powerpc/kvm/cma: Fix panic introduces by signed shift operation
[deliverable/linux.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
4daae3b4 60#include <linux/migrate.h>
2fbc57c5 61#include <linux/string.h>
0abdd7a8 62#include <linux/dma-debug.h>
1592eef0 63#include <linux/debugfs.h>
1da177e4 64
6952b61d 65#include <asm/io.h>
1da177e4
LT
66#include <asm/pgalloc.h>
67#include <asm/uaccess.h>
68#include <asm/tlb.h>
69#include <asm/tlbflush.h>
70#include <asm/pgtable.h>
71
42b77728
JB
72#include "internal.h"
73
90572890
PZ
74#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
76#endif
77
d41dee36 78#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
79/* use the per-pgdat data instead for discontigmem - mbligh */
80unsigned long max_mapnr;
81struct page *mem_map;
82
83EXPORT_SYMBOL(max_mapnr);
84EXPORT_SYMBOL(mem_map);
85#endif
86
1da177e4
LT
87/*
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
93 */
94void * high_memory;
1da177e4 95
1da177e4 96EXPORT_SYMBOL(high_memory);
1da177e4 97
32a93233
IM
98/*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104int randomize_va_space __read_mostly =
105#ifdef CONFIG_COMPAT_BRK
106 1;
107#else
108 2;
109#endif
a62eaf15
AK
110
111static int __init disable_randmaps(char *s)
112{
113 randomize_va_space = 0;
9b41046c 114 return 1;
a62eaf15
AK
115}
116__setup("norandmaps", disable_randmaps);
117
62eede62 118unsigned long zero_pfn __read_mostly;
03f6462a 119unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
120
121/*
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123 */
124static int __init init_zero_pfn(void)
125{
126 zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 return 0;
128}
129core_initcall(init_zero_pfn);
a62eaf15 130
d559db08 131
34e55232
KH
132#if defined(SPLIT_RSS_COUNTING)
133
ea48cf78 134void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
135{
136 int i;
137
138 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
139 if (current->rss_stat.count[i]) {
140 add_mm_counter(mm, i, current->rss_stat.count[i]);
141 current->rss_stat.count[i] = 0;
34e55232
KH
142 }
143 }
05af2e10 144 current->rss_stat.events = 0;
34e55232
KH
145}
146
147static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148{
149 struct task_struct *task = current;
150
151 if (likely(task->mm == mm))
152 task->rss_stat.count[member] += val;
153 else
154 add_mm_counter(mm, member, val);
155}
156#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159/* sync counter once per 64 page faults */
160#define TASK_RSS_EVENTS_THRESH (64)
161static void check_sync_rss_stat(struct task_struct *task)
162{
163 if (unlikely(task != current))
164 return;
165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 166 sync_mm_rss(task->mm);
34e55232 167}
9547d01b 168#else /* SPLIT_RSS_COUNTING */
34e55232
KH
169
170#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173static void check_sync_rss_stat(struct task_struct *task)
174{
175}
176
9547d01b
PZ
177#endif /* SPLIT_RSS_COUNTING */
178
179#ifdef HAVE_GENERIC_MMU_GATHER
180
181static int tlb_next_batch(struct mmu_gather *tlb)
182{
183 struct mmu_gather_batch *batch;
184
185 batch = tlb->active;
186 if (batch->next) {
187 tlb->active = batch->next;
188 return 1;
189 }
190
53a59fc6
MH
191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 return 0;
193
9547d01b
PZ
194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 if (!batch)
196 return 0;
197
53a59fc6 198 tlb->batch_count++;
9547d01b
PZ
199 batch->next = NULL;
200 batch->nr = 0;
201 batch->max = MAX_GATHER_BATCH;
202
203 tlb->active->next = batch;
204 tlb->active = batch;
205
206 return 1;
207}
208
209/* tlb_gather_mmu
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
213 */
2b047252 214void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
215{
216 tlb->mm = mm;
217
2b047252
LT
218 /* Is it from 0 to ~0? */
219 tlb->fullmm = !(start | (end+1));
1de14c3c 220 tlb->need_flush_all = 0;
2b047252
LT
221 tlb->start = start;
222 tlb->end = end;
9547d01b 223 tlb->need_flush = 0;
9547d01b
PZ
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
53a59fc6 228 tlb->batch_count = 0;
9547d01b
PZ
229
230#ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232#endif
233}
234
1cf35d47 235static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 236{
9547d01b
PZ
237 tlb->need_flush = 0;
238 tlb_flush(tlb);
239#ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 tlb_table_flush(tlb);
34e55232 241#endif
1cf35d47
LT
242}
243
244static void tlb_flush_mmu_free(struct mmu_gather *tlb)
245{
246 struct mmu_gather_batch *batch;
34e55232 247
9547d01b
PZ
248 for (batch = &tlb->local; batch; batch = batch->next) {
249 free_pages_and_swap_cache(batch->pages, batch->nr);
250 batch->nr = 0;
251 }
252 tlb->active = &tlb->local;
253}
254
1cf35d47
LT
255void tlb_flush_mmu(struct mmu_gather *tlb)
256{
257 if (!tlb->need_flush)
258 return;
259 tlb_flush_mmu_tlbonly(tlb);
260 tlb_flush_mmu_free(tlb);
261}
262
9547d01b
PZ
263/* tlb_finish_mmu
264 * Called at the end of the shootdown operation to free up any resources
265 * that were required.
266 */
267void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
268{
269 struct mmu_gather_batch *batch, *next;
270
271 tlb_flush_mmu(tlb);
272
273 /* keep the page table cache within bounds */
274 check_pgt_cache();
275
276 for (batch = tlb->local.next; batch; batch = next) {
277 next = batch->next;
278 free_pages((unsigned long)batch, 0);
279 }
280 tlb->local.next = NULL;
281}
282
283/* __tlb_remove_page
284 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
285 * handling the additional races in SMP caused by other CPUs caching valid
286 * mappings in their TLBs. Returns the number of free page slots left.
287 * When out of page slots we must call tlb_flush_mmu().
288 */
289int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
290{
291 struct mmu_gather_batch *batch;
292
f21760b1 293 VM_BUG_ON(!tlb->need_flush);
9547d01b 294
9547d01b
PZ
295 batch = tlb->active;
296 batch->pages[batch->nr++] = page;
297 if (batch->nr == batch->max) {
298 if (!tlb_next_batch(tlb))
299 return 0;
0b43c3aa 300 batch = tlb->active;
9547d01b 301 }
309381fe 302 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b
PZ
303
304 return batch->max - batch->nr;
305}
306
307#endif /* HAVE_GENERIC_MMU_GATHER */
308
26723911
PZ
309#ifdef CONFIG_HAVE_RCU_TABLE_FREE
310
311/*
312 * See the comment near struct mmu_table_batch.
313 */
314
315static void tlb_remove_table_smp_sync(void *arg)
316{
317 /* Simply deliver the interrupt */
318}
319
320static void tlb_remove_table_one(void *table)
321{
322 /*
323 * This isn't an RCU grace period and hence the page-tables cannot be
324 * assumed to be actually RCU-freed.
325 *
326 * It is however sufficient for software page-table walkers that rely on
327 * IRQ disabling. See the comment near struct mmu_table_batch.
328 */
329 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
330 __tlb_remove_table(table);
331}
332
333static void tlb_remove_table_rcu(struct rcu_head *head)
334{
335 struct mmu_table_batch *batch;
336 int i;
337
338 batch = container_of(head, struct mmu_table_batch, rcu);
339
340 for (i = 0; i < batch->nr; i++)
341 __tlb_remove_table(batch->tables[i]);
342
343 free_page((unsigned long)batch);
344}
345
346void tlb_table_flush(struct mmu_gather *tlb)
347{
348 struct mmu_table_batch **batch = &tlb->batch;
349
350 if (*batch) {
351 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
352 *batch = NULL;
353 }
354}
355
356void tlb_remove_table(struct mmu_gather *tlb, void *table)
357{
358 struct mmu_table_batch **batch = &tlb->batch;
359
360 tlb->need_flush = 1;
361
362 /*
363 * When there's less then two users of this mm there cannot be a
364 * concurrent page-table walk.
365 */
366 if (atomic_read(&tlb->mm->mm_users) < 2) {
367 __tlb_remove_table(table);
368 return;
369 }
370
371 if (*batch == NULL) {
372 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
373 if (*batch == NULL) {
374 tlb_remove_table_one(table);
375 return;
376 }
377 (*batch)->nr = 0;
378 }
379 (*batch)->tables[(*batch)->nr++] = table;
380 if ((*batch)->nr == MAX_TABLE_BATCH)
381 tlb_table_flush(tlb);
382}
383
9547d01b 384#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 385
1da177e4
LT
386/*
387 * Note: this doesn't free the actual pages themselves. That
388 * has been handled earlier when unmapping all the memory regions.
389 */
9e1b32ca
BH
390static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
391 unsigned long addr)
1da177e4 392{
2f569afd 393 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 394 pmd_clear(pmd);
9e1b32ca 395 pte_free_tlb(tlb, token, addr);
e1f56c89 396 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
397}
398
e0da382c
HD
399static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
400 unsigned long addr, unsigned long end,
401 unsigned long floor, unsigned long ceiling)
1da177e4
LT
402{
403 pmd_t *pmd;
404 unsigned long next;
e0da382c 405 unsigned long start;
1da177e4 406
e0da382c 407 start = addr;
1da177e4 408 pmd = pmd_offset(pud, addr);
1da177e4
LT
409 do {
410 next = pmd_addr_end(addr, end);
411 if (pmd_none_or_clear_bad(pmd))
412 continue;
9e1b32ca 413 free_pte_range(tlb, pmd, addr);
1da177e4
LT
414 } while (pmd++, addr = next, addr != end);
415
e0da382c
HD
416 start &= PUD_MASK;
417 if (start < floor)
418 return;
419 if (ceiling) {
420 ceiling &= PUD_MASK;
421 if (!ceiling)
422 return;
1da177e4 423 }
e0da382c
HD
424 if (end - 1 > ceiling - 1)
425 return;
426
427 pmd = pmd_offset(pud, start);
428 pud_clear(pud);
9e1b32ca 429 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
430}
431
e0da382c
HD
432static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
433 unsigned long addr, unsigned long end,
434 unsigned long floor, unsigned long ceiling)
1da177e4
LT
435{
436 pud_t *pud;
437 unsigned long next;
e0da382c 438 unsigned long start;
1da177e4 439
e0da382c 440 start = addr;
1da177e4 441 pud = pud_offset(pgd, addr);
1da177e4
LT
442 do {
443 next = pud_addr_end(addr, end);
444 if (pud_none_or_clear_bad(pud))
445 continue;
e0da382c 446 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
447 } while (pud++, addr = next, addr != end);
448
e0da382c
HD
449 start &= PGDIR_MASK;
450 if (start < floor)
451 return;
452 if (ceiling) {
453 ceiling &= PGDIR_MASK;
454 if (!ceiling)
455 return;
1da177e4 456 }
e0da382c
HD
457 if (end - 1 > ceiling - 1)
458 return;
459
460 pud = pud_offset(pgd, start);
461 pgd_clear(pgd);
9e1b32ca 462 pud_free_tlb(tlb, pud, start);
1da177e4
LT
463}
464
465/*
e0da382c 466 * This function frees user-level page tables of a process.
1da177e4 467 */
42b77728 468void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
469 unsigned long addr, unsigned long end,
470 unsigned long floor, unsigned long ceiling)
1da177e4
LT
471{
472 pgd_t *pgd;
473 unsigned long next;
e0da382c
HD
474
475 /*
476 * The next few lines have given us lots of grief...
477 *
478 * Why are we testing PMD* at this top level? Because often
479 * there will be no work to do at all, and we'd prefer not to
480 * go all the way down to the bottom just to discover that.
481 *
482 * Why all these "- 1"s? Because 0 represents both the bottom
483 * of the address space and the top of it (using -1 for the
484 * top wouldn't help much: the masks would do the wrong thing).
485 * The rule is that addr 0 and floor 0 refer to the bottom of
486 * the address space, but end 0 and ceiling 0 refer to the top
487 * Comparisons need to use "end - 1" and "ceiling - 1" (though
488 * that end 0 case should be mythical).
489 *
490 * Wherever addr is brought up or ceiling brought down, we must
491 * be careful to reject "the opposite 0" before it confuses the
492 * subsequent tests. But what about where end is brought down
493 * by PMD_SIZE below? no, end can't go down to 0 there.
494 *
495 * Whereas we round start (addr) and ceiling down, by different
496 * masks at different levels, in order to test whether a table
497 * now has no other vmas using it, so can be freed, we don't
498 * bother to round floor or end up - the tests don't need that.
499 */
1da177e4 500
e0da382c
HD
501 addr &= PMD_MASK;
502 if (addr < floor) {
503 addr += PMD_SIZE;
504 if (!addr)
505 return;
506 }
507 if (ceiling) {
508 ceiling &= PMD_MASK;
509 if (!ceiling)
510 return;
511 }
512 if (end - 1 > ceiling - 1)
513 end -= PMD_SIZE;
514 if (addr > end - 1)
515 return;
516
42b77728 517 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
518 do {
519 next = pgd_addr_end(addr, end);
520 if (pgd_none_or_clear_bad(pgd))
521 continue;
42b77728 522 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 523 } while (pgd++, addr = next, addr != end);
e0da382c
HD
524}
525
42b77728 526void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 527 unsigned long floor, unsigned long ceiling)
e0da382c
HD
528{
529 while (vma) {
530 struct vm_area_struct *next = vma->vm_next;
531 unsigned long addr = vma->vm_start;
532
8f4f8c16 533 /*
25d9e2d1 534 * Hide vma from rmap and truncate_pagecache before freeing
535 * pgtables
8f4f8c16 536 */
5beb4930 537 unlink_anon_vmas(vma);
8f4f8c16
HD
538 unlink_file_vma(vma);
539
9da61aef 540 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 541 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 542 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
543 } else {
544 /*
545 * Optimization: gather nearby vmas into one call down
546 */
547 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 548 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
549 vma = next;
550 next = vma->vm_next;
5beb4930 551 unlink_anon_vmas(vma);
8f4f8c16 552 unlink_file_vma(vma);
3bf5ee95
HD
553 }
554 free_pgd_range(tlb, addr, vma->vm_end,
555 floor, next? next->vm_start: ceiling);
556 }
e0da382c
HD
557 vma = next;
558 }
1da177e4
LT
559}
560
8ac1f832
AA
561int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
562 pmd_t *pmd, unsigned long address)
1da177e4 563{
c4088ebd 564 spinlock_t *ptl;
2f569afd 565 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 566 int wait_split_huge_page;
1bb3630e
HD
567 if (!new)
568 return -ENOMEM;
569
362a61ad
NP
570 /*
571 * Ensure all pte setup (eg. pte page lock and page clearing) are
572 * visible before the pte is made visible to other CPUs by being
573 * put into page tables.
574 *
575 * The other side of the story is the pointer chasing in the page
576 * table walking code (when walking the page table without locking;
577 * ie. most of the time). Fortunately, these data accesses consist
578 * of a chain of data-dependent loads, meaning most CPUs (alpha
579 * being the notable exception) will already guarantee loads are
580 * seen in-order. See the alpha page table accessors for the
581 * smp_read_barrier_depends() barriers in page table walking code.
582 */
583 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
584
c4088ebd 585 ptl = pmd_lock(mm, pmd);
8ac1f832
AA
586 wait_split_huge_page = 0;
587 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 588 atomic_long_inc(&mm->nr_ptes);
1da177e4 589 pmd_populate(mm, pmd, new);
2f569afd 590 new = NULL;
8ac1f832
AA
591 } else if (unlikely(pmd_trans_splitting(*pmd)))
592 wait_split_huge_page = 1;
c4088ebd 593 spin_unlock(ptl);
2f569afd
MS
594 if (new)
595 pte_free(mm, new);
8ac1f832
AA
596 if (wait_split_huge_page)
597 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 598 return 0;
1da177e4
LT
599}
600
1bb3630e 601int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 602{
1bb3630e
HD
603 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604 if (!new)
605 return -ENOMEM;
606
362a61ad
NP
607 smp_wmb(); /* See comment in __pte_alloc */
608
1bb3630e 609 spin_lock(&init_mm.page_table_lock);
8ac1f832 610 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 611 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 612 new = NULL;
8ac1f832
AA
613 } else
614 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 615 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
616 if (new)
617 pte_free_kernel(&init_mm, new);
1bb3630e 618 return 0;
1da177e4
LT
619}
620
d559db08
KH
621static inline void init_rss_vec(int *rss)
622{
623 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
624}
625
626static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 627{
d559db08
KH
628 int i;
629
34e55232 630 if (current->mm == mm)
05af2e10 631 sync_mm_rss(mm);
d559db08
KH
632 for (i = 0; i < NR_MM_COUNTERS; i++)
633 if (rss[i])
634 add_mm_counter(mm, i, rss[i]);
ae859762
HD
635}
636
b5810039 637/*
6aab341e
LT
638 * This function is called to print an error when a bad pte
639 * is found. For example, we might have a PFN-mapped pte in
640 * a region that doesn't allow it.
b5810039
NP
641 *
642 * The calling function must still handle the error.
643 */
3dc14741
HD
644static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
645 pte_t pte, struct page *page)
b5810039 646{
3dc14741
HD
647 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
648 pud_t *pud = pud_offset(pgd, addr);
649 pmd_t *pmd = pmd_offset(pud, addr);
650 struct address_space *mapping;
651 pgoff_t index;
d936cf9b
HD
652 static unsigned long resume;
653 static unsigned long nr_shown;
654 static unsigned long nr_unshown;
655
656 /*
657 * Allow a burst of 60 reports, then keep quiet for that minute;
658 * or allow a steady drip of one report per second.
659 */
660 if (nr_shown == 60) {
661 if (time_before(jiffies, resume)) {
662 nr_unshown++;
663 return;
664 }
665 if (nr_unshown) {
1e9e6365
HD
666 printk(KERN_ALERT
667 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
668 nr_unshown);
669 nr_unshown = 0;
670 }
671 nr_shown = 0;
672 }
673 if (nr_shown++ == 0)
674 resume = jiffies + 60 * HZ;
3dc14741
HD
675
676 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
677 index = linear_page_index(vma, addr);
678
1e9e6365
HD
679 printk(KERN_ALERT
680 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
681 current->comm,
682 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 683 if (page)
f0b791a3 684 dump_page(page, "bad pte");
1e9e6365 685 printk(KERN_ALERT
3dc14741
HD
686 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
688 /*
689 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
690 */
691 if (vma->vm_ops)
071361d3
JP
692 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
693 vma->vm_ops->fault);
72c2d531 694 if (vma->vm_file)
071361d3
JP
695 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
696 vma->vm_file->f_op->mmap);
b5810039 697 dump_stack();
373d4d09 698 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
699}
700
ee498ed7 701/*
7e675137 702 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 703 *
7e675137
NP
704 * "Special" mappings do not wish to be associated with a "struct page" (either
705 * it doesn't exist, or it exists but they don't want to touch it). In this
706 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 707 *
7e675137
NP
708 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
709 * pte bit, in which case this function is trivial. Secondly, an architecture
710 * may not have a spare pte bit, which requires a more complicated scheme,
711 * described below.
712 *
713 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
714 * special mapping (even if there are underlying and valid "struct pages").
715 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 716 *
b379d790
JH
717 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
718 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
719 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
720 * mapping will always honor the rule
6aab341e
LT
721 *
722 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
723 *
7e675137
NP
724 * And for normal mappings this is false.
725 *
726 * This restricts such mappings to be a linear translation from virtual address
727 * to pfn. To get around this restriction, we allow arbitrary mappings so long
728 * as the vma is not a COW mapping; in that case, we know that all ptes are
729 * special (because none can have been COWed).
b379d790 730 *
b379d790 731 *
7e675137 732 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
733 *
734 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
735 * page" backing, however the difference is that _all_ pages with a struct
736 * page (that is, those where pfn_valid is true) are refcounted and considered
737 * normal pages by the VM. The disadvantage is that pages are refcounted
738 * (which can be slower and simply not an option for some PFNMAP users). The
739 * advantage is that we don't have to follow the strict linearity rule of
740 * PFNMAP mappings in order to support COWable mappings.
741 *
ee498ed7 742 */
7e675137
NP
743#ifdef __HAVE_ARCH_PTE_SPECIAL
744# define HAVE_PTE_SPECIAL 1
745#else
746# define HAVE_PTE_SPECIAL 0
747#endif
748struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
749 pte_t pte)
ee498ed7 750{
22b31eec 751 unsigned long pfn = pte_pfn(pte);
7e675137
NP
752
753 if (HAVE_PTE_SPECIAL) {
c46a7c81 754 if (likely(!pte_special(pte) || pte_numa(pte)))
22b31eec 755 goto check_pfn;
a13ea5b7
HD
756 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
757 return NULL;
62eede62 758 if (!is_zero_pfn(pfn))
22b31eec 759 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
760 return NULL;
761 }
762
763 /* !HAVE_PTE_SPECIAL case follows: */
764
b379d790
JH
765 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
766 if (vma->vm_flags & VM_MIXEDMAP) {
767 if (!pfn_valid(pfn))
768 return NULL;
769 goto out;
770 } else {
7e675137
NP
771 unsigned long off;
772 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
773 if (pfn == vma->vm_pgoff + off)
774 return NULL;
775 if (!is_cow_mapping(vma->vm_flags))
776 return NULL;
777 }
6aab341e
LT
778 }
779
22b31eec
HD
780check_pfn:
781 if (unlikely(pfn > highest_memmap_pfn)) {
782 print_bad_pte(vma, addr, pte, NULL);
783 return NULL;
784 }
6aab341e 785
c46a7c81
MG
786 if (is_zero_pfn(pfn))
787 return NULL;
788
6aab341e 789 /*
7e675137 790 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 791 * eg. VDSO mappings can cause them to exist.
6aab341e 792 */
b379d790 793out:
6aab341e 794 return pfn_to_page(pfn);
ee498ed7
HD
795}
796
1da177e4
LT
797/*
798 * copy one vm_area from one task to the other. Assumes the page tables
799 * already present in the new task to be cleared in the whole range
800 * covered by this vma.
1da177e4
LT
801 */
802
570a335b 803static inline unsigned long
1da177e4 804copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 805 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 806 unsigned long addr, int *rss)
1da177e4 807{
b5810039 808 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
809 pte_t pte = *src_pte;
810 struct page *page;
1da177e4
LT
811
812 /* pte contains position in swap or file, so copy. */
813 if (unlikely(!pte_present(pte))) {
814 if (!pte_file(pte)) {
0697212a
CL
815 swp_entry_t entry = pte_to_swp_entry(pte);
816
570a335b
HD
817 if (swap_duplicate(entry) < 0)
818 return entry.val;
819
1da177e4
LT
820 /* make sure dst_mm is on swapoff's mmlist. */
821 if (unlikely(list_empty(&dst_mm->mmlist))) {
822 spin_lock(&mmlist_lock);
f412ac08
HD
823 if (list_empty(&dst_mm->mmlist))
824 list_add(&dst_mm->mmlist,
825 &src_mm->mmlist);
1da177e4
LT
826 spin_unlock(&mmlist_lock);
827 }
b084d435
KH
828 if (likely(!non_swap_entry(entry)))
829 rss[MM_SWAPENTS]++;
9f9f1acd
KK
830 else if (is_migration_entry(entry)) {
831 page = migration_entry_to_page(entry);
832
833 if (PageAnon(page))
834 rss[MM_ANONPAGES]++;
835 else
836 rss[MM_FILEPAGES]++;
837
838 if (is_write_migration_entry(entry) &&
839 is_cow_mapping(vm_flags)) {
840 /*
841 * COW mappings require pages in both
842 * parent and child to be set to read.
843 */
844 make_migration_entry_read(&entry);
845 pte = swp_entry_to_pte(entry);
c3d16e16
CG
846 if (pte_swp_soft_dirty(*src_pte))
847 pte = pte_swp_mksoft_dirty(pte);
9f9f1acd
KK
848 set_pte_at(src_mm, addr, src_pte, pte);
849 }
0697212a 850 }
1da177e4 851 }
ae859762 852 goto out_set_pte;
1da177e4
LT
853 }
854
1da177e4
LT
855 /*
856 * If it's a COW mapping, write protect it both
857 * in the parent and the child
858 */
67121172 859 if (is_cow_mapping(vm_flags)) {
1da177e4 860 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 861 pte = pte_wrprotect(pte);
1da177e4
LT
862 }
863
864 /*
865 * If it's a shared mapping, mark it clean in
866 * the child
867 */
868 if (vm_flags & VM_SHARED)
869 pte = pte_mkclean(pte);
870 pte = pte_mkold(pte);
6aab341e
LT
871
872 page = vm_normal_page(vma, addr, pte);
873 if (page) {
874 get_page(page);
21333b2b 875 page_dup_rmap(page);
d559db08
KH
876 if (PageAnon(page))
877 rss[MM_ANONPAGES]++;
878 else
879 rss[MM_FILEPAGES]++;
6aab341e 880 }
ae859762
HD
881
882out_set_pte:
883 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 884 return 0;
1da177e4
LT
885}
886
21bda264 887static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
888 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
889 unsigned long addr, unsigned long end)
1da177e4 890{
c36987e2 891 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 892 pte_t *src_pte, *dst_pte;
c74df32c 893 spinlock_t *src_ptl, *dst_ptl;
e040f218 894 int progress = 0;
d559db08 895 int rss[NR_MM_COUNTERS];
570a335b 896 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
897
898again:
d559db08
KH
899 init_rss_vec(rss);
900
c74df32c 901 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
902 if (!dst_pte)
903 return -ENOMEM;
ece0e2b6 904 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 905 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 906 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
907 orig_src_pte = src_pte;
908 orig_dst_pte = dst_pte;
6606c3e0 909 arch_enter_lazy_mmu_mode();
1da177e4 910
1da177e4
LT
911 do {
912 /*
913 * We are holding two locks at this point - either of them
914 * could generate latencies in another task on another CPU.
915 */
e040f218
HD
916 if (progress >= 32) {
917 progress = 0;
918 if (need_resched() ||
95c354fe 919 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
920 break;
921 }
1da177e4
LT
922 if (pte_none(*src_pte)) {
923 progress++;
924 continue;
925 }
570a335b
HD
926 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
927 vma, addr, rss);
928 if (entry.val)
929 break;
1da177e4
LT
930 progress += 8;
931 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 932
6606c3e0 933 arch_leave_lazy_mmu_mode();
c74df32c 934 spin_unlock(src_ptl);
ece0e2b6 935 pte_unmap(orig_src_pte);
d559db08 936 add_mm_rss_vec(dst_mm, rss);
c36987e2 937 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 938 cond_resched();
570a335b
HD
939
940 if (entry.val) {
941 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
942 return -ENOMEM;
943 progress = 0;
944 }
1da177e4
LT
945 if (addr != end)
946 goto again;
947 return 0;
948}
949
950static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
951 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
952 unsigned long addr, unsigned long end)
953{
954 pmd_t *src_pmd, *dst_pmd;
955 unsigned long next;
956
957 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
958 if (!dst_pmd)
959 return -ENOMEM;
960 src_pmd = pmd_offset(src_pud, addr);
961 do {
962 next = pmd_addr_end(addr, end);
71e3aac0
AA
963 if (pmd_trans_huge(*src_pmd)) {
964 int err;
14d1a55c 965 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
966 err = copy_huge_pmd(dst_mm, src_mm,
967 dst_pmd, src_pmd, addr, vma);
968 if (err == -ENOMEM)
969 return -ENOMEM;
970 if (!err)
971 continue;
972 /* fall through */
973 }
1da177e4
LT
974 if (pmd_none_or_clear_bad(src_pmd))
975 continue;
976 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
977 vma, addr, next))
978 return -ENOMEM;
979 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
980 return 0;
981}
982
983static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
984 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
985 unsigned long addr, unsigned long end)
986{
987 pud_t *src_pud, *dst_pud;
988 unsigned long next;
989
990 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
991 if (!dst_pud)
992 return -ENOMEM;
993 src_pud = pud_offset(src_pgd, addr);
994 do {
995 next = pud_addr_end(addr, end);
996 if (pud_none_or_clear_bad(src_pud))
997 continue;
998 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
999 vma, addr, next))
1000 return -ENOMEM;
1001 } while (dst_pud++, src_pud++, addr = next, addr != end);
1002 return 0;
1003}
1004
1005int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1006 struct vm_area_struct *vma)
1007{
1008 pgd_t *src_pgd, *dst_pgd;
1009 unsigned long next;
1010 unsigned long addr = vma->vm_start;
1011 unsigned long end = vma->vm_end;
2ec74c3e
SG
1012 unsigned long mmun_start; /* For mmu_notifiers */
1013 unsigned long mmun_end; /* For mmu_notifiers */
1014 bool is_cow;
cddb8a5c 1015 int ret;
1da177e4 1016
d992895b
NP
1017 /*
1018 * Don't copy ptes where a page fault will fill them correctly.
1019 * Fork becomes much lighter when there are big shared or private
1020 * readonly mappings. The tradeoff is that copy_page_range is more
1021 * efficient than faulting.
1022 */
4b6e1e37
KK
1023 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1024 VM_PFNMAP | VM_MIXEDMAP))) {
d992895b
NP
1025 if (!vma->anon_vma)
1026 return 0;
1027 }
1028
1da177e4
LT
1029 if (is_vm_hugetlb_page(vma))
1030 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1031
b3b9c293 1032 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1033 /*
1034 * We do not free on error cases below as remove_vma
1035 * gets called on error from higher level routine
1036 */
5180da41 1037 ret = track_pfn_copy(vma);
2ab64037 1038 if (ret)
1039 return ret;
1040 }
1041
cddb8a5c
AA
1042 /*
1043 * We need to invalidate the secondary MMU mappings only when
1044 * there could be a permission downgrade on the ptes of the
1045 * parent mm. And a permission downgrade will only happen if
1046 * is_cow_mapping() returns true.
1047 */
2ec74c3e
SG
1048 is_cow = is_cow_mapping(vma->vm_flags);
1049 mmun_start = addr;
1050 mmun_end = end;
1051 if (is_cow)
1052 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1053 mmun_end);
cddb8a5c
AA
1054
1055 ret = 0;
1da177e4
LT
1056 dst_pgd = pgd_offset(dst_mm, addr);
1057 src_pgd = pgd_offset(src_mm, addr);
1058 do {
1059 next = pgd_addr_end(addr, end);
1060 if (pgd_none_or_clear_bad(src_pgd))
1061 continue;
cddb8a5c
AA
1062 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1063 vma, addr, next))) {
1064 ret = -ENOMEM;
1065 break;
1066 }
1da177e4 1067 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1068
2ec74c3e
SG
1069 if (is_cow)
1070 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1071 return ret;
1da177e4
LT
1072}
1073
51c6f666 1074static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1075 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1076 unsigned long addr, unsigned long end,
97a89413 1077 struct zap_details *details)
1da177e4 1078{
b5810039 1079 struct mm_struct *mm = tlb->mm;
d16dfc55 1080 int force_flush = 0;
d559db08 1081 int rss[NR_MM_COUNTERS];
97a89413 1082 spinlock_t *ptl;
5f1a1907 1083 pte_t *start_pte;
97a89413 1084 pte_t *pte;
d559db08 1085
d16dfc55 1086again:
e303297e 1087 init_rss_vec(rss);
5f1a1907
SR
1088 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1089 pte = start_pte;
6606c3e0 1090 arch_enter_lazy_mmu_mode();
1da177e4
LT
1091 do {
1092 pte_t ptent = *pte;
51c6f666 1093 if (pte_none(ptent)) {
1da177e4 1094 continue;
51c6f666 1095 }
6f5e6b9e 1096
1da177e4 1097 if (pte_present(ptent)) {
ee498ed7 1098 struct page *page;
51c6f666 1099
6aab341e 1100 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1101 if (unlikely(details) && page) {
1102 /*
1103 * unmap_shared_mapping_pages() wants to
1104 * invalidate cache without truncating:
1105 * unmap shared but keep private pages.
1106 */
1107 if (details->check_mapping &&
1108 details->check_mapping != page->mapping)
1109 continue;
1110 /*
1111 * Each page->index must be checked when
1112 * invalidating or truncating nonlinear.
1113 */
1114 if (details->nonlinear_vma &&
1115 (page->index < details->first_index ||
1116 page->index > details->last_index))
1117 continue;
1118 }
b5810039 1119 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1120 tlb->fullmm);
1da177e4
LT
1121 tlb_remove_tlb_entry(tlb, pte, addr);
1122 if (unlikely(!page))
1123 continue;
1124 if (unlikely(details) && details->nonlinear_vma
1125 && linear_page_index(details->nonlinear_vma,
41bb3476
CG
1126 addr) != page->index) {
1127 pte_t ptfile = pgoff_to_pte(page->index);
1128 if (pte_soft_dirty(ptent))
1129 pte_file_mksoft_dirty(ptfile);
1130 set_pte_at(mm, addr, pte, ptfile);
1131 }
1da177e4 1132 if (PageAnon(page))
d559db08 1133 rss[MM_ANONPAGES]--;
6237bcd9 1134 else {
1cf35d47
LT
1135 if (pte_dirty(ptent)) {
1136 force_flush = 1;
6237bcd9 1137 set_page_dirty(page);
1cf35d47 1138 }
4917e5d0 1139 if (pte_young(ptent) &&
64363aad 1140 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1141 mark_page_accessed(page);
d559db08 1142 rss[MM_FILEPAGES]--;
6237bcd9 1143 }
edc315fd 1144 page_remove_rmap(page);
3dc14741
HD
1145 if (unlikely(page_mapcount(page) < 0))
1146 print_bad_pte(vma, addr, ptent, page);
1cf35d47
LT
1147 if (unlikely(!__tlb_remove_page(tlb, page))) {
1148 force_flush = 1;
d16dfc55 1149 break;
1cf35d47 1150 }
1da177e4
LT
1151 continue;
1152 }
1153 /*
1154 * If details->check_mapping, we leave swap entries;
1155 * if details->nonlinear_vma, we leave file entries.
1156 */
1157 if (unlikely(details))
1158 continue;
2509ef26
HD
1159 if (pte_file(ptent)) {
1160 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1161 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1162 } else {
1163 swp_entry_t entry = pte_to_swp_entry(ptent);
1164
1165 if (!non_swap_entry(entry))
1166 rss[MM_SWAPENTS]--;
9f9f1acd
KK
1167 else if (is_migration_entry(entry)) {
1168 struct page *page;
1169
1170 page = migration_entry_to_page(entry);
1171
1172 if (PageAnon(page))
1173 rss[MM_ANONPAGES]--;
1174 else
1175 rss[MM_FILEPAGES]--;
1176 }
b084d435
KH
1177 if (unlikely(!free_swap_and_cache(entry)))
1178 print_bad_pte(vma, addr, ptent, NULL);
1179 }
9888a1ca 1180 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1181 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1182
d559db08 1183 add_mm_rss_vec(mm, rss);
6606c3e0 1184 arch_leave_lazy_mmu_mode();
51c6f666 1185
1cf35d47 1186 /* Do the actual TLB flush before dropping ptl */
d16dfc55 1187 if (force_flush) {
2b047252
LT
1188 unsigned long old_end;
1189
2b047252
LT
1190 /*
1191 * Flush the TLB just for the previous segment,
1192 * then update the range to be the remaining
1193 * TLB range.
1194 */
1195 old_end = tlb->end;
e6c495a9 1196 tlb->end = addr;
1cf35d47 1197 tlb_flush_mmu_tlbonly(tlb);
2b047252
LT
1198 tlb->start = addr;
1199 tlb->end = old_end;
1cf35d47
LT
1200 }
1201 pte_unmap_unlock(start_pte, ptl);
1202
1203 /*
1204 * If we forced a TLB flush (either due to running out of
1205 * batch buffers or because we needed to flush dirty TLB
1206 * entries before releasing the ptl), free the batched
1207 * memory too. Restart if we didn't do everything.
1208 */
1209 if (force_flush) {
1210 force_flush = 0;
1211 tlb_flush_mmu_free(tlb);
2b047252
LT
1212
1213 if (addr != end)
d16dfc55
PZ
1214 goto again;
1215 }
1216
51c6f666 1217 return addr;
1da177e4
LT
1218}
1219
51c6f666 1220static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1221 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1222 unsigned long addr, unsigned long end,
97a89413 1223 struct zap_details *details)
1da177e4
LT
1224{
1225 pmd_t *pmd;
1226 unsigned long next;
1227
1228 pmd = pmd_offset(pud, addr);
1229 do {
1230 next = pmd_addr_end(addr, end);
71e3aac0 1231 if (pmd_trans_huge(*pmd)) {
1a5a9906 1232 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1233#ifdef CONFIG_DEBUG_VM
1234 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1235 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1236 __func__, addr, end,
1237 vma->vm_start,
1238 vma->vm_end);
1239 BUG();
1240 }
1241#endif
e180377f 1242 split_huge_page_pmd(vma, addr, pmd);
f21760b1 1243 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1244 goto next;
71e3aac0
AA
1245 /* fall through */
1246 }
1a5a9906
AA
1247 /*
1248 * Here there can be other concurrent MADV_DONTNEED or
1249 * trans huge page faults running, and if the pmd is
1250 * none or trans huge it can change under us. This is
1251 * because MADV_DONTNEED holds the mmap_sem in read
1252 * mode.
1253 */
1254 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1255 goto next;
97a89413 1256 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1257next:
97a89413
PZ
1258 cond_resched();
1259 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1260
1261 return addr;
1da177e4
LT
1262}
1263
51c6f666 1264static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1265 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1266 unsigned long addr, unsigned long end,
97a89413 1267 struct zap_details *details)
1da177e4
LT
1268{
1269 pud_t *pud;
1270 unsigned long next;
1271
1272 pud = pud_offset(pgd, addr);
1273 do {
1274 next = pud_addr_end(addr, end);
97a89413 1275 if (pud_none_or_clear_bad(pud))
1da177e4 1276 continue;
97a89413
PZ
1277 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1278 } while (pud++, addr = next, addr != end);
51c6f666
RH
1279
1280 return addr;
1da177e4
LT
1281}
1282
038c7aa1
AV
1283static void unmap_page_range(struct mmu_gather *tlb,
1284 struct vm_area_struct *vma,
1285 unsigned long addr, unsigned long end,
1286 struct zap_details *details)
1da177e4
LT
1287{
1288 pgd_t *pgd;
1289 unsigned long next;
1290
1291 if (details && !details->check_mapping && !details->nonlinear_vma)
1292 details = NULL;
1293
1294 BUG_ON(addr >= end);
1295 tlb_start_vma(tlb, vma);
1296 pgd = pgd_offset(vma->vm_mm, addr);
1297 do {
1298 next = pgd_addr_end(addr, end);
97a89413 1299 if (pgd_none_or_clear_bad(pgd))
1da177e4 1300 continue;
97a89413
PZ
1301 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1302 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1303 tlb_end_vma(tlb, vma);
1304}
51c6f666 1305
f5cc4eef
AV
1306
1307static void unmap_single_vma(struct mmu_gather *tlb,
1308 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1309 unsigned long end_addr,
f5cc4eef
AV
1310 struct zap_details *details)
1311{
1312 unsigned long start = max(vma->vm_start, start_addr);
1313 unsigned long end;
1314
1315 if (start >= vma->vm_end)
1316 return;
1317 end = min(vma->vm_end, end_addr);
1318 if (end <= vma->vm_start)
1319 return;
1320
cbc91f71
SD
1321 if (vma->vm_file)
1322 uprobe_munmap(vma, start, end);
1323
b3b9c293 1324 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1325 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1326
1327 if (start != end) {
1328 if (unlikely(is_vm_hugetlb_page(vma))) {
1329 /*
1330 * It is undesirable to test vma->vm_file as it
1331 * should be non-null for valid hugetlb area.
1332 * However, vm_file will be NULL in the error
7aa6b4ad 1333 * cleanup path of mmap_region. When
f5cc4eef 1334 * hugetlbfs ->mmap method fails,
7aa6b4ad 1335 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1336 * before calling this function to clean up.
1337 * Since no pte has actually been setup, it is
1338 * safe to do nothing in this case.
1339 */
24669e58
AK
1340 if (vma->vm_file) {
1341 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
d833352a 1342 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
24669e58
AK
1343 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1344 }
f5cc4eef
AV
1345 } else
1346 unmap_page_range(tlb, vma, start, end, details);
1347 }
1da177e4
LT
1348}
1349
1da177e4
LT
1350/**
1351 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1352 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1353 * @vma: the starting vma
1354 * @start_addr: virtual address at which to start unmapping
1355 * @end_addr: virtual address at which to end unmapping
1da177e4 1356 *
508034a3 1357 * Unmap all pages in the vma list.
1da177e4 1358 *
1da177e4
LT
1359 * Only addresses between `start' and `end' will be unmapped.
1360 *
1361 * The VMA list must be sorted in ascending virtual address order.
1362 *
1363 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1364 * range after unmap_vmas() returns. So the only responsibility here is to
1365 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1366 * drops the lock and schedules.
1367 */
6e8bb019 1368void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1369 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1370 unsigned long end_addr)
1da177e4 1371{
cddb8a5c 1372 struct mm_struct *mm = vma->vm_mm;
1da177e4 1373
cddb8a5c 1374 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1375 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1376 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1377 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1378}
1379
1380/**
1381 * zap_page_range - remove user pages in a given range
1382 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1383 * @start: starting address of pages to zap
1da177e4
LT
1384 * @size: number of bytes to zap
1385 * @details: details of nonlinear truncation or shared cache invalidation
f5cc4eef
AV
1386 *
1387 * Caller must protect the VMA list
1da177e4 1388 */
7e027b14 1389void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1390 unsigned long size, struct zap_details *details)
1391{
1392 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1393 struct mmu_gather tlb;
7e027b14 1394 unsigned long end = start + size;
1da177e4 1395
1da177e4 1396 lru_add_drain();
2b047252 1397 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1398 update_hiwater_rss(mm);
7e027b14
LT
1399 mmu_notifier_invalidate_range_start(mm, start, end);
1400 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1401 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1402 mmu_notifier_invalidate_range_end(mm, start, end);
1403 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1404}
1405
f5cc4eef
AV
1406/**
1407 * zap_page_range_single - remove user pages in a given range
1408 * @vma: vm_area_struct holding the applicable pages
1409 * @address: starting address of pages to zap
1410 * @size: number of bytes to zap
1411 * @details: details of nonlinear truncation or shared cache invalidation
1412 *
1413 * The range must fit into one VMA.
1da177e4 1414 */
f5cc4eef 1415static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1416 unsigned long size, struct zap_details *details)
1417{
1418 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1419 struct mmu_gather tlb;
1da177e4 1420 unsigned long end = address + size;
1da177e4 1421
1da177e4 1422 lru_add_drain();
2b047252 1423 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1424 update_hiwater_rss(mm);
f5cc4eef 1425 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1426 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1427 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1428 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1429}
1430
c627f9cc
JS
1431/**
1432 * zap_vma_ptes - remove ptes mapping the vma
1433 * @vma: vm_area_struct holding ptes to be zapped
1434 * @address: starting address of pages to zap
1435 * @size: number of bytes to zap
1436 *
1437 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1438 *
1439 * The entire address range must be fully contained within the vma.
1440 *
1441 * Returns 0 if successful.
1442 */
1443int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1444 unsigned long size)
1445{
1446 if (address < vma->vm_start || address + size > vma->vm_end ||
1447 !(vma->vm_flags & VM_PFNMAP))
1448 return -1;
f5cc4eef 1449 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1450 return 0;
1451}
1452EXPORT_SYMBOL_GPL(zap_vma_ptes);
1453
25ca1d6c 1454pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1455 spinlock_t **ptl)
c9cfcddf
LT
1456{
1457 pgd_t * pgd = pgd_offset(mm, addr);
1458 pud_t * pud = pud_alloc(mm, pgd, addr);
1459 if (pud) {
49c91fb0 1460 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1461 if (pmd) {
1462 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1463 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1464 }
c9cfcddf
LT
1465 }
1466 return NULL;
1467}
1468
238f58d8
LT
1469/*
1470 * This is the old fallback for page remapping.
1471 *
1472 * For historical reasons, it only allows reserved pages. Only
1473 * old drivers should use this, and they needed to mark their
1474 * pages reserved for the old functions anyway.
1475 */
423bad60
NP
1476static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1477 struct page *page, pgprot_t prot)
238f58d8 1478{
423bad60 1479 struct mm_struct *mm = vma->vm_mm;
238f58d8 1480 int retval;
c9cfcddf 1481 pte_t *pte;
8a9f3ccd
BS
1482 spinlock_t *ptl;
1483
238f58d8 1484 retval = -EINVAL;
a145dd41 1485 if (PageAnon(page))
5b4e655e 1486 goto out;
238f58d8
LT
1487 retval = -ENOMEM;
1488 flush_dcache_page(page);
c9cfcddf 1489 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1490 if (!pte)
5b4e655e 1491 goto out;
238f58d8
LT
1492 retval = -EBUSY;
1493 if (!pte_none(*pte))
1494 goto out_unlock;
1495
1496 /* Ok, finally just insert the thing.. */
1497 get_page(page);
34e55232 1498 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
1499 page_add_file_rmap(page);
1500 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1501
1502 retval = 0;
8a9f3ccd
BS
1503 pte_unmap_unlock(pte, ptl);
1504 return retval;
238f58d8
LT
1505out_unlock:
1506 pte_unmap_unlock(pte, ptl);
1507out:
1508 return retval;
1509}
1510
bfa5bf6d
REB
1511/**
1512 * vm_insert_page - insert single page into user vma
1513 * @vma: user vma to map to
1514 * @addr: target user address of this page
1515 * @page: source kernel page
1516 *
a145dd41
LT
1517 * This allows drivers to insert individual pages they've allocated
1518 * into a user vma.
1519 *
1520 * The page has to be a nice clean _individual_ kernel allocation.
1521 * If you allocate a compound page, you need to have marked it as
1522 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1523 * (see split_page()).
a145dd41
LT
1524 *
1525 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1526 * took an arbitrary page protection parameter. This doesn't allow
1527 * that. Your vma protection will have to be set up correctly, which
1528 * means that if you want a shared writable mapping, you'd better
1529 * ask for a shared writable mapping!
1530 *
1531 * The page does not need to be reserved.
4b6e1e37
KK
1532 *
1533 * Usually this function is called from f_op->mmap() handler
1534 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1535 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1536 * function from other places, for example from page-fault handler.
a145dd41 1537 */
423bad60
NP
1538int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1539 struct page *page)
a145dd41
LT
1540{
1541 if (addr < vma->vm_start || addr >= vma->vm_end)
1542 return -EFAULT;
1543 if (!page_count(page))
1544 return -EINVAL;
4b6e1e37
KK
1545 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1546 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1547 BUG_ON(vma->vm_flags & VM_PFNMAP);
1548 vma->vm_flags |= VM_MIXEDMAP;
1549 }
423bad60 1550 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1551}
e3c3374f 1552EXPORT_SYMBOL(vm_insert_page);
a145dd41 1553
423bad60
NP
1554static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1555 unsigned long pfn, pgprot_t prot)
1556{
1557 struct mm_struct *mm = vma->vm_mm;
1558 int retval;
1559 pte_t *pte, entry;
1560 spinlock_t *ptl;
1561
1562 retval = -ENOMEM;
1563 pte = get_locked_pte(mm, addr, &ptl);
1564 if (!pte)
1565 goto out;
1566 retval = -EBUSY;
1567 if (!pte_none(*pte))
1568 goto out_unlock;
1569
1570 /* Ok, finally just insert the thing.. */
1571 entry = pte_mkspecial(pfn_pte(pfn, prot));
1572 set_pte_at(mm, addr, pte, entry);
4b3073e1 1573 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1574
1575 retval = 0;
1576out_unlock:
1577 pte_unmap_unlock(pte, ptl);
1578out:
1579 return retval;
1580}
1581
e0dc0d8f
NP
1582/**
1583 * vm_insert_pfn - insert single pfn into user vma
1584 * @vma: user vma to map to
1585 * @addr: target user address of this page
1586 * @pfn: source kernel pfn
1587 *
c462f179 1588 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1589 * they've allocated into a user vma. Same comments apply.
1590 *
1591 * This function should only be called from a vm_ops->fault handler, and
1592 * in that case the handler should return NULL.
0d71d10a
NP
1593 *
1594 * vma cannot be a COW mapping.
1595 *
1596 * As this is called only for pages that do not currently exist, we
1597 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1598 */
1599int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1600 unsigned long pfn)
e0dc0d8f 1601{
2ab64037 1602 int ret;
e4b866ed 1603 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1604 /*
1605 * Technically, architectures with pte_special can avoid all these
1606 * restrictions (same for remap_pfn_range). However we would like
1607 * consistency in testing and feature parity among all, so we should
1608 * try to keep these invariants in place for everybody.
1609 */
b379d790
JH
1610 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1611 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1612 (VM_PFNMAP|VM_MIXEDMAP));
1613 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1614 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1615
423bad60
NP
1616 if (addr < vma->vm_start || addr >= vma->vm_end)
1617 return -EFAULT;
5180da41 1618 if (track_pfn_insert(vma, &pgprot, pfn))
2ab64037 1619 return -EINVAL;
1620
e4b866ed 1621 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1622
2ab64037 1623 return ret;
423bad60
NP
1624}
1625EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1626
423bad60
NP
1627int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1628 unsigned long pfn)
1629{
1630 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1631
423bad60
NP
1632 if (addr < vma->vm_start || addr >= vma->vm_end)
1633 return -EFAULT;
e0dc0d8f 1634
423bad60
NP
1635 /*
1636 * If we don't have pte special, then we have to use the pfn_valid()
1637 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1638 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1639 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1640 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
1641 */
1642 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1643 struct page *page;
1644
1645 page = pfn_to_page(pfn);
1646 return insert_page(vma, addr, page, vma->vm_page_prot);
1647 }
1648 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1649}
423bad60 1650EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1651
1da177e4
LT
1652/*
1653 * maps a range of physical memory into the requested pages. the old
1654 * mappings are removed. any references to nonexistent pages results
1655 * in null mappings (currently treated as "copy-on-access")
1656 */
1657static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1658 unsigned long addr, unsigned long end,
1659 unsigned long pfn, pgprot_t prot)
1660{
1661 pte_t *pte;
c74df32c 1662 spinlock_t *ptl;
1da177e4 1663
c74df32c 1664 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1665 if (!pte)
1666 return -ENOMEM;
6606c3e0 1667 arch_enter_lazy_mmu_mode();
1da177e4
LT
1668 do {
1669 BUG_ON(!pte_none(*pte));
7e675137 1670 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1671 pfn++;
1672 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1673 arch_leave_lazy_mmu_mode();
c74df32c 1674 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1675 return 0;
1676}
1677
1678static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1679 unsigned long addr, unsigned long end,
1680 unsigned long pfn, pgprot_t prot)
1681{
1682 pmd_t *pmd;
1683 unsigned long next;
1684
1685 pfn -= addr >> PAGE_SHIFT;
1686 pmd = pmd_alloc(mm, pud, addr);
1687 if (!pmd)
1688 return -ENOMEM;
f66055ab 1689 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1690 do {
1691 next = pmd_addr_end(addr, end);
1692 if (remap_pte_range(mm, pmd, addr, next,
1693 pfn + (addr >> PAGE_SHIFT), prot))
1694 return -ENOMEM;
1695 } while (pmd++, addr = next, addr != end);
1696 return 0;
1697}
1698
1699static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1700 unsigned long addr, unsigned long end,
1701 unsigned long pfn, pgprot_t prot)
1702{
1703 pud_t *pud;
1704 unsigned long next;
1705
1706 pfn -= addr >> PAGE_SHIFT;
1707 pud = pud_alloc(mm, pgd, addr);
1708 if (!pud)
1709 return -ENOMEM;
1710 do {
1711 next = pud_addr_end(addr, end);
1712 if (remap_pmd_range(mm, pud, addr, next,
1713 pfn + (addr >> PAGE_SHIFT), prot))
1714 return -ENOMEM;
1715 } while (pud++, addr = next, addr != end);
1716 return 0;
1717}
1718
bfa5bf6d
REB
1719/**
1720 * remap_pfn_range - remap kernel memory to userspace
1721 * @vma: user vma to map to
1722 * @addr: target user address to start at
1723 * @pfn: physical address of kernel memory
1724 * @size: size of map area
1725 * @prot: page protection flags for this mapping
1726 *
1727 * Note: this is only safe if the mm semaphore is held when called.
1728 */
1da177e4
LT
1729int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1730 unsigned long pfn, unsigned long size, pgprot_t prot)
1731{
1732 pgd_t *pgd;
1733 unsigned long next;
2d15cab8 1734 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1735 struct mm_struct *mm = vma->vm_mm;
1736 int err;
1737
1738 /*
1739 * Physically remapped pages are special. Tell the
1740 * rest of the world about it:
1741 * VM_IO tells people not to look at these pages
1742 * (accesses can have side effects).
6aab341e
LT
1743 * VM_PFNMAP tells the core MM that the base pages are just
1744 * raw PFN mappings, and do not have a "struct page" associated
1745 * with them.
314e51b9
KK
1746 * VM_DONTEXPAND
1747 * Disable vma merging and expanding with mremap().
1748 * VM_DONTDUMP
1749 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1750 *
1751 * There's a horrible special case to handle copy-on-write
1752 * behaviour that some programs depend on. We mark the "original"
1753 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1754 * See vm_normal_page() for details.
1da177e4 1755 */
b3b9c293
KK
1756 if (is_cow_mapping(vma->vm_flags)) {
1757 if (addr != vma->vm_start || end != vma->vm_end)
1758 return -EINVAL;
fb155c16 1759 vma->vm_pgoff = pfn;
b3b9c293
KK
1760 }
1761
1762 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1763 if (err)
3c8bb73a 1764 return -EINVAL;
fb155c16 1765
314e51b9 1766 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1767
1768 BUG_ON(addr >= end);
1769 pfn -= addr >> PAGE_SHIFT;
1770 pgd = pgd_offset(mm, addr);
1771 flush_cache_range(vma, addr, end);
1da177e4
LT
1772 do {
1773 next = pgd_addr_end(addr, end);
1774 err = remap_pud_range(mm, pgd, addr, next,
1775 pfn + (addr >> PAGE_SHIFT), prot);
1776 if (err)
1777 break;
1778 } while (pgd++, addr = next, addr != end);
2ab64037 1779
1780 if (err)
5180da41 1781 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 1782
1da177e4
LT
1783 return err;
1784}
1785EXPORT_SYMBOL(remap_pfn_range);
1786
b4cbb197
LT
1787/**
1788 * vm_iomap_memory - remap memory to userspace
1789 * @vma: user vma to map to
1790 * @start: start of area
1791 * @len: size of area
1792 *
1793 * This is a simplified io_remap_pfn_range() for common driver use. The
1794 * driver just needs to give us the physical memory range to be mapped,
1795 * we'll figure out the rest from the vma information.
1796 *
1797 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1798 * whatever write-combining details or similar.
1799 */
1800int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1801{
1802 unsigned long vm_len, pfn, pages;
1803
1804 /* Check that the physical memory area passed in looks valid */
1805 if (start + len < start)
1806 return -EINVAL;
1807 /*
1808 * You *really* shouldn't map things that aren't page-aligned,
1809 * but we've historically allowed it because IO memory might
1810 * just have smaller alignment.
1811 */
1812 len += start & ~PAGE_MASK;
1813 pfn = start >> PAGE_SHIFT;
1814 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1815 if (pfn + pages < pfn)
1816 return -EINVAL;
1817
1818 /* We start the mapping 'vm_pgoff' pages into the area */
1819 if (vma->vm_pgoff > pages)
1820 return -EINVAL;
1821 pfn += vma->vm_pgoff;
1822 pages -= vma->vm_pgoff;
1823
1824 /* Can we fit all of the mapping? */
1825 vm_len = vma->vm_end - vma->vm_start;
1826 if (vm_len >> PAGE_SHIFT > pages)
1827 return -EINVAL;
1828
1829 /* Ok, let it rip */
1830 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1831}
1832EXPORT_SYMBOL(vm_iomap_memory);
1833
aee16b3c
JF
1834static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1835 unsigned long addr, unsigned long end,
1836 pte_fn_t fn, void *data)
1837{
1838 pte_t *pte;
1839 int err;
2f569afd 1840 pgtable_t token;
94909914 1841 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1842
1843 pte = (mm == &init_mm) ?
1844 pte_alloc_kernel(pmd, addr) :
1845 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1846 if (!pte)
1847 return -ENOMEM;
1848
1849 BUG_ON(pmd_huge(*pmd));
1850
38e0edb1
JF
1851 arch_enter_lazy_mmu_mode();
1852
2f569afd 1853 token = pmd_pgtable(*pmd);
aee16b3c
JF
1854
1855 do {
c36987e2 1856 err = fn(pte++, token, addr, data);
aee16b3c
JF
1857 if (err)
1858 break;
c36987e2 1859 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1860
38e0edb1
JF
1861 arch_leave_lazy_mmu_mode();
1862
aee16b3c
JF
1863 if (mm != &init_mm)
1864 pte_unmap_unlock(pte-1, ptl);
1865 return err;
1866}
1867
1868static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1869 unsigned long addr, unsigned long end,
1870 pte_fn_t fn, void *data)
1871{
1872 pmd_t *pmd;
1873 unsigned long next;
1874 int err;
1875
ceb86879
AK
1876 BUG_ON(pud_huge(*pud));
1877
aee16b3c
JF
1878 pmd = pmd_alloc(mm, pud, addr);
1879 if (!pmd)
1880 return -ENOMEM;
1881 do {
1882 next = pmd_addr_end(addr, end);
1883 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1884 if (err)
1885 break;
1886 } while (pmd++, addr = next, addr != end);
1887 return err;
1888}
1889
1890static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1891 unsigned long addr, unsigned long end,
1892 pte_fn_t fn, void *data)
1893{
1894 pud_t *pud;
1895 unsigned long next;
1896 int err;
1897
1898 pud = pud_alloc(mm, pgd, addr);
1899 if (!pud)
1900 return -ENOMEM;
1901 do {
1902 next = pud_addr_end(addr, end);
1903 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1904 if (err)
1905 break;
1906 } while (pud++, addr = next, addr != end);
1907 return err;
1908}
1909
1910/*
1911 * Scan a region of virtual memory, filling in page tables as necessary
1912 * and calling a provided function on each leaf page table.
1913 */
1914int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1915 unsigned long size, pte_fn_t fn, void *data)
1916{
1917 pgd_t *pgd;
1918 unsigned long next;
57250a5b 1919 unsigned long end = addr + size;
aee16b3c
JF
1920 int err;
1921
1922 BUG_ON(addr >= end);
1923 pgd = pgd_offset(mm, addr);
1924 do {
1925 next = pgd_addr_end(addr, end);
1926 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1927 if (err)
1928 break;
1929 } while (pgd++, addr = next, addr != end);
57250a5b 1930
aee16b3c
JF
1931 return err;
1932}
1933EXPORT_SYMBOL_GPL(apply_to_page_range);
1934
8f4e2101
HD
1935/*
1936 * handle_pte_fault chooses page fault handler according to an entry
1937 * which was read non-atomically. Before making any commitment, on
1938 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 1939 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
1940 * must check under lock before unmapping the pte and proceeding
1941 * (but do_wp_page is only called after already making such a check;
a335b2e1 1942 * and do_anonymous_page can safely check later on).
8f4e2101 1943 */
4c21e2f2 1944static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1945 pte_t *page_table, pte_t orig_pte)
1946{
1947 int same = 1;
1948#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1949 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1950 spinlock_t *ptl = pte_lockptr(mm, pmd);
1951 spin_lock(ptl);
8f4e2101 1952 same = pte_same(*page_table, orig_pte);
4c21e2f2 1953 spin_unlock(ptl);
8f4e2101
HD
1954 }
1955#endif
1956 pte_unmap(page_table);
1957 return same;
1958}
1959
9de455b2 1960static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 1961{
0abdd7a8
DW
1962 debug_dma_assert_idle(src);
1963
6aab341e
LT
1964 /*
1965 * If the source page was a PFN mapping, we don't have
1966 * a "struct page" for it. We do a best-effort copy by
1967 * just copying from the original user address. If that
1968 * fails, we just zero-fill it. Live with it.
1969 */
1970 if (unlikely(!src)) {
9b04c5fe 1971 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
1972 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1973
1974 /*
1975 * This really shouldn't fail, because the page is there
1976 * in the page tables. But it might just be unreadable,
1977 * in which case we just give up and fill the result with
1978 * zeroes.
1979 */
1980 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 1981 clear_page(kaddr);
9b04c5fe 1982 kunmap_atomic(kaddr);
c4ec7b0d 1983 flush_dcache_page(dst);
0ed361de
NP
1984 } else
1985 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1986}
1987
fb09a464
KS
1988/*
1989 * Notify the address space that the page is about to become writable so that
1990 * it can prohibit this or wait for the page to get into an appropriate state.
1991 *
1992 * We do this without the lock held, so that it can sleep if it needs to.
1993 */
1994static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1995 unsigned long address)
1996{
1997 struct vm_fault vmf;
1998 int ret;
1999
2000 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2001 vmf.pgoff = page->index;
2002 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2003 vmf.page = page;
2004
2005 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2006 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2007 return ret;
2008 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2009 lock_page(page);
2010 if (!page->mapping) {
2011 unlock_page(page);
2012 return 0; /* retry */
2013 }
2014 ret |= VM_FAULT_LOCKED;
2015 } else
2016 VM_BUG_ON_PAGE(!PageLocked(page), page);
2017 return ret;
2018}
2019
1da177e4
LT
2020/*
2021 * This routine handles present pages, when users try to write
2022 * to a shared page. It is done by copying the page to a new address
2023 * and decrementing the shared-page counter for the old page.
2024 *
1da177e4
LT
2025 * Note that this routine assumes that the protection checks have been
2026 * done by the caller (the low-level page fault routine in most cases).
2027 * Thus we can safely just mark it writable once we've done any necessary
2028 * COW.
2029 *
2030 * We also mark the page dirty at this point even though the page will
2031 * change only once the write actually happens. This avoids a few races,
2032 * and potentially makes it more efficient.
2033 *
8f4e2101
HD
2034 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2035 * but allow concurrent faults), with pte both mapped and locked.
2036 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2037 */
65500d23
HD
2038static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2039 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2040 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2041 __releases(ptl)
1da177e4 2042{
2ec74c3e 2043 struct page *old_page, *new_page = NULL;
1da177e4 2044 pte_t entry;
b009c024 2045 int ret = 0;
a200ee18 2046 int page_mkwrite = 0;
d08b3851 2047 struct page *dirty_page = NULL;
1756954c
DR
2048 unsigned long mmun_start = 0; /* For mmu_notifiers */
2049 unsigned long mmun_end = 0; /* For mmu_notifiers */
00501b53 2050 struct mem_cgroup *memcg;
1da177e4 2051
6aab341e 2052 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2053 if (!old_page) {
2054 /*
2055 * VM_MIXEDMAP !pfn_valid() case
2056 *
2057 * We should not cow pages in a shared writeable mapping.
2058 * Just mark the pages writable as we can't do any dirty
2059 * accounting on raw pfn maps.
2060 */
2061 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2062 (VM_WRITE|VM_SHARED))
2063 goto reuse;
6aab341e 2064 goto gotten;
251b97f5 2065 }
1da177e4 2066
d08b3851 2067 /*
ee6a6457
PZ
2068 * Take out anonymous pages first, anonymous shared vmas are
2069 * not dirty accountable.
d08b3851 2070 */
9a840895 2071 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2072 if (!trylock_page(old_page)) {
2073 page_cache_get(old_page);
2074 pte_unmap_unlock(page_table, ptl);
2075 lock_page(old_page);
2076 page_table = pte_offset_map_lock(mm, pmd, address,
2077 &ptl);
2078 if (!pte_same(*page_table, orig_pte)) {
2079 unlock_page(old_page);
ab967d86
HD
2080 goto unlock;
2081 }
2082 page_cache_release(old_page);
ee6a6457 2083 }
b009c024 2084 if (reuse_swap_page(old_page)) {
c44b6743
RR
2085 /*
2086 * The page is all ours. Move it to our anon_vma so
2087 * the rmap code will not search our parent or siblings.
2088 * Protected against the rmap code by the page lock.
2089 */
2090 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2091 unlock_page(old_page);
2092 goto reuse;
2093 }
ab967d86 2094 unlock_page(old_page);
ee6a6457 2095 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2096 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2097 /*
2098 * Only catch write-faults on shared writable pages,
2099 * read-only shared pages can get COWed by
2100 * get_user_pages(.write=1, .force=1).
2101 */
9637a5ef 2102 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c 2103 int tmp;
9637a5ef
DH
2104 page_cache_get(old_page);
2105 pte_unmap_unlock(page_table, ptl);
fb09a464
KS
2106 tmp = do_page_mkwrite(vma, old_page, address);
2107 if (unlikely(!tmp || (tmp &
2108 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2109 page_cache_release(old_page);
2110 return tmp;
c2ec175c 2111 }
9637a5ef
DH
2112 /*
2113 * Since we dropped the lock we need to revalidate
2114 * the PTE as someone else may have changed it. If
2115 * they did, we just return, as we can count on the
2116 * MMU to tell us if they didn't also make it writable.
2117 */
2118 page_table = pte_offset_map_lock(mm, pmd, address,
2119 &ptl);
b827e496
NP
2120 if (!pte_same(*page_table, orig_pte)) {
2121 unlock_page(old_page);
9637a5ef 2122 goto unlock;
b827e496 2123 }
a200ee18
PZ
2124
2125 page_mkwrite = 1;
1da177e4 2126 }
d08b3851
PZ
2127 dirty_page = old_page;
2128 get_page(dirty_page);
9637a5ef 2129
251b97f5 2130reuse:
8c8a743c
PZ
2131 /*
2132 * Clear the pages cpupid information as the existing
2133 * information potentially belongs to a now completely
2134 * unrelated process.
2135 */
2136 if (old_page)
2137 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2138
9637a5ef
DH
2139 flush_cache_page(vma, address, pte_pfn(orig_pte));
2140 entry = pte_mkyoung(orig_pte);
2141 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2142 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2143 update_mmu_cache(vma, address, page_table);
72ddc8f7 2144 pte_unmap_unlock(page_table, ptl);
9637a5ef 2145 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2146
2147 if (!dirty_page)
2148 return ret;
2149
2150 /*
2151 * Yes, Virginia, this is actually required to prevent a race
2152 * with clear_page_dirty_for_io() from clearing the page dirty
2153 * bit after it clear all dirty ptes, but before a racing
2154 * do_wp_page installs a dirty pte.
2155 *
f0c6d4d2 2156 * do_shared_fault is protected similarly.
72ddc8f7
ML
2157 */
2158 if (!page_mkwrite) {
2159 wait_on_page_locked(dirty_page);
ed6d7c8e 2160 set_page_dirty_balance(dirty_page);
41c4d25f
JK
2161 /* file_update_time outside page_lock */
2162 if (vma->vm_file)
2163 file_update_time(vma->vm_file);
72ddc8f7
ML
2164 }
2165 put_page(dirty_page);
2166 if (page_mkwrite) {
2167 struct address_space *mapping = dirty_page->mapping;
2168
2169 set_page_dirty(dirty_page);
2170 unlock_page(dirty_page);
2171 page_cache_release(dirty_page);
2172 if (mapping) {
2173 /*
2174 * Some device drivers do not set page.mapping
2175 * but still dirty their pages
2176 */
2177 balance_dirty_pages_ratelimited(mapping);
2178 }
2179 }
2180
72ddc8f7 2181 return ret;
1da177e4 2182 }
1da177e4
LT
2183
2184 /*
2185 * Ok, we need to copy. Oh, well..
2186 */
b5810039 2187 page_cache_get(old_page);
920fc356 2188gotten:
8f4e2101 2189 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2190
2191 if (unlikely(anon_vma_prepare(vma)))
65500d23 2192 goto oom;
a13ea5b7 2193
62eede62 2194 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2195 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2196 if (!new_page)
2197 goto oom;
2198 } else {
2199 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2200 if (!new_page)
2201 goto oom;
2202 cow_user_page(new_page, old_page, address, vma);
2203 }
2204 __SetPageUptodate(new_page);
2205
00501b53 2206 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
8a9f3ccd
BS
2207 goto oom_free_new;
2208
6bdb913f 2209 mmun_start = address & PAGE_MASK;
1756954c 2210 mmun_end = mmun_start + PAGE_SIZE;
6bdb913f
HE
2211 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2212
1da177e4
LT
2213 /*
2214 * Re-check the pte - we dropped the lock
2215 */
8f4e2101 2216 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2217 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2218 if (old_page) {
920fc356 2219 if (!PageAnon(old_page)) {
34e55232
KH
2220 dec_mm_counter_fast(mm, MM_FILEPAGES);
2221 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2222 }
2223 } else
34e55232 2224 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2225 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2226 entry = mk_pte(new_page, vma->vm_page_prot);
2227 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2228 /*
2229 * Clear the pte entry and flush it first, before updating the
2230 * pte with the new entry. This will avoid a race condition
2231 * seen in the presence of one thread doing SMC and another
2232 * thread doing COW.
2233 */
828502d3 2234 ptep_clear_flush(vma, address, page_table);
9617d95e 2235 page_add_new_anon_rmap(new_page, vma, address);
00501b53
JW
2236 mem_cgroup_commit_charge(new_page, memcg, false);
2237 lru_cache_add_active_or_unevictable(new_page, vma);
828502d3
IE
2238 /*
2239 * We call the notify macro here because, when using secondary
2240 * mmu page tables (such as kvm shadow page tables), we want the
2241 * new page to be mapped directly into the secondary page table.
2242 */
2243 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2244 update_mmu_cache(vma, address, page_table);
945754a1
NP
2245 if (old_page) {
2246 /*
2247 * Only after switching the pte to the new page may
2248 * we remove the mapcount here. Otherwise another
2249 * process may come and find the rmap count decremented
2250 * before the pte is switched to the new page, and
2251 * "reuse" the old page writing into it while our pte
2252 * here still points into it and can be read by other
2253 * threads.
2254 *
2255 * The critical issue is to order this
2256 * page_remove_rmap with the ptp_clear_flush above.
2257 * Those stores are ordered by (if nothing else,)
2258 * the barrier present in the atomic_add_negative
2259 * in page_remove_rmap.
2260 *
2261 * Then the TLB flush in ptep_clear_flush ensures that
2262 * no process can access the old page before the
2263 * decremented mapcount is visible. And the old page
2264 * cannot be reused until after the decremented
2265 * mapcount is visible. So transitively, TLBs to
2266 * old page will be flushed before it can be reused.
2267 */
edc315fd 2268 page_remove_rmap(old_page);
945754a1
NP
2269 }
2270
1da177e4
LT
2271 /* Free the old page.. */
2272 new_page = old_page;
f33ea7f4 2273 ret |= VM_FAULT_WRITE;
8a9f3ccd 2274 } else
00501b53 2275 mem_cgroup_cancel_charge(new_page, memcg);
8a9f3ccd 2276
6bdb913f
HE
2277 if (new_page)
2278 page_cache_release(new_page);
65500d23 2279unlock:
8f4e2101 2280 pte_unmap_unlock(page_table, ptl);
1756954c 2281 if (mmun_end > mmun_start)
6bdb913f 2282 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
e15f8c01
ML
2283 if (old_page) {
2284 /*
2285 * Don't let another task, with possibly unlocked vma,
2286 * keep the mlocked page.
2287 */
2288 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2289 lock_page(old_page); /* LRU manipulation */
2290 munlock_vma_page(old_page);
2291 unlock_page(old_page);
2292 }
2293 page_cache_release(old_page);
2294 }
f33ea7f4 2295 return ret;
8a9f3ccd 2296oom_free_new:
6dbf6d3b 2297 page_cache_release(new_page);
65500d23 2298oom:
66521d5a 2299 if (old_page)
920fc356 2300 page_cache_release(old_page);
1da177e4
LT
2301 return VM_FAULT_OOM;
2302}
2303
97a89413 2304static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2305 unsigned long start_addr, unsigned long end_addr,
2306 struct zap_details *details)
2307{
f5cc4eef 2308 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2309}
2310
6b2dbba8 2311static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2312 struct zap_details *details)
2313{
2314 struct vm_area_struct *vma;
1da177e4
LT
2315 pgoff_t vba, vea, zba, zea;
2316
6b2dbba8 2317 vma_interval_tree_foreach(vma, root,
1da177e4 2318 details->first_index, details->last_index) {
1da177e4
LT
2319
2320 vba = vma->vm_pgoff;
d6e93217 2321 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2322 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2323 zba = details->first_index;
2324 if (zba < vba)
2325 zba = vba;
2326 zea = details->last_index;
2327 if (zea > vea)
2328 zea = vea;
2329
97a89413 2330 unmap_mapping_range_vma(vma,
1da177e4
LT
2331 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2332 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2333 details);
1da177e4
LT
2334 }
2335}
2336
2337static inline void unmap_mapping_range_list(struct list_head *head,
2338 struct zap_details *details)
2339{
2340 struct vm_area_struct *vma;
2341
2342 /*
2343 * In nonlinear VMAs there is no correspondence between virtual address
2344 * offset and file offset. So we must perform an exhaustive search
2345 * across *all* the pages in each nonlinear VMA, not just the pages
2346 * whose virtual address lies outside the file truncation point.
2347 */
6b2dbba8 2348 list_for_each_entry(vma, head, shared.nonlinear) {
1da177e4 2349 details->nonlinear_vma = vma;
97a89413 2350 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2351 }
2352}
2353
2354/**
72fd4a35 2355 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2356 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2357 * @holebegin: byte in first page to unmap, relative to the start of
2358 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2359 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2360 * must keep the partial page. In contrast, we must get rid of
2361 * partial pages.
2362 * @holelen: size of prospective hole in bytes. This will be rounded
2363 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2364 * end of the file.
2365 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2366 * but 0 when invalidating pagecache, don't throw away private data.
2367 */
2368void unmap_mapping_range(struct address_space *mapping,
2369 loff_t const holebegin, loff_t const holelen, int even_cows)
2370{
2371 struct zap_details details;
2372 pgoff_t hba = holebegin >> PAGE_SHIFT;
2373 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2374
2375 /* Check for overflow. */
2376 if (sizeof(holelen) > sizeof(hlen)) {
2377 long long holeend =
2378 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2379 if (holeend & ~(long long)ULONG_MAX)
2380 hlen = ULONG_MAX - hba + 1;
2381 }
2382
2383 details.check_mapping = even_cows? NULL: mapping;
2384 details.nonlinear_vma = NULL;
2385 details.first_index = hba;
2386 details.last_index = hba + hlen - 1;
2387 if (details.last_index < details.first_index)
2388 details.last_index = ULONG_MAX;
1da177e4 2389
1da177e4 2390
3d48ae45 2391 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2392 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4
LT
2393 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2394 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2395 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 2396 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
2397}
2398EXPORT_SYMBOL(unmap_mapping_range);
2399
1da177e4 2400/*
8f4e2101
HD
2401 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2402 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2403 * We return with pte unmapped and unlocked.
2404 *
2405 * We return with the mmap_sem locked or unlocked in the same cases
2406 * as does filemap_fault().
1da177e4 2407 */
65500d23
HD
2408static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2409 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2410 unsigned int flags, pte_t orig_pte)
1da177e4 2411{
8f4e2101 2412 spinlock_t *ptl;
56f31801 2413 struct page *page, *swapcache;
00501b53 2414 struct mem_cgroup *memcg;
65500d23 2415 swp_entry_t entry;
1da177e4 2416 pte_t pte;
d065bd81 2417 int locked;
ad8c2ee8 2418 int exclusive = 0;
83c54070 2419 int ret = 0;
1da177e4 2420
4c21e2f2 2421 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2422 goto out;
65500d23
HD
2423
2424 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2425 if (unlikely(non_swap_entry(entry))) {
2426 if (is_migration_entry(entry)) {
2427 migration_entry_wait(mm, pmd, address);
2428 } else if (is_hwpoison_entry(entry)) {
2429 ret = VM_FAULT_HWPOISON;
2430 } else {
2431 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2432 ret = VM_FAULT_SIGBUS;
d1737fdb 2433 }
0697212a
CL
2434 goto out;
2435 }
0ff92245 2436 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2437 page = lookup_swap_cache(entry);
2438 if (!page) {
02098fea
HD
2439 page = swapin_readahead(entry,
2440 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2441 if (!page) {
2442 /*
8f4e2101
HD
2443 * Back out if somebody else faulted in this pte
2444 * while we released the pte lock.
1da177e4 2445 */
8f4e2101 2446 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2447 if (likely(pte_same(*page_table, orig_pte)))
2448 ret = VM_FAULT_OOM;
0ff92245 2449 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2450 goto unlock;
1da177e4
LT
2451 }
2452
2453 /* Had to read the page from swap area: Major fault */
2454 ret = VM_FAULT_MAJOR;
f8891e5e 2455 count_vm_event(PGMAJFAULT);
456f998e 2456 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2457 } else if (PageHWPoison(page)) {
71f72525
WF
2458 /*
2459 * hwpoisoned dirty swapcache pages are kept for killing
2460 * owner processes (which may be unknown at hwpoison time)
2461 */
d1737fdb
AK
2462 ret = VM_FAULT_HWPOISON;
2463 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2464 swapcache = page;
4779cb31 2465 goto out_release;
1da177e4
LT
2466 }
2467
56f31801 2468 swapcache = page;
d065bd81 2469 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 2470
073e587e 2471 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2472 if (!locked) {
2473 ret |= VM_FAULT_RETRY;
2474 goto out_release;
2475 }
073e587e 2476
4969c119 2477 /*
31c4a3d3
HD
2478 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2479 * release the swapcache from under us. The page pin, and pte_same
2480 * test below, are not enough to exclude that. Even if it is still
2481 * swapcache, we need to check that the page's swap has not changed.
4969c119 2482 */
31c4a3d3 2483 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2484 goto out_page;
2485
cbf86cfe
HD
2486 page = ksm_might_need_to_copy(page, vma, address);
2487 if (unlikely(!page)) {
2488 ret = VM_FAULT_OOM;
2489 page = swapcache;
cbf86cfe 2490 goto out_page;
5ad64688
HD
2491 }
2492
00501b53 2493 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
8a9f3ccd 2494 ret = VM_FAULT_OOM;
bc43f75c 2495 goto out_page;
8a9f3ccd
BS
2496 }
2497
1da177e4 2498 /*
8f4e2101 2499 * Back out if somebody else already faulted in this pte.
1da177e4 2500 */
8f4e2101 2501 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2502 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2503 goto out_nomap;
b8107480
KK
2504
2505 if (unlikely(!PageUptodate(page))) {
2506 ret = VM_FAULT_SIGBUS;
2507 goto out_nomap;
1da177e4
LT
2508 }
2509
8c7c6e34
KH
2510 /*
2511 * The page isn't present yet, go ahead with the fault.
2512 *
2513 * Be careful about the sequence of operations here.
2514 * To get its accounting right, reuse_swap_page() must be called
2515 * while the page is counted on swap but not yet in mapcount i.e.
2516 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2517 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2518 */
1da177e4 2519
34e55232 2520 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2521 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2522 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2523 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2524 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2525 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2526 ret |= VM_FAULT_WRITE;
ad8c2ee8 2527 exclusive = 1;
1da177e4 2528 }
1da177e4 2529 flush_icache_page(vma, page);
179ef71c
CG
2530 if (pte_swp_soft_dirty(orig_pte))
2531 pte = pte_mksoft_dirty(pte);
1da177e4 2532 set_pte_at(mm, address, page_table, pte);
00501b53 2533 if (page == swapcache) {
af34770e 2534 do_page_add_anon_rmap(page, vma, address, exclusive);
00501b53
JW
2535 mem_cgroup_commit_charge(page, memcg, true);
2536 } else { /* ksm created a completely new copy */
56f31801 2537 page_add_new_anon_rmap(page, vma, address);
00501b53
JW
2538 mem_cgroup_commit_charge(page, memcg, false);
2539 lru_cache_add_active_or_unevictable(page, vma);
2540 }
1da177e4 2541
c475a8ab 2542 swap_free(entry);
b291f000 2543 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2544 try_to_free_swap(page);
c475a8ab 2545 unlock_page(page);
56f31801 2546 if (page != swapcache) {
4969c119
AA
2547 /*
2548 * Hold the lock to avoid the swap entry to be reused
2549 * until we take the PT lock for the pte_same() check
2550 * (to avoid false positives from pte_same). For
2551 * further safety release the lock after the swap_free
2552 * so that the swap count won't change under a
2553 * parallel locked swapcache.
2554 */
2555 unlock_page(swapcache);
2556 page_cache_release(swapcache);
2557 }
c475a8ab 2558
30c9f3a9 2559 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2560 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2561 if (ret & VM_FAULT_ERROR)
2562 ret &= VM_FAULT_ERROR;
1da177e4
LT
2563 goto out;
2564 }
2565
2566 /* No need to invalidate - it was non-present before */
4b3073e1 2567 update_mmu_cache(vma, address, page_table);
65500d23 2568unlock:
8f4e2101 2569 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2570out:
2571 return ret;
b8107480 2572out_nomap:
00501b53 2573 mem_cgroup_cancel_charge(page, memcg);
8f4e2101 2574 pte_unmap_unlock(page_table, ptl);
bc43f75c 2575out_page:
b8107480 2576 unlock_page(page);
4779cb31 2577out_release:
b8107480 2578 page_cache_release(page);
56f31801 2579 if (page != swapcache) {
4969c119
AA
2580 unlock_page(swapcache);
2581 page_cache_release(swapcache);
2582 }
65500d23 2583 return ret;
1da177e4
LT
2584}
2585
320b2b8d 2586/*
8ca3eb08
LT
2587 * This is like a special single-page "expand_{down|up}wards()",
2588 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2589 * doesn't hit another vma.
320b2b8d
LT
2590 */
2591static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2592{
2593 address &= PAGE_MASK;
2594 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2595 struct vm_area_struct *prev = vma->vm_prev;
2596
2597 /*
2598 * Is there a mapping abutting this one below?
2599 *
2600 * That's only ok if it's the same stack mapping
2601 * that has gotten split..
2602 */
2603 if (prev && prev->vm_end == address)
2604 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2605
d05f3169 2606 expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2607 }
8ca3eb08
LT
2608 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2609 struct vm_area_struct *next = vma->vm_next;
2610
2611 /* As VM_GROWSDOWN but s/below/above/ */
2612 if (next && next->vm_start == address + PAGE_SIZE)
2613 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2614
2615 expand_upwards(vma, address + PAGE_SIZE);
2616 }
320b2b8d
LT
2617 return 0;
2618}
2619
1da177e4 2620/*
8f4e2101
HD
2621 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2622 * but allow concurrent faults), and pte mapped but not yet locked.
2623 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2624 */
65500d23
HD
2625static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2626 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2627 unsigned int flags)
1da177e4 2628{
00501b53 2629 struct mem_cgroup *memcg;
8f4e2101
HD
2630 struct page *page;
2631 spinlock_t *ptl;
1da177e4 2632 pte_t entry;
1da177e4 2633
11ac5524
LT
2634 pte_unmap(page_table);
2635
2636 /* Check if we need to add a guard page to the stack */
2637 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
2638 return VM_FAULT_SIGBUS;
2639
11ac5524 2640 /* Use the zero-page for reads */
62eede62
HD
2641 if (!(flags & FAULT_FLAG_WRITE)) {
2642 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2643 vma->vm_page_prot));
11ac5524 2644 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
2645 if (!pte_none(*page_table))
2646 goto unlock;
2647 goto setpte;
2648 }
2649
557ed1fa 2650 /* Allocate our own private page. */
557ed1fa
NP
2651 if (unlikely(anon_vma_prepare(vma)))
2652 goto oom;
2653 page = alloc_zeroed_user_highpage_movable(vma, address);
2654 if (!page)
2655 goto oom;
52f37629
MK
2656 /*
2657 * The memory barrier inside __SetPageUptodate makes sure that
2658 * preceeding stores to the page contents become visible before
2659 * the set_pte_at() write.
2660 */
0ed361de 2661 __SetPageUptodate(page);
8f4e2101 2662
00501b53 2663 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
8a9f3ccd
BS
2664 goto oom_free_page;
2665
557ed1fa 2666 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2667 if (vma->vm_flags & VM_WRITE)
2668 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2669
557ed1fa 2670 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2671 if (!pte_none(*page_table))
557ed1fa 2672 goto release;
9ba69294 2673
34e55232 2674 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 2675 page_add_new_anon_rmap(page, vma, address);
00501b53
JW
2676 mem_cgroup_commit_charge(page, memcg, false);
2677 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2678setpte:
65500d23 2679 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2680
2681 /* No need to invalidate - it was non-present before */
4b3073e1 2682 update_mmu_cache(vma, address, page_table);
65500d23 2683unlock:
8f4e2101 2684 pte_unmap_unlock(page_table, ptl);
83c54070 2685 return 0;
8f4e2101 2686release:
00501b53 2687 mem_cgroup_cancel_charge(page, memcg);
8f4e2101
HD
2688 page_cache_release(page);
2689 goto unlock;
8a9f3ccd 2690oom_free_page:
6dbf6d3b 2691 page_cache_release(page);
65500d23 2692oom:
1da177e4
LT
2693 return VM_FAULT_OOM;
2694}
2695
9a95f3cf
PC
2696/*
2697 * The mmap_sem must have been held on entry, and may have been
2698 * released depending on flags and vma->vm_ops->fault() return value.
2699 * See filemap_fault() and __lock_page_retry().
2700 */
7eae74af
KS
2701static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2702 pgoff_t pgoff, unsigned int flags, struct page **page)
2703{
2704 struct vm_fault vmf;
2705 int ret;
2706
2707 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2708 vmf.pgoff = pgoff;
2709 vmf.flags = flags;
2710 vmf.page = NULL;
2711
2712 ret = vma->vm_ops->fault(vma, &vmf);
2713 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2714 return ret;
2715
2716 if (unlikely(PageHWPoison(vmf.page))) {
2717 if (ret & VM_FAULT_LOCKED)
2718 unlock_page(vmf.page);
2719 page_cache_release(vmf.page);
2720 return VM_FAULT_HWPOISON;
2721 }
2722
2723 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2724 lock_page(vmf.page);
2725 else
2726 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2727
2728 *page = vmf.page;
2729 return ret;
2730}
2731
8c6e50b0
KS
2732/**
2733 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2734 *
2735 * @vma: virtual memory area
2736 * @address: user virtual address
2737 * @page: page to map
2738 * @pte: pointer to target page table entry
2739 * @write: true, if new entry is writable
2740 * @anon: true, if it's anonymous page
2741 *
2742 * Caller must hold page table lock relevant for @pte.
2743 *
2744 * Target users are page handler itself and implementations of
2745 * vm_ops->map_pages.
2746 */
2747void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3bb97794
KS
2748 struct page *page, pte_t *pte, bool write, bool anon)
2749{
2750 pte_t entry;
2751
2752 flush_icache_page(vma, page);
2753 entry = mk_pte(page, vma->vm_page_prot);
2754 if (write)
2755 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2756 else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
9aed8614 2757 entry = pte_mksoft_dirty(entry);
3bb97794
KS
2758 if (anon) {
2759 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2760 page_add_new_anon_rmap(page, vma, address);
2761 } else {
2762 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2763 page_add_file_rmap(page);
2764 }
2765 set_pte_at(vma->vm_mm, address, pte, entry);
2766
2767 /* no need to invalidate: a not-present page won't be cached */
2768 update_mmu_cache(vma, address, pte);
2769}
2770
3a91053a
KS
2771static unsigned long fault_around_bytes __read_mostly =
2772 rounddown_pow_of_two(65536);
a9b0f861 2773
a9b0f861
KS
2774#ifdef CONFIG_DEBUG_FS
2775static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 2776{
a9b0f861 2777 *val = fault_around_bytes;
1592eef0
KS
2778 return 0;
2779}
2780
b4903d6e
AR
2781/*
2782 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2783 * rounded down to nearest page order. It's what do_fault_around() expects to
2784 * see.
2785 */
a9b0f861 2786static int fault_around_bytes_set(void *data, u64 val)
1592eef0 2787{
a9b0f861 2788 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 2789 return -EINVAL;
b4903d6e
AR
2790 if (val > PAGE_SIZE)
2791 fault_around_bytes = rounddown_pow_of_two(val);
2792 else
2793 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
2794 return 0;
2795}
a9b0f861
KS
2796DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2797 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
2798
2799static int __init fault_around_debugfs(void)
2800{
2801 void *ret;
2802
a9b0f861
KS
2803 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2804 &fault_around_bytes_fops);
1592eef0 2805 if (!ret)
a9b0f861 2806 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
2807 return 0;
2808}
2809late_initcall(fault_around_debugfs);
1592eef0 2810#endif
8c6e50b0 2811
1fdb412b
KS
2812/*
2813 * do_fault_around() tries to map few pages around the fault address. The hope
2814 * is that the pages will be needed soon and this will lower the number of
2815 * faults to handle.
2816 *
2817 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2818 * not ready to be mapped: not up-to-date, locked, etc.
2819 *
2820 * This function is called with the page table lock taken. In the split ptlock
2821 * case the page table lock only protects only those entries which belong to
2822 * the page table corresponding to the fault address.
2823 *
2824 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2825 * only once.
2826 *
2827 * fault_around_pages() defines how many pages we'll try to map.
2828 * do_fault_around() expects it to return a power of two less than or equal to
2829 * PTRS_PER_PTE.
2830 *
2831 * The virtual address of the area that we map is naturally aligned to the
2832 * fault_around_pages() value (and therefore to page order). This way it's
2833 * easier to guarantee that we don't cross page table boundaries.
2834 */
8c6e50b0
KS
2835static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2836 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2837{
aecd6f44 2838 unsigned long start_addr, nr_pages, mask;
8c6e50b0
KS
2839 pgoff_t max_pgoff;
2840 struct vm_fault vmf;
2841 int off;
2842
aecd6f44
KS
2843 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2844 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2845
2846 start_addr = max(address & mask, vma->vm_start);
8c6e50b0
KS
2847 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2848 pte -= off;
2849 pgoff -= off;
2850
2851 /*
2852 * max_pgoff is either end of page table or end of vma
850e9c69 2853 * or fault_around_pages() from pgoff, depending what is nearest.
8c6e50b0
KS
2854 */
2855 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2856 PTRS_PER_PTE - 1;
2857 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
aecd6f44 2858 pgoff + nr_pages - 1);
8c6e50b0
KS
2859
2860 /* Check if it makes any sense to call ->map_pages */
2861 while (!pte_none(*pte)) {
2862 if (++pgoff > max_pgoff)
2863 return;
2864 start_addr += PAGE_SIZE;
2865 if (start_addr >= vma->vm_end)
2866 return;
2867 pte++;
2868 }
2869
2870 vmf.virtual_address = (void __user *) start_addr;
2871 vmf.pte = pte;
2872 vmf.pgoff = pgoff;
2873 vmf.max_pgoff = max_pgoff;
2874 vmf.flags = flags;
2875 vma->vm_ops->map_pages(vma, &vmf);
2876}
2877
e655fb29
KS
2878static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2879 unsigned long address, pmd_t *pmd,
2880 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2881{
2882 struct page *fault_page;
2883 spinlock_t *ptl;
3bb97794 2884 pte_t *pte;
8c6e50b0
KS
2885 int ret = 0;
2886
2887 /*
2888 * Let's call ->map_pages() first and use ->fault() as fallback
2889 * if page by the offset is not ready to be mapped (cold cache or
2890 * something).
2891 */
c118678b 2892 if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
aecd6f44 2893 fault_around_bytes >> PAGE_SHIFT > 1) {
8c6e50b0
KS
2894 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2895 do_fault_around(vma, address, pte, pgoff, flags);
2896 if (!pte_same(*pte, orig_pte))
2897 goto unlock_out;
2898 pte_unmap_unlock(pte, ptl);
2899 }
e655fb29
KS
2900
2901 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2902 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2903 return ret;
2904
2905 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2906 if (unlikely(!pte_same(*pte, orig_pte))) {
2907 pte_unmap_unlock(pte, ptl);
2908 unlock_page(fault_page);
2909 page_cache_release(fault_page);
2910 return ret;
2911 }
3bb97794 2912 do_set_pte(vma, address, fault_page, pte, false, false);
e655fb29 2913 unlock_page(fault_page);
8c6e50b0
KS
2914unlock_out:
2915 pte_unmap_unlock(pte, ptl);
e655fb29
KS
2916 return ret;
2917}
2918
ec47c3b9
KS
2919static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2920 unsigned long address, pmd_t *pmd,
2921 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2922{
2923 struct page *fault_page, *new_page;
00501b53 2924 struct mem_cgroup *memcg;
ec47c3b9 2925 spinlock_t *ptl;
3bb97794 2926 pte_t *pte;
ec47c3b9
KS
2927 int ret;
2928
2929 if (unlikely(anon_vma_prepare(vma)))
2930 return VM_FAULT_OOM;
2931
2932 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2933 if (!new_page)
2934 return VM_FAULT_OOM;
2935
00501b53 2936 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
ec47c3b9
KS
2937 page_cache_release(new_page);
2938 return VM_FAULT_OOM;
2939 }
2940
2941 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2942 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2943 goto uncharge_out;
2944
2945 copy_user_highpage(new_page, fault_page, address, vma);
2946 __SetPageUptodate(new_page);
2947
2948 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2949 if (unlikely(!pte_same(*pte, orig_pte))) {
2950 pte_unmap_unlock(pte, ptl);
2951 unlock_page(fault_page);
2952 page_cache_release(fault_page);
2953 goto uncharge_out;
2954 }
3bb97794 2955 do_set_pte(vma, address, new_page, pte, true, true);
00501b53
JW
2956 mem_cgroup_commit_charge(new_page, memcg, false);
2957 lru_cache_add_active_or_unevictable(new_page, vma);
ec47c3b9
KS
2958 pte_unmap_unlock(pte, ptl);
2959 unlock_page(fault_page);
2960 page_cache_release(fault_page);
2961 return ret;
2962uncharge_out:
00501b53 2963 mem_cgroup_cancel_charge(new_page, memcg);
ec47c3b9
KS
2964 page_cache_release(new_page);
2965 return ret;
2966}
2967
f0c6d4d2 2968static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2969 unsigned long address, pmd_t *pmd,
54cb8821 2970 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2971{
f0c6d4d2
KS
2972 struct page *fault_page;
2973 struct address_space *mapping;
8f4e2101 2974 spinlock_t *ptl;
3bb97794 2975 pte_t *pte;
f0c6d4d2 2976 int dirtied = 0;
f0c6d4d2 2977 int ret, tmp;
1d65f86d 2978
7eae74af
KS
2979 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2980 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 2981 return ret;
1da177e4
LT
2982
2983 /*
f0c6d4d2
KS
2984 * Check if the backing address space wants to know that the page is
2985 * about to become writable
1da177e4 2986 */
fb09a464
KS
2987 if (vma->vm_ops->page_mkwrite) {
2988 unlock_page(fault_page);
2989 tmp = do_page_mkwrite(vma, fault_page, address);
2990 if (unlikely(!tmp ||
2991 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
f0c6d4d2 2992 page_cache_release(fault_page);
fb09a464 2993 return tmp;
4294621f 2994 }
fb09a464
KS
2995 }
2996
f0c6d4d2
KS
2997 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2998 if (unlikely(!pte_same(*pte, orig_pte))) {
2999 pte_unmap_unlock(pte, ptl);
3000 unlock_page(fault_page);
3001 page_cache_release(fault_page);
3002 return ret;
1da177e4 3003 }
3bb97794 3004 do_set_pte(vma, address, fault_page, pte, true, false);
f0c6d4d2 3005 pte_unmap_unlock(pte, ptl);
b827e496 3006
f0c6d4d2
KS
3007 if (set_page_dirty(fault_page))
3008 dirtied = 1;
3009 mapping = fault_page->mapping;
3010 unlock_page(fault_page);
3011 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3012 /*
3013 * Some device drivers do not set page.mapping but still
3014 * dirty their pages
3015 */
3016 balance_dirty_pages_ratelimited(mapping);
d08b3851 3017 }
d00806b1 3018
f0c6d4d2
KS
3019 /* file_update_time outside page_lock */
3020 if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3021 file_update_time(vma->vm_file);
b827e496 3022
1d65f86d 3023 return ret;
54cb8821 3024}
d00806b1 3025
9a95f3cf
PC
3026/*
3027 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3028 * but allow concurrent faults).
3029 * The mmap_sem may have been released depending on flags and our
3030 * return value. See filemap_fault() and __lock_page_or_retry().
3031 */
54cb8821
NP
3032static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3033 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3034 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3035{
3036 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3037 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3038
16abfa08 3039 pte_unmap(page_table);
e655fb29
KS
3040 if (!(flags & FAULT_FLAG_WRITE))
3041 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3042 orig_pte);
ec47c3b9
KS
3043 if (!(vma->vm_flags & VM_SHARED))
3044 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3045 orig_pte);
f0c6d4d2 3046 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3047}
3048
1da177e4
LT
3049/*
3050 * Fault of a previously existing named mapping. Repopulate the pte
3051 * from the encoded file_pte if possible. This enables swappable
3052 * nonlinear vmas.
8f4e2101
HD
3053 *
3054 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3055 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3056 * We return with pte unmapped and unlocked.
3057 * The mmap_sem may have been released depending on flags and our
3058 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3059 */
d0217ac0 3060static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3061 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3062 unsigned int flags, pte_t orig_pte)
1da177e4 3063{
65500d23 3064 pgoff_t pgoff;
1da177e4 3065
30c9f3a9
LT
3066 flags |= FAULT_FLAG_NONLINEAR;
3067
4c21e2f2 3068 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3069 return 0;
1da177e4 3070
2509ef26 3071 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3072 /*
3073 * Page table corrupted: show pte and kill process.
3074 */
3dc14741 3075 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3076 return VM_FAULT_SIGBUS;
65500d23 3077 }
65500d23
HD
3078
3079 pgoff = pte_to_pgoff(orig_pte);
e655fb29
KS
3080 if (!(flags & FAULT_FLAG_WRITE))
3081 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3082 orig_pte);
ec47c3b9
KS
3083 if (!(vma->vm_flags & VM_SHARED))
3084 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3085 orig_pte);
f0c6d4d2 3086 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3087}
3088
b19a9939 3089static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3090 unsigned long addr, int page_nid,
3091 int *flags)
9532fec1
MG
3092{
3093 get_page(page);
3094
3095 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3096 if (page_nid == numa_node_id()) {
9532fec1 3097 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3098 *flags |= TNF_FAULT_LOCAL;
3099 }
9532fec1
MG
3100
3101 return mpol_misplaced(page, vma, addr);
3102}
3103
b19a9939 3104static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
d10e63f2
MG
3105 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3106{
4daae3b4 3107 struct page *page = NULL;
d10e63f2 3108 spinlock_t *ptl;
8191acbd 3109 int page_nid = -1;
90572890 3110 int last_cpupid;
cbee9f88 3111 int target_nid;
b8593bfd 3112 bool migrated = false;
6688cc05 3113 int flags = 0;
d10e63f2
MG
3114
3115 /*
3116 * The "pte" at this point cannot be used safely without
3117 * validation through pte_unmap_same(). It's of NUMA type but
3118 * the pfn may be screwed if the read is non atomic.
3119 *
3120 * ptep_modify_prot_start is not called as this is clearing
3121 * the _PAGE_NUMA bit and it is not really expected that there
3122 * would be concurrent hardware modifications to the PTE.
3123 */
3124 ptl = pte_lockptr(mm, pmd);
3125 spin_lock(ptl);
4daae3b4
MG
3126 if (unlikely(!pte_same(*ptep, pte))) {
3127 pte_unmap_unlock(ptep, ptl);
3128 goto out;
3129 }
3130
d10e63f2
MG
3131 pte = pte_mknonnuma(pte);
3132 set_pte_at(mm, addr, ptep, pte);
3133 update_mmu_cache(vma, addr, ptep);
3134
3135 page = vm_normal_page(vma, addr, pte);
3136 if (!page) {
3137 pte_unmap_unlock(ptep, ptl);
3138 return 0;
3139 }
a1a46184 3140 BUG_ON(is_zero_pfn(page_to_pfn(page)));
d10e63f2 3141
6688cc05
PZ
3142 /*
3143 * Avoid grouping on DSO/COW pages in specific and RO pages
3144 * in general, RO pages shouldn't hurt as much anyway since
3145 * they can be in shared cache state.
3146 */
3147 if (!pte_write(pte))
3148 flags |= TNF_NO_GROUP;
3149
dabe1d99
RR
3150 /*
3151 * Flag if the page is shared between multiple address spaces. This
3152 * is later used when determining whether to group tasks together
3153 */
3154 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3155 flags |= TNF_SHARED;
3156
90572890 3157 last_cpupid = page_cpupid_last(page);
8191acbd 3158 page_nid = page_to_nid(page);
04bb2f94 3159 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
d10e63f2 3160 pte_unmap_unlock(ptep, ptl);
4daae3b4 3161 if (target_nid == -1) {
4daae3b4
MG
3162 put_page(page);
3163 goto out;
3164 }
3165
3166 /* Migrate to the requested node */
1bc115d8 3167 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3168 if (migrated) {
8191acbd 3169 page_nid = target_nid;
6688cc05
PZ
3170 flags |= TNF_MIGRATED;
3171 }
4daae3b4
MG
3172
3173out:
8191acbd 3174 if (page_nid != -1)
6688cc05 3175 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3176 return 0;
3177}
3178
1da177e4
LT
3179/*
3180 * These routines also need to handle stuff like marking pages dirty
3181 * and/or accessed for architectures that don't do it in hardware (most
3182 * RISC architectures). The early dirtying is also good on the i386.
3183 *
3184 * There is also a hook called "update_mmu_cache()" that architectures
3185 * with external mmu caches can use to update those (ie the Sparc or
3186 * PowerPC hashed page tables that act as extended TLBs).
3187 *
c74df32c
HD
3188 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3189 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3190 * We return with pte unmapped and unlocked.
3191 *
3192 * The mmap_sem may have been released depending on flags and our
3193 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3194 */
c0292554 3195static int handle_pte_fault(struct mm_struct *mm,
71e3aac0
AA
3196 struct vm_area_struct *vma, unsigned long address,
3197 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3198{
3199 pte_t entry;
8f4e2101 3200 spinlock_t *ptl;
1da177e4 3201
c0d73261 3202 entry = ACCESS_ONCE(*pte);
1da177e4 3203 if (!pte_present(entry)) {
65500d23 3204 if (pte_none(entry)) {
f4b81804 3205 if (vma->vm_ops) {
3c18ddd1 3206 if (likely(vma->vm_ops->fault))
54cb8821 3207 return do_linear_fault(mm, vma, address,
30c9f3a9 3208 pte, pmd, flags, entry);
f4b81804
JS
3209 }
3210 return do_anonymous_page(mm, vma, address,
30c9f3a9 3211 pte, pmd, flags);
65500d23 3212 }
1da177e4 3213 if (pte_file(entry))
d0217ac0 3214 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3215 pte, pmd, flags, entry);
65500d23 3216 return do_swap_page(mm, vma, address,
30c9f3a9 3217 pte, pmd, flags, entry);
1da177e4
LT
3218 }
3219
d10e63f2
MG
3220 if (pte_numa(entry))
3221 return do_numa_page(mm, vma, address, entry, pte, pmd);
3222
4c21e2f2 3223 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3224 spin_lock(ptl);
3225 if (unlikely(!pte_same(*pte, entry)))
3226 goto unlock;
30c9f3a9 3227 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3228 if (!pte_write(entry))
8f4e2101
HD
3229 return do_wp_page(mm, vma, address,
3230 pte, pmd, ptl, entry);
1da177e4
LT
3231 entry = pte_mkdirty(entry);
3232 }
3233 entry = pte_mkyoung(entry);
30c9f3a9 3234 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3235 update_mmu_cache(vma, address, pte);
1a44e149
AA
3236 } else {
3237 /*
3238 * This is needed only for protection faults but the arch code
3239 * is not yet telling us if this is a protection fault or not.
3240 * This still avoids useless tlb flushes for .text page faults
3241 * with threads.
3242 */
30c9f3a9 3243 if (flags & FAULT_FLAG_WRITE)
61c77326 3244 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3245 }
8f4e2101
HD
3246unlock:
3247 pte_unmap_unlock(pte, ptl);
83c54070 3248 return 0;
1da177e4
LT
3249}
3250
3251/*
3252 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3253 *
3254 * The mmap_sem may have been released depending on flags and our
3255 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3256 */
519e5247
JW
3257static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3258 unsigned long address, unsigned int flags)
1da177e4
LT
3259{
3260 pgd_t *pgd;
3261 pud_t *pud;
3262 pmd_t *pmd;
3263 pte_t *pte;
3264
ac9b9c66 3265 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3266 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3267
1da177e4 3268 pgd = pgd_offset(mm, address);
1da177e4
LT
3269 pud = pud_alloc(mm, pgd, address);
3270 if (!pud)
c74df32c 3271 return VM_FAULT_OOM;
1da177e4
LT
3272 pmd = pmd_alloc(mm, pud, address);
3273 if (!pmd)
c74df32c 3274 return VM_FAULT_OOM;
71e3aac0 3275 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
c0292554 3276 int ret = VM_FAULT_FALLBACK;
71e3aac0 3277 if (!vma->vm_ops)
c0292554
KS
3278 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3279 pmd, flags);
3280 if (!(ret & VM_FAULT_FALLBACK))
3281 return ret;
71e3aac0
AA
3282 } else {
3283 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3284 int ret;
3285
71e3aac0
AA
3286 barrier();
3287 if (pmd_trans_huge(orig_pmd)) {
a1dd450b
WD
3288 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3289
e53289c0
LT
3290 /*
3291 * If the pmd is splitting, return and retry the
3292 * the fault. Alternative: wait until the split
3293 * is done, and goto retry.
3294 */
3295 if (pmd_trans_splitting(orig_pmd))
3296 return 0;
3297
3d59eebc 3298 if (pmd_numa(orig_pmd))
4daae3b4 3299 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3300 orig_pmd, pmd);
3301
3d59eebc 3302 if (dirty && !pmd_write(orig_pmd)) {
1f1d06c3
DR
3303 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3304 orig_pmd);
9845cbbd
KS
3305 if (!(ret & VM_FAULT_FALLBACK))
3306 return ret;
a1dd450b
WD
3307 } else {
3308 huge_pmd_set_accessed(mm, vma, address, pmd,
3309 orig_pmd, dirty);
9845cbbd 3310 return 0;
1f1d06c3 3311 }
71e3aac0
AA
3312 }
3313 }
3314
3315 /*
3316 * Use __pte_alloc instead of pte_alloc_map, because we can't
3317 * run pte_offset_map on the pmd, if an huge pmd could
3318 * materialize from under us from a different thread.
3319 */
4fd01770
MG
3320 if (unlikely(pmd_none(*pmd)) &&
3321 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3322 return VM_FAULT_OOM;
71e3aac0
AA
3323 /* if an huge pmd materialized from under us just retry later */
3324 if (unlikely(pmd_trans_huge(*pmd)))
3325 return 0;
3326 /*
3327 * A regular pmd is established and it can't morph into a huge pmd
3328 * from under us anymore at this point because we hold the mmap_sem
3329 * read mode and khugepaged takes it in write mode. So now it's
3330 * safe to run pte_offset_map().
3331 */
3332 pte = pte_offset_map(pmd, address);
1da177e4 3333
30c9f3a9 3334 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3335}
3336
9a95f3cf
PC
3337/*
3338 * By the time we get here, we already hold the mm semaphore
3339 *
3340 * The mmap_sem may have been released depending on flags and our
3341 * return value. See filemap_fault() and __lock_page_or_retry().
3342 */
519e5247
JW
3343int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3344 unsigned long address, unsigned int flags)
3345{
3346 int ret;
3347
3348 __set_current_state(TASK_RUNNING);
3349
3350 count_vm_event(PGFAULT);
3351 mem_cgroup_count_vm_event(mm, PGFAULT);
3352
3353 /* do counter updates before entering really critical section. */
3354 check_sync_rss_stat(current);
3355
3356 /*
3357 * Enable the memcg OOM handling for faults triggered in user
3358 * space. Kernel faults are handled more gracefully.
3359 */
3360 if (flags & FAULT_FLAG_USER)
49426420 3361 mem_cgroup_oom_enable();
519e5247
JW
3362
3363 ret = __handle_mm_fault(mm, vma, address, flags);
3364
49426420
JW
3365 if (flags & FAULT_FLAG_USER) {
3366 mem_cgroup_oom_disable();
3367 /*
3368 * The task may have entered a memcg OOM situation but
3369 * if the allocation error was handled gracefully (no
3370 * VM_FAULT_OOM), there is no need to kill anything.
3371 * Just clean up the OOM state peacefully.
3372 */
3373 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3374 mem_cgroup_oom_synchronize(false);
3375 }
3812c8c8 3376
519e5247
JW
3377 return ret;
3378}
3379
1da177e4
LT
3380#ifndef __PAGETABLE_PUD_FOLDED
3381/*
3382 * Allocate page upper directory.
872fec16 3383 * We've already handled the fast-path in-line.
1da177e4 3384 */
1bb3630e 3385int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3386{
c74df32c
HD
3387 pud_t *new = pud_alloc_one(mm, address);
3388 if (!new)
1bb3630e 3389 return -ENOMEM;
1da177e4 3390
362a61ad
NP
3391 smp_wmb(); /* See comment in __pte_alloc */
3392
872fec16 3393 spin_lock(&mm->page_table_lock);
1bb3630e 3394 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3395 pud_free(mm, new);
1bb3630e
HD
3396 else
3397 pgd_populate(mm, pgd, new);
c74df32c 3398 spin_unlock(&mm->page_table_lock);
1bb3630e 3399 return 0;
1da177e4
LT
3400}
3401#endif /* __PAGETABLE_PUD_FOLDED */
3402
3403#ifndef __PAGETABLE_PMD_FOLDED
3404/*
3405 * Allocate page middle directory.
872fec16 3406 * We've already handled the fast-path in-line.
1da177e4 3407 */
1bb3630e 3408int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3409{
c74df32c
HD
3410 pmd_t *new = pmd_alloc_one(mm, address);
3411 if (!new)
1bb3630e 3412 return -ENOMEM;
1da177e4 3413
362a61ad
NP
3414 smp_wmb(); /* See comment in __pte_alloc */
3415
872fec16 3416 spin_lock(&mm->page_table_lock);
1da177e4 3417#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3418 if (pud_present(*pud)) /* Another has populated it */
5e541973 3419 pmd_free(mm, new);
1bb3630e
HD
3420 else
3421 pud_populate(mm, pud, new);
1da177e4 3422#else
1bb3630e 3423 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3424 pmd_free(mm, new);
1bb3630e
HD
3425 else
3426 pgd_populate(mm, pud, new);
1da177e4 3427#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3428 spin_unlock(&mm->page_table_lock);
1bb3630e 3429 return 0;
e0f39591 3430}
1da177e4
LT
3431#endif /* __PAGETABLE_PMD_FOLDED */
3432
1b36ba81 3433static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3434 pte_t **ptepp, spinlock_t **ptlp)
3435{
3436 pgd_t *pgd;
3437 pud_t *pud;
3438 pmd_t *pmd;
3439 pte_t *ptep;
3440
3441 pgd = pgd_offset(mm, address);
3442 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3443 goto out;
3444
3445 pud = pud_offset(pgd, address);
3446 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3447 goto out;
3448
3449 pmd = pmd_offset(pud, address);
f66055ab 3450 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3451 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3452 goto out;
3453
3454 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3455 if (pmd_huge(*pmd))
3456 goto out;
3457
3458 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3459 if (!ptep)
3460 goto out;
3461 if (!pte_present(*ptep))
3462 goto unlock;
3463 *ptepp = ptep;
3464 return 0;
3465unlock:
3466 pte_unmap_unlock(ptep, *ptlp);
3467out:
3468 return -EINVAL;
3469}
3470
1b36ba81
NK
3471static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3472 pte_t **ptepp, spinlock_t **ptlp)
3473{
3474 int res;
3475
3476 /* (void) is needed to make gcc happy */
3477 (void) __cond_lock(*ptlp,
3478 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3479 return res;
3480}
3481
3b6748e2
JW
3482/**
3483 * follow_pfn - look up PFN at a user virtual address
3484 * @vma: memory mapping
3485 * @address: user virtual address
3486 * @pfn: location to store found PFN
3487 *
3488 * Only IO mappings and raw PFN mappings are allowed.
3489 *
3490 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3491 */
3492int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3493 unsigned long *pfn)
3494{
3495 int ret = -EINVAL;
3496 spinlock_t *ptl;
3497 pte_t *ptep;
3498
3499 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3500 return ret;
3501
3502 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3503 if (ret)
3504 return ret;
3505 *pfn = pte_pfn(*ptep);
3506 pte_unmap_unlock(ptep, ptl);
3507 return 0;
3508}
3509EXPORT_SYMBOL(follow_pfn);
3510
28b2ee20 3511#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3512int follow_phys(struct vm_area_struct *vma,
3513 unsigned long address, unsigned int flags,
3514 unsigned long *prot, resource_size_t *phys)
28b2ee20 3515{
03668a4d 3516 int ret = -EINVAL;
28b2ee20
RR
3517 pte_t *ptep, pte;
3518 spinlock_t *ptl;
28b2ee20 3519
d87fe660 3520 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3521 goto out;
28b2ee20 3522
03668a4d 3523 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3524 goto out;
28b2ee20 3525 pte = *ptep;
03668a4d 3526
28b2ee20
RR
3527 if ((flags & FOLL_WRITE) && !pte_write(pte))
3528 goto unlock;
28b2ee20
RR
3529
3530 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3531 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3532
03668a4d 3533 ret = 0;
28b2ee20
RR
3534unlock:
3535 pte_unmap_unlock(ptep, ptl);
3536out:
d87fe660 3537 return ret;
28b2ee20
RR
3538}
3539
3540int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3541 void *buf, int len, int write)
3542{
3543 resource_size_t phys_addr;
3544 unsigned long prot = 0;
2bc7273b 3545 void __iomem *maddr;
28b2ee20
RR
3546 int offset = addr & (PAGE_SIZE-1);
3547
d87fe660 3548 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3549 return -EINVAL;
3550
3551 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3552 if (write)
3553 memcpy_toio(maddr + offset, buf, len);
3554 else
3555 memcpy_fromio(buf, maddr + offset, len);
3556 iounmap(maddr);
3557
3558 return len;
3559}
5a73633e 3560EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3561#endif
3562
0ec76a11 3563/*
206cb636
SW
3564 * Access another process' address space as given in mm. If non-NULL, use the
3565 * given task for page fault accounting.
0ec76a11 3566 */
206cb636
SW
3567static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3568 unsigned long addr, void *buf, int len, int write)
0ec76a11 3569{
0ec76a11 3570 struct vm_area_struct *vma;
0ec76a11
DH
3571 void *old_buf = buf;
3572
0ec76a11 3573 down_read(&mm->mmap_sem);
183ff22b 3574 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3575 while (len) {
3576 int bytes, ret, offset;
3577 void *maddr;
28b2ee20 3578 struct page *page = NULL;
0ec76a11
DH
3579
3580 ret = get_user_pages(tsk, mm, addr, 1,
3581 write, 1, &page, &vma);
28b2ee20 3582 if (ret <= 0) {
dbffcd03
RR
3583#ifndef CONFIG_HAVE_IOREMAP_PROT
3584 break;
3585#else
28b2ee20
RR
3586 /*
3587 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3588 * we can access using slightly different code.
3589 */
28b2ee20 3590 vma = find_vma(mm, addr);
fe936dfc 3591 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3592 break;
3593 if (vma->vm_ops && vma->vm_ops->access)
3594 ret = vma->vm_ops->access(vma, addr, buf,
3595 len, write);
3596 if (ret <= 0)
28b2ee20
RR
3597 break;
3598 bytes = ret;
dbffcd03 3599#endif
0ec76a11 3600 } else {
28b2ee20
RR
3601 bytes = len;
3602 offset = addr & (PAGE_SIZE-1);
3603 if (bytes > PAGE_SIZE-offset)
3604 bytes = PAGE_SIZE-offset;
3605
3606 maddr = kmap(page);
3607 if (write) {
3608 copy_to_user_page(vma, page, addr,
3609 maddr + offset, buf, bytes);
3610 set_page_dirty_lock(page);
3611 } else {
3612 copy_from_user_page(vma, page, addr,
3613 buf, maddr + offset, bytes);
3614 }
3615 kunmap(page);
3616 page_cache_release(page);
0ec76a11 3617 }
0ec76a11
DH
3618 len -= bytes;
3619 buf += bytes;
3620 addr += bytes;
3621 }
3622 up_read(&mm->mmap_sem);
0ec76a11
DH
3623
3624 return buf - old_buf;
3625}
03252919 3626
5ddd36b9 3627/**
ae91dbfc 3628 * access_remote_vm - access another process' address space
5ddd36b9
SW
3629 * @mm: the mm_struct of the target address space
3630 * @addr: start address to access
3631 * @buf: source or destination buffer
3632 * @len: number of bytes to transfer
3633 * @write: whether the access is a write
3634 *
3635 * The caller must hold a reference on @mm.
3636 */
3637int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3638 void *buf, int len, int write)
3639{
3640 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3641}
3642
206cb636
SW
3643/*
3644 * Access another process' address space.
3645 * Source/target buffer must be kernel space,
3646 * Do not walk the page table directly, use get_user_pages
3647 */
3648int access_process_vm(struct task_struct *tsk, unsigned long addr,
3649 void *buf, int len, int write)
3650{
3651 struct mm_struct *mm;
3652 int ret;
3653
3654 mm = get_task_mm(tsk);
3655 if (!mm)
3656 return 0;
3657
3658 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3659 mmput(mm);
3660
3661 return ret;
3662}
3663
03252919
AK
3664/*
3665 * Print the name of a VMA.
3666 */
3667void print_vma_addr(char *prefix, unsigned long ip)
3668{
3669 struct mm_struct *mm = current->mm;
3670 struct vm_area_struct *vma;
3671
e8bff74a
IM
3672 /*
3673 * Do not print if we are in atomic
3674 * contexts (in exception stacks, etc.):
3675 */
3676 if (preempt_count())
3677 return;
3678
03252919
AK
3679 down_read(&mm->mmap_sem);
3680 vma = find_vma(mm, ip);
3681 if (vma && vma->vm_file) {
3682 struct file *f = vma->vm_file;
3683 char *buf = (char *)__get_free_page(GFP_KERNEL);
3684 if (buf) {
2fbc57c5 3685 char *p;
03252919 3686
cf28b486 3687 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3688 if (IS_ERR(p))
3689 p = "?";
2fbc57c5 3690 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
3691 vma->vm_start,
3692 vma->vm_end - vma->vm_start);
3693 free_page((unsigned long)buf);
3694 }
3695 }
51a07e50 3696 up_read(&mm->mmap_sem);
03252919 3697}
3ee1afa3 3698
662bbcb2 3699#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3ee1afa3
NP
3700void might_fault(void)
3701{
95156f00
PZ
3702 /*
3703 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3704 * holding the mmap_sem, this is safe because kernel memory doesn't
3705 * get paged out, therefore we'll never actually fault, and the
3706 * below annotations will generate false positives.
3707 */
3708 if (segment_eq(get_fs(), KERNEL_DS))
3709 return;
3710
3ee1afa3
NP
3711 /*
3712 * it would be nicer only to annotate paths which are not under
3713 * pagefault_disable, however that requires a larger audit and
3714 * providing helpers like get_user_atomic.
3715 */
662bbcb2
MT
3716 if (in_atomic())
3717 return;
3718
3719 __might_sleep(__FILE__, __LINE__, 0);
3720
3721 if (current->mm)
3ee1afa3
NP
3722 might_lock_read(&current->mm->mmap_sem);
3723}
3724EXPORT_SYMBOL(might_fault);
3725#endif
47ad8475
AA
3726
3727#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3728static void clear_gigantic_page(struct page *page,
3729 unsigned long addr,
3730 unsigned int pages_per_huge_page)
3731{
3732 int i;
3733 struct page *p = page;
3734
3735 might_sleep();
3736 for (i = 0; i < pages_per_huge_page;
3737 i++, p = mem_map_next(p, page, i)) {
3738 cond_resched();
3739 clear_user_highpage(p, addr + i * PAGE_SIZE);
3740 }
3741}
3742void clear_huge_page(struct page *page,
3743 unsigned long addr, unsigned int pages_per_huge_page)
3744{
3745 int i;
3746
3747 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3748 clear_gigantic_page(page, addr, pages_per_huge_page);
3749 return;
3750 }
3751
3752 might_sleep();
3753 for (i = 0; i < pages_per_huge_page; i++) {
3754 cond_resched();
3755 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3756 }
3757}
3758
3759static void copy_user_gigantic_page(struct page *dst, struct page *src,
3760 unsigned long addr,
3761 struct vm_area_struct *vma,
3762 unsigned int pages_per_huge_page)
3763{
3764 int i;
3765 struct page *dst_base = dst;
3766 struct page *src_base = src;
3767
3768 for (i = 0; i < pages_per_huge_page; ) {
3769 cond_resched();
3770 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3771
3772 i++;
3773 dst = mem_map_next(dst, dst_base, i);
3774 src = mem_map_next(src, src_base, i);
3775 }
3776}
3777
3778void copy_user_huge_page(struct page *dst, struct page *src,
3779 unsigned long addr, struct vm_area_struct *vma,
3780 unsigned int pages_per_huge_page)
3781{
3782 int i;
3783
3784 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3785 copy_user_gigantic_page(dst, src, addr, vma,
3786 pages_per_huge_page);
3787 return;
3788 }
3789
3790 might_sleep();
3791 for (i = 0; i < pages_per_huge_page; i++) {
3792 cond_resched();
3793 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3794 }
3795}
3796#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 3797
40b64acd 3798#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
3799
3800static struct kmem_cache *page_ptl_cachep;
3801
3802void __init ptlock_cache_init(void)
3803{
3804 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3805 SLAB_PANIC, NULL);
3806}
3807
539edb58 3808bool ptlock_alloc(struct page *page)
49076ec2
KS
3809{
3810 spinlock_t *ptl;
3811
b35f1819 3812 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
3813 if (!ptl)
3814 return false;
539edb58 3815 page->ptl = ptl;
49076ec2
KS
3816 return true;
3817}
3818
539edb58 3819void ptlock_free(struct page *page)
49076ec2 3820{
b35f1819 3821 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
3822}
3823#endif
This page took 1.197066 seconds and 5 git commands to generate.