writeback: memcg dirty_throttle_control should be initialized with wb->memcg_completions
[deliverable/linux.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
dcc25ae7 125struct wb_domain global_wb_domain;
1da177e4 126
2bc00aef
TH
127/* consolidated parameters for balance_dirty_pages() and its subroutines */
128struct dirty_throttle_control {
e9f07dfd
TH
129#ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain *dom;
9fc3a43e 131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
e9f07dfd 132#endif
2bc00aef 133 struct bdi_writeback *wb;
e9770b34 134 struct fprop_local_percpu *wb_completions;
eb608e3a 135
9fc3a43e 136 unsigned long avail; /* dirtyable */
2bc00aef
TH
137 unsigned long dirty; /* file_dirty + write + nfs */
138 unsigned long thresh; /* dirty threshold */
139 unsigned long bg_thresh; /* dirty background threshold */
140
141 unsigned long wb_dirty; /* per-wb counterparts */
142 unsigned long wb_thresh;
970fb01a 143 unsigned long wb_bg_thresh;
daddfa3c
TH
144
145 unsigned long pos_ratio;
2bc00aef
TH
146};
147
eb608e3a
JK
148/*
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
152 */
153#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 154
693108a8
TH
155#ifdef CONFIG_CGROUP_WRITEBACK
156
d60d1bdd
TH
157#define GDTC_INIT(__wb) .wb = (__wb), \
158 .dom = &global_wb_domain, \
159 .wb_completions = &(__wb)->completions
160
9fc3a43e 161#define GDTC_INIT_NO_WB .dom = &global_wb_domain
d60d1bdd
TH
162
163#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
164 .dom = mem_cgroup_wb_domain(__wb), \
165 .wb_completions = &(__wb)->memcg_completions, \
166 .gdtc = __gdtc
c2aa723a
TH
167
168static bool mdtc_valid(struct dirty_throttle_control *dtc)
169{
170 return dtc->dom;
171}
e9f07dfd
TH
172
173static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174{
175 return dtc->dom;
176}
177
9fc3a43e
TH
178static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179{
180 return mdtc->gdtc;
181}
182
841710aa
TH
183static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184{
185 return &wb->memcg_completions;
186}
187
693108a8
TH
188static void wb_min_max_ratio(struct bdi_writeback *wb,
189 unsigned long *minp, unsigned long *maxp)
190{
191 unsigned long this_bw = wb->avg_write_bandwidth;
192 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 unsigned long long min = wb->bdi->min_ratio;
194 unsigned long long max = wb->bdi->max_ratio;
195
196 /*
197 * @wb may already be clean by the time control reaches here and
198 * the total may not include its bw.
199 */
200 if (this_bw < tot_bw) {
201 if (min) {
202 min *= this_bw;
203 do_div(min, tot_bw);
204 }
205 if (max < 100) {
206 max *= this_bw;
207 do_div(max, tot_bw);
208 }
209 }
210
211 *minp = min;
212 *maxp = max;
213}
214
215#else /* CONFIG_CGROUP_WRITEBACK */
216
d60d1bdd
TH
217#define GDTC_INIT(__wb) .wb = (__wb), \
218 .wb_completions = &(__wb)->completions
9fc3a43e 219#define GDTC_INIT_NO_WB
c2aa723a
TH
220#define MDTC_INIT(__wb, __gdtc)
221
222static bool mdtc_valid(struct dirty_throttle_control *dtc)
223{
224 return false;
225}
e9f07dfd
TH
226
227static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228{
229 return &global_wb_domain;
230}
231
9fc3a43e
TH
232static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233{
234 return NULL;
235}
236
841710aa
TH
237static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238{
239 return NULL;
240}
241
693108a8
TH
242static void wb_min_max_ratio(struct bdi_writeback *wb,
243 unsigned long *minp, unsigned long *maxp)
244{
245 *minp = wb->bdi->min_ratio;
246 *maxp = wb->bdi->max_ratio;
247}
248
249#endif /* CONFIG_CGROUP_WRITEBACK */
250
a756cf59
JW
251/*
252 * In a memory zone, there is a certain amount of pages we consider
253 * available for the page cache, which is essentially the number of
254 * free and reclaimable pages, minus some zone reserves to protect
255 * lowmem and the ability to uphold the zone's watermarks without
256 * requiring writeback.
257 *
258 * This number of dirtyable pages is the base value of which the
259 * user-configurable dirty ratio is the effictive number of pages that
260 * are allowed to be actually dirtied. Per individual zone, or
261 * globally by using the sum of dirtyable pages over all zones.
262 *
263 * Because the user is allowed to specify the dirty limit globally as
264 * absolute number of bytes, calculating the per-zone dirty limit can
265 * require translating the configured limit into a percentage of
266 * global dirtyable memory first.
267 */
268
a804552b
JW
269/**
270 * zone_dirtyable_memory - number of dirtyable pages in a zone
271 * @zone: the zone
272 *
273 * Returns the zone's number of pages potentially available for dirty
274 * page cache. This is the base value for the per-zone dirty limits.
275 */
276static unsigned long zone_dirtyable_memory(struct zone *zone)
277{
278 unsigned long nr_pages;
279
280 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
282
a1c3bfb2
JW
283 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
284 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
a804552b
JW
285
286 return nr_pages;
287}
288
1edf2234
JW
289static unsigned long highmem_dirtyable_memory(unsigned long total)
290{
291#ifdef CONFIG_HIGHMEM
292 int node;
293 unsigned long x = 0;
294
295 for_each_node_state(node, N_HIGH_MEMORY) {
a804552b 296 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
1edf2234 297
a804552b 298 x += zone_dirtyable_memory(z);
1edf2234 299 }
c8b74c2f
SR
300 /*
301 * Unreclaimable memory (kernel memory or anonymous memory
302 * without swap) can bring down the dirtyable pages below
303 * the zone's dirty balance reserve and the above calculation
304 * will underflow. However we still want to add in nodes
305 * which are below threshold (negative values) to get a more
306 * accurate calculation but make sure that the total never
307 * underflows.
308 */
309 if ((long)x < 0)
310 x = 0;
311
1edf2234
JW
312 /*
313 * Make sure that the number of highmem pages is never larger
314 * than the number of the total dirtyable memory. This can only
315 * occur in very strange VM situations but we want to make sure
316 * that this does not occur.
317 */
318 return min(x, total);
319#else
320 return 0;
321#endif
322}
323
324/**
ccafa287 325 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 326 *
ccafa287
JW
327 * Returns the global number of pages potentially available for dirty
328 * page cache. This is the base value for the global dirty limits.
1edf2234 329 */
18cf8cf8 330static unsigned long global_dirtyable_memory(void)
1edf2234
JW
331{
332 unsigned long x;
333
a804552b 334 x = global_page_state(NR_FREE_PAGES);
c8b74c2f 335 x -= min(x, dirty_balance_reserve);
1edf2234 336
a1c3bfb2
JW
337 x += global_page_state(NR_INACTIVE_FILE);
338 x += global_page_state(NR_ACTIVE_FILE);
a804552b 339
1edf2234
JW
340 if (!vm_highmem_is_dirtyable)
341 x -= highmem_dirtyable_memory(x);
342
343 return x + 1; /* Ensure that we never return 0 */
344}
345
9fc3a43e
TH
346/**
347 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
348 * @dtc: dirty_throttle_control of interest
ccafa287 349 *
9fc3a43e
TH
350 * Calculate @dtc->thresh and ->bg_thresh considering
351 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
352 * must ensure that @dtc->avail is set before calling this function. The
353 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ccafa287
JW
354 * real-time tasks.
355 */
9fc3a43e 356static void domain_dirty_limits(struct dirty_throttle_control *dtc)
ccafa287 357{
9fc3a43e
TH
358 const unsigned long available_memory = dtc->avail;
359 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
360 unsigned long bytes = vm_dirty_bytes;
361 unsigned long bg_bytes = dirty_background_bytes;
362 unsigned long ratio = vm_dirty_ratio;
363 unsigned long bg_ratio = dirty_background_ratio;
364 unsigned long thresh;
365 unsigned long bg_thresh;
ccafa287
JW
366 struct task_struct *tsk;
367
9fc3a43e
TH
368 /* gdtc is !NULL iff @dtc is for memcg domain */
369 if (gdtc) {
370 unsigned long global_avail = gdtc->avail;
371
372 /*
373 * The byte settings can't be applied directly to memcg
374 * domains. Convert them to ratios by scaling against
375 * globally available memory.
376 */
377 if (bytes)
378 ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
379 global_avail, 100UL);
380 if (bg_bytes)
381 bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
382 global_avail, 100UL);
383 bytes = bg_bytes = 0;
384 }
385
386 if (bytes)
387 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
ccafa287 388 else
9fc3a43e 389 thresh = (ratio * available_memory) / 100;
ccafa287 390
9fc3a43e
TH
391 if (bg_bytes)
392 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
ccafa287 393 else
9fc3a43e 394 bg_thresh = (bg_ratio * available_memory) / 100;
ccafa287 395
9fc3a43e
TH
396 if (bg_thresh >= thresh)
397 bg_thresh = thresh / 2;
ccafa287
JW
398 tsk = current;
399 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
9fc3a43e
TH
400 bg_thresh += bg_thresh / 4;
401 thresh += thresh / 4;
ccafa287 402 }
9fc3a43e
TH
403 dtc->thresh = thresh;
404 dtc->bg_thresh = bg_thresh;
405
406 /* we should eventually report the domain in the TP */
407 if (!gdtc)
408 trace_global_dirty_state(bg_thresh, thresh);
409}
410
411/**
412 * global_dirty_limits - background-writeback and dirty-throttling thresholds
413 * @pbackground: out parameter for bg_thresh
414 * @pdirty: out parameter for thresh
415 *
416 * Calculate bg_thresh and thresh for global_wb_domain. See
417 * domain_dirty_limits() for details.
418 */
419void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
420{
421 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
422
423 gdtc.avail = global_dirtyable_memory();
424 domain_dirty_limits(&gdtc);
425
426 *pbackground = gdtc.bg_thresh;
427 *pdirty = gdtc.thresh;
ccafa287
JW
428}
429
a756cf59
JW
430/**
431 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
432 * @zone: the zone
433 *
434 * Returns the maximum number of dirty pages allowed in a zone, based
435 * on the zone's dirtyable memory.
436 */
437static unsigned long zone_dirty_limit(struct zone *zone)
438{
439 unsigned long zone_memory = zone_dirtyable_memory(zone);
440 struct task_struct *tsk = current;
441 unsigned long dirty;
442
443 if (vm_dirty_bytes)
444 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
445 zone_memory / global_dirtyable_memory();
446 else
447 dirty = vm_dirty_ratio * zone_memory / 100;
448
449 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
450 dirty += dirty / 4;
451
452 return dirty;
453}
454
455/**
456 * zone_dirty_ok - tells whether a zone is within its dirty limits
457 * @zone: the zone to check
458 *
459 * Returns %true when the dirty pages in @zone are within the zone's
460 * dirty limit, %false if the limit is exceeded.
461 */
462bool zone_dirty_ok(struct zone *zone)
463{
464 unsigned long limit = zone_dirty_limit(zone);
465
466 return zone_page_state(zone, NR_FILE_DIRTY) +
467 zone_page_state(zone, NR_UNSTABLE_NFS) +
468 zone_page_state(zone, NR_WRITEBACK) <= limit;
469}
470
2da02997 471int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 472 void __user *buffer, size_t *lenp,
2da02997
DR
473 loff_t *ppos)
474{
475 int ret;
476
8d65af78 477 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
478 if (ret == 0 && write)
479 dirty_background_bytes = 0;
480 return ret;
481}
482
483int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 484 void __user *buffer, size_t *lenp,
2da02997
DR
485 loff_t *ppos)
486{
487 int ret;
488
8d65af78 489 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
490 if (ret == 0 && write)
491 dirty_background_ratio = 0;
492 return ret;
493}
494
04fbfdc1 495int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 496 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
497 loff_t *ppos)
498{
499 int old_ratio = vm_dirty_ratio;
2da02997
DR
500 int ret;
501
8d65af78 502 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 503 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 504 writeback_set_ratelimit();
2da02997
DR
505 vm_dirty_bytes = 0;
506 }
507 return ret;
508}
509
2da02997 510int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 511 void __user *buffer, size_t *lenp,
2da02997
DR
512 loff_t *ppos)
513{
fc3501d4 514 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
515 int ret;
516
8d65af78 517 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 518 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 519 writeback_set_ratelimit();
2da02997 520 vm_dirty_ratio = 0;
04fbfdc1
PZ
521 }
522 return ret;
523}
524
eb608e3a
JK
525static unsigned long wp_next_time(unsigned long cur_time)
526{
527 cur_time += VM_COMPLETIONS_PERIOD_LEN;
528 /* 0 has a special meaning... */
529 if (!cur_time)
530 return 1;
531 return cur_time;
532}
533
c7981433
TH
534static void wb_domain_writeout_inc(struct wb_domain *dom,
535 struct fprop_local_percpu *completions,
536 unsigned int max_prop_frac)
04fbfdc1 537{
c7981433
TH
538 __fprop_inc_percpu_max(&dom->completions, completions,
539 max_prop_frac);
eb608e3a 540 /* First event after period switching was turned off? */
380c27ca 541 if (!unlikely(dom->period_time)) {
eb608e3a
JK
542 /*
543 * We can race with other __bdi_writeout_inc calls here but
544 * it does not cause any harm since the resulting time when
545 * timer will fire and what is in writeout_period_time will be
546 * roughly the same.
547 */
380c27ca
TH
548 dom->period_time = wp_next_time(jiffies);
549 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 550 }
04fbfdc1
PZ
551}
552
c7981433
TH
553/*
554 * Increment @wb's writeout completion count and the global writeout
555 * completion count. Called from test_clear_page_writeback().
556 */
557static inline void __wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5 558{
841710aa 559 struct wb_domain *cgdom;
dd5656e5 560
c7981433
TH
561 __inc_wb_stat(wb, WB_WRITTEN);
562 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
563 wb->bdi->max_prop_frac);
841710aa
TH
564
565 cgdom = mem_cgroup_wb_domain(wb);
566 if (cgdom)
567 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
568 wb->bdi->max_prop_frac);
dd5656e5 569}
dd5656e5 570
93f78d88 571void wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 572{
dd5656e5
MS
573 unsigned long flags;
574
575 local_irq_save(flags);
93f78d88 576 __wb_writeout_inc(wb);
dd5656e5 577 local_irq_restore(flags);
04fbfdc1 578}
93f78d88 579EXPORT_SYMBOL_GPL(wb_writeout_inc);
04fbfdc1 580
eb608e3a
JK
581/*
582 * On idle system, we can be called long after we scheduled because we use
583 * deferred timers so count with missed periods.
584 */
585static void writeout_period(unsigned long t)
586{
380c27ca
TH
587 struct wb_domain *dom = (void *)t;
588 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
589 VM_COMPLETIONS_PERIOD_LEN;
590
380c27ca
TH
591 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
592 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 593 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 594 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
595 } else {
596 /*
597 * Aging has zeroed all fractions. Stop wasting CPU on period
598 * updates.
599 */
380c27ca 600 dom->period_time = 0;
eb608e3a
JK
601 }
602}
603
380c27ca
TH
604int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
605{
606 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
607
608 spin_lock_init(&dom->lock);
609
380c27ca
TH
610 init_timer_deferrable(&dom->period_timer);
611 dom->period_timer.function = writeout_period;
612 dom->period_timer.data = (unsigned long)dom;
dcc25ae7
TH
613
614 dom->dirty_limit_tstamp = jiffies;
615
380c27ca
TH
616 return fprop_global_init(&dom->completions, gfp);
617}
618
841710aa
TH
619#ifdef CONFIG_CGROUP_WRITEBACK
620void wb_domain_exit(struct wb_domain *dom)
621{
622 del_timer_sync(&dom->period_timer);
623 fprop_global_destroy(&dom->completions);
624}
625#endif
626
189d3c4a 627/*
d08c429b
JW
628 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
629 * registered backing devices, which, for obvious reasons, can not
630 * exceed 100%.
189d3c4a 631 */
189d3c4a
PZ
632static unsigned int bdi_min_ratio;
633
634int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
635{
636 int ret = 0;
189d3c4a 637
cfc4ba53 638 spin_lock_bh(&bdi_lock);
a42dde04 639 if (min_ratio > bdi->max_ratio) {
189d3c4a 640 ret = -EINVAL;
a42dde04
PZ
641 } else {
642 min_ratio -= bdi->min_ratio;
643 if (bdi_min_ratio + min_ratio < 100) {
644 bdi_min_ratio += min_ratio;
645 bdi->min_ratio += min_ratio;
646 } else {
647 ret = -EINVAL;
648 }
649 }
cfc4ba53 650 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
651
652 return ret;
653}
654
655int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
656{
a42dde04
PZ
657 int ret = 0;
658
659 if (max_ratio > 100)
660 return -EINVAL;
661
cfc4ba53 662 spin_lock_bh(&bdi_lock);
a42dde04
PZ
663 if (bdi->min_ratio > max_ratio) {
664 ret = -EINVAL;
665 } else {
666 bdi->max_ratio = max_ratio;
eb608e3a 667 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 668 }
cfc4ba53 669 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
670
671 return ret;
672}
a42dde04 673EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 674
6c14ae1e
WF
675static unsigned long dirty_freerun_ceiling(unsigned long thresh,
676 unsigned long bg_thresh)
677{
678 return (thresh + bg_thresh) / 2;
679}
680
c7981433
TH
681static unsigned long hard_dirty_limit(struct wb_domain *dom,
682 unsigned long thresh)
ffd1f609 683{
dcc25ae7 684 return max(thresh, dom->dirty_limit);
ffd1f609
WF
685}
686
c2aa723a
TH
687/* memory available to a memcg domain is capped by system-wide clean memory */
688static void mdtc_cap_avail(struct dirty_throttle_control *mdtc)
689{
690 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
691 unsigned long clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
692
693 mdtc->avail = min(mdtc->avail, clean);
ffd1f609
WF
694}
695
6f718656 696/**
b1cbc6d4
TH
697 * __wb_calc_thresh - @wb's share of dirty throttling threshold
698 * @dtc: dirty_throttle_context of interest
1babe183 699 *
a88a341a 700 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 701 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
702 *
703 * Note that balance_dirty_pages() will only seriously take it as a hard limit
704 * when sleeping max_pause per page is not enough to keep the dirty pages under
705 * control. For example, when the device is completely stalled due to some error
706 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
707 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 708 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 709 *
6f718656 710 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
711 * - starving fast devices
712 * - piling up dirty pages (that will take long time to sync) on slow devices
713 *
a88a341a 714 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
715 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
716 */
b1cbc6d4 717static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 718{
e9f07dfd 719 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 720 unsigned long thresh = dtc->thresh;
0d960a38 721 u64 wb_thresh;
16c4042f 722 long numerator, denominator;
693108a8 723 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 724
16c4042f 725 /*
0d960a38 726 * Calculate this BDI's share of the thresh ratio.
16c4042f 727 */
e9770b34 728 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 729 &numerator, &denominator);
04fbfdc1 730
0d960a38
TH
731 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
732 wb_thresh *= numerator;
733 do_div(wb_thresh, denominator);
04fbfdc1 734
b1cbc6d4 735 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
04fbfdc1 736
0d960a38
TH
737 wb_thresh += (thresh * wb_min_ratio) / 100;
738 if (wb_thresh > (thresh * wb_max_ratio) / 100)
739 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 740
0d960a38 741 return wb_thresh;
1da177e4
LT
742}
743
b1cbc6d4
TH
744unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
745{
746 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
747 .thresh = thresh };
748 return __wb_calc_thresh(&gdtc);
1da177e4
LT
749}
750
5a537485
MP
751/*
752 * setpoint - dirty 3
753 * f(dirty) := 1.0 + (----------------)
754 * limit - setpoint
755 *
756 * it's a 3rd order polynomial that subjects to
757 *
758 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
759 * (2) f(setpoint) = 1.0 => the balance point
760 * (3) f(limit) = 0 => the hard limit
761 * (4) df/dx <= 0 => negative feedback control
762 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
763 * => fast response on large errors; small oscillation near setpoint
764 */
d5c9fde3 765static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
766 unsigned long dirty,
767 unsigned long limit)
768{
769 long long pos_ratio;
770 long x;
771
d5c9fde3 772 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
464d1387 773 (limit - setpoint) | 1);
5a537485
MP
774 pos_ratio = x;
775 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
776 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
777 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
778
779 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
780}
781
6c14ae1e
WF
782/*
783 * Dirty position control.
784 *
785 * (o) global/bdi setpoints
786 *
de1fff37 787 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
788 * When the number of dirty pages is higher/lower than the setpoint, the
789 * dirty position control ratio (and hence task dirty ratelimit) will be
790 * decreased/increased to bring the dirty pages back to the setpoint.
791 *
792 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
793 *
794 * if (dirty < setpoint) scale up pos_ratio
795 * if (dirty > setpoint) scale down pos_ratio
796 *
de1fff37
TH
797 * if (wb_dirty < wb_setpoint) scale up pos_ratio
798 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
799 *
800 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
801 *
802 * (o) global control line
803 *
804 * ^ pos_ratio
805 * |
806 * | |<===== global dirty control scope ======>|
807 * 2.0 .............*
808 * | .*
809 * | . *
810 * | . *
811 * | . *
812 * | . *
813 * | . *
814 * 1.0 ................................*
815 * | . . *
816 * | . . *
817 * | . . *
818 * | . . *
819 * | . . *
820 * 0 +------------.------------------.----------------------*------------->
821 * freerun^ setpoint^ limit^ dirty pages
822 *
de1fff37 823 * (o) wb control line
6c14ae1e
WF
824 *
825 * ^ pos_ratio
826 * |
827 * | *
828 * | *
829 * | *
830 * | *
831 * | * |<=========== span ============>|
832 * 1.0 .......................*
833 * | . *
834 * | . *
835 * | . *
836 * | . *
837 * | . *
838 * | . *
839 * | . *
840 * | . *
841 * | . *
842 * | . *
843 * | . *
844 * 1/4 ...............................................* * * * * * * * * * * *
845 * | . .
846 * | . .
847 * | . .
848 * 0 +----------------------.-------------------------------.------------->
de1fff37 849 * wb_setpoint^ x_intercept^
6c14ae1e 850 *
de1fff37 851 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
852 * be smoothly throttled down to normal if it starts high in situations like
853 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
854 * card's wb_dirty may rush to many times higher than wb_setpoint.
855 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 856 */
daddfa3c 857static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 858{
2bc00aef 859 struct bdi_writeback *wb = dtc->wb;
a88a341a 860 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef 861 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 862 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 863 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
864 unsigned long x_intercept;
865 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 866 unsigned long wb_setpoint;
6c14ae1e
WF
867 unsigned long span;
868 long long pos_ratio; /* for scaling up/down the rate limit */
869 long x;
870
daddfa3c
TH
871 dtc->pos_ratio = 0;
872
2bc00aef 873 if (unlikely(dtc->dirty >= limit))
daddfa3c 874 return;
6c14ae1e
WF
875
876 /*
877 * global setpoint
878 *
5a537485
MP
879 * See comment for pos_ratio_polynom().
880 */
881 setpoint = (freerun + limit) / 2;
2bc00aef 882 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
883
884 /*
885 * The strictlimit feature is a tool preventing mistrusted filesystems
886 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
887 * such filesystems balance_dirty_pages always checks wb counters
888 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
889 * This is especially important for fuse which sets bdi->max_ratio to
890 * 1% by default. Without strictlimit feature, fuse writeback may
891 * consume arbitrary amount of RAM because it is accounted in
892 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 893 *
a88a341a 894 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 895 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
896 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
897 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 898 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 899 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 900 * about ~6K pages (as the average of background and throttle wb
5a537485 901 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 902 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 903 *
5a537485 904 * Note, that we cannot use global counters in these calculations
de1fff37 905 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
906 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
907 * in the example above).
6c14ae1e 908 */
a88a341a 909 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 910 long long wb_pos_ratio;
5a537485 911
daddfa3c
TH
912 if (dtc->wb_dirty < 8) {
913 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
914 2 << RATELIMIT_CALC_SHIFT);
915 return;
916 }
5a537485 917
2bc00aef 918 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 919 return;
5a537485 920
970fb01a
TH
921 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
922 dtc->wb_bg_thresh);
5a537485 923
de1fff37 924 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 925 return;
5a537485 926
2bc00aef 927 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 928 wb_thresh);
5a537485
MP
929
930 /*
de1fff37
TH
931 * Typically, for strictlimit case, wb_setpoint << setpoint
932 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 933 * state ("dirty") is not limiting factor and we have to
de1fff37 934 * make decision based on wb counters. But there is an
5a537485
MP
935 * important case when global pos_ratio should get precedence:
936 * global limits are exceeded (e.g. due to activities on other
de1fff37 937 * wb's) while given strictlimit wb is below limit.
5a537485 938 *
de1fff37 939 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 940 * but it would look too non-natural for the case of all
de1fff37 941 * activity in the system coming from a single strictlimit wb
5a537485
MP
942 * with bdi->max_ratio == 100%.
943 *
944 * Note that min() below somewhat changes the dynamics of the
945 * control system. Normally, pos_ratio value can be well over 3
de1fff37 946 * (when globally we are at freerun and wb is well below wb
5a537485
MP
947 * setpoint). Now the maximum pos_ratio in the same situation
948 * is 2. We might want to tweak this if we observe the control
949 * system is too slow to adapt.
950 */
daddfa3c
TH
951 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
952 return;
5a537485 953 }
6c14ae1e
WF
954
955 /*
956 * We have computed basic pos_ratio above based on global situation. If
de1fff37 957 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
958 * pos_ratio further down/up. That is done by the following mechanism.
959 */
960
961 /*
de1fff37 962 * wb setpoint
6c14ae1e 963 *
de1fff37 964 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 965 *
de1fff37 966 * x_intercept - wb_dirty
6c14ae1e 967 * := --------------------------
de1fff37 968 * x_intercept - wb_setpoint
6c14ae1e 969 *
de1fff37 970 * The main wb control line is a linear function that subjects to
6c14ae1e 971 *
de1fff37
TH
972 * (1) f(wb_setpoint) = 1.0
973 * (2) k = - 1 / (8 * write_bw) (in single wb case)
974 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 975 *
de1fff37 976 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 977 * regularly within range
de1fff37 978 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
979 * for various filesystems, where (2) can yield in a reasonable 12.5%
980 * fluctuation range for pos_ratio.
981 *
de1fff37 982 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 983 * own size, so move the slope over accordingly and choose a slope that
de1fff37 984 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 985 */
2bc00aef
TH
986 if (unlikely(wb_thresh > dtc->thresh))
987 wb_thresh = dtc->thresh;
aed21ad2 988 /*
de1fff37 989 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
990 * device is slow, but that it has remained inactive for long time.
991 * Honour such devices a reasonable good (hopefully IO efficient)
992 * threshold, so that the occasional writes won't be blocked and active
993 * writes can rampup the threshold quickly.
994 */
2bc00aef 995 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 996 /*
de1fff37
TH
997 * scale global setpoint to wb's:
998 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 999 */
e4bc13ad 1000 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
de1fff37 1001 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 1002 /*
de1fff37
TH
1003 * Use span=(8*write_bw) in single wb case as indicated by
1004 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 1005 *
de1fff37
TH
1006 * wb_thresh thresh - wb_thresh
1007 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1008 * thresh thresh
6c14ae1e 1009 */
2bc00aef 1010 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 1011 x_intercept = wb_setpoint + span;
6c14ae1e 1012
2bc00aef
TH
1013 if (dtc->wb_dirty < x_intercept - span / 4) {
1014 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
e4bc13ad 1015 (x_intercept - wb_setpoint) | 1);
6c14ae1e
WF
1016 } else
1017 pos_ratio /= 4;
1018
8927f66c 1019 /*
de1fff37 1020 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
1021 * It may push the desired control point of global dirty pages higher
1022 * than setpoint.
1023 */
de1fff37 1024 x_intercept = wb_thresh / 2;
2bc00aef
TH
1025 if (dtc->wb_dirty < x_intercept) {
1026 if (dtc->wb_dirty > x_intercept / 8)
1027 pos_ratio = div_u64(pos_ratio * x_intercept,
1028 dtc->wb_dirty);
50657fc4 1029 else
8927f66c
WF
1030 pos_ratio *= 8;
1031 }
1032
daddfa3c 1033 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
1034}
1035
a88a341a
TH
1036static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1037 unsigned long elapsed,
1038 unsigned long written)
e98be2d5
WF
1039{
1040 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
1041 unsigned long avg = wb->avg_write_bandwidth;
1042 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
1043 u64 bw;
1044
1045 /*
1046 * bw = written * HZ / elapsed
1047 *
1048 * bw * elapsed + write_bandwidth * (period - elapsed)
1049 * write_bandwidth = ---------------------------------------------------
1050 * period
c72efb65
TH
1051 *
1052 * @written may have decreased due to account_page_redirty().
1053 * Avoid underflowing @bw calculation.
e98be2d5 1054 */
a88a341a 1055 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
1056 bw *= HZ;
1057 if (unlikely(elapsed > period)) {
1058 do_div(bw, elapsed);
1059 avg = bw;
1060 goto out;
1061 }
a88a341a 1062 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
1063 bw >>= ilog2(period);
1064
1065 /*
1066 * one more level of smoothing, for filtering out sudden spikes
1067 */
1068 if (avg > old && old >= (unsigned long)bw)
1069 avg -= (avg - old) >> 3;
1070
1071 if (avg < old && old <= (unsigned long)bw)
1072 avg += (old - avg) >> 3;
1073
1074out:
95a46c65
TH
1075 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1076 avg = max(avg, 1LU);
1077 if (wb_has_dirty_io(wb)) {
1078 long delta = avg - wb->avg_write_bandwidth;
1079 WARN_ON_ONCE(atomic_long_add_return(delta,
1080 &wb->bdi->tot_write_bandwidth) <= 0);
1081 }
a88a341a
TH
1082 wb->write_bandwidth = bw;
1083 wb->avg_write_bandwidth = avg;
e98be2d5
WF
1084}
1085
2bc00aef 1086static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 1087{
e9f07dfd 1088 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 1089 unsigned long thresh = dtc->thresh;
dcc25ae7 1090 unsigned long limit = dom->dirty_limit;
c42843f2
WF
1091
1092 /*
1093 * Follow up in one step.
1094 */
1095 if (limit < thresh) {
1096 limit = thresh;
1097 goto update;
1098 }
1099
1100 /*
1101 * Follow down slowly. Use the higher one as the target, because thresh
1102 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 1103 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 1104 */
2bc00aef 1105 thresh = max(thresh, dtc->dirty);
c42843f2
WF
1106 if (limit > thresh) {
1107 limit -= (limit - thresh) >> 5;
1108 goto update;
1109 }
1110 return;
1111update:
dcc25ae7 1112 dom->dirty_limit = limit;
c42843f2
WF
1113}
1114
e9f07dfd 1115static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
1116 unsigned long now)
1117{
e9f07dfd 1118 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1119
1120 /*
1121 * check locklessly first to optimize away locking for the most time
1122 */
dcc25ae7 1123 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1124 return;
1125
dcc25ae7
TH
1126 spin_lock(&dom->lock);
1127 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1128 update_dirty_limit(dtc);
dcc25ae7 1129 dom->dirty_limit_tstamp = now;
c42843f2 1130 }
dcc25ae7 1131 spin_unlock(&dom->lock);
c42843f2
WF
1132}
1133
be3ffa27 1134/*
de1fff37 1135 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1136 *
de1fff37 1137 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1138 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1139 */
2bc00aef 1140static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1141 unsigned long dirtied,
1142 unsigned long elapsed)
be3ffa27 1143{
2bc00aef
TH
1144 struct bdi_writeback *wb = dtc->wb;
1145 unsigned long dirty = dtc->dirty;
1146 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1147 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1148 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1149 unsigned long write_bw = wb->avg_write_bandwidth;
1150 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1151 unsigned long dirty_rate;
1152 unsigned long task_ratelimit;
1153 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1154 unsigned long step;
1155 unsigned long x;
be3ffa27
WF
1156
1157 /*
1158 * The dirty rate will match the writeout rate in long term, except
1159 * when dirty pages are truncated by userspace or re-dirtied by FS.
1160 */
a88a341a 1161 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1162
be3ffa27
WF
1163 /*
1164 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1165 */
1166 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1167 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1168 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1169
1170 /*
1171 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1172 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1173 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1174 * formula will yield the balanced rate limit (write_bw / N).
1175 *
1176 * Note that the expanded form is not a pure rate feedback:
1177 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1178 * but also takes pos_ratio into account:
1179 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1180 *
1181 * (1) is not realistic because pos_ratio also takes part in balancing
1182 * the dirty rate. Consider the state
1183 * pos_ratio = 0.5 (3)
1184 * rate = 2 * (write_bw / N) (4)
1185 * If (1) is used, it will stuck in that state! Because each dd will
1186 * be throttled at
1187 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1188 * yielding
1189 * dirty_rate = N * task_ratelimit = write_bw (6)
1190 * put (6) into (1) we get
1191 * rate_(i+1) = rate_(i) (7)
1192 *
1193 * So we end up using (2) to always keep
1194 * rate_(i+1) ~= (write_bw / N) (8)
1195 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1196 * pos_ratio is able to drive itself to 1.0, which is not only where
1197 * the dirty count meet the setpoint, but also where the slope of
1198 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1199 */
1200 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1201 dirty_rate | 1);
bdaac490
WF
1202 /*
1203 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1204 */
1205 if (unlikely(balanced_dirty_ratelimit > write_bw))
1206 balanced_dirty_ratelimit = write_bw;
be3ffa27 1207
7381131c
WF
1208 /*
1209 * We could safely do this and return immediately:
1210 *
de1fff37 1211 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1212 *
1213 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1214 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1215 * limit the step size.
1216 *
1217 * The below code essentially only uses the relative value of
1218 *
1219 * task_ratelimit - dirty_ratelimit
1220 * = (pos_ratio - 1) * dirty_ratelimit
1221 *
1222 * which reflects the direction and size of dirty position error.
1223 */
1224
1225 /*
1226 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1227 * task_ratelimit is on the same side of dirty_ratelimit, too.
1228 * For example, when
1229 * - dirty_ratelimit > balanced_dirty_ratelimit
1230 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1231 * lowering dirty_ratelimit will help meet both the position and rate
1232 * control targets. Otherwise, don't update dirty_ratelimit if it will
1233 * only help meet the rate target. After all, what the users ultimately
1234 * feel and care are stable dirty rate and small position error.
1235 *
1236 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1237 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1238 * keeps jumping around randomly and can even leap far away at times
1239 * due to the small 200ms estimation period of dirty_rate (we want to
1240 * keep that period small to reduce time lags).
1241 */
1242 step = 0;
5a537485
MP
1243
1244 /*
de1fff37 1245 * For strictlimit case, calculations above were based on wb counters
a88a341a 1246 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1247 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1248 * Hence, to calculate "step" properly, we have to use wb_dirty as
1249 * "dirty" and wb_setpoint as "setpoint".
5a537485 1250 *
de1fff37
TH
1251 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1252 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1253 * of backing device.
5a537485 1254 */
a88a341a 1255 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1256 dirty = dtc->wb_dirty;
1257 if (dtc->wb_dirty < 8)
1258 setpoint = dtc->wb_dirty + 1;
5a537485 1259 else
970fb01a 1260 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1261 }
1262
7381131c 1263 if (dirty < setpoint) {
a88a341a 1264 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1265 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1266 if (dirty_ratelimit < x)
1267 step = x - dirty_ratelimit;
1268 } else {
a88a341a 1269 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1270 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1271 if (dirty_ratelimit > x)
1272 step = dirty_ratelimit - x;
1273 }
1274
1275 /*
1276 * Don't pursue 100% rate matching. It's impossible since the balanced
1277 * rate itself is constantly fluctuating. So decrease the track speed
1278 * when it gets close to the target. Helps eliminate pointless tremors.
1279 */
1280 step >>= dirty_ratelimit / (2 * step + 1);
1281 /*
1282 * Limit the tracking speed to avoid overshooting.
1283 */
1284 step = (step + 7) / 8;
1285
1286 if (dirty_ratelimit < balanced_dirty_ratelimit)
1287 dirty_ratelimit += step;
1288 else
1289 dirty_ratelimit -= step;
1290
a88a341a
TH
1291 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1292 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1293
5634cc2a 1294 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
be3ffa27
WF
1295}
1296
c2aa723a
TH
1297static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1298 struct dirty_throttle_control *mdtc,
8a731799
TH
1299 unsigned long start_time,
1300 bool update_ratelimit)
e98be2d5 1301{
c2aa723a 1302 struct bdi_writeback *wb = gdtc->wb;
e98be2d5 1303 unsigned long now = jiffies;
a88a341a 1304 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1305 unsigned long dirtied;
e98be2d5
WF
1306 unsigned long written;
1307
8a731799
TH
1308 lockdep_assert_held(&wb->list_lock);
1309
e98be2d5
WF
1310 /*
1311 * rate-limit, only update once every 200ms.
1312 */
1313 if (elapsed < BANDWIDTH_INTERVAL)
1314 return;
1315
a88a341a
TH
1316 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1317 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1318
1319 /*
1320 * Skip quiet periods when disk bandwidth is under-utilized.
1321 * (at least 1s idle time between two flusher runs)
1322 */
a88a341a 1323 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1324 goto snapshot;
1325
8a731799 1326 if (update_ratelimit) {
c2aa723a
TH
1327 domain_update_bandwidth(gdtc, now);
1328 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1329
1330 /*
1331 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1332 * compiler has no way to figure that out. Help it.
1333 */
1334 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1335 domain_update_bandwidth(mdtc, now);
1336 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1337 }
be3ffa27 1338 }
a88a341a 1339 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1340
1341snapshot:
a88a341a
TH
1342 wb->dirtied_stamp = dirtied;
1343 wb->written_stamp = written;
1344 wb->bw_time_stamp = now;
e98be2d5
WF
1345}
1346
8a731799 1347void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1348{
2bc00aef
TH
1349 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1350
c2aa723a 1351 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
e98be2d5
WF
1352}
1353
9d823e8f 1354/*
d0e1d66b 1355 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1356 * will look to see if it needs to start dirty throttling.
1357 *
1358 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1359 * global_page_state() too often. So scale it near-sqrt to the safety margin
1360 * (the number of pages we may dirty without exceeding the dirty limits).
1361 */
1362static unsigned long dirty_poll_interval(unsigned long dirty,
1363 unsigned long thresh)
1364{
1365 if (thresh > dirty)
1366 return 1UL << (ilog2(thresh - dirty) >> 1);
1367
1368 return 1;
1369}
1370
a88a341a 1371static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1372 unsigned long wb_dirty)
c8462cc9 1373{
a88a341a 1374 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1375 unsigned long t;
c8462cc9 1376
7ccb9ad5
WF
1377 /*
1378 * Limit pause time for small memory systems. If sleeping for too long
1379 * time, a small pool of dirty/writeback pages may go empty and disk go
1380 * idle.
1381 *
1382 * 8 serves as the safety ratio.
1383 */
de1fff37 1384 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1385 t++;
1386
e3b6c655 1387 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1388}
1389
a88a341a
TH
1390static long wb_min_pause(struct bdi_writeback *wb,
1391 long max_pause,
1392 unsigned long task_ratelimit,
1393 unsigned long dirty_ratelimit,
1394 int *nr_dirtied_pause)
c8462cc9 1395{
a88a341a
TH
1396 long hi = ilog2(wb->avg_write_bandwidth);
1397 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1398 long t; /* target pause */
1399 long pause; /* estimated next pause */
1400 int pages; /* target nr_dirtied_pause */
c8462cc9 1401
7ccb9ad5
WF
1402 /* target for 10ms pause on 1-dd case */
1403 t = max(1, HZ / 100);
c8462cc9
WF
1404
1405 /*
1406 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1407 * overheads.
1408 *
7ccb9ad5 1409 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1410 */
1411 if (hi > lo)
7ccb9ad5 1412 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1413
1414 /*
7ccb9ad5
WF
1415 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1416 * on the much more stable dirty_ratelimit. However the next pause time
1417 * will be computed based on task_ratelimit and the two rate limits may
1418 * depart considerably at some time. Especially if task_ratelimit goes
1419 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1420 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1421 * result task_ratelimit won't be executed faithfully, which could
1422 * eventually bring down dirty_ratelimit.
c8462cc9 1423 *
7ccb9ad5
WF
1424 * We apply two rules to fix it up:
1425 * 1) try to estimate the next pause time and if necessary, use a lower
1426 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1427 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1428 * 2) limit the target pause time to max_pause/2, so that the normal
1429 * small fluctuations of task_ratelimit won't trigger rule (1) and
1430 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1431 */
7ccb9ad5
WF
1432 t = min(t, 1 + max_pause / 2);
1433 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1434
1435 /*
5b9b3574
WF
1436 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1437 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1438 * When the 16 consecutive reads are often interrupted by some dirty
1439 * throttling pause during the async writes, cfq will go into idles
1440 * (deadline is fine). So push nr_dirtied_pause as high as possible
1441 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1442 */
5b9b3574
WF
1443 if (pages < DIRTY_POLL_THRESH) {
1444 t = max_pause;
1445 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1446 if (pages > DIRTY_POLL_THRESH) {
1447 pages = DIRTY_POLL_THRESH;
1448 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1449 }
1450 }
1451
7ccb9ad5
WF
1452 pause = HZ * pages / (task_ratelimit + 1);
1453 if (pause > max_pause) {
1454 t = max_pause;
1455 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1456 }
c8462cc9 1457
7ccb9ad5 1458 *nr_dirtied_pause = pages;
c8462cc9 1459 /*
7ccb9ad5 1460 * The minimal pause time will normally be half the target pause time.
c8462cc9 1461 */
5b9b3574 1462 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1463}
1464
970fb01a 1465static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1466{
2bc00aef 1467 struct bdi_writeback *wb = dtc->wb;
93f78d88 1468 unsigned long wb_reclaimable;
5a537485
MP
1469
1470 /*
de1fff37 1471 * wb_thresh is not treated as some limiting factor as
5a537485 1472 * dirty_thresh, due to reasons
de1fff37 1473 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1474 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1475 * go into state (wb_dirty >> wb_thresh) either because
1476 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1477 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1478 * dirtiers for 100 seconds until wb_dirty drops under
1479 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1480 * wb_position_ratio() will let the dirtier task progress
de1fff37 1481 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1482 */
b1cbc6d4 1483 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1484 dtc->wb_bg_thresh = dtc->thresh ?
1485 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1486
1487 /*
1488 * In order to avoid the stacked BDI deadlock we need
1489 * to ensure we accurately count the 'dirty' pages when
1490 * the threshold is low.
1491 *
1492 * Otherwise it would be possible to get thresh+n pages
1493 * reported dirty, even though there are thresh-m pages
1494 * actually dirty; with m+n sitting in the percpu
1495 * deltas.
1496 */
2bc00aef 1497 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1498 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1499 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1500 } else {
93f78d88 1501 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1502 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1503 }
1504}
1505
1da177e4
LT
1506/*
1507 * balance_dirty_pages() must be called by processes which are generating dirty
1508 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1509 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1510 * If we're over `background_thresh' then the writeback threads are woken to
1511 * perform some writeout.
1da177e4 1512 */
3a2e9a5a 1513static void balance_dirty_pages(struct address_space *mapping,
dfb8ae56 1514 struct bdi_writeback *wb,
143dfe86 1515 unsigned long pages_dirtied)
1da177e4 1516{
2bc00aef 1517 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1518 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2bc00aef 1519 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1520 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1521 &mdtc_stor : NULL;
1522 struct dirty_throttle_control *sdtc;
143dfe86 1523 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
83712358 1524 long period;
7ccb9ad5
WF
1525 long pause;
1526 long max_pause;
1527 long min_pause;
1528 int nr_dirtied_pause;
e50e3720 1529 bool dirty_exceeded = false;
143dfe86 1530 unsigned long task_ratelimit;
7ccb9ad5 1531 unsigned long dirty_ratelimit;
dfb8ae56 1532 struct backing_dev_info *bdi = wb->bdi;
5a537485 1533 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1534 unsigned long start_time = jiffies;
1da177e4
LT
1535
1536 for (;;) {
83712358 1537 unsigned long now = jiffies;
2bc00aef 1538 unsigned long dirty, thresh, bg_thresh;
c2aa723a 1539 unsigned long m_dirty, m_thresh, m_bg_thresh;
83712358 1540
143dfe86
WF
1541 /*
1542 * Unstable writes are a feature of certain networked
1543 * filesystems (i.e. NFS) in which data may have been
1544 * written to the server's write cache, but has not yet
1545 * been flushed to permanent storage.
1546 */
5fce25a9
PZ
1547 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1548 global_page_state(NR_UNSTABLE_NFS);
9fc3a43e 1549 gdtc->avail = global_dirtyable_memory();
2bc00aef 1550 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1551
9fc3a43e 1552 domain_dirty_limits(gdtc);
16c4042f 1553
5a537485 1554 if (unlikely(strictlimit)) {
970fb01a 1555 wb_dirty_limits(gdtc);
5a537485 1556
2bc00aef
TH
1557 dirty = gdtc->wb_dirty;
1558 thresh = gdtc->wb_thresh;
970fb01a 1559 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1560 } else {
2bc00aef
TH
1561 dirty = gdtc->dirty;
1562 thresh = gdtc->thresh;
1563 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1564 }
1565
c2aa723a
TH
1566 if (mdtc) {
1567 unsigned long writeback;
1568
1569 /*
1570 * If @wb belongs to !root memcg, repeat the same
1571 * basic calculations for the memcg domain.
1572 */
1573 mem_cgroup_wb_stats(wb, &mdtc->avail, &mdtc->dirty,
1574 &writeback);
1575 mdtc_cap_avail(mdtc);
1576 mdtc->dirty += writeback;
1577
1578 domain_dirty_limits(mdtc);
1579
1580 if (unlikely(strictlimit)) {
1581 wb_dirty_limits(mdtc);
1582 m_dirty = mdtc->wb_dirty;
1583 m_thresh = mdtc->wb_thresh;
1584 m_bg_thresh = mdtc->wb_bg_thresh;
1585 } else {
1586 m_dirty = mdtc->dirty;
1587 m_thresh = mdtc->thresh;
1588 m_bg_thresh = mdtc->bg_thresh;
1589 }
5a537485
MP
1590 }
1591
16c4042f
WF
1592 /*
1593 * Throttle it only when the background writeback cannot
1594 * catch-up. This avoids (excessively) small writeouts
de1fff37 1595 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1596 *
de1fff37
TH
1597 * In strictlimit case make decision based on the wb counters
1598 * and limits. Small writeouts when the wb limits are ramping
5a537485 1599 * up are the price we consciously pay for strictlimit-ing.
c2aa723a
TH
1600 *
1601 * If memcg domain is in effect, @dirty should be under
1602 * both global and memcg freerun ceilings.
16c4042f 1603 */
c2aa723a
TH
1604 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1605 (!mdtc ||
1606 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1607 unsigned long intv = dirty_poll_interval(dirty, thresh);
1608 unsigned long m_intv = ULONG_MAX;
1609
83712358
WF
1610 current->dirty_paused_when = now;
1611 current->nr_dirtied = 0;
c2aa723a
TH
1612 if (mdtc)
1613 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1614 current->nr_dirtied_pause = min(intv, m_intv);
16c4042f 1615 break;
83712358 1616 }
16c4042f 1617
bc05873d 1618 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1619 wb_start_background_writeback(wb);
143dfe86 1620
c2aa723a
TH
1621 /*
1622 * Calculate global domain's pos_ratio and select the
1623 * global dtc by default.
1624 */
5a537485 1625 if (!strictlimit)
970fb01a 1626 wb_dirty_limits(gdtc);
5fce25a9 1627
2bc00aef
TH
1628 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1629 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1630
1631 wb_position_ratio(gdtc);
c2aa723a
TH
1632 sdtc = gdtc;
1633
1634 if (mdtc) {
1635 /*
1636 * If memcg domain is in effect, calculate its
1637 * pos_ratio. @wb should satisfy constraints from
1638 * both global and memcg domains. Choose the one
1639 * w/ lower pos_ratio.
1640 */
1641 if (!strictlimit)
1642 wb_dirty_limits(mdtc);
1643
1644 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1645 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1646
1647 wb_position_ratio(mdtc);
1648 if (mdtc->pos_ratio < gdtc->pos_ratio)
1649 sdtc = mdtc;
1650 }
daddfa3c 1651
a88a341a
TH
1652 if (dirty_exceeded && !wb->dirty_exceeded)
1653 wb->dirty_exceeded = 1;
1da177e4 1654
8a731799
TH
1655 if (time_is_before_jiffies(wb->bw_time_stamp +
1656 BANDWIDTH_INTERVAL)) {
1657 spin_lock(&wb->list_lock);
c2aa723a 1658 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
8a731799
TH
1659 spin_unlock(&wb->list_lock);
1660 }
e98be2d5 1661
c2aa723a 1662 /* throttle according to the chosen dtc */
a88a341a 1663 dirty_ratelimit = wb->dirty_ratelimit;
c2aa723a 1664 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
3a73dbbc 1665 RATELIMIT_CALC_SHIFT;
c2aa723a 1666 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
a88a341a
TH
1667 min_pause = wb_min_pause(wb, max_pause,
1668 task_ratelimit, dirty_ratelimit,
1669 &nr_dirtied_pause);
7ccb9ad5 1670
3a73dbbc 1671 if (unlikely(task_ratelimit == 0)) {
83712358 1672 period = max_pause;
c8462cc9 1673 pause = max_pause;
143dfe86 1674 goto pause;
04fbfdc1 1675 }
83712358
WF
1676 period = HZ * pages_dirtied / task_ratelimit;
1677 pause = period;
1678 if (current->dirty_paused_when)
1679 pause -= now - current->dirty_paused_when;
1680 /*
1681 * For less than 1s think time (ext3/4 may block the dirtier
1682 * for up to 800ms from time to time on 1-HDD; so does xfs,
1683 * however at much less frequency), try to compensate it in
1684 * future periods by updating the virtual time; otherwise just
1685 * do a reset, as it may be a light dirtier.
1686 */
7ccb9ad5 1687 if (pause < min_pause) {
5634cc2a 1688 trace_balance_dirty_pages(wb,
c2aa723a
TH
1689 sdtc->thresh,
1690 sdtc->bg_thresh,
1691 sdtc->dirty,
1692 sdtc->wb_thresh,
1693 sdtc->wb_dirty,
ece13ac3
WF
1694 dirty_ratelimit,
1695 task_ratelimit,
1696 pages_dirtied,
83712358 1697 period,
7ccb9ad5 1698 min(pause, 0L),
ece13ac3 1699 start_time);
83712358
WF
1700 if (pause < -HZ) {
1701 current->dirty_paused_when = now;
1702 current->nr_dirtied = 0;
1703 } else if (period) {
1704 current->dirty_paused_when += period;
1705 current->nr_dirtied = 0;
7ccb9ad5
WF
1706 } else if (current->nr_dirtied_pause <= pages_dirtied)
1707 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1708 break;
04fbfdc1 1709 }
7ccb9ad5
WF
1710 if (unlikely(pause > max_pause)) {
1711 /* for occasional dropped task_ratelimit */
1712 now += min(pause - max_pause, max_pause);
1713 pause = max_pause;
1714 }
143dfe86
WF
1715
1716pause:
5634cc2a 1717 trace_balance_dirty_pages(wb,
c2aa723a
TH
1718 sdtc->thresh,
1719 sdtc->bg_thresh,
1720 sdtc->dirty,
1721 sdtc->wb_thresh,
1722 sdtc->wb_dirty,
ece13ac3
WF
1723 dirty_ratelimit,
1724 task_ratelimit,
1725 pages_dirtied,
83712358 1726 period,
ece13ac3
WF
1727 pause,
1728 start_time);
499d05ec 1729 __set_current_state(TASK_KILLABLE);
d25105e8 1730 io_schedule_timeout(pause);
87c6a9b2 1731
83712358
WF
1732 current->dirty_paused_when = now + pause;
1733 current->nr_dirtied = 0;
7ccb9ad5 1734 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1735
ffd1f609 1736 /*
2bc00aef
TH
1737 * This is typically equal to (dirty < thresh) and can also
1738 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1739 */
1df64719 1740 if (task_ratelimit)
ffd1f609 1741 break;
499d05ec 1742
c5c6343c
WF
1743 /*
1744 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1745 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1746 * to go through, so that tasks on them still remain responsive.
1747 *
1748 * In theory 1 page is enough to keep the comsumer-producer
1749 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1750 * more page. However wb_dirty has accounting errors. So use
93f78d88 1751 * the larger and more IO friendly wb_stat_error.
c5c6343c 1752 */
c2aa723a 1753 if (sdtc->wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1754 break;
1755
499d05ec
JK
1756 if (fatal_signal_pending(current))
1757 break;
1da177e4
LT
1758 }
1759
a88a341a
TH
1760 if (!dirty_exceeded && wb->dirty_exceeded)
1761 wb->dirty_exceeded = 0;
1da177e4 1762
bc05873d 1763 if (writeback_in_progress(wb))
5b0830cb 1764 return;
1da177e4
LT
1765
1766 /*
1767 * In laptop mode, we wait until hitting the higher threshold before
1768 * starting background writeout, and then write out all the way down
1769 * to the lower threshold. So slow writers cause minimal disk activity.
1770 *
1771 * In normal mode, we start background writeout at the lower
1772 * background_thresh, to keep the amount of dirty memory low.
1773 */
143dfe86
WF
1774 if (laptop_mode)
1775 return;
1776
2bc00aef 1777 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1778 wb_start_background_writeback(wb);
1da177e4
LT
1779}
1780
9d823e8f 1781static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1782
54848d73
WF
1783/*
1784 * Normal tasks are throttled by
1785 * loop {
1786 * dirty tsk->nr_dirtied_pause pages;
1787 * take a snap in balance_dirty_pages();
1788 * }
1789 * However there is a worst case. If every task exit immediately when dirtied
1790 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1791 * called to throttle the page dirties. The solution is to save the not yet
1792 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1793 * randomly into the running tasks. This works well for the above worst case,
1794 * as the new task will pick up and accumulate the old task's leaked dirty
1795 * count and eventually get throttled.
1796 */
1797DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1798
1da177e4 1799/**
d0e1d66b 1800 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1801 * @mapping: address_space which was dirtied
1da177e4
LT
1802 *
1803 * Processes which are dirtying memory should call in here once for each page
1804 * which was newly dirtied. The function will periodically check the system's
1805 * dirty state and will initiate writeback if needed.
1806 *
1807 * On really big machines, get_writeback_state is expensive, so try to avoid
1808 * calling it too often (ratelimiting). But once we're over the dirty memory
1809 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1810 * from overshooting the limit by (ratelimit_pages) each.
1811 */
d0e1d66b 1812void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1813{
dfb8ae56
TH
1814 struct inode *inode = mapping->host;
1815 struct backing_dev_info *bdi = inode_to_bdi(inode);
1816 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1817 int ratelimit;
1818 int *p;
1da177e4 1819
36715cef
WF
1820 if (!bdi_cap_account_dirty(bdi))
1821 return;
1822
dfb8ae56
TH
1823 if (inode_cgwb_enabled(inode))
1824 wb = wb_get_create_current(bdi, GFP_KERNEL);
1825 if (!wb)
1826 wb = &bdi->wb;
1827
9d823e8f 1828 ratelimit = current->nr_dirtied_pause;
a88a341a 1829 if (wb->dirty_exceeded)
9d823e8f
WF
1830 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1831
9d823e8f 1832 preempt_disable();
1da177e4 1833 /*
9d823e8f
WF
1834 * This prevents one CPU to accumulate too many dirtied pages without
1835 * calling into balance_dirty_pages(), which can happen when there are
1836 * 1000+ tasks, all of them start dirtying pages at exactly the same
1837 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1838 */
7c8e0181 1839 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1840 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1841 *p = 0;
d3bc1fef
WF
1842 else if (unlikely(*p >= ratelimit_pages)) {
1843 *p = 0;
1844 ratelimit = 0;
1da177e4 1845 }
54848d73
WF
1846 /*
1847 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1848 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1849 * the dirty throttling and livelock other long-run dirtiers.
1850 */
7c8e0181 1851 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1852 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1853 unsigned long nr_pages_dirtied;
54848d73
WF
1854 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1855 *p -= nr_pages_dirtied;
1856 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1857 }
fa5a734e 1858 preempt_enable();
9d823e8f
WF
1859
1860 if (unlikely(current->nr_dirtied >= ratelimit))
dfb8ae56
TH
1861 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1862
1863 wb_put(wb);
1da177e4 1864}
d0e1d66b 1865EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1866
aa661bbe
TH
1867/**
1868 * wb_over_bg_thresh - does @wb need to be written back?
1869 * @wb: bdi_writeback of interest
1870 *
1871 * Determines whether background writeback should keep writing @wb or it's
1872 * clean enough. Returns %true if writeback should continue.
1873 */
1874bool wb_over_bg_thresh(struct bdi_writeback *wb)
1875{
947e9762 1876 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1877 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
947e9762 1878 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1879 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1880 &mdtc_stor : NULL;
aa661bbe 1881
947e9762
TH
1882 /*
1883 * Similar to balance_dirty_pages() but ignores pages being written
1884 * as we're trying to decide whether to put more under writeback.
1885 */
1886 gdtc->avail = global_dirtyable_memory();
1887 gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1888 global_page_state(NR_UNSTABLE_NFS);
1889 domain_dirty_limits(gdtc);
aa661bbe 1890
947e9762 1891 if (gdtc->dirty > gdtc->bg_thresh)
aa661bbe
TH
1892 return true;
1893
947e9762 1894 if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc))
aa661bbe
TH
1895 return true;
1896
c2aa723a
TH
1897 if (mdtc) {
1898 unsigned long writeback;
1899
1900 mem_cgroup_wb_stats(wb, &mdtc->avail, &mdtc->dirty, &writeback);
1901 mdtc_cap_avail(mdtc);
1902 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1903
1904 if (mdtc->dirty > mdtc->bg_thresh)
1905 return true;
1906
1907 if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(mdtc))
1908 return true;
1909 }
1910
aa661bbe
TH
1911 return false;
1912}
1913
232ea4d6 1914void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1915{
364aeb28
DR
1916 unsigned long background_thresh;
1917 unsigned long dirty_thresh;
1da177e4
LT
1918
1919 for ( ; ; ) {
16c4042f 1920 global_dirty_limits(&background_thresh, &dirty_thresh);
c7981433 1921 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1da177e4
LT
1922
1923 /*
1924 * Boost the allowable dirty threshold a bit for page
1925 * allocators so they don't get DoS'ed by heavy writers
1926 */
1927 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1928
c24f21bd
CL
1929 if (global_page_state(NR_UNSTABLE_NFS) +
1930 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1931 break;
8aa7e847 1932 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1933
1934 /*
1935 * The caller might hold locks which can prevent IO completion
1936 * or progress in the filesystem. So we cannot just sit here
1937 * waiting for IO to complete.
1938 */
1939 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1940 break;
1da177e4
LT
1941 }
1942}
1943
1da177e4
LT
1944/*
1945 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1946 */
cccad5b9 1947int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1948 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1949{
8d65af78 1950 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
1951 return 0;
1952}
1953
c2c4986e 1954#ifdef CONFIG_BLOCK
31373d09 1955void laptop_mode_timer_fn(unsigned long data)
1da177e4 1956{
31373d09
MG
1957 struct request_queue *q = (struct request_queue *)data;
1958 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1959 global_page_state(NR_UNSTABLE_NFS);
a06fd6b1 1960 struct bdi_writeback *wb;
1da177e4 1961
31373d09
MG
1962 /*
1963 * We want to write everything out, not just down to the dirty
1964 * threshold
1965 */
a06fd6b1
TH
1966 if (!bdi_has_dirty_io(&q->backing_dev_info))
1967 return;
1968
9ad18ab9 1969 rcu_read_lock();
b817525a 1970 list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
a06fd6b1
TH
1971 if (wb_has_dirty_io(wb))
1972 wb_start_writeback(wb, nr_pages, true,
1973 WB_REASON_LAPTOP_TIMER);
9ad18ab9 1974 rcu_read_unlock();
1da177e4
LT
1975}
1976
1977/*
1978 * We've spun up the disk and we're in laptop mode: schedule writeback
1979 * of all dirty data a few seconds from now. If the flush is already scheduled
1980 * then push it back - the user is still using the disk.
1981 */
31373d09 1982void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1983{
31373d09 1984 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1985}
1986
1987/*
1988 * We're in laptop mode and we've just synced. The sync's writes will have
1989 * caused another writeback to be scheduled by laptop_io_completion.
1990 * Nothing needs to be written back anymore, so we unschedule the writeback.
1991 */
1992void laptop_sync_completion(void)
1993{
31373d09
MG
1994 struct backing_dev_info *bdi;
1995
1996 rcu_read_lock();
1997
1998 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1999 del_timer(&bdi->laptop_mode_wb_timer);
2000
2001 rcu_read_unlock();
1da177e4 2002}
c2c4986e 2003#endif
1da177e4
LT
2004
2005/*
2006 * If ratelimit_pages is too high then we can get into dirty-data overload
2007 * if a large number of processes all perform writes at the same time.
2008 * If it is too low then SMP machines will call the (expensive)
2009 * get_writeback_state too often.
2010 *
2011 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2012 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 2013 * thresholds.
1da177e4
LT
2014 */
2015
2d1d43f6 2016void writeback_set_ratelimit(void)
1da177e4 2017{
dcc25ae7 2018 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
2019 unsigned long background_thresh;
2020 unsigned long dirty_thresh;
dcc25ae7 2021
9d823e8f 2022 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 2023 dom->dirty_limit = dirty_thresh;
9d823e8f 2024 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
2025 if (ratelimit_pages < 16)
2026 ratelimit_pages = 16;
1da177e4
LT
2027}
2028
0db0628d 2029static int
2f60d628
SB
2030ratelimit_handler(struct notifier_block *self, unsigned long action,
2031 void *hcpu)
1da177e4 2032{
2f60d628
SB
2033
2034 switch (action & ~CPU_TASKS_FROZEN) {
2035 case CPU_ONLINE:
2036 case CPU_DEAD:
2037 writeback_set_ratelimit();
2038 return NOTIFY_OK;
2039 default:
2040 return NOTIFY_DONE;
2041 }
1da177e4
LT
2042}
2043
0db0628d 2044static struct notifier_block ratelimit_nb = {
1da177e4
LT
2045 .notifier_call = ratelimit_handler,
2046 .next = NULL,
2047};
2048
2049/*
dc6e29da
LT
2050 * Called early on to tune the page writeback dirty limits.
2051 *
2052 * We used to scale dirty pages according to how total memory
2053 * related to pages that could be allocated for buffers (by
2054 * comparing nr_free_buffer_pages() to vm_total_pages.
2055 *
2056 * However, that was when we used "dirty_ratio" to scale with
2057 * all memory, and we don't do that any more. "dirty_ratio"
2058 * is now applied to total non-HIGHPAGE memory (by subtracting
2059 * totalhigh_pages from vm_total_pages), and as such we can't
2060 * get into the old insane situation any more where we had
2061 * large amounts of dirty pages compared to a small amount of
2062 * non-HIGHMEM memory.
2063 *
2064 * But we might still want to scale the dirty_ratio by how
2065 * much memory the box has..
1da177e4
LT
2066 */
2067void __init page_writeback_init(void)
2068{
a50fcb51
RV
2069 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2070
2d1d43f6 2071 writeback_set_ratelimit();
1da177e4
LT
2072 register_cpu_notifier(&ratelimit_nb);
2073}
2074
f446daae
JK
2075/**
2076 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2077 * @mapping: address space structure to write
2078 * @start: starting page index
2079 * @end: ending page index (inclusive)
2080 *
2081 * This function scans the page range from @start to @end (inclusive) and tags
2082 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2083 * that write_cache_pages (or whoever calls this function) will then use
2084 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2085 * used to avoid livelocking of writeback by a process steadily creating new
2086 * dirty pages in the file (thus it is important for this function to be quick
2087 * so that it can tag pages faster than a dirtying process can create them).
2088 */
2089/*
2090 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2091 */
f446daae
JK
2092void tag_pages_for_writeback(struct address_space *mapping,
2093 pgoff_t start, pgoff_t end)
2094{
3c111a07 2095#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
2096 unsigned long tagged;
2097
2098 do {
2099 spin_lock_irq(&mapping->tree_lock);
2100 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2101 &start, end, WRITEBACK_TAG_BATCH,
2102 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2103 spin_unlock_irq(&mapping->tree_lock);
2104 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2105 cond_resched();
d5ed3a4a
JK
2106 /* We check 'start' to handle wrapping when end == ~0UL */
2107 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
2108}
2109EXPORT_SYMBOL(tag_pages_for_writeback);
2110
811d736f 2111/**
0ea97180 2112 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
2113 * @mapping: address space structure to write
2114 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
2115 * @writepage: function called for each page
2116 * @data: data passed to writepage function
811d736f 2117 *
0ea97180 2118 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
2119 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2120 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2121 * and msync() need to guarantee that all the data which was dirty at the time
2122 * the call was made get new I/O started against them. If wbc->sync_mode is
2123 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2124 * existing IO to complete.
f446daae
JK
2125 *
2126 * To avoid livelocks (when other process dirties new pages), we first tag
2127 * pages which should be written back with TOWRITE tag and only then start
2128 * writing them. For data-integrity sync we have to be careful so that we do
2129 * not miss some pages (e.g., because some other process has cleared TOWRITE
2130 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2131 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 2132 */
0ea97180
MS
2133int write_cache_pages(struct address_space *mapping,
2134 struct writeback_control *wbc, writepage_t writepage,
2135 void *data)
811d736f 2136{
811d736f
DH
2137 int ret = 0;
2138 int done = 0;
811d736f
DH
2139 struct pagevec pvec;
2140 int nr_pages;
31a12666 2141 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
2142 pgoff_t index;
2143 pgoff_t end; /* Inclusive */
bd19e012 2144 pgoff_t done_index;
31a12666 2145 int cycled;
811d736f 2146 int range_whole = 0;
f446daae 2147 int tag;
811d736f 2148
811d736f
DH
2149 pagevec_init(&pvec, 0);
2150 if (wbc->range_cyclic) {
31a12666
NP
2151 writeback_index = mapping->writeback_index; /* prev offset */
2152 index = writeback_index;
2153 if (index == 0)
2154 cycled = 1;
2155 else
2156 cycled = 0;
811d736f
DH
2157 end = -1;
2158 } else {
2159 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2160 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2161 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2162 range_whole = 1;
31a12666 2163 cycled = 1; /* ignore range_cyclic tests */
811d736f 2164 }
6e6938b6 2165 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
2166 tag = PAGECACHE_TAG_TOWRITE;
2167 else
2168 tag = PAGECACHE_TAG_DIRTY;
811d736f 2169retry:
6e6938b6 2170 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 2171 tag_pages_for_writeback(mapping, index, end);
bd19e012 2172 done_index = index;
5a3d5c98
NP
2173 while (!done && (index <= end)) {
2174 int i;
2175
f446daae 2176 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
2177 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2178 if (nr_pages == 0)
2179 break;
811d736f 2180
811d736f
DH
2181 for (i = 0; i < nr_pages; i++) {
2182 struct page *page = pvec.pages[i];
2183
2184 /*
d5482cdf
NP
2185 * At this point, the page may be truncated or
2186 * invalidated (changing page->mapping to NULL), or
2187 * even swizzled back from swapper_space to tmpfs file
2188 * mapping. However, page->index will not change
2189 * because we have a reference on the page.
811d736f 2190 */
d5482cdf
NP
2191 if (page->index > end) {
2192 /*
2193 * can't be range_cyclic (1st pass) because
2194 * end == -1 in that case.
2195 */
2196 done = 1;
2197 break;
2198 }
2199
cf15b07c 2200 done_index = page->index;
d5482cdf 2201
811d736f
DH
2202 lock_page(page);
2203
5a3d5c98
NP
2204 /*
2205 * Page truncated or invalidated. We can freely skip it
2206 * then, even for data integrity operations: the page
2207 * has disappeared concurrently, so there could be no
2208 * real expectation of this data interity operation
2209 * even if there is now a new, dirty page at the same
2210 * pagecache address.
2211 */
811d736f 2212 if (unlikely(page->mapping != mapping)) {
5a3d5c98 2213continue_unlock:
811d736f
DH
2214 unlock_page(page);
2215 continue;
2216 }
2217
515f4a03
NP
2218 if (!PageDirty(page)) {
2219 /* someone wrote it for us */
2220 goto continue_unlock;
2221 }
2222
2223 if (PageWriteback(page)) {
2224 if (wbc->sync_mode != WB_SYNC_NONE)
2225 wait_on_page_writeback(page);
2226 else
2227 goto continue_unlock;
2228 }
811d736f 2229
515f4a03
NP
2230 BUG_ON(PageWriteback(page));
2231 if (!clear_page_dirty_for_io(page))
5a3d5c98 2232 goto continue_unlock;
811d736f 2233
de1414a6 2234 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 2235 ret = (*writepage)(page, wbc, data);
00266770
NP
2236 if (unlikely(ret)) {
2237 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2238 unlock_page(page);
2239 ret = 0;
2240 } else {
2241 /*
2242 * done_index is set past this page,
2243 * so media errors will not choke
2244 * background writeout for the entire
2245 * file. This has consequences for
2246 * range_cyclic semantics (ie. it may
2247 * not be suitable for data integrity
2248 * writeout).
2249 */
cf15b07c 2250 done_index = page->index + 1;
00266770
NP
2251 done = 1;
2252 break;
2253 }
0b564927 2254 }
00266770 2255
546a1924
DC
2256 /*
2257 * We stop writing back only if we are not doing
2258 * integrity sync. In case of integrity sync we have to
2259 * keep going until we have written all the pages
2260 * we tagged for writeback prior to entering this loop.
2261 */
2262 if (--wbc->nr_to_write <= 0 &&
2263 wbc->sync_mode == WB_SYNC_NONE) {
2264 done = 1;
2265 break;
05fe478d 2266 }
811d736f
DH
2267 }
2268 pagevec_release(&pvec);
2269 cond_resched();
2270 }
3a4c6800 2271 if (!cycled && !done) {
811d736f 2272 /*
31a12666 2273 * range_cyclic:
811d736f
DH
2274 * We hit the last page and there is more work to be done: wrap
2275 * back to the start of the file
2276 */
31a12666 2277 cycled = 1;
811d736f 2278 index = 0;
31a12666 2279 end = writeback_index - 1;
811d736f
DH
2280 goto retry;
2281 }
0b564927
DC
2282 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2283 mapping->writeback_index = done_index;
06d6cf69 2284
811d736f
DH
2285 return ret;
2286}
0ea97180
MS
2287EXPORT_SYMBOL(write_cache_pages);
2288
2289/*
2290 * Function used by generic_writepages to call the real writepage
2291 * function and set the mapping flags on error
2292 */
2293static int __writepage(struct page *page, struct writeback_control *wbc,
2294 void *data)
2295{
2296 struct address_space *mapping = data;
2297 int ret = mapping->a_ops->writepage(page, wbc);
2298 mapping_set_error(mapping, ret);
2299 return ret;
2300}
2301
2302/**
2303 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2304 * @mapping: address space structure to write
2305 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2306 *
2307 * This is a library function, which implements the writepages()
2308 * address_space_operation.
2309 */
2310int generic_writepages(struct address_space *mapping,
2311 struct writeback_control *wbc)
2312{
9b6096a6
SL
2313 struct blk_plug plug;
2314 int ret;
2315
0ea97180
MS
2316 /* deal with chardevs and other special file */
2317 if (!mapping->a_ops->writepage)
2318 return 0;
2319
9b6096a6
SL
2320 blk_start_plug(&plug);
2321 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2322 blk_finish_plug(&plug);
2323 return ret;
0ea97180 2324}
811d736f
DH
2325
2326EXPORT_SYMBOL(generic_writepages);
2327
1da177e4
LT
2328int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2329{
22905f77
AM
2330 int ret;
2331
1da177e4
LT
2332 if (wbc->nr_to_write <= 0)
2333 return 0;
2334 if (mapping->a_ops->writepages)
d08b3851 2335 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2336 else
2337 ret = generic_writepages(mapping, wbc);
22905f77 2338 return ret;
1da177e4
LT
2339}
2340
2341/**
2342 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2343 * @page: the page to write
2344 * @wait: if true, wait on writeout
1da177e4
LT
2345 *
2346 * The page must be locked by the caller and will be unlocked upon return.
2347 *
2348 * write_one_page() returns a negative error code if I/O failed.
2349 */
2350int write_one_page(struct page *page, int wait)
2351{
2352 struct address_space *mapping = page->mapping;
2353 int ret = 0;
2354 struct writeback_control wbc = {
2355 .sync_mode = WB_SYNC_ALL,
2356 .nr_to_write = 1,
2357 };
2358
2359 BUG_ON(!PageLocked(page));
2360
2361 if (wait)
2362 wait_on_page_writeback(page);
2363
2364 if (clear_page_dirty_for_io(page)) {
2365 page_cache_get(page);
2366 ret = mapping->a_ops->writepage(page, &wbc);
2367 if (ret == 0 && wait) {
2368 wait_on_page_writeback(page);
2369 if (PageError(page))
2370 ret = -EIO;
2371 }
2372 page_cache_release(page);
2373 } else {
2374 unlock_page(page);
2375 }
2376 return ret;
2377}
2378EXPORT_SYMBOL(write_one_page);
2379
76719325
KC
2380/*
2381 * For address_spaces which do not use buffers nor write back.
2382 */
2383int __set_page_dirty_no_writeback(struct page *page)
2384{
2385 if (!PageDirty(page))
c3f0da63 2386 return !TestSetPageDirty(page);
76719325
KC
2387 return 0;
2388}
2389
e3a7cca1
ES
2390/*
2391 * Helper function for set_page_dirty family.
c4843a75
GT
2392 *
2393 * Caller must hold mem_cgroup_begin_page_stat().
2394 *
e3a7cca1
ES
2395 * NOTE: This relies on being atomic wrt interrupts.
2396 */
c4843a75
GT
2397void account_page_dirtied(struct page *page, struct address_space *mapping,
2398 struct mem_cgroup *memcg)
e3a7cca1 2399{
52ebea74
TH
2400 struct inode *inode = mapping->host;
2401
9fb0a7da
TH
2402 trace_writeback_dirty_page(page, mapping);
2403
e3a7cca1 2404 if (mapping_cap_account_dirty(mapping)) {
52ebea74 2405 struct bdi_writeback *wb;
de1414a6 2406
52ebea74
TH
2407 inode_attach_wb(inode, page);
2408 wb = inode_to_wb(inode);
de1414a6 2409
c4843a75 2410 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
e3a7cca1 2411 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 2412 __inc_zone_page_state(page, NR_DIRTIED);
52ebea74
TH
2413 __inc_wb_stat(wb, WB_RECLAIMABLE);
2414 __inc_wb_stat(wb, WB_DIRTIED);
e3a7cca1 2415 task_io_account_write(PAGE_CACHE_SIZE);
d3bc1fef
WF
2416 current->nr_dirtied++;
2417 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2418 }
2419}
679ceace 2420EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2421
b9ea2515
KK
2422/*
2423 * Helper function for deaccounting dirty page without writeback.
2424 *
c4843a75 2425 * Caller must hold mem_cgroup_begin_page_stat().
b9ea2515 2426 */
c4843a75 2427void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 2428 struct mem_cgroup *memcg, struct bdi_writeback *wb)
b9ea2515
KK
2429{
2430 if (mapping_cap_account_dirty(mapping)) {
c4843a75 2431 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
b9ea2515 2432 dec_zone_page_state(page, NR_FILE_DIRTY);
682aa8e1 2433 dec_wb_stat(wb, WB_RECLAIMABLE);
b9ea2515
KK
2434 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2435 }
2436}
b9ea2515 2437
1da177e4
LT
2438/*
2439 * For address_spaces which do not use buffers. Just tag the page as dirty in
2440 * its radix tree.
2441 *
2442 * This is also used when a single buffer is being dirtied: we want to set the
2443 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2444 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2445 *
2d6d7f98
JW
2446 * The caller must ensure this doesn't race with truncation. Most will simply
2447 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2448 * the pte lock held, which also locks out truncation.
1da177e4
LT
2449 */
2450int __set_page_dirty_nobuffers(struct page *page)
2451{
c4843a75
GT
2452 struct mem_cgroup *memcg;
2453
2454 memcg = mem_cgroup_begin_page_stat(page);
1da177e4
LT
2455 if (!TestSetPageDirty(page)) {
2456 struct address_space *mapping = page_mapping(page);
a85d9df1 2457 unsigned long flags;
1da177e4 2458
c4843a75
GT
2459 if (!mapping) {
2460 mem_cgroup_end_page_stat(memcg);
8c08540f 2461 return 1;
c4843a75 2462 }
8c08540f 2463
a85d9df1 2464 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2465 BUG_ON(page_mapping(page) != mapping);
2466 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
c4843a75 2467 account_page_dirtied(page, mapping, memcg);
2d6d7f98
JW
2468 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2469 PAGECACHE_TAG_DIRTY);
a85d9df1 2470 spin_unlock_irqrestore(&mapping->tree_lock, flags);
c4843a75
GT
2471 mem_cgroup_end_page_stat(memcg);
2472
8c08540f
AM
2473 if (mapping->host) {
2474 /* !PageAnon && !swapper_space */
2475 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2476 }
4741c9fd 2477 return 1;
1da177e4 2478 }
c4843a75 2479 mem_cgroup_end_page_stat(memcg);
4741c9fd 2480 return 0;
1da177e4
LT
2481}
2482EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2483
2f800fbd
WF
2484/*
2485 * Call this whenever redirtying a page, to de-account the dirty counters
2486 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2487 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2488 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2489 * control.
2490 */
2491void account_page_redirty(struct page *page)
2492{
2493 struct address_space *mapping = page->mapping;
91018134 2494
2f800fbd 2495 if (mapping && mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2496 struct inode *inode = mapping->host;
2497 struct bdi_writeback *wb;
2498 bool locked;
91018134 2499
682aa8e1 2500 wb = unlocked_inode_to_wb_begin(inode, &locked);
2f800fbd
WF
2501 current->nr_dirtied--;
2502 dec_zone_page_state(page, NR_DIRTIED);
91018134 2503 dec_wb_stat(wb, WB_DIRTIED);
682aa8e1 2504 unlocked_inode_to_wb_end(inode, locked);
2f800fbd
WF
2505 }
2506}
2507EXPORT_SYMBOL(account_page_redirty);
2508
1da177e4
LT
2509/*
2510 * When a writepage implementation decides that it doesn't want to write this
2511 * page for some reason, it should redirty the locked page via
2512 * redirty_page_for_writepage() and it should then unlock the page and return 0
2513 */
2514int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2515{
8d38633c
KK
2516 int ret;
2517
1da177e4 2518 wbc->pages_skipped++;
8d38633c 2519 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2520 account_page_redirty(page);
8d38633c 2521 return ret;
1da177e4
LT
2522}
2523EXPORT_SYMBOL(redirty_page_for_writepage);
2524
2525/*
6746aff7
WF
2526 * Dirty a page.
2527 *
2528 * For pages with a mapping this should be done under the page lock
2529 * for the benefit of asynchronous memory errors who prefer a consistent
2530 * dirty state. This rule can be broken in some special cases,
2531 * but should be better not to.
2532 *
1da177e4
LT
2533 * If the mapping doesn't provide a set_page_dirty a_op, then
2534 * just fall through and assume that it wants buffer_heads.
2535 */
1cf6e7d8 2536int set_page_dirty(struct page *page)
1da177e4
LT
2537{
2538 struct address_space *mapping = page_mapping(page);
2539
2540 if (likely(mapping)) {
2541 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2542 /*
2543 * readahead/lru_deactivate_page could remain
2544 * PG_readahead/PG_reclaim due to race with end_page_writeback
2545 * About readahead, if the page is written, the flags would be
2546 * reset. So no problem.
2547 * About lru_deactivate_page, if the page is redirty, the flag
2548 * will be reset. So no problem. but if the page is used by readahead
2549 * it will confuse readahead and make it restart the size rampup
2550 * process. But it's a trivial problem.
2551 */
a4bb3ecd
NH
2552 if (PageReclaim(page))
2553 ClearPageReclaim(page);
9361401e
DH
2554#ifdef CONFIG_BLOCK
2555 if (!spd)
2556 spd = __set_page_dirty_buffers;
2557#endif
2558 return (*spd)(page);
1da177e4 2559 }
4741c9fd
AM
2560 if (!PageDirty(page)) {
2561 if (!TestSetPageDirty(page))
2562 return 1;
2563 }
1da177e4
LT
2564 return 0;
2565}
2566EXPORT_SYMBOL(set_page_dirty);
2567
2568/*
2569 * set_page_dirty() is racy if the caller has no reference against
2570 * page->mapping->host, and if the page is unlocked. This is because another
2571 * CPU could truncate the page off the mapping and then free the mapping.
2572 *
2573 * Usually, the page _is_ locked, or the caller is a user-space process which
2574 * holds a reference on the inode by having an open file.
2575 *
2576 * In other cases, the page should be locked before running set_page_dirty().
2577 */
2578int set_page_dirty_lock(struct page *page)
2579{
2580 int ret;
2581
7eaceacc 2582 lock_page(page);
1da177e4
LT
2583 ret = set_page_dirty(page);
2584 unlock_page(page);
2585 return ret;
2586}
2587EXPORT_SYMBOL(set_page_dirty_lock);
2588
11f81bec
TH
2589/*
2590 * This cancels just the dirty bit on the kernel page itself, it does NOT
2591 * actually remove dirty bits on any mmap's that may be around. It also
2592 * leaves the page tagged dirty, so any sync activity will still find it on
2593 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2594 * look at the dirty bits in the VM.
2595 *
2596 * Doing this should *normally* only ever be done when a page is truncated,
2597 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2598 * this when it notices that somebody has cleaned out all the buffers on a
2599 * page without actually doing it through the VM. Can you say "ext3 is
2600 * horribly ugly"? Thought you could.
2601 */
2602void cancel_dirty_page(struct page *page)
2603{
c4843a75
GT
2604 struct address_space *mapping = page_mapping(page);
2605
2606 if (mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2607 struct inode *inode = mapping->host;
2608 struct bdi_writeback *wb;
c4843a75 2609 struct mem_cgroup *memcg;
682aa8e1 2610 bool locked;
c4843a75
GT
2611
2612 memcg = mem_cgroup_begin_page_stat(page);
682aa8e1 2613 wb = unlocked_inode_to_wb_begin(inode, &locked);
c4843a75
GT
2614
2615 if (TestClearPageDirty(page))
682aa8e1 2616 account_page_cleaned(page, mapping, memcg, wb);
c4843a75 2617
682aa8e1 2618 unlocked_inode_to_wb_end(inode, locked);
c4843a75
GT
2619 mem_cgroup_end_page_stat(memcg);
2620 } else {
2621 ClearPageDirty(page);
2622 }
11f81bec
TH
2623}
2624EXPORT_SYMBOL(cancel_dirty_page);
2625
1da177e4
LT
2626/*
2627 * Clear a page's dirty flag, while caring for dirty memory accounting.
2628 * Returns true if the page was previously dirty.
2629 *
2630 * This is for preparing to put the page under writeout. We leave the page
2631 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2632 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2633 * implementation will run either set_page_writeback() or set_page_dirty(),
2634 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2635 * back into sync.
2636 *
2637 * This incoherency between the page's dirty flag and radix-tree tag is
2638 * unfortunate, but it only exists while the page is locked.
2639 */
2640int clear_page_dirty_for_io(struct page *page)
2641{
2642 struct address_space *mapping = page_mapping(page);
c4843a75 2643 int ret = 0;
1da177e4 2644
79352894
NP
2645 BUG_ON(!PageLocked(page));
2646
7658cc28 2647 if (mapping && mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2648 struct inode *inode = mapping->host;
2649 struct bdi_writeback *wb;
2650 struct mem_cgroup *memcg;
2651 bool locked;
2652
7658cc28
LT
2653 /*
2654 * Yes, Virginia, this is indeed insane.
2655 *
2656 * We use this sequence to make sure that
2657 * (a) we account for dirty stats properly
2658 * (b) we tell the low-level filesystem to
2659 * mark the whole page dirty if it was
2660 * dirty in a pagetable. Only to then
2661 * (c) clean the page again and return 1 to
2662 * cause the writeback.
2663 *
2664 * This way we avoid all nasty races with the
2665 * dirty bit in multiple places and clearing
2666 * them concurrently from different threads.
2667 *
2668 * Note! Normally the "set_page_dirty(page)"
2669 * has no effect on the actual dirty bit - since
2670 * that will already usually be set. But we
2671 * need the side effects, and it can help us
2672 * avoid races.
2673 *
2674 * We basically use the page "master dirty bit"
2675 * as a serialization point for all the different
2676 * threads doing their things.
7658cc28
LT
2677 */
2678 if (page_mkclean(page))
2679 set_page_dirty(page);
79352894
NP
2680 /*
2681 * We carefully synchronise fault handlers against
2682 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2683 * at this point. We do this by having them hold the
2684 * page lock while dirtying the page, and pages are
2685 * always locked coming in here, so we get the desired
2686 * exclusion.
79352894 2687 */
c4843a75 2688 memcg = mem_cgroup_begin_page_stat(page);
682aa8e1 2689 wb = unlocked_inode_to_wb_begin(inode, &locked);
7658cc28 2690 if (TestClearPageDirty(page)) {
c4843a75 2691 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
8c08540f 2692 dec_zone_page_state(page, NR_FILE_DIRTY);
682aa8e1 2693 dec_wb_stat(wb, WB_RECLAIMABLE);
c4843a75 2694 ret = 1;
1da177e4 2695 }
682aa8e1 2696 unlocked_inode_to_wb_end(inode, locked);
c4843a75
GT
2697 mem_cgroup_end_page_stat(memcg);
2698 return ret;
1da177e4 2699 }
7658cc28 2700 return TestClearPageDirty(page);
1da177e4 2701}
58bb01a9 2702EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2703
2704int test_clear_page_writeback(struct page *page)
2705{
2706 struct address_space *mapping = page_mapping(page);
d7365e78 2707 struct mem_cgroup *memcg;
d7365e78 2708 int ret;
1da177e4 2709
6de22619 2710 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2711 if (mapping) {
91018134
TH
2712 struct inode *inode = mapping->host;
2713 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2714 unsigned long flags;
2715
19fd6231 2716 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2717 ret = TestClearPageWriteback(page);
69cb51d1 2718 if (ret) {
1da177e4
LT
2719 radix_tree_tag_clear(&mapping->page_tree,
2720 page_index(page),
2721 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2722 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2723 struct bdi_writeback *wb = inode_to_wb(inode);
2724
2725 __dec_wb_stat(wb, WB_WRITEBACK);
2726 __wb_writeout_inc(wb);
04fbfdc1 2727 }
69cb51d1 2728 }
19fd6231 2729 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2730 } else {
2731 ret = TestClearPageWriteback(page);
2732 }
99b12e3d 2733 if (ret) {
d7365e78 2734 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
d688abf5 2735 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2736 inc_zone_page_state(page, NR_WRITTEN);
2737 }
6de22619 2738 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2739 return ret;
2740}
2741
1c8349a1 2742int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2743{
2744 struct address_space *mapping = page_mapping(page);
d7365e78 2745 struct mem_cgroup *memcg;
d7365e78 2746 int ret;
1da177e4 2747
6de22619 2748 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2749 if (mapping) {
91018134
TH
2750 struct inode *inode = mapping->host;
2751 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2752 unsigned long flags;
2753
19fd6231 2754 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2755 ret = TestSetPageWriteback(page);
69cb51d1 2756 if (!ret) {
1da177e4
LT
2757 radix_tree_tag_set(&mapping->page_tree,
2758 page_index(page),
2759 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2760 if (bdi_cap_account_writeback(bdi))
91018134 2761 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
69cb51d1 2762 }
1da177e4
LT
2763 if (!PageDirty(page))
2764 radix_tree_tag_clear(&mapping->page_tree,
2765 page_index(page),
2766 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2767 if (!keep_write)
2768 radix_tree_tag_clear(&mapping->page_tree,
2769 page_index(page),
2770 PAGECACHE_TAG_TOWRITE);
19fd6231 2771 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2772 } else {
2773 ret = TestSetPageWriteback(page);
2774 }
3a3c02ec 2775 if (!ret) {
d7365e78 2776 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3a3c02ec
JW
2777 inc_zone_page_state(page, NR_WRITEBACK);
2778 }
6de22619 2779 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2780 return ret;
2781
2782}
1c8349a1 2783EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2784
2785/*
00128188 2786 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2787 * passed tag.
2788 */
2789int mapping_tagged(struct address_space *mapping, int tag)
2790{
72c47832 2791 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2792}
2793EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2794
2795/**
2796 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2797 * @page: The page to wait on.
2798 *
2799 * This function determines if the given page is related to a backing device
2800 * that requires page contents to be held stable during writeback. If so, then
2801 * it will wait for any pending writeback to complete.
2802 */
2803void wait_for_stable_page(struct page *page)
2804{
de1414a6
CH
2805 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2806 wait_on_page_writeback(page);
1d1d1a76
DW
2807}
2808EXPORT_SYMBOL_GPL(wait_for_stable_page);
This page took 0.922971 seconds and 5 git commands to generate.