slab: use css id for naming per memcg caches
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
21afa38e 75/* Whether the swap controller is active */
c255a458 76#ifdef CONFIG_MEMCG_SWAP
c077719b 77int do_swap_account __read_mostly;
c077719b 78#else
a0db00fc 79#define do_swap_account 0
c077719b
KH
80#endif
81
af7c4b0e
JW
82static const char * const mem_cgroup_stat_names[] = {
83 "cache",
84 "rss",
b070e65c 85 "rss_huge",
af7c4b0e 86 "mapped_file",
3ea67d06 87 "writeback",
af7c4b0e
JW
88 "swap",
89};
90
af7c4b0e
JW
91static const char * const mem_cgroup_events_names[] = {
92 "pgpgin",
93 "pgpgout",
94 "pgfault",
95 "pgmajfault",
96};
97
58cf188e
SZ
98static const char * const mem_cgroup_lru_names[] = {
99 "inactive_anon",
100 "active_anon",
101 "inactive_file",
102 "active_file",
103 "unevictable",
104};
105
7a159cc9
JW
106/*
107 * Per memcg event counter is incremented at every pagein/pageout. With THP,
108 * it will be incremated by the number of pages. This counter is used for
109 * for trigger some periodic events. This is straightforward and better
110 * than using jiffies etc. to handle periodic memcg event.
111 */
112enum mem_cgroup_events_target {
113 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 114 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 115 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
116 MEM_CGROUP_NTARGETS,
117};
a0db00fc
KS
118#define THRESHOLDS_EVENTS_TARGET 128
119#define SOFTLIMIT_EVENTS_TARGET 1024
120#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 121
d52aa412 122struct mem_cgroup_stat_cpu {
7a159cc9 123 long count[MEM_CGROUP_STAT_NSTATS];
241994ed 124 unsigned long events[MEMCG_NR_EVENTS];
13114716 125 unsigned long nr_page_events;
7a159cc9 126 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
127};
128
5ac8fb31
JW
129struct reclaim_iter {
130 struct mem_cgroup *position;
527a5ec9
JW
131 /* scan generation, increased every round-trip */
132 unsigned int generation;
133};
134
6d12e2d8
KH
135/*
136 * per-zone information in memory controller.
137 */
6d12e2d8 138struct mem_cgroup_per_zone {
6290df54 139 struct lruvec lruvec;
1eb49272 140 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 141
5ac8fb31 142 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 143
bb4cc1a8 144 struct rb_node tree_node; /* RB tree node */
3e32cb2e 145 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
146 /* the soft limit is exceeded*/
147 bool on_tree;
d79154bb 148 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 149 /* use container_of */
6d12e2d8 150};
6d12e2d8
KH
151
152struct mem_cgroup_per_node {
153 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
154};
155
bb4cc1a8
AM
156/*
157 * Cgroups above their limits are maintained in a RB-Tree, independent of
158 * their hierarchy representation
159 */
160
161struct mem_cgroup_tree_per_zone {
162 struct rb_root rb_root;
163 spinlock_t lock;
164};
165
166struct mem_cgroup_tree_per_node {
167 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
168};
169
170struct mem_cgroup_tree {
171 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
172};
173
174static struct mem_cgroup_tree soft_limit_tree __read_mostly;
175
2e72b634
KS
176struct mem_cgroup_threshold {
177 struct eventfd_ctx *eventfd;
3e32cb2e 178 unsigned long threshold;
2e72b634
KS
179};
180
9490ff27 181/* For threshold */
2e72b634 182struct mem_cgroup_threshold_ary {
748dad36 183 /* An array index points to threshold just below or equal to usage. */
5407a562 184 int current_threshold;
2e72b634
KS
185 /* Size of entries[] */
186 unsigned int size;
187 /* Array of thresholds */
188 struct mem_cgroup_threshold entries[0];
189};
2c488db2
KS
190
191struct mem_cgroup_thresholds {
192 /* Primary thresholds array */
193 struct mem_cgroup_threshold_ary *primary;
194 /*
195 * Spare threshold array.
196 * This is needed to make mem_cgroup_unregister_event() "never fail".
197 * It must be able to store at least primary->size - 1 entries.
198 */
199 struct mem_cgroup_threshold_ary *spare;
200};
201
9490ff27
KH
202/* for OOM */
203struct mem_cgroup_eventfd_list {
204 struct list_head list;
205 struct eventfd_ctx *eventfd;
206};
2e72b634 207
79bd9814
TH
208/*
209 * cgroup_event represents events which userspace want to receive.
210 */
3bc942f3 211struct mem_cgroup_event {
79bd9814 212 /*
59b6f873 213 * memcg which the event belongs to.
79bd9814 214 */
59b6f873 215 struct mem_cgroup *memcg;
79bd9814
TH
216 /*
217 * eventfd to signal userspace about the event.
218 */
219 struct eventfd_ctx *eventfd;
220 /*
221 * Each of these stored in a list by the cgroup.
222 */
223 struct list_head list;
fba94807
TH
224 /*
225 * register_event() callback will be used to add new userspace
226 * waiter for changes related to this event. Use eventfd_signal()
227 * on eventfd to send notification to userspace.
228 */
59b6f873 229 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 230 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
231 /*
232 * unregister_event() callback will be called when userspace closes
233 * the eventfd or on cgroup removing. This callback must be set,
234 * if you want provide notification functionality.
235 */
59b6f873 236 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 237 struct eventfd_ctx *eventfd);
79bd9814
TH
238 /*
239 * All fields below needed to unregister event when
240 * userspace closes eventfd.
241 */
242 poll_table pt;
243 wait_queue_head_t *wqh;
244 wait_queue_t wait;
245 struct work_struct remove;
246};
247
c0ff4b85
R
248static void mem_cgroup_threshold(struct mem_cgroup *memcg);
249static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 250
8cdea7c0
BS
251/*
252 * The memory controller data structure. The memory controller controls both
253 * page cache and RSS per cgroup. We would eventually like to provide
254 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
255 * to help the administrator determine what knobs to tune.
256 *
257 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
258 * we hit the water mark. May be even add a low water mark, such that
259 * no reclaim occurs from a cgroup at it's low water mark, this is
260 * a feature that will be implemented much later in the future.
8cdea7c0
BS
261 */
262struct mem_cgroup {
263 struct cgroup_subsys_state css;
3e32cb2e
JW
264
265 /* Accounted resources */
266 struct page_counter memory;
267 struct page_counter memsw;
268 struct page_counter kmem;
269
241994ed
JW
270 /* Normal memory consumption range */
271 unsigned long low;
272 unsigned long high;
273
3e32cb2e 274 unsigned long soft_limit;
59927fb9 275
70ddf637
AV
276 /* vmpressure notifications */
277 struct vmpressure vmpressure;
278
2f7dd7a4
JW
279 /* css_online() has been completed */
280 int initialized;
281
18f59ea7
BS
282 /*
283 * Should the accounting and control be hierarchical, per subtree?
284 */
285 bool use_hierarchy;
79dfdacc
MH
286
287 bool oom_lock;
288 atomic_t under_oom;
3812c8c8 289 atomic_t oom_wakeups;
79dfdacc 290
1f4c025b 291 int swappiness;
3c11ecf4
KH
292 /* OOM-Killer disable */
293 int oom_kill_disable;
a7885eb8 294
2e72b634
KS
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
297
298 /* thresholds for memory usage. RCU-protected */
2c488db2 299 struct mem_cgroup_thresholds thresholds;
907860ed 300
2e72b634 301 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 302 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 303
9490ff27
KH
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
185efc0f 306
7dc74be0
DN
307 /*
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
310 */
f894ffa8 311 unsigned long move_charge_at_immigrate;
619d094b
KH
312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */
6de22619 315 atomic_t moving_account;
312734c0 316 /* taken only while moving_account > 0 */
6de22619
JW
317 spinlock_t move_lock;
318 struct task_struct *move_lock_task;
319 unsigned long move_lock_flags;
d52aa412 320 /*
c62b1a3b 321 * percpu counter.
d52aa412 322 */
3a7951b4 323 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
324 /*
325 * used when a cpu is offlined or other synchronizations
326 * See mem_cgroup_read_stat().
327 */
328 struct mem_cgroup_stat_cpu nocpu_base;
329 spinlock_t pcp_counter_lock;
d1a4c0b3 330
4bd2c1ee 331#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 332 struct cg_proto tcp_mem;
d1a4c0b3 333#endif
2633d7a0 334#if defined(CONFIG_MEMCG_KMEM)
f7ce3190 335 /* Index in the kmem_cache->memcg_params.memcg_caches array */
2633d7a0
GC
336 int kmemcg_id;
337#endif
45cf7ebd
GC
338
339 int last_scanned_node;
340#if MAX_NUMNODES > 1
341 nodemask_t scan_nodes;
342 atomic_t numainfo_events;
343 atomic_t numainfo_updating;
344#endif
70ddf637 345
fba94807
TH
346 /* List of events which userspace want to receive */
347 struct list_head event_list;
348 spinlock_t event_list_lock;
349
54f72fe0
JW
350 struct mem_cgroup_per_node *nodeinfo[0];
351 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
352};
353
510fc4e1 354#ifdef CONFIG_MEMCG_KMEM
cb731d6c 355bool memcg_kmem_is_active(struct mem_cgroup *memcg)
7de37682 356{
900a38f0 357 return memcg->kmemcg_id >= 0;
7de37682 358}
510fc4e1
GC
359#endif
360
7dc74be0
DN
361/* Stuffs for move charges at task migration. */
362/*
1dfab5ab 363 * Types of charges to be moved.
7dc74be0 364 */
1dfab5ab
JW
365#define MOVE_ANON 0x1U
366#define MOVE_FILE 0x2U
367#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 368
4ffef5fe
DN
369/* "mc" and its members are protected by cgroup_mutex */
370static struct move_charge_struct {
b1dd693e 371 spinlock_t lock; /* for from, to */
4ffef5fe
DN
372 struct mem_cgroup *from;
373 struct mem_cgroup *to;
1dfab5ab 374 unsigned long flags;
4ffef5fe 375 unsigned long precharge;
854ffa8d 376 unsigned long moved_charge;
483c30b5 377 unsigned long moved_swap;
8033b97c
DN
378 struct task_struct *moving_task; /* a task moving charges */
379 wait_queue_head_t waitq; /* a waitq for other context */
380} mc = {
2bd9bb20 381 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
382 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
383};
4ffef5fe 384
4e416953
BS
385/*
386 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
387 * limit reclaim to prevent infinite loops, if they ever occur.
388 */
a0db00fc 389#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 390#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 391
217bc319
KH
392enum charge_type {
393 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 394 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 395 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 396 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
397 NR_CHARGE_TYPE,
398};
399
8c7c6e34 400/* for encoding cft->private value on file */
86ae53e1
GC
401enum res_type {
402 _MEM,
403 _MEMSWAP,
404 _OOM_TYPE,
510fc4e1 405 _KMEM,
86ae53e1
GC
406};
407
a0db00fc
KS
408#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
409#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 410#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
411/* Used for OOM nofiier */
412#define OOM_CONTROL (0)
8c7c6e34 413
0999821b
GC
414/*
415 * The memcg_create_mutex will be held whenever a new cgroup is created.
416 * As a consequence, any change that needs to protect against new child cgroups
417 * appearing has to hold it as well.
418 */
419static DEFINE_MUTEX(memcg_create_mutex);
420
b2145145
WL
421struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
422{
a7c6d554 423 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
424}
425
70ddf637
AV
426/* Some nice accessors for the vmpressure. */
427struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
428{
429 if (!memcg)
430 memcg = root_mem_cgroup;
431 return &memcg->vmpressure;
432}
433
434struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
435{
436 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
437}
438
7ffc0edc
MH
439static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
440{
441 return (memcg == root_mem_cgroup);
442}
443
4219b2da
LZ
444/*
445 * We restrict the id in the range of [1, 65535], so it can fit into
446 * an unsigned short.
447 */
448#define MEM_CGROUP_ID_MAX USHRT_MAX
449
34c00c31
LZ
450static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
451{
15a4c835 452 return memcg->css.id;
34c00c31
LZ
453}
454
455static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
456{
457 struct cgroup_subsys_state *css;
458
7d699ddb 459 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
460 return mem_cgroup_from_css(css);
461}
462
e1aab161 463/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 464#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 465
e1aab161
GC
466void sock_update_memcg(struct sock *sk)
467{
376be5ff 468 if (mem_cgroup_sockets_enabled) {
e1aab161 469 struct mem_cgroup *memcg;
3f134619 470 struct cg_proto *cg_proto;
e1aab161
GC
471
472 BUG_ON(!sk->sk_prot->proto_cgroup);
473
f3f511e1
GC
474 /* Socket cloning can throw us here with sk_cgrp already
475 * filled. It won't however, necessarily happen from
476 * process context. So the test for root memcg given
477 * the current task's memcg won't help us in this case.
478 *
479 * Respecting the original socket's memcg is a better
480 * decision in this case.
481 */
482 if (sk->sk_cgrp) {
483 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 484 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
485 return;
486 }
487
e1aab161
GC
488 rcu_read_lock();
489 memcg = mem_cgroup_from_task(current);
3f134619 490 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 491 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
492 memcg_proto_active(cg_proto) &&
493 css_tryget_online(&memcg->css)) {
3f134619 494 sk->sk_cgrp = cg_proto;
e1aab161
GC
495 }
496 rcu_read_unlock();
497 }
498}
499EXPORT_SYMBOL(sock_update_memcg);
500
501void sock_release_memcg(struct sock *sk)
502{
376be5ff 503 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
504 struct mem_cgroup *memcg;
505 WARN_ON(!sk->sk_cgrp->memcg);
506 memcg = sk->sk_cgrp->memcg;
5347e5ae 507 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
508 }
509}
d1a4c0b3
GC
510
511struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
512{
513 if (!memcg || mem_cgroup_is_root(memcg))
514 return NULL;
515
2e685cad 516 return &memcg->tcp_mem;
d1a4c0b3
GC
517}
518EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 519
3f134619
GC
520static void disarm_sock_keys(struct mem_cgroup *memcg)
521{
2e685cad 522 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
523 return;
524 static_key_slow_dec(&memcg_socket_limit_enabled);
525}
526#else
527static void disarm_sock_keys(struct mem_cgroup *memcg)
528{
529}
530#endif
531
a8964b9b 532#ifdef CONFIG_MEMCG_KMEM
55007d84 533/*
f7ce3190 534 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
535 * The main reason for not using cgroup id for this:
536 * this works better in sparse environments, where we have a lot of memcgs,
537 * but only a few kmem-limited. Or also, if we have, for instance, 200
538 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
539 * 200 entry array for that.
55007d84 540 *
dbcf73e2
VD
541 * The current size of the caches array is stored in memcg_nr_cache_ids. It
542 * will double each time we have to increase it.
55007d84 543 */
dbcf73e2
VD
544static DEFINE_IDA(memcg_cache_ida);
545int memcg_nr_cache_ids;
749c5415 546
05257a1a
VD
547/* Protects memcg_nr_cache_ids */
548static DECLARE_RWSEM(memcg_cache_ids_sem);
549
550void memcg_get_cache_ids(void)
551{
552 down_read(&memcg_cache_ids_sem);
553}
554
555void memcg_put_cache_ids(void)
556{
557 up_read(&memcg_cache_ids_sem);
558}
559
55007d84
GC
560/*
561 * MIN_SIZE is different than 1, because we would like to avoid going through
562 * the alloc/free process all the time. In a small machine, 4 kmem-limited
563 * cgroups is a reasonable guess. In the future, it could be a parameter or
564 * tunable, but that is strictly not necessary.
565 *
b8627835 566 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
567 * this constant directly from cgroup, but it is understandable that this is
568 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 569 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
570 * increase ours as well if it increases.
571 */
572#define MEMCG_CACHES_MIN_SIZE 4
b8627835 573#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 574
d7f25f8a
GC
575/*
576 * A lot of the calls to the cache allocation functions are expected to be
577 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
578 * conditional to this static branch, we'll have to allow modules that does
579 * kmem_cache_alloc and the such to see this symbol as well
580 */
a8964b9b 581struct static_key memcg_kmem_enabled_key;
d7f25f8a 582EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 583
f3bb3043
VD
584static void memcg_free_cache_id(int id);
585
a8964b9b
GC
586static void disarm_kmem_keys(struct mem_cgroup *memcg)
587{
55007d84 588 if (memcg_kmem_is_active(memcg)) {
a8964b9b 589 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 590 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 591 }
bea207c8
GC
592 /*
593 * This check can't live in kmem destruction function,
594 * since the charges will outlive the cgroup
595 */
3e32cb2e 596 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
597}
598#else
599static void disarm_kmem_keys(struct mem_cgroup *memcg)
600{
601}
602#endif /* CONFIG_MEMCG_KMEM */
603
604static void disarm_static_keys(struct mem_cgroup *memcg)
605{
606 disarm_sock_keys(memcg);
607 disarm_kmem_keys(memcg);
608}
609
f64c3f54 610static struct mem_cgroup_per_zone *
e231875b 611mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 612{
e231875b
JZ
613 int nid = zone_to_nid(zone);
614 int zid = zone_idx(zone);
615
54f72fe0 616 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
617}
618
c0ff4b85 619struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 620{
c0ff4b85 621 return &memcg->css;
d324236b
WF
622}
623
f64c3f54 624static struct mem_cgroup_per_zone *
e231875b 625mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 626{
97a6c37b
JW
627 int nid = page_to_nid(page);
628 int zid = page_zonenum(page);
f64c3f54 629
e231875b 630 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
631}
632
bb4cc1a8
AM
633static struct mem_cgroup_tree_per_zone *
634soft_limit_tree_node_zone(int nid, int zid)
635{
636 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
637}
638
639static struct mem_cgroup_tree_per_zone *
640soft_limit_tree_from_page(struct page *page)
641{
642 int nid = page_to_nid(page);
643 int zid = page_zonenum(page);
644
645 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
646}
647
cf2c8127
JW
648static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
649 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 650 unsigned long new_usage_in_excess)
bb4cc1a8
AM
651{
652 struct rb_node **p = &mctz->rb_root.rb_node;
653 struct rb_node *parent = NULL;
654 struct mem_cgroup_per_zone *mz_node;
655
656 if (mz->on_tree)
657 return;
658
659 mz->usage_in_excess = new_usage_in_excess;
660 if (!mz->usage_in_excess)
661 return;
662 while (*p) {
663 parent = *p;
664 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
665 tree_node);
666 if (mz->usage_in_excess < mz_node->usage_in_excess)
667 p = &(*p)->rb_left;
668 /*
669 * We can't avoid mem cgroups that are over their soft
670 * limit by the same amount
671 */
672 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
673 p = &(*p)->rb_right;
674 }
675 rb_link_node(&mz->tree_node, parent, p);
676 rb_insert_color(&mz->tree_node, &mctz->rb_root);
677 mz->on_tree = true;
678}
679
cf2c8127
JW
680static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
681 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
682{
683 if (!mz->on_tree)
684 return;
685 rb_erase(&mz->tree_node, &mctz->rb_root);
686 mz->on_tree = false;
687}
688
cf2c8127
JW
689static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
690 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 691{
0a31bc97
JW
692 unsigned long flags;
693
694 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 695 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 696 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
697}
698
3e32cb2e
JW
699static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
700{
701 unsigned long nr_pages = page_counter_read(&memcg->memory);
702 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
703 unsigned long excess = 0;
704
705 if (nr_pages > soft_limit)
706 excess = nr_pages - soft_limit;
707
708 return excess;
709}
bb4cc1a8
AM
710
711static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
712{
3e32cb2e 713 unsigned long excess;
bb4cc1a8
AM
714 struct mem_cgroup_per_zone *mz;
715 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 716
e231875b 717 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
718 /*
719 * Necessary to update all ancestors when hierarchy is used.
720 * because their event counter is not touched.
721 */
722 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 723 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 724 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
725 /*
726 * We have to update the tree if mz is on RB-tree or
727 * mem is over its softlimit.
728 */
729 if (excess || mz->on_tree) {
0a31bc97
JW
730 unsigned long flags;
731
732 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
733 /* if on-tree, remove it */
734 if (mz->on_tree)
cf2c8127 735 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
736 /*
737 * Insert again. mz->usage_in_excess will be updated.
738 * If excess is 0, no tree ops.
739 */
cf2c8127 740 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 741 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
742 }
743 }
744}
745
746static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
747{
bb4cc1a8 748 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
749 struct mem_cgroup_per_zone *mz;
750 int nid, zid;
bb4cc1a8 751
e231875b
JZ
752 for_each_node(nid) {
753 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
754 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
755 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 756 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
757 }
758 }
759}
760
761static struct mem_cgroup_per_zone *
762__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
763{
764 struct rb_node *rightmost = NULL;
765 struct mem_cgroup_per_zone *mz;
766
767retry:
768 mz = NULL;
769 rightmost = rb_last(&mctz->rb_root);
770 if (!rightmost)
771 goto done; /* Nothing to reclaim from */
772
773 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
774 /*
775 * Remove the node now but someone else can add it back,
776 * we will to add it back at the end of reclaim to its correct
777 * position in the tree.
778 */
cf2c8127 779 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 780 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 781 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
782 goto retry;
783done:
784 return mz;
785}
786
787static struct mem_cgroup_per_zone *
788mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
789{
790 struct mem_cgroup_per_zone *mz;
791
0a31bc97 792 spin_lock_irq(&mctz->lock);
bb4cc1a8 793 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 794 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
795 return mz;
796}
797
711d3d2c
KH
798/*
799 * Implementation Note: reading percpu statistics for memcg.
800 *
801 * Both of vmstat[] and percpu_counter has threshold and do periodic
802 * synchronization to implement "quick" read. There are trade-off between
803 * reading cost and precision of value. Then, we may have a chance to implement
804 * a periodic synchronizion of counter in memcg's counter.
805 *
806 * But this _read() function is used for user interface now. The user accounts
807 * memory usage by memory cgroup and he _always_ requires exact value because
808 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
809 * have to visit all online cpus and make sum. So, for now, unnecessary
810 * synchronization is not implemented. (just implemented for cpu hotplug)
811 *
812 * If there are kernel internal actions which can make use of some not-exact
813 * value, and reading all cpu value can be performance bottleneck in some
814 * common workload, threashold and synchonization as vmstat[] should be
815 * implemented.
816 */
c0ff4b85 817static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 818 enum mem_cgroup_stat_index idx)
c62b1a3b 819{
7a159cc9 820 long val = 0;
c62b1a3b 821 int cpu;
c62b1a3b 822
711d3d2c
KH
823 get_online_cpus();
824 for_each_online_cpu(cpu)
c0ff4b85 825 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 826#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
827 spin_lock(&memcg->pcp_counter_lock);
828 val += memcg->nocpu_base.count[idx];
829 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
830#endif
831 put_online_cpus();
c62b1a3b
KH
832 return val;
833}
834
c0ff4b85 835static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
836 enum mem_cgroup_events_index idx)
837{
838 unsigned long val = 0;
839 int cpu;
840
9c567512 841 get_online_cpus();
e9f8974f 842 for_each_online_cpu(cpu)
c0ff4b85 843 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 844#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
845 spin_lock(&memcg->pcp_counter_lock);
846 val += memcg->nocpu_base.events[idx];
847 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 848#endif
9c567512 849 put_online_cpus();
e9f8974f
JW
850 return val;
851}
852
c0ff4b85 853static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 854 struct page *page,
0a31bc97 855 int nr_pages)
d52aa412 856{
b2402857
KH
857 /*
858 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
859 * counted as CACHE even if it's on ANON LRU.
860 */
0a31bc97 861 if (PageAnon(page))
b2402857 862 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 863 nr_pages);
d52aa412 864 else
b2402857 865 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 866 nr_pages);
55e462b0 867
b070e65c
DR
868 if (PageTransHuge(page))
869 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
870 nr_pages);
871
e401f176
KH
872 /* pagein of a big page is an event. So, ignore page size */
873 if (nr_pages > 0)
c0ff4b85 874 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 875 else {
c0ff4b85 876 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
877 nr_pages = -nr_pages; /* for event */
878 }
e401f176 879
13114716 880 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
881}
882
e231875b 883unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
884{
885 struct mem_cgroup_per_zone *mz;
886
887 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
888 return mz->lru_size[lru];
889}
890
e231875b
JZ
891static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
892 int nid,
893 unsigned int lru_mask)
bb2a0de9 894{
e231875b 895 unsigned long nr = 0;
889976db
YH
896 int zid;
897
e231875b 898 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 899
e231875b
JZ
900 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
901 struct mem_cgroup_per_zone *mz;
902 enum lru_list lru;
903
904 for_each_lru(lru) {
905 if (!(BIT(lru) & lru_mask))
906 continue;
907 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
908 nr += mz->lru_size[lru];
909 }
910 }
911 return nr;
889976db 912}
bb2a0de9 913
c0ff4b85 914static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 915 unsigned int lru_mask)
6d12e2d8 916{
e231875b 917 unsigned long nr = 0;
889976db 918 int nid;
6d12e2d8 919
31aaea4a 920 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
921 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
922 return nr;
d52aa412
KH
923}
924
f53d7ce3
JW
925static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
926 enum mem_cgroup_events_target target)
7a159cc9
JW
927{
928 unsigned long val, next;
929
13114716 930 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 931 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 932 /* from time_after() in jiffies.h */
f53d7ce3
JW
933 if ((long)next - (long)val < 0) {
934 switch (target) {
935 case MEM_CGROUP_TARGET_THRESH:
936 next = val + THRESHOLDS_EVENTS_TARGET;
937 break;
bb4cc1a8
AM
938 case MEM_CGROUP_TARGET_SOFTLIMIT:
939 next = val + SOFTLIMIT_EVENTS_TARGET;
940 break;
f53d7ce3
JW
941 case MEM_CGROUP_TARGET_NUMAINFO:
942 next = val + NUMAINFO_EVENTS_TARGET;
943 break;
944 default:
945 break;
946 }
947 __this_cpu_write(memcg->stat->targets[target], next);
948 return true;
7a159cc9 949 }
f53d7ce3 950 return false;
d2265e6f
KH
951}
952
953/*
954 * Check events in order.
955 *
956 */
c0ff4b85 957static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
958{
959 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
960 if (unlikely(mem_cgroup_event_ratelimit(memcg,
961 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 962 bool do_softlimit;
82b3f2a7 963 bool do_numainfo __maybe_unused;
f53d7ce3 964
bb4cc1a8
AM
965 do_softlimit = mem_cgroup_event_ratelimit(memcg,
966 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
967#if MAX_NUMNODES > 1
968 do_numainfo = mem_cgroup_event_ratelimit(memcg,
969 MEM_CGROUP_TARGET_NUMAINFO);
970#endif
c0ff4b85 971 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
972 if (unlikely(do_softlimit))
973 mem_cgroup_update_tree(memcg, page);
453a9bf3 974#if MAX_NUMNODES > 1
f53d7ce3 975 if (unlikely(do_numainfo))
c0ff4b85 976 atomic_inc(&memcg->numainfo_events);
453a9bf3 977#endif
0a31bc97 978 }
d2265e6f
KH
979}
980
cf475ad2 981struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 982{
31a78f23
BS
983 /*
984 * mm_update_next_owner() may clear mm->owner to NULL
985 * if it races with swapoff, page migration, etc.
986 * So this can be called with p == NULL.
987 */
988 if (unlikely(!p))
989 return NULL;
990
073219e9 991 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
992}
993
df381975 994static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 995{
c0ff4b85 996 struct mem_cgroup *memcg = NULL;
0b7f569e 997
54595fe2
KH
998 rcu_read_lock();
999 do {
6f6acb00
MH
1000 /*
1001 * Page cache insertions can happen withou an
1002 * actual mm context, e.g. during disk probing
1003 * on boot, loopback IO, acct() writes etc.
1004 */
1005 if (unlikely(!mm))
df381975 1006 memcg = root_mem_cgroup;
6f6acb00
MH
1007 else {
1008 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1009 if (unlikely(!memcg))
1010 memcg = root_mem_cgroup;
1011 }
ec903c0c 1012 } while (!css_tryget_online(&memcg->css));
54595fe2 1013 rcu_read_unlock();
c0ff4b85 1014 return memcg;
54595fe2
KH
1015}
1016
5660048c
JW
1017/**
1018 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1019 * @root: hierarchy root
1020 * @prev: previously returned memcg, NULL on first invocation
1021 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1022 *
1023 * Returns references to children of the hierarchy below @root, or
1024 * @root itself, or %NULL after a full round-trip.
1025 *
1026 * Caller must pass the return value in @prev on subsequent
1027 * invocations for reference counting, or use mem_cgroup_iter_break()
1028 * to cancel a hierarchy walk before the round-trip is complete.
1029 *
1030 * Reclaimers can specify a zone and a priority level in @reclaim to
1031 * divide up the memcgs in the hierarchy among all concurrent
1032 * reclaimers operating on the same zone and priority.
1033 */
694fbc0f 1034struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1035 struct mem_cgroup *prev,
694fbc0f 1036 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1037{
5ac8fb31
JW
1038 struct reclaim_iter *uninitialized_var(iter);
1039 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1040 struct mem_cgroup *memcg = NULL;
5ac8fb31 1041 struct mem_cgroup *pos = NULL;
711d3d2c 1042
694fbc0f
AM
1043 if (mem_cgroup_disabled())
1044 return NULL;
5660048c 1045
9f3a0d09
JW
1046 if (!root)
1047 root = root_mem_cgroup;
7d74b06f 1048
9f3a0d09 1049 if (prev && !reclaim)
5ac8fb31 1050 pos = prev;
14067bb3 1051
9f3a0d09
JW
1052 if (!root->use_hierarchy && root != root_mem_cgroup) {
1053 if (prev)
5ac8fb31 1054 goto out;
694fbc0f 1055 return root;
9f3a0d09 1056 }
14067bb3 1057
542f85f9 1058 rcu_read_lock();
5f578161 1059
5ac8fb31
JW
1060 if (reclaim) {
1061 struct mem_cgroup_per_zone *mz;
1062
1063 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1064 iter = &mz->iter[reclaim->priority];
1065
1066 if (prev && reclaim->generation != iter->generation)
1067 goto out_unlock;
1068
1069 do {
1070 pos = ACCESS_ONCE(iter->position);
1071 /*
1072 * A racing update may change the position and
1073 * put the last reference, hence css_tryget(),
1074 * or retry to see the updated position.
1075 */
1076 } while (pos && !css_tryget(&pos->css));
1077 }
1078
1079 if (pos)
1080 css = &pos->css;
1081
1082 for (;;) {
1083 css = css_next_descendant_pre(css, &root->css);
1084 if (!css) {
1085 /*
1086 * Reclaimers share the hierarchy walk, and a
1087 * new one might jump in right at the end of
1088 * the hierarchy - make sure they see at least
1089 * one group and restart from the beginning.
1090 */
1091 if (!prev)
1092 continue;
1093 break;
527a5ec9 1094 }
7d74b06f 1095
5ac8fb31
JW
1096 /*
1097 * Verify the css and acquire a reference. The root
1098 * is provided by the caller, so we know it's alive
1099 * and kicking, and don't take an extra reference.
1100 */
1101 memcg = mem_cgroup_from_css(css);
14067bb3 1102
5ac8fb31
JW
1103 if (css == &root->css)
1104 break;
14067bb3 1105
b2052564 1106 if (css_tryget(css)) {
5ac8fb31
JW
1107 /*
1108 * Make sure the memcg is initialized:
1109 * mem_cgroup_css_online() orders the the
1110 * initialization against setting the flag.
1111 */
1112 if (smp_load_acquire(&memcg->initialized))
1113 break;
542f85f9 1114
5ac8fb31 1115 css_put(css);
527a5ec9 1116 }
9f3a0d09 1117
5ac8fb31 1118 memcg = NULL;
9f3a0d09 1119 }
5ac8fb31
JW
1120
1121 if (reclaim) {
1122 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1123 if (memcg)
1124 css_get(&memcg->css);
1125 if (pos)
1126 css_put(&pos->css);
1127 }
1128
1129 /*
1130 * pairs with css_tryget when dereferencing iter->position
1131 * above.
1132 */
1133 if (pos)
1134 css_put(&pos->css);
1135
1136 if (!memcg)
1137 iter->generation++;
1138 else if (!prev)
1139 reclaim->generation = iter->generation;
9f3a0d09 1140 }
5ac8fb31 1141
542f85f9
MH
1142out_unlock:
1143 rcu_read_unlock();
5ac8fb31 1144out:
c40046f3
MH
1145 if (prev && prev != root)
1146 css_put(&prev->css);
1147
9f3a0d09 1148 return memcg;
14067bb3 1149}
7d74b06f 1150
5660048c
JW
1151/**
1152 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1153 * @root: hierarchy root
1154 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1155 */
1156void mem_cgroup_iter_break(struct mem_cgroup *root,
1157 struct mem_cgroup *prev)
9f3a0d09
JW
1158{
1159 if (!root)
1160 root = root_mem_cgroup;
1161 if (prev && prev != root)
1162 css_put(&prev->css);
1163}
7d74b06f 1164
9f3a0d09
JW
1165/*
1166 * Iteration constructs for visiting all cgroups (under a tree). If
1167 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1168 * be used for reference counting.
1169 */
1170#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1171 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1172 iter != NULL; \
527a5ec9 1173 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1174
9f3a0d09 1175#define for_each_mem_cgroup(iter) \
527a5ec9 1176 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1177 iter != NULL; \
527a5ec9 1178 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1179
68ae564b 1180void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1181{
c0ff4b85 1182 struct mem_cgroup *memcg;
456f998e 1183
456f998e 1184 rcu_read_lock();
c0ff4b85
R
1185 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1186 if (unlikely(!memcg))
456f998e
YH
1187 goto out;
1188
1189 switch (idx) {
456f998e 1190 case PGFAULT:
0e574a93
JW
1191 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1192 break;
1193 case PGMAJFAULT:
1194 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1195 break;
1196 default:
1197 BUG();
1198 }
1199out:
1200 rcu_read_unlock();
1201}
68ae564b 1202EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1203
925b7673
JW
1204/**
1205 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1206 * @zone: zone of the wanted lruvec
fa9add64 1207 * @memcg: memcg of the wanted lruvec
925b7673
JW
1208 *
1209 * Returns the lru list vector holding pages for the given @zone and
1210 * @mem. This can be the global zone lruvec, if the memory controller
1211 * is disabled.
1212 */
1213struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1214 struct mem_cgroup *memcg)
1215{
1216 struct mem_cgroup_per_zone *mz;
bea8c150 1217 struct lruvec *lruvec;
925b7673 1218
bea8c150
HD
1219 if (mem_cgroup_disabled()) {
1220 lruvec = &zone->lruvec;
1221 goto out;
1222 }
925b7673 1223
e231875b 1224 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1225 lruvec = &mz->lruvec;
1226out:
1227 /*
1228 * Since a node can be onlined after the mem_cgroup was created,
1229 * we have to be prepared to initialize lruvec->zone here;
1230 * and if offlined then reonlined, we need to reinitialize it.
1231 */
1232 if (unlikely(lruvec->zone != zone))
1233 lruvec->zone = zone;
1234 return lruvec;
925b7673
JW
1235}
1236
925b7673 1237/**
dfe0e773 1238 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1239 * @page: the page
fa9add64 1240 * @zone: zone of the page
dfe0e773
JW
1241 *
1242 * This function is only safe when following the LRU page isolation
1243 * and putback protocol: the LRU lock must be held, and the page must
1244 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1245 */
fa9add64 1246struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1247{
08e552c6 1248 struct mem_cgroup_per_zone *mz;
925b7673 1249 struct mem_cgroup *memcg;
bea8c150 1250 struct lruvec *lruvec;
6d12e2d8 1251
bea8c150
HD
1252 if (mem_cgroup_disabled()) {
1253 lruvec = &zone->lruvec;
1254 goto out;
1255 }
925b7673 1256
1306a85a 1257 memcg = page->mem_cgroup;
7512102c 1258 /*
dfe0e773 1259 * Swapcache readahead pages are added to the LRU - and
29833315 1260 * possibly migrated - before they are charged.
7512102c 1261 */
29833315
JW
1262 if (!memcg)
1263 memcg = root_mem_cgroup;
7512102c 1264
e231875b 1265 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1266 lruvec = &mz->lruvec;
1267out:
1268 /*
1269 * Since a node can be onlined after the mem_cgroup was created,
1270 * we have to be prepared to initialize lruvec->zone here;
1271 * and if offlined then reonlined, we need to reinitialize it.
1272 */
1273 if (unlikely(lruvec->zone != zone))
1274 lruvec->zone = zone;
1275 return lruvec;
08e552c6 1276}
b69408e8 1277
925b7673 1278/**
fa9add64
HD
1279 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1280 * @lruvec: mem_cgroup per zone lru vector
1281 * @lru: index of lru list the page is sitting on
1282 * @nr_pages: positive when adding or negative when removing
925b7673 1283 *
fa9add64
HD
1284 * This function must be called when a page is added to or removed from an
1285 * lru list.
3f58a829 1286 */
fa9add64
HD
1287void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1288 int nr_pages)
3f58a829
MK
1289{
1290 struct mem_cgroup_per_zone *mz;
fa9add64 1291 unsigned long *lru_size;
3f58a829
MK
1292
1293 if (mem_cgroup_disabled())
1294 return;
1295
fa9add64
HD
1296 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1297 lru_size = mz->lru_size + lru;
1298 *lru_size += nr_pages;
1299 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1300}
544122e5 1301
2314b42d 1302bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1303{
2314b42d 1304 if (root == memcg)
91c63734 1305 return true;
2314b42d 1306 if (!root->use_hierarchy)
91c63734 1307 return false;
2314b42d 1308 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1309}
1310
2314b42d 1311bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1312{
2314b42d 1313 struct mem_cgroup *task_memcg;
158e0a2d 1314 struct task_struct *p;
ffbdccf5 1315 bool ret;
4c4a2214 1316
158e0a2d 1317 p = find_lock_task_mm(task);
de077d22 1318 if (p) {
2314b42d 1319 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1320 task_unlock(p);
1321 } else {
1322 /*
1323 * All threads may have already detached their mm's, but the oom
1324 * killer still needs to detect if they have already been oom
1325 * killed to prevent needlessly killing additional tasks.
1326 */
ffbdccf5 1327 rcu_read_lock();
2314b42d
JW
1328 task_memcg = mem_cgroup_from_task(task);
1329 css_get(&task_memcg->css);
ffbdccf5 1330 rcu_read_unlock();
de077d22 1331 }
2314b42d
JW
1332 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1333 css_put(&task_memcg->css);
4c4a2214
DR
1334 return ret;
1335}
1336
c56d5c7d 1337int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1338{
9b272977 1339 unsigned long inactive_ratio;
14797e23 1340 unsigned long inactive;
9b272977 1341 unsigned long active;
c772be93 1342 unsigned long gb;
14797e23 1343
4d7dcca2
HD
1344 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1345 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1346
c772be93
KM
1347 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1348 if (gb)
1349 inactive_ratio = int_sqrt(10 * gb);
1350 else
1351 inactive_ratio = 1;
1352
9b272977 1353 return inactive * inactive_ratio < active;
14797e23
KM
1354}
1355
90cbc250
VD
1356bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1357{
1358 struct mem_cgroup_per_zone *mz;
1359 struct mem_cgroup *memcg;
1360
1361 if (mem_cgroup_disabled())
1362 return true;
1363
1364 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1365 memcg = mz->memcg;
1366
1367 return !!(memcg->css.flags & CSS_ONLINE);
1368}
1369
3e32cb2e 1370#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1371 container_of(counter, struct mem_cgroup, member)
1372
19942822 1373/**
9d11ea9f 1374 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1375 * @memcg: the memory cgroup
19942822 1376 *
9d11ea9f 1377 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1378 * pages.
19942822 1379 */
c0ff4b85 1380static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1381{
3e32cb2e
JW
1382 unsigned long margin = 0;
1383 unsigned long count;
1384 unsigned long limit;
9d11ea9f 1385
3e32cb2e
JW
1386 count = page_counter_read(&memcg->memory);
1387 limit = ACCESS_ONCE(memcg->memory.limit);
1388 if (count < limit)
1389 margin = limit - count;
1390
1391 if (do_swap_account) {
1392 count = page_counter_read(&memcg->memsw);
1393 limit = ACCESS_ONCE(memcg->memsw.limit);
1394 if (count <= limit)
1395 margin = min(margin, limit - count);
1396 }
1397
1398 return margin;
19942822
JW
1399}
1400
1f4c025b 1401int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1402{
a7885eb8 1403 /* root ? */
14208b0e 1404 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1405 return vm_swappiness;
1406
bf1ff263 1407 return memcg->swappiness;
a7885eb8
KM
1408}
1409
32047e2a 1410/*
bdcbb659 1411 * A routine for checking "mem" is under move_account() or not.
32047e2a 1412 *
bdcbb659
QH
1413 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1414 * moving cgroups. This is for waiting at high-memory pressure
1415 * caused by "move".
32047e2a 1416 */
c0ff4b85 1417static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1418{
2bd9bb20
KH
1419 struct mem_cgroup *from;
1420 struct mem_cgroup *to;
4b534334 1421 bool ret = false;
2bd9bb20
KH
1422 /*
1423 * Unlike task_move routines, we access mc.to, mc.from not under
1424 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1425 */
1426 spin_lock(&mc.lock);
1427 from = mc.from;
1428 to = mc.to;
1429 if (!from)
1430 goto unlock;
3e92041d 1431
2314b42d
JW
1432 ret = mem_cgroup_is_descendant(from, memcg) ||
1433 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1434unlock:
1435 spin_unlock(&mc.lock);
4b534334
KH
1436 return ret;
1437}
1438
c0ff4b85 1439static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1440{
1441 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1442 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1443 DEFINE_WAIT(wait);
1444 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1445 /* moving charge context might have finished. */
1446 if (mc.moving_task)
1447 schedule();
1448 finish_wait(&mc.waitq, &wait);
1449 return true;
1450 }
1451 }
1452 return false;
1453}
1454
58cf188e 1455#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1456/**
58cf188e 1457 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1458 * @memcg: The memory cgroup that went over limit
1459 * @p: Task that is going to be killed
1460 *
1461 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1462 * enabled
1463 */
1464void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1465{
e61734c5 1466 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1467 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1468 struct mem_cgroup *iter;
1469 unsigned int i;
e222432b 1470
58cf188e 1471 if (!p)
e222432b
BS
1472 return;
1473
08088cb9 1474 mutex_lock(&oom_info_lock);
e222432b
BS
1475 rcu_read_lock();
1476
e61734c5
TH
1477 pr_info("Task in ");
1478 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
0346dadb 1479 pr_cont(" killed as a result of limit of ");
e61734c5 1480 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1481 pr_cont("\n");
e222432b 1482
e222432b
BS
1483 rcu_read_unlock();
1484
3e32cb2e
JW
1485 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1486 K((u64)page_counter_read(&memcg->memory)),
1487 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1488 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1489 K((u64)page_counter_read(&memcg->memsw)),
1490 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1491 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1492 K((u64)page_counter_read(&memcg->kmem)),
1493 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1494
1495 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1496 pr_info("Memory cgroup stats for ");
1497 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1498 pr_cont(":");
1499
1500 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1501 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1502 continue;
1503 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1504 K(mem_cgroup_read_stat(iter, i)));
1505 }
1506
1507 for (i = 0; i < NR_LRU_LISTS; i++)
1508 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1509 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1510
1511 pr_cont("\n");
1512 }
08088cb9 1513 mutex_unlock(&oom_info_lock);
e222432b
BS
1514}
1515
81d39c20
KH
1516/*
1517 * This function returns the number of memcg under hierarchy tree. Returns
1518 * 1(self count) if no children.
1519 */
c0ff4b85 1520static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1521{
1522 int num = 0;
7d74b06f
KH
1523 struct mem_cgroup *iter;
1524
c0ff4b85 1525 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1526 num++;
81d39c20
KH
1527 return num;
1528}
1529
a63d83f4
DR
1530/*
1531 * Return the memory (and swap, if configured) limit for a memcg.
1532 */
3e32cb2e 1533static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1534{
3e32cb2e 1535 unsigned long limit;
f3e8eb70 1536
3e32cb2e 1537 limit = memcg->memory.limit;
9a5a8f19 1538 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1539 unsigned long memsw_limit;
9a5a8f19 1540
3e32cb2e
JW
1541 memsw_limit = memcg->memsw.limit;
1542 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1543 }
9a5a8f19 1544 return limit;
a63d83f4
DR
1545}
1546
19965460
DR
1547static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1548 int order)
9cbb78bb
DR
1549{
1550 struct mem_cgroup *iter;
1551 unsigned long chosen_points = 0;
1552 unsigned long totalpages;
1553 unsigned int points = 0;
1554 struct task_struct *chosen = NULL;
1555
876aafbf 1556 /*
465adcf1
DR
1557 * If current has a pending SIGKILL or is exiting, then automatically
1558 * select it. The goal is to allow it to allocate so that it may
1559 * quickly exit and free its memory.
876aafbf 1560 */
d003f371 1561 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
49550b60 1562 mark_tsk_oom_victim(current);
876aafbf
DR
1563 return;
1564 }
1565
1566 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1567 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1568 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1569 struct css_task_iter it;
9cbb78bb
DR
1570 struct task_struct *task;
1571
72ec7029
TH
1572 css_task_iter_start(&iter->css, &it);
1573 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1574 switch (oom_scan_process_thread(task, totalpages, NULL,
1575 false)) {
1576 case OOM_SCAN_SELECT:
1577 if (chosen)
1578 put_task_struct(chosen);
1579 chosen = task;
1580 chosen_points = ULONG_MAX;
1581 get_task_struct(chosen);
1582 /* fall through */
1583 case OOM_SCAN_CONTINUE:
1584 continue;
1585 case OOM_SCAN_ABORT:
72ec7029 1586 css_task_iter_end(&it);
9cbb78bb
DR
1587 mem_cgroup_iter_break(memcg, iter);
1588 if (chosen)
1589 put_task_struct(chosen);
1590 return;
1591 case OOM_SCAN_OK:
1592 break;
1593 };
1594 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1595 if (!points || points < chosen_points)
1596 continue;
1597 /* Prefer thread group leaders for display purposes */
1598 if (points == chosen_points &&
1599 thread_group_leader(chosen))
1600 continue;
1601
1602 if (chosen)
1603 put_task_struct(chosen);
1604 chosen = task;
1605 chosen_points = points;
1606 get_task_struct(chosen);
9cbb78bb 1607 }
72ec7029 1608 css_task_iter_end(&it);
9cbb78bb
DR
1609 }
1610
1611 if (!chosen)
1612 return;
1613 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1614 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1615 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1616}
1617
ae6e71d3
MC
1618#if MAX_NUMNODES > 1
1619
4d0c066d
KH
1620/**
1621 * test_mem_cgroup_node_reclaimable
dad7557e 1622 * @memcg: the target memcg
4d0c066d
KH
1623 * @nid: the node ID to be checked.
1624 * @noswap : specify true here if the user wants flle only information.
1625 *
1626 * This function returns whether the specified memcg contains any
1627 * reclaimable pages on a node. Returns true if there are any reclaimable
1628 * pages in the node.
1629 */
c0ff4b85 1630static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1631 int nid, bool noswap)
1632{
c0ff4b85 1633 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1634 return true;
1635 if (noswap || !total_swap_pages)
1636 return false;
c0ff4b85 1637 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1638 return true;
1639 return false;
1640
1641}
889976db
YH
1642
1643/*
1644 * Always updating the nodemask is not very good - even if we have an empty
1645 * list or the wrong list here, we can start from some node and traverse all
1646 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1647 *
1648 */
c0ff4b85 1649static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1650{
1651 int nid;
453a9bf3
KH
1652 /*
1653 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1654 * pagein/pageout changes since the last update.
1655 */
c0ff4b85 1656 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1657 return;
c0ff4b85 1658 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1659 return;
1660
889976db 1661 /* make a nodemask where this memcg uses memory from */
31aaea4a 1662 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1663
31aaea4a 1664 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1665
c0ff4b85
R
1666 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1667 node_clear(nid, memcg->scan_nodes);
889976db 1668 }
453a9bf3 1669
c0ff4b85
R
1670 atomic_set(&memcg->numainfo_events, 0);
1671 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1672}
1673
1674/*
1675 * Selecting a node where we start reclaim from. Because what we need is just
1676 * reducing usage counter, start from anywhere is O,K. Considering
1677 * memory reclaim from current node, there are pros. and cons.
1678 *
1679 * Freeing memory from current node means freeing memory from a node which
1680 * we'll use or we've used. So, it may make LRU bad. And if several threads
1681 * hit limits, it will see a contention on a node. But freeing from remote
1682 * node means more costs for memory reclaim because of memory latency.
1683 *
1684 * Now, we use round-robin. Better algorithm is welcomed.
1685 */
c0ff4b85 1686int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1687{
1688 int node;
1689
c0ff4b85
R
1690 mem_cgroup_may_update_nodemask(memcg);
1691 node = memcg->last_scanned_node;
889976db 1692
c0ff4b85 1693 node = next_node(node, memcg->scan_nodes);
889976db 1694 if (node == MAX_NUMNODES)
c0ff4b85 1695 node = first_node(memcg->scan_nodes);
889976db
YH
1696 /*
1697 * We call this when we hit limit, not when pages are added to LRU.
1698 * No LRU may hold pages because all pages are UNEVICTABLE or
1699 * memcg is too small and all pages are not on LRU. In that case,
1700 * we use curret node.
1701 */
1702 if (unlikely(node == MAX_NUMNODES))
1703 node = numa_node_id();
1704
c0ff4b85 1705 memcg->last_scanned_node = node;
889976db
YH
1706 return node;
1707}
889976db 1708#else
c0ff4b85 1709int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1710{
1711 return 0;
1712}
1713#endif
1714
0608f43d
AM
1715static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1716 struct zone *zone,
1717 gfp_t gfp_mask,
1718 unsigned long *total_scanned)
1719{
1720 struct mem_cgroup *victim = NULL;
1721 int total = 0;
1722 int loop = 0;
1723 unsigned long excess;
1724 unsigned long nr_scanned;
1725 struct mem_cgroup_reclaim_cookie reclaim = {
1726 .zone = zone,
1727 .priority = 0,
1728 };
1729
3e32cb2e 1730 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1731
1732 while (1) {
1733 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1734 if (!victim) {
1735 loop++;
1736 if (loop >= 2) {
1737 /*
1738 * If we have not been able to reclaim
1739 * anything, it might because there are
1740 * no reclaimable pages under this hierarchy
1741 */
1742 if (!total)
1743 break;
1744 /*
1745 * We want to do more targeted reclaim.
1746 * excess >> 2 is not to excessive so as to
1747 * reclaim too much, nor too less that we keep
1748 * coming back to reclaim from this cgroup
1749 */
1750 if (total >= (excess >> 2) ||
1751 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1752 break;
1753 }
1754 continue;
1755 }
0608f43d
AM
1756 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1757 zone, &nr_scanned);
1758 *total_scanned += nr_scanned;
3e32cb2e 1759 if (!soft_limit_excess(root_memcg))
0608f43d 1760 break;
6d61ef40 1761 }
0608f43d
AM
1762 mem_cgroup_iter_break(root_memcg, victim);
1763 return total;
6d61ef40
BS
1764}
1765
0056f4e6
JW
1766#ifdef CONFIG_LOCKDEP
1767static struct lockdep_map memcg_oom_lock_dep_map = {
1768 .name = "memcg_oom_lock",
1769};
1770#endif
1771
fb2a6fc5
JW
1772static DEFINE_SPINLOCK(memcg_oom_lock);
1773
867578cb
KH
1774/*
1775 * Check OOM-Killer is already running under our hierarchy.
1776 * If someone is running, return false.
1777 */
fb2a6fc5 1778static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1779{
79dfdacc 1780 struct mem_cgroup *iter, *failed = NULL;
a636b327 1781
fb2a6fc5
JW
1782 spin_lock(&memcg_oom_lock);
1783
9f3a0d09 1784 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1785 if (iter->oom_lock) {
79dfdacc
MH
1786 /*
1787 * this subtree of our hierarchy is already locked
1788 * so we cannot give a lock.
1789 */
79dfdacc 1790 failed = iter;
9f3a0d09
JW
1791 mem_cgroup_iter_break(memcg, iter);
1792 break;
23751be0
JW
1793 } else
1794 iter->oom_lock = true;
7d74b06f 1795 }
867578cb 1796
fb2a6fc5
JW
1797 if (failed) {
1798 /*
1799 * OK, we failed to lock the whole subtree so we have
1800 * to clean up what we set up to the failing subtree
1801 */
1802 for_each_mem_cgroup_tree(iter, memcg) {
1803 if (iter == failed) {
1804 mem_cgroup_iter_break(memcg, iter);
1805 break;
1806 }
1807 iter->oom_lock = false;
79dfdacc 1808 }
0056f4e6
JW
1809 } else
1810 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1811
1812 spin_unlock(&memcg_oom_lock);
1813
1814 return !failed;
a636b327 1815}
0b7f569e 1816
fb2a6fc5 1817static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1818{
7d74b06f
KH
1819 struct mem_cgroup *iter;
1820
fb2a6fc5 1821 spin_lock(&memcg_oom_lock);
0056f4e6 1822 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1823 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1824 iter->oom_lock = false;
fb2a6fc5 1825 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1826}
1827
c0ff4b85 1828static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1829{
1830 struct mem_cgroup *iter;
1831
c0ff4b85 1832 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1833 atomic_inc(&iter->under_oom);
1834}
1835
c0ff4b85 1836static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1837{
1838 struct mem_cgroup *iter;
1839
867578cb
KH
1840 /*
1841 * When a new child is created while the hierarchy is under oom,
1842 * mem_cgroup_oom_lock() may not be called. We have to use
1843 * atomic_add_unless() here.
1844 */
c0ff4b85 1845 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1846 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1847}
1848
867578cb
KH
1849static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1850
dc98df5a 1851struct oom_wait_info {
d79154bb 1852 struct mem_cgroup *memcg;
dc98df5a
KH
1853 wait_queue_t wait;
1854};
1855
1856static int memcg_oom_wake_function(wait_queue_t *wait,
1857 unsigned mode, int sync, void *arg)
1858{
d79154bb
HD
1859 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1860 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1861 struct oom_wait_info *oom_wait_info;
1862
1863 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1864 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1865
2314b42d
JW
1866 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1867 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1868 return 0;
dc98df5a
KH
1869 return autoremove_wake_function(wait, mode, sync, arg);
1870}
1871
c0ff4b85 1872static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1873{
3812c8c8 1874 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1875 /* for filtering, pass "memcg" as argument. */
1876 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1877}
1878
c0ff4b85 1879static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1880{
c0ff4b85
R
1881 if (memcg && atomic_read(&memcg->under_oom))
1882 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1883}
1884
3812c8c8 1885static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1886{
3812c8c8
JW
1887 if (!current->memcg_oom.may_oom)
1888 return;
867578cb 1889 /*
49426420
JW
1890 * We are in the middle of the charge context here, so we
1891 * don't want to block when potentially sitting on a callstack
1892 * that holds all kinds of filesystem and mm locks.
1893 *
1894 * Also, the caller may handle a failed allocation gracefully
1895 * (like optional page cache readahead) and so an OOM killer
1896 * invocation might not even be necessary.
1897 *
1898 * That's why we don't do anything here except remember the
1899 * OOM context and then deal with it at the end of the page
1900 * fault when the stack is unwound, the locks are released,
1901 * and when we know whether the fault was overall successful.
867578cb 1902 */
49426420
JW
1903 css_get(&memcg->css);
1904 current->memcg_oom.memcg = memcg;
1905 current->memcg_oom.gfp_mask = mask;
1906 current->memcg_oom.order = order;
3812c8c8
JW
1907}
1908
1909/**
1910 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1911 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1912 *
49426420
JW
1913 * This has to be called at the end of a page fault if the memcg OOM
1914 * handler was enabled.
3812c8c8 1915 *
49426420 1916 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1917 * sleep on a waitqueue until the userspace task resolves the
1918 * situation. Sleeping directly in the charge context with all kinds
1919 * of locks held is not a good idea, instead we remember an OOM state
1920 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1921 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1922 *
1923 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1924 * completed, %false otherwise.
3812c8c8 1925 */
49426420 1926bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1927{
49426420 1928 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1929 struct oom_wait_info owait;
49426420 1930 bool locked;
3812c8c8
JW
1931
1932 /* OOM is global, do not handle */
3812c8c8 1933 if (!memcg)
49426420 1934 return false;
3812c8c8 1935
c32b3cbe 1936 if (!handle || oom_killer_disabled)
49426420 1937 goto cleanup;
3812c8c8
JW
1938
1939 owait.memcg = memcg;
1940 owait.wait.flags = 0;
1941 owait.wait.func = memcg_oom_wake_function;
1942 owait.wait.private = current;
1943 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1944
3812c8c8 1945 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1946 mem_cgroup_mark_under_oom(memcg);
1947
1948 locked = mem_cgroup_oom_trylock(memcg);
1949
1950 if (locked)
1951 mem_cgroup_oom_notify(memcg);
1952
1953 if (locked && !memcg->oom_kill_disable) {
1954 mem_cgroup_unmark_under_oom(memcg);
1955 finish_wait(&memcg_oom_waitq, &owait.wait);
1956 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1957 current->memcg_oom.order);
1958 } else {
3812c8c8 1959 schedule();
49426420
JW
1960 mem_cgroup_unmark_under_oom(memcg);
1961 finish_wait(&memcg_oom_waitq, &owait.wait);
1962 }
1963
1964 if (locked) {
fb2a6fc5
JW
1965 mem_cgroup_oom_unlock(memcg);
1966 /*
1967 * There is no guarantee that an OOM-lock contender
1968 * sees the wakeups triggered by the OOM kill
1969 * uncharges. Wake any sleepers explicitely.
1970 */
1971 memcg_oom_recover(memcg);
1972 }
49426420
JW
1973cleanup:
1974 current->memcg_oom.memcg = NULL;
3812c8c8 1975 css_put(&memcg->css);
867578cb 1976 return true;
0b7f569e
KH
1977}
1978
d7365e78
JW
1979/**
1980 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1981 * @page: page that is going to change accounted state
32047e2a 1982 *
d7365e78
JW
1983 * This function must mark the beginning of an accounted page state
1984 * change to prevent double accounting when the page is concurrently
1985 * being moved to another memcg:
32047e2a 1986 *
6de22619 1987 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1988 * if (TestClearPageState(page))
1989 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1990 * mem_cgroup_end_page_stat(memcg);
d69b042f 1991 */
6de22619 1992struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1993{
1994 struct mem_cgroup *memcg;
6de22619 1995 unsigned long flags;
89c06bd5 1996
6de22619
JW
1997 /*
1998 * The RCU lock is held throughout the transaction. The fast
1999 * path can get away without acquiring the memcg->move_lock
2000 * because page moving starts with an RCU grace period.
2001 *
2002 * The RCU lock also protects the memcg from being freed when
2003 * the page state that is going to change is the only thing
2004 * preventing the page from being uncharged.
2005 * E.g. end-writeback clearing PageWriteback(), which allows
2006 * migration to go ahead and uncharge the page before the
2007 * account transaction might be complete.
2008 */
d7365e78
JW
2009 rcu_read_lock();
2010
2011 if (mem_cgroup_disabled())
2012 return NULL;
89c06bd5 2013again:
1306a85a 2014 memcg = page->mem_cgroup;
29833315 2015 if (unlikely(!memcg))
d7365e78
JW
2016 return NULL;
2017
bdcbb659 2018 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2019 return memcg;
89c06bd5 2020
6de22619 2021 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2022 if (memcg != page->mem_cgroup) {
6de22619 2023 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2024 goto again;
2025 }
6de22619
JW
2026
2027 /*
2028 * When charge migration first begins, we can have locked and
2029 * unlocked page stat updates happening concurrently. Track
2030 * the task who has the lock for mem_cgroup_end_page_stat().
2031 */
2032 memcg->move_lock_task = current;
2033 memcg->move_lock_flags = flags;
d7365e78
JW
2034
2035 return memcg;
89c06bd5
KH
2036}
2037
d7365e78
JW
2038/**
2039 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2040 * @memcg: the memcg that was accounted against
d7365e78 2041 */
6de22619 2042void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 2043{
6de22619
JW
2044 if (memcg && memcg->move_lock_task == current) {
2045 unsigned long flags = memcg->move_lock_flags;
2046
2047 memcg->move_lock_task = NULL;
2048 memcg->move_lock_flags = 0;
2049
2050 spin_unlock_irqrestore(&memcg->move_lock, flags);
2051 }
89c06bd5 2052
d7365e78 2053 rcu_read_unlock();
89c06bd5
KH
2054}
2055
d7365e78
JW
2056/**
2057 * mem_cgroup_update_page_stat - update page state statistics
2058 * @memcg: memcg to account against
2059 * @idx: page state item to account
2060 * @val: number of pages (positive or negative)
2061 *
2062 * See mem_cgroup_begin_page_stat() for locking requirements.
2063 */
2064void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2065 enum mem_cgroup_stat_index idx, int val)
d69b042f 2066{
658b72c5 2067 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2068
d7365e78
JW
2069 if (memcg)
2070 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2071}
26174efd 2072
cdec2e42
KH
2073/*
2074 * size of first charge trial. "32" comes from vmscan.c's magic value.
2075 * TODO: maybe necessary to use big numbers in big irons.
2076 */
7ec99d62 2077#define CHARGE_BATCH 32U
cdec2e42
KH
2078struct memcg_stock_pcp {
2079 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2080 unsigned int nr_pages;
cdec2e42 2081 struct work_struct work;
26fe6168 2082 unsigned long flags;
a0db00fc 2083#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2084};
2085static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2086static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2087
a0956d54
SS
2088/**
2089 * consume_stock: Try to consume stocked charge on this cpu.
2090 * @memcg: memcg to consume from.
2091 * @nr_pages: how many pages to charge.
2092 *
2093 * The charges will only happen if @memcg matches the current cpu's memcg
2094 * stock, and at least @nr_pages are available in that stock. Failure to
2095 * service an allocation will refill the stock.
2096 *
2097 * returns true if successful, false otherwise.
cdec2e42 2098 */
a0956d54 2099static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2100{
2101 struct memcg_stock_pcp *stock;
3e32cb2e 2102 bool ret = false;
cdec2e42 2103
a0956d54 2104 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2105 return ret;
a0956d54 2106
cdec2e42 2107 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2108 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2109 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2110 ret = true;
2111 }
cdec2e42
KH
2112 put_cpu_var(memcg_stock);
2113 return ret;
2114}
2115
2116/*
3e32cb2e 2117 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2118 */
2119static void drain_stock(struct memcg_stock_pcp *stock)
2120{
2121 struct mem_cgroup *old = stock->cached;
2122
11c9ea4e 2123 if (stock->nr_pages) {
3e32cb2e 2124 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2125 if (do_swap_account)
3e32cb2e 2126 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2127 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2128 stock->nr_pages = 0;
cdec2e42
KH
2129 }
2130 stock->cached = NULL;
cdec2e42
KH
2131}
2132
2133/*
2134 * This must be called under preempt disabled or must be called by
2135 * a thread which is pinned to local cpu.
2136 */
2137static void drain_local_stock(struct work_struct *dummy)
2138{
7c8e0181 2139 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2140 drain_stock(stock);
26fe6168 2141 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2142}
2143
2144/*
3e32cb2e 2145 * Cache charges(val) to local per_cpu area.
320cc51d 2146 * This will be consumed by consume_stock() function, later.
cdec2e42 2147 */
c0ff4b85 2148static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2149{
2150 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2151
c0ff4b85 2152 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2153 drain_stock(stock);
c0ff4b85 2154 stock->cached = memcg;
cdec2e42 2155 }
11c9ea4e 2156 stock->nr_pages += nr_pages;
cdec2e42
KH
2157 put_cpu_var(memcg_stock);
2158}
2159
2160/*
c0ff4b85 2161 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2162 * of the hierarchy under it.
cdec2e42 2163 */
6d3d6aa2 2164static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2165{
26fe6168 2166 int cpu, curcpu;
d38144b7 2167
6d3d6aa2
JW
2168 /* If someone's already draining, avoid adding running more workers. */
2169 if (!mutex_trylock(&percpu_charge_mutex))
2170 return;
cdec2e42 2171 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2172 get_online_cpus();
5af12d0e 2173 curcpu = get_cpu();
cdec2e42
KH
2174 for_each_online_cpu(cpu) {
2175 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2176 struct mem_cgroup *memcg;
26fe6168 2177
c0ff4b85
R
2178 memcg = stock->cached;
2179 if (!memcg || !stock->nr_pages)
26fe6168 2180 continue;
2314b42d 2181 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2182 continue;
d1a05b69
MH
2183 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2184 if (cpu == curcpu)
2185 drain_local_stock(&stock->work);
2186 else
2187 schedule_work_on(cpu, &stock->work);
2188 }
cdec2e42 2189 }
5af12d0e 2190 put_cpu();
f894ffa8 2191 put_online_cpus();
9f50fad6 2192 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2193}
2194
711d3d2c
KH
2195/*
2196 * This function drains percpu counter value from DEAD cpu and
2197 * move it to local cpu. Note that this function can be preempted.
2198 */
c0ff4b85 2199static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2200{
2201 int i;
2202
c0ff4b85 2203 spin_lock(&memcg->pcp_counter_lock);
6104621d 2204 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2205 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2206
c0ff4b85
R
2207 per_cpu(memcg->stat->count[i], cpu) = 0;
2208 memcg->nocpu_base.count[i] += x;
711d3d2c 2209 }
e9f8974f 2210 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2211 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2212
c0ff4b85
R
2213 per_cpu(memcg->stat->events[i], cpu) = 0;
2214 memcg->nocpu_base.events[i] += x;
e9f8974f 2215 }
c0ff4b85 2216 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2217}
2218
0db0628d 2219static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2220 unsigned long action,
2221 void *hcpu)
2222{
2223 int cpu = (unsigned long)hcpu;
2224 struct memcg_stock_pcp *stock;
711d3d2c 2225 struct mem_cgroup *iter;
cdec2e42 2226
619d094b 2227 if (action == CPU_ONLINE)
1489ebad 2228 return NOTIFY_OK;
1489ebad 2229
d833049b 2230 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2231 return NOTIFY_OK;
711d3d2c 2232
9f3a0d09 2233 for_each_mem_cgroup(iter)
711d3d2c
KH
2234 mem_cgroup_drain_pcp_counter(iter, cpu);
2235
cdec2e42
KH
2236 stock = &per_cpu(memcg_stock, cpu);
2237 drain_stock(stock);
2238 return NOTIFY_OK;
2239}
2240
00501b53
JW
2241static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2242 unsigned int nr_pages)
8a9f3ccd 2243{
7ec99d62 2244 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2245 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2246 struct mem_cgroup *mem_over_limit;
3e32cb2e 2247 struct page_counter *counter;
6539cc05 2248 unsigned long nr_reclaimed;
b70a2a21
JW
2249 bool may_swap = true;
2250 bool drained = false;
05b84301 2251 int ret = 0;
a636b327 2252
ce00a967
JW
2253 if (mem_cgroup_is_root(memcg))
2254 goto done;
6539cc05 2255retry:
b6b6cc72
MH
2256 if (consume_stock(memcg, nr_pages))
2257 goto done;
8a9f3ccd 2258
3fbe7244 2259 if (!do_swap_account ||
3e32cb2e
JW
2260 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2261 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2262 goto done_restock;
3fbe7244 2263 if (do_swap_account)
3e32cb2e
JW
2264 page_counter_uncharge(&memcg->memsw, batch);
2265 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2266 } else {
3e32cb2e 2267 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2268 may_swap = false;
3fbe7244 2269 }
7a81b88c 2270
6539cc05
JW
2271 if (batch > nr_pages) {
2272 batch = nr_pages;
2273 goto retry;
2274 }
6d61ef40 2275
06b078fc
JW
2276 /*
2277 * Unlike in global OOM situations, memcg is not in a physical
2278 * memory shortage. Allow dying and OOM-killed tasks to
2279 * bypass the last charges so that they can exit quickly and
2280 * free their memory.
2281 */
2282 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2283 fatal_signal_pending(current) ||
2284 current->flags & PF_EXITING))
2285 goto bypass;
2286
2287 if (unlikely(task_in_memcg_oom(current)))
2288 goto nomem;
2289
6539cc05
JW
2290 if (!(gfp_mask & __GFP_WAIT))
2291 goto nomem;
4b534334 2292
241994ed
JW
2293 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2294
b70a2a21
JW
2295 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2296 gfp_mask, may_swap);
6539cc05 2297
61e02c74 2298 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2299 goto retry;
28c34c29 2300
b70a2a21 2301 if (!drained) {
6d3d6aa2 2302 drain_all_stock(mem_over_limit);
b70a2a21
JW
2303 drained = true;
2304 goto retry;
2305 }
2306
28c34c29
JW
2307 if (gfp_mask & __GFP_NORETRY)
2308 goto nomem;
6539cc05
JW
2309 /*
2310 * Even though the limit is exceeded at this point, reclaim
2311 * may have been able to free some pages. Retry the charge
2312 * before killing the task.
2313 *
2314 * Only for regular pages, though: huge pages are rather
2315 * unlikely to succeed so close to the limit, and we fall back
2316 * to regular pages anyway in case of failure.
2317 */
61e02c74 2318 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2319 goto retry;
2320 /*
2321 * At task move, charge accounts can be doubly counted. So, it's
2322 * better to wait until the end of task_move if something is going on.
2323 */
2324 if (mem_cgroup_wait_acct_move(mem_over_limit))
2325 goto retry;
2326
9b130619
JW
2327 if (nr_retries--)
2328 goto retry;
2329
06b078fc
JW
2330 if (gfp_mask & __GFP_NOFAIL)
2331 goto bypass;
2332
6539cc05
JW
2333 if (fatal_signal_pending(current))
2334 goto bypass;
2335
241994ed
JW
2336 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2337
61e02c74 2338 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2339nomem:
6d1fdc48 2340 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2341 return -ENOMEM;
867578cb 2342bypass:
ce00a967 2343 return -EINTR;
6539cc05
JW
2344
2345done_restock:
e8ea14cc 2346 css_get_many(&memcg->css, batch);
6539cc05
JW
2347 if (batch > nr_pages)
2348 refill_stock(memcg, batch - nr_pages);
241994ed
JW
2349 /*
2350 * If the hierarchy is above the normal consumption range,
2351 * make the charging task trim their excess contribution.
2352 */
2353 do {
2354 if (page_counter_read(&memcg->memory) <= memcg->high)
2355 continue;
2356 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2357 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2358 } while ((memcg = parent_mem_cgroup(memcg)));
6539cc05 2359done:
05b84301 2360 return ret;
7a81b88c 2361}
8a9f3ccd 2362
00501b53 2363static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2364{
ce00a967
JW
2365 if (mem_cgroup_is_root(memcg))
2366 return;
2367
3e32cb2e 2368 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2369 if (do_swap_account)
3e32cb2e 2370 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2371
e8ea14cc 2372 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2373}
2374
a3b2d692
KH
2375/*
2376 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2377 * rcu_read_lock(). The caller is responsible for calling
2378 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2379 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2380 */
2381static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2382{
a3b2d692
KH
2383 /* ID 0 is unused ID */
2384 if (!id)
2385 return NULL;
34c00c31 2386 return mem_cgroup_from_id(id);
a3b2d692
KH
2387}
2388
0a31bc97
JW
2389/*
2390 * try_get_mem_cgroup_from_page - look up page's memcg association
2391 * @page: the page
2392 *
2393 * Look up, get a css reference, and return the memcg that owns @page.
2394 *
2395 * The page must be locked to prevent racing with swap-in and page
2396 * cache charges. If coming from an unlocked page table, the caller
2397 * must ensure the page is on the LRU or this can race with charging.
2398 */
e42d9d5d 2399struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2400{
29833315 2401 struct mem_cgroup *memcg;
a3b2d692 2402 unsigned short id;
b5a84319
KH
2403 swp_entry_t ent;
2404
309381fe 2405 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2406
1306a85a 2407 memcg = page->mem_cgroup;
29833315
JW
2408 if (memcg) {
2409 if (!css_tryget_online(&memcg->css))
c0ff4b85 2410 memcg = NULL;
e42d9d5d 2411 } else if (PageSwapCache(page)) {
3c776e64 2412 ent.val = page_private(page);
9fb4b7cc 2413 id = lookup_swap_cgroup_id(ent);
a3b2d692 2414 rcu_read_lock();
c0ff4b85 2415 memcg = mem_cgroup_lookup(id);
ec903c0c 2416 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2417 memcg = NULL;
a3b2d692 2418 rcu_read_unlock();
3c776e64 2419 }
c0ff4b85 2420 return memcg;
b5a84319
KH
2421}
2422
0a31bc97
JW
2423static void lock_page_lru(struct page *page, int *isolated)
2424{
2425 struct zone *zone = page_zone(page);
2426
2427 spin_lock_irq(&zone->lru_lock);
2428 if (PageLRU(page)) {
2429 struct lruvec *lruvec;
2430
2431 lruvec = mem_cgroup_page_lruvec(page, zone);
2432 ClearPageLRU(page);
2433 del_page_from_lru_list(page, lruvec, page_lru(page));
2434 *isolated = 1;
2435 } else
2436 *isolated = 0;
2437}
2438
2439static void unlock_page_lru(struct page *page, int isolated)
2440{
2441 struct zone *zone = page_zone(page);
2442
2443 if (isolated) {
2444 struct lruvec *lruvec;
2445
2446 lruvec = mem_cgroup_page_lruvec(page, zone);
2447 VM_BUG_ON_PAGE(PageLRU(page), page);
2448 SetPageLRU(page);
2449 add_page_to_lru_list(page, lruvec, page_lru(page));
2450 }
2451 spin_unlock_irq(&zone->lru_lock);
2452}
2453
00501b53 2454static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2455 bool lrucare)
7a81b88c 2456{
0a31bc97 2457 int isolated;
9ce70c02 2458
1306a85a 2459 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2460
2461 /*
2462 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2463 * may already be on some other mem_cgroup's LRU. Take care of it.
2464 */
0a31bc97
JW
2465 if (lrucare)
2466 lock_page_lru(page, &isolated);
9ce70c02 2467
0a31bc97
JW
2468 /*
2469 * Nobody should be changing or seriously looking at
1306a85a 2470 * page->mem_cgroup at this point:
0a31bc97
JW
2471 *
2472 * - the page is uncharged
2473 *
2474 * - the page is off-LRU
2475 *
2476 * - an anonymous fault has exclusive page access, except for
2477 * a locked page table
2478 *
2479 * - a page cache insertion, a swapin fault, or a migration
2480 * have the page locked
2481 */
1306a85a 2482 page->mem_cgroup = memcg;
9ce70c02 2483
0a31bc97
JW
2484 if (lrucare)
2485 unlock_page_lru(page, isolated);
7a81b88c 2486}
66e1707b 2487
7ae1e1d0 2488#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2489int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2490 unsigned long nr_pages)
7ae1e1d0 2491{
3e32cb2e 2492 struct page_counter *counter;
7ae1e1d0 2493 int ret = 0;
7ae1e1d0 2494
3e32cb2e
JW
2495 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2496 if (ret < 0)
7ae1e1d0
GC
2497 return ret;
2498
3e32cb2e 2499 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2500 if (ret == -EINTR) {
2501 /*
00501b53
JW
2502 * try_charge() chose to bypass to root due to OOM kill or
2503 * fatal signal. Since our only options are to either fail
2504 * the allocation or charge it to this cgroup, do it as a
2505 * temporary condition. But we can't fail. From a kmem/slab
2506 * perspective, the cache has already been selected, by
2507 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2508 * our minds.
2509 *
2510 * This condition will only trigger if the task entered
00501b53
JW
2511 * memcg_charge_kmem in a sane state, but was OOM-killed
2512 * during try_charge() above. Tasks that were already dying
2513 * when the allocation triggers should have been already
7ae1e1d0
GC
2514 * directed to the root cgroup in memcontrol.h
2515 */
3e32cb2e 2516 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2517 if (do_swap_account)
3e32cb2e 2518 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2519 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2520 ret = 0;
2521 } else if (ret)
3e32cb2e 2522 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2523
2524 return ret;
2525}
2526
dbf22eb6 2527void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2528{
3e32cb2e 2529 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2530 if (do_swap_account)
3e32cb2e 2531 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2532
64f21993 2533 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2534
e8ea14cc 2535 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2536}
2537
2633d7a0
GC
2538/*
2539 * helper for acessing a memcg's index. It will be used as an index in the
2540 * child cache array in kmem_cache, and also to derive its name. This function
2541 * will return -1 when this is not a kmem-limited memcg.
2542 */
2543int memcg_cache_id(struct mem_cgroup *memcg)
2544{
2545 return memcg ? memcg->kmemcg_id : -1;
2546}
2547
f3bb3043 2548static int memcg_alloc_cache_id(void)
55007d84 2549{
f3bb3043
VD
2550 int id, size;
2551 int err;
2552
dbcf73e2 2553 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2554 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2555 if (id < 0)
2556 return id;
55007d84 2557
dbcf73e2 2558 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2559 return id;
2560
2561 /*
2562 * There's no space for the new id in memcg_caches arrays,
2563 * so we have to grow them.
2564 */
05257a1a 2565 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2566
2567 size = 2 * (id + 1);
55007d84
GC
2568 if (size < MEMCG_CACHES_MIN_SIZE)
2569 size = MEMCG_CACHES_MIN_SIZE;
2570 else if (size > MEMCG_CACHES_MAX_SIZE)
2571 size = MEMCG_CACHES_MAX_SIZE;
2572
f3bb3043 2573 err = memcg_update_all_caches(size);
60d3fd32
VD
2574 if (!err)
2575 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2576 if (!err)
2577 memcg_nr_cache_ids = size;
2578
2579 up_write(&memcg_cache_ids_sem);
2580
f3bb3043 2581 if (err) {
dbcf73e2 2582 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2583 return err;
2584 }
2585 return id;
2586}
2587
2588static void memcg_free_cache_id(int id)
2589{
dbcf73e2 2590 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2591}
2592
d5b3cf71 2593struct memcg_kmem_cache_create_work {
5722d094
VD
2594 struct mem_cgroup *memcg;
2595 struct kmem_cache *cachep;
2596 struct work_struct work;
2597};
2598
d5b3cf71 2599static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2600{
d5b3cf71
VD
2601 struct memcg_kmem_cache_create_work *cw =
2602 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2603 struct mem_cgroup *memcg = cw->memcg;
2604 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2605
d5b3cf71 2606 memcg_create_kmem_cache(memcg, cachep);
bd673145 2607
5722d094 2608 css_put(&memcg->css);
d7f25f8a
GC
2609 kfree(cw);
2610}
2611
2612/*
2613 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2614 */
d5b3cf71
VD
2615static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2616 struct kmem_cache *cachep)
d7f25f8a 2617{
d5b3cf71 2618 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2619
776ed0f0 2620 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2621 if (!cw)
d7f25f8a 2622 return;
8135be5a
VD
2623
2624 css_get(&memcg->css);
d7f25f8a
GC
2625
2626 cw->memcg = memcg;
2627 cw->cachep = cachep;
d5b3cf71 2628 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2629
d7f25f8a
GC
2630 schedule_work(&cw->work);
2631}
2632
d5b3cf71
VD
2633static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2634 struct kmem_cache *cachep)
0e9d92f2
GC
2635{
2636 /*
2637 * We need to stop accounting when we kmalloc, because if the
2638 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2639 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2640 *
2641 * However, it is better to enclose the whole function. Depending on
2642 * the debugging options enabled, INIT_WORK(), for instance, can
2643 * trigger an allocation. This too, will make us recurse. Because at
2644 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2645 * the safest choice is to do it like this, wrapping the whole function.
2646 */
6f185c29 2647 current->memcg_kmem_skip_account = 1;
d5b3cf71 2648 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2649 current->memcg_kmem_skip_account = 0;
0e9d92f2 2650}
c67a8a68 2651
d7f25f8a
GC
2652/*
2653 * Return the kmem_cache we're supposed to use for a slab allocation.
2654 * We try to use the current memcg's version of the cache.
2655 *
2656 * If the cache does not exist yet, if we are the first user of it,
2657 * we either create it immediately, if possible, or create it asynchronously
2658 * in a workqueue.
2659 * In the latter case, we will let the current allocation go through with
2660 * the original cache.
2661 *
2662 * Can't be called in interrupt context or from kernel threads.
2663 * This function needs to be called with rcu_read_lock() held.
2664 */
056b7cce 2665struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2666{
2667 struct mem_cgroup *memcg;
959c8963 2668 struct kmem_cache *memcg_cachep;
d7f25f8a 2669
f7ce3190 2670 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2671
9d100c5e 2672 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2673 return cachep;
2674
8135be5a 2675 memcg = get_mem_cgroup_from_mm(current->mm);
cf2b8fbf 2676 if (!memcg_kmem_is_active(memcg))
ca0dde97 2677 goto out;
d7f25f8a 2678
959c8963 2679 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
8135be5a
VD
2680 if (likely(memcg_cachep))
2681 return memcg_cachep;
ca0dde97
LZ
2682
2683 /*
2684 * If we are in a safe context (can wait, and not in interrupt
2685 * context), we could be be predictable and return right away.
2686 * This would guarantee that the allocation being performed
2687 * already belongs in the new cache.
2688 *
2689 * However, there are some clashes that can arrive from locking.
2690 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2691 * memcg_create_kmem_cache, this means no further allocation
2692 * could happen with the slab_mutex held. So it's better to
2693 * defer everything.
ca0dde97 2694 */
d5b3cf71 2695 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2696out:
8135be5a 2697 css_put(&memcg->css);
ca0dde97 2698 return cachep;
d7f25f8a 2699}
d7f25f8a 2700
8135be5a
VD
2701void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2702{
2703 if (!is_root_cache(cachep))
f7ce3190 2704 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2705}
2706
7ae1e1d0
GC
2707/*
2708 * We need to verify if the allocation against current->mm->owner's memcg is
2709 * possible for the given order. But the page is not allocated yet, so we'll
2710 * need a further commit step to do the final arrangements.
2711 *
2712 * It is possible for the task to switch cgroups in this mean time, so at
2713 * commit time, we can't rely on task conversion any longer. We'll then use
2714 * the handle argument to return to the caller which cgroup we should commit
2715 * against. We could also return the memcg directly and avoid the pointer
2716 * passing, but a boolean return value gives better semantics considering
2717 * the compiled-out case as well.
2718 *
2719 * Returning true means the allocation is possible.
2720 */
2721bool
2722__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2723{
2724 struct mem_cgroup *memcg;
2725 int ret;
2726
2727 *_memcg = NULL;
6d42c232 2728
df381975 2729 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2730
cf2b8fbf 2731 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2732 css_put(&memcg->css);
2733 return true;
2734 }
2735
3e32cb2e 2736 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2737 if (!ret)
2738 *_memcg = memcg;
7ae1e1d0
GC
2739
2740 css_put(&memcg->css);
2741 return (ret == 0);
2742}
2743
2744void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2745 int order)
2746{
7ae1e1d0
GC
2747 VM_BUG_ON(mem_cgroup_is_root(memcg));
2748
2749 /* The page allocation failed. Revert */
2750 if (!page) {
3e32cb2e 2751 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2752 return;
2753 }
1306a85a 2754 page->mem_cgroup = memcg;
7ae1e1d0
GC
2755}
2756
2757void __memcg_kmem_uncharge_pages(struct page *page, int order)
2758{
1306a85a 2759 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2760
7ae1e1d0
GC
2761 if (!memcg)
2762 return;
2763
309381fe 2764 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2765
3e32cb2e 2766 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2767 page->mem_cgroup = NULL;
7ae1e1d0 2768}
60d3fd32
VD
2769
2770struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2771{
2772 struct mem_cgroup *memcg = NULL;
2773 struct kmem_cache *cachep;
2774 struct page *page;
2775
2776 page = virt_to_head_page(ptr);
2777 if (PageSlab(page)) {
2778 cachep = page->slab_cache;
2779 if (!is_root_cache(cachep))
f7ce3190 2780 memcg = cachep->memcg_params.memcg;
60d3fd32
VD
2781 } else
2782 /* page allocated by alloc_kmem_pages */
2783 memcg = page->mem_cgroup;
2784
2785 return memcg;
2786}
7ae1e1d0
GC
2787#endif /* CONFIG_MEMCG_KMEM */
2788
ca3e0214
KH
2789#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2790
ca3e0214
KH
2791/*
2792 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2793 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2794 * charge/uncharge will be never happen and move_account() is done under
2795 * compound_lock(), so we don't have to take care of races.
ca3e0214 2796 */
e94c8a9c 2797void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2798{
e94c8a9c 2799 int i;
ca3e0214 2800
3d37c4a9
KH
2801 if (mem_cgroup_disabled())
2802 return;
b070e65c 2803
29833315 2804 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2805 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2806
1306a85a 2807 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2808 HPAGE_PMD_NR);
ca3e0214 2809}
12d27107 2810#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2811
f817ed48 2812/**
de3638d9 2813 * mem_cgroup_move_account - move account of the page
5564e88b 2814 * @page: the page
7ec99d62 2815 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2816 * @from: mem_cgroup which the page is moved from.
2817 * @to: mem_cgroup which the page is moved to. @from != @to.
2818 *
2819 * The caller must confirm following.
08e552c6 2820 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2821 * - compound_lock is held when nr_pages > 1
f817ed48 2822 *
2f3479b1
KH
2823 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2824 * from old cgroup.
f817ed48 2825 */
7ec99d62
JW
2826static int mem_cgroup_move_account(struct page *page,
2827 unsigned int nr_pages,
7ec99d62 2828 struct mem_cgroup *from,
2f3479b1 2829 struct mem_cgroup *to)
f817ed48 2830{
de3638d9
JW
2831 unsigned long flags;
2832 int ret;
987eba66 2833
f817ed48 2834 VM_BUG_ON(from == to);
309381fe 2835 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
2836 /*
2837 * The page is isolated from LRU. So, collapse function
2838 * will not handle this page. But page splitting can happen.
2839 * Do this check under compound_page_lock(). The caller should
2840 * hold it.
2841 */
2842 ret = -EBUSY;
7ec99d62 2843 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2844 goto out;
2845
0a31bc97 2846 /*
1306a85a 2847 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
0a31bc97
JW
2848 * of its source page while we change it: page migration takes
2849 * both pages off the LRU, but page cache replacement doesn't.
2850 */
2851 if (!trylock_page(page))
2852 goto out;
de3638d9
JW
2853
2854 ret = -EINVAL;
1306a85a 2855 if (page->mem_cgroup != from)
0a31bc97 2856 goto out_unlock;
de3638d9 2857
354a4783 2858 spin_lock_irqsave(&from->move_lock, flags);
f817ed48 2859
0a31bc97 2860 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
2861 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2862 nr_pages);
2863 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2864 nr_pages);
2865 }
3ea67d06 2866
59d1d256
JW
2867 if (PageWriteback(page)) {
2868 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2869 nr_pages);
2870 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2871 nr_pages);
2872 }
3ea67d06 2873
0a31bc97 2874 /*
1306a85a 2875 * It is safe to change page->mem_cgroup here because the page
0a31bc97
JW
2876 * is referenced, charged, and isolated - we can't race with
2877 * uncharging, charging, migration, or LRU putback.
2878 */
d69b042f 2879
854ffa8d 2880 /* caller should have done css_get */
1306a85a 2881 page->mem_cgroup = to;
354a4783
JW
2882 spin_unlock_irqrestore(&from->move_lock, flags);
2883
de3638d9 2884 ret = 0;
0a31bc97
JW
2885
2886 local_irq_disable();
2887 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 2888 memcg_check_events(to, page);
0a31bc97 2889 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 2890 memcg_check_events(from, page);
0a31bc97
JW
2891 local_irq_enable();
2892out_unlock:
2893 unlock_page(page);
de3638d9 2894out:
f817ed48
KH
2895 return ret;
2896}
2897
c255a458 2898#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2899static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2900 bool charge)
d13d1443 2901{
0a31bc97
JW
2902 int val = (charge) ? 1 : -1;
2903 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2904}
02491447
DN
2905
2906/**
2907 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2908 * @entry: swap entry to be moved
2909 * @from: mem_cgroup which the entry is moved from
2910 * @to: mem_cgroup which the entry is moved to
2911 *
2912 * It succeeds only when the swap_cgroup's record for this entry is the same
2913 * as the mem_cgroup's id of @from.
2914 *
2915 * Returns 0 on success, -EINVAL on failure.
2916 *
3e32cb2e 2917 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2918 * both res and memsw, and called css_get().
2919 */
2920static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2921 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2922{
2923 unsigned short old_id, new_id;
2924
34c00c31
LZ
2925 old_id = mem_cgroup_id(from);
2926 new_id = mem_cgroup_id(to);
02491447
DN
2927
2928 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2929 mem_cgroup_swap_statistics(from, false);
483c30b5 2930 mem_cgroup_swap_statistics(to, true);
02491447
DN
2931 return 0;
2932 }
2933 return -EINVAL;
2934}
2935#else
2936static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2937 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2938{
2939 return -EINVAL;
2940}
8c7c6e34 2941#endif
d13d1443 2942
3e32cb2e 2943static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2944
d38d2a75 2945static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2946 unsigned long limit)
628f4235 2947{
3e32cb2e
JW
2948 unsigned long curusage;
2949 unsigned long oldusage;
2950 bool enlarge = false;
81d39c20 2951 int retry_count;
3e32cb2e 2952 int ret;
81d39c20
KH
2953
2954 /*
2955 * For keeping hierarchical_reclaim simple, how long we should retry
2956 * is depends on callers. We set our retry-count to be function
2957 * of # of children which we should visit in this loop.
2958 */
3e32cb2e
JW
2959 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2960 mem_cgroup_count_children(memcg);
81d39c20 2961
3e32cb2e 2962 oldusage = page_counter_read(&memcg->memory);
628f4235 2963
3e32cb2e 2964 do {
628f4235
KH
2965 if (signal_pending(current)) {
2966 ret = -EINTR;
2967 break;
2968 }
3e32cb2e
JW
2969
2970 mutex_lock(&memcg_limit_mutex);
2971 if (limit > memcg->memsw.limit) {
2972 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2973 ret = -EINVAL;
628f4235
KH
2974 break;
2975 }
3e32cb2e
JW
2976 if (limit > memcg->memory.limit)
2977 enlarge = true;
2978 ret = page_counter_limit(&memcg->memory, limit);
2979 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2980
2981 if (!ret)
2982 break;
2983
b70a2a21
JW
2984 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2985
3e32cb2e 2986 curusage = page_counter_read(&memcg->memory);
81d39c20 2987 /* Usage is reduced ? */
f894ffa8 2988 if (curusage >= oldusage)
81d39c20
KH
2989 retry_count--;
2990 else
2991 oldusage = curusage;
3e32cb2e
JW
2992 } while (retry_count);
2993
3c11ecf4
KH
2994 if (!ret && enlarge)
2995 memcg_oom_recover(memcg);
14797e23 2996
8c7c6e34
KH
2997 return ret;
2998}
2999
338c8431 3000static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 3001 unsigned long limit)
8c7c6e34 3002{
3e32cb2e
JW
3003 unsigned long curusage;
3004 unsigned long oldusage;
3005 bool enlarge = false;
81d39c20 3006 int retry_count;
3e32cb2e 3007 int ret;
8c7c6e34 3008
81d39c20 3009 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3010 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3011 mem_cgroup_count_children(memcg);
3012
3013 oldusage = page_counter_read(&memcg->memsw);
3014
3015 do {
8c7c6e34
KH
3016 if (signal_pending(current)) {
3017 ret = -EINTR;
3018 break;
3019 }
3e32cb2e
JW
3020
3021 mutex_lock(&memcg_limit_mutex);
3022 if (limit < memcg->memory.limit) {
3023 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3024 ret = -EINVAL;
8c7c6e34
KH
3025 break;
3026 }
3e32cb2e
JW
3027 if (limit > memcg->memsw.limit)
3028 enlarge = true;
3029 ret = page_counter_limit(&memcg->memsw, limit);
3030 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3031
3032 if (!ret)
3033 break;
3034
b70a2a21
JW
3035 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3036
3e32cb2e 3037 curusage = page_counter_read(&memcg->memsw);
81d39c20 3038 /* Usage is reduced ? */
8c7c6e34 3039 if (curusage >= oldusage)
628f4235 3040 retry_count--;
81d39c20
KH
3041 else
3042 oldusage = curusage;
3e32cb2e
JW
3043 } while (retry_count);
3044
3c11ecf4
KH
3045 if (!ret && enlarge)
3046 memcg_oom_recover(memcg);
3e32cb2e 3047
628f4235
KH
3048 return ret;
3049}
3050
0608f43d
AM
3051unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3052 gfp_t gfp_mask,
3053 unsigned long *total_scanned)
3054{
3055 unsigned long nr_reclaimed = 0;
3056 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3057 unsigned long reclaimed;
3058 int loop = 0;
3059 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3060 unsigned long excess;
0608f43d
AM
3061 unsigned long nr_scanned;
3062
3063 if (order > 0)
3064 return 0;
3065
3066 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3067 /*
3068 * This loop can run a while, specially if mem_cgroup's continuously
3069 * keep exceeding their soft limit and putting the system under
3070 * pressure
3071 */
3072 do {
3073 if (next_mz)
3074 mz = next_mz;
3075 else
3076 mz = mem_cgroup_largest_soft_limit_node(mctz);
3077 if (!mz)
3078 break;
3079
3080 nr_scanned = 0;
3081 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3082 gfp_mask, &nr_scanned);
3083 nr_reclaimed += reclaimed;
3084 *total_scanned += nr_scanned;
0a31bc97 3085 spin_lock_irq(&mctz->lock);
bc2f2e7f 3086 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3087
3088 /*
3089 * If we failed to reclaim anything from this memory cgroup
3090 * it is time to move on to the next cgroup
3091 */
3092 next_mz = NULL;
bc2f2e7f
VD
3093 if (!reclaimed)
3094 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3095
3e32cb2e 3096 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3097 /*
3098 * One school of thought says that we should not add
3099 * back the node to the tree if reclaim returns 0.
3100 * But our reclaim could return 0, simply because due
3101 * to priority we are exposing a smaller subset of
3102 * memory to reclaim from. Consider this as a longer
3103 * term TODO.
3104 */
3105 /* If excess == 0, no tree ops */
cf2c8127 3106 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3107 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3108 css_put(&mz->memcg->css);
3109 loop++;
3110 /*
3111 * Could not reclaim anything and there are no more
3112 * mem cgroups to try or we seem to be looping without
3113 * reclaiming anything.
3114 */
3115 if (!nr_reclaimed &&
3116 (next_mz == NULL ||
3117 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3118 break;
3119 } while (!nr_reclaimed);
3120 if (next_mz)
3121 css_put(&next_mz->memcg->css);
3122 return nr_reclaimed;
3123}
3124
ea280e7b
TH
3125/*
3126 * Test whether @memcg has children, dead or alive. Note that this
3127 * function doesn't care whether @memcg has use_hierarchy enabled and
3128 * returns %true if there are child csses according to the cgroup
3129 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3130 */
b5f99b53
GC
3131static inline bool memcg_has_children(struct mem_cgroup *memcg)
3132{
ea280e7b
TH
3133 bool ret;
3134
696ac172 3135 /*
ea280e7b
TH
3136 * The lock does not prevent addition or deletion of children, but
3137 * it prevents a new child from being initialized based on this
3138 * parent in css_online(), so it's enough to decide whether
3139 * hierarchically inherited attributes can still be changed or not.
696ac172 3140 */
ea280e7b
TH
3141 lockdep_assert_held(&memcg_create_mutex);
3142
3143 rcu_read_lock();
3144 ret = css_next_child(NULL, &memcg->css);
3145 rcu_read_unlock();
3146 return ret;
b5f99b53
GC
3147}
3148
c26251f9
MH
3149/*
3150 * Reclaims as many pages from the given memcg as possible and moves
3151 * the rest to the parent.
3152 *
3153 * Caller is responsible for holding css reference for memcg.
3154 */
3155static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3156{
3157 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3158
c1e862c1
KH
3159 /* we call try-to-free pages for make this cgroup empty */
3160 lru_add_drain_all();
f817ed48 3161 /* try to free all pages in this cgroup */
3e32cb2e 3162 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3163 int progress;
c1e862c1 3164
c26251f9
MH
3165 if (signal_pending(current))
3166 return -EINTR;
3167
b70a2a21
JW
3168 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3169 GFP_KERNEL, true);
c1e862c1 3170 if (!progress) {
f817ed48 3171 nr_retries--;
c1e862c1 3172 /* maybe some writeback is necessary */
8aa7e847 3173 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3174 }
f817ed48
KH
3175
3176 }
ab5196c2
MH
3177
3178 return 0;
cc847582
KH
3179}
3180
6770c64e
TH
3181static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3182 char *buf, size_t nbytes,
3183 loff_t off)
c1e862c1 3184{
6770c64e 3185 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3186
d8423011
MH
3187 if (mem_cgroup_is_root(memcg))
3188 return -EINVAL;
6770c64e 3189 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3190}
3191
182446d0
TH
3192static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3193 struct cftype *cft)
18f59ea7 3194{
182446d0 3195 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3196}
3197
182446d0
TH
3198static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3199 struct cftype *cft, u64 val)
18f59ea7
BS
3200{
3201 int retval = 0;
182446d0 3202 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3203 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3204
0999821b 3205 mutex_lock(&memcg_create_mutex);
567fb435
GC
3206
3207 if (memcg->use_hierarchy == val)
3208 goto out;
3209
18f59ea7 3210 /*
af901ca1 3211 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3212 * in the child subtrees. If it is unset, then the change can
3213 * occur, provided the current cgroup has no children.
3214 *
3215 * For the root cgroup, parent_mem is NULL, we allow value to be
3216 * set if there are no children.
3217 */
c0ff4b85 3218 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3219 (val == 1 || val == 0)) {
ea280e7b 3220 if (!memcg_has_children(memcg))
c0ff4b85 3221 memcg->use_hierarchy = val;
18f59ea7
BS
3222 else
3223 retval = -EBUSY;
3224 } else
3225 retval = -EINVAL;
567fb435
GC
3226
3227out:
0999821b 3228 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3229
3230 return retval;
3231}
3232
3e32cb2e
JW
3233static unsigned long tree_stat(struct mem_cgroup *memcg,
3234 enum mem_cgroup_stat_index idx)
ce00a967
JW
3235{
3236 struct mem_cgroup *iter;
3237 long val = 0;
3238
3239 /* Per-cpu values can be negative, use a signed accumulator */
3240 for_each_mem_cgroup_tree(iter, memcg)
3241 val += mem_cgroup_read_stat(iter, idx);
3242
3243 if (val < 0) /* race ? */
3244 val = 0;
3245 return val;
3246}
3247
3248static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3249{
3250 u64 val;
3251
3e32cb2e
JW
3252 if (mem_cgroup_is_root(memcg)) {
3253 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3254 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3255 if (swap)
3256 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3257 } else {
ce00a967 3258 if (!swap)
3e32cb2e 3259 val = page_counter_read(&memcg->memory);
ce00a967 3260 else
3e32cb2e 3261 val = page_counter_read(&memcg->memsw);
ce00a967 3262 }
ce00a967
JW
3263 return val << PAGE_SHIFT;
3264}
3265
3e32cb2e
JW
3266enum {
3267 RES_USAGE,
3268 RES_LIMIT,
3269 RES_MAX_USAGE,
3270 RES_FAILCNT,
3271 RES_SOFT_LIMIT,
3272};
ce00a967 3273
791badbd 3274static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3275 struct cftype *cft)
8cdea7c0 3276{
182446d0 3277 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3278 struct page_counter *counter;
af36f906 3279
3e32cb2e 3280 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3281 case _MEM:
3e32cb2e
JW
3282 counter = &memcg->memory;
3283 break;
8c7c6e34 3284 case _MEMSWAP:
3e32cb2e
JW
3285 counter = &memcg->memsw;
3286 break;
510fc4e1 3287 case _KMEM:
3e32cb2e 3288 counter = &memcg->kmem;
510fc4e1 3289 break;
8c7c6e34
KH
3290 default:
3291 BUG();
8c7c6e34 3292 }
3e32cb2e
JW
3293
3294 switch (MEMFILE_ATTR(cft->private)) {
3295 case RES_USAGE:
3296 if (counter == &memcg->memory)
3297 return mem_cgroup_usage(memcg, false);
3298 if (counter == &memcg->memsw)
3299 return mem_cgroup_usage(memcg, true);
3300 return (u64)page_counter_read(counter) * PAGE_SIZE;
3301 case RES_LIMIT:
3302 return (u64)counter->limit * PAGE_SIZE;
3303 case RES_MAX_USAGE:
3304 return (u64)counter->watermark * PAGE_SIZE;
3305 case RES_FAILCNT:
3306 return counter->failcnt;
3307 case RES_SOFT_LIMIT:
3308 return (u64)memcg->soft_limit * PAGE_SIZE;
3309 default:
3310 BUG();
3311 }
8cdea7c0 3312}
510fc4e1 3313
510fc4e1 3314#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3315static int memcg_activate_kmem(struct mem_cgroup *memcg,
3316 unsigned long nr_pages)
d6441637
VD
3317{
3318 int err = 0;
3319 int memcg_id;
3320
3321 if (memcg_kmem_is_active(memcg))
3322 return 0;
3323
510fc4e1
GC
3324 /*
3325 * For simplicity, we won't allow this to be disabled. It also can't
3326 * be changed if the cgroup has children already, or if tasks had
3327 * already joined.
3328 *
3329 * If tasks join before we set the limit, a person looking at
3330 * kmem.usage_in_bytes will have no way to determine when it took
3331 * place, which makes the value quite meaningless.
3332 *
3333 * After it first became limited, changes in the value of the limit are
3334 * of course permitted.
510fc4e1 3335 */
0999821b 3336 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3337 if (cgroup_has_tasks(memcg->css.cgroup) ||
3338 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3339 err = -EBUSY;
3340 mutex_unlock(&memcg_create_mutex);
3341 if (err)
3342 goto out;
510fc4e1 3343
f3bb3043 3344 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3345 if (memcg_id < 0) {
3346 err = memcg_id;
3347 goto out;
3348 }
3349
d6441637 3350 /*
900a38f0
VD
3351 * We couldn't have accounted to this cgroup, because it hasn't got
3352 * activated yet, so this should succeed.
d6441637 3353 */
3e32cb2e 3354 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3355 VM_BUG_ON(err);
3356
3357 static_key_slow_inc(&memcg_kmem_enabled_key);
3358 /*
900a38f0
VD
3359 * A memory cgroup is considered kmem-active as soon as it gets
3360 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3361 * guarantee no one starts accounting before all call sites are
3362 * patched.
3363 */
900a38f0 3364 memcg->kmemcg_id = memcg_id;
510fc4e1 3365out:
d6441637 3366 return err;
d6441637
VD
3367}
3368
d6441637 3369static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3370 unsigned long limit)
d6441637
VD
3371{
3372 int ret;
3373
3e32cb2e 3374 mutex_lock(&memcg_limit_mutex);
d6441637 3375 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3376 ret = memcg_activate_kmem(memcg, limit);
d6441637 3377 else
3e32cb2e
JW
3378 ret = page_counter_limit(&memcg->kmem, limit);
3379 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3380 return ret;
3381}
3382
55007d84 3383static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3384{
55007d84 3385 int ret = 0;
510fc4e1 3386 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3387
d6441637
VD
3388 if (!parent)
3389 return 0;
55007d84 3390
8c0145b6 3391 mutex_lock(&memcg_limit_mutex);
55007d84 3392 /*
d6441637
VD
3393 * If the parent cgroup is not kmem-active now, it cannot be activated
3394 * after this point, because it has at least one child already.
55007d84 3395 */
d6441637 3396 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3397 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3398 mutex_unlock(&memcg_limit_mutex);
55007d84 3399 return ret;
510fc4e1 3400}
d6441637
VD
3401#else
3402static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3403 unsigned long limit)
d6441637
VD
3404{
3405 return -EINVAL;
3406}
6d043990 3407#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3408
628f4235
KH
3409/*
3410 * The user of this function is...
3411 * RES_LIMIT.
3412 */
451af504
TH
3413static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3414 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3415{
451af504 3416 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3417 unsigned long nr_pages;
628f4235
KH
3418 int ret;
3419
451af504 3420 buf = strstrip(buf);
650c5e56 3421 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3422 if (ret)
3423 return ret;
af36f906 3424
3e32cb2e 3425 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3426 case RES_LIMIT:
4b3bde4c
BS
3427 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3428 ret = -EINVAL;
3429 break;
3430 }
3e32cb2e
JW
3431 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3432 case _MEM:
3433 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3434 break;
3e32cb2e
JW
3435 case _MEMSWAP:
3436 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3437 break;
3e32cb2e
JW
3438 case _KMEM:
3439 ret = memcg_update_kmem_limit(memcg, nr_pages);
3440 break;
3441 }
296c81d8 3442 break;
3e32cb2e
JW
3443 case RES_SOFT_LIMIT:
3444 memcg->soft_limit = nr_pages;
3445 ret = 0;
628f4235
KH
3446 break;
3447 }
451af504 3448 return ret ?: nbytes;
8cdea7c0
BS
3449}
3450
6770c64e
TH
3451static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3452 size_t nbytes, loff_t off)
c84872e1 3453{
6770c64e 3454 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3455 struct page_counter *counter;
c84872e1 3456
3e32cb2e
JW
3457 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3458 case _MEM:
3459 counter = &memcg->memory;
3460 break;
3461 case _MEMSWAP:
3462 counter = &memcg->memsw;
3463 break;
3464 case _KMEM:
3465 counter = &memcg->kmem;
3466 break;
3467 default:
3468 BUG();
3469 }
af36f906 3470
3e32cb2e 3471 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3472 case RES_MAX_USAGE:
3e32cb2e 3473 page_counter_reset_watermark(counter);
29f2a4da
PE
3474 break;
3475 case RES_FAILCNT:
3e32cb2e 3476 counter->failcnt = 0;
29f2a4da 3477 break;
3e32cb2e
JW
3478 default:
3479 BUG();
29f2a4da 3480 }
f64c3f54 3481
6770c64e 3482 return nbytes;
c84872e1
PE
3483}
3484
182446d0 3485static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3486 struct cftype *cft)
3487{
182446d0 3488 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3489}
3490
02491447 3491#ifdef CONFIG_MMU
182446d0 3492static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3493 struct cftype *cft, u64 val)
3494{
182446d0 3495 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3496
1dfab5ab 3497 if (val & ~MOVE_MASK)
7dc74be0 3498 return -EINVAL;
ee5e8472 3499
7dc74be0 3500 /*
ee5e8472
GC
3501 * No kind of locking is needed in here, because ->can_attach() will
3502 * check this value once in the beginning of the process, and then carry
3503 * on with stale data. This means that changes to this value will only
3504 * affect task migrations starting after the change.
7dc74be0 3505 */
c0ff4b85 3506 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3507 return 0;
3508}
02491447 3509#else
182446d0 3510static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3511 struct cftype *cft, u64 val)
3512{
3513 return -ENOSYS;
3514}
3515#endif
7dc74be0 3516
406eb0c9 3517#ifdef CONFIG_NUMA
2da8ca82 3518static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3519{
25485de6
GT
3520 struct numa_stat {
3521 const char *name;
3522 unsigned int lru_mask;
3523 };
3524
3525 static const struct numa_stat stats[] = {
3526 { "total", LRU_ALL },
3527 { "file", LRU_ALL_FILE },
3528 { "anon", LRU_ALL_ANON },
3529 { "unevictable", BIT(LRU_UNEVICTABLE) },
3530 };
3531 const struct numa_stat *stat;
406eb0c9 3532 int nid;
25485de6 3533 unsigned long nr;
2da8ca82 3534 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3535
25485de6
GT
3536 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3537 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3538 seq_printf(m, "%s=%lu", stat->name, nr);
3539 for_each_node_state(nid, N_MEMORY) {
3540 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3541 stat->lru_mask);
3542 seq_printf(m, " N%d=%lu", nid, nr);
3543 }
3544 seq_putc(m, '\n');
406eb0c9 3545 }
406eb0c9 3546
071aee13
YH
3547 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3548 struct mem_cgroup *iter;
3549
3550 nr = 0;
3551 for_each_mem_cgroup_tree(iter, memcg)
3552 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3553 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3554 for_each_node_state(nid, N_MEMORY) {
3555 nr = 0;
3556 for_each_mem_cgroup_tree(iter, memcg)
3557 nr += mem_cgroup_node_nr_lru_pages(
3558 iter, nid, stat->lru_mask);
3559 seq_printf(m, " N%d=%lu", nid, nr);
3560 }
3561 seq_putc(m, '\n');
406eb0c9 3562 }
406eb0c9 3563
406eb0c9
YH
3564 return 0;
3565}
3566#endif /* CONFIG_NUMA */
3567
2da8ca82 3568static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3569{
2da8ca82 3570 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3571 unsigned long memory, memsw;
af7c4b0e
JW
3572 struct mem_cgroup *mi;
3573 unsigned int i;
406eb0c9 3574
0ca44b14
GT
3575 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3576 MEM_CGROUP_STAT_NSTATS);
3577 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3578 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3579 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3580
af7c4b0e 3581 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3582 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3583 continue;
af7c4b0e
JW
3584 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3585 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3586 }
7b854121 3587
af7c4b0e
JW
3588 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3589 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3590 mem_cgroup_read_events(memcg, i));
3591
3592 for (i = 0; i < NR_LRU_LISTS; i++)
3593 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3594 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3595
14067bb3 3596 /* Hierarchical information */
3e32cb2e
JW
3597 memory = memsw = PAGE_COUNTER_MAX;
3598 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3599 memory = min(memory, mi->memory.limit);
3600 memsw = min(memsw, mi->memsw.limit);
fee7b548 3601 }
3e32cb2e
JW
3602 seq_printf(m, "hierarchical_memory_limit %llu\n",
3603 (u64)memory * PAGE_SIZE);
3604 if (do_swap_account)
3605 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3606 (u64)memsw * PAGE_SIZE);
7f016ee8 3607
af7c4b0e
JW
3608 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3609 long long val = 0;
3610
bff6bb83 3611 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3612 continue;
af7c4b0e
JW
3613 for_each_mem_cgroup_tree(mi, memcg)
3614 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3615 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3616 }
3617
3618 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3619 unsigned long long val = 0;
3620
3621 for_each_mem_cgroup_tree(mi, memcg)
3622 val += mem_cgroup_read_events(mi, i);
3623 seq_printf(m, "total_%s %llu\n",
3624 mem_cgroup_events_names[i], val);
3625 }
3626
3627 for (i = 0; i < NR_LRU_LISTS; i++) {
3628 unsigned long long val = 0;
3629
3630 for_each_mem_cgroup_tree(mi, memcg)
3631 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3632 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3633 }
14067bb3 3634
7f016ee8 3635#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3636 {
3637 int nid, zid;
3638 struct mem_cgroup_per_zone *mz;
89abfab1 3639 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3640 unsigned long recent_rotated[2] = {0, 0};
3641 unsigned long recent_scanned[2] = {0, 0};
3642
3643 for_each_online_node(nid)
3644 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3645 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3646 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3647
89abfab1
HD
3648 recent_rotated[0] += rstat->recent_rotated[0];
3649 recent_rotated[1] += rstat->recent_rotated[1];
3650 recent_scanned[0] += rstat->recent_scanned[0];
3651 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3652 }
78ccf5b5
JW
3653 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3654 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3655 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3656 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3657 }
3658#endif
3659
d2ceb9b7
KH
3660 return 0;
3661}
3662
182446d0
TH
3663static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3664 struct cftype *cft)
a7885eb8 3665{
182446d0 3666 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3667
1f4c025b 3668 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3669}
3670
182446d0
TH
3671static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3672 struct cftype *cft, u64 val)
a7885eb8 3673{
182446d0 3674 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3675
3dae7fec 3676 if (val > 100)
a7885eb8
KM
3677 return -EINVAL;
3678
14208b0e 3679 if (css->parent)
3dae7fec
JW
3680 memcg->swappiness = val;
3681 else
3682 vm_swappiness = val;
068b38c1 3683
a7885eb8
KM
3684 return 0;
3685}
3686
2e72b634
KS
3687static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3688{
3689 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3690 unsigned long usage;
2e72b634
KS
3691 int i;
3692
3693 rcu_read_lock();
3694 if (!swap)
2c488db2 3695 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3696 else
2c488db2 3697 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3698
3699 if (!t)
3700 goto unlock;
3701
ce00a967 3702 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3703
3704 /*
748dad36 3705 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3706 * If it's not true, a threshold was crossed after last
3707 * call of __mem_cgroup_threshold().
3708 */
5407a562 3709 i = t->current_threshold;
2e72b634
KS
3710
3711 /*
3712 * Iterate backward over array of thresholds starting from
3713 * current_threshold and check if a threshold is crossed.
3714 * If none of thresholds below usage is crossed, we read
3715 * only one element of the array here.
3716 */
3717 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3718 eventfd_signal(t->entries[i].eventfd, 1);
3719
3720 /* i = current_threshold + 1 */
3721 i++;
3722
3723 /*
3724 * Iterate forward over array of thresholds starting from
3725 * current_threshold+1 and check if a threshold is crossed.
3726 * If none of thresholds above usage is crossed, we read
3727 * only one element of the array here.
3728 */
3729 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3730 eventfd_signal(t->entries[i].eventfd, 1);
3731
3732 /* Update current_threshold */
5407a562 3733 t->current_threshold = i - 1;
2e72b634
KS
3734unlock:
3735 rcu_read_unlock();
3736}
3737
3738static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3739{
ad4ca5f4
KS
3740 while (memcg) {
3741 __mem_cgroup_threshold(memcg, false);
3742 if (do_swap_account)
3743 __mem_cgroup_threshold(memcg, true);
3744
3745 memcg = parent_mem_cgroup(memcg);
3746 }
2e72b634
KS
3747}
3748
3749static int compare_thresholds(const void *a, const void *b)
3750{
3751 const struct mem_cgroup_threshold *_a = a;
3752 const struct mem_cgroup_threshold *_b = b;
3753
2bff24a3
GT
3754 if (_a->threshold > _b->threshold)
3755 return 1;
3756
3757 if (_a->threshold < _b->threshold)
3758 return -1;
3759
3760 return 0;
2e72b634
KS
3761}
3762
c0ff4b85 3763static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3764{
3765 struct mem_cgroup_eventfd_list *ev;
3766
2bcf2e92
MH
3767 spin_lock(&memcg_oom_lock);
3768
c0ff4b85 3769 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3770 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3771
3772 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3773 return 0;
3774}
3775
c0ff4b85 3776static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3777{
7d74b06f
KH
3778 struct mem_cgroup *iter;
3779
c0ff4b85 3780 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3781 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3782}
3783
59b6f873 3784static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3785 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3786{
2c488db2
KS
3787 struct mem_cgroup_thresholds *thresholds;
3788 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3789 unsigned long threshold;
3790 unsigned long usage;
2c488db2 3791 int i, size, ret;
2e72b634 3792
650c5e56 3793 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3794 if (ret)
3795 return ret;
3796
3797 mutex_lock(&memcg->thresholds_lock);
2c488db2 3798
05b84301 3799 if (type == _MEM) {
2c488db2 3800 thresholds = &memcg->thresholds;
ce00a967 3801 usage = mem_cgroup_usage(memcg, false);
05b84301 3802 } else if (type == _MEMSWAP) {
2c488db2 3803 thresholds = &memcg->memsw_thresholds;
ce00a967 3804 usage = mem_cgroup_usage(memcg, true);
05b84301 3805 } else
2e72b634
KS
3806 BUG();
3807
2e72b634 3808 /* Check if a threshold crossed before adding a new one */
2c488db2 3809 if (thresholds->primary)
2e72b634
KS
3810 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3811
2c488db2 3812 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3813
3814 /* Allocate memory for new array of thresholds */
2c488db2 3815 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3816 GFP_KERNEL);
2c488db2 3817 if (!new) {
2e72b634
KS
3818 ret = -ENOMEM;
3819 goto unlock;
3820 }
2c488db2 3821 new->size = size;
2e72b634
KS
3822
3823 /* Copy thresholds (if any) to new array */
2c488db2
KS
3824 if (thresholds->primary) {
3825 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3826 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3827 }
3828
2e72b634 3829 /* Add new threshold */
2c488db2
KS
3830 new->entries[size - 1].eventfd = eventfd;
3831 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3832
3833 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3834 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3835 compare_thresholds, NULL);
3836
3837 /* Find current threshold */
2c488db2 3838 new->current_threshold = -1;
2e72b634 3839 for (i = 0; i < size; i++) {
748dad36 3840 if (new->entries[i].threshold <= usage) {
2e72b634 3841 /*
2c488db2
KS
3842 * new->current_threshold will not be used until
3843 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3844 * it here.
3845 */
2c488db2 3846 ++new->current_threshold;
748dad36
SZ
3847 } else
3848 break;
2e72b634
KS
3849 }
3850
2c488db2
KS
3851 /* Free old spare buffer and save old primary buffer as spare */
3852 kfree(thresholds->spare);
3853 thresholds->spare = thresholds->primary;
3854
3855 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3856
907860ed 3857 /* To be sure that nobody uses thresholds */
2e72b634
KS
3858 synchronize_rcu();
3859
2e72b634
KS
3860unlock:
3861 mutex_unlock(&memcg->thresholds_lock);
3862
3863 return ret;
3864}
3865
59b6f873 3866static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3867 struct eventfd_ctx *eventfd, const char *args)
3868{
59b6f873 3869 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3870}
3871
59b6f873 3872static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3873 struct eventfd_ctx *eventfd, const char *args)
3874{
59b6f873 3875 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3876}
3877
59b6f873 3878static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3879 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3880{
2c488db2
KS
3881 struct mem_cgroup_thresholds *thresholds;
3882 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3883 unsigned long usage;
2c488db2 3884 int i, j, size;
2e72b634
KS
3885
3886 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3887
3888 if (type == _MEM) {
2c488db2 3889 thresholds = &memcg->thresholds;
ce00a967 3890 usage = mem_cgroup_usage(memcg, false);
05b84301 3891 } else if (type == _MEMSWAP) {
2c488db2 3892 thresholds = &memcg->memsw_thresholds;
ce00a967 3893 usage = mem_cgroup_usage(memcg, true);
05b84301 3894 } else
2e72b634
KS
3895 BUG();
3896
371528ca
AV
3897 if (!thresholds->primary)
3898 goto unlock;
3899
2e72b634
KS
3900 /* Check if a threshold crossed before removing */
3901 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3902
3903 /* Calculate new number of threshold */
2c488db2
KS
3904 size = 0;
3905 for (i = 0; i < thresholds->primary->size; i++) {
3906 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3907 size++;
3908 }
3909
2c488db2 3910 new = thresholds->spare;
907860ed 3911
2e72b634
KS
3912 /* Set thresholds array to NULL if we don't have thresholds */
3913 if (!size) {
2c488db2
KS
3914 kfree(new);
3915 new = NULL;
907860ed 3916 goto swap_buffers;
2e72b634
KS
3917 }
3918
2c488db2 3919 new->size = size;
2e72b634
KS
3920
3921 /* Copy thresholds and find current threshold */
2c488db2
KS
3922 new->current_threshold = -1;
3923 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3924 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3925 continue;
3926
2c488db2 3927 new->entries[j] = thresholds->primary->entries[i];
748dad36 3928 if (new->entries[j].threshold <= usage) {
2e72b634 3929 /*
2c488db2 3930 * new->current_threshold will not be used
2e72b634
KS
3931 * until rcu_assign_pointer(), so it's safe to increment
3932 * it here.
3933 */
2c488db2 3934 ++new->current_threshold;
2e72b634
KS
3935 }
3936 j++;
3937 }
3938
907860ed 3939swap_buffers:
2c488db2
KS
3940 /* Swap primary and spare array */
3941 thresholds->spare = thresholds->primary;
8c757763
SZ
3942 /* If all events are unregistered, free the spare array */
3943 if (!new) {
3944 kfree(thresholds->spare);
3945 thresholds->spare = NULL;
3946 }
3947
2c488db2 3948 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3949
907860ed 3950 /* To be sure that nobody uses thresholds */
2e72b634 3951 synchronize_rcu();
371528ca 3952unlock:
2e72b634 3953 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3954}
c1e862c1 3955
59b6f873 3956static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3957 struct eventfd_ctx *eventfd)
3958{
59b6f873 3959 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3960}
3961
59b6f873 3962static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3963 struct eventfd_ctx *eventfd)
3964{
59b6f873 3965 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3966}
3967
59b6f873 3968static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3969 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3970{
9490ff27 3971 struct mem_cgroup_eventfd_list *event;
9490ff27 3972
9490ff27
KH
3973 event = kmalloc(sizeof(*event), GFP_KERNEL);
3974 if (!event)
3975 return -ENOMEM;
3976
1af8efe9 3977 spin_lock(&memcg_oom_lock);
9490ff27
KH
3978
3979 event->eventfd = eventfd;
3980 list_add(&event->list, &memcg->oom_notify);
3981
3982 /* already in OOM ? */
79dfdacc 3983 if (atomic_read(&memcg->under_oom))
9490ff27 3984 eventfd_signal(eventfd, 1);
1af8efe9 3985 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3986
3987 return 0;
3988}
3989
59b6f873 3990static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3991 struct eventfd_ctx *eventfd)
9490ff27 3992{
9490ff27 3993 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3994
1af8efe9 3995 spin_lock(&memcg_oom_lock);
9490ff27 3996
c0ff4b85 3997 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3998 if (ev->eventfd == eventfd) {
3999 list_del(&ev->list);
4000 kfree(ev);
4001 }
4002 }
4003
1af8efe9 4004 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4005}
4006
2da8ca82 4007static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4008{
2da8ca82 4009 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4010
791badbd
TH
4011 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4012 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4013 return 0;
4014}
4015
182446d0 4016static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4017 struct cftype *cft, u64 val)
4018{
182446d0 4019 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4020
4021 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4022 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4023 return -EINVAL;
4024
c0ff4b85 4025 memcg->oom_kill_disable = val;
4d845ebf 4026 if (!val)
c0ff4b85 4027 memcg_oom_recover(memcg);
3dae7fec 4028
3c11ecf4
KH
4029 return 0;
4030}
4031
c255a458 4032#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4033static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4034{
55007d84
GC
4035 int ret;
4036
55007d84
GC
4037 ret = memcg_propagate_kmem(memcg);
4038 if (ret)
4039 return ret;
2633d7a0 4040
1d62e436 4041 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4042}
e5671dfa 4043
10d5ebf4 4044static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4045{
d5b3cf71 4046 memcg_destroy_kmem_caches(memcg);
1d62e436 4047 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4048}
e5671dfa 4049#else
cbe128e3 4050static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4051{
4052 return 0;
4053}
d1a4c0b3 4054
10d5ebf4
LZ
4055static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4056{
4057}
e5671dfa
GC
4058#endif
4059
3bc942f3
TH
4060/*
4061 * DO NOT USE IN NEW FILES.
4062 *
4063 * "cgroup.event_control" implementation.
4064 *
4065 * This is way over-engineered. It tries to support fully configurable
4066 * events for each user. Such level of flexibility is completely
4067 * unnecessary especially in the light of the planned unified hierarchy.
4068 *
4069 * Please deprecate this and replace with something simpler if at all
4070 * possible.
4071 */
4072
79bd9814
TH
4073/*
4074 * Unregister event and free resources.
4075 *
4076 * Gets called from workqueue.
4077 */
3bc942f3 4078static void memcg_event_remove(struct work_struct *work)
79bd9814 4079{
3bc942f3
TH
4080 struct mem_cgroup_event *event =
4081 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4082 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4083
4084 remove_wait_queue(event->wqh, &event->wait);
4085
59b6f873 4086 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4087
4088 /* Notify userspace the event is going away. */
4089 eventfd_signal(event->eventfd, 1);
4090
4091 eventfd_ctx_put(event->eventfd);
4092 kfree(event);
59b6f873 4093 css_put(&memcg->css);
79bd9814
TH
4094}
4095
4096/*
4097 * Gets called on POLLHUP on eventfd when user closes it.
4098 *
4099 * Called with wqh->lock held and interrupts disabled.
4100 */
3bc942f3
TH
4101static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4102 int sync, void *key)
79bd9814 4103{
3bc942f3
TH
4104 struct mem_cgroup_event *event =
4105 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4106 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4107 unsigned long flags = (unsigned long)key;
4108
4109 if (flags & POLLHUP) {
4110 /*
4111 * If the event has been detached at cgroup removal, we
4112 * can simply return knowing the other side will cleanup
4113 * for us.
4114 *
4115 * We can't race against event freeing since the other
4116 * side will require wqh->lock via remove_wait_queue(),
4117 * which we hold.
4118 */
fba94807 4119 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4120 if (!list_empty(&event->list)) {
4121 list_del_init(&event->list);
4122 /*
4123 * We are in atomic context, but cgroup_event_remove()
4124 * may sleep, so we have to call it in workqueue.
4125 */
4126 schedule_work(&event->remove);
4127 }
fba94807 4128 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4129 }
4130
4131 return 0;
4132}
4133
3bc942f3 4134static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4135 wait_queue_head_t *wqh, poll_table *pt)
4136{
3bc942f3
TH
4137 struct mem_cgroup_event *event =
4138 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4139
4140 event->wqh = wqh;
4141 add_wait_queue(wqh, &event->wait);
4142}
4143
4144/*
3bc942f3
TH
4145 * DO NOT USE IN NEW FILES.
4146 *
79bd9814
TH
4147 * Parse input and register new cgroup event handler.
4148 *
4149 * Input must be in format '<event_fd> <control_fd> <args>'.
4150 * Interpretation of args is defined by control file implementation.
4151 */
451af504
TH
4152static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4153 char *buf, size_t nbytes, loff_t off)
79bd9814 4154{
451af504 4155 struct cgroup_subsys_state *css = of_css(of);
fba94807 4156 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4157 struct mem_cgroup_event *event;
79bd9814
TH
4158 struct cgroup_subsys_state *cfile_css;
4159 unsigned int efd, cfd;
4160 struct fd efile;
4161 struct fd cfile;
fba94807 4162 const char *name;
79bd9814
TH
4163 char *endp;
4164 int ret;
4165
451af504
TH
4166 buf = strstrip(buf);
4167
4168 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4169 if (*endp != ' ')
4170 return -EINVAL;
451af504 4171 buf = endp + 1;
79bd9814 4172
451af504 4173 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4174 if ((*endp != ' ') && (*endp != '\0'))
4175 return -EINVAL;
451af504 4176 buf = endp + 1;
79bd9814
TH
4177
4178 event = kzalloc(sizeof(*event), GFP_KERNEL);
4179 if (!event)
4180 return -ENOMEM;
4181
59b6f873 4182 event->memcg = memcg;
79bd9814 4183 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4184 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4185 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4186 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4187
4188 efile = fdget(efd);
4189 if (!efile.file) {
4190 ret = -EBADF;
4191 goto out_kfree;
4192 }
4193
4194 event->eventfd = eventfd_ctx_fileget(efile.file);
4195 if (IS_ERR(event->eventfd)) {
4196 ret = PTR_ERR(event->eventfd);
4197 goto out_put_efile;
4198 }
4199
4200 cfile = fdget(cfd);
4201 if (!cfile.file) {
4202 ret = -EBADF;
4203 goto out_put_eventfd;
4204 }
4205
4206 /* the process need read permission on control file */
4207 /* AV: shouldn't we check that it's been opened for read instead? */
4208 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4209 if (ret < 0)
4210 goto out_put_cfile;
4211
fba94807
TH
4212 /*
4213 * Determine the event callbacks and set them in @event. This used
4214 * to be done via struct cftype but cgroup core no longer knows
4215 * about these events. The following is crude but the whole thing
4216 * is for compatibility anyway.
3bc942f3
TH
4217 *
4218 * DO NOT ADD NEW FILES.
fba94807 4219 */
b583043e 4220 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4221
4222 if (!strcmp(name, "memory.usage_in_bytes")) {
4223 event->register_event = mem_cgroup_usage_register_event;
4224 event->unregister_event = mem_cgroup_usage_unregister_event;
4225 } else if (!strcmp(name, "memory.oom_control")) {
4226 event->register_event = mem_cgroup_oom_register_event;
4227 event->unregister_event = mem_cgroup_oom_unregister_event;
4228 } else if (!strcmp(name, "memory.pressure_level")) {
4229 event->register_event = vmpressure_register_event;
4230 event->unregister_event = vmpressure_unregister_event;
4231 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4232 event->register_event = memsw_cgroup_usage_register_event;
4233 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4234 } else {
4235 ret = -EINVAL;
4236 goto out_put_cfile;
4237 }
4238
79bd9814 4239 /*
b5557c4c
TH
4240 * Verify @cfile should belong to @css. Also, remaining events are
4241 * automatically removed on cgroup destruction but the removal is
4242 * asynchronous, so take an extra ref on @css.
79bd9814 4243 */
b583043e 4244 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4245 &memory_cgrp_subsys);
79bd9814 4246 ret = -EINVAL;
5a17f543 4247 if (IS_ERR(cfile_css))
79bd9814 4248 goto out_put_cfile;
5a17f543
TH
4249 if (cfile_css != css) {
4250 css_put(cfile_css);
79bd9814 4251 goto out_put_cfile;
5a17f543 4252 }
79bd9814 4253
451af504 4254 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4255 if (ret)
4256 goto out_put_css;
4257
4258 efile.file->f_op->poll(efile.file, &event->pt);
4259
fba94807
TH
4260 spin_lock(&memcg->event_list_lock);
4261 list_add(&event->list, &memcg->event_list);
4262 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4263
4264 fdput(cfile);
4265 fdput(efile);
4266
451af504 4267 return nbytes;
79bd9814
TH
4268
4269out_put_css:
b5557c4c 4270 css_put(css);
79bd9814
TH
4271out_put_cfile:
4272 fdput(cfile);
4273out_put_eventfd:
4274 eventfd_ctx_put(event->eventfd);
4275out_put_efile:
4276 fdput(efile);
4277out_kfree:
4278 kfree(event);
4279
4280 return ret;
4281}
4282
241994ed 4283static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4284 {
0eea1030 4285 .name = "usage_in_bytes",
8c7c6e34 4286 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4287 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4288 },
c84872e1
PE
4289 {
4290 .name = "max_usage_in_bytes",
8c7c6e34 4291 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4292 .write = mem_cgroup_reset,
791badbd 4293 .read_u64 = mem_cgroup_read_u64,
c84872e1 4294 },
8cdea7c0 4295 {
0eea1030 4296 .name = "limit_in_bytes",
8c7c6e34 4297 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4298 .write = mem_cgroup_write,
791badbd 4299 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4300 },
296c81d8
BS
4301 {
4302 .name = "soft_limit_in_bytes",
4303 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4304 .write = mem_cgroup_write,
791badbd 4305 .read_u64 = mem_cgroup_read_u64,
296c81d8 4306 },
8cdea7c0
BS
4307 {
4308 .name = "failcnt",
8c7c6e34 4309 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4310 .write = mem_cgroup_reset,
791badbd 4311 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4312 },
d2ceb9b7
KH
4313 {
4314 .name = "stat",
2da8ca82 4315 .seq_show = memcg_stat_show,
d2ceb9b7 4316 },
c1e862c1
KH
4317 {
4318 .name = "force_empty",
6770c64e 4319 .write = mem_cgroup_force_empty_write,
c1e862c1 4320 },
18f59ea7
BS
4321 {
4322 .name = "use_hierarchy",
4323 .write_u64 = mem_cgroup_hierarchy_write,
4324 .read_u64 = mem_cgroup_hierarchy_read,
4325 },
79bd9814 4326 {
3bc942f3 4327 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4328 .write = memcg_write_event_control,
79bd9814
TH
4329 .flags = CFTYPE_NO_PREFIX,
4330 .mode = S_IWUGO,
4331 },
a7885eb8
KM
4332 {
4333 .name = "swappiness",
4334 .read_u64 = mem_cgroup_swappiness_read,
4335 .write_u64 = mem_cgroup_swappiness_write,
4336 },
7dc74be0
DN
4337 {
4338 .name = "move_charge_at_immigrate",
4339 .read_u64 = mem_cgroup_move_charge_read,
4340 .write_u64 = mem_cgroup_move_charge_write,
4341 },
9490ff27
KH
4342 {
4343 .name = "oom_control",
2da8ca82 4344 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4345 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4346 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4347 },
70ddf637
AV
4348 {
4349 .name = "pressure_level",
70ddf637 4350 },
406eb0c9
YH
4351#ifdef CONFIG_NUMA
4352 {
4353 .name = "numa_stat",
2da8ca82 4354 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4355 },
4356#endif
510fc4e1
GC
4357#ifdef CONFIG_MEMCG_KMEM
4358 {
4359 .name = "kmem.limit_in_bytes",
4360 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4361 .write = mem_cgroup_write,
791badbd 4362 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4363 },
4364 {
4365 .name = "kmem.usage_in_bytes",
4366 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4367 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4368 },
4369 {
4370 .name = "kmem.failcnt",
4371 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4372 .write = mem_cgroup_reset,
791badbd 4373 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4374 },
4375 {
4376 .name = "kmem.max_usage_in_bytes",
4377 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4378 .write = mem_cgroup_reset,
791badbd 4379 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4380 },
749c5415
GC
4381#ifdef CONFIG_SLABINFO
4382 {
4383 .name = "kmem.slabinfo",
b047501c
VD
4384 .seq_start = slab_start,
4385 .seq_next = slab_next,
4386 .seq_stop = slab_stop,
4387 .seq_show = memcg_slab_show,
749c5415
GC
4388 },
4389#endif
8c7c6e34 4390#endif
6bc10349 4391 { }, /* terminate */
af36f906 4392};
8c7c6e34 4393
c0ff4b85 4394static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4395{
4396 struct mem_cgroup_per_node *pn;
1ecaab2b 4397 struct mem_cgroup_per_zone *mz;
41e3355d 4398 int zone, tmp = node;
1ecaab2b
KH
4399 /*
4400 * This routine is called against possible nodes.
4401 * But it's BUG to call kmalloc() against offline node.
4402 *
4403 * TODO: this routine can waste much memory for nodes which will
4404 * never be onlined. It's better to use memory hotplug callback
4405 * function.
4406 */
41e3355d
KH
4407 if (!node_state(node, N_NORMAL_MEMORY))
4408 tmp = -1;
17295c88 4409 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4410 if (!pn)
4411 return 1;
1ecaab2b 4412
1ecaab2b
KH
4413 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4414 mz = &pn->zoneinfo[zone];
bea8c150 4415 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4416 mz->usage_in_excess = 0;
4417 mz->on_tree = false;
d79154bb 4418 mz->memcg = memcg;
1ecaab2b 4419 }
54f72fe0 4420 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4421 return 0;
4422}
4423
c0ff4b85 4424static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4425{
54f72fe0 4426 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4427}
4428
33327948
KH
4429static struct mem_cgroup *mem_cgroup_alloc(void)
4430{
d79154bb 4431 struct mem_cgroup *memcg;
8ff69e2c 4432 size_t size;
33327948 4433
8ff69e2c
VD
4434 size = sizeof(struct mem_cgroup);
4435 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4436
8ff69e2c 4437 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4438 if (!memcg)
e7bbcdf3
DC
4439 return NULL;
4440
d79154bb
HD
4441 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4442 if (!memcg->stat)
d2e61b8d 4443 goto out_free;
d79154bb
HD
4444 spin_lock_init(&memcg->pcp_counter_lock);
4445 return memcg;
d2e61b8d
DC
4446
4447out_free:
8ff69e2c 4448 kfree(memcg);
d2e61b8d 4449 return NULL;
33327948
KH
4450}
4451
59927fb9 4452/*
c8b2a36f
GC
4453 * At destroying mem_cgroup, references from swap_cgroup can remain.
4454 * (scanning all at force_empty is too costly...)
4455 *
4456 * Instead of clearing all references at force_empty, we remember
4457 * the number of reference from swap_cgroup and free mem_cgroup when
4458 * it goes down to 0.
4459 *
4460 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4461 */
c8b2a36f
GC
4462
4463static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4464{
c8b2a36f 4465 int node;
59927fb9 4466
bb4cc1a8 4467 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4468
4469 for_each_node(node)
4470 free_mem_cgroup_per_zone_info(memcg, node);
4471
4472 free_percpu(memcg->stat);
4473
a8964b9b 4474 disarm_static_keys(memcg);
8ff69e2c 4475 kfree(memcg);
59927fb9 4476}
3afe36b1 4477
7bcc1bb1
DN
4478/*
4479 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4480 */
e1aab161 4481struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4482{
3e32cb2e 4483 if (!memcg->memory.parent)
7bcc1bb1 4484 return NULL;
3e32cb2e 4485 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4486}
e1aab161 4487EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4488
0eb253e2 4489static struct cgroup_subsys_state * __ref
eb95419b 4490mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4491{
d142e3e6 4492 struct mem_cgroup *memcg;
04046e1a 4493 long error = -ENOMEM;
6d12e2d8 4494 int node;
8cdea7c0 4495
c0ff4b85
R
4496 memcg = mem_cgroup_alloc();
4497 if (!memcg)
04046e1a 4498 return ERR_PTR(error);
78fb7466 4499
3ed28fa1 4500 for_each_node(node)
c0ff4b85 4501 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4502 goto free_out;
f64c3f54 4503
c077719b 4504 /* root ? */
eb95419b 4505 if (parent_css == NULL) {
a41c58a6 4506 root_mem_cgroup = memcg;
3e32cb2e 4507 page_counter_init(&memcg->memory, NULL);
241994ed 4508 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4509 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4510 page_counter_init(&memcg->memsw, NULL);
4511 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4512 }
28dbc4b6 4513
d142e3e6
GC
4514 memcg->last_scanned_node = MAX_NUMNODES;
4515 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4516 memcg->move_charge_at_immigrate = 0;
4517 mutex_init(&memcg->thresholds_lock);
4518 spin_lock_init(&memcg->move_lock);
70ddf637 4519 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4520 INIT_LIST_HEAD(&memcg->event_list);
4521 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4522#ifdef CONFIG_MEMCG_KMEM
4523 memcg->kmemcg_id = -1;
900a38f0 4524#endif
d142e3e6
GC
4525
4526 return &memcg->css;
4527
4528free_out:
4529 __mem_cgroup_free(memcg);
4530 return ERR_PTR(error);
4531}
4532
4533static int
eb95419b 4534mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4535{
eb95419b 4536 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4537 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4538 int ret;
d142e3e6 4539
15a4c835 4540 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4541 return -ENOSPC;
4542
63876986 4543 if (!parent)
d142e3e6
GC
4544 return 0;
4545
0999821b 4546 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4547
4548 memcg->use_hierarchy = parent->use_hierarchy;
4549 memcg->oom_kill_disable = parent->oom_kill_disable;
4550 memcg->swappiness = mem_cgroup_swappiness(parent);
4551
4552 if (parent->use_hierarchy) {
3e32cb2e 4553 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4554 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4555 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4556 page_counter_init(&memcg->memsw, &parent->memsw);
4557 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4558
7bcc1bb1 4559 /*
8d76a979
LZ
4560 * No need to take a reference to the parent because cgroup
4561 * core guarantees its existence.
7bcc1bb1 4562 */
18f59ea7 4563 } else {
3e32cb2e 4564 page_counter_init(&memcg->memory, NULL);
241994ed 4565 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4566 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4567 page_counter_init(&memcg->memsw, NULL);
4568 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4569 /*
4570 * Deeper hierachy with use_hierarchy == false doesn't make
4571 * much sense so let cgroup subsystem know about this
4572 * unfortunate state in our controller.
4573 */
d142e3e6 4574 if (parent != root_mem_cgroup)
073219e9 4575 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4576 }
0999821b 4577 mutex_unlock(&memcg_create_mutex);
d6441637 4578
2f7dd7a4
JW
4579 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4580 if (ret)
4581 return ret;
4582
4583 /*
4584 * Make sure the memcg is initialized: mem_cgroup_iter()
4585 * orders reading memcg->initialized against its callers
4586 * reading the memcg members.
4587 */
4588 smp_store_release(&memcg->initialized, 1);
4589
4590 return 0;
8cdea7c0
BS
4591}
4592
eb95419b 4593static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4594{
eb95419b 4595 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4596 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4597
4598 /*
4599 * Unregister events and notify userspace.
4600 * Notify userspace about cgroup removing only after rmdir of cgroup
4601 * directory to avoid race between userspace and kernelspace.
4602 */
fba94807
TH
4603 spin_lock(&memcg->event_list_lock);
4604 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4605 list_del_init(&event->list);
4606 schedule_work(&event->remove);
4607 }
fba94807 4608 spin_unlock(&memcg->event_list_lock);
ec64f515 4609
33cb876e 4610 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
4611}
4612
eb95419b 4613static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4614{
eb95419b 4615 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4616
10d5ebf4 4617 memcg_destroy_kmem(memcg);
465939a1 4618 __mem_cgroup_free(memcg);
8cdea7c0
BS
4619}
4620
1ced953b
TH
4621/**
4622 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4623 * @css: the target css
4624 *
4625 * Reset the states of the mem_cgroup associated with @css. This is
4626 * invoked when the userland requests disabling on the default hierarchy
4627 * but the memcg is pinned through dependency. The memcg should stop
4628 * applying policies and should revert to the vanilla state as it may be
4629 * made visible again.
4630 *
4631 * The current implementation only resets the essential configurations.
4632 * This needs to be expanded to cover all the visible parts.
4633 */
4634static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4635{
4636 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4637
3e32cb2e
JW
4638 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4639 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4640 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4641 memcg->low = 0;
4642 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4643 memcg->soft_limit = PAGE_COUNTER_MAX;
1ced953b
TH
4644}
4645
02491447 4646#ifdef CONFIG_MMU
7dc74be0 4647/* Handlers for move charge at task migration. */
854ffa8d 4648static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4649{
05b84301 4650 int ret;
9476db97
JW
4651
4652 /* Try a single bulk charge without reclaim first */
00501b53 4653 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4654 if (!ret) {
854ffa8d 4655 mc.precharge += count;
854ffa8d
DN
4656 return ret;
4657 }
692e7c45 4658 if (ret == -EINTR) {
00501b53 4659 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4660 return ret;
4661 }
9476db97
JW
4662
4663 /* Try charges one by one with reclaim */
854ffa8d 4664 while (count--) {
00501b53 4665 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4666 /*
4667 * In case of failure, any residual charges against
4668 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4669 * later on. However, cancel any charges that are
4670 * bypassed to root right away or they'll be lost.
9476db97 4671 */
692e7c45 4672 if (ret == -EINTR)
00501b53 4673 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4674 if (ret)
38c5d72f 4675 return ret;
854ffa8d 4676 mc.precharge++;
9476db97 4677 cond_resched();
854ffa8d 4678 }
9476db97 4679 return 0;
4ffef5fe
DN
4680}
4681
4682/**
8d32ff84 4683 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4684 * @vma: the vma the pte to be checked belongs
4685 * @addr: the address corresponding to the pte to be checked
4686 * @ptent: the pte to be checked
02491447 4687 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4688 *
4689 * Returns
4690 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4691 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4692 * move charge. if @target is not NULL, the page is stored in target->page
4693 * with extra refcnt got(Callers should handle it).
02491447
DN
4694 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4695 * target for charge migration. if @target is not NULL, the entry is stored
4696 * in target->ent.
4ffef5fe
DN
4697 *
4698 * Called with pte lock held.
4699 */
4ffef5fe
DN
4700union mc_target {
4701 struct page *page;
02491447 4702 swp_entry_t ent;
4ffef5fe
DN
4703};
4704
4ffef5fe 4705enum mc_target_type {
8d32ff84 4706 MC_TARGET_NONE = 0,
4ffef5fe 4707 MC_TARGET_PAGE,
02491447 4708 MC_TARGET_SWAP,
4ffef5fe
DN
4709};
4710
90254a65
DN
4711static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4712 unsigned long addr, pte_t ptent)
4ffef5fe 4713{
90254a65 4714 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4715
90254a65
DN
4716 if (!page || !page_mapped(page))
4717 return NULL;
4718 if (PageAnon(page)) {
1dfab5ab 4719 if (!(mc.flags & MOVE_ANON))
90254a65 4720 return NULL;
1dfab5ab
JW
4721 } else {
4722 if (!(mc.flags & MOVE_FILE))
4723 return NULL;
4724 }
90254a65
DN
4725 if (!get_page_unless_zero(page))
4726 return NULL;
4727
4728 return page;
4729}
4730
4b91355e 4731#ifdef CONFIG_SWAP
90254a65
DN
4732static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4733 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4734{
90254a65
DN
4735 struct page *page = NULL;
4736 swp_entry_t ent = pte_to_swp_entry(ptent);
4737
1dfab5ab 4738 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4739 return NULL;
4b91355e
KH
4740 /*
4741 * Because lookup_swap_cache() updates some statistics counter,
4742 * we call find_get_page() with swapper_space directly.
4743 */
33806f06 4744 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4745 if (do_swap_account)
4746 entry->val = ent.val;
4747
4748 return page;
4749}
4b91355e
KH
4750#else
4751static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4752 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4753{
4754 return NULL;
4755}
4756#endif
90254a65 4757
87946a72
DN
4758static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4759 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4760{
4761 struct page *page = NULL;
87946a72
DN
4762 struct address_space *mapping;
4763 pgoff_t pgoff;
4764
4765 if (!vma->vm_file) /* anonymous vma */
4766 return NULL;
1dfab5ab 4767 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4768 return NULL;
4769
87946a72 4770 mapping = vma->vm_file->f_mapping;
0661a336 4771 pgoff = linear_page_index(vma, addr);
87946a72
DN
4772
4773 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4774#ifdef CONFIG_SWAP
4775 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4776 if (shmem_mapping(mapping)) {
4777 page = find_get_entry(mapping, pgoff);
4778 if (radix_tree_exceptional_entry(page)) {
4779 swp_entry_t swp = radix_to_swp_entry(page);
4780 if (do_swap_account)
4781 *entry = swp;
4782 page = find_get_page(swap_address_space(swp), swp.val);
4783 }
4784 } else
4785 page = find_get_page(mapping, pgoff);
4786#else
4787 page = find_get_page(mapping, pgoff);
aa3b1895 4788#endif
87946a72
DN
4789 return page;
4790}
4791
8d32ff84 4792static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4793 unsigned long addr, pte_t ptent, union mc_target *target)
4794{
4795 struct page *page = NULL;
8d32ff84 4796 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4797 swp_entry_t ent = { .val = 0 };
4798
4799 if (pte_present(ptent))
4800 page = mc_handle_present_pte(vma, addr, ptent);
4801 else if (is_swap_pte(ptent))
4802 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4803 else if (pte_none(ptent))
87946a72 4804 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4805
4806 if (!page && !ent.val)
8d32ff84 4807 return ret;
02491447 4808 if (page) {
02491447 4809 /*
0a31bc97 4810 * Do only loose check w/o serialization.
1306a85a 4811 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4812 * not under LRU exclusion.
02491447 4813 */
1306a85a 4814 if (page->mem_cgroup == mc.from) {
02491447
DN
4815 ret = MC_TARGET_PAGE;
4816 if (target)
4817 target->page = page;
4818 }
4819 if (!ret || !target)
4820 put_page(page);
4821 }
90254a65
DN
4822 /* There is a swap entry and a page doesn't exist or isn't charged */
4823 if (ent.val && !ret &&
34c00c31 4824 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4825 ret = MC_TARGET_SWAP;
4826 if (target)
4827 target->ent = ent;
4ffef5fe 4828 }
4ffef5fe
DN
4829 return ret;
4830}
4831
12724850
NH
4832#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4833/*
4834 * We don't consider swapping or file mapped pages because THP does not
4835 * support them for now.
4836 * Caller should make sure that pmd_trans_huge(pmd) is true.
4837 */
4838static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4839 unsigned long addr, pmd_t pmd, union mc_target *target)
4840{
4841 struct page *page = NULL;
12724850
NH
4842 enum mc_target_type ret = MC_TARGET_NONE;
4843
4844 page = pmd_page(pmd);
309381fe 4845 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4846 if (!(mc.flags & MOVE_ANON))
12724850 4847 return ret;
1306a85a 4848 if (page->mem_cgroup == mc.from) {
12724850
NH
4849 ret = MC_TARGET_PAGE;
4850 if (target) {
4851 get_page(page);
4852 target->page = page;
4853 }
4854 }
4855 return ret;
4856}
4857#else
4858static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4859 unsigned long addr, pmd_t pmd, union mc_target *target)
4860{
4861 return MC_TARGET_NONE;
4862}
4863#endif
4864
4ffef5fe
DN
4865static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4866 unsigned long addr, unsigned long end,
4867 struct mm_walk *walk)
4868{
26bcd64a 4869 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4870 pte_t *pte;
4871 spinlock_t *ptl;
4872
bf929152 4873 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4874 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4875 mc.precharge += HPAGE_PMD_NR;
bf929152 4876 spin_unlock(ptl);
1a5a9906 4877 return 0;
12724850 4878 }
03319327 4879
45f83cef
AA
4880 if (pmd_trans_unstable(pmd))
4881 return 0;
4ffef5fe
DN
4882 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4883 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4884 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4885 mc.precharge++; /* increment precharge temporarily */
4886 pte_unmap_unlock(pte - 1, ptl);
4887 cond_resched();
4888
7dc74be0
DN
4889 return 0;
4890}
4891
4ffef5fe
DN
4892static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4893{
4894 unsigned long precharge;
4ffef5fe 4895
26bcd64a
NH
4896 struct mm_walk mem_cgroup_count_precharge_walk = {
4897 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4898 .mm = mm,
4899 };
dfe076b0 4900 down_read(&mm->mmap_sem);
26bcd64a 4901 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4902 up_read(&mm->mmap_sem);
4ffef5fe
DN
4903
4904 precharge = mc.precharge;
4905 mc.precharge = 0;
4906
4907 return precharge;
4908}
4909
4ffef5fe
DN
4910static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4911{
dfe076b0
DN
4912 unsigned long precharge = mem_cgroup_count_precharge(mm);
4913
4914 VM_BUG_ON(mc.moving_task);
4915 mc.moving_task = current;
4916 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4917}
4918
dfe076b0
DN
4919/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4920static void __mem_cgroup_clear_mc(void)
4ffef5fe 4921{
2bd9bb20
KH
4922 struct mem_cgroup *from = mc.from;
4923 struct mem_cgroup *to = mc.to;
4924
4ffef5fe 4925 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4926 if (mc.precharge) {
00501b53 4927 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4928 mc.precharge = 0;
4929 }
4930 /*
4931 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4932 * we must uncharge here.
4933 */
4934 if (mc.moved_charge) {
00501b53 4935 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4936 mc.moved_charge = 0;
4ffef5fe 4937 }
483c30b5
DN
4938 /* we must fixup refcnts and charges */
4939 if (mc.moved_swap) {
483c30b5 4940 /* uncharge swap account from the old cgroup */
ce00a967 4941 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4942 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4943
05b84301 4944 /*
3e32cb2e
JW
4945 * we charged both to->memory and to->memsw, so we
4946 * should uncharge to->memory.
05b84301 4947 */
ce00a967 4948 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4949 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4950
e8ea14cc 4951 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4952
4050377b 4953 /* we've already done css_get(mc.to) */
483c30b5
DN
4954 mc.moved_swap = 0;
4955 }
dfe076b0
DN
4956 memcg_oom_recover(from);
4957 memcg_oom_recover(to);
4958 wake_up_all(&mc.waitq);
4959}
4960
4961static void mem_cgroup_clear_mc(void)
4962{
dfe076b0
DN
4963 /*
4964 * we must clear moving_task before waking up waiters at the end of
4965 * task migration.
4966 */
4967 mc.moving_task = NULL;
4968 __mem_cgroup_clear_mc();
2bd9bb20 4969 spin_lock(&mc.lock);
4ffef5fe
DN
4970 mc.from = NULL;
4971 mc.to = NULL;
2bd9bb20 4972 spin_unlock(&mc.lock);
4ffef5fe
DN
4973}
4974
eb95419b 4975static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 4976 struct cgroup_taskset *tset)
7dc74be0 4977{
2f7ee569 4978 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 4979 int ret = 0;
eb95419b 4980 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1dfab5ab 4981 unsigned long move_flags;
7dc74be0 4982
ee5e8472
GC
4983 /*
4984 * We are now commited to this value whatever it is. Changes in this
4985 * tunable will only affect upcoming migrations, not the current one.
4986 * So we need to save it, and keep it going.
4987 */
1dfab5ab
JW
4988 move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
4989 if (move_flags) {
7dc74be0
DN
4990 struct mm_struct *mm;
4991 struct mem_cgroup *from = mem_cgroup_from_task(p);
4992
c0ff4b85 4993 VM_BUG_ON(from == memcg);
7dc74be0
DN
4994
4995 mm = get_task_mm(p);
4996 if (!mm)
4997 return 0;
7dc74be0 4998 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
4999 if (mm->owner == p) {
5000 VM_BUG_ON(mc.from);
5001 VM_BUG_ON(mc.to);
5002 VM_BUG_ON(mc.precharge);
854ffa8d 5003 VM_BUG_ON(mc.moved_charge);
483c30b5 5004 VM_BUG_ON(mc.moved_swap);
247b1447 5005
2bd9bb20 5006 spin_lock(&mc.lock);
4ffef5fe 5007 mc.from = from;
c0ff4b85 5008 mc.to = memcg;
1dfab5ab 5009 mc.flags = move_flags;
2bd9bb20 5010 spin_unlock(&mc.lock);
dfe076b0 5011 /* We set mc.moving_task later */
4ffef5fe
DN
5012
5013 ret = mem_cgroup_precharge_mc(mm);
5014 if (ret)
5015 mem_cgroup_clear_mc();
dfe076b0
DN
5016 }
5017 mmput(mm);
7dc74be0
DN
5018 }
5019 return ret;
5020}
5021
eb95419b 5022static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5023 struct cgroup_taskset *tset)
7dc74be0 5024{
4e2f245d
JW
5025 if (mc.to)
5026 mem_cgroup_clear_mc();
7dc74be0
DN
5027}
5028
4ffef5fe
DN
5029static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5030 unsigned long addr, unsigned long end,
5031 struct mm_walk *walk)
7dc74be0 5032{
4ffef5fe 5033 int ret = 0;
26bcd64a 5034 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5035 pte_t *pte;
5036 spinlock_t *ptl;
12724850
NH
5037 enum mc_target_type target_type;
5038 union mc_target target;
5039 struct page *page;
4ffef5fe 5040
12724850
NH
5041 /*
5042 * We don't take compound_lock() here but no race with splitting thp
5043 * happens because:
5044 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5045 * under splitting, which means there's no concurrent thp split,
5046 * - if another thread runs into split_huge_page() just after we
5047 * entered this if-block, the thread must wait for page table lock
5048 * to be unlocked in __split_huge_page_splitting(), where the main
5049 * part of thp split is not executed yet.
5050 */
bf929152 5051 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5052 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5053 spin_unlock(ptl);
12724850
NH
5054 return 0;
5055 }
5056 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5057 if (target_type == MC_TARGET_PAGE) {
5058 page = target.page;
5059 if (!isolate_lru_page(page)) {
12724850 5060 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5061 mc.from, mc.to)) {
12724850
NH
5062 mc.precharge -= HPAGE_PMD_NR;
5063 mc.moved_charge += HPAGE_PMD_NR;
5064 }
5065 putback_lru_page(page);
5066 }
5067 put_page(page);
5068 }
bf929152 5069 spin_unlock(ptl);
1a5a9906 5070 return 0;
12724850
NH
5071 }
5072
45f83cef
AA
5073 if (pmd_trans_unstable(pmd))
5074 return 0;
4ffef5fe
DN
5075retry:
5076 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5077 for (; addr != end; addr += PAGE_SIZE) {
5078 pte_t ptent = *(pte++);
02491447 5079 swp_entry_t ent;
4ffef5fe
DN
5080
5081 if (!mc.precharge)
5082 break;
5083
8d32ff84 5084 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5085 case MC_TARGET_PAGE:
5086 page = target.page;
5087 if (isolate_lru_page(page))
5088 goto put;
1306a85a 5089 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5090 mc.precharge--;
854ffa8d
DN
5091 /* we uncharge from mc.from later. */
5092 mc.moved_charge++;
4ffef5fe
DN
5093 }
5094 putback_lru_page(page);
8d32ff84 5095put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5096 put_page(page);
5097 break;
02491447
DN
5098 case MC_TARGET_SWAP:
5099 ent = target.ent;
e91cbb42 5100 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5101 mc.precharge--;
483c30b5
DN
5102 /* we fixup refcnts and charges later. */
5103 mc.moved_swap++;
5104 }
02491447 5105 break;
4ffef5fe
DN
5106 default:
5107 break;
5108 }
5109 }
5110 pte_unmap_unlock(pte - 1, ptl);
5111 cond_resched();
5112
5113 if (addr != end) {
5114 /*
5115 * We have consumed all precharges we got in can_attach().
5116 * We try charge one by one, but don't do any additional
5117 * charges to mc.to if we have failed in charge once in attach()
5118 * phase.
5119 */
854ffa8d 5120 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5121 if (!ret)
5122 goto retry;
5123 }
5124
5125 return ret;
5126}
5127
5128static void mem_cgroup_move_charge(struct mm_struct *mm)
5129{
26bcd64a
NH
5130 struct mm_walk mem_cgroup_move_charge_walk = {
5131 .pmd_entry = mem_cgroup_move_charge_pte_range,
5132 .mm = mm,
5133 };
4ffef5fe
DN
5134
5135 lru_add_drain_all();
312722cb
JW
5136 /*
5137 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5138 * move_lock while we're moving its pages to another memcg.
5139 * Then wait for already started RCU-only updates to finish.
5140 */
5141 atomic_inc(&mc.from->moving_account);
5142 synchronize_rcu();
dfe076b0
DN
5143retry:
5144 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5145 /*
5146 * Someone who are holding the mmap_sem might be waiting in
5147 * waitq. So we cancel all extra charges, wake up all waiters,
5148 * and retry. Because we cancel precharges, we might not be able
5149 * to move enough charges, but moving charge is a best-effort
5150 * feature anyway, so it wouldn't be a big problem.
5151 */
5152 __mem_cgroup_clear_mc();
5153 cond_resched();
5154 goto retry;
5155 }
26bcd64a
NH
5156 /*
5157 * When we have consumed all precharges and failed in doing
5158 * additional charge, the page walk just aborts.
5159 */
5160 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5161 up_read(&mm->mmap_sem);
312722cb 5162 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5163}
5164
eb95419b 5165static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5166 struct cgroup_taskset *tset)
67e465a7 5167{
2f7ee569 5168 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5169 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5170
dfe076b0 5171 if (mm) {
a433658c
KM
5172 if (mc.to)
5173 mem_cgroup_move_charge(mm);
dfe076b0
DN
5174 mmput(mm);
5175 }
a433658c
KM
5176 if (mc.to)
5177 mem_cgroup_clear_mc();
67e465a7 5178}
5cfb80a7 5179#else /* !CONFIG_MMU */
eb95419b 5180static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5181 struct cgroup_taskset *tset)
5cfb80a7
DN
5182{
5183 return 0;
5184}
eb95419b 5185static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5186 struct cgroup_taskset *tset)
5cfb80a7
DN
5187{
5188}
eb95419b 5189static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5190 struct cgroup_taskset *tset)
5cfb80a7
DN
5191{
5192}
5193#endif
67e465a7 5194
f00baae7
TH
5195/*
5196 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5197 * to verify whether we're attached to the default hierarchy on each mount
5198 * attempt.
f00baae7 5199 */
eb95419b 5200static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5201{
5202 /*
aa6ec29b 5203 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5204 * guarantees that @root doesn't have any children, so turning it
5205 * on for the root memcg is enough.
5206 */
aa6ec29b 5207 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5208 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5209}
5210
241994ed
JW
5211static u64 memory_current_read(struct cgroup_subsys_state *css,
5212 struct cftype *cft)
5213{
5214 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5215}
5216
5217static int memory_low_show(struct seq_file *m, void *v)
5218{
5219 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5220 unsigned long low = ACCESS_ONCE(memcg->low);
5221
5222 if (low == PAGE_COUNTER_MAX)
5223 seq_puts(m, "infinity\n");
5224 else
5225 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5226
5227 return 0;
5228}
5229
5230static ssize_t memory_low_write(struct kernfs_open_file *of,
5231 char *buf, size_t nbytes, loff_t off)
5232{
5233 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5234 unsigned long low;
5235 int err;
5236
5237 buf = strstrip(buf);
5238 err = page_counter_memparse(buf, "infinity", &low);
5239 if (err)
5240 return err;
5241
5242 memcg->low = low;
5243
5244 return nbytes;
5245}
5246
5247static int memory_high_show(struct seq_file *m, void *v)
5248{
5249 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5250 unsigned long high = ACCESS_ONCE(memcg->high);
5251
5252 if (high == PAGE_COUNTER_MAX)
5253 seq_puts(m, "infinity\n");
5254 else
5255 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5256
5257 return 0;
5258}
5259
5260static ssize_t memory_high_write(struct kernfs_open_file *of,
5261 char *buf, size_t nbytes, loff_t off)
5262{
5263 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5264 unsigned long high;
5265 int err;
5266
5267 buf = strstrip(buf);
5268 err = page_counter_memparse(buf, "infinity", &high);
5269 if (err)
5270 return err;
5271
5272 memcg->high = high;
5273
5274 return nbytes;
5275}
5276
5277static int memory_max_show(struct seq_file *m, void *v)
5278{
5279 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5280 unsigned long max = ACCESS_ONCE(memcg->memory.limit);
5281
5282 if (max == PAGE_COUNTER_MAX)
5283 seq_puts(m, "infinity\n");
5284 else
5285 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5286
5287 return 0;
5288}
5289
5290static ssize_t memory_max_write(struct kernfs_open_file *of,
5291 char *buf, size_t nbytes, loff_t off)
5292{
5293 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5294 unsigned long max;
5295 int err;
5296
5297 buf = strstrip(buf);
5298 err = page_counter_memparse(buf, "infinity", &max);
5299 if (err)
5300 return err;
5301
5302 err = mem_cgroup_resize_limit(memcg, max);
5303 if (err)
5304 return err;
5305
5306 return nbytes;
5307}
5308
5309static int memory_events_show(struct seq_file *m, void *v)
5310{
5311 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5312
5313 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5314 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5315 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5316 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5317
5318 return 0;
5319}
5320
5321static struct cftype memory_files[] = {
5322 {
5323 .name = "current",
5324 .read_u64 = memory_current_read,
5325 },
5326 {
5327 .name = "low",
5328 .flags = CFTYPE_NOT_ON_ROOT,
5329 .seq_show = memory_low_show,
5330 .write = memory_low_write,
5331 },
5332 {
5333 .name = "high",
5334 .flags = CFTYPE_NOT_ON_ROOT,
5335 .seq_show = memory_high_show,
5336 .write = memory_high_write,
5337 },
5338 {
5339 .name = "max",
5340 .flags = CFTYPE_NOT_ON_ROOT,
5341 .seq_show = memory_max_show,
5342 .write = memory_max_write,
5343 },
5344 {
5345 .name = "events",
5346 .flags = CFTYPE_NOT_ON_ROOT,
5347 .seq_show = memory_events_show,
5348 },
5349 { } /* terminate */
5350};
5351
073219e9 5352struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5353 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5354 .css_online = mem_cgroup_css_online,
92fb9748
TH
5355 .css_offline = mem_cgroup_css_offline,
5356 .css_free = mem_cgroup_css_free,
1ced953b 5357 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5358 .can_attach = mem_cgroup_can_attach,
5359 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5360 .attach = mem_cgroup_move_task,
f00baae7 5361 .bind = mem_cgroup_bind,
241994ed
JW
5362 .dfl_cftypes = memory_files,
5363 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5364 .early_init = 0,
8cdea7c0 5365};
c077719b 5366
241994ed
JW
5367/**
5368 * mem_cgroup_events - count memory events against a cgroup
5369 * @memcg: the memory cgroup
5370 * @idx: the event index
5371 * @nr: the number of events to account for
5372 */
5373void mem_cgroup_events(struct mem_cgroup *memcg,
5374 enum mem_cgroup_events_index idx,
5375 unsigned int nr)
5376{
5377 this_cpu_add(memcg->stat->events[idx], nr);
5378}
5379
5380/**
5381 * mem_cgroup_low - check if memory consumption is below the normal range
5382 * @root: the highest ancestor to consider
5383 * @memcg: the memory cgroup to check
5384 *
5385 * Returns %true if memory consumption of @memcg, and that of all
5386 * configurable ancestors up to @root, is below the normal range.
5387 */
5388bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5389{
5390 if (mem_cgroup_disabled())
5391 return false;
5392
5393 /*
5394 * The toplevel group doesn't have a configurable range, so
5395 * it's never low when looked at directly, and it is not
5396 * considered an ancestor when assessing the hierarchy.
5397 */
5398
5399 if (memcg == root_mem_cgroup)
5400 return false;
5401
5402 if (page_counter_read(&memcg->memory) > memcg->low)
5403 return false;
5404
5405 while (memcg != root) {
5406 memcg = parent_mem_cgroup(memcg);
5407
5408 if (memcg == root_mem_cgroup)
5409 break;
5410
5411 if (page_counter_read(&memcg->memory) > memcg->low)
5412 return false;
5413 }
5414 return true;
5415}
5416
00501b53
JW
5417/**
5418 * mem_cgroup_try_charge - try charging a page
5419 * @page: page to charge
5420 * @mm: mm context of the victim
5421 * @gfp_mask: reclaim mode
5422 * @memcgp: charged memcg return
5423 *
5424 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5425 * pages according to @gfp_mask if necessary.
5426 *
5427 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5428 * Otherwise, an error code is returned.
5429 *
5430 * After page->mapping has been set up, the caller must finalize the
5431 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5432 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5433 */
5434int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5435 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5436{
5437 struct mem_cgroup *memcg = NULL;
5438 unsigned int nr_pages = 1;
5439 int ret = 0;
5440
5441 if (mem_cgroup_disabled())
5442 goto out;
5443
5444 if (PageSwapCache(page)) {
00501b53
JW
5445 /*
5446 * Every swap fault against a single page tries to charge the
5447 * page, bail as early as possible. shmem_unuse() encounters
5448 * already charged pages, too. The USED bit is protected by
5449 * the page lock, which serializes swap cache removal, which
5450 * in turn serializes uncharging.
5451 */
1306a85a 5452 if (page->mem_cgroup)
00501b53
JW
5453 goto out;
5454 }
5455
5456 if (PageTransHuge(page)) {
5457 nr_pages <<= compound_order(page);
5458 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5459 }
5460
5461 if (do_swap_account && PageSwapCache(page))
5462 memcg = try_get_mem_cgroup_from_page(page);
5463 if (!memcg)
5464 memcg = get_mem_cgroup_from_mm(mm);
5465
5466 ret = try_charge(memcg, gfp_mask, nr_pages);
5467
5468 css_put(&memcg->css);
5469
5470 if (ret == -EINTR) {
5471 memcg = root_mem_cgroup;
5472 ret = 0;
5473 }
5474out:
5475 *memcgp = memcg;
5476 return ret;
5477}
5478
5479/**
5480 * mem_cgroup_commit_charge - commit a page charge
5481 * @page: page to charge
5482 * @memcg: memcg to charge the page to
5483 * @lrucare: page might be on LRU already
5484 *
5485 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5486 * after page->mapping has been set up. This must happen atomically
5487 * as part of the page instantiation, i.e. under the page table lock
5488 * for anonymous pages, under the page lock for page and swap cache.
5489 *
5490 * In addition, the page must not be on the LRU during the commit, to
5491 * prevent racing with task migration. If it might be, use @lrucare.
5492 *
5493 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5494 */
5495void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5496 bool lrucare)
5497{
5498 unsigned int nr_pages = 1;
5499
5500 VM_BUG_ON_PAGE(!page->mapping, page);
5501 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5502
5503 if (mem_cgroup_disabled())
5504 return;
5505 /*
5506 * Swap faults will attempt to charge the same page multiple
5507 * times. But reuse_swap_page() might have removed the page
5508 * from swapcache already, so we can't check PageSwapCache().
5509 */
5510 if (!memcg)
5511 return;
5512
6abb5a86
JW
5513 commit_charge(page, memcg, lrucare);
5514
00501b53
JW
5515 if (PageTransHuge(page)) {
5516 nr_pages <<= compound_order(page);
5517 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5518 }
5519
6abb5a86
JW
5520 local_irq_disable();
5521 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5522 memcg_check_events(memcg, page);
5523 local_irq_enable();
00501b53
JW
5524
5525 if (do_swap_account && PageSwapCache(page)) {
5526 swp_entry_t entry = { .val = page_private(page) };
5527 /*
5528 * The swap entry might not get freed for a long time,
5529 * let's not wait for it. The page already received a
5530 * memory+swap charge, drop the swap entry duplicate.
5531 */
5532 mem_cgroup_uncharge_swap(entry);
5533 }
5534}
5535
5536/**
5537 * mem_cgroup_cancel_charge - cancel a page charge
5538 * @page: page to charge
5539 * @memcg: memcg to charge the page to
5540 *
5541 * Cancel a charge transaction started by mem_cgroup_try_charge().
5542 */
5543void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5544{
5545 unsigned int nr_pages = 1;
5546
5547 if (mem_cgroup_disabled())
5548 return;
5549 /*
5550 * Swap faults will attempt to charge the same page multiple
5551 * times. But reuse_swap_page() might have removed the page
5552 * from swapcache already, so we can't check PageSwapCache().
5553 */
5554 if (!memcg)
5555 return;
5556
5557 if (PageTransHuge(page)) {
5558 nr_pages <<= compound_order(page);
5559 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5560 }
5561
5562 cancel_charge(memcg, nr_pages);
5563}
5564
747db954 5565static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5566 unsigned long nr_anon, unsigned long nr_file,
5567 unsigned long nr_huge, struct page *dummy_page)
5568{
18eca2e6 5569 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5570 unsigned long flags;
5571
ce00a967 5572 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5573 page_counter_uncharge(&memcg->memory, nr_pages);
5574 if (do_swap_account)
5575 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5576 memcg_oom_recover(memcg);
5577 }
747db954
JW
5578
5579 local_irq_save(flags);
5580 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5581 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5582 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5583 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5584 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5585 memcg_check_events(memcg, dummy_page);
5586 local_irq_restore(flags);
e8ea14cc
JW
5587
5588 if (!mem_cgroup_is_root(memcg))
18eca2e6 5589 css_put_many(&memcg->css, nr_pages);
747db954
JW
5590}
5591
5592static void uncharge_list(struct list_head *page_list)
5593{
5594 struct mem_cgroup *memcg = NULL;
747db954
JW
5595 unsigned long nr_anon = 0;
5596 unsigned long nr_file = 0;
5597 unsigned long nr_huge = 0;
5598 unsigned long pgpgout = 0;
747db954
JW
5599 struct list_head *next;
5600 struct page *page;
5601
5602 next = page_list->next;
5603 do {
5604 unsigned int nr_pages = 1;
747db954
JW
5605
5606 page = list_entry(next, struct page, lru);
5607 next = page->lru.next;
5608
5609 VM_BUG_ON_PAGE(PageLRU(page), page);
5610 VM_BUG_ON_PAGE(page_count(page), page);
5611
1306a85a 5612 if (!page->mem_cgroup)
747db954
JW
5613 continue;
5614
5615 /*
5616 * Nobody should be changing or seriously looking at
1306a85a 5617 * page->mem_cgroup at this point, we have fully
29833315 5618 * exclusive access to the page.
747db954
JW
5619 */
5620
1306a85a 5621 if (memcg != page->mem_cgroup) {
747db954 5622 if (memcg) {
18eca2e6
JW
5623 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5624 nr_huge, page);
5625 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5626 }
1306a85a 5627 memcg = page->mem_cgroup;
747db954
JW
5628 }
5629
5630 if (PageTransHuge(page)) {
5631 nr_pages <<= compound_order(page);
5632 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5633 nr_huge += nr_pages;
5634 }
5635
5636 if (PageAnon(page))
5637 nr_anon += nr_pages;
5638 else
5639 nr_file += nr_pages;
5640
1306a85a 5641 page->mem_cgroup = NULL;
747db954
JW
5642
5643 pgpgout++;
5644 } while (next != page_list);
5645
5646 if (memcg)
18eca2e6
JW
5647 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5648 nr_huge, page);
747db954
JW
5649}
5650
0a31bc97
JW
5651/**
5652 * mem_cgroup_uncharge - uncharge a page
5653 * @page: page to uncharge
5654 *
5655 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5656 * mem_cgroup_commit_charge().
5657 */
5658void mem_cgroup_uncharge(struct page *page)
5659{
0a31bc97
JW
5660 if (mem_cgroup_disabled())
5661 return;
5662
747db954 5663 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5664 if (!page->mem_cgroup)
0a31bc97
JW
5665 return;
5666
747db954
JW
5667 INIT_LIST_HEAD(&page->lru);
5668 uncharge_list(&page->lru);
5669}
0a31bc97 5670
747db954
JW
5671/**
5672 * mem_cgroup_uncharge_list - uncharge a list of page
5673 * @page_list: list of pages to uncharge
5674 *
5675 * Uncharge a list of pages previously charged with
5676 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5677 */
5678void mem_cgroup_uncharge_list(struct list_head *page_list)
5679{
5680 if (mem_cgroup_disabled())
5681 return;
0a31bc97 5682
747db954
JW
5683 if (!list_empty(page_list))
5684 uncharge_list(page_list);
0a31bc97
JW
5685}
5686
5687/**
5688 * mem_cgroup_migrate - migrate a charge to another page
5689 * @oldpage: currently charged page
5690 * @newpage: page to transfer the charge to
f5e03a49 5691 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5692 *
5693 * Migrate the charge from @oldpage to @newpage.
5694 *
5695 * Both pages must be locked, @newpage->mapping must be set up.
5696 */
5697void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5698 bool lrucare)
5699{
29833315 5700 struct mem_cgroup *memcg;
0a31bc97
JW
5701 int isolated;
5702
5703 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5704 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5705 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5706 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5707 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5708 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5709 newpage);
0a31bc97
JW
5710
5711 if (mem_cgroup_disabled())
5712 return;
5713
5714 /* Page cache replacement: new page already charged? */
1306a85a 5715 if (newpage->mem_cgroup)
0a31bc97
JW
5716 return;
5717
7d5e3245
JW
5718 /*
5719 * Swapcache readahead pages can get migrated before being
5720 * charged, and migration from compaction can happen to an
5721 * uncharged page when the PFN walker finds a page that
5722 * reclaim just put back on the LRU but has not released yet.
5723 */
1306a85a 5724 memcg = oldpage->mem_cgroup;
29833315 5725 if (!memcg)
0a31bc97
JW
5726 return;
5727
0a31bc97
JW
5728 if (lrucare)
5729 lock_page_lru(oldpage, &isolated);
5730
1306a85a 5731 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5732
5733 if (lrucare)
5734 unlock_page_lru(oldpage, isolated);
5735
29833315 5736 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5737}
5738
2d11085e 5739/*
1081312f
MH
5740 * subsys_initcall() for memory controller.
5741 *
5742 * Some parts like hotcpu_notifier() have to be initialized from this context
5743 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5744 * everything that doesn't depend on a specific mem_cgroup structure should
5745 * be initialized from here.
2d11085e
MH
5746 */
5747static int __init mem_cgroup_init(void)
5748{
95a045f6
JW
5749 int cpu, node;
5750
2d11085e 5751 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5752
5753 for_each_possible_cpu(cpu)
5754 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5755 drain_local_stock);
5756
5757 for_each_node(node) {
5758 struct mem_cgroup_tree_per_node *rtpn;
5759 int zone;
5760
5761 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5762 node_online(node) ? node : NUMA_NO_NODE);
5763
5764 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5765 struct mem_cgroup_tree_per_zone *rtpz;
5766
5767 rtpz = &rtpn->rb_tree_per_zone[zone];
5768 rtpz->rb_root = RB_ROOT;
5769 spin_lock_init(&rtpz->lock);
5770 }
5771 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5772 }
5773
2d11085e
MH
5774 return 0;
5775}
5776subsys_initcall(mem_cgroup_init);
21afa38e
JW
5777
5778#ifdef CONFIG_MEMCG_SWAP
5779/**
5780 * mem_cgroup_swapout - transfer a memsw charge to swap
5781 * @page: page whose memsw charge to transfer
5782 * @entry: swap entry to move the charge to
5783 *
5784 * Transfer the memsw charge of @page to @entry.
5785 */
5786void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5787{
5788 struct mem_cgroup *memcg;
5789 unsigned short oldid;
5790
5791 VM_BUG_ON_PAGE(PageLRU(page), page);
5792 VM_BUG_ON_PAGE(page_count(page), page);
5793
5794 if (!do_swap_account)
5795 return;
5796
5797 memcg = page->mem_cgroup;
5798
5799 /* Readahead page, never charged */
5800 if (!memcg)
5801 return;
5802
5803 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5804 VM_BUG_ON_PAGE(oldid, page);
5805 mem_cgroup_swap_statistics(memcg, true);
5806
5807 page->mem_cgroup = NULL;
5808
5809 if (!mem_cgroup_is_root(memcg))
5810 page_counter_uncharge(&memcg->memory, 1);
5811
5812 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5813 VM_BUG_ON(!irqs_disabled());
5814
5815 mem_cgroup_charge_statistics(memcg, page, -1);
5816 memcg_check_events(memcg, page);
5817}
5818
5819/**
5820 * mem_cgroup_uncharge_swap - uncharge a swap entry
5821 * @entry: swap entry to uncharge
5822 *
5823 * Drop the memsw charge associated with @entry.
5824 */
5825void mem_cgroup_uncharge_swap(swp_entry_t entry)
5826{
5827 struct mem_cgroup *memcg;
5828 unsigned short id;
5829
5830 if (!do_swap_account)
5831 return;
5832
5833 id = swap_cgroup_record(entry, 0);
5834 rcu_read_lock();
5835 memcg = mem_cgroup_lookup(id);
5836 if (memcg) {
5837 if (!mem_cgroup_is_root(memcg))
5838 page_counter_uncharge(&memcg->memsw, 1);
5839 mem_cgroup_swap_statistics(memcg, false);
5840 css_put(&memcg->css);
5841 }
5842 rcu_read_unlock();
5843}
5844
5845/* for remember boot option*/
5846#ifdef CONFIG_MEMCG_SWAP_ENABLED
5847static int really_do_swap_account __initdata = 1;
5848#else
5849static int really_do_swap_account __initdata;
5850#endif
5851
5852static int __init enable_swap_account(char *s)
5853{
5854 if (!strcmp(s, "1"))
5855 really_do_swap_account = 1;
5856 else if (!strcmp(s, "0"))
5857 really_do_swap_account = 0;
5858 return 1;
5859}
5860__setup("swapaccount=", enable_swap_account);
5861
5862static struct cftype memsw_cgroup_files[] = {
5863 {
5864 .name = "memsw.usage_in_bytes",
5865 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5866 .read_u64 = mem_cgroup_read_u64,
5867 },
5868 {
5869 .name = "memsw.max_usage_in_bytes",
5870 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5871 .write = mem_cgroup_reset,
5872 .read_u64 = mem_cgroup_read_u64,
5873 },
5874 {
5875 .name = "memsw.limit_in_bytes",
5876 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5877 .write = mem_cgroup_write,
5878 .read_u64 = mem_cgroup_read_u64,
5879 },
5880 {
5881 .name = "memsw.failcnt",
5882 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5883 .write = mem_cgroup_reset,
5884 .read_u64 = mem_cgroup_read_u64,
5885 },
5886 { }, /* terminate */
5887};
5888
5889static int __init mem_cgroup_swap_init(void)
5890{
5891 if (!mem_cgroup_disabled() && really_do_swap_account) {
5892 do_swap_account = 1;
5893 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5894 memsw_cgroup_files));
5895 }
5896 return 0;
5897}
5898subsys_initcall(mem_cgroup_swap_init);
5899
5900#endif /* CONFIG_MEMCG_SWAP */
This page took 1.148706 seconds and 5 git commands to generate.