mm: reinstate ZERO_PAGE
[deliverable/linux.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4
LT
49#include <linux/rmap.h>
50#include <linux/module.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
1da177e4 59
6952b61d 60#include <asm/io.h>
1da177e4
LT
61#include <asm/pgalloc.h>
62#include <asm/uaccess.h>
63#include <asm/tlb.h>
64#include <asm/tlbflush.h>
65#include <asm/pgtable.h>
66
42b77728
JB
67#include "internal.h"
68
d41dee36 69#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
70/* use the per-pgdat data instead for discontigmem - mbligh */
71unsigned long max_mapnr;
72struct page *mem_map;
73
74EXPORT_SYMBOL(max_mapnr);
75EXPORT_SYMBOL(mem_map);
76#endif
77
78unsigned long num_physpages;
79/*
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
85 */
86void * high_memory;
1da177e4
LT
87
88EXPORT_SYMBOL(num_physpages);
89EXPORT_SYMBOL(high_memory);
1da177e4 90
32a93233
IM
91/*
92 * Randomize the address space (stacks, mmaps, brk, etc.).
93 *
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
96 */
97int randomize_va_space __read_mostly =
98#ifdef CONFIG_COMPAT_BRK
99 1;
100#else
101 2;
102#endif
a62eaf15
AK
103
104static int __init disable_randmaps(char *s)
105{
106 randomize_va_space = 0;
9b41046c 107 return 1;
a62eaf15
AK
108}
109__setup("norandmaps", disable_randmaps);
110
a13ea5b7
HD
111static unsigned long zero_pfn __read_mostly;
112
113/*
114 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
115 */
116static int __init init_zero_pfn(void)
117{
118 zero_pfn = page_to_pfn(ZERO_PAGE(0));
119 return 0;
120}
121core_initcall(init_zero_pfn);
a62eaf15 122
1da177e4
LT
123/*
124 * If a p?d_bad entry is found while walking page tables, report
125 * the error, before resetting entry to p?d_none. Usually (but
126 * very seldom) called out from the p?d_none_or_clear_bad macros.
127 */
128
129void pgd_clear_bad(pgd_t *pgd)
130{
131 pgd_ERROR(*pgd);
132 pgd_clear(pgd);
133}
134
135void pud_clear_bad(pud_t *pud)
136{
137 pud_ERROR(*pud);
138 pud_clear(pud);
139}
140
141void pmd_clear_bad(pmd_t *pmd)
142{
143 pmd_ERROR(*pmd);
144 pmd_clear(pmd);
145}
146
147/*
148 * Note: this doesn't free the actual pages themselves. That
149 * has been handled earlier when unmapping all the memory regions.
150 */
9e1b32ca
BH
151static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
152 unsigned long addr)
1da177e4 153{
2f569afd 154 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 155 pmd_clear(pmd);
9e1b32ca 156 pte_free_tlb(tlb, token, addr);
e0da382c 157 tlb->mm->nr_ptes--;
1da177e4
LT
158}
159
e0da382c
HD
160static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
161 unsigned long addr, unsigned long end,
162 unsigned long floor, unsigned long ceiling)
1da177e4
LT
163{
164 pmd_t *pmd;
165 unsigned long next;
e0da382c 166 unsigned long start;
1da177e4 167
e0da382c 168 start = addr;
1da177e4 169 pmd = pmd_offset(pud, addr);
1da177e4
LT
170 do {
171 next = pmd_addr_end(addr, end);
172 if (pmd_none_or_clear_bad(pmd))
173 continue;
9e1b32ca 174 free_pte_range(tlb, pmd, addr);
1da177e4
LT
175 } while (pmd++, addr = next, addr != end);
176
e0da382c
HD
177 start &= PUD_MASK;
178 if (start < floor)
179 return;
180 if (ceiling) {
181 ceiling &= PUD_MASK;
182 if (!ceiling)
183 return;
1da177e4 184 }
e0da382c
HD
185 if (end - 1 > ceiling - 1)
186 return;
187
188 pmd = pmd_offset(pud, start);
189 pud_clear(pud);
9e1b32ca 190 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
191}
192
e0da382c
HD
193static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
194 unsigned long addr, unsigned long end,
195 unsigned long floor, unsigned long ceiling)
1da177e4
LT
196{
197 pud_t *pud;
198 unsigned long next;
e0da382c 199 unsigned long start;
1da177e4 200
e0da382c 201 start = addr;
1da177e4 202 pud = pud_offset(pgd, addr);
1da177e4
LT
203 do {
204 next = pud_addr_end(addr, end);
205 if (pud_none_or_clear_bad(pud))
206 continue;
e0da382c 207 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
208 } while (pud++, addr = next, addr != end);
209
e0da382c
HD
210 start &= PGDIR_MASK;
211 if (start < floor)
212 return;
213 if (ceiling) {
214 ceiling &= PGDIR_MASK;
215 if (!ceiling)
216 return;
1da177e4 217 }
e0da382c
HD
218 if (end - 1 > ceiling - 1)
219 return;
220
221 pud = pud_offset(pgd, start);
222 pgd_clear(pgd);
9e1b32ca 223 pud_free_tlb(tlb, pud, start);
1da177e4
LT
224}
225
226/*
e0da382c
HD
227 * This function frees user-level page tables of a process.
228 *
1da177e4
LT
229 * Must be called with pagetable lock held.
230 */
42b77728 231void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
1da177e4
LT
234{
235 pgd_t *pgd;
236 unsigned long next;
e0da382c
HD
237 unsigned long start;
238
239 /*
240 * The next few lines have given us lots of grief...
241 *
242 * Why are we testing PMD* at this top level? Because often
243 * there will be no work to do at all, and we'd prefer not to
244 * go all the way down to the bottom just to discover that.
245 *
246 * Why all these "- 1"s? Because 0 represents both the bottom
247 * of the address space and the top of it (using -1 for the
248 * top wouldn't help much: the masks would do the wrong thing).
249 * The rule is that addr 0 and floor 0 refer to the bottom of
250 * the address space, but end 0 and ceiling 0 refer to the top
251 * Comparisons need to use "end - 1" and "ceiling - 1" (though
252 * that end 0 case should be mythical).
253 *
254 * Wherever addr is brought up or ceiling brought down, we must
255 * be careful to reject "the opposite 0" before it confuses the
256 * subsequent tests. But what about where end is brought down
257 * by PMD_SIZE below? no, end can't go down to 0 there.
258 *
259 * Whereas we round start (addr) and ceiling down, by different
260 * masks at different levels, in order to test whether a table
261 * now has no other vmas using it, so can be freed, we don't
262 * bother to round floor or end up - the tests don't need that.
263 */
1da177e4 264
e0da382c
HD
265 addr &= PMD_MASK;
266 if (addr < floor) {
267 addr += PMD_SIZE;
268 if (!addr)
269 return;
270 }
271 if (ceiling) {
272 ceiling &= PMD_MASK;
273 if (!ceiling)
274 return;
275 }
276 if (end - 1 > ceiling - 1)
277 end -= PMD_SIZE;
278 if (addr > end - 1)
279 return;
280
281 start = addr;
42b77728 282 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
283 do {
284 next = pgd_addr_end(addr, end);
285 if (pgd_none_or_clear_bad(pgd))
286 continue;
42b77728 287 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 288 } while (pgd++, addr = next, addr != end);
e0da382c
HD
289}
290
42b77728 291void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 292 unsigned long floor, unsigned long ceiling)
e0da382c
HD
293{
294 while (vma) {
295 struct vm_area_struct *next = vma->vm_next;
296 unsigned long addr = vma->vm_start;
297
8f4f8c16
HD
298 /*
299 * Hide vma from rmap and vmtruncate before freeing pgtables
300 */
301 anon_vma_unlink(vma);
302 unlink_file_vma(vma);
303
9da61aef 304 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 305 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 306 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
307 } else {
308 /*
309 * Optimization: gather nearby vmas into one call down
310 */
311 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 312 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
313 vma = next;
314 next = vma->vm_next;
8f4f8c16
HD
315 anon_vma_unlink(vma);
316 unlink_file_vma(vma);
3bf5ee95
HD
317 }
318 free_pgd_range(tlb, addr, vma->vm_end,
319 floor, next? next->vm_start: ceiling);
320 }
e0da382c
HD
321 vma = next;
322 }
1da177e4
LT
323}
324
1bb3630e 325int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 326{
2f569afd 327 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
328 if (!new)
329 return -ENOMEM;
330
362a61ad
NP
331 /*
332 * Ensure all pte setup (eg. pte page lock and page clearing) are
333 * visible before the pte is made visible to other CPUs by being
334 * put into page tables.
335 *
336 * The other side of the story is the pointer chasing in the page
337 * table walking code (when walking the page table without locking;
338 * ie. most of the time). Fortunately, these data accesses consist
339 * of a chain of data-dependent loads, meaning most CPUs (alpha
340 * being the notable exception) will already guarantee loads are
341 * seen in-order. See the alpha page table accessors for the
342 * smp_read_barrier_depends() barriers in page table walking code.
343 */
344 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
345
c74df32c 346 spin_lock(&mm->page_table_lock);
2f569afd 347 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 348 mm->nr_ptes++;
1da177e4 349 pmd_populate(mm, pmd, new);
2f569afd 350 new = NULL;
1da177e4 351 }
c74df32c 352 spin_unlock(&mm->page_table_lock);
2f569afd
MS
353 if (new)
354 pte_free(mm, new);
1bb3630e 355 return 0;
1da177e4
LT
356}
357
1bb3630e 358int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 359{
1bb3630e
HD
360 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
361 if (!new)
362 return -ENOMEM;
363
362a61ad
NP
364 smp_wmb(); /* See comment in __pte_alloc */
365
1bb3630e 366 spin_lock(&init_mm.page_table_lock);
2f569afd 367 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 368 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
369 new = NULL;
370 }
1bb3630e 371 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
372 if (new)
373 pte_free_kernel(&init_mm, new);
1bb3630e 374 return 0;
1da177e4
LT
375}
376
ae859762
HD
377static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
378{
379 if (file_rss)
380 add_mm_counter(mm, file_rss, file_rss);
381 if (anon_rss)
382 add_mm_counter(mm, anon_rss, anon_rss);
383}
384
b5810039 385/*
6aab341e
LT
386 * This function is called to print an error when a bad pte
387 * is found. For example, we might have a PFN-mapped pte in
388 * a region that doesn't allow it.
b5810039
NP
389 *
390 * The calling function must still handle the error.
391 */
3dc14741
HD
392static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
393 pte_t pte, struct page *page)
b5810039 394{
3dc14741
HD
395 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
396 pud_t *pud = pud_offset(pgd, addr);
397 pmd_t *pmd = pmd_offset(pud, addr);
398 struct address_space *mapping;
399 pgoff_t index;
d936cf9b
HD
400 static unsigned long resume;
401 static unsigned long nr_shown;
402 static unsigned long nr_unshown;
403
404 /*
405 * Allow a burst of 60 reports, then keep quiet for that minute;
406 * or allow a steady drip of one report per second.
407 */
408 if (nr_shown == 60) {
409 if (time_before(jiffies, resume)) {
410 nr_unshown++;
411 return;
412 }
413 if (nr_unshown) {
1e9e6365
HD
414 printk(KERN_ALERT
415 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
416 nr_unshown);
417 nr_unshown = 0;
418 }
419 nr_shown = 0;
420 }
421 if (nr_shown++ == 0)
422 resume = jiffies + 60 * HZ;
3dc14741
HD
423
424 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
425 index = linear_page_index(vma, addr);
426
1e9e6365
HD
427 printk(KERN_ALERT
428 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
429 current->comm,
430 (long long)pte_val(pte), (long long)pmd_val(*pmd));
431 if (page) {
1e9e6365 432 printk(KERN_ALERT
3dc14741
HD
433 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
434 page, (void *)page->flags, page_count(page),
435 page_mapcount(page), page->mapping, page->index);
436 }
1e9e6365 437 printk(KERN_ALERT
3dc14741
HD
438 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
439 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
440 /*
441 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
442 */
443 if (vma->vm_ops)
1e9e6365 444 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
445 (unsigned long)vma->vm_ops->fault);
446 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 447 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 448 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 449 dump_stack();
3dc14741 450 add_taint(TAINT_BAD_PAGE);
b5810039
NP
451}
452
67121172
LT
453static inline int is_cow_mapping(unsigned int flags)
454{
455 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
456}
457
ee498ed7 458/*
7e675137 459 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 460 *
7e675137
NP
461 * "Special" mappings do not wish to be associated with a "struct page" (either
462 * it doesn't exist, or it exists but they don't want to touch it). In this
463 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 464 *
7e675137
NP
465 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
466 * pte bit, in which case this function is trivial. Secondly, an architecture
467 * may not have a spare pte bit, which requires a more complicated scheme,
468 * described below.
469 *
470 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
471 * special mapping (even if there are underlying and valid "struct pages").
472 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 473 *
b379d790
JH
474 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
475 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
476 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
477 * mapping will always honor the rule
6aab341e
LT
478 *
479 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
480 *
7e675137
NP
481 * And for normal mappings this is false.
482 *
483 * This restricts such mappings to be a linear translation from virtual address
484 * to pfn. To get around this restriction, we allow arbitrary mappings so long
485 * as the vma is not a COW mapping; in that case, we know that all ptes are
486 * special (because none can have been COWed).
b379d790 487 *
b379d790 488 *
7e675137 489 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
490 *
491 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
492 * page" backing, however the difference is that _all_ pages with a struct
493 * page (that is, those where pfn_valid is true) are refcounted and considered
494 * normal pages by the VM. The disadvantage is that pages are refcounted
495 * (which can be slower and simply not an option for some PFNMAP users). The
496 * advantage is that we don't have to follow the strict linearity rule of
497 * PFNMAP mappings in order to support COWable mappings.
498 *
ee498ed7 499 */
7e675137
NP
500#ifdef __HAVE_ARCH_PTE_SPECIAL
501# define HAVE_PTE_SPECIAL 1
502#else
503# define HAVE_PTE_SPECIAL 0
504#endif
505struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
506 pte_t pte)
ee498ed7 507{
22b31eec 508 unsigned long pfn = pte_pfn(pte);
7e675137
NP
509
510 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
511 if (likely(!pte_special(pte)))
512 goto check_pfn;
a13ea5b7
HD
513 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
514 return NULL;
515 if (pfn != zero_pfn)
22b31eec 516 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
517 return NULL;
518 }
519
520 /* !HAVE_PTE_SPECIAL case follows: */
521
b379d790
JH
522 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
523 if (vma->vm_flags & VM_MIXEDMAP) {
524 if (!pfn_valid(pfn))
525 return NULL;
526 goto out;
527 } else {
7e675137
NP
528 unsigned long off;
529 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
530 if (pfn == vma->vm_pgoff + off)
531 return NULL;
532 if (!is_cow_mapping(vma->vm_flags))
533 return NULL;
534 }
6aab341e
LT
535 }
536
22b31eec
HD
537check_pfn:
538 if (unlikely(pfn > highest_memmap_pfn)) {
539 print_bad_pte(vma, addr, pte, NULL);
540 return NULL;
541 }
6aab341e
LT
542
543 /*
7e675137 544 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 545 * eg. VDSO mappings can cause them to exist.
6aab341e 546 */
b379d790 547out:
6aab341e 548 return pfn_to_page(pfn);
ee498ed7
HD
549}
550
1da177e4
LT
551/*
552 * copy one vm_area from one task to the other. Assumes the page tables
553 * already present in the new task to be cleared in the whole range
554 * covered by this vma.
1da177e4
LT
555 */
556
8c103762 557static inline void
1da177e4 558copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 559 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 560 unsigned long addr, int *rss)
1da177e4 561{
b5810039 562 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
563 pte_t pte = *src_pte;
564 struct page *page;
1da177e4
LT
565
566 /* pte contains position in swap or file, so copy. */
567 if (unlikely(!pte_present(pte))) {
568 if (!pte_file(pte)) {
0697212a
CL
569 swp_entry_t entry = pte_to_swp_entry(pte);
570
571 swap_duplicate(entry);
1da177e4
LT
572 /* make sure dst_mm is on swapoff's mmlist. */
573 if (unlikely(list_empty(&dst_mm->mmlist))) {
574 spin_lock(&mmlist_lock);
f412ac08
HD
575 if (list_empty(&dst_mm->mmlist))
576 list_add(&dst_mm->mmlist,
577 &src_mm->mmlist);
1da177e4
LT
578 spin_unlock(&mmlist_lock);
579 }
0697212a
CL
580 if (is_write_migration_entry(entry) &&
581 is_cow_mapping(vm_flags)) {
582 /*
583 * COW mappings require pages in both parent
584 * and child to be set to read.
585 */
586 make_migration_entry_read(&entry);
587 pte = swp_entry_to_pte(entry);
588 set_pte_at(src_mm, addr, src_pte, pte);
589 }
1da177e4 590 }
ae859762 591 goto out_set_pte;
1da177e4
LT
592 }
593
1da177e4
LT
594 /*
595 * If it's a COW mapping, write protect it both
596 * in the parent and the child
597 */
67121172 598 if (is_cow_mapping(vm_flags)) {
1da177e4 599 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 600 pte = pte_wrprotect(pte);
1da177e4
LT
601 }
602
603 /*
604 * If it's a shared mapping, mark it clean in
605 * the child
606 */
607 if (vm_flags & VM_SHARED)
608 pte = pte_mkclean(pte);
609 pte = pte_mkold(pte);
6aab341e
LT
610
611 page = vm_normal_page(vma, addr, pte);
612 if (page) {
613 get_page(page);
21333b2b 614 page_dup_rmap(page);
b7c46d15 615 rss[PageAnon(page)]++;
6aab341e 616 }
ae859762
HD
617
618out_set_pte:
619 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
620}
621
622static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
623 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
624 unsigned long addr, unsigned long end)
625{
626 pte_t *src_pte, *dst_pte;
c74df32c 627 spinlock_t *src_ptl, *dst_ptl;
e040f218 628 int progress = 0;
8c103762 629 int rss[2];
1da177e4
LT
630
631again:
ae859762 632 rss[1] = rss[0] = 0;
c74df32c 633 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
634 if (!dst_pte)
635 return -ENOMEM;
636 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 637 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 638 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 639 arch_enter_lazy_mmu_mode();
1da177e4 640
1da177e4
LT
641 do {
642 /*
643 * We are holding two locks at this point - either of them
644 * could generate latencies in another task on another CPU.
645 */
e040f218
HD
646 if (progress >= 32) {
647 progress = 0;
648 if (need_resched() ||
95c354fe 649 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
650 break;
651 }
1da177e4
LT
652 if (pte_none(*src_pte)) {
653 progress++;
654 continue;
655 }
8c103762 656 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
657 progress += 8;
658 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 659
6606c3e0 660 arch_leave_lazy_mmu_mode();
c74df32c 661 spin_unlock(src_ptl);
1da177e4 662 pte_unmap_nested(src_pte - 1);
ae859762 663 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
664 pte_unmap_unlock(dst_pte - 1, dst_ptl);
665 cond_resched();
1da177e4
LT
666 if (addr != end)
667 goto again;
668 return 0;
669}
670
671static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
672 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
673 unsigned long addr, unsigned long end)
674{
675 pmd_t *src_pmd, *dst_pmd;
676 unsigned long next;
677
678 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
679 if (!dst_pmd)
680 return -ENOMEM;
681 src_pmd = pmd_offset(src_pud, addr);
682 do {
683 next = pmd_addr_end(addr, end);
684 if (pmd_none_or_clear_bad(src_pmd))
685 continue;
686 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
687 vma, addr, next))
688 return -ENOMEM;
689 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
690 return 0;
691}
692
693static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
694 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
695 unsigned long addr, unsigned long end)
696{
697 pud_t *src_pud, *dst_pud;
698 unsigned long next;
699
700 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
701 if (!dst_pud)
702 return -ENOMEM;
703 src_pud = pud_offset(src_pgd, addr);
704 do {
705 next = pud_addr_end(addr, end);
706 if (pud_none_or_clear_bad(src_pud))
707 continue;
708 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
709 vma, addr, next))
710 return -ENOMEM;
711 } while (dst_pud++, src_pud++, addr = next, addr != end);
712 return 0;
713}
714
715int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
716 struct vm_area_struct *vma)
717{
718 pgd_t *src_pgd, *dst_pgd;
719 unsigned long next;
720 unsigned long addr = vma->vm_start;
721 unsigned long end = vma->vm_end;
cddb8a5c 722 int ret;
1da177e4 723
d992895b
NP
724 /*
725 * Don't copy ptes where a page fault will fill them correctly.
726 * Fork becomes much lighter when there are big shared or private
727 * readonly mappings. The tradeoff is that copy_page_range is more
728 * efficient than faulting.
729 */
4d7672b4 730 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
731 if (!vma->anon_vma)
732 return 0;
733 }
734
1da177e4
LT
735 if (is_vm_hugetlb_page(vma))
736 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
737
34801ba9 738 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 739 /*
740 * We do not free on error cases below as remove_vma
741 * gets called on error from higher level routine
742 */
743 ret = track_pfn_vma_copy(vma);
744 if (ret)
745 return ret;
746 }
747
cddb8a5c
AA
748 /*
749 * We need to invalidate the secondary MMU mappings only when
750 * there could be a permission downgrade on the ptes of the
751 * parent mm. And a permission downgrade will only happen if
752 * is_cow_mapping() returns true.
753 */
754 if (is_cow_mapping(vma->vm_flags))
755 mmu_notifier_invalidate_range_start(src_mm, addr, end);
756
757 ret = 0;
1da177e4
LT
758 dst_pgd = pgd_offset(dst_mm, addr);
759 src_pgd = pgd_offset(src_mm, addr);
760 do {
761 next = pgd_addr_end(addr, end);
762 if (pgd_none_or_clear_bad(src_pgd))
763 continue;
cddb8a5c
AA
764 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
765 vma, addr, next))) {
766 ret = -ENOMEM;
767 break;
768 }
1da177e4 769 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
770
771 if (is_cow_mapping(vma->vm_flags))
772 mmu_notifier_invalidate_range_end(src_mm,
773 vma->vm_start, end);
774 return ret;
1da177e4
LT
775}
776
51c6f666 777static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 778 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 779 unsigned long addr, unsigned long end,
51c6f666 780 long *zap_work, struct zap_details *details)
1da177e4 781{
b5810039 782 struct mm_struct *mm = tlb->mm;
1da177e4 783 pte_t *pte;
508034a3 784 spinlock_t *ptl;
ae859762
HD
785 int file_rss = 0;
786 int anon_rss = 0;
1da177e4 787
508034a3 788 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 789 arch_enter_lazy_mmu_mode();
1da177e4
LT
790 do {
791 pte_t ptent = *pte;
51c6f666
RH
792 if (pte_none(ptent)) {
793 (*zap_work)--;
1da177e4 794 continue;
51c6f666 795 }
6f5e6b9e
HD
796
797 (*zap_work) -= PAGE_SIZE;
798
1da177e4 799 if (pte_present(ptent)) {
ee498ed7 800 struct page *page;
51c6f666 801
6aab341e 802 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
803 if (unlikely(details) && page) {
804 /*
805 * unmap_shared_mapping_pages() wants to
806 * invalidate cache without truncating:
807 * unmap shared but keep private pages.
808 */
809 if (details->check_mapping &&
810 details->check_mapping != page->mapping)
811 continue;
812 /*
813 * Each page->index must be checked when
814 * invalidating or truncating nonlinear.
815 */
816 if (details->nonlinear_vma &&
817 (page->index < details->first_index ||
818 page->index > details->last_index))
819 continue;
820 }
b5810039 821 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 822 tlb->fullmm);
1da177e4
LT
823 tlb_remove_tlb_entry(tlb, pte, addr);
824 if (unlikely(!page))
825 continue;
826 if (unlikely(details) && details->nonlinear_vma
827 && linear_page_index(details->nonlinear_vma,
828 addr) != page->index)
b5810039 829 set_pte_at(mm, addr, pte,
1da177e4 830 pgoff_to_pte(page->index));
1da177e4 831 if (PageAnon(page))
86d912f4 832 anon_rss--;
6237bcd9
HD
833 else {
834 if (pte_dirty(ptent))
835 set_page_dirty(page);
4917e5d0
JW
836 if (pte_young(ptent) &&
837 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 838 mark_page_accessed(page);
86d912f4 839 file_rss--;
6237bcd9 840 }
edc315fd 841 page_remove_rmap(page);
3dc14741
HD
842 if (unlikely(page_mapcount(page) < 0))
843 print_bad_pte(vma, addr, ptent, page);
1da177e4
LT
844 tlb_remove_page(tlb, page);
845 continue;
846 }
847 /*
848 * If details->check_mapping, we leave swap entries;
849 * if details->nonlinear_vma, we leave file entries.
850 */
851 if (unlikely(details))
852 continue;
2509ef26
HD
853 if (pte_file(ptent)) {
854 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
855 print_bad_pte(vma, addr, ptent, NULL);
856 } else if
857 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
858 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 859 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 860 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 861
86d912f4 862 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 863 arch_leave_lazy_mmu_mode();
508034a3 864 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
865
866 return addr;
1da177e4
LT
867}
868
51c6f666 869static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 870 struct vm_area_struct *vma, pud_t *pud,
1da177e4 871 unsigned long addr, unsigned long end,
51c6f666 872 long *zap_work, struct zap_details *details)
1da177e4
LT
873{
874 pmd_t *pmd;
875 unsigned long next;
876
877 pmd = pmd_offset(pud, addr);
878 do {
879 next = pmd_addr_end(addr, end);
51c6f666
RH
880 if (pmd_none_or_clear_bad(pmd)) {
881 (*zap_work)--;
1da177e4 882 continue;
51c6f666
RH
883 }
884 next = zap_pte_range(tlb, vma, pmd, addr, next,
885 zap_work, details);
886 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
887
888 return addr;
1da177e4
LT
889}
890
51c6f666 891static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 892 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 893 unsigned long addr, unsigned long end,
51c6f666 894 long *zap_work, struct zap_details *details)
1da177e4
LT
895{
896 pud_t *pud;
897 unsigned long next;
898
899 pud = pud_offset(pgd, addr);
900 do {
901 next = pud_addr_end(addr, end);
51c6f666
RH
902 if (pud_none_or_clear_bad(pud)) {
903 (*zap_work)--;
1da177e4 904 continue;
51c6f666
RH
905 }
906 next = zap_pmd_range(tlb, vma, pud, addr, next,
907 zap_work, details);
908 } while (pud++, addr = next, (addr != end && *zap_work > 0));
909
910 return addr;
1da177e4
LT
911}
912
51c6f666
RH
913static unsigned long unmap_page_range(struct mmu_gather *tlb,
914 struct vm_area_struct *vma,
1da177e4 915 unsigned long addr, unsigned long end,
51c6f666 916 long *zap_work, struct zap_details *details)
1da177e4
LT
917{
918 pgd_t *pgd;
919 unsigned long next;
920
921 if (details && !details->check_mapping && !details->nonlinear_vma)
922 details = NULL;
923
924 BUG_ON(addr >= end);
925 tlb_start_vma(tlb, vma);
926 pgd = pgd_offset(vma->vm_mm, addr);
927 do {
928 next = pgd_addr_end(addr, end);
51c6f666
RH
929 if (pgd_none_or_clear_bad(pgd)) {
930 (*zap_work)--;
1da177e4 931 continue;
51c6f666
RH
932 }
933 next = zap_pud_range(tlb, vma, pgd, addr, next,
934 zap_work, details);
935 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 936 tlb_end_vma(tlb, vma);
51c6f666
RH
937
938 return addr;
1da177e4
LT
939}
940
941#ifdef CONFIG_PREEMPT
942# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
943#else
944/* No preempt: go for improved straight-line efficiency */
945# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
946#endif
947
948/**
949 * unmap_vmas - unmap a range of memory covered by a list of vma's
950 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
951 * @vma: the starting vma
952 * @start_addr: virtual address at which to start unmapping
953 * @end_addr: virtual address at which to end unmapping
954 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
955 * @details: details of nonlinear truncation or shared cache invalidation
956 *
ee39b37b 957 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 958 *
508034a3 959 * Unmap all pages in the vma list.
1da177e4 960 *
508034a3
HD
961 * We aim to not hold locks for too long (for scheduling latency reasons).
962 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
963 * return the ending mmu_gather to the caller.
964 *
965 * Only addresses between `start' and `end' will be unmapped.
966 *
967 * The VMA list must be sorted in ascending virtual address order.
968 *
969 * unmap_vmas() assumes that the caller will flush the whole unmapped address
970 * range after unmap_vmas() returns. So the only responsibility here is to
971 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
972 * drops the lock and schedules.
973 */
508034a3 974unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
975 struct vm_area_struct *vma, unsigned long start_addr,
976 unsigned long end_addr, unsigned long *nr_accounted,
977 struct zap_details *details)
978{
51c6f666 979 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
980 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
981 int tlb_start_valid = 0;
ee39b37b 982 unsigned long start = start_addr;
1da177e4 983 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 984 int fullmm = (*tlbp)->fullmm;
cddb8a5c 985 struct mm_struct *mm = vma->vm_mm;
1da177e4 986
cddb8a5c 987 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 988 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
989 unsigned long end;
990
991 start = max(vma->vm_start, start_addr);
992 if (start >= vma->vm_end)
993 continue;
994 end = min(vma->vm_end, end_addr);
995 if (end <= vma->vm_start)
996 continue;
997
998 if (vma->vm_flags & VM_ACCOUNT)
999 *nr_accounted += (end - start) >> PAGE_SHIFT;
1000
34801ba9 1001 if (unlikely(is_pfn_mapping(vma)))
2ab64037 1002 untrack_pfn_vma(vma, 0, 0);
1003
1da177e4 1004 while (start != end) {
1da177e4
LT
1005 if (!tlb_start_valid) {
1006 tlb_start = start;
1007 tlb_start_valid = 1;
1008 }
1009
51c6f666 1010 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
1011 /*
1012 * It is undesirable to test vma->vm_file as it
1013 * should be non-null for valid hugetlb area.
1014 * However, vm_file will be NULL in the error
1015 * cleanup path of do_mmap_pgoff. When
1016 * hugetlbfs ->mmap method fails,
1017 * do_mmap_pgoff() nullifies vma->vm_file
1018 * before calling this function to clean up.
1019 * Since no pte has actually been setup, it is
1020 * safe to do nothing in this case.
1021 */
1022 if (vma->vm_file) {
1023 unmap_hugepage_range(vma, start, end, NULL);
1024 zap_work -= (end - start) /
a5516438 1025 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
1026 }
1027
51c6f666
RH
1028 start = end;
1029 } else
1030 start = unmap_page_range(*tlbp, vma,
1031 start, end, &zap_work, details);
1032
1033 if (zap_work > 0) {
1034 BUG_ON(start != end);
1035 break;
1da177e4
LT
1036 }
1037
1da177e4
LT
1038 tlb_finish_mmu(*tlbp, tlb_start, start);
1039
1040 if (need_resched() ||
95c354fe 1041 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 1042 if (i_mmap_lock) {
508034a3 1043 *tlbp = NULL;
1da177e4
LT
1044 goto out;
1045 }
1da177e4 1046 cond_resched();
1da177e4
LT
1047 }
1048
508034a3 1049 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 1050 tlb_start_valid = 0;
51c6f666 1051 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1052 }
1053 }
1054out:
cddb8a5c 1055 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1056 return start; /* which is now the end (or restart) address */
1da177e4
LT
1057}
1058
1059/**
1060 * zap_page_range - remove user pages in a given range
1061 * @vma: vm_area_struct holding the applicable pages
1062 * @address: starting address of pages to zap
1063 * @size: number of bytes to zap
1064 * @details: details of nonlinear truncation or shared cache invalidation
1065 */
ee39b37b 1066unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1067 unsigned long size, struct zap_details *details)
1068{
1069 struct mm_struct *mm = vma->vm_mm;
1070 struct mmu_gather *tlb;
1071 unsigned long end = address + size;
1072 unsigned long nr_accounted = 0;
1073
1da177e4 1074 lru_add_drain();
1da177e4 1075 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1076 update_hiwater_rss(mm);
508034a3
HD
1077 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1078 if (tlb)
1079 tlb_finish_mmu(tlb, address, end);
ee39b37b 1080 return end;
1da177e4
LT
1081}
1082
c627f9cc
JS
1083/**
1084 * zap_vma_ptes - remove ptes mapping the vma
1085 * @vma: vm_area_struct holding ptes to be zapped
1086 * @address: starting address of pages to zap
1087 * @size: number of bytes to zap
1088 *
1089 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1090 *
1091 * The entire address range must be fully contained within the vma.
1092 *
1093 * Returns 0 if successful.
1094 */
1095int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1096 unsigned long size)
1097{
1098 if (address < vma->vm_start || address + size > vma->vm_end ||
1099 !(vma->vm_flags & VM_PFNMAP))
1100 return -1;
1101 zap_page_range(vma, address, size, NULL);
1102 return 0;
1103}
1104EXPORT_SYMBOL_GPL(zap_vma_ptes);
1105
1da177e4
LT
1106/*
1107 * Do a quick page-table lookup for a single page.
1da177e4 1108 */
6aab341e 1109struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1110 unsigned int flags)
1da177e4
LT
1111{
1112 pgd_t *pgd;
1113 pud_t *pud;
1114 pmd_t *pmd;
1115 pte_t *ptep, pte;
deceb6cd 1116 spinlock_t *ptl;
1da177e4 1117 struct page *page;
6aab341e 1118 struct mm_struct *mm = vma->vm_mm;
1da177e4 1119
deceb6cd
HD
1120 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1121 if (!IS_ERR(page)) {
1122 BUG_ON(flags & FOLL_GET);
1123 goto out;
1124 }
1da177e4 1125
deceb6cd 1126 page = NULL;
1da177e4
LT
1127 pgd = pgd_offset(mm, address);
1128 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1129 goto no_page_table;
1da177e4
LT
1130
1131 pud = pud_offset(pgd, address);
ceb86879 1132 if (pud_none(*pud))
deceb6cd 1133 goto no_page_table;
ceb86879
AK
1134 if (pud_huge(*pud)) {
1135 BUG_ON(flags & FOLL_GET);
1136 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1137 goto out;
1138 }
1139 if (unlikely(pud_bad(*pud)))
1140 goto no_page_table;
1141
1da177e4 1142 pmd = pmd_offset(pud, address);
aeed5fce 1143 if (pmd_none(*pmd))
deceb6cd 1144 goto no_page_table;
deceb6cd
HD
1145 if (pmd_huge(*pmd)) {
1146 BUG_ON(flags & FOLL_GET);
1147 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1148 goto out;
deceb6cd 1149 }
aeed5fce
HD
1150 if (unlikely(pmd_bad(*pmd)))
1151 goto no_page_table;
1152
deceb6cd 1153 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1154
1155 pte = *ptep;
deceb6cd 1156 if (!pte_present(pte))
89f5b7da 1157 goto no_page;
deceb6cd
HD
1158 if ((flags & FOLL_WRITE) && !pte_write(pte))
1159 goto unlock;
a13ea5b7 1160
6aab341e 1161 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1162 if (unlikely(!page)) {
1163 if ((flags & FOLL_DUMP) ||
1164 pte_pfn(pte) != zero_pfn)
1165 goto bad_page;
1166 page = pte_page(pte);
1167 }
1da177e4 1168
deceb6cd
HD
1169 if (flags & FOLL_GET)
1170 get_page(page);
1171 if (flags & FOLL_TOUCH) {
1172 if ((flags & FOLL_WRITE) &&
1173 !pte_dirty(pte) && !PageDirty(page))
1174 set_page_dirty(page);
bd775c42
KM
1175 /*
1176 * pte_mkyoung() would be more correct here, but atomic care
1177 * is needed to avoid losing the dirty bit: it is easier to use
1178 * mark_page_accessed().
1179 */
deceb6cd
HD
1180 mark_page_accessed(page);
1181 }
1182unlock:
1183 pte_unmap_unlock(ptep, ptl);
1da177e4 1184out:
deceb6cd 1185 return page;
1da177e4 1186
89f5b7da
LT
1187bad_page:
1188 pte_unmap_unlock(ptep, ptl);
1189 return ERR_PTR(-EFAULT);
1190
1191no_page:
1192 pte_unmap_unlock(ptep, ptl);
1193 if (!pte_none(pte))
1194 return page;
8e4b9a60 1195
deceb6cd
HD
1196no_page_table:
1197 /*
1198 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1199 * has touched so far, we don't want to allocate unnecessary pages or
1200 * page tables. Return error instead of NULL to skip handle_mm_fault,
1201 * then get_dump_page() will return NULL to leave a hole in the dump.
1202 * But we can only make this optimization where a hole would surely
1203 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1204 */
8e4b9a60
HD
1205 if ((flags & FOLL_DUMP) &&
1206 (!vma->vm_ops || !vma->vm_ops->fault))
1207 return ERR_PTR(-EFAULT);
deceb6cd 1208 return page;
1da177e4
LT
1209}
1210
b291f000 1211int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e
PZ
1212 unsigned long start, int nr_pages, int flags,
1213 struct page **pages, struct vm_area_struct **vmas)
1da177e4
LT
1214{
1215 int i;
b291f000
NP
1216 unsigned int vm_flags = 0;
1217 int write = !!(flags & GUP_FLAGS_WRITE);
1218 int force = !!(flags & GUP_FLAGS_FORCE);
1da177e4 1219
9d73777e 1220 if (nr_pages <= 0)
900cf086 1221 return 0;
1da177e4
LT
1222 /*
1223 * Require read or write permissions.
1224 * If 'force' is set, we only require the "MAY" flags.
1225 */
deceb6cd
HD
1226 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1227 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1228 i = 0;
1229
1230 do {
deceb6cd
HD
1231 struct vm_area_struct *vma;
1232 unsigned int foll_flags;
1da177e4
LT
1233
1234 vma = find_extend_vma(mm, start);
1235 if (!vma && in_gate_area(tsk, start)) {
1236 unsigned long pg = start & PAGE_MASK;
1237 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1238 pgd_t *pgd;
1239 pud_t *pud;
1240 pmd_t *pmd;
1241 pte_t *pte;
b291f000
NP
1242
1243 /* user gate pages are read-only */
1c3aff1c 1244 if (write)
1da177e4
LT
1245 return i ? : -EFAULT;
1246 if (pg > TASK_SIZE)
1247 pgd = pgd_offset_k(pg);
1248 else
1249 pgd = pgd_offset_gate(mm, pg);
1250 BUG_ON(pgd_none(*pgd));
1251 pud = pud_offset(pgd, pg);
1252 BUG_ON(pud_none(*pud));
1253 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1254 if (pmd_none(*pmd))
1255 return i ? : -EFAULT;
1da177e4 1256 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1257 if (pte_none(*pte)) {
1258 pte_unmap(pte);
1259 return i ? : -EFAULT;
1260 }
1da177e4 1261 if (pages) {
fa2a455b 1262 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1263 pages[i] = page;
1264 if (page)
1265 get_page(page);
1da177e4
LT
1266 }
1267 pte_unmap(pte);
1268 if (vmas)
1269 vmas[i] = gate_vma;
1270 i++;
1271 start += PAGE_SIZE;
9d73777e 1272 nr_pages--;
1da177e4
LT
1273 continue;
1274 }
1275
b291f000
NP
1276 if (!vma ||
1277 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1278 !(vm_flags & vma->vm_flags))
1da177e4
LT
1279 return i ? : -EFAULT;
1280
deceb6cd
HD
1281 foll_flags = FOLL_TOUCH;
1282 if (pages)
1283 foll_flags |= FOLL_GET;
8e4b9a60
HD
1284 if (flags & GUP_FLAGS_DUMP)
1285 foll_flags |= FOLL_DUMP;
2a15efc9
HD
1286 if (write)
1287 foll_flags |= FOLL_WRITE;
1288
1289 if (is_vm_hugetlb_page(vma)) {
1290 i = follow_hugetlb_page(mm, vma, pages, vmas,
1291 &start, &nr_pages, i, foll_flags);
1292 continue;
1293 }
deceb6cd 1294
1da177e4 1295 do {
08ef4729 1296 struct page *page;
1da177e4 1297
462e00cc 1298 /*
4779280d 1299 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1300 * pages and potentially allocating memory.
462e00cc 1301 */
1c3aff1c 1302 if (unlikely(fatal_signal_pending(current)))
4779280d 1303 return i ? i : -ERESTARTSYS;
462e00cc 1304
deceb6cd
HD
1305 if (write)
1306 foll_flags |= FOLL_WRITE;
a68d2ebc 1307
deceb6cd 1308 cond_resched();
6aab341e 1309 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1310 int ret;
d06063cc 1311
d26ed650
HD
1312 ret = handle_mm_fault(mm, vma, start,
1313 (foll_flags & FOLL_WRITE) ?
1314 FAULT_FLAG_WRITE : 0);
1315
83c54070
NP
1316 if (ret & VM_FAULT_ERROR) {
1317 if (ret & VM_FAULT_OOM)
1318 return i ? i : -ENOMEM;
1319 else if (ret & VM_FAULT_SIGBUS)
1320 return i ? i : -EFAULT;
1321 BUG();
1322 }
1323 if (ret & VM_FAULT_MAJOR)
1324 tsk->maj_flt++;
1325 else
1326 tsk->min_flt++;
1327
a68d2ebc 1328 /*
83c54070
NP
1329 * The VM_FAULT_WRITE bit tells us that
1330 * do_wp_page has broken COW when necessary,
1331 * even if maybe_mkwrite decided not to set
1332 * pte_write. We can thus safely do subsequent
878b63ac
HD
1333 * page lookups as if they were reads. But only
1334 * do so when looping for pte_write is futile:
1335 * in some cases userspace may also be wanting
1336 * to write to the gotten user page, which a
1337 * read fault here might prevent (a readonly
1338 * page might get reCOWed by userspace write).
a68d2ebc 1339 */
878b63ac
HD
1340 if ((ret & VM_FAULT_WRITE) &&
1341 !(vma->vm_flags & VM_WRITE))
deceb6cd 1342 foll_flags &= ~FOLL_WRITE;
83c54070 1343
7f7bbbe5 1344 cond_resched();
1da177e4 1345 }
89f5b7da
LT
1346 if (IS_ERR(page))
1347 return i ? i : PTR_ERR(page);
1da177e4 1348 if (pages) {
08ef4729 1349 pages[i] = page;
03beb076 1350
a6f36be3 1351 flush_anon_page(vma, page, start);
08ef4729 1352 flush_dcache_page(page);
1da177e4
LT
1353 }
1354 if (vmas)
1355 vmas[i] = vma;
1356 i++;
1357 start += PAGE_SIZE;
9d73777e
PZ
1358 nr_pages--;
1359 } while (nr_pages && start < vma->vm_end);
1360 } while (nr_pages);
1da177e4
LT
1361 return i;
1362}
b291f000 1363
d2bf6be8
NP
1364/**
1365 * get_user_pages() - pin user pages in memory
1366 * @tsk: task_struct of target task
1367 * @mm: mm_struct of target mm
1368 * @start: starting user address
9d73777e 1369 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1370 * @write: whether pages will be written to by the caller
1371 * @force: whether to force write access even if user mapping is
1372 * readonly. This will result in the page being COWed even
1373 * in MAP_SHARED mappings. You do not want this.
1374 * @pages: array that receives pointers to the pages pinned.
1375 * Should be at least nr_pages long. Or NULL, if caller
1376 * only intends to ensure the pages are faulted in.
1377 * @vmas: array of pointers to vmas corresponding to each page.
1378 * Or NULL if the caller does not require them.
1379 *
1380 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1381 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1382 * were pinned, returns -errno. Each page returned must be released
1383 * with a put_page() call when it is finished with. vmas will only
1384 * remain valid while mmap_sem is held.
1385 *
1386 * Must be called with mmap_sem held for read or write.
1387 *
1388 * get_user_pages walks a process's page tables and takes a reference to
1389 * each struct page that each user address corresponds to at a given
1390 * instant. That is, it takes the page that would be accessed if a user
1391 * thread accesses the given user virtual address at that instant.
1392 *
1393 * This does not guarantee that the page exists in the user mappings when
1394 * get_user_pages returns, and there may even be a completely different
1395 * page there in some cases (eg. if mmapped pagecache has been invalidated
1396 * and subsequently re faulted). However it does guarantee that the page
1397 * won't be freed completely. And mostly callers simply care that the page
1398 * contains data that was valid *at some point in time*. Typically, an IO
1399 * or similar operation cannot guarantee anything stronger anyway because
1400 * locks can't be held over the syscall boundary.
1401 *
1402 * If write=0, the page must not be written to. If the page is written to,
1403 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1404 * after the page is finished with, and before put_page is called.
1405 *
1406 * get_user_pages is typically used for fewer-copy IO operations, to get a
1407 * handle on the memory by some means other than accesses via the user virtual
1408 * addresses. The pages may be submitted for DMA to devices or accessed via
1409 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1410 * use the correct cache flushing APIs.
1411 *
1412 * See also get_user_pages_fast, for performance critical applications.
1413 */
b291f000 1414int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1415 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1416 struct page **pages, struct vm_area_struct **vmas)
1417{
1418 int flags = 0;
1419
1420 if (write)
1421 flags |= GUP_FLAGS_WRITE;
1422 if (force)
1423 flags |= GUP_FLAGS_FORCE;
1424
9d73777e 1425 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
b291f000 1426}
1da177e4
LT
1427EXPORT_SYMBOL(get_user_pages);
1428
f3e8fccd
HD
1429/**
1430 * get_dump_page() - pin user page in memory while writing it to core dump
1431 * @addr: user address
1432 *
1433 * Returns struct page pointer of user page pinned for dump,
1434 * to be freed afterwards by page_cache_release() or put_page().
1435 *
1436 * Returns NULL on any kind of failure - a hole must then be inserted into
1437 * the corefile, to preserve alignment with its headers; and also returns
1438 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1439 * allowing a hole to be left in the corefile to save diskspace.
1440 *
1441 * Called without mmap_sem, but after all other threads have been killed.
1442 */
1443#ifdef CONFIG_ELF_CORE
1444struct page *get_dump_page(unsigned long addr)
1445{
1446 struct vm_area_struct *vma;
1447 struct page *page;
1448
1449 if (__get_user_pages(current, current->mm, addr, 1,
8e4b9a60 1450 GUP_FLAGS_FORCE | GUP_FLAGS_DUMP, &page, &vma) < 1)
f3e8fccd
HD
1451 return NULL;
1452 if (page == ZERO_PAGE(0)) {
1453 page_cache_release(page);
1454 return NULL;
1455 }
1456 flush_cache_page(vma, addr, page_to_pfn(page));
1457 return page;
1458}
1459#endif /* CONFIG_ELF_CORE */
1460
920c7a5d
HH
1461pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1462 spinlock_t **ptl)
c9cfcddf
LT
1463{
1464 pgd_t * pgd = pgd_offset(mm, addr);
1465 pud_t * pud = pud_alloc(mm, pgd, addr);
1466 if (pud) {
49c91fb0 1467 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1468 if (pmd)
1469 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1470 }
1471 return NULL;
1472}
1473
238f58d8
LT
1474/*
1475 * This is the old fallback for page remapping.
1476 *
1477 * For historical reasons, it only allows reserved pages. Only
1478 * old drivers should use this, and they needed to mark their
1479 * pages reserved for the old functions anyway.
1480 */
423bad60
NP
1481static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1482 struct page *page, pgprot_t prot)
238f58d8 1483{
423bad60 1484 struct mm_struct *mm = vma->vm_mm;
238f58d8 1485 int retval;
c9cfcddf 1486 pte_t *pte;
8a9f3ccd
BS
1487 spinlock_t *ptl;
1488
238f58d8 1489 retval = -EINVAL;
a145dd41 1490 if (PageAnon(page))
5b4e655e 1491 goto out;
238f58d8
LT
1492 retval = -ENOMEM;
1493 flush_dcache_page(page);
c9cfcddf 1494 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1495 if (!pte)
5b4e655e 1496 goto out;
238f58d8
LT
1497 retval = -EBUSY;
1498 if (!pte_none(*pte))
1499 goto out_unlock;
1500
1501 /* Ok, finally just insert the thing.. */
1502 get_page(page);
1503 inc_mm_counter(mm, file_rss);
1504 page_add_file_rmap(page);
1505 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1506
1507 retval = 0;
8a9f3ccd
BS
1508 pte_unmap_unlock(pte, ptl);
1509 return retval;
238f58d8
LT
1510out_unlock:
1511 pte_unmap_unlock(pte, ptl);
1512out:
1513 return retval;
1514}
1515
bfa5bf6d
REB
1516/**
1517 * vm_insert_page - insert single page into user vma
1518 * @vma: user vma to map to
1519 * @addr: target user address of this page
1520 * @page: source kernel page
1521 *
a145dd41
LT
1522 * This allows drivers to insert individual pages they've allocated
1523 * into a user vma.
1524 *
1525 * The page has to be a nice clean _individual_ kernel allocation.
1526 * If you allocate a compound page, you need to have marked it as
1527 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1528 * (see split_page()).
a145dd41
LT
1529 *
1530 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1531 * took an arbitrary page protection parameter. This doesn't allow
1532 * that. Your vma protection will have to be set up correctly, which
1533 * means that if you want a shared writable mapping, you'd better
1534 * ask for a shared writable mapping!
1535 *
1536 * The page does not need to be reserved.
1537 */
423bad60
NP
1538int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1539 struct page *page)
a145dd41
LT
1540{
1541 if (addr < vma->vm_start || addr >= vma->vm_end)
1542 return -EFAULT;
1543 if (!page_count(page))
1544 return -EINVAL;
4d7672b4 1545 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1546 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1547}
e3c3374f 1548EXPORT_SYMBOL(vm_insert_page);
a145dd41 1549
423bad60
NP
1550static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1551 unsigned long pfn, pgprot_t prot)
1552{
1553 struct mm_struct *mm = vma->vm_mm;
1554 int retval;
1555 pte_t *pte, entry;
1556 spinlock_t *ptl;
1557
1558 retval = -ENOMEM;
1559 pte = get_locked_pte(mm, addr, &ptl);
1560 if (!pte)
1561 goto out;
1562 retval = -EBUSY;
1563 if (!pte_none(*pte))
1564 goto out_unlock;
1565
1566 /* Ok, finally just insert the thing.. */
1567 entry = pte_mkspecial(pfn_pte(pfn, prot));
1568 set_pte_at(mm, addr, pte, entry);
1569 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1570
1571 retval = 0;
1572out_unlock:
1573 pte_unmap_unlock(pte, ptl);
1574out:
1575 return retval;
1576}
1577
e0dc0d8f
NP
1578/**
1579 * vm_insert_pfn - insert single pfn into user vma
1580 * @vma: user vma to map to
1581 * @addr: target user address of this page
1582 * @pfn: source kernel pfn
1583 *
1584 * Similar to vm_inert_page, this allows drivers to insert individual pages
1585 * they've allocated into a user vma. Same comments apply.
1586 *
1587 * This function should only be called from a vm_ops->fault handler, and
1588 * in that case the handler should return NULL.
0d71d10a
NP
1589 *
1590 * vma cannot be a COW mapping.
1591 *
1592 * As this is called only for pages that do not currently exist, we
1593 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1594 */
1595int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1596 unsigned long pfn)
e0dc0d8f 1597{
2ab64037 1598 int ret;
e4b866ed 1599 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1600 /*
1601 * Technically, architectures with pte_special can avoid all these
1602 * restrictions (same for remap_pfn_range). However we would like
1603 * consistency in testing and feature parity among all, so we should
1604 * try to keep these invariants in place for everybody.
1605 */
b379d790
JH
1606 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1607 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1608 (VM_PFNMAP|VM_MIXEDMAP));
1609 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1610 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1611
423bad60
NP
1612 if (addr < vma->vm_start || addr >= vma->vm_end)
1613 return -EFAULT;
e4b866ed 1614 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2ab64037 1615 return -EINVAL;
1616
e4b866ed 1617 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1618
1619 if (ret)
1620 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1621
1622 return ret;
423bad60
NP
1623}
1624EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1625
423bad60
NP
1626int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1627 unsigned long pfn)
1628{
1629 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1630
423bad60
NP
1631 if (addr < vma->vm_start || addr >= vma->vm_end)
1632 return -EFAULT;
e0dc0d8f 1633
423bad60
NP
1634 /*
1635 * If we don't have pte special, then we have to use the pfn_valid()
1636 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1637 * refcount the page if pfn_valid is true (hence insert_page rather
1638 * than insert_pfn).
1639 */
1640 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1641 struct page *page;
1642
1643 page = pfn_to_page(pfn);
1644 return insert_page(vma, addr, page, vma->vm_page_prot);
1645 }
1646 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1647}
423bad60 1648EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1649
1da177e4
LT
1650/*
1651 * maps a range of physical memory into the requested pages. the old
1652 * mappings are removed. any references to nonexistent pages results
1653 * in null mappings (currently treated as "copy-on-access")
1654 */
1655static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1656 unsigned long addr, unsigned long end,
1657 unsigned long pfn, pgprot_t prot)
1658{
1659 pte_t *pte;
c74df32c 1660 spinlock_t *ptl;
1da177e4 1661
c74df32c 1662 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1663 if (!pte)
1664 return -ENOMEM;
6606c3e0 1665 arch_enter_lazy_mmu_mode();
1da177e4
LT
1666 do {
1667 BUG_ON(!pte_none(*pte));
7e675137 1668 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1669 pfn++;
1670 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1671 arch_leave_lazy_mmu_mode();
c74df32c 1672 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1673 return 0;
1674}
1675
1676static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1677 unsigned long addr, unsigned long end,
1678 unsigned long pfn, pgprot_t prot)
1679{
1680 pmd_t *pmd;
1681 unsigned long next;
1682
1683 pfn -= addr >> PAGE_SHIFT;
1684 pmd = pmd_alloc(mm, pud, addr);
1685 if (!pmd)
1686 return -ENOMEM;
1687 do {
1688 next = pmd_addr_end(addr, end);
1689 if (remap_pte_range(mm, pmd, addr, next,
1690 pfn + (addr >> PAGE_SHIFT), prot))
1691 return -ENOMEM;
1692 } while (pmd++, addr = next, addr != end);
1693 return 0;
1694}
1695
1696static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1697 unsigned long addr, unsigned long end,
1698 unsigned long pfn, pgprot_t prot)
1699{
1700 pud_t *pud;
1701 unsigned long next;
1702
1703 pfn -= addr >> PAGE_SHIFT;
1704 pud = pud_alloc(mm, pgd, addr);
1705 if (!pud)
1706 return -ENOMEM;
1707 do {
1708 next = pud_addr_end(addr, end);
1709 if (remap_pmd_range(mm, pud, addr, next,
1710 pfn + (addr >> PAGE_SHIFT), prot))
1711 return -ENOMEM;
1712 } while (pud++, addr = next, addr != end);
1713 return 0;
1714}
1715
bfa5bf6d
REB
1716/**
1717 * remap_pfn_range - remap kernel memory to userspace
1718 * @vma: user vma to map to
1719 * @addr: target user address to start at
1720 * @pfn: physical address of kernel memory
1721 * @size: size of map area
1722 * @prot: page protection flags for this mapping
1723 *
1724 * Note: this is only safe if the mm semaphore is held when called.
1725 */
1da177e4
LT
1726int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1727 unsigned long pfn, unsigned long size, pgprot_t prot)
1728{
1729 pgd_t *pgd;
1730 unsigned long next;
2d15cab8 1731 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1732 struct mm_struct *mm = vma->vm_mm;
1733 int err;
1734
1735 /*
1736 * Physically remapped pages are special. Tell the
1737 * rest of the world about it:
1738 * VM_IO tells people not to look at these pages
1739 * (accesses can have side effects).
0b14c179
HD
1740 * VM_RESERVED is specified all over the place, because
1741 * in 2.4 it kept swapout's vma scan off this vma; but
1742 * in 2.6 the LRU scan won't even find its pages, so this
1743 * flag means no more than count its pages in reserved_vm,
1744 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1745 * VM_PFNMAP tells the core MM that the base pages are just
1746 * raw PFN mappings, and do not have a "struct page" associated
1747 * with them.
fb155c16
LT
1748 *
1749 * There's a horrible special case to handle copy-on-write
1750 * behaviour that some programs depend on. We mark the "original"
1751 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1752 */
4bb9c5c0 1753 if (addr == vma->vm_start && end == vma->vm_end) {
fb155c16 1754 vma->vm_pgoff = pfn;
895791da 1755 vma->vm_flags |= VM_PFN_AT_MMAP;
4bb9c5c0 1756 } else if (is_cow_mapping(vma->vm_flags))
3c8bb73a 1757 return -EINVAL;
fb155c16 1758
6aab341e 1759 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 1760
e4b866ed 1761 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
a3670613 1762 if (err) {
1763 /*
1764 * To indicate that track_pfn related cleanup is not
1765 * needed from higher level routine calling unmap_vmas
1766 */
1767 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
895791da 1768 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2ab64037 1769 return -EINVAL;
a3670613 1770 }
2ab64037 1771
1da177e4
LT
1772 BUG_ON(addr >= end);
1773 pfn -= addr >> PAGE_SHIFT;
1774 pgd = pgd_offset(mm, addr);
1775 flush_cache_range(vma, addr, end);
1da177e4
LT
1776 do {
1777 next = pgd_addr_end(addr, end);
1778 err = remap_pud_range(mm, pgd, addr, next,
1779 pfn + (addr >> PAGE_SHIFT), prot);
1780 if (err)
1781 break;
1782 } while (pgd++, addr = next, addr != end);
2ab64037 1783
1784 if (err)
1785 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1786
1da177e4
LT
1787 return err;
1788}
1789EXPORT_SYMBOL(remap_pfn_range);
1790
aee16b3c
JF
1791static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1792 unsigned long addr, unsigned long end,
1793 pte_fn_t fn, void *data)
1794{
1795 pte_t *pte;
1796 int err;
2f569afd 1797 pgtable_t token;
94909914 1798 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1799
1800 pte = (mm == &init_mm) ?
1801 pte_alloc_kernel(pmd, addr) :
1802 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1803 if (!pte)
1804 return -ENOMEM;
1805
1806 BUG_ON(pmd_huge(*pmd));
1807
38e0edb1
JF
1808 arch_enter_lazy_mmu_mode();
1809
2f569afd 1810 token = pmd_pgtable(*pmd);
aee16b3c
JF
1811
1812 do {
2f569afd 1813 err = fn(pte, token, addr, data);
aee16b3c
JF
1814 if (err)
1815 break;
1816 } while (pte++, addr += PAGE_SIZE, addr != end);
1817
38e0edb1
JF
1818 arch_leave_lazy_mmu_mode();
1819
aee16b3c
JF
1820 if (mm != &init_mm)
1821 pte_unmap_unlock(pte-1, ptl);
1822 return err;
1823}
1824
1825static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1826 unsigned long addr, unsigned long end,
1827 pte_fn_t fn, void *data)
1828{
1829 pmd_t *pmd;
1830 unsigned long next;
1831 int err;
1832
ceb86879
AK
1833 BUG_ON(pud_huge(*pud));
1834
aee16b3c
JF
1835 pmd = pmd_alloc(mm, pud, addr);
1836 if (!pmd)
1837 return -ENOMEM;
1838 do {
1839 next = pmd_addr_end(addr, end);
1840 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1841 if (err)
1842 break;
1843 } while (pmd++, addr = next, addr != end);
1844 return err;
1845}
1846
1847static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1848 unsigned long addr, unsigned long end,
1849 pte_fn_t fn, void *data)
1850{
1851 pud_t *pud;
1852 unsigned long next;
1853 int err;
1854
1855 pud = pud_alloc(mm, pgd, addr);
1856 if (!pud)
1857 return -ENOMEM;
1858 do {
1859 next = pud_addr_end(addr, end);
1860 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1861 if (err)
1862 break;
1863 } while (pud++, addr = next, addr != end);
1864 return err;
1865}
1866
1867/*
1868 * Scan a region of virtual memory, filling in page tables as necessary
1869 * and calling a provided function on each leaf page table.
1870 */
1871int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1872 unsigned long size, pte_fn_t fn, void *data)
1873{
1874 pgd_t *pgd;
1875 unsigned long next;
cddb8a5c 1876 unsigned long start = addr, end = addr + size;
aee16b3c
JF
1877 int err;
1878
1879 BUG_ON(addr >= end);
cddb8a5c 1880 mmu_notifier_invalidate_range_start(mm, start, end);
aee16b3c
JF
1881 pgd = pgd_offset(mm, addr);
1882 do {
1883 next = pgd_addr_end(addr, end);
1884 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1885 if (err)
1886 break;
1887 } while (pgd++, addr = next, addr != end);
cddb8a5c 1888 mmu_notifier_invalidate_range_end(mm, start, end);
aee16b3c
JF
1889 return err;
1890}
1891EXPORT_SYMBOL_GPL(apply_to_page_range);
1892
8f4e2101
HD
1893/*
1894 * handle_pte_fault chooses page fault handler according to an entry
1895 * which was read non-atomically. Before making any commitment, on
1896 * those architectures or configurations (e.g. i386 with PAE) which
1897 * might give a mix of unmatched parts, do_swap_page and do_file_page
1898 * must check under lock before unmapping the pte and proceeding
1899 * (but do_wp_page is only called after already making such a check;
1900 * and do_anonymous_page and do_no_page can safely check later on).
1901 */
4c21e2f2 1902static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1903 pte_t *page_table, pte_t orig_pte)
1904{
1905 int same = 1;
1906#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1907 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1908 spinlock_t *ptl = pte_lockptr(mm, pmd);
1909 spin_lock(ptl);
8f4e2101 1910 same = pte_same(*page_table, orig_pte);
4c21e2f2 1911 spin_unlock(ptl);
8f4e2101
HD
1912 }
1913#endif
1914 pte_unmap(page_table);
1915 return same;
1916}
1917
1da177e4
LT
1918/*
1919 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1920 * servicing faults for write access. In the normal case, do always want
1921 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1922 * that do not have writing enabled, when used by access_process_vm.
1923 */
1924static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1925{
1926 if (likely(vma->vm_flags & VM_WRITE))
1927 pte = pte_mkwrite(pte);
1928 return pte;
1929}
1930
9de455b2 1931static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1932{
1933 /*
1934 * If the source page was a PFN mapping, we don't have
1935 * a "struct page" for it. We do a best-effort copy by
1936 * just copying from the original user address. If that
1937 * fails, we just zero-fill it. Live with it.
1938 */
1939 if (unlikely(!src)) {
1940 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1941 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1942
1943 /*
1944 * This really shouldn't fail, because the page is there
1945 * in the page tables. But it might just be unreadable,
1946 * in which case we just give up and fill the result with
1947 * zeroes.
1948 */
1949 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1950 memset(kaddr, 0, PAGE_SIZE);
1951 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1952 flush_dcache_page(dst);
0ed361de
NP
1953 } else
1954 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1955}
1956
1da177e4
LT
1957/*
1958 * This routine handles present pages, when users try to write
1959 * to a shared page. It is done by copying the page to a new address
1960 * and decrementing the shared-page counter for the old page.
1961 *
1da177e4
LT
1962 * Note that this routine assumes that the protection checks have been
1963 * done by the caller (the low-level page fault routine in most cases).
1964 * Thus we can safely just mark it writable once we've done any necessary
1965 * COW.
1966 *
1967 * We also mark the page dirty at this point even though the page will
1968 * change only once the write actually happens. This avoids a few races,
1969 * and potentially makes it more efficient.
1970 *
8f4e2101
HD
1971 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1972 * but allow concurrent faults), with pte both mapped and locked.
1973 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1974 */
65500d23
HD
1975static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1976 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1977 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1978{
e5bbe4df 1979 struct page *old_page, *new_page;
1da177e4 1980 pte_t entry;
83c54070 1981 int reuse = 0, ret = 0;
a200ee18 1982 int page_mkwrite = 0;
d08b3851 1983 struct page *dirty_page = NULL;
1da177e4 1984
6aab341e 1985 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
1986 if (!old_page) {
1987 /*
1988 * VM_MIXEDMAP !pfn_valid() case
1989 *
1990 * We should not cow pages in a shared writeable mapping.
1991 * Just mark the pages writable as we can't do any dirty
1992 * accounting on raw pfn maps.
1993 */
1994 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1995 (VM_WRITE|VM_SHARED))
1996 goto reuse;
6aab341e 1997 goto gotten;
251b97f5 1998 }
1da177e4 1999
d08b3851 2000 /*
ee6a6457
PZ
2001 * Take out anonymous pages first, anonymous shared vmas are
2002 * not dirty accountable.
d08b3851 2003 */
9a840895 2004 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2005 if (!trylock_page(old_page)) {
2006 page_cache_get(old_page);
2007 pte_unmap_unlock(page_table, ptl);
2008 lock_page(old_page);
2009 page_table = pte_offset_map_lock(mm, pmd, address,
2010 &ptl);
2011 if (!pte_same(*page_table, orig_pte)) {
2012 unlock_page(old_page);
2013 page_cache_release(old_page);
2014 goto unlock;
2015 }
2016 page_cache_release(old_page);
ee6a6457 2017 }
7b1fe597 2018 reuse = reuse_swap_page(old_page);
ab967d86 2019 unlock_page(old_page);
ee6a6457 2020 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2021 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2022 /*
2023 * Only catch write-faults on shared writable pages,
2024 * read-only shared pages can get COWed by
2025 * get_user_pages(.write=1, .force=1).
2026 */
9637a5ef 2027 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2028 struct vm_fault vmf;
2029 int tmp;
2030
2031 vmf.virtual_address = (void __user *)(address &
2032 PAGE_MASK);
2033 vmf.pgoff = old_page->index;
2034 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2035 vmf.page = old_page;
2036
9637a5ef
DH
2037 /*
2038 * Notify the address space that the page is about to
2039 * become writable so that it can prohibit this or wait
2040 * for the page to get into an appropriate state.
2041 *
2042 * We do this without the lock held, so that it can
2043 * sleep if it needs to.
2044 */
2045 page_cache_get(old_page);
2046 pte_unmap_unlock(page_table, ptl);
2047
c2ec175c
NP
2048 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2049 if (unlikely(tmp &
2050 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2051 ret = tmp;
9637a5ef 2052 goto unwritable_page;
c2ec175c 2053 }
b827e496
NP
2054 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2055 lock_page(old_page);
2056 if (!old_page->mapping) {
2057 ret = 0; /* retry the fault */
2058 unlock_page(old_page);
2059 goto unwritable_page;
2060 }
2061 } else
2062 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2063
9637a5ef
DH
2064 /*
2065 * Since we dropped the lock we need to revalidate
2066 * the PTE as someone else may have changed it. If
2067 * they did, we just return, as we can count on the
2068 * MMU to tell us if they didn't also make it writable.
2069 */
2070 page_table = pte_offset_map_lock(mm, pmd, address,
2071 &ptl);
b827e496
NP
2072 if (!pte_same(*page_table, orig_pte)) {
2073 unlock_page(old_page);
2074 page_cache_release(old_page);
9637a5ef 2075 goto unlock;
b827e496 2076 }
a200ee18
PZ
2077
2078 page_mkwrite = 1;
1da177e4 2079 }
d08b3851
PZ
2080 dirty_page = old_page;
2081 get_page(dirty_page);
9637a5ef 2082 reuse = 1;
9637a5ef
DH
2083 }
2084
2085 if (reuse) {
251b97f5 2086reuse:
9637a5ef
DH
2087 flush_cache_page(vma, address, pte_pfn(orig_pte));
2088 entry = pte_mkyoung(orig_pte);
2089 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2090 if (ptep_set_access_flags(vma, address, page_table, entry,1))
8dab5241 2091 update_mmu_cache(vma, address, entry);
9637a5ef
DH
2092 ret |= VM_FAULT_WRITE;
2093 goto unlock;
1da177e4 2094 }
1da177e4
LT
2095
2096 /*
2097 * Ok, we need to copy. Oh, well..
2098 */
b5810039 2099 page_cache_get(old_page);
920fc356 2100gotten:
8f4e2101 2101 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2102
2103 if (unlikely(anon_vma_prepare(vma)))
65500d23 2104 goto oom;
a13ea5b7
HD
2105
2106 if (pte_pfn(orig_pte) == zero_pfn) {
2107 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2108 if (!new_page)
2109 goto oom;
2110 } else {
2111 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2112 if (!new_page)
2113 goto oom;
2114 cow_user_page(new_page, old_page, address, vma);
2115 }
2116 __SetPageUptodate(new_page);
2117
b291f000
NP
2118 /*
2119 * Don't let another task, with possibly unlocked vma,
2120 * keep the mlocked page.
2121 */
ab92661d 2122 if ((vma->vm_flags & VM_LOCKED) && old_page) {
b291f000
NP
2123 lock_page(old_page); /* for LRU manipulation */
2124 clear_page_mlock(old_page);
2125 unlock_page(old_page);
2126 }
65500d23 2127
2c26fdd7 2128 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2129 goto oom_free_new;
2130
1da177e4
LT
2131 /*
2132 * Re-check the pte - we dropped the lock
2133 */
8f4e2101 2134 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2135 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2136 if (old_page) {
920fc356
HD
2137 if (!PageAnon(old_page)) {
2138 dec_mm_counter(mm, file_rss);
2139 inc_mm_counter(mm, anon_rss);
2140 }
2141 } else
4294621f 2142 inc_mm_counter(mm, anon_rss);
eca35133 2143 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2144 entry = mk_pte(new_page, vma->vm_page_prot);
2145 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2146 /*
2147 * Clear the pte entry and flush it first, before updating the
2148 * pte with the new entry. This will avoid a race condition
2149 * seen in the presence of one thread doing SMC and another
2150 * thread doing COW.
2151 */
828502d3 2152 ptep_clear_flush(vma, address, page_table);
9617d95e 2153 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2154 /*
2155 * We call the notify macro here because, when using secondary
2156 * mmu page tables (such as kvm shadow page tables), we want the
2157 * new page to be mapped directly into the secondary page table.
2158 */
2159 set_pte_at_notify(mm, address, page_table, entry);
64d6519d 2160 update_mmu_cache(vma, address, entry);
945754a1
NP
2161 if (old_page) {
2162 /*
2163 * Only after switching the pte to the new page may
2164 * we remove the mapcount here. Otherwise another
2165 * process may come and find the rmap count decremented
2166 * before the pte is switched to the new page, and
2167 * "reuse" the old page writing into it while our pte
2168 * here still points into it and can be read by other
2169 * threads.
2170 *
2171 * The critical issue is to order this
2172 * page_remove_rmap with the ptp_clear_flush above.
2173 * Those stores are ordered by (if nothing else,)
2174 * the barrier present in the atomic_add_negative
2175 * in page_remove_rmap.
2176 *
2177 * Then the TLB flush in ptep_clear_flush ensures that
2178 * no process can access the old page before the
2179 * decremented mapcount is visible. And the old page
2180 * cannot be reused until after the decremented
2181 * mapcount is visible. So transitively, TLBs to
2182 * old page will be flushed before it can be reused.
2183 */
edc315fd 2184 page_remove_rmap(old_page);
945754a1
NP
2185 }
2186
1da177e4
LT
2187 /* Free the old page.. */
2188 new_page = old_page;
f33ea7f4 2189 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2190 } else
2191 mem_cgroup_uncharge_page(new_page);
2192
920fc356
HD
2193 if (new_page)
2194 page_cache_release(new_page);
2195 if (old_page)
2196 page_cache_release(old_page);
65500d23 2197unlock:
8f4e2101 2198 pte_unmap_unlock(page_table, ptl);
d08b3851 2199 if (dirty_page) {
79352894
NP
2200 /*
2201 * Yes, Virginia, this is actually required to prevent a race
2202 * with clear_page_dirty_for_io() from clearing the page dirty
2203 * bit after it clear all dirty ptes, but before a racing
2204 * do_wp_page installs a dirty pte.
2205 *
2206 * do_no_page is protected similarly.
2207 */
b827e496
NP
2208 if (!page_mkwrite) {
2209 wait_on_page_locked(dirty_page);
2210 set_page_dirty_balance(dirty_page, page_mkwrite);
2211 }
d08b3851 2212 put_page(dirty_page);
b827e496
NP
2213 if (page_mkwrite) {
2214 struct address_space *mapping = dirty_page->mapping;
2215
2216 set_page_dirty(dirty_page);
2217 unlock_page(dirty_page);
2218 page_cache_release(dirty_page);
2219 if (mapping) {
2220 /*
2221 * Some device drivers do not set page.mapping
2222 * but still dirty their pages
2223 */
2224 balance_dirty_pages_ratelimited(mapping);
2225 }
2226 }
2227
2228 /* file_update_time outside page_lock */
2229 if (vma->vm_file)
2230 file_update_time(vma->vm_file);
d08b3851 2231 }
f33ea7f4 2232 return ret;
8a9f3ccd 2233oom_free_new:
6dbf6d3b 2234 page_cache_release(new_page);
65500d23 2235oom:
b827e496
NP
2236 if (old_page) {
2237 if (page_mkwrite) {
2238 unlock_page(old_page);
2239 page_cache_release(old_page);
2240 }
920fc356 2241 page_cache_release(old_page);
b827e496 2242 }
1da177e4 2243 return VM_FAULT_OOM;
9637a5ef
DH
2244
2245unwritable_page:
2246 page_cache_release(old_page);
c2ec175c 2247 return ret;
1da177e4
LT
2248}
2249
2250/*
2251 * Helper functions for unmap_mapping_range().
2252 *
2253 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2254 *
2255 * We have to restart searching the prio_tree whenever we drop the lock,
2256 * since the iterator is only valid while the lock is held, and anyway
2257 * a later vma might be split and reinserted earlier while lock dropped.
2258 *
2259 * The list of nonlinear vmas could be handled more efficiently, using
2260 * a placeholder, but handle it in the same way until a need is shown.
2261 * It is important to search the prio_tree before nonlinear list: a vma
2262 * may become nonlinear and be shifted from prio_tree to nonlinear list
2263 * while the lock is dropped; but never shifted from list to prio_tree.
2264 *
2265 * In order to make forward progress despite restarting the search,
2266 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2267 * quickly skip it next time around. Since the prio_tree search only
2268 * shows us those vmas affected by unmapping the range in question, we
2269 * can't efficiently keep all vmas in step with mapping->truncate_count:
2270 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2271 * mapping->truncate_count and vma->vm_truncate_count are protected by
2272 * i_mmap_lock.
2273 *
2274 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2275 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2276 * and restart from that address when we reach that vma again. It might
2277 * have been split or merged, shrunk or extended, but never shifted: so
2278 * restart_addr remains valid so long as it remains in the vma's range.
2279 * unmap_mapping_range forces truncate_count to leap over page-aligned
2280 * values so we can save vma's restart_addr in its truncate_count field.
2281 */
2282#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2283
2284static void reset_vma_truncate_counts(struct address_space *mapping)
2285{
2286 struct vm_area_struct *vma;
2287 struct prio_tree_iter iter;
2288
2289 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2290 vma->vm_truncate_count = 0;
2291 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2292 vma->vm_truncate_count = 0;
2293}
2294
2295static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2296 unsigned long start_addr, unsigned long end_addr,
2297 struct zap_details *details)
2298{
2299 unsigned long restart_addr;
2300 int need_break;
2301
d00806b1
NP
2302 /*
2303 * files that support invalidating or truncating portions of the
d0217ac0 2304 * file from under mmaped areas must have their ->fault function
83c54070
NP
2305 * return a locked page (and set VM_FAULT_LOCKED in the return).
2306 * This provides synchronisation against concurrent unmapping here.
d00806b1 2307 */
d00806b1 2308
1da177e4
LT
2309again:
2310 restart_addr = vma->vm_truncate_count;
2311 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2312 start_addr = restart_addr;
2313 if (start_addr >= end_addr) {
2314 /* Top of vma has been split off since last time */
2315 vma->vm_truncate_count = details->truncate_count;
2316 return 0;
2317 }
2318 }
2319
ee39b37b
HD
2320 restart_addr = zap_page_range(vma, start_addr,
2321 end_addr - start_addr, details);
95c354fe 2322 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2323
ee39b37b 2324 if (restart_addr >= end_addr) {
1da177e4
LT
2325 /* We have now completed this vma: mark it so */
2326 vma->vm_truncate_count = details->truncate_count;
2327 if (!need_break)
2328 return 0;
2329 } else {
2330 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2331 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2332 if (!need_break)
2333 goto again;
2334 }
2335
2336 spin_unlock(details->i_mmap_lock);
2337 cond_resched();
2338 spin_lock(details->i_mmap_lock);
2339 return -EINTR;
2340}
2341
2342static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2343 struct zap_details *details)
2344{
2345 struct vm_area_struct *vma;
2346 struct prio_tree_iter iter;
2347 pgoff_t vba, vea, zba, zea;
2348
2349restart:
2350 vma_prio_tree_foreach(vma, &iter, root,
2351 details->first_index, details->last_index) {
2352 /* Skip quickly over those we have already dealt with */
2353 if (vma->vm_truncate_count == details->truncate_count)
2354 continue;
2355
2356 vba = vma->vm_pgoff;
2357 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2358 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2359 zba = details->first_index;
2360 if (zba < vba)
2361 zba = vba;
2362 zea = details->last_index;
2363 if (zea > vea)
2364 zea = vea;
2365
2366 if (unmap_mapping_range_vma(vma,
2367 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2368 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2369 details) < 0)
2370 goto restart;
2371 }
2372}
2373
2374static inline void unmap_mapping_range_list(struct list_head *head,
2375 struct zap_details *details)
2376{
2377 struct vm_area_struct *vma;
2378
2379 /*
2380 * In nonlinear VMAs there is no correspondence between virtual address
2381 * offset and file offset. So we must perform an exhaustive search
2382 * across *all* the pages in each nonlinear VMA, not just the pages
2383 * whose virtual address lies outside the file truncation point.
2384 */
2385restart:
2386 list_for_each_entry(vma, head, shared.vm_set.list) {
2387 /* Skip quickly over those we have already dealt with */
2388 if (vma->vm_truncate_count == details->truncate_count)
2389 continue;
2390 details->nonlinear_vma = vma;
2391 if (unmap_mapping_range_vma(vma, vma->vm_start,
2392 vma->vm_end, details) < 0)
2393 goto restart;
2394 }
2395}
2396
2397/**
72fd4a35 2398 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2399 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2400 * @holebegin: byte in first page to unmap, relative to the start of
2401 * the underlying file. This will be rounded down to a PAGE_SIZE
2402 * boundary. Note that this is different from vmtruncate(), which
2403 * must keep the partial page. In contrast, we must get rid of
2404 * partial pages.
2405 * @holelen: size of prospective hole in bytes. This will be rounded
2406 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2407 * end of the file.
2408 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2409 * but 0 when invalidating pagecache, don't throw away private data.
2410 */
2411void unmap_mapping_range(struct address_space *mapping,
2412 loff_t const holebegin, loff_t const holelen, int even_cows)
2413{
2414 struct zap_details details;
2415 pgoff_t hba = holebegin >> PAGE_SHIFT;
2416 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2417
2418 /* Check for overflow. */
2419 if (sizeof(holelen) > sizeof(hlen)) {
2420 long long holeend =
2421 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2422 if (holeend & ~(long long)ULONG_MAX)
2423 hlen = ULONG_MAX - hba + 1;
2424 }
2425
2426 details.check_mapping = even_cows? NULL: mapping;
2427 details.nonlinear_vma = NULL;
2428 details.first_index = hba;
2429 details.last_index = hba + hlen - 1;
2430 if (details.last_index < details.first_index)
2431 details.last_index = ULONG_MAX;
2432 details.i_mmap_lock = &mapping->i_mmap_lock;
2433
2434 spin_lock(&mapping->i_mmap_lock);
2435
d00806b1 2436 /* Protect against endless unmapping loops */
1da177e4 2437 mapping->truncate_count++;
1da177e4
LT
2438 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2439 if (mapping->truncate_count == 0)
2440 reset_vma_truncate_counts(mapping);
2441 mapping->truncate_count++;
2442 }
2443 details.truncate_count = mapping->truncate_count;
2444
2445 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2446 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2447 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2448 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2449 spin_unlock(&mapping->i_mmap_lock);
2450}
2451EXPORT_SYMBOL(unmap_mapping_range);
2452
bfa5bf6d
REB
2453/**
2454 * vmtruncate - unmap mappings "freed" by truncate() syscall
2455 * @inode: inode of the file used
2456 * @offset: file offset to start truncating
1da177e4
LT
2457 *
2458 * NOTE! We have to be ready to update the memory sharing
2459 * between the file and the memory map for a potential last
2460 * incomplete page. Ugly, but necessary.
2461 */
2462int vmtruncate(struct inode * inode, loff_t offset)
2463{
61d5048f
CH
2464 if (inode->i_size < offset) {
2465 unsigned long limit;
2466
2467 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2468 if (limit != RLIM_INFINITY && offset > limit)
2469 goto out_sig;
2470 if (offset > inode->i_sb->s_maxbytes)
2471 goto out_big;
2472 i_size_write(inode, offset);
2473 } else {
2474 struct address_space *mapping = inode->i_mapping;
1da177e4 2475
61d5048f
CH
2476 /*
2477 * truncation of in-use swapfiles is disallowed - it would
2478 * cause subsequent swapout to scribble on the now-freed
2479 * blocks.
2480 */
2481 if (IS_SWAPFILE(inode))
2482 return -ETXTBSY;
2483 i_size_write(inode, offset);
2484
2485 /*
2486 * unmap_mapping_range is called twice, first simply for
2487 * efficiency so that truncate_inode_pages does fewer
2488 * single-page unmaps. However after this first call, and
2489 * before truncate_inode_pages finishes, it is possible for
2490 * private pages to be COWed, which remain after
2491 * truncate_inode_pages finishes, hence the second
2492 * unmap_mapping_range call must be made for correctness.
2493 */
2494 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2495 truncate_inode_pages(mapping, offset);
2496 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2497 }
d00806b1 2498
acfa4380 2499 if (inode->i_op->truncate)
1da177e4
LT
2500 inode->i_op->truncate(inode);
2501 return 0;
61d5048f 2502
1da177e4
LT
2503out_sig:
2504 send_sig(SIGXFSZ, current, 0);
2505out_big:
2506 return -EFBIG;
1da177e4 2507}
1da177e4
LT
2508EXPORT_SYMBOL(vmtruncate);
2509
f6b3ec23
BP
2510int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2511{
2512 struct address_space *mapping = inode->i_mapping;
2513
2514 /*
2515 * If the underlying filesystem is not going to provide
2516 * a way to truncate a range of blocks (punch a hole) -
2517 * we should return failure right now.
2518 */
acfa4380 2519 if (!inode->i_op->truncate_range)
f6b3ec23
BP
2520 return -ENOSYS;
2521
1b1dcc1b 2522 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2523 down_write(&inode->i_alloc_sem);
2524 unmap_mapping_range(mapping, offset, (end - offset), 1);
2525 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2526 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2527 inode->i_op->truncate_range(inode, offset, end);
2528 up_write(&inode->i_alloc_sem);
1b1dcc1b 2529 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2530
2531 return 0;
2532}
f6b3ec23 2533
1da177e4 2534/*
8f4e2101
HD
2535 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2536 * but allow concurrent faults), and pte mapped but not yet locked.
2537 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2538 */
65500d23
HD
2539static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2540 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2541 unsigned int flags, pte_t orig_pte)
1da177e4 2542{
8f4e2101 2543 spinlock_t *ptl;
1da177e4 2544 struct page *page;
65500d23 2545 swp_entry_t entry;
1da177e4 2546 pte_t pte;
7a81b88c 2547 struct mem_cgroup *ptr = NULL;
83c54070 2548 int ret = 0;
1da177e4 2549
4c21e2f2 2550 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2551 goto out;
65500d23
HD
2552
2553 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2554 if (is_migration_entry(entry)) {
2555 migration_entry_wait(mm, pmd, address);
2556 goto out;
2557 }
0ff92245 2558 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2559 page = lookup_swap_cache(entry);
2560 if (!page) {
a5c9b696 2561 grab_swap_token(mm); /* Contend for token _before_ read-in */
02098fea
HD
2562 page = swapin_readahead(entry,
2563 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2564 if (!page) {
2565 /*
8f4e2101
HD
2566 * Back out if somebody else faulted in this pte
2567 * while we released the pte lock.
1da177e4 2568 */
8f4e2101 2569 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2570 if (likely(pte_same(*page_table, orig_pte)))
2571 ret = VM_FAULT_OOM;
0ff92245 2572 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2573 goto unlock;
1da177e4
LT
2574 }
2575
2576 /* Had to read the page from swap area: Major fault */
2577 ret = VM_FAULT_MAJOR;
f8891e5e 2578 count_vm_event(PGMAJFAULT);
1da177e4
LT
2579 }
2580
073e587e
KH
2581 lock_page(page);
2582 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2583
2c26fdd7 2584 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 2585 ret = VM_FAULT_OOM;
bc43f75c 2586 goto out_page;
8a9f3ccd
BS
2587 }
2588
1da177e4 2589 /*
8f4e2101 2590 * Back out if somebody else already faulted in this pte.
1da177e4 2591 */
8f4e2101 2592 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2593 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2594 goto out_nomap;
b8107480
KK
2595
2596 if (unlikely(!PageUptodate(page))) {
2597 ret = VM_FAULT_SIGBUS;
2598 goto out_nomap;
1da177e4
LT
2599 }
2600
8c7c6e34
KH
2601 /*
2602 * The page isn't present yet, go ahead with the fault.
2603 *
2604 * Be careful about the sequence of operations here.
2605 * To get its accounting right, reuse_swap_page() must be called
2606 * while the page is counted on swap but not yet in mapcount i.e.
2607 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2608 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
2609 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2610 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2611 * in page->private. In this case, a record in swap_cgroup is silently
2612 * discarded at swap_free().
8c7c6e34 2613 */
1da177e4 2614
4294621f 2615 inc_mm_counter(mm, anon_rss);
1da177e4 2616 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2617 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2618 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2619 flags &= ~FAULT_FLAG_WRITE;
1da177e4 2620 }
1da177e4
LT
2621 flush_icache_page(vma, page);
2622 set_pte_at(mm, address, page_table, pte);
2623 page_add_anon_rmap(page, vma, address);
03f3c433
KH
2624 /* It's better to call commit-charge after rmap is established */
2625 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 2626
c475a8ab 2627 swap_free(entry);
b291f000 2628 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2629 try_to_free_swap(page);
c475a8ab
HD
2630 unlock_page(page);
2631
30c9f3a9 2632 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2633 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2634 if (ret & VM_FAULT_ERROR)
2635 ret &= VM_FAULT_ERROR;
1da177e4
LT
2636 goto out;
2637 }
2638
2639 /* No need to invalidate - it was non-present before */
2640 update_mmu_cache(vma, address, pte);
65500d23 2641unlock:
8f4e2101 2642 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2643out:
2644 return ret;
b8107480 2645out_nomap:
7a81b88c 2646 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 2647 pte_unmap_unlock(page_table, ptl);
bc43f75c 2648out_page:
b8107480
KK
2649 unlock_page(page);
2650 page_cache_release(page);
65500d23 2651 return ret;
1da177e4
LT
2652}
2653
2654/*
8f4e2101
HD
2655 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2656 * but allow concurrent faults), and pte mapped but not yet locked.
2657 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2658 */
65500d23
HD
2659static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2660 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2661 unsigned int flags)
1da177e4 2662{
8f4e2101
HD
2663 struct page *page;
2664 spinlock_t *ptl;
1da177e4 2665 pte_t entry;
1da177e4 2666
a13ea5b7
HD
2667 if (HAVE_PTE_SPECIAL && !(flags & FAULT_FLAG_WRITE)) {
2668 entry = pte_mkspecial(pfn_pte(zero_pfn, vma->vm_page_prot));
2669 ptl = pte_lockptr(mm, pmd);
2670 spin_lock(ptl);
2671 if (!pte_none(*page_table))
2672 goto unlock;
2673 goto setpte;
2674 }
2675
557ed1fa
NP
2676 /* Allocate our own private page. */
2677 pte_unmap(page_table);
8f4e2101 2678
557ed1fa
NP
2679 if (unlikely(anon_vma_prepare(vma)))
2680 goto oom;
2681 page = alloc_zeroed_user_highpage_movable(vma, address);
2682 if (!page)
2683 goto oom;
0ed361de 2684 __SetPageUptodate(page);
8f4e2101 2685
2c26fdd7 2686 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2687 goto oom_free_page;
2688
557ed1fa 2689 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2690 if (vma->vm_flags & VM_WRITE)
2691 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2692
557ed1fa 2693 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2694 if (!pte_none(*page_table))
557ed1fa 2695 goto release;
9ba69294 2696
557ed1fa 2697 inc_mm_counter(mm, anon_rss);
557ed1fa 2698 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 2699setpte:
65500d23 2700 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2701
2702 /* No need to invalidate - it was non-present before */
65500d23 2703 update_mmu_cache(vma, address, entry);
65500d23 2704unlock:
8f4e2101 2705 pte_unmap_unlock(page_table, ptl);
83c54070 2706 return 0;
8f4e2101 2707release:
8a9f3ccd 2708 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2709 page_cache_release(page);
2710 goto unlock;
8a9f3ccd 2711oom_free_page:
6dbf6d3b 2712 page_cache_release(page);
65500d23 2713oom:
1da177e4
LT
2714 return VM_FAULT_OOM;
2715}
2716
2717/*
54cb8821 2718 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2719 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2720 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2721 * the next page fault.
1da177e4
LT
2722 *
2723 * As this is called only for pages that do not currently exist, we
2724 * do not need to flush old virtual caches or the TLB.
2725 *
8f4e2101 2726 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2727 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2728 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2729 */
54cb8821 2730static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2731 unsigned long address, pmd_t *pmd,
54cb8821 2732 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2733{
16abfa08 2734 pte_t *page_table;
8f4e2101 2735 spinlock_t *ptl;
d0217ac0 2736 struct page *page;
1da177e4 2737 pte_t entry;
1da177e4 2738 int anon = 0;
5b4e655e 2739 int charged = 0;
d08b3851 2740 struct page *dirty_page = NULL;
d0217ac0
NP
2741 struct vm_fault vmf;
2742 int ret;
a200ee18 2743 int page_mkwrite = 0;
54cb8821 2744
d0217ac0
NP
2745 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2746 vmf.pgoff = pgoff;
2747 vmf.flags = flags;
2748 vmf.page = NULL;
1da177e4 2749
3c18ddd1
NP
2750 ret = vma->vm_ops->fault(vma, &vmf);
2751 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2752 return ret;
1da177e4 2753
d00806b1 2754 /*
d0217ac0 2755 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2756 * locked.
2757 */
83c54070 2758 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2759 lock_page(vmf.page);
54cb8821 2760 else
d0217ac0 2761 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2762
1da177e4
LT
2763 /*
2764 * Should we do an early C-O-W break?
2765 */
d0217ac0 2766 page = vmf.page;
54cb8821 2767 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2768 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2769 anon = 1;
d00806b1 2770 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2771 ret = VM_FAULT_OOM;
54cb8821 2772 goto out;
d00806b1 2773 }
83c54070
NP
2774 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2775 vma, address);
d00806b1 2776 if (!page) {
d0217ac0 2777 ret = VM_FAULT_OOM;
54cb8821 2778 goto out;
d00806b1 2779 }
2c26fdd7 2780 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
5b4e655e
KH
2781 ret = VM_FAULT_OOM;
2782 page_cache_release(page);
2783 goto out;
2784 }
2785 charged = 1;
b291f000
NP
2786 /*
2787 * Don't let another task, with possibly unlocked vma,
2788 * keep the mlocked page.
2789 */
2790 if (vma->vm_flags & VM_LOCKED)
2791 clear_page_mlock(vmf.page);
d0217ac0 2792 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2793 __SetPageUptodate(page);
9637a5ef 2794 } else {
54cb8821
NP
2795 /*
2796 * If the page will be shareable, see if the backing
9637a5ef 2797 * address space wants to know that the page is about
54cb8821
NP
2798 * to become writable
2799 */
69676147 2800 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2801 int tmp;
2802
69676147 2803 unlock_page(page);
b827e496 2804 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
2805 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2806 if (unlikely(tmp &
2807 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2808 ret = tmp;
b827e496 2809 goto unwritable_page;
d0217ac0 2810 }
b827e496
NP
2811 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2812 lock_page(page);
2813 if (!page->mapping) {
2814 ret = 0; /* retry the fault */
2815 unlock_page(page);
2816 goto unwritable_page;
2817 }
2818 } else
2819 VM_BUG_ON(!PageLocked(page));
a200ee18 2820 page_mkwrite = 1;
9637a5ef
DH
2821 }
2822 }
54cb8821 2823
1da177e4
LT
2824 }
2825
8f4e2101 2826 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2827
2828 /*
2829 * This silly early PAGE_DIRTY setting removes a race
2830 * due to the bad i386 page protection. But it's valid
2831 * for other architectures too.
2832 *
30c9f3a9 2833 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
2834 * an exclusive copy of the page, or this is a shared mapping,
2835 * so we can make it writable and dirty to avoid having to
2836 * handle that later.
2837 */
2838 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 2839 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2840 flush_icache_page(vma, page);
2841 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2842 if (flags & FAULT_FLAG_WRITE)
1da177e4 2843 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2844 if (anon) {
64d6519d 2845 inc_mm_counter(mm, anon_rss);
64d6519d 2846 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2847 } else {
4294621f 2848 inc_mm_counter(mm, file_rss);
d00806b1 2849 page_add_file_rmap(page);
54cb8821 2850 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2851 dirty_page = page;
d08b3851
PZ
2852 get_page(dirty_page);
2853 }
4294621f 2854 }
64d6519d 2855 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
2856
2857 /* no need to invalidate: a not-present page won't be cached */
2858 update_mmu_cache(vma, address, entry);
1da177e4 2859 } else {
5b4e655e
KH
2860 if (charged)
2861 mem_cgroup_uncharge_page(page);
d00806b1
NP
2862 if (anon)
2863 page_cache_release(page);
2864 else
54cb8821 2865 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2866 }
2867
8f4e2101 2868 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2869
2870out:
b827e496
NP
2871 if (dirty_page) {
2872 struct address_space *mapping = page->mapping;
8f7b3d15 2873
b827e496
NP
2874 if (set_page_dirty(dirty_page))
2875 page_mkwrite = 1;
2876 unlock_page(dirty_page);
d08b3851 2877 put_page(dirty_page);
b827e496
NP
2878 if (page_mkwrite && mapping) {
2879 /*
2880 * Some device drivers do not set page.mapping but still
2881 * dirty their pages
2882 */
2883 balance_dirty_pages_ratelimited(mapping);
2884 }
2885
2886 /* file_update_time outside page_lock */
2887 if (vma->vm_file)
2888 file_update_time(vma->vm_file);
2889 } else {
2890 unlock_page(vmf.page);
2891 if (anon)
2892 page_cache_release(vmf.page);
d08b3851 2893 }
d00806b1 2894
83c54070 2895 return ret;
b827e496
NP
2896
2897unwritable_page:
2898 page_cache_release(page);
2899 return ret;
54cb8821 2900}
d00806b1 2901
54cb8821
NP
2902static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2903 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2904 unsigned int flags, pte_t orig_pte)
54cb8821
NP
2905{
2906 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2907 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 2908
16abfa08
HD
2909 pte_unmap(page_table);
2910 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2911}
2912
1da177e4
LT
2913/*
2914 * Fault of a previously existing named mapping. Repopulate the pte
2915 * from the encoded file_pte if possible. This enables swappable
2916 * nonlinear vmas.
8f4e2101
HD
2917 *
2918 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2919 * but allow concurrent faults), and pte mapped but not yet locked.
2920 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2921 */
d0217ac0 2922static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 2923 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2924 unsigned int flags, pte_t orig_pte)
1da177e4 2925{
65500d23 2926 pgoff_t pgoff;
1da177e4 2927
30c9f3a9
LT
2928 flags |= FAULT_FLAG_NONLINEAR;
2929
4c21e2f2 2930 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2931 return 0;
1da177e4 2932
2509ef26 2933 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
2934 /*
2935 * Page table corrupted: show pte and kill process.
2936 */
3dc14741 2937 print_bad_pte(vma, address, orig_pte, NULL);
65500d23
HD
2938 return VM_FAULT_OOM;
2939 }
65500d23
HD
2940
2941 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2942 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2943}
2944
2945/*
2946 * These routines also need to handle stuff like marking pages dirty
2947 * and/or accessed for architectures that don't do it in hardware (most
2948 * RISC architectures). The early dirtying is also good on the i386.
2949 *
2950 * There is also a hook called "update_mmu_cache()" that architectures
2951 * with external mmu caches can use to update those (ie the Sparc or
2952 * PowerPC hashed page tables that act as extended TLBs).
2953 *
c74df32c
HD
2954 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2955 * but allow concurrent faults), and pte mapped but not yet locked.
2956 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2957 */
2958static inline int handle_pte_fault(struct mm_struct *mm,
65500d23 2959 struct vm_area_struct *vma, unsigned long address,
30c9f3a9 2960 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
2961{
2962 pte_t entry;
8f4e2101 2963 spinlock_t *ptl;
1da177e4 2964
8dab5241 2965 entry = *pte;
1da177e4 2966 if (!pte_present(entry)) {
65500d23 2967 if (pte_none(entry)) {
f4b81804 2968 if (vma->vm_ops) {
3c18ddd1 2969 if (likely(vma->vm_ops->fault))
54cb8821 2970 return do_linear_fault(mm, vma, address,
30c9f3a9 2971 pte, pmd, flags, entry);
f4b81804
JS
2972 }
2973 return do_anonymous_page(mm, vma, address,
30c9f3a9 2974 pte, pmd, flags);
65500d23 2975 }
1da177e4 2976 if (pte_file(entry))
d0217ac0 2977 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 2978 pte, pmd, flags, entry);
65500d23 2979 return do_swap_page(mm, vma, address,
30c9f3a9 2980 pte, pmd, flags, entry);
1da177e4
LT
2981 }
2982
4c21e2f2 2983 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2984 spin_lock(ptl);
2985 if (unlikely(!pte_same(*pte, entry)))
2986 goto unlock;
30c9f3a9 2987 if (flags & FAULT_FLAG_WRITE) {
1da177e4 2988 if (!pte_write(entry))
8f4e2101
HD
2989 return do_wp_page(mm, vma, address,
2990 pte, pmd, ptl, entry);
1da177e4
LT
2991 entry = pte_mkdirty(entry);
2992 }
2993 entry = pte_mkyoung(entry);
30c9f3a9 2994 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
1a44e149 2995 update_mmu_cache(vma, address, entry);
1a44e149
AA
2996 } else {
2997 /*
2998 * This is needed only for protection faults but the arch code
2999 * is not yet telling us if this is a protection fault or not.
3000 * This still avoids useless tlb flushes for .text page faults
3001 * with threads.
3002 */
30c9f3a9 3003 if (flags & FAULT_FLAG_WRITE)
1a44e149
AA
3004 flush_tlb_page(vma, address);
3005 }
8f4e2101
HD
3006unlock:
3007 pte_unmap_unlock(pte, ptl);
83c54070 3008 return 0;
1da177e4
LT
3009}
3010
3011/*
3012 * By the time we get here, we already hold the mm semaphore
3013 */
83c54070 3014int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3015 unsigned long address, unsigned int flags)
1da177e4
LT
3016{
3017 pgd_t *pgd;
3018 pud_t *pud;
3019 pmd_t *pmd;
3020 pte_t *pte;
3021
3022 __set_current_state(TASK_RUNNING);
3023
f8891e5e 3024 count_vm_event(PGFAULT);
1da177e4 3025
ac9b9c66 3026 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3027 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3028
1da177e4 3029 pgd = pgd_offset(mm, address);
1da177e4
LT
3030 pud = pud_alloc(mm, pgd, address);
3031 if (!pud)
c74df32c 3032 return VM_FAULT_OOM;
1da177e4
LT
3033 pmd = pmd_alloc(mm, pud, address);
3034 if (!pmd)
c74df32c 3035 return VM_FAULT_OOM;
1da177e4
LT
3036 pte = pte_alloc_map(mm, pmd, address);
3037 if (!pte)
c74df32c 3038 return VM_FAULT_OOM;
1da177e4 3039
30c9f3a9 3040 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3041}
3042
3043#ifndef __PAGETABLE_PUD_FOLDED
3044/*
3045 * Allocate page upper directory.
872fec16 3046 * We've already handled the fast-path in-line.
1da177e4 3047 */
1bb3630e 3048int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3049{
c74df32c
HD
3050 pud_t *new = pud_alloc_one(mm, address);
3051 if (!new)
1bb3630e 3052 return -ENOMEM;
1da177e4 3053
362a61ad
NP
3054 smp_wmb(); /* See comment in __pte_alloc */
3055
872fec16 3056 spin_lock(&mm->page_table_lock);
1bb3630e 3057 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3058 pud_free(mm, new);
1bb3630e
HD
3059 else
3060 pgd_populate(mm, pgd, new);
c74df32c 3061 spin_unlock(&mm->page_table_lock);
1bb3630e 3062 return 0;
1da177e4
LT
3063}
3064#endif /* __PAGETABLE_PUD_FOLDED */
3065
3066#ifndef __PAGETABLE_PMD_FOLDED
3067/*
3068 * Allocate page middle directory.
872fec16 3069 * We've already handled the fast-path in-line.
1da177e4 3070 */
1bb3630e 3071int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3072{
c74df32c
HD
3073 pmd_t *new = pmd_alloc_one(mm, address);
3074 if (!new)
1bb3630e 3075 return -ENOMEM;
1da177e4 3076
362a61ad
NP
3077 smp_wmb(); /* See comment in __pte_alloc */
3078
872fec16 3079 spin_lock(&mm->page_table_lock);
1da177e4 3080#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3081 if (pud_present(*pud)) /* Another has populated it */
5e541973 3082 pmd_free(mm, new);
1bb3630e
HD
3083 else
3084 pud_populate(mm, pud, new);
1da177e4 3085#else
1bb3630e 3086 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3087 pmd_free(mm, new);
1bb3630e
HD
3088 else
3089 pgd_populate(mm, pud, new);
1da177e4 3090#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3091 spin_unlock(&mm->page_table_lock);
1bb3630e 3092 return 0;
e0f39591 3093}
1da177e4
LT
3094#endif /* __PAGETABLE_PMD_FOLDED */
3095
3096int make_pages_present(unsigned long addr, unsigned long end)
3097{
3098 int ret, len, write;
3099 struct vm_area_struct * vma;
3100
3101 vma = find_vma(current->mm, addr);
3102 if (!vma)
a477097d 3103 return -ENOMEM;
1da177e4 3104 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
3105 BUG_ON(addr >= end);
3106 BUG_ON(end > vma->vm_end);
68e116a3 3107 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
3108 ret = get_user_pages(current, current->mm, addr,
3109 len, write, 0, NULL, NULL);
c11d69d8 3110 if (ret < 0)
1da177e4 3111 return ret;
9978ad58 3112 return ret == len ? 0 : -EFAULT;
1da177e4
LT
3113}
3114
1da177e4
LT
3115#if !defined(__HAVE_ARCH_GATE_AREA)
3116
3117#if defined(AT_SYSINFO_EHDR)
5ce7852c 3118static struct vm_area_struct gate_vma;
1da177e4
LT
3119
3120static int __init gate_vma_init(void)
3121{
3122 gate_vma.vm_mm = NULL;
3123 gate_vma.vm_start = FIXADDR_USER_START;
3124 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3125 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3126 gate_vma.vm_page_prot = __P101;
f47aef55
RM
3127 /*
3128 * Make sure the vDSO gets into every core dump.
3129 * Dumping its contents makes post-mortem fully interpretable later
3130 * without matching up the same kernel and hardware config to see
3131 * what PC values meant.
3132 */
3133 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
3134 return 0;
3135}
3136__initcall(gate_vma_init);
3137#endif
3138
3139struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3140{
3141#ifdef AT_SYSINFO_EHDR
3142 return &gate_vma;
3143#else
3144 return NULL;
3145#endif
3146}
3147
3148int in_gate_area_no_task(unsigned long addr)
3149{
3150#ifdef AT_SYSINFO_EHDR
3151 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3152 return 1;
3153#endif
3154 return 0;
3155}
3156
3157#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3158
f8ad0f49
JW
3159static int follow_pte(struct mm_struct *mm, unsigned long address,
3160 pte_t **ptepp, spinlock_t **ptlp)
3161{
3162 pgd_t *pgd;
3163 pud_t *pud;
3164 pmd_t *pmd;
3165 pte_t *ptep;
3166
3167 pgd = pgd_offset(mm, address);
3168 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3169 goto out;
3170
3171 pud = pud_offset(pgd, address);
3172 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3173 goto out;
3174
3175 pmd = pmd_offset(pud, address);
3176 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3177 goto out;
3178
3179 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3180 if (pmd_huge(*pmd))
3181 goto out;
3182
3183 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3184 if (!ptep)
3185 goto out;
3186 if (!pte_present(*ptep))
3187 goto unlock;
3188 *ptepp = ptep;
3189 return 0;
3190unlock:
3191 pte_unmap_unlock(ptep, *ptlp);
3192out:
3193 return -EINVAL;
3194}
3195
3b6748e2
JW
3196/**
3197 * follow_pfn - look up PFN at a user virtual address
3198 * @vma: memory mapping
3199 * @address: user virtual address
3200 * @pfn: location to store found PFN
3201 *
3202 * Only IO mappings and raw PFN mappings are allowed.
3203 *
3204 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3205 */
3206int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3207 unsigned long *pfn)
3208{
3209 int ret = -EINVAL;
3210 spinlock_t *ptl;
3211 pte_t *ptep;
3212
3213 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3214 return ret;
3215
3216 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3217 if (ret)
3218 return ret;
3219 *pfn = pte_pfn(*ptep);
3220 pte_unmap_unlock(ptep, ptl);
3221 return 0;
3222}
3223EXPORT_SYMBOL(follow_pfn);
3224
28b2ee20 3225#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3226int follow_phys(struct vm_area_struct *vma,
3227 unsigned long address, unsigned int flags,
3228 unsigned long *prot, resource_size_t *phys)
28b2ee20 3229{
03668a4d 3230 int ret = -EINVAL;
28b2ee20
RR
3231 pte_t *ptep, pte;
3232 spinlock_t *ptl;
28b2ee20 3233
d87fe660 3234 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3235 goto out;
28b2ee20 3236
03668a4d 3237 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3238 goto out;
28b2ee20 3239 pte = *ptep;
03668a4d 3240
28b2ee20
RR
3241 if ((flags & FOLL_WRITE) && !pte_write(pte))
3242 goto unlock;
28b2ee20
RR
3243
3244 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3245 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3246
03668a4d 3247 ret = 0;
28b2ee20
RR
3248unlock:
3249 pte_unmap_unlock(ptep, ptl);
3250out:
d87fe660 3251 return ret;
28b2ee20
RR
3252}
3253
3254int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3255 void *buf, int len, int write)
3256{
3257 resource_size_t phys_addr;
3258 unsigned long prot = 0;
2bc7273b 3259 void __iomem *maddr;
28b2ee20
RR
3260 int offset = addr & (PAGE_SIZE-1);
3261
d87fe660 3262 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3263 return -EINVAL;
3264
3265 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3266 if (write)
3267 memcpy_toio(maddr + offset, buf, len);
3268 else
3269 memcpy_fromio(buf, maddr + offset, len);
3270 iounmap(maddr);
3271
3272 return len;
3273}
3274#endif
3275
0ec76a11
DH
3276/*
3277 * Access another process' address space.
3278 * Source/target buffer must be kernel space,
3279 * Do not walk the page table directly, use get_user_pages
3280 */
3281int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3282{
3283 struct mm_struct *mm;
3284 struct vm_area_struct *vma;
0ec76a11
DH
3285 void *old_buf = buf;
3286
3287 mm = get_task_mm(tsk);
3288 if (!mm)
3289 return 0;
3290
3291 down_read(&mm->mmap_sem);
183ff22b 3292 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3293 while (len) {
3294 int bytes, ret, offset;
3295 void *maddr;
28b2ee20 3296 struct page *page = NULL;
0ec76a11
DH
3297
3298 ret = get_user_pages(tsk, mm, addr, 1,
3299 write, 1, &page, &vma);
28b2ee20
RR
3300 if (ret <= 0) {
3301 /*
3302 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3303 * we can access using slightly different code.
3304 */
3305#ifdef CONFIG_HAVE_IOREMAP_PROT
3306 vma = find_vma(mm, addr);
3307 if (!vma)
3308 break;
3309 if (vma->vm_ops && vma->vm_ops->access)
3310 ret = vma->vm_ops->access(vma, addr, buf,
3311 len, write);
3312 if (ret <= 0)
3313#endif
3314 break;
3315 bytes = ret;
0ec76a11 3316 } else {
28b2ee20
RR
3317 bytes = len;
3318 offset = addr & (PAGE_SIZE-1);
3319 if (bytes > PAGE_SIZE-offset)
3320 bytes = PAGE_SIZE-offset;
3321
3322 maddr = kmap(page);
3323 if (write) {
3324 copy_to_user_page(vma, page, addr,
3325 maddr + offset, buf, bytes);
3326 set_page_dirty_lock(page);
3327 } else {
3328 copy_from_user_page(vma, page, addr,
3329 buf, maddr + offset, bytes);
3330 }
3331 kunmap(page);
3332 page_cache_release(page);
0ec76a11 3333 }
0ec76a11
DH
3334 len -= bytes;
3335 buf += bytes;
3336 addr += bytes;
3337 }
3338 up_read(&mm->mmap_sem);
3339 mmput(mm);
3340
3341 return buf - old_buf;
3342}
03252919
AK
3343
3344/*
3345 * Print the name of a VMA.
3346 */
3347void print_vma_addr(char *prefix, unsigned long ip)
3348{
3349 struct mm_struct *mm = current->mm;
3350 struct vm_area_struct *vma;
3351
e8bff74a
IM
3352 /*
3353 * Do not print if we are in atomic
3354 * contexts (in exception stacks, etc.):
3355 */
3356 if (preempt_count())
3357 return;
3358
03252919
AK
3359 down_read(&mm->mmap_sem);
3360 vma = find_vma(mm, ip);
3361 if (vma && vma->vm_file) {
3362 struct file *f = vma->vm_file;
3363 char *buf = (char *)__get_free_page(GFP_KERNEL);
3364 if (buf) {
3365 char *p, *s;
3366
cf28b486 3367 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3368 if (IS_ERR(p))
3369 p = "?";
3370 s = strrchr(p, '/');
3371 if (s)
3372 p = s+1;
3373 printk("%s%s[%lx+%lx]", prefix, p,
3374 vma->vm_start,
3375 vma->vm_end - vma->vm_start);
3376 free_page((unsigned long)buf);
3377 }
3378 }
3379 up_read(&current->mm->mmap_sem);
3380}
3ee1afa3
NP
3381
3382#ifdef CONFIG_PROVE_LOCKING
3383void might_fault(void)
3384{
95156f00
PZ
3385 /*
3386 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3387 * holding the mmap_sem, this is safe because kernel memory doesn't
3388 * get paged out, therefore we'll never actually fault, and the
3389 * below annotations will generate false positives.
3390 */
3391 if (segment_eq(get_fs(), KERNEL_DS))
3392 return;
3393
3ee1afa3
NP
3394 might_sleep();
3395 /*
3396 * it would be nicer only to annotate paths which are not under
3397 * pagefault_disable, however that requires a larger audit and
3398 * providing helpers like get_user_atomic.
3399 */
3400 if (!in_atomic() && current->mm)
3401 might_lock_read(&current->mm->mmap_sem);
3402}
3403EXPORT_SYMBOL(might_fault);
3404#endif
This page took 0.705544 seconds and 5 git commands to generate.