mm: refactor zone_movable_is_highmem()
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
d1a4c0b3 68#include <net/tcp_memcontrol.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
a181b0e8 78#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 79static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 80
21afa38e 81/* Whether the swap controller is active */
c255a458 82#ifdef CONFIG_MEMCG_SWAP
c077719b 83int do_swap_account __read_mostly;
c077719b 84#else
a0db00fc 85#define do_swap_account 0
c077719b
KH
86#endif
87
af7c4b0e
JW
88static const char * const mem_cgroup_stat_names[] = {
89 "cache",
90 "rss",
b070e65c 91 "rss_huge",
af7c4b0e 92 "mapped_file",
3ea67d06 93 "writeback",
af7c4b0e
JW
94 "swap",
95};
96
af7c4b0e
JW
97static const char * const mem_cgroup_events_names[] = {
98 "pgpgin",
99 "pgpgout",
100 "pgfault",
101 "pgmajfault",
102};
103
58cf188e
SZ
104static const char * const mem_cgroup_lru_names[] = {
105 "inactive_anon",
106 "active_anon",
107 "inactive_file",
108 "active_file",
109 "unevictable",
110};
111
7a159cc9
JW
112/*
113 * Per memcg event counter is incremented at every pagein/pageout. With THP,
114 * it will be incremated by the number of pages. This counter is used for
115 * for trigger some periodic events. This is straightforward and better
116 * than using jiffies etc. to handle periodic memcg event.
117 */
118enum mem_cgroup_events_target {
119 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 120 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 121 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
122 MEM_CGROUP_NTARGETS,
123};
a0db00fc
KS
124#define THRESHOLDS_EVENTS_TARGET 128
125#define SOFTLIMIT_EVENTS_TARGET 1024
126#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 127
d52aa412 128struct mem_cgroup_stat_cpu {
7a159cc9 129 long count[MEM_CGROUP_STAT_NSTATS];
241994ed 130 unsigned long events[MEMCG_NR_EVENTS];
13114716 131 unsigned long nr_page_events;
7a159cc9 132 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
133};
134
5ac8fb31
JW
135struct reclaim_iter {
136 struct mem_cgroup *position;
527a5ec9
JW
137 /* scan generation, increased every round-trip */
138 unsigned int generation;
139};
140
6d12e2d8
KH
141/*
142 * per-zone information in memory controller.
143 */
6d12e2d8 144struct mem_cgroup_per_zone {
6290df54 145 struct lruvec lruvec;
1eb49272 146 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 147
5ac8fb31 148 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 149
bb4cc1a8 150 struct rb_node tree_node; /* RB tree node */
3e32cb2e 151 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
152 /* the soft limit is exceeded*/
153 bool on_tree;
d79154bb 154 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 155 /* use container_of */
6d12e2d8 156};
6d12e2d8
KH
157
158struct mem_cgroup_per_node {
159 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
160};
161
bb4cc1a8
AM
162/*
163 * Cgroups above their limits are maintained in a RB-Tree, independent of
164 * their hierarchy representation
165 */
166
167struct mem_cgroup_tree_per_zone {
168 struct rb_root rb_root;
169 spinlock_t lock;
170};
171
172struct mem_cgroup_tree_per_node {
173 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
174};
175
176struct mem_cgroup_tree {
177 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
178};
179
180static struct mem_cgroup_tree soft_limit_tree __read_mostly;
181
2e72b634
KS
182struct mem_cgroup_threshold {
183 struct eventfd_ctx *eventfd;
3e32cb2e 184 unsigned long threshold;
2e72b634
KS
185};
186
9490ff27 187/* For threshold */
2e72b634 188struct mem_cgroup_threshold_ary {
748dad36 189 /* An array index points to threshold just below or equal to usage. */
5407a562 190 int current_threshold;
2e72b634
KS
191 /* Size of entries[] */
192 unsigned int size;
193 /* Array of thresholds */
194 struct mem_cgroup_threshold entries[0];
195};
2c488db2
KS
196
197struct mem_cgroup_thresholds {
198 /* Primary thresholds array */
199 struct mem_cgroup_threshold_ary *primary;
200 /*
201 * Spare threshold array.
202 * This is needed to make mem_cgroup_unregister_event() "never fail".
203 * It must be able to store at least primary->size - 1 entries.
204 */
205 struct mem_cgroup_threshold_ary *spare;
206};
207
9490ff27
KH
208/* for OOM */
209struct mem_cgroup_eventfd_list {
210 struct list_head list;
211 struct eventfd_ctx *eventfd;
212};
2e72b634 213
79bd9814
TH
214/*
215 * cgroup_event represents events which userspace want to receive.
216 */
3bc942f3 217struct mem_cgroup_event {
79bd9814 218 /*
59b6f873 219 * memcg which the event belongs to.
79bd9814 220 */
59b6f873 221 struct mem_cgroup *memcg;
79bd9814
TH
222 /*
223 * eventfd to signal userspace about the event.
224 */
225 struct eventfd_ctx *eventfd;
226 /*
227 * Each of these stored in a list by the cgroup.
228 */
229 struct list_head list;
fba94807
TH
230 /*
231 * register_event() callback will be used to add new userspace
232 * waiter for changes related to this event. Use eventfd_signal()
233 * on eventfd to send notification to userspace.
234 */
59b6f873 235 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 236 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
237 /*
238 * unregister_event() callback will be called when userspace closes
239 * the eventfd or on cgroup removing. This callback must be set,
240 * if you want provide notification functionality.
241 */
59b6f873 242 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 243 struct eventfd_ctx *eventfd);
79bd9814
TH
244 /*
245 * All fields below needed to unregister event when
246 * userspace closes eventfd.
247 */
248 poll_table pt;
249 wait_queue_head_t *wqh;
250 wait_queue_t wait;
251 struct work_struct remove;
252};
253
c0ff4b85
R
254static void mem_cgroup_threshold(struct mem_cgroup *memcg);
255static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 256
8cdea7c0
BS
257/*
258 * The memory controller data structure. The memory controller controls both
259 * page cache and RSS per cgroup. We would eventually like to provide
260 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
261 * to help the administrator determine what knobs to tune.
262 *
263 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
264 * we hit the water mark. May be even add a low water mark, such that
265 * no reclaim occurs from a cgroup at it's low water mark, this is
266 * a feature that will be implemented much later in the future.
8cdea7c0
BS
267 */
268struct mem_cgroup {
269 struct cgroup_subsys_state css;
3e32cb2e
JW
270
271 /* Accounted resources */
272 struct page_counter memory;
273 struct page_counter memsw;
274 struct page_counter kmem;
275
241994ed
JW
276 /* Normal memory consumption range */
277 unsigned long low;
278 unsigned long high;
279
3e32cb2e 280 unsigned long soft_limit;
59927fb9 281
70ddf637
AV
282 /* vmpressure notifications */
283 struct vmpressure vmpressure;
284
2f7dd7a4
JW
285 /* css_online() has been completed */
286 int initialized;
287
18f59ea7
BS
288 /*
289 * Should the accounting and control be hierarchical, per subtree?
290 */
291 bool use_hierarchy;
79dfdacc
MH
292
293 bool oom_lock;
294 atomic_t under_oom;
3812c8c8 295 atomic_t oom_wakeups;
79dfdacc 296
1f4c025b 297 int swappiness;
3c11ecf4
KH
298 /* OOM-Killer disable */
299 int oom_kill_disable;
a7885eb8 300
2e72b634
KS
301 /* protect arrays of thresholds */
302 struct mutex thresholds_lock;
303
304 /* thresholds for memory usage. RCU-protected */
2c488db2 305 struct mem_cgroup_thresholds thresholds;
907860ed 306
2e72b634 307 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 308 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 309
9490ff27
KH
310 /* For oom notifier event fd */
311 struct list_head oom_notify;
185efc0f 312
7dc74be0
DN
313 /*
314 * Should we move charges of a task when a task is moved into this
315 * mem_cgroup ? And what type of charges should we move ?
316 */
f894ffa8 317 unsigned long move_charge_at_immigrate;
619d094b
KH
318 /*
319 * set > 0 if pages under this cgroup are moving to other cgroup.
320 */
6de22619 321 atomic_t moving_account;
312734c0 322 /* taken only while moving_account > 0 */
6de22619
JW
323 spinlock_t move_lock;
324 struct task_struct *move_lock_task;
325 unsigned long move_lock_flags;
d52aa412 326 /*
c62b1a3b 327 * percpu counter.
d52aa412 328 */
3a7951b4 329 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
330 /*
331 * used when a cpu is offlined or other synchronizations
332 * See mem_cgroup_read_stat().
333 */
334 struct mem_cgroup_stat_cpu nocpu_base;
335 spinlock_t pcp_counter_lock;
d1a4c0b3 336
4bd2c1ee 337#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 338 struct cg_proto tcp_mem;
d1a4c0b3 339#endif
2633d7a0 340#if defined(CONFIG_MEMCG_KMEM)
f7ce3190 341 /* Index in the kmem_cache->memcg_params.memcg_caches array */
2633d7a0 342 int kmemcg_id;
2788cf0c 343 bool kmem_acct_activated;
2a4db7eb 344 bool kmem_acct_active;
2633d7a0 345#endif
45cf7ebd
GC
346
347 int last_scanned_node;
348#if MAX_NUMNODES > 1
349 nodemask_t scan_nodes;
350 atomic_t numainfo_events;
351 atomic_t numainfo_updating;
352#endif
70ddf637 353
fba94807
TH
354 /* List of events which userspace want to receive */
355 struct list_head event_list;
356 spinlock_t event_list_lock;
357
54f72fe0
JW
358 struct mem_cgroup_per_node *nodeinfo[0];
359 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
360};
361
510fc4e1 362#ifdef CONFIG_MEMCG_KMEM
cb731d6c 363bool memcg_kmem_is_active(struct mem_cgroup *memcg)
7de37682 364{
2a4db7eb 365 return memcg->kmem_acct_active;
7de37682 366}
510fc4e1
GC
367#endif
368
7dc74be0
DN
369/* Stuffs for move charges at task migration. */
370/*
1dfab5ab 371 * Types of charges to be moved.
7dc74be0 372 */
1dfab5ab
JW
373#define MOVE_ANON 0x1U
374#define MOVE_FILE 0x2U
375#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 376
4ffef5fe
DN
377/* "mc" and its members are protected by cgroup_mutex */
378static struct move_charge_struct {
b1dd693e 379 spinlock_t lock; /* for from, to */
4ffef5fe
DN
380 struct mem_cgroup *from;
381 struct mem_cgroup *to;
1dfab5ab 382 unsigned long flags;
4ffef5fe 383 unsigned long precharge;
854ffa8d 384 unsigned long moved_charge;
483c30b5 385 unsigned long moved_swap;
8033b97c
DN
386 struct task_struct *moving_task; /* a task moving charges */
387 wait_queue_head_t waitq; /* a waitq for other context */
388} mc = {
2bd9bb20 389 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
390 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
391};
4ffef5fe 392
4e416953
BS
393/*
394 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
395 * limit reclaim to prevent infinite loops, if they ever occur.
396 */
a0db00fc 397#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 398#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 399
217bc319
KH
400enum charge_type {
401 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 402 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 403 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 404 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
405 NR_CHARGE_TYPE,
406};
407
8c7c6e34 408/* for encoding cft->private value on file */
86ae53e1
GC
409enum res_type {
410 _MEM,
411 _MEMSWAP,
412 _OOM_TYPE,
510fc4e1 413 _KMEM,
86ae53e1
GC
414};
415
a0db00fc
KS
416#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
417#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 418#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
419/* Used for OOM nofiier */
420#define OOM_CONTROL (0)
8c7c6e34 421
0999821b
GC
422/*
423 * The memcg_create_mutex will be held whenever a new cgroup is created.
424 * As a consequence, any change that needs to protect against new child cgroups
425 * appearing has to hold it as well.
426 */
427static DEFINE_MUTEX(memcg_create_mutex);
428
b2145145
WL
429struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
430{
a7c6d554 431 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
432}
433
70ddf637
AV
434/* Some nice accessors for the vmpressure. */
435struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
436{
437 if (!memcg)
438 memcg = root_mem_cgroup;
439 return &memcg->vmpressure;
440}
441
442struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
443{
444 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
445}
446
7ffc0edc
MH
447static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
448{
449 return (memcg == root_mem_cgroup);
450}
451
4219b2da
LZ
452/*
453 * We restrict the id in the range of [1, 65535], so it can fit into
454 * an unsigned short.
455 */
456#define MEM_CGROUP_ID_MAX USHRT_MAX
457
34c00c31
LZ
458static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
459{
15a4c835 460 return memcg->css.id;
34c00c31
LZ
461}
462
463static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
464{
465 struct cgroup_subsys_state *css;
466
7d699ddb 467 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
468 return mem_cgroup_from_css(css);
469}
470
e1aab161 471/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 472#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 473
e1aab161
GC
474void sock_update_memcg(struct sock *sk)
475{
376be5ff 476 if (mem_cgroup_sockets_enabled) {
e1aab161 477 struct mem_cgroup *memcg;
3f134619 478 struct cg_proto *cg_proto;
e1aab161
GC
479
480 BUG_ON(!sk->sk_prot->proto_cgroup);
481
f3f511e1
GC
482 /* Socket cloning can throw us here with sk_cgrp already
483 * filled. It won't however, necessarily happen from
484 * process context. So the test for root memcg given
485 * the current task's memcg won't help us in this case.
486 *
487 * Respecting the original socket's memcg is a better
488 * decision in this case.
489 */
490 if (sk->sk_cgrp) {
491 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 492 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
493 return;
494 }
495
e1aab161
GC
496 rcu_read_lock();
497 memcg = mem_cgroup_from_task(current);
3f134619 498 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 499 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
500 memcg_proto_active(cg_proto) &&
501 css_tryget_online(&memcg->css)) {
3f134619 502 sk->sk_cgrp = cg_proto;
e1aab161
GC
503 }
504 rcu_read_unlock();
505 }
506}
507EXPORT_SYMBOL(sock_update_memcg);
508
509void sock_release_memcg(struct sock *sk)
510{
376be5ff 511 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
512 struct mem_cgroup *memcg;
513 WARN_ON(!sk->sk_cgrp->memcg);
514 memcg = sk->sk_cgrp->memcg;
5347e5ae 515 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
516 }
517}
d1a4c0b3
GC
518
519struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
520{
521 if (!memcg || mem_cgroup_is_root(memcg))
522 return NULL;
523
2e685cad 524 return &memcg->tcp_mem;
d1a4c0b3
GC
525}
526EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 527
3f134619
GC
528#endif
529
a8964b9b 530#ifdef CONFIG_MEMCG_KMEM
55007d84 531/*
f7ce3190 532 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
533 * The main reason for not using cgroup id for this:
534 * this works better in sparse environments, where we have a lot of memcgs,
535 * but only a few kmem-limited. Or also, if we have, for instance, 200
536 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
537 * 200 entry array for that.
55007d84 538 *
dbcf73e2
VD
539 * The current size of the caches array is stored in memcg_nr_cache_ids. It
540 * will double each time we have to increase it.
55007d84 541 */
dbcf73e2
VD
542static DEFINE_IDA(memcg_cache_ida);
543int memcg_nr_cache_ids;
749c5415 544
05257a1a
VD
545/* Protects memcg_nr_cache_ids */
546static DECLARE_RWSEM(memcg_cache_ids_sem);
547
548void memcg_get_cache_ids(void)
549{
550 down_read(&memcg_cache_ids_sem);
551}
552
553void memcg_put_cache_ids(void)
554{
555 up_read(&memcg_cache_ids_sem);
556}
557
55007d84
GC
558/*
559 * MIN_SIZE is different than 1, because we would like to avoid going through
560 * the alloc/free process all the time. In a small machine, 4 kmem-limited
561 * cgroups is a reasonable guess. In the future, it could be a parameter or
562 * tunable, but that is strictly not necessary.
563 *
b8627835 564 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
565 * this constant directly from cgroup, but it is understandable that this is
566 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 567 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
568 * increase ours as well if it increases.
569 */
570#define MEMCG_CACHES_MIN_SIZE 4
b8627835 571#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 572
d7f25f8a
GC
573/*
574 * A lot of the calls to the cache allocation functions are expected to be
575 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
576 * conditional to this static branch, we'll have to allow modules that does
577 * kmem_cache_alloc and the such to see this symbol as well
578 */
a8964b9b 579struct static_key memcg_kmem_enabled_key;
d7f25f8a 580EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 581
a8964b9b
GC
582#endif /* CONFIG_MEMCG_KMEM */
583
f64c3f54 584static struct mem_cgroup_per_zone *
e231875b 585mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 586{
e231875b
JZ
587 int nid = zone_to_nid(zone);
588 int zid = zone_idx(zone);
589
54f72fe0 590 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
591}
592
c0ff4b85 593struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 594{
c0ff4b85 595 return &memcg->css;
d324236b
WF
596}
597
f64c3f54 598static struct mem_cgroup_per_zone *
e231875b 599mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 600{
97a6c37b
JW
601 int nid = page_to_nid(page);
602 int zid = page_zonenum(page);
f64c3f54 603
e231875b 604 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
605}
606
bb4cc1a8
AM
607static struct mem_cgroup_tree_per_zone *
608soft_limit_tree_node_zone(int nid, int zid)
609{
610 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
611}
612
613static struct mem_cgroup_tree_per_zone *
614soft_limit_tree_from_page(struct page *page)
615{
616 int nid = page_to_nid(page);
617 int zid = page_zonenum(page);
618
619 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
620}
621
cf2c8127
JW
622static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
623 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 624 unsigned long new_usage_in_excess)
bb4cc1a8
AM
625{
626 struct rb_node **p = &mctz->rb_root.rb_node;
627 struct rb_node *parent = NULL;
628 struct mem_cgroup_per_zone *mz_node;
629
630 if (mz->on_tree)
631 return;
632
633 mz->usage_in_excess = new_usage_in_excess;
634 if (!mz->usage_in_excess)
635 return;
636 while (*p) {
637 parent = *p;
638 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
639 tree_node);
640 if (mz->usage_in_excess < mz_node->usage_in_excess)
641 p = &(*p)->rb_left;
642 /*
643 * We can't avoid mem cgroups that are over their soft
644 * limit by the same amount
645 */
646 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
647 p = &(*p)->rb_right;
648 }
649 rb_link_node(&mz->tree_node, parent, p);
650 rb_insert_color(&mz->tree_node, &mctz->rb_root);
651 mz->on_tree = true;
652}
653
cf2c8127
JW
654static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
655 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
656{
657 if (!mz->on_tree)
658 return;
659 rb_erase(&mz->tree_node, &mctz->rb_root);
660 mz->on_tree = false;
661}
662
cf2c8127
JW
663static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
664 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 665{
0a31bc97
JW
666 unsigned long flags;
667
668 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 669 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 670 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
671}
672
3e32cb2e
JW
673static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
674{
675 unsigned long nr_pages = page_counter_read(&memcg->memory);
676 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
677 unsigned long excess = 0;
678
679 if (nr_pages > soft_limit)
680 excess = nr_pages - soft_limit;
681
682 return excess;
683}
bb4cc1a8
AM
684
685static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
686{
3e32cb2e 687 unsigned long excess;
bb4cc1a8
AM
688 struct mem_cgroup_per_zone *mz;
689 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 690
e231875b 691 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
692 /*
693 * Necessary to update all ancestors when hierarchy is used.
694 * because their event counter is not touched.
695 */
696 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 697 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 698 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
699 /*
700 * We have to update the tree if mz is on RB-tree or
701 * mem is over its softlimit.
702 */
703 if (excess || mz->on_tree) {
0a31bc97
JW
704 unsigned long flags;
705
706 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
707 /* if on-tree, remove it */
708 if (mz->on_tree)
cf2c8127 709 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
710 /*
711 * Insert again. mz->usage_in_excess will be updated.
712 * If excess is 0, no tree ops.
713 */
cf2c8127 714 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 715 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
716 }
717 }
718}
719
720static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
721{
bb4cc1a8 722 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
723 struct mem_cgroup_per_zone *mz;
724 int nid, zid;
bb4cc1a8 725
e231875b
JZ
726 for_each_node(nid) {
727 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
728 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
729 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 730 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
731 }
732 }
733}
734
735static struct mem_cgroup_per_zone *
736__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
737{
738 struct rb_node *rightmost = NULL;
739 struct mem_cgroup_per_zone *mz;
740
741retry:
742 mz = NULL;
743 rightmost = rb_last(&mctz->rb_root);
744 if (!rightmost)
745 goto done; /* Nothing to reclaim from */
746
747 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
748 /*
749 * Remove the node now but someone else can add it back,
750 * we will to add it back at the end of reclaim to its correct
751 * position in the tree.
752 */
cf2c8127 753 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 754 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 755 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
756 goto retry;
757done:
758 return mz;
759}
760
761static struct mem_cgroup_per_zone *
762mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
763{
764 struct mem_cgroup_per_zone *mz;
765
0a31bc97 766 spin_lock_irq(&mctz->lock);
bb4cc1a8 767 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 768 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
769 return mz;
770}
771
711d3d2c
KH
772/*
773 * Implementation Note: reading percpu statistics for memcg.
774 *
775 * Both of vmstat[] and percpu_counter has threshold and do periodic
776 * synchronization to implement "quick" read. There are trade-off between
777 * reading cost and precision of value. Then, we may have a chance to implement
778 * a periodic synchronizion of counter in memcg's counter.
779 *
780 * But this _read() function is used for user interface now. The user accounts
781 * memory usage by memory cgroup and he _always_ requires exact value because
782 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
783 * have to visit all online cpus and make sum. So, for now, unnecessary
784 * synchronization is not implemented. (just implemented for cpu hotplug)
785 *
786 * If there are kernel internal actions which can make use of some not-exact
787 * value, and reading all cpu value can be performance bottleneck in some
788 * common workload, threashold and synchonization as vmstat[] should be
789 * implemented.
790 */
c0ff4b85 791static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 792 enum mem_cgroup_stat_index idx)
c62b1a3b 793{
7a159cc9 794 long val = 0;
c62b1a3b 795 int cpu;
c62b1a3b 796
711d3d2c
KH
797 get_online_cpus();
798 for_each_online_cpu(cpu)
c0ff4b85 799 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 800#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
801 spin_lock(&memcg->pcp_counter_lock);
802 val += memcg->nocpu_base.count[idx];
803 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
804#endif
805 put_online_cpus();
c62b1a3b
KH
806 return val;
807}
808
c0ff4b85 809static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
810 enum mem_cgroup_events_index idx)
811{
812 unsigned long val = 0;
813 int cpu;
814
9c567512 815 get_online_cpus();
e9f8974f 816 for_each_online_cpu(cpu)
c0ff4b85 817 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 818#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
819 spin_lock(&memcg->pcp_counter_lock);
820 val += memcg->nocpu_base.events[idx];
821 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 822#endif
9c567512 823 put_online_cpus();
e9f8974f
JW
824 return val;
825}
826
c0ff4b85 827static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 828 struct page *page,
0a31bc97 829 int nr_pages)
d52aa412 830{
b2402857
KH
831 /*
832 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
833 * counted as CACHE even if it's on ANON LRU.
834 */
0a31bc97 835 if (PageAnon(page))
b2402857 836 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 837 nr_pages);
d52aa412 838 else
b2402857 839 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 840 nr_pages);
55e462b0 841
b070e65c
DR
842 if (PageTransHuge(page))
843 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
844 nr_pages);
845
e401f176
KH
846 /* pagein of a big page is an event. So, ignore page size */
847 if (nr_pages > 0)
c0ff4b85 848 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 849 else {
c0ff4b85 850 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
851 nr_pages = -nr_pages; /* for event */
852 }
e401f176 853
13114716 854 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
855}
856
e231875b 857unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
858{
859 struct mem_cgroup_per_zone *mz;
860
861 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
862 return mz->lru_size[lru];
863}
864
e231875b
JZ
865static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
866 int nid,
867 unsigned int lru_mask)
bb2a0de9 868{
e231875b 869 unsigned long nr = 0;
889976db
YH
870 int zid;
871
e231875b 872 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 873
e231875b
JZ
874 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
875 struct mem_cgroup_per_zone *mz;
876 enum lru_list lru;
877
878 for_each_lru(lru) {
879 if (!(BIT(lru) & lru_mask))
880 continue;
881 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
882 nr += mz->lru_size[lru];
883 }
884 }
885 return nr;
889976db 886}
bb2a0de9 887
c0ff4b85 888static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 889 unsigned int lru_mask)
6d12e2d8 890{
e231875b 891 unsigned long nr = 0;
889976db 892 int nid;
6d12e2d8 893
31aaea4a 894 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
895 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
896 return nr;
d52aa412
KH
897}
898
f53d7ce3
JW
899static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
900 enum mem_cgroup_events_target target)
7a159cc9
JW
901{
902 unsigned long val, next;
903
13114716 904 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 905 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 906 /* from time_after() in jiffies.h */
f53d7ce3
JW
907 if ((long)next - (long)val < 0) {
908 switch (target) {
909 case MEM_CGROUP_TARGET_THRESH:
910 next = val + THRESHOLDS_EVENTS_TARGET;
911 break;
bb4cc1a8
AM
912 case MEM_CGROUP_TARGET_SOFTLIMIT:
913 next = val + SOFTLIMIT_EVENTS_TARGET;
914 break;
f53d7ce3
JW
915 case MEM_CGROUP_TARGET_NUMAINFO:
916 next = val + NUMAINFO_EVENTS_TARGET;
917 break;
918 default:
919 break;
920 }
921 __this_cpu_write(memcg->stat->targets[target], next);
922 return true;
7a159cc9 923 }
f53d7ce3 924 return false;
d2265e6f
KH
925}
926
927/*
928 * Check events in order.
929 *
930 */
c0ff4b85 931static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
932{
933 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
934 if (unlikely(mem_cgroup_event_ratelimit(memcg,
935 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 936 bool do_softlimit;
82b3f2a7 937 bool do_numainfo __maybe_unused;
f53d7ce3 938
bb4cc1a8
AM
939 do_softlimit = mem_cgroup_event_ratelimit(memcg,
940 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
941#if MAX_NUMNODES > 1
942 do_numainfo = mem_cgroup_event_ratelimit(memcg,
943 MEM_CGROUP_TARGET_NUMAINFO);
944#endif
c0ff4b85 945 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
946 if (unlikely(do_softlimit))
947 mem_cgroup_update_tree(memcg, page);
453a9bf3 948#if MAX_NUMNODES > 1
f53d7ce3 949 if (unlikely(do_numainfo))
c0ff4b85 950 atomic_inc(&memcg->numainfo_events);
453a9bf3 951#endif
0a31bc97 952 }
d2265e6f
KH
953}
954
cf475ad2 955struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 956{
31a78f23
BS
957 /*
958 * mm_update_next_owner() may clear mm->owner to NULL
959 * if it races with swapoff, page migration, etc.
960 * So this can be called with p == NULL.
961 */
962 if (unlikely(!p))
963 return NULL;
964
073219e9 965 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
966}
967
df381975 968static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 969{
c0ff4b85 970 struct mem_cgroup *memcg = NULL;
0b7f569e 971
54595fe2
KH
972 rcu_read_lock();
973 do {
6f6acb00
MH
974 /*
975 * Page cache insertions can happen withou an
976 * actual mm context, e.g. during disk probing
977 * on boot, loopback IO, acct() writes etc.
978 */
979 if (unlikely(!mm))
df381975 980 memcg = root_mem_cgroup;
6f6acb00
MH
981 else {
982 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
983 if (unlikely(!memcg))
984 memcg = root_mem_cgroup;
985 }
ec903c0c 986 } while (!css_tryget_online(&memcg->css));
54595fe2 987 rcu_read_unlock();
c0ff4b85 988 return memcg;
54595fe2
KH
989}
990
5660048c
JW
991/**
992 * mem_cgroup_iter - iterate over memory cgroup hierarchy
993 * @root: hierarchy root
994 * @prev: previously returned memcg, NULL on first invocation
995 * @reclaim: cookie for shared reclaim walks, NULL for full walks
996 *
997 * Returns references to children of the hierarchy below @root, or
998 * @root itself, or %NULL after a full round-trip.
999 *
1000 * Caller must pass the return value in @prev on subsequent
1001 * invocations for reference counting, or use mem_cgroup_iter_break()
1002 * to cancel a hierarchy walk before the round-trip is complete.
1003 *
1004 * Reclaimers can specify a zone and a priority level in @reclaim to
1005 * divide up the memcgs in the hierarchy among all concurrent
1006 * reclaimers operating on the same zone and priority.
1007 */
694fbc0f 1008struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1009 struct mem_cgroup *prev,
694fbc0f 1010 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1011{
5ac8fb31
JW
1012 struct reclaim_iter *uninitialized_var(iter);
1013 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1014 struct mem_cgroup *memcg = NULL;
5ac8fb31 1015 struct mem_cgroup *pos = NULL;
711d3d2c 1016
694fbc0f
AM
1017 if (mem_cgroup_disabled())
1018 return NULL;
5660048c 1019
9f3a0d09
JW
1020 if (!root)
1021 root = root_mem_cgroup;
7d74b06f 1022
9f3a0d09 1023 if (prev && !reclaim)
5ac8fb31 1024 pos = prev;
14067bb3 1025
9f3a0d09
JW
1026 if (!root->use_hierarchy && root != root_mem_cgroup) {
1027 if (prev)
5ac8fb31 1028 goto out;
694fbc0f 1029 return root;
9f3a0d09 1030 }
14067bb3 1031
542f85f9 1032 rcu_read_lock();
5f578161 1033
5ac8fb31
JW
1034 if (reclaim) {
1035 struct mem_cgroup_per_zone *mz;
1036
1037 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1038 iter = &mz->iter[reclaim->priority];
1039
1040 if (prev && reclaim->generation != iter->generation)
1041 goto out_unlock;
1042
1043 do {
1044 pos = ACCESS_ONCE(iter->position);
1045 /*
1046 * A racing update may change the position and
1047 * put the last reference, hence css_tryget(),
1048 * or retry to see the updated position.
1049 */
1050 } while (pos && !css_tryget(&pos->css));
1051 }
1052
1053 if (pos)
1054 css = &pos->css;
1055
1056 for (;;) {
1057 css = css_next_descendant_pre(css, &root->css);
1058 if (!css) {
1059 /*
1060 * Reclaimers share the hierarchy walk, and a
1061 * new one might jump in right at the end of
1062 * the hierarchy - make sure they see at least
1063 * one group and restart from the beginning.
1064 */
1065 if (!prev)
1066 continue;
1067 break;
527a5ec9 1068 }
7d74b06f 1069
5ac8fb31
JW
1070 /*
1071 * Verify the css and acquire a reference. The root
1072 * is provided by the caller, so we know it's alive
1073 * and kicking, and don't take an extra reference.
1074 */
1075 memcg = mem_cgroup_from_css(css);
14067bb3 1076
5ac8fb31
JW
1077 if (css == &root->css)
1078 break;
14067bb3 1079
b2052564 1080 if (css_tryget(css)) {
5ac8fb31
JW
1081 /*
1082 * Make sure the memcg is initialized:
1083 * mem_cgroup_css_online() orders the the
1084 * initialization against setting the flag.
1085 */
1086 if (smp_load_acquire(&memcg->initialized))
1087 break;
542f85f9 1088
5ac8fb31 1089 css_put(css);
527a5ec9 1090 }
9f3a0d09 1091
5ac8fb31 1092 memcg = NULL;
9f3a0d09 1093 }
5ac8fb31
JW
1094
1095 if (reclaim) {
1096 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1097 if (memcg)
1098 css_get(&memcg->css);
1099 if (pos)
1100 css_put(&pos->css);
1101 }
1102
1103 /*
1104 * pairs with css_tryget when dereferencing iter->position
1105 * above.
1106 */
1107 if (pos)
1108 css_put(&pos->css);
1109
1110 if (!memcg)
1111 iter->generation++;
1112 else if (!prev)
1113 reclaim->generation = iter->generation;
9f3a0d09 1114 }
5ac8fb31 1115
542f85f9
MH
1116out_unlock:
1117 rcu_read_unlock();
5ac8fb31 1118out:
c40046f3
MH
1119 if (prev && prev != root)
1120 css_put(&prev->css);
1121
9f3a0d09 1122 return memcg;
14067bb3 1123}
7d74b06f 1124
5660048c
JW
1125/**
1126 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1127 * @root: hierarchy root
1128 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1129 */
1130void mem_cgroup_iter_break(struct mem_cgroup *root,
1131 struct mem_cgroup *prev)
9f3a0d09
JW
1132{
1133 if (!root)
1134 root = root_mem_cgroup;
1135 if (prev && prev != root)
1136 css_put(&prev->css);
1137}
7d74b06f 1138
9f3a0d09
JW
1139/*
1140 * Iteration constructs for visiting all cgroups (under a tree). If
1141 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1142 * be used for reference counting.
1143 */
1144#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1145 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1146 iter != NULL; \
527a5ec9 1147 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1148
9f3a0d09 1149#define for_each_mem_cgroup(iter) \
527a5ec9 1150 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1151 iter != NULL; \
527a5ec9 1152 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1153
68ae564b 1154void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1155{
c0ff4b85 1156 struct mem_cgroup *memcg;
456f998e 1157
456f998e 1158 rcu_read_lock();
c0ff4b85
R
1159 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1160 if (unlikely(!memcg))
456f998e
YH
1161 goto out;
1162
1163 switch (idx) {
456f998e 1164 case PGFAULT:
0e574a93
JW
1165 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1166 break;
1167 case PGMAJFAULT:
1168 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1169 break;
1170 default:
1171 BUG();
1172 }
1173out:
1174 rcu_read_unlock();
1175}
68ae564b 1176EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1177
925b7673
JW
1178/**
1179 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1180 * @zone: zone of the wanted lruvec
fa9add64 1181 * @memcg: memcg of the wanted lruvec
925b7673
JW
1182 *
1183 * Returns the lru list vector holding pages for the given @zone and
1184 * @mem. This can be the global zone lruvec, if the memory controller
1185 * is disabled.
1186 */
1187struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1188 struct mem_cgroup *memcg)
1189{
1190 struct mem_cgroup_per_zone *mz;
bea8c150 1191 struct lruvec *lruvec;
925b7673 1192
bea8c150
HD
1193 if (mem_cgroup_disabled()) {
1194 lruvec = &zone->lruvec;
1195 goto out;
1196 }
925b7673 1197
e231875b 1198 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1199 lruvec = &mz->lruvec;
1200out:
1201 /*
1202 * Since a node can be onlined after the mem_cgroup was created,
1203 * we have to be prepared to initialize lruvec->zone here;
1204 * and if offlined then reonlined, we need to reinitialize it.
1205 */
1206 if (unlikely(lruvec->zone != zone))
1207 lruvec->zone = zone;
1208 return lruvec;
925b7673
JW
1209}
1210
925b7673 1211/**
dfe0e773 1212 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1213 * @page: the page
fa9add64 1214 * @zone: zone of the page
dfe0e773
JW
1215 *
1216 * This function is only safe when following the LRU page isolation
1217 * and putback protocol: the LRU lock must be held, and the page must
1218 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1219 */
fa9add64 1220struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1221{
08e552c6 1222 struct mem_cgroup_per_zone *mz;
925b7673 1223 struct mem_cgroup *memcg;
bea8c150 1224 struct lruvec *lruvec;
6d12e2d8 1225
bea8c150
HD
1226 if (mem_cgroup_disabled()) {
1227 lruvec = &zone->lruvec;
1228 goto out;
1229 }
925b7673 1230
1306a85a 1231 memcg = page->mem_cgroup;
7512102c 1232 /*
dfe0e773 1233 * Swapcache readahead pages are added to the LRU - and
29833315 1234 * possibly migrated - before they are charged.
7512102c 1235 */
29833315
JW
1236 if (!memcg)
1237 memcg = root_mem_cgroup;
7512102c 1238
e231875b 1239 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1240 lruvec = &mz->lruvec;
1241out:
1242 /*
1243 * Since a node can be onlined after the mem_cgroup was created,
1244 * we have to be prepared to initialize lruvec->zone here;
1245 * and if offlined then reonlined, we need to reinitialize it.
1246 */
1247 if (unlikely(lruvec->zone != zone))
1248 lruvec->zone = zone;
1249 return lruvec;
08e552c6 1250}
b69408e8 1251
925b7673 1252/**
fa9add64
HD
1253 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1254 * @lruvec: mem_cgroup per zone lru vector
1255 * @lru: index of lru list the page is sitting on
1256 * @nr_pages: positive when adding or negative when removing
925b7673 1257 *
fa9add64
HD
1258 * This function must be called when a page is added to or removed from an
1259 * lru list.
3f58a829 1260 */
fa9add64
HD
1261void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1262 int nr_pages)
3f58a829
MK
1263{
1264 struct mem_cgroup_per_zone *mz;
fa9add64 1265 unsigned long *lru_size;
3f58a829
MK
1266
1267 if (mem_cgroup_disabled())
1268 return;
1269
fa9add64
HD
1270 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1271 lru_size = mz->lru_size + lru;
1272 *lru_size += nr_pages;
1273 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1274}
544122e5 1275
2314b42d 1276bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1277{
2314b42d 1278 if (root == memcg)
91c63734 1279 return true;
2314b42d 1280 if (!root->use_hierarchy)
91c63734 1281 return false;
2314b42d 1282 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1283}
1284
2314b42d 1285bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1286{
2314b42d 1287 struct mem_cgroup *task_memcg;
158e0a2d 1288 struct task_struct *p;
ffbdccf5 1289 bool ret;
4c4a2214 1290
158e0a2d 1291 p = find_lock_task_mm(task);
de077d22 1292 if (p) {
2314b42d 1293 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1294 task_unlock(p);
1295 } else {
1296 /*
1297 * All threads may have already detached their mm's, but the oom
1298 * killer still needs to detect if they have already been oom
1299 * killed to prevent needlessly killing additional tasks.
1300 */
ffbdccf5 1301 rcu_read_lock();
2314b42d
JW
1302 task_memcg = mem_cgroup_from_task(task);
1303 css_get(&task_memcg->css);
ffbdccf5 1304 rcu_read_unlock();
de077d22 1305 }
2314b42d
JW
1306 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1307 css_put(&task_memcg->css);
4c4a2214
DR
1308 return ret;
1309}
1310
c56d5c7d 1311int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1312{
9b272977 1313 unsigned long inactive_ratio;
14797e23 1314 unsigned long inactive;
9b272977 1315 unsigned long active;
c772be93 1316 unsigned long gb;
14797e23 1317
4d7dcca2
HD
1318 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1319 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1320
c772be93
KM
1321 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1322 if (gb)
1323 inactive_ratio = int_sqrt(10 * gb);
1324 else
1325 inactive_ratio = 1;
1326
9b272977 1327 return inactive * inactive_ratio < active;
14797e23
KM
1328}
1329
90cbc250
VD
1330bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1331{
1332 struct mem_cgroup_per_zone *mz;
1333 struct mem_cgroup *memcg;
1334
1335 if (mem_cgroup_disabled())
1336 return true;
1337
1338 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1339 memcg = mz->memcg;
1340
1341 return !!(memcg->css.flags & CSS_ONLINE);
1342}
1343
3e32cb2e 1344#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1345 container_of(counter, struct mem_cgroup, member)
1346
19942822 1347/**
9d11ea9f 1348 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1349 * @memcg: the memory cgroup
19942822 1350 *
9d11ea9f 1351 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1352 * pages.
19942822 1353 */
c0ff4b85 1354static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1355{
3e32cb2e
JW
1356 unsigned long margin = 0;
1357 unsigned long count;
1358 unsigned long limit;
9d11ea9f 1359
3e32cb2e
JW
1360 count = page_counter_read(&memcg->memory);
1361 limit = ACCESS_ONCE(memcg->memory.limit);
1362 if (count < limit)
1363 margin = limit - count;
1364
1365 if (do_swap_account) {
1366 count = page_counter_read(&memcg->memsw);
1367 limit = ACCESS_ONCE(memcg->memsw.limit);
1368 if (count <= limit)
1369 margin = min(margin, limit - count);
1370 }
1371
1372 return margin;
19942822
JW
1373}
1374
1f4c025b 1375int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1376{
a7885eb8 1377 /* root ? */
14208b0e 1378 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1379 return vm_swappiness;
1380
bf1ff263 1381 return memcg->swappiness;
a7885eb8
KM
1382}
1383
32047e2a 1384/*
bdcbb659 1385 * A routine for checking "mem" is under move_account() or not.
32047e2a 1386 *
bdcbb659
QH
1387 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1388 * moving cgroups. This is for waiting at high-memory pressure
1389 * caused by "move".
32047e2a 1390 */
c0ff4b85 1391static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1392{
2bd9bb20
KH
1393 struct mem_cgroup *from;
1394 struct mem_cgroup *to;
4b534334 1395 bool ret = false;
2bd9bb20
KH
1396 /*
1397 * Unlike task_move routines, we access mc.to, mc.from not under
1398 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1399 */
1400 spin_lock(&mc.lock);
1401 from = mc.from;
1402 to = mc.to;
1403 if (!from)
1404 goto unlock;
3e92041d 1405
2314b42d
JW
1406 ret = mem_cgroup_is_descendant(from, memcg) ||
1407 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1408unlock:
1409 spin_unlock(&mc.lock);
4b534334
KH
1410 return ret;
1411}
1412
c0ff4b85 1413static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1414{
1415 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1416 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1417 DEFINE_WAIT(wait);
1418 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1419 /* moving charge context might have finished. */
1420 if (mc.moving_task)
1421 schedule();
1422 finish_wait(&mc.waitq, &wait);
1423 return true;
1424 }
1425 }
1426 return false;
1427}
1428
58cf188e 1429#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1430/**
58cf188e 1431 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1432 * @memcg: The memory cgroup that went over limit
1433 * @p: Task that is going to be killed
1434 *
1435 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1436 * enabled
1437 */
1438void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1439{
e61734c5 1440 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1441 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1442 struct mem_cgroup *iter;
1443 unsigned int i;
e222432b 1444
08088cb9 1445 mutex_lock(&oom_info_lock);
e222432b
BS
1446 rcu_read_lock();
1447
2415b9f5
BV
1448 if (p) {
1449 pr_info("Task in ");
1450 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1451 pr_cont(" killed as a result of limit of ");
1452 } else {
1453 pr_info("Memory limit reached of cgroup ");
1454 }
1455
e61734c5 1456 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1457 pr_cont("\n");
e222432b 1458
e222432b
BS
1459 rcu_read_unlock();
1460
3e32cb2e
JW
1461 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1462 K((u64)page_counter_read(&memcg->memory)),
1463 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1464 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1465 K((u64)page_counter_read(&memcg->memsw)),
1466 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1467 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1468 K((u64)page_counter_read(&memcg->kmem)),
1469 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1470
1471 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1472 pr_info("Memory cgroup stats for ");
1473 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1474 pr_cont(":");
1475
1476 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1477 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1478 continue;
1479 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1480 K(mem_cgroup_read_stat(iter, i)));
1481 }
1482
1483 for (i = 0; i < NR_LRU_LISTS; i++)
1484 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1485 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1486
1487 pr_cont("\n");
1488 }
08088cb9 1489 mutex_unlock(&oom_info_lock);
e222432b
BS
1490}
1491
81d39c20
KH
1492/*
1493 * This function returns the number of memcg under hierarchy tree. Returns
1494 * 1(self count) if no children.
1495 */
c0ff4b85 1496static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1497{
1498 int num = 0;
7d74b06f
KH
1499 struct mem_cgroup *iter;
1500
c0ff4b85 1501 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1502 num++;
81d39c20
KH
1503 return num;
1504}
1505
a63d83f4
DR
1506/*
1507 * Return the memory (and swap, if configured) limit for a memcg.
1508 */
3e32cb2e 1509static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1510{
3e32cb2e 1511 unsigned long limit;
f3e8eb70 1512
3e32cb2e 1513 limit = memcg->memory.limit;
9a5a8f19 1514 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1515 unsigned long memsw_limit;
9a5a8f19 1516
3e32cb2e
JW
1517 memsw_limit = memcg->memsw.limit;
1518 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1519 }
9a5a8f19 1520 return limit;
a63d83f4
DR
1521}
1522
19965460
DR
1523static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1524 int order)
9cbb78bb
DR
1525{
1526 struct mem_cgroup *iter;
1527 unsigned long chosen_points = 0;
1528 unsigned long totalpages;
1529 unsigned int points = 0;
1530 struct task_struct *chosen = NULL;
1531
876aafbf 1532 /*
465adcf1
DR
1533 * If current has a pending SIGKILL or is exiting, then automatically
1534 * select it. The goal is to allow it to allocate so that it may
1535 * quickly exit and free its memory.
876aafbf 1536 */
d003f371 1537 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
49550b60 1538 mark_tsk_oom_victim(current);
876aafbf
DR
1539 return;
1540 }
1541
2415b9f5 1542 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
3e32cb2e 1543 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1544 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1545 struct css_task_iter it;
9cbb78bb
DR
1546 struct task_struct *task;
1547
72ec7029
TH
1548 css_task_iter_start(&iter->css, &it);
1549 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1550 switch (oom_scan_process_thread(task, totalpages, NULL,
1551 false)) {
1552 case OOM_SCAN_SELECT:
1553 if (chosen)
1554 put_task_struct(chosen);
1555 chosen = task;
1556 chosen_points = ULONG_MAX;
1557 get_task_struct(chosen);
1558 /* fall through */
1559 case OOM_SCAN_CONTINUE:
1560 continue;
1561 case OOM_SCAN_ABORT:
72ec7029 1562 css_task_iter_end(&it);
9cbb78bb
DR
1563 mem_cgroup_iter_break(memcg, iter);
1564 if (chosen)
1565 put_task_struct(chosen);
1566 return;
1567 case OOM_SCAN_OK:
1568 break;
1569 };
1570 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1571 if (!points || points < chosen_points)
1572 continue;
1573 /* Prefer thread group leaders for display purposes */
1574 if (points == chosen_points &&
1575 thread_group_leader(chosen))
1576 continue;
1577
1578 if (chosen)
1579 put_task_struct(chosen);
1580 chosen = task;
1581 chosen_points = points;
1582 get_task_struct(chosen);
9cbb78bb 1583 }
72ec7029 1584 css_task_iter_end(&it);
9cbb78bb
DR
1585 }
1586
1587 if (!chosen)
1588 return;
1589 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1590 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1591 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1592}
1593
ae6e71d3
MC
1594#if MAX_NUMNODES > 1
1595
4d0c066d
KH
1596/**
1597 * test_mem_cgroup_node_reclaimable
dad7557e 1598 * @memcg: the target memcg
4d0c066d
KH
1599 * @nid: the node ID to be checked.
1600 * @noswap : specify true here if the user wants flle only information.
1601 *
1602 * This function returns whether the specified memcg contains any
1603 * reclaimable pages on a node. Returns true if there are any reclaimable
1604 * pages in the node.
1605 */
c0ff4b85 1606static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1607 int nid, bool noswap)
1608{
c0ff4b85 1609 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1610 return true;
1611 if (noswap || !total_swap_pages)
1612 return false;
c0ff4b85 1613 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1614 return true;
1615 return false;
1616
1617}
889976db
YH
1618
1619/*
1620 * Always updating the nodemask is not very good - even if we have an empty
1621 * list or the wrong list here, we can start from some node and traverse all
1622 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1623 *
1624 */
c0ff4b85 1625static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1626{
1627 int nid;
453a9bf3
KH
1628 /*
1629 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1630 * pagein/pageout changes since the last update.
1631 */
c0ff4b85 1632 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1633 return;
c0ff4b85 1634 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1635 return;
1636
889976db 1637 /* make a nodemask where this memcg uses memory from */
31aaea4a 1638 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1639
31aaea4a 1640 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1641
c0ff4b85
R
1642 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1643 node_clear(nid, memcg->scan_nodes);
889976db 1644 }
453a9bf3 1645
c0ff4b85
R
1646 atomic_set(&memcg->numainfo_events, 0);
1647 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1648}
1649
1650/*
1651 * Selecting a node where we start reclaim from. Because what we need is just
1652 * reducing usage counter, start from anywhere is O,K. Considering
1653 * memory reclaim from current node, there are pros. and cons.
1654 *
1655 * Freeing memory from current node means freeing memory from a node which
1656 * we'll use or we've used. So, it may make LRU bad. And if several threads
1657 * hit limits, it will see a contention on a node. But freeing from remote
1658 * node means more costs for memory reclaim because of memory latency.
1659 *
1660 * Now, we use round-robin. Better algorithm is welcomed.
1661 */
c0ff4b85 1662int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1663{
1664 int node;
1665
c0ff4b85
R
1666 mem_cgroup_may_update_nodemask(memcg);
1667 node = memcg->last_scanned_node;
889976db 1668
c0ff4b85 1669 node = next_node(node, memcg->scan_nodes);
889976db 1670 if (node == MAX_NUMNODES)
c0ff4b85 1671 node = first_node(memcg->scan_nodes);
889976db
YH
1672 /*
1673 * We call this when we hit limit, not when pages are added to LRU.
1674 * No LRU may hold pages because all pages are UNEVICTABLE or
1675 * memcg is too small and all pages are not on LRU. In that case,
1676 * we use curret node.
1677 */
1678 if (unlikely(node == MAX_NUMNODES))
1679 node = numa_node_id();
1680
c0ff4b85 1681 memcg->last_scanned_node = node;
889976db
YH
1682 return node;
1683}
889976db 1684#else
c0ff4b85 1685int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1686{
1687 return 0;
1688}
1689#endif
1690
0608f43d
AM
1691static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1692 struct zone *zone,
1693 gfp_t gfp_mask,
1694 unsigned long *total_scanned)
1695{
1696 struct mem_cgroup *victim = NULL;
1697 int total = 0;
1698 int loop = 0;
1699 unsigned long excess;
1700 unsigned long nr_scanned;
1701 struct mem_cgroup_reclaim_cookie reclaim = {
1702 .zone = zone,
1703 .priority = 0,
1704 };
1705
3e32cb2e 1706 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1707
1708 while (1) {
1709 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1710 if (!victim) {
1711 loop++;
1712 if (loop >= 2) {
1713 /*
1714 * If we have not been able to reclaim
1715 * anything, it might because there are
1716 * no reclaimable pages under this hierarchy
1717 */
1718 if (!total)
1719 break;
1720 /*
1721 * We want to do more targeted reclaim.
1722 * excess >> 2 is not to excessive so as to
1723 * reclaim too much, nor too less that we keep
1724 * coming back to reclaim from this cgroup
1725 */
1726 if (total >= (excess >> 2) ||
1727 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1728 break;
1729 }
1730 continue;
1731 }
0608f43d
AM
1732 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1733 zone, &nr_scanned);
1734 *total_scanned += nr_scanned;
3e32cb2e 1735 if (!soft_limit_excess(root_memcg))
0608f43d 1736 break;
6d61ef40 1737 }
0608f43d
AM
1738 mem_cgroup_iter_break(root_memcg, victim);
1739 return total;
6d61ef40
BS
1740}
1741
0056f4e6
JW
1742#ifdef CONFIG_LOCKDEP
1743static struct lockdep_map memcg_oom_lock_dep_map = {
1744 .name = "memcg_oom_lock",
1745};
1746#endif
1747
fb2a6fc5
JW
1748static DEFINE_SPINLOCK(memcg_oom_lock);
1749
867578cb
KH
1750/*
1751 * Check OOM-Killer is already running under our hierarchy.
1752 * If someone is running, return false.
1753 */
fb2a6fc5 1754static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1755{
79dfdacc 1756 struct mem_cgroup *iter, *failed = NULL;
a636b327 1757
fb2a6fc5
JW
1758 spin_lock(&memcg_oom_lock);
1759
9f3a0d09 1760 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1761 if (iter->oom_lock) {
79dfdacc
MH
1762 /*
1763 * this subtree of our hierarchy is already locked
1764 * so we cannot give a lock.
1765 */
79dfdacc 1766 failed = iter;
9f3a0d09
JW
1767 mem_cgroup_iter_break(memcg, iter);
1768 break;
23751be0
JW
1769 } else
1770 iter->oom_lock = true;
7d74b06f 1771 }
867578cb 1772
fb2a6fc5
JW
1773 if (failed) {
1774 /*
1775 * OK, we failed to lock the whole subtree so we have
1776 * to clean up what we set up to the failing subtree
1777 */
1778 for_each_mem_cgroup_tree(iter, memcg) {
1779 if (iter == failed) {
1780 mem_cgroup_iter_break(memcg, iter);
1781 break;
1782 }
1783 iter->oom_lock = false;
79dfdacc 1784 }
0056f4e6
JW
1785 } else
1786 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1787
1788 spin_unlock(&memcg_oom_lock);
1789
1790 return !failed;
a636b327 1791}
0b7f569e 1792
fb2a6fc5 1793static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1794{
7d74b06f
KH
1795 struct mem_cgroup *iter;
1796
fb2a6fc5 1797 spin_lock(&memcg_oom_lock);
0056f4e6 1798 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1799 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1800 iter->oom_lock = false;
fb2a6fc5 1801 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1802}
1803
c0ff4b85 1804static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1805{
1806 struct mem_cgroup *iter;
1807
c0ff4b85 1808 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1809 atomic_inc(&iter->under_oom);
1810}
1811
c0ff4b85 1812static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1813{
1814 struct mem_cgroup *iter;
1815
867578cb
KH
1816 /*
1817 * When a new child is created while the hierarchy is under oom,
1818 * mem_cgroup_oom_lock() may not be called. We have to use
1819 * atomic_add_unless() here.
1820 */
c0ff4b85 1821 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1822 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1823}
1824
867578cb
KH
1825static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1826
dc98df5a 1827struct oom_wait_info {
d79154bb 1828 struct mem_cgroup *memcg;
dc98df5a
KH
1829 wait_queue_t wait;
1830};
1831
1832static int memcg_oom_wake_function(wait_queue_t *wait,
1833 unsigned mode, int sync, void *arg)
1834{
d79154bb
HD
1835 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1836 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1837 struct oom_wait_info *oom_wait_info;
1838
1839 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1840 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1841
2314b42d
JW
1842 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1843 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1844 return 0;
dc98df5a
KH
1845 return autoremove_wake_function(wait, mode, sync, arg);
1846}
1847
c0ff4b85 1848static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1849{
3812c8c8 1850 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1851 /* for filtering, pass "memcg" as argument. */
1852 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1853}
1854
c0ff4b85 1855static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1856{
c0ff4b85
R
1857 if (memcg && atomic_read(&memcg->under_oom))
1858 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1859}
1860
3812c8c8 1861static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1862{
3812c8c8
JW
1863 if (!current->memcg_oom.may_oom)
1864 return;
867578cb 1865 /*
49426420
JW
1866 * We are in the middle of the charge context here, so we
1867 * don't want to block when potentially sitting on a callstack
1868 * that holds all kinds of filesystem and mm locks.
1869 *
1870 * Also, the caller may handle a failed allocation gracefully
1871 * (like optional page cache readahead) and so an OOM killer
1872 * invocation might not even be necessary.
1873 *
1874 * That's why we don't do anything here except remember the
1875 * OOM context and then deal with it at the end of the page
1876 * fault when the stack is unwound, the locks are released,
1877 * and when we know whether the fault was overall successful.
867578cb 1878 */
49426420
JW
1879 css_get(&memcg->css);
1880 current->memcg_oom.memcg = memcg;
1881 current->memcg_oom.gfp_mask = mask;
1882 current->memcg_oom.order = order;
3812c8c8
JW
1883}
1884
1885/**
1886 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1887 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1888 *
49426420
JW
1889 * This has to be called at the end of a page fault if the memcg OOM
1890 * handler was enabled.
3812c8c8 1891 *
49426420 1892 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1893 * sleep on a waitqueue until the userspace task resolves the
1894 * situation. Sleeping directly in the charge context with all kinds
1895 * of locks held is not a good idea, instead we remember an OOM state
1896 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1897 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1898 *
1899 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1900 * completed, %false otherwise.
3812c8c8 1901 */
49426420 1902bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1903{
49426420 1904 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1905 struct oom_wait_info owait;
49426420 1906 bool locked;
3812c8c8
JW
1907
1908 /* OOM is global, do not handle */
3812c8c8 1909 if (!memcg)
49426420 1910 return false;
3812c8c8 1911
c32b3cbe 1912 if (!handle || oom_killer_disabled)
49426420 1913 goto cleanup;
3812c8c8
JW
1914
1915 owait.memcg = memcg;
1916 owait.wait.flags = 0;
1917 owait.wait.func = memcg_oom_wake_function;
1918 owait.wait.private = current;
1919 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1920
3812c8c8 1921 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1922 mem_cgroup_mark_under_oom(memcg);
1923
1924 locked = mem_cgroup_oom_trylock(memcg);
1925
1926 if (locked)
1927 mem_cgroup_oom_notify(memcg);
1928
1929 if (locked && !memcg->oom_kill_disable) {
1930 mem_cgroup_unmark_under_oom(memcg);
1931 finish_wait(&memcg_oom_waitq, &owait.wait);
1932 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1933 current->memcg_oom.order);
1934 } else {
3812c8c8 1935 schedule();
49426420
JW
1936 mem_cgroup_unmark_under_oom(memcg);
1937 finish_wait(&memcg_oom_waitq, &owait.wait);
1938 }
1939
1940 if (locked) {
fb2a6fc5
JW
1941 mem_cgroup_oom_unlock(memcg);
1942 /*
1943 * There is no guarantee that an OOM-lock contender
1944 * sees the wakeups triggered by the OOM kill
1945 * uncharges. Wake any sleepers explicitely.
1946 */
1947 memcg_oom_recover(memcg);
1948 }
49426420
JW
1949cleanup:
1950 current->memcg_oom.memcg = NULL;
3812c8c8 1951 css_put(&memcg->css);
867578cb 1952 return true;
0b7f569e
KH
1953}
1954
d7365e78
JW
1955/**
1956 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1957 * @page: page that is going to change accounted state
32047e2a 1958 *
d7365e78
JW
1959 * This function must mark the beginning of an accounted page state
1960 * change to prevent double accounting when the page is concurrently
1961 * being moved to another memcg:
32047e2a 1962 *
6de22619 1963 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1964 * if (TestClearPageState(page))
1965 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1966 * mem_cgroup_end_page_stat(memcg);
d69b042f 1967 */
6de22619 1968struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1969{
1970 struct mem_cgroup *memcg;
6de22619 1971 unsigned long flags;
89c06bd5 1972
6de22619
JW
1973 /*
1974 * The RCU lock is held throughout the transaction. The fast
1975 * path can get away without acquiring the memcg->move_lock
1976 * because page moving starts with an RCU grace period.
1977 *
1978 * The RCU lock also protects the memcg from being freed when
1979 * the page state that is going to change is the only thing
1980 * preventing the page from being uncharged.
1981 * E.g. end-writeback clearing PageWriteback(), which allows
1982 * migration to go ahead and uncharge the page before the
1983 * account transaction might be complete.
1984 */
d7365e78
JW
1985 rcu_read_lock();
1986
1987 if (mem_cgroup_disabled())
1988 return NULL;
89c06bd5 1989again:
1306a85a 1990 memcg = page->mem_cgroup;
29833315 1991 if (unlikely(!memcg))
d7365e78
JW
1992 return NULL;
1993
bdcbb659 1994 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1995 return memcg;
89c06bd5 1996
6de22619 1997 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1998 if (memcg != page->mem_cgroup) {
6de22619 1999 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2000 goto again;
2001 }
6de22619
JW
2002
2003 /*
2004 * When charge migration first begins, we can have locked and
2005 * unlocked page stat updates happening concurrently. Track
2006 * the task who has the lock for mem_cgroup_end_page_stat().
2007 */
2008 memcg->move_lock_task = current;
2009 memcg->move_lock_flags = flags;
d7365e78
JW
2010
2011 return memcg;
89c06bd5
KH
2012}
2013
d7365e78
JW
2014/**
2015 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2016 * @memcg: the memcg that was accounted against
d7365e78 2017 */
6de22619 2018void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 2019{
6de22619
JW
2020 if (memcg && memcg->move_lock_task == current) {
2021 unsigned long flags = memcg->move_lock_flags;
2022
2023 memcg->move_lock_task = NULL;
2024 memcg->move_lock_flags = 0;
2025
2026 spin_unlock_irqrestore(&memcg->move_lock, flags);
2027 }
89c06bd5 2028
d7365e78 2029 rcu_read_unlock();
89c06bd5
KH
2030}
2031
d7365e78
JW
2032/**
2033 * mem_cgroup_update_page_stat - update page state statistics
2034 * @memcg: memcg to account against
2035 * @idx: page state item to account
2036 * @val: number of pages (positive or negative)
2037 *
2038 * See mem_cgroup_begin_page_stat() for locking requirements.
2039 */
2040void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2041 enum mem_cgroup_stat_index idx, int val)
d69b042f 2042{
658b72c5 2043 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2044
d7365e78
JW
2045 if (memcg)
2046 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2047}
26174efd 2048
cdec2e42
KH
2049/*
2050 * size of first charge trial. "32" comes from vmscan.c's magic value.
2051 * TODO: maybe necessary to use big numbers in big irons.
2052 */
7ec99d62 2053#define CHARGE_BATCH 32U
cdec2e42
KH
2054struct memcg_stock_pcp {
2055 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2056 unsigned int nr_pages;
cdec2e42 2057 struct work_struct work;
26fe6168 2058 unsigned long flags;
a0db00fc 2059#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2060};
2061static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2062static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2063
a0956d54
SS
2064/**
2065 * consume_stock: Try to consume stocked charge on this cpu.
2066 * @memcg: memcg to consume from.
2067 * @nr_pages: how many pages to charge.
2068 *
2069 * The charges will only happen if @memcg matches the current cpu's memcg
2070 * stock, and at least @nr_pages are available in that stock. Failure to
2071 * service an allocation will refill the stock.
2072 *
2073 * returns true if successful, false otherwise.
cdec2e42 2074 */
a0956d54 2075static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2076{
2077 struct memcg_stock_pcp *stock;
3e32cb2e 2078 bool ret = false;
cdec2e42 2079
a0956d54 2080 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2081 return ret;
a0956d54 2082
cdec2e42 2083 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2084 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2085 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2086 ret = true;
2087 }
cdec2e42
KH
2088 put_cpu_var(memcg_stock);
2089 return ret;
2090}
2091
2092/*
3e32cb2e 2093 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2094 */
2095static void drain_stock(struct memcg_stock_pcp *stock)
2096{
2097 struct mem_cgroup *old = stock->cached;
2098
11c9ea4e 2099 if (stock->nr_pages) {
3e32cb2e 2100 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2101 if (do_swap_account)
3e32cb2e 2102 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2103 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2104 stock->nr_pages = 0;
cdec2e42
KH
2105 }
2106 stock->cached = NULL;
cdec2e42
KH
2107}
2108
2109/*
2110 * This must be called under preempt disabled or must be called by
2111 * a thread which is pinned to local cpu.
2112 */
2113static void drain_local_stock(struct work_struct *dummy)
2114{
7c8e0181 2115 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2116 drain_stock(stock);
26fe6168 2117 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2118}
2119
2120/*
3e32cb2e 2121 * Cache charges(val) to local per_cpu area.
320cc51d 2122 * This will be consumed by consume_stock() function, later.
cdec2e42 2123 */
c0ff4b85 2124static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2125{
2126 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2127
c0ff4b85 2128 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2129 drain_stock(stock);
c0ff4b85 2130 stock->cached = memcg;
cdec2e42 2131 }
11c9ea4e 2132 stock->nr_pages += nr_pages;
cdec2e42
KH
2133 put_cpu_var(memcg_stock);
2134}
2135
2136/*
c0ff4b85 2137 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2138 * of the hierarchy under it.
cdec2e42 2139 */
6d3d6aa2 2140static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2141{
26fe6168 2142 int cpu, curcpu;
d38144b7 2143
6d3d6aa2
JW
2144 /* If someone's already draining, avoid adding running more workers. */
2145 if (!mutex_trylock(&percpu_charge_mutex))
2146 return;
cdec2e42 2147 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2148 get_online_cpus();
5af12d0e 2149 curcpu = get_cpu();
cdec2e42
KH
2150 for_each_online_cpu(cpu) {
2151 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2152 struct mem_cgroup *memcg;
26fe6168 2153
c0ff4b85
R
2154 memcg = stock->cached;
2155 if (!memcg || !stock->nr_pages)
26fe6168 2156 continue;
2314b42d 2157 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2158 continue;
d1a05b69
MH
2159 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2160 if (cpu == curcpu)
2161 drain_local_stock(&stock->work);
2162 else
2163 schedule_work_on(cpu, &stock->work);
2164 }
cdec2e42 2165 }
5af12d0e 2166 put_cpu();
f894ffa8 2167 put_online_cpus();
9f50fad6 2168 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2169}
2170
711d3d2c
KH
2171/*
2172 * This function drains percpu counter value from DEAD cpu and
2173 * move it to local cpu. Note that this function can be preempted.
2174 */
c0ff4b85 2175static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2176{
2177 int i;
2178
c0ff4b85 2179 spin_lock(&memcg->pcp_counter_lock);
6104621d 2180 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2181 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2182
c0ff4b85
R
2183 per_cpu(memcg->stat->count[i], cpu) = 0;
2184 memcg->nocpu_base.count[i] += x;
711d3d2c 2185 }
e9f8974f 2186 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2187 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2188
c0ff4b85
R
2189 per_cpu(memcg->stat->events[i], cpu) = 0;
2190 memcg->nocpu_base.events[i] += x;
e9f8974f 2191 }
c0ff4b85 2192 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2193}
2194
0db0628d 2195static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2196 unsigned long action,
2197 void *hcpu)
2198{
2199 int cpu = (unsigned long)hcpu;
2200 struct memcg_stock_pcp *stock;
711d3d2c 2201 struct mem_cgroup *iter;
cdec2e42 2202
619d094b 2203 if (action == CPU_ONLINE)
1489ebad 2204 return NOTIFY_OK;
1489ebad 2205
d833049b 2206 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2207 return NOTIFY_OK;
711d3d2c 2208
9f3a0d09 2209 for_each_mem_cgroup(iter)
711d3d2c
KH
2210 mem_cgroup_drain_pcp_counter(iter, cpu);
2211
cdec2e42
KH
2212 stock = &per_cpu(memcg_stock, cpu);
2213 drain_stock(stock);
2214 return NOTIFY_OK;
2215}
2216
00501b53
JW
2217static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2218 unsigned int nr_pages)
8a9f3ccd 2219{
7ec99d62 2220 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2221 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2222 struct mem_cgroup *mem_over_limit;
3e32cb2e 2223 struct page_counter *counter;
6539cc05 2224 unsigned long nr_reclaimed;
b70a2a21
JW
2225 bool may_swap = true;
2226 bool drained = false;
05b84301 2227 int ret = 0;
a636b327 2228
ce00a967
JW
2229 if (mem_cgroup_is_root(memcg))
2230 goto done;
6539cc05 2231retry:
b6b6cc72
MH
2232 if (consume_stock(memcg, nr_pages))
2233 goto done;
8a9f3ccd 2234
3fbe7244 2235 if (!do_swap_account ||
3e32cb2e
JW
2236 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2237 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2238 goto done_restock;
3fbe7244 2239 if (do_swap_account)
3e32cb2e
JW
2240 page_counter_uncharge(&memcg->memsw, batch);
2241 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2242 } else {
3e32cb2e 2243 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2244 may_swap = false;
3fbe7244 2245 }
7a81b88c 2246
6539cc05
JW
2247 if (batch > nr_pages) {
2248 batch = nr_pages;
2249 goto retry;
2250 }
6d61ef40 2251
06b078fc
JW
2252 /*
2253 * Unlike in global OOM situations, memcg is not in a physical
2254 * memory shortage. Allow dying and OOM-killed tasks to
2255 * bypass the last charges so that they can exit quickly and
2256 * free their memory.
2257 */
2258 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2259 fatal_signal_pending(current) ||
2260 current->flags & PF_EXITING))
2261 goto bypass;
2262
2263 if (unlikely(task_in_memcg_oom(current)))
2264 goto nomem;
2265
6539cc05
JW
2266 if (!(gfp_mask & __GFP_WAIT))
2267 goto nomem;
4b534334 2268
241994ed
JW
2269 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2270
b70a2a21
JW
2271 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2272 gfp_mask, may_swap);
6539cc05 2273
61e02c74 2274 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2275 goto retry;
28c34c29 2276
b70a2a21 2277 if (!drained) {
6d3d6aa2 2278 drain_all_stock(mem_over_limit);
b70a2a21
JW
2279 drained = true;
2280 goto retry;
2281 }
2282
28c34c29
JW
2283 if (gfp_mask & __GFP_NORETRY)
2284 goto nomem;
6539cc05
JW
2285 /*
2286 * Even though the limit is exceeded at this point, reclaim
2287 * may have been able to free some pages. Retry the charge
2288 * before killing the task.
2289 *
2290 * Only for regular pages, though: huge pages are rather
2291 * unlikely to succeed so close to the limit, and we fall back
2292 * to regular pages anyway in case of failure.
2293 */
61e02c74 2294 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2295 goto retry;
2296 /*
2297 * At task move, charge accounts can be doubly counted. So, it's
2298 * better to wait until the end of task_move if something is going on.
2299 */
2300 if (mem_cgroup_wait_acct_move(mem_over_limit))
2301 goto retry;
2302
9b130619
JW
2303 if (nr_retries--)
2304 goto retry;
2305
06b078fc
JW
2306 if (gfp_mask & __GFP_NOFAIL)
2307 goto bypass;
2308
6539cc05
JW
2309 if (fatal_signal_pending(current))
2310 goto bypass;
2311
241994ed
JW
2312 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2313
61e02c74 2314 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2315nomem:
6d1fdc48 2316 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2317 return -ENOMEM;
867578cb 2318bypass:
ce00a967 2319 return -EINTR;
6539cc05
JW
2320
2321done_restock:
e8ea14cc 2322 css_get_many(&memcg->css, batch);
6539cc05
JW
2323 if (batch > nr_pages)
2324 refill_stock(memcg, batch - nr_pages);
241994ed
JW
2325 /*
2326 * If the hierarchy is above the normal consumption range,
2327 * make the charging task trim their excess contribution.
2328 */
2329 do {
2330 if (page_counter_read(&memcg->memory) <= memcg->high)
2331 continue;
2332 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2333 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2334 } while ((memcg = parent_mem_cgroup(memcg)));
6539cc05 2335done:
05b84301 2336 return ret;
7a81b88c 2337}
8a9f3ccd 2338
00501b53 2339static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2340{
ce00a967
JW
2341 if (mem_cgroup_is_root(memcg))
2342 return;
2343
3e32cb2e 2344 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2345 if (do_swap_account)
3e32cb2e 2346 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2347
e8ea14cc 2348 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2349}
2350
a3b2d692
KH
2351/*
2352 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2353 * rcu_read_lock(). The caller is responsible for calling
2354 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2355 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2356 */
2357static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2358{
a3b2d692
KH
2359 /* ID 0 is unused ID */
2360 if (!id)
2361 return NULL;
34c00c31 2362 return mem_cgroup_from_id(id);
a3b2d692
KH
2363}
2364
0a31bc97
JW
2365/*
2366 * try_get_mem_cgroup_from_page - look up page's memcg association
2367 * @page: the page
2368 *
2369 * Look up, get a css reference, and return the memcg that owns @page.
2370 *
2371 * The page must be locked to prevent racing with swap-in and page
2372 * cache charges. If coming from an unlocked page table, the caller
2373 * must ensure the page is on the LRU or this can race with charging.
2374 */
e42d9d5d 2375struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2376{
29833315 2377 struct mem_cgroup *memcg;
a3b2d692 2378 unsigned short id;
b5a84319
KH
2379 swp_entry_t ent;
2380
309381fe 2381 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2382
1306a85a 2383 memcg = page->mem_cgroup;
29833315
JW
2384 if (memcg) {
2385 if (!css_tryget_online(&memcg->css))
c0ff4b85 2386 memcg = NULL;
e42d9d5d 2387 } else if (PageSwapCache(page)) {
3c776e64 2388 ent.val = page_private(page);
9fb4b7cc 2389 id = lookup_swap_cgroup_id(ent);
a3b2d692 2390 rcu_read_lock();
c0ff4b85 2391 memcg = mem_cgroup_lookup(id);
ec903c0c 2392 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2393 memcg = NULL;
a3b2d692 2394 rcu_read_unlock();
3c776e64 2395 }
c0ff4b85 2396 return memcg;
b5a84319
KH
2397}
2398
0a31bc97
JW
2399static void lock_page_lru(struct page *page, int *isolated)
2400{
2401 struct zone *zone = page_zone(page);
2402
2403 spin_lock_irq(&zone->lru_lock);
2404 if (PageLRU(page)) {
2405 struct lruvec *lruvec;
2406
2407 lruvec = mem_cgroup_page_lruvec(page, zone);
2408 ClearPageLRU(page);
2409 del_page_from_lru_list(page, lruvec, page_lru(page));
2410 *isolated = 1;
2411 } else
2412 *isolated = 0;
2413}
2414
2415static void unlock_page_lru(struct page *page, int isolated)
2416{
2417 struct zone *zone = page_zone(page);
2418
2419 if (isolated) {
2420 struct lruvec *lruvec;
2421
2422 lruvec = mem_cgroup_page_lruvec(page, zone);
2423 VM_BUG_ON_PAGE(PageLRU(page), page);
2424 SetPageLRU(page);
2425 add_page_to_lru_list(page, lruvec, page_lru(page));
2426 }
2427 spin_unlock_irq(&zone->lru_lock);
2428}
2429
00501b53 2430static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2431 bool lrucare)
7a81b88c 2432{
0a31bc97 2433 int isolated;
9ce70c02 2434
1306a85a 2435 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2436
2437 /*
2438 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2439 * may already be on some other mem_cgroup's LRU. Take care of it.
2440 */
0a31bc97
JW
2441 if (lrucare)
2442 lock_page_lru(page, &isolated);
9ce70c02 2443
0a31bc97
JW
2444 /*
2445 * Nobody should be changing or seriously looking at
1306a85a 2446 * page->mem_cgroup at this point:
0a31bc97
JW
2447 *
2448 * - the page is uncharged
2449 *
2450 * - the page is off-LRU
2451 *
2452 * - an anonymous fault has exclusive page access, except for
2453 * a locked page table
2454 *
2455 * - a page cache insertion, a swapin fault, or a migration
2456 * have the page locked
2457 */
1306a85a 2458 page->mem_cgroup = memcg;
9ce70c02 2459
0a31bc97
JW
2460 if (lrucare)
2461 unlock_page_lru(page, isolated);
7a81b88c 2462}
66e1707b 2463
7ae1e1d0 2464#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2465int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2466 unsigned long nr_pages)
7ae1e1d0 2467{
3e32cb2e 2468 struct page_counter *counter;
7ae1e1d0 2469 int ret = 0;
7ae1e1d0 2470
3e32cb2e
JW
2471 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2472 if (ret < 0)
7ae1e1d0
GC
2473 return ret;
2474
3e32cb2e 2475 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2476 if (ret == -EINTR) {
2477 /*
00501b53
JW
2478 * try_charge() chose to bypass to root due to OOM kill or
2479 * fatal signal. Since our only options are to either fail
2480 * the allocation or charge it to this cgroup, do it as a
2481 * temporary condition. But we can't fail. From a kmem/slab
2482 * perspective, the cache has already been selected, by
2483 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2484 * our minds.
2485 *
2486 * This condition will only trigger if the task entered
00501b53
JW
2487 * memcg_charge_kmem in a sane state, but was OOM-killed
2488 * during try_charge() above. Tasks that were already dying
2489 * when the allocation triggers should have been already
7ae1e1d0
GC
2490 * directed to the root cgroup in memcontrol.h
2491 */
3e32cb2e 2492 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2493 if (do_swap_account)
3e32cb2e 2494 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2495 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2496 ret = 0;
2497 } else if (ret)
3e32cb2e 2498 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2499
2500 return ret;
2501}
2502
dbf22eb6 2503void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2504{
3e32cb2e 2505 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2506 if (do_swap_account)
3e32cb2e 2507 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2508
64f21993 2509 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2510
e8ea14cc 2511 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2512}
2513
2633d7a0
GC
2514/*
2515 * helper for acessing a memcg's index. It will be used as an index in the
2516 * child cache array in kmem_cache, and also to derive its name. This function
2517 * will return -1 when this is not a kmem-limited memcg.
2518 */
2519int memcg_cache_id(struct mem_cgroup *memcg)
2520{
2521 return memcg ? memcg->kmemcg_id : -1;
2522}
2523
f3bb3043 2524static int memcg_alloc_cache_id(void)
55007d84 2525{
f3bb3043
VD
2526 int id, size;
2527 int err;
2528
dbcf73e2 2529 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2530 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2531 if (id < 0)
2532 return id;
55007d84 2533
dbcf73e2 2534 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2535 return id;
2536
2537 /*
2538 * There's no space for the new id in memcg_caches arrays,
2539 * so we have to grow them.
2540 */
05257a1a 2541 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2542
2543 size = 2 * (id + 1);
55007d84
GC
2544 if (size < MEMCG_CACHES_MIN_SIZE)
2545 size = MEMCG_CACHES_MIN_SIZE;
2546 else if (size > MEMCG_CACHES_MAX_SIZE)
2547 size = MEMCG_CACHES_MAX_SIZE;
2548
f3bb3043 2549 err = memcg_update_all_caches(size);
60d3fd32
VD
2550 if (!err)
2551 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2552 if (!err)
2553 memcg_nr_cache_ids = size;
2554
2555 up_write(&memcg_cache_ids_sem);
2556
f3bb3043 2557 if (err) {
dbcf73e2 2558 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2559 return err;
2560 }
2561 return id;
2562}
2563
2564static void memcg_free_cache_id(int id)
2565{
dbcf73e2 2566 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2567}
2568
d5b3cf71 2569struct memcg_kmem_cache_create_work {
5722d094
VD
2570 struct mem_cgroup *memcg;
2571 struct kmem_cache *cachep;
2572 struct work_struct work;
2573};
2574
d5b3cf71 2575static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2576{
d5b3cf71
VD
2577 struct memcg_kmem_cache_create_work *cw =
2578 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2579 struct mem_cgroup *memcg = cw->memcg;
2580 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2581
d5b3cf71 2582 memcg_create_kmem_cache(memcg, cachep);
bd673145 2583
5722d094 2584 css_put(&memcg->css);
d7f25f8a
GC
2585 kfree(cw);
2586}
2587
2588/*
2589 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2590 */
d5b3cf71
VD
2591static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2592 struct kmem_cache *cachep)
d7f25f8a 2593{
d5b3cf71 2594 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2595
776ed0f0 2596 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2597 if (!cw)
d7f25f8a 2598 return;
8135be5a
VD
2599
2600 css_get(&memcg->css);
d7f25f8a
GC
2601
2602 cw->memcg = memcg;
2603 cw->cachep = cachep;
d5b3cf71 2604 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2605
d7f25f8a
GC
2606 schedule_work(&cw->work);
2607}
2608
d5b3cf71
VD
2609static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2610 struct kmem_cache *cachep)
0e9d92f2
GC
2611{
2612 /*
2613 * We need to stop accounting when we kmalloc, because if the
2614 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2615 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2616 *
2617 * However, it is better to enclose the whole function. Depending on
2618 * the debugging options enabled, INIT_WORK(), for instance, can
2619 * trigger an allocation. This too, will make us recurse. Because at
2620 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2621 * the safest choice is to do it like this, wrapping the whole function.
2622 */
6f185c29 2623 current->memcg_kmem_skip_account = 1;
d5b3cf71 2624 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2625 current->memcg_kmem_skip_account = 0;
0e9d92f2 2626}
c67a8a68 2627
d7f25f8a
GC
2628/*
2629 * Return the kmem_cache we're supposed to use for a slab allocation.
2630 * We try to use the current memcg's version of the cache.
2631 *
2632 * If the cache does not exist yet, if we are the first user of it,
2633 * we either create it immediately, if possible, or create it asynchronously
2634 * in a workqueue.
2635 * In the latter case, we will let the current allocation go through with
2636 * the original cache.
2637 *
2638 * Can't be called in interrupt context or from kernel threads.
2639 * This function needs to be called with rcu_read_lock() held.
2640 */
056b7cce 2641struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2642{
2643 struct mem_cgroup *memcg;
959c8963 2644 struct kmem_cache *memcg_cachep;
2a4db7eb 2645 int kmemcg_id;
d7f25f8a 2646
f7ce3190 2647 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2648
9d100c5e 2649 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2650 return cachep;
2651
8135be5a 2652 memcg = get_mem_cgroup_from_mm(current->mm);
2a4db7eb
VD
2653 kmemcg_id = ACCESS_ONCE(memcg->kmemcg_id);
2654 if (kmemcg_id < 0)
ca0dde97 2655 goto out;
d7f25f8a 2656
2a4db7eb 2657 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2658 if (likely(memcg_cachep))
2659 return memcg_cachep;
ca0dde97
LZ
2660
2661 /*
2662 * If we are in a safe context (can wait, and not in interrupt
2663 * context), we could be be predictable and return right away.
2664 * This would guarantee that the allocation being performed
2665 * already belongs in the new cache.
2666 *
2667 * However, there are some clashes that can arrive from locking.
2668 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2669 * memcg_create_kmem_cache, this means no further allocation
2670 * could happen with the slab_mutex held. So it's better to
2671 * defer everything.
ca0dde97 2672 */
d5b3cf71 2673 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2674out:
8135be5a 2675 css_put(&memcg->css);
ca0dde97 2676 return cachep;
d7f25f8a 2677}
d7f25f8a 2678
8135be5a
VD
2679void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2680{
2681 if (!is_root_cache(cachep))
f7ce3190 2682 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2683}
2684
7ae1e1d0
GC
2685/*
2686 * We need to verify if the allocation against current->mm->owner's memcg is
2687 * possible for the given order. But the page is not allocated yet, so we'll
2688 * need a further commit step to do the final arrangements.
2689 *
2690 * It is possible for the task to switch cgroups in this mean time, so at
2691 * commit time, we can't rely on task conversion any longer. We'll then use
2692 * the handle argument to return to the caller which cgroup we should commit
2693 * against. We could also return the memcg directly and avoid the pointer
2694 * passing, but a boolean return value gives better semantics considering
2695 * the compiled-out case as well.
2696 *
2697 * Returning true means the allocation is possible.
2698 */
2699bool
2700__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2701{
2702 struct mem_cgroup *memcg;
2703 int ret;
2704
2705 *_memcg = NULL;
6d42c232 2706
df381975 2707 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2708
cf2b8fbf 2709 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2710 css_put(&memcg->css);
2711 return true;
2712 }
2713
3e32cb2e 2714 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2715 if (!ret)
2716 *_memcg = memcg;
7ae1e1d0
GC
2717
2718 css_put(&memcg->css);
2719 return (ret == 0);
2720}
2721
2722void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2723 int order)
2724{
7ae1e1d0
GC
2725 VM_BUG_ON(mem_cgroup_is_root(memcg));
2726
2727 /* The page allocation failed. Revert */
2728 if (!page) {
3e32cb2e 2729 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2730 return;
2731 }
1306a85a 2732 page->mem_cgroup = memcg;
7ae1e1d0
GC
2733}
2734
2735void __memcg_kmem_uncharge_pages(struct page *page, int order)
2736{
1306a85a 2737 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2738
7ae1e1d0
GC
2739 if (!memcg)
2740 return;
2741
309381fe 2742 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2743
3e32cb2e 2744 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2745 page->mem_cgroup = NULL;
7ae1e1d0 2746}
60d3fd32
VD
2747
2748struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2749{
2750 struct mem_cgroup *memcg = NULL;
2751 struct kmem_cache *cachep;
2752 struct page *page;
2753
2754 page = virt_to_head_page(ptr);
2755 if (PageSlab(page)) {
2756 cachep = page->slab_cache;
2757 if (!is_root_cache(cachep))
f7ce3190 2758 memcg = cachep->memcg_params.memcg;
60d3fd32
VD
2759 } else
2760 /* page allocated by alloc_kmem_pages */
2761 memcg = page->mem_cgroup;
2762
2763 return memcg;
2764}
7ae1e1d0
GC
2765#endif /* CONFIG_MEMCG_KMEM */
2766
ca3e0214
KH
2767#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2768
ca3e0214
KH
2769/*
2770 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2771 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2772 * charge/uncharge will be never happen and move_account() is done under
2773 * compound_lock(), so we don't have to take care of races.
ca3e0214 2774 */
e94c8a9c 2775void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2776{
e94c8a9c 2777 int i;
ca3e0214 2778
3d37c4a9
KH
2779 if (mem_cgroup_disabled())
2780 return;
b070e65c 2781
29833315 2782 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2783 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2784
1306a85a 2785 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2786 HPAGE_PMD_NR);
ca3e0214 2787}
12d27107 2788#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2789
c255a458 2790#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2791static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2792 bool charge)
d13d1443 2793{
0a31bc97
JW
2794 int val = (charge) ? 1 : -1;
2795 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2796}
02491447
DN
2797
2798/**
2799 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2800 * @entry: swap entry to be moved
2801 * @from: mem_cgroup which the entry is moved from
2802 * @to: mem_cgroup which the entry is moved to
2803 *
2804 * It succeeds only when the swap_cgroup's record for this entry is the same
2805 * as the mem_cgroup's id of @from.
2806 *
2807 * Returns 0 on success, -EINVAL on failure.
2808 *
3e32cb2e 2809 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2810 * both res and memsw, and called css_get().
2811 */
2812static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2813 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2814{
2815 unsigned short old_id, new_id;
2816
34c00c31
LZ
2817 old_id = mem_cgroup_id(from);
2818 new_id = mem_cgroup_id(to);
02491447
DN
2819
2820 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2821 mem_cgroup_swap_statistics(from, false);
483c30b5 2822 mem_cgroup_swap_statistics(to, true);
02491447
DN
2823 return 0;
2824 }
2825 return -EINVAL;
2826}
2827#else
2828static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2829 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2830{
2831 return -EINVAL;
2832}
8c7c6e34 2833#endif
d13d1443 2834
3e32cb2e 2835static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2836
d38d2a75 2837static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2838 unsigned long limit)
628f4235 2839{
3e32cb2e
JW
2840 unsigned long curusage;
2841 unsigned long oldusage;
2842 bool enlarge = false;
81d39c20 2843 int retry_count;
3e32cb2e 2844 int ret;
81d39c20
KH
2845
2846 /*
2847 * For keeping hierarchical_reclaim simple, how long we should retry
2848 * is depends on callers. We set our retry-count to be function
2849 * of # of children which we should visit in this loop.
2850 */
3e32cb2e
JW
2851 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2852 mem_cgroup_count_children(memcg);
81d39c20 2853
3e32cb2e 2854 oldusage = page_counter_read(&memcg->memory);
628f4235 2855
3e32cb2e 2856 do {
628f4235
KH
2857 if (signal_pending(current)) {
2858 ret = -EINTR;
2859 break;
2860 }
3e32cb2e
JW
2861
2862 mutex_lock(&memcg_limit_mutex);
2863 if (limit > memcg->memsw.limit) {
2864 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2865 ret = -EINVAL;
628f4235
KH
2866 break;
2867 }
3e32cb2e
JW
2868 if (limit > memcg->memory.limit)
2869 enlarge = true;
2870 ret = page_counter_limit(&memcg->memory, limit);
2871 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2872
2873 if (!ret)
2874 break;
2875
b70a2a21
JW
2876 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2877
3e32cb2e 2878 curusage = page_counter_read(&memcg->memory);
81d39c20 2879 /* Usage is reduced ? */
f894ffa8 2880 if (curusage >= oldusage)
81d39c20
KH
2881 retry_count--;
2882 else
2883 oldusage = curusage;
3e32cb2e
JW
2884 } while (retry_count);
2885
3c11ecf4
KH
2886 if (!ret && enlarge)
2887 memcg_oom_recover(memcg);
14797e23 2888
8c7c6e34
KH
2889 return ret;
2890}
2891
338c8431 2892static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2893 unsigned long limit)
8c7c6e34 2894{
3e32cb2e
JW
2895 unsigned long curusage;
2896 unsigned long oldusage;
2897 bool enlarge = false;
81d39c20 2898 int retry_count;
3e32cb2e 2899 int ret;
8c7c6e34 2900
81d39c20 2901 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2902 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2903 mem_cgroup_count_children(memcg);
2904
2905 oldusage = page_counter_read(&memcg->memsw);
2906
2907 do {
8c7c6e34
KH
2908 if (signal_pending(current)) {
2909 ret = -EINTR;
2910 break;
2911 }
3e32cb2e
JW
2912
2913 mutex_lock(&memcg_limit_mutex);
2914 if (limit < memcg->memory.limit) {
2915 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2916 ret = -EINVAL;
8c7c6e34
KH
2917 break;
2918 }
3e32cb2e
JW
2919 if (limit > memcg->memsw.limit)
2920 enlarge = true;
2921 ret = page_counter_limit(&memcg->memsw, limit);
2922 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2923
2924 if (!ret)
2925 break;
2926
b70a2a21
JW
2927 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2928
3e32cb2e 2929 curusage = page_counter_read(&memcg->memsw);
81d39c20 2930 /* Usage is reduced ? */
8c7c6e34 2931 if (curusage >= oldusage)
628f4235 2932 retry_count--;
81d39c20
KH
2933 else
2934 oldusage = curusage;
3e32cb2e
JW
2935 } while (retry_count);
2936
3c11ecf4
KH
2937 if (!ret && enlarge)
2938 memcg_oom_recover(memcg);
3e32cb2e 2939
628f4235
KH
2940 return ret;
2941}
2942
0608f43d
AM
2943unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2944 gfp_t gfp_mask,
2945 unsigned long *total_scanned)
2946{
2947 unsigned long nr_reclaimed = 0;
2948 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2949 unsigned long reclaimed;
2950 int loop = 0;
2951 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2952 unsigned long excess;
0608f43d
AM
2953 unsigned long nr_scanned;
2954
2955 if (order > 0)
2956 return 0;
2957
2958 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2959 /*
2960 * This loop can run a while, specially if mem_cgroup's continuously
2961 * keep exceeding their soft limit and putting the system under
2962 * pressure
2963 */
2964 do {
2965 if (next_mz)
2966 mz = next_mz;
2967 else
2968 mz = mem_cgroup_largest_soft_limit_node(mctz);
2969 if (!mz)
2970 break;
2971
2972 nr_scanned = 0;
2973 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2974 gfp_mask, &nr_scanned);
2975 nr_reclaimed += reclaimed;
2976 *total_scanned += nr_scanned;
0a31bc97 2977 spin_lock_irq(&mctz->lock);
bc2f2e7f 2978 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2979
2980 /*
2981 * If we failed to reclaim anything from this memory cgroup
2982 * it is time to move on to the next cgroup
2983 */
2984 next_mz = NULL;
bc2f2e7f
VD
2985 if (!reclaimed)
2986 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2987
3e32cb2e 2988 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2989 /*
2990 * One school of thought says that we should not add
2991 * back the node to the tree if reclaim returns 0.
2992 * But our reclaim could return 0, simply because due
2993 * to priority we are exposing a smaller subset of
2994 * memory to reclaim from. Consider this as a longer
2995 * term TODO.
2996 */
2997 /* If excess == 0, no tree ops */
cf2c8127 2998 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2999 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3000 css_put(&mz->memcg->css);
3001 loop++;
3002 /*
3003 * Could not reclaim anything and there are no more
3004 * mem cgroups to try or we seem to be looping without
3005 * reclaiming anything.
3006 */
3007 if (!nr_reclaimed &&
3008 (next_mz == NULL ||
3009 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3010 break;
3011 } while (!nr_reclaimed);
3012 if (next_mz)
3013 css_put(&next_mz->memcg->css);
3014 return nr_reclaimed;
3015}
3016
ea280e7b
TH
3017/*
3018 * Test whether @memcg has children, dead or alive. Note that this
3019 * function doesn't care whether @memcg has use_hierarchy enabled and
3020 * returns %true if there are child csses according to the cgroup
3021 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3022 */
b5f99b53
GC
3023static inline bool memcg_has_children(struct mem_cgroup *memcg)
3024{
ea280e7b
TH
3025 bool ret;
3026
696ac172 3027 /*
ea280e7b
TH
3028 * The lock does not prevent addition or deletion of children, but
3029 * it prevents a new child from being initialized based on this
3030 * parent in css_online(), so it's enough to decide whether
3031 * hierarchically inherited attributes can still be changed or not.
696ac172 3032 */
ea280e7b
TH
3033 lockdep_assert_held(&memcg_create_mutex);
3034
3035 rcu_read_lock();
3036 ret = css_next_child(NULL, &memcg->css);
3037 rcu_read_unlock();
3038 return ret;
b5f99b53
GC
3039}
3040
c26251f9
MH
3041/*
3042 * Reclaims as many pages from the given memcg as possible and moves
3043 * the rest to the parent.
3044 *
3045 * Caller is responsible for holding css reference for memcg.
3046 */
3047static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3048{
3049 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3050
c1e862c1
KH
3051 /* we call try-to-free pages for make this cgroup empty */
3052 lru_add_drain_all();
f817ed48 3053 /* try to free all pages in this cgroup */
3e32cb2e 3054 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3055 int progress;
c1e862c1 3056
c26251f9
MH
3057 if (signal_pending(current))
3058 return -EINTR;
3059
b70a2a21
JW
3060 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3061 GFP_KERNEL, true);
c1e862c1 3062 if (!progress) {
f817ed48 3063 nr_retries--;
c1e862c1 3064 /* maybe some writeback is necessary */
8aa7e847 3065 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3066 }
f817ed48
KH
3067
3068 }
ab5196c2
MH
3069
3070 return 0;
cc847582
KH
3071}
3072
6770c64e
TH
3073static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3074 char *buf, size_t nbytes,
3075 loff_t off)
c1e862c1 3076{
6770c64e 3077 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3078
d8423011
MH
3079 if (mem_cgroup_is_root(memcg))
3080 return -EINVAL;
6770c64e 3081 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3082}
3083
182446d0
TH
3084static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3085 struct cftype *cft)
18f59ea7 3086{
182446d0 3087 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3088}
3089
182446d0
TH
3090static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3091 struct cftype *cft, u64 val)
18f59ea7
BS
3092{
3093 int retval = 0;
182446d0 3094 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3095 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3096
0999821b 3097 mutex_lock(&memcg_create_mutex);
567fb435
GC
3098
3099 if (memcg->use_hierarchy == val)
3100 goto out;
3101
18f59ea7 3102 /*
af901ca1 3103 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3104 * in the child subtrees. If it is unset, then the change can
3105 * occur, provided the current cgroup has no children.
3106 *
3107 * For the root cgroup, parent_mem is NULL, we allow value to be
3108 * set if there are no children.
3109 */
c0ff4b85 3110 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3111 (val == 1 || val == 0)) {
ea280e7b 3112 if (!memcg_has_children(memcg))
c0ff4b85 3113 memcg->use_hierarchy = val;
18f59ea7
BS
3114 else
3115 retval = -EBUSY;
3116 } else
3117 retval = -EINVAL;
567fb435
GC
3118
3119out:
0999821b 3120 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3121
3122 return retval;
3123}
3124
3e32cb2e
JW
3125static unsigned long tree_stat(struct mem_cgroup *memcg,
3126 enum mem_cgroup_stat_index idx)
ce00a967
JW
3127{
3128 struct mem_cgroup *iter;
3129 long val = 0;
3130
3131 /* Per-cpu values can be negative, use a signed accumulator */
3132 for_each_mem_cgroup_tree(iter, memcg)
3133 val += mem_cgroup_read_stat(iter, idx);
3134
3135 if (val < 0) /* race ? */
3136 val = 0;
3137 return val;
3138}
3139
3140static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3141{
3142 u64 val;
3143
3e32cb2e
JW
3144 if (mem_cgroup_is_root(memcg)) {
3145 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3146 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3147 if (swap)
3148 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3149 } else {
ce00a967 3150 if (!swap)
3e32cb2e 3151 val = page_counter_read(&memcg->memory);
ce00a967 3152 else
3e32cb2e 3153 val = page_counter_read(&memcg->memsw);
ce00a967 3154 }
ce00a967
JW
3155 return val << PAGE_SHIFT;
3156}
3157
3e32cb2e
JW
3158enum {
3159 RES_USAGE,
3160 RES_LIMIT,
3161 RES_MAX_USAGE,
3162 RES_FAILCNT,
3163 RES_SOFT_LIMIT,
3164};
ce00a967 3165
791badbd 3166static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3167 struct cftype *cft)
8cdea7c0 3168{
182446d0 3169 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3170 struct page_counter *counter;
af36f906 3171
3e32cb2e 3172 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3173 case _MEM:
3e32cb2e
JW
3174 counter = &memcg->memory;
3175 break;
8c7c6e34 3176 case _MEMSWAP:
3e32cb2e
JW
3177 counter = &memcg->memsw;
3178 break;
510fc4e1 3179 case _KMEM:
3e32cb2e 3180 counter = &memcg->kmem;
510fc4e1 3181 break;
8c7c6e34
KH
3182 default:
3183 BUG();
8c7c6e34 3184 }
3e32cb2e
JW
3185
3186 switch (MEMFILE_ATTR(cft->private)) {
3187 case RES_USAGE:
3188 if (counter == &memcg->memory)
3189 return mem_cgroup_usage(memcg, false);
3190 if (counter == &memcg->memsw)
3191 return mem_cgroup_usage(memcg, true);
3192 return (u64)page_counter_read(counter) * PAGE_SIZE;
3193 case RES_LIMIT:
3194 return (u64)counter->limit * PAGE_SIZE;
3195 case RES_MAX_USAGE:
3196 return (u64)counter->watermark * PAGE_SIZE;
3197 case RES_FAILCNT:
3198 return counter->failcnt;
3199 case RES_SOFT_LIMIT:
3200 return (u64)memcg->soft_limit * PAGE_SIZE;
3201 default:
3202 BUG();
3203 }
8cdea7c0 3204}
510fc4e1 3205
510fc4e1 3206#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3207static int memcg_activate_kmem(struct mem_cgroup *memcg,
3208 unsigned long nr_pages)
d6441637
VD
3209{
3210 int err = 0;
3211 int memcg_id;
3212
2a4db7eb 3213 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 3214 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 3215 BUG_ON(memcg->kmem_acct_active);
d6441637 3216
510fc4e1
GC
3217 /*
3218 * For simplicity, we won't allow this to be disabled. It also can't
3219 * be changed if the cgroup has children already, or if tasks had
3220 * already joined.
3221 *
3222 * If tasks join before we set the limit, a person looking at
3223 * kmem.usage_in_bytes will have no way to determine when it took
3224 * place, which makes the value quite meaningless.
3225 *
3226 * After it first became limited, changes in the value of the limit are
3227 * of course permitted.
510fc4e1 3228 */
0999821b 3229 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3230 if (cgroup_has_tasks(memcg->css.cgroup) ||
3231 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3232 err = -EBUSY;
3233 mutex_unlock(&memcg_create_mutex);
3234 if (err)
3235 goto out;
510fc4e1 3236
f3bb3043 3237 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3238 if (memcg_id < 0) {
3239 err = memcg_id;
3240 goto out;
3241 }
3242
d6441637 3243 /*
900a38f0
VD
3244 * We couldn't have accounted to this cgroup, because it hasn't got
3245 * activated yet, so this should succeed.
d6441637 3246 */
3e32cb2e 3247 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3248 VM_BUG_ON(err);
3249
3250 static_key_slow_inc(&memcg_kmem_enabled_key);
3251 /*
900a38f0
VD
3252 * A memory cgroup is considered kmem-active as soon as it gets
3253 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3254 * guarantee no one starts accounting before all call sites are
3255 * patched.
3256 */
900a38f0 3257 memcg->kmemcg_id = memcg_id;
2788cf0c 3258 memcg->kmem_acct_activated = true;
2a4db7eb 3259 memcg->kmem_acct_active = true;
510fc4e1 3260out:
d6441637 3261 return err;
d6441637
VD
3262}
3263
d6441637 3264static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3265 unsigned long limit)
d6441637
VD
3266{
3267 int ret;
3268
3e32cb2e 3269 mutex_lock(&memcg_limit_mutex);
d6441637 3270 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3271 ret = memcg_activate_kmem(memcg, limit);
d6441637 3272 else
3e32cb2e
JW
3273 ret = page_counter_limit(&memcg->kmem, limit);
3274 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3275 return ret;
3276}
3277
55007d84 3278static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3279{
55007d84 3280 int ret = 0;
510fc4e1 3281 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3282
d6441637
VD
3283 if (!parent)
3284 return 0;
55007d84 3285
8c0145b6 3286 mutex_lock(&memcg_limit_mutex);
55007d84 3287 /*
d6441637
VD
3288 * If the parent cgroup is not kmem-active now, it cannot be activated
3289 * after this point, because it has at least one child already.
55007d84 3290 */
d6441637 3291 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3292 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3293 mutex_unlock(&memcg_limit_mutex);
55007d84 3294 return ret;
510fc4e1 3295}
d6441637
VD
3296#else
3297static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3298 unsigned long limit)
d6441637
VD
3299{
3300 return -EINVAL;
3301}
6d043990 3302#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3303
628f4235
KH
3304/*
3305 * The user of this function is...
3306 * RES_LIMIT.
3307 */
451af504
TH
3308static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3309 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3310{
451af504 3311 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3312 unsigned long nr_pages;
628f4235
KH
3313 int ret;
3314
451af504 3315 buf = strstrip(buf);
650c5e56 3316 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3317 if (ret)
3318 return ret;
af36f906 3319
3e32cb2e 3320 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3321 case RES_LIMIT:
4b3bde4c
BS
3322 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3323 ret = -EINVAL;
3324 break;
3325 }
3e32cb2e
JW
3326 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3327 case _MEM:
3328 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3329 break;
3e32cb2e
JW
3330 case _MEMSWAP:
3331 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3332 break;
3e32cb2e
JW
3333 case _KMEM:
3334 ret = memcg_update_kmem_limit(memcg, nr_pages);
3335 break;
3336 }
296c81d8 3337 break;
3e32cb2e
JW
3338 case RES_SOFT_LIMIT:
3339 memcg->soft_limit = nr_pages;
3340 ret = 0;
628f4235
KH
3341 break;
3342 }
451af504 3343 return ret ?: nbytes;
8cdea7c0
BS
3344}
3345
6770c64e
TH
3346static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3347 size_t nbytes, loff_t off)
c84872e1 3348{
6770c64e 3349 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3350 struct page_counter *counter;
c84872e1 3351
3e32cb2e
JW
3352 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3353 case _MEM:
3354 counter = &memcg->memory;
3355 break;
3356 case _MEMSWAP:
3357 counter = &memcg->memsw;
3358 break;
3359 case _KMEM:
3360 counter = &memcg->kmem;
3361 break;
3362 default:
3363 BUG();
3364 }
af36f906 3365
3e32cb2e 3366 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3367 case RES_MAX_USAGE:
3e32cb2e 3368 page_counter_reset_watermark(counter);
29f2a4da
PE
3369 break;
3370 case RES_FAILCNT:
3e32cb2e 3371 counter->failcnt = 0;
29f2a4da 3372 break;
3e32cb2e
JW
3373 default:
3374 BUG();
29f2a4da 3375 }
f64c3f54 3376
6770c64e 3377 return nbytes;
c84872e1
PE
3378}
3379
182446d0 3380static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3381 struct cftype *cft)
3382{
182446d0 3383 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3384}
3385
02491447 3386#ifdef CONFIG_MMU
182446d0 3387static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3388 struct cftype *cft, u64 val)
3389{
182446d0 3390 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3391
1dfab5ab 3392 if (val & ~MOVE_MASK)
7dc74be0 3393 return -EINVAL;
ee5e8472 3394
7dc74be0 3395 /*
ee5e8472
GC
3396 * No kind of locking is needed in here, because ->can_attach() will
3397 * check this value once in the beginning of the process, and then carry
3398 * on with stale data. This means that changes to this value will only
3399 * affect task migrations starting after the change.
7dc74be0 3400 */
c0ff4b85 3401 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3402 return 0;
3403}
02491447 3404#else
182446d0 3405static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3406 struct cftype *cft, u64 val)
3407{
3408 return -ENOSYS;
3409}
3410#endif
7dc74be0 3411
406eb0c9 3412#ifdef CONFIG_NUMA
2da8ca82 3413static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3414{
25485de6
GT
3415 struct numa_stat {
3416 const char *name;
3417 unsigned int lru_mask;
3418 };
3419
3420 static const struct numa_stat stats[] = {
3421 { "total", LRU_ALL },
3422 { "file", LRU_ALL_FILE },
3423 { "anon", LRU_ALL_ANON },
3424 { "unevictable", BIT(LRU_UNEVICTABLE) },
3425 };
3426 const struct numa_stat *stat;
406eb0c9 3427 int nid;
25485de6 3428 unsigned long nr;
2da8ca82 3429 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3430
25485de6
GT
3431 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3432 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3433 seq_printf(m, "%s=%lu", stat->name, nr);
3434 for_each_node_state(nid, N_MEMORY) {
3435 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3436 stat->lru_mask);
3437 seq_printf(m, " N%d=%lu", nid, nr);
3438 }
3439 seq_putc(m, '\n');
406eb0c9 3440 }
406eb0c9 3441
071aee13
YH
3442 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3443 struct mem_cgroup *iter;
3444
3445 nr = 0;
3446 for_each_mem_cgroup_tree(iter, memcg)
3447 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3448 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3449 for_each_node_state(nid, N_MEMORY) {
3450 nr = 0;
3451 for_each_mem_cgroup_tree(iter, memcg)
3452 nr += mem_cgroup_node_nr_lru_pages(
3453 iter, nid, stat->lru_mask);
3454 seq_printf(m, " N%d=%lu", nid, nr);
3455 }
3456 seq_putc(m, '\n');
406eb0c9 3457 }
406eb0c9 3458
406eb0c9
YH
3459 return 0;
3460}
3461#endif /* CONFIG_NUMA */
3462
2da8ca82 3463static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3464{
2da8ca82 3465 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3466 unsigned long memory, memsw;
af7c4b0e
JW
3467 struct mem_cgroup *mi;
3468 unsigned int i;
406eb0c9 3469
0ca44b14
GT
3470 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3471 MEM_CGROUP_STAT_NSTATS);
3472 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3473 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3474 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3475
af7c4b0e 3476 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3477 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3478 continue;
af7c4b0e
JW
3479 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3480 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3481 }
7b854121 3482
af7c4b0e
JW
3483 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3484 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3485 mem_cgroup_read_events(memcg, i));
3486
3487 for (i = 0; i < NR_LRU_LISTS; i++)
3488 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3489 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3490
14067bb3 3491 /* Hierarchical information */
3e32cb2e
JW
3492 memory = memsw = PAGE_COUNTER_MAX;
3493 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3494 memory = min(memory, mi->memory.limit);
3495 memsw = min(memsw, mi->memsw.limit);
fee7b548 3496 }
3e32cb2e
JW
3497 seq_printf(m, "hierarchical_memory_limit %llu\n",
3498 (u64)memory * PAGE_SIZE);
3499 if (do_swap_account)
3500 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3501 (u64)memsw * PAGE_SIZE);
7f016ee8 3502
af7c4b0e
JW
3503 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3504 long long val = 0;
3505
bff6bb83 3506 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3507 continue;
af7c4b0e
JW
3508 for_each_mem_cgroup_tree(mi, memcg)
3509 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3510 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3511 }
3512
3513 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3514 unsigned long long val = 0;
3515
3516 for_each_mem_cgroup_tree(mi, memcg)
3517 val += mem_cgroup_read_events(mi, i);
3518 seq_printf(m, "total_%s %llu\n",
3519 mem_cgroup_events_names[i], val);
3520 }
3521
3522 for (i = 0; i < NR_LRU_LISTS; i++) {
3523 unsigned long long val = 0;
3524
3525 for_each_mem_cgroup_tree(mi, memcg)
3526 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3527 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3528 }
14067bb3 3529
7f016ee8 3530#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3531 {
3532 int nid, zid;
3533 struct mem_cgroup_per_zone *mz;
89abfab1 3534 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3535 unsigned long recent_rotated[2] = {0, 0};
3536 unsigned long recent_scanned[2] = {0, 0};
3537
3538 for_each_online_node(nid)
3539 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3540 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3541 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3542
89abfab1
HD
3543 recent_rotated[0] += rstat->recent_rotated[0];
3544 recent_rotated[1] += rstat->recent_rotated[1];
3545 recent_scanned[0] += rstat->recent_scanned[0];
3546 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3547 }
78ccf5b5
JW
3548 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3549 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3550 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3551 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3552 }
3553#endif
3554
d2ceb9b7
KH
3555 return 0;
3556}
3557
182446d0
TH
3558static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3559 struct cftype *cft)
a7885eb8 3560{
182446d0 3561 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3562
1f4c025b 3563 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3564}
3565
182446d0
TH
3566static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3567 struct cftype *cft, u64 val)
a7885eb8 3568{
182446d0 3569 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3570
3dae7fec 3571 if (val > 100)
a7885eb8
KM
3572 return -EINVAL;
3573
14208b0e 3574 if (css->parent)
3dae7fec
JW
3575 memcg->swappiness = val;
3576 else
3577 vm_swappiness = val;
068b38c1 3578
a7885eb8
KM
3579 return 0;
3580}
3581
2e72b634
KS
3582static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3583{
3584 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3585 unsigned long usage;
2e72b634
KS
3586 int i;
3587
3588 rcu_read_lock();
3589 if (!swap)
2c488db2 3590 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3591 else
2c488db2 3592 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3593
3594 if (!t)
3595 goto unlock;
3596
ce00a967 3597 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3598
3599 /*
748dad36 3600 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3601 * If it's not true, a threshold was crossed after last
3602 * call of __mem_cgroup_threshold().
3603 */
5407a562 3604 i = t->current_threshold;
2e72b634
KS
3605
3606 /*
3607 * Iterate backward over array of thresholds starting from
3608 * current_threshold and check if a threshold is crossed.
3609 * If none of thresholds below usage is crossed, we read
3610 * only one element of the array here.
3611 */
3612 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3613 eventfd_signal(t->entries[i].eventfd, 1);
3614
3615 /* i = current_threshold + 1 */
3616 i++;
3617
3618 /*
3619 * Iterate forward over array of thresholds starting from
3620 * current_threshold+1 and check if a threshold is crossed.
3621 * If none of thresholds above usage is crossed, we read
3622 * only one element of the array here.
3623 */
3624 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3625 eventfd_signal(t->entries[i].eventfd, 1);
3626
3627 /* Update current_threshold */
5407a562 3628 t->current_threshold = i - 1;
2e72b634
KS
3629unlock:
3630 rcu_read_unlock();
3631}
3632
3633static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3634{
ad4ca5f4
KS
3635 while (memcg) {
3636 __mem_cgroup_threshold(memcg, false);
3637 if (do_swap_account)
3638 __mem_cgroup_threshold(memcg, true);
3639
3640 memcg = parent_mem_cgroup(memcg);
3641 }
2e72b634
KS
3642}
3643
3644static int compare_thresholds(const void *a, const void *b)
3645{
3646 const struct mem_cgroup_threshold *_a = a;
3647 const struct mem_cgroup_threshold *_b = b;
3648
2bff24a3
GT
3649 if (_a->threshold > _b->threshold)
3650 return 1;
3651
3652 if (_a->threshold < _b->threshold)
3653 return -1;
3654
3655 return 0;
2e72b634
KS
3656}
3657
c0ff4b85 3658static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3659{
3660 struct mem_cgroup_eventfd_list *ev;
3661
2bcf2e92
MH
3662 spin_lock(&memcg_oom_lock);
3663
c0ff4b85 3664 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3665 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3666
3667 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3668 return 0;
3669}
3670
c0ff4b85 3671static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3672{
7d74b06f
KH
3673 struct mem_cgroup *iter;
3674
c0ff4b85 3675 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3676 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3677}
3678
59b6f873 3679static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3680 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3681{
2c488db2
KS
3682 struct mem_cgroup_thresholds *thresholds;
3683 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3684 unsigned long threshold;
3685 unsigned long usage;
2c488db2 3686 int i, size, ret;
2e72b634 3687
650c5e56 3688 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3689 if (ret)
3690 return ret;
3691
3692 mutex_lock(&memcg->thresholds_lock);
2c488db2 3693
05b84301 3694 if (type == _MEM) {
2c488db2 3695 thresholds = &memcg->thresholds;
ce00a967 3696 usage = mem_cgroup_usage(memcg, false);
05b84301 3697 } else if (type == _MEMSWAP) {
2c488db2 3698 thresholds = &memcg->memsw_thresholds;
ce00a967 3699 usage = mem_cgroup_usage(memcg, true);
05b84301 3700 } else
2e72b634
KS
3701 BUG();
3702
2e72b634 3703 /* Check if a threshold crossed before adding a new one */
2c488db2 3704 if (thresholds->primary)
2e72b634
KS
3705 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3706
2c488db2 3707 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3708
3709 /* Allocate memory for new array of thresholds */
2c488db2 3710 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3711 GFP_KERNEL);
2c488db2 3712 if (!new) {
2e72b634
KS
3713 ret = -ENOMEM;
3714 goto unlock;
3715 }
2c488db2 3716 new->size = size;
2e72b634
KS
3717
3718 /* Copy thresholds (if any) to new array */
2c488db2
KS
3719 if (thresholds->primary) {
3720 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3721 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3722 }
3723
2e72b634 3724 /* Add new threshold */
2c488db2
KS
3725 new->entries[size - 1].eventfd = eventfd;
3726 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3727
3728 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3729 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3730 compare_thresholds, NULL);
3731
3732 /* Find current threshold */
2c488db2 3733 new->current_threshold = -1;
2e72b634 3734 for (i = 0; i < size; i++) {
748dad36 3735 if (new->entries[i].threshold <= usage) {
2e72b634 3736 /*
2c488db2
KS
3737 * new->current_threshold will not be used until
3738 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3739 * it here.
3740 */
2c488db2 3741 ++new->current_threshold;
748dad36
SZ
3742 } else
3743 break;
2e72b634
KS
3744 }
3745
2c488db2
KS
3746 /* Free old spare buffer and save old primary buffer as spare */
3747 kfree(thresholds->spare);
3748 thresholds->spare = thresholds->primary;
3749
3750 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3751
907860ed 3752 /* To be sure that nobody uses thresholds */
2e72b634
KS
3753 synchronize_rcu();
3754
2e72b634
KS
3755unlock:
3756 mutex_unlock(&memcg->thresholds_lock);
3757
3758 return ret;
3759}
3760
59b6f873 3761static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3762 struct eventfd_ctx *eventfd, const char *args)
3763{
59b6f873 3764 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3765}
3766
59b6f873 3767static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3768 struct eventfd_ctx *eventfd, const char *args)
3769{
59b6f873 3770 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3771}
3772
59b6f873 3773static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3774 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3775{
2c488db2
KS
3776 struct mem_cgroup_thresholds *thresholds;
3777 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3778 unsigned long usage;
2c488db2 3779 int i, j, size;
2e72b634
KS
3780
3781 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3782
3783 if (type == _MEM) {
2c488db2 3784 thresholds = &memcg->thresholds;
ce00a967 3785 usage = mem_cgroup_usage(memcg, false);
05b84301 3786 } else if (type == _MEMSWAP) {
2c488db2 3787 thresholds = &memcg->memsw_thresholds;
ce00a967 3788 usage = mem_cgroup_usage(memcg, true);
05b84301 3789 } else
2e72b634
KS
3790 BUG();
3791
371528ca
AV
3792 if (!thresholds->primary)
3793 goto unlock;
3794
2e72b634
KS
3795 /* Check if a threshold crossed before removing */
3796 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3797
3798 /* Calculate new number of threshold */
2c488db2
KS
3799 size = 0;
3800 for (i = 0; i < thresholds->primary->size; i++) {
3801 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3802 size++;
3803 }
3804
2c488db2 3805 new = thresholds->spare;
907860ed 3806
2e72b634
KS
3807 /* Set thresholds array to NULL if we don't have thresholds */
3808 if (!size) {
2c488db2
KS
3809 kfree(new);
3810 new = NULL;
907860ed 3811 goto swap_buffers;
2e72b634
KS
3812 }
3813
2c488db2 3814 new->size = size;
2e72b634
KS
3815
3816 /* Copy thresholds and find current threshold */
2c488db2
KS
3817 new->current_threshold = -1;
3818 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3819 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3820 continue;
3821
2c488db2 3822 new->entries[j] = thresholds->primary->entries[i];
748dad36 3823 if (new->entries[j].threshold <= usage) {
2e72b634 3824 /*
2c488db2 3825 * new->current_threshold will not be used
2e72b634
KS
3826 * until rcu_assign_pointer(), so it's safe to increment
3827 * it here.
3828 */
2c488db2 3829 ++new->current_threshold;
2e72b634
KS
3830 }
3831 j++;
3832 }
3833
907860ed 3834swap_buffers:
2c488db2
KS
3835 /* Swap primary and spare array */
3836 thresholds->spare = thresholds->primary;
8c757763
SZ
3837 /* If all events are unregistered, free the spare array */
3838 if (!new) {
3839 kfree(thresholds->spare);
3840 thresholds->spare = NULL;
3841 }
3842
2c488db2 3843 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3844
907860ed 3845 /* To be sure that nobody uses thresholds */
2e72b634 3846 synchronize_rcu();
371528ca 3847unlock:
2e72b634 3848 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3849}
c1e862c1 3850
59b6f873 3851static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3852 struct eventfd_ctx *eventfd)
3853{
59b6f873 3854 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3855}
3856
59b6f873 3857static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3858 struct eventfd_ctx *eventfd)
3859{
59b6f873 3860 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3861}
3862
59b6f873 3863static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3864 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3865{
9490ff27 3866 struct mem_cgroup_eventfd_list *event;
9490ff27 3867
9490ff27
KH
3868 event = kmalloc(sizeof(*event), GFP_KERNEL);
3869 if (!event)
3870 return -ENOMEM;
3871
1af8efe9 3872 spin_lock(&memcg_oom_lock);
9490ff27
KH
3873
3874 event->eventfd = eventfd;
3875 list_add(&event->list, &memcg->oom_notify);
3876
3877 /* already in OOM ? */
79dfdacc 3878 if (atomic_read(&memcg->under_oom))
9490ff27 3879 eventfd_signal(eventfd, 1);
1af8efe9 3880 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3881
3882 return 0;
3883}
3884
59b6f873 3885static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3886 struct eventfd_ctx *eventfd)
9490ff27 3887{
9490ff27 3888 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3889
1af8efe9 3890 spin_lock(&memcg_oom_lock);
9490ff27 3891
c0ff4b85 3892 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3893 if (ev->eventfd == eventfd) {
3894 list_del(&ev->list);
3895 kfree(ev);
3896 }
3897 }
3898
1af8efe9 3899 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3900}
3901
2da8ca82 3902static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3903{
2da8ca82 3904 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3905
791badbd
TH
3906 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3907 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
3908 return 0;
3909}
3910
182446d0 3911static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3912 struct cftype *cft, u64 val)
3913{
182446d0 3914 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3915
3916 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3917 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3918 return -EINVAL;
3919
c0ff4b85 3920 memcg->oom_kill_disable = val;
4d845ebf 3921 if (!val)
c0ff4b85 3922 memcg_oom_recover(memcg);
3dae7fec 3923
3c11ecf4
KH
3924 return 0;
3925}
3926
c255a458 3927#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3928static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3929{
55007d84
GC
3930 int ret;
3931
55007d84
GC
3932 ret = memcg_propagate_kmem(memcg);
3933 if (ret)
3934 return ret;
2633d7a0 3935
1d62e436 3936 return mem_cgroup_sockets_init(memcg, ss);
573b400d 3937}
e5671dfa 3938
2a4db7eb
VD
3939static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3940{
2788cf0c
VD
3941 struct cgroup_subsys_state *css;
3942 struct mem_cgroup *parent, *child;
3943 int kmemcg_id;
3944
2a4db7eb
VD
3945 if (!memcg->kmem_acct_active)
3946 return;
3947
3948 /*
3949 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3950 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3951 * guarantees no cache will be created for this cgroup after we are
3952 * done (see memcg_create_kmem_cache()).
3953 */
3954 memcg->kmem_acct_active = false;
3955
3956 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3957
3958 kmemcg_id = memcg->kmemcg_id;
3959 BUG_ON(kmemcg_id < 0);
3960
3961 parent = parent_mem_cgroup(memcg);
3962 if (!parent)
3963 parent = root_mem_cgroup;
3964
3965 /*
3966 * Change kmemcg_id of this cgroup and all its descendants to the
3967 * parent's id, and then move all entries from this cgroup's list_lrus
3968 * to ones of the parent. After we have finished, all list_lrus
3969 * corresponding to this cgroup are guaranteed to remain empty. The
3970 * ordering is imposed by list_lru_node->lock taken by
3971 * memcg_drain_all_list_lrus().
3972 */
3973 css_for_each_descendant_pre(css, &memcg->css) {
3974 child = mem_cgroup_from_css(css);
3975 BUG_ON(child->kmemcg_id != kmemcg_id);
3976 child->kmemcg_id = parent->kmemcg_id;
3977 if (!memcg->use_hierarchy)
3978 break;
3979 }
3980 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3981
3982 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3983}
3984
10d5ebf4 3985static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3986{
f48b80a5
VD
3987 if (memcg->kmem_acct_activated) {
3988 memcg_destroy_kmem_caches(memcg);
3989 static_key_slow_dec(&memcg_kmem_enabled_key);
3990 WARN_ON(page_counter_read(&memcg->kmem));
3991 }
1d62e436 3992 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 3993}
e5671dfa 3994#else
cbe128e3 3995static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3996{
3997 return 0;
3998}
d1a4c0b3 3999
2a4db7eb
VD
4000static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
4001{
4002}
4003
10d5ebf4
LZ
4004static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4005{
4006}
e5671dfa
GC
4007#endif
4008
3bc942f3
TH
4009/*
4010 * DO NOT USE IN NEW FILES.
4011 *
4012 * "cgroup.event_control" implementation.
4013 *
4014 * This is way over-engineered. It tries to support fully configurable
4015 * events for each user. Such level of flexibility is completely
4016 * unnecessary especially in the light of the planned unified hierarchy.
4017 *
4018 * Please deprecate this and replace with something simpler if at all
4019 * possible.
4020 */
4021
79bd9814
TH
4022/*
4023 * Unregister event and free resources.
4024 *
4025 * Gets called from workqueue.
4026 */
3bc942f3 4027static void memcg_event_remove(struct work_struct *work)
79bd9814 4028{
3bc942f3
TH
4029 struct mem_cgroup_event *event =
4030 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4031 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4032
4033 remove_wait_queue(event->wqh, &event->wait);
4034
59b6f873 4035 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4036
4037 /* Notify userspace the event is going away. */
4038 eventfd_signal(event->eventfd, 1);
4039
4040 eventfd_ctx_put(event->eventfd);
4041 kfree(event);
59b6f873 4042 css_put(&memcg->css);
79bd9814
TH
4043}
4044
4045/*
4046 * Gets called on POLLHUP on eventfd when user closes it.
4047 *
4048 * Called with wqh->lock held and interrupts disabled.
4049 */
3bc942f3
TH
4050static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4051 int sync, void *key)
79bd9814 4052{
3bc942f3
TH
4053 struct mem_cgroup_event *event =
4054 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4055 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4056 unsigned long flags = (unsigned long)key;
4057
4058 if (flags & POLLHUP) {
4059 /*
4060 * If the event has been detached at cgroup removal, we
4061 * can simply return knowing the other side will cleanup
4062 * for us.
4063 *
4064 * We can't race against event freeing since the other
4065 * side will require wqh->lock via remove_wait_queue(),
4066 * which we hold.
4067 */
fba94807 4068 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4069 if (!list_empty(&event->list)) {
4070 list_del_init(&event->list);
4071 /*
4072 * We are in atomic context, but cgroup_event_remove()
4073 * may sleep, so we have to call it in workqueue.
4074 */
4075 schedule_work(&event->remove);
4076 }
fba94807 4077 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4078 }
4079
4080 return 0;
4081}
4082
3bc942f3 4083static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4084 wait_queue_head_t *wqh, poll_table *pt)
4085{
3bc942f3
TH
4086 struct mem_cgroup_event *event =
4087 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4088
4089 event->wqh = wqh;
4090 add_wait_queue(wqh, &event->wait);
4091}
4092
4093/*
3bc942f3
TH
4094 * DO NOT USE IN NEW FILES.
4095 *
79bd9814
TH
4096 * Parse input and register new cgroup event handler.
4097 *
4098 * Input must be in format '<event_fd> <control_fd> <args>'.
4099 * Interpretation of args is defined by control file implementation.
4100 */
451af504
TH
4101static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4102 char *buf, size_t nbytes, loff_t off)
79bd9814 4103{
451af504 4104 struct cgroup_subsys_state *css = of_css(of);
fba94807 4105 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4106 struct mem_cgroup_event *event;
79bd9814
TH
4107 struct cgroup_subsys_state *cfile_css;
4108 unsigned int efd, cfd;
4109 struct fd efile;
4110 struct fd cfile;
fba94807 4111 const char *name;
79bd9814
TH
4112 char *endp;
4113 int ret;
4114
451af504
TH
4115 buf = strstrip(buf);
4116
4117 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4118 if (*endp != ' ')
4119 return -EINVAL;
451af504 4120 buf = endp + 1;
79bd9814 4121
451af504 4122 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4123 if ((*endp != ' ') && (*endp != '\0'))
4124 return -EINVAL;
451af504 4125 buf = endp + 1;
79bd9814
TH
4126
4127 event = kzalloc(sizeof(*event), GFP_KERNEL);
4128 if (!event)
4129 return -ENOMEM;
4130
59b6f873 4131 event->memcg = memcg;
79bd9814 4132 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4133 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4134 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4135 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4136
4137 efile = fdget(efd);
4138 if (!efile.file) {
4139 ret = -EBADF;
4140 goto out_kfree;
4141 }
4142
4143 event->eventfd = eventfd_ctx_fileget(efile.file);
4144 if (IS_ERR(event->eventfd)) {
4145 ret = PTR_ERR(event->eventfd);
4146 goto out_put_efile;
4147 }
4148
4149 cfile = fdget(cfd);
4150 if (!cfile.file) {
4151 ret = -EBADF;
4152 goto out_put_eventfd;
4153 }
4154
4155 /* the process need read permission on control file */
4156 /* AV: shouldn't we check that it's been opened for read instead? */
4157 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4158 if (ret < 0)
4159 goto out_put_cfile;
4160
fba94807
TH
4161 /*
4162 * Determine the event callbacks and set them in @event. This used
4163 * to be done via struct cftype but cgroup core no longer knows
4164 * about these events. The following is crude but the whole thing
4165 * is for compatibility anyway.
3bc942f3
TH
4166 *
4167 * DO NOT ADD NEW FILES.
fba94807 4168 */
b583043e 4169 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4170
4171 if (!strcmp(name, "memory.usage_in_bytes")) {
4172 event->register_event = mem_cgroup_usage_register_event;
4173 event->unregister_event = mem_cgroup_usage_unregister_event;
4174 } else if (!strcmp(name, "memory.oom_control")) {
4175 event->register_event = mem_cgroup_oom_register_event;
4176 event->unregister_event = mem_cgroup_oom_unregister_event;
4177 } else if (!strcmp(name, "memory.pressure_level")) {
4178 event->register_event = vmpressure_register_event;
4179 event->unregister_event = vmpressure_unregister_event;
4180 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4181 event->register_event = memsw_cgroup_usage_register_event;
4182 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4183 } else {
4184 ret = -EINVAL;
4185 goto out_put_cfile;
4186 }
4187
79bd9814 4188 /*
b5557c4c
TH
4189 * Verify @cfile should belong to @css. Also, remaining events are
4190 * automatically removed on cgroup destruction but the removal is
4191 * asynchronous, so take an extra ref on @css.
79bd9814 4192 */
b583043e 4193 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4194 &memory_cgrp_subsys);
79bd9814 4195 ret = -EINVAL;
5a17f543 4196 if (IS_ERR(cfile_css))
79bd9814 4197 goto out_put_cfile;
5a17f543
TH
4198 if (cfile_css != css) {
4199 css_put(cfile_css);
79bd9814 4200 goto out_put_cfile;
5a17f543 4201 }
79bd9814 4202
451af504 4203 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4204 if (ret)
4205 goto out_put_css;
4206
4207 efile.file->f_op->poll(efile.file, &event->pt);
4208
fba94807
TH
4209 spin_lock(&memcg->event_list_lock);
4210 list_add(&event->list, &memcg->event_list);
4211 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4212
4213 fdput(cfile);
4214 fdput(efile);
4215
451af504 4216 return nbytes;
79bd9814
TH
4217
4218out_put_css:
b5557c4c 4219 css_put(css);
79bd9814
TH
4220out_put_cfile:
4221 fdput(cfile);
4222out_put_eventfd:
4223 eventfd_ctx_put(event->eventfd);
4224out_put_efile:
4225 fdput(efile);
4226out_kfree:
4227 kfree(event);
4228
4229 return ret;
4230}
4231
241994ed 4232static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4233 {
0eea1030 4234 .name = "usage_in_bytes",
8c7c6e34 4235 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4236 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4237 },
c84872e1
PE
4238 {
4239 .name = "max_usage_in_bytes",
8c7c6e34 4240 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4241 .write = mem_cgroup_reset,
791badbd 4242 .read_u64 = mem_cgroup_read_u64,
c84872e1 4243 },
8cdea7c0 4244 {
0eea1030 4245 .name = "limit_in_bytes",
8c7c6e34 4246 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4247 .write = mem_cgroup_write,
791badbd 4248 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4249 },
296c81d8
BS
4250 {
4251 .name = "soft_limit_in_bytes",
4252 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4253 .write = mem_cgroup_write,
791badbd 4254 .read_u64 = mem_cgroup_read_u64,
296c81d8 4255 },
8cdea7c0
BS
4256 {
4257 .name = "failcnt",
8c7c6e34 4258 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4259 .write = mem_cgroup_reset,
791badbd 4260 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4261 },
d2ceb9b7
KH
4262 {
4263 .name = "stat",
2da8ca82 4264 .seq_show = memcg_stat_show,
d2ceb9b7 4265 },
c1e862c1
KH
4266 {
4267 .name = "force_empty",
6770c64e 4268 .write = mem_cgroup_force_empty_write,
c1e862c1 4269 },
18f59ea7
BS
4270 {
4271 .name = "use_hierarchy",
4272 .write_u64 = mem_cgroup_hierarchy_write,
4273 .read_u64 = mem_cgroup_hierarchy_read,
4274 },
79bd9814 4275 {
3bc942f3 4276 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4277 .write = memcg_write_event_control,
79bd9814
TH
4278 .flags = CFTYPE_NO_PREFIX,
4279 .mode = S_IWUGO,
4280 },
a7885eb8
KM
4281 {
4282 .name = "swappiness",
4283 .read_u64 = mem_cgroup_swappiness_read,
4284 .write_u64 = mem_cgroup_swappiness_write,
4285 },
7dc74be0
DN
4286 {
4287 .name = "move_charge_at_immigrate",
4288 .read_u64 = mem_cgroup_move_charge_read,
4289 .write_u64 = mem_cgroup_move_charge_write,
4290 },
9490ff27
KH
4291 {
4292 .name = "oom_control",
2da8ca82 4293 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4294 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4295 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4296 },
70ddf637
AV
4297 {
4298 .name = "pressure_level",
70ddf637 4299 },
406eb0c9
YH
4300#ifdef CONFIG_NUMA
4301 {
4302 .name = "numa_stat",
2da8ca82 4303 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4304 },
4305#endif
510fc4e1
GC
4306#ifdef CONFIG_MEMCG_KMEM
4307 {
4308 .name = "kmem.limit_in_bytes",
4309 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4310 .write = mem_cgroup_write,
791badbd 4311 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4312 },
4313 {
4314 .name = "kmem.usage_in_bytes",
4315 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4316 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4317 },
4318 {
4319 .name = "kmem.failcnt",
4320 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4321 .write = mem_cgroup_reset,
791badbd 4322 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4323 },
4324 {
4325 .name = "kmem.max_usage_in_bytes",
4326 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4327 .write = mem_cgroup_reset,
791badbd 4328 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4329 },
749c5415
GC
4330#ifdef CONFIG_SLABINFO
4331 {
4332 .name = "kmem.slabinfo",
b047501c
VD
4333 .seq_start = slab_start,
4334 .seq_next = slab_next,
4335 .seq_stop = slab_stop,
4336 .seq_show = memcg_slab_show,
749c5415
GC
4337 },
4338#endif
8c7c6e34 4339#endif
6bc10349 4340 { }, /* terminate */
af36f906 4341};
8c7c6e34 4342
c0ff4b85 4343static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4344{
4345 struct mem_cgroup_per_node *pn;
1ecaab2b 4346 struct mem_cgroup_per_zone *mz;
41e3355d 4347 int zone, tmp = node;
1ecaab2b
KH
4348 /*
4349 * This routine is called against possible nodes.
4350 * But it's BUG to call kmalloc() against offline node.
4351 *
4352 * TODO: this routine can waste much memory for nodes which will
4353 * never be onlined. It's better to use memory hotplug callback
4354 * function.
4355 */
41e3355d
KH
4356 if (!node_state(node, N_NORMAL_MEMORY))
4357 tmp = -1;
17295c88 4358 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4359 if (!pn)
4360 return 1;
1ecaab2b 4361
1ecaab2b
KH
4362 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4363 mz = &pn->zoneinfo[zone];
bea8c150 4364 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4365 mz->usage_in_excess = 0;
4366 mz->on_tree = false;
d79154bb 4367 mz->memcg = memcg;
1ecaab2b 4368 }
54f72fe0 4369 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4370 return 0;
4371}
4372
c0ff4b85 4373static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4374{
54f72fe0 4375 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4376}
4377
33327948
KH
4378static struct mem_cgroup *mem_cgroup_alloc(void)
4379{
d79154bb 4380 struct mem_cgroup *memcg;
8ff69e2c 4381 size_t size;
33327948 4382
8ff69e2c
VD
4383 size = sizeof(struct mem_cgroup);
4384 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4385
8ff69e2c 4386 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4387 if (!memcg)
e7bbcdf3
DC
4388 return NULL;
4389
d79154bb
HD
4390 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4391 if (!memcg->stat)
d2e61b8d 4392 goto out_free;
d79154bb
HD
4393 spin_lock_init(&memcg->pcp_counter_lock);
4394 return memcg;
d2e61b8d
DC
4395
4396out_free:
8ff69e2c 4397 kfree(memcg);
d2e61b8d 4398 return NULL;
33327948
KH
4399}
4400
59927fb9 4401/*
c8b2a36f
GC
4402 * At destroying mem_cgroup, references from swap_cgroup can remain.
4403 * (scanning all at force_empty is too costly...)
4404 *
4405 * Instead of clearing all references at force_empty, we remember
4406 * the number of reference from swap_cgroup and free mem_cgroup when
4407 * it goes down to 0.
4408 *
4409 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4410 */
c8b2a36f
GC
4411
4412static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4413{
c8b2a36f 4414 int node;
59927fb9 4415
bb4cc1a8 4416 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4417
4418 for_each_node(node)
4419 free_mem_cgroup_per_zone_info(memcg, node);
4420
4421 free_percpu(memcg->stat);
8ff69e2c 4422 kfree(memcg);
59927fb9 4423}
3afe36b1 4424
7bcc1bb1
DN
4425/*
4426 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4427 */
e1aab161 4428struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4429{
3e32cb2e 4430 if (!memcg->memory.parent)
7bcc1bb1 4431 return NULL;
3e32cb2e 4432 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4433}
e1aab161 4434EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4435
0eb253e2 4436static struct cgroup_subsys_state * __ref
eb95419b 4437mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4438{
d142e3e6 4439 struct mem_cgroup *memcg;
04046e1a 4440 long error = -ENOMEM;
6d12e2d8 4441 int node;
8cdea7c0 4442
c0ff4b85
R
4443 memcg = mem_cgroup_alloc();
4444 if (!memcg)
04046e1a 4445 return ERR_PTR(error);
78fb7466 4446
3ed28fa1 4447 for_each_node(node)
c0ff4b85 4448 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4449 goto free_out;
f64c3f54 4450
c077719b 4451 /* root ? */
eb95419b 4452 if (parent_css == NULL) {
a41c58a6 4453 root_mem_cgroup = memcg;
3e32cb2e 4454 page_counter_init(&memcg->memory, NULL);
241994ed 4455 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4456 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4457 page_counter_init(&memcg->memsw, NULL);
4458 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4459 }
28dbc4b6 4460
d142e3e6
GC
4461 memcg->last_scanned_node = MAX_NUMNODES;
4462 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4463 memcg->move_charge_at_immigrate = 0;
4464 mutex_init(&memcg->thresholds_lock);
4465 spin_lock_init(&memcg->move_lock);
70ddf637 4466 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4467 INIT_LIST_HEAD(&memcg->event_list);
4468 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4469#ifdef CONFIG_MEMCG_KMEM
4470 memcg->kmemcg_id = -1;
900a38f0 4471#endif
d142e3e6
GC
4472
4473 return &memcg->css;
4474
4475free_out:
4476 __mem_cgroup_free(memcg);
4477 return ERR_PTR(error);
4478}
4479
4480static int
eb95419b 4481mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4482{
eb95419b 4483 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4484 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4485 int ret;
d142e3e6 4486
15a4c835 4487 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4488 return -ENOSPC;
4489
63876986 4490 if (!parent)
d142e3e6
GC
4491 return 0;
4492
0999821b 4493 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4494
4495 memcg->use_hierarchy = parent->use_hierarchy;
4496 memcg->oom_kill_disable = parent->oom_kill_disable;
4497 memcg->swappiness = mem_cgroup_swappiness(parent);
4498
4499 if (parent->use_hierarchy) {
3e32cb2e 4500 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4501 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4502 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4503 page_counter_init(&memcg->memsw, &parent->memsw);
4504 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4505
7bcc1bb1 4506 /*
8d76a979
LZ
4507 * No need to take a reference to the parent because cgroup
4508 * core guarantees its existence.
7bcc1bb1 4509 */
18f59ea7 4510 } else {
3e32cb2e 4511 page_counter_init(&memcg->memory, NULL);
241994ed 4512 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4513 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4514 page_counter_init(&memcg->memsw, NULL);
4515 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4516 /*
4517 * Deeper hierachy with use_hierarchy == false doesn't make
4518 * much sense so let cgroup subsystem know about this
4519 * unfortunate state in our controller.
4520 */
d142e3e6 4521 if (parent != root_mem_cgroup)
073219e9 4522 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4523 }
0999821b 4524 mutex_unlock(&memcg_create_mutex);
d6441637 4525
2f7dd7a4
JW
4526 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4527 if (ret)
4528 return ret;
4529
4530 /*
4531 * Make sure the memcg is initialized: mem_cgroup_iter()
4532 * orders reading memcg->initialized against its callers
4533 * reading the memcg members.
4534 */
4535 smp_store_release(&memcg->initialized, 1);
4536
4537 return 0;
8cdea7c0
BS
4538}
4539
eb95419b 4540static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4541{
eb95419b 4542 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4543 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4544
4545 /*
4546 * Unregister events and notify userspace.
4547 * Notify userspace about cgroup removing only after rmdir of cgroup
4548 * directory to avoid race between userspace and kernelspace.
4549 */
fba94807
TH
4550 spin_lock(&memcg->event_list_lock);
4551 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4552 list_del_init(&event->list);
4553 schedule_work(&event->remove);
4554 }
fba94807 4555 spin_unlock(&memcg->event_list_lock);
ec64f515 4556
33cb876e 4557 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4558
4559 memcg_deactivate_kmem(memcg);
df878fb0
KH
4560}
4561
eb95419b 4562static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4563{
eb95419b 4564 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4565
10d5ebf4 4566 memcg_destroy_kmem(memcg);
465939a1 4567 __mem_cgroup_free(memcg);
8cdea7c0
BS
4568}
4569
1ced953b
TH
4570/**
4571 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4572 * @css: the target css
4573 *
4574 * Reset the states of the mem_cgroup associated with @css. This is
4575 * invoked when the userland requests disabling on the default hierarchy
4576 * but the memcg is pinned through dependency. The memcg should stop
4577 * applying policies and should revert to the vanilla state as it may be
4578 * made visible again.
4579 *
4580 * The current implementation only resets the essential configurations.
4581 * This needs to be expanded to cover all the visible parts.
4582 */
4583static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4584{
4585 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4586
3e32cb2e
JW
4587 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4588 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4589 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4590 memcg->low = 0;
4591 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4592 memcg->soft_limit = PAGE_COUNTER_MAX;
1ced953b
TH
4593}
4594
02491447 4595#ifdef CONFIG_MMU
7dc74be0 4596/* Handlers for move charge at task migration. */
854ffa8d 4597static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4598{
05b84301 4599 int ret;
9476db97
JW
4600
4601 /* Try a single bulk charge without reclaim first */
00501b53 4602 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4603 if (!ret) {
854ffa8d 4604 mc.precharge += count;
854ffa8d
DN
4605 return ret;
4606 }
692e7c45 4607 if (ret == -EINTR) {
00501b53 4608 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4609 return ret;
4610 }
9476db97
JW
4611
4612 /* Try charges one by one with reclaim */
854ffa8d 4613 while (count--) {
00501b53 4614 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4615 /*
4616 * In case of failure, any residual charges against
4617 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4618 * later on. However, cancel any charges that are
4619 * bypassed to root right away or they'll be lost.
9476db97 4620 */
692e7c45 4621 if (ret == -EINTR)
00501b53 4622 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4623 if (ret)
38c5d72f 4624 return ret;
854ffa8d 4625 mc.precharge++;
9476db97 4626 cond_resched();
854ffa8d 4627 }
9476db97 4628 return 0;
4ffef5fe
DN
4629}
4630
4631/**
8d32ff84 4632 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4633 * @vma: the vma the pte to be checked belongs
4634 * @addr: the address corresponding to the pte to be checked
4635 * @ptent: the pte to be checked
02491447 4636 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4637 *
4638 * Returns
4639 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4640 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4641 * move charge. if @target is not NULL, the page is stored in target->page
4642 * with extra refcnt got(Callers should handle it).
02491447
DN
4643 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4644 * target for charge migration. if @target is not NULL, the entry is stored
4645 * in target->ent.
4ffef5fe
DN
4646 *
4647 * Called with pte lock held.
4648 */
4ffef5fe
DN
4649union mc_target {
4650 struct page *page;
02491447 4651 swp_entry_t ent;
4ffef5fe
DN
4652};
4653
4ffef5fe 4654enum mc_target_type {
8d32ff84 4655 MC_TARGET_NONE = 0,
4ffef5fe 4656 MC_TARGET_PAGE,
02491447 4657 MC_TARGET_SWAP,
4ffef5fe
DN
4658};
4659
90254a65
DN
4660static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4661 unsigned long addr, pte_t ptent)
4ffef5fe 4662{
90254a65 4663 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4664
90254a65
DN
4665 if (!page || !page_mapped(page))
4666 return NULL;
4667 if (PageAnon(page)) {
1dfab5ab 4668 if (!(mc.flags & MOVE_ANON))
90254a65 4669 return NULL;
1dfab5ab
JW
4670 } else {
4671 if (!(mc.flags & MOVE_FILE))
4672 return NULL;
4673 }
90254a65
DN
4674 if (!get_page_unless_zero(page))
4675 return NULL;
4676
4677 return page;
4678}
4679
4b91355e 4680#ifdef CONFIG_SWAP
90254a65
DN
4681static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4682 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4683{
90254a65
DN
4684 struct page *page = NULL;
4685 swp_entry_t ent = pte_to_swp_entry(ptent);
4686
1dfab5ab 4687 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4688 return NULL;
4b91355e
KH
4689 /*
4690 * Because lookup_swap_cache() updates some statistics counter,
4691 * we call find_get_page() with swapper_space directly.
4692 */
33806f06 4693 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4694 if (do_swap_account)
4695 entry->val = ent.val;
4696
4697 return page;
4698}
4b91355e
KH
4699#else
4700static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4701 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4702{
4703 return NULL;
4704}
4705#endif
90254a65 4706
87946a72
DN
4707static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4708 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4709{
4710 struct page *page = NULL;
87946a72
DN
4711 struct address_space *mapping;
4712 pgoff_t pgoff;
4713
4714 if (!vma->vm_file) /* anonymous vma */
4715 return NULL;
1dfab5ab 4716 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4717 return NULL;
4718
87946a72 4719 mapping = vma->vm_file->f_mapping;
0661a336 4720 pgoff = linear_page_index(vma, addr);
87946a72
DN
4721
4722 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4723#ifdef CONFIG_SWAP
4724 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4725 if (shmem_mapping(mapping)) {
4726 page = find_get_entry(mapping, pgoff);
4727 if (radix_tree_exceptional_entry(page)) {
4728 swp_entry_t swp = radix_to_swp_entry(page);
4729 if (do_swap_account)
4730 *entry = swp;
4731 page = find_get_page(swap_address_space(swp), swp.val);
4732 }
4733 } else
4734 page = find_get_page(mapping, pgoff);
4735#else
4736 page = find_get_page(mapping, pgoff);
aa3b1895 4737#endif
87946a72
DN
4738 return page;
4739}
4740
b1b0deab
CG
4741/**
4742 * mem_cgroup_move_account - move account of the page
4743 * @page: the page
4744 * @nr_pages: number of regular pages (>1 for huge pages)
4745 * @from: mem_cgroup which the page is moved from.
4746 * @to: mem_cgroup which the page is moved to. @from != @to.
4747 *
4748 * The caller must confirm following.
4749 * - page is not on LRU (isolate_page() is useful.)
4750 * - compound_lock is held when nr_pages > 1
4751 *
4752 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4753 * from old cgroup.
4754 */
4755static int mem_cgroup_move_account(struct page *page,
4756 unsigned int nr_pages,
4757 struct mem_cgroup *from,
4758 struct mem_cgroup *to)
4759{
4760 unsigned long flags;
4761 int ret;
4762
4763 VM_BUG_ON(from == to);
4764 VM_BUG_ON_PAGE(PageLRU(page), page);
4765 /*
4766 * The page is isolated from LRU. So, collapse function
4767 * will not handle this page. But page splitting can happen.
4768 * Do this check under compound_page_lock(). The caller should
4769 * hold it.
4770 */
4771 ret = -EBUSY;
4772 if (nr_pages > 1 && !PageTransHuge(page))
4773 goto out;
4774
4775 /*
4776 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4777 * of its source page while we change it: page migration takes
4778 * both pages off the LRU, but page cache replacement doesn't.
4779 */
4780 if (!trylock_page(page))
4781 goto out;
4782
4783 ret = -EINVAL;
4784 if (page->mem_cgroup != from)
4785 goto out_unlock;
4786
4787 spin_lock_irqsave(&from->move_lock, flags);
4788
4789 if (!PageAnon(page) && page_mapped(page)) {
4790 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4791 nr_pages);
4792 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4793 nr_pages);
4794 }
4795
4796 if (PageWriteback(page)) {
4797 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4798 nr_pages);
4799 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4800 nr_pages);
4801 }
4802
4803 /*
4804 * It is safe to change page->mem_cgroup here because the page
4805 * is referenced, charged, and isolated - we can't race with
4806 * uncharging, charging, migration, or LRU putback.
4807 */
4808
4809 /* caller should have done css_get */
4810 page->mem_cgroup = to;
4811 spin_unlock_irqrestore(&from->move_lock, flags);
4812
4813 ret = 0;
4814
4815 local_irq_disable();
4816 mem_cgroup_charge_statistics(to, page, nr_pages);
4817 memcg_check_events(to, page);
4818 mem_cgroup_charge_statistics(from, page, -nr_pages);
4819 memcg_check_events(from, page);
4820 local_irq_enable();
4821out_unlock:
4822 unlock_page(page);
4823out:
4824 return ret;
4825}
4826
8d32ff84 4827static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4828 unsigned long addr, pte_t ptent, union mc_target *target)
4829{
4830 struct page *page = NULL;
8d32ff84 4831 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4832 swp_entry_t ent = { .val = 0 };
4833
4834 if (pte_present(ptent))
4835 page = mc_handle_present_pte(vma, addr, ptent);
4836 else if (is_swap_pte(ptent))
4837 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4838 else if (pte_none(ptent))
87946a72 4839 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4840
4841 if (!page && !ent.val)
8d32ff84 4842 return ret;
02491447 4843 if (page) {
02491447 4844 /*
0a31bc97 4845 * Do only loose check w/o serialization.
1306a85a 4846 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4847 * not under LRU exclusion.
02491447 4848 */
1306a85a 4849 if (page->mem_cgroup == mc.from) {
02491447
DN
4850 ret = MC_TARGET_PAGE;
4851 if (target)
4852 target->page = page;
4853 }
4854 if (!ret || !target)
4855 put_page(page);
4856 }
90254a65
DN
4857 /* There is a swap entry and a page doesn't exist or isn't charged */
4858 if (ent.val && !ret &&
34c00c31 4859 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4860 ret = MC_TARGET_SWAP;
4861 if (target)
4862 target->ent = ent;
4ffef5fe 4863 }
4ffef5fe
DN
4864 return ret;
4865}
4866
12724850
NH
4867#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4868/*
4869 * We don't consider swapping or file mapped pages because THP does not
4870 * support them for now.
4871 * Caller should make sure that pmd_trans_huge(pmd) is true.
4872 */
4873static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4874 unsigned long addr, pmd_t pmd, union mc_target *target)
4875{
4876 struct page *page = NULL;
12724850
NH
4877 enum mc_target_type ret = MC_TARGET_NONE;
4878
4879 page = pmd_page(pmd);
309381fe 4880 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4881 if (!(mc.flags & MOVE_ANON))
12724850 4882 return ret;
1306a85a 4883 if (page->mem_cgroup == mc.from) {
12724850
NH
4884 ret = MC_TARGET_PAGE;
4885 if (target) {
4886 get_page(page);
4887 target->page = page;
4888 }
4889 }
4890 return ret;
4891}
4892#else
4893static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4894 unsigned long addr, pmd_t pmd, union mc_target *target)
4895{
4896 return MC_TARGET_NONE;
4897}
4898#endif
4899
4ffef5fe
DN
4900static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4901 unsigned long addr, unsigned long end,
4902 struct mm_walk *walk)
4903{
26bcd64a 4904 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4905 pte_t *pte;
4906 spinlock_t *ptl;
4907
bf929152 4908 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4909 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4910 mc.precharge += HPAGE_PMD_NR;
bf929152 4911 spin_unlock(ptl);
1a5a9906 4912 return 0;
12724850 4913 }
03319327 4914
45f83cef
AA
4915 if (pmd_trans_unstable(pmd))
4916 return 0;
4ffef5fe
DN
4917 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4918 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4919 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4920 mc.precharge++; /* increment precharge temporarily */
4921 pte_unmap_unlock(pte - 1, ptl);
4922 cond_resched();
4923
7dc74be0
DN
4924 return 0;
4925}
4926
4ffef5fe
DN
4927static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4928{
4929 unsigned long precharge;
4ffef5fe 4930
26bcd64a
NH
4931 struct mm_walk mem_cgroup_count_precharge_walk = {
4932 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4933 .mm = mm,
4934 };
dfe076b0 4935 down_read(&mm->mmap_sem);
26bcd64a 4936 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4937 up_read(&mm->mmap_sem);
4ffef5fe
DN
4938
4939 precharge = mc.precharge;
4940 mc.precharge = 0;
4941
4942 return precharge;
4943}
4944
4ffef5fe
DN
4945static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4946{
dfe076b0
DN
4947 unsigned long precharge = mem_cgroup_count_precharge(mm);
4948
4949 VM_BUG_ON(mc.moving_task);
4950 mc.moving_task = current;
4951 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4952}
4953
dfe076b0
DN
4954/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4955static void __mem_cgroup_clear_mc(void)
4ffef5fe 4956{
2bd9bb20
KH
4957 struct mem_cgroup *from = mc.from;
4958 struct mem_cgroup *to = mc.to;
4959
4ffef5fe 4960 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4961 if (mc.precharge) {
00501b53 4962 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4963 mc.precharge = 0;
4964 }
4965 /*
4966 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4967 * we must uncharge here.
4968 */
4969 if (mc.moved_charge) {
00501b53 4970 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4971 mc.moved_charge = 0;
4ffef5fe 4972 }
483c30b5
DN
4973 /* we must fixup refcnts and charges */
4974 if (mc.moved_swap) {
483c30b5 4975 /* uncharge swap account from the old cgroup */
ce00a967 4976 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4977 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4978
05b84301 4979 /*
3e32cb2e
JW
4980 * we charged both to->memory and to->memsw, so we
4981 * should uncharge to->memory.
05b84301 4982 */
ce00a967 4983 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4984 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4985
e8ea14cc 4986 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4987
4050377b 4988 /* we've already done css_get(mc.to) */
483c30b5
DN
4989 mc.moved_swap = 0;
4990 }
dfe076b0
DN
4991 memcg_oom_recover(from);
4992 memcg_oom_recover(to);
4993 wake_up_all(&mc.waitq);
4994}
4995
4996static void mem_cgroup_clear_mc(void)
4997{
dfe076b0
DN
4998 /*
4999 * we must clear moving_task before waking up waiters at the end of
5000 * task migration.
5001 */
5002 mc.moving_task = NULL;
5003 __mem_cgroup_clear_mc();
2bd9bb20 5004 spin_lock(&mc.lock);
4ffef5fe
DN
5005 mc.from = NULL;
5006 mc.to = NULL;
2bd9bb20 5007 spin_unlock(&mc.lock);
4ffef5fe
DN
5008}
5009
eb95419b 5010static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5011 struct cgroup_taskset *tset)
7dc74be0 5012{
2f7ee569 5013 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5014 int ret = 0;
eb95419b 5015 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1dfab5ab 5016 unsigned long move_flags;
7dc74be0 5017
ee5e8472
GC
5018 /*
5019 * We are now commited to this value whatever it is. Changes in this
5020 * tunable will only affect upcoming migrations, not the current one.
5021 * So we need to save it, and keep it going.
5022 */
1dfab5ab
JW
5023 move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
5024 if (move_flags) {
7dc74be0
DN
5025 struct mm_struct *mm;
5026 struct mem_cgroup *from = mem_cgroup_from_task(p);
5027
c0ff4b85 5028 VM_BUG_ON(from == memcg);
7dc74be0
DN
5029
5030 mm = get_task_mm(p);
5031 if (!mm)
5032 return 0;
7dc74be0 5033 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5034 if (mm->owner == p) {
5035 VM_BUG_ON(mc.from);
5036 VM_BUG_ON(mc.to);
5037 VM_BUG_ON(mc.precharge);
854ffa8d 5038 VM_BUG_ON(mc.moved_charge);
483c30b5 5039 VM_BUG_ON(mc.moved_swap);
247b1447 5040
2bd9bb20 5041 spin_lock(&mc.lock);
4ffef5fe 5042 mc.from = from;
c0ff4b85 5043 mc.to = memcg;
1dfab5ab 5044 mc.flags = move_flags;
2bd9bb20 5045 spin_unlock(&mc.lock);
dfe076b0 5046 /* We set mc.moving_task later */
4ffef5fe
DN
5047
5048 ret = mem_cgroup_precharge_mc(mm);
5049 if (ret)
5050 mem_cgroup_clear_mc();
dfe076b0
DN
5051 }
5052 mmput(mm);
7dc74be0
DN
5053 }
5054 return ret;
5055}
5056
eb95419b 5057static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5058 struct cgroup_taskset *tset)
7dc74be0 5059{
4e2f245d
JW
5060 if (mc.to)
5061 mem_cgroup_clear_mc();
7dc74be0
DN
5062}
5063
4ffef5fe
DN
5064static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5065 unsigned long addr, unsigned long end,
5066 struct mm_walk *walk)
7dc74be0 5067{
4ffef5fe 5068 int ret = 0;
26bcd64a 5069 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5070 pte_t *pte;
5071 spinlock_t *ptl;
12724850
NH
5072 enum mc_target_type target_type;
5073 union mc_target target;
5074 struct page *page;
4ffef5fe 5075
12724850
NH
5076 /*
5077 * We don't take compound_lock() here but no race with splitting thp
5078 * happens because:
5079 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5080 * under splitting, which means there's no concurrent thp split,
5081 * - if another thread runs into split_huge_page() just after we
5082 * entered this if-block, the thread must wait for page table lock
5083 * to be unlocked in __split_huge_page_splitting(), where the main
5084 * part of thp split is not executed yet.
5085 */
bf929152 5086 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5087 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5088 spin_unlock(ptl);
12724850
NH
5089 return 0;
5090 }
5091 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5092 if (target_type == MC_TARGET_PAGE) {
5093 page = target.page;
5094 if (!isolate_lru_page(page)) {
12724850 5095 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5096 mc.from, mc.to)) {
12724850
NH
5097 mc.precharge -= HPAGE_PMD_NR;
5098 mc.moved_charge += HPAGE_PMD_NR;
5099 }
5100 putback_lru_page(page);
5101 }
5102 put_page(page);
5103 }
bf929152 5104 spin_unlock(ptl);
1a5a9906 5105 return 0;
12724850
NH
5106 }
5107
45f83cef
AA
5108 if (pmd_trans_unstable(pmd))
5109 return 0;
4ffef5fe
DN
5110retry:
5111 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5112 for (; addr != end; addr += PAGE_SIZE) {
5113 pte_t ptent = *(pte++);
02491447 5114 swp_entry_t ent;
4ffef5fe
DN
5115
5116 if (!mc.precharge)
5117 break;
5118
8d32ff84 5119 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5120 case MC_TARGET_PAGE:
5121 page = target.page;
5122 if (isolate_lru_page(page))
5123 goto put;
1306a85a 5124 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5125 mc.precharge--;
854ffa8d
DN
5126 /* we uncharge from mc.from later. */
5127 mc.moved_charge++;
4ffef5fe
DN
5128 }
5129 putback_lru_page(page);
8d32ff84 5130put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5131 put_page(page);
5132 break;
02491447
DN
5133 case MC_TARGET_SWAP:
5134 ent = target.ent;
e91cbb42 5135 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5136 mc.precharge--;
483c30b5
DN
5137 /* we fixup refcnts and charges later. */
5138 mc.moved_swap++;
5139 }
02491447 5140 break;
4ffef5fe
DN
5141 default:
5142 break;
5143 }
5144 }
5145 pte_unmap_unlock(pte - 1, ptl);
5146 cond_resched();
5147
5148 if (addr != end) {
5149 /*
5150 * We have consumed all precharges we got in can_attach().
5151 * We try charge one by one, but don't do any additional
5152 * charges to mc.to if we have failed in charge once in attach()
5153 * phase.
5154 */
854ffa8d 5155 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5156 if (!ret)
5157 goto retry;
5158 }
5159
5160 return ret;
5161}
5162
5163static void mem_cgroup_move_charge(struct mm_struct *mm)
5164{
26bcd64a
NH
5165 struct mm_walk mem_cgroup_move_charge_walk = {
5166 .pmd_entry = mem_cgroup_move_charge_pte_range,
5167 .mm = mm,
5168 };
4ffef5fe
DN
5169
5170 lru_add_drain_all();
312722cb
JW
5171 /*
5172 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5173 * move_lock while we're moving its pages to another memcg.
5174 * Then wait for already started RCU-only updates to finish.
5175 */
5176 atomic_inc(&mc.from->moving_account);
5177 synchronize_rcu();
dfe076b0
DN
5178retry:
5179 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5180 /*
5181 * Someone who are holding the mmap_sem might be waiting in
5182 * waitq. So we cancel all extra charges, wake up all waiters,
5183 * and retry. Because we cancel precharges, we might not be able
5184 * to move enough charges, but moving charge is a best-effort
5185 * feature anyway, so it wouldn't be a big problem.
5186 */
5187 __mem_cgroup_clear_mc();
5188 cond_resched();
5189 goto retry;
5190 }
26bcd64a
NH
5191 /*
5192 * When we have consumed all precharges and failed in doing
5193 * additional charge, the page walk just aborts.
5194 */
5195 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5196 up_read(&mm->mmap_sem);
312722cb 5197 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5198}
5199
eb95419b 5200static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5201 struct cgroup_taskset *tset)
67e465a7 5202{
2f7ee569 5203 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5204 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5205
dfe076b0 5206 if (mm) {
a433658c
KM
5207 if (mc.to)
5208 mem_cgroup_move_charge(mm);
dfe076b0
DN
5209 mmput(mm);
5210 }
a433658c
KM
5211 if (mc.to)
5212 mem_cgroup_clear_mc();
67e465a7 5213}
5cfb80a7 5214#else /* !CONFIG_MMU */
eb95419b 5215static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5216 struct cgroup_taskset *tset)
5cfb80a7
DN
5217{
5218 return 0;
5219}
eb95419b 5220static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5221 struct cgroup_taskset *tset)
5cfb80a7
DN
5222{
5223}
eb95419b 5224static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5225 struct cgroup_taskset *tset)
5cfb80a7
DN
5226{
5227}
5228#endif
67e465a7 5229
f00baae7
TH
5230/*
5231 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5232 * to verify whether we're attached to the default hierarchy on each mount
5233 * attempt.
f00baae7 5234 */
eb95419b 5235static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5236{
5237 /*
aa6ec29b 5238 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5239 * guarantees that @root doesn't have any children, so turning it
5240 * on for the root memcg is enough.
5241 */
aa6ec29b 5242 if (cgroup_on_dfl(root_css->cgroup))
7feee590
VD
5243 root_mem_cgroup->use_hierarchy = true;
5244 else
5245 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5246}
5247
241994ed
JW
5248static u64 memory_current_read(struct cgroup_subsys_state *css,
5249 struct cftype *cft)
5250{
5251 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5252}
5253
5254static int memory_low_show(struct seq_file *m, void *v)
5255{
5256 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5257 unsigned long low = ACCESS_ONCE(memcg->low);
5258
5259 if (low == PAGE_COUNTER_MAX)
d2973697 5260 seq_puts(m, "max\n");
241994ed
JW
5261 else
5262 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5263
5264 return 0;
5265}
5266
5267static ssize_t memory_low_write(struct kernfs_open_file *of,
5268 char *buf, size_t nbytes, loff_t off)
5269{
5270 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5271 unsigned long low;
5272 int err;
5273
5274 buf = strstrip(buf);
d2973697 5275 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5276 if (err)
5277 return err;
5278
5279 memcg->low = low;
5280
5281 return nbytes;
5282}
5283
5284static int memory_high_show(struct seq_file *m, void *v)
5285{
5286 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5287 unsigned long high = ACCESS_ONCE(memcg->high);
5288
5289 if (high == PAGE_COUNTER_MAX)
d2973697 5290 seq_puts(m, "max\n");
241994ed
JW
5291 else
5292 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5293
5294 return 0;
5295}
5296
5297static ssize_t memory_high_write(struct kernfs_open_file *of,
5298 char *buf, size_t nbytes, loff_t off)
5299{
5300 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5301 unsigned long high;
5302 int err;
5303
5304 buf = strstrip(buf);
d2973697 5305 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5306 if (err)
5307 return err;
5308
5309 memcg->high = high;
5310
5311 return nbytes;
5312}
5313
5314static int memory_max_show(struct seq_file *m, void *v)
5315{
5316 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5317 unsigned long max = ACCESS_ONCE(memcg->memory.limit);
5318
5319 if (max == PAGE_COUNTER_MAX)
d2973697 5320 seq_puts(m, "max\n");
241994ed
JW
5321 else
5322 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5323
5324 return 0;
5325}
5326
5327static ssize_t memory_max_write(struct kernfs_open_file *of,
5328 char *buf, size_t nbytes, loff_t off)
5329{
5330 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5331 unsigned long max;
5332 int err;
5333
5334 buf = strstrip(buf);
d2973697 5335 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5336 if (err)
5337 return err;
5338
5339 err = mem_cgroup_resize_limit(memcg, max);
5340 if (err)
5341 return err;
5342
5343 return nbytes;
5344}
5345
5346static int memory_events_show(struct seq_file *m, void *v)
5347{
5348 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5349
5350 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5351 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5352 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5353 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5354
5355 return 0;
5356}
5357
5358static struct cftype memory_files[] = {
5359 {
5360 .name = "current",
5361 .read_u64 = memory_current_read,
5362 },
5363 {
5364 .name = "low",
5365 .flags = CFTYPE_NOT_ON_ROOT,
5366 .seq_show = memory_low_show,
5367 .write = memory_low_write,
5368 },
5369 {
5370 .name = "high",
5371 .flags = CFTYPE_NOT_ON_ROOT,
5372 .seq_show = memory_high_show,
5373 .write = memory_high_write,
5374 },
5375 {
5376 .name = "max",
5377 .flags = CFTYPE_NOT_ON_ROOT,
5378 .seq_show = memory_max_show,
5379 .write = memory_max_write,
5380 },
5381 {
5382 .name = "events",
5383 .flags = CFTYPE_NOT_ON_ROOT,
5384 .seq_show = memory_events_show,
5385 },
5386 { } /* terminate */
5387};
5388
073219e9 5389struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5390 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5391 .css_online = mem_cgroup_css_online,
92fb9748
TH
5392 .css_offline = mem_cgroup_css_offline,
5393 .css_free = mem_cgroup_css_free,
1ced953b 5394 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5395 .can_attach = mem_cgroup_can_attach,
5396 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5397 .attach = mem_cgroup_move_task,
f00baae7 5398 .bind = mem_cgroup_bind,
241994ed
JW
5399 .dfl_cftypes = memory_files,
5400 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5401 .early_init = 0,
8cdea7c0 5402};
c077719b 5403
241994ed
JW
5404/**
5405 * mem_cgroup_events - count memory events against a cgroup
5406 * @memcg: the memory cgroup
5407 * @idx: the event index
5408 * @nr: the number of events to account for
5409 */
5410void mem_cgroup_events(struct mem_cgroup *memcg,
5411 enum mem_cgroup_events_index idx,
5412 unsigned int nr)
5413{
5414 this_cpu_add(memcg->stat->events[idx], nr);
5415}
5416
5417/**
5418 * mem_cgroup_low - check if memory consumption is below the normal range
5419 * @root: the highest ancestor to consider
5420 * @memcg: the memory cgroup to check
5421 *
5422 * Returns %true if memory consumption of @memcg, and that of all
5423 * configurable ancestors up to @root, is below the normal range.
5424 */
5425bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5426{
5427 if (mem_cgroup_disabled())
5428 return false;
5429
5430 /*
5431 * The toplevel group doesn't have a configurable range, so
5432 * it's never low when looked at directly, and it is not
5433 * considered an ancestor when assessing the hierarchy.
5434 */
5435
5436 if (memcg == root_mem_cgroup)
5437 return false;
5438
4e54dede 5439 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5440 return false;
5441
5442 while (memcg != root) {
5443 memcg = parent_mem_cgroup(memcg);
5444
5445 if (memcg == root_mem_cgroup)
5446 break;
5447
4e54dede 5448 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5449 return false;
5450 }
5451 return true;
5452}
5453
00501b53
JW
5454/**
5455 * mem_cgroup_try_charge - try charging a page
5456 * @page: page to charge
5457 * @mm: mm context of the victim
5458 * @gfp_mask: reclaim mode
5459 * @memcgp: charged memcg return
5460 *
5461 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5462 * pages according to @gfp_mask if necessary.
5463 *
5464 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5465 * Otherwise, an error code is returned.
5466 *
5467 * After page->mapping has been set up, the caller must finalize the
5468 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5469 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5470 */
5471int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5472 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5473{
5474 struct mem_cgroup *memcg = NULL;
5475 unsigned int nr_pages = 1;
5476 int ret = 0;
5477
5478 if (mem_cgroup_disabled())
5479 goto out;
5480
5481 if (PageSwapCache(page)) {
00501b53
JW
5482 /*
5483 * Every swap fault against a single page tries to charge the
5484 * page, bail as early as possible. shmem_unuse() encounters
5485 * already charged pages, too. The USED bit is protected by
5486 * the page lock, which serializes swap cache removal, which
5487 * in turn serializes uncharging.
5488 */
1306a85a 5489 if (page->mem_cgroup)
00501b53
JW
5490 goto out;
5491 }
5492
5493 if (PageTransHuge(page)) {
5494 nr_pages <<= compound_order(page);
5495 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5496 }
5497
5498 if (do_swap_account && PageSwapCache(page))
5499 memcg = try_get_mem_cgroup_from_page(page);
5500 if (!memcg)
5501 memcg = get_mem_cgroup_from_mm(mm);
5502
5503 ret = try_charge(memcg, gfp_mask, nr_pages);
5504
5505 css_put(&memcg->css);
5506
5507 if (ret == -EINTR) {
5508 memcg = root_mem_cgroup;
5509 ret = 0;
5510 }
5511out:
5512 *memcgp = memcg;
5513 return ret;
5514}
5515
5516/**
5517 * mem_cgroup_commit_charge - commit a page charge
5518 * @page: page to charge
5519 * @memcg: memcg to charge the page to
5520 * @lrucare: page might be on LRU already
5521 *
5522 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5523 * after page->mapping has been set up. This must happen atomically
5524 * as part of the page instantiation, i.e. under the page table lock
5525 * for anonymous pages, under the page lock for page and swap cache.
5526 *
5527 * In addition, the page must not be on the LRU during the commit, to
5528 * prevent racing with task migration. If it might be, use @lrucare.
5529 *
5530 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5531 */
5532void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5533 bool lrucare)
5534{
5535 unsigned int nr_pages = 1;
5536
5537 VM_BUG_ON_PAGE(!page->mapping, page);
5538 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5539
5540 if (mem_cgroup_disabled())
5541 return;
5542 /*
5543 * Swap faults will attempt to charge the same page multiple
5544 * times. But reuse_swap_page() might have removed the page
5545 * from swapcache already, so we can't check PageSwapCache().
5546 */
5547 if (!memcg)
5548 return;
5549
6abb5a86
JW
5550 commit_charge(page, memcg, lrucare);
5551
00501b53
JW
5552 if (PageTransHuge(page)) {
5553 nr_pages <<= compound_order(page);
5554 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5555 }
5556
6abb5a86
JW
5557 local_irq_disable();
5558 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5559 memcg_check_events(memcg, page);
5560 local_irq_enable();
00501b53
JW
5561
5562 if (do_swap_account && PageSwapCache(page)) {
5563 swp_entry_t entry = { .val = page_private(page) };
5564 /*
5565 * The swap entry might not get freed for a long time,
5566 * let's not wait for it. The page already received a
5567 * memory+swap charge, drop the swap entry duplicate.
5568 */
5569 mem_cgroup_uncharge_swap(entry);
5570 }
5571}
5572
5573/**
5574 * mem_cgroup_cancel_charge - cancel a page charge
5575 * @page: page to charge
5576 * @memcg: memcg to charge the page to
5577 *
5578 * Cancel a charge transaction started by mem_cgroup_try_charge().
5579 */
5580void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5581{
5582 unsigned int nr_pages = 1;
5583
5584 if (mem_cgroup_disabled())
5585 return;
5586 /*
5587 * Swap faults will attempt to charge the same page multiple
5588 * times. But reuse_swap_page() might have removed the page
5589 * from swapcache already, so we can't check PageSwapCache().
5590 */
5591 if (!memcg)
5592 return;
5593
5594 if (PageTransHuge(page)) {
5595 nr_pages <<= compound_order(page);
5596 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5597 }
5598
5599 cancel_charge(memcg, nr_pages);
5600}
5601
747db954 5602static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5603 unsigned long nr_anon, unsigned long nr_file,
5604 unsigned long nr_huge, struct page *dummy_page)
5605{
18eca2e6 5606 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5607 unsigned long flags;
5608
ce00a967 5609 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5610 page_counter_uncharge(&memcg->memory, nr_pages);
5611 if (do_swap_account)
5612 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5613 memcg_oom_recover(memcg);
5614 }
747db954
JW
5615
5616 local_irq_save(flags);
5617 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5618 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5619 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5620 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5621 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5622 memcg_check_events(memcg, dummy_page);
5623 local_irq_restore(flags);
e8ea14cc
JW
5624
5625 if (!mem_cgroup_is_root(memcg))
18eca2e6 5626 css_put_many(&memcg->css, nr_pages);
747db954
JW
5627}
5628
5629static void uncharge_list(struct list_head *page_list)
5630{
5631 struct mem_cgroup *memcg = NULL;
747db954
JW
5632 unsigned long nr_anon = 0;
5633 unsigned long nr_file = 0;
5634 unsigned long nr_huge = 0;
5635 unsigned long pgpgout = 0;
747db954
JW
5636 struct list_head *next;
5637 struct page *page;
5638
5639 next = page_list->next;
5640 do {
5641 unsigned int nr_pages = 1;
747db954
JW
5642
5643 page = list_entry(next, struct page, lru);
5644 next = page->lru.next;
5645
5646 VM_BUG_ON_PAGE(PageLRU(page), page);
5647 VM_BUG_ON_PAGE(page_count(page), page);
5648
1306a85a 5649 if (!page->mem_cgroup)
747db954
JW
5650 continue;
5651
5652 /*
5653 * Nobody should be changing or seriously looking at
1306a85a 5654 * page->mem_cgroup at this point, we have fully
29833315 5655 * exclusive access to the page.
747db954
JW
5656 */
5657
1306a85a 5658 if (memcg != page->mem_cgroup) {
747db954 5659 if (memcg) {
18eca2e6
JW
5660 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5661 nr_huge, page);
5662 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5663 }
1306a85a 5664 memcg = page->mem_cgroup;
747db954
JW
5665 }
5666
5667 if (PageTransHuge(page)) {
5668 nr_pages <<= compound_order(page);
5669 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5670 nr_huge += nr_pages;
5671 }
5672
5673 if (PageAnon(page))
5674 nr_anon += nr_pages;
5675 else
5676 nr_file += nr_pages;
5677
1306a85a 5678 page->mem_cgroup = NULL;
747db954
JW
5679
5680 pgpgout++;
5681 } while (next != page_list);
5682
5683 if (memcg)
18eca2e6
JW
5684 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5685 nr_huge, page);
747db954
JW
5686}
5687
0a31bc97
JW
5688/**
5689 * mem_cgroup_uncharge - uncharge a page
5690 * @page: page to uncharge
5691 *
5692 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5693 * mem_cgroup_commit_charge().
5694 */
5695void mem_cgroup_uncharge(struct page *page)
5696{
0a31bc97
JW
5697 if (mem_cgroup_disabled())
5698 return;
5699
747db954 5700 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5701 if (!page->mem_cgroup)
0a31bc97
JW
5702 return;
5703
747db954
JW
5704 INIT_LIST_HEAD(&page->lru);
5705 uncharge_list(&page->lru);
5706}
0a31bc97 5707
747db954
JW
5708/**
5709 * mem_cgroup_uncharge_list - uncharge a list of page
5710 * @page_list: list of pages to uncharge
5711 *
5712 * Uncharge a list of pages previously charged with
5713 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5714 */
5715void mem_cgroup_uncharge_list(struct list_head *page_list)
5716{
5717 if (mem_cgroup_disabled())
5718 return;
0a31bc97 5719
747db954
JW
5720 if (!list_empty(page_list))
5721 uncharge_list(page_list);
0a31bc97
JW
5722}
5723
5724/**
5725 * mem_cgroup_migrate - migrate a charge to another page
5726 * @oldpage: currently charged page
5727 * @newpage: page to transfer the charge to
f5e03a49 5728 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5729 *
5730 * Migrate the charge from @oldpage to @newpage.
5731 *
5732 * Both pages must be locked, @newpage->mapping must be set up.
5733 */
5734void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5735 bool lrucare)
5736{
29833315 5737 struct mem_cgroup *memcg;
0a31bc97
JW
5738 int isolated;
5739
5740 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5741 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5742 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5743 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5744 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5745 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5746 newpage);
0a31bc97
JW
5747
5748 if (mem_cgroup_disabled())
5749 return;
5750
5751 /* Page cache replacement: new page already charged? */
1306a85a 5752 if (newpage->mem_cgroup)
0a31bc97
JW
5753 return;
5754
7d5e3245
JW
5755 /*
5756 * Swapcache readahead pages can get migrated before being
5757 * charged, and migration from compaction can happen to an
5758 * uncharged page when the PFN walker finds a page that
5759 * reclaim just put back on the LRU but has not released yet.
5760 */
1306a85a 5761 memcg = oldpage->mem_cgroup;
29833315 5762 if (!memcg)
0a31bc97
JW
5763 return;
5764
0a31bc97
JW
5765 if (lrucare)
5766 lock_page_lru(oldpage, &isolated);
5767
1306a85a 5768 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5769
5770 if (lrucare)
5771 unlock_page_lru(oldpage, isolated);
5772
29833315 5773 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5774}
5775
2d11085e 5776/*
1081312f
MH
5777 * subsys_initcall() for memory controller.
5778 *
5779 * Some parts like hotcpu_notifier() have to be initialized from this context
5780 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5781 * everything that doesn't depend on a specific mem_cgroup structure should
5782 * be initialized from here.
2d11085e
MH
5783 */
5784static int __init mem_cgroup_init(void)
5785{
95a045f6
JW
5786 int cpu, node;
5787
2d11085e 5788 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5789
5790 for_each_possible_cpu(cpu)
5791 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5792 drain_local_stock);
5793
5794 for_each_node(node) {
5795 struct mem_cgroup_tree_per_node *rtpn;
5796 int zone;
5797
5798 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5799 node_online(node) ? node : NUMA_NO_NODE);
5800
5801 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5802 struct mem_cgroup_tree_per_zone *rtpz;
5803
5804 rtpz = &rtpn->rb_tree_per_zone[zone];
5805 rtpz->rb_root = RB_ROOT;
5806 spin_lock_init(&rtpz->lock);
5807 }
5808 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5809 }
5810
2d11085e
MH
5811 return 0;
5812}
5813subsys_initcall(mem_cgroup_init);
21afa38e
JW
5814
5815#ifdef CONFIG_MEMCG_SWAP
5816/**
5817 * mem_cgroup_swapout - transfer a memsw charge to swap
5818 * @page: page whose memsw charge to transfer
5819 * @entry: swap entry to move the charge to
5820 *
5821 * Transfer the memsw charge of @page to @entry.
5822 */
5823void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5824{
5825 struct mem_cgroup *memcg;
5826 unsigned short oldid;
5827
5828 VM_BUG_ON_PAGE(PageLRU(page), page);
5829 VM_BUG_ON_PAGE(page_count(page), page);
5830
5831 if (!do_swap_account)
5832 return;
5833
5834 memcg = page->mem_cgroup;
5835
5836 /* Readahead page, never charged */
5837 if (!memcg)
5838 return;
5839
5840 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5841 VM_BUG_ON_PAGE(oldid, page);
5842 mem_cgroup_swap_statistics(memcg, true);
5843
5844 page->mem_cgroup = NULL;
5845
5846 if (!mem_cgroup_is_root(memcg))
5847 page_counter_uncharge(&memcg->memory, 1);
5848
5849 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5850 VM_BUG_ON(!irqs_disabled());
5851
5852 mem_cgroup_charge_statistics(memcg, page, -1);
5853 memcg_check_events(memcg, page);
5854}
5855
5856/**
5857 * mem_cgroup_uncharge_swap - uncharge a swap entry
5858 * @entry: swap entry to uncharge
5859 *
5860 * Drop the memsw charge associated with @entry.
5861 */
5862void mem_cgroup_uncharge_swap(swp_entry_t entry)
5863{
5864 struct mem_cgroup *memcg;
5865 unsigned short id;
5866
5867 if (!do_swap_account)
5868 return;
5869
5870 id = swap_cgroup_record(entry, 0);
5871 rcu_read_lock();
5872 memcg = mem_cgroup_lookup(id);
5873 if (memcg) {
5874 if (!mem_cgroup_is_root(memcg))
5875 page_counter_uncharge(&memcg->memsw, 1);
5876 mem_cgroup_swap_statistics(memcg, false);
5877 css_put(&memcg->css);
5878 }
5879 rcu_read_unlock();
5880}
5881
5882/* for remember boot option*/
5883#ifdef CONFIG_MEMCG_SWAP_ENABLED
5884static int really_do_swap_account __initdata = 1;
5885#else
5886static int really_do_swap_account __initdata;
5887#endif
5888
5889static int __init enable_swap_account(char *s)
5890{
5891 if (!strcmp(s, "1"))
5892 really_do_swap_account = 1;
5893 else if (!strcmp(s, "0"))
5894 really_do_swap_account = 0;
5895 return 1;
5896}
5897__setup("swapaccount=", enable_swap_account);
5898
5899static struct cftype memsw_cgroup_files[] = {
5900 {
5901 .name = "memsw.usage_in_bytes",
5902 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5903 .read_u64 = mem_cgroup_read_u64,
5904 },
5905 {
5906 .name = "memsw.max_usage_in_bytes",
5907 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5908 .write = mem_cgroup_reset,
5909 .read_u64 = mem_cgroup_read_u64,
5910 },
5911 {
5912 .name = "memsw.limit_in_bytes",
5913 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5914 .write = mem_cgroup_write,
5915 .read_u64 = mem_cgroup_read_u64,
5916 },
5917 {
5918 .name = "memsw.failcnt",
5919 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5920 .write = mem_cgroup_reset,
5921 .read_u64 = mem_cgroup_read_u64,
5922 },
5923 { }, /* terminate */
5924};
5925
5926static int __init mem_cgroup_swap_init(void)
5927{
5928 if (!mem_cgroup_disabled() && really_do_swap_account) {
5929 do_swap_account = 1;
5930 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5931 memsw_cgroup_files));
5932 }
5933 return 0;
5934}
5935subsys_initcall(mem_cgroup_swap_init);
5936
5937#endif /* CONFIG_MEMCG_SWAP */
This page took 1.274174 seconds and 5 git commands to generate.