mm: rework mapcount accounting to enable 4k mapping of THPs
[deliverable/linux.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
4daae3b4 60#include <linux/migrate.h>
2fbc57c5 61#include <linux/string.h>
0abdd7a8 62#include <linux/dma-debug.h>
1592eef0 63#include <linux/debugfs.h>
6b251fc9 64#include <linux/userfaultfd_k.h>
1da177e4 65
6952b61d 66#include <asm/io.h>
1da177e4
LT
67#include <asm/pgalloc.h>
68#include <asm/uaccess.h>
69#include <asm/tlb.h>
70#include <asm/tlbflush.h>
71#include <asm/pgtable.h>
72
42b77728
JB
73#include "internal.h"
74
90572890
PZ
75#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
76#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
77#endif
78
d41dee36 79#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
80/* use the per-pgdat data instead for discontigmem - mbligh */
81unsigned long max_mapnr;
82struct page *mem_map;
83
84EXPORT_SYMBOL(max_mapnr);
85EXPORT_SYMBOL(mem_map);
86#endif
87
1da177e4
LT
88/*
89 * A number of key systems in x86 including ioremap() rely on the assumption
90 * that high_memory defines the upper bound on direct map memory, then end
91 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
92 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
93 * and ZONE_HIGHMEM.
94 */
95void * high_memory;
1da177e4 96
1da177e4 97EXPORT_SYMBOL(high_memory);
1da177e4 98
32a93233
IM
99/*
100 * Randomize the address space (stacks, mmaps, brk, etc.).
101 *
102 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
103 * as ancient (libc5 based) binaries can segfault. )
104 */
105int randomize_va_space __read_mostly =
106#ifdef CONFIG_COMPAT_BRK
107 1;
108#else
109 2;
110#endif
a62eaf15
AK
111
112static int __init disable_randmaps(char *s)
113{
114 randomize_va_space = 0;
9b41046c 115 return 1;
a62eaf15
AK
116}
117__setup("norandmaps", disable_randmaps);
118
62eede62 119unsigned long zero_pfn __read_mostly;
03f6462a 120unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7 121
0b70068e
AB
122EXPORT_SYMBOL(zero_pfn);
123
a13ea5b7
HD
124/*
125 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
126 */
127static int __init init_zero_pfn(void)
128{
129 zero_pfn = page_to_pfn(ZERO_PAGE(0));
130 return 0;
131}
132core_initcall(init_zero_pfn);
a62eaf15 133
d559db08 134
34e55232
KH
135#if defined(SPLIT_RSS_COUNTING)
136
ea48cf78 137void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
138{
139 int i;
140
141 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
142 if (current->rss_stat.count[i]) {
143 add_mm_counter(mm, i, current->rss_stat.count[i]);
144 current->rss_stat.count[i] = 0;
34e55232
KH
145 }
146 }
05af2e10 147 current->rss_stat.events = 0;
34e55232
KH
148}
149
150static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
151{
152 struct task_struct *task = current;
153
154 if (likely(task->mm == mm))
155 task->rss_stat.count[member] += val;
156 else
157 add_mm_counter(mm, member, val);
158}
159#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
160#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
161
162/* sync counter once per 64 page faults */
163#define TASK_RSS_EVENTS_THRESH (64)
164static void check_sync_rss_stat(struct task_struct *task)
165{
166 if (unlikely(task != current))
167 return;
168 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 169 sync_mm_rss(task->mm);
34e55232 170}
9547d01b 171#else /* SPLIT_RSS_COUNTING */
34e55232
KH
172
173#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
174#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
175
176static void check_sync_rss_stat(struct task_struct *task)
177{
178}
179
9547d01b
PZ
180#endif /* SPLIT_RSS_COUNTING */
181
182#ifdef HAVE_GENERIC_MMU_GATHER
183
ca1d6c7d 184static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
185{
186 struct mmu_gather_batch *batch;
187
188 batch = tlb->active;
189 if (batch->next) {
190 tlb->active = batch->next;
ca1d6c7d 191 return true;
9547d01b
PZ
192 }
193
53a59fc6 194 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 195 return false;
53a59fc6 196
9547d01b
PZ
197 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
198 if (!batch)
ca1d6c7d 199 return false;
9547d01b 200
53a59fc6 201 tlb->batch_count++;
9547d01b
PZ
202 batch->next = NULL;
203 batch->nr = 0;
204 batch->max = MAX_GATHER_BATCH;
205
206 tlb->active->next = batch;
207 tlb->active = batch;
208
ca1d6c7d 209 return true;
9547d01b
PZ
210}
211
212/* tlb_gather_mmu
213 * Called to initialize an (on-stack) mmu_gather structure for page-table
214 * tear-down from @mm. The @fullmm argument is used when @mm is without
215 * users and we're going to destroy the full address space (exit/execve).
216 */
2b047252 217void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
218{
219 tlb->mm = mm;
220
2b047252
LT
221 /* Is it from 0 to ~0? */
222 tlb->fullmm = !(start | (end+1));
1de14c3c 223 tlb->need_flush_all = 0;
9547d01b
PZ
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
53a59fc6 228 tlb->batch_count = 0;
9547d01b
PZ
229
230#ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232#endif
fb7332a9
WD
233
234 __tlb_reset_range(tlb);
9547d01b
PZ
235}
236
1cf35d47 237static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 238{
721c21c1
WD
239 if (!tlb->end)
240 return;
241
9547d01b 242 tlb_flush(tlb);
34ee645e 243 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
244#ifdef CONFIG_HAVE_RCU_TABLE_FREE
245 tlb_table_flush(tlb);
34e55232 246#endif
fb7332a9 247 __tlb_reset_range(tlb);
1cf35d47
LT
248}
249
250static void tlb_flush_mmu_free(struct mmu_gather *tlb)
251{
252 struct mmu_gather_batch *batch;
34e55232 253
721c21c1 254 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
255 free_pages_and_swap_cache(batch->pages, batch->nr);
256 batch->nr = 0;
257 }
258 tlb->active = &tlb->local;
259}
260
1cf35d47
LT
261void tlb_flush_mmu(struct mmu_gather *tlb)
262{
1cf35d47
LT
263 tlb_flush_mmu_tlbonly(tlb);
264 tlb_flush_mmu_free(tlb);
265}
266
9547d01b
PZ
267/* tlb_finish_mmu
268 * Called at the end of the shootdown operation to free up any resources
269 * that were required.
270 */
271void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
272{
273 struct mmu_gather_batch *batch, *next;
274
275 tlb_flush_mmu(tlb);
276
277 /* keep the page table cache within bounds */
278 check_pgt_cache();
279
280 for (batch = tlb->local.next; batch; batch = next) {
281 next = batch->next;
282 free_pages((unsigned long)batch, 0);
283 }
284 tlb->local.next = NULL;
285}
286
287/* __tlb_remove_page
288 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
289 * handling the additional races in SMP caused by other CPUs caching valid
290 * mappings in their TLBs. Returns the number of free page slots left.
291 * When out of page slots we must call tlb_flush_mmu().
292 */
293int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
294{
295 struct mmu_gather_batch *batch;
296
fb7332a9 297 VM_BUG_ON(!tlb->end);
9547d01b 298
9547d01b
PZ
299 batch = tlb->active;
300 batch->pages[batch->nr++] = page;
301 if (batch->nr == batch->max) {
302 if (!tlb_next_batch(tlb))
303 return 0;
0b43c3aa 304 batch = tlb->active;
9547d01b 305 }
309381fe 306 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b
PZ
307
308 return batch->max - batch->nr;
309}
310
311#endif /* HAVE_GENERIC_MMU_GATHER */
312
26723911
PZ
313#ifdef CONFIG_HAVE_RCU_TABLE_FREE
314
315/*
316 * See the comment near struct mmu_table_batch.
317 */
318
319static void tlb_remove_table_smp_sync(void *arg)
320{
321 /* Simply deliver the interrupt */
322}
323
324static void tlb_remove_table_one(void *table)
325{
326 /*
327 * This isn't an RCU grace period and hence the page-tables cannot be
328 * assumed to be actually RCU-freed.
329 *
330 * It is however sufficient for software page-table walkers that rely on
331 * IRQ disabling. See the comment near struct mmu_table_batch.
332 */
333 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
334 __tlb_remove_table(table);
335}
336
337static void tlb_remove_table_rcu(struct rcu_head *head)
338{
339 struct mmu_table_batch *batch;
340 int i;
341
342 batch = container_of(head, struct mmu_table_batch, rcu);
343
344 for (i = 0; i < batch->nr; i++)
345 __tlb_remove_table(batch->tables[i]);
346
347 free_page((unsigned long)batch);
348}
349
350void tlb_table_flush(struct mmu_gather *tlb)
351{
352 struct mmu_table_batch **batch = &tlb->batch;
353
354 if (*batch) {
355 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
356 *batch = NULL;
357 }
358}
359
360void tlb_remove_table(struct mmu_gather *tlb, void *table)
361{
362 struct mmu_table_batch **batch = &tlb->batch;
363
26723911
PZ
364 /*
365 * When there's less then two users of this mm there cannot be a
366 * concurrent page-table walk.
367 */
368 if (atomic_read(&tlb->mm->mm_users) < 2) {
369 __tlb_remove_table(table);
370 return;
371 }
372
373 if (*batch == NULL) {
374 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375 if (*batch == NULL) {
376 tlb_remove_table_one(table);
377 return;
378 }
379 (*batch)->nr = 0;
380 }
381 (*batch)->tables[(*batch)->nr++] = table;
382 if ((*batch)->nr == MAX_TABLE_BATCH)
383 tlb_table_flush(tlb);
384}
385
9547d01b 386#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 387
1da177e4
LT
388/*
389 * Note: this doesn't free the actual pages themselves. That
390 * has been handled earlier when unmapping all the memory regions.
391 */
9e1b32ca
BH
392static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393 unsigned long addr)
1da177e4 394{
2f569afd 395 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 396 pmd_clear(pmd);
9e1b32ca 397 pte_free_tlb(tlb, token, addr);
e1f56c89 398 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
399}
400
e0da382c
HD
401static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402 unsigned long addr, unsigned long end,
403 unsigned long floor, unsigned long ceiling)
1da177e4
LT
404{
405 pmd_t *pmd;
406 unsigned long next;
e0da382c 407 unsigned long start;
1da177e4 408
e0da382c 409 start = addr;
1da177e4 410 pmd = pmd_offset(pud, addr);
1da177e4
LT
411 do {
412 next = pmd_addr_end(addr, end);
413 if (pmd_none_or_clear_bad(pmd))
414 continue;
9e1b32ca 415 free_pte_range(tlb, pmd, addr);
1da177e4
LT
416 } while (pmd++, addr = next, addr != end);
417
e0da382c
HD
418 start &= PUD_MASK;
419 if (start < floor)
420 return;
421 if (ceiling) {
422 ceiling &= PUD_MASK;
423 if (!ceiling)
424 return;
1da177e4 425 }
e0da382c
HD
426 if (end - 1 > ceiling - 1)
427 return;
428
429 pmd = pmd_offset(pud, start);
430 pud_clear(pud);
9e1b32ca 431 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 432 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
433}
434
e0da382c
HD
435static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
436 unsigned long addr, unsigned long end,
437 unsigned long floor, unsigned long ceiling)
1da177e4
LT
438{
439 pud_t *pud;
440 unsigned long next;
e0da382c 441 unsigned long start;
1da177e4 442
e0da382c 443 start = addr;
1da177e4 444 pud = pud_offset(pgd, addr);
1da177e4
LT
445 do {
446 next = pud_addr_end(addr, end);
447 if (pud_none_or_clear_bad(pud))
448 continue;
e0da382c 449 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
450 } while (pud++, addr = next, addr != end);
451
e0da382c
HD
452 start &= PGDIR_MASK;
453 if (start < floor)
454 return;
455 if (ceiling) {
456 ceiling &= PGDIR_MASK;
457 if (!ceiling)
458 return;
1da177e4 459 }
e0da382c
HD
460 if (end - 1 > ceiling - 1)
461 return;
462
463 pud = pud_offset(pgd, start);
464 pgd_clear(pgd);
9e1b32ca 465 pud_free_tlb(tlb, pud, start);
1da177e4
LT
466}
467
468/*
e0da382c 469 * This function frees user-level page tables of a process.
1da177e4 470 */
42b77728 471void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
472 unsigned long addr, unsigned long end,
473 unsigned long floor, unsigned long ceiling)
1da177e4
LT
474{
475 pgd_t *pgd;
476 unsigned long next;
e0da382c
HD
477
478 /*
479 * The next few lines have given us lots of grief...
480 *
481 * Why are we testing PMD* at this top level? Because often
482 * there will be no work to do at all, and we'd prefer not to
483 * go all the way down to the bottom just to discover that.
484 *
485 * Why all these "- 1"s? Because 0 represents both the bottom
486 * of the address space and the top of it (using -1 for the
487 * top wouldn't help much: the masks would do the wrong thing).
488 * The rule is that addr 0 and floor 0 refer to the bottom of
489 * the address space, but end 0 and ceiling 0 refer to the top
490 * Comparisons need to use "end - 1" and "ceiling - 1" (though
491 * that end 0 case should be mythical).
492 *
493 * Wherever addr is brought up or ceiling brought down, we must
494 * be careful to reject "the opposite 0" before it confuses the
495 * subsequent tests. But what about where end is brought down
496 * by PMD_SIZE below? no, end can't go down to 0 there.
497 *
498 * Whereas we round start (addr) and ceiling down, by different
499 * masks at different levels, in order to test whether a table
500 * now has no other vmas using it, so can be freed, we don't
501 * bother to round floor or end up - the tests don't need that.
502 */
1da177e4 503
e0da382c
HD
504 addr &= PMD_MASK;
505 if (addr < floor) {
506 addr += PMD_SIZE;
507 if (!addr)
508 return;
509 }
510 if (ceiling) {
511 ceiling &= PMD_MASK;
512 if (!ceiling)
513 return;
514 }
515 if (end - 1 > ceiling - 1)
516 end -= PMD_SIZE;
517 if (addr > end - 1)
518 return;
519
42b77728 520 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
521 do {
522 next = pgd_addr_end(addr, end);
523 if (pgd_none_or_clear_bad(pgd))
524 continue;
42b77728 525 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 526 } while (pgd++, addr = next, addr != end);
e0da382c
HD
527}
528
42b77728 529void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 530 unsigned long floor, unsigned long ceiling)
e0da382c
HD
531{
532 while (vma) {
533 struct vm_area_struct *next = vma->vm_next;
534 unsigned long addr = vma->vm_start;
535
8f4f8c16 536 /*
25d9e2d1 537 * Hide vma from rmap and truncate_pagecache before freeing
538 * pgtables
8f4f8c16 539 */
5beb4930 540 unlink_anon_vmas(vma);
8f4f8c16
HD
541 unlink_file_vma(vma);
542
9da61aef 543 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 544 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 545 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
546 } else {
547 /*
548 * Optimization: gather nearby vmas into one call down
549 */
550 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 551 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
552 vma = next;
553 next = vma->vm_next;
5beb4930 554 unlink_anon_vmas(vma);
8f4f8c16 555 unlink_file_vma(vma);
3bf5ee95
HD
556 }
557 free_pgd_range(tlb, addr, vma->vm_end,
558 floor, next? next->vm_start: ceiling);
559 }
e0da382c
HD
560 vma = next;
561 }
1da177e4
LT
562}
563
8ac1f832
AA
564int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
565 pmd_t *pmd, unsigned long address)
1da177e4 566{
c4088ebd 567 spinlock_t *ptl;
2f569afd 568 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
569 if (!new)
570 return -ENOMEM;
571
362a61ad
NP
572 /*
573 * Ensure all pte setup (eg. pte page lock and page clearing) are
574 * visible before the pte is made visible to other CPUs by being
575 * put into page tables.
576 *
577 * The other side of the story is the pointer chasing in the page
578 * table walking code (when walking the page table without locking;
579 * ie. most of the time). Fortunately, these data accesses consist
580 * of a chain of data-dependent loads, meaning most CPUs (alpha
581 * being the notable exception) will already guarantee loads are
582 * seen in-order. See the alpha page table accessors for the
583 * smp_read_barrier_depends() barriers in page table walking code.
584 */
585 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586
c4088ebd 587 ptl = pmd_lock(mm, pmd);
8ac1f832 588 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 589 atomic_long_inc(&mm->nr_ptes);
1da177e4 590 pmd_populate(mm, pmd, new);
2f569afd 591 new = NULL;
4b471e88 592 }
c4088ebd 593 spin_unlock(ptl);
2f569afd
MS
594 if (new)
595 pte_free(mm, new);
1bb3630e 596 return 0;
1da177e4
LT
597}
598
1bb3630e 599int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 600{
1bb3630e
HD
601 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
602 if (!new)
603 return -ENOMEM;
604
362a61ad
NP
605 smp_wmb(); /* See comment in __pte_alloc */
606
1bb3630e 607 spin_lock(&init_mm.page_table_lock);
8ac1f832 608 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 609 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 610 new = NULL;
4b471e88 611 }
1bb3630e 612 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
613 if (new)
614 pte_free_kernel(&init_mm, new);
1bb3630e 615 return 0;
1da177e4
LT
616}
617
d559db08
KH
618static inline void init_rss_vec(int *rss)
619{
620 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
621}
622
623static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 624{
d559db08
KH
625 int i;
626
34e55232 627 if (current->mm == mm)
05af2e10 628 sync_mm_rss(mm);
d559db08
KH
629 for (i = 0; i < NR_MM_COUNTERS; i++)
630 if (rss[i])
631 add_mm_counter(mm, i, rss[i]);
ae859762
HD
632}
633
b5810039 634/*
6aab341e
LT
635 * This function is called to print an error when a bad pte
636 * is found. For example, we might have a PFN-mapped pte in
637 * a region that doesn't allow it.
b5810039
NP
638 *
639 * The calling function must still handle the error.
640 */
3dc14741
HD
641static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
642 pte_t pte, struct page *page)
b5810039 643{
3dc14741
HD
644 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
645 pud_t *pud = pud_offset(pgd, addr);
646 pmd_t *pmd = pmd_offset(pud, addr);
647 struct address_space *mapping;
648 pgoff_t index;
d936cf9b
HD
649 static unsigned long resume;
650 static unsigned long nr_shown;
651 static unsigned long nr_unshown;
652
653 /*
654 * Allow a burst of 60 reports, then keep quiet for that minute;
655 * or allow a steady drip of one report per second.
656 */
657 if (nr_shown == 60) {
658 if (time_before(jiffies, resume)) {
659 nr_unshown++;
660 return;
661 }
662 if (nr_unshown) {
1e9e6365
HD
663 printk(KERN_ALERT
664 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
665 nr_unshown);
666 nr_unshown = 0;
667 }
668 nr_shown = 0;
669 }
670 if (nr_shown++ == 0)
671 resume = jiffies + 60 * HZ;
3dc14741
HD
672
673 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
674 index = linear_page_index(vma, addr);
675
1e9e6365
HD
676 printk(KERN_ALERT
677 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
678 current->comm,
679 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 680 if (page)
f0b791a3 681 dump_page(page, "bad pte");
1e9e6365 682 printk(KERN_ALERT
3dc14741
HD
683 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
684 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
685 /*
686 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
687 */
2682582a
KK
688 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
689 vma->vm_file,
690 vma->vm_ops ? vma->vm_ops->fault : NULL,
691 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
692 mapping ? mapping->a_ops->readpage : NULL);
b5810039 693 dump_stack();
373d4d09 694 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
695}
696
ee498ed7 697/*
7e675137 698 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 699 *
7e675137
NP
700 * "Special" mappings do not wish to be associated with a "struct page" (either
701 * it doesn't exist, or it exists but they don't want to touch it). In this
702 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 703 *
7e675137
NP
704 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
705 * pte bit, in which case this function is trivial. Secondly, an architecture
706 * may not have a spare pte bit, which requires a more complicated scheme,
707 * described below.
708 *
709 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
710 * special mapping (even if there are underlying and valid "struct pages").
711 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 712 *
b379d790
JH
713 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
714 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
715 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
716 * mapping will always honor the rule
6aab341e
LT
717 *
718 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
719 *
7e675137
NP
720 * And for normal mappings this is false.
721 *
722 * This restricts such mappings to be a linear translation from virtual address
723 * to pfn. To get around this restriction, we allow arbitrary mappings so long
724 * as the vma is not a COW mapping; in that case, we know that all ptes are
725 * special (because none can have been COWed).
b379d790 726 *
b379d790 727 *
7e675137 728 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
729 *
730 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
731 * page" backing, however the difference is that _all_ pages with a struct
732 * page (that is, those where pfn_valid is true) are refcounted and considered
733 * normal pages by the VM. The disadvantage is that pages are refcounted
734 * (which can be slower and simply not an option for some PFNMAP users). The
735 * advantage is that we don't have to follow the strict linearity rule of
736 * PFNMAP mappings in order to support COWable mappings.
737 *
ee498ed7 738 */
7e675137
NP
739#ifdef __HAVE_ARCH_PTE_SPECIAL
740# define HAVE_PTE_SPECIAL 1
741#else
742# define HAVE_PTE_SPECIAL 0
743#endif
744struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
745 pte_t pte)
ee498ed7 746{
22b31eec 747 unsigned long pfn = pte_pfn(pte);
7e675137
NP
748
749 if (HAVE_PTE_SPECIAL) {
b38af472 750 if (likely(!pte_special(pte)))
22b31eec 751 goto check_pfn;
667a0a06
DV
752 if (vma->vm_ops && vma->vm_ops->find_special_page)
753 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
754 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
755 return NULL;
62eede62 756 if (!is_zero_pfn(pfn))
22b31eec 757 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
758 return NULL;
759 }
760
761 /* !HAVE_PTE_SPECIAL case follows: */
762
b379d790
JH
763 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
764 if (vma->vm_flags & VM_MIXEDMAP) {
765 if (!pfn_valid(pfn))
766 return NULL;
767 goto out;
768 } else {
7e675137
NP
769 unsigned long off;
770 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
771 if (pfn == vma->vm_pgoff + off)
772 return NULL;
773 if (!is_cow_mapping(vma->vm_flags))
774 return NULL;
775 }
6aab341e
LT
776 }
777
b38af472
HD
778 if (is_zero_pfn(pfn))
779 return NULL;
22b31eec
HD
780check_pfn:
781 if (unlikely(pfn > highest_memmap_pfn)) {
782 print_bad_pte(vma, addr, pte, NULL);
783 return NULL;
784 }
6aab341e
LT
785
786 /*
7e675137 787 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 788 * eg. VDSO mappings can cause them to exist.
6aab341e 789 */
b379d790 790out:
6aab341e 791 return pfn_to_page(pfn);
ee498ed7
HD
792}
793
1da177e4
LT
794/*
795 * copy one vm_area from one task to the other. Assumes the page tables
796 * already present in the new task to be cleared in the whole range
797 * covered by this vma.
1da177e4
LT
798 */
799
570a335b 800static inline unsigned long
1da177e4 801copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 802 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 803 unsigned long addr, int *rss)
1da177e4 804{
b5810039 805 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
806 pte_t pte = *src_pte;
807 struct page *page;
1da177e4
LT
808
809 /* pte contains position in swap or file, so copy. */
810 if (unlikely(!pte_present(pte))) {
0661a336
KS
811 swp_entry_t entry = pte_to_swp_entry(pte);
812
813 if (likely(!non_swap_entry(entry))) {
814 if (swap_duplicate(entry) < 0)
815 return entry.val;
816
817 /* make sure dst_mm is on swapoff's mmlist. */
818 if (unlikely(list_empty(&dst_mm->mmlist))) {
819 spin_lock(&mmlist_lock);
820 if (list_empty(&dst_mm->mmlist))
821 list_add(&dst_mm->mmlist,
822 &src_mm->mmlist);
823 spin_unlock(&mmlist_lock);
824 }
825 rss[MM_SWAPENTS]++;
826 } else if (is_migration_entry(entry)) {
827 page = migration_entry_to_page(entry);
828
eca56ff9 829 rss[mm_counter(page)]++;
0661a336
KS
830
831 if (is_write_migration_entry(entry) &&
832 is_cow_mapping(vm_flags)) {
833 /*
834 * COW mappings require pages in both
835 * parent and child to be set to read.
836 */
837 make_migration_entry_read(&entry);
838 pte = swp_entry_to_pte(entry);
839 if (pte_swp_soft_dirty(*src_pte))
840 pte = pte_swp_mksoft_dirty(pte);
841 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 842 }
1da177e4 843 }
ae859762 844 goto out_set_pte;
1da177e4
LT
845 }
846
1da177e4
LT
847 /*
848 * If it's a COW mapping, write protect it both
849 * in the parent and the child
850 */
67121172 851 if (is_cow_mapping(vm_flags)) {
1da177e4 852 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 853 pte = pte_wrprotect(pte);
1da177e4
LT
854 }
855
856 /*
857 * If it's a shared mapping, mark it clean in
858 * the child
859 */
860 if (vm_flags & VM_SHARED)
861 pte = pte_mkclean(pte);
862 pte = pte_mkold(pte);
6aab341e
LT
863
864 page = vm_normal_page(vma, addr, pte);
865 if (page) {
866 get_page(page);
53f9263b 867 page_dup_rmap(page, false);
eca56ff9 868 rss[mm_counter(page)]++;
6aab341e 869 }
ae859762
HD
870
871out_set_pte:
872 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 873 return 0;
1da177e4
LT
874}
875
21bda264 876static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
877 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
878 unsigned long addr, unsigned long end)
1da177e4 879{
c36987e2 880 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 881 pte_t *src_pte, *dst_pte;
c74df32c 882 spinlock_t *src_ptl, *dst_ptl;
e040f218 883 int progress = 0;
d559db08 884 int rss[NR_MM_COUNTERS];
570a335b 885 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
886
887again:
d559db08
KH
888 init_rss_vec(rss);
889
c74df32c 890 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
891 if (!dst_pte)
892 return -ENOMEM;
ece0e2b6 893 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 894 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 895 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
896 orig_src_pte = src_pte;
897 orig_dst_pte = dst_pte;
6606c3e0 898 arch_enter_lazy_mmu_mode();
1da177e4 899
1da177e4
LT
900 do {
901 /*
902 * We are holding two locks at this point - either of them
903 * could generate latencies in another task on another CPU.
904 */
e040f218
HD
905 if (progress >= 32) {
906 progress = 0;
907 if (need_resched() ||
95c354fe 908 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
909 break;
910 }
1da177e4
LT
911 if (pte_none(*src_pte)) {
912 progress++;
913 continue;
914 }
570a335b
HD
915 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
916 vma, addr, rss);
917 if (entry.val)
918 break;
1da177e4
LT
919 progress += 8;
920 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 921
6606c3e0 922 arch_leave_lazy_mmu_mode();
c74df32c 923 spin_unlock(src_ptl);
ece0e2b6 924 pte_unmap(orig_src_pte);
d559db08 925 add_mm_rss_vec(dst_mm, rss);
c36987e2 926 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 927 cond_resched();
570a335b
HD
928
929 if (entry.val) {
930 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
931 return -ENOMEM;
932 progress = 0;
933 }
1da177e4
LT
934 if (addr != end)
935 goto again;
936 return 0;
937}
938
939static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
940 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
941 unsigned long addr, unsigned long end)
942{
943 pmd_t *src_pmd, *dst_pmd;
944 unsigned long next;
945
946 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
947 if (!dst_pmd)
948 return -ENOMEM;
949 src_pmd = pmd_offset(src_pud, addr);
950 do {
951 next = pmd_addr_end(addr, end);
71e3aac0
AA
952 if (pmd_trans_huge(*src_pmd)) {
953 int err;
14d1a55c 954 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
955 err = copy_huge_pmd(dst_mm, src_mm,
956 dst_pmd, src_pmd, addr, vma);
957 if (err == -ENOMEM)
958 return -ENOMEM;
959 if (!err)
960 continue;
961 /* fall through */
962 }
1da177e4
LT
963 if (pmd_none_or_clear_bad(src_pmd))
964 continue;
965 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
966 vma, addr, next))
967 return -ENOMEM;
968 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
969 return 0;
970}
971
972static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
973 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
974 unsigned long addr, unsigned long end)
975{
976 pud_t *src_pud, *dst_pud;
977 unsigned long next;
978
979 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
980 if (!dst_pud)
981 return -ENOMEM;
982 src_pud = pud_offset(src_pgd, addr);
983 do {
984 next = pud_addr_end(addr, end);
985 if (pud_none_or_clear_bad(src_pud))
986 continue;
987 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
988 vma, addr, next))
989 return -ENOMEM;
990 } while (dst_pud++, src_pud++, addr = next, addr != end);
991 return 0;
992}
993
994int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
995 struct vm_area_struct *vma)
996{
997 pgd_t *src_pgd, *dst_pgd;
998 unsigned long next;
999 unsigned long addr = vma->vm_start;
1000 unsigned long end = vma->vm_end;
2ec74c3e
SG
1001 unsigned long mmun_start; /* For mmu_notifiers */
1002 unsigned long mmun_end; /* For mmu_notifiers */
1003 bool is_cow;
cddb8a5c 1004 int ret;
1da177e4 1005
d992895b
NP
1006 /*
1007 * Don't copy ptes where a page fault will fill them correctly.
1008 * Fork becomes much lighter when there are big shared or private
1009 * readonly mappings. The tradeoff is that copy_page_range is more
1010 * efficient than faulting.
1011 */
0661a336
KS
1012 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1013 !vma->anon_vma)
1014 return 0;
d992895b 1015
1da177e4
LT
1016 if (is_vm_hugetlb_page(vma))
1017 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1018
b3b9c293 1019 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1020 /*
1021 * We do not free on error cases below as remove_vma
1022 * gets called on error from higher level routine
1023 */
5180da41 1024 ret = track_pfn_copy(vma);
2ab64037 1025 if (ret)
1026 return ret;
1027 }
1028
cddb8a5c
AA
1029 /*
1030 * We need to invalidate the secondary MMU mappings only when
1031 * there could be a permission downgrade on the ptes of the
1032 * parent mm. And a permission downgrade will only happen if
1033 * is_cow_mapping() returns true.
1034 */
2ec74c3e
SG
1035 is_cow = is_cow_mapping(vma->vm_flags);
1036 mmun_start = addr;
1037 mmun_end = end;
1038 if (is_cow)
1039 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1040 mmun_end);
cddb8a5c
AA
1041
1042 ret = 0;
1da177e4
LT
1043 dst_pgd = pgd_offset(dst_mm, addr);
1044 src_pgd = pgd_offset(src_mm, addr);
1045 do {
1046 next = pgd_addr_end(addr, end);
1047 if (pgd_none_or_clear_bad(src_pgd))
1048 continue;
cddb8a5c
AA
1049 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1050 vma, addr, next))) {
1051 ret = -ENOMEM;
1052 break;
1053 }
1da177e4 1054 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1055
2ec74c3e
SG
1056 if (is_cow)
1057 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1058 return ret;
1da177e4
LT
1059}
1060
51c6f666 1061static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1062 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1063 unsigned long addr, unsigned long end,
97a89413 1064 struct zap_details *details)
1da177e4 1065{
b5810039 1066 struct mm_struct *mm = tlb->mm;
d16dfc55 1067 int force_flush = 0;
d559db08 1068 int rss[NR_MM_COUNTERS];
97a89413 1069 spinlock_t *ptl;
5f1a1907 1070 pte_t *start_pte;
97a89413 1071 pte_t *pte;
8a5f14a2 1072 swp_entry_t entry;
d559db08 1073
d16dfc55 1074again:
e303297e 1075 init_rss_vec(rss);
5f1a1907
SR
1076 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1077 pte = start_pte;
6606c3e0 1078 arch_enter_lazy_mmu_mode();
1da177e4
LT
1079 do {
1080 pte_t ptent = *pte;
51c6f666 1081 if (pte_none(ptent)) {
1da177e4 1082 continue;
51c6f666 1083 }
6f5e6b9e 1084
1da177e4 1085 if (pte_present(ptent)) {
ee498ed7 1086 struct page *page;
51c6f666 1087
6aab341e 1088 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1089 if (unlikely(details) && page) {
1090 /*
1091 * unmap_shared_mapping_pages() wants to
1092 * invalidate cache without truncating:
1093 * unmap shared but keep private pages.
1094 */
1095 if (details->check_mapping &&
1096 details->check_mapping != page->mapping)
1097 continue;
1da177e4 1098 }
b5810039 1099 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1100 tlb->fullmm);
1da177e4
LT
1101 tlb_remove_tlb_entry(tlb, pte, addr);
1102 if (unlikely(!page))
1103 continue;
eca56ff9
JM
1104
1105 if (!PageAnon(page)) {
1cf35d47
LT
1106 if (pte_dirty(ptent)) {
1107 force_flush = 1;
6237bcd9 1108 set_page_dirty(page);
1cf35d47 1109 }
4917e5d0 1110 if (pte_young(ptent) &&
64363aad 1111 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1112 mark_page_accessed(page);
6237bcd9 1113 }
eca56ff9 1114 rss[mm_counter(page)]--;
d281ee61 1115 page_remove_rmap(page, false);
3dc14741
HD
1116 if (unlikely(page_mapcount(page) < 0))
1117 print_bad_pte(vma, addr, ptent, page);
1cf35d47
LT
1118 if (unlikely(!__tlb_remove_page(tlb, page))) {
1119 force_flush = 1;
ce9ec37b 1120 addr += PAGE_SIZE;
d16dfc55 1121 break;
1cf35d47 1122 }
1da177e4
LT
1123 continue;
1124 }
8a5f14a2 1125 /* If details->check_mapping, we leave swap entries. */
1da177e4
LT
1126 if (unlikely(details))
1127 continue;
b084d435 1128
8a5f14a2
KS
1129 entry = pte_to_swp_entry(ptent);
1130 if (!non_swap_entry(entry))
1131 rss[MM_SWAPENTS]--;
1132 else if (is_migration_entry(entry)) {
1133 struct page *page;
9f9f1acd 1134
8a5f14a2 1135 page = migration_entry_to_page(entry);
eca56ff9 1136 rss[mm_counter(page)]--;
b084d435 1137 }
8a5f14a2
KS
1138 if (unlikely(!free_swap_and_cache(entry)))
1139 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1140 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1141 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1142
d559db08 1143 add_mm_rss_vec(mm, rss);
6606c3e0 1144 arch_leave_lazy_mmu_mode();
51c6f666 1145
1cf35d47 1146 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1147 if (force_flush)
1cf35d47 1148 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1149 pte_unmap_unlock(start_pte, ptl);
1150
1151 /*
1152 * If we forced a TLB flush (either due to running out of
1153 * batch buffers or because we needed to flush dirty TLB
1154 * entries before releasing the ptl), free the batched
1155 * memory too. Restart if we didn't do everything.
1156 */
1157 if (force_flush) {
1158 force_flush = 0;
1159 tlb_flush_mmu_free(tlb);
2b047252
LT
1160
1161 if (addr != end)
d16dfc55
PZ
1162 goto again;
1163 }
1164
51c6f666 1165 return addr;
1da177e4
LT
1166}
1167
51c6f666 1168static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1169 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1170 unsigned long addr, unsigned long end,
97a89413 1171 struct zap_details *details)
1da177e4
LT
1172{
1173 pmd_t *pmd;
1174 unsigned long next;
1175
1176 pmd = pmd_offset(pud, addr);
1177 do {
1178 next = pmd_addr_end(addr, end);
71e3aac0 1179 if (pmd_trans_huge(*pmd)) {
1a5a9906 1180 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1181#ifdef CONFIG_DEBUG_VM
1182 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1183 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1184 __func__, addr, end,
1185 vma->vm_start,
1186 vma->vm_end);
1187 BUG();
1188 }
1189#endif
78ddc534 1190 split_huge_pmd(vma, pmd, addr);
f21760b1 1191 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1192 goto next;
71e3aac0
AA
1193 /* fall through */
1194 }
1a5a9906
AA
1195 /*
1196 * Here there can be other concurrent MADV_DONTNEED or
1197 * trans huge page faults running, and if the pmd is
1198 * none or trans huge it can change under us. This is
1199 * because MADV_DONTNEED holds the mmap_sem in read
1200 * mode.
1201 */
1202 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1203 goto next;
97a89413 1204 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1205next:
97a89413
PZ
1206 cond_resched();
1207 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1208
1209 return addr;
1da177e4
LT
1210}
1211
51c6f666 1212static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1213 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1214 unsigned long addr, unsigned long end,
97a89413 1215 struct zap_details *details)
1da177e4
LT
1216{
1217 pud_t *pud;
1218 unsigned long next;
1219
1220 pud = pud_offset(pgd, addr);
1221 do {
1222 next = pud_addr_end(addr, end);
97a89413 1223 if (pud_none_or_clear_bad(pud))
1da177e4 1224 continue;
97a89413
PZ
1225 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1226 } while (pud++, addr = next, addr != end);
51c6f666
RH
1227
1228 return addr;
1da177e4
LT
1229}
1230
038c7aa1
AV
1231static void unmap_page_range(struct mmu_gather *tlb,
1232 struct vm_area_struct *vma,
1233 unsigned long addr, unsigned long end,
1234 struct zap_details *details)
1da177e4
LT
1235{
1236 pgd_t *pgd;
1237 unsigned long next;
1238
8a5f14a2 1239 if (details && !details->check_mapping)
1da177e4
LT
1240 details = NULL;
1241
1242 BUG_ON(addr >= end);
1243 tlb_start_vma(tlb, vma);
1244 pgd = pgd_offset(vma->vm_mm, addr);
1245 do {
1246 next = pgd_addr_end(addr, end);
97a89413 1247 if (pgd_none_or_clear_bad(pgd))
1da177e4 1248 continue;
97a89413
PZ
1249 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1250 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1251 tlb_end_vma(tlb, vma);
1252}
51c6f666 1253
f5cc4eef
AV
1254
1255static void unmap_single_vma(struct mmu_gather *tlb,
1256 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1257 unsigned long end_addr,
f5cc4eef
AV
1258 struct zap_details *details)
1259{
1260 unsigned long start = max(vma->vm_start, start_addr);
1261 unsigned long end;
1262
1263 if (start >= vma->vm_end)
1264 return;
1265 end = min(vma->vm_end, end_addr);
1266 if (end <= vma->vm_start)
1267 return;
1268
cbc91f71
SD
1269 if (vma->vm_file)
1270 uprobe_munmap(vma, start, end);
1271
b3b9c293 1272 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1273 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1274
1275 if (start != end) {
1276 if (unlikely(is_vm_hugetlb_page(vma))) {
1277 /*
1278 * It is undesirable to test vma->vm_file as it
1279 * should be non-null for valid hugetlb area.
1280 * However, vm_file will be NULL in the error
7aa6b4ad 1281 * cleanup path of mmap_region. When
f5cc4eef 1282 * hugetlbfs ->mmap method fails,
7aa6b4ad 1283 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1284 * before calling this function to clean up.
1285 * Since no pte has actually been setup, it is
1286 * safe to do nothing in this case.
1287 */
24669e58 1288 if (vma->vm_file) {
83cde9e8 1289 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1290 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1291 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1292 }
f5cc4eef
AV
1293 } else
1294 unmap_page_range(tlb, vma, start, end, details);
1295 }
1da177e4
LT
1296}
1297
1da177e4
LT
1298/**
1299 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1300 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1301 * @vma: the starting vma
1302 * @start_addr: virtual address at which to start unmapping
1303 * @end_addr: virtual address at which to end unmapping
1da177e4 1304 *
508034a3 1305 * Unmap all pages in the vma list.
1da177e4 1306 *
1da177e4
LT
1307 * Only addresses between `start' and `end' will be unmapped.
1308 *
1309 * The VMA list must be sorted in ascending virtual address order.
1310 *
1311 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1312 * range after unmap_vmas() returns. So the only responsibility here is to
1313 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1314 * drops the lock and schedules.
1315 */
6e8bb019 1316void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1317 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1318 unsigned long end_addr)
1da177e4 1319{
cddb8a5c 1320 struct mm_struct *mm = vma->vm_mm;
1da177e4 1321
cddb8a5c 1322 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1323 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1324 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1325 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1326}
1327
1328/**
1329 * zap_page_range - remove user pages in a given range
1330 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1331 * @start: starting address of pages to zap
1da177e4 1332 * @size: number of bytes to zap
8a5f14a2 1333 * @details: details of shared cache invalidation
f5cc4eef
AV
1334 *
1335 * Caller must protect the VMA list
1da177e4 1336 */
7e027b14 1337void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1338 unsigned long size, struct zap_details *details)
1339{
1340 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1341 struct mmu_gather tlb;
7e027b14 1342 unsigned long end = start + size;
1da177e4 1343
1da177e4 1344 lru_add_drain();
2b047252 1345 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1346 update_hiwater_rss(mm);
7e027b14
LT
1347 mmu_notifier_invalidate_range_start(mm, start, end);
1348 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1349 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1350 mmu_notifier_invalidate_range_end(mm, start, end);
1351 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1352}
1353
f5cc4eef
AV
1354/**
1355 * zap_page_range_single - remove user pages in a given range
1356 * @vma: vm_area_struct holding the applicable pages
1357 * @address: starting address of pages to zap
1358 * @size: number of bytes to zap
8a5f14a2 1359 * @details: details of shared cache invalidation
f5cc4eef
AV
1360 *
1361 * The range must fit into one VMA.
1da177e4 1362 */
f5cc4eef 1363static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1364 unsigned long size, struct zap_details *details)
1365{
1366 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1367 struct mmu_gather tlb;
1da177e4 1368 unsigned long end = address + size;
1da177e4 1369
1da177e4 1370 lru_add_drain();
2b047252 1371 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1372 update_hiwater_rss(mm);
f5cc4eef 1373 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1374 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1375 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1376 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1377}
1378
c627f9cc
JS
1379/**
1380 * zap_vma_ptes - remove ptes mapping the vma
1381 * @vma: vm_area_struct holding ptes to be zapped
1382 * @address: starting address of pages to zap
1383 * @size: number of bytes to zap
1384 *
1385 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1386 *
1387 * The entire address range must be fully contained within the vma.
1388 *
1389 * Returns 0 if successful.
1390 */
1391int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1392 unsigned long size)
1393{
1394 if (address < vma->vm_start || address + size > vma->vm_end ||
1395 !(vma->vm_flags & VM_PFNMAP))
1396 return -1;
f5cc4eef 1397 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1398 return 0;
1399}
1400EXPORT_SYMBOL_GPL(zap_vma_ptes);
1401
25ca1d6c 1402pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1403 spinlock_t **ptl)
c9cfcddf
LT
1404{
1405 pgd_t * pgd = pgd_offset(mm, addr);
1406 pud_t * pud = pud_alloc(mm, pgd, addr);
1407 if (pud) {
49c91fb0 1408 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1409 if (pmd) {
1410 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1411 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1412 }
c9cfcddf
LT
1413 }
1414 return NULL;
1415}
1416
238f58d8
LT
1417/*
1418 * This is the old fallback for page remapping.
1419 *
1420 * For historical reasons, it only allows reserved pages. Only
1421 * old drivers should use this, and they needed to mark their
1422 * pages reserved for the old functions anyway.
1423 */
423bad60
NP
1424static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1425 struct page *page, pgprot_t prot)
238f58d8 1426{
423bad60 1427 struct mm_struct *mm = vma->vm_mm;
238f58d8 1428 int retval;
c9cfcddf 1429 pte_t *pte;
8a9f3ccd
BS
1430 spinlock_t *ptl;
1431
238f58d8 1432 retval = -EINVAL;
a145dd41 1433 if (PageAnon(page))
5b4e655e 1434 goto out;
238f58d8
LT
1435 retval = -ENOMEM;
1436 flush_dcache_page(page);
c9cfcddf 1437 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1438 if (!pte)
5b4e655e 1439 goto out;
238f58d8
LT
1440 retval = -EBUSY;
1441 if (!pte_none(*pte))
1442 goto out_unlock;
1443
1444 /* Ok, finally just insert the thing.. */
1445 get_page(page);
eca56ff9 1446 inc_mm_counter_fast(mm, mm_counter_file(page));
238f58d8
LT
1447 page_add_file_rmap(page);
1448 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1449
1450 retval = 0;
8a9f3ccd
BS
1451 pte_unmap_unlock(pte, ptl);
1452 return retval;
238f58d8
LT
1453out_unlock:
1454 pte_unmap_unlock(pte, ptl);
1455out:
1456 return retval;
1457}
1458
bfa5bf6d
REB
1459/**
1460 * vm_insert_page - insert single page into user vma
1461 * @vma: user vma to map to
1462 * @addr: target user address of this page
1463 * @page: source kernel page
1464 *
a145dd41
LT
1465 * This allows drivers to insert individual pages they've allocated
1466 * into a user vma.
1467 *
1468 * The page has to be a nice clean _individual_ kernel allocation.
1469 * If you allocate a compound page, you need to have marked it as
1470 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1471 * (see split_page()).
a145dd41
LT
1472 *
1473 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1474 * took an arbitrary page protection parameter. This doesn't allow
1475 * that. Your vma protection will have to be set up correctly, which
1476 * means that if you want a shared writable mapping, you'd better
1477 * ask for a shared writable mapping!
1478 *
1479 * The page does not need to be reserved.
4b6e1e37
KK
1480 *
1481 * Usually this function is called from f_op->mmap() handler
1482 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1483 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1484 * function from other places, for example from page-fault handler.
a145dd41 1485 */
423bad60
NP
1486int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1487 struct page *page)
a145dd41
LT
1488{
1489 if (addr < vma->vm_start || addr >= vma->vm_end)
1490 return -EFAULT;
1491 if (!page_count(page))
1492 return -EINVAL;
4b6e1e37
KK
1493 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1494 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1495 BUG_ON(vma->vm_flags & VM_PFNMAP);
1496 vma->vm_flags |= VM_MIXEDMAP;
1497 }
423bad60 1498 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1499}
e3c3374f 1500EXPORT_SYMBOL(vm_insert_page);
a145dd41 1501
423bad60
NP
1502static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1503 unsigned long pfn, pgprot_t prot)
1504{
1505 struct mm_struct *mm = vma->vm_mm;
1506 int retval;
1507 pte_t *pte, entry;
1508 spinlock_t *ptl;
1509
1510 retval = -ENOMEM;
1511 pte = get_locked_pte(mm, addr, &ptl);
1512 if (!pte)
1513 goto out;
1514 retval = -EBUSY;
1515 if (!pte_none(*pte))
1516 goto out_unlock;
1517
1518 /* Ok, finally just insert the thing.. */
1519 entry = pte_mkspecial(pfn_pte(pfn, prot));
1520 set_pte_at(mm, addr, pte, entry);
4b3073e1 1521 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1522
1523 retval = 0;
1524out_unlock:
1525 pte_unmap_unlock(pte, ptl);
1526out:
1527 return retval;
1528}
1529
e0dc0d8f
NP
1530/**
1531 * vm_insert_pfn - insert single pfn into user vma
1532 * @vma: user vma to map to
1533 * @addr: target user address of this page
1534 * @pfn: source kernel pfn
1535 *
c462f179 1536 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1537 * they've allocated into a user vma. Same comments apply.
1538 *
1539 * This function should only be called from a vm_ops->fault handler, and
1540 * in that case the handler should return NULL.
0d71d10a
NP
1541 *
1542 * vma cannot be a COW mapping.
1543 *
1544 * As this is called only for pages that do not currently exist, we
1545 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1546 */
1547int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1548 unsigned long pfn)
e0dc0d8f 1549{
2ab64037 1550 int ret;
e4b866ed 1551 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1552 /*
1553 * Technically, architectures with pte_special can avoid all these
1554 * restrictions (same for remap_pfn_range). However we would like
1555 * consistency in testing and feature parity among all, so we should
1556 * try to keep these invariants in place for everybody.
1557 */
b379d790
JH
1558 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1559 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1560 (VM_PFNMAP|VM_MIXEDMAP));
1561 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1562 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1563
423bad60
NP
1564 if (addr < vma->vm_start || addr >= vma->vm_end)
1565 return -EFAULT;
5180da41 1566 if (track_pfn_insert(vma, &pgprot, pfn))
2ab64037 1567 return -EINVAL;
1568
e4b866ed 1569 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1570
2ab64037 1571 return ret;
423bad60
NP
1572}
1573EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1574
423bad60
NP
1575int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1576 unsigned long pfn)
1577{
1578 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1579
423bad60
NP
1580 if (addr < vma->vm_start || addr >= vma->vm_end)
1581 return -EFAULT;
e0dc0d8f 1582
423bad60
NP
1583 /*
1584 * If we don't have pte special, then we have to use the pfn_valid()
1585 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1586 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1587 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1588 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
1589 */
1590 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1591 struct page *page;
1592
1593 page = pfn_to_page(pfn);
1594 return insert_page(vma, addr, page, vma->vm_page_prot);
1595 }
1596 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1597}
423bad60 1598EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1599
1da177e4
LT
1600/*
1601 * maps a range of physical memory into the requested pages. the old
1602 * mappings are removed. any references to nonexistent pages results
1603 * in null mappings (currently treated as "copy-on-access")
1604 */
1605static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1606 unsigned long addr, unsigned long end,
1607 unsigned long pfn, pgprot_t prot)
1608{
1609 pte_t *pte;
c74df32c 1610 spinlock_t *ptl;
1da177e4 1611
c74df32c 1612 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1613 if (!pte)
1614 return -ENOMEM;
6606c3e0 1615 arch_enter_lazy_mmu_mode();
1da177e4
LT
1616 do {
1617 BUG_ON(!pte_none(*pte));
7e675137 1618 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1619 pfn++;
1620 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1621 arch_leave_lazy_mmu_mode();
c74df32c 1622 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1623 return 0;
1624}
1625
1626static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1627 unsigned long addr, unsigned long end,
1628 unsigned long pfn, pgprot_t prot)
1629{
1630 pmd_t *pmd;
1631 unsigned long next;
1632
1633 pfn -= addr >> PAGE_SHIFT;
1634 pmd = pmd_alloc(mm, pud, addr);
1635 if (!pmd)
1636 return -ENOMEM;
f66055ab 1637 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1638 do {
1639 next = pmd_addr_end(addr, end);
1640 if (remap_pte_range(mm, pmd, addr, next,
1641 pfn + (addr >> PAGE_SHIFT), prot))
1642 return -ENOMEM;
1643 } while (pmd++, addr = next, addr != end);
1644 return 0;
1645}
1646
1647static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1648 unsigned long addr, unsigned long end,
1649 unsigned long pfn, pgprot_t prot)
1650{
1651 pud_t *pud;
1652 unsigned long next;
1653
1654 pfn -= addr >> PAGE_SHIFT;
1655 pud = pud_alloc(mm, pgd, addr);
1656 if (!pud)
1657 return -ENOMEM;
1658 do {
1659 next = pud_addr_end(addr, end);
1660 if (remap_pmd_range(mm, pud, addr, next,
1661 pfn + (addr >> PAGE_SHIFT), prot))
1662 return -ENOMEM;
1663 } while (pud++, addr = next, addr != end);
1664 return 0;
1665}
1666
bfa5bf6d
REB
1667/**
1668 * remap_pfn_range - remap kernel memory to userspace
1669 * @vma: user vma to map to
1670 * @addr: target user address to start at
1671 * @pfn: physical address of kernel memory
1672 * @size: size of map area
1673 * @prot: page protection flags for this mapping
1674 *
1675 * Note: this is only safe if the mm semaphore is held when called.
1676 */
1da177e4
LT
1677int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1678 unsigned long pfn, unsigned long size, pgprot_t prot)
1679{
1680 pgd_t *pgd;
1681 unsigned long next;
2d15cab8 1682 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1683 struct mm_struct *mm = vma->vm_mm;
1684 int err;
1685
1686 /*
1687 * Physically remapped pages are special. Tell the
1688 * rest of the world about it:
1689 * VM_IO tells people not to look at these pages
1690 * (accesses can have side effects).
6aab341e
LT
1691 * VM_PFNMAP tells the core MM that the base pages are just
1692 * raw PFN mappings, and do not have a "struct page" associated
1693 * with them.
314e51b9
KK
1694 * VM_DONTEXPAND
1695 * Disable vma merging and expanding with mremap().
1696 * VM_DONTDUMP
1697 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1698 *
1699 * There's a horrible special case to handle copy-on-write
1700 * behaviour that some programs depend on. We mark the "original"
1701 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1702 * See vm_normal_page() for details.
1da177e4 1703 */
b3b9c293
KK
1704 if (is_cow_mapping(vma->vm_flags)) {
1705 if (addr != vma->vm_start || end != vma->vm_end)
1706 return -EINVAL;
fb155c16 1707 vma->vm_pgoff = pfn;
b3b9c293
KK
1708 }
1709
1710 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1711 if (err)
3c8bb73a 1712 return -EINVAL;
fb155c16 1713
314e51b9 1714 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1715
1716 BUG_ON(addr >= end);
1717 pfn -= addr >> PAGE_SHIFT;
1718 pgd = pgd_offset(mm, addr);
1719 flush_cache_range(vma, addr, end);
1da177e4
LT
1720 do {
1721 next = pgd_addr_end(addr, end);
1722 err = remap_pud_range(mm, pgd, addr, next,
1723 pfn + (addr >> PAGE_SHIFT), prot);
1724 if (err)
1725 break;
1726 } while (pgd++, addr = next, addr != end);
2ab64037 1727
1728 if (err)
5180da41 1729 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 1730
1da177e4
LT
1731 return err;
1732}
1733EXPORT_SYMBOL(remap_pfn_range);
1734
b4cbb197
LT
1735/**
1736 * vm_iomap_memory - remap memory to userspace
1737 * @vma: user vma to map to
1738 * @start: start of area
1739 * @len: size of area
1740 *
1741 * This is a simplified io_remap_pfn_range() for common driver use. The
1742 * driver just needs to give us the physical memory range to be mapped,
1743 * we'll figure out the rest from the vma information.
1744 *
1745 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1746 * whatever write-combining details or similar.
1747 */
1748int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1749{
1750 unsigned long vm_len, pfn, pages;
1751
1752 /* Check that the physical memory area passed in looks valid */
1753 if (start + len < start)
1754 return -EINVAL;
1755 /*
1756 * You *really* shouldn't map things that aren't page-aligned,
1757 * but we've historically allowed it because IO memory might
1758 * just have smaller alignment.
1759 */
1760 len += start & ~PAGE_MASK;
1761 pfn = start >> PAGE_SHIFT;
1762 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1763 if (pfn + pages < pfn)
1764 return -EINVAL;
1765
1766 /* We start the mapping 'vm_pgoff' pages into the area */
1767 if (vma->vm_pgoff > pages)
1768 return -EINVAL;
1769 pfn += vma->vm_pgoff;
1770 pages -= vma->vm_pgoff;
1771
1772 /* Can we fit all of the mapping? */
1773 vm_len = vma->vm_end - vma->vm_start;
1774 if (vm_len >> PAGE_SHIFT > pages)
1775 return -EINVAL;
1776
1777 /* Ok, let it rip */
1778 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1779}
1780EXPORT_SYMBOL(vm_iomap_memory);
1781
aee16b3c
JF
1782static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1783 unsigned long addr, unsigned long end,
1784 pte_fn_t fn, void *data)
1785{
1786 pte_t *pte;
1787 int err;
2f569afd 1788 pgtable_t token;
94909914 1789 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1790
1791 pte = (mm == &init_mm) ?
1792 pte_alloc_kernel(pmd, addr) :
1793 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1794 if (!pte)
1795 return -ENOMEM;
1796
1797 BUG_ON(pmd_huge(*pmd));
1798
38e0edb1
JF
1799 arch_enter_lazy_mmu_mode();
1800
2f569afd 1801 token = pmd_pgtable(*pmd);
aee16b3c
JF
1802
1803 do {
c36987e2 1804 err = fn(pte++, token, addr, data);
aee16b3c
JF
1805 if (err)
1806 break;
c36987e2 1807 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1808
38e0edb1
JF
1809 arch_leave_lazy_mmu_mode();
1810
aee16b3c
JF
1811 if (mm != &init_mm)
1812 pte_unmap_unlock(pte-1, ptl);
1813 return err;
1814}
1815
1816static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1817 unsigned long addr, unsigned long end,
1818 pte_fn_t fn, void *data)
1819{
1820 pmd_t *pmd;
1821 unsigned long next;
1822 int err;
1823
ceb86879
AK
1824 BUG_ON(pud_huge(*pud));
1825
aee16b3c
JF
1826 pmd = pmd_alloc(mm, pud, addr);
1827 if (!pmd)
1828 return -ENOMEM;
1829 do {
1830 next = pmd_addr_end(addr, end);
1831 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1832 if (err)
1833 break;
1834 } while (pmd++, addr = next, addr != end);
1835 return err;
1836}
1837
1838static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1839 unsigned long addr, unsigned long end,
1840 pte_fn_t fn, void *data)
1841{
1842 pud_t *pud;
1843 unsigned long next;
1844 int err;
1845
1846 pud = pud_alloc(mm, pgd, addr);
1847 if (!pud)
1848 return -ENOMEM;
1849 do {
1850 next = pud_addr_end(addr, end);
1851 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1852 if (err)
1853 break;
1854 } while (pud++, addr = next, addr != end);
1855 return err;
1856}
1857
1858/*
1859 * Scan a region of virtual memory, filling in page tables as necessary
1860 * and calling a provided function on each leaf page table.
1861 */
1862int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1863 unsigned long size, pte_fn_t fn, void *data)
1864{
1865 pgd_t *pgd;
1866 unsigned long next;
57250a5b 1867 unsigned long end = addr + size;
aee16b3c
JF
1868 int err;
1869
1870 BUG_ON(addr >= end);
1871 pgd = pgd_offset(mm, addr);
1872 do {
1873 next = pgd_addr_end(addr, end);
1874 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1875 if (err)
1876 break;
1877 } while (pgd++, addr = next, addr != end);
57250a5b 1878
aee16b3c
JF
1879 return err;
1880}
1881EXPORT_SYMBOL_GPL(apply_to_page_range);
1882
8f4e2101 1883/*
9b4bdd2f
KS
1884 * handle_pte_fault chooses page fault handler according to an entry which was
1885 * read non-atomically. Before making any commitment, on those architectures
1886 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1887 * parts, do_swap_page must check under lock before unmapping the pte and
1888 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 1889 * and do_anonymous_page can safely check later on).
8f4e2101 1890 */
4c21e2f2 1891static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1892 pte_t *page_table, pte_t orig_pte)
1893{
1894 int same = 1;
1895#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1896 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1897 spinlock_t *ptl = pte_lockptr(mm, pmd);
1898 spin_lock(ptl);
8f4e2101 1899 same = pte_same(*page_table, orig_pte);
4c21e2f2 1900 spin_unlock(ptl);
8f4e2101
HD
1901 }
1902#endif
1903 pte_unmap(page_table);
1904 return same;
1905}
1906
9de455b2 1907static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 1908{
0abdd7a8
DW
1909 debug_dma_assert_idle(src);
1910
6aab341e
LT
1911 /*
1912 * If the source page was a PFN mapping, we don't have
1913 * a "struct page" for it. We do a best-effort copy by
1914 * just copying from the original user address. If that
1915 * fails, we just zero-fill it. Live with it.
1916 */
1917 if (unlikely(!src)) {
9b04c5fe 1918 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
1919 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1920
1921 /*
1922 * This really shouldn't fail, because the page is there
1923 * in the page tables. But it might just be unreadable,
1924 * in which case we just give up and fill the result with
1925 * zeroes.
1926 */
1927 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 1928 clear_page(kaddr);
9b04c5fe 1929 kunmap_atomic(kaddr);
c4ec7b0d 1930 flush_dcache_page(dst);
0ed361de
NP
1931 } else
1932 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1933}
1934
c20cd45e
MH
1935static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1936{
1937 struct file *vm_file = vma->vm_file;
1938
1939 if (vm_file)
1940 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1941
1942 /*
1943 * Special mappings (e.g. VDSO) do not have any file so fake
1944 * a default GFP_KERNEL for them.
1945 */
1946 return GFP_KERNEL;
1947}
1948
fb09a464
KS
1949/*
1950 * Notify the address space that the page is about to become writable so that
1951 * it can prohibit this or wait for the page to get into an appropriate state.
1952 *
1953 * We do this without the lock held, so that it can sleep if it needs to.
1954 */
1955static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1956 unsigned long address)
1957{
1958 struct vm_fault vmf;
1959 int ret;
1960
1961 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1962 vmf.pgoff = page->index;
1963 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c20cd45e 1964 vmf.gfp_mask = __get_fault_gfp_mask(vma);
fb09a464 1965 vmf.page = page;
2e4cdab0 1966 vmf.cow_page = NULL;
fb09a464
KS
1967
1968 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1969 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1970 return ret;
1971 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1972 lock_page(page);
1973 if (!page->mapping) {
1974 unlock_page(page);
1975 return 0; /* retry */
1976 }
1977 ret |= VM_FAULT_LOCKED;
1978 } else
1979 VM_BUG_ON_PAGE(!PageLocked(page), page);
1980 return ret;
1981}
1982
4e047f89
SR
1983/*
1984 * Handle write page faults for pages that can be reused in the current vma
1985 *
1986 * This can happen either due to the mapping being with the VM_SHARED flag,
1987 * or due to us being the last reference standing to the page. In either
1988 * case, all we need to do here is to mark the page as writable and update
1989 * any related book-keeping.
1990 */
1991static inline int wp_page_reuse(struct mm_struct *mm,
1992 struct vm_area_struct *vma, unsigned long address,
1993 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
1994 struct page *page, int page_mkwrite,
1995 int dirty_shared)
1996 __releases(ptl)
1997{
1998 pte_t entry;
1999 /*
2000 * Clear the pages cpupid information as the existing
2001 * information potentially belongs to a now completely
2002 * unrelated process.
2003 */
2004 if (page)
2005 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2006
2007 flush_cache_page(vma, address, pte_pfn(orig_pte));
2008 entry = pte_mkyoung(orig_pte);
2009 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2010 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2011 update_mmu_cache(vma, address, page_table);
2012 pte_unmap_unlock(page_table, ptl);
2013
2014 if (dirty_shared) {
2015 struct address_space *mapping;
2016 int dirtied;
2017
2018 if (!page_mkwrite)
2019 lock_page(page);
2020
2021 dirtied = set_page_dirty(page);
2022 VM_BUG_ON_PAGE(PageAnon(page), page);
2023 mapping = page->mapping;
2024 unlock_page(page);
2025 page_cache_release(page);
2026
2027 if ((dirtied || page_mkwrite) && mapping) {
2028 /*
2029 * Some device drivers do not set page.mapping
2030 * but still dirty their pages
2031 */
2032 balance_dirty_pages_ratelimited(mapping);
2033 }
2034
2035 if (!page_mkwrite)
2036 file_update_time(vma->vm_file);
2037 }
2038
2039 return VM_FAULT_WRITE;
2040}
2041
2f38ab2c
SR
2042/*
2043 * Handle the case of a page which we actually need to copy to a new page.
2044 *
2045 * Called with mmap_sem locked and the old page referenced, but
2046 * without the ptl held.
2047 *
2048 * High level logic flow:
2049 *
2050 * - Allocate a page, copy the content of the old page to the new one.
2051 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2052 * - Take the PTL. If the pte changed, bail out and release the allocated page
2053 * - If the pte is still the way we remember it, update the page table and all
2054 * relevant references. This includes dropping the reference the page-table
2055 * held to the old page, as well as updating the rmap.
2056 * - In any case, unlock the PTL and drop the reference we took to the old page.
2057 */
2058static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2059 unsigned long address, pte_t *page_table, pmd_t *pmd,
2060 pte_t orig_pte, struct page *old_page)
2061{
2062 struct page *new_page = NULL;
2063 spinlock_t *ptl = NULL;
2064 pte_t entry;
2065 int page_copied = 0;
2066 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2067 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2068 struct mem_cgroup *memcg;
2069
2070 if (unlikely(anon_vma_prepare(vma)))
2071 goto oom;
2072
2073 if (is_zero_pfn(pte_pfn(orig_pte))) {
2074 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2075 if (!new_page)
2076 goto oom;
2077 } else {
2078 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2079 if (!new_page)
2080 goto oom;
2081 cow_user_page(new_page, old_page, address, vma);
2082 }
2f38ab2c 2083
f627c2f5 2084 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2085 goto oom_free_new;
2086
eb3c24f3
MG
2087 __SetPageUptodate(new_page);
2088
2f38ab2c
SR
2089 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2090
2091 /*
2092 * Re-check the pte - we dropped the lock
2093 */
2094 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2095 if (likely(pte_same(*page_table, orig_pte))) {
2096 if (old_page) {
2097 if (!PageAnon(old_page)) {
eca56ff9
JM
2098 dec_mm_counter_fast(mm,
2099 mm_counter_file(old_page));
2f38ab2c
SR
2100 inc_mm_counter_fast(mm, MM_ANONPAGES);
2101 }
2102 } else {
2103 inc_mm_counter_fast(mm, MM_ANONPAGES);
2104 }
2105 flush_cache_page(vma, address, pte_pfn(orig_pte));
2106 entry = mk_pte(new_page, vma->vm_page_prot);
2107 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2108 /*
2109 * Clear the pte entry and flush it first, before updating the
2110 * pte with the new entry. This will avoid a race condition
2111 * seen in the presence of one thread doing SMC and another
2112 * thread doing COW.
2113 */
2114 ptep_clear_flush_notify(vma, address, page_table);
d281ee61 2115 page_add_new_anon_rmap(new_page, vma, address, false);
f627c2f5 2116 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2117 lru_cache_add_active_or_unevictable(new_page, vma);
2118 /*
2119 * We call the notify macro here because, when using secondary
2120 * mmu page tables (such as kvm shadow page tables), we want the
2121 * new page to be mapped directly into the secondary page table.
2122 */
2123 set_pte_at_notify(mm, address, page_table, entry);
2124 update_mmu_cache(vma, address, page_table);
2125 if (old_page) {
2126 /*
2127 * Only after switching the pte to the new page may
2128 * we remove the mapcount here. Otherwise another
2129 * process may come and find the rmap count decremented
2130 * before the pte is switched to the new page, and
2131 * "reuse" the old page writing into it while our pte
2132 * here still points into it and can be read by other
2133 * threads.
2134 *
2135 * The critical issue is to order this
2136 * page_remove_rmap with the ptp_clear_flush above.
2137 * Those stores are ordered by (if nothing else,)
2138 * the barrier present in the atomic_add_negative
2139 * in page_remove_rmap.
2140 *
2141 * Then the TLB flush in ptep_clear_flush ensures that
2142 * no process can access the old page before the
2143 * decremented mapcount is visible. And the old page
2144 * cannot be reused until after the decremented
2145 * mapcount is visible. So transitively, TLBs to
2146 * old page will be flushed before it can be reused.
2147 */
d281ee61 2148 page_remove_rmap(old_page, false);
2f38ab2c
SR
2149 }
2150
2151 /* Free the old page.. */
2152 new_page = old_page;
2153 page_copied = 1;
2154 } else {
f627c2f5 2155 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2156 }
2157
2158 if (new_page)
2159 page_cache_release(new_page);
2160
2161 pte_unmap_unlock(page_table, ptl);
2162 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
7479df6d
KS
2163 /* THP pages are never mlocked */
2164 if (old_page && !PageTransCompound(old_page)) {
2f38ab2c
SR
2165 /*
2166 * Don't let another task, with possibly unlocked vma,
2167 * keep the mlocked page.
2168 */
2169 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2170 lock_page(old_page); /* LRU manipulation */
2171 munlock_vma_page(old_page);
2172 unlock_page(old_page);
2173 }
2174 page_cache_release(old_page);
2175 }
2176 return page_copied ? VM_FAULT_WRITE : 0;
2177oom_free_new:
2178 page_cache_release(new_page);
2179oom:
2180 if (old_page)
2181 page_cache_release(old_page);
2182 return VM_FAULT_OOM;
2183}
2184
dd906184
BH
2185/*
2186 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2187 * mapping
2188 */
2189static int wp_pfn_shared(struct mm_struct *mm,
2190 struct vm_area_struct *vma, unsigned long address,
2191 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2192 pmd_t *pmd)
2193{
2194 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2195 struct vm_fault vmf = {
2196 .page = NULL,
2197 .pgoff = linear_page_index(vma, address),
2198 .virtual_address = (void __user *)(address & PAGE_MASK),
2199 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2200 };
2201 int ret;
2202
2203 pte_unmap_unlock(page_table, ptl);
2204 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2205 if (ret & VM_FAULT_ERROR)
2206 return ret;
2207 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2208 /*
2209 * We might have raced with another page fault while we
2210 * released the pte_offset_map_lock.
2211 */
2212 if (!pte_same(*page_table, orig_pte)) {
2213 pte_unmap_unlock(page_table, ptl);
2214 return 0;
2215 }
2216 }
2217 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2218 NULL, 0, 0);
2219}
2220
93e478d4
SR
2221static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2222 unsigned long address, pte_t *page_table,
2223 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2224 struct page *old_page)
2225 __releases(ptl)
2226{
2227 int page_mkwrite = 0;
2228
2229 page_cache_get(old_page);
2230
2231 /*
2232 * Only catch write-faults on shared writable pages,
2233 * read-only shared pages can get COWed by
2234 * get_user_pages(.write=1, .force=1).
2235 */
2236 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2237 int tmp;
2238
2239 pte_unmap_unlock(page_table, ptl);
2240 tmp = do_page_mkwrite(vma, old_page, address);
2241 if (unlikely(!tmp || (tmp &
2242 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2243 page_cache_release(old_page);
2244 return tmp;
2245 }
2246 /*
2247 * Since we dropped the lock we need to revalidate
2248 * the PTE as someone else may have changed it. If
2249 * they did, we just return, as we can count on the
2250 * MMU to tell us if they didn't also make it writable.
2251 */
2252 page_table = pte_offset_map_lock(mm, pmd, address,
2253 &ptl);
2254 if (!pte_same(*page_table, orig_pte)) {
2255 unlock_page(old_page);
2256 pte_unmap_unlock(page_table, ptl);
2257 page_cache_release(old_page);
2258 return 0;
2259 }
2260 page_mkwrite = 1;
2261 }
2262
2263 return wp_page_reuse(mm, vma, address, page_table, ptl,
2264 orig_pte, old_page, page_mkwrite, 1);
2265}
2266
1da177e4
LT
2267/*
2268 * This routine handles present pages, when users try to write
2269 * to a shared page. It is done by copying the page to a new address
2270 * and decrementing the shared-page counter for the old page.
2271 *
1da177e4
LT
2272 * Note that this routine assumes that the protection checks have been
2273 * done by the caller (the low-level page fault routine in most cases).
2274 * Thus we can safely just mark it writable once we've done any necessary
2275 * COW.
2276 *
2277 * We also mark the page dirty at this point even though the page will
2278 * change only once the write actually happens. This avoids a few races,
2279 * and potentially makes it more efficient.
2280 *
8f4e2101
HD
2281 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2282 * but allow concurrent faults), with pte both mapped and locked.
2283 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2284 */
65500d23
HD
2285static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2286 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2287 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2288 __releases(ptl)
1da177e4 2289{
2f38ab2c 2290 struct page *old_page;
1da177e4 2291
6aab341e 2292 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2293 if (!old_page) {
2294 /*
64e45507
PF
2295 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2296 * VM_PFNMAP VMA.
251b97f5
PZ
2297 *
2298 * We should not cow pages in a shared writeable mapping.
dd906184 2299 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2300 */
2301 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2302 (VM_WRITE|VM_SHARED))
dd906184
BH
2303 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2304 orig_pte, pmd);
2f38ab2c
SR
2305
2306 pte_unmap_unlock(page_table, ptl);
2307 return wp_page_copy(mm, vma, address, page_table, pmd,
2308 orig_pte, old_page);
251b97f5 2309 }
1da177e4 2310
d08b3851 2311 /*
ee6a6457
PZ
2312 * Take out anonymous pages first, anonymous shared vmas are
2313 * not dirty accountable.
d08b3851 2314 */
9a840895 2315 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2316 if (!trylock_page(old_page)) {
2317 page_cache_get(old_page);
2318 pte_unmap_unlock(page_table, ptl);
2319 lock_page(old_page);
2320 page_table = pte_offset_map_lock(mm, pmd, address,
2321 &ptl);
2322 if (!pte_same(*page_table, orig_pte)) {
2323 unlock_page(old_page);
28766805
SR
2324 pte_unmap_unlock(page_table, ptl);
2325 page_cache_release(old_page);
2326 return 0;
ab967d86
HD
2327 }
2328 page_cache_release(old_page);
ee6a6457 2329 }
b009c024 2330 if (reuse_swap_page(old_page)) {
c44b6743
RR
2331 /*
2332 * The page is all ours. Move it to our anon_vma so
2333 * the rmap code will not search our parent or siblings.
2334 * Protected against the rmap code by the page lock.
2335 */
2336 page_move_anon_rmap(old_page, vma, address);
b009c024 2337 unlock_page(old_page);
4e047f89
SR
2338 return wp_page_reuse(mm, vma, address, page_table, ptl,
2339 orig_pte, old_page, 0, 0);
b009c024 2340 }
ab967d86 2341 unlock_page(old_page);
ee6a6457 2342 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2343 (VM_WRITE|VM_SHARED))) {
93e478d4
SR
2344 return wp_page_shared(mm, vma, address, page_table, pmd,
2345 ptl, orig_pte, old_page);
1da177e4 2346 }
1da177e4
LT
2347
2348 /*
2349 * Ok, we need to copy. Oh, well..
2350 */
b5810039 2351 page_cache_get(old_page);
28766805 2352
8f4e2101 2353 pte_unmap_unlock(page_table, ptl);
2f38ab2c
SR
2354 return wp_page_copy(mm, vma, address, page_table, pmd,
2355 orig_pte, old_page);
1da177e4
LT
2356}
2357
97a89413 2358static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2359 unsigned long start_addr, unsigned long end_addr,
2360 struct zap_details *details)
2361{
f5cc4eef 2362 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2363}
2364
6b2dbba8 2365static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2366 struct zap_details *details)
2367{
2368 struct vm_area_struct *vma;
1da177e4
LT
2369 pgoff_t vba, vea, zba, zea;
2370
6b2dbba8 2371 vma_interval_tree_foreach(vma, root,
1da177e4 2372 details->first_index, details->last_index) {
1da177e4
LT
2373
2374 vba = vma->vm_pgoff;
d6e93217 2375 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2376 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2377 zba = details->first_index;
2378 if (zba < vba)
2379 zba = vba;
2380 zea = details->last_index;
2381 if (zea > vea)
2382 zea = vea;
2383
97a89413 2384 unmap_mapping_range_vma(vma,
1da177e4
LT
2385 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2386 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2387 details);
1da177e4
LT
2388 }
2389}
2390
1da177e4 2391/**
8a5f14a2
KS
2392 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2393 * address_space corresponding to the specified page range in the underlying
2394 * file.
2395 *
3d41088f 2396 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2397 * @holebegin: byte in first page to unmap, relative to the start of
2398 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2399 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2400 * must keep the partial page. In contrast, we must get rid of
2401 * partial pages.
2402 * @holelen: size of prospective hole in bytes. This will be rounded
2403 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2404 * end of the file.
2405 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2406 * but 0 when invalidating pagecache, don't throw away private data.
2407 */
2408void unmap_mapping_range(struct address_space *mapping,
2409 loff_t const holebegin, loff_t const holelen, int even_cows)
2410{
2411 struct zap_details details;
2412 pgoff_t hba = holebegin >> PAGE_SHIFT;
2413 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2414
2415 /* Check for overflow. */
2416 if (sizeof(holelen) > sizeof(hlen)) {
2417 long long holeend =
2418 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2419 if (holeend & ~(long long)ULONG_MAX)
2420 hlen = ULONG_MAX - hba + 1;
2421 }
2422
2423 details.check_mapping = even_cows? NULL: mapping;
1da177e4
LT
2424 details.first_index = hba;
2425 details.last_index = hba + hlen - 1;
2426 if (details.last_index < details.first_index)
2427 details.last_index = ULONG_MAX;
1da177e4 2428
0f90cc66
RZ
2429
2430 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
46c043ed 2431 i_mmap_lock_write(mapping);
6b2dbba8 2432 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2433 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2434 i_mmap_unlock_write(mapping);
1da177e4
LT
2435}
2436EXPORT_SYMBOL(unmap_mapping_range);
2437
1da177e4 2438/*
8f4e2101
HD
2439 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2440 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2441 * We return with pte unmapped and unlocked.
2442 *
2443 * We return with the mmap_sem locked or unlocked in the same cases
2444 * as does filemap_fault().
1da177e4 2445 */
65500d23
HD
2446static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2447 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2448 unsigned int flags, pte_t orig_pte)
1da177e4 2449{
8f4e2101 2450 spinlock_t *ptl;
56f31801 2451 struct page *page, *swapcache;
00501b53 2452 struct mem_cgroup *memcg;
65500d23 2453 swp_entry_t entry;
1da177e4 2454 pte_t pte;
d065bd81 2455 int locked;
ad8c2ee8 2456 int exclusive = 0;
83c54070 2457 int ret = 0;
1da177e4 2458
4c21e2f2 2459 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2460 goto out;
65500d23
HD
2461
2462 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2463 if (unlikely(non_swap_entry(entry))) {
2464 if (is_migration_entry(entry)) {
2465 migration_entry_wait(mm, pmd, address);
2466 } else if (is_hwpoison_entry(entry)) {
2467 ret = VM_FAULT_HWPOISON;
2468 } else {
2469 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2470 ret = VM_FAULT_SIGBUS;
d1737fdb 2471 }
0697212a
CL
2472 goto out;
2473 }
0ff92245 2474 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2475 page = lookup_swap_cache(entry);
2476 if (!page) {
02098fea
HD
2477 page = swapin_readahead(entry,
2478 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2479 if (!page) {
2480 /*
8f4e2101
HD
2481 * Back out if somebody else faulted in this pte
2482 * while we released the pte lock.
1da177e4 2483 */
8f4e2101 2484 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2485 if (likely(pte_same(*page_table, orig_pte)))
2486 ret = VM_FAULT_OOM;
0ff92245 2487 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2488 goto unlock;
1da177e4
LT
2489 }
2490
2491 /* Had to read the page from swap area: Major fault */
2492 ret = VM_FAULT_MAJOR;
f8891e5e 2493 count_vm_event(PGMAJFAULT);
456f998e 2494 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2495 } else if (PageHWPoison(page)) {
71f72525
WF
2496 /*
2497 * hwpoisoned dirty swapcache pages are kept for killing
2498 * owner processes (which may be unknown at hwpoison time)
2499 */
d1737fdb
AK
2500 ret = VM_FAULT_HWPOISON;
2501 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2502 swapcache = page;
4779cb31 2503 goto out_release;
1da177e4
LT
2504 }
2505
56f31801 2506 swapcache = page;
d065bd81 2507 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 2508
073e587e 2509 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2510 if (!locked) {
2511 ret |= VM_FAULT_RETRY;
2512 goto out_release;
2513 }
073e587e 2514
4969c119 2515 /*
31c4a3d3
HD
2516 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2517 * release the swapcache from under us. The page pin, and pte_same
2518 * test below, are not enough to exclude that. Even if it is still
2519 * swapcache, we need to check that the page's swap has not changed.
4969c119 2520 */
31c4a3d3 2521 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2522 goto out_page;
2523
cbf86cfe
HD
2524 page = ksm_might_need_to_copy(page, vma, address);
2525 if (unlikely(!page)) {
2526 ret = VM_FAULT_OOM;
2527 page = swapcache;
cbf86cfe 2528 goto out_page;
5ad64688
HD
2529 }
2530
f627c2f5 2531 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
8a9f3ccd 2532 ret = VM_FAULT_OOM;
bc43f75c 2533 goto out_page;
8a9f3ccd
BS
2534 }
2535
1da177e4 2536 /*
8f4e2101 2537 * Back out if somebody else already faulted in this pte.
1da177e4 2538 */
8f4e2101 2539 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2540 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2541 goto out_nomap;
b8107480
KK
2542
2543 if (unlikely(!PageUptodate(page))) {
2544 ret = VM_FAULT_SIGBUS;
2545 goto out_nomap;
1da177e4
LT
2546 }
2547
8c7c6e34
KH
2548 /*
2549 * The page isn't present yet, go ahead with the fault.
2550 *
2551 * Be careful about the sequence of operations here.
2552 * To get its accounting right, reuse_swap_page() must be called
2553 * while the page is counted on swap but not yet in mapcount i.e.
2554 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2555 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2556 */
1da177e4 2557
34e55232 2558 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2559 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2560 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2561 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2562 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2563 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2564 ret |= VM_FAULT_WRITE;
d281ee61 2565 exclusive = RMAP_EXCLUSIVE;
1da177e4 2566 }
1da177e4 2567 flush_icache_page(vma, page);
179ef71c
CG
2568 if (pte_swp_soft_dirty(orig_pte))
2569 pte = pte_mksoft_dirty(pte);
1da177e4 2570 set_pte_at(mm, address, page_table, pte);
00501b53 2571 if (page == swapcache) {
af34770e 2572 do_page_add_anon_rmap(page, vma, address, exclusive);
f627c2f5 2573 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 2574 } else { /* ksm created a completely new copy */
d281ee61 2575 page_add_new_anon_rmap(page, vma, address, false);
f627c2f5 2576 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
2577 lru_cache_add_active_or_unevictable(page, vma);
2578 }
1da177e4 2579
c475a8ab 2580 swap_free(entry);
b291f000 2581 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2582 try_to_free_swap(page);
c475a8ab 2583 unlock_page(page);
56f31801 2584 if (page != swapcache) {
4969c119
AA
2585 /*
2586 * Hold the lock to avoid the swap entry to be reused
2587 * until we take the PT lock for the pte_same() check
2588 * (to avoid false positives from pte_same). For
2589 * further safety release the lock after the swap_free
2590 * so that the swap count won't change under a
2591 * parallel locked swapcache.
2592 */
2593 unlock_page(swapcache);
2594 page_cache_release(swapcache);
2595 }
c475a8ab 2596
30c9f3a9 2597 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2598 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2599 if (ret & VM_FAULT_ERROR)
2600 ret &= VM_FAULT_ERROR;
1da177e4
LT
2601 goto out;
2602 }
2603
2604 /* No need to invalidate - it was non-present before */
4b3073e1 2605 update_mmu_cache(vma, address, page_table);
65500d23 2606unlock:
8f4e2101 2607 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2608out:
2609 return ret;
b8107480 2610out_nomap:
f627c2f5 2611 mem_cgroup_cancel_charge(page, memcg, false);
8f4e2101 2612 pte_unmap_unlock(page_table, ptl);
bc43f75c 2613out_page:
b8107480 2614 unlock_page(page);
4779cb31 2615out_release:
b8107480 2616 page_cache_release(page);
56f31801 2617 if (page != swapcache) {
4969c119
AA
2618 unlock_page(swapcache);
2619 page_cache_release(swapcache);
2620 }
65500d23 2621 return ret;
1da177e4
LT
2622}
2623
320b2b8d 2624/*
8ca3eb08
LT
2625 * This is like a special single-page "expand_{down|up}wards()",
2626 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2627 * doesn't hit another vma.
320b2b8d
LT
2628 */
2629static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2630{
2631 address &= PAGE_MASK;
2632 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2633 struct vm_area_struct *prev = vma->vm_prev;
2634
2635 /*
2636 * Is there a mapping abutting this one below?
2637 *
2638 * That's only ok if it's the same stack mapping
2639 * that has gotten split..
2640 */
2641 if (prev && prev->vm_end == address)
2642 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2643
fee7e49d 2644 return expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2645 }
8ca3eb08
LT
2646 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2647 struct vm_area_struct *next = vma->vm_next;
2648
2649 /* As VM_GROWSDOWN but s/below/above/ */
2650 if (next && next->vm_start == address + PAGE_SIZE)
2651 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2652
fee7e49d 2653 return expand_upwards(vma, address + PAGE_SIZE);
8ca3eb08 2654 }
320b2b8d
LT
2655 return 0;
2656}
2657
1da177e4 2658/*
8f4e2101
HD
2659 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2660 * but allow concurrent faults), and pte mapped but not yet locked.
2661 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2662 */
65500d23
HD
2663static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2664 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2665 unsigned int flags)
1da177e4 2666{
00501b53 2667 struct mem_cgroup *memcg;
8f4e2101
HD
2668 struct page *page;
2669 spinlock_t *ptl;
1da177e4 2670 pte_t entry;
1da177e4 2671
11ac5524
LT
2672 pte_unmap(page_table);
2673
6b7339f4
KS
2674 /* File mapping without ->vm_ops ? */
2675 if (vma->vm_flags & VM_SHARED)
2676 return VM_FAULT_SIGBUS;
2677
11ac5524
LT
2678 /* Check if we need to add a guard page to the stack */
2679 if (check_stack_guard_page(vma, address) < 0)
9c145c56 2680 return VM_FAULT_SIGSEGV;
320b2b8d 2681
11ac5524 2682 /* Use the zero-page for reads */
593befa6 2683 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
62eede62
HD
2684 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2685 vma->vm_page_prot));
11ac5524 2686 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
2687 if (!pte_none(*page_table))
2688 goto unlock;
6b251fc9
AA
2689 /* Deliver the page fault to userland, check inside PT lock */
2690 if (userfaultfd_missing(vma)) {
2691 pte_unmap_unlock(page_table, ptl);
2692 return handle_userfault(vma, address, flags,
2693 VM_UFFD_MISSING);
2694 }
a13ea5b7
HD
2695 goto setpte;
2696 }
2697
557ed1fa 2698 /* Allocate our own private page. */
557ed1fa
NP
2699 if (unlikely(anon_vma_prepare(vma)))
2700 goto oom;
2701 page = alloc_zeroed_user_highpage_movable(vma, address);
2702 if (!page)
2703 goto oom;
eb3c24f3 2704
f627c2f5 2705 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
2706 goto oom_free_page;
2707
52f37629
MK
2708 /*
2709 * The memory barrier inside __SetPageUptodate makes sure that
2710 * preceeding stores to the page contents become visible before
2711 * the set_pte_at() write.
2712 */
0ed361de 2713 __SetPageUptodate(page);
8f4e2101 2714
557ed1fa 2715 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2716 if (vma->vm_flags & VM_WRITE)
2717 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2718
557ed1fa 2719 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2720 if (!pte_none(*page_table))
557ed1fa 2721 goto release;
9ba69294 2722
6b251fc9
AA
2723 /* Deliver the page fault to userland, check inside PT lock */
2724 if (userfaultfd_missing(vma)) {
2725 pte_unmap_unlock(page_table, ptl);
f627c2f5 2726 mem_cgroup_cancel_charge(page, memcg, false);
6b251fc9
AA
2727 page_cache_release(page);
2728 return handle_userfault(vma, address, flags,
2729 VM_UFFD_MISSING);
2730 }
2731
34e55232 2732 inc_mm_counter_fast(mm, MM_ANONPAGES);
d281ee61 2733 page_add_new_anon_rmap(page, vma, address, false);
f627c2f5 2734 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2735 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2736setpte:
65500d23 2737 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2738
2739 /* No need to invalidate - it was non-present before */
4b3073e1 2740 update_mmu_cache(vma, address, page_table);
65500d23 2741unlock:
8f4e2101 2742 pte_unmap_unlock(page_table, ptl);
83c54070 2743 return 0;
8f4e2101 2744release:
f627c2f5 2745 mem_cgroup_cancel_charge(page, memcg, false);
8f4e2101
HD
2746 page_cache_release(page);
2747 goto unlock;
8a9f3ccd 2748oom_free_page:
6dbf6d3b 2749 page_cache_release(page);
65500d23 2750oom:
1da177e4
LT
2751 return VM_FAULT_OOM;
2752}
2753
9a95f3cf
PC
2754/*
2755 * The mmap_sem must have been held on entry, and may have been
2756 * released depending on flags and vma->vm_ops->fault() return value.
2757 * See filemap_fault() and __lock_page_retry().
2758 */
7eae74af 2759static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2e4cdab0
MW
2760 pgoff_t pgoff, unsigned int flags,
2761 struct page *cow_page, struct page **page)
7eae74af
KS
2762{
2763 struct vm_fault vmf;
2764 int ret;
2765
2766 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2767 vmf.pgoff = pgoff;
2768 vmf.flags = flags;
2769 vmf.page = NULL;
c20cd45e 2770 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2e4cdab0 2771 vmf.cow_page = cow_page;
7eae74af
KS
2772
2773 ret = vma->vm_ops->fault(vma, &vmf);
2774 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2775 return ret;
2e4cdab0
MW
2776 if (!vmf.page)
2777 goto out;
7eae74af
KS
2778
2779 if (unlikely(PageHWPoison(vmf.page))) {
2780 if (ret & VM_FAULT_LOCKED)
2781 unlock_page(vmf.page);
2782 page_cache_release(vmf.page);
2783 return VM_FAULT_HWPOISON;
2784 }
2785
2786 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2787 lock_page(vmf.page);
2788 else
2789 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2790
2e4cdab0 2791 out:
7eae74af
KS
2792 *page = vmf.page;
2793 return ret;
2794}
2795
8c6e50b0
KS
2796/**
2797 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2798 *
2799 * @vma: virtual memory area
2800 * @address: user virtual address
2801 * @page: page to map
2802 * @pte: pointer to target page table entry
2803 * @write: true, if new entry is writable
2804 * @anon: true, if it's anonymous page
2805 *
2806 * Caller must hold page table lock relevant for @pte.
2807 *
2808 * Target users are page handler itself and implementations of
2809 * vm_ops->map_pages.
2810 */
2811void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3bb97794
KS
2812 struct page *page, pte_t *pte, bool write, bool anon)
2813{
2814 pte_t entry;
2815
2816 flush_icache_page(vma, page);
2817 entry = mk_pte(page, vma->vm_page_prot);
2818 if (write)
2819 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3bb97794
KS
2820 if (anon) {
2821 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
d281ee61 2822 page_add_new_anon_rmap(page, vma, address, false);
3bb97794 2823 } else {
eca56ff9 2824 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3bb97794
KS
2825 page_add_file_rmap(page);
2826 }
2827 set_pte_at(vma->vm_mm, address, pte, entry);
2828
2829 /* no need to invalidate: a not-present page won't be cached */
2830 update_mmu_cache(vma, address, pte);
2831}
2832
3a91053a
KS
2833static unsigned long fault_around_bytes __read_mostly =
2834 rounddown_pow_of_two(65536);
a9b0f861 2835
a9b0f861
KS
2836#ifdef CONFIG_DEBUG_FS
2837static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 2838{
a9b0f861 2839 *val = fault_around_bytes;
1592eef0
KS
2840 return 0;
2841}
2842
b4903d6e
AR
2843/*
2844 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2845 * rounded down to nearest page order. It's what do_fault_around() expects to
2846 * see.
2847 */
a9b0f861 2848static int fault_around_bytes_set(void *data, u64 val)
1592eef0 2849{
a9b0f861 2850 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 2851 return -EINVAL;
b4903d6e
AR
2852 if (val > PAGE_SIZE)
2853 fault_around_bytes = rounddown_pow_of_two(val);
2854 else
2855 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
2856 return 0;
2857}
a9b0f861
KS
2858DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2859 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
2860
2861static int __init fault_around_debugfs(void)
2862{
2863 void *ret;
2864
a9b0f861
KS
2865 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2866 &fault_around_bytes_fops);
1592eef0 2867 if (!ret)
a9b0f861 2868 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
2869 return 0;
2870}
2871late_initcall(fault_around_debugfs);
1592eef0 2872#endif
8c6e50b0 2873
1fdb412b
KS
2874/*
2875 * do_fault_around() tries to map few pages around the fault address. The hope
2876 * is that the pages will be needed soon and this will lower the number of
2877 * faults to handle.
2878 *
2879 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2880 * not ready to be mapped: not up-to-date, locked, etc.
2881 *
2882 * This function is called with the page table lock taken. In the split ptlock
2883 * case the page table lock only protects only those entries which belong to
2884 * the page table corresponding to the fault address.
2885 *
2886 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2887 * only once.
2888 *
2889 * fault_around_pages() defines how many pages we'll try to map.
2890 * do_fault_around() expects it to return a power of two less than or equal to
2891 * PTRS_PER_PTE.
2892 *
2893 * The virtual address of the area that we map is naturally aligned to the
2894 * fault_around_pages() value (and therefore to page order). This way it's
2895 * easier to guarantee that we don't cross page table boundaries.
2896 */
8c6e50b0
KS
2897static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2898 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2899{
aecd6f44 2900 unsigned long start_addr, nr_pages, mask;
8c6e50b0
KS
2901 pgoff_t max_pgoff;
2902 struct vm_fault vmf;
2903 int off;
2904
4db0c3c2 2905 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
2906 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2907
2908 start_addr = max(address & mask, vma->vm_start);
8c6e50b0
KS
2909 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2910 pte -= off;
2911 pgoff -= off;
2912
2913 /*
2914 * max_pgoff is either end of page table or end of vma
850e9c69 2915 * or fault_around_pages() from pgoff, depending what is nearest.
8c6e50b0
KS
2916 */
2917 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2918 PTRS_PER_PTE - 1;
2919 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
aecd6f44 2920 pgoff + nr_pages - 1);
8c6e50b0
KS
2921
2922 /* Check if it makes any sense to call ->map_pages */
2923 while (!pte_none(*pte)) {
2924 if (++pgoff > max_pgoff)
2925 return;
2926 start_addr += PAGE_SIZE;
2927 if (start_addr >= vma->vm_end)
2928 return;
2929 pte++;
2930 }
2931
2932 vmf.virtual_address = (void __user *) start_addr;
2933 vmf.pte = pte;
2934 vmf.pgoff = pgoff;
2935 vmf.max_pgoff = max_pgoff;
2936 vmf.flags = flags;
c20cd45e 2937 vmf.gfp_mask = __get_fault_gfp_mask(vma);
8c6e50b0
KS
2938 vma->vm_ops->map_pages(vma, &vmf);
2939}
2940
e655fb29
KS
2941static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2942 unsigned long address, pmd_t *pmd,
2943 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2944{
2945 struct page *fault_page;
2946 spinlock_t *ptl;
3bb97794 2947 pte_t *pte;
8c6e50b0
KS
2948 int ret = 0;
2949
2950 /*
2951 * Let's call ->map_pages() first and use ->fault() as fallback
2952 * if page by the offset is not ready to be mapped (cold cache or
2953 * something).
2954 */
9b4bdd2f 2955 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
8c6e50b0
KS
2956 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2957 do_fault_around(vma, address, pte, pgoff, flags);
2958 if (!pte_same(*pte, orig_pte))
2959 goto unlock_out;
2960 pte_unmap_unlock(pte, ptl);
2961 }
e655fb29 2962
2e4cdab0 2963 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
e655fb29
KS
2964 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2965 return ret;
2966
2967 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2968 if (unlikely(!pte_same(*pte, orig_pte))) {
2969 pte_unmap_unlock(pte, ptl);
2970 unlock_page(fault_page);
2971 page_cache_release(fault_page);
2972 return ret;
2973 }
3bb97794 2974 do_set_pte(vma, address, fault_page, pte, false, false);
e655fb29 2975 unlock_page(fault_page);
8c6e50b0
KS
2976unlock_out:
2977 pte_unmap_unlock(pte, ptl);
e655fb29
KS
2978 return ret;
2979}
2980
ec47c3b9
KS
2981static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2982 unsigned long address, pmd_t *pmd,
2983 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2984{
2985 struct page *fault_page, *new_page;
00501b53 2986 struct mem_cgroup *memcg;
ec47c3b9 2987 spinlock_t *ptl;
3bb97794 2988 pte_t *pte;
ec47c3b9
KS
2989 int ret;
2990
2991 if (unlikely(anon_vma_prepare(vma)))
2992 return VM_FAULT_OOM;
2993
2994 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2995 if (!new_page)
2996 return VM_FAULT_OOM;
2997
f627c2f5 2998 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
ec47c3b9
KS
2999 page_cache_release(new_page);
3000 return VM_FAULT_OOM;
3001 }
3002
2e4cdab0 3003 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
ec47c3b9
KS
3004 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3005 goto uncharge_out;
3006
2e4cdab0
MW
3007 if (fault_page)
3008 copy_user_highpage(new_page, fault_page, address, vma);
ec47c3b9
KS
3009 __SetPageUptodate(new_page);
3010
3011 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3012 if (unlikely(!pte_same(*pte, orig_pte))) {
3013 pte_unmap_unlock(pte, ptl);
2e4cdab0
MW
3014 if (fault_page) {
3015 unlock_page(fault_page);
3016 page_cache_release(fault_page);
3017 } else {
3018 /*
3019 * The fault handler has no page to lock, so it holds
0df9d41a 3020 * i_mmap_lock for read to protect against truncate.
2e4cdab0 3021 */
0df9d41a 3022 i_mmap_unlock_read(vma->vm_file->f_mapping);
2e4cdab0 3023 }
ec47c3b9
KS
3024 goto uncharge_out;
3025 }
3bb97794 3026 do_set_pte(vma, address, new_page, pte, true, true);
f627c2f5 3027 mem_cgroup_commit_charge(new_page, memcg, false, false);
00501b53 3028 lru_cache_add_active_or_unevictable(new_page, vma);
ec47c3b9 3029 pte_unmap_unlock(pte, ptl);
2e4cdab0
MW
3030 if (fault_page) {
3031 unlock_page(fault_page);
3032 page_cache_release(fault_page);
3033 } else {
3034 /*
3035 * The fault handler has no page to lock, so it holds
0df9d41a 3036 * i_mmap_lock for read to protect against truncate.
2e4cdab0 3037 */
0df9d41a 3038 i_mmap_unlock_read(vma->vm_file->f_mapping);
2e4cdab0 3039 }
ec47c3b9
KS
3040 return ret;
3041uncharge_out:
f627c2f5 3042 mem_cgroup_cancel_charge(new_page, memcg, false);
ec47c3b9
KS
3043 page_cache_release(new_page);
3044 return ret;
3045}
3046
f0c6d4d2 3047static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3048 unsigned long address, pmd_t *pmd,
54cb8821 3049 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3050{
f0c6d4d2
KS
3051 struct page *fault_page;
3052 struct address_space *mapping;
8f4e2101 3053 spinlock_t *ptl;
3bb97794 3054 pte_t *pte;
f0c6d4d2 3055 int dirtied = 0;
f0c6d4d2 3056 int ret, tmp;
1d65f86d 3057
2e4cdab0 3058 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
7eae74af 3059 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3060 return ret;
1da177e4
LT
3061
3062 /*
f0c6d4d2
KS
3063 * Check if the backing address space wants to know that the page is
3064 * about to become writable
1da177e4 3065 */
fb09a464
KS
3066 if (vma->vm_ops->page_mkwrite) {
3067 unlock_page(fault_page);
3068 tmp = do_page_mkwrite(vma, fault_page, address);
3069 if (unlikely(!tmp ||
3070 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
f0c6d4d2 3071 page_cache_release(fault_page);
fb09a464 3072 return tmp;
4294621f 3073 }
fb09a464
KS
3074 }
3075
f0c6d4d2
KS
3076 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3077 if (unlikely(!pte_same(*pte, orig_pte))) {
3078 pte_unmap_unlock(pte, ptl);
3079 unlock_page(fault_page);
3080 page_cache_release(fault_page);
3081 return ret;
1da177e4 3082 }
3bb97794 3083 do_set_pte(vma, address, fault_page, pte, true, false);
f0c6d4d2 3084 pte_unmap_unlock(pte, ptl);
b827e496 3085
f0c6d4d2
KS
3086 if (set_page_dirty(fault_page))
3087 dirtied = 1;
d82fa87d
AM
3088 /*
3089 * Take a local copy of the address_space - page.mapping may be zeroed
3090 * by truncate after unlock_page(). The address_space itself remains
3091 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3092 * release semantics to prevent the compiler from undoing this copying.
3093 */
1c290f64 3094 mapping = page_rmapping(fault_page);
f0c6d4d2
KS
3095 unlock_page(fault_page);
3096 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3097 /*
3098 * Some device drivers do not set page.mapping but still
3099 * dirty their pages
3100 */
3101 balance_dirty_pages_ratelimited(mapping);
d08b3851 3102 }
d00806b1 3103
74ec6751 3104 if (!vma->vm_ops->page_mkwrite)
f0c6d4d2 3105 file_update_time(vma->vm_file);
b827e496 3106
1d65f86d 3107 return ret;
54cb8821 3108}
d00806b1 3109
9a95f3cf
PC
3110/*
3111 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3112 * but allow concurrent faults).
3113 * The mmap_sem may have been released depending on flags and our
3114 * return value. See filemap_fault() and __lock_page_or_retry().
3115 */
9b4bdd2f 3116static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
54cb8821 3117 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3118 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3119{
3120 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3121 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3122
16abfa08 3123 pte_unmap(page_table);
6b7339f4
KS
3124 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3125 if (!vma->vm_ops->fault)
3126 return VM_FAULT_SIGBUS;
e655fb29
KS
3127 if (!(flags & FAULT_FLAG_WRITE))
3128 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3129 orig_pte);
ec47c3b9
KS
3130 if (!(vma->vm_flags & VM_SHARED))
3131 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3132 orig_pte);
f0c6d4d2 3133 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3134}
3135
b19a9939 3136static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3137 unsigned long addr, int page_nid,
3138 int *flags)
9532fec1
MG
3139{
3140 get_page(page);
3141
3142 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3143 if (page_nid == numa_node_id()) {
9532fec1 3144 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3145 *flags |= TNF_FAULT_LOCAL;
3146 }
9532fec1
MG
3147
3148 return mpol_misplaced(page, vma, addr);
3149}
3150
b19a9939 3151static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
d10e63f2
MG
3152 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3153{
4daae3b4 3154 struct page *page = NULL;
d10e63f2 3155 spinlock_t *ptl;
8191acbd 3156 int page_nid = -1;
90572890 3157 int last_cpupid;
cbee9f88 3158 int target_nid;
b8593bfd 3159 bool migrated = false;
b191f9b1 3160 bool was_writable = pte_write(pte);
6688cc05 3161 int flags = 0;
d10e63f2 3162
c0e7cad9
MG
3163 /* A PROT_NONE fault should not end up here */
3164 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3165
d10e63f2
MG
3166 /*
3167 * The "pte" at this point cannot be used safely without
3168 * validation through pte_unmap_same(). It's of NUMA type but
3169 * the pfn may be screwed if the read is non atomic.
3170 *
4d942466
MG
3171 * We can safely just do a "set_pte_at()", because the old
3172 * page table entry is not accessible, so there would be no
3173 * concurrent hardware modifications to the PTE.
d10e63f2
MG
3174 */
3175 ptl = pte_lockptr(mm, pmd);
3176 spin_lock(ptl);
4daae3b4
MG
3177 if (unlikely(!pte_same(*ptep, pte))) {
3178 pte_unmap_unlock(ptep, ptl);
3179 goto out;
3180 }
3181
4d942466
MG
3182 /* Make it present again */
3183 pte = pte_modify(pte, vma->vm_page_prot);
3184 pte = pte_mkyoung(pte);
b191f9b1
MG
3185 if (was_writable)
3186 pte = pte_mkwrite(pte);
d10e63f2
MG
3187 set_pte_at(mm, addr, ptep, pte);
3188 update_mmu_cache(vma, addr, ptep);
3189
3190 page = vm_normal_page(vma, addr, pte);
3191 if (!page) {
3192 pte_unmap_unlock(ptep, ptl);
3193 return 0;
3194 }
3195
6688cc05 3196 /*
bea66fbd
MG
3197 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3198 * much anyway since they can be in shared cache state. This misses
3199 * the case where a mapping is writable but the process never writes
3200 * to it but pte_write gets cleared during protection updates and
3201 * pte_dirty has unpredictable behaviour between PTE scan updates,
3202 * background writeback, dirty balancing and application behaviour.
6688cc05 3203 */
bea66fbd 3204 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
3205 flags |= TNF_NO_GROUP;
3206
dabe1d99
RR
3207 /*
3208 * Flag if the page is shared between multiple address spaces. This
3209 * is later used when determining whether to group tasks together
3210 */
3211 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3212 flags |= TNF_SHARED;
3213
90572890 3214 last_cpupid = page_cpupid_last(page);
8191acbd 3215 page_nid = page_to_nid(page);
04bb2f94 3216 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
d10e63f2 3217 pte_unmap_unlock(ptep, ptl);
4daae3b4 3218 if (target_nid == -1) {
4daae3b4
MG
3219 put_page(page);
3220 goto out;
3221 }
3222
3223 /* Migrate to the requested node */
1bc115d8 3224 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3225 if (migrated) {
8191acbd 3226 page_nid = target_nid;
6688cc05 3227 flags |= TNF_MIGRATED;
074c2381
MG
3228 } else
3229 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3230
3231out:
8191acbd 3232 if (page_nid != -1)
6688cc05 3233 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3234 return 0;
3235}
3236
b96375f7
MW
3237static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3238 unsigned long address, pmd_t *pmd, unsigned int flags)
3239{
fb6dd5fa 3240 if (vma_is_anonymous(vma))
b96375f7
MW
3241 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3242 if (vma->vm_ops->pmd_fault)
3243 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3244 return VM_FAULT_FALLBACK;
3245}
3246
3247static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3248 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3249 unsigned int flags)
3250{
fb6dd5fa 3251 if (vma_is_anonymous(vma))
b96375f7
MW
3252 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3253 if (vma->vm_ops->pmd_fault)
3254 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3255 return VM_FAULT_FALLBACK;
3256}
3257
1da177e4
LT
3258/*
3259 * These routines also need to handle stuff like marking pages dirty
3260 * and/or accessed for architectures that don't do it in hardware (most
3261 * RISC architectures). The early dirtying is also good on the i386.
3262 *
3263 * There is also a hook called "update_mmu_cache()" that architectures
3264 * with external mmu caches can use to update those (ie the Sparc or
3265 * PowerPC hashed page tables that act as extended TLBs).
3266 *
c74df32c
HD
3267 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3268 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3269 * We return with pte unmapped and unlocked.
3270 *
3271 * The mmap_sem may have been released depending on flags and our
3272 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3273 */
c0292554 3274static int handle_pte_fault(struct mm_struct *mm,
71e3aac0
AA
3275 struct vm_area_struct *vma, unsigned long address,
3276 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3277{
3278 pte_t entry;
8f4e2101 3279 spinlock_t *ptl;
1da177e4 3280
e37c6982
CB
3281 /*
3282 * some architectures can have larger ptes than wordsize,
3283 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3284 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3285 * The code below just needs a consistent view for the ifs and
3286 * we later double check anyway with the ptl lock held. So here
3287 * a barrier will do.
3288 */
3289 entry = *pte;
3290 barrier();
1da177e4 3291 if (!pte_present(entry)) {
65500d23 3292 if (pte_none(entry)) {
b5330628
ON
3293 if (vma_is_anonymous(vma))
3294 return do_anonymous_page(mm, vma, address,
3295 pte, pmd, flags);
3296 else
6b7339f4
KS
3297 return do_fault(mm, vma, address, pte, pmd,
3298 flags, entry);
65500d23 3299 }
65500d23 3300 return do_swap_page(mm, vma, address,
30c9f3a9 3301 pte, pmd, flags, entry);
1da177e4
LT
3302 }
3303
8a0516ed 3304 if (pte_protnone(entry))
d10e63f2
MG
3305 return do_numa_page(mm, vma, address, entry, pte, pmd);
3306
4c21e2f2 3307 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3308 spin_lock(ptl);
3309 if (unlikely(!pte_same(*pte, entry)))
3310 goto unlock;
30c9f3a9 3311 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3312 if (!pte_write(entry))
8f4e2101
HD
3313 return do_wp_page(mm, vma, address,
3314 pte, pmd, ptl, entry);
1da177e4
LT
3315 entry = pte_mkdirty(entry);
3316 }
3317 entry = pte_mkyoung(entry);
30c9f3a9 3318 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3319 update_mmu_cache(vma, address, pte);
1a44e149
AA
3320 } else {
3321 /*
3322 * This is needed only for protection faults but the arch code
3323 * is not yet telling us if this is a protection fault or not.
3324 * This still avoids useless tlb flushes for .text page faults
3325 * with threads.
3326 */
30c9f3a9 3327 if (flags & FAULT_FLAG_WRITE)
61c77326 3328 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3329 }
8f4e2101
HD
3330unlock:
3331 pte_unmap_unlock(pte, ptl);
83c54070 3332 return 0;
1da177e4
LT
3333}
3334
3335/*
3336 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3337 *
3338 * The mmap_sem may have been released depending on flags and our
3339 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3340 */
519e5247
JW
3341static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3342 unsigned long address, unsigned int flags)
1da177e4
LT
3343{
3344 pgd_t *pgd;
3345 pud_t *pud;
3346 pmd_t *pmd;
3347 pte_t *pte;
3348
ac9b9c66 3349 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3350 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3351
1da177e4 3352 pgd = pgd_offset(mm, address);
1da177e4
LT
3353 pud = pud_alloc(mm, pgd, address);
3354 if (!pud)
c74df32c 3355 return VM_FAULT_OOM;
1da177e4
LT
3356 pmd = pmd_alloc(mm, pud, address);
3357 if (!pmd)
c74df32c 3358 return VM_FAULT_OOM;
71e3aac0 3359 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
b96375f7 3360 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
c0292554
KS
3361 if (!(ret & VM_FAULT_FALLBACK))
3362 return ret;
71e3aac0
AA
3363 } else {
3364 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3365 int ret;
3366
71e3aac0
AA
3367 barrier();
3368 if (pmd_trans_huge(orig_pmd)) {
a1dd450b
WD
3369 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3370
8a0516ed 3371 if (pmd_protnone(orig_pmd))
4daae3b4 3372 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3373 orig_pmd, pmd);
3374
3d59eebc 3375 if (dirty && !pmd_write(orig_pmd)) {
b96375f7
MW
3376 ret = wp_huge_pmd(mm, vma, address, pmd,
3377 orig_pmd, flags);
9845cbbd
KS
3378 if (!(ret & VM_FAULT_FALLBACK))
3379 return ret;
a1dd450b
WD
3380 } else {
3381 huge_pmd_set_accessed(mm, vma, address, pmd,
3382 orig_pmd, dirty);
9845cbbd 3383 return 0;
1f1d06c3 3384 }
71e3aac0
AA
3385 }
3386 }
3387
3388 /*
3389 * Use __pte_alloc instead of pte_alloc_map, because we can't
3390 * run pte_offset_map on the pmd, if an huge pmd could
3391 * materialize from under us from a different thread.
3392 */
4fd01770
MG
3393 if (unlikely(pmd_none(*pmd)) &&
3394 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3395 return VM_FAULT_OOM;
71e3aac0
AA
3396 /* if an huge pmd materialized from under us just retry later */
3397 if (unlikely(pmd_trans_huge(*pmd)))
3398 return 0;
3399 /*
3400 * A regular pmd is established and it can't morph into a huge pmd
3401 * from under us anymore at this point because we hold the mmap_sem
3402 * read mode and khugepaged takes it in write mode. So now it's
3403 * safe to run pte_offset_map().
3404 */
3405 pte = pte_offset_map(pmd, address);
1da177e4 3406
30c9f3a9 3407 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3408}
3409
9a95f3cf
PC
3410/*
3411 * By the time we get here, we already hold the mm semaphore
3412 *
3413 * The mmap_sem may have been released depending on flags and our
3414 * return value. See filemap_fault() and __lock_page_or_retry().
3415 */
519e5247
JW
3416int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3417 unsigned long address, unsigned int flags)
3418{
3419 int ret;
3420
3421 __set_current_state(TASK_RUNNING);
3422
3423 count_vm_event(PGFAULT);
3424 mem_cgroup_count_vm_event(mm, PGFAULT);
3425
3426 /* do counter updates before entering really critical section. */
3427 check_sync_rss_stat(current);
3428
3429 /*
3430 * Enable the memcg OOM handling for faults triggered in user
3431 * space. Kernel faults are handled more gracefully.
3432 */
3433 if (flags & FAULT_FLAG_USER)
49426420 3434 mem_cgroup_oom_enable();
519e5247
JW
3435
3436 ret = __handle_mm_fault(mm, vma, address, flags);
3437
49426420
JW
3438 if (flags & FAULT_FLAG_USER) {
3439 mem_cgroup_oom_disable();
3440 /*
3441 * The task may have entered a memcg OOM situation but
3442 * if the allocation error was handled gracefully (no
3443 * VM_FAULT_OOM), there is no need to kill anything.
3444 * Just clean up the OOM state peacefully.
3445 */
3446 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3447 mem_cgroup_oom_synchronize(false);
3448 }
3812c8c8 3449
519e5247
JW
3450 return ret;
3451}
e1d6d01a 3452EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3453
1da177e4
LT
3454#ifndef __PAGETABLE_PUD_FOLDED
3455/*
3456 * Allocate page upper directory.
872fec16 3457 * We've already handled the fast-path in-line.
1da177e4 3458 */
1bb3630e 3459int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3460{
c74df32c
HD
3461 pud_t *new = pud_alloc_one(mm, address);
3462 if (!new)
1bb3630e 3463 return -ENOMEM;
1da177e4 3464
362a61ad
NP
3465 smp_wmb(); /* See comment in __pte_alloc */
3466
872fec16 3467 spin_lock(&mm->page_table_lock);
1bb3630e 3468 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3469 pud_free(mm, new);
1bb3630e
HD
3470 else
3471 pgd_populate(mm, pgd, new);
c74df32c 3472 spin_unlock(&mm->page_table_lock);
1bb3630e 3473 return 0;
1da177e4
LT
3474}
3475#endif /* __PAGETABLE_PUD_FOLDED */
3476
3477#ifndef __PAGETABLE_PMD_FOLDED
3478/*
3479 * Allocate page middle directory.
872fec16 3480 * We've already handled the fast-path in-line.
1da177e4 3481 */
1bb3630e 3482int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3483{
c74df32c
HD
3484 pmd_t *new = pmd_alloc_one(mm, address);
3485 if (!new)
1bb3630e 3486 return -ENOMEM;
1da177e4 3487
362a61ad
NP
3488 smp_wmb(); /* See comment in __pte_alloc */
3489
872fec16 3490 spin_lock(&mm->page_table_lock);
1da177e4 3491#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3492 if (!pud_present(*pud)) {
3493 mm_inc_nr_pmds(mm);
1bb3630e 3494 pud_populate(mm, pud, new);
dc6c9a35 3495 } else /* Another has populated it */
5e541973 3496 pmd_free(mm, new);
dc6c9a35
KS
3497#else
3498 if (!pgd_present(*pud)) {
3499 mm_inc_nr_pmds(mm);
1bb3630e 3500 pgd_populate(mm, pud, new);
dc6c9a35
KS
3501 } else /* Another has populated it */
3502 pmd_free(mm, new);
1da177e4 3503#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3504 spin_unlock(&mm->page_table_lock);
1bb3630e 3505 return 0;
e0f39591 3506}
1da177e4
LT
3507#endif /* __PAGETABLE_PMD_FOLDED */
3508
1b36ba81 3509static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3510 pte_t **ptepp, spinlock_t **ptlp)
3511{
3512 pgd_t *pgd;
3513 pud_t *pud;
3514 pmd_t *pmd;
3515 pte_t *ptep;
3516
3517 pgd = pgd_offset(mm, address);
3518 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3519 goto out;
3520
3521 pud = pud_offset(pgd, address);
3522 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3523 goto out;
3524
3525 pmd = pmd_offset(pud, address);
f66055ab 3526 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3527 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3528 goto out;
3529
3530 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3531 if (pmd_huge(*pmd))
3532 goto out;
3533
3534 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3535 if (!ptep)
3536 goto out;
3537 if (!pte_present(*ptep))
3538 goto unlock;
3539 *ptepp = ptep;
3540 return 0;
3541unlock:
3542 pte_unmap_unlock(ptep, *ptlp);
3543out:
3544 return -EINVAL;
3545}
3546
1b36ba81
NK
3547static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3548 pte_t **ptepp, spinlock_t **ptlp)
3549{
3550 int res;
3551
3552 /* (void) is needed to make gcc happy */
3553 (void) __cond_lock(*ptlp,
3554 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3555 return res;
3556}
3557
3b6748e2
JW
3558/**
3559 * follow_pfn - look up PFN at a user virtual address
3560 * @vma: memory mapping
3561 * @address: user virtual address
3562 * @pfn: location to store found PFN
3563 *
3564 * Only IO mappings and raw PFN mappings are allowed.
3565 *
3566 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3567 */
3568int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3569 unsigned long *pfn)
3570{
3571 int ret = -EINVAL;
3572 spinlock_t *ptl;
3573 pte_t *ptep;
3574
3575 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3576 return ret;
3577
3578 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3579 if (ret)
3580 return ret;
3581 *pfn = pte_pfn(*ptep);
3582 pte_unmap_unlock(ptep, ptl);
3583 return 0;
3584}
3585EXPORT_SYMBOL(follow_pfn);
3586
28b2ee20 3587#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3588int follow_phys(struct vm_area_struct *vma,
3589 unsigned long address, unsigned int flags,
3590 unsigned long *prot, resource_size_t *phys)
28b2ee20 3591{
03668a4d 3592 int ret = -EINVAL;
28b2ee20
RR
3593 pte_t *ptep, pte;
3594 spinlock_t *ptl;
28b2ee20 3595
d87fe660 3596 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3597 goto out;
28b2ee20 3598
03668a4d 3599 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3600 goto out;
28b2ee20 3601 pte = *ptep;
03668a4d 3602
28b2ee20
RR
3603 if ((flags & FOLL_WRITE) && !pte_write(pte))
3604 goto unlock;
28b2ee20
RR
3605
3606 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3607 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3608
03668a4d 3609 ret = 0;
28b2ee20
RR
3610unlock:
3611 pte_unmap_unlock(ptep, ptl);
3612out:
d87fe660 3613 return ret;
28b2ee20
RR
3614}
3615
3616int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3617 void *buf, int len, int write)
3618{
3619 resource_size_t phys_addr;
3620 unsigned long prot = 0;
2bc7273b 3621 void __iomem *maddr;
28b2ee20
RR
3622 int offset = addr & (PAGE_SIZE-1);
3623
d87fe660 3624 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3625 return -EINVAL;
3626
9cb12d7b 3627 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
3628 if (write)
3629 memcpy_toio(maddr + offset, buf, len);
3630 else
3631 memcpy_fromio(buf, maddr + offset, len);
3632 iounmap(maddr);
3633
3634 return len;
3635}
5a73633e 3636EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3637#endif
3638
0ec76a11 3639/*
206cb636
SW
3640 * Access another process' address space as given in mm. If non-NULL, use the
3641 * given task for page fault accounting.
0ec76a11 3642 */
206cb636
SW
3643static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3644 unsigned long addr, void *buf, int len, int write)
0ec76a11 3645{
0ec76a11 3646 struct vm_area_struct *vma;
0ec76a11
DH
3647 void *old_buf = buf;
3648
0ec76a11 3649 down_read(&mm->mmap_sem);
183ff22b 3650 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3651 while (len) {
3652 int bytes, ret, offset;
3653 void *maddr;
28b2ee20 3654 struct page *page = NULL;
0ec76a11
DH
3655
3656 ret = get_user_pages(tsk, mm, addr, 1,
3657 write, 1, &page, &vma);
28b2ee20 3658 if (ret <= 0) {
dbffcd03
RR
3659#ifndef CONFIG_HAVE_IOREMAP_PROT
3660 break;
3661#else
28b2ee20
RR
3662 /*
3663 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3664 * we can access using slightly different code.
3665 */
28b2ee20 3666 vma = find_vma(mm, addr);
fe936dfc 3667 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3668 break;
3669 if (vma->vm_ops && vma->vm_ops->access)
3670 ret = vma->vm_ops->access(vma, addr, buf,
3671 len, write);
3672 if (ret <= 0)
28b2ee20
RR
3673 break;
3674 bytes = ret;
dbffcd03 3675#endif
0ec76a11 3676 } else {
28b2ee20
RR
3677 bytes = len;
3678 offset = addr & (PAGE_SIZE-1);
3679 if (bytes > PAGE_SIZE-offset)
3680 bytes = PAGE_SIZE-offset;
3681
3682 maddr = kmap(page);
3683 if (write) {
3684 copy_to_user_page(vma, page, addr,
3685 maddr + offset, buf, bytes);
3686 set_page_dirty_lock(page);
3687 } else {
3688 copy_from_user_page(vma, page, addr,
3689 buf, maddr + offset, bytes);
3690 }
3691 kunmap(page);
3692 page_cache_release(page);
0ec76a11 3693 }
0ec76a11
DH
3694 len -= bytes;
3695 buf += bytes;
3696 addr += bytes;
3697 }
3698 up_read(&mm->mmap_sem);
0ec76a11
DH
3699
3700 return buf - old_buf;
3701}
03252919 3702
5ddd36b9 3703/**
ae91dbfc 3704 * access_remote_vm - access another process' address space
5ddd36b9
SW
3705 * @mm: the mm_struct of the target address space
3706 * @addr: start address to access
3707 * @buf: source or destination buffer
3708 * @len: number of bytes to transfer
3709 * @write: whether the access is a write
3710 *
3711 * The caller must hold a reference on @mm.
3712 */
3713int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3714 void *buf, int len, int write)
3715{
3716 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3717}
3718
206cb636
SW
3719/*
3720 * Access another process' address space.
3721 * Source/target buffer must be kernel space,
3722 * Do not walk the page table directly, use get_user_pages
3723 */
3724int access_process_vm(struct task_struct *tsk, unsigned long addr,
3725 void *buf, int len, int write)
3726{
3727 struct mm_struct *mm;
3728 int ret;
3729
3730 mm = get_task_mm(tsk);
3731 if (!mm)
3732 return 0;
3733
3734 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3735 mmput(mm);
3736
3737 return ret;
3738}
3739
03252919
AK
3740/*
3741 * Print the name of a VMA.
3742 */
3743void print_vma_addr(char *prefix, unsigned long ip)
3744{
3745 struct mm_struct *mm = current->mm;
3746 struct vm_area_struct *vma;
3747
e8bff74a
IM
3748 /*
3749 * Do not print if we are in atomic
3750 * contexts (in exception stacks, etc.):
3751 */
3752 if (preempt_count())
3753 return;
3754
03252919
AK
3755 down_read(&mm->mmap_sem);
3756 vma = find_vma(mm, ip);
3757 if (vma && vma->vm_file) {
3758 struct file *f = vma->vm_file;
3759 char *buf = (char *)__get_free_page(GFP_KERNEL);
3760 if (buf) {
2fbc57c5 3761 char *p;
03252919 3762
9bf39ab2 3763 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
3764 if (IS_ERR(p))
3765 p = "?";
2fbc57c5 3766 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
3767 vma->vm_start,
3768 vma->vm_end - vma->vm_start);
3769 free_page((unsigned long)buf);
3770 }
3771 }
51a07e50 3772 up_read(&mm->mmap_sem);
03252919 3773}
3ee1afa3 3774
662bbcb2 3775#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 3776void __might_fault(const char *file, int line)
3ee1afa3 3777{
95156f00
PZ
3778 /*
3779 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3780 * holding the mmap_sem, this is safe because kernel memory doesn't
3781 * get paged out, therefore we'll never actually fault, and the
3782 * below annotations will generate false positives.
3783 */
3784 if (segment_eq(get_fs(), KERNEL_DS))
3785 return;
9ec23531 3786 if (pagefault_disabled())
662bbcb2 3787 return;
9ec23531
DH
3788 __might_sleep(file, line, 0);
3789#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 3790 if (current->mm)
3ee1afa3 3791 might_lock_read(&current->mm->mmap_sem);
9ec23531 3792#endif
3ee1afa3 3793}
9ec23531 3794EXPORT_SYMBOL(__might_fault);
3ee1afa3 3795#endif
47ad8475
AA
3796
3797#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3798static void clear_gigantic_page(struct page *page,
3799 unsigned long addr,
3800 unsigned int pages_per_huge_page)
3801{
3802 int i;
3803 struct page *p = page;
3804
3805 might_sleep();
3806 for (i = 0; i < pages_per_huge_page;
3807 i++, p = mem_map_next(p, page, i)) {
3808 cond_resched();
3809 clear_user_highpage(p, addr + i * PAGE_SIZE);
3810 }
3811}
3812void clear_huge_page(struct page *page,
3813 unsigned long addr, unsigned int pages_per_huge_page)
3814{
3815 int i;
3816
3817 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3818 clear_gigantic_page(page, addr, pages_per_huge_page);
3819 return;
3820 }
3821
3822 might_sleep();
3823 for (i = 0; i < pages_per_huge_page; i++) {
3824 cond_resched();
3825 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3826 }
3827}
3828
3829static void copy_user_gigantic_page(struct page *dst, struct page *src,
3830 unsigned long addr,
3831 struct vm_area_struct *vma,
3832 unsigned int pages_per_huge_page)
3833{
3834 int i;
3835 struct page *dst_base = dst;
3836 struct page *src_base = src;
3837
3838 for (i = 0; i < pages_per_huge_page; ) {
3839 cond_resched();
3840 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3841
3842 i++;
3843 dst = mem_map_next(dst, dst_base, i);
3844 src = mem_map_next(src, src_base, i);
3845 }
3846}
3847
3848void copy_user_huge_page(struct page *dst, struct page *src,
3849 unsigned long addr, struct vm_area_struct *vma,
3850 unsigned int pages_per_huge_page)
3851{
3852 int i;
3853
3854 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3855 copy_user_gigantic_page(dst, src, addr, vma,
3856 pages_per_huge_page);
3857 return;
3858 }
3859
3860 might_sleep();
3861 for (i = 0; i < pages_per_huge_page; i++) {
3862 cond_resched();
3863 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3864 }
3865}
3866#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 3867
40b64acd 3868#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
3869
3870static struct kmem_cache *page_ptl_cachep;
3871
3872void __init ptlock_cache_init(void)
3873{
3874 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3875 SLAB_PANIC, NULL);
3876}
3877
539edb58 3878bool ptlock_alloc(struct page *page)
49076ec2
KS
3879{
3880 spinlock_t *ptl;
3881
b35f1819 3882 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
3883 if (!ptl)
3884 return false;
539edb58 3885 page->ptl = ptl;
49076ec2
KS
3886 return true;
3887}
3888
539edb58 3889void ptlock_free(struct page *page)
49076ec2 3890{
b35f1819 3891 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
3892}
3893#endif
This page took 1.671458 seconds and 5 git commands to generate.