memcg: res_counter_read_u64(): fix potential races on 32-bit machines
[deliverable/linux.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4
LT
49#include <linux/rmap.h>
50#include <linux/module.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
1da177e4 60
6952b61d 61#include <asm/io.h>
1da177e4
LT
62#include <asm/pgalloc.h>
63#include <asm/uaccess.h>
64#include <asm/tlb.h>
65#include <asm/tlbflush.h>
66#include <asm/pgtable.h>
67
42b77728
JB
68#include "internal.h"
69
d41dee36 70#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
71/* use the per-pgdat data instead for discontigmem - mbligh */
72unsigned long max_mapnr;
73struct page *mem_map;
74
75EXPORT_SYMBOL(max_mapnr);
76EXPORT_SYMBOL(mem_map);
77#endif
78
79unsigned long num_physpages;
80/*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87void * high_memory;
1da177e4
LT
88
89EXPORT_SYMBOL(num_physpages);
90EXPORT_SYMBOL(high_memory);
1da177e4 91
32a93233
IM
92/*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98int randomize_va_space __read_mostly =
99#ifdef CONFIG_COMPAT_BRK
100 1;
101#else
102 2;
103#endif
a62eaf15
AK
104
105static int __init disable_randmaps(char *s)
106{
107 randomize_va_space = 0;
9b41046c 108 return 1;
a62eaf15
AK
109}
110__setup("norandmaps", disable_randmaps);
111
62eede62 112unsigned long zero_pfn __read_mostly;
03f6462a 113unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
114
115/*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118static int __init init_zero_pfn(void)
119{
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122}
123core_initcall(init_zero_pfn);
a62eaf15 124
d559db08 125
34e55232
KH
126#if defined(SPLIT_RSS_COUNTING)
127
a3a2e76c 128static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
34e55232
KH
129{
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
136 }
137 }
138 task->rss_stat.events = 0;
139}
140
141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142{
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149}
150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153/* sync counter once per 64 page faults */
154#define TASK_RSS_EVENTS_THRESH (64)
155static void check_sync_rss_stat(struct task_struct *task)
156{
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
161}
162
163unsigned long get_mm_counter(struct mm_struct *mm, int member)
164{
165 long val = 0;
166
167 /*
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
170 */
171 val = atomic_long_read(&mm->rss_stat.count[member]);
172 /*
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
175 */
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
179}
180
181void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182{
183 __sync_task_rss_stat(task, mm);
184}
185#else
186
187#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190static void check_sync_rss_stat(struct task_struct *task)
191{
192}
193
34e55232
KH
194#endif
195
1da177e4
LT
196/*
197 * If a p?d_bad entry is found while walking page tables, report
198 * the error, before resetting entry to p?d_none. Usually (but
199 * very seldom) called out from the p?d_none_or_clear_bad macros.
200 */
201
202void pgd_clear_bad(pgd_t *pgd)
203{
204 pgd_ERROR(*pgd);
205 pgd_clear(pgd);
206}
207
208void pud_clear_bad(pud_t *pud)
209{
210 pud_ERROR(*pud);
211 pud_clear(pud);
212}
213
214void pmd_clear_bad(pmd_t *pmd)
215{
216 pmd_ERROR(*pmd);
217 pmd_clear(pmd);
218}
219
220/*
221 * Note: this doesn't free the actual pages themselves. That
222 * has been handled earlier when unmapping all the memory regions.
223 */
9e1b32ca
BH
224static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225 unsigned long addr)
1da177e4 226{
2f569afd 227 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 228 pmd_clear(pmd);
9e1b32ca 229 pte_free_tlb(tlb, token, addr);
e0da382c 230 tlb->mm->nr_ptes--;
1da177e4
LT
231}
232
e0da382c
HD
233static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234 unsigned long addr, unsigned long end,
235 unsigned long floor, unsigned long ceiling)
1da177e4
LT
236{
237 pmd_t *pmd;
238 unsigned long next;
e0da382c 239 unsigned long start;
1da177e4 240
e0da382c 241 start = addr;
1da177e4 242 pmd = pmd_offset(pud, addr);
1da177e4
LT
243 do {
244 next = pmd_addr_end(addr, end);
245 if (pmd_none_or_clear_bad(pmd))
246 continue;
9e1b32ca 247 free_pte_range(tlb, pmd, addr);
1da177e4
LT
248 } while (pmd++, addr = next, addr != end);
249
e0da382c
HD
250 start &= PUD_MASK;
251 if (start < floor)
252 return;
253 if (ceiling) {
254 ceiling &= PUD_MASK;
255 if (!ceiling)
256 return;
1da177e4 257 }
e0da382c
HD
258 if (end - 1 > ceiling - 1)
259 return;
260
261 pmd = pmd_offset(pud, start);
262 pud_clear(pud);
9e1b32ca 263 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
264}
265
e0da382c
HD
266static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
1da177e4
LT
269{
270 pud_t *pud;
271 unsigned long next;
e0da382c 272 unsigned long start;
1da177e4 273
e0da382c 274 start = addr;
1da177e4 275 pud = pud_offset(pgd, addr);
1da177e4
LT
276 do {
277 next = pud_addr_end(addr, end);
278 if (pud_none_or_clear_bad(pud))
279 continue;
e0da382c 280 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
281 } while (pud++, addr = next, addr != end);
282
e0da382c
HD
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
1da177e4 290 }
e0da382c
HD
291 if (end - 1 > ceiling - 1)
292 return;
293
294 pud = pud_offset(pgd, start);
295 pgd_clear(pgd);
9e1b32ca 296 pud_free_tlb(tlb, pud, start);
1da177e4
LT
297}
298
299/*
e0da382c
HD
300 * This function frees user-level page tables of a process.
301 *
1da177e4
LT
302 * Must be called with pagetable lock held.
303 */
42b77728 304void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
1da177e4
LT
307{
308 pgd_t *pgd;
309 unsigned long next;
e0da382c
HD
310
311 /*
312 * The next few lines have given us lots of grief...
313 *
314 * Why are we testing PMD* at this top level? Because often
315 * there will be no work to do at all, and we'd prefer not to
316 * go all the way down to the bottom just to discover that.
317 *
318 * Why all these "- 1"s? Because 0 represents both the bottom
319 * of the address space and the top of it (using -1 for the
320 * top wouldn't help much: the masks would do the wrong thing).
321 * The rule is that addr 0 and floor 0 refer to the bottom of
322 * the address space, but end 0 and ceiling 0 refer to the top
323 * Comparisons need to use "end - 1" and "ceiling - 1" (though
324 * that end 0 case should be mythical).
325 *
326 * Wherever addr is brought up or ceiling brought down, we must
327 * be careful to reject "the opposite 0" before it confuses the
328 * subsequent tests. But what about where end is brought down
329 * by PMD_SIZE below? no, end can't go down to 0 there.
330 *
331 * Whereas we round start (addr) and ceiling down, by different
332 * masks at different levels, in order to test whether a table
333 * now has no other vmas using it, so can be freed, we don't
334 * bother to round floor or end up - the tests don't need that.
335 */
1da177e4 336
e0da382c
HD
337 addr &= PMD_MASK;
338 if (addr < floor) {
339 addr += PMD_SIZE;
340 if (!addr)
341 return;
342 }
343 if (ceiling) {
344 ceiling &= PMD_MASK;
345 if (!ceiling)
346 return;
347 }
348 if (end - 1 > ceiling - 1)
349 end -= PMD_SIZE;
350 if (addr > end - 1)
351 return;
352
42b77728 353 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
354 do {
355 next = pgd_addr_end(addr, end);
356 if (pgd_none_or_clear_bad(pgd))
357 continue;
42b77728 358 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 359 } while (pgd++, addr = next, addr != end);
e0da382c
HD
360}
361
42b77728 362void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 363 unsigned long floor, unsigned long ceiling)
e0da382c
HD
364{
365 while (vma) {
366 struct vm_area_struct *next = vma->vm_next;
367 unsigned long addr = vma->vm_start;
368
8f4f8c16 369 /*
25d9e2d1 370 * Hide vma from rmap and truncate_pagecache before freeing
371 * pgtables
8f4f8c16 372 */
5beb4930 373 unlink_anon_vmas(vma);
8f4f8c16
HD
374 unlink_file_vma(vma);
375
9da61aef 376 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 377 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 378 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
379 } else {
380 /*
381 * Optimization: gather nearby vmas into one call down
382 */
383 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 384 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
385 vma = next;
386 next = vma->vm_next;
5beb4930 387 unlink_anon_vmas(vma);
8f4f8c16 388 unlink_file_vma(vma);
3bf5ee95
HD
389 }
390 free_pgd_range(tlb, addr, vma->vm_end,
391 floor, next? next->vm_start: ceiling);
392 }
e0da382c
HD
393 vma = next;
394 }
1da177e4
LT
395}
396
8ac1f832
AA
397int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
398 pmd_t *pmd, unsigned long address)
1da177e4 399{
2f569afd 400 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 401 int wait_split_huge_page;
1bb3630e
HD
402 if (!new)
403 return -ENOMEM;
404
362a61ad
NP
405 /*
406 * Ensure all pte setup (eg. pte page lock and page clearing) are
407 * visible before the pte is made visible to other CPUs by being
408 * put into page tables.
409 *
410 * The other side of the story is the pointer chasing in the page
411 * table walking code (when walking the page table without locking;
412 * ie. most of the time). Fortunately, these data accesses consist
413 * of a chain of data-dependent loads, meaning most CPUs (alpha
414 * being the notable exception) will already guarantee loads are
415 * seen in-order. See the alpha page table accessors for the
416 * smp_read_barrier_depends() barriers in page table walking code.
417 */
418 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
419
c74df32c 420 spin_lock(&mm->page_table_lock);
8ac1f832
AA
421 wait_split_huge_page = 0;
422 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1da177e4 423 mm->nr_ptes++;
1da177e4 424 pmd_populate(mm, pmd, new);
2f569afd 425 new = NULL;
8ac1f832
AA
426 } else if (unlikely(pmd_trans_splitting(*pmd)))
427 wait_split_huge_page = 1;
c74df32c 428 spin_unlock(&mm->page_table_lock);
2f569afd
MS
429 if (new)
430 pte_free(mm, new);
8ac1f832
AA
431 if (wait_split_huge_page)
432 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 433 return 0;
1da177e4
LT
434}
435
1bb3630e 436int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 437{
1bb3630e
HD
438 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
439 if (!new)
440 return -ENOMEM;
441
362a61ad
NP
442 smp_wmb(); /* See comment in __pte_alloc */
443
1bb3630e 444 spin_lock(&init_mm.page_table_lock);
8ac1f832 445 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 446 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 447 new = NULL;
8ac1f832
AA
448 } else
449 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 450 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
451 if (new)
452 pte_free_kernel(&init_mm, new);
1bb3630e 453 return 0;
1da177e4
LT
454}
455
d559db08
KH
456static inline void init_rss_vec(int *rss)
457{
458 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
459}
460
461static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 462{
d559db08
KH
463 int i;
464
34e55232
KH
465 if (current->mm == mm)
466 sync_mm_rss(current, mm);
d559db08
KH
467 for (i = 0; i < NR_MM_COUNTERS; i++)
468 if (rss[i])
469 add_mm_counter(mm, i, rss[i]);
ae859762
HD
470}
471
b5810039 472/*
6aab341e
LT
473 * This function is called to print an error when a bad pte
474 * is found. For example, we might have a PFN-mapped pte in
475 * a region that doesn't allow it.
b5810039
NP
476 *
477 * The calling function must still handle the error.
478 */
3dc14741
HD
479static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480 pte_t pte, struct page *page)
b5810039 481{
3dc14741
HD
482 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
483 pud_t *pud = pud_offset(pgd, addr);
484 pmd_t *pmd = pmd_offset(pud, addr);
485 struct address_space *mapping;
486 pgoff_t index;
d936cf9b
HD
487 static unsigned long resume;
488 static unsigned long nr_shown;
489 static unsigned long nr_unshown;
490
491 /*
492 * Allow a burst of 60 reports, then keep quiet for that minute;
493 * or allow a steady drip of one report per second.
494 */
495 if (nr_shown == 60) {
496 if (time_before(jiffies, resume)) {
497 nr_unshown++;
498 return;
499 }
500 if (nr_unshown) {
1e9e6365
HD
501 printk(KERN_ALERT
502 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
503 nr_unshown);
504 nr_unshown = 0;
505 }
506 nr_shown = 0;
507 }
508 if (nr_shown++ == 0)
509 resume = jiffies + 60 * HZ;
3dc14741
HD
510
511 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512 index = linear_page_index(vma, addr);
513
1e9e6365
HD
514 printk(KERN_ALERT
515 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
516 current->comm,
517 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821
WF
518 if (page)
519 dump_page(page);
1e9e6365 520 printk(KERN_ALERT
3dc14741
HD
521 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523 /*
524 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
525 */
526 if (vma->vm_ops)
1e9e6365 527 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
528 (unsigned long)vma->vm_ops->fault);
529 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 530 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 531 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 532 dump_stack();
3dc14741 533 add_taint(TAINT_BAD_PAGE);
b5810039
NP
534}
535
67121172
LT
536static inline int is_cow_mapping(unsigned int flags)
537{
538 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
539}
540
62eede62
HD
541#ifndef is_zero_pfn
542static inline int is_zero_pfn(unsigned long pfn)
543{
544 return pfn == zero_pfn;
545}
546#endif
547
548#ifndef my_zero_pfn
549static inline unsigned long my_zero_pfn(unsigned long addr)
550{
551 return zero_pfn;
552}
553#endif
554
ee498ed7 555/*
7e675137 556 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 557 *
7e675137
NP
558 * "Special" mappings do not wish to be associated with a "struct page" (either
559 * it doesn't exist, or it exists but they don't want to touch it). In this
560 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 561 *
7e675137
NP
562 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
563 * pte bit, in which case this function is trivial. Secondly, an architecture
564 * may not have a spare pte bit, which requires a more complicated scheme,
565 * described below.
566 *
567 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
568 * special mapping (even if there are underlying and valid "struct pages").
569 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 570 *
b379d790
JH
571 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
572 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
573 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
574 * mapping will always honor the rule
6aab341e
LT
575 *
576 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
577 *
7e675137
NP
578 * And for normal mappings this is false.
579 *
580 * This restricts such mappings to be a linear translation from virtual address
581 * to pfn. To get around this restriction, we allow arbitrary mappings so long
582 * as the vma is not a COW mapping; in that case, we know that all ptes are
583 * special (because none can have been COWed).
b379d790 584 *
b379d790 585 *
7e675137 586 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
587 *
588 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
589 * page" backing, however the difference is that _all_ pages with a struct
590 * page (that is, those where pfn_valid is true) are refcounted and considered
591 * normal pages by the VM. The disadvantage is that pages are refcounted
592 * (which can be slower and simply not an option for some PFNMAP users). The
593 * advantage is that we don't have to follow the strict linearity rule of
594 * PFNMAP mappings in order to support COWable mappings.
595 *
ee498ed7 596 */
7e675137
NP
597#ifdef __HAVE_ARCH_PTE_SPECIAL
598# define HAVE_PTE_SPECIAL 1
599#else
600# define HAVE_PTE_SPECIAL 0
601#endif
602struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
603 pte_t pte)
ee498ed7 604{
22b31eec 605 unsigned long pfn = pte_pfn(pte);
7e675137
NP
606
607 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
608 if (likely(!pte_special(pte)))
609 goto check_pfn;
a13ea5b7
HD
610 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
611 return NULL;
62eede62 612 if (!is_zero_pfn(pfn))
22b31eec 613 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
614 return NULL;
615 }
616
617 /* !HAVE_PTE_SPECIAL case follows: */
618
b379d790
JH
619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620 if (vma->vm_flags & VM_MIXEDMAP) {
621 if (!pfn_valid(pfn))
622 return NULL;
623 goto out;
624 } else {
7e675137
NP
625 unsigned long off;
626 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
627 if (pfn == vma->vm_pgoff + off)
628 return NULL;
629 if (!is_cow_mapping(vma->vm_flags))
630 return NULL;
631 }
6aab341e
LT
632 }
633
62eede62
HD
634 if (is_zero_pfn(pfn))
635 return NULL;
22b31eec
HD
636check_pfn:
637 if (unlikely(pfn > highest_memmap_pfn)) {
638 print_bad_pte(vma, addr, pte, NULL);
639 return NULL;
640 }
6aab341e
LT
641
642 /*
7e675137 643 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 644 * eg. VDSO mappings can cause them to exist.
6aab341e 645 */
b379d790 646out:
6aab341e 647 return pfn_to_page(pfn);
ee498ed7
HD
648}
649
1da177e4
LT
650/*
651 * copy one vm_area from one task to the other. Assumes the page tables
652 * already present in the new task to be cleared in the whole range
653 * covered by this vma.
1da177e4
LT
654 */
655
570a335b 656static inline unsigned long
1da177e4 657copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 658 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 659 unsigned long addr, int *rss)
1da177e4 660{
b5810039 661 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
662 pte_t pte = *src_pte;
663 struct page *page;
1da177e4
LT
664
665 /* pte contains position in swap or file, so copy. */
666 if (unlikely(!pte_present(pte))) {
667 if (!pte_file(pte)) {
0697212a
CL
668 swp_entry_t entry = pte_to_swp_entry(pte);
669
570a335b
HD
670 if (swap_duplicate(entry) < 0)
671 return entry.val;
672
1da177e4
LT
673 /* make sure dst_mm is on swapoff's mmlist. */
674 if (unlikely(list_empty(&dst_mm->mmlist))) {
675 spin_lock(&mmlist_lock);
f412ac08
HD
676 if (list_empty(&dst_mm->mmlist))
677 list_add(&dst_mm->mmlist,
678 &src_mm->mmlist);
1da177e4
LT
679 spin_unlock(&mmlist_lock);
680 }
b084d435
KH
681 if (likely(!non_swap_entry(entry)))
682 rss[MM_SWAPENTS]++;
683 else if (is_write_migration_entry(entry) &&
0697212a
CL
684 is_cow_mapping(vm_flags)) {
685 /*
686 * COW mappings require pages in both parent
687 * and child to be set to read.
688 */
689 make_migration_entry_read(&entry);
690 pte = swp_entry_to_pte(entry);
691 set_pte_at(src_mm, addr, src_pte, pte);
692 }
1da177e4 693 }
ae859762 694 goto out_set_pte;
1da177e4
LT
695 }
696
1da177e4
LT
697 /*
698 * If it's a COW mapping, write protect it both
699 * in the parent and the child
700 */
67121172 701 if (is_cow_mapping(vm_flags)) {
1da177e4 702 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 703 pte = pte_wrprotect(pte);
1da177e4
LT
704 }
705
706 /*
707 * If it's a shared mapping, mark it clean in
708 * the child
709 */
710 if (vm_flags & VM_SHARED)
711 pte = pte_mkclean(pte);
712 pte = pte_mkold(pte);
6aab341e
LT
713
714 page = vm_normal_page(vma, addr, pte);
715 if (page) {
716 get_page(page);
21333b2b 717 page_dup_rmap(page);
d559db08
KH
718 if (PageAnon(page))
719 rss[MM_ANONPAGES]++;
720 else
721 rss[MM_FILEPAGES]++;
6aab341e 722 }
ae859762
HD
723
724out_set_pte:
725 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 726 return 0;
1da177e4
LT
727}
728
71e3aac0
AA
729int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
730 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
731 unsigned long addr, unsigned long end)
1da177e4 732{
c36987e2 733 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 734 pte_t *src_pte, *dst_pte;
c74df32c 735 spinlock_t *src_ptl, *dst_ptl;
e040f218 736 int progress = 0;
d559db08 737 int rss[NR_MM_COUNTERS];
570a335b 738 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
739
740again:
d559db08
KH
741 init_rss_vec(rss);
742
c74df32c 743 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
744 if (!dst_pte)
745 return -ENOMEM;
ece0e2b6 746 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 747 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 748 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
749 orig_src_pte = src_pte;
750 orig_dst_pte = dst_pte;
6606c3e0 751 arch_enter_lazy_mmu_mode();
1da177e4 752
1da177e4
LT
753 do {
754 /*
755 * We are holding two locks at this point - either of them
756 * could generate latencies in another task on another CPU.
757 */
e040f218
HD
758 if (progress >= 32) {
759 progress = 0;
760 if (need_resched() ||
95c354fe 761 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
762 break;
763 }
1da177e4
LT
764 if (pte_none(*src_pte)) {
765 progress++;
766 continue;
767 }
570a335b
HD
768 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
769 vma, addr, rss);
770 if (entry.val)
771 break;
1da177e4
LT
772 progress += 8;
773 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 774
6606c3e0 775 arch_leave_lazy_mmu_mode();
c74df32c 776 spin_unlock(src_ptl);
ece0e2b6 777 pte_unmap(orig_src_pte);
d559db08 778 add_mm_rss_vec(dst_mm, rss);
c36987e2 779 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 780 cond_resched();
570a335b
HD
781
782 if (entry.val) {
783 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
784 return -ENOMEM;
785 progress = 0;
786 }
1da177e4
LT
787 if (addr != end)
788 goto again;
789 return 0;
790}
791
792static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
793 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
794 unsigned long addr, unsigned long end)
795{
796 pmd_t *src_pmd, *dst_pmd;
797 unsigned long next;
798
799 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
800 if (!dst_pmd)
801 return -ENOMEM;
802 src_pmd = pmd_offset(src_pud, addr);
803 do {
804 next = pmd_addr_end(addr, end);
71e3aac0
AA
805 if (pmd_trans_huge(*src_pmd)) {
806 int err;
14d1a55c 807 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
808 err = copy_huge_pmd(dst_mm, src_mm,
809 dst_pmd, src_pmd, addr, vma);
810 if (err == -ENOMEM)
811 return -ENOMEM;
812 if (!err)
813 continue;
814 /* fall through */
815 }
1da177e4
LT
816 if (pmd_none_or_clear_bad(src_pmd))
817 continue;
818 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
819 vma, addr, next))
820 return -ENOMEM;
821 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
822 return 0;
823}
824
825static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
826 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
827 unsigned long addr, unsigned long end)
828{
829 pud_t *src_pud, *dst_pud;
830 unsigned long next;
831
832 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
833 if (!dst_pud)
834 return -ENOMEM;
835 src_pud = pud_offset(src_pgd, addr);
836 do {
837 next = pud_addr_end(addr, end);
838 if (pud_none_or_clear_bad(src_pud))
839 continue;
840 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
841 vma, addr, next))
842 return -ENOMEM;
843 } while (dst_pud++, src_pud++, addr = next, addr != end);
844 return 0;
845}
846
847int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848 struct vm_area_struct *vma)
849{
850 pgd_t *src_pgd, *dst_pgd;
851 unsigned long next;
852 unsigned long addr = vma->vm_start;
853 unsigned long end = vma->vm_end;
cddb8a5c 854 int ret;
1da177e4 855
d992895b
NP
856 /*
857 * Don't copy ptes where a page fault will fill them correctly.
858 * Fork becomes much lighter when there are big shared or private
859 * readonly mappings. The tradeoff is that copy_page_range is more
860 * efficient than faulting.
861 */
4d7672b4 862 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
863 if (!vma->anon_vma)
864 return 0;
865 }
866
1da177e4
LT
867 if (is_vm_hugetlb_page(vma))
868 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
869
34801ba9 870 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 871 /*
872 * We do not free on error cases below as remove_vma
873 * gets called on error from higher level routine
874 */
875 ret = track_pfn_vma_copy(vma);
876 if (ret)
877 return ret;
878 }
879
cddb8a5c
AA
880 /*
881 * We need to invalidate the secondary MMU mappings only when
882 * there could be a permission downgrade on the ptes of the
883 * parent mm. And a permission downgrade will only happen if
884 * is_cow_mapping() returns true.
885 */
886 if (is_cow_mapping(vma->vm_flags))
887 mmu_notifier_invalidate_range_start(src_mm, addr, end);
888
889 ret = 0;
1da177e4
LT
890 dst_pgd = pgd_offset(dst_mm, addr);
891 src_pgd = pgd_offset(src_mm, addr);
892 do {
893 next = pgd_addr_end(addr, end);
894 if (pgd_none_or_clear_bad(src_pgd))
895 continue;
cddb8a5c
AA
896 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
897 vma, addr, next))) {
898 ret = -ENOMEM;
899 break;
900 }
1da177e4 901 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
902
903 if (is_cow_mapping(vma->vm_flags))
904 mmu_notifier_invalidate_range_end(src_mm,
905 vma->vm_start, end);
906 return ret;
1da177e4
LT
907}
908
51c6f666 909static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 910 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 911 unsigned long addr, unsigned long end,
51c6f666 912 long *zap_work, struct zap_details *details)
1da177e4 913{
b5810039 914 struct mm_struct *mm = tlb->mm;
1da177e4 915 pte_t *pte;
508034a3 916 spinlock_t *ptl;
d559db08
KH
917 int rss[NR_MM_COUNTERS];
918
919 init_rss_vec(rss);
1da177e4 920
508034a3 921 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 922 arch_enter_lazy_mmu_mode();
1da177e4
LT
923 do {
924 pte_t ptent = *pte;
51c6f666
RH
925 if (pte_none(ptent)) {
926 (*zap_work)--;
1da177e4 927 continue;
51c6f666 928 }
6f5e6b9e
HD
929
930 (*zap_work) -= PAGE_SIZE;
931
1da177e4 932 if (pte_present(ptent)) {
ee498ed7 933 struct page *page;
51c6f666 934
6aab341e 935 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
936 if (unlikely(details) && page) {
937 /*
938 * unmap_shared_mapping_pages() wants to
939 * invalidate cache without truncating:
940 * unmap shared but keep private pages.
941 */
942 if (details->check_mapping &&
943 details->check_mapping != page->mapping)
944 continue;
945 /*
946 * Each page->index must be checked when
947 * invalidating or truncating nonlinear.
948 */
949 if (details->nonlinear_vma &&
950 (page->index < details->first_index ||
951 page->index > details->last_index))
952 continue;
953 }
b5810039 954 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 955 tlb->fullmm);
1da177e4
LT
956 tlb_remove_tlb_entry(tlb, pte, addr);
957 if (unlikely(!page))
958 continue;
959 if (unlikely(details) && details->nonlinear_vma
960 && linear_page_index(details->nonlinear_vma,
961 addr) != page->index)
b5810039 962 set_pte_at(mm, addr, pte,
1da177e4 963 pgoff_to_pte(page->index));
1da177e4 964 if (PageAnon(page))
d559db08 965 rss[MM_ANONPAGES]--;
6237bcd9
HD
966 else {
967 if (pte_dirty(ptent))
968 set_page_dirty(page);
4917e5d0
JW
969 if (pte_young(ptent) &&
970 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 971 mark_page_accessed(page);
d559db08 972 rss[MM_FILEPAGES]--;
6237bcd9 973 }
edc315fd 974 page_remove_rmap(page);
3dc14741
HD
975 if (unlikely(page_mapcount(page) < 0))
976 print_bad_pte(vma, addr, ptent, page);
1da177e4
LT
977 tlb_remove_page(tlb, page);
978 continue;
979 }
980 /*
981 * If details->check_mapping, we leave swap entries;
982 * if details->nonlinear_vma, we leave file entries.
983 */
984 if (unlikely(details))
985 continue;
2509ef26
HD
986 if (pte_file(ptent)) {
987 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
988 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
989 } else {
990 swp_entry_t entry = pte_to_swp_entry(ptent);
991
992 if (!non_swap_entry(entry))
993 rss[MM_SWAPENTS]--;
994 if (unlikely(!free_swap_and_cache(entry)))
995 print_bad_pte(vma, addr, ptent, NULL);
996 }
9888a1ca 997 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 998 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 999
d559db08 1000 add_mm_rss_vec(mm, rss);
6606c3e0 1001 arch_leave_lazy_mmu_mode();
508034a3 1002 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
1003
1004 return addr;
1da177e4
LT
1005}
1006
51c6f666 1007static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1008 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1009 unsigned long addr, unsigned long end,
51c6f666 1010 long *zap_work, struct zap_details *details)
1da177e4
LT
1011{
1012 pmd_t *pmd;
1013 unsigned long next;
1014
1015 pmd = pmd_offset(pud, addr);
1016 do {
1017 next = pmd_addr_end(addr, end);
71e3aac0 1018 if (pmd_trans_huge(*pmd)) {
14d1a55c
AA
1019 if (next-addr != HPAGE_PMD_SIZE) {
1020 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
71e3aac0 1021 split_huge_page_pmd(vma->vm_mm, pmd);
14d1a55c 1022 } else if (zap_huge_pmd(tlb, vma, pmd)) {
71e3aac0
AA
1023 (*zap_work)--;
1024 continue;
1025 }
1026 /* fall through */
1027 }
51c6f666
RH
1028 if (pmd_none_or_clear_bad(pmd)) {
1029 (*zap_work)--;
1da177e4 1030 continue;
51c6f666
RH
1031 }
1032 next = zap_pte_range(tlb, vma, pmd, addr, next,
1033 zap_work, details);
1034 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1035
1036 return addr;
1da177e4
LT
1037}
1038
51c6f666 1039static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1040 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1041 unsigned long addr, unsigned long end,
51c6f666 1042 long *zap_work, struct zap_details *details)
1da177e4
LT
1043{
1044 pud_t *pud;
1045 unsigned long next;
1046
1047 pud = pud_offset(pgd, addr);
1048 do {
1049 next = pud_addr_end(addr, end);
51c6f666
RH
1050 if (pud_none_or_clear_bad(pud)) {
1051 (*zap_work)--;
1da177e4 1052 continue;
51c6f666
RH
1053 }
1054 next = zap_pmd_range(tlb, vma, pud, addr, next,
1055 zap_work, details);
1056 } while (pud++, addr = next, (addr != end && *zap_work > 0));
1057
1058 return addr;
1da177e4
LT
1059}
1060
51c6f666
RH
1061static unsigned long unmap_page_range(struct mmu_gather *tlb,
1062 struct vm_area_struct *vma,
1da177e4 1063 unsigned long addr, unsigned long end,
51c6f666 1064 long *zap_work, struct zap_details *details)
1da177e4
LT
1065{
1066 pgd_t *pgd;
1067 unsigned long next;
1068
1069 if (details && !details->check_mapping && !details->nonlinear_vma)
1070 details = NULL;
1071
1072 BUG_ON(addr >= end);
569b846d 1073 mem_cgroup_uncharge_start();
1da177e4
LT
1074 tlb_start_vma(tlb, vma);
1075 pgd = pgd_offset(vma->vm_mm, addr);
1076 do {
1077 next = pgd_addr_end(addr, end);
51c6f666
RH
1078 if (pgd_none_or_clear_bad(pgd)) {
1079 (*zap_work)--;
1da177e4 1080 continue;
51c6f666
RH
1081 }
1082 next = zap_pud_range(tlb, vma, pgd, addr, next,
1083 zap_work, details);
1084 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 1085 tlb_end_vma(tlb, vma);
569b846d 1086 mem_cgroup_uncharge_end();
51c6f666
RH
1087
1088 return addr;
1da177e4
LT
1089}
1090
1091#ifdef CONFIG_PREEMPT
1092# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1093#else
1094/* No preempt: go for improved straight-line efficiency */
1095# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1096#endif
1097
1098/**
1099 * unmap_vmas - unmap a range of memory covered by a list of vma's
1100 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
1101 * @vma: the starting vma
1102 * @start_addr: virtual address at which to start unmapping
1103 * @end_addr: virtual address at which to end unmapping
1104 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1105 * @details: details of nonlinear truncation or shared cache invalidation
1106 *
ee39b37b 1107 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 1108 *
508034a3 1109 * Unmap all pages in the vma list.
1da177e4 1110 *
508034a3
HD
1111 * We aim to not hold locks for too long (for scheduling latency reasons).
1112 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
1113 * return the ending mmu_gather to the caller.
1114 *
1115 * Only addresses between `start' and `end' will be unmapped.
1116 *
1117 * The VMA list must be sorted in ascending virtual address order.
1118 *
1119 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1120 * range after unmap_vmas() returns. So the only responsibility here is to
1121 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1122 * drops the lock and schedules.
1123 */
508034a3 1124unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
1125 struct vm_area_struct *vma, unsigned long start_addr,
1126 unsigned long end_addr, unsigned long *nr_accounted,
1127 struct zap_details *details)
1128{
51c6f666 1129 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1130 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1131 int tlb_start_valid = 0;
ee39b37b 1132 unsigned long start = start_addr;
1da177e4 1133 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 1134 int fullmm = (*tlbp)->fullmm;
cddb8a5c 1135 struct mm_struct *mm = vma->vm_mm;
1da177e4 1136
cddb8a5c 1137 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 1138 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
1139 unsigned long end;
1140
1141 start = max(vma->vm_start, start_addr);
1142 if (start >= vma->vm_end)
1143 continue;
1144 end = min(vma->vm_end, end_addr);
1145 if (end <= vma->vm_start)
1146 continue;
1147
1148 if (vma->vm_flags & VM_ACCOUNT)
1149 *nr_accounted += (end - start) >> PAGE_SHIFT;
1150
34801ba9 1151 if (unlikely(is_pfn_mapping(vma)))
2ab64037 1152 untrack_pfn_vma(vma, 0, 0);
1153
1da177e4 1154 while (start != end) {
1da177e4
LT
1155 if (!tlb_start_valid) {
1156 tlb_start = start;
1157 tlb_start_valid = 1;
1158 }
1159
51c6f666 1160 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
1161 /*
1162 * It is undesirable to test vma->vm_file as it
1163 * should be non-null for valid hugetlb area.
1164 * However, vm_file will be NULL in the error
1165 * cleanup path of do_mmap_pgoff. When
1166 * hugetlbfs ->mmap method fails,
1167 * do_mmap_pgoff() nullifies vma->vm_file
1168 * before calling this function to clean up.
1169 * Since no pte has actually been setup, it is
1170 * safe to do nothing in this case.
1171 */
1172 if (vma->vm_file) {
1173 unmap_hugepage_range(vma, start, end, NULL);
1174 zap_work -= (end - start) /
a5516438 1175 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
1176 }
1177
51c6f666
RH
1178 start = end;
1179 } else
1180 start = unmap_page_range(*tlbp, vma,
1181 start, end, &zap_work, details);
1182
1183 if (zap_work > 0) {
1184 BUG_ON(start != end);
1185 break;
1da177e4
LT
1186 }
1187
1da177e4
LT
1188 tlb_finish_mmu(*tlbp, tlb_start, start);
1189
1190 if (need_resched() ||
95c354fe 1191 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 1192 if (i_mmap_lock) {
508034a3 1193 *tlbp = NULL;
1da177e4
LT
1194 goto out;
1195 }
1da177e4 1196 cond_resched();
1da177e4
LT
1197 }
1198
508034a3 1199 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 1200 tlb_start_valid = 0;
51c6f666 1201 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1202 }
1203 }
1204out:
cddb8a5c 1205 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1206 return start; /* which is now the end (or restart) address */
1da177e4
LT
1207}
1208
1209/**
1210 * zap_page_range - remove user pages in a given range
1211 * @vma: vm_area_struct holding the applicable pages
1212 * @address: starting address of pages to zap
1213 * @size: number of bytes to zap
1214 * @details: details of nonlinear truncation or shared cache invalidation
1215 */
ee39b37b 1216unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1217 unsigned long size, struct zap_details *details)
1218{
1219 struct mm_struct *mm = vma->vm_mm;
1220 struct mmu_gather *tlb;
1221 unsigned long end = address + size;
1222 unsigned long nr_accounted = 0;
1223
1da177e4 1224 lru_add_drain();
1da177e4 1225 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1226 update_hiwater_rss(mm);
508034a3
HD
1227 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1228 if (tlb)
1229 tlb_finish_mmu(tlb, address, end);
ee39b37b 1230 return end;
1da177e4
LT
1231}
1232
c627f9cc
JS
1233/**
1234 * zap_vma_ptes - remove ptes mapping the vma
1235 * @vma: vm_area_struct holding ptes to be zapped
1236 * @address: starting address of pages to zap
1237 * @size: number of bytes to zap
1238 *
1239 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1240 *
1241 * The entire address range must be fully contained within the vma.
1242 *
1243 * Returns 0 if successful.
1244 */
1245int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1246 unsigned long size)
1247{
1248 if (address < vma->vm_start || address + size > vma->vm_end ||
1249 !(vma->vm_flags & VM_PFNMAP))
1250 return -1;
1251 zap_page_range(vma, address, size, NULL);
1252 return 0;
1253}
1254EXPORT_SYMBOL_GPL(zap_vma_ptes);
1255
142762bd
JW
1256/**
1257 * follow_page - look up a page descriptor from a user-virtual address
1258 * @vma: vm_area_struct mapping @address
1259 * @address: virtual address to look up
1260 * @flags: flags modifying lookup behaviour
1261 *
1262 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1263 *
1264 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1265 * an error pointer if there is a mapping to something not represented
1266 * by a page descriptor (see also vm_normal_page()).
1da177e4 1267 */
6aab341e 1268struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1269 unsigned int flags)
1da177e4
LT
1270{
1271 pgd_t *pgd;
1272 pud_t *pud;
1273 pmd_t *pmd;
1274 pte_t *ptep, pte;
deceb6cd 1275 spinlock_t *ptl;
1da177e4 1276 struct page *page;
6aab341e 1277 struct mm_struct *mm = vma->vm_mm;
1da177e4 1278
deceb6cd
HD
1279 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1280 if (!IS_ERR(page)) {
1281 BUG_ON(flags & FOLL_GET);
1282 goto out;
1283 }
1da177e4 1284
deceb6cd 1285 page = NULL;
1da177e4
LT
1286 pgd = pgd_offset(mm, address);
1287 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1288 goto no_page_table;
1da177e4
LT
1289
1290 pud = pud_offset(pgd, address);
ceb86879 1291 if (pud_none(*pud))
deceb6cd 1292 goto no_page_table;
8a07651e 1293 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
ceb86879
AK
1294 BUG_ON(flags & FOLL_GET);
1295 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1296 goto out;
1297 }
1298 if (unlikely(pud_bad(*pud)))
1299 goto no_page_table;
1300
1da177e4 1301 pmd = pmd_offset(pud, address);
aeed5fce 1302 if (pmd_none(*pmd))
deceb6cd 1303 goto no_page_table;
71e3aac0 1304 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
deceb6cd
HD
1305 BUG_ON(flags & FOLL_GET);
1306 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1307 goto out;
deceb6cd 1308 }
71e3aac0 1309 if (pmd_trans_huge(*pmd)) {
500d65d4
AA
1310 if (flags & FOLL_SPLIT) {
1311 split_huge_page_pmd(mm, pmd);
1312 goto split_fallthrough;
1313 }
71e3aac0
AA
1314 spin_lock(&mm->page_table_lock);
1315 if (likely(pmd_trans_huge(*pmd))) {
1316 if (unlikely(pmd_trans_splitting(*pmd))) {
1317 spin_unlock(&mm->page_table_lock);
1318 wait_split_huge_page(vma->anon_vma, pmd);
1319 } else {
1320 page = follow_trans_huge_pmd(mm, address,
1321 pmd, flags);
1322 spin_unlock(&mm->page_table_lock);
1323 goto out;
1324 }
1325 } else
1326 spin_unlock(&mm->page_table_lock);
1327 /* fall through */
1328 }
500d65d4 1329split_fallthrough:
aeed5fce
HD
1330 if (unlikely(pmd_bad(*pmd)))
1331 goto no_page_table;
1332
deceb6cd 1333 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1334
1335 pte = *ptep;
deceb6cd 1336 if (!pte_present(pte))
89f5b7da 1337 goto no_page;
deceb6cd
HD
1338 if ((flags & FOLL_WRITE) && !pte_write(pte))
1339 goto unlock;
a13ea5b7 1340
6aab341e 1341 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1342 if (unlikely(!page)) {
1343 if ((flags & FOLL_DUMP) ||
62eede62 1344 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1345 goto bad_page;
1346 page = pte_page(pte);
1347 }
1da177e4 1348
deceb6cd
HD
1349 if (flags & FOLL_GET)
1350 get_page(page);
1351 if (flags & FOLL_TOUCH) {
1352 if ((flags & FOLL_WRITE) &&
1353 !pte_dirty(pte) && !PageDirty(page))
1354 set_page_dirty(page);
bd775c42
KM
1355 /*
1356 * pte_mkyoung() would be more correct here, but atomic care
1357 * is needed to avoid losing the dirty bit: it is easier to use
1358 * mark_page_accessed().
1359 */
deceb6cd
HD
1360 mark_page_accessed(page);
1361 }
110d74a9
ML
1362 if (flags & FOLL_MLOCK) {
1363 /*
1364 * The preliminary mapping check is mainly to avoid the
1365 * pointless overhead of lock_page on the ZERO_PAGE
1366 * which might bounce very badly if there is contention.
1367 *
1368 * If the page is already locked, we don't need to
1369 * handle it now - vmscan will handle it later if and
1370 * when it attempts to reclaim the page.
1371 */
1372 if (page->mapping && trylock_page(page)) {
1373 lru_add_drain(); /* push cached pages to LRU */
1374 /*
1375 * Because we lock page here and migration is
1376 * blocked by the pte's page reference, we need
1377 * only check for file-cache page truncation.
1378 */
1379 if (page->mapping)
1380 mlock_vma_page(page);
1381 unlock_page(page);
1382 }
1383 }
deceb6cd
HD
1384unlock:
1385 pte_unmap_unlock(ptep, ptl);
1da177e4 1386out:
deceb6cd 1387 return page;
1da177e4 1388
89f5b7da
LT
1389bad_page:
1390 pte_unmap_unlock(ptep, ptl);
1391 return ERR_PTR(-EFAULT);
1392
1393no_page:
1394 pte_unmap_unlock(ptep, ptl);
1395 if (!pte_none(pte))
1396 return page;
8e4b9a60 1397
deceb6cd
HD
1398no_page_table:
1399 /*
1400 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1401 * has touched so far, we don't want to allocate unnecessary pages or
1402 * page tables. Return error instead of NULL to skip handle_mm_fault,
1403 * then get_dump_page() will return NULL to leave a hole in the dump.
1404 * But we can only make this optimization where a hole would surely
1405 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1406 */
8e4b9a60
HD
1407 if ((flags & FOLL_DUMP) &&
1408 (!vma->vm_ops || !vma->vm_ops->fault))
1409 return ERR_PTR(-EFAULT);
deceb6cd 1410 return page;
1da177e4
LT
1411}
1412
0014bd99
HY
1413/**
1414 * __get_user_pages() - pin user pages in memory
1415 * @tsk: task_struct of target task
1416 * @mm: mm_struct of target mm
1417 * @start: starting user address
1418 * @nr_pages: number of pages from start to pin
1419 * @gup_flags: flags modifying pin behaviour
1420 * @pages: array that receives pointers to the pages pinned.
1421 * Should be at least nr_pages long. Or NULL, if caller
1422 * only intends to ensure the pages are faulted in.
1423 * @vmas: array of pointers to vmas corresponding to each page.
1424 * Or NULL if the caller does not require them.
1425 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1426 *
1427 * Returns number of pages pinned. This may be fewer than the number
1428 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1429 * were pinned, returns -errno. Each page returned must be released
1430 * with a put_page() call when it is finished with. vmas will only
1431 * remain valid while mmap_sem is held.
1432 *
1433 * Must be called with mmap_sem held for read or write.
1434 *
1435 * __get_user_pages walks a process's page tables and takes a reference to
1436 * each struct page that each user address corresponds to at a given
1437 * instant. That is, it takes the page that would be accessed if a user
1438 * thread accesses the given user virtual address at that instant.
1439 *
1440 * This does not guarantee that the page exists in the user mappings when
1441 * __get_user_pages returns, and there may even be a completely different
1442 * page there in some cases (eg. if mmapped pagecache has been invalidated
1443 * and subsequently re faulted). However it does guarantee that the page
1444 * won't be freed completely. And mostly callers simply care that the page
1445 * contains data that was valid *at some point in time*. Typically, an IO
1446 * or similar operation cannot guarantee anything stronger anyway because
1447 * locks can't be held over the syscall boundary.
1448 *
1449 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1450 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1451 * appropriate) must be called after the page is finished with, and
1452 * before put_page is called.
1453 *
1454 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1455 * or mmap_sem contention, and if waiting is needed to pin all pages,
1456 * *@nonblocking will be set to 0.
1457 *
1458 * In most cases, get_user_pages or get_user_pages_fast should be used
1459 * instead of __get_user_pages. __get_user_pages should be used only if
1460 * you need some special @gup_flags.
1461 */
b291f000 1462int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
58fa879e 1463 unsigned long start, int nr_pages, unsigned int gup_flags,
53a7706d
ML
1464 struct page **pages, struct vm_area_struct **vmas,
1465 int *nonblocking)
1da177e4
LT
1466{
1467 int i;
58fa879e 1468 unsigned long vm_flags;
1da177e4 1469
9d73777e 1470 if (nr_pages <= 0)
900cf086 1471 return 0;
58fa879e
HD
1472
1473 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1474
1da177e4
LT
1475 /*
1476 * Require read or write permissions.
58fa879e 1477 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1478 */
58fa879e
HD
1479 vm_flags = (gup_flags & FOLL_WRITE) ?
1480 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1481 vm_flags &= (gup_flags & FOLL_FORCE) ?
1482 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1483 i = 0;
1484
1485 do {
deceb6cd 1486 struct vm_area_struct *vma;
1da177e4
LT
1487
1488 vma = find_extend_vma(mm, start);
1489 if (!vma && in_gate_area(tsk, start)) {
1490 unsigned long pg = start & PAGE_MASK;
1491 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1492 pgd_t *pgd;
1493 pud_t *pud;
1494 pmd_t *pmd;
1495 pte_t *pte;
b291f000
NP
1496
1497 /* user gate pages are read-only */
58fa879e 1498 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1499 return i ? : -EFAULT;
1500 if (pg > TASK_SIZE)
1501 pgd = pgd_offset_k(pg);
1502 else
1503 pgd = pgd_offset_gate(mm, pg);
1504 BUG_ON(pgd_none(*pgd));
1505 pud = pud_offset(pgd, pg);
1506 BUG_ON(pud_none(*pud));
1507 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1508 if (pmd_none(*pmd))
1509 return i ? : -EFAULT;
f66055ab 1510 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4 1511 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1512 if (pte_none(*pte)) {
1513 pte_unmap(pte);
1514 return i ? : -EFAULT;
1515 }
1da177e4 1516 if (pages) {
de51257a
HD
1517 struct page *page;
1518
1519 page = vm_normal_page(gate_vma, start, *pte);
1520 if (!page) {
1521 if (!(gup_flags & FOLL_DUMP) &&
1522 is_zero_pfn(pte_pfn(*pte)))
1523 page = pte_page(*pte);
1524 else {
1525 pte_unmap(pte);
1526 return i ? : -EFAULT;
1527 }
1528 }
6aab341e 1529 pages[i] = page;
de51257a 1530 get_page(page);
1da177e4
LT
1531 }
1532 pte_unmap(pte);
1533 if (vmas)
1534 vmas[i] = gate_vma;
1535 i++;
1536 start += PAGE_SIZE;
9d73777e 1537 nr_pages--;
1da177e4
LT
1538 continue;
1539 }
1540
b291f000
NP
1541 if (!vma ||
1542 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1543 !(vm_flags & vma->vm_flags))
1da177e4
LT
1544 return i ? : -EFAULT;
1545
2a15efc9
HD
1546 if (is_vm_hugetlb_page(vma)) {
1547 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1548 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1549 continue;
1550 }
deceb6cd 1551
1da177e4 1552 do {
08ef4729 1553 struct page *page;
58fa879e 1554 unsigned int foll_flags = gup_flags;
1da177e4 1555
462e00cc 1556 /*
4779280d 1557 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1558 * pages and potentially allocating memory.
462e00cc 1559 */
1c3aff1c 1560 if (unlikely(fatal_signal_pending(current)))
4779280d 1561 return i ? i : -ERESTARTSYS;
462e00cc 1562
deceb6cd 1563 cond_resched();
6aab341e 1564 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1565 int ret;
53a7706d
ML
1566 unsigned int fault_flags = 0;
1567
1568 if (foll_flags & FOLL_WRITE)
1569 fault_flags |= FAULT_FLAG_WRITE;
1570 if (nonblocking)
1571 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
318b275f
GN
1572 if (foll_flags & FOLL_NOWAIT)
1573 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
d06063cc 1574
d26ed650 1575 ret = handle_mm_fault(mm, vma, start,
53a7706d 1576 fault_flags);
d26ed650 1577
83c54070
NP
1578 if (ret & VM_FAULT_ERROR) {
1579 if (ret & VM_FAULT_OOM)
1580 return i ? i : -ENOMEM;
69ebb83e
HY
1581 if (ret & (VM_FAULT_HWPOISON |
1582 VM_FAULT_HWPOISON_LARGE)) {
1583 if (i)
1584 return i;
1585 else if (gup_flags & FOLL_HWPOISON)
1586 return -EHWPOISON;
1587 else
1588 return -EFAULT;
1589 }
1590 if (ret & VM_FAULT_SIGBUS)
83c54070
NP
1591 return i ? i : -EFAULT;
1592 BUG();
1593 }
1594 if (ret & VM_FAULT_MAJOR)
1595 tsk->maj_flt++;
1596 else
1597 tsk->min_flt++;
1598
53a7706d 1599 if (ret & VM_FAULT_RETRY) {
318b275f
GN
1600 if (nonblocking)
1601 *nonblocking = 0;
53a7706d
ML
1602 return i;
1603 }
1604
a68d2ebc 1605 /*
83c54070
NP
1606 * The VM_FAULT_WRITE bit tells us that
1607 * do_wp_page has broken COW when necessary,
1608 * even if maybe_mkwrite decided not to set
1609 * pte_write. We can thus safely do subsequent
878b63ac
HD
1610 * page lookups as if they were reads. But only
1611 * do so when looping for pte_write is futile:
1612 * in some cases userspace may also be wanting
1613 * to write to the gotten user page, which a
1614 * read fault here might prevent (a readonly
1615 * page might get reCOWed by userspace write).
a68d2ebc 1616 */
878b63ac
HD
1617 if ((ret & VM_FAULT_WRITE) &&
1618 !(vma->vm_flags & VM_WRITE))
deceb6cd 1619 foll_flags &= ~FOLL_WRITE;
83c54070 1620
7f7bbbe5 1621 cond_resched();
1da177e4 1622 }
89f5b7da
LT
1623 if (IS_ERR(page))
1624 return i ? i : PTR_ERR(page);
1da177e4 1625 if (pages) {
08ef4729 1626 pages[i] = page;
03beb076 1627
a6f36be3 1628 flush_anon_page(vma, page, start);
08ef4729 1629 flush_dcache_page(page);
1da177e4
LT
1630 }
1631 if (vmas)
1632 vmas[i] = vma;
1633 i++;
1634 start += PAGE_SIZE;
9d73777e
PZ
1635 nr_pages--;
1636 } while (nr_pages && start < vma->vm_end);
1637 } while (nr_pages);
1da177e4
LT
1638 return i;
1639}
0014bd99 1640EXPORT_SYMBOL(__get_user_pages);
b291f000 1641
d2bf6be8
NP
1642/**
1643 * get_user_pages() - pin user pages in memory
1644 * @tsk: task_struct of target task
1645 * @mm: mm_struct of target mm
1646 * @start: starting user address
9d73777e 1647 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1648 * @write: whether pages will be written to by the caller
1649 * @force: whether to force write access even if user mapping is
1650 * readonly. This will result in the page being COWed even
1651 * in MAP_SHARED mappings. You do not want this.
1652 * @pages: array that receives pointers to the pages pinned.
1653 * Should be at least nr_pages long. Or NULL, if caller
1654 * only intends to ensure the pages are faulted in.
1655 * @vmas: array of pointers to vmas corresponding to each page.
1656 * Or NULL if the caller does not require them.
1657 *
1658 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1659 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1660 * were pinned, returns -errno. Each page returned must be released
1661 * with a put_page() call when it is finished with. vmas will only
1662 * remain valid while mmap_sem is held.
1663 *
1664 * Must be called with mmap_sem held for read or write.
1665 *
1666 * get_user_pages walks a process's page tables and takes a reference to
1667 * each struct page that each user address corresponds to at a given
1668 * instant. That is, it takes the page that would be accessed if a user
1669 * thread accesses the given user virtual address at that instant.
1670 *
1671 * This does not guarantee that the page exists in the user mappings when
1672 * get_user_pages returns, and there may even be a completely different
1673 * page there in some cases (eg. if mmapped pagecache has been invalidated
1674 * and subsequently re faulted). However it does guarantee that the page
1675 * won't be freed completely. And mostly callers simply care that the page
1676 * contains data that was valid *at some point in time*. Typically, an IO
1677 * or similar operation cannot guarantee anything stronger anyway because
1678 * locks can't be held over the syscall boundary.
1679 *
1680 * If write=0, the page must not be written to. If the page is written to,
1681 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1682 * after the page is finished with, and before put_page is called.
1683 *
1684 * get_user_pages is typically used for fewer-copy IO operations, to get a
1685 * handle on the memory by some means other than accesses via the user virtual
1686 * addresses. The pages may be submitted for DMA to devices or accessed via
1687 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1688 * use the correct cache flushing APIs.
1689 *
1690 * See also get_user_pages_fast, for performance critical applications.
1691 */
b291f000 1692int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1693 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1694 struct page **pages, struct vm_area_struct **vmas)
1695{
58fa879e 1696 int flags = FOLL_TOUCH;
b291f000 1697
58fa879e
HD
1698 if (pages)
1699 flags |= FOLL_GET;
b291f000 1700 if (write)
58fa879e 1701 flags |= FOLL_WRITE;
b291f000 1702 if (force)
58fa879e 1703 flags |= FOLL_FORCE;
b291f000 1704
53a7706d
ML
1705 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1706 NULL);
b291f000 1707}
1da177e4
LT
1708EXPORT_SYMBOL(get_user_pages);
1709
f3e8fccd
HD
1710/**
1711 * get_dump_page() - pin user page in memory while writing it to core dump
1712 * @addr: user address
1713 *
1714 * Returns struct page pointer of user page pinned for dump,
1715 * to be freed afterwards by page_cache_release() or put_page().
1716 *
1717 * Returns NULL on any kind of failure - a hole must then be inserted into
1718 * the corefile, to preserve alignment with its headers; and also returns
1719 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1720 * allowing a hole to be left in the corefile to save diskspace.
1721 *
1722 * Called without mmap_sem, but after all other threads have been killed.
1723 */
1724#ifdef CONFIG_ELF_CORE
1725struct page *get_dump_page(unsigned long addr)
1726{
1727 struct vm_area_struct *vma;
1728 struct page *page;
1729
1730 if (__get_user_pages(current, current->mm, addr, 1,
53a7706d
ML
1731 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1732 NULL) < 1)
f3e8fccd 1733 return NULL;
f3e8fccd
HD
1734 flush_cache_page(vma, addr, page_to_pfn(page));
1735 return page;
1736}
1737#endif /* CONFIG_ELF_CORE */
1738
25ca1d6c 1739pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1740 spinlock_t **ptl)
c9cfcddf
LT
1741{
1742 pgd_t * pgd = pgd_offset(mm, addr);
1743 pud_t * pud = pud_alloc(mm, pgd, addr);
1744 if (pud) {
49c91fb0 1745 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1746 if (pmd) {
1747 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1748 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1749 }
c9cfcddf
LT
1750 }
1751 return NULL;
1752}
1753
238f58d8
LT
1754/*
1755 * This is the old fallback for page remapping.
1756 *
1757 * For historical reasons, it only allows reserved pages. Only
1758 * old drivers should use this, and they needed to mark their
1759 * pages reserved for the old functions anyway.
1760 */
423bad60
NP
1761static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1762 struct page *page, pgprot_t prot)
238f58d8 1763{
423bad60 1764 struct mm_struct *mm = vma->vm_mm;
238f58d8 1765 int retval;
c9cfcddf 1766 pte_t *pte;
8a9f3ccd
BS
1767 spinlock_t *ptl;
1768
238f58d8 1769 retval = -EINVAL;
a145dd41 1770 if (PageAnon(page))
5b4e655e 1771 goto out;
238f58d8
LT
1772 retval = -ENOMEM;
1773 flush_dcache_page(page);
c9cfcddf 1774 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1775 if (!pte)
5b4e655e 1776 goto out;
238f58d8
LT
1777 retval = -EBUSY;
1778 if (!pte_none(*pte))
1779 goto out_unlock;
1780
1781 /* Ok, finally just insert the thing.. */
1782 get_page(page);
34e55232 1783 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
1784 page_add_file_rmap(page);
1785 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1786
1787 retval = 0;
8a9f3ccd
BS
1788 pte_unmap_unlock(pte, ptl);
1789 return retval;
238f58d8
LT
1790out_unlock:
1791 pte_unmap_unlock(pte, ptl);
1792out:
1793 return retval;
1794}
1795
bfa5bf6d
REB
1796/**
1797 * vm_insert_page - insert single page into user vma
1798 * @vma: user vma to map to
1799 * @addr: target user address of this page
1800 * @page: source kernel page
1801 *
a145dd41
LT
1802 * This allows drivers to insert individual pages they've allocated
1803 * into a user vma.
1804 *
1805 * The page has to be a nice clean _individual_ kernel allocation.
1806 * If you allocate a compound page, you need to have marked it as
1807 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1808 * (see split_page()).
a145dd41
LT
1809 *
1810 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1811 * took an arbitrary page protection parameter. This doesn't allow
1812 * that. Your vma protection will have to be set up correctly, which
1813 * means that if you want a shared writable mapping, you'd better
1814 * ask for a shared writable mapping!
1815 *
1816 * The page does not need to be reserved.
1817 */
423bad60
NP
1818int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1819 struct page *page)
a145dd41
LT
1820{
1821 if (addr < vma->vm_start || addr >= vma->vm_end)
1822 return -EFAULT;
1823 if (!page_count(page))
1824 return -EINVAL;
4d7672b4 1825 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1826 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1827}
e3c3374f 1828EXPORT_SYMBOL(vm_insert_page);
a145dd41 1829
423bad60
NP
1830static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1831 unsigned long pfn, pgprot_t prot)
1832{
1833 struct mm_struct *mm = vma->vm_mm;
1834 int retval;
1835 pte_t *pte, entry;
1836 spinlock_t *ptl;
1837
1838 retval = -ENOMEM;
1839 pte = get_locked_pte(mm, addr, &ptl);
1840 if (!pte)
1841 goto out;
1842 retval = -EBUSY;
1843 if (!pte_none(*pte))
1844 goto out_unlock;
1845
1846 /* Ok, finally just insert the thing.. */
1847 entry = pte_mkspecial(pfn_pte(pfn, prot));
1848 set_pte_at(mm, addr, pte, entry);
4b3073e1 1849 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1850
1851 retval = 0;
1852out_unlock:
1853 pte_unmap_unlock(pte, ptl);
1854out:
1855 return retval;
1856}
1857
e0dc0d8f
NP
1858/**
1859 * vm_insert_pfn - insert single pfn into user vma
1860 * @vma: user vma to map to
1861 * @addr: target user address of this page
1862 * @pfn: source kernel pfn
1863 *
1864 * Similar to vm_inert_page, this allows drivers to insert individual pages
1865 * they've allocated into a user vma. Same comments apply.
1866 *
1867 * This function should only be called from a vm_ops->fault handler, and
1868 * in that case the handler should return NULL.
0d71d10a
NP
1869 *
1870 * vma cannot be a COW mapping.
1871 *
1872 * As this is called only for pages that do not currently exist, we
1873 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1874 */
1875int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1876 unsigned long pfn)
e0dc0d8f 1877{
2ab64037 1878 int ret;
e4b866ed 1879 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1880 /*
1881 * Technically, architectures with pte_special can avoid all these
1882 * restrictions (same for remap_pfn_range). However we would like
1883 * consistency in testing and feature parity among all, so we should
1884 * try to keep these invariants in place for everybody.
1885 */
b379d790
JH
1886 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1887 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1888 (VM_PFNMAP|VM_MIXEDMAP));
1889 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1890 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1891
423bad60
NP
1892 if (addr < vma->vm_start || addr >= vma->vm_end)
1893 return -EFAULT;
e4b866ed 1894 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2ab64037 1895 return -EINVAL;
1896
e4b866ed 1897 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1898
1899 if (ret)
1900 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1901
1902 return ret;
423bad60
NP
1903}
1904EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1905
423bad60
NP
1906int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1907 unsigned long pfn)
1908{
1909 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1910
423bad60
NP
1911 if (addr < vma->vm_start || addr >= vma->vm_end)
1912 return -EFAULT;
e0dc0d8f 1913
423bad60
NP
1914 /*
1915 * If we don't have pte special, then we have to use the pfn_valid()
1916 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1917 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1918 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1919 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
1920 */
1921 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1922 struct page *page;
1923
1924 page = pfn_to_page(pfn);
1925 return insert_page(vma, addr, page, vma->vm_page_prot);
1926 }
1927 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1928}
423bad60 1929EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1930
1da177e4
LT
1931/*
1932 * maps a range of physical memory into the requested pages. the old
1933 * mappings are removed. any references to nonexistent pages results
1934 * in null mappings (currently treated as "copy-on-access")
1935 */
1936static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1937 unsigned long addr, unsigned long end,
1938 unsigned long pfn, pgprot_t prot)
1939{
1940 pte_t *pte;
c74df32c 1941 spinlock_t *ptl;
1da177e4 1942
c74df32c 1943 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1944 if (!pte)
1945 return -ENOMEM;
6606c3e0 1946 arch_enter_lazy_mmu_mode();
1da177e4
LT
1947 do {
1948 BUG_ON(!pte_none(*pte));
7e675137 1949 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1950 pfn++;
1951 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1952 arch_leave_lazy_mmu_mode();
c74df32c 1953 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1954 return 0;
1955}
1956
1957static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1958 unsigned long addr, unsigned long end,
1959 unsigned long pfn, pgprot_t prot)
1960{
1961 pmd_t *pmd;
1962 unsigned long next;
1963
1964 pfn -= addr >> PAGE_SHIFT;
1965 pmd = pmd_alloc(mm, pud, addr);
1966 if (!pmd)
1967 return -ENOMEM;
f66055ab 1968 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1969 do {
1970 next = pmd_addr_end(addr, end);
1971 if (remap_pte_range(mm, pmd, addr, next,
1972 pfn + (addr >> PAGE_SHIFT), prot))
1973 return -ENOMEM;
1974 } while (pmd++, addr = next, addr != end);
1975 return 0;
1976}
1977
1978static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1979 unsigned long addr, unsigned long end,
1980 unsigned long pfn, pgprot_t prot)
1981{
1982 pud_t *pud;
1983 unsigned long next;
1984
1985 pfn -= addr >> PAGE_SHIFT;
1986 pud = pud_alloc(mm, pgd, addr);
1987 if (!pud)
1988 return -ENOMEM;
1989 do {
1990 next = pud_addr_end(addr, end);
1991 if (remap_pmd_range(mm, pud, addr, next,
1992 pfn + (addr >> PAGE_SHIFT), prot))
1993 return -ENOMEM;
1994 } while (pud++, addr = next, addr != end);
1995 return 0;
1996}
1997
bfa5bf6d
REB
1998/**
1999 * remap_pfn_range - remap kernel memory to userspace
2000 * @vma: user vma to map to
2001 * @addr: target user address to start at
2002 * @pfn: physical address of kernel memory
2003 * @size: size of map area
2004 * @prot: page protection flags for this mapping
2005 *
2006 * Note: this is only safe if the mm semaphore is held when called.
2007 */
1da177e4
LT
2008int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2009 unsigned long pfn, unsigned long size, pgprot_t prot)
2010{
2011 pgd_t *pgd;
2012 unsigned long next;
2d15cab8 2013 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2014 struct mm_struct *mm = vma->vm_mm;
2015 int err;
2016
2017 /*
2018 * Physically remapped pages are special. Tell the
2019 * rest of the world about it:
2020 * VM_IO tells people not to look at these pages
2021 * (accesses can have side effects).
0b14c179
HD
2022 * VM_RESERVED is specified all over the place, because
2023 * in 2.4 it kept swapout's vma scan off this vma; but
2024 * in 2.6 the LRU scan won't even find its pages, so this
2025 * flag means no more than count its pages in reserved_vm,
2026 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
2027 * VM_PFNMAP tells the core MM that the base pages are just
2028 * raw PFN mappings, and do not have a "struct page" associated
2029 * with them.
fb155c16
LT
2030 *
2031 * There's a horrible special case to handle copy-on-write
2032 * behaviour that some programs depend on. We mark the "original"
2033 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 2034 */
4bb9c5c0 2035 if (addr == vma->vm_start && end == vma->vm_end) {
fb155c16 2036 vma->vm_pgoff = pfn;
895791da 2037 vma->vm_flags |= VM_PFN_AT_MMAP;
4bb9c5c0 2038 } else if (is_cow_mapping(vma->vm_flags))
3c8bb73a 2039 return -EINVAL;
fb155c16 2040
6aab341e 2041 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 2042
e4b866ed 2043 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
a3670613 2044 if (err) {
2045 /*
2046 * To indicate that track_pfn related cleanup is not
2047 * needed from higher level routine calling unmap_vmas
2048 */
2049 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
895791da 2050 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2ab64037 2051 return -EINVAL;
a3670613 2052 }
2ab64037 2053
1da177e4
LT
2054 BUG_ON(addr >= end);
2055 pfn -= addr >> PAGE_SHIFT;
2056 pgd = pgd_offset(mm, addr);
2057 flush_cache_range(vma, addr, end);
1da177e4
LT
2058 do {
2059 next = pgd_addr_end(addr, end);
2060 err = remap_pud_range(mm, pgd, addr, next,
2061 pfn + (addr >> PAGE_SHIFT), prot);
2062 if (err)
2063 break;
2064 } while (pgd++, addr = next, addr != end);
2ab64037 2065
2066 if (err)
2067 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2068
1da177e4
LT
2069 return err;
2070}
2071EXPORT_SYMBOL(remap_pfn_range);
2072
aee16b3c
JF
2073static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2074 unsigned long addr, unsigned long end,
2075 pte_fn_t fn, void *data)
2076{
2077 pte_t *pte;
2078 int err;
2f569afd 2079 pgtable_t token;
94909914 2080 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2081
2082 pte = (mm == &init_mm) ?
2083 pte_alloc_kernel(pmd, addr) :
2084 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2085 if (!pte)
2086 return -ENOMEM;
2087
2088 BUG_ON(pmd_huge(*pmd));
2089
38e0edb1
JF
2090 arch_enter_lazy_mmu_mode();
2091
2f569afd 2092 token = pmd_pgtable(*pmd);
aee16b3c
JF
2093
2094 do {
c36987e2 2095 err = fn(pte++, token, addr, data);
aee16b3c
JF
2096 if (err)
2097 break;
c36987e2 2098 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2099
38e0edb1
JF
2100 arch_leave_lazy_mmu_mode();
2101
aee16b3c
JF
2102 if (mm != &init_mm)
2103 pte_unmap_unlock(pte-1, ptl);
2104 return err;
2105}
2106
2107static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2108 unsigned long addr, unsigned long end,
2109 pte_fn_t fn, void *data)
2110{
2111 pmd_t *pmd;
2112 unsigned long next;
2113 int err;
2114
ceb86879
AK
2115 BUG_ON(pud_huge(*pud));
2116
aee16b3c
JF
2117 pmd = pmd_alloc(mm, pud, addr);
2118 if (!pmd)
2119 return -ENOMEM;
2120 do {
2121 next = pmd_addr_end(addr, end);
2122 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2123 if (err)
2124 break;
2125 } while (pmd++, addr = next, addr != end);
2126 return err;
2127}
2128
2129static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2130 unsigned long addr, unsigned long end,
2131 pte_fn_t fn, void *data)
2132{
2133 pud_t *pud;
2134 unsigned long next;
2135 int err;
2136
2137 pud = pud_alloc(mm, pgd, addr);
2138 if (!pud)
2139 return -ENOMEM;
2140 do {
2141 next = pud_addr_end(addr, end);
2142 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2143 if (err)
2144 break;
2145 } while (pud++, addr = next, addr != end);
2146 return err;
2147}
2148
2149/*
2150 * Scan a region of virtual memory, filling in page tables as necessary
2151 * and calling a provided function on each leaf page table.
2152 */
2153int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2154 unsigned long size, pte_fn_t fn, void *data)
2155{
2156 pgd_t *pgd;
2157 unsigned long next;
57250a5b 2158 unsigned long end = addr + size;
aee16b3c
JF
2159 int err;
2160
2161 BUG_ON(addr >= end);
2162 pgd = pgd_offset(mm, addr);
2163 do {
2164 next = pgd_addr_end(addr, end);
2165 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2166 if (err)
2167 break;
2168 } while (pgd++, addr = next, addr != end);
57250a5b 2169
aee16b3c
JF
2170 return err;
2171}
2172EXPORT_SYMBOL_GPL(apply_to_page_range);
2173
8f4e2101
HD
2174/*
2175 * handle_pte_fault chooses page fault handler according to an entry
2176 * which was read non-atomically. Before making any commitment, on
2177 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 2178 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
2179 * must check under lock before unmapping the pte and proceeding
2180 * (but do_wp_page is only called after already making such a check;
a335b2e1 2181 * and do_anonymous_page can safely check later on).
8f4e2101 2182 */
4c21e2f2 2183static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2184 pte_t *page_table, pte_t orig_pte)
2185{
2186 int same = 1;
2187#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2188 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2189 spinlock_t *ptl = pte_lockptr(mm, pmd);
2190 spin_lock(ptl);
8f4e2101 2191 same = pte_same(*page_table, orig_pte);
4c21e2f2 2192 spin_unlock(ptl);
8f4e2101
HD
2193 }
2194#endif
2195 pte_unmap(page_table);
2196 return same;
2197}
2198
9de455b2 2199static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2200{
2201 /*
2202 * If the source page was a PFN mapping, we don't have
2203 * a "struct page" for it. We do a best-effort copy by
2204 * just copying from the original user address. If that
2205 * fails, we just zero-fill it. Live with it.
2206 */
2207 if (unlikely(!src)) {
2208 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
2209 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2210
2211 /*
2212 * This really shouldn't fail, because the page is there
2213 * in the page tables. But it might just be unreadable,
2214 * in which case we just give up and fill the result with
2215 * zeroes.
2216 */
2217 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2218 clear_page(kaddr);
6aab341e 2219 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 2220 flush_dcache_page(dst);
0ed361de
NP
2221 } else
2222 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2223}
2224
1da177e4
LT
2225/*
2226 * This routine handles present pages, when users try to write
2227 * to a shared page. It is done by copying the page to a new address
2228 * and decrementing the shared-page counter for the old page.
2229 *
1da177e4
LT
2230 * Note that this routine assumes that the protection checks have been
2231 * done by the caller (the low-level page fault routine in most cases).
2232 * Thus we can safely just mark it writable once we've done any necessary
2233 * COW.
2234 *
2235 * We also mark the page dirty at this point even though the page will
2236 * change only once the write actually happens. This avoids a few races,
2237 * and potentially makes it more efficient.
2238 *
8f4e2101
HD
2239 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2240 * but allow concurrent faults), with pte both mapped and locked.
2241 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2242 */
65500d23
HD
2243static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2244 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2245 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2246 __releases(ptl)
1da177e4 2247{
e5bbe4df 2248 struct page *old_page, *new_page;
1da177e4 2249 pte_t entry;
b009c024 2250 int ret = 0;
a200ee18 2251 int page_mkwrite = 0;
d08b3851 2252 struct page *dirty_page = NULL;
1da177e4 2253
6aab341e 2254 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2255 if (!old_page) {
2256 /*
2257 * VM_MIXEDMAP !pfn_valid() case
2258 *
2259 * We should not cow pages in a shared writeable mapping.
2260 * Just mark the pages writable as we can't do any dirty
2261 * accounting on raw pfn maps.
2262 */
2263 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2264 (VM_WRITE|VM_SHARED))
2265 goto reuse;
6aab341e 2266 goto gotten;
251b97f5 2267 }
1da177e4 2268
d08b3851 2269 /*
ee6a6457
PZ
2270 * Take out anonymous pages first, anonymous shared vmas are
2271 * not dirty accountable.
d08b3851 2272 */
9a840895 2273 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2274 if (!trylock_page(old_page)) {
2275 page_cache_get(old_page);
2276 pte_unmap_unlock(page_table, ptl);
2277 lock_page(old_page);
2278 page_table = pte_offset_map_lock(mm, pmd, address,
2279 &ptl);
2280 if (!pte_same(*page_table, orig_pte)) {
2281 unlock_page(old_page);
ab967d86
HD
2282 goto unlock;
2283 }
2284 page_cache_release(old_page);
ee6a6457 2285 }
b009c024 2286 if (reuse_swap_page(old_page)) {
c44b6743
RR
2287 /*
2288 * The page is all ours. Move it to our anon_vma so
2289 * the rmap code will not search our parent or siblings.
2290 * Protected against the rmap code by the page lock.
2291 */
2292 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2293 unlock_page(old_page);
2294 goto reuse;
2295 }
ab967d86 2296 unlock_page(old_page);
ee6a6457 2297 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2298 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2299 /*
2300 * Only catch write-faults on shared writable pages,
2301 * read-only shared pages can get COWed by
2302 * get_user_pages(.write=1, .force=1).
2303 */
9637a5ef 2304 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2305 struct vm_fault vmf;
2306 int tmp;
2307
2308 vmf.virtual_address = (void __user *)(address &
2309 PAGE_MASK);
2310 vmf.pgoff = old_page->index;
2311 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2312 vmf.page = old_page;
2313
9637a5ef
DH
2314 /*
2315 * Notify the address space that the page is about to
2316 * become writable so that it can prohibit this or wait
2317 * for the page to get into an appropriate state.
2318 *
2319 * We do this without the lock held, so that it can
2320 * sleep if it needs to.
2321 */
2322 page_cache_get(old_page);
2323 pte_unmap_unlock(page_table, ptl);
2324
c2ec175c
NP
2325 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2326 if (unlikely(tmp &
2327 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2328 ret = tmp;
9637a5ef 2329 goto unwritable_page;
c2ec175c 2330 }
b827e496
NP
2331 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2332 lock_page(old_page);
2333 if (!old_page->mapping) {
2334 ret = 0; /* retry the fault */
2335 unlock_page(old_page);
2336 goto unwritable_page;
2337 }
2338 } else
2339 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2340
9637a5ef
DH
2341 /*
2342 * Since we dropped the lock we need to revalidate
2343 * the PTE as someone else may have changed it. If
2344 * they did, we just return, as we can count on the
2345 * MMU to tell us if they didn't also make it writable.
2346 */
2347 page_table = pte_offset_map_lock(mm, pmd, address,
2348 &ptl);
b827e496
NP
2349 if (!pte_same(*page_table, orig_pte)) {
2350 unlock_page(old_page);
9637a5ef 2351 goto unlock;
b827e496 2352 }
a200ee18
PZ
2353
2354 page_mkwrite = 1;
1da177e4 2355 }
d08b3851
PZ
2356 dirty_page = old_page;
2357 get_page(dirty_page);
9637a5ef 2358
251b97f5 2359reuse:
9637a5ef
DH
2360 flush_cache_page(vma, address, pte_pfn(orig_pte));
2361 entry = pte_mkyoung(orig_pte);
2362 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2363 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2364 update_mmu_cache(vma, address, page_table);
72ddc8f7 2365 pte_unmap_unlock(page_table, ptl);
9637a5ef 2366 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2367
2368 if (!dirty_page)
2369 return ret;
2370
2371 /*
2372 * Yes, Virginia, this is actually required to prevent a race
2373 * with clear_page_dirty_for_io() from clearing the page dirty
2374 * bit after it clear all dirty ptes, but before a racing
2375 * do_wp_page installs a dirty pte.
2376 *
a335b2e1 2377 * __do_fault is protected similarly.
72ddc8f7
ML
2378 */
2379 if (!page_mkwrite) {
2380 wait_on_page_locked(dirty_page);
2381 set_page_dirty_balance(dirty_page, page_mkwrite);
2382 }
2383 put_page(dirty_page);
2384 if (page_mkwrite) {
2385 struct address_space *mapping = dirty_page->mapping;
2386
2387 set_page_dirty(dirty_page);
2388 unlock_page(dirty_page);
2389 page_cache_release(dirty_page);
2390 if (mapping) {
2391 /*
2392 * Some device drivers do not set page.mapping
2393 * but still dirty their pages
2394 */
2395 balance_dirty_pages_ratelimited(mapping);
2396 }
2397 }
2398
2399 /* file_update_time outside page_lock */
2400 if (vma->vm_file)
2401 file_update_time(vma->vm_file);
2402
2403 return ret;
1da177e4 2404 }
1da177e4
LT
2405
2406 /*
2407 * Ok, we need to copy. Oh, well..
2408 */
b5810039 2409 page_cache_get(old_page);
920fc356 2410gotten:
8f4e2101 2411 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2412
2413 if (unlikely(anon_vma_prepare(vma)))
65500d23 2414 goto oom;
a13ea5b7 2415
62eede62 2416 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2417 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2418 if (!new_page)
2419 goto oom;
2420 } else {
2421 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2422 if (!new_page)
2423 goto oom;
2424 cow_user_page(new_page, old_page, address, vma);
2425 }
2426 __SetPageUptodate(new_page);
2427
2c26fdd7 2428 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2429 goto oom_free_new;
2430
1da177e4
LT
2431 /*
2432 * Re-check the pte - we dropped the lock
2433 */
8f4e2101 2434 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2435 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2436 if (old_page) {
920fc356 2437 if (!PageAnon(old_page)) {
34e55232
KH
2438 dec_mm_counter_fast(mm, MM_FILEPAGES);
2439 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2440 }
2441 } else
34e55232 2442 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2443 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2444 entry = mk_pte(new_page, vma->vm_page_prot);
2445 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2446 /*
2447 * Clear the pte entry and flush it first, before updating the
2448 * pte with the new entry. This will avoid a race condition
2449 * seen in the presence of one thread doing SMC and another
2450 * thread doing COW.
2451 */
828502d3 2452 ptep_clear_flush(vma, address, page_table);
9617d95e 2453 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2454 /*
2455 * We call the notify macro here because, when using secondary
2456 * mmu page tables (such as kvm shadow page tables), we want the
2457 * new page to be mapped directly into the secondary page table.
2458 */
2459 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2460 update_mmu_cache(vma, address, page_table);
945754a1
NP
2461 if (old_page) {
2462 /*
2463 * Only after switching the pte to the new page may
2464 * we remove the mapcount here. Otherwise another
2465 * process may come and find the rmap count decremented
2466 * before the pte is switched to the new page, and
2467 * "reuse" the old page writing into it while our pte
2468 * here still points into it and can be read by other
2469 * threads.
2470 *
2471 * The critical issue is to order this
2472 * page_remove_rmap with the ptp_clear_flush above.
2473 * Those stores are ordered by (if nothing else,)
2474 * the barrier present in the atomic_add_negative
2475 * in page_remove_rmap.
2476 *
2477 * Then the TLB flush in ptep_clear_flush ensures that
2478 * no process can access the old page before the
2479 * decremented mapcount is visible. And the old page
2480 * cannot be reused until after the decremented
2481 * mapcount is visible. So transitively, TLBs to
2482 * old page will be flushed before it can be reused.
2483 */
edc315fd 2484 page_remove_rmap(old_page);
945754a1
NP
2485 }
2486
1da177e4
LT
2487 /* Free the old page.. */
2488 new_page = old_page;
f33ea7f4 2489 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2490 } else
2491 mem_cgroup_uncharge_page(new_page);
2492
920fc356
HD
2493 if (new_page)
2494 page_cache_release(new_page);
65500d23 2495unlock:
8f4e2101 2496 pte_unmap_unlock(page_table, ptl);
e15f8c01
ML
2497 if (old_page) {
2498 /*
2499 * Don't let another task, with possibly unlocked vma,
2500 * keep the mlocked page.
2501 */
2502 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2503 lock_page(old_page); /* LRU manipulation */
2504 munlock_vma_page(old_page);
2505 unlock_page(old_page);
2506 }
2507 page_cache_release(old_page);
2508 }
f33ea7f4 2509 return ret;
8a9f3ccd 2510oom_free_new:
6dbf6d3b 2511 page_cache_release(new_page);
65500d23 2512oom:
b827e496
NP
2513 if (old_page) {
2514 if (page_mkwrite) {
2515 unlock_page(old_page);
2516 page_cache_release(old_page);
2517 }
920fc356 2518 page_cache_release(old_page);
b827e496 2519 }
1da177e4 2520 return VM_FAULT_OOM;
9637a5ef
DH
2521
2522unwritable_page:
2523 page_cache_release(old_page);
c2ec175c 2524 return ret;
1da177e4
LT
2525}
2526
2527/*
2528 * Helper functions for unmap_mapping_range().
2529 *
2530 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2531 *
2532 * We have to restart searching the prio_tree whenever we drop the lock,
2533 * since the iterator is only valid while the lock is held, and anyway
2534 * a later vma might be split and reinserted earlier while lock dropped.
2535 *
2536 * The list of nonlinear vmas could be handled more efficiently, using
2537 * a placeholder, but handle it in the same way until a need is shown.
2538 * It is important to search the prio_tree before nonlinear list: a vma
2539 * may become nonlinear and be shifted from prio_tree to nonlinear list
2540 * while the lock is dropped; but never shifted from list to prio_tree.
2541 *
2542 * In order to make forward progress despite restarting the search,
2543 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2544 * quickly skip it next time around. Since the prio_tree search only
2545 * shows us those vmas affected by unmapping the range in question, we
2546 * can't efficiently keep all vmas in step with mapping->truncate_count:
2547 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2548 * mapping->truncate_count and vma->vm_truncate_count are protected by
2549 * i_mmap_lock.
2550 *
2551 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2552 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2553 * and restart from that address when we reach that vma again. It might
2554 * have been split or merged, shrunk or extended, but never shifted: so
2555 * restart_addr remains valid so long as it remains in the vma's range.
2556 * unmap_mapping_range forces truncate_count to leap over page-aligned
2557 * values so we can save vma's restart_addr in its truncate_count field.
2558 */
2559#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2560
2561static void reset_vma_truncate_counts(struct address_space *mapping)
2562{
2563 struct vm_area_struct *vma;
2564 struct prio_tree_iter iter;
2565
2566 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2567 vma->vm_truncate_count = 0;
2568 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2569 vma->vm_truncate_count = 0;
2570}
2571
2572static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2573 unsigned long start_addr, unsigned long end_addr,
2574 struct zap_details *details)
2575{
2576 unsigned long restart_addr;
2577 int need_break;
2578
d00806b1
NP
2579 /*
2580 * files that support invalidating or truncating portions of the
d0217ac0 2581 * file from under mmaped areas must have their ->fault function
83c54070
NP
2582 * return a locked page (and set VM_FAULT_LOCKED in the return).
2583 * This provides synchronisation against concurrent unmapping here.
d00806b1 2584 */
d00806b1 2585
1da177e4
LT
2586again:
2587 restart_addr = vma->vm_truncate_count;
2588 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2589 start_addr = restart_addr;
2590 if (start_addr >= end_addr) {
2591 /* Top of vma has been split off since last time */
2592 vma->vm_truncate_count = details->truncate_count;
2593 return 0;
2594 }
2595 }
2596
ee39b37b
HD
2597 restart_addr = zap_page_range(vma, start_addr,
2598 end_addr - start_addr, details);
95c354fe 2599 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2600
ee39b37b 2601 if (restart_addr >= end_addr) {
1da177e4
LT
2602 /* We have now completed this vma: mark it so */
2603 vma->vm_truncate_count = details->truncate_count;
2604 if (!need_break)
2605 return 0;
2606 } else {
2607 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2608 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2609 if (!need_break)
2610 goto again;
2611 }
2612
2613 spin_unlock(details->i_mmap_lock);
2614 cond_resched();
2615 spin_lock(details->i_mmap_lock);
2616 return -EINTR;
2617}
2618
2619static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2620 struct zap_details *details)
2621{
2622 struct vm_area_struct *vma;
2623 struct prio_tree_iter iter;
2624 pgoff_t vba, vea, zba, zea;
2625
2626restart:
2627 vma_prio_tree_foreach(vma, &iter, root,
2628 details->first_index, details->last_index) {
2629 /* Skip quickly over those we have already dealt with */
2630 if (vma->vm_truncate_count == details->truncate_count)
2631 continue;
2632
2633 vba = vma->vm_pgoff;
2634 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2635 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2636 zba = details->first_index;
2637 if (zba < vba)
2638 zba = vba;
2639 zea = details->last_index;
2640 if (zea > vea)
2641 zea = vea;
2642
2643 if (unmap_mapping_range_vma(vma,
2644 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2645 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2646 details) < 0)
2647 goto restart;
2648 }
2649}
2650
2651static inline void unmap_mapping_range_list(struct list_head *head,
2652 struct zap_details *details)
2653{
2654 struct vm_area_struct *vma;
2655
2656 /*
2657 * In nonlinear VMAs there is no correspondence between virtual address
2658 * offset and file offset. So we must perform an exhaustive search
2659 * across *all* the pages in each nonlinear VMA, not just the pages
2660 * whose virtual address lies outside the file truncation point.
2661 */
2662restart:
2663 list_for_each_entry(vma, head, shared.vm_set.list) {
2664 /* Skip quickly over those we have already dealt with */
2665 if (vma->vm_truncate_count == details->truncate_count)
2666 continue;
2667 details->nonlinear_vma = vma;
2668 if (unmap_mapping_range_vma(vma, vma->vm_start,
2669 vma->vm_end, details) < 0)
2670 goto restart;
2671 }
2672}
2673
2674/**
72fd4a35 2675 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2676 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2677 * @holebegin: byte in first page to unmap, relative to the start of
2678 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2679 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2680 * must keep the partial page. In contrast, we must get rid of
2681 * partial pages.
2682 * @holelen: size of prospective hole in bytes. This will be rounded
2683 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2684 * end of the file.
2685 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2686 * but 0 when invalidating pagecache, don't throw away private data.
2687 */
2688void unmap_mapping_range(struct address_space *mapping,
2689 loff_t const holebegin, loff_t const holelen, int even_cows)
2690{
2691 struct zap_details details;
2692 pgoff_t hba = holebegin >> PAGE_SHIFT;
2693 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2694
2695 /* Check for overflow. */
2696 if (sizeof(holelen) > sizeof(hlen)) {
2697 long long holeend =
2698 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2699 if (holeend & ~(long long)ULONG_MAX)
2700 hlen = ULONG_MAX - hba + 1;
2701 }
2702
2703 details.check_mapping = even_cows? NULL: mapping;
2704 details.nonlinear_vma = NULL;
2705 details.first_index = hba;
2706 details.last_index = hba + hlen - 1;
2707 if (details.last_index < details.first_index)
2708 details.last_index = ULONG_MAX;
2709 details.i_mmap_lock = &mapping->i_mmap_lock;
2710
2aa15890 2711 mutex_lock(&mapping->unmap_mutex);
1da177e4
LT
2712 spin_lock(&mapping->i_mmap_lock);
2713
d00806b1 2714 /* Protect against endless unmapping loops */
1da177e4 2715 mapping->truncate_count++;
1da177e4
LT
2716 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2717 if (mapping->truncate_count == 0)
2718 reset_vma_truncate_counts(mapping);
2719 mapping->truncate_count++;
2720 }
2721 details.truncate_count = mapping->truncate_count;
2722
2723 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2724 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2725 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2726 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2727 spin_unlock(&mapping->i_mmap_lock);
2aa15890 2728 mutex_unlock(&mapping->unmap_mutex);
1da177e4
LT
2729}
2730EXPORT_SYMBOL(unmap_mapping_range);
2731
f6b3ec23
BP
2732int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2733{
2734 struct address_space *mapping = inode->i_mapping;
2735
2736 /*
2737 * If the underlying filesystem is not going to provide
2738 * a way to truncate a range of blocks (punch a hole) -
2739 * we should return failure right now.
2740 */
acfa4380 2741 if (!inode->i_op->truncate_range)
f6b3ec23
BP
2742 return -ENOSYS;
2743
1b1dcc1b 2744 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2745 down_write(&inode->i_alloc_sem);
2746 unmap_mapping_range(mapping, offset, (end - offset), 1);
2747 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2748 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2749 inode->i_op->truncate_range(inode, offset, end);
2750 up_write(&inode->i_alloc_sem);
1b1dcc1b 2751 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2752
2753 return 0;
2754}
f6b3ec23 2755
1da177e4 2756/*
8f4e2101
HD
2757 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2758 * but allow concurrent faults), and pte mapped but not yet locked.
2759 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2760 */
65500d23
HD
2761static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2762 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2763 unsigned int flags, pte_t orig_pte)
1da177e4 2764{
8f4e2101 2765 spinlock_t *ptl;
4969c119 2766 struct page *page, *swapcache = NULL;
65500d23 2767 swp_entry_t entry;
1da177e4 2768 pte_t pte;
d065bd81 2769 int locked;
7a81b88c 2770 struct mem_cgroup *ptr = NULL;
ad8c2ee8 2771 int exclusive = 0;
83c54070 2772 int ret = 0;
1da177e4 2773
4c21e2f2 2774 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2775 goto out;
65500d23
HD
2776
2777 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2778 if (unlikely(non_swap_entry(entry))) {
2779 if (is_migration_entry(entry)) {
2780 migration_entry_wait(mm, pmd, address);
2781 } else if (is_hwpoison_entry(entry)) {
2782 ret = VM_FAULT_HWPOISON;
2783 } else {
2784 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2785 ret = VM_FAULT_SIGBUS;
d1737fdb 2786 }
0697212a
CL
2787 goto out;
2788 }
0ff92245 2789 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2790 page = lookup_swap_cache(entry);
2791 if (!page) {
a5c9b696 2792 grab_swap_token(mm); /* Contend for token _before_ read-in */
02098fea
HD
2793 page = swapin_readahead(entry,
2794 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2795 if (!page) {
2796 /*
8f4e2101
HD
2797 * Back out if somebody else faulted in this pte
2798 * while we released the pte lock.
1da177e4 2799 */
8f4e2101 2800 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2801 if (likely(pte_same(*page_table, orig_pte)))
2802 ret = VM_FAULT_OOM;
0ff92245 2803 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2804 goto unlock;
1da177e4
LT
2805 }
2806
2807 /* Had to read the page from swap area: Major fault */
2808 ret = VM_FAULT_MAJOR;
f8891e5e 2809 count_vm_event(PGMAJFAULT);
d1737fdb 2810 } else if (PageHWPoison(page)) {
71f72525
WF
2811 /*
2812 * hwpoisoned dirty swapcache pages are kept for killing
2813 * owner processes (which may be unknown at hwpoison time)
2814 */
d1737fdb
AK
2815 ret = VM_FAULT_HWPOISON;
2816 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2817 goto out_release;
1da177e4
LT
2818 }
2819
d065bd81 2820 locked = lock_page_or_retry(page, mm, flags);
073e587e 2821 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2822 if (!locked) {
2823 ret |= VM_FAULT_RETRY;
2824 goto out_release;
2825 }
073e587e 2826
4969c119 2827 /*
31c4a3d3
HD
2828 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2829 * release the swapcache from under us. The page pin, and pte_same
2830 * test below, are not enough to exclude that. Even if it is still
2831 * swapcache, we need to check that the page's swap has not changed.
4969c119 2832 */
31c4a3d3 2833 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2834 goto out_page;
2835
2836 if (ksm_might_need_to_copy(page, vma, address)) {
2837 swapcache = page;
2838 page = ksm_does_need_to_copy(page, vma, address);
2839
2840 if (unlikely(!page)) {
2841 ret = VM_FAULT_OOM;
2842 page = swapcache;
2843 swapcache = NULL;
2844 goto out_page;
2845 }
5ad64688
HD
2846 }
2847
2c26fdd7 2848 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2849 ret = VM_FAULT_OOM;
bc43f75c 2850 goto out_page;
8a9f3ccd
BS
2851 }
2852
1da177e4 2853 /*
8f4e2101 2854 * Back out if somebody else already faulted in this pte.
1da177e4 2855 */
8f4e2101 2856 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2857 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2858 goto out_nomap;
b8107480
KK
2859
2860 if (unlikely(!PageUptodate(page))) {
2861 ret = VM_FAULT_SIGBUS;
2862 goto out_nomap;
1da177e4
LT
2863 }
2864
8c7c6e34
KH
2865 /*
2866 * The page isn't present yet, go ahead with the fault.
2867 *
2868 * Be careful about the sequence of operations here.
2869 * To get its accounting right, reuse_swap_page() must be called
2870 * while the page is counted on swap but not yet in mapcount i.e.
2871 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2872 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2873 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2874 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2875 * in page->private. In this case, a record in swap_cgroup is silently
2876 * discarded at swap_free().
8c7c6e34 2877 */
1da177e4 2878
34e55232 2879 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2880 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2881 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2882 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2883 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2884 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2885 ret |= VM_FAULT_WRITE;
ad8c2ee8 2886 exclusive = 1;
1da177e4 2887 }
1da177e4
LT
2888 flush_icache_page(vma, page);
2889 set_pte_at(mm, address, page_table, pte);
ad8c2ee8 2890 do_page_add_anon_rmap(page, vma, address, exclusive);
03f3c433
KH
2891 /* It's better to call commit-charge after rmap is established */
2892 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 2893
c475a8ab 2894 swap_free(entry);
b291f000 2895 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2896 try_to_free_swap(page);
c475a8ab 2897 unlock_page(page);
4969c119
AA
2898 if (swapcache) {
2899 /*
2900 * Hold the lock to avoid the swap entry to be reused
2901 * until we take the PT lock for the pte_same() check
2902 * (to avoid false positives from pte_same). For
2903 * further safety release the lock after the swap_free
2904 * so that the swap count won't change under a
2905 * parallel locked swapcache.
2906 */
2907 unlock_page(swapcache);
2908 page_cache_release(swapcache);
2909 }
c475a8ab 2910
30c9f3a9 2911 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2912 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2913 if (ret & VM_FAULT_ERROR)
2914 ret &= VM_FAULT_ERROR;
1da177e4
LT
2915 goto out;
2916 }
2917
2918 /* No need to invalidate - it was non-present before */
4b3073e1 2919 update_mmu_cache(vma, address, page_table);
65500d23 2920unlock:
8f4e2101 2921 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2922out:
2923 return ret;
b8107480 2924out_nomap:
7a81b88c 2925 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 2926 pte_unmap_unlock(page_table, ptl);
bc43f75c 2927out_page:
b8107480 2928 unlock_page(page);
4779cb31 2929out_release:
b8107480 2930 page_cache_release(page);
4969c119
AA
2931 if (swapcache) {
2932 unlock_page(swapcache);
2933 page_cache_release(swapcache);
2934 }
65500d23 2935 return ret;
1da177e4
LT
2936}
2937
320b2b8d 2938/*
8ca3eb08
LT
2939 * This is like a special single-page "expand_{down|up}wards()",
2940 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2941 * doesn't hit another vma.
320b2b8d
LT
2942 */
2943static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2944{
2945 address &= PAGE_MASK;
2946 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2947 struct vm_area_struct *prev = vma->vm_prev;
2948
2949 /*
2950 * Is there a mapping abutting this one below?
2951 *
2952 * That's only ok if it's the same stack mapping
2953 * that has gotten split..
2954 */
2955 if (prev && prev->vm_end == address)
2956 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2957
0e8e50e2 2958 expand_stack(vma, address - PAGE_SIZE);
320b2b8d 2959 }
8ca3eb08
LT
2960 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2961 struct vm_area_struct *next = vma->vm_next;
2962
2963 /* As VM_GROWSDOWN but s/below/above/ */
2964 if (next && next->vm_start == address + PAGE_SIZE)
2965 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2966
2967 expand_upwards(vma, address + PAGE_SIZE);
2968 }
320b2b8d
LT
2969 return 0;
2970}
2971
1da177e4 2972/*
8f4e2101
HD
2973 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2974 * but allow concurrent faults), and pte mapped but not yet locked.
2975 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2976 */
65500d23
HD
2977static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2978 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2979 unsigned int flags)
1da177e4 2980{
8f4e2101
HD
2981 struct page *page;
2982 spinlock_t *ptl;
1da177e4 2983 pte_t entry;
1da177e4 2984
11ac5524
LT
2985 pte_unmap(page_table);
2986
2987 /* Check if we need to add a guard page to the stack */
2988 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
2989 return VM_FAULT_SIGBUS;
2990
11ac5524 2991 /* Use the zero-page for reads */
62eede62
HD
2992 if (!(flags & FAULT_FLAG_WRITE)) {
2993 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2994 vma->vm_page_prot));
11ac5524 2995 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
2996 if (!pte_none(*page_table))
2997 goto unlock;
2998 goto setpte;
2999 }
3000
557ed1fa 3001 /* Allocate our own private page. */
557ed1fa
NP
3002 if (unlikely(anon_vma_prepare(vma)))
3003 goto oom;
3004 page = alloc_zeroed_user_highpage_movable(vma, address);
3005 if (!page)
3006 goto oom;
0ed361de 3007 __SetPageUptodate(page);
8f4e2101 3008
2c26fdd7 3009 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
3010 goto oom_free_page;
3011
557ed1fa 3012 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3013 if (vma->vm_flags & VM_WRITE)
3014 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3015
557ed1fa 3016 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 3017 if (!pte_none(*page_table))
557ed1fa 3018 goto release;
9ba69294 3019
34e55232 3020 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 3021 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 3022setpte:
65500d23 3023 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
3024
3025 /* No need to invalidate - it was non-present before */
4b3073e1 3026 update_mmu_cache(vma, address, page_table);
65500d23 3027unlock:
8f4e2101 3028 pte_unmap_unlock(page_table, ptl);
83c54070 3029 return 0;
8f4e2101 3030release:
8a9f3ccd 3031 mem_cgroup_uncharge_page(page);
8f4e2101
HD
3032 page_cache_release(page);
3033 goto unlock;
8a9f3ccd 3034oom_free_page:
6dbf6d3b 3035 page_cache_release(page);
65500d23 3036oom:
1da177e4
LT
3037 return VM_FAULT_OOM;
3038}
3039
3040/*
54cb8821 3041 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 3042 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
3043 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3044 * the next page fault.
1da177e4
LT
3045 *
3046 * As this is called only for pages that do not currently exist, we
3047 * do not need to flush old virtual caches or the TLB.
3048 *
8f4e2101 3049 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 3050 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 3051 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3052 */
54cb8821 3053static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3054 unsigned long address, pmd_t *pmd,
54cb8821 3055 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3056{
16abfa08 3057 pte_t *page_table;
8f4e2101 3058 spinlock_t *ptl;
d0217ac0 3059 struct page *page;
1da177e4 3060 pte_t entry;
1da177e4 3061 int anon = 0;
5b4e655e 3062 int charged = 0;
d08b3851 3063 struct page *dirty_page = NULL;
d0217ac0
NP
3064 struct vm_fault vmf;
3065 int ret;
a200ee18 3066 int page_mkwrite = 0;
54cb8821 3067
d0217ac0
NP
3068 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3069 vmf.pgoff = pgoff;
3070 vmf.flags = flags;
3071 vmf.page = NULL;
1da177e4 3072
3c18ddd1 3073 ret = vma->vm_ops->fault(vma, &vmf);
d065bd81
ML
3074 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3075 VM_FAULT_RETRY)))
3c18ddd1 3076 return ret;
1da177e4 3077
a3b947ea
AK
3078 if (unlikely(PageHWPoison(vmf.page))) {
3079 if (ret & VM_FAULT_LOCKED)
3080 unlock_page(vmf.page);
3081 return VM_FAULT_HWPOISON;
3082 }
3083
d00806b1 3084 /*
d0217ac0 3085 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
3086 * locked.
3087 */
83c54070 3088 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 3089 lock_page(vmf.page);
54cb8821 3090 else
d0217ac0 3091 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 3092
1da177e4
LT
3093 /*
3094 * Should we do an early C-O-W break?
3095 */
d0217ac0 3096 page = vmf.page;
54cb8821 3097 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 3098 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 3099 anon = 1;
d00806b1 3100 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 3101 ret = VM_FAULT_OOM;
54cb8821 3102 goto out;
d00806b1 3103 }
83c54070
NP
3104 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3105 vma, address);
d00806b1 3106 if (!page) {
d0217ac0 3107 ret = VM_FAULT_OOM;
54cb8821 3108 goto out;
d00806b1 3109 }
2c26fdd7 3110 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
5b4e655e
KH
3111 ret = VM_FAULT_OOM;
3112 page_cache_release(page);
3113 goto out;
3114 }
3115 charged = 1;
d0217ac0 3116 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 3117 __SetPageUptodate(page);
9637a5ef 3118 } else {
54cb8821
NP
3119 /*
3120 * If the page will be shareable, see if the backing
9637a5ef 3121 * address space wants to know that the page is about
54cb8821
NP
3122 * to become writable
3123 */
69676147 3124 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
3125 int tmp;
3126
69676147 3127 unlock_page(page);
b827e496 3128 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
3129 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3130 if (unlikely(tmp &
3131 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3132 ret = tmp;
b827e496 3133 goto unwritable_page;
d0217ac0 3134 }
b827e496
NP
3135 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3136 lock_page(page);
3137 if (!page->mapping) {
3138 ret = 0; /* retry the fault */
3139 unlock_page(page);
3140 goto unwritable_page;
3141 }
3142 } else
3143 VM_BUG_ON(!PageLocked(page));
a200ee18 3144 page_mkwrite = 1;
9637a5ef
DH
3145 }
3146 }
54cb8821 3147
1da177e4
LT
3148 }
3149
8f4e2101 3150 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3151
3152 /*
3153 * This silly early PAGE_DIRTY setting removes a race
3154 * due to the bad i386 page protection. But it's valid
3155 * for other architectures too.
3156 *
30c9f3a9 3157 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
3158 * an exclusive copy of the page, or this is a shared mapping,
3159 * so we can make it writable and dirty to avoid having to
3160 * handle that later.
3161 */
3162 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 3163 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
3164 flush_icache_page(vma, page);
3165 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 3166 if (flags & FAULT_FLAG_WRITE)
1da177e4 3167 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 3168 if (anon) {
34e55232 3169 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 3170 page_add_new_anon_rmap(page, vma, address);
f57e88a8 3171 } else {
34e55232 3172 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 3173 page_add_file_rmap(page);
54cb8821 3174 if (flags & FAULT_FLAG_WRITE) {
d00806b1 3175 dirty_page = page;
d08b3851
PZ
3176 get_page(dirty_page);
3177 }
4294621f 3178 }
64d6519d 3179 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
3180
3181 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 3182 update_mmu_cache(vma, address, page_table);
1da177e4 3183 } else {
5b4e655e
KH
3184 if (charged)
3185 mem_cgroup_uncharge_page(page);
d00806b1
NP
3186 if (anon)
3187 page_cache_release(page);
3188 else
54cb8821 3189 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
3190 }
3191
8f4e2101 3192 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
3193
3194out:
b827e496
NP
3195 if (dirty_page) {
3196 struct address_space *mapping = page->mapping;
8f7b3d15 3197
b827e496
NP
3198 if (set_page_dirty(dirty_page))
3199 page_mkwrite = 1;
3200 unlock_page(dirty_page);
d08b3851 3201 put_page(dirty_page);
b827e496
NP
3202 if (page_mkwrite && mapping) {
3203 /*
3204 * Some device drivers do not set page.mapping but still
3205 * dirty their pages
3206 */
3207 balance_dirty_pages_ratelimited(mapping);
3208 }
3209
3210 /* file_update_time outside page_lock */
3211 if (vma->vm_file)
3212 file_update_time(vma->vm_file);
3213 } else {
3214 unlock_page(vmf.page);
3215 if (anon)
3216 page_cache_release(vmf.page);
d08b3851 3217 }
d00806b1 3218
83c54070 3219 return ret;
b827e496
NP
3220
3221unwritable_page:
3222 page_cache_release(page);
3223 return ret;
54cb8821 3224}
d00806b1 3225
54cb8821
NP
3226static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3227 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3228 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3229{
3230 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3231 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3232
16abfa08
HD
3233 pte_unmap(page_table);
3234 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3235}
3236
1da177e4
LT
3237/*
3238 * Fault of a previously existing named mapping. Repopulate the pte
3239 * from the encoded file_pte if possible. This enables swappable
3240 * nonlinear vmas.
8f4e2101
HD
3241 *
3242 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3243 * but allow concurrent faults), and pte mapped but not yet locked.
3244 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3245 */
d0217ac0 3246static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3247 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3248 unsigned int flags, pte_t orig_pte)
1da177e4 3249{
65500d23 3250 pgoff_t pgoff;
1da177e4 3251
30c9f3a9
LT
3252 flags |= FAULT_FLAG_NONLINEAR;
3253
4c21e2f2 3254 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3255 return 0;
1da177e4 3256
2509ef26 3257 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3258 /*
3259 * Page table corrupted: show pte and kill process.
3260 */
3dc14741 3261 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3262 return VM_FAULT_SIGBUS;
65500d23 3263 }
65500d23
HD
3264
3265 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3266 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3267}
3268
3269/*
3270 * These routines also need to handle stuff like marking pages dirty
3271 * and/or accessed for architectures that don't do it in hardware (most
3272 * RISC architectures). The early dirtying is also good on the i386.
3273 *
3274 * There is also a hook called "update_mmu_cache()" that architectures
3275 * with external mmu caches can use to update those (ie the Sparc or
3276 * PowerPC hashed page tables that act as extended TLBs).
3277 *
c74df32c
HD
3278 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3279 * but allow concurrent faults), and pte mapped but not yet locked.
3280 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3281 */
71e3aac0
AA
3282int handle_pte_fault(struct mm_struct *mm,
3283 struct vm_area_struct *vma, unsigned long address,
3284 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3285{
3286 pte_t entry;
8f4e2101 3287 spinlock_t *ptl;
1da177e4 3288
8dab5241 3289 entry = *pte;
1da177e4 3290 if (!pte_present(entry)) {
65500d23 3291 if (pte_none(entry)) {
f4b81804 3292 if (vma->vm_ops) {
3c18ddd1 3293 if (likely(vma->vm_ops->fault))
54cb8821 3294 return do_linear_fault(mm, vma, address,
30c9f3a9 3295 pte, pmd, flags, entry);
f4b81804
JS
3296 }
3297 return do_anonymous_page(mm, vma, address,
30c9f3a9 3298 pte, pmd, flags);
65500d23 3299 }
1da177e4 3300 if (pte_file(entry))
d0217ac0 3301 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3302 pte, pmd, flags, entry);
65500d23 3303 return do_swap_page(mm, vma, address,
30c9f3a9 3304 pte, pmd, flags, entry);
1da177e4
LT
3305 }
3306
4c21e2f2 3307 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3308 spin_lock(ptl);
3309 if (unlikely(!pte_same(*pte, entry)))
3310 goto unlock;
30c9f3a9 3311 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3312 if (!pte_write(entry))
8f4e2101
HD
3313 return do_wp_page(mm, vma, address,
3314 pte, pmd, ptl, entry);
1da177e4
LT
3315 entry = pte_mkdirty(entry);
3316 }
3317 entry = pte_mkyoung(entry);
30c9f3a9 3318 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3319 update_mmu_cache(vma, address, pte);
1a44e149
AA
3320 } else {
3321 /*
3322 * This is needed only for protection faults but the arch code
3323 * is not yet telling us if this is a protection fault or not.
3324 * This still avoids useless tlb flushes for .text page faults
3325 * with threads.
3326 */
30c9f3a9 3327 if (flags & FAULT_FLAG_WRITE)
61c77326 3328 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3329 }
8f4e2101
HD
3330unlock:
3331 pte_unmap_unlock(pte, ptl);
83c54070 3332 return 0;
1da177e4
LT
3333}
3334
3335/*
3336 * By the time we get here, we already hold the mm semaphore
3337 */
83c54070 3338int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3339 unsigned long address, unsigned int flags)
1da177e4
LT
3340{
3341 pgd_t *pgd;
3342 pud_t *pud;
3343 pmd_t *pmd;
3344 pte_t *pte;
3345
3346 __set_current_state(TASK_RUNNING);
3347
f8891e5e 3348 count_vm_event(PGFAULT);
1da177e4 3349
34e55232
KH
3350 /* do counter updates before entering really critical section. */
3351 check_sync_rss_stat(current);
3352
ac9b9c66 3353 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3354 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3355
1da177e4 3356 pgd = pgd_offset(mm, address);
1da177e4
LT
3357 pud = pud_alloc(mm, pgd, address);
3358 if (!pud)
c74df32c 3359 return VM_FAULT_OOM;
1da177e4
LT
3360 pmd = pmd_alloc(mm, pud, address);
3361 if (!pmd)
c74df32c 3362 return VM_FAULT_OOM;
71e3aac0
AA
3363 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3364 if (!vma->vm_ops)
3365 return do_huge_pmd_anonymous_page(mm, vma, address,
3366 pmd, flags);
3367 } else {
3368 pmd_t orig_pmd = *pmd;
3369 barrier();
3370 if (pmd_trans_huge(orig_pmd)) {
3371 if (flags & FAULT_FLAG_WRITE &&
3372 !pmd_write(orig_pmd) &&
3373 !pmd_trans_splitting(orig_pmd))
3374 return do_huge_pmd_wp_page(mm, vma, address,
3375 pmd, orig_pmd);
3376 return 0;
3377 }
3378 }
3379
3380 /*
3381 * Use __pte_alloc instead of pte_alloc_map, because we can't
3382 * run pte_offset_map on the pmd, if an huge pmd could
3383 * materialize from under us from a different thread.
3384 */
3385 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3386 return VM_FAULT_OOM;
71e3aac0
AA
3387 /* if an huge pmd materialized from under us just retry later */
3388 if (unlikely(pmd_trans_huge(*pmd)))
3389 return 0;
3390 /*
3391 * A regular pmd is established and it can't morph into a huge pmd
3392 * from under us anymore at this point because we hold the mmap_sem
3393 * read mode and khugepaged takes it in write mode. So now it's
3394 * safe to run pte_offset_map().
3395 */
3396 pte = pte_offset_map(pmd, address);
1da177e4 3397
30c9f3a9 3398 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3399}
3400
3401#ifndef __PAGETABLE_PUD_FOLDED
3402/*
3403 * Allocate page upper directory.
872fec16 3404 * We've already handled the fast-path in-line.
1da177e4 3405 */
1bb3630e 3406int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3407{
c74df32c
HD
3408 pud_t *new = pud_alloc_one(mm, address);
3409 if (!new)
1bb3630e 3410 return -ENOMEM;
1da177e4 3411
362a61ad
NP
3412 smp_wmb(); /* See comment in __pte_alloc */
3413
872fec16 3414 spin_lock(&mm->page_table_lock);
1bb3630e 3415 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3416 pud_free(mm, new);
1bb3630e
HD
3417 else
3418 pgd_populate(mm, pgd, new);
c74df32c 3419 spin_unlock(&mm->page_table_lock);
1bb3630e 3420 return 0;
1da177e4
LT
3421}
3422#endif /* __PAGETABLE_PUD_FOLDED */
3423
3424#ifndef __PAGETABLE_PMD_FOLDED
3425/*
3426 * Allocate page middle directory.
872fec16 3427 * We've already handled the fast-path in-line.
1da177e4 3428 */
1bb3630e 3429int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3430{
c74df32c
HD
3431 pmd_t *new = pmd_alloc_one(mm, address);
3432 if (!new)
1bb3630e 3433 return -ENOMEM;
1da177e4 3434
362a61ad
NP
3435 smp_wmb(); /* See comment in __pte_alloc */
3436
872fec16 3437 spin_lock(&mm->page_table_lock);
1da177e4 3438#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3439 if (pud_present(*pud)) /* Another has populated it */
5e541973 3440 pmd_free(mm, new);
1bb3630e
HD
3441 else
3442 pud_populate(mm, pud, new);
1da177e4 3443#else
1bb3630e 3444 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3445 pmd_free(mm, new);
1bb3630e
HD
3446 else
3447 pgd_populate(mm, pud, new);
1da177e4 3448#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3449 spin_unlock(&mm->page_table_lock);
1bb3630e 3450 return 0;
e0f39591 3451}
1da177e4
LT
3452#endif /* __PAGETABLE_PMD_FOLDED */
3453
3454int make_pages_present(unsigned long addr, unsigned long end)
3455{
3456 int ret, len, write;
3457 struct vm_area_struct * vma;
3458
3459 vma = find_vma(current->mm, addr);
3460 if (!vma)
a477097d 3461 return -ENOMEM;
5ecfda04
ML
3462 /*
3463 * We want to touch writable mappings with a write fault in order
3464 * to break COW, except for shared mappings because these don't COW
3465 * and we would not want to dirty them for nothing.
3466 */
3467 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
5bcb28b1
ES
3468 BUG_ON(addr >= end);
3469 BUG_ON(end > vma->vm_end);
68e116a3 3470 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3471 ret = get_user_pages(current, current->mm, addr,
3472 len, write, 0, NULL, NULL);
c11d69d8 3473 if (ret < 0)
1da177e4 3474 return ret;
9978ad58 3475 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3476}
3477
1da177e4
LT
3478#if !defined(__HAVE_ARCH_GATE_AREA)
3479
3480#if defined(AT_SYSINFO_EHDR)
5ce7852c 3481static struct vm_area_struct gate_vma;
1da177e4
LT
3482
3483static int __init gate_vma_init(void)
3484{
3485 gate_vma.vm_mm = NULL;
3486 gate_vma.vm_start = FIXADDR_USER_START;
3487 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3488 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3489 gate_vma.vm_page_prot = __P101;
f47aef55
RM
3490 /*
3491 * Make sure the vDSO gets into every core dump.
3492 * Dumping its contents makes post-mortem fully interpretable later
3493 * without matching up the same kernel and hardware config to see
3494 * what PC values meant.
3495 */
3496 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
3497 return 0;
3498}
3499__initcall(gate_vma_init);
3500#endif
3501
3502struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3503{
3504#ifdef AT_SYSINFO_EHDR
3505 return &gate_vma;
3506#else
3507 return NULL;
3508#endif
3509}
3510
3511int in_gate_area_no_task(unsigned long addr)
3512{
3513#ifdef AT_SYSINFO_EHDR
3514 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3515 return 1;
3516#endif
3517 return 0;
3518}
3519
3520#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3521
1b36ba81 3522static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3523 pte_t **ptepp, spinlock_t **ptlp)
3524{
3525 pgd_t *pgd;
3526 pud_t *pud;
3527 pmd_t *pmd;
3528 pte_t *ptep;
3529
3530 pgd = pgd_offset(mm, address);
3531 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3532 goto out;
3533
3534 pud = pud_offset(pgd, address);
3535 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3536 goto out;
3537
3538 pmd = pmd_offset(pud, address);
f66055ab 3539 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3540 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3541 goto out;
3542
3543 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3544 if (pmd_huge(*pmd))
3545 goto out;
3546
3547 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3548 if (!ptep)
3549 goto out;
3550 if (!pte_present(*ptep))
3551 goto unlock;
3552 *ptepp = ptep;
3553 return 0;
3554unlock:
3555 pte_unmap_unlock(ptep, *ptlp);
3556out:
3557 return -EINVAL;
3558}
3559
1b36ba81
NK
3560static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3561 pte_t **ptepp, spinlock_t **ptlp)
3562{
3563 int res;
3564
3565 /* (void) is needed to make gcc happy */
3566 (void) __cond_lock(*ptlp,
3567 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3568 return res;
3569}
3570
3b6748e2
JW
3571/**
3572 * follow_pfn - look up PFN at a user virtual address
3573 * @vma: memory mapping
3574 * @address: user virtual address
3575 * @pfn: location to store found PFN
3576 *
3577 * Only IO mappings and raw PFN mappings are allowed.
3578 *
3579 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3580 */
3581int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3582 unsigned long *pfn)
3583{
3584 int ret = -EINVAL;
3585 spinlock_t *ptl;
3586 pte_t *ptep;
3587
3588 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3589 return ret;
3590
3591 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3592 if (ret)
3593 return ret;
3594 *pfn = pte_pfn(*ptep);
3595 pte_unmap_unlock(ptep, ptl);
3596 return 0;
3597}
3598EXPORT_SYMBOL(follow_pfn);
3599
28b2ee20 3600#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3601int follow_phys(struct vm_area_struct *vma,
3602 unsigned long address, unsigned int flags,
3603 unsigned long *prot, resource_size_t *phys)
28b2ee20 3604{
03668a4d 3605 int ret = -EINVAL;
28b2ee20
RR
3606 pte_t *ptep, pte;
3607 spinlock_t *ptl;
28b2ee20 3608
d87fe660 3609 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3610 goto out;
28b2ee20 3611
03668a4d 3612 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3613 goto out;
28b2ee20 3614 pte = *ptep;
03668a4d 3615
28b2ee20
RR
3616 if ((flags & FOLL_WRITE) && !pte_write(pte))
3617 goto unlock;
28b2ee20
RR
3618
3619 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3620 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3621
03668a4d 3622 ret = 0;
28b2ee20
RR
3623unlock:
3624 pte_unmap_unlock(ptep, ptl);
3625out:
d87fe660 3626 return ret;
28b2ee20
RR
3627}
3628
3629int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3630 void *buf, int len, int write)
3631{
3632 resource_size_t phys_addr;
3633 unsigned long prot = 0;
2bc7273b 3634 void __iomem *maddr;
28b2ee20
RR
3635 int offset = addr & (PAGE_SIZE-1);
3636
d87fe660 3637 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3638 return -EINVAL;
3639
3640 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3641 if (write)
3642 memcpy_toio(maddr + offset, buf, len);
3643 else
3644 memcpy_fromio(buf, maddr + offset, len);
3645 iounmap(maddr);
3646
3647 return len;
3648}
3649#endif
3650
0ec76a11
DH
3651/*
3652 * Access another process' address space.
3653 * Source/target buffer must be kernel space,
3654 * Do not walk the page table directly, use get_user_pages
3655 */
3656int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3657{
3658 struct mm_struct *mm;
3659 struct vm_area_struct *vma;
0ec76a11
DH
3660 void *old_buf = buf;
3661
3662 mm = get_task_mm(tsk);
3663 if (!mm)
3664 return 0;
3665
3666 down_read(&mm->mmap_sem);
183ff22b 3667 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3668 while (len) {
3669 int bytes, ret, offset;
3670 void *maddr;
28b2ee20 3671 struct page *page = NULL;
0ec76a11
DH
3672
3673 ret = get_user_pages(tsk, mm, addr, 1,
3674 write, 1, &page, &vma);
28b2ee20
RR
3675 if (ret <= 0) {
3676 /*
3677 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3678 * we can access using slightly different code.
3679 */
3680#ifdef CONFIG_HAVE_IOREMAP_PROT
3681 vma = find_vma(mm, addr);
3682 if (!vma)
3683 break;
3684 if (vma->vm_ops && vma->vm_ops->access)
3685 ret = vma->vm_ops->access(vma, addr, buf,
3686 len, write);
3687 if (ret <= 0)
3688#endif
3689 break;
3690 bytes = ret;
0ec76a11 3691 } else {
28b2ee20
RR
3692 bytes = len;
3693 offset = addr & (PAGE_SIZE-1);
3694 if (bytes > PAGE_SIZE-offset)
3695 bytes = PAGE_SIZE-offset;
3696
3697 maddr = kmap(page);
3698 if (write) {
3699 copy_to_user_page(vma, page, addr,
3700 maddr + offset, buf, bytes);
3701 set_page_dirty_lock(page);
3702 } else {
3703 copy_from_user_page(vma, page, addr,
3704 buf, maddr + offset, bytes);
3705 }
3706 kunmap(page);
3707 page_cache_release(page);
0ec76a11 3708 }
0ec76a11
DH
3709 len -= bytes;
3710 buf += bytes;
3711 addr += bytes;
3712 }
3713 up_read(&mm->mmap_sem);
3714 mmput(mm);
3715
3716 return buf - old_buf;
3717}
03252919
AK
3718
3719/*
3720 * Print the name of a VMA.
3721 */
3722void print_vma_addr(char *prefix, unsigned long ip)
3723{
3724 struct mm_struct *mm = current->mm;
3725 struct vm_area_struct *vma;
3726
e8bff74a
IM
3727 /*
3728 * Do not print if we are in atomic
3729 * contexts (in exception stacks, etc.):
3730 */
3731 if (preempt_count())
3732 return;
3733
03252919
AK
3734 down_read(&mm->mmap_sem);
3735 vma = find_vma(mm, ip);
3736 if (vma && vma->vm_file) {
3737 struct file *f = vma->vm_file;
3738 char *buf = (char *)__get_free_page(GFP_KERNEL);
3739 if (buf) {
3740 char *p, *s;
3741
cf28b486 3742 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3743 if (IS_ERR(p))
3744 p = "?";
3745 s = strrchr(p, '/');
3746 if (s)
3747 p = s+1;
3748 printk("%s%s[%lx+%lx]", prefix, p,
3749 vma->vm_start,
3750 vma->vm_end - vma->vm_start);
3751 free_page((unsigned long)buf);
3752 }
3753 }
3754 up_read(&current->mm->mmap_sem);
3755}
3ee1afa3
NP
3756
3757#ifdef CONFIG_PROVE_LOCKING
3758void might_fault(void)
3759{
95156f00
PZ
3760 /*
3761 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3762 * holding the mmap_sem, this is safe because kernel memory doesn't
3763 * get paged out, therefore we'll never actually fault, and the
3764 * below annotations will generate false positives.
3765 */
3766 if (segment_eq(get_fs(), KERNEL_DS))
3767 return;
3768
3ee1afa3
NP
3769 might_sleep();
3770 /*
3771 * it would be nicer only to annotate paths which are not under
3772 * pagefault_disable, however that requires a larger audit and
3773 * providing helpers like get_user_atomic.
3774 */
3775 if (!in_atomic() && current->mm)
3776 might_lock_read(&current->mm->mmap_sem);
3777}
3778EXPORT_SYMBOL(might_fault);
3779#endif
47ad8475
AA
3780
3781#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3782static void clear_gigantic_page(struct page *page,
3783 unsigned long addr,
3784 unsigned int pages_per_huge_page)
3785{
3786 int i;
3787 struct page *p = page;
3788
3789 might_sleep();
3790 for (i = 0; i < pages_per_huge_page;
3791 i++, p = mem_map_next(p, page, i)) {
3792 cond_resched();
3793 clear_user_highpage(p, addr + i * PAGE_SIZE);
3794 }
3795}
3796void clear_huge_page(struct page *page,
3797 unsigned long addr, unsigned int pages_per_huge_page)
3798{
3799 int i;
3800
3801 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3802 clear_gigantic_page(page, addr, pages_per_huge_page);
3803 return;
3804 }
3805
3806 might_sleep();
3807 for (i = 0; i < pages_per_huge_page; i++) {
3808 cond_resched();
3809 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3810 }
3811}
3812
3813static void copy_user_gigantic_page(struct page *dst, struct page *src,
3814 unsigned long addr,
3815 struct vm_area_struct *vma,
3816 unsigned int pages_per_huge_page)
3817{
3818 int i;
3819 struct page *dst_base = dst;
3820 struct page *src_base = src;
3821
3822 for (i = 0; i < pages_per_huge_page; ) {
3823 cond_resched();
3824 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3825
3826 i++;
3827 dst = mem_map_next(dst, dst_base, i);
3828 src = mem_map_next(src, src_base, i);
3829 }
3830}
3831
3832void copy_user_huge_page(struct page *dst, struct page *src,
3833 unsigned long addr, struct vm_area_struct *vma,
3834 unsigned int pages_per_huge_page)
3835{
3836 int i;
3837
3838 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3839 copy_user_gigantic_page(dst, src, addr, vma,
3840 pages_per_huge_page);
3841 return;
3842 }
3843
3844 might_sleep();
3845 for (i = 0; i < pages_per_huge_page; i++) {
3846 cond_resched();
3847 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3848 }
3849}
3850#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
This page took 0.845269 seconds and 5 git commands to generate.