH
3945
3946 event = kzalloc(sizeof(*event), GFP_KERNEL);
3947 if (!event)
3948 return -ENOMEM;
3949
59b6f873 3950 event->memcg = memcg;
79bd9814 3951 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3952 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3953 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3954 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3955
3956 efile = fdget(efd);
3957 if (!efile.file) {
3958 ret = -EBADF;
3959 goto out_kfree;
3960 }
3961
3962 event->eventfd = eventfd_ctx_fileget(efile.file);
3963 if (IS_ERR(event->eventfd)) {
3964 ret = PTR_ERR(event->eventfd);
3965 goto out_put_efile;
3966 }
3967
3968 cfile = fdget(cfd);
3969 if (!cfile.file) {
3970 ret = -EBADF;
3971 goto out_put_eventfd;
3972 }
3973
3974 /* the process need read permission on control file */
3975 /* AV: shouldn't we check that it's been opened for read instead? */
3976 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3977 if (ret < 0)
3978 goto out_put_cfile;
3979
fba94807
TH
3980 /*
3981 * Determine the event callbacks and set them in @event. This used
3982 * to be done via struct cftype but cgroup core no longer knows
3983 * about these events. The following is crude but the whole thing
3984 * is for compatibility anyway.
3bc942f3
TH
3985 *
3986 * DO NOT ADD NEW FILES.
fba94807 3987 */
b583043e 3988 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3989
3990 if (!strcmp(name, "memory.usage_in_bytes")) {
3991 event->register_event = mem_cgroup_usage_register_event;
3992 event->unregister_event = mem_cgroup_usage_unregister_event;
3993 } else if (!strcmp(name, "memory.oom_control")) {
3994 event->register_event = mem_cgroup_oom_register_event;
3995 event->unregister_event = mem_cgroup_oom_unregister_event;
3996 } else if (!strcmp(name, "memory.pressure_level")) {
3997 event->register_event = vmpressure_register_event;
3998 event->unregister_event = vmpressure_unregister_event;
3999 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4000 event->register_event = memsw_cgroup_usage_register_event;
4001 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4002 } else {
4003 ret = -EINVAL;
4004 goto out_put_cfile;
4005 }
4006
79bd9814 4007 /*
b5557c4c
TH
4008 * Verify @cfile should belong to @css. Also, remaining events are
4009 * automatically removed on cgroup destruction but the removal is
4010 * asynchronous, so take an extra ref on @css.
79bd9814 4011 */
b583043e 4012 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4013 &memory_cgrp_subsys);
79bd9814 4014 ret = -EINVAL;
5a17f543 4015 if (IS_ERR(cfile_css))
79bd9814 4016 goto out_put_cfile;
5a17f543
TH
4017 if (cfile_css != css) {
4018 css_put(cfile_css);
79bd9814 4019 goto out_put_cfile;
5a17f543 4020 }
79bd9814 4021
451af504 4022 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4023 if (ret)
4024 goto out_put_css;
4025
4026 efile.file->f_op->poll(efile.file, &event->pt);
4027
fba94807
TH
4028 spin_lock(&memcg->event_list_lock);
4029 list_add(&event->list, &memcg->event_list);
4030 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4031
4032 fdput(cfile);
4033 fdput(efile);
4034
451af504 4035 return nbytes;
79bd9814
TH
4036
4037out_put_css:
b5557c4c 4038 css_put(css);
79bd9814
TH
4039out_put_cfile:
4040 fdput(cfile);
4041out_put_eventfd:
4042 eventfd_ctx_put(event->eventfd);
4043out_put_efile:
4044 fdput(efile);
4045out_kfree:
4046 kfree(event);
4047
4048 return ret;
4049}
4050
241994ed 4051static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4052 {
0eea1030 4053 .name = "usage_in_bytes",
8c7c6e34 4054 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4055 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4056 },
c84872e1
PE
4057 {
4058 .name = "max_usage_in_bytes",
8c7c6e34 4059 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4060 .write = mem_cgroup_reset,
791badbd 4061 .read_u64 = mem_cgroup_read_u64,
c84872e1 4062 },
8cdea7c0 4063 {
0eea1030 4064 .name = "limit_in_bytes",
8c7c6e34 4065 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4066 .write = mem_cgroup_write,
791badbd 4067 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4068 },
296c81d8
BS
4069 {
4070 .name = "soft_limit_in_bytes",
4071 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4072 .write = mem_cgroup_write,
791badbd 4073 .read_u64 = mem_cgroup_read_u64,
296c81d8 4074 },
8cdea7c0
BS
4075 {
4076 .name = "failcnt",
8c7c6e34 4077 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4078 .write = mem_cgroup_reset,
791badbd 4079 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4080 },
d2ceb9b7
KH
4081 {
4082 .name = "stat",
2da8ca82 4083 .seq_show = memcg_stat_show,
d2ceb9b7 4084 },
c1e862c1
KH
4085 {
4086 .name = "force_empty",
6770c64e 4087 .write = mem_cgroup_force_empty_write,
c1e862c1 4088 },
18f59ea7
BS
4089 {
4090 .name = "use_hierarchy",
4091 .write_u64 = mem_cgroup_hierarchy_write,
4092 .read_u64 = mem_cgroup_hierarchy_read,
4093 },
79bd9814 4094 {
3bc942f3 4095 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4096 .write = memcg_write_event_control,
79bd9814
TH
4097 .flags = CFTYPE_NO_PREFIX,
4098 .mode = S_IWUGO,
4099 },
a7885eb8
KM
4100 {
4101 .name = "swappiness",
4102 .read_u64 = mem_cgroup_swappiness_read,
4103 .write_u64 = mem_cgroup_swappiness_write,
4104 },
7dc74be0
DN
4105 {
4106 .name = "move_charge_at_immigrate",
4107 .read_u64 = mem_cgroup_move_charge_read,
4108 .write_u64 = mem_cgroup_move_charge_write,
4109 },
9490ff27
KH
4110 {
4111 .name = "oom_control",
2da8ca82 4112 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4113 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4114 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4115 },
70ddf637
AV
4116 {
4117 .name = "pressure_level",
70ddf637 4118 },
406eb0c9
YH
4119#ifdef CONFIG_NUMA
4120 {
4121 .name = "numa_stat",
2da8ca82 4122 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4123 },
4124#endif
510fc4e1
GC
4125#ifdef CONFIG_MEMCG_KMEM
4126 {
4127 .name = "kmem.limit_in_bytes",
4128 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4129 .write = mem_cgroup_write,
791badbd 4130 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4131 },
4132 {
4133 .name = "kmem.usage_in_bytes",
4134 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4135 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4136 },
4137 {
4138 .name = "kmem.failcnt",
4139 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4140 .write = mem_cgroup_reset,
791badbd 4141 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4142 },
4143 {
4144 .name = "kmem.max_usage_in_bytes",
4145 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4146 .write = mem_cgroup_reset,
791badbd 4147 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4148 },
749c5415
GC
4149#ifdef CONFIG_SLABINFO
4150 {
4151 .name = "kmem.slabinfo",
b047501c
VD
4152 .seq_start = slab_start,
4153 .seq_next = slab_next,
4154 .seq_stop = slab_stop,
4155 .seq_show = memcg_slab_show,
749c5415
GC
4156 },
4157#endif
8c7c6e34 4158#endif
6bc10349 4159 { }, /* terminate */
af36f906 4160};
8c7c6e34 4161
c0ff4b85 4162static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4163{
4164 struct mem_cgroup_per_node *pn;
1ecaab2b 4165 struct mem_cgroup_per_zone *mz;
41e3355d 4166 int zone, tmp = node;
1ecaab2b
KH
4167 /*
4168 * This routine is called against possible nodes.
4169 * But it's BUG to call kmalloc() against offline node.
4170 *
4171 * TODO: this routine can waste much memory for nodes which will
4172 * never be onlined. It's better to use memory hotplug callback
4173 * function.
4174 */
41e3355d
KH
4175 if (!node_state(node, N_NORMAL_MEMORY))
4176 tmp = -1;
17295c88 4177 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4178 if (!pn)
4179 return 1;
1ecaab2b 4180
1ecaab2b
KH
4181 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4182 mz = &pn->zoneinfo[zone];
bea8c150 4183 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4184 mz->usage_in_excess = 0;
4185 mz->on_tree = false;
d79154bb 4186 mz->memcg = memcg;
1ecaab2b 4187 }
54f72fe0 4188 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4189 return 0;
4190}
4191
c0ff4b85 4192static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4193{
54f72fe0 4194 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4195}
4196
33327948
KH
4197static struct mem_cgroup *mem_cgroup_alloc(void)
4198{
d79154bb 4199 struct mem_cgroup *memcg;
8ff69e2c 4200 size_t size;
33327948 4201
8ff69e2c
VD
4202 size = sizeof(struct mem_cgroup);
4203 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4204
8ff69e2c 4205 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4206 if (!memcg)
e7bbcdf3
DC
4207 return NULL;
4208
d79154bb
HD
4209 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4210 if (!memcg->stat)
d2e61b8d 4211 goto out_free;
841710aa
TH
4212
4213 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4214 goto out_free_stat;
4215
d79154bb
HD
4216 spin_lock_init(&memcg->pcp_counter_lock);
4217 return memcg;
d2e61b8d 4218
841710aa
TH
4219out_free_stat:
4220 free_percpu(memcg->stat);
d2e61b8d 4221out_free:
8ff69e2c 4222 kfree(memcg);
d2e61b8d 4223 return NULL;
33327948
KH
4224}
4225
59927fb9 4226/*
c8b2a36f
GC
4227 * At destroying mem_cgroup, references from swap_cgroup can remain.
4228 * (scanning all at force_empty is too costly...)
4229 *
4230 * Instead of clearing all references at force_empty, we remember
4231 * the number of reference from swap_cgroup and free mem_cgroup when
4232 * it goes down to 0.
4233 *
4234 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4235 */
c8b2a36f
GC
4236
4237static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4238{
c8b2a36f 4239 int node;
59927fb9 4240
bb4cc1a8 4241 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4242
4243 for_each_node(node)
4244 free_mem_cgroup_per_zone_info(memcg, node);
4245
4246 free_percpu(memcg->stat);
841710aa 4247 memcg_wb_domain_exit(memcg);
8ff69e2c 4248 kfree(memcg);
59927fb9 4249}
3afe36b1 4250
7bcc1bb1
DN
4251/*
4252 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4253 */
e1aab161 4254struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4255{
3e32cb2e 4256 if (!memcg->memory.parent)
7bcc1bb1 4257 return NULL;
3e32cb2e 4258 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4259}
e1aab161 4260EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4261
0eb253e2 4262static struct cgroup_subsys_state * __ref
eb95419b 4263mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4264{
d142e3e6 4265 struct mem_cgroup *memcg;
04046e1a 4266 long error = -ENOMEM;
6d12e2d8 4267 int node;
8cdea7c0 4268
c0ff4b85
R
4269 memcg = mem_cgroup_alloc();
4270 if (!memcg)
04046e1a 4271 return ERR_PTR(error);
78fb7466 4272
3ed28fa1 4273 for_each_node(node)
c0ff4b85 4274 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4275 goto free_out;
f64c3f54 4276
c077719b 4277 /* root ? */
eb95419b 4278 if (parent_css == NULL) {
a41c58a6 4279 root_mem_cgroup = memcg;
56161634 4280 mem_cgroup_root_css = &memcg->css;
3e32cb2e 4281 page_counter_init(&memcg->memory, NULL);
241994ed 4282 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4283 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4284 page_counter_init(&memcg->memsw, NULL);
4285 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4286 }
28dbc4b6 4287
d142e3e6
GC
4288 memcg->last_scanned_node = MAX_NUMNODES;
4289 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4290 memcg->move_charge_at_immigrate = 0;
4291 mutex_init(&memcg->thresholds_lock);
4292 spin_lock_init(&memcg->move_lock);
70ddf637 4293 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4294 INIT_LIST_HEAD(&memcg->event_list);
4295 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4296#ifdef CONFIG_MEMCG_KMEM
4297 memcg->kmemcg_id = -1;
900a38f0 4298#endif
52ebea74
TH
4299#ifdef CONFIG_CGROUP_WRITEBACK
4300 INIT_LIST_HEAD(&memcg->cgwb_list);
4301#endif
d142e3e6
GC
4302 return &memcg->css;
4303
4304free_out:
4305 __mem_cgroup_free(memcg);
4306 return ERR_PTR(error);
4307}
4308
4309static int
eb95419b 4310mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4311{
eb95419b 4312 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4313 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4314 int ret;
d142e3e6 4315
15a4c835 4316 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4317 return -ENOSPC;
4318
63876986 4319 if (!parent)
d142e3e6
GC
4320 return 0;
4321
0999821b 4322 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4323
4324 memcg->use_hierarchy = parent->use_hierarchy;
4325 memcg->oom_kill_disable = parent->oom_kill_disable;
4326 memcg->swappiness = mem_cgroup_swappiness(parent);
4327
4328 if (parent->use_hierarchy) {
3e32cb2e 4329 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4330 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4331 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4332 page_counter_init(&memcg->memsw, &parent->memsw);
4333 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4334
7bcc1bb1 4335 /*
8d76a979
LZ
4336 * No need to take a reference to the parent because cgroup
4337 * core guarantees its existence.
7bcc1bb1 4338 */
18f59ea7 4339 } else {
3e32cb2e 4340 page_counter_init(&memcg->memory, NULL);
241994ed 4341 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4342 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4343 page_counter_init(&memcg->memsw, NULL);
4344 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4345 /*
4346 * Deeper hierachy with use_hierarchy == false doesn't make
4347 * much sense so let cgroup subsystem know about this
4348 * unfortunate state in our controller.
4349 */
d142e3e6 4350 if (parent != root_mem_cgroup)
073219e9 4351 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4352 }
0999821b 4353 mutex_unlock(&memcg_create_mutex);
d6441637 4354
2f7dd7a4
JW
4355 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4356 if (ret)
4357 return ret;
4358
4359 /*
4360 * Make sure the memcg is initialized: mem_cgroup_iter()
4361 * orders reading memcg->initialized against its callers
4362 * reading the memcg members.
4363 */
4364 smp_store_release(&memcg->initialized, 1);
4365
4366 return 0;
8cdea7c0
BS
4367}
4368
eb95419b 4369static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4370{
eb95419b 4371 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4372 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4373
4374 /*
4375 * Unregister events and notify userspace.
4376 * Notify userspace about cgroup removing only after rmdir of cgroup
4377 * directory to avoid race between userspace and kernelspace.
4378 */
fba94807
TH
4379 spin_lock(&memcg->event_list_lock);
4380 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4381 list_del_init(&event->list);
4382 schedule_work(&event->remove);
4383 }
fba94807 4384 spin_unlock(&memcg->event_list_lock);
ec64f515 4385
33cb876e 4386 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4387
4388 memcg_deactivate_kmem(memcg);
52ebea74
TH
4389
4390 wb_memcg_offline(memcg);
df878fb0
KH
4391}
4392
eb95419b 4393static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4394{
eb95419b 4395 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4396
10d5ebf4 4397 memcg_destroy_kmem(memcg);
465939a1 4398 __mem_cgroup_free(memcg);
8cdea7c0
BS
4399}
4400
1ced953b
TH
4401/**
4402 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4403 * @css: the target css
4404 *
4405 * Reset the states of the mem_cgroup associated with @css. This is
4406 * invoked when the userland requests disabling on the default hierarchy
4407 * but the memcg is pinned through dependency. The memcg should stop
4408 * applying policies and should revert to the vanilla state as it may be
4409 * made visible again.
4410 *
4411 * The current implementation only resets the essential configurations.
4412 * This needs to be expanded to cover all the visible parts.
4413 */
4414static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4415{
4416 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4417
3e32cb2e
JW
4418 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4419 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4420 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4421 memcg->low = 0;
4422 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4423 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4424 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4425}
4426
02491447 4427#ifdef CONFIG_MMU
7dc74be0 4428/* Handlers for move charge at task migration. */
854ffa8d 4429static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4430{
05b84301 4431 int ret;
9476db97
JW
4432
4433 /* Try a single bulk charge without reclaim first */
00501b53 4434 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4435 if (!ret) {
854ffa8d 4436 mc.precharge += count;
854ffa8d
DN
4437 return ret;
4438 }
692e7c45 4439 if (ret == -EINTR) {
00501b53 4440 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4441 return ret;
4442 }
9476db97
JW
4443
4444 /* Try charges one by one with reclaim */
854ffa8d 4445 while (count--) {
00501b53 4446 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4447 /*
4448 * In case of failure, any residual charges against
4449 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4450 * later on. However, cancel any charges that are
4451 * bypassed to root right away or they'll be lost.
9476db97 4452 */
692e7c45 4453 if (ret == -EINTR)
00501b53 4454 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4455 if (ret)
38c5d72f 4456 return ret;
854ffa8d 4457 mc.precharge++;
9476db97 4458 cond_resched();
854ffa8d 4459 }
9476db97 4460 return 0;
4ffef5fe
DN
4461}
4462
4463/**
8d32ff84 4464 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4465 * @vma: the vma the pte to be checked belongs
4466 * @addr: the address corresponding to the pte to be checked
4467 * @ptent: the pte to be checked
02491447 4468 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4469 *
4470 * Returns
4471 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4472 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4473 * move charge. if @target is not NULL, the page is stored in target->page
4474 * with extra refcnt got(Callers should handle it).
02491447
DN
4475 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4476 * target for charge migration. if @target is not NULL, the entry is stored
4477 * in target->ent.
4ffef5fe
DN
4478 *
4479 * Called with pte lock held.
4480 */
4ffef5fe
DN
4481union mc_target {
4482 struct page *page;
02491447 4483 swp_entry_t ent;
4ffef5fe
DN
4484};
4485
4ffef5fe 4486enum mc_target_type {
8d32ff84 4487 MC_TARGET_NONE = 0,
4ffef5fe 4488 MC_TARGET_PAGE,
02491447 4489 MC_TARGET_SWAP,
4ffef5fe
DN
4490};
4491
90254a65
DN
4492static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4493 unsigned long addr, pte_t ptent)
4ffef5fe 4494{
90254a65 4495 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4496
90254a65
DN
4497 if (!page || !page_mapped(page))
4498 return NULL;
4499 if (PageAnon(page)) {
1dfab5ab 4500 if (!(mc.flags & MOVE_ANON))
90254a65 4501 return NULL;
1dfab5ab
JW
4502 } else {
4503 if (!(mc.flags & MOVE_FILE))
4504 return NULL;
4505 }
90254a65
DN
4506 if (!get_page_unless_zero(page))
4507 return NULL;
4508
4509 return page;
4510}
4511
4b91355e 4512#ifdef CONFIG_SWAP
90254a65
DN
4513static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4514 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4515{
90254a65
DN
4516 struct page *page = NULL;
4517 swp_entry_t ent = pte_to_swp_entry(ptent);
4518
1dfab5ab 4519 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4520 return NULL;
4b91355e
KH
4521 /*
4522 * Because lookup_swap_cache() updates some statistics counter,
4523 * we call find_get_page() with swapper_space directly.
4524 */
33806f06 4525 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4526 if (do_swap_account)
4527 entry->val = ent.val;
4528
4529 return page;
4530}
4b91355e
KH
4531#else
4532static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4533 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4534{
4535 return NULL;
4536}
4537#endif
90254a65 4538
87946a72
DN
4539static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4540 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4541{
4542 struct page *page = NULL;
87946a72
DN
4543 struct address_space *mapping;
4544 pgoff_t pgoff;
4545
4546 if (!vma->vm_file) /* anonymous vma */
4547 return NULL;
1dfab5ab 4548 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4549 return NULL;
4550
87946a72 4551 mapping = vma->vm_file->f_mapping;
0661a336 4552 pgoff = linear_page_index(vma, addr);
87946a72
DN
4553
4554 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4555#ifdef CONFIG_SWAP
4556 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4557 if (shmem_mapping(mapping)) {
4558 page = find_get_entry(mapping, pgoff);
4559 if (radix_tree_exceptional_entry(page)) {
4560 swp_entry_t swp = radix_to_swp_entry(page);
4561 if (do_swap_account)
4562 *entry = swp;
4563 page = find_get_page(swap_address_space(swp), swp.val);
4564 }
4565 } else
4566 page = find_get_page(mapping, pgoff);
4567#else
4568 page = find_get_page(mapping, pgoff);
aa3b1895 4569#endif
87946a72
DN
4570 return page;
4571}
4572
b1b0deab
CG
4573/**
4574 * mem_cgroup_move_account - move account of the page
4575 * @page: the page
4576 * @nr_pages: number of regular pages (>1 for huge pages)
4577 * @from: mem_cgroup which the page is moved from.
4578 * @to: mem_cgroup which the page is moved to. @from != @to.
4579 *
4580 * The caller must confirm following.
4581 * - page is not on LRU (isolate_page() is useful.)
4582 * - compound_lock is held when nr_pages > 1
4583 *
4584 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4585 * from old cgroup.
4586 */
4587static int mem_cgroup_move_account(struct page *page,
4588 unsigned int nr_pages,
4589 struct mem_cgroup *from,
4590 struct mem_cgroup *to)
4591{
4592 unsigned long flags;
4593 int ret;
c4843a75 4594 bool anon;
b1b0deab
CG
4595
4596 VM_BUG_ON(from == to);
4597 VM_BUG_ON_PAGE(PageLRU(page), page);
4598 /*
4599 * The page is isolated from LRU. So, collapse function
4600 * will not handle this page. But page splitting can happen.
4601 * Do this check under compound_page_lock(). The caller should
4602 * hold it.
4603 */
4604 ret = -EBUSY;
4605 if (nr_pages > 1 && !PageTransHuge(page))
4606 goto out;
4607
4608 /*
4609 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4610 * of its source page while we change it: page migration takes
4611 * both pages off the LRU, but page cache replacement doesn't.
4612 */
4613 if (!trylock_page(page))
4614 goto out;
4615
4616 ret = -EINVAL;
4617 if (page->mem_cgroup != from)
4618 goto out_unlock;
4619
c4843a75
GT
4620 anon = PageAnon(page);
4621
b1b0deab
CG
4622 spin_lock_irqsave(&from->move_lock, flags);
4623
c4843a75 4624 if (!anon && page_mapped(page)) {
b1b0deab
CG
4625 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4626 nr_pages);
4627 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4628 nr_pages);
4629 }
4630
c4843a75
GT
4631 /*
4632 * move_lock grabbed above and caller set from->moving_account, so
4633 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4634 * So mapping should be stable for dirty pages.
4635 */
4636 if (!anon && PageDirty(page)) {
4637 struct address_space *mapping = page_mapping(page);
4638
4639 if (mapping_cap_account_dirty(mapping)) {
4640 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4641 nr_pages);
4642 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4643 nr_pages);
4644 }
4645 }
4646
b1b0deab
CG
4647 if (PageWriteback(page)) {
4648 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4649 nr_pages);
4650 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4651 nr_pages);
4652 }
4653
4654 /*
4655 * It is safe to change page->mem_cgroup here because the page
4656 * is referenced, charged, and isolated - we can't race with
4657 * uncharging, charging, migration, or LRU putback.
4658 */
4659
4660 /* caller should have done css_get */
4661 page->mem_cgroup = to;
4662 spin_unlock_irqrestore(&from->move_lock, flags);
4663
4664 ret = 0;
4665
4666 local_irq_disable();
4667 mem_cgroup_charge_statistics(to, page, nr_pages);
4668 memcg_check_events(to, page);
4669 mem_cgroup_charge_statistics(from, page, -nr_pages);
4670 memcg_check_events(from, page);
4671 local_irq_enable();
4672out_unlock:
4673 unlock_page(page);
4674out:
4675 return ret;
4676}
4677
8d32ff84 4678static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4679 unsigned long addr, pte_t ptent, union mc_target *target)
4680{
4681 struct page *page = NULL;
8d32ff84 4682 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4683 swp_entry_t ent = { .val = 0 };
4684
4685 if (pte_present(ptent))
4686 page = mc_handle_present_pte(vma, addr, ptent);
4687 else if (is_swap_pte(ptent))
4688 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4689 else if (pte_none(ptent))
87946a72 4690 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4691
4692 if (!page && !ent.val)
8d32ff84 4693 return ret;
02491447 4694 if (page) {
02491447 4695 /*
0a31bc97 4696 * Do only loose check w/o serialization.
1306a85a 4697 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4698 * not under LRU exclusion.
02491447 4699 */
1306a85a 4700 if (page->mem_cgroup == mc.from) {
02491447
DN
4701 ret = MC_TARGET_PAGE;
4702 if (target)
4703 target->page = page;
4704 }
4705 if (!ret || !target)
4706 put_page(page);
4707 }
90254a65
DN
4708 /* There is a swap entry and a page doesn't exist or isn't charged */
4709 if (ent.val && !ret &&
34c00c31 4710 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4711 ret = MC_TARGET_SWAP;
4712 if (target)
4713 target->ent = ent;
4ffef5fe 4714 }
4ffef5fe
DN
4715 return ret;
4716}
4717
12724850
NH
4718#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4719/*
4720 * We don't consider swapping or file mapped pages because THP does not
4721 * support them for now.
4722 * Caller should make sure that pmd_trans_huge(pmd) is true.
4723 */
4724static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4725 unsigned long addr, pmd_t pmd, union mc_target *target)
4726{
4727 struct page *page = NULL;
12724850
NH
4728 enum mc_target_type ret = MC_TARGET_NONE;
4729
4730 page = pmd_page(pmd);
309381fe 4731 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4732 if (!(mc.flags & MOVE_ANON))
12724850 4733 return ret;
1306a85a 4734 if (page->mem_cgroup == mc.from) {
12724850
NH
4735 ret = MC_TARGET_PAGE;
4736 if (target) {
4737 get_page(page);
4738 target->page = page;
4739 }
4740 }
4741 return ret;
4742}
4743#else
4744static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4745 unsigned long addr, pmd_t pmd, union mc_target *target)
4746{
4747 return MC_TARGET_NONE;
4748}
4749#endif
4750
4ffef5fe
DN
4751static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4752 unsigned long addr, unsigned long end,
4753 struct mm_walk *walk)
4754{
26bcd64a 4755 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4756 pte_t *pte;
4757 spinlock_t *ptl;
4758
bf929152 4759 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4760 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4761 mc.precharge += HPAGE_PMD_NR;
bf929152 4762 spin_unlock(ptl);
1a5a9906 4763 return 0;
12724850 4764 }
03319327 4765
45f83cef
AA
4766 if (pmd_trans_unstable(pmd))
4767 return 0;
4ffef5fe
DN
4768 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4769 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4770 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4771 mc.precharge++; /* increment precharge temporarily */
4772 pte_unmap_unlock(pte - 1, ptl);
4773 cond_resched();
4774
7dc74be0
DN
4775 return 0;
4776}
4777
4ffef5fe
DN
4778static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4779{
4780 unsigned long precharge;
4ffef5fe 4781
26bcd64a
NH
4782 struct mm_walk mem_cgroup_count_precharge_walk = {
4783 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4784 .mm = mm,
4785 };
dfe076b0 4786 down_read(&mm->mmap_sem);
26bcd64a 4787 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4788 up_read(&mm->mmap_sem);
4ffef5fe
DN
4789
4790 precharge = mc.precharge;
4791 mc.precharge = 0;
4792
4793 return precharge;
4794}
4795
4ffef5fe
DN
4796static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4797{
dfe076b0
DN
4798 unsigned long precharge = mem_cgroup_count_precharge(mm);
4799
4800 VM_BUG_ON(mc.moving_task);
4801 mc.moving_task = current;
4802 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4803}
4804
dfe076b0
DN
4805/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4806static void __mem_cgroup_clear_mc(void)
4ffef5fe 4807{
2bd9bb20
KH
4808 struct mem_cgroup *from = mc.from;
4809 struct mem_cgroup *to = mc.to;
4810
4ffef5fe 4811 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4812 if (mc.precharge) {
00501b53 4813 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4814 mc.precharge = 0;
4815 }
4816 /*
4817 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4818 * we must uncharge here.
4819 */
4820 if (mc.moved_charge) {
00501b53 4821 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4822 mc.moved_charge = 0;
4ffef5fe 4823 }
483c30b5
DN
4824 /* we must fixup refcnts and charges */
4825 if (mc.moved_swap) {
483c30b5 4826 /* uncharge swap account from the old cgroup */
ce00a967 4827 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4828 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4829
05b84301 4830 /*
3e32cb2e
JW
4831 * we charged both to->memory and to->memsw, so we
4832 * should uncharge to->memory.
05b84301 4833 */
ce00a967 4834 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4835 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4836
e8ea14cc 4837 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4838
4050377b 4839 /* we've already done css_get(mc.to) */
483c30b5
DN
4840 mc.moved_swap = 0;
4841 }
dfe076b0
DN
4842 memcg_oom_recover(from);
4843 memcg_oom_recover(to);
4844 wake_up_all(&mc.waitq);
4845}
4846
4847static void mem_cgroup_clear_mc(void)
4848{
dfe076b0
DN
4849 /*
4850 * we must clear moving_task before waking up waiters at the end of
4851 * task migration.
4852 */
4853 mc.moving_task = NULL;
4854 __mem_cgroup_clear_mc();
2bd9bb20 4855 spin_lock(&mc.lock);
4ffef5fe
DN
4856 mc.from = NULL;
4857 mc.to = NULL;
2bd9bb20 4858 spin_unlock(&mc.lock);
4ffef5fe
DN
4859}
4860
eb95419b 4861static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 4862 struct cgroup_taskset *tset)
7dc74be0 4863{
eb95419b 4864 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9f2115f9
TH
4865 struct mem_cgroup *from;
4866 struct task_struct *p;
4867 struct mm_struct *mm;
1dfab5ab 4868 unsigned long move_flags;
9f2115f9 4869 int ret = 0;
7dc74be0 4870
ee5e8472
GC
4871 /*
4872 * We are now commited to this value whatever it is. Changes in this
4873 * tunable will only affect upcoming migrations, not the current one.
4874 * So we need to save it, and keep it going.
4875 */
4db0c3c2 4876 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
9f2115f9
TH
4877 if (!move_flags)
4878 return 0;
4879
4880 p = cgroup_taskset_first(tset);
4881 from = mem_cgroup_from_task(p);
4882
4883 VM_BUG_ON(from == memcg);
4884
4885 mm = get_task_mm(p);
4886 if (!mm)
4887 return 0;
4888 /* We move charges only when we move a owner of the mm */
4889 if (mm->owner == p) {
4890 VM_BUG_ON(mc.from);
4891 VM_BUG_ON(mc.to);
4892 VM_BUG_ON(mc.precharge);
4893 VM_BUG_ON(mc.moved_charge);
4894 VM_BUG_ON(mc.moved_swap);
4895
4896 spin_lock(&mc.lock);
4897 mc.from = from;
4898 mc.to = memcg;
4899 mc.flags = move_flags;
4900 spin_unlock(&mc.lock);
4901 /* We set mc.moving_task later */
4902
4903 ret = mem_cgroup_precharge_mc(mm);
4904 if (ret)
4905 mem_cgroup_clear_mc();
7dc74be0 4906 }
9f2115f9 4907 mmput(mm);
7dc74be0
DN
4908 return ret;
4909}
4910
eb95419b 4911static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 4912 struct cgroup_taskset *tset)
7dc74be0 4913{
4e2f245d
JW
4914 if (mc.to)
4915 mem_cgroup_clear_mc();
7dc74be0
DN
4916}
4917
4ffef5fe
DN
4918static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4919 unsigned long addr, unsigned long end,
4920 struct mm_walk *walk)
7dc74be0 4921{
4ffef5fe 4922 int ret = 0;
26bcd64a 4923 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4924 pte_t *pte;
4925 spinlock_t *ptl;
12724850
NH
4926 enum mc_target_type target_type;
4927 union mc_target target;
4928 struct page *page;
4ffef5fe 4929
12724850
NH
4930 /*
4931 * We don't take compound_lock() here but no race with splitting thp
4932 * happens because:
4933 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4934 * under splitting, which means there's no concurrent thp split,
4935 * - if another thread runs into split_huge_page() just after we
4936 * entered this if-block, the thread must wait for page table lock
4937 * to be unlocked in __split_huge_page_splitting(), where the main
4938 * part of thp split is not executed yet.
4939 */
bf929152 4940 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 4941 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4942 spin_unlock(ptl);
12724850
NH
4943 return 0;
4944 }
4945 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4946 if (target_type == MC_TARGET_PAGE) {
4947 page = target.page;
4948 if (!isolate_lru_page(page)) {
12724850 4949 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 4950 mc.from, mc.to)) {
12724850
NH
4951 mc.precharge -= HPAGE_PMD_NR;
4952 mc.moved_charge += HPAGE_PMD_NR;
4953 }
4954 putback_lru_page(page);
4955 }
4956 put_page(page);
4957 }
bf929152 4958 spin_unlock(ptl);
1a5a9906 4959 return 0;
12724850
NH
4960 }
4961
45f83cef
AA
4962 if (pmd_trans_unstable(pmd))
4963 return 0;
4ffef5fe
DN
4964retry:
4965 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4966 for (; addr != end; addr += PAGE_SIZE) {
4967 pte_t ptent = *(pte++);
02491447 4968 swp_entry_t ent;
4ffef5fe
DN
4969
4970 if (!mc.precharge)
4971 break;
4972
8d32ff84 4973 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4974 case MC_TARGET_PAGE:
4975 page = target.page;
4976 if (isolate_lru_page(page))
4977 goto put;
1306a85a 4978 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 4979 mc.precharge--;
854ffa8d
DN
4980 /* we uncharge from mc.from later. */
4981 mc.moved_charge++;
4ffef5fe
DN
4982 }
4983 putback_lru_page(page);
8d32ff84 4984put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4985 put_page(page);
4986 break;
02491447
DN
4987 case MC_TARGET_SWAP:
4988 ent = target.ent;
e91cbb42 4989 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4990 mc.precharge--;
483c30b5
DN
4991 /* we fixup refcnts and charges later. */
4992 mc.moved_swap++;
4993 }
02491447 4994 break;
4ffef5fe
DN
4995 default:
4996 break;
4997 }
4998 }
4999 pte_unmap_unlock(pte - 1, ptl);
5000 cond_resched();
5001
5002 if (addr != end) {
5003 /*
5004 * We have consumed all precharges we got in can_attach().
5005 * We try charge one by one, but don't do any additional
5006 * charges to mc.to if we have failed in charge once in attach()
5007 * phase.
5008 */
854ffa8d 5009 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5010 if (!ret)
5011 goto retry;
5012 }
5013
5014 return ret;
5015}
5016
5017static void mem_cgroup_move_charge(struct mm_struct *mm)
5018{
26bcd64a
NH
5019 struct mm_walk mem_cgroup_move_charge_walk = {
5020 .pmd_entry = mem_cgroup_move_charge_pte_range,
5021 .mm = mm,
5022 };
4ffef5fe
DN
5023
5024 lru_add_drain_all();
312722cb
JW
5025 /*
5026 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5027 * move_lock while we're moving its pages to another memcg.
5028 * Then wait for already started RCU-only updates to finish.
5029 */
5030 atomic_inc(&mc.from->moving_account);
5031 synchronize_rcu();
dfe076b0
DN
5032retry:
5033 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5034 /*
5035 * Someone who are holding the mmap_sem might be waiting in
5036 * waitq. So we cancel all extra charges, wake up all waiters,
5037 * and retry. Because we cancel precharges, we might not be able
5038 * to move enough charges, but moving charge is a best-effort
5039 * feature anyway, so it wouldn't be a big problem.
5040 */
5041 __mem_cgroup_clear_mc();
5042 cond_resched();
5043 goto retry;
5044 }
26bcd64a
NH
5045 /*
5046 * When we have consumed all precharges and failed in doing
5047 * additional charge, the page walk just aborts.
5048 */
5049 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5050 up_read(&mm->mmap_sem);
312722cb 5051 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5052}
5053
eb95419b 5054static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5055 struct cgroup_taskset *tset)
67e465a7 5056{
2f7ee569 5057 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5058 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5059
dfe076b0 5060 if (mm) {
a433658c
KM
5061 if (mc.to)
5062 mem_cgroup_move_charge(mm);
dfe076b0
DN
5063 mmput(mm);
5064 }
a433658c
KM
5065 if (mc.to)
5066 mem_cgroup_clear_mc();
67e465a7 5067}
5cfb80a7 5068#else /* !CONFIG_MMU */
eb95419b 5069static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5070 struct cgroup_taskset *tset)
5cfb80a7
DN
5071{
5072 return 0;
5073}
eb95419b 5074static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5075 struct cgroup_taskset *tset)
5cfb80a7
DN
5076{
5077}
eb95419b 5078static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5079 struct cgroup_taskset *tset)
5cfb80a7
DN
5080{
5081}
5082#endif
67e465a7 5083
f00baae7
TH
5084/*
5085 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5086 * to verify whether we're attached to the default hierarchy on each mount
5087 * attempt.
f00baae7 5088 */
eb95419b 5089static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5090{
5091 /*
aa6ec29b 5092 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5093 * guarantees that @root doesn't have any children, so turning it
5094 * on for the root memcg is enough.
5095 */
aa6ec29b 5096 if (cgroup_on_dfl(root_css->cgroup))
7feee590
VD
5097 root_mem_cgroup->use_hierarchy = true;
5098 else
5099 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5100}
5101
241994ed
JW
5102static u64 memory_current_read(struct cgroup_subsys_state *css,
5103 struct cftype *cft)
5104{
5105 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5106}
5107
5108static int memory_low_show(struct seq_file *m, void *v)
5109{
5110 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5111 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5112
5113 if (low == PAGE_COUNTER_MAX)
d2973697 5114 seq_puts(m, "max\n");
241994ed
JW
5115 else
5116 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5117
5118 return 0;
5119}
5120
5121static ssize_t memory_low_write(struct kernfs_open_file *of,
5122 char *buf, size_t nbytes, loff_t off)
5123{
5124 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5125 unsigned long low;
5126 int err;
5127
5128 buf = strstrip(buf);
d2973697 5129 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5130 if (err)
5131 return err;
5132
5133 memcg->low = low;
5134
5135 return nbytes;
5136}
5137
5138static int memory_high_show(struct seq_file *m, void *v)
5139{
5140 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5141 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5142
5143 if (high == PAGE_COUNTER_MAX)
d2973697 5144 seq_puts(m, "max\n");
241994ed
JW
5145 else
5146 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5147
5148 return 0;
5149}
5150
5151static ssize_t memory_high_write(struct kernfs_open_file *of,
5152 char *buf, size_t nbytes, loff_t off)
5153{
5154 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5155 unsigned long high;
5156 int err;
5157
5158 buf = strstrip(buf);
d2973697 5159 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5160 if (err)
5161 return err;
5162
5163 memcg->high = high;
5164
2529bb3a 5165 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5166 return nbytes;
5167}
5168
5169static int memory_max_show(struct seq_file *m, void *v)
5170{
5171 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5172 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5173
5174 if (max == PAGE_COUNTER_MAX)
d2973697 5175 seq_puts(m, "max\n");
241994ed
JW
5176 else
5177 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5178
5179 return 0;
5180}
5181
5182static ssize_t memory_max_write(struct kernfs_open_file *of,
5183 char *buf, size_t nbytes, loff_t off)
5184{
5185 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5186 unsigned long max;
5187 int err;
5188
5189 buf = strstrip(buf);
d2973697 5190 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5191 if (err)
5192 return err;
5193
5194 err = mem_cgroup_resize_limit(memcg, max);
5195 if (err)
5196 return err;
5197
2529bb3a 5198 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5199 return nbytes;
5200}
5201
5202static int memory_events_show(struct seq_file *m, void *v)
5203{
5204 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5205
5206 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5207 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5208 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5209 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5210
5211 return 0;
5212}
5213
5214static struct cftype memory_files[] = {
5215 {
5216 .name = "current",
5217 .read_u64 = memory_current_read,
5218 },
5219 {
5220 .name = "low",
5221 .flags = CFTYPE_NOT_ON_ROOT,
5222 .seq_show = memory_low_show,
5223 .write = memory_low_write,
5224 },
5225 {
5226 .name = "high",
5227 .flags = CFTYPE_NOT_ON_ROOT,
5228 .seq_show = memory_high_show,
5229 .write = memory_high_write,
5230 },
5231 {
5232 .name = "max",
5233 .flags = CFTYPE_NOT_ON_ROOT,
5234 .seq_show = memory_max_show,
5235 .write = memory_max_write,
5236 },
5237 {
5238 .name = "events",
5239 .flags = CFTYPE_NOT_ON_ROOT,
5240 .seq_show = memory_events_show,
5241 },
5242 { } /* terminate */
5243};
5244
073219e9 5245struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5246 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5247 .css_online = mem_cgroup_css_online,
92fb9748
TH
5248 .css_offline = mem_cgroup_css_offline,
5249 .css_free = mem_cgroup_css_free,
1ced953b 5250 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5251 .can_attach = mem_cgroup_can_attach,
5252 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5253 .attach = mem_cgroup_move_task,
f00baae7 5254 .bind = mem_cgroup_bind,
241994ed
JW
5255 .dfl_cftypes = memory_files,
5256 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5257 .early_init = 0,
8cdea7c0 5258};
c077719b 5259
241994ed
JW
5260/**
5261 * mem_cgroup_low - check if memory consumption is below the normal range
5262 * @root: the highest ancestor to consider
5263 * @memcg: the memory cgroup to check
5264 *
5265 * Returns %true if memory consumption of @memcg, and that of all
5266 * configurable ancestors up to @root, is below the normal range.
5267 */
5268bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5269{
5270 if (mem_cgroup_disabled())
5271 return false;
5272
5273 /*
5274 * The toplevel group doesn't have a configurable range, so
5275 * it's never low when looked at directly, and it is not
5276 * considered an ancestor when assessing the hierarchy.
5277 */
5278
5279 if (memcg == root_mem_cgroup)
5280 return false;
5281
4e54dede 5282 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5283 return false;
5284
5285 while (memcg != root) {
5286 memcg = parent_mem_cgroup(memcg);
5287
5288 if (memcg == root_mem_cgroup)
5289 break;
5290
4e54dede 5291 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5292 return false;
5293 }
5294 return true;
5295}
5296
00501b53
JW
5297/**
5298 * mem_cgroup_try_charge - try charging a page
5299 * @page: page to charge
5300 * @mm: mm context of the victim
5301 * @gfp_mask: reclaim mode
5302 * @memcgp: charged memcg return
5303 *
5304 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5305 * pages according to @gfp_mask if necessary.
5306 *
5307 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5308 * Otherwise, an error code is returned.
5309 *
5310 * After page->mapping has been set up, the caller must finalize the
5311 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5312 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5313 */
5314int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5315 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5316{
5317 struct mem_cgroup *memcg = NULL;
5318 unsigned int nr_pages = 1;
5319 int ret = 0;
5320
5321 if (mem_cgroup_disabled())
5322 goto out;
5323
5324 if (PageSwapCache(page)) {
00501b53
JW
5325 /*
5326 * Every swap fault against a single page tries to charge the
5327 * page, bail as early as possible. shmem_unuse() encounters
5328 * already charged pages, too. The USED bit is protected by
5329 * the page lock, which serializes swap cache removal, which
5330 * in turn serializes uncharging.
5331 */
1306a85a 5332 if (page->mem_cgroup)
00501b53
JW
5333 goto out;
5334 }
5335
5336 if (PageTransHuge(page)) {
5337 nr_pages <<= compound_order(page);
5338 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5339 }
5340
5341 if (do_swap_account && PageSwapCache(page))
5342 memcg = try_get_mem_cgroup_from_page(page);
5343 if (!memcg)
5344 memcg = get_mem_cgroup_from_mm(mm);
5345
5346 ret = try_charge(memcg, gfp_mask, nr_pages);
5347
5348 css_put(&memcg->css);
5349
5350 if (ret == -EINTR) {
5351 memcg = root_mem_cgroup;
5352 ret = 0;
5353 }
5354out:
5355 *memcgp = memcg;
5356 return ret;
5357}
5358
5359/**
5360 * mem_cgroup_commit_charge - commit a page charge
5361 * @page: page to charge
5362 * @memcg: memcg to charge the page to
5363 * @lrucare: page might be on LRU already
5364 *
5365 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5366 * after page->mapping has been set up. This must happen atomically
5367 * as part of the page instantiation, i.e. under the page table lock
5368 * for anonymous pages, under the page lock for page and swap cache.
5369 *
5370 * In addition, the page must not be on the LRU during the commit, to
5371 * prevent racing with task migration. If it might be, use @lrucare.
5372 *
5373 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5374 */
5375void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5376 bool lrucare)
5377{
5378 unsigned int nr_pages = 1;
5379
5380 VM_BUG_ON_PAGE(!page->mapping, page);
5381 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5382
5383 if (mem_cgroup_disabled())
5384 return;
5385 /*
5386 * Swap faults will attempt to charge the same page multiple
5387 * times. But reuse_swap_page() might have removed the page
5388 * from swapcache already, so we can't check PageSwapCache().
5389 */
5390 if (!memcg)
5391 return;
5392
6abb5a86
JW
5393 commit_charge(page, memcg, lrucare);
5394
00501b53
JW
5395 if (PageTransHuge(page)) {
5396 nr_pages <<= compound_order(page);
5397 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5398 }
5399
6abb5a86
JW
5400 local_irq_disable();
5401 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5402 memcg_check_events(memcg, page);
5403 local_irq_enable();
00501b53
JW
5404
5405 if (do_swap_account && PageSwapCache(page)) {
5406 swp_entry_t entry = { .val = page_private(page) };
5407 /*
5408 * The swap entry might not get freed for a long time,
5409 * let's not wait for it. The page already received a
5410 * memory+swap charge, drop the swap entry duplicate.
5411 */
5412 mem_cgroup_uncharge_swap(entry);
5413 }
5414}
5415
5416/**
5417 * mem_cgroup_cancel_charge - cancel a page charge
5418 * @page: page to charge
5419 * @memcg: memcg to charge the page to
5420 *
5421 * Cancel a charge transaction started by mem_cgroup_try_charge().
5422 */
5423void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5424{
5425 unsigned int nr_pages = 1;
5426
5427 if (mem_cgroup_disabled())
5428 return;
5429 /*
5430 * Swap faults will attempt to charge the same page multiple
5431 * times. But reuse_swap_page() might have removed the page
5432 * from swapcache already, so we can't check PageSwapCache().
5433 */
5434 if (!memcg)
5435 return;
5436
5437 if (PageTransHuge(page)) {
5438 nr_pages <<= compound_order(page);
5439 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5440 }
5441
5442 cancel_charge(memcg, nr_pages);
5443}
5444
747db954 5445static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5446 unsigned long nr_anon, unsigned long nr_file,
5447 unsigned long nr_huge, struct page *dummy_page)
5448{
18eca2e6 5449 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5450 unsigned long flags;
5451
ce00a967 5452 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5453 page_counter_uncharge(&memcg->memory, nr_pages);
5454 if (do_swap_account)
5455 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5456 memcg_oom_recover(memcg);
5457 }
747db954
JW
5458
5459 local_irq_save(flags);
5460 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5461 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5462 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5463 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5464 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5465 memcg_check_events(memcg, dummy_page);
5466 local_irq_restore(flags);
e8ea14cc
JW
5467
5468 if (!mem_cgroup_is_root(memcg))
18eca2e6 5469 css_put_many(&memcg->css, nr_pages);
747db954
JW
5470}
5471
5472static void uncharge_list(struct list_head *page_list)
5473{
5474 struct mem_cgroup *memcg = NULL;
747db954
JW
5475 unsigned long nr_anon = 0;
5476 unsigned long nr_file = 0;
5477 unsigned long nr_huge = 0;
5478 unsigned long pgpgout = 0;
747db954
JW
5479 struct list_head *next;
5480 struct page *page;
5481
5482 next = page_list->next;
5483 do {
5484 unsigned int nr_pages = 1;
747db954
JW
5485
5486 page = list_entry(next, struct page, lru);
5487 next = page->lru.next;
5488
5489 VM_BUG_ON_PAGE(PageLRU(page), page);
5490 VM_BUG_ON_PAGE(page_count(page), page);
5491
1306a85a 5492 if (!page->mem_cgroup)
747db954
JW
5493 continue;
5494
5495 /*
5496 * Nobody should be changing or seriously looking at
1306a85a 5497 * page->mem_cgroup at this point, we have fully
29833315 5498 * exclusive access to the page.
747db954
JW
5499 */
5500
1306a85a 5501 if (memcg != page->mem_cgroup) {
747db954 5502 if (memcg) {
18eca2e6
JW
5503 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5504 nr_huge, page);
5505 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5506 }
1306a85a 5507 memcg = page->mem_cgroup;
747db954
JW
5508 }
5509
5510 if (PageTransHuge(page)) {
5511 nr_pages <<= compound_order(page);
5512 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5513 nr_huge += nr_pages;
5514 }
5515
5516 if (PageAnon(page))
5517 nr_anon += nr_pages;
5518 else
5519 nr_file += nr_pages;
5520
1306a85a 5521 page->mem_cgroup = NULL;
747db954
JW
5522
5523 pgpgout++;
5524 } while (next != page_list);
5525
5526 if (memcg)
18eca2e6
JW
5527 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5528 nr_huge, page);
747db954
JW
5529}
5530
0a31bc97
JW
5531/**
5532 * mem_cgroup_uncharge - uncharge a page
5533 * @page: page to uncharge
5534 *
5535 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5536 * mem_cgroup_commit_charge().
5537 */
5538void mem_cgroup_uncharge(struct page *page)
5539{
0a31bc97
JW
5540 if (mem_cgroup_disabled())
5541 return;
5542
747db954 5543 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5544 if (!page->mem_cgroup)
0a31bc97
JW
5545 return;
5546
747db954
JW
5547 INIT_LIST_HEAD(&page->lru);
5548 uncharge_list(&page->lru);
5549}
0a31bc97 5550
747db954
JW
5551/**
5552 * mem_cgroup_uncharge_list - uncharge a list of page
5553 * @page_list: list of pages to uncharge
5554 *
5555 * Uncharge a list of pages previously charged with
5556 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5557 */
5558void mem_cgroup_uncharge_list(struct list_head *page_list)
5559{
5560 if (mem_cgroup_disabled())
5561 return;
0a31bc97 5562
747db954
JW
5563 if (!list_empty(page_list))
5564 uncharge_list(page_list);
0a31bc97
JW
5565}
5566
5567/**
5568 * mem_cgroup_migrate - migrate a charge to another page
5569 * @oldpage: currently charged page
5570 * @newpage: page to transfer the charge to
f5e03a49 5571 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5572 *
5573 * Migrate the charge from @oldpage to @newpage.
5574 *
5575 * Both pages must be locked, @newpage->mapping must be set up.
5576 */
5577void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5578 bool lrucare)
5579{
29833315 5580 struct mem_cgroup *memcg;
0a31bc97
JW
5581 int isolated;
5582
5583 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5584 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5585 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5586 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5587 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5588 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5589 newpage);
0a31bc97
JW
5590
5591 if (mem_cgroup_disabled())
5592 return;
5593
5594 /* Page cache replacement: new page already charged? */
1306a85a 5595 if (newpage->mem_cgroup)
0a31bc97
JW
5596 return;
5597
7d5e3245
JW
5598 /*
5599 * Swapcache readahead pages can get migrated before being
5600 * charged, and migration from compaction can happen to an
5601 * uncharged page when the PFN walker finds a page that
5602 * reclaim just put back on the LRU but has not released yet.
5603 */
1306a85a 5604 memcg = oldpage->mem_cgroup;
29833315 5605 if (!memcg)
0a31bc97
JW
5606 return;
5607
0a31bc97
JW
5608 if (lrucare)
5609 lock_page_lru(oldpage, &isolated);
5610
1306a85a 5611 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5612
5613 if (lrucare)
5614 unlock_page_lru(oldpage, isolated);
5615
29833315 5616 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5617}
5618
2d11085e 5619/*
1081312f
MH
5620 * subsys_initcall() for memory controller.
5621 *
5622 * Some parts like hotcpu_notifier() have to be initialized from this context
5623 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5624 * everything that doesn't depend on a specific mem_cgroup structure should
5625 * be initialized from here.
2d11085e
MH
5626 */
5627static int __init mem_cgroup_init(void)
5628{
95a045f6
JW
5629 int cpu, node;
5630
2d11085e 5631 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5632
5633 for_each_possible_cpu(cpu)
5634 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5635 drain_local_stock);
5636
5637 for_each_node(node) {
5638 struct mem_cgroup_tree_per_node *rtpn;
5639 int zone;
5640
5641 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5642 node_online(node) ? node : NUMA_NO_NODE);
5643
5644 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5645 struct mem_cgroup_tree_per_zone *rtpz;
5646
5647 rtpz = &rtpn->rb_tree_per_zone[zone];
5648 rtpz->rb_root = RB_ROOT;
5649 spin_lock_init(&rtpz->lock);
5650 }
5651 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5652 }
5653
2d11085e
MH
5654 return 0;
5655}
5656subsys_initcall(mem_cgroup_init);
21afa38e
JW
5657
5658#ifdef CONFIG_MEMCG_SWAP
5659/**
5660 * mem_cgroup_swapout - transfer a memsw charge to swap
5661 * @page: page whose memsw charge to transfer
5662 * @entry: swap entry to move the charge to
5663 *
5664 * Transfer the memsw charge of @page to @entry.
5665 */
5666void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5667{
5668 struct mem_cgroup *memcg;
5669 unsigned short oldid;
5670
5671 VM_BUG_ON_PAGE(PageLRU(page), page);
5672 VM_BUG_ON_PAGE(page_count(page), page);
5673
5674 if (!do_swap_account)
5675 return;
5676
5677 memcg = page->mem_cgroup;
5678
5679 /* Readahead page, never charged */
5680 if (!memcg)
5681 return;
5682
5683 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5684 VM_BUG_ON_PAGE(oldid, page);
5685 mem_cgroup_swap_statistics(memcg, true);
5686
5687 page->mem_cgroup = NULL;
5688
5689 if (!mem_cgroup_is_root(memcg))
5690 page_counter_uncharge(&memcg->memory, 1);
5691
ce9ce665
SAS
5692 /*
5693 * Interrupts should be disabled here because the caller holds the
5694 * mapping->tree_lock lock which is taken with interrupts-off. It is
5695 * important here to have the interrupts disabled because it is the
5696 * only synchronisation we have for udpating the per-CPU variables.
5697 */
5698 VM_BUG_ON(!irqs_disabled());
21afa38e
JW
5699 mem_cgroup_charge_statistics(memcg, page, -1);
5700 memcg_check_events(memcg, page);
5701}
5702
5703/**
5704 * mem_cgroup_uncharge_swap - uncharge a swap entry
5705 * @entry: swap entry to uncharge
5706 *
5707 * Drop the memsw charge associated with @entry.
5708 */
5709void mem_cgroup_uncharge_swap(swp_entry_t entry)
5710{
5711 struct mem_cgroup *memcg;
5712 unsigned short id;
5713
5714 if (!do_swap_account)
5715 return;
5716
5717 id = swap_cgroup_record(entry, 0);
5718 rcu_read_lock();
adbe427b 5719 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5720 if (memcg) {
5721 if (!mem_cgroup_is_root(memcg))
5722 page_counter_uncharge(&memcg->memsw, 1);
5723 mem_cgroup_swap_statistics(memcg, false);
5724 css_put(&memcg->css);
5725 }
5726 rcu_read_unlock();
5727}
5728
5729/* for remember boot option*/
5730#ifdef CONFIG_MEMCG_SWAP_ENABLED
5731static int really_do_swap_account __initdata = 1;
5732#else
5733static int really_do_swap_account __initdata;
5734#endif
5735
5736static int __init enable_swap_account(char *s)
5737{
5738 if (!strcmp(s, "1"))
5739 really_do_swap_account = 1;
5740 else if (!strcmp(s, "0"))
5741 really_do_swap_account = 0;
5742 return 1;
5743}
5744__setup("swapaccount=", enable_swap_account);
5745
5746static struct cftype memsw_cgroup_files[] = {
5747 {
5748 .name = "memsw.usage_in_bytes",
5749 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5750 .read_u64 = mem_cgroup_read_u64,
5751 },
5752 {
5753 .name = "memsw.max_usage_in_bytes",
5754 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5755 .write = mem_cgroup_reset,
5756 .read_u64 = mem_cgroup_read_u64,
5757 },
5758 {
5759 .name = "memsw.limit_in_bytes",
5760 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5761 .write = mem_cgroup_write,
5762 .read_u64 = mem_cgroup_read_u64,
5763 },
5764 {
5765 .name = "memsw.failcnt",
5766 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5767 .write = mem_cgroup_reset,
5768 .read_u64 = mem_cgroup_read_u64,
5769 },
5770 { }, /* terminate */
5771};
5772
5773static int __init mem_cgroup_swap_init(void)
5774{
5775 if (!mem_cgroup_disabled() && really_do_swap_account) {
5776 do_swap_account = 1;
5777 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5778 memsw_cgroup_files));
5779 }
5780 return 0;
5781}
5782subsys_initcall(mem_cgroup_swap_init);
5783
5784#endif /* CONFIG_MEMCG_SWAP */
This page took 1.240209 seconds and 5 git commands to generate.