writeback: add dirty_throttle_control->pos_ratio
[deliverable/linux.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
dcc25ae7 125struct wb_domain global_wb_domain;
eb608e3a 126
2bc00aef
TH
127/* consolidated parameters for balance_dirty_pages() and its subroutines */
128struct dirty_throttle_control {
129 struct bdi_writeback *wb;
130
131 unsigned long dirty; /* file_dirty + write + nfs */
132 unsigned long thresh; /* dirty threshold */
133 unsigned long bg_thresh; /* dirty background threshold */
134
135 unsigned long wb_dirty; /* per-wb counterparts */
136 unsigned long wb_thresh;
970fb01a 137 unsigned long wb_bg_thresh;
daddfa3c
TH
138
139 unsigned long pos_ratio;
2bc00aef
TH
140};
141
142#define GDTC_INIT(__wb) .wb = (__wb)
143
eb608e3a
JK
144/*
145 * Length of period for aging writeout fractions of bdis. This is an
146 * arbitrarily chosen number. The longer the period, the slower fractions will
147 * reflect changes in current writeout rate.
148 */
149#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 150
693108a8
TH
151#ifdef CONFIG_CGROUP_WRITEBACK
152
153static void wb_min_max_ratio(struct bdi_writeback *wb,
154 unsigned long *minp, unsigned long *maxp)
155{
156 unsigned long this_bw = wb->avg_write_bandwidth;
157 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
158 unsigned long long min = wb->bdi->min_ratio;
159 unsigned long long max = wb->bdi->max_ratio;
160
161 /*
162 * @wb may already be clean by the time control reaches here and
163 * the total may not include its bw.
164 */
165 if (this_bw < tot_bw) {
166 if (min) {
167 min *= this_bw;
168 do_div(min, tot_bw);
169 }
170 if (max < 100) {
171 max *= this_bw;
172 do_div(max, tot_bw);
173 }
174 }
175
176 *minp = min;
177 *maxp = max;
178}
179
180#else /* CONFIG_CGROUP_WRITEBACK */
181
182static void wb_min_max_ratio(struct bdi_writeback *wb,
183 unsigned long *minp, unsigned long *maxp)
184{
185 *minp = wb->bdi->min_ratio;
186 *maxp = wb->bdi->max_ratio;
187}
188
189#endif /* CONFIG_CGROUP_WRITEBACK */
190
a756cf59
JW
191/*
192 * In a memory zone, there is a certain amount of pages we consider
193 * available for the page cache, which is essentially the number of
194 * free and reclaimable pages, minus some zone reserves to protect
195 * lowmem and the ability to uphold the zone's watermarks without
196 * requiring writeback.
197 *
198 * This number of dirtyable pages is the base value of which the
199 * user-configurable dirty ratio is the effictive number of pages that
200 * are allowed to be actually dirtied. Per individual zone, or
201 * globally by using the sum of dirtyable pages over all zones.
202 *
203 * Because the user is allowed to specify the dirty limit globally as
204 * absolute number of bytes, calculating the per-zone dirty limit can
205 * require translating the configured limit into a percentage of
206 * global dirtyable memory first.
207 */
208
a804552b
JW
209/**
210 * zone_dirtyable_memory - number of dirtyable pages in a zone
211 * @zone: the zone
212 *
213 * Returns the zone's number of pages potentially available for dirty
214 * page cache. This is the base value for the per-zone dirty limits.
215 */
216static unsigned long zone_dirtyable_memory(struct zone *zone)
217{
218 unsigned long nr_pages;
219
220 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
221 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
222
a1c3bfb2
JW
223 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
224 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
a804552b
JW
225
226 return nr_pages;
227}
228
1edf2234
JW
229static unsigned long highmem_dirtyable_memory(unsigned long total)
230{
231#ifdef CONFIG_HIGHMEM
232 int node;
233 unsigned long x = 0;
234
235 for_each_node_state(node, N_HIGH_MEMORY) {
a804552b 236 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
1edf2234 237
a804552b 238 x += zone_dirtyable_memory(z);
1edf2234 239 }
c8b74c2f
SR
240 /*
241 * Unreclaimable memory (kernel memory or anonymous memory
242 * without swap) can bring down the dirtyable pages below
243 * the zone's dirty balance reserve and the above calculation
244 * will underflow. However we still want to add in nodes
245 * which are below threshold (negative values) to get a more
246 * accurate calculation but make sure that the total never
247 * underflows.
248 */
249 if ((long)x < 0)
250 x = 0;
251
1edf2234
JW
252 /*
253 * Make sure that the number of highmem pages is never larger
254 * than the number of the total dirtyable memory. This can only
255 * occur in very strange VM situations but we want to make sure
256 * that this does not occur.
257 */
258 return min(x, total);
259#else
260 return 0;
261#endif
262}
263
264/**
ccafa287 265 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 266 *
ccafa287
JW
267 * Returns the global number of pages potentially available for dirty
268 * page cache. This is the base value for the global dirty limits.
1edf2234 269 */
18cf8cf8 270static unsigned long global_dirtyable_memory(void)
1edf2234
JW
271{
272 unsigned long x;
273
a804552b 274 x = global_page_state(NR_FREE_PAGES);
c8b74c2f 275 x -= min(x, dirty_balance_reserve);
1edf2234 276
a1c3bfb2
JW
277 x += global_page_state(NR_INACTIVE_FILE);
278 x += global_page_state(NR_ACTIVE_FILE);
a804552b 279
1edf2234
JW
280 if (!vm_highmem_is_dirtyable)
281 x -= highmem_dirtyable_memory(x);
282
283 return x + 1; /* Ensure that we never return 0 */
284}
285
ccafa287
JW
286/*
287 * global_dirty_limits - background-writeback and dirty-throttling thresholds
288 *
289 * Calculate the dirty thresholds based on sysctl parameters
290 * - vm.dirty_background_ratio or vm.dirty_background_bytes
291 * - vm.dirty_ratio or vm.dirty_bytes
292 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
293 * real-time tasks.
294 */
295void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
296{
9ef0a0ff 297 const unsigned long available_memory = global_dirtyable_memory();
ccafa287
JW
298 unsigned long background;
299 unsigned long dirty;
ccafa287
JW
300 struct task_struct *tsk;
301
ccafa287
JW
302 if (vm_dirty_bytes)
303 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
304 else
305 dirty = (vm_dirty_ratio * available_memory) / 100;
306
307 if (dirty_background_bytes)
308 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
309 else
310 background = (dirty_background_ratio * available_memory) / 100;
311
312 if (background >= dirty)
313 background = dirty / 2;
314 tsk = current;
315 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
316 background += background / 4;
317 dirty += dirty / 4;
318 }
319 *pbackground = background;
320 *pdirty = dirty;
321 trace_global_dirty_state(background, dirty);
322}
323
a756cf59
JW
324/**
325 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
326 * @zone: the zone
327 *
328 * Returns the maximum number of dirty pages allowed in a zone, based
329 * on the zone's dirtyable memory.
330 */
331static unsigned long zone_dirty_limit(struct zone *zone)
332{
333 unsigned long zone_memory = zone_dirtyable_memory(zone);
334 struct task_struct *tsk = current;
335 unsigned long dirty;
336
337 if (vm_dirty_bytes)
338 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
339 zone_memory / global_dirtyable_memory();
340 else
341 dirty = vm_dirty_ratio * zone_memory / 100;
342
343 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
344 dirty += dirty / 4;
345
346 return dirty;
347}
348
349/**
350 * zone_dirty_ok - tells whether a zone is within its dirty limits
351 * @zone: the zone to check
352 *
353 * Returns %true when the dirty pages in @zone are within the zone's
354 * dirty limit, %false if the limit is exceeded.
355 */
356bool zone_dirty_ok(struct zone *zone)
357{
358 unsigned long limit = zone_dirty_limit(zone);
359
360 return zone_page_state(zone, NR_FILE_DIRTY) +
361 zone_page_state(zone, NR_UNSTABLE_NFS) +
362 zone_page_state(zone, NR_WRITEBACK) <= limit;
363}
364
2da02997 365int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 366 void __user *buffer, size_t *lenp,
2da02997
DR
367 loff_t *ppos)
368{
369 int ret;
370
8d65af78 371 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
372 if (ret == 0 && write)
373 dirty_background_bytes = 0;
374 return ret;
375}
376
377int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 378 void __user *buffer, size_t *lenp,
2da02997
DR
379 loff_t *ppos)
380{
381 int ret;
382
8d65af78 383 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
384 if (ret == 0 && write)
385 dirty_background_ratio = 0;
386 return ret;
387}
388
04fbfdc1 389int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 390 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
391 loff_t *ppos)
392{
393 int old_ratio = vm_dirty_ratio;
2da02997
DR
394 int ret;
395
8d65af78 396 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 397 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 398 writeback_set_ratelimit();
2da02997
DR
399 vm_dirty_bytes = 0;
400 }
401 return ret;
402}
403
2da02997 404int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 405 void __user *buffer, size_t *lenp,
2da02997
DR
406 loff_t *ppos)
407{
fc3501d4 408 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
409 int ret;
410
8d65af78 411 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 412 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 413 writeback_set_ratelimit();
2da02997 414 vm_dirty_ratio = 0;
04fbfdc1
PZ
415 }
416 return ret;
417}
418
eb608e3a
JK
419static unsigned long wp_next_time(unsigned long cur_time)
420{
421 cur_time += VM_COMPLETIONS_PERIOD_LEN;
422 /* 0 has a special meaning... */
423 if (!cur_time)
424 return 1;
425 return cur_time;
426}
427
04fbfdc1 428/*
380c27ca 429 * Increment the wb's writeout completion count and the global writeout
04fbfdc1
PZ
430 * completion count. Called from test_clear_page_writeback().
431 */
93f78d88 432static inline void __wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 433{
380c27ca
TH
434 struct wb_domain *dom = &global_wb_domain;
435
93f78d88 436 __inc_wb_stat(wb, WB_WRITTEN);
380c27ca 437 __fprop_inc_percpu_max(&dom->completions, &wb->completions,
93f78d88 438 wb->bdi->max_prop_frac);
eb608e3a 439 /* First event after period switching was turned off? */
380c27ca 440 if (!unlikely(dom->period_time)) {
eb608e3a
JK
441 /*
442 * We can race with other __bdi_writeout_inc calls here but
443 * it does not cause any harm since the resulting time when
444 * timer will fire and what is in writeout_period_time will be
445 * roughly the same.
446 */
380c27ca
TH
447 dom->period_time = wp_next_time(jiffies);
448 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 449 }
04fbfdc1
PZ
450}
451
93f78d88 452void wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5
MS
453{
454 unsigned long flags;
455
456 local_irq_save(flags);
93f78d88 457 __wb_writeout_inc(wb);
dd5656e5
MS
458 local_irq_restore(flags);
459}
93f78d88 460EXPORT_SYMBOL_GPL(wb_writeout_inc);
dd5656e5 461
eb608e3a
JK
462/*
463 * On idle system, we can be called long after we scheduled because we use
464 * deferred timers so count with missed periods.
465 */
466static void writeout_period(unsigned long t)
467{
380c27ca
TH
468 struct wb_domain *dom = (void *)t;
469 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
470 VM_COMPLETIONS_PERIOD_LEN;
471
380c27ca
TH
472 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
473 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 474 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 475 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
476 } else {
477 /*
478 * Aging has zeroed all fractions. Stop wasting CPU on period
479 * updates.
480 */
380c27ca 481 dom->period_time = 0;
eb608e3a
JK
482 }
483}
484
380c27ca
TH
485int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
486{
487 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
488
489 spin_lock_init(&dom->lock);
490
380c27ca
TH
491 init_timer_deferrable(&dom->period_timer);
492 dom->period_timer.function = writeout_period;
493 dom->period_timer.data = (unsigned long)dom;
dcc25ae7
TH
494
495 dom->dirty_limit_tstamp = jiffies;
496
380c27ca
TH
497 return fprop_global_init(&dom->completions, gfp);
498}
499
189d3c4a 500/*
d08c429b
JW
501 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
502 * registered backing devices, which, for obvious reasons, can not
503 * exceed 100%.
189d3c4a 504 */
189d3c4a
PZ
505static unsigned int bdi_min_ratio;
506
507int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
508{
509 int ret = 0;
189d3c4a 510
cfc4ba53 511 spin_lock_bh(&bdi_lock);
a42dde04 512 if (min_ratio > bdi->max_ratio) {
189d3c4a 513 ret = -EINVAL;
a42dde04
PZ
514 } else {
515 min_ratio -= bdi->min_ratio;
516 if (bdi_min_ratio + min_ratio < 100) {
517 bdi_min_ratio += min_ratio;
518 bdi->min_ratio += min_ratio;
519 } else {
520 ret = -EINVAL;
521 }
522 }
cfc4ba53 523 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
524
525 return ret;
526}
527
528int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
529{
a42dde04
PZ
530 int ret = 0;
531
532 if (max_ratio > 100)
533 return -EINVAL;
534
cfc4ba53 535 spin_lock_bh(&bdi_lock);
a42dde04
PZ
536 if (bdi->min_ratio > max_ratio) {
537 ret = -EINVAL;
538 } else {
539 bdi->max_ratio = max_ratio;
eb608e3a 540 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 541 }
cfc4ba53 542 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
543
544 return ret;
545}
a42dde04 546EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 547
6c14ae1e
WF
548static unsigned long dirty_freerun_ceiling(unsigned long thresh,
549 unsigned long bg_thresh)
550{
551 return (thresh + bg_thresh) / 2;
552}
553
ffd1f609
WF
554static unsigned long hard_dirty_limit(unsigned long thresh)
555{
dcc25ae7
TH
556 struct wb_domain *dom = &global_wb_domain;
557
558 return max(thresh, dom->dirty_limit);
ffd1f609
WF
559}
560
6f718656 561/**
b1cbc6d4
TH
562 * __wb_calc_thresh - @wb's share of dirty throttling threshold
563 * @dtc: dirty_throttle_context of interest
1babe183 564 *
a88a341a 565 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 566 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
567 *
568 * Note that balance_dirty_pages() will only seriously take it as a hard limit
569 * when sleeping max_pause per page is not enough to keep the dirty pages under
570 * control. For example, when the device is completely stalled due to some error
571 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
572 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 573 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 574 *
6f718656 575 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
576 * - starving fast devices
577 * - piling up dirty pages (that will take long time to sync) on slow devices
578 *
a88a341a 579 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
580 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
581 */
b1cbc6d4 582static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 583{
380c27ca 584 struct wb_domain *dom = &global_wb_domain;
b1cbc6d4 585 unsigned long thresh = dtc->thresh;
0d960a38 586 u64 wb_thresh;
16c4042f 587 long numerator, denominator;
693108a8 588 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 589
16c4042f 590 /*
0d960a38 591 * Calculate this BDI's share of the thresh ratio.
16c4042f 592 */
b1cbc6d4 593 fprop_fraction_percpu(&dom->completions, &dtc->wb->completions,
380c27ca 594 &numerator, &denominator);
04fbfdc1 595
0d960a38
TH
596 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
597 wb_thresh *= numerator;
598 do_div(wb_thresh, denominator);
04fbfdc1 599
b1cbc6d4 600 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
693108a8 601
0d960a38
TH
602 wb_thresh += (thresh * wb_min_ratio) / 100;
603 if (wb_thresh > (thresh * wb_max_ratio) / 100)
604 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 605
0d960a38 606 return wb_thresh;
1da177e4
LT
607}
608
b1cbc6d4
TH
609unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
610{
611 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
612 .thresh = thresh };
613 return __wb_calc_thresh(&gdtc);
614}
615
5a537485
MP
616/*
617 * setpoint - dirty 3
618 * f(dirty) := 1.0 + (----------------)
619 * limit - setpoint
620 *
621 * it's a 3rd order polynomial that subjects to
622 *
623 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
624 * (2) f(setpoint) = 1.0 => the balance point
625 * (3) f(limit) = 0 => the hard limit
626 * (4) df/dx <= 0 => negative feedback control
627 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
628 * => fast response on large errors; small oscillation near setpoint
629 */
d5c9fde3 630static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
631 unsigned long dirty,
632 unsigned long limit)
633{
634 long long pos_ratio;
635 long x;
636
d5c9fde3 637 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
5a537485
MP
638 limit - setpoint + 1);
639 pos_ratio = x;
640 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
641 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
642 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
643
644 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
645}
646
6c14ae1e
WF
647/*
648 * Dirty position control.
649 *
650 * (o) global/bdi setpoints
651 *
de1fff37 652 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
653 * When the number of dirty pages is higher/lower than the setpoint, the
654 * dirty position control ratio (and hence task dirty ratelimit) will be
655 * decreased/increased to bring the dirty pages back to the setpoint.
656 *
657 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
658 *
659 * if (dirty < setpoint) scale up pos_ratio
660 * if (dirty > setpoint) scale down pos_ratio
661 *
de1fff37
TH
662 * if (wb_dirty < wb_setpoint) scale up pos_ratio
663 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
664 *
665 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
666 *
667 * (o) global control line
668 *
669 * ^ pos_ratio
670 * |
671 * | |<===== global dirty control scope ======>|
672 * 2.0 .............*
673 * | .*
674 * | . *
675 * | . *
676 * | . *
677 * | . *
678 * | . *
679 * 1.0 ................................*
680 * | . . *
681 * | . . *
682 * | . . *
683 * | . . *
684 * | . . *
685 * 0 +------------.------------------.----------------------*------------->
686 * freerun^ setpoint^ limit^ dirty pages
687 *
de1fff37 688 * (o) wb control line
6c14ae1e
WF
689 *
690 * ^ pos_ratio
691 * |
692 * | *
693 * | *
694 * | *
695 * | *
696 * | * |<=========== span ============>|
697 * 1.0 .......................*
698 * | . *
699 * | . *
700 * | . *
701 * | . *
702 * | . *
703 * | . *
704 * | . *
705 * | . *
706 * | . *
707 * | . *
708 * | . *
709 * 1/4 ...............................................* * * * * * * * * * * *
710 * | . .
711 * | . .
712 * | . .
713 * 0 +----------------------.-------------------------------.------------->
de1fff37 714 * wb_setpoint^ x_intercept^
6c14ae1e 715 *
de1fff37 716 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
717 * be smoothly throttled down to normal if it starts high in situations like
718 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
719 * card's wb_dirty may rush to many times higher than wb_setpoint.
720 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 721 */
daddfa3c 722static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 723{
2bc00aef 724 struct bdi_writeback *wb = dtc->wb;
a88a341a 725 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef
TH
726 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
727 unsigned long limit = hard_dirty_limit(dtc->thresh);
728 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
729 unsigned long x_intercept;
730 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 731 unsigned long wb_setpoint;
6c14ae1e
WF
732 unsigned long span;
733 long long pos_ratio; /* for scaling up/down the rate limit */
734 long x;
735
daddfa3c
TH
736 dtc->pos_ratio = 0;
737
2bc00aef 738 if (unlikely(dtc->dirty >= limit))
daddfa3c 739 return;
6c14ae1e
WF
740
741 /*
742 * global setpoint
743 *
5a537485
MP
744 * See comment for pos_ratio_polynom().
745 */
746 setpoint = (freerun + limit) / 2;
2bc00aef 747 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
748
749 /*
750 * The strictlimit feature is a tool preventing mistrusted filesystems
751 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
752 * such filesystems balance_dirty_pages always checks wb counters
753 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
754 * This is especially important for fuse which sets bdi->max_ratio to
755 * 1% by default. Without strictlimit feature, fuse writeback may
756 * consume arbitrary amount of RAM because it is accounted in
757 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 758 *
a88a341a 759 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 760 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
761 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
762 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 763 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 764 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 765 * about ~6K pages (as the average of background and throttle wb
5a537485 766 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 767 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 768 *
5a537485 769 * Note, that we cannot use global counters in these calculations
de1fff37 770 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
771 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
772 * in the example above).
6c14ae1e 773 */
a88a341a 774 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 775 long long wb_pos_ratio;
5a537485 776
daddfa3c
TH
777 if (dtc->wb_dirty < 8) {
778 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
779 2 << RATELIMIT_CALC_SHIFT);
780 return;
781 }
5a537485 782
2bc00aef 783 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 784 return;
5a537485 785
970fb01a
TH
786 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
787 dtc->wb_bg_thresh);
5a537485 788
de1fff37 789 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 790 return;
5a537485 791
2bc00aef 792 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 793 wb_thresh);
5a537485
MP
794
795 /*
de1fff37
TH
796 * Typically, for strictlimit case, wb_setpoint << setpoint
797 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 798 * state ("dirty") is not limiting factor and we have to
de1fff37 799 * make decision based on wb counters. But there is an
5a537485
MP
800 * important case when global pos_ratio should get precedence:
801 * global limits are exceeded (e.g. due to activities on other
de1fff37 802 * wb's) while given strictlimit wb is below limit.
5a537485 803 *
de1fff37 804 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 805 * but it would look too non-natural for the case of all
de1fff37 806 * activity in the system coming from a single strictlimit wb
5a537485
MP
807 * with bdi->max_ratio == 100%.
808 *
809 * Note that min() below somewhat changes the dynamics of the
810 * control system. Normally, pos_ratio value can be well over 3
de1fff37 811 * (when globally we are at freerun and wb is well below wb
5a537485
MP
812 * setpoint). Now the maximum pos_ratio in the same situation
813 * is 2. We might want to tweak this if we observe the control
814 * system is too slow to adapt.
815 */
daddfa3c
TH
816 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
817 return;
5a537485 818 }
6c14ae1e
WF
819
820 /*
821 * We have computed basic pos_ratio above based on global situation. If
de1fff37 822 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
823 * pos_ratio further down/up. That is done by the following mechanism.
824 */
825
826 /*
de1fff37 827 * wb setpoint
6c14ae1e 828 *
de1fff37 829 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 830 *
de1fff37 831 * x_intercept - wb_dirty
6c14ae1e 832 * := --------------------------
de1fff37 833 * x_intercept - wb_setpoint
6c14ae1e 834 *
de1fff37 835 * The main wb control line is a linear function that subjects to
6c14ae1e 836 *
de1fff37
TH
837 * (1) f(wb_setpoint) = 1.0
838 * (2) k = - 1 / (8 * write_bw) (in single wb case)
839 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 840 *
de1fff37 841 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 842 * regularly within range
de1fff37 843 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
844 * for various filesystems, where (2) can yield in a reasonable 12.5%
845 * fluctuation range for pos_ratio.
846 *
de1fff37 847 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 848 * own size, so move the slope over accordingly and choose a slope that
de1fff37 849 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 850 */
2bc00aef
TH
851 if (unlikely(wb_thresh > dtc->thresh))
852 wb_thresh = dtc->thresh;
aed21ad2 853 /*
de1fff37 854 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
855 * device is slow, but that it has remained inactive for long time.
856 * Honour such devices a reasonable good (hopefully IO efficient)
857 * threshold, so that the occasional writes won't be blocked and active
858 * writes can rampup the threshold quickly.
859 */
2bc00aef 860 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 861 /*
de1fff37
TH
862 * scale global setpoint to wb's:
863 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 864 */
2bc00aef 865 x = div_u64((u64)wb_thresh << 16, dtc->thresh + 1);
de1fff37 866 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 867 /*
de1fff37
TH
868 * Use span=(8*write_bw) in single wb case as indicated by
869 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 870 *
de1fff37
TH
871 * wb_thresh thresh - wb_thresh
872 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
873 * thresh thresh
6c14ae1e 874 */
2bc00aef 875 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 876 x_intercept = wb_setpoint + span;
6c14ae1e 877
2bc00aef
TH
878 if (dtc->wb_dirty < x_intercept - span / 4) {
879 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
880 x_intercept - wb_setpoint + 1);
6c14ae1e
WF
881 } else
882 pos_ratio /= 4;
883
8927f66c 884 /*
de1fff37 885 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
886 * It may push the desired control point of global dirty pages higher
887 * than setpoint.
888 */
de1fff37 889 x_intercept = wb_thresh / 2;
2bc00aef
TH
890 if (dtc->wb_dirty < x_intercept) {
891 if (dtc->wb_dirty > x_intercept / 8)
892 pos_ratio = div_u64(pos_ratio * x_intercept,
893 dtc->wb_dirty);
50657fc4 894 else
8927f66c
WF
895 pos_ratio *= 8;
896 }
897
daddfa3c 898 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
899}
900
a88a341a
TH
901static void wb_update_write_bandwidth(struct bdi_writeback *wb,
902 unsigned long elapsed,
903 unsigned long written)
e98be2d5
WF
904{
905 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
906 unsigned long avg = wb->avg_write_bandwidth;
907 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
908 u64 bw;
909
910 /*
911 * bw = written * HZ / elapsed
912 *
913 * bw * elapsed + write_bandwidth * (period - elapsed)
914 * write_bandwidth = ---------------------------------------------------
915 * period
c72efb65
TH
916 *
917 * @written may have decreased due to account_page_redirty().
918 * Avoid underflowing @bw calculation.
e98be2d5 919 */
a88a341a 920 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
921 bw *= HZ;
922 if (unlikely(elapsed > period)) {
923 do_div(bw, elapsed);
924 avg = bw;
925 goto out;
926 }
a88a341a 927 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
928 bw >>= ilog2(period);
929
930 /*
931 * one more level of smoothing, for filtering out sudden spikes
932 */
933 if (avg > old && old >= (unsigned long)bw)
934 avg -= (avg - old) >> 3;
935
936 if (avg < old && old <= (unsigned long)bw)
937 avg += (old - avg) >> 3;
938
939out:
95a46c65
TH
940 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
941 avg = max(avg, 1LU);
942 if (wb_has_dirty_io(wb)) {
943 long delta = avg - wb->avg_write_bandwidth;
944 WARN_ON_ONCE(atomic_long_add_return(delta,
945 &wb->bdi->tot_write_bandwidth) <= 0);
946 }
a88a341a
TH
947 wb->write_bandwidth = bw;
948 wb->avg_write_bandwidth = avg;
e98be2d5
WF
949}
950
2bc00aef 951static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 952{
dcc25ae7 953 struct wb_domain *dom = &global_wb_domain;
2bc00aef 954 unsigned long thresh = dtc->thresh;
dcc25ae7 955 unsigned long limit = dom->dirty_limit;
c42843f2
WF
956
957 /*
958 * Follow up in one step.
959 */
960 if (limit < thresh) {
961 limit = thresh;
962 goto update;
963 }
964
965 /*
966 * Follow down slowly. Use the higher one as the target, because thresh
967 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 968 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 969 */
2bc00aef 970 thresh = max(thresh, dtc->dirty);
c42843f2
WF
971 if (limit > thresh) {
972 limit -= (limit - thresh) >> 5;
973 goto update;
974 }
975 return;
976update:
dcc25ae7 977 dom->dirty_limit = limit;
c42843f2
WF
978}
979
2bc00aef 980static void global_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
981 unsigned long now)
982{
dcc25ae7 983 struct wb_domain *dom = &global_wb_domain;
c42843f2
WF
984
985 /*
986 * check locklessly first to optimize away locking for the most time
987 */
dcc25ae7 988 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
989 return;
990
dcc25ae7
TH
991 spin_lock(&dom->lock);
992 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 993 update_dirty_limit(dtc);
dcc25ae7 994 dom->dirty_limit_tstamp = now;
c42843f2 995 }
dcc25ae7 996 spin_unlock(&dom->lock);
c42843f2
WF
997}
998
be3ffa27 999/*
de1fff37 1000 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1001 *
de1fff37 1002 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1003 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1004 */
2bc00aef 1005static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1006 unsigned long dirtied,
1007 unsigned long elapsed)
be3ffa27 1008{
2bc00aef
TH
1009 struct bdi_writeback *wb = dtc->wb;
1010 unsigned long dirty = dtc->dirty;
1011 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1012 unsigned long limit = hard_dirty_limit(dtc->thresh);
7381131c 1013 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1014 unsigned long write_bw = wb->avg_write_bandwidth;
1015 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1016 unsigned long dirty_rate;
1017 unsigned long task_ratelimit;
1018 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1019 unsigned long step;
1020 unsigned long x;
be3ffa27
WF
1021
1022 /*
1023 * The dirty rate will match the writeout rate in long term, except
1024 * when dirty pages are truncated by userspace or re-dirtied by FS.
1025 */
a88a341a 1026 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1027
be3ffa27
WF
1028 /*
1029 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1030 */
1031 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1032 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1033 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1034
1035 /*
1036 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1037 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1038 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1039 * formula will yield the balanced rate limit (write_bw / N).
1040 *
1041 * Note that the expanded form is not a pure rate feedback:
1042 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1043 * but also takes pos_ratio into account:
1044 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1045 *
1046 * (1) is not realistic because pos_ratio also takes part in balancing
1047 * the dirty rate. Consider the state
1048 * pos_ratio = 0.5 (3)
1049 * rate = 2 * (write_bw / N) (4)
1050 * If (1) is used, it will stuck in that state! Because each dd will
1051 * be throttled at
1052 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1053 * yielding
1054 * dirty_rate = N * task_ratelimit = write_bw (6)
1055 * put (6) into (1) we get
1056 * rate_(i+1) = rate_(i) (7)
1057 *
1058 * So we end up using (2) to always keep
1059 * rate_(i+1) ~= (write_bw / N) (8)
1060 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1061 * pos_ratio is able to drive itself to 1.0, which is not only where
1062 * the dirty count meet the setpoint, but also where the slope of
1063 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1064 */
1065 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1066 dirty_rate | 1);
bdaac490
WF
1067 /*
1068 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1069 */
1070 if (unlikely(balanced_dirty_ratelimit > write_bw))
1071 balanced_dirty_ratelimit = write_bw;
be3ffa27 1072
7381131c
WF
1073 /*
1074 * We could safely do this and return immediately:
1075 *
de1fff37 1076 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1077 *
1078 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1079 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1080 * limit the step size.
1081 *
1082 * The below code essentially only uses the relative value of
1083 *
1084 * task_ratelimit - dirty_ratelimit
1085 * = (pos_ratio - 1) * dirty_ratelimit
1086 *
1087 * which reflects the direction and size of dirty position error.
1088 */
1089
1090 /*
1091 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1092 * task_ratelimit is on the same side of dirty_ratelimit, too.
1093 * For example, when
1094 * - dirty_ratelimit > balanced_dirty_ratelimit
1095 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1096 * lowering dirty_ratelimit will help meet both the position and rate
1097 * control targets. Otherwise, don't update dirty_ratelimit if it will
1098 * only help meet the rate target. After all, what the users ultimately
1099 * feel and care are stable dirty rate and small position error.
1100 *
1101 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1102 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1103 * keeps jumping around randomly and can even leap far away at times
1104 * due to the small 200ms estimation period of dirty_rate (we want to
1105 * keep that period small to reduce time lags).
1106 */
1107 step = 0;
5a537485
MP
1108
1109 /*
de1fff37 1110 * For strictlimit case, calculations above were based on wb counters
a88a341a 1111 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1112 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1113 * Hence, to calculate "step" properly, we have to use wb_dirty as
1114 * "dirty" and wb_setpoint as "setpoint".
5a537485 1115 *
de1fff37
TH
1116 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1117 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1118 * of backing device.
5a537485 1119 */
a88a341a 1120 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1121 dirty = dtc->wb_dirty;
1122 if (dtc->wb_dirty < 8)
1123 setpoint = dtc->wb_dirty + 1;
5a537485 1124 else
970fb01a 1125 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1126 }
1127
7381131c 1128 if (dirty < setpoint) {
a88a341a 1129 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1130 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1131 if (dirty_ratelimit < x)
1132 step = x - dirty_ratelimit;
1133 } else {
a88a341a 1134 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1135 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1136 if (dirty_ratelimit > x)
1137 step = dirty_ratelimit - x;
1138 }
1139
1140 /*
1141 * Don't pursue 100% rate matching. It's impossible since the balanced
1142 * rate itself is constantly fluctuating. So decrease the track speed
1143 * when it gets close to the target. Helps eliminate pointless tremors.
1144 */
1145 step >>= dirty_ratelimit / (2 * step + 1);
1146 /*
1147 * Limit the tracking speed to avoid overshooting.
1148 */
1149 step = (step + 7) / 8;
1150
1151 if (dirty_ratelimit < balanced_dirty_ratelimit)
1152 dirty_ratelimit += step;
1153 else
1154 dirty_ratelimit -= step;
1155
a88a341a
TH
1156 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1157 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1158
a88a341a 1159 trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
1160}
1161
2bc00aef 1162static void __wb_update_bandwidth(struct dirty_throttle_control *dtc,
8a731799
TH
1163 unsigned long start_time,
1164 bool update_ratelimit)
e98be2d5 1165{
2bc00aef 1166 struct bdi_writeback *wb = dtc->wb;
e98be2d5 1167 unsigned long now = jiffies;
a88a341a 1168 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1169 unsigned long dirtied;
e98be2d5
WF
1170 unsigned long written;
1171
8a731799
TH
1172 lockdep_assert_held(&wb->list_lock);
1173
e98be2d5
WF
1174 /*
1175 * rate-limit, only update once every 200ms.
1176 */
1177 if (elapsed < BANDWIDTH_INTERVAL)
1178 return;
1179
a88a341a
TH
1180 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1181 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1182
1183 /*
1184 * Skip quiet periods when disk bandwidth is under-utilized.
1185 * (at least 1s idle time between two flusher runs)
1186 */
a88a341a 1187 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1188 goto snapshot;
1189
8a731799 1190 if (update_ratelimit) {
2bc00aef
TH
1191 global_update_bandwidth(dtc, now);
1192 wb_update_dirty_ratelimit(dtc, dirtied, elapsed);
be3ffa27 1193 }
a88a341a 1194 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1195
1196snapshot:
a88a341a
TH
1197 wb->dirtied_stamp = dirtied;
1198 wb->written_stamp = written;
1199 wb->bw_time_stamp = now;
e98be2d5
WF
1200}
1201
8a731799 1202void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1203{
2bc00aef
TH
1204 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1205
1206 __wb_update_bandwidth(&gdtc, start_time, false);
e98be2d5
WF
1207}
1208
9d823e8f 1209/*
d0e1d66b 1210 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1211 * will look to see if it needs to start dirty throttling.
1212 *
1213 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1214 * global_page_state() too often. So scale it near-sqrt to the safety margin
1215 * (the number of pages we may dirty without exceeding the dirty limits).
1216 */
1217static unsigned long dirty_poll_interval(unsigned long dirty,
1218 unsigned long thresh)
1219{
1220 if (thresh > dirty)
1221 return 1UL << (ilog2(thresh - dirty) >> 1);
1222
1223 return 1;
1224}
1225
a88a341a 1226static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1227 unsigned long wb_dirty)
c8462cc9 1228{
a88a341a 1229 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1230 unsigned long t;
c8462cc9 1231
7ccb9ad5
WF
1232 /*
1233 * Limit pause time for small memory systems. If sleeping for too long
1234 * time, a small pool of dirty/writeback pages may go empty and disk go
1235 * idle.
1236 *
1237 * 8 serves as the safety ratio.
1238 */
de1fff37 1239 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1240 t++;
1241
e3b6c655 1242 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1243}
1244
a88a341a
TH
1245static long wb_min_pause(struct bdi_writeback *wb,
1246 long max_pause,
1247 unsigned long task_ratelimit,
1248 unsigned long dirty_ratelimit,
1249 int *nr_dirtied_pause)
c8462cc9 1250{
a88a341a
TH
1251 long hi = ilog2(wb->avg_write_bandwidth);
1252 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1253 long t; /* target pause */
1254 long pause; /* estimated next pause */
1255 int pages; /* target nr_dirtied_pause */
c8462cc9 1256
7ccb9ad5
WF
1257 /* target for 10ms pause on 1-dd case */
1258 t = max(1, HZ / 100);
c8462cc9
WF
1259
1260 /*
1261 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1262 * overheads.
1263 *
7ccb9ad5 1264 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1265 */
1266 if (hi > lo)
7ccb9ad5 1267 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1268
1269 /*
7ccb9ad5
WF
1270 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1271 * on the much more stable dirty_ratelimit. However the next pause time
1272 * will be computed based on task_ratelimit and the two rate limits may
1273 * depart considerably at some time. Especially if task_ratelimit goes
1274 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1275 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1276 * result task_ratelimit won't be executed faithfully, which could
1277 * eventually bring down dirty_ratelimit.
c8462cc9 1278 *
7ccb9ad5
WF
1279 * We apply two rules to fix it up:
1280 * 1) try to estimate the next pause time and if necessary, use a lower
1281 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1282 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1283 * 2) limit the target pause time to max_pause/2, so that the normal
1284 * small fluctuations of task_ratelimit won't trigger rule (1) and
1285 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1286 */
7ccb9ad5
WF
1287 t = min(t, 1 + max_pause / 2);
1288 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1289
1290 /*
5b9b3574
WF
1291 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1292 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1293 * When the 16 consecutive reads are often interrupted by some dirty
1294 * throttling pause during the async writes, cfq will go into idles
1295 * (deadline is fine). So push nr_dirtied_pause as high as possible
1296 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1297 */
5b9b3574
WF
1298 if (pages < DIRTY_POLL_THRESH) {
1299 t = max_pause;
1300 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1301 if (pages > DIRTY_POLL_THRESH) {
1302 pages = DIRTY_POLL_THRESH;
1303 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1304 }
1305 }
1306
7ccb9ad5
WF
1307 pause = HZ * pages / (task_ratelimit + 1);
1308 if (pause > max_pause) {
1309 t = max_pause;
1310 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1311 }
c8462cc9 1312
7ccb9ad5 1313 *nr_dirtied_pause = pages;
c8462cc9 1314 /*
7ccb9ad5 1315 * The minimal pause time will normally be half the target pause time.
c8462cc9 1316 */
5b9b3574 1317 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1318}
1319
970fb01a 1320static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1321{
2bc00aef 1322 struct bdi_writeback *wb = dtc->wb;
93f78d88 1323 unsigned long wb_reclaimable;
5a537485
MP
1324
1325 /*
de1fff37 1326 * wb_thresh is not treated as some limiting factor as
5a537485 1327 * dirty_thresh, due to reasons
de1fff37 1328 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1329 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1330 * go into state (wb_dirty >> wb_thresh) either because
1331 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1332 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1333 * dirtiers for 100 seconds until wb_dirty drops under
1334 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1335 * wb_position_ratio() will let the dirtier task progress
de1fff37 1336 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1337 */
b1cbc6d4 1338 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1339 dtc->wb_bg_thresh = dtc->thresh ?
1340 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1341
1342 /*
1343 * In order to avoid the stacked BDI deadlock we need
1344 * to ensure we accurately count the 'dirty' pages when
1345 * the threshold is low.
1346 *
1347 * Otherwise it would be possible to get thresh+n pages
1348 * reported dirty, even though there are thresh-m pages
1349 * actually dirty; with m+n sitting in the percpu
1350 * deltas.
1351 */
2bc00aef 1352 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1353 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1354 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1355 } else {
93f78d88 1356 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1357 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1358 }
1359}
1360
1da177e4
LT
1361/*
1362 * balance_dirty_pages() must be called by processes which are generating dirty
1363 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1364 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1365 * If we're over `background_thresh' then the writeback threads are woken to
1366 * perform some writeout.
1da177e4 1367 */
3a2e9a5a 1368static void balance_dirty_pages(struct address_space *mapping,
dfb8ae56 1369 struct bdi_writeback *wb,
143dfe86 1370 unsigned long pages_dirtied)
1da177e4 1371{
2bc00aef
TH
1372 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1373 struct dirty_throttle_control * const gdtc = &gdtc_stor;
143dfe86 1374 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
83712358 1375 long period;
7ccb9ad5
WF
1376 long pause;
1377 long max_pause;
1378 long min_pause;
1379 int nr_dirtied_pause;
e50e3720 1380 bool dirty_exceeded = false;
143dfe86 1381 unsigned long task_ratelimit;
7ccb9ad5 1382 unsigned long dirty_ratelimit;
dfb8ae56 1383 struct backing_dev_info *bdi = wb->bdi;
5a537485 1384 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1385 unsigned long start_time = jiffies;
1da177e4
LT
1386
1387 for (;;) {
83712358 1388 unsigned long now = jiffies;
2bc00aef 1389 unsigned long dirty, thresh, bg_thresh;
83712358 1390
143dfe86
WF
1391 /*
1392 * Unstable writes are a feature of certain networked
1393 * filesystems (i.e. NFS) in which data may have been
1394 * written to the server's write cache, but has not yet
1395 * been flushed to permanent storage.
1396 */
5fce25a9
PZ
1397 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1398 global_page_state(NR_UNSTABLE_NFS);
2bc00aef 1399 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1400
2bc00aef 1401 global_dirty_limits(&gdtc->bg_thresh, &gdtc->thresh);
16c4042f 1402
5a537485 1403 if (unlikely(strictlimit)) {
970fb01a 1404 wb_dirty_limits(gdtc);
5a537485 1405
2bc00aef
TH
1406 dirty = gdtc->wb_dirty;
1407 thresh = gdtc->wb_thresh;
970fb01a 1408 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1409 } else {
2bc00aef
TH
1410 dirty = gdtc->dirty;
1411 thresh = gdtc->thresh;
1412 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1413 }
1414
16c4042f
WF
1415 /*
1416 * Throttle it only when the background writeback cannot
1417 * catch-up. This avoids (excessively) small writeouts
de1fff37 1418 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1419 *
de1fff37
TH
1420 * In strictlimit case make decision based on the wb counters
1421 * and limits. Small writeouts when the wb limits are ramping
5a537485 1422 * up are the price we consciously pay for strictlimit-ing.
16c4042f 1423 */
5a537485 1424 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
83712358
WF
1425 current->dirty_paused_when = now;
1426 current->nr_dirtied = 0;
7ccb9ad5 1427 current->nr_dirtied_pause =
5a537485 1428 dirty_poll_interval(dirty, thresh);
16c4042f 1429 break;
83712358 1430 }
16c4042f 1431
bc05873d 1432 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1433 wb_start_background_writeback(wb);
143dfe86 1434
5a537485 1435 if (!strictlimit)
970fb01a 1436 wb_dirty_limits(gdtc);
5fce25a9 1437
2bc00aef
TH
1438 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1439 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1440
1441 wb_position_ratio(gdtc);
1442
a88a341a
TH
1443 if (dirty_exceeded && !wb->dirty_exceeded)
1444 wb->dirty_exceeded = 1;
1da177e4 1445
8a731799
TH
1446 if (time_is_before_jiffies(wb->bw_time_stamp +
1447 BANDWIDTH_INTERVAL)) {
1448 spin_lock(&wb->list_lock);
2bc00aef 1449 __wb_update_bandwidth(gdtc, start_time, true);
8a731799
TH
1450 spin_unlock(&wb->list_lock);
1451 }
e98be2d5 1452
a88a341a 1453 dirty_ratelimit = wb->dirty_ratelimit;
daddfa3c 1454 task_ratelimit = ((u64)dirty_ratelimit * gdtc->pos_ratio) >>
3a73dbbc 1455 RATELIMIT_CALC_SHIFT;
2bc00aef 1456 max_pause = wb_max_pause(wb, gdtc->wb_dirty);
a88a341a
TH
1457 min_pause = wb_min_pause(wb, max_pause,
1458 task_ratelimit, dirty_ratelimit,
1459 &nr_dirtied_pause);
7ccb9ad5 1460
3a73dbbc 1461 if (unlikely(task_ratelimit == 0)) {
83712358 1462 period = max_pause;
c8462cc9 1463 pause = max_pause;
143dfe86 1464 goto pause;
04fbfdc1 1465 }
83712358
WF
1466 period = HZ * pages_dirtied / task_ratelimit;
1467 pause = period;
1468 if (current->dirty_paused_when)
1469 pause -= now - current->dirty_paused_when;
1470 /*
1471 * For less than 1s think time (ext3/4 may block the dirtier
1472 * for up to 800ms from time to time on 1-HDD; so does xfs,
1473 * however at much less frequency), try to compensate it in
1474 * future periods by updating the virtual time; otherwise just
1475 * do a reset, as it may be a light dirtier.
1476 */
7ccb9ad5 1477 if (pause < min_pause) {
ece13ac3 1478 trace_balance_dirty_pages(bdi,
2bc00aef
TH
1479 gdtc->thresh,
1480 gdtc->bg_thresh,
1481 gdtc->dirty,
1482 gdtc->wb_thresh,
1483 gdtc->wb_dirty,
ece13ac3
WF
1484 dirty_ratelimit,
1485 task_ratelimit,
1486 pages_dirtied,
83712358 1487 period,
7ccb9ad5 1488 min(pause, 0L),
ece13ac3 1489 start_time);
83712358
WF
1490 if (pause < -HZ) {
1491 current->dirty_paused_when = now;
1492 current->nr_dirtied = 0;
1493 } else if (period) {
1494 current->dirty_paused_when += period;
1495 current->nr_dirtied = 0;
7ccb9ad5
WF
1496 } else if (current->nr_dirtied_pause <= pages_dirtied)
1497 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1498 break;
04fbfdc1 1499 }
7ccb9ad5
WF
1500 if (unlikely(pause > max_pause)) {
1501 /* for occasional dropped task_ratelimit */
1502 now += min(pause - max_pause, max_pause);
1503 pause = max_pause;
1504 }
143dfe86
WF
1505
1506pause:
ece13ac3 1507 trace_balance_dirty_pages(bdi,
2bc00aef
TH
1508 gdtc->thresh,
1509 gdtc->bg_thresh,
1510 gdtc->dirty,
1511 gdtc->wb_thresh,
1512 gdtc->wb_dirty,
ece13ac3
WF
1513 dirty_ratelimit,
1514 task_ratelimit,
1515 pages_dirtied,
83712358 1516 period,
ece13ac3
WF
1517 pause,
1518 start_time);
499d05ec 1519 __set_current_state(TASK_KILLABLE);
d25105e8 1520 io_schedule_timeout(pause);
87c6a9b2 1521
83712358
WF
1522 current->dirty_paused_when = now + pause;
1523 current->nr_dirtied = 0;
7ccb9ad5 1524 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1525
ffd1f609 1526 /*
2bc00aef
TH
1527 * This is typically equal to (dirty < thresh) and can also
1528 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1529 */
1df64719 1530 if (task_ratelimit)
ffd1f609 1531 break;
499d05ec 1532
c5c6343c
WF
1533 /*
1534 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1535 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1536 * to go through, so that tasks on them still remain responsive.
1537 *
1538 * In theory 1 page is enough to keep the comsumer-producer
1539 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1540 * more page. However wb_dirty has accounting errors. So use
93f78d88 1541 * the larger and more IO friendly wb_stat_error.
c5c6343c 1542 */
2bc00aef 1543 if (gdtc->wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1544 break;
1545
499d05ec
JK
1546 if (fatal_signal_pending(current))
1547 break;
1da177e4
LT
1548 }
1549
a88a341a
TH
1550 if (!dirty_exceeded && wb->dirty_exceeded)
1551 wb->dirty_exceeded = 0;
1da177e4 1552
bc05873d 1553 if (writeback_in_progress(wb))
5b0830cb 1554 return;
1da177e4
LT
1555
1556 /*
1557 * In laptop mode, we wait until hitting the higher threshold before
1558 * starting background writeout, and then write out all the way down
1559 * to the lower threshold. So slow writers cause minimal disk activity.
1560 *
1561 * In normal mode, we start background writeout at the lower
1562 * background_thresh, to keep the amount of dirty memory low.
1563 */
143dfe86
WF
1564 if (laptop_mode)
1565 return;
1566
2bc00aef 1567 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1568 wb_start_background_writeback(wb);
1da177e4
LT
1569}
1570
9d823e8f 1571static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1572
54848d73
WF
1573/*
1574 * Normal tasks are throttled by
1575 * loop {
1576 * dirty tsk->nr_dirtied_pause pages;
1577 * take a snap in balance_dirty_pages();
1578 * }
1579 * However there is a worst case. If every task exit immediately when dirtied
1580 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1581 * called to throttle the page dirties. The solution is to save the not yet
1582 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1583 * randomly into the running tasks. This works well for the above worst case,
1584 * as the new task will pick up and accumulate the old task's leaked dirty
1585 * count and eventually get throttled.
1586 */
1587DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1588
1da177e4 1589/**
d0e1d66b 1590 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1591 * @mapping: address_space which was dirtied
1da177e4
LT
1592 *
1593 * Processes which are dirtying memory should call in here once for each page
1594 * which was newly dirtied. The function will periodically check the system's
1595 * dirty state and will initiate writeback if needed.
1596 *
1597 * On really big machines, get_writeback_state is expensive, so try to avoid
1598 * calling it too often (ratelimiting). But once we're over the dirty memory
1599 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1600 * from overshooting the limit by (ratelimit_pages) each.
1601 */
d0e1d66b 1602void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1603{
dfb8ae56
TH
1604 struct inode *inode = mapping->host;
1605 struct backing_dev_info *bdi = inode_to_bdi(inode);
1606 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1607 int ratelimit;
1608 int *p;
1da177e4 1609
36715cef
WF
1610 if (!bdi_cap_account_dirty(bdi))
1611 return;
1612
dfb8ae56
TH
1613 if (inode_cgwb_enabled(inode))
1614 wb = wb_get_create_current(bdi, GFP_KERNEL);
1615 if (!wb)
1616 wb = &bdi->wb;
1617
9d823e8f 1618 ratelimit = current->nr_dirtied_pause;
a88a341a 1619 if (wb->dirty_exceeded)
9d823e8f
WF
1620 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1621
9d823e8f 1622 preempt_disable();
1da177e4 1623 /*
9d823e8f
WF
1624 * This prevents one CPU to accumulate too many dirtied pages without
1625 * calling into balance_dirty_pages(), which can happen when there are
1626 * 1000+ tasks, all of them start dirtying pages at exactly the same
1627 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1628 */
7c8e0181 1629 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1630 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1631 *p = 0;
d3bc1fef
WF
1632 else if (unlikely(*p >= ratelimit_pages)) {
1633 *p = 0;
1634 ratelimit = 0;
1da177e4 1635 }
54848d73
WF
1636 /*
1637 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1638 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1639 * the dirty throttling and livelock other long-run dirtiers.
1640 */
7c8e0181 1641 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1642 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1643 unsigned long nr_pages_dirtied;
54848d73
WF
1644 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1645 *p -= nr_pages_dirtied;
1646 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1647 }
fa5a734e 1648 preempt_enable();
9d823e8f
WF
1649
1650 if (unlikely(current->nr_dirtied >= ratelimit))
dfb8ae56
TH
1651 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1652
1653 wb_put(wb);
1da177e4 1654}
d0e1d66b 1655EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1656
232ea4d6 1657void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1658{
364aeb28
DR
1659 unsigned long background_thresh;
1660 unsigned long dirty_thresh;
1da177e4
LT
1661
1662 for ( ; ; ) {
16c4042f 1663 global_dirty_limits(&background_thresh, &dirty_thresh);
47a13333 1664 dirty_thresh = hard_dirty_limit(dirty_thresh);
1da177e4
LT
1665
1666 /*
1667 * Boost the allowable dirty threshold a bit for page
1668 * allocators so they don't get DoS'ed by heavy writers
1669 */
1670 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1671
c24f21bd
CL
1672 if (global_page_state(NR_UNSTABLE_NFS) +
1673 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1674 break;
8aa7e847 1675 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1676
1677 /*
1678 * The caller might hold locks which can prevent IO completion
1679 * or progress in the filesystem. So we cannot just sit here
1680 * waiting for IO to complete.
1681 */
1682 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1683 break;
1da177e4
LT
1684 }
1685}
1686
1da177e4
LT
1687/*
1688 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1689 */
cccad5b9 1690int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1691 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1692{
8d65af78 1693 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
1694 return 0;
1695}
1696
c2c4986e 1697#ifdef CONFIG_BLOCK
31373d09 1698void laptop_mode_timer_fn(unsigned long data)
1da177e4 1699{
31373d09
MG
1700 struct request_queue *q = (struct request_queue *)data;
1701 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1702 global_page_state(NR_UNSTABLE_NFS);
a06fd6b1
TH
1703 struct bdi_writeback *wb;
1704 struct wb_iter iter;
1da177e4 1705
31373d09
MG
1706 /*
1707 * We want to write everything out, not just down to the dirty
1708 * threshold
1709 */
a06fd6b1
TH
1710 if (!bdi_has_dirty_io(&q->backing_dev_info))
1711 return;
1712
1713 bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
1714 if (wb_has_dirty_io(wb))
1715 wb_start_writeback(wb, nr_pages, true,
1716 WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1717}
1718
1719/*
1720 * We've spun up the disk and we're in laptop mode: schedule writeback
1721 * of all dirty data a few seconds from now. If the flush is already scheduled
1722 * then push it back - the user is still using the disk.
1723 */
31373d09 1724void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1725{
31373d09 1726 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1727}
1728
1729/*
1730 * We're in laptop mode and we've just synced. The sync's writes will have
1731 * caused another writeback to be scheduled by laptop_io_completion.
1732 * Nothing needs to be written back anymore, so we unschedule the writeback.
1733 */
1734void laptop_sync_completion(void)
1735{
31373d09
MG
1736 struct backing_dev_info *bdi;
1737
1738 rcu_read_lock();
1739
1740 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1741 del_timer(&bdi->laptop_mode_wb_timer);
1742
1743 rcu_read_unlock();
1da177e4 1744}
c2c4986e 1745#endif
1da177e4
LT
1746
1747/*
1748 * If ratelimit_pages is too high then we can get into dirty-data overload
1749 * if a large number of processes all perform writes at the same time.
1750 * If it is too low then SMP machines will call the (expensive)
1751 * get_writeback_state too often.
1752 *
1753 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1754 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1755 * thresholds.
1da177e4
LT
1756 */
1757
2d1d43f6 1758void writeback_set_ratelimit(void)
1da177e4 1759{
dcc25ae7 1760 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
1761 unsigned long background_thresh;
1762 unsigned long dirty_thresh;
dcc25ae7 1763
9d823e8f 1764 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 1765 dom->dirty_limit = dirty_thresh;
9d823e8f 1766 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1767 if (ratelimit_pages < 16)
1768 ratelimit_pages = 16;
1da177e4
LT
1769}
1770
0db0628d 1771static int
2f60d628
SB
1772ratelimit_handler(struct notifier_block *self, unsigned long action,
1773 void *hcpu)
1da177e4 1774{
2f60d628
SB
1775
1776 switch (action & ~CPU_TASKS_FROZEN) {
1777 case CPU_ONLINE:
1778 case CPU_DEAD:
1779 writeback_set_ratelimit();
1780 return NOTIFY_OK;
1781 default:
1782 return NOTIFY_DONE;
1783 }
1da177e4
LT
1784}
1785
0db0628d 1786static struct notifier_block ratelimit_nb = {
1da177e4
LT
1787 .notifier_call = ratelimit_handler,
1788 .next = NULL,
1789};
1790
1791/*
dc6e29da
LT
1792 * Called early on to tune the page writeback dirty limits.
1793 *
1794 * We used to scale dirty pages according to how total memory
1795 * related to pages that could be allocated for buffers (by
1796 * comparing nr_free_buffer_pages() to vm_total_pages.
1797 *
1798 * However, that was when we used "dirty_ratio" to scale with
1799 * all memory, and we don't do that any more. "dirty_ratio"
1800 * is now applied to total non-HIGHPAGE memory (by subtracting
1801 * totalhigh_pages from vm_total_pages), and as such we can't
1802 * get into the old insane situation any more where we had
1803 * large amounts of dirty pages compared to a small amount of
1804 * non-HIGHMEM memory.
1805 *
1806 * But we might still want to scale the dirty_ratio by how
1807 * much memory the box has..
1da177e4
LT
1808 */
1809void __init page_writeback_init(void)
1810{
2d1d43f6 1811 writeback_set_ratelimit();
1da177e4 1812 register_cpu_notifier(&ratelimit_nb);
04fbfdc1 1813
380c27ca 1814 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
1da177e4
LT
1815}
1816
f446daae
JK
1817/**
1818 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1819 * @mapping: address space structure to write
1820 * @start: starting page index
1821 * @end: ending page index (inclusive)
1822 *
1823 * This function scans the page range from @start to @end (inclusive) and tags
1824 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1825 * that write_cache_pages (or whoever calls this function) will then use
1826 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1827 * used to avoid livelocking of writeback by a process steadily creating new
1828 * dirty pages in the file (thus it is important for this function to be quick
1829 * so that it can tag pages faster than a dirtying process can create them).
1830 */
1831/*
1832 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1833 */
f446daae
JK
1834void tag_pages_for_writeback(struct address_space *mapping,
1835 pgoff_t start, pgoff_t end)
1836{
3c111a07 1837#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1838 unsigned long tagged;
1839
1840 do {
1841 spin_lock_irq(&mapping->tree_lock);
1842 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1843 &start, end, WRITEBACK_TAG_BATCH,
1844 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1845 spin_unlock_irq(&mapping->tree_lock);
1846 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1847 cond_resched();
d5ed3a4a
JK
1848 /* We check 'start' to handle wrapping when end == ~0UL */
1849 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1850}
1851EXPORT_SYMBOL(tag_pages_for_writeback);
1852
811d736f 1853/**
0ea97180 1854 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1855 * @mapping: address space structure to write
1856 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1857 * @writepage: function called for each page
1858 * @data: data passed to writepage function
811d736f 1859 *
0ea97180 1860 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1861 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1862 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1863 * and msync() need to guarantee that all the data which was dirty at the time
1864 * the call was made get new I/O started against them. If wbc->sync_mode is
1865 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1866 * existing IO to complete.
f446daae
JK
1867 *
1868 * To avoid livelocks (when other process dirties new pages), we first tag
1869 * pages which should be written back with TOWRITE tag and only then start
1870 * writing them. For data-integrity sync we have to be careful so that we do
1871 * not miss some pages (e.g., because some other process has cleared TOWRITE
1872 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1873 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1874 */
0ea97180
MS
1875int write_cache_pages(struct address_space *mapping,
1876 struct writeback_control *wbc, writepage_t writepage,
1877 void *data)
811d736f 1878{
811d736f
DH
1879 int ret = 0;
1880 int done = 0;
811d736f
DH
1881 struct pagevec pvec;
1882 int nr_pages;
31a12666 1883 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1884 pgoff_t index;
1885 pgoff_t end; /* Inclusive */
bd19e012 1886 pgoff_t done_index;
31a12666 1887 int cycled;
811d736f 1888 int range_whole = 0;
f446daae 1889 int tag;
811d736f 1890
811d736f
DH
1891 pagevec_init(&pvec, 0);
1892 if (wbc->range_cyclic) {
31a12666
NP
1893 writeback_index = mapping->writeback_index; /* prev offset */
1894 index = writeback_index;
1895 if (index == 0)
1896 cycled = 1;
1897 else
1898 cycled = 0;
811d736f
DH
1899 end = -1;
1900 } else {
1901 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1902 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1903 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1904 range_whole = 1;
31a12666 1905 cycled = 1; /* ignore range_cyclic tests */
811d736f 1906 }
6e6938b6 1907 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1908 tag = PAGECACHE_TAG_TOWRITE;
1909 else
1910 tag = PAGECACHE_TAG_DIRTY;
811d736f 1911retry:
6e6938b6 1912 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1913 tag_pages_for_writeback(mapping, index, end);
bd19e012 1914 done_index = index;
5a3d5c98
NP
1915 while (!done && (index <= end)) {
1916 int i;
1917
f446daae 1918 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1919 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1920 if (nr_pages == 0)
1921 break;
811d736f 1922
811d736f
DH
1923 for (i = 0; i < nr_pages; i++) {
1924 struct page *page = pvec.pages[i];
1925
1926 /*
d5482cdf
NP
1927 * At this point, the page may be truncated or
1928 * invalidated (changing page->mapping to NULL), or
1929 * even swizzled back from swapper_space to tmpfs file
1930 * mapping. However, page->index will not change
1931 * because we have a reference on the page.
811d736f 1932 */
d5482cdf
NP
1933 if (page->index > end) {
1934 /*
1935 * can't be range_cyclic (1st pass) because
1936 * end == -1 in that case.
1937 */
1938 done = 1;
1939 break;
1940 }
1941
cf15b07c 1942 done_index = page->index;
d5482cdf 1943
811d736f
DH
1944 lock_page(page);
1945
5a3d5c98
NP
1946 /*
1947 * Page truncated or invalidated. We can freely skip it
1948 * then, even for data integrity operations: the page
1949 * has disappeared concurrently, so there could be no
1950 * real expectation of this data interity operation
1951 * even if there is now a new, dirty page at the same
1952 * pagecache address.
1953 */
811d736f 1954 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1955continue_unlock:
811d736f
DH
1956 unlock_page(page);
1957 continue;
1958 }
1959
515f4a03
NP
1960 if (!PageDirty(page)) {
1961 /* someone wrote it for us */
1962 goto continue_unlock;
1963 }
1964
1965 if (PageWriteback(page)) {
1966 if (wbc->sync_mode != WB_SYNC_NONE)
1967 wait_on_page_writeback(page);
1968 else
1969 goto continue_unlock;
1970 }
811d736f 1971
515f4a03
NP
1972 BUG_ON(PageWriteback(page));
1973 if (!clear_page_dirty_for_io(page))
5a3d5c98 1974 goto continue_unlock;
811d736f 1975
de1414a6 1976 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 1977 ret = (*writepage)(page, wbc, data);
00266770
NP
1978 if (unlikely(ret)) {
1979 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1980 unlock_page(page);
1981 ret = 0;
1982 } else {
1983 /*
1984 * done_index is set past this page,
1985 * so media errors will not choke
1986 * background writeout for the entire
1987 * file. This has consequences for
1988 * range_cyclic semantics (ie. it may
1989 * not be suitable for data integrity
1990 * writeout).
1991 */
cf15b07c 1992 done_index = page->index + 1;
00266770
NP
1993 done = 1;
1994 break;
1995 }
0b564927 1996 }
00266770 1997
546a1924
DC
1998 /*
1999 * We stop writing back only if we are not doing
2000 * integrity sync. In case of integrity sync we have to
2001 * keep going until we have written all the pages
2002 * we tagged for writeback prior to entering this loop.
2003 */
2004 if (--wbc->nr_to_write <= 0 &&
2005 wbc->sync_mode == WB_SYNC_NONE) {
2006 done = 1;
2007 break;
05fe478d 2008 }
811d736f
DH
2009 }
2010 pagevec_release(&pvec);
2011 cond_resched();
2012 }
3a4c6800 2013 if (!cycled && !done) {
811d736f 2014 /*
31a12666 2015 * range_cyclic:
811d736f
DH
2016 * We hit the last page and there is more work to be done: wrap
2017 * back to the start of the file
2018 */
31a12666 2019 cycled = 1;
811d736f 2020 index = 0;
31a12666 2021 end = writeback_index - 1;
811d736f
DH
2022 goto retry;
2023 }
0b564927
DC
2024 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2025 mapping->writeback_index = done_index;
06d6cf69 2026
811d736f
DH
2027 return ret;
2028}
0ea97180
MS
2029EXPORT_SYMBOL(write_cache_pages);
2030
2031/*
2032 * Function used by generic_writepages to call the real writepage
2033 * function and set the mapping flags on error
2034 */
2035static int __writepage(struct page *page, struct writeback_control *wbc,
2036 void *data)
2037{
2038 struct address_space *mapping = data;
2039 int ret = mapping->a_ops->writepage(page, wbc);
2040 mapping_set_error(mapping, ret);
2041 return ret;
2042}
2043
2044/**
2045 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2046 * @mapping: address space structure to write
2047 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2048 *
2049 * This is a library function, which implements the writepages()
2050 * address_space_operation.
2051 */
2052int generic_writepages(struct address_space *mapping,
2053 struct writeback_control *wbc)
2054{
9b6096a6
SL
2055 struct blk_plug plug;
2056 int ret;
2057
0ea97180
MS
2058 /* deal with chardevs and other special file */
2059 if (!mapping->a_ops->writepage)
2060 return 0;
2061
9b6096a6
SL
2062 blk_start_plug(&plug);
2063 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2064 blk_finish_plug(&plug);
2065 return ret;
0ea97180 2066}
811d736f
DH
2067
2068EXPORT_SYMBOL(generic_writepages);
2069
1da177e4
LT
2070int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2071{
22905f77
AM
2072 int ret;
2073
1da177e4
LT
2074 if (wbc->nr_to_write <= 0)
2075 return 0;
2076 if (mapping->a_ops->writepages)
d08b3851 2077 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2078 else
2079 ret = generic_writepages(mapping, wbc);
22905f77 2080 return ret;
1da177e4
LT
2081}
2082
2083/**
2084 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2085 * @page: the page to write
2086 * @wait: if true, wait on writeout
1da177e4
LT
2087 *
2088 * The page must be locked by the caller and will be unlocked upon return.
2089 *
2090 * write_one_page() returns a negative error code if I/O failed.
2091 */
2092int write_one_page(struct page *page, int wait)
2093{
2094 struct address_space *mapping = page->mapping;
2095 int ret = 0;
2096 struct writeback_control wbc = {
2097 .sync_mode = WB_SYNC_ALL,
2098 .nr_to_write = 1,
2099 };
2100
2101 BUG_ON(!PageLocked(page));
2102
2103 if (wait)
2104 wait_on_page_writeback(page);
2105
2106 if (clear_page_dirty_for_io(page)) {
2107 page_cache_get(page);
2108 ret = mapping->a_ops->writepage(page, &wbc);
2109 if (ret == 0 && wait) {
2110 wait_on_page_writeback(page);
2111 if (PageError(page))
2112 ret = -EIO;
2113 }
2114 page_cache_release(page);
2115 } else {
2116 unlock_page(page);
2117 }
2118 return ret;
2119}
2120EXPORT_SYMBOL(write_one_page);
2121
76719325
KC
2122/*
2123 * For address_spaces which do not use buffers nor write back.
2124 */
2125int __set_page_dirty_no_writeback(struct page *page)
2126{
2127 if (!PageDirty(page))
c3f0da63 2128 return !TestSetPageDirty(page);
76719325
KC
2129 return 0;
2130}
2131
e3a7cca1
ES
2132/*
2133 * Helper function for set_page_dirty family.
c4843a75
GT
2134 *
2135 * Caller must hold mem_cgroup_begin_page_stat().
2136 *
e3a7cca1
ES
2137 * NOTE: This relies on being atomic wrt interrupts.
2138 */
c4843a75
GT
2139void account_page_dirtied(struct page *page, struct address_space *mapping,
2140 struct mem_cgroup *memcg)
e3a7cca1 2141{
52ebea74
TH
2142 struct inode *inode = mapping->host;
2143
9fb0a7da
TH
2144 trace_writeback_dirty_page(page, mapping);
2145
e3a7cca1 2146 if (mapping_cap_account_dirty(mapping)) {
52ebea74
TH
2147 struct bdi_writeback *wb;
2148
2149 inode_attach_wb(inode, page);
2150 wb = inode_to_wb(inode);
de1414a6 2151
c4843a75 2152 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
e3a7cca1 2153 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 2154 __inc_zone_page_state(page, NR_DIRTIED);
52ebea74
TH
2155 __inc_wb_stat(wb, WB_RECLAIMABLE);
2156 __inc_wb_stat(wb, WB_DIRTIED);
e3a7cca1 2157 task_io_account_write(PAGE_CACHE_SIZE);
d3bc1fef
WF
2158 current->nr_dirtied++;
2159 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2160 }
2161}
679ceace 2162EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2163
b9ea2515
KK
2164/*
2165 * Helper function for deaccounting dirty page without writeback.
c4843a75
GT
2166 *
2167 * Caller must hold mem_cgroup_begin_page_stat().
b9ea2515 2168 */
c4843a75
GT
2169void account_page_cleaned(struct page *page, struct address_space *mapping,
2170 struct mem_cgroup *memcg)
b9ea2515
KK
2171{
2172 if (mapping_cap_account_dirty(mapping)) {
c4843a75 2173 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
b9ea2515 2174 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2175 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
b9ea2515
KK
2176 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2177 }
2178}
b9ea2515 2179
1da177e4
LT
2180/*
2181 * For address_spaces which do not use buffers. Just tag the page as dirty in
2182 * its radix tree.
2183 *
2184 * This is also used when a single buffer is being dirtied: we want to set the
2185 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2186 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2187 *
2d6d7f98
JW
2188 * The caller must ensure this doesn't race with truncation. Most will simply
2189 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2190 * the pte lock held, which also locks out truncation.
1da177e4
LT
2191 */
2192int __set_page_dirty_nobuffers(struct page *page)
2193{
c4843a75
GT
2194 struct mem_cgroup *memcg;
2195
2196 memcg = mem_cgroup_begin_page_stat(page);
1da177e4
LT
2197 if (!TestSetPageDirty(page)) {
2198 struct address_space *mapping = page_mapping(page);
a85d9df1 2199 unsigned long flags;
1da177e4 2200
c4843a75
GT
2201 if (!mapping) {
2202 mem_cgroup_end_page_stat(memcg);
8c08540f 2203 return 1;
c4843a75 2204 }
8c08540f 2205
a85d9df1 2206 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2207 BUG_ON(page_mapping(page) != mapping);
2208 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
c4843a75 2209 account_page_dirtied(page, mapping, memcg);
2d6d7f98
JW
2210 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2211 PAGECACHE_TAG_DIRTY);
a85d9df1 2212 spin_unlock_irqrestore(&mapping->tree_lock, flags);
c4843a75
GT
2213 mem_cgroup_end_page_stat(memcg);
2214
8c08540f
AM
2215 if (mapping->host) {
2216 /* !PageAnon && !swapper_space */
2217 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2218 }
4741c9fd 2219 return 1;
1da177e4 2220 }
c4843a75 2221 mem_cgroup_end_page_stat(memcg);
4741c9fd 2222 return 0;
1da177e4
LT
2223}
2224EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2225
2f800fbd
WF
2226/*
2227 * Call this whenever redirtying a page, to de-account the dirty counters
2228 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2229 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2230 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2231 * control.
2232 */
2233void account_page_redirty(struct page *page)
2234{
2235 struct address_space *mapping = page->mapping;
91018134 2236
2f800fbd 2237 if (mapping && mapping_cap_account_dirty(mapping)) {
91018134
TH
2238 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2239
2f800fbd
WF
2240 current->nr_dirtied--;
2241 dec_zone_page_state(page, NR_DIRTIED);
91018134 2242 dec_wb_stat(wb, WB_DIRTIED);
2f800fbd
WF
2243 }
2244}
2245EXPORT_SYMBOL(account_page_redirty);
2246
1da177e4
LT
2247/*
2248 * When a writepage implementation decides that it doesn't want to write this
2249 * page for some reason, it should redirty the locked page via
2250 * redirty_page_for_writepage() and it should then unlock the page and return 0
2251 */
2252int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2253{
8d38633c
KK
2254 int ret;
2255
1da177e4 2256 wbc->pages_skipped++;
8d38633c 2257 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2258 account_page_redirty(page);
8d38633c 2259 return ret;
1da177e4
LT
2260}
2261EXPORT_SYMBOL(redirty_page_for_writepage);
2262
2263/*
6746aff7
WF
2264 * Dirty a page.
2265 *
2266 * For pages with a mapping this should be done under the page lock
2267 * for the benefit of asynchronous memory errors who prefer a consistent
2268 * dirty state. This rule can be broken in some special cases,
2269 * but should be better not to.
2270 *
1da177e4
LT
2271 * If the mapping doesn't provide a set_page_dirty a_op, then
2272 * just fall through and assume that it wants buffer_heads.
2273 */
1cf6e7d8 2274int set_page_dirty(struct page *page)
1da177e4
LT
2275{
2276 struct address_space *mapping = page_mapping(page);
2277
2278 if (likely(mapping)) {
2279 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2280 /*
2281 * readahead/lru_deactivate_page could remain
2282 * PG_readahead/PG_reclaim due to race with end_page_writeback
2283 * About readahead, if the page is written, the flags would be
2284 * reset. So no problem.
2285 * About lru_deactivate_page, if the page is redirty, the flag
2286 * will be reset. So no problem. but if the page is used by readahead
2287 * it will confuse readahead and make it restart the size rampup
2288 * process. But it's a trivial problem.
2289 */
a4bb3ecd
NH
2290 if (PageReclaim(page))
2291 ClearPageReclaim(page);
9361401e
DH
2292#ifdef CONFIG_BLOCK
2293 if (!spd)
2294 spd = __set_page_dirty_buffers;
2295#endif
2296 return (*spd)(page);
1da177e4 2297 }
4741c9fd
AM
2298 if (!PageDirty(page)) {
2299 if (!TestSetPageDirty(page))
2300 return 1;
2301 }
1da177e4
LT
2302 return 0;
2303}
2304EXPORT_SYMBOL(set_page_dirty);
2305
2306/*
2307 * set_page_dirty() is racy if the caller has no reference against
2308 * page->mapping->host, and if the page is unlocked. This is because another
2309 * CPU could truncate the page off the mapping and then free the mapping.
2310 *
2311 * Usually, the page _is_ locked, or the caller is a user-space process which
2312 * holds a reference on the inode by having an open file.
2313 *
2314 * In other cases, the page should be locked before running set_page_dirty().
2315 */
2316int set_page_dirty_lock(struct page *page)
2317{
2318 int ret;
2319
7eaceacc 2320 lock_page(page);
1da177e4
LT
2321 ret = set_page_dirty(page);
2322 unlock_page(page);
2323 return ret;
2324}
2325EXPORT_SYMBOL(set_page_dirty_lock);
2326
11f81bec
TH
2327/*
2328 * This cancels just the dirty bit on the kernel page itself, it does NOT
2329 * actually remove dirty bits on any mmap's that may be around. It also
2330 * leaves the page tagged dirty, so any sync activity will still find it on
2331 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2332 * look at the dirty bits in the VM.
2333 *
2334 * Doing this should *normally* only ever be done when a page is truncated,
2335 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2336 * this when it notices that somebody has cleaned out all the buffers on a
2337 * page without actually doing it through the VM. Can you say "ext3 is
2338 * horribly ugly"? Thought you could.
2339 */
2340void cancel_dirty_page(struct page *page)
2341{
c4843a75
GT
2342 struct address_space *mapping = page_mapping(page);
2343
2344 if (mapping_cap_account_dirty(mapping)) {
2345 struct mem_cgroup *memcg;
2346
2347 memcg = mem_cgroup_begin_page_stat(page);
2348
2349 if (TestClearPageDirty(page))
2350 account_page_cleaned(page, mapping, memcg);
2351
2352 mem_cgroup_end_page_stat(memcg);
2353 } else {
2354 ClearPageDirty(page);
2355 }
11f81bec
TH
2356}
2357EXPORT_SYMBOL(cancel_dirty_page);
2358
1da177e4
LT
2359/*
2360 * Clear a page's dirty flag, while caring for dirty memory accounting.
2361 * Returns true if the page was previously dirty.
2362 *
2363 * This is for preparing to put the page under writeout. We leave the page
2364 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2365 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2366 * implementation will run either set_page_writeback() or set_page_dirty(),
2367 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2368 * back into sync.
2369 *
2370 * This incoherency between the page's dirty flag and radix-tree tag is
2371 * unfortunate, but it only exists while the page is locked.
2372 */
2373int clear_page_dirty_for_io(struct page *page)
2374{
2375 struct address_space *mapping = page_mapping(page);
c4843a75
GT
2376 struct mem_cgroup *memcg;
2377 int ret = 0;
1da177e4 2378
79352894
NP
2379 BUG_ON(!PageLocked(page));
2380
7658cc28
LT
2381 if (mapping && mapping_cap_account_dirty(mapping)) {
2382 /*
2383 * Yes, Virginia, this is indeed insane.
2384 *
2385 * We use this sequence to make sure that
2386 * (a) we account for dirty stats properly
2387 * (b) we tell the low-level filesystem to
2388 * mark the whole page dirty if it was
2389 * dirty in a pagetable. Only to then
2390 * (c) clean the page again and return 1 to
2391 * cause the writeback.
2392 *
2393 * This way we avoid all nasty races with the
2394 * dirty bit in multiple places and clearing
2395 * them concurrently from different threads.
2396 *
2397 * Note! Normally the "set_page_dirty(page)"
2398 * has no effect on the actual dirty bit - since
2399 * that will already usually be set. But we
2400 * need the side effects, and it can help us
2401 * avoid races.
2402 *
2403 * We basically use the page "master dirty bit"
2404 * as a serialization point for all the different
2405 * threads doing their things.
7658cc28
LT
2406 */
2407 if (page_mkclean(page))
2408 set_page_dirty(page);
79352894
NP
2409 /*
2410 * We carefully synchronise fault handlers against
2411 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2412 * at this point. We do this by having them hold the
2413 * page lock while dirtying the page, and pages are
2414 * always locked coming in here, so we get the desired
2415 * exclusion.
79352894 2416 */
c4843a75 2417 memcg = mem_cgroup_begin_page_stat(page);
7658cc28 2418 if (TestClearPageDirty(page)) {
c4843a75 2419 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
8c08540f 2420 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2421 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
c4843a75 2422 ret = 1;
1da177e4 2423 }
c4843a75
GT
2424 mem_cgroup_end_page_stat(memcg);
2425 return ret;
1da177e4 2426 }
7658cc28 2427 return TestClearPageDirty(page);
1da177e4 2428}
58bb01a9 2429EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2430
2431int test_clear_page_writeback(struct page *page)
2432{
2433 struct address_space *mapping = page_mapping(page);
d7365e78 2434 struct mem_cgroup *memcg;
d7365e78 2435 int ret;
1da177e4 2436
6de22619 2437 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2438 if (mapping) {
91018134
TH
2439 struct inode *inode = mapping->host;
2440 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2441 unsigned long flags;
2442
19fd6231 2443 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2444 ret = TestClearPageWriteback(page);
69cb51d1 2445 if (ret) {
1da177e4
LT
2446 radix_tree_tag_clear(&mapping->page_tree,
2447 page_index(page),
2448 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2449 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2450 struct bdi_writeback *wb = inode_to_wb(inode);
2451
2452 __dec_wb_stat(wb, WB_WRITEBACK);
2453 __wb_writeout_inc(wb);
04fbfdc1 2454 }
69cb51d1 2455 }
19fd6231 2456 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2457 } else {
2458 ret = TestClearPageWriteback(page);
2459 }
99b12e3d 2460 if (ret) {
d7365e78 2461 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
d688abf5 2462 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2463 inc_zone_page_state(page, NR_WRITTEN);
2464 }
6de22619 2465 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2466 return ret;
2467}
2468
1c8349a1 2469int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2470{
2471 struct address_space *mapping = page_mapping(page);
d7365e78 2472 struct mem_cgroup *memcg;
d7365e78 2473 int ret;
1da177e4 2474
6de22619 2475 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2476 if (mapping) {
91018134
TH
2477 struct inode *inode = mapping->host;
2478 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2479 unsigned long flags;
2480
19fd6231 2481 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2482 ret = TestSetPageWriteback(page);
69cb51d1 2483 if (!ret) {
1da177e4
LT
2484 radix_tree_tag_set(&mapping->page_tree,
2485 page_index(page),
2486 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2487 if (bdi_cap_account_writeback(bdi))
91018134 2488 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
69cb51d1 2489 }
1da177e4
LT
2490 if (!PageDirty(page))
2491 radix_tree_tag_clear(&mapping->page_tree,
2492 page_index(page),
2493 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2494 if (!keep_write)
2495 radix_tree_tag_clear(&mapping->page_tree,
2496 page_index(page),
2497 PAGECACHE_TAG_TOWRITE);
19fd6231 2498 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2499 } else {
2500 ret = TestSetPageWriteback(page);
2501 }
3a3c02ec 2502 if (!ret) {
d7365e78 2503 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3a3c02ec
JW
2504 inc_zone_page_state(page, NR_WRITEBACK);
2505 }
6de22619 2506 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2507 return ret;
2508
2509}
1c8349a1 2510EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2511
2512/*
00128188 2513 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2514 * passed tag.
2515 */
2516int mapping_tagged(struct address_space *mapping, int tag)
2517{
72c47832 2518 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2519}
2520EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2521
2522/**
2523 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2524 * @page: The page to wait on.
2525 *
2526 * This function determines if the given page is related to a backing device
2527 * that requires page contents to be held stable during writeback. If so, then
2528 * it will wait for any pending writeback to complete.
2529 */
2530void wait_for_stable_page(struct page *page)
2531{
de1414a6
CH
2532 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2533 wait_on_page_writeback(page);
1d1d1a76
DW
2534}
2535EXPORT_SYMBOL_GPL(wait_for_stable_page);
This page took 0.866565 seconds and 5 git commands to generate.