mm: page_alloc: change fallbacks array handling
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
925cc71e 54#include <linux/memory.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
718a3821 57#include <linux/ftrace_event.h>
f212ad7c 58#include <linux/memcontrol.h>
268bb0ce 59#include <linux/prefetch.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
1da177e4
LT
62
63#include <asm/tlbflush.h>
ac924c60 64#include <asm/div64.h>
1da177e4
LT
65#include "internal.h"
66
72812019
LS
67#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68DEFINE_PER_CPU(int, numa_node);
69EXPORT_PER_CPU_SYMBOL(numa_node);
70#endif
71
7aac7898
LS
72#ifdef CONFIG_HAVE_MEMORYLESS_NODES
73/*
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
78 */
79DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81#endif
82
1da177e4 83/*
13808910 84 * Array of node states.
1da177e4 85 */
13808910
CL
86nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89#ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91#ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
93#endif
94 [N_CPU] = { { [0] = 1UL } },
95#endif /* NUMA */
96};
97EXPORT_SYMBOL(node_states);
98
6c231b7b 99unsigned long totalram_pages __read_mostly;
cb45b0e9 100unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
101/*
102 * When calculating the number of globally allowed dirty pages, there
103 * is a certain number of per-zone reserves that should not be
104 * considered dirtyable memory. This is the sum of those reserves
105 * over all existing zones that contribute dirtyable memory.
106 */
107unsigned long dirty_balance_reserve __read_mostly;
108
1b76b02f 109int percpu_pagelist_fraction;
dcce284a 110gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 111
452aa699
RW
112#ifdef CONFIG_PM_SLEEP
113/*
114 * The following functions are used by the suspend/hibernate code to temporarily
115 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
116 * while devices are suspended. To avoid races with the suspend/hibernate code,
117 * they should always be called with pm_mutex held (gfp_allowed_mask also should
118 * only be modified with pm_mutex held, unless the suspend/hibernate code is
119 * guaranteed not to run in parallel with that modification).
120 */
c9e664f1
RW
121
122static gfp_t saved_gfp_mask;
123
124void pm_restore_gfp_mask(void)
452aa699
RW
125{
126 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
127 if (saved_gfp_mask) {
128 gfp_allowed_mask = saved_gfp_mask;
129 saved_gfp_mask = 0;
130 }
452aa699
RW
131}
132
c9e664f1 133void pm_restrict_gfp_mask(void)
452aa699 134{
452aa699 135 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
136 WARN_ON(saved_gfp_mask);
137 saved_gfp_mask = gfp_allowed_mask;
138 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 139}
f90ac398
MG
140
141bool pm_suspended_storage(void)
142{
143 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
144 return false;
145 return true;
146}
452aa699
RW
147#endif /* CONFIG_PM_SLEEP */
148
d9c23400
MG
149#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
150int pageblock_order __read_mostly;
151#endif
152
d98c7a09 153static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 154
1da177e4
LT
155/*
156 * results with 256, 32 in the lowmem_reserve sysctl:
157 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
158 * 1G machine -> (16M dma, 784M normal, 224M high)
159 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
160 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
161 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
162 *
163 * TBD: should special case ZONE_DMA32 machines here - in those we normally
164 * don't need any ZONE_NORMAL reservation
1da177e4 165 */
2f1b6248 166int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 167#ifdef CONFIG_ZONE_DMA
2f1b6248 168 256,
4b51d669 169#endif
fb0e7942 170#ifdef CONFIG_ZONE_DMA32
2f1b6248 171 256,
fb0e7942 172#endif
e53ef38d 173#ifdef CONFIG_HIGHMEM
2a1e274a 174 32,
e53ef38d 175#endif
2a1e274a 176 32,
2f1b6248 177};
1da177e4
LT
178
179EXPORT_SYMBOL(totalram_pages);
1da177e4 180
15ad7cdc 181static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 182#ifdef CONFIG_ZONE_DMA
2f1b6248 183 "DMA",
4b51d669 184#endif
fb0e7942 185#ifdef CONFIG_ZONE_DMA32
2f1b6248 186 "DMA32",
fb0e7942 187#endif
2f1b6248 188 "Normal",
e53ef38d 189#ifdef CONFIG_HIGHMEM
2a1e274a 190 "HighMem",
e53ef38d 191#endif
2a1e274a 192 "Movable",
2f1b6248
CL
193};
194
1da177e4
LT
195int min_free_kbytes = 1024;
196
2c85f51d
JB
197static unsigned long __meminitdata nr_kernel_pages;
198static unsigned long __meminitdata nr_all_pages;
a3142c8e 199static unsigned long __meminitdata dma_reserve;
1da177e4 200
0ee332c1
TH
201#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
202static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
204static unsigned long __initdata required_kernelcore;
205static unsigned long __initdata required_movablecore;
206static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
207
208/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
209int movable_zone;
210EXPORT_SYMBOL(movable_zone);
211#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 212
418508c1
MS
213#if MAX_NUMNODES > 1
214int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 215int nr_online_nodes __read_mostly = 1;
418508c1 216EXPORT_SYMBOL(nr_node_ids);
62bc62a8 217EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
218#endif
219
9ef9acb0
MG
220int page_group_by_mobility_disabled __read_mostly;
221
b2a0ac88
MG
222static void set_pageblock_migratetype(struct page *page, int migratetype)
223{
49255c61
MG
224
225 if (unlikely(page_group_by_mobility_disabled))
226 migratetype = MIGRATE_UNMOVABLE;
227
b2a0ac88
MG
228 set_pageblock_flags_group(page, (unsigned long)migratetype,
229 PB_migrate, PB_migrate_end);
230}
231
7f33d49a
RW
232bool oom_killer_disabled __read_mostly;
233
13e7444b 234#ifdef CONFIG_DEBUG_VM
c6a57e19 235static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 236{
bdc8cb98
DH
237 int ret = 0;
238 unsigned seq;
239 unsigned long pfn = page_to_pfn(page);
c6a57e19 240
bdc8cb98
DH
241 do {
242 seq = zone_span_seqbegin(zone);
243 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
244 ret = 1;
245 else if (pfn < zone->zone_start_pfn)
246 ret = 1;
247 } while (zone_span_seqretry(zone, seq));
248
249 return ret;
c6a57e19
DH
250}
251
252static int page_is_consistent(struct zone *zone, struct page *page)
253{
14e07298 254 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 255 return 0;
1da177e4 256 if (zone != page_zone(page))
c6a57e19
DH
257 return 0;
258
259 return 1;
260}
261/*
262 * Temporary debugging check for pages not lying within a given zone.
263 */
264static int bad_range(struct zone *zone, struct page *page)
265{
266 if (page_outside_zone_boundaries(zone, page))
1da177e4 267 return 1;
c6a57e19
DH
268 if (!page_is_consistent(zone, page))
269 return 1;
270
1da177e4
LT
271 return 0;
272}
13e7444b
NP
273#else
274static inline int bad_range(struct zone *zone, struct page *page)
275{
276 return 0;
277}
278#endif
279
224abf92 280static void bad_page(struct page *page)
1da177e4 281{
d936cf9b
HD
282 static unsigned long resume;
283 static unsigned long nr_shown;
284 static unsigned long nr_unshown;
285
2a7684a2
WF
286 /* Don't complain about poisoned pages */
287 if (PageHWPoison(page)) {
ef2b4b95 288 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
289 return;
290 }
291
d936cf9b
HD
292 /*
293 * Allow a burst of 60 reports, then keep quiet for that minute;
294 * or allow a steady drip of one report per second.
295 */
296 if (nr_shown == 60) {
297 if (time_before(jiffies, resume)) {
298 nr_unshown++;
299 goto out;
300 }
301 if (nr_unshown) {
1e9e6365
HD
302 printk(KERN_ALERT
303 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
304 nr_unshown);
305 nr_unshown = 0;
306 }
307 nr_shown = 0;
308 }
309 if (nr_shown++ == 0)
310 resume = jiffies + 60 * HZ;
311
1e9e6365 312 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 313 current->comm, page_to_pfn(page));
718a3821 314 dump_page(page);
3dc14741 315
4f31888c 316 print_modules();
1da177e4 317 dump_stack();
d936cf9b 318out:
8cc3b392 319 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 320 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 321 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
322}
323
1da177e4
LT
324/*
325 * Higher-order pages are called "compound pages". They are structured thusly:
326 *
327 * The first PAGE_SIZE page is called the "head page".
328 *
329 * The remaining PAGE_SIZE pages are called "tail pages".
330 *
6416b9fa
WSH
331 * All pages have PG_compound set. All tail pages have their ->first_page
332 * pointing at the head page.
1da177e4 333 *
41d78ba5
HD
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
1da177e4 337 */
d98c7a09
HD
338
339static void free_compound_page(struct page *page)
340{
d85f3385 341 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
342}
343
01ad1c08 344void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
345{
346 int i;
347 int nr_pages = 1 << order;
348
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
18229df5 354 __SetPageTail(p);
58a84aa9 355 set_page_count(p, 0);
18229df5
AW
356 p->first_page = page;
357 }
358}
359
59ff4216 360/* update __split_huge_page_refcount if you change this function */
8cc3b392 361static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
362{
363 int i;
364 int nr_pages = 1 << order;
8cc3b392 365 int bad = 0;
1da177e4 366
8cc3b392
HD
367 if (unlikely(compound_order(page) != order) ||
368 unlikely(!PageHead(page))) {
224abf92 369 bad_page(page);
8cc3b392
HD
370 bad++;
371 }
1da177e4 372
6d777953 373 __ClearPageHead(page);
8cc3b392 374
18229df5
AW
375 for (i = 1; i < nr_pages; i++) {
376 struct page *p = page + i;
1da177e4 377
e713a21d 378 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 379 bad_page(page);
8cc3b392
HD
380 bad++;
381 }
d85f3385 382 __ClearPageTail(p);
1da177e4 383 }
8cc3b392
HD
384
385 return bad;
1da177e4 386}
1da177e4 387
17cf4406
NP
388static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389{
390 int i;
391
6626c5d5
AM
392 /*
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 */
725d704e 396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
397 for (i = 0; i < (1 << order); i++)
398 clear_highpage(page + i);
399}
400
c0a32fc5
SG
401#ifdef CONFIG_DEBUG_PAGEALLOC
402unsigned int _debug_guardpage_minorder;
403
404static int __init debug_guardpage_minorder_setup(char *buf)
405{
406 unsigned long res;
407
408 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
409 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
410 return 0;
411 }
412 _debug_guardpage_minorder = res;
413 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
414 return 0;
415}
416__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
417
418static inline void set_page_guard_flag(struct page *page)
419{
420 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
421}
422
423static inline void clear_page_guard_flag(struct page *page)
424{
425 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
426}
427#else
428static inline void set_page_guard_flag(struct page *page) { }
429static inline void clear_page_guard_flag(struct page *page) { }
430#endif
431
6aa3001b
AM
432static inline void set_page_order(struct page *page, int order)
433{
4c21e2f2 434 set_page_private(page, order);
676165a8 435 __SetPageBuddy(page);
1da177e4
LT
436}
437
438static inline void rmv_page_order(struct page *page)
439{
676165a8 440 __ClearPageBuddy(page);
4c21e2f2 441 set_page_private(page, 0);
1da177e4
LT
442}
443
444/*
445 * Locate the struct page for both the matching buddy in our
446 * pair (buddy1) and the combined O(n+1) page they form (page).
447 *
448 * 1) Any buddy B1 will have an order O twin B2 which satisfies
449 * the following equation:
450 * B2 = B1 ^ (1 << O)
451 * For example, if the starting buddy (buddy2) is #8 its order
452 * 1 buddy is #10:
453 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
454 *
455 * 2) Any buddy B will have an order O+1 parent P which
456 * satisfies the following equation:
457 * P = B & ~(1 << O)
458 *
d6e05edc 459 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 460 */
1da177e4 461static inline unsigned long
43506fad 462__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 463{
43506fad 464 return page_idx ^ (1 << order);
1da177e4
LT
465}
466
467/*
468 * This function checks whether a page is free && is the buddy
469 * we can do coalesce a page and its buddy if
13e7444b 470 * (a) the buddy is not in a hole &&
676165a8 471 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
472 * (c) a page and its buddy have the same order &&
473 * (d) a page and its buddy are in the same zone.
676165a8 474 *
5f24ce5f
AA
475 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
476 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 477 *
676165a8 478 * For recording page's order, we use page_private(page).
1da177e4 479 */
cb2b95e1
AW
480static inline int page_is_buddy(struct page *page, struct page *buddy,
481 int order)
1da177e4 482{
14e07298 483 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 484 return 0;
13e7444b 485
cb2b95e1
AW
486 if (page_zone_id(page) != page_zone_id(buddy))
487 return 0;
488
c0a32fc5
SG
489 if (page_is_guard(buddy) && page_order(buddy) == order) {
490 VM_BUG_ON(page_count(buddy) != 0);
491 return 1;
492 }
493
cb2b95e1 494 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 495 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 496 return 1;
676165a8 497 }
6aa3001b 498 return 0;
1da177e4
LT
499}
500
501/*
502 * Freeing function for a buddy system allocator.
503 *
504 * The concept of a buddy system is to maintain direct-mapped table
505 * (containing bit values) for memory blocks of various "orders".
506 * The bottom level table contains the map for the smallest allocatable
507 * units of memory (here, pages), and each level above it describes
508 * pairs of units from the levels below, hence, "buddies".
509 * At a high level, all that happens here is marking the table entry
510 * at the bottom level available, and propagating the changes upward
511 * as necessary, plus some accounting needed to play nicely with other
512 * parts of the VM system.
513 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 514 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 515 * order is recorded in page_private(page) field.
1da177e4 516 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
517 * other. That is, if we allocate a small block, and both were
518 * free, the remainder of the region must be split into blocks.
1da177e4 519 * If a block is freed, and its buddy is also free, then this
5f63b720 520 * triggers coalescing into a block of larger size.
1da177e4
LT
521 *
522 * -- wli
523 */
524
48db57f8 525static inline void __free_one_page(struct page *page,
ed0ae21d
MG
526 struct zone *zone, unsigned int order,
527 int migratetype)
1da177e4
LT
528{
529 unsigned long page_idx;
6dda9d55 530 unsigned long combined_idx;
43506fad 531 unsigned long uninitialized_var(buddy_idx);
6dda9d55 532 struct page *buddy;
1da177e4 533
224abf92 534 if (unlikely(PageCompound(page)))
8cc3b392
HD
535 if (unlikely(destroy_compound_page(page, order)))
536 return;
1da177e4 537
ed0ae21d
MG
538 VM_BUG_ON(migratetype == -1);
539
1da177e4
LT
540 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
541
f2260e6b 542 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 543 VM_BUG_ON(bad_range(zone, page));
1da177e4 544
1da177e4 545 while (order < MAX_ORDER-1) {
43506fad
KC
546 buddy_idx = __find_buddy_index(page_idx, order);
547 buddy = page + (buddy_idx - page_idx);
cb2b95e1 548 if (!page_is_buddy(page, buddy, order))
3c82d0ce 549 break;
c0a32fc5
SG
550 /*
551 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
552 * merge with it and move up one order.
553 */
554 if (page_is_guard(buddy)) {
555 clear_page_guard_flag(buddy);
556 set_page_private(page, 0);
557 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
558 } else {
559 list_del(&buddy->lru);
560 zone->free_area[order].nr_free--;
561 rmv_page_order(buddy);
562 }
43506fad 563 combined_idx = buddy_idx & page_idx;
1da177e4
LT
564 page = page + (combined_idx - page_idx);
565 page_idx = combined_idx;
566 order++;
567 }
568 set_page_order(page, order);
6dda9d55
CZ
569
570 /*
571 * If this is not the largest possible page, check if the buddy
572 * of the next-highest order is free. If it is, it's possible
573 * that pages are being freed that will coalesce soon. In case,
574 * that is happening, add the free page to the tail of the list
575 * so it's less likely to be used soon and more likely to be merged
576 * as a higher order page
577 */
b7f50cfa 578 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 579 struct page *higher_page, *higher_buddy;
43506fad
KC
580 combined_idx = buddy_idx & page_idx;
581 higher_page = page + (combined_idx - page_idx);
582 buddy_idx = __find_buddy_index(combined_idx, order + 1);
583 higher_buddy = page + (buddy_idx - combined_idx);
6dda9d55
CZ
584 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
585 list_add_tail(&page->lru,
586 &zone->free_area[order].free_list[migratetype]);
587 goto out;
588 }
589 }
590
591 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
592out:
1da177e4
LT
593 zone->free_area[order].nr_free++;
594}
595
092cead6
KM
596/*
597 * free_page_mlock() -- clean up attempts to free and mlocked() page.
598 * Page should not be on lru, so no need to fix that up.
599 * free_pages_check() will verify...
600 */
601static inline void free_page_mlock(struct page *page)
602{
092cead6
KM
603 __dec_zone_page_state(page, NR_MLOCK);
604 __count_vm_event(UNEVICTABLE_MLOCKFREED);
605}
092cead6 606
224abf92 607static inline int free_pages_check(struct page *page)
1da177e4 608{
92be2e33
NP
609 if (unlikely(page_mapcount(page) |
610 (page->mapping != NULL) |
a3af9c38 611 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
612 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
613 (mem_cgroup_bad_page_check(page)))) {
224abf92 614 bad_page(page);
79f4b7bf 615 return 1;
8cc3b392 616 }
79f4b7bf
HD
617 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
618 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
619 return 0;
1da177e4
LT
620}
621
622/*
5f8dcc21 623 * Frees a number of pages from the PCP lists
1da177e4 624 * Assumes all pages on list are in same zone, and of same order.
207f36ee 625 * count is the number of pages to free.
1da177e4
LT
626 *
627 * If the zone was previously in an "all pages pinned" state then look to
628 * see if this freeing clears that state.
629 *
630 * And clear the zone's pages_scanned counter, to hold off the "all pages are
631 * pinned" detection logic.
632 */
5f8dcc21
MG
633static void free_pcppages_bulk(struct zone *zone, int count,
634 struct per_cpu_pages *pcp)
1da177e4 635{
5f8dcc21 636 int migratetype = 0;
a6f9edd6 637 int batch_free = 0;
72853e29 638 int to_free = count;
5f8dcc21 639
c54ad30c 640 spin_lock(&zone->lock);
93e4a89a 641 zone->all_unreclaimable = 0;
1da177e4 642 zone->pages_scanned = 0;
f2260e6b 643
72853e29 644 while (to_free) {
48db57f8 645 struct page *page;
5f8dcc21
MG
646 struct list_head *list;
647
648 /*
a6f9edd6
MG
649 * Remove pages from lists in a round-robin fashion. A
650 * batch_free count is maintained that is incremented when an
651 * empty list is encountered. This is so more pages are freed
652 * off fuller lists instead of spinning excessively around empty
653 * lists
5f8dcc21
MG
654 */
655 do {
a6f9edd6 656 batch_free++;
5f8dcc21
MG
657 if (++migratetype == MIGRATE_PCPTYPES)
658 migratetype = 0;
659 list = &pcp->lists[migratetype];
660 } while (list_empty(list));
48db57f8 661
1d16871d
NK
662 /* This is the only non-empty list. Free them all. */
663 if (batch_free == MIGRATE_PCPTYPES)
664 batch_free = to_free;
665
a6f9edd6
MG
666 do {
667 page = list_entry(list->prev, struct page, lru);
668 /* must delete as __free_one_page list manipulates */
669 list_del(&page->lru);
a7016235
HD
670 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
671 __free_one_page(page, zone, 0, page_private(page));
672 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 673 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 674 }
72853e29 675 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 676 spin_unlock(&zone->lock);
1da177e4
LT
677}
678
ed0ae21d
MG
679static void free_one_page(struct zone *zone, struct page *page, int order,
680 int migratetype)
1da177e4 681{
006d22d9 682 spin_lock(&zone->lock);
93e4a89a 683 zone->all_unreclaimable = 0;
006d22d9 684 zone->pages_scanned = 0;
f2260e6b 685
ed0ae21d 686 __free_one_page(page, zone, order, migratetype);
72853e29 687 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 688 spin_unlock(&zone->lock);
48db57f8
NP
689}
690
ec95f53a 691static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 692{
1da177e4 693 int i;
8cc3b392 694 int bad = 0;
1da177e4 695
b413d48a 696 trace_mm_page_free(page, order);
b1eeab67
VN
697 kmemcheck_free_shadow(page, order);
698
8dd60a3a
AA
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
8cc3b392 703 if (bad)
ec95f53a 704 return false;
689bcebf 705
3ac7fe5a 706 if (!PageHighMem(page)) {
9858db50 707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
710 }
dafb1367 711 arch_free_page(page, order);
48db57f8 712 kernel_map_pages(page, 1 << order, 0);
dafb1367 713
ec95f53a
KM
714 return true;
715}
716
717static void __free_pages_ok(struct page *page, unsigned int order)
718{
719 unsigned long flags;
720 int wasMlocked = __TestClearPageMlocked(page);
721
722 if (!free_pages_prepare(page, order))
723 return;
724
c54ad30c 725 local_irq_save(flags);
c277331d 726 if (unlikely(wasMlocked))
da456f14 727 free_page_mlock(page);
f8891e5e 728 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
729 free_one_page(page_zone(page), page, order,
730 get_pageblock_migratetype(page));
c54ad30c 731 local_irq_restore(flags);
1da177e4
LT
732}
733
af370fb8 734void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 735{
c3993076
JW
736 unsigned int nr_pages = 1 << order;
737 unsigned int loop;
a226f6c8 738
c3993076
JW
739 prefetchw(page);
740 for (loop = 0; loop < nr_pages; loop++) {
741 struct page *p = &page[loop];
742
743 if (loop + 1 < nr_pages)
744 prefetchw(p + 1);
745 __ClearPageReserved(p);
746 set_page_count(p, 0);
a226f6c8 747 }
c3993076
JW
748
749 set_page_refcounted(page);
750 __free_pages(page, order);
a226f6c8
DH
751}
752
1da177e4
LT
753
754/*
755 * The order of subdivision here is critical for the IO subsystem.
756 * Please do not alter this order without good reasons and regression
757 * testing. Specifically, as large blocks of memory are subdivided,
758 * the order in which smaller blocks are delivered depends on the order
759 * they're subdivided in this function. This is the primary factor
760 * influencing the order in which pages are delivered to the IO
761 * subsystem according to empirical testing, and this is also justified
762 * by considering the behavior of a buddy system containing a single
763 * large block of memory acted on by a series of small allocations.
764 * This behavior is a critical factor in sglist merging's success.
765 *
766 * -- wli
767 */
085cc7d5 768static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
769 int low, int high, struct free_area *area,
770 int migratetype)
1da177e4
LT
771{
772 unsigned long size = 1 << high;
773
774 while (high > low) {
775 area--;
776 high--;
777 size >>= 1;
725d704e 778 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
779
780#ifdef CONFIG_DEBUG_PAGEALLOC
781 if (high < debug_guardpage_minorder()) {
782 /*
783 * Mark as guard pages (or page), that will allow to
784 * merge back to allocator when buddy will be freed.
785 * Corresponding page table entries will not be touched,
786 * pages will stay not present in virtual address space
787 */
788 INIT_LIST_HEAD(&page[size].lru);
789 set_page_guard_flag(&page[size]);
790 set_page_private(&page[size], high);
791 /* Guard pages are not available for any usage */
792 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
793 continue;
794 }
795#endif
b2a0ac88 796 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
797 area->nr_free++;
798 set_page_order(&page[size], high);
799 }
1da177e4
LT
800}
801
1da177e4
LT
802/*
803 * This page is about to be returned from the page allocator
804 */
2a7684a2 805static inline int check_new_page(struct page *page)
1da177e4 806{
92be2e33
NP
807 if (unlikely(page_mapcount(page) |
808 (page->mapping != NULL) |
a3af9c38 809 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
810 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
811 (mem_cgroup_bad_page_check(page)))) {
224abf92 812 bad_page(page);
689bcebf 813 return 1;
8cc3b392 814 }
2a7684a2
WF
815 return 0;
816}
817
818static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
819{
820 int i;
821
822 for (i = 0; i < (1 << order); i++) {
823 struct page *p = page + i;
824 if (unlikely(check_new_page(p)))
825 return 1;
826 }
689bcebf 827
4c21e2f2 828 set_page_private(page, 0);
7835e98b 829 set_page_refcounted(page);
cc102509
NP
830
831 arch_alloc_page(page, order);
1da177e4 832 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
833
834 if (gfp_flags & __GFP_ZERO)
835 prep_zero_page(page, order, gfp_flags);
836
837 if (order && (gfp_flags & __GFP_COMP))
838 prep_compound_page(page, order);
839
689bcebf 840 return 0;
1da177e4
LT
841}
842
56fd56b8
MG
843/*
844 * Go through the free lists for the given migratetype and remove
845 * the smallest available page from the freelists
846 */
728ec980
MG
847static inline
848struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
849 int migratetype)
850{
851 unsigned int current_order;
852 struct free_area * area;
853 struct page *page;
854
855 /* Find a page of the appropriate size in the preferred list */
856 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
857 area = &(zone->free_area[current_order]);
858 if (list_empty(&area->free_list[migratetype]))
859 continue;
860
861 page = list_entry(area->free_list[migratetype].next,
862 struct page, lru);
863 list_del(&page->lru);
864 rmv_page_order(page);
865 area->nr_free--;
56fd56b8
MG
866 expand(zone, page, order, current_order, area, migratetype);
867 return page;
868 }
869
870 return NULL;
871}
872
873
b2a0ac88
MG
874/*
875 * This array describes the order lists are fallen back to when
876 * the free lists for the desirable migrate type are depleted
877 */
6d4a4916 878static int fallbacks[MIGRATE_TYPES][3] = {
64c5e135
MG
879 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
880 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
881 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
6d4a4916
MN
882 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
883 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
884};
885
c361be55
MG
886/*
887 * Move the free pages in a range to the free lists of the requested type.
d9c23400 888 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
889 * boundary. If alignment is required, use move_freepages_block()
890 */
b69a7288
AB
891static int move_freepages(struct zone *zone,
892 struct page *start_page, struct page *end_page,
893 int migratetype)
c361be55
MG
894{
895 struct page *page;
896 unsigned long order;
d100313f 897 int pages_moved = 0;
c361be55
MG
898
899#ifndef CONFIG_HOLES_IN_ZONE
900 /*
901 * page_zone is not safe to call in this context when
902 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
903 * anyway as we check zone boundaries in move_freepages_block().
904 * Remove at a later date when no bug reports exist related to
ac0e5b7a 905 * grouping pages by mobility
c361be55
MG
906 */
907 BUG_ON(page_zone(start_page) != page_zone(end_page));
908#endif
909
910 for (page = start_page; page <= end_page;) {
344c790e
AL
911 /* Make sure we are not inadvertently changing nodes */
912 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
913
c361be55
MG
914 if (!pfn_valid_within(page_to_pfn(page))) {
915 page++;
916 continue;
917 }
918
919 if (!PageBuddy(page)) {
920 page++;
921 continue;
922 }
923
924 order = page_order(page);
84be48d8
KS
925 list_move(&page->lru,
926 &zone->free_area[order].free_list[migratetype]);
c361be55 927 page += 1 << order;
d100313f 928 pages_moved += 1 << order;
c361be55
MG
929 }
930
d100313f 931 return pages_moved;
c361be55
MG
932}
933
b69a7288
AB
934static int move_freepages_block(struct zone *zone, struct page *page,
935 int migratetype)
c361be55
MG
936{
937 unsigned long start_pfn, end_pfn;
938 struct page *start_page, *end_page;
939
940 start_pfn = page_to_pfn(page);
d9c23400 941 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 942 start_page = pfn_to_page(start_pfn);
d9c23400
MG
943 end_page = start_page + pageblock_nr_pages - 1;
944 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
945
946 /* Do not cross zone boundaries */
947 if (start_pfn < zone->zone_start_pfn)
948 start_page = page;
949 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
950 return 0;
951
952 return move_freepages(zone, start_page, end_page, migratetype);
953}
954
2f66a68f
MG
955static void change_pageblock_range(struct page *pageblock_page,
956 int start_order, int migratetype)
957{
958 int nr_pageblocks = 1 << (start_order - pageblock_order);
959
960 while (nr_pageblocks--) {
961 set_pageblock_migratetype(pageblock_page, migratetype);
962 pageblock_page += pageblock_nr_pages;
963 }
964}
965
b2a0ac88 966/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
967static inline struct page *
968__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
969{
970 struct free_area * area;
971 int current_order;
972 struct page *page;
973 int migratetype, i;
974
975 /* Find the largest possible block of pages in the other list */
976 for (current_order = MAX_ORDER-1; current_order >= order;
977 --current_order) {
6d4a4916 978 for (i = 0;; i++) {
b2a0ac88
MG
979 migratetype = fallbacks[start_migratetype][i];
980
56fd56b8
MG
981 /* MIGRATE_RESERVE handled later if necessary */
982 if (migratetype == MIGRATE_RESERVE)
6d4a4916 983 break;
e010487d 984
b2a0ac88
MG
985 area = &(zone->free_area[current_order]);
986 if (list_empty(&area->free_list[migratetype]))
987 continue;
988
989 page = list_entry(area->free_list[migratetype].next,
990 struct page, lru);
991 area->nr_free--;
992
993 /*
c361be55 994 * If breaking a large block of pages, move all free
46dafbca
MG
995 * pages to the preferred allocation list. If falling
996 * back for a reclaimable kernel allocation, be more
25985edc 997 * aggressive about taking ownership of free pages
b2a0ac88 998 */
d9c23400 999 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
1000 start_migratetype == MIGRATE_RECLAIMABLE ||
1001 page_group_by_mobility_disabled) {
46dafbca
MG
1002 unsigned long pages;
1003 pages = move_freepages_block(zone, page,
1004 start_migratetype);
1005
1006 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1007 if (pages >= (1 << (pageblock_order-1)) ||
1008 page_group_by_mobility_disabled)
46dafbca
MG
1009 set_pageblock_migratetype(page,
1010 start_migratetype);
1011
b2a0ac88 1012 migratetype = start_migratetype;
c361be55 1013 }
b2a0ac88
MG
1014
1015 /* Remove the page from the freelists */
1016 list_del(&page->lru);
1017 rmv_page_order(page);
b2a0ac88 1018
2f66a68f
MG
1019 /* Take ownership for orders >= pageblock_order */
1020 if (current_order >= pageblock_order)
1021 change_pageblock_range(page, current_order,
b2a0ac88
MG
1022 start_migratetype);
1023
1024 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
1025
1026 trace_mm_page_alloc_extfrag(page, order, current_order,
1027 start_migratetype, migratetype);
1028
b2a0ac88
MG
1029 return page;
1030 }
1031 }
1032
728ec980 1033 return NULL;
b2a0ac88
MG
1034}
1035
56fd56b8 1036/*
1da177e4
LT
1037 * Do the hard work of removing an element from the buddy allocator.
1038 * Call me with the zone->lock already held.
1039 */
b2a0ac88
MG
1040static struct page *__rmqueue(struct zone *zone, unsigned int order,
1041 int migratetype)
1da177e4 1042{
1da177e4
LT
1043 struct page *page;
1044
728ec980 1045retry_reserve:
56fd56b8 1046 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1047
728ec980 1048 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1049 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1050
728ec980
MG
1051 /*
1052 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1053 * is used because __rmqueue_smallest is an inline function
1054 * and we want just one call site
1055 */
1056 if (!page) {
1057 migratetype = MIGRATE_RESERVE;
1058 goto retry_reserve;
1059 }
1060 }
1061
0d3d062a 1062 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1063 return page;
1da177e4
LT
1064}
1065
5f63b720 1066/*
1da177e4
LT
1067 * Obtain a specified number of elements from the buddy allocator, all under
1068 * a single hold of the lock, for efficiency. Add them to the supplied list.
1069 * Returns the number of new pages which were placed at *list.
1070 */
5f63b720 1071static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1072 unsigned long count, struct list_head *list,
e084b2d9 1073 int migratetype, int cold)
1da177e4 1074{
1da177e4 1075 int i;
5f63b720 1076
c54ad30c 1077 spin_lock(&zone->lock);
1da177e4 1078 for (i = 0; i < count; ++i) {
b2a0ac88 1079 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1080 if (unlikely(page == NULL))
1da177e4 1081 break;
81eabcbe
MG
1082
1083 /*
1084 * Split buddy pages returned by expand() are received here
1085 * in physical page order. The page is added to the callers and
1086 * list and the list head then moves forward. From the callers
1087 * perspective, the linked list is ordered by page number in
1088 * some conditions. This is useful for IO devices that can
1089 * merge IO requests if the physical pages are ordered
1090 * properly.
1091 */
e084b2d9
MG
1092 if (likely(cold == 0))
1093 list_add(&page->lru, list);
1094 else
1095 list_add_tail(&page->lru, list);
535131e6 1096 set_page_private(page, migratetype);
81eabcbe 1097 list = &page->lru;
1da177e4 1098 }
f2260e6b 1099 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1100 spin_unlock(&zone->lock);
085cc7d5 1101 return i;
1da177e4
LT
1102}
1103
4ae7c039 1104#ifdef CONFIG_NUMA
8fce4d8e 1105/*
4037d452
CL
1106 * Called from the vmstat counter updater to drain pagesets of this
1107 * currently executing processor on remote nodes after they have
1108 * expired.
1109 *
879336c3
CL
1110 * Note that this function must be called with the thread pinned to
1111 * a single processor.
8fce4d8e 1112 */
4037d452 1113void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1114{
4ae7c039 1115 unsigned long flags;
4037d452 1116 int to_drain;
4ae7c039 1117
4037d452
CL
1118 local_irq_save(flags);
1119 if (pcp->count >= pcp->batch)
1120 to_drain = pcp->batch;
1121 else
1122 to_drain = pcp->count;
5f8dcc21 1123 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1124 pcp->count -= to_drain;
1125 local_irq_restore(flags);
4ae7c039
CL
1126}
1127#endif
1128
9f8f2172
CL
1129/*
1130 * Drain pages of the indicated processor.
1131 *
1132 * The processor must either be the current processor and the
1133 * thread pinned to the current processor or a processor that
1134 * is not online.
1135 */
1136static void drain_pages(unsigned int cpu)
1da177e4 1137{
c54ad30c 1138 unsigned long flags;
1da177e4 1139 struct zone *zone;
1da177e4 1140
ee99c71c 1141 for_each_populated_zone(zone) {
1da177e4 1142 struct per_cpu_pageset *pset;
3dfa5721 1143 struct per_cpu_pages *pcp;
1da177e4 1144
99dcc3e5
CL
1145 local_irq_save(flags);
1146 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1147
1148 pcp = &pset->pcp;
2ff754fa
DR
1149 if (pcp->count) {
1150 free_pcppages_bulk(zone, pcp->count, pcp);
1151 pcp->count = 0;
1152 }
3dfa5721 1153 local_irq_restore(flags);
1da177e4
LT
1154 }
1155}
1da177e4 1156
9f8f2172
CL
1157/*
1158 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1159 */
1160void drain_local_pages(void *arg)
1161{
1162 drain_pages(smp_processor_id());
1163}
1164
1165/*
74046494
GBY
1166 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1167 *
1168 * Note that this code is protected against sending an IPI to an offline
1169 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1170 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1171 * nothing keeps CPUs from showing up after we populated the cpumask and
1172 * before the call to on_each_cpu_mask().
9f8f2172
CL
1173 */
1174void drain_all_pages(void)
1175{
74046494
GBY
1176 int cpu;
1177 struct per_cpu_pageset *pcp;
1178 struct zone *zone;
1179
1180 /*
1181 * Allocate in the BSS so we wont require allocation in
1182 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1183 */
1184 static cpumask_t cpus_with_pcps;
1185
1186 /*
1187 * We don't care about racing with CPU hotplug event
1188 * as offline notification will cause the notified
1189 * cpu to drain that CPU pcps and on_each_cpu_mask
1190 * disables preemption as part of its processing
1191 */
1192 for_each_online_cpu(cpu) {
1193 bool has_pcps = false;
1194 for_each_populated_zone(zone) {
1195 pcp = per_cpu_ptr(zone->pageset, cpu);
1196 if (pcp->pcp.count) {
1197 has_pcps = true;
1198 break;
1199 }
1200 }
1201 if (has_pcps)
1202 cpumask_set_cpu(cpu, &cpus_with_pcps);
1203 else
1204 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1205 }
1206 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1207}
1208
296699de 1209#ifdef CONFIG_HIBERNATION
1da177e4
LT
1210
1211void mark_free_pages(struct zone *zone)
1212{
f623f0db
RW
1213 unsigned long pfn, max_zone_pfn;
1214 unsigned long flags;
b2a0ac88 1215 int order, t;
1da177e4
LT
1216 struct list_head *curr;
1217
1218 if (!zone->spanned_pages)
1219 return;
1220
1221 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1222
1223 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1224 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1225 if (pfn_valid(pfn)) {
1226 struct page *page = pfn_to_page(pfn);
1227
7be98234
RW
1228 if (!swsusp_page_is_forbidden(page))
1229 swsusp_unset_page_free(page);
f623f0db 1230 }
1da177e4 1231
b2a0ac88
MG
1232 for_each_migratetype_order(order, t) {
1233 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1234 unsigned long i;
1da177e4 1235
f623f0db
RW
1236 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1237 for (i = 0; i < (1UL << order); i++)
7be98234 1238 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1239 }
b2a0ac88 1240 }
1da177e4
LT
1241 spin_unlock_irqrestore(&zone->lock, flags);
1242}
e2c55dc8 1243#endif /* CONFIG_PM */
1da177e4 1244
1da177e4
LT
1245/*
1246 * Free a 0-order page
fc91668e 1247 * cold == 1 ? free a cold page : free a hot page
1da177e4 1248 */
fc91668e 1249void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1250{
1251 struct zone *zone = page_zone(page);
1252 struct per_cpu_pages *pcp;
1253 unsigned long flags;
5f8dcc21 1254 int migratetype;
451ea25d 1255 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1256
ec95f53a 1257 if (!free_pages_prepare(page, 0))
689bcebf
HD
1258 return;
1259
5f8dcc21
MG
1260 migratetype = get_pageblock_migratetype(page);
1261 set_page_private(page, migratetype);
1da177e4 1262 local_irq_save(flags);
c277331d 1263 if (unlikely(wasMlocked))
da456f14 1264 free_page_mlock(page);
f8891e5e 1265 __count_vm_event(PGFREE);
da456f14 1266
5f8dcc21
MG
1267 /*
1268 * We only track unmovable, reclaimable and movable on pcp lists.
1269 * Free ISOLATE pages back to the allocator because they are being
1270 * offlined but treat RESERVE as movable pages so we can get those
1271 * areas back if necessary. Otherwise, we may have to free
1272 * excessively into the page allocator
1273 */
1274 if (migratetype >= MIGRATE_PCPTYPES) {
1275 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1276 free_one_page(zone, page, 0, migratetype);
1277 goto out;
1278 }
1279 migratetype = MIGRATE_MOVABLE;
1280 }
1281
99dcc3e5 1282 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1283 if (cold)
5f8dcc21 1284 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1285 else
5f8dcc21 1286 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1287 pcp->count++;
48db57f8 1288 if (pcp->count >= pcp->high) {
5f8dcc21 1289 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1290 pcp->count -= pcp->batch;
1291 }
5f8dcc21
MG
1292
1293out:
1da177e4 1294 local_irq_restore(flags);
1da177e4
LT
1295}
1296
cc59850e
KK
1297/*
1298 * Free a list of 0-order pages
1299 */
1300void free_hot_cold_page_list(struct list_head *list, int cold)
1301{
1302 struct page *page, *next;
1303
1304 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1305 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1306 free_hot_cold_page(page, cold);
1307 }
1308}
1309
8dfcc9ba
NP
1310/*
1311 * split_page takes a non-compound higher-order page, and splits it into
1312 * n (1<<order) sub-pages: page[0..n]
1313 * Each sub-page must be freed individually.
1314 *
1315 * Note: this is probably too low level an operation for use in drivers.
1316 * Please consult with lkml before using this in your driver.
1317 */
1318void split_page(struct page *page, unsigned int order)
1319{
1320 int i;
1321
725d704e
NP
1322 VM_BUG_ON(PageCompound(page));
1323 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1324
1325#ifdef CONFIG_KMEMCHECK
1326 /*
1327 * Split shadow pages too, because free(page[0]) would
1328 * otherwise free the whole shadow.
1329 */
1330 if (kmemcheck_page_is_tracked(page))
1331 split_page(virt_to_page(page[0].shadow), order);
1332#endif
1333
7835e98b
NP
1334 for (i = 1; i < (1 << order); i++)
1335 set_page_refcounted(page + i);
8dfcc9ba 1336}
8dfcc9ba 1337
748446bb
MG
1338/*
1339 * Similar to split_page except the page is already free. As this is only
1340 * being used for migration, the migratetype of the block also changes.
1341 * As this is called with interrupts disabled, the caller is responsible
1342 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1343 * are enabled.
1344 *
1345 * Note: this is probably too low level an operation for use in drivers.
1346 * Please consult with lkml before using this in your driver.
1347 */
1348int split_free_page(struct page *page)
1349{
1350 unsigned int order;
1351 unsigned long watermark;
1352 struct zone *zone;
1353
1354 BUG_ON(!PageBuddy(page));
1355
1356 zone = page_zone(page);
1357 order = page_order(page);
1358
1359 /* Obey watermarks as if the page was being allocated */
1360 watermark = low_wmark_pages(zone) + (1 << order);
1361 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1362 return 0;
1363
1364 /* Remove page from free list */
1365 list_del(&page->lru);
1366 zone->free_area[order].nr_free--;
1367 rmv_page_order(page);
1368 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1369
1370 /* Split into individual pages */
1371 set_page_refcounted(page);
1372 split_page(page, order);
1373
1374 if (order >= pageblock_order - 1) {
1375 struct page *endpage = page + (1 << order) - 1;
1376 for (; page < endpage; page += pageblock_nr_pages)
1377 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1378 }
1379
1380 return 1 << order;
1381}
1382
1da177e4
LT
1383/*
1384 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1385 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1386 * or two.
1387 */
0a15c3e9
MG
1388static inline
1389struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1390 struct zone *zone, int order, gfp_t gfp_flags,
1391 int migratetype)
1da177e4
LT
1392{
1393 unsigned long flags;
689bcebf 1394 struct page *page;
1da177e4
LT
1395 int cold = !!(gfp_flags & __GFP_COLD);
1396
689bcebf 1397again:
48db57f8 1398 if (likely(order == 0)) {
1da177e4 1399 struct per_cpu_pages *pcp;
5f8dcc21 1400 struct list_head *list;
1da177e4 1401
1da177e4 1402 local_irq_save(flags);
99dcc3e5
CL
1403 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1404 list = &pcp->lists[migratetype];
5f8dcc21 1405 if (list_empty(list)) {
535131e6 1406 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1407 pcp->batch, list,
e084b2d9 1408 migratetype, cold);
5f8dcc21 1409 if (unlikely(list_empty(list)))
6fb332fa 1410 goto failed;
535131e6 1411 }
b92a6edd 1412
5f8dcc21
MG
1413 if (cold)
1414 page = list_entry(list->prev, struct page, lru);
1415 else
1416 page = list_entry(list->next, struct page, lru);
1417
b92a6edd
MG
1418 list_del(&page->lru);
1419 pcp->count--;
7fb1d9fc 1420 } else {
dab48dab
AM
1421 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1422 /*
1423 * __GFP_NOFAIL is not to be used in new code.
1424 *
1425 * All __GFP_NOFAIL callers should be fixed so that they
1426 * properly detect and handle allocation failures.
1427 *
1428 * We most definitely don't want callers attempting to
4923abf9 1429 * allocate greater than order-1 page units with
dab48dab
AM
1430 * __GFP_NOFAIL.
1431 */
4923abf9 1432 WARN_ON_ONCE(order > 1);
dab48dab 1433 }
1da177e4 1434 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1435 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1436 spin_unlock(&zone->lock);
1437 if (!page)
1438 goto failed;
6ccf80eb 1439 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1440 }
1441
f8891e5e 1442 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1443 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1444 local_irq_restore(flags);
1da177e4 1445
725d704e 1446 VM_BUG_ON(bad_range(zone, page));
17cf4406 1447 if (prep_new_page(page, order, gfp_flags))
a74609fa 1448 goto again;
1da177e4 1449 return page;
a74609fa
NP
1450
1451failed:
1452 local_irq_restore(flags);
a74609fa 1453 return NULL;
1da177e4
LT
1454}
1455
41858966
MG
1456/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1457#define ALLOC_WMARK_MIN WMARK_MIN
1458#define ALLOC_WMARK_LOW WMARK_LOW
1459#define ALLOC_WMARK_HIGH WMARK_HIGH
1460#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1461
1462/* Mask to get the watermark bits */
1463#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1464
3148890b
NP
1465#define ALLOC_HARDER 0x10 /* try to alloc harder */
1466#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1467#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1468
933e312e
AM
1469#ifdef CONFIG_FAIL_PAGE_ALLOC
1470
b2588c4b 1471static struct {
933e312e
AM
1472 struct fault_attr attr;
1473
1474 u32 ignore_gfp_highmem;
1475 u32 ignore_gfp_wait;
54114994 1476 u32 min_order;
933e312e
AM
1477} fail_page_alloc = {
1478 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1479 .ignore_gfp_wait = 1,
1480 .ignore_gfp_highmem = 1,
54114994 1481 .min_order = 1,
933e312e
AM
1482};
1483
1484static int __init setup_fail_page_alloc(char *str)
1485{
1486 return setup_fault_attr(&fail_page_alloc.attr, str);
1487}
1488__setup("fail_page_alloc=", setup_fail_page_alloc);
1489
1490static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1491{
54114994
AM
1492 if (order < fail_page_alloc.min_order)
1493 return 0;
933e312e
AM
1494 if (gfp_mask & __GFP_NOFAIL)
1495 return 0;
1496 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1497 return 0;
1498 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1499 return 0;
1500
1501 return should_fail(&fail_page_alloc.attr, 1 << order);
1502}
1503
1504#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1505
1506static int __init fail_page_alloc_debugfs(void)
1507{
f4ae40a6 1508 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1509 struct dentry *dir;
933e312e 1510
dd48c085
AM
1511 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1512 &fail_page_alloc.attr);
1513 if (IS_ERR(dir))
1514 return PTR_ERR(dir);
933e312e 1515
b2588c4b
AM
1516 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1517 &fail_page_alloc.ignore_gfp_wait))
1518 goto fail;
1519 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1520 &fail_page_alloc.ignore_gfp_highmem))
1521 goto fail;
1522 if (!debugfs_create_u32("min-order", mode, dir,
1523 &fail_page_alloc.min_order))
1524 goto fail;
1525
1526 return 0;
1527fail:
dd48c085 1528 debugfs_remove_recursive(dir);
933e312e 1529
b2588c4b 1530 return -ENOMEM;
933e312e
AM
1531}
1532
1533late_initcall(fail_page_alloc_debugfs);
1534
1535#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1536
1537#else /* CONFIG_FAIL_PAGE_ALLOC */
1538
1539static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1540{
1541 return 0;
1542}
1543
1544#endif /* CONFIG_FAIL_PAGE_ALLOC */
1545
1da177e4 1546/*
88f5acf8 1547 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1548 * of the allocation.
1549 */
88f5acf8
MG
1550static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1551 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1552{
1553 /* free_pages my go negative - that's OK */
d23ad423 1554 long min = mark;
1da177e4
LT
1555 int o;
1556
df0a6daa 1557 free_pages -= (1 << order) - 1;
7fb1d9fc 1558 if (alloc_flags & ALLOC_HIGH)
1da177e4 1559 min -= min / 2;
7fb1d9fc 1560 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1561 min -= min / 4;
1562
1563 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1564 return false;
1da177e4
LT
1565 for (o = 0; o < order; o++) {
1566 /* At the next order, this order's pages become unavailable */
1567 free_pages -= z->free_area[o].nr_free << o;
1568
1569 /* Require fewer higher order pages to be free */
1570 min >>= 1;
1571
1572 if (free_pages <= min)
88f5acf8 1573 return false;
1da177e4 1574 }
88f5acf8
MG
1575 return true;
1576}
1577
1578bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1579 int classzone_idx, int alloc_flags)
1580{
1581 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1582 zone_page_state(z, NR_FREE_PAGES));
1583}
1584
1585bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1586 int classzone_idx, int alloc_flags)
1587{
1588 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1589
1590 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1591 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1592
1593 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1594 free_pages);
1da177e4
LT
1595}
1596
9276b1bc
PJ
1597#ifdef CONFIG_NUMA
1598/*
1599 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1600 * skip over zones that are not allowed by the cpuset, or that have
1601 * been recently (in last second) found to be nearly full. See further
1602 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1603 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1604 *
1605 * If the zonelist cache is present in the passed in zonelist, then
1606 * returns a pointer to the allowed node mask (either the current
37b07e41 1607 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1608 *
1609 * If the zonelist cache is not available for this zonelist, does
1610 * nothing and returns NULL.
1611 *
1612 * If the fullzones BITMAP in the zonelist cache is stale (more than
1613 * a second since last zap'd) then we zap it out (clear its bits.)
1614 *
1615 * We hold off even calling zlc_setup, until after we've checked the
1616 * first zone in the zonelist, on the theory that most allocations will
1617 * be satisfied from that first zone, so best to examine that zone as
1618 * quickly as we can.
1619 */
1620static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1621{
1622 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1623 nodemask_t *allowednodes; /* zonelist_cache approximation */
1624
1625 zlc = zonelist->zlcache_ptr;
1626 if (!zlc)
1627 return NULL;
1628
f05111f5 1629 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1630 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1631 zlc->last_full_zap = jiffies;
1632 }
1633
1634 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1635 &cpuset_current_mems_allowed :
37b07e41 1636 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1637 return allowednodes;
1638}
1639
1640/*
1641 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1642 * if it is worth looking at further for free memory:
1643 * 1) Check that the zone isn't thought to be full (doesn't have its
1644 * bit set in the zonelist_cache fullzones BITMAP).
1645 * 2) Check that the zones node (obtained from the zonelist_cache
1646 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1647 * Return true (non-zero) if zone is worth looking at further, or
1648 * else return false (zero) if it is not.
1649 *
1650 * This check -ignores- the distinction between various watermarks,
1651 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1652 * found to be full for any variation of these watermarks, it will
1653 * be considered full for up to one second by all requests, unless
1654 * we are so low on memory on all allowed nodes that we are forced
1655 * into the second scan of the zonelist.
1656 *
1657 * In the second scan we ignore this zonelist cache and exactly
1658 * apply the watermarks to all zones, even it is slower to do so.
1659 * We are low on memory in the second scan, and should leave no stone
1660 * unturned looking for a free page.
1661 */
dd1a239f 1662static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1663 nodemask_t *allowednodes)
1664{
1665 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1666 int i; /* index of *z in zonelist zones */
1667 int n; /* node that zone *z is on */
1668
1669 zlc = zonelist->zlcache_ptr;
1670 if (!zlc)
1671 return 1;
1672
dd1a239f 1673 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1674 n = zlc->z_to_n[i];
1675
1676 /* This zone is worth trying if it is allowed but not full */
1677 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1678}
1679
1680/*
1681 * Given 'z' scanning a zonelist, set the corresponding bit in
1682 * zlc->fullzones, so that subsequent attempts to allocate a page
1683 * from that zone don't waste time re-examining it.
1684 */
dd1a239f 1685static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1686{
1687 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1688 int i; /* index of *z in zonelist zones */
1689
1690 zlc = zonelist->zlcache_ptr;
1691 if (!zlc)
1692 return;
1693
dd1a239f 1694 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1695
1696 set_bit(i, zlc->fullzones);
1697}
1698
76d3fbf8
MG
1699/*
1700 * clear all zones full, called after direct reclaim makes progress so that
1701 * a zone that was recently full is not skipped over for up to a second
1702 */
1703static void zlc_clear_zones_full(struct zonelist *zonelist)
1704{
1705 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1706
1707 zlc = zonelist->zlcache_ptr;
1708 if (!zlc)
1709 return;
1710
1711 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1712}
1713
9276b1bc
PJ
1714#else /* CONFIG_NUMA */
1715
1716static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1717{
1718 return NULL;
1719}
1720
dd1a239f 1721static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1722 nodemask_t *allowednodes)
1723{
1724 return 1;
1725}
1726
dd1a239f 1727static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1728{
1729}
76d3fbf8
MG
1730
1731static void zlc_clear_zones_full(struct zonelist *zonelist)
1732{
1733}
9276b1bc
PJ
1734#endif /* CONFIG_NUMA */
1735
7fb1d9fc 1736/*
0798e519 1737 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1738 * a page.
1739 */
1740static struct page *
19770b32 1741get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1742 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1743 struct zone *preferred_zone, int migratetype)
753ee728 1744{
dd1a239f 1745 struct zoneref *z;
7fb1d9fc 1746 struct page *page = NULL;
54a6eb5c 1747 int classzone_idx;
5117f45d 1748 struct zone *zone;
9276b1bc
PJ
1749 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1750 int zlc_active = 0; /* set if using zonelist_cache */
1751 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1752
19770b32 1753 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1754zonelist_scan:
7fb1d9fc 1755 /*
9276b1bc 1756 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1757 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1758 */
19770b32
MG
1759 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1760 high_zoneidx, nodemask) {
9276b1bc
PJ
1761 if (NUMA_BUILD && zlc_active &&
1762 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1763 continue;
7fb1d9fc 1764 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1765 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1766 continue;
a756cf59
JW
1767 /*
1768 * When allocating a page cache page for writing, we
1769 * want to get it from a zone that is within its dirty
1770 * limit, such that no single zone holds more than its
1771 * proportional share of globally allowed dirty pages.
1772 * The dirty limits take into account the zone's
1773 * lowmem reserves and high watermark so that kswapd
1774 * should be able to balance it without having to
1775 * write pages from its LRU list.
1776 *
1777 * This may look like it could increase pressure on
1778 * lower zones by failing allocations in higher zones
1779 * before they are full. But the pages that do spill
1780 * over are limited as the lower zones are protected
1781 * by this very same mechanism. It should not become
1782 * a practical burden to them.
1783 *
1784 * XXX: For now, allow allocations to potentially
1785 * exceed the per-zone dirty limit in the slowpath
1786 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1787 * which is important when on a NUMA setup the allowed
1788 * zones are together not big enough to reach the
1789 * global limit. The proper fix for these situations
1790 * will require awareness of zones in the
1791 * dirty-throttling and the flusher threads.
1792 */
1793 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1794 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1795 goto this_zone_full;
7fb1d9fc 1796
41858966 1797 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1798 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1799 unsigned long mark;
fa5e084e
MG
1800 int ret;
1801
41858966 1802 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1803 if (zone_watermark_ok(zone, order, mark,
1804 classzone_idx, alloc_flags))
1805 goto try_this_zone;
1806
cd38b115
MG
1807 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1808 /*
1809 * we do zlc_setup if there are multiple nodes
1810 * and before considering the first zone allowed
1811 * by the cpuset.
1812 */
1813 allowednodes = zlc_setup(zonelist, alloc_flags);
1814 zlc_active = 1;
1815 did_zlc_setup = 1;
1816 }
1817
fa5e084e
MG
1818 if (zone_reclaim_mode == 0)
1819 goto this_zone_full;
1820
cd38b115
MG
1821 /*
1822 * As we may have just activated ZLC, check if the first
1823 * eligible zone has failed zone_reclaim recently.
1824 */
1825 if (NUMA_BUILD && zlc_active &&
1826 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1827 continue;
1828
fa5e084e
MG
1829 ret = zone_reclaim(zone, gfp_mask, order);
1830 switch (ret) {
1831 case ZONE_RECLAIM_NOSCAN:
1832 /* did not scan */
cd38b115 1833 continue;
fa5e084e
MG
1834 case ZONE_RECLAIM_FULL:
1835 /* scanned but unreclaimable */
cd38b115 1836 continue;
fa5e084e
MG
1837 default:
1838 /* did we reclaim enough */
1839 if (!zone_watermark_ok(zone, order, mark,
1840 classzone_idx, alloc_flags))
9276b1bc 1841 goto this_zone_full;
0798e519 1842 }
7fb1d9fc
RS
1843 }
1844
fa5e084e 1845try_this_zone:
3dd28266
MG
1846 page = buffered_rmqueue(preferred_zone, zone, order,
1847 gfp_mask, migratetype);
0798e519 1848 if (page)
7fb1d9fc 1849 break;
9276b1bc
PJ
1850this_zone_full:
1851 if (NUMA_BUILD)
1852 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1853 }
9276b1bc
PJ
1854
1855 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1856 /* Disable zlc cache for second zonelist scan */
1857 zlc_active = 0;
1858 goto zonelist_scan;
1859 }
7fb1d9fc 1860 return page;
753ee728
MH
1861}
1862
29423e77
DR
1863/*
1864 * Large machines with many possible nodes should not always dump per-node
1865 * meminfo in irq context.
1866 */
1867static inline bool should_suppress_show_mem(void)
1868{
1869 bool ret = false;
1870
1871#if NODES_SHIFT > 8
1872 ret = in_interrupt();
1873#endif
1874 return ret;
1875}
1876
a238ab5b
DH
1877static DEFINE_RATELIMIT_STATE(nopage_rs,
1878 DEFAULT_RATELIMIT_INTERVAL,
1879 DEFAULT_RATELIMIT_BURST);
1880
1881void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1882{
a238ab5b
DH
1883 unsigned int filter = SHOW_MEM_FILTER_NODES;
1884
c0a32fc5
SG
1885 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1886 debug_guardpage_minorder() > 0)
a238ab5b
DH
1887 return;
1888
1889 /*
1890 * This documents exceptions given to allocations in certain
1891 * contexts that are allowed to allocate outside current's set
1892 * of allowed nodes.
1893 */
1894 if (!(gfp_mask & __GFP_NOMEMALLOC))
1895 if (test_thread_flag(TIF_MEMDIE) ||
1896 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1897 filter &= ~SHOW_MEM_FILTER_NODES;
1898 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1899 filter &= ~SHOW_MEM_FILTER_NODES;
1900
1901 if (fmt) {
3ee9a4f0
JP
1902 struct va_format vaf;
1903 va_list args;
1904
a238ab5b 1905 va_start(args, fmt);
3ee9a4f0
JP
1906
1907 vaf.fmt = fmt;
1908 vaf.va = &args;
1909
1910 pr_warn("%pV", &vaf);
1911
a238ab5b
DH
1912 va_end(args);
1913 }
1914
3ee9a4f0
JP
1915 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1916 current->comm, order, gfp_mask);
a238ab5b
DH
1917
1918 dump_stack();
1919 if (!should_suppress_show_mem())
1920 show_mem(filter);
1921}
1922
11e33f6a
MG
1923static inline int
1924should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 1925 unsigned long did_some_progress,
11e33f6a 1926 unsigned long pages_reclaimed)
1da177e4 1927{
11e33f6a
MG
1928 /* Do not loop if specifically requested */
1929 if (gfp_mask & __GFP_NORETRY)
1930 return 0;
1da177e4 1931
f90ac398
MG
1932 /* Always retry if specifically requested */
1933 if (gfp_mask & __GFP_NOFAIL)
1934 return 1;
1935
1936 /*
1937 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1938 * making forward progress without invoking OOM. Suspend also disables
1939 * storage devices so kswapd will not help. Bail if we are suspending.
1940 */
1941 if (!did_some_progress && pm_suspended_storage())
1942 return 0;
1943
11e33f6a
MG
1944 /*
1945 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1946 * means __GFP_NOFAIL, but that may not be true in other
1947 * implementations.
1948 */
1949 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1950 return 1;
1951
1952 /*
1953 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1954 * specified, then we retry until we no longer reclaim any pages
1955 * (above), or we've reclaimed an order of pages at least as
1956 * large as the allocation's order. In both cases, if the
1957 * allocation still fails, we stop retrying.
1958 */
1959 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1960 return 1;
cf40bd16 1961
11e33f6a
MG
1962 return 0;
1963}
933e312e 1964
11e33f6a
MG
1965static inline struct page *
1966__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1967 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1968 nodemask_t *nodemask, struct zone *preferred_zone,
1969 int migratetype)
11e33f6a
MG
1970{
1971 struct page *page;
1972
1973 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1974 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1975 schedule_timeout_uninterruptible(1);
1da177e4
LT
1976 return NULL;
1977 }
6b1de916 1978
11e33f6a
MG
1979 /*
1980 * Go through the zonelist yet one more time, keep very high watermark
1981 * here, this is only to catch a parallel oom killing, we must fail if
1982 * we're still under heavy pressure.
1983 */
1984 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1985 order, zonelist, high_zoneidx,
5117f45d 1986 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1987 preferred_zone, migratetype);
7fb1d9fc 1988 if (page)
11e33f6a
MG
1989 goto out;
1990
4365a567
KH
1991 if (!(gfp_mask & __GFP_NOFAIL)) {
1992 /* The OOM killer will not help higher order allocs */
1993 if (order > PAGE_ALLOC_COSTLY_ORDER)
1994 goto out;
03668b3c
DR
1995 /* The OOM killer does not needlessly kill tasks for lowmem */
1996 if (high_zoneidx < ZONE_NORMAL)
1997 goto out;
4365a567
KH
1998 /*
1999 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2000 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2001 * The caller should handle page allocation failure by itself if
2002 * it specifies __GFP_THISNODE.
2003 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2004 */
2005 if (gfp_mask & __GFP_THISNODE)
2006 goto out;
2007 }
11e33f6a 2008 /* Exhausted what can be done so it's blamo time */
08ab9b10 2009 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2010
2011out:
2012 clear_zonelist_oom(zonelist, gfp_mask);
2013 return page;
2014}
2015
56de7263
MG
2016#ifdef CONFIG_COMPACTION
2017/* Try memory compaction for high-order allocations before reclaim */
2018static struct page *
2019__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2020 struct zonelist *zonelist, enum zone_type high_zoneidx,
2021 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712
MG
2022 int migratetype, bool sync_migration,
2023 bool *deferred_compaction,
2024 unsigned long *did_some_progress)
56de7263
MG
2025{
2026 struct page *page;
2027
66199712 2028 if (!order)
56de7263
MG
2029 return NULL;
2030
aff62249 2031 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2032 *deferred_compaction = true;
2033 return NULL;
2034 }
2035
c06b1fca 2036 current->flags |= PF_MEMALLOC;
56de7263 2037 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 2038 nodemask, sync_migration);
c06b1fca 2039 current->flags &= ~PF_MEMALLOC;
56de7263
MG
2040 if (*did_some_progress != COMPACT_SKIPPED) {
2041
2042 /* Page migration frees to the PCP lists but we want merging */
2043 drain_pages(get_cpu());
2044 put_cpu();
2045
2046 page = get_page_from_freelist(gfp_mask, nodemask,
2047 order, zonelist, high_zoneidx,
2048 alloc_flags, preferred_zone,
2049 migratetype);
2050 if (page) {
4f92e258
MG
2051 preferred_zone->compact_considered = 0;
2052 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2053 if (order >= preferred_zone->compact_order_failed)
2054 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2055 count_vm_event(COMPACTSUCCESS);
2056 return page;
2057 }
2058
2059 /*
2060 * It's bad if compaction run occurs and fails.
2061 * The most likely reason is that pages exist,
2062 * but not enough to satisfy watermarks.
2063 */
2064 count_vm_event(COMPACTFAIL);
66199712
MG
2065
2066 /*
2067 * As async compaction considers a subset of pageblocks, only
2068 * defer if the failure was a sync compaction failure.
2069 */
2070 if (sync_migration)
aff62249 2071 defer_compaction(preferred_zone, order);
56de7263
MG
2072
2073 cond_resched();
2074 }
2075
2076 return NULL;
2077}
2078#else
2079static inline struct page *
2080__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2081 struct zonelist *zonelist, enum zone_type high_zoneidx,
2082 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712
MG
2083 int migratetype, bool sync_migration,
2084 bool *deferred_compaction,
2085 unsigned long *did_some_progress)
56de7263
MG
2086{
2087 return NULL;
2088}
2089#endif /* CONFIG_COMPACTION */
2090
11e33f6a
MG
2091/* The really slow allocator path where we enter direct reclaim */
2092static inline struct page *
2093__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2094 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 2095 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 2096 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
2097{
2098 struct page *page = NULL;
2099 struct reclaim_state reclaim_state;
9ee493ce 2100 bool drained = false;
11e33f6a
MG
2101
2102 cond_resched();
2103
2104 /* We now go into synchronous reclaim */
2105 cpuset_memory_pressure_bump();
c06b1fca 2106 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2107 lockdep_set_current_reclaim_state(gfp_mask);
2108 reclaim_state.reclaimed_slab = 0;
c06b1fca 2109 current->reclaim_state = &reclaim_state;
11e33f6a
MG
2110
2111 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2112
c06b1fca 2113 current->reclaim_state = NULL;
11e33f6a 2114 lockdep_clear_current_reclaim_state();
c06b1fca 2115 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2116
2117 cond_resched();
2118
9ee493ce
MG
2119 if (unlikely(!(*did_some_progress)))
2120 return NULL;
11e33f6a 2121
76d3fbf8
MG
2122 /* After successful reclaim, reconsider all zones for allocation */
2123 if (NUMA_BUILD)
2124 zlc_clear_zones_full(zonelist);
2125
9ee493ce
MG
2126retry:
2127 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2128 zonelist, high_zoneidx,
3dd28266
MG
2129 alloc_flags, preferred_zone,
2130 migratetype);
9ee493ce
MG
2131
2132 /*
2133 * If an allocation failed after direct reclaim, it could be because
2134 * pages are pinned on the per-cpu lists. Drain them and try again
2135 */
2136 if (!page && !drained) {
2137 drain_all_pages();
2138 drained = true;
2139 goto retry;
2140 }
2141
11e33f6a
MG
2142 return page;
2143}
2144
1da177e4 2145/*
11e33f6a
MG
2146 * This is called in the allocator slow-path if the allocation request is of
2147 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2148 */
11e33f6a
MG
2149static inline struct page *
2150__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2151 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2152 nodemask_t *nodemask, struct zone *preferred_zone,
2153 int migratetype)
11e33f6a
MG
2154{
2155 struct page *page;
2156
2157 do {
2158 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2159 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2160 preferred_zone, migratetype);
11e33f6a
MG
2161
2162 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2163 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2164 } while (!page && (gfp_mask & __GFP_NOFAIL));
2165
2166 return page;
2167}
2168
2169static inline
2170void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2171 enum zone_type high_zoneidx,
2172 enum zone_type classzone_idx)
1da177e4 2173{
dd1a239f
MG
2174 struct zoneref *z;
2175 struct zone *zone;
1da177e4 2176
11e33f6a 2177 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2178 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2179}
cf40bd16 2180
341ce06f
PZ
2181static inline int
2182gfp_to_alloc_flags(gfp_t gfp_mask)
2183{
341ce06f
PZ
2184 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2185 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2186
a56f57ff 2187 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2188 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2189
341ce06f
PZ
2190 /*
2191 * The caller may dip into page reserves a bit more if the caller
2192 * cannot run direct reclaim, or if the caller has realtime scheduling
2193 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2194 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2195 */
e6223a3b 2196 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2197
341ce06f 2198 if (!wait) {
5c3240d9
AA
2199 /*
2200 * Not worth trying to allocate harder for
2201 * __GFP_NOMEMALLOC even if it can't schedule.
2202 */
2203 if (!(gfp_mask & __GFP_NOMEMALLOC))
2204 alloc_flags |= ALLOC_HARDER;
523b9458 2205 /*
341ce06f
PZ
2206 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2207 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2208 */
341ce06f 2209 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2210 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2211 alloc_flags |= ALLOC_HARDER;
2212
2213 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2214 if (!in_interrupt() &&
c06b1fca 2215 ((current->flags & PF_MEMALLOC) ||
341ce06f
PZ
2216 unlikely(test_thread_flag(TIF_MEMDIE))))
2217 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2218 }
6b1de916 2219
341ce06f
PZ
2220 return alloc_flags;
2221}
2222
11e33f6a
MG
2223static inline struct page *
2224__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2225 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2226 nodemask_t *nodemask, struct zone *preferred_zone,
2227 int migratetype)
11e33f6a
MG
2228{
2229 const gfp_t wait = gfp_mask & __GFP_WAIT;
2230 struct page *page = NULL;
2231 int alloc_flags;
2232 unsigned long pages_reclaimed = 0;
2233 unsigned long did_some_progress;
77f1fe6b 2234 bool sync_migration = false;
66199712 2235 bool deferred_compaction = false;
1da177e4 2236
72807a74
MG
2237 /*
2238 * In the slowpath, we sanity check order to avoid ever trying to
2239 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2240 * be using allocators in order of preference for an area that is
2241 * too large.
2242 */
1fc28b70
MG
2243 if (order >= MAX_ORDER) {
2244 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2245 return NULL;
1fc28b70 2246 }
1da177e4 2247
952f3b51
CL
2248 /*
2249 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2250 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2251 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2252 * using a larger set of nodes after it has established that the
2253 * allowed per node queues are empty and that nodes are
2254 * over allocated.
2255 */
2256 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2257 goto nopage;
2258
cc4a6851 2259restart:
32dba98e
AA
2260 if (!(gfp_mask & __GFP_NO_KSWAPD))
2261 wake_all_kswapd(order, zonelist, high_zoneidx,
99504748 2262 zone_idx(preferred_zone));
1da177e4 2263
9bf2229f 2264 /*
7fb1d9fc
RS
2265 * OK, we're below the kswapd watermark and have kicked background
2266 * reclaim. Now things get more complex, so set up alloc_flags according
2267 * to how we want to proceed.
9bf2229f 2268 */
341ce06f 2269 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2270
f33261d7
DR
2271 /*
2272 * Find the true preferred zone if the allocation is unconstrained by
2273 * cpusets.
2274 */
2275 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2276 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2277 &preferred_zone);
2278
cfa54a0f 2279rebalance:
341ce06f 2280 /* This is the last chance, in general, before the goto nopage. */
19770b32 2281 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2282 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2283 preferred_zone, migratetype);
7fb1d9fc
RS
2284 if (page)
2285 goto got_pg;
1da177e4 2286
11e33f6a 2287 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2288 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2289 page = __alloc_pages_high_priority(gfp_mask, order,
2290 zonelist, high_zoneidx, nodemask,
2291 preferred_zone, migratetype);
2292 if (page)
2293 goto got_pg;
1da177e4
LT
2294 }
2295
2296 /* Atomic allocations - we can't balance anything */
2297 if (!wait)
2298 goto nopage;
2299
341ce06f 2300 /* Avoid recursion of direct reclaim */
c06b1fca 2301 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2302 goto nopage;
2303
6583bb64
DR
2304 /* Avoid allocations with no watermarks from looping endlessly */
2305 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2306 goto nopage;
2307
77f1fe6b
MG
2308 /*
2309 * Try direct compaction. The first pass is asynchronous. Subsequent
2310 * attempts after direct reclaim are synchronous
2311 */
56de7263
MG
2312 page = __alloc_pages_direct_compact(gfp_mask, order,
2313 zonelist, high_zoneidx,
2314 nodemask,
2315 alloc_flags, preferred_zone,
66199712
MG
2316 migratetype, sync_migration,
2317 &deferred_compaction,
2318 &did_some_progress);
56de7263
MG
2319 if (page)
2320 goto got_pg;
c6a140bf 2321 sync_migration = true;
56de7263 2322
66199712
MG
2323 /*
2324 * If compaction is deferred for high-order allocations, it is because
2325 * sync compaction recently failed. In this is the case and the caller
2326 * has requested the system not be heavily disrupted, fail the
2327 * allocation now instead of entering direct reclaim
2328 */
2329 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2330 goto nopage;
2331
11e33f6a
MG
2332 /* Try direct reclaim and then allocating */
2333 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2334 zonelist, high_zoneidx,
2335 nodemask,
5117f45d 2336 alloc_flags, preferred_zone,
3dd28266 2337 migratetype, &did_some_progress);
11e33f6a
MG
2338 if (page)
2339 goto got_pg;
1da177e4 2340
e33c3b5e 2341 /*
11e33f6a
MG
2342 * If we failed to make any progress reclaiming, then we are
2343 * running out of options and have to consider going OOM
e33c3b5e 2344 */
11e33f6a
MG
2345 if (!did_some_progress) {
2346 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2347 if (oom_killer_disabled)
2348 goto nopage;
29fd66d2
DR
2349 /* Coredumps can quickly deplete all memory reserves */
2350 if ((current->flags & PF_DUMPCORE) &&
2351 !(gfp_mask & __GFP_NOFAIL))
2352 goto nopage;
11e33f6a
MG
2353 page = __alloc_pages_may_oom(gfp_mask, order,
2354 zonelist, high_zoneidx,
3dd28266
MG
2355 nodemask, preferred_zone,
2356 migratetype);
11e33f6a
MG
2357 if (page)
2358 goto got_pg;
1da177e4 2359
03668b3c
DR
2360 if (!(gfp_mask & __GFP_NOFAIL)) {
2361 /*
2362 * The oom killer is not called for high-order
2363 * allocations that may fail, so if no progress
2364 * is being made, there are no other options and
2365 * retrying is unlikely to help.
2366 */
2367 if (order > PAGE_ALLOC_COSTLY_ORDER)
2368 goto nopage;
2369 /*
2370 * The oom killer is not called for lowmem
2371 * allocations to prevent needlessly killing
2372 * innocent tasks.
2373 */
2374 if (high_zoneidx < ZONE_NORMAL)
2375 goto nopage;
2376 }
e2c55dc8 2377
ff0ceb9d
DR
2378 goto restart;
2379 }
1da177e4
LT
2380 }
2381
11e33f6a 2382 /* Check if we should retry the allocation */
a41f24ea 2383 pages_reclaimed += did_some_progress;
f90ac398
MG
2384 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2385 pages_reclaimed)) {
11e33f6a 2386 /* Wait for some write requests to complete then retry */
0e093d99 2387 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2388 goto rebalance;
3e7d3449
MG
2389 } else {
2390 /*
2391 * High-order allocations do not necessarily loop after
2392 * direct reclaim and reclaim/compaction depends on compaction
2393 * being called after reclaim so call directly if necessary
2394 */
2395 page = __alloc_pages_direct_compact(gfp_mask, order,
2396 zonelist, high_zoneidx,
2397 nodemask,
2398 alloc_flags, preferred_zone,
66199712
MG
2399 migratetype, sync_migration,
2400 &deferred_compaction,
2401 &did_some_progress);
3e7d3449
MG
2402 if (page)
2403 goto got_pg;
1da177e4
LT
2404 }
2405
2406nopage:
a238ab5b 2407 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2408 return page;
1da177e4 2409got_pg:
b1eeab67
VN
2410 if (kmemcheck_enabled)
2411 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2412 return page;
11e33f6a 2413
1da177e4 2414}
11e33f6a
MG
2415
2416/*
2417 * This is the 'heart' of the zoned buddy allocator.
2418 */
2419struct page *
2420__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2421 struct zonelist *zonelist, nodemask_t *nodemask)
2422{
2423 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2424 struct zone *preferred_zone;
cc9a6c87 2425 struct page *page = NULL;
3dd28266 2426 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2427 unsigned int cpuset_mems_cookie;
11e33f6a 2428
dcce284a
BH
2429 gfp_mask &= gfp_allowed_mask;
2430
11e33f6a
MG
2431 lockdep_trace_alloc(gfp_mask);
2432
2433 might_sleep_if(gfp_mask & __GFP_WAIT);
2434
2435 if (should_fail_alloc_page(gfp_mask, order))
2436 return NULL;
2437
2438 /*
2439 * Check the zones suitable for the gfp_mask contain at least one
2440 * valid zone. It's possible to have an empty zonelist as a result
2441 * of GFP_THISNODE and a memoryless node
2442 */
2443 if (unlikely(!zonelist->_zonerefs->zone))
2444 return NULL;
2445
cc9a6c87
MG
2446retry_cpuset:
2447 cpuset_mems_cookie = get_mems_allowed();
2448
5117f45d 2449 /* The preferred zone is used for statistics later */
f33261d7
DR
2450 first_zones_zonelist(zonelist, high_zoneidx,
2451 nodemask ? : &cpuset_current_mems_allowed,
2452 &preferred_zone);
cc9a6c87
MG
2453 if (!preferred_zone)
2454 goto out;
5117f45d
MG
2455
2456 /* First allocation attempt */
11e33f6a 2457 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2458 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2459 preferred_zone, migratetype);
11e33f6a
MG
2460 if (unlikely(!page))
2461 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2462 zonelist, high_zoneidx, nodemask,
3dd28266 2463 preferred_zone, migratetype);
11e33f6a 2464
4b4f278c 2465 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2466
2467out:
2468 /*
2469 * When updating a task's mems_allowed, it is possible to race with
2470 * parallel threads in such a way that an allocation can fail while
2471 * the mask is being updated. If a page allocation is about to fail,
2472 * check if the cpuset changed during allocation and if so, retry.
2473 */
2474 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2475 goto retry_cpuset;
2476
11e33f6a 2477 return page;
1da177e4 2478}
d239171e 2479EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2480
2481/*
2482 * Common helper functions.
2483 */
920c7a5d 2484unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2485{
945a1113
AM
2486 struct page *page;
2487
2488 /*
2489 * __get_free_pages() returns a 32-bit address, which cannot represent
2490 * a highmem page
2491 */
2492 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2493
1da177e4
LT
2494 page = alloc_pages(gfp_mask, order);
2495 if (!page)
2496 return 0;
2497 return (unsigned long) page_address(page);
2498}
1da177e4
LT
2499EXPORT_SYMBOL(__get_free_pages);
2500
920c7a5d 2501unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2502{
945a1113 2503 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2504}
1da177e4
LT
2505EXPORT_SYMBOL(get_zeroed_page);
2506
920c7a5d 2507void __free_pages(struct page *page, unsigned int order)
1da177e4 2508{
b5810039 2509 if (put_page_testzero(page)) {
1da177e4 2510 if (order == 0)
fc91668e 2511 free_hot_cold_page(page, 0);
1da177e4
LT
2512 else
2513 __free_pages_ok(page, order);
2514 }
2515}
2516
2517EXPORT_SYMBOL(__free_pages);
2518
920c7a5d 2519void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2520{
2521 if (addr != 0) {
725d704e 2522 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2523 __free_pages(virt_to_page((void *)addr), order);
2524 }
2525}
2526
2527EXPORT_SYMBOL(free_pages);
2528
ee85c2e1
AK
2529static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2530{
2531 if (addr) {
2532 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2533 unsigned long used = addr + PAGE_ALIGN(size);
2534
2535 split_page(virt_to_page((void *)addr), order);
2536 while (used < alloc_end) {
2537 free_page(used);
2538 used += PAGE_SIZE;
2539 }
2540 }
2541 return (void *)addr;
2542}
2543
2be0ffe2
TT
2544/**
2545 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2546 * @size: the number of bytes to allocate
2547 * @gfp_mask: GFP flags for the allocation
2548 *
2549 * This function is similar to alloc_pages(), except that it allocates the
2550 * minimum number of pages to satisfy the request. alloc_pages() can only
2551 * allocate memory in power-of-two pages.
2552 *
2553 * This function is also limited by MAX_ORDER.
2554 *
2555 * Memory allocated by this function must be released by free_pages_exact().
2556 */
2557void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2558{
2559 unsigned int order = get_order(size);
2560 unsigned long addr;
2561
2562 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2563 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2564}
2565EXPORT_SYMBOL(alloc_pages_exact);
2566
ee85c2e1
AK
2567/**
2568 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2569 * pages on a node.
b5e6ab58 2570 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2571 * @size: the number of bytes to allocate
2572 * @gfp_mask: GFP flags for the allocation
2573 *
2574 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2575 * back.
2576 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2577 * but is not exact.
2578 */
2579void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2580{
2581 unsigned order = get_order(size);
2582 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2583 if (!p)
2584 return NULL;
2585 return make_alloc_exact((unsigned long)page_address(p), order, size);
2586}
2587EXPORT_SYMBOL(alloc_pages_exact_nid);
2588
2be0ffe2
TT
2589/**
2590 * free_pages_exact - release memory allocated via alloc_pages_exact()
2591 * @virt: the value returned by alloc_pages_exact.
2592 * @size: size of allocation, same value as passed to alloc_pages_exact().
2593 *
2594 * Release the memory allocated by a previous call to alloc_pages_exact.
2595 */
2596void free_pages_exact(void *virt, size_t size)
2597{
2598 unsigned long addr = (unsigned long)virt;
2599 unsigned long end = addr + PAGE_ALIGN(size);
2600
2601 while (addr < end) {
2602 free_page(addr);
2603 addr += PAGE_SIZE;
2604 }
2605}
2606EXPORT_SYMBOL(free_pages_exact);
2607
1da177e4
LT
2608static unsigned int nr_free_zone_pages(int offset)
2609{
dd1a239f 2610 struct zoneref *z;
54a6eb5c
MG
2611 struct zone *zone;
2612
e310fd43 2613 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2614 unsigned int sum = 0;
2615
0e88460d 2616 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2617
54a6eb5c 2618 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2619 unsigned long size = zone->present_pages;
41858966 2620 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2621 if (size > high)
2622 sum += size - high;
1da177e4
LT
2623 }
2624
2625 return sum;
2626}
2627
2628/*
2629 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2630 */
2631unsigned int nr_free_buffer_pages(void)
2632{
af4ca457 2633 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2634}
c2f1a551 2635EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2636
2637/*
2638 * Amount of free RAM allocatable within all zones
2639 */
2640unsigned int nr_free_pagecache_pages(void)
2641{
2a1e274a 2642 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2643}
08e0f6a9
CL
2644
2645static inline void show_node(struct zone *zone)
1da177e4 2646{
08e0f6a9 2647 if (NUMA_BUILD)
25ba77c1 2648 printk("Node %d ", zone_to_nid(zone));
1da177e4 2649}
1da177e4 2650
1da177e4
LT
2651void si_meminfo(struct sysinfo *val)
2652{
2653 val->totalram = totalram_pages;
2654 val->sharedram = 0;
d23ad423 2655 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2656 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2657 val->totalhigh = totalhigh_pages;
2658 val->freehigh = nr_free_highpages();
1da177e4
LT
2659 val->mem_unit = PAGE_SIZE;
2660}
2661
2662EXPORT_SYMBOL(si_meminfo);
2663
2664#ifdef CONFIG_NUMA
2665void si_meminfo_node(struct sysinfo *val, int nid)
2666{
2667 pg_data_t *pgdat = NODE_DATA(nid);
2668
2669 val->totalram = pgdat->node_present_pages;
d23ad423 2670 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2671#ifdef CONFIG_HIGHMEM
1da177e4 2672 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2673 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2674 NR_FREE_PAGES);
98d2b0eb
CL
2675#else
2676 val->totalhigh = 0;
2677 val->freehigh = 0;
2678#endif
1da177e4
LT
2679 val->mem_unit = PAGE_SIZE;
2680}
2681#endif
2682
ddd588b5 2683/*
7bf02ea2
DR
2684 * Determine whether the node should be displayed or not, depending on whether
2685 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2686 */
7bf02ea2 2687bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2688{
2689 bool ret = false;
cc9a6c87 2690 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2691
2692 if (!(flags & SHOW_MEM_FILTER_NODES))
2693 goto out;
2694
cc9a6c87
MG
2695 do {
2696 cpuset_mems_cookie = get_mems_allowed();
2697 ret = !node_isset(nid, cpuset_current_mems_allowed);
2698 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2699out:
2700 return ret;
2701}
2702
1da177e4
LT
2703#define K(x) ((x) << (PAGE_SHIFT-10))
2704
2705/*
2706 * Show free area list (used inside shift_scroll-lock stuff)
2707 * We also calculate the percentage fragmentation. We do this by counting the
2708 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2709 * Suppresses nodes that are not allowed by current's cpuset if
2710 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2711 */
7bf02ea2 2712void show_free_areas(unsigned int filter)
1da177e4 2713{
c7241913 2714 int cpu;
1da177e4
LT
2715 struct zone *zone;
2716
ee99c71c 2717 for_each_populated_zone(zone) {
7bf02ea2 2718 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2719 continue;
c7241913
JS
2720 show_node(zone);
2721 printk("%s per-cpu:\n", zone->name);
1da177e4 2722
6b482c67 2723 for_each_online_cpu(cpu) {
1da177e4
LT
2724 struct per_cpu_pageset *pageset;
2725
99dcc3e5 2726 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2727
3dfa5721
CL
2728 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2729 cpu, pageset->pcp.high,
2730 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2731 }
2732 }
2733
a731286d
KM
2734 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2735 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2736 " unevictable:%lu"
b76146ed 2737 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2738 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2739 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2740 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2741 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2742 global_page_state(NR_ISOLATED_ANON),
2743 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2744 global_page_state(NR_INACTIVE_FILE),
a731286d 2745 global_page_state(NR_ISOLATED_FILE),
7b854121 2746 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2747 global_page_state(NR_FILE_DIRTY),
ce866b34 2748 global_page_state(NR_WRITEBACK),
fd39fc85 2749 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2750 global_page_state(NR_FREE_PAGES),
3701b033
KM
2751 global_page_state(NR_SLAB_RECLAIMABLE),
2752 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2753 global_page_state(NR_FILE_MAPPED),
4b02108a 2754 global_page_state(NR_SHMEM),
a25700a5
AM
2755 global_page_state(NR_PAGETABLE),
2756 global_page_state(NR_BOUNCE));
1da177e4 2757
ee99c71c 2758 for_each_populated_zone(zone) {
1da177e4
LT
2759 int i;
2760
7bf02ea2 2761 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2762 continue;
1da177e4
LT
2763 show_node(zone);
2764 printk("%s"
2765 " free:%lukB"
2766 " min:%lukB"
2767 " low:%lukB"
2768 " high:%lukB"
4f98a2fe
RR
2769 " active_anon:%lukB"
2770 " inactive_anon:%lukB"
2771 " active_file:%lukB"
2772 " inactive_file:%lukB"
7b854121 2773 " unevictable:%lukB"
a731286d
KM
2774 " isolated(anon):%lukB"
2775 " isolated(file):%lukB"
1da177e4 2776 " present:%lukB"
4a0aa73f
KM
2777 " mlocked:%lukB"
2778 " dirty:%lukB"
2779 " writeback:%lukB"
2780 " mapped:%lukB"
4b02108a 2781 " shmem:%lukB"
4a0aa73f
KM
2782 " slab_reclaimable:%lukB"
2783 " slab_unreclaimable:%lukB"
c6a7f572 2784 " kernel_stack:%lukB"
4a0aa73f
KM
2785 " pagetables:%lukB"
2786 " unstable:%lukB"
2787 " bounce:%lukB"
2788 " writeback_tmp:%lukB"
1da177e4
LT
2789 " pages_scanned:%lu"
2790 " all_unreclaimable? %s"
2791 "\n",
2792 zone->name,
88f5acf8 2793 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2794 K(min_wmark_pages(zone)),
2795 K(low_wmark_pages(zone)),
2796 K(high_wmark_pages(zone)),
4f98a2fe
RR
2797 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2798 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2799 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2800 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2801 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2802 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2803 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2804 K(zone->present_pages),
4a0aa73f
KM
2805 K(zone_page_state(zone, NR_MLOCK)),
2806 K(zone_page_state(zone, NR_FILE_DIRTY)),
2807 K(zone_page_state(zone, NR_WRITEBACK)),
2808 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2809 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2810 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2811 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2812 zone_page_state(zone, NR_KERNEL_STACK) *
2813 THREAD_SIZE / 1024,
4a0aa73f
KM
2814 K(zone_page_state(zone, NR_PAGETABLE)),
2815 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2816 K(zone_page_state(zone, NR_BOUNCE)),
2817 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2818 zone->pages_scanned,
93e4a89a 2819 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2820 );
2821 printk("lowmem_reserve[]:");
2822 for (i = 0; i < MAX_NR_ZONES; i++)
2823 printk(" %lu", zone->lowmem_reserve[i]);
2824 printk("\n");
2825 }
2826
ee99c71c 2827 for_each_populated_zone(zone) {
8f9de51a 2828 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2829
7bf02ea2 2830 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2831 continue;
1da177e4
LT
2832 show_node(zone);
2833 printk("%s: ", zone->name);
1da177e4
LT
2834
2835 spin_lock_irqsave(&zone->lock, flags);
2836 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2837 nr[order] = zone->free_area[order].nr_free;
2838 total += nr[order] << order;
1da177e4
LT
2839 }
2840 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2841 for (order = 0; order < MAX_ORDER; order++)
2842 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2843 printk("= %lukB\n", K(total));
2844 }
2845
e6f3602d
LW
2846 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2847
1da177e4
LT
2848 show_swap_cache_info();
2849}
2850
19770b32
MG
2851static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2852{
2853 zoneref->zone = zone;
2854 zoneref->zone_idx = zone_idx(zone);
2855}
2856
1da177e4
LT
2857/*
2858 * Builds allocation fallback zone lists.
1a93205b
CL
2859 *
2860 * Add all populated zones of a node to the zonelist.
1da177e4 2861 */
f0c0b2b8
KH
2862static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2863 int nr_zones, enum zone_type zone_type)
1da177e4 2864{
1a93205b
CL
2865 struct zone *zone;
2866
98d2b0eb 2867 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2868 zone_type++;
02a68a5e
CL
2869
2870 do {
2f6726e5 2871 zone_type--;
070f8032 2872 zone = pgdat->node_zones + zone_type;
1a93205b 2873 if (populated_zone(zone)) {
dd1a239f
MG
2874 zoneref_set_zone(zone,
2875 &zonelist->_zonerefs[nr_zones++]);
070f8032 2876 check_highest_zone(zone_type);
1da177e4 2877 }
02a68a5e 2878
2f6726e5 2879 } while (zone_type);
070f8032 2880 return nr_zones;
1da177e4
LT
2881}
2882
f0c0b2b8
KH
2883
2884/*
2885 * zonelist_order:
2886 * 0 = automatic detection of better ordering.
2887 * 1 = order by ([node] distance, -zonetype)
2888 * 2 = order by (-zonetype, [node] distance)
2889 *
2890 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2891 * the same zonelist. So only NUMA can configure this param.
2892 */
2893#define ZONELIST_ORDER_DEFAULT 0
2894#define ZONELIST_ORDER_NODE 1
2895#define ZONELIST_ORDER_ZONE 2
2896
2897/* zonelist order in the kernel.
2898 * set_zonelist_order() will set this to NODE or ZONE.
2899 */
2900static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2901static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2902
2903
1da177e4 2904#ifdef CONFIG_NUMA
f0c0b2b8
KH
2905/* The value user specified ....changed by config */
2906static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2907/* string for sysctl */
2908#define NUMA_ZONELIST_ORDER_LEN 16
2909char numa_zonelist_order[16] = "default";
2910
2911/*
2912 * interface for configure zonelist ordering.
2913 * command line option "numa_zonelist_order"
2914 * = "[dD]efault - default, automatic configuration.
2915 * = "[nN]ode - order by node locality, then by zone within node
2916 * = "[zZ]one - order by zone, then by locality within zone
2917 */
2918
2919static int __parse_numa_zonelist_order(char *s)
2920{
2921 if (*s == 'd' || *s == 'D') {
2922 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2923 } else if (*s == 'n' || *s == 'N') {
2924 user_zonelist_order = ZONELIST_ORDER_NODE;
2925 } else if (*s == 'z' || *s == 'Z') {
2926 user_zonelist_order = ZONELIST_ORDER_ZONE;
2927 } else {
2928 printk(KERN_WARNING
2929 "Ignoring invalid numa_zonelist_order value: "
2930 "%s\n", s);
2931 return -EINVAL;
2932 }
2933 return 0;
2934}
2935
2936static __init int setup_numa_zonelist_order(char *s)
2937{
ecb256f8
VL
2938 int ret;
2939
2940 if (!s)
2941 return 0;
2942
2943 ret = __parse_numa_zonelist_order(s);
2944 if (ret == 0)
2945 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2946
2947 return ret;
f0c0b2b8
KH
2948}
2949early_param("numa_zonelist_order", setup_numa_zonelist_order);
2950
2951/*
2952 * sysctl handler for numa_zonelist_order
2953 */
2954int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2955 void __user *buffer, size_t *length,
f0c0b2b8
KH
2956 loff_t *ppos)
2957{
2958 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2959 int ret;
443c6f14 2960 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2961
443c6f14 2962 mutex_lock(&zl_order_mutex);
f0c0b2b8 2963 if (write)
443c6f14 2964 strcpy(saved_string, (char*)table->data);
8d65af78 2965 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2966 if (ret)
443c6f14 2967 goto out;
f0c0b2b8
KH
2968 if (write) {
2969 int oldval = user_zonelist_order;
2970 if (__parse_numa_zonelist_order((char*)table->data)) {
2971 /*
2972 * bogus value. restore saved string
2973 */
2974 strncpy((char*)table->data, saved_string,
2975 NUMA_ZONELIST_ORDER_LEN);
2976 user_zonelist_order = oldval;
4eaf3f64
HL
2977 } else if (oldval != user_zonelist_order) {
2978 mutex_lock(&zonelists_mutex);
1f522509 2979 build_all_zonelists(NULL);
4eaf3f64
HL
2980 mutex_unlock(&zonelists_mutex);
2981 }
f0c0b2b8 2982 }
443c6f14
AK
2983out:
2984 mutex_unlock(&zl_order_mutex);
2985 return ret;
f0c0b2b8
KH
2986}
2987
2988
62bc62a8 2989#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2990static int node_load[MAX_NUMNODES];
2991
1da177e4 2992/**
4dc3b16b 2993 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2994 * @node: node whose fallback list we're appending
2995 * @used_node_mask: nodemask_t of already used nodes
2996 *
2997 * We use a number of factors to determine which is the next node that should
2998 * appear on a given node's fallback list. The node should not have appeared
2999 * already in @node's fallback list, and it should be the next closest node
3000 * according to the distance array (which contains arbitrary distance values
3001 * from each node to each node in the system), and should also prefer nodes
3002 * with no CPUs, since presumably they'll have very little allocation pressure
3003 * on them otherwise.
3004 * It returns -1 if no node is found.
3005 */
f0c0b2b8 3006static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3007{
4cf808eb 3008 int n, val;
1da177e4
LT
3009 int min_val = INT_MAX;
3010 int best_node = -1;
a70f7302 3011 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3012
4cf808eb
LT
3013 /* Use the local node if we haven't already */
3014 if (!node_isset(node, *used_node_mask)) {
3015 node_set(node, *used_node_mask);
3016 return node;
3017 }
1da177e4 3018
37b07e41 3019 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
3020
3021 /* Don't want a node to appear more than once */
3022 if (node_isset(n, *used_node_mask))
3023 continue;
3024
1da177e4
LT
3025 /* Use the distance array to find the distance */
3026 val = node_distance(node, n);
3027
4cf808eb
LT
3028 /* Penalize nodes under us ("prefer the next node") */
3029 val += (n < node);
3030
1da177e4 3031 /* Give preference to headless and unused nodes */
a70f7302
RR
3032 tmp = cpumask_of_node(n);
3033 if (!cpumask_empty(tmp))
1da177e4
LT
3034 val += PENALTY_FOR_NODE_WITH_CPUS;
3035
3036 /* Slight preference for less loaded node */
3037 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3038 val += node_load[n];
3039
3040 if (val < min_val) {
3041 min_val = val;
3042 best_node = n;
3043 }
3044 }
3045
3046 if (best_node >= 0)
3047 node_set(best_node, *used_node_mask);
3048
3049 return best_node;
3050}
3051
f0c0b2b8
KH
3052
3053/*
3054 * Build zonelists ordered by node and zones within node.
3055 * This results in maximum locality--normal zone overflows into local
3056 * DMA zone, if any--but risks exhausting DMA zone.
3057 */
3058static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3059{
f0c0b2b8 3060 int j;
1da177e4 3061 struct zonelist *zonelist;
f0c0b2b8 3062
54a6eb5c 3063 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3064 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3065 ;
3066 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3067 MAX_NR_ZONES - 1);
dd1a239f
MG
3068 zonelist->_zonerefs[j].zone = NULL;
3069 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3070}
3071
523b9458
CL
3072/*
3073 * Build gfp_thisnode zonelists
3074 */
3075static void build_thisnode_zonelists(pg_data_t *pgdat)
3076{
523b9458
CL
3077 int j;
3078 struct zonelist *zonelist;
3079
54a6eb5c
MG
3080 zonelist = &pgdat->node_zonelists[1];
3081 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3082 zonelist->_zonerefs[j].zone = NULL;
3083 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3084}
3085
f0c0b2b8
KH
3086/*
3087 * Build zonelists ordered by zone and nodes within zones.
3088 * This results in conserving DMA zone[s] until all Normal memory is
3089 * exhausted, but results in overflowing to remote node while memory
3090 * may still exist in local DMA zone.
3091 */
3092static int node_order[MAX_NUMNODES];
3093
3094static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3095{
f0c0b2b8
KH
3096 int pos, j, node;
3097 int zone_type; /* needs to be signed */
3098 struct zone *z;
3099 struct zonelist *zonelist;
3100
54a6eb5c
MG
3101 zonelist = &pgdat->node_zonelists[0];
3102 pos = 0;
3103 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3104 for (j = 0; j < nr_nodes; j++) {
3105 node = node_order[j];
3106 z = &NODE_DATA(node)->node_zones[zone_type];
3107 if (populated_zone(z)) {
dd1a239f
MG
3108 zoneref_set_zone(z,
3109 &zonelist->_zonerefs[pos++]);
54a6eb5c 3110 check_highest_zone(zone_type);
f0c0b2b8
KH
3111 }
3112 }
f0c0b2b8 3113 }
dd1a239f
MG
3114 zonelist->_zonerefs[pos].zone = NULL;
3115 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3116}
3117
3118static int default_zonelist_order(void)
3119{
3120 int nid, zone_type;
3121 unsigned long low_kmem_size,total_size;
3122 struct zone *z;
3123 int average_size;
3124 /*
88393161 3125 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3126 * If they are really small and used heavily, the system can fall
3127 * into OOM very easily.
e325c90f 3128 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3129 */
3130 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3131 low_kmem_size = 0;
3132 total_size = 0;
3133 for_each_online_node(nid) {
3134 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3135 z = &NODE_DATA(nid)->node_zones[zone_type];
3136 if (populated_zone(z)) {
3137 if (zone_type < ZONE_NORMAL)
3138 low_kmem_size += z->present_pages;
3139 total_size += z->present_pages;
e325c90f
DR
3140 } else if (zone_type == ZONE_NORMAL) {
3141 /*
3142 * If any node has only lowmem, then node order
3143 * is preferred to allow kernel allocations
3144 * locally; otherwise, they can easily infringe
3145 * on other nodes when there is an abundance of
3146 * lowmem available to allocate from.
3147 */
3148 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3149 }
3150 }
3151 }
3152 if (!low_kmem_size || /* there are no DMA area. */
3153 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3154 return ZONELIST_ORDER_NODE;
3155 /*
3156 * look into each node's config.
3157 * If there is a node whose DMA/DMA32 memory is very big area on
3158 * local memory, NODE_ORDER may be suitable.
3159 */
37b07e41
LS
3160 average_size = total_size /
3161 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3162 for_each_online_node(nid) {
3163 low_kmem_size = 0;
3164 total_size = 0;
3165 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3166 z = &NODE_DATA(nid)->node_zones[zone_type];
3167 if (populated_zone(z)) {
3168 if (zone_type < ZONE_NORMAL)
3169 low_kmem_size += z->present_pages;
3170 total_size += z->present_pages;
3171 }
3172 }
3173 if (low_kmem_size &&
3174 total_size > average_size && /* ignore small node */
3175 low_kmem_size > total_size * 70/100)
3176 return ZONELIST_ORDER_NODE;
3177 }
3178 return ZONELIST_ORDER_ZONE;
3179}
3180
3181static void set_zonelist_order(void)
3182{
3183 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3184 current_zonelist_order = default_zonelist_order();
3185 else
3186 current_zonelist_order = user_zonelist_order;
3187}
3188
3189static void build_zonelists(pg_data_t *pgdat)
3190{
3191 int j, node, load;
3192 enum zone_type i;
1da177e4 3193 nodemask_t used_mask;
f0c0b2b8
KH
3194 int local_node, prev_node;
3195 struct zonelist *zonelist;
3196 int order = current_zonelist_order;
1da177e4
LT
3197
3198 /* initialize zonelists */
523b9458 3199 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3200 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3201 zonelist->_zonerefs[0].zone = NULL;
3202 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3203 }
3204
3205 /* NUMA-aware ordering of nodes */
3206 local_node = pgdat->node_id;
62bc62a8 3207 load = nr_online_nodes;
1da177e4
LT
3208 prev_node = local_node;
3209 nodes_clear(used_mask);
f0c0b2b8 3210
f0c0b2b8
KH
3211 memset(node_order, 0, sizeof(node_order));
3212 j = 0;
3213
1da177e4 3214 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3215 int distance = node_distance(local_node, node);
3216
3217 /*
3218 * If another node is sufficiently far away then it is better
3219 * to reclaim pages in a zone before going off node.
3220 */
3221 if (distance > RECLAIM_DISTANCE)
3222 zone_reclaim_mode = 1;
3223
1da177e4
LT
3224 /*
3225 * We don't want to pressure a particular node.
3226 * So adding penalty to the first node in same
3227 * distance group to make it round-robin.
3228 */
9eeff239 3229 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3230 node_load[node] = load;
3231
1da177e4
LT
3232 prev_node = node;
3233 load--;
f0c0b2b8
KH
3234 if (order == ZONELIST_ORDER_NODE)
3235 build_zonelists_in_node_order(pgdat, node);
3236 else
3237 node_order[j++] = node; /* remember order */
3238 }
1da177e4 3239
f0c0b2b8
KH
3240 if (order == ZONELIST_ORDER_ZONE) {
3241 /* calculate node order -- i.e., DMA last! */
3242 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3243 }
523b9458
CL
3244
3245 build_thisnode_zonelists(pgdat);
1da177e4
LT
3246}
3247
9276b1bc 3248/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3249static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3250{
54a6eb5c
MG
3251 struct zonelist *zonelist;
3252 struct zonelist_cache *zlc;
dd1a239f 3253 struct zoneref *z;
9276b1bc 3254
54a6eb5c
MG
3255 zonelist = &pgdat->node_zonelists[0];
3256 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3257 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3258 for (z = zonelist->_zonerefs; z->zone; z++)
3259 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3260}
3261
7aac7898
LS
3262#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3263/*
3264 * Return node id of node used for "local" allocations.
3265 * I.e., first node id of first zone in arg node's generic zonelist.
3266 * Used for initializing percpu 'numa_mem', which is used primarily
3267 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3268 */
3269int local_memory_node(int node)
3270{
3271 struct zone *zone;
3272
3273 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3274 gfp_zone(GFP_KERNEL),
3275 NULL,
3276 &zone);
3277 return zone->node;
3278}
3279#endif
f0c0b2b8 3280
1da177e4
LT
3281#else /* CONFIG_NUMA */
3282
f0c0b2b8
KH
3283static void set_zonelist_order(void)
3284{
3285 current_zonelist_order = ZONELIST_ORDER_ZONE;
3286}
3287
3288static void build_zonelists(pg_data_t *pgdat)
1da177e4 3289{
19655d34 3290 int node, local_node;
54a6eb5c
MG
3291 enum zone_type j;
3292 struct zonelist *zonelist;
1da177e4
LT
3293
3294 local_node = pgdat->node_id;
1da177e4 3295
54a6eb5c
MG
3296 zonelist = &pgdat->node_zonelists[0];
3297 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3298
54a6eb5c
MG
3299 /*
3300 * Now we build the zonelist so that it contains the zones
3301 * of all the other nodes.
3302 * We don't want to pressure a particular node, so when
3303 * building the zones for node N, we make sure that the
3304 * zones coming right after the local ones are those from
3305 * node N+1 (modulo N)
3306 */
3307 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3308 if (!node_online(node))
3309 continue;
3310 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3311 MAX_NR_ZONES - 1);
1da177e4 3312 }
54a6eb5c
MG
3313 for (node = 0; node < local_node; node++) {
3314 if (!node_online(node))
3315 continue;
3316 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3317 MAX_NR_ZONES - 1);
3318 }
3319
dd1a239f
MG
3320 zonelist->_zonerefs[j].zone = NULL;
3321 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3322}
3323
9276b1bc 3324/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3325static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3326{
54a6eb5c 3327 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3328}
3329
1da177e4
LT
3330#endif /* CONFIG_NUMA */
3331
99dcc3e5
CL
3332/*
3333 * Boot pageset table. One per cpu which is going to be used for all
3334 * zones and all nodes. The parameters will be set in such a way
3335 * that an item put on a list will immediately be handed over to
3336 * the buddy list. This is safe since pageset manipulation is done
3337 * with interrupts disabled.
3338 *
3339 * The boot_pagesets must be kept even after bootup is complete for
3340 * unused processors and/or zones. They do play a role for bootstrapping
3341 * hotplugged processors.
3342 *
3343 * zoneinfo_show() and maybe other functions do
3344 * not check if the processor is online before following the pageset pointer.
3345 * Other parts of the kernel may not check if the zone is available.
3346 */
3347static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3348static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3349static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3350
4eaf3f64
HL
3351/*
3352 * Global mutex to protect against size modification of zonelists
3353 * as well as to serialize pageset setup for the new populated zone.
3354 */
3355DEFINE_MUTEX(zonelists_mutex);
3356
9b1a4d38 3357/* return values int ....just for stop_machine() */
1f522509 3358static __init_refok int __build_all_zonelists(void *data)
1da177e4 3359{
6811378e 3360 int nid;
99dcc3e5 3361 int cpu;
9276b1bc 3362
7f9cfb31
BL
3363#ifdef CONFIG_NUMA
3364 memset(node_load, 0, sizeof(node_load));
3365#endif
9276b1bc 3366 for_each_online_node(nid) {
7ea1530a
CL
3367 pg_data_t *pgdat = NODE_DATA(nid);
3368
3369 build_zonelists(pgdat);
3370 build_zonelist_cache(pgdat);
9276b1bc 3371 }
99dcc3e5
CL
3372
3373 /*
3374 * Initialize the boot_pagesets that are going to be used
3375 * for bootstrapping processors. The real pagesets for
3376 * each zone will be allocated later when the per cpu
3377 * allocator is available.
3378 *
3379 * boot_pagesets are used also for bootstrapping offline
3380 * cpus if the system is already booted because the pagesets
3381 * are needed to initialize allocators on a specific cpu too.
3382 * F.e. the percpu allocator needs the page allocator which
3383 * needs the percpu allocator in order to allocate its pagesets
3384 * (a chicken-egg dilemma).
3385 */
7aac7898 3386 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3387 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3388
7aac7898
LS
3389#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3390 /*
3391 * We now know the "local memory node" for each node--
3392 * i.e., the node of the first zone in the generic zonelist.
3393 * Set up numa_mem percpu variable for on-line cpus. During
3394 * boot, only the boot cpu should be on-line; we'll init the
3395 * secondary cpus' numa_mem as they come on-line. During
3396 * node/memory hotplug, we'll fixup all on-line cpus.
3397 */
3398 if (cpu_online(cpu))
3399 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3400#endif
3401 }
3402
6811378e
YG
3403 return 0;
3404}
3405
4eaf3f64
HL
3406/*
3407 * Called with zonelists_mutex held always
3408 * unless system_state == SYSTEM_BOOTING.
3409 */
9f6ae448 3410void __ref build_all_zonelists(void *data)
6811378e 3411{
f0c0b2b8
KH
3412 set_zonelist_order();
3413
6811378e 3414 if (system_state == SYSTEM_BOOTING) {
423b41d7 3415 __build_all_zonelists(NULL);
68ad8df4 3416 mminit_verify_zonelist();
6811378e
YG
3417 cpuset_init_current_mems_allowed();
3418 } else {
183ff22b 3419 /* we have to stop all cpus to guarantee there is no user
6811378e 3420 of zonelist */
e9959f0f
KH
3421#ifdef CONFIG_MEMORY_HOTPLUG
3422 if (data)
3423 setup_zone_pageset((struct zone *)data);
3424#endif
3425 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3426 /* cpuset refresh routine should be here */
3427 }
bd1e22b8 3428 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3429 /*
3430 * Disable grouping by mobility if the number of pages in the
3431 * system is too low to allow the mechanism to work. It would be
3432 * more accurate, but expensive to check per-zone. This check is
3433 * made on memory-hotadd so a system can start with mobility
3434 * disabled and enable it later
3435 */
d9c23400 3436 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3437 page_group_by_mobility_disabled = 1;
3438 else
3439 page_group_by_mobility_disabled = 0;
3440
3441 printk("Built %i zonelists in %s order, mobility grouping %s. "
3442 "Total pages: %ld\n",
62bc62a8 3443 nr_online_nodes,
f0c0b2b8 3444 zonelist_order_name[current_zonelist_order],
9ef9acb0 3445 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3446 vm_total_pages);
3447#ifdef CONFIG_NUMA
3448 printk("Policy zone: %s\n", zone_names[policy_zone]);
3449#endif
1da177e4
LT
3450}
3451
3452/*
3453 * Helper functions to size the waitqueue hash table.
3454 * Essentially these want to choose hash table sizes sufficiently
3455 * large so that collisions trying to wait on pages are rare.
3456 * But in fact, the number of active page waitqueues on typical
3457 * systems is ridiculously low, less than 200. So this is even
3458 * conservative, even though it seems large.
3459 *
3460 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3461 * waitqueues, i.e. the size of the waitq table given the number of pages.
3462 */
3463#define PAGES_PER_WAITQUEUE 256
3464
cca448fe 3465#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3466static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3467{
3468 unsigned long size = 1;
3469
3470 pages /= PAGES_PER_WAITQUEUE;
3471
3472 while (size < pages)
3473 size <<= 1;
3474
3475 /*
3476 * Once we have dozens or even hundreds of threads sleeping
3477 * on IO we've got bigger problems than wait queue collision.
3478 * Limit the size of the wait table to a reasonable size.
3479 */
3480 size = min(size, 4096UL);
3481
3482 return max(size, 4UL);
3483}
cca448fe
YG
3484#else
3485/*
3486 * A zone's size might be changed by hot-add, so it is not possible to determine
3487 * a suitable size for its wait_table. So we use the maximum size now.
3488 *
3489 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3490 *
3491 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3492 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3493 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3494 *
3495 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3496 * or more by the traditional way. (See above). It equals:
3497 *
3498 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3499 * ia64(16K page size) : = ( 8G + 4M)byte.
3500 * powerpc (64K page size) : = (32G +16M)byte.
3501 */
3502static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3503{
3504 return 4096UL;
3505}
3506#endif
1da177e4
LT
3507
3508/*
3509 * This is an integer logarithm so that shifts can be used later
3510 * to extract the more random high bits from the multiplicative
3511 * hash function before the remainder is taken.
3512 */
3513static inline unsigned long wait_table_bits(unsigned long size)
3514{
3515 return ffz(~size);
3516}
3517
3518#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3519
6d3163ce
AH
3520/*
3521 * Check if a pageblock contains reserved pages
3522 */
3523static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3524{
3525 unsigned long pfn;
3526
3527 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3528 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3529 return 1;
3530 }
3531 return 0;
3532}
3533
56fd56b8 3534/*
d9c23400 3535 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3536 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3537 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3538 * higher will lead to a bigger reserve which will get freed as contiguous
3539 * blocks as reclaim kicks in
3540 */
3541static void setup_zone_migrate_reserve(struct zone *zone)
3542{
6d3163ce 3543 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3544 struct page *page;
78986a67
MG
3545 unsigned long block_migratetype;
3546 int reserve;
56fd56b8 3547
d0215638
MH
3548 /*
3549 * Get the start pfn, end pfn and the number of blocks to reserve
3550 * We have to be careful to be aligned to pageblock_nr_pages to
3551 * make sure that we always check pfn_valid for the first page in
3552 * the block.
3553 */
56fd56b8
MG
3554 start_pfn = zone->zone_start_pfn;
3555 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3556 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3557 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3558 pageblock_order;
56fd56b8 3559
78986a67
MG
3560 /*
3561 * Reserve blocks are generally in place to help high-order atomic
3562 * allocations that are short-lived. A min_free_kbytes value that
3563 * would result in more than 2 reserve blocks for atomic allocations
3564 * is assumed to be in place to help anti-fragmentation for the
3565 * future allocation of hugepages at runtime.
3566 */
3567 reserve = min(2, reserve);
3568
d9c23400 3569 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3570 if (!pfn_valid(pfn))
3571 continue;
3572 page = pfn_to_page(pfn);
3573
344c790e
AL
3574 /* Watch out for overlapping nodes */
3575 if (page_to_nid(page) != zone_to_nid(zone))
3576 continue;
3577
56fd56b8
MG
3578 block_migratetype = get_pageblock_migratetype(page);
3579
938929f1
MG
3580 /* Only test what is necessary when the reserves are not met */
3581 if (reserve > 0) {
3582 /*
3583 * Blocks with reserved pages will never free, skip
3584 * them.
3585 */
3586 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3587 if (pageblock_is_reserved(pfn, block_end_pfn))
3588 continue;
56fd56b8 3589
938929f1
MG
3590 /* If this block is reserved, account for it */
3591 if (block_migratetype == MIGRATE_RESERVE) {
3592 reserve--;
3593 continue;
3594 }
3595
3596 /* Suitable for reserving if this block is movable */
3597 if (block_migratetype == MIGRATE_MOVABLE) {
3598 set_pageblock_migratetype(page,
3599 MIGRATE_RESERVE);
3600 move_freepages_block(zone, page,
3601 MIGRATE_RESERVE);
3602 reserve--;
3603 continue;
3604 }
56fd56b8
MG
3605 }
3606
3607 /*
3608 * If the reserve is met and this is a previous reserved block,
3609 * take it back
3610 */
3611 if (block_migratetype == MIGRATE_RESERVE) {
3612 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3613 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3614 }
3615 }
3616}
ac0e5b7a 3617
1da177e4
LT
3618/*
3619 * Initially all pages are reserved - free ones are freed
3620 * up by free_all_bootmem() once the early boot process is
3621 * done. Non-atomic initialization, single-pass.
3622 */
c09b4240 3623void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3624 unsigned long start_pfn, enum memmap_context context)
1da177e4 3625{
1da177e4 3626 struct page *page;
29751f69
AW
3627 unsigned long end_pfn = start_pfn + size;
3628 unsigned long pfn;
86051ca5 3629 struct zone *z;
1da177e4 3630
22b31eec
HD
3631 if (highest_memmap_pfn < end_pfn - 1)
3632 highest_memmap_pfn = end_pfn - 1;
3633
86051ca5 3634 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3635 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3636 /*
3637 * There can be holes in boot-time mem_map[]s
3638 * handed to this function. They do not
3639 * exist on hotplugged memory.
3640 */
3641 if (context == MEMMAP_EARLY) {
3642 if (!early_pfn_valid(pfn))
3643 continue;
3644 if (!early_pfn_in_nid(pfn, nid))
3645 continue;
3646 }
d41dee36
AW
3647 page = pfn_to_page(pfn);
3648 set_page_links(page, zone, nid, pfn);
708614e6 3649 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3650 init_page_count(page);
1da177e4
LT
3651 reset_page_mapcount(page);
3652 SetPageReserved(page);
b2a0ac88
MG
3653 /*
3654 * Mark the block movable so that blocks are reserved for
3655 * movable at startup. This will force kernel allocations
3656 * to reserve their blocks rather than leaking throughout
3657 * the address space during boot when many long-lived
56fd56b8
MG
3658 * kernel allocations are made. Later some blocks near
3659 * the start are marked MIGRATE_RESERVE by
3660 * setup_zone_migrate_reserve()
86051ca5
KH
3661 *
3662 * bitmap is created for zone's valid pfn range. but memmap
3663 * can be created for invalid pages (for alignment)
3664 * check here not to call set_pageblock_migratetype() against
3665 * pfn out of zone.
b2a0ac88 3666 */
86051ca5
KH
3667 if ((z->zone_start_pfn <= pfn)
3668 && (pfn < z->zone_start_pfn + z->spanned_pages)
3669 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3670 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3671
1da177e4
LT
3672 INIT_LIST_HEAD(&page->lru);
3673#ifdef WANT_PAGE_VIRTUAL
3674 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3675 if (!is_highmem_idx(zone))
3212c6be 3676 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3677#endif
1da177e4
LT
3678 }
3679}
3680
1e548deb 3681static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3682{
b2a0ac88
MG
3683 int order, t;
3684 for_each_migratetype_order(order, t) {
3685 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3686 zone->free_area[order].nr_free = 0;
3687 }
3688}
3689
3690#ifndef __HAVE_ARCH_MEMMAP_INIT
3691#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3692 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3693#endif
3694
1d6f4e60 3695static int zone_batchsize(struct zone *zone)
e7c8d5c9 3696{
3a6be87f 3697#ifdef CONFIG_MMU
e7c8d5c9
CL
3698 int batch;
3699
3700 /*
3701 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3702 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3703 *
3704 * OK, so we don't know how big the cache is. So guess.
3705 */
3706 batch = zone->present_pages / 1024;
ba56e91c
SR
3707 if (batch * PAGE_SIZE > 512 * 1024)
3708 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3709 batch /= 4; /* We effectively *= 4 below */
3710 if (batch < 1)
3711 batch = 1;
3712
3713 /*
0ceaacc9
NP
3714 * Clamp the batch to a 2^n - 1 value. Having a power
3715 * of 2 value was found to be more likely to have
3716 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3717 *
0ceaacc9
NP
3718 * For example if 2 tasks are alternately allocating
3719 * batches of pages, one task can end up with a lot
3720 * of pages of one half of the possible page colors
3721 * and the other with pages of the other colors.
e7c8d5c9 3722 */
9155203a 3723 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3724
e7c8d5c9 3725 return batch;
3a6be87f
DH
3726
3727#else
3728 /* The deferral and batching of frees should be suppressed under NOMMU
3729 * conditions.
3730 *
3731 * The problem is that NOMMU needs to be able to allocate large chunks
3732 * of contiguous memory as there's no hardware page translation to
3733 * assemble apparent contiguous memory from discontiguous pages.
3734 *
3735 * Queueing large contiguous runs of pages for batching, however,
3736 * causes the pages to actually be freed in smaller chunks. As there
3737 * can be a significant delay between the individual batches being
3738 * recycled, this leads to the once large chunks of space being
3739 * fragmented and becoming unavailable for high-order allocations.
3740 */
3741 return 0;
3742#endif
e7c8d5c9
CL
3743}
3744
b69a7288 3745static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3746{
3747 struct per_cpu_pages *pcp;
5f8dcc21 3748 int migratetype;
2caaad41 3749
1c6fe946
MD
3750 memset(p, 0, sizeof(*p));
3751
3dfa5721 3752 pcp = &p->pcp;
2caaad41 3753 pcp->count = 0;
2caaad41
CL
3754 pcp->high = 6 * batch;
3755 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3756 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3757 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3758}
3759
8ad4b1fb
RS
3760/*
3761 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3762 * to the value high for the pageset p.
3763 */
3764
3765static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3766 unsigned long high)
3767{
3768 struct per_cpu_pages *pcp;
3769
3dfa5721 3770 pcp = &p->pcp;
8ad4b1fb
RS
3771 pcp->high = high;
3772 pcp->batch = max(1UL, high/4);
3773 if ((high/4) > (PAGE_SHIFT * 8))
3774 pcp->batch = PAGE_SHIFT * 8;
3775}
3776
58c2ee40 3777static void setup_zone_pageset(struct zone *zone)
319774e2
WF
3778{
3779 int cpu;
3780
3781 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3782
3783 for_each_possible_cpu(cpu) {
3784 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3785
3786 setup_pageset(pcp, zone_batchsize(zone));
3787
3788 if (percpu_pagelist_fraction)
3789 setup_pagelist_highmark(pcp,
3790 (zone->present_pages /
3791 percpu_pagelist_fraction));
3792 }
3793}
3794
2caaad41 3795/*
99dcc3e5
CL
3796 * Allocate per cpu pagesets and initialize them.
3797 * Before this call only boot pagesets were available.
e7c8d5c9 3798 */
99dcc3e5 3799void __init setup_per_cpu_pageset(void)
e7c8d5c9 3800{
99dcc3e5 3801 struct zone *zone;
e7c8d5c9 3802
319774e2
WF
3803 for_each_populated_zone(zone)
3804 setup_zone_pageset(zone);
e7c8d5c9
CL
3805}
3806
577a32f6 3807static noinline __init_refok
cca448fe 3808int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3809{
3810 int i;
3811 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3812 size_t alloc_size;
ed8ece2e
DH
3813
3814 /*
3815 * The per-page waitqueue mechanism uses hashed waitqueues
3816 * per zone.
3817 */
02b694de
YG
3818 zone->wait_table_hash_nr_entries =
3819 wait_table_hash_nr_entries(zone_size_pages);
3820 zone->wait_table_bits =
3821 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3822 alloc_size = zone->wait_table_hash_nr_entries
3823 * sizeof(wait_queue_head_t);
3824
cd94b9db 3825 if (!slab_is_available()) {
cca448fe 3826 zone->wait_table = (wait_queue_head_t *)
8f389a99 3827 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3828 } else {
3829 /*
3830 * This case means that a zone whose size was 0 gets new memory
3831 * via memory hot-add.
3832 * But it may be the case that a new node was hot-added. In
3833 * this case vmalloc() will not be able to use this new node's
3834 * memory - this wait_table must be initialized to use this new
3835 * node itself as well.
3836 * To use this new node's memory, further consideration will be
3837 * necessary.
3838 */
8691f3a7 3839 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3840 }
3841 if (!zone->wait_table)
3842 return -ENOMEM;
ed8ece2e 3843
02b694de 3844 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3845 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3846
3847 return 0;
ed8ece2e
DH
3848}
3849
112067f0
SL
3850static int __zone_pcp_update(void *data)
3851{
3852 struct zone *zone = data;
3853 int cpu;
3854 unsigned long batch = zone_batchsize(zone), flags;
3855
2d30a1f6 3856 for_each_possible_cpu(cpu) {
112067f0
SL
3857 struct per_cpu_pageset *pset;
3858 struct per_cpu_pages *pcp;
3859
99dcc3e5 3860 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3861 pcp = &pset->pcp;
3862
3863 local_irq_save(flags);
5f8dcc21 3864 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3865 setup_pageset(pset, batch);
3866 local_irq_restore(flags);
3867 }
3868 return 0;
3869}
3870
3871void zone_pcp_update(struct zone *zone)
3872{
3873 stop_machine(__zone_pcp_update, zone, NULL);
3874}
3875
c09b4240 3876static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3877{
99dcc3e5
CL
3878 /*
3879 * per cpu subsystem is not up at this point. The following code
3880 * relies on the ability of the linker to provide the
3881 * offset of a (static) per cpu variable into the per cpu area.
3882 */
3883 zone->pageset = &boot_pageset;
ed8ece2e 3884
f5335c0f 3885 if (zone->present_pages)
99dcc3e5
CL
3886 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3887 zone->name, zone->present_pages,
3888 zone_batchsize(zone));
ed8ece2e
DH
3889}
3890
718127cc
YG
3891__meminit int init_currently_empty_zone(struct zone *zone,
3892 unsigned long zone_start_pfn,
a2f3aa02
DH
3893 unsigned long size,
3894 enum memmap_context context)
ed8ece2e
DH
3895{
3896 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3897 int ret;
3898 ret = zone_wait_table_init(zone, size);
3899 if (ret)
3900 return ret;
ed8ece2e
DH
3901 pgdat->nr_zones = zone_idx(zone) + 1;
3902
ed8ece2e
DH
3903 zone->zone_start_pfn = zone_start_pfn;
3904
708614e6
MG
3905 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3906 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3907 pgdat->node_id,
3908 (unsigned long)zone_idx(zone),
3909 zone_start_pfn, (zone_start_pfn + size));
3910
1e548deb 3911 zone_init_free_lists(zone);
718127cc
YG
3912
3913 return 0;
ed8ece2e
DH
3914}
3915
0ee332c1 3916#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
3917#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3918/*
3919 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3920 * Architectures may implement their own version but if add_active_range()
3921 * was used and there are no special requirements, this is a convenient
3922 * alternative
3923 */
f2dbcfa7 3924int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 3925{
c13291a5
TH
3926 unsigned long start_pfn, end_pfn;
3927 int i, nid;
c713216d 3928
c13291a5 3929 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 3930 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 3931 return nid;
cc2559bc
KH
3932 /* This is a memory hole */
3933 return -1;
c713216d
MG
3934}
3935#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3936
f2dbcfa7
KH
3937int __meminit early_pfn_to_nid(unsigned long pfn)
3938{
cc2559bc
KH
3939 int nid;
3940
3941 nid = __early_pfn_to_nid(pfn);
3942 if (nid >= 0)
3943 return nid;
3944 /* just returns 0 */
3945 return 0;
f2dbcfa7
KH
3946}
3947
cc2559bc
KH
3948#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3949bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3950{
3951 int nid;
3952
3953 nid = __early_pfn_to_nid(pfn);
3954 if (nid >= 0 && nid != node)
3955 return false;
3956 return true;
3957}
3958#endif
f2dbcfa7 3959
c713216d
MG
3960/**
3961 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3962 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3963 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3964 *
3965 * If an architecture guarantees that all ranges registered with
3966 * add_active_ranges() contain no holes and may be freed, this
3967 * this function may be used instead of calling free_bootmem() manually.
3968 */
c13291a5 3969void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 3970{
c13291a5
TH
3971 unsigned long start_pfn, end_pfn;
3972 int i, this_nid;
edbe7d23 3973
c13291a5
TH
3974 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
3975 start_pfn = min(start_pfn, max_low_pfn);
3976 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 3977
c13291a5
TH
3978 if (start_pfn < end_pfn)
3979 free_bootmem_node(NODE_DATA(this_nid),
3980 PFN_PHYS(start_pfn),
3981 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 3982 }
edbe7d23 3983}
edbe7d23 3984
c713216d
MG
3985/**
3986 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3987 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3988 *
3989 * If an architecture guarantees that all ranges registered with
3990 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3991 * function may be used instead of calling memory_present() manually.
c713216d
MG
3992 */
3993void __init sparse_memory_present_with_active_regions(int nid)
3994{
c13291a5
TH
3995 unsigned long start_pfn, end_pfn;
3996 int i, this_nid;
c713216d 3997
c13291a5
TH
3998 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
3999 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4000}
4001
4002/**
4003 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4004 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4005 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4006 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4007 *
4008 * It returns the start and end page frame of a node based on information
4009 * provided by an arch calling add_active_range(). If called for a node
4010 * with no available memory, a warning is printed and the start and end
88ca3b94 4011 * PFNs will be 0.
c713216d 4012 */
a3142c8e 4013void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4014 unsigned long *start_pfn, unsigned long *end_pfn)
4015{
c13291a5 4016 unsigned long this_start_pfn, this_end_pfn;
c713216d 4017 int i;
c13291a5 4018
c713216d
MG
4019 *start_pfn = -1UL;
4020 *end_pfn = 0;
4021
c13291a5
TH
4022 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4023 *start_pfn = min(*start_pfn, this_start_pfn);
4024 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4025 }
4026
633c0666 4027 if (*start_pfn == -1UL)
c713216d 4028 *start_pfn = 0;
c713216d
MG
4029}
4030
2a1e274a
MG
4031/*
4032 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4033 * assumption is made that zones within a node are ordered in monotonic
4034 * increasing memory addresses so that the "highest" populated zone is used
4035 */
b69a7288 4036static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4037{
4038 int zone_index;
4039 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4040 if (zone_index == ZONE_MOVABLE)
4041 continue;
4042
4043 if (arch_zone_highest_possible_pfn[zone_index] >
4044 arch_zone_lowest_possible_pfn[zone_index])
4045 break;
4046 }
4047
4048 VM_BUG_ON(zone_index == -1);
4049 movable_zone = zone_index;
4050}
4051
4052/*
4053 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4054 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4055 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4056 * in each node depending on the size of each node and how evenly kernelcore
4057 * is distributed. This helper function adjusts the zone ranges
4058 * provided by the architecture for a given node by using the end of the
4059 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4060 * zones within a node are in order of monotonic increases memory addresses
4061 */
b69a7288 4062static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4063 unsigned long zone_type,
4064 unsigned long node_start_pfn,
4065 unsigned long node_end_pfn,
4066 unsigned long *zone_start_pfn,
4067 unsigned long *zone_end_pfn)
4068{
4069 /* Only adjust if ZONE_MOVABLE is on this node */
4070 if (zone_movable_pfn[nid]) {
4071 /* Size ZONE_MOVABLE */
4072 if (zone_type == ZONE_MOVABLE) {
4073 *zone_start_pfn = zone_movable_pfn[nid];
4074 *zone_end_pfn = min(node_end_pfn,
4075 arch_zone_highest_possible_pfn[movable_zone]);
4076
4077 /* Adjust for ZONE_MOVABLE starting within this range */
4078 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4079 *zone_end_pfn > zone_movable_pfn[nid]) {
4080 *zone_end_pfn = zone_movable_pfn[nid];
4081
4082 /* Check if this whole range is within ZONE_MOVABLE */
4083 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4084 *zone_start_pfn = *zone_end_pfn;
4085 }
4086}
4087
c713216d
MG
4088/*
4089 * Return the number of pages a zone spans in a node, including holes
4090 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4091 */
6ea6e688 4092static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4093 unsigned long zone_type,
4094 unsigned long *ignored)
4095{
4096 unsigned long node_start_pfn, node_end_pfn;
4097 unsigned long zone_start_pfn, zone_end_pfn;
4098
4099 /* Get the start and end of the node and zone */
4100 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4101 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4102 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4103 adjust_zone_range_for_zone_movable(nid, zone_type,
4104 node_start_pfn, node_end_pfn,
4105 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4106
4107 /* Check that this node has pages within the zone's required range */
4108 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4109 return 0;
4110
4111 /* Move the zone boundaries inside the node if necessary */
4112 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4113 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4114
4115 /* Return the spanned pages */
4116 return zone_end_pfn - zone_start_pfn;
4117}
4118
4119/*
4120 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4121 * then all holes in the requested range will be accounted for.
c713216d 4122 */
32996250 4123unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4124 unsigned long range_start_pfn,
4125 unsigned long range_end_pfn)
4126{
96e907d1
TH
4127 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4128 unsigned long start_pfn, end_pfn;
4129 int i;
c713216d 4130
96e907d1
TH
4131 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4132 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4133 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4134 nr_absent -= end_pfn - start_pfn;
c713216d 4135 }
96e907d1 4136 return nr_absent;
c713216d
MG
4137}
4138
4139/**
4140 * absent_pages_in_range - Return number of page frames in holes within a range
4141 * @start_pfn: The start PFN to start searching for holes
4142 * @end_pfn: The end PFN to stop searching for holes
4143 *
88ca3b94 4144 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4145 */
4146unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4147 unsigned long end_pfn)
4148{
4149 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4150}
4151
4152/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4153static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4154 unsigned long zone_type,
4155 unsigned long *ignored)
4156{
96e907d1
TH
4157 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4158 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4159 unsigned long node_start_pfn, node_end_pfn;
4160 unsigned long zone_start_pfn, zone_end_pfn;
4161
4162 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4163 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4164 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4165
2a1e274a
MG
4166 adjust_zone_range_for_zone_movable(nid, zone_type,
4167 node_start_pfn, node_end_pfn,
4168 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4169 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4170}
0e0b864e 4171
0ee332c1 4172#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4173static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4174 unsigned long zone_type,
4175 unsigned long *zones_size)
4176{
4177 return zones_size[zone_type];
4178}
4179
6ea6e688 4180static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4181 unsigned long zone_type,
4182 unsigned long *zholes_size)
4183{
4184 if (!zholes_size)
4185 return 0;
4186
4187 return zholes_size[zone_type];
4188}
0e0b864e 4189
0ee332c1 4190#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4191
a3142c8e 4192static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4193 unsigned long *zones_size, unsigned long *zholes_size)
4194{
4195 unsigned long realtotalpages, totalpages = 0;
4196 enum zone_type i;
4197
4198 for (i = 0; i < MAX_NR_ZONES; i++)
4199 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4200 zones_size);
4201 pgdat->node_spanned_pages = totalpages;
4202
4203 realtotalpages = totalpages;
4204 for (i = 0; i < MAX_NR_ZONES; i++)
4205 realtotalpages -=
4206 zone_absent_pages_in_node(pgdat->node_id, i,
4207 zholes_size);
4208 pgdat->node_present_pages = realtotalpages;
4209 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4210 realtotalpages);
4211}
4212
835c134e
MG
4213#ifndef CONFIG_SPARSEMEM
4214/*
4215 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4216 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4217 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4218 * round what is now in bits to nearest long in bits, then return it in
4219 * bytes.
4220 */
4221static unsigned long __init usemap_size(unsigned long zonesize)
4222{
4223 unsigned long usemapsize;
4224
d9c23400
MG
4225 usemapsize = roundup(zonesize, pageblock_nr_pages);
4226 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4227 usemapsize *= NR_PAGEBLOCK_BITS;
4228 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4229
4230 return usemapsize / 8;
4231}
4232
4233static void __init setup_usemap(struct pglist_data *pgdat,
4234 struct zone *zone, unsigned long zonesize)
4235{
4236 unsigned long usemapsize = usemap_size(zonesize);
4237 zone->pageblock_flags = NULL;
58a01a45 4238 if (usemapsize)
8f389a99
YL
4239 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4240 usemapsize);
835c134e
MG
4241}
4242#else
fa9f90be 4243static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4244 struct zone *zone, unsigned long zonesize) {}
4245#endif /* CONFIG_SPARSEMEM */
4246
d9c23400 4247#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4248
4249/* Return a sensible default order for the pageblock size. */
4250static inline int pageblock_default_order(void)
4251{
4252 if (HPAGE_SHIFT > PAGE_SHIFT)
4253 return HUGETLB_PAGE_ORDER;
4254
4255 return MAX_ORDER-1;
4256}
4257
d9c23400
MG
4258/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4259static inline void __init set_pageblock_order(unsigned int order)
4260{
4261 /* Check that pageblock_nr_pages has not already been setup */
4262 if (pageblock_order)
4263 return;
4264
4265 /*
4266 * Assume the largest contiguous order of interest is a huge page.
4267 * This value may be variable depending on boot parameters on IA64
4268 */
4269 pageblock_order = order;
4270}
4271#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4272
ba72cb8c
MG
4273/*
4274 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4275 * and pageblock_default_order() are unused as pageblock_order is set
4276 * at compile-time. See include/linux/pageblock-flags.h for the values of
4277 * pageblock_order based on the kernel config
4278 */
4279static inline int pageblock_default_order(unsigned int order)
4280{
4281 return MAX_ORDER-1;
4282}
d9c23400
MG
4283#define set_pageblock_order(x) do {} while (0)
4284
4285#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4286
1da177e4
LT
4287/*
4288 * Set up the zone data structures:
4289 * - mark all pages reserved
4290 * - mark all memory queues empty
4291 * - clear the memory bitmaps
4292 */
b5a0e011 4293static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4294 unsigned long *zones_size, unsigned long *zholes_size)
4295{
2f1b6248 4296 enum zone_type j;
ed8ece2e 4297 int nid = pgdat->node_id;
1da177e4 4298 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4299 int ret;
1da177e4 4300
208d54e5 4301 pgdat_resize_init(pgdat);
1da177e4
LT
4302 pgdat->nr_zones = 0;
4303 init_waitqueue_head(&pgdat->kswapd_wait);
4304 pgdat->kswapd_max_order = 0;
52d4b9ac 4305 pgdat_page_cgroup_init(pgdat);
5f63b720 4306
1da177e4
LT
4307 for (j = 0; j < MAX_NR_ZONES; j++) {
4308 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4309 unsigned long size, realsize, memmap_pages;
4111304d 4310 enum lru_list lru;
1da177e4 4311
c713216d
MG
4312 size = zone_spanned_pages_in_node(nid, j, zones_size);
4313 realsize = size - zone_absent_pages_in_node(nid, j,
4314 zholes_size);
1da177e4 4315
0e0b864e
MG
4316 /*
4317 * Adjust realsize so that it accounts for how much memory
4318 * is used by this zone for memmap. This affects the watermark
4319 * and per-cpu initialisations
4320 */
f7232154
JW
4321 memmap_pages =
4322 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4323 if (realsize >= memmap_pages) {
4324 realsize -= memmap_pages;
5594c8c8
YL
4325 if (memmap_pages)
4326 printk(KERN_DEBUG
4327 " %s zone: %lu pages used for memmap\n",
4328 zone_names[j], memmap_pages);
0e0b864e
MG
4329 } else
4330 printk(KERN_WARNING
4331 " %s zone: %lu pages exceeds realsize %lu\n",
4332 zone_names[j], memmap_pages, realsize);
4333
6267276f
CL
4334 /* Account for reserved pages */
4335 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4336 realsize -= dma_reserve;
d903ef9f 4337 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4338 zone_names[0], dma_reserve);
0e0b864e
MG
4339 }
4340
98d2b0eb 4341 if (!is_highmem_idx(j))
1da177e4
LT
4342 nr_kernel_pages += realsize;
4343 nr_all_pages += realsize;
4344
4345 zone->spanned_pages = size;
4346 zone->present_pages = realsize;
9614634f 4347#ifdef CONFIG_NUMA
d5f541ed 4348 zone->node = nid;
8417bba4 4349 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4350 / 100;
0ff38490 4351 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4352#endif
1da177e4
LT
4353 zone->name = zone_names[j];
4354 spin_lock_init(&zone->lock);
4355 spin_lock_init(&zone->lru_lock);
bdc8cb98 4356 zone_seqlock_init(zone);
1da177e4 4357 zone->zone_pgdat = pgdat;
1da177e4 4358
ed8ece2e 4359 zone_pcp_init(zone);
4111304d
HD
4360 for_each_lru(lru)
4361 INIT_LIST_HEAD(&zone->lruvec.lists[lru]);
6e901571
KM
4362 zone->reclaim_stat.recent_rotated[0] = 0;
4363 zone->reclaim_stat.recent_rotated[1] = 0;
4364 zone->reclaim_stat.recent_scanned[0] = 0;
4365 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4366 zap_zone_vm_stats(zone);
e815af95 4367 zone->flags = 0;
1da177e4
LT
4368 if (!size)
4369 continue;
4370
ba72cb8c 4371 set_pageblock_order(pageblock_default_order());
835c134e 4372 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4373 ret = init_currently_empty_zone(zone, zone_start_pfn,
4374 size, MEMMAP_EARLY);
718127cc 4375 BUG_ON(ret);
76cdd58e 4376 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4377 zone_start_pfn += size;
1da177e4
LT
4378 }
4379}
4380
577a32f6 4381static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4382{
1da177e4
LT
4383 /* Skip empty nodes */
4384 if (!pgdat->node_spanned_pages)
4385 return;
4386
d41dee36 4387#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4388 /* ia64 gets its own node_mem_map, before this, without bootmem */
4389 if (!pgdat->node_mem_map) {
e984bb43 4390 unsigned long size, start, end;
d41dee36
AW
4391 struct page *map;
4392
e984bb43
BP
4393 /*
4394 * The zone's endpoints aren't required to be MAX_ORDER
4395 * aligned but the node_mem_map endpoints must be in order
4396 * for the buddy allocator to function correctly.
4397 */
4398 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4399 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4400 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4401 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4402 map = alloc_remap(pgdat->node_id, size);
4403 if (!map)
8f389a99 4404 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4405 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4406 }
12d810c1 4407#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4408 /*
4409 * With no DISCONTIG, the global mem_map is just set as node 0's
4410 */
c713216d 4411 if (pgdat == NODE_DATA(0)) {
1da177e4 4412 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4413#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4414 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4415 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4416#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4417 }
1da177e4 4418#endif
d41dee36 4419#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4420}
4421
9109fb7b
JW
4422void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4423 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4424{
9109fb7b
JW
4425 pg_data_t *pgdat = NODE_DATA(nid);
4426
1da177e4
LT
4427 pgdat->node_id = nid;
4428 pgdat->node_start_pfn = node_start_pfn;
c713216d 4429 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4430
4431 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4432#ifdef CONFIG_FLAT_NODE_MEM_MAP
4433 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4434 nid, (unsigned long)pgdat,
4435 (unsigned long)pgdat->node_mem_map);
4436#endif
1da177e4
LT
4437
4438 free_area_init_core(pgdat, zones_size, zholes_size);
4439}
4440
0ee332c1 4441#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4442
4443#if MAX_NUMNODES > 1
4444/*
4445 * Figure out the number of possible node ids.
4446 */
4447static void __init setup_nr_node_ids(void)
4448{
4449 unsigned int node;
4450 unsigned int highest = 0;
4451
4452 for_each_node_mask(node, node_possible_map)
4453 highest = node;
4454 nr_node_ids = highest + 1;
4455}
4456#else
4457static inline void setup_nr_node_ids(void)
4458{
4459}
4460#endif
4461
1e01979c
TH
4462/**
4463 * node_map_pfn_alignment - determine the maximum internode alignment
4464 *
4465 * This function should be called after node map is populated and sorted.
4466 * It calculates the maximum power of two alignment which can distinguish
4467 * all the nodes.
4468 *
4469 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4470 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4471 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4472 * shifted, 1GiB is enough and this function will indicate so.
4473 *
4474 * This is used to test whether pfn -> nid mapping of the chosen memory
4475 * model has fine enough granularity to avoid incorrect mapping for the
4476 * populated node map.
4477 *
4478 * Returns the determined alignment in pfn's. 0 if there is no alignment
4479 * requirement (single node).
4480 */
4481unsigned long __init node_map_pfn_alignment(void)
4482{
4483 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4484 unsigned long start, end, mask;
1e01979c 4485 int last_nid = -1;
c13291a5 4486 int i, nid;
1e01979c 4487
c13291a5 4488 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4489 if (!start || last_nid < 0 || last_nid == nid) {
4490 last_nid = nid;
4491 last_end = end;
4492 continue;
4493 }
4494
4495 /*
4496 * Start with a mask granular enough to pin-point to the
4497 * start pfn and tick off bits one-by-one until it becomes
4498 * too coarse to separate the current node from the last.
4499 */
4500 mask = ~((1 << __ffs(start)) - 1);
4501 while (mask && last_end <= (start & (mask << 1)))
4502 mask <<= 1;
4503
4504 /* accumulate all internode masks */
4505 accl_mask |= mask;
4506 }
4507
4508 /* convert mask to number of pages */
4509 return ~accl_mask + 1;
4510}
4511
a6af2bc3 4512/* Find the lowest pfn for a node */
b69a7288 4513static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4514{
a6af2bc3 4515 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4516 unsigned long start_pfn;
4517 int i;
1abbfb41 4518
c13291a5
TH
4519 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4520 min_pfn = min(min_pfn, start_pfn);
c713216d 4521
a6af2bc3
MG
4522 if (min_pfn == ULONG_MAX) {
4523 printk(KERN_WARNING
2bc0d261 4524 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4525 return 0;
4526 }
4527
4528 return min_pfn;
c713216d
MG
4529}
4530
4531/**
4532 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4533 *
4534 * It returns the minimum PFN based on information provided via
88ca3b94 4535 * add_active_range().
c713216d
MG
4536 */
4537unsigned long __init find_min_pfn_with_active_regions(void)
4538{
4539 return find_min_pfn_for_node(MAX_NUMNODES);
4540}
4541
37b07e41
LS
4542/*
4543 * early_calculate_totalpages()
4544 * Sum pages in active regions for movable zone.
4545 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4546 */
484f51f8 4547static unsigned long __init early_calculate_totalpages(void)
7e63efef 4548{
7e63efef 4549 unsigned long totalpages = 0;
c13291a5
TH
4550 unsigned long start_pfn, end_pfn;
4551 int i, nid;
4552
4553 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4554 unsigned long pages = end_pfn - start_pfn;
7e63efef 4555
37b07e41
LS
4556 totalpages += pages;
4557 if (pages)
c13291a5 4558 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4559 }
4560 return totalpages;
7e63efef
MG
4561}
4562
2a1e274a
MG
4563/*
4564 * Find the PFN the Movable zone begins in each node. Kernel memory
4565 * is spread evenly between nodes as long as the nodes have enough
4566 * memory. When they don't, some nodes will have more kernelcore than
4567 * others
4568 */
b224ef85 4569static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4570{
4571 int i, nid;
4572 unsigned long usable_startpfn;
4573 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4574 /* save the state before borrow the nodemask */
4575 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4576 unsigned long totalpages = early_calculate_totalpages();
4577 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4578
7e63efef
MG
4579 /*
4580 * If movablecore was specified, calculate what size of
4581 * kernelcore that corresponds so that memory usable for
4582 * any allocation type is evenly spread. If both kernelcore
4583 * and movablecore are specified, then the value of kernelcore
4584 * will be used for required_kernelcore if it's greater than
4585 * what movablecore would have allowed.
4586 */
4587 if (required_movablecore) {
7e63efef
MG
4588 unsigned long corepages;
4589
4590 /*
4591 * Round-up so that ZONE_MOVABLE is at least as large as what
4592 * was requested by the user
4593 */
4594 required_movablecore =
4595 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4596 corepages = totalpages - required_movablecore;
4597
4598 required_kernelcore = max(required_kernelcore, corepages);
4599 }
4600
2a1e274a
MG
4601 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4602 if (!required_kernelcore)
66918dcd 4603 goto out;
2a1e274a
MG
4604
4605 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4606 find_usable_zone_for_movable();
4607 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4608
4609restart:
4610 /* Spread kernelcore memory as evenly as possible throughout nodes */
4611 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4612 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4613 unsigned long start_pfn, end_pfn;
4614
2a1e274a
MG
4615 /*
4616 * Recalculate kernelcore_node if the division per node
4617 * now exceeds what is necessary to satisfy the requested
4618 * amount of memory for the kernel
4619 */
4620 if (required_kernelcore < kernelcore_node)
4621 kernelcore_node = required_kernelcore / usable_nodes;
4622
4623 /*
4624 * As the map is walked, we track how much memory is usable
4625 * by the kernel using kernelcore_remaining. When it is
4626 * 0, the rest of the node is usable by ZONE_MOVABLE
4627 */
4628 kernelcore_remaining = kernelcore_node;
4629
4630 /* Go through each range of PFNs within this node */
c13291a5 4631 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4632 unsigned long size_pages;
4633
c13291a5 4634 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4635 if (start_pfn >= end_pfn)
4636 continue;
4637
4638 /* Account for what is only usable for kernelcore */
4639 if (start_pfn < usable_startpfn) {
4640 unsigned long kernel_pages;
4641 kernel_pages = min(end_pfn, usable_startpfn)
4642 - start_pfn;
4643
4644 kernelcore_remaining -= min(kernel_pages,
4645 kernelcore_remaining);
4646 required_kernelcore -= min(kernel_pages,
4647 required_kernelcore);
4648
4649 /* Continue if range is now fully accounted */
4650 if (end_pfn <= usable_startpfn) {
4651
4652 /*
4653 * Push zone_movable_pfn to the end so
4654 * that if we have to rebalance
4655 * kernelcore across nodes, we will
4656 * not double account here
4657 */
4658 zone_movable_pfn[nid] = end_pfn;
4659 continue;
4660 }
4661 start_pfn = usable_startpfn;
4662 }
4663
4664 /*
4665 * The usable PFN range for ZONE_MOVABLE is from
4666 * start_pfn->end_pfn. Calculate size_pages as the
4667 * number of pages used as kernelcore
4668 */
4669 size_pages = end_pfn - start_pfn;
4670 if (size_pages > kernelcore_remaining)
4671 size_pages = kernelcore_remaining;
4672 zone_movable_pfn[nid] = start_pfn + size_pages;
4673
4674 /*
4675 * Some kernelcore has been met, update counts and
4676 * break if the kernelcore for this node has been
4677 * satisified
4678 */
4679 required_kernelcore -= min(required_kernelcore,
4680 size_pages);
4681 kernelcore_remaining -= size_pages;
4682 if (!kernelcore_remaining)
4683 break;
4684 }
4685 }
4686
4687 /*
4688 * If there is still required_kernelcore, we do another pass with one
4689 * less node in the count. This will push zone_movable_pfn[nid] further
4690 * along on the nodes that still have memory until kernelcore is
4691 * satisified
4692 */
4693 usable_nodes--;
4694 if (usable_nodes && required_kernelcore > usable_nodes)
4695 goto restart;
4696
4697 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4698 for (nid = 0; nid < MAX_NUMNODES; nid++)
4699 zone_movable_pfn[nid] =
4700 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4701
4702out:
4703 /* restore the node_state */
4704 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4705}
4706
37b07e41
LS
4707/* Any regular memory on that node ? */
4708static void check_for_regular_memory(pg_data_t *pgdat)
4709{
4710#ifdef CONFIG_HIGHMEM
4711 enum zone_type zone_type;
4712
4713 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4714 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4715 if (zone->present_pages) {
37b07e41 4716 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
d0048b0e
BL
4717 break;
4718 }
37b07e41
LS
4719 }
4720#endif
4721}
4722
c713216d
MG
4723/**
4724 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4725 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4726 *
4727 * This will call free_area_init_node() for each active node in the system.
4728 * Using the page ranges provided by add_active_range(), the size of each
4729 * zone in each node and their holes is calculated. If the maximum PFN
4730 * between two adjacent zones match, it is assumed that the zone is empty.
4731 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4732 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4733 * starts where the previous one ended. For example, ZONE_DMA32 starts
4734 * at arch_max_dma_pfn.
4735 */
4736void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4737{
c13291a5
TH
4738 unsigned long start_pfn, end_pfn;
4739 int i, nid;
a6af2bc3 4740
c713216d
MG
4741 /* Record where the zone boundaries are */
4742 memset(arch_zone_lowest_possible_pfn, 0,
4743 sizeof(arch_zone_lowest_possible_pfn));
4744 memset(arch_zone_highest_possible_pfn, 0,
4745 sizeof(arch_zone_highest_possible_pfn));
4746 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4747 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4748 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4749 if (i == ZONE_MOVABLE)
4750 continue;
c713216d
MG
4751 arch_zone_lowest_possible_pfn[i] =
4752 arch_zone_highest_possible_pfn[i-1];
4753 arch_zone_highest_possible_pfn[i] =
4754 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4755 }
2a1e274a
MG
4756 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4757 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4758
4759 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4760 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4761 find_zone_movable_pfns_for_nodes();
c713216d 4762
c713216d
MG
4763 /* Print out the zone ranges */
4764 printk("Zone PFN ranges:\n");
2a1e274a
MG
4765 for (i = 0; i < MAX_NR_ZONES; i++) {
4766 if (i == ZONE_MOVABLE)
4767 continue;
72f0ba02
DR
4768 printk(" %-8s ", zone_names[i]);
4769 if (arch_zone_lowest_possible_pfn[i] ==
4770 arch_zone_highest_possible_pfn[i])
4771 printk("empty\n");
4772 else
4773 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4774 arch_zone_lowest_possible_pfn[i],
4775 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4776 }
4777
4778 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4779 printk("Movable zone start PFN for each node\n");
4780 for (i = 0; i < MAX_NUMNODES; i++) {
4781 if (zone_movable_pfn[i])
4782 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4783 }
c713216d
MG
4784
4785 /* Print out the early_node_map[] */
c13291a5
TH
4786 printk("Early memory PFN ranges\n");
4787 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4788 printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
c713216d
MG
4789
4790 /* Initialise every node */
708614e6 4791 mminit_verify_pageflags_layout();
8ef82866 4792 setup_nr_node_ids();
c713216d
MG
4793 for_each_online_node(nid) {
4794 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4795 free_area_init_node(nid, NULL,
c713216d 4796 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4797
4798 /* Any memory on that node */
4799 if (pgdat->node_present_pages)
4800 node_set_state(nid, N_HIGH_MEMORY);
4801 check_for_regular_memory(pgdat);
c713216d
MG
4802 }
4803}
2a1e274a 4804
7e63efef 4805static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4806{
4807 unsigned long long coremem;
4808 if (!p)
4809 return -EINVAL;
4810
4811 coremem = memparse(p, &p);
7e63efef 4812 *core = coremem >> PAGE_SHIFT;
2a1e274a 4813
7e63efef 4814 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4815 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4816
4817 return 0;
4818}
ed7ed365 4819
7e63efef
MG
4820/*
4821 * kernelcore=size sets the amount of memory for use for allocations that
4822 * cannot be reclaimed or migrated.
4823 */
4824static int __init cmdline_parse_kernelcore(char *p)
4825{
4826 return cmdline_parse_core(p, &required_kernelcore);
4827}
4828
4829/*
4830 * movablecore=size sets the amount of memory for use for allocations that
4831 * can be reclaimed or migrated.
4832 */
4833static int __init cmdline_parse_movablecore(char *p)
4834{
4835 return cmdline_parse_core(p, &required_movablecore);
4836}
4837
ed7ed365 4838early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4839early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4840
0ee332c1 4841#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4842
0e0b864e 4843/**
88ca3b94
RD
4844 * set_dma_reserve - set the specified number of pages reserved in the first zone
4845 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4846 *
4847 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4848 * In the DMA zone, a significant percentage may be consumed by kernel image
4849 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4850 * function may optionally be used to account for unfreeable pages in the
4851 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4852 * smaller per-cpu batchsize.
0e0b864e
MG
4853 */
4854void __init set_dma_reserve(unsigned long new_dma_reserve)
4855{
4856 dma_reserve = new_dma_reserve;
4857}
4858
1da177e4
LT
4859void __init free_area_init(unsigned long *zones_size)
4860{
9109fb7b 4861 free_area_init_node(0, zones_size,
1da177e4
LT
4862 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4863}
1da177e4 4864
1da177e4
LT
4865static int page_alloc_cpu_notify(struct notifier_block *self,
4866 unsigned long action, void *hcpu)
4867{
4868 int cpu = (unsigned long)hcpu;
1da177e4 4869
8bb78442 4870 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 4871 lru_add_drain_cpu(cpu);
9f8f2172
CL
4872 drain_pages(cpu);
4873
4874 /*
4875 * Spill the event counters of the dead processor
4876 * into the current processors event counters.
4877 * This artificially elevates the count of the current
4878 * processor.
4879 */
f8891e5e 4880 vm_events_fold_cpu(cpu);
9f8f2172
CL
4881
4882 /*
4883 * Zero the differential counters of the dead processor
4884 * so that the vm statistics are consistent.
4885 *
4886 * This is only okay since the processor is dead and cannot
4887 * race with what we are doing.
4888 */
2244b95a 4889 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4890 }
4891 return NOTIFY_OK;
4892}
1da177e4
LT
4893
4894void __init page_alloc_init(void)
4895{
4896 hotcpu_notifier(page_alloc_cpu_notify, 0);
4897}
4898
cb45b0e9
HA
4899/*
4900 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4901 * or min_free_kbytes changes.
4902 */
4903static void calculate_totalreserve_pages(void)
4904{
4905 struct pglist_data *pgdat;
4906 unsigned long reserve_pages = 0;
2f6726e5 4907 enum zone_type i, j;
cb45b0e9
HA
4908
4909 for_each_online_pgdat(pgdat) {
4910 for (i = 0; i < MAX_NR_ZONES; i++) {
4911 struct zone *zone = pgdat->node_zones + i;
4912 unsigned long max = 0;
4913
4914 /* Find valid and maximum lowmem_reserve in the zone */
4915 for (j = i; j < MAX_NR_ZONES; j++) {
4916 if (zone->lowmem_reserve[j] > max)
4917 max = zone->lowmem_reserve[j];
4918 }
4919
41858966
MG
4920 /* we treat the high watermark as reserved pages. */
4921 max += high_wmark_pages(zone);
cb45b0e9
HA
4922
4923 if (max > zone->present_pages)
4924 max = zone->present_pages;
4925 reserve_pages += max;
ab8fabd4
JW
4926 /*
4927 * Lowmem reserves are not available to
4928 * GFP_HIGHUSER page cache allocations and
4929 * kswapd tries to balance zones to their high
4930 * watermark. As a result, neither should be
4931 * regarded as dirtyable memory, to prevent a
4932 * situation where reclaim has to clean pages
4933 * in order to balance the zones.
4934 */
4935 zone->dirty_balance_reserve = max;
cb45b0e9
HA
4936 }
4937 }
ab8fabd4 4938 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
4939 totalreserve_pages = reserve_pages;
4940}
4941
1da177e4
LT
4942/*
4943 * setup_per_zone_lowmem_reserve - called whenever
4944 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4945 * has a correct pages reserved value, so an adequate number of
4946 * pages are left in the zone after a successful __alloc_pages().
4947 */
4948static void setup_per_zone_lowmem_reserve(void)
4949{
4950 struct pglist_data *pgdat;
2f6726e5 4951 enum zone_type j, idx;
1da177e4 4952
ec936fc5 4953 for_each_online_pgdat(pgdat) {
1da177e4
LT
4954 for (j = 0; j < MAX_NR_ZONES; j++) {
4955 struct zone *zone = pgdat->node_zones + j;
4956 unsigned long present_pages = zone->present_pages;
4957
4958 zone->lowmem_reserve[j] = 0;
4959
2f6726e5
CL
4960 idx = j;
4961 while (idx) {
1da177e4
LT
4962 struct zone *lower_zone;
4963
2f6726e5
CL
4964 idx--;
4965
1da177e4
LT
4966 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4967 sysctl_lowmem_reserve_ratio[idx] = 1;
4968
4969 lower_zone = pgdat->node_zones + idx;
4970 lower_zone->lowmem_reserve[j] = present_pages /
4971 sysctl_lowmem_reserve_ratio[idx];
4972 present_pages += lower_zone->present_pages;
4973 }
4974 }
4975 }
cb45b0e9
HA
4976
4977 /* update totalreserve_pages */
4978 calculate_totalreserve_pages();
1da177e4
LT
4979}
4980
88ca3b94 4981/**
bc75d33f 4982 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4983 * or when memory is hot-{added|removed}
88ca3b94 4984 *
bc75d33f
MK
4985 * Ensures that the watermark[min,low,high] values for each zone are set
4986 * correctly with respect to min_free_kbytes.
1da177e4 4987 */
bc75d33f 4988void setup_per_zone_wmarks(void)
1da177e4
LT
4989{
4990 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4991 unsigned long lowmem_pages = 0;
4992 struct zone *zone;
4993 unsigned long flags;
4994
4995 /* Calculate total number of !ZONE_HIGHMEM pages */
4996 for_each_zone(zone) {
4997 if (!is_highmem(zone))
4998 lowmem_pages += zone->present_pages;
4999 }
5000
5001 for_each_zone(zone) {
ac924c60
AM
5002 u64 tmp;
5003
1125b4e3 5004 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5005 tmp = (u64)pages_min * zone->present_pages;
5006 do_div(tmp, lowmem_pages);
1da177e4
LT
5007 if (is_highmem(zone)) {
5008 /*
669ed175
NP
5009 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5010 * need highmem pages, so cap pages_min to a small
5011 * value here.
5012 *
41858966 5013 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5014 * deltas controls asynch page reclaim, and so should
5015 * not be capped for highmem.
1da177e4
LT
5016 */
5017 int min_pages;
5018
5019 min_pages = zone->present_pages / 1024;
5020 if (min_pages < SWAP_CLUSTER_MAX)
5021 min_pages = SWAP_CLUSTER_MAX;
5022 if (min_pages > 128)
5023 min_pages = 128;
41858966 5024 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5025 } else {
669ed175
NP
5026 /*
5027 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5028 * proportionate to the zone's size.
5029 */
41858966 5030 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5031 }
5032
41858966
MG
5033 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5034 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 5035 setup_zone_migrate_reserve(zone);
1125b4e3 5036 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5037 }
cb45b0e9
HA
5038
5039 /* update totalreserve_pages */
5040 calculate_totalreserve_pages();
1da177e4
LT
5041}
5042
55a4462a 5043/*
556adecb
RR
5044 * The inactive anon list should be small enough that the VM never has to
5045 * do too much work, but large enough that each inactive page has a chance
5046 * to be referenced again before it is swapped out.
5047 *
5048 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5049 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5050 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5051 * the anonymous pages are kept on the inactive list.
5052 *
5053 * total target max
5054 * memory ratio inactive anon
5055 * -------------------------------------
5056 * 10MB 1 5MB
5057 * 100MB 1 50MB
5058 * 1GB 3 250MB
5059 * 10GB 10 0.9GB
5060 * 100GB 31 3GB
5061 * 1TB 101 10GB
5062 * 10TB 320 32GB
5063 */
1b79acc9 5064static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5065{
96cb4df5 5066 unsigned int gb, ratio;
556adecb 5067
96cb4df5
MK
5068 /* Zone size in gigabytes */
5069 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5070 if (gb)
556adecb 5071 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5072 else
5073 ratio = 1;
556adecb 5074
96cb4df5
MK
5075 zone->inactive_ratio = ratio;
5076}
556adecb 5077
839a4fcc 5078static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5079{
5080 struct zone *zone;
5081
5082 for_each_zone(zone)
5083 calculate_zone_inactive_ratio(zone);
556adecb
RR
5084}
5085
1da177e4
LT
5086/*
5087 * Initialise min_free_kbytes.
5088 *
5089 * For small machines we want it small (128k min). For large machines
5090 * we want it large (64MB max). But it is not linear, because network
5091 * bandwidth does not increase linearly with machine size. We use
5092 *
5093 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5094 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5095 *
5096 * which yields
5097 *
5098 * 16MB: 512k
5099 * 32MB: 724k
5100 * 64MB: 1024k
5101 * 128MB: 1448k
5102 * 256MB: 2048k
5103 * 512MB: 2896k
5104 * 1024MB: 4096k
5105 * 2048MB: 5792k
5106 * 4096MB: 8192k
5107 * 8192MB: 11584k
5108 * 16384MB: 16384k
5109 */
1b79acc9 5110int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5111{
5112 unsigned long lowmem_kbytes;
5113
5114 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5115
5116 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5117 if (min_free_kbytes < 128)
5118 min_free_kbytes = 128;
5119 if (min_free_kbytes > 65536)
5120 min_free_kbytes = 65536;
bc75d33f 5121 setup_per_zone_wmarks();
a6cccdc3 5122 refresh_zone_stat_thresholds();
1da177e4 5123 setup_per_zone_lowmem_reserve();
556adecb 5124 setup_per_zone_inactive_ratio();
1da177e4
LT
5125 return 0;
5126}
bc75d33f 5127module_init(init_per_zone_wmark_min)
1da177e4
LT
5128
5129/*
5130 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5131 * that we can call two helper functions whenever min_free_kbytes
5132 * changes.
5133 */
5134int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5135 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5136{
8d65af78 5137 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5138 if (write)
bc75d33f 5139 setup_per_zone_wmarks();
1da177e4
LT
5140 return 0;
5141}
5142
9614634f
CL
5143#ifdef CONFIG_NUMA
5144int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5145 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5146{
5147 struct zone *zone;
5148 int rc;
5149
8d65af78 5150 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5151 if (rc)
5152 return rc;
5153
5154 for_each_zone(zone)
8417bba4 5155 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5156 sysctl_min_unmapped_ratio) / 100;
5157 return 0;
5158}
0ff38490
CL
5159
5160int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5161 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5162{
5163 struct zone *zone;
5164 int rc;
5165
8d65af78 5166 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5167 if (rc)
5168 return rc;
5169
5170 for_each_zone(zone)
5171 zone->min_slab_pages = (zone->present_pages *
5172 sysctl_min_slab_ratio) / 100;
5173 return 0;
5174}
9614634f
CL
5175#endif
5176
1da177e4
LT
5177/*
5178 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5179 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5180 * whenever sysctl_lowmem_reserve_ratio changes.
5181 *
5182 * The reserve ratio obviously has absolutely no relation with the
41858966 5183 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5184 * if in function of the boot time zone sizes.
5185 */
5186int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5187 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5188{
8d65af78 5189 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5190 setup_per_zone_lowmem_reserve();
5191 return 0;
5192}
5193
8ad4b1fb
RS
5194/*
5195 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5196 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5197 * can have before it gets flushed back to buddy allocator.
5198 */
5199
5200int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5201 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5202{
5203 struct zone *zone;
5204 unsigned int cpu;
5205 int ret;
5206
8d65af78 5207 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5208 if (!write || (ret < 0))
8ad4b1fb 5209 return ret;
364df0eb 5210 for_each_populated_zone(zone) {
99dcc3e5 5211 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5212 unsigned long high;
5213 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5214 setup_pagelist_highmark(
5215 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5216 }
5217 }
5218 return 0;
5219}
5220
f034b5d4 5221int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5222
5223#ifdef CONFIG_NUMA
5224static int __init set_hashdist(char *str)
5225{
5226 if (!str)
5227 return 0;
5228 hashdist = simple_strtoul(str, &str, 0);
5229 return 1;
5230}
5231__setup("hashdist=", set_hashdist);
5232#endif
5233
5234/*
5235 * allocate a large system hash table from bootmem
5236 * - it is assumed that the hash table must contain an exact power-of-2
5237 * quantity of entries
5238 * - limit is the number of hash buckets, not the total allocation size
5239 */
5240void *__init alloc_large_system_hash(const char *tablename,
5241 unsigned long bucketsize,
5242 unsigned long numentries,
5243 int scale,
5244 int flags,
5245 unsigned int *_hash_shift,
5246 unsigned int *_hash_mask,
5247 unsigned long limit)
5248{
5249 unsigned long long max = limit;
5250 unsigned long log2qty, size;
5251 void *table = NULL;
5252
5253 /* allow the kernel cmdline to have a say */
5254 if (!numentries) {
5255 /* round applicable memory size up to nearest megabyte */
04903664 5256 numentries = nr_kernel_pages;
1da177e4
LT
5257 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5258 numentries >>= 20 - PAGE_SHIFT;
5259 numentries <<= 20 - PAGE_SHIFT;
5260
5261 /* limit to 1 bucket per 2^scale bytes of low memory */
5262 if (scale > PAGE_SHIFT)
5263 numentries >>= (scale - PAGE_SHIFT);
5264 else
5265 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5266
5267 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5268 if (unlikely(flags & HASH_SMALL)) {
5269 /* Makes no sense without HASH_EARLY */
5270 WARN_ON(!(flags & HASH_EARLY));
5271 if (!(numentries >> *_hash_shift)) {
5272 numentries = 1UL << *_hash_shift;
5273 BUG_ON(!numentries);
5274 }
5275 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5276 numentries = PAGE_SIZE / bucketsize;
1da177e4 5277 }
6e692ed3 5278 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5279
5280 /* limit allocation size to 1/16 total memory by default */
5281 if (max == 0) {
5282 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5283 do_div(max, bucketsize);
5284 }
074b8517 5285 max = min(max, 0x80000000ULL);
1da177e4
LT
5286
5287 if (numentries > max)
5288 numentries = max;
5289
f0d1b0b3 5290 log2qty = ilog2(numentries);
1da177e4
LT
5291
5292 do {
5293 size = bucketsize << log2qty;
5294 if (flags & HASH_EARLY)
74768ed8 5295 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5296 else if (hashdist)
5297 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5298 else {
1037b83b
ED
5299 /*
5300 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5301 * some pages at the end of hash table which
5302 * alloc_pages_exact() automatically does
1037b83b 5303 */
264ef8a9 5304 if (get_order(size) < MAX_ORDER) {
a1dd268c 5305 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5306 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5307 }
1da177e4
LT
5308 }
5309 } while (!table && size > PAGE_SIZE && --log2qty);
5310
5311 if (!table)
5312 panic("Failed to allocate %s hash table\n", tablename);
5313
f241e660 5314 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5315 tablename,
f241e660 5316 (1UL << log2qty),
f0d1b0b3 5317 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5318 size);
5319
5320 if (_hash_shift)
5321 *_hash_shift = log2qty;
5322 if (_hash_mask)
5323 *_hash_mask = (1 << log2qty) - 1;
5324
5325 return table;
5326}
a117e66e 5327
835c134e
MG
5328/* Return a pointer to the bitmap storing bits affecting a block of pages */
5329static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5330 unsigned long pfn)
5331{
5332#ifdef CONFIG_SPARSEMEM
5333 return __pfn_to_section(pfn)->pageblock_flags;
5334#else
5335 return zone->pageblock_flags;
5336#endif /* CONFIG_SPARSEMEM */
5337}
5338
5339static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5340{
5341#ifdef CONFIG_SPARSEMEM
5342 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5343 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5344#else
5345 pfn = pfn - zone->zone_start_pfn;
d9c23400 5346 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5347#endif /* CONFIG_SPARSEMEM */
5348}
5349
5350/**
d9c23400 5351 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5352 * @page: The page within the block of interest
5353 * @start_bitidx: The first bit of interest to retrieve
5354 * @end_bitidx: The last bit of interest
5355 * returns pageblock_bits flags
5356 */
5357unsigned long get_pageblock_flags_group(struct page *page,
5358 int start_bitidx, int end_bitidx)
5359{
5360 struct zone *zone;
5361 unsigned long *bitmap;
5362 unsigned long pfn, bitidx;
5363 unsigned long flags = 0;
5364 unsigned long value = 1;
5365
5366 zone = page_zone(page);
5367 pfn = page_to_pfn(page);
5368 bitmap = get_pageblock_bitmap(zone, pfn);
5369 bitidx = pfn_to_bitidx(zone, pfn);
5370
5371 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5372 if (test_bit(bitidx + start_bitidx, bitmap))
5373 flags |= value;
6220ec78 5374
835c134e
MG
5375 return flags;
5376}
5377
5378/**
d9c23400 5379 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5380 * @page: The page within the block of interest
5381 * @start_bitidx: The first bit of interest
5382 * @end_bitidx: The last bit of interest
5383 * @flags: The flags to set
5384 */
5385void set_pageblock_flags_group(struct page *page, unsigned long flags,
5386 int start_bitidx, int end_bitidx)
5387{
5388 struct zone *zone;
5389 unsigned long *bitmap;
5390 unsigned long pfn, bitidx;
5391 unsigned long value = 1;
5392
5393 zone = page_zone(page);
5394 pfn = page_to_pfn(page);
5395 bitmap = get_pageblock_bitmap(zone, pfn);
5396 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5397 VM_BUG_ON(pfn < zone->zone_start_pfn);
5398 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5399
5400 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5401 if (flags & value)
5402 __set_bit(bitidx + start_bitidx, bitmap);
5403 else
5404 __clear_bit(bitidx + start_bitidx, bitmap);
5405}
a5d76b54
KH
5406
5407/*
5408 * This is designed as sub function...plz see page_isolation.c also.
5409 * set/clear page block's type to be ISOLATE.
5410 * page allocater never alloc memory from ISOLATE block.
5411 */
5412
49ac8255
KH
5413static int
5414__count_immobile_pages(struct zone *zone, struct page *page, int count)
5415{
5416 unsigned long pfn, iter, found;
5417 /*
5418 * For avoiding noise data, lru_add_drain_all() should be called
5419 * If ZONE_MOVABLE, the zone never contains immobile pages
5420 */
5421 if (zone_idx(zone) == ZONE_MOVABLE)
5422 return true;
5423
5424 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5425 return true;
5426
5427 pfn = page_to_pfn(page);
5428 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5429 unsigned long check = pfn + iter;
5430
29723fcc 5431 if (!pfn_valid_within(check))
49ac8255 5432 continue;
29723fcc 5433
49ac8255
KH
5434 page = pfn_to_page(check);
5435 if (!page_count(page)) {
5436 if (PageBuddy(page))
5437 iter += (1 << page_order(page)) - 1;
5438 continue;
5439 }
5440 if (!PageLRU(page))
5441 found++;
5442 /*
5443 * If there are RECLAIMABLE pages, we need to check it.
5444 * But now, memory offline itself doesn't call shrink_slab()
5445 * and it still to be fixed.
5446 */
5447 /*
5448 * If the page is not RAM, page_count()should be 0.
5449 * we don't need more check. This is an _used_ not-movable page.
5450 *
5451 * The problematic thing here is PG_reserved pages. PG_reserved
5452 * is set to both of a memory hole page and a _used_ kernel
5453 * page at boot.
5454 */
5455 if (found > count)
5456 return false;
5457 }
5458 return true;
5459}
5460
5461bool is_pageblock_removable_nolock(struct page *page)
5462{
656a0706
MH
5463 struct zone *zone;
5464 unsigned long pfn;
687875fb
MH
5465
5466 /*
5467 * We have to be careful here because we are iterating over memory
5468 * sections which are not zone aware so we might end up outside of
5469 * the zone but still within the section.
656a0706
MH
5470 * We have to take care about the node as well. If the node is offline
5471 * its NODE_DATA will be NULL - see page_zone.
687875fb 5472 */
656a0706
MH
5473 if (!node_online(page_to_nid(page)))
5474 return false;
5475
5476 zone = page_zone(page);
5477 pfn = page_to_pfn(page);
5478 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5479 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5480 return false;
5481
49ac8255
KH
5482 return __count_immobile_pages(zone, page, 0);
5483}
5484
a5d76b54
KH
5485int set_migratetype_isolate(struct page *page)
5486{
5487 struct zone *zone;
49ac8255 5488 unsigned long flags, pfn;
925cc71e
RJ
5489 struct memory_isolate_notify arg;
5490 int notifier_ret;
a5d76b54
KH
5491 int ret = -EBUSY;
5492
5493 zone = page_zone(page);
925cc71e 5494
a5d76b54 5495 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5496
5497 pfn = page_to_pfn(page);
5498 arg.start_pfn = pfn;
5499 arg.nr_pages = pageblock_nr_pages;
5500 arg.pages_found = 0;
5501
a5d76b54 5502 /*
925cc71e
RJ
5503 * It may be possible to isolate a pageblock even if the
5504 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5505 * notifier chain is used by balloon drivers to return the
5506 * number of pages in a range that are held by the balloon
5507 * driver to shrink memory. If all the pages are accounted for
5508 * by balloons, are free, or on the LRU, isolation can continue.
5509 * Later, for example, when memory hotplug notifier runs, these
5510 * pages reported as "can be isolated" should be isolated(freed)
5511 * by the balloon driver through the memory notifier chain.
a5d76b54 5512 */
925cc71e
RJ
5513 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5514 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5515 if (notifier_ret)
a5d76b54 5516 goto out;
49ac8255
KH
5517 /*
5518 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5519 * We just check MOVABLE pages.
5520 */
5521 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5522 ret = 0;
5523
49ac8255
KH
5524 /*
5525 * immobile means "not-on-lru" paes. If immobile is larger than
5526 * removable-by-driver pages reported by notifier, we'll fail.
5527 */
5528
a5d76b54 5529out:
925cc71e
RJ
5530 if (!ret) {
5531 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5532 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5533 }
5534
a5d76b54
KH
5535 spin_unlock_irqrestore(&zone->lock, flags);
5536 if (!ret)
9f8f2172 5537 drain_all_pages();
a5d76b54
KH
5538 return ret;
5539}
5540
5541void unset_migratetype_isolate(struct page *page)
5542{
5543 struct zone *zone;
5544 unsigned long flags;
5545 zone = page_zone(page);
5546 spin_lock_irqsave(&zone->lock, flags);
5547 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5548 goto out;
5549 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5550 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5551out:
5552 spin_unlock_irqrestore(&zone->lock, flags);
5553}
0c0e6195 5554
041d3a8c
MN
5555#ifdef CONFIG_CMA
5556
5557static unsigned long pfn_max_align_down(unsigned long pfn)
5558{
5559 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5560 pageblock_nr_pages) - 1);
5561}
5562
5563static unsigned long pfn_max_align_up(unsigned long pfn)
5564{
5565 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5566 pageblock_nr_pages));
5567}
5568
5569static struct page *
5570__alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5571 int **resultp)
5572{
5573 return alloc_page(GFP_HIGHUSER_MOVABLE);
5574}
5575
5576/* [start, end) must belong to a single zone. */
5577static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5578{
5579 /* This function is based on compact_zone() from compaction.c. */
5580
5581 unsigned long pfn = start;
5582 unsigned int tries = 0;
5583 int ret = 0;
5584
5585 struct compact_control cc = {
5586 .nr_migratepages = 0,
5587 .order = -1,
5588 .zone = page_zone(pfn_to_page(start)),
5589 .sync = true,
5590 };
5591 INIT_LIST_HEAD(&cc.migratepages);
5592
5593 migrate_prep_local();
5594
5595 while (pfn < end || !list_empty(&cc.migratepages)) {
5596 if (fatal_signal_pending(current)) {
5597 ret = -EINTR;
5598 break;
5599 }
5600
5601 if (list_empty(&cc.migratepages)) {
5602 cc.nr_migratepages = 0;
5603 pfn = isolate_migratepages_range(cc.zone, &cc,
5604 pfn, end);
5605 if (!pfn) {
5606 ret = -EINTR;
5607 break;
5608 }
5609 tries = 0;
5610 } else if (++tries == 5) {
5611 ret = ret < 0 ? ret : -EBUSY;
5612 break;
5613 }
5614
5615 ret = migrate_pages(&cc.migratepages,
5616 __alloc_contig_migrate_alloc,
5617 0, false, true);
5618 }
5619
5620 putback_lru_pages(&cc.migratepages);
5621 return ret > 0 ? 0 : ret;
5622}
5623
5624/**
5625 * alloc_contig_range() -- tries to allocate given range of pages
5626 * @start: start PFN to allocate
5627 * @end: one-past-the-last PFN to allocate
5628 *
5629 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5630 * aligned, however it's the caller's responsibility to guarantee that
5631 * we are the only thread that changes migrate type of pageblocks the
5632 * pages fall in.
5633 *
5634 * The PFN range must belong to a single zone.
5635 *
5636 * Returns zero on success or negative error code. On success all
5637 * pages which PFN is in [start, end) are allocated for the caller and
5638 * need to be freed with free_contig_range().
5639 */
5640int alloc_contig_range(unsigned long start, unsigned long end)
5641{
5642 struct zone *zone = page_zone(pfn_to_page(start));
5643 unsigned long outer_start, outer_end;
5644 int ret = 0, order;
5645
5646 /*
5647 * What we do here is we mark all pageblocks in range as
5648 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5649 * have different sizes, and due to the way page allocator
5650 * work, we align the range to biggest of the two pages so
5651 * that page allocator won't try to merge buddies from
5652 * different pageblocks and change MIGRATE_ISOLATE to some
5653 * other migration type.
5654 *
5655 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5656 * migrate the pages from an unaligned range (ie. pages that
5657 * we are interested in). This will put all the pages in
5658 * range back to page allocator as MIGRATE_ISOLATE.
5659 *
5660 * When this is done, we take the pages in range from page
5661 * allocator removing them from the buddy system. This way
5662 * page allocator will never consider using them.
5663 *
5664 * This lets us mark the pageblocks back as
5665 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5666 * aligned range but not in the unaligned, original range are
5667 * put back to page allocator so that buddy can use them.
5668 */
5669
5670 ret = start_isolate_page_range(pfn_max_align_down(start),
5671 pfn_max_align_up(end));
5672 if (ret)
5673 goto done;
5674
5675 ret = __alloc_contig_migrate_range(start, end);
5676 if (ret)
5677 goto done;
5678
5679 /*
5680 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5681 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5682 * more, all pages in [start, end) are free in page allocator.
5683 * What we are going to do is to allocate all pages from
5684 * [start, end) (that is remove them from page allocator).
5685 *
5686 * The only problem is that pages at the beginning and at the
5687 * end of interesting range may be not aligned with pages that
5688 * page allocator holds, ie. they can be part of higher order
5689 * pages. Because of this, we reserve the bigger range and
5690 * once this is done free the pages we are not interested in.
5691 *
5692 * We don't have to hold zone->lock here because the pages are
5693 * isolated thus they won't get removed from buddy.
5694 */
5695
5696 lru_add_drain_all();
5697 drain_all_pages();
5698
5699 order = 0;
5700 outer_start = start;
5701 while (!PageBuddy(pfn_to_page(outer_start))) {
5702 if (++order >= MAX_ORDER) {
5703 ret = -EBUSY;
5704 goto done;
5705 }
5706 outer_start &= ~0UL << order;
5707 }
5708
5709 /* Make sure the range is really isolated. */
5710 if (test_pages_isolated(outer_start, end)) {
5711 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5712 outer_start, end);
5713 ret = -EBUSY;
5714 goto done;
5715 }
5716
5717 outer_end = isolate_freepages_range(outer_start, end);
5718 if (!outer_end) {
5719 ret = -EBUSY;
5720 goto done;
5721 }
5722
5723 /* Free head and tail (if any) */
5724 if (start != outer_start)
5725 free_contig_range(outer_start, start - outer_start);
5726 if (end != outer_end)
5727 free_contig_range(end, outer_end - end);
5728
5729done:
5730 undo_isolate_page_range(pfn_max_align_down(start),
5731 pfn_max_align_up(end));
5732 return ret;
5733}
5734
5735void free_contig_range(unsigned long pfn, unsigned nr_pages)
5736{
5737 for (; nr_pages--; ++pfn)
5738 __free_page(pfn_to_page(pfn));
5739}
5740#endif
5741
0c0e6195
KH
5742#ifdef CONFIG_MEMORY_HOTREMOVE
5743/*
5744 * All pages in the range must be isolated before calling this.
5745 */
5746void
5747__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5748{
5749 struct page *page;
5750 struct zone *zone;
5751 int order, i;
5752 unsigned long pfn;
5753 unsigned long flags;
5754 /* find the first valid pfn */
5755 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5756 if (pfn_valid(pfn))
5757 break;
5758 if (pfn == end_pfn)
5759 return;
5760 zone = page_zone(pfn_to_page(pfn));
5761 spin_lock_irqsave(&zone->lock, flags);
5762 pfn = start_pfn;
5763 while (pfn < end_pfn) {
5764 if (!pfn_valid(pfn)) {
5765 pfn++;
5766 continue;
5767 }
5768 page = pfn_to_page(pfn);
5769 BUG_ON(page_count(page));
5770 BUG_ON(!PageBuddy(page));
5771 order = page_order(page);
5772#ifdef CONFIG_DEBUG_VM
5773 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5774 pfn, 1 << order, end_pfn);
5775#endif
5776 list_del(&page->lru);
5777 rmv_page_order(page);
5778 zone->free_area[order].nr_free--;
5779 __mod_zone_page_state(zone, NR_FREE_PAGES,
5780 - (1UL << order));
5781 for (i = 0; i < (1 << order); i++)
5782 SetPageReserved((page+i));
5783 pfn += (1 << order);
5784 }
5785 spin_unlock_irqrestore(&zone->lock, flags);
5786}
5787#endif
8d22ba1b
WF
5788
5789#ifdef CONFIG_MEMORY_FAILURE
5790bool is_free_buddy_page(struct page *page)
5791{
5792 struct zone *zone = page_zone(page);
5793 unsigned long pfn = page_to_pfn(page);
5794 unsigned long flags;
5795 int order;
5796
5797 spin_lock_irqsave(&zone->lock, flags);
5798 for (order = 0; order < MAX_ORDER; order++) {
5799 struct page *page_head = page - (pfn & ((1 << order) - 1));
5800
5801 if (PageBuddy(page_head) && page_order(page_head) >= order)
5802 break;
5803 }
5804 spin_unlock_irqrestore(&zone->lock, flags);
5805
5806 return order < MAX_ORDER;
5807}
5808#endif
718a3821
WF
5809
5810static struct trace_print_flags pageflag_names[] = {
5811 {1UL << PG_locked, "locked" },
5812 {1UL << PG_error, "error" },
5813 {1UL << PG_referenced, "referenced" },
5814 {1UL << PG_uptodate, "uptodate" },
5815 {1UL << PG_dirty, "dirty" },
5816 {1UL << PG_lru, "lru" },
5817 {1UL << PG_active, "active" },
5818 {1UL << PG_slab, "slab" },
5819 {1UL << PG_owner_priv_1, "owner_priv_1" },
5820 {1UL << PG_arch_1, "arch_1" },
5821 {1UL << PG_reserved, "reserved" },
5822 {1UL << PG_private, "private" },
5823 {1UL << PG_private_2, "private_2" },
5824 {1UL << PG_writeback, "writeback" },
5825#ifdef CONFIG_PAGEFLAGS_EXTENDED
5826 {1UL << PG_head, "head" },
5827 {1UL << PG_tail, "tail" },
5828#else
5829 {1UL << PG_compound, "compound" },
5830#endif
5831 {1UL << PG_swapcache, "swapcache" },
5832 {1UL << PG_mappedtodisk, "mappedtodisk" },
5833 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
5834 {1UL << PG_swapbacked, "swapbacked" },
5835 {1UL << PG_unevictable, "unevictable" },
5836#ifdef CONFIG_MMU
5837 {1UL << PG_mlocked, "mlocked" },
5838#endif
5839#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5840 {1UL << PG_uncached, "uncached" },
5841#endif
5842#ifdef CONFIG_MEMORY_FAILURE
5843 {1UL << PG_hwpoison, "hwpoison" },
5844#endif
5845 {-1UL, NULL },
5846};
5847
5848static void dump_page_flags(unsigned long flags)
5849{
5850 const char *delim = "";
5851 unsigned long mask;
5852 int i;
5853
5854 printk(KERN_ALERT "page flags: %#lx(", flags);
5855
5856 /* remove zone id */
5857 flags &= (1UL << NR_PAGEFLAGS) - 1;
5858
5859 for (i = 0; pageflag_names[i].name && flags; i++) {
5860
5861 mask = pageflag_names[i].mask;
5862 if ((flags & mask) != mask)
5863 continue;
5864
5865 flags &= ~mask;
5866 printk("%s%s", delim, pageflag_names[i].name);
5867 delim = "|";
5868 }
5869
5870 /* check for left over flags */
5871 if (flags)
5872 printk("%s%#lx", delim, flags);
5873
5874 printk(")\n");
5875}
5876
5877void dump_page(struct page *page)
5878{
5879 printk(KERN_ALERT
5880 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 5881 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
5882 page->mapping, page->index);
5883 dump_page_flags(page->flags);
f212ad7c 5884 mem_cgroup_print_bad_page(page);
718a3821 5885}
This page took 1.222902 seconds and 5 git commands to generate.