failslab: simplify debugfs initialization
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
925cc71e 54#include <linux/memory.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
718a3821 57#include <linux/ftrace_event.h>
f212ad7c 58#include <linux/memcontrol.h>
268bb0ce 59#include <linux/prefetch.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
ac924c60 62#include <asm/div64.h>
1da177e4
LT
63#include "internal.h"
64
72812019
LS
65#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66DEFINE_PER_CPU(int, numa_node);
67EXPORT_PER_CPU_SYMBOL(numa_node);
68#endif
69
7aac7898
LS
70#ifdef CONFIG_HAVE_MEMORYLESS_NODES
71/*
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
76 */
77DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
78EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79#endif
80
1da177e4 81/*
13808910 82 * Array of node states.
1da177e4 83 */
13808910
CL
84nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85 [N_POSSIBLE] = NODE_MASK_ALL,
86 [N_ONLINE] = { { [0] = 1UL } },
87#ifndef CONFIG_NUMA
88 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
89#ifdef CONFIG_HIGHMEM
90 [N_HIGH_MEMORY] = { { [0] = 1UL } },
91#endif
92 [N_CPU] = { { [0] = 1UL } },
93#endif /* NUMA */
94};
95EXPORT_SYMBOL(node_states);
96
6c231b7b 97unsigned long totalram_pages __read_mostly;
cb45b0e9 98unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 99int percpu_pagelist_fraction;
dcce284a 100gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 101
452aa699
RW
102#ifdef CONFIG_PM_SLEEP
103/*
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
110 */
c9e664f1
RW
111
112static gfp_t saved_gfp_mask;
113
114void pm_restore_gfp_mask(void)
452aa699
RW
115{
116 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
117 if (saved_gfp_mask) {
118 gfp_allowed_mask = saved_gfp_mask;
119 saved_gfp_mask = 0;
120 }
452aa699
RW
121}
122
c9e664f1 123void pm_restrict_gfp_mask(void)
452aa699 124{
452aa699 125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 WARN_ON(saved_gfp_mask);
127 saved_gfp_mask = gfp_allowed_mask;
128 gfp_allowed_mask &= ~GFP_IOFS;
452aa699
RW
129}
130#endif /* CONFIG_PM_SLEEP */
131
d9c23400
MG
132#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133int pageblock_order __read_mostly;
134#endif
135
d98c7a09 136static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 137
1da177e4
LT
138/*
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 * 1G machine -> (16M dma, 784M normal, 224M high)
142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
145 *
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
1da177e4 148 */
2f1b6248 149int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 150#ifdef CONFIG_ZONE_DMA
2f1b6248 151 256,
4b51d669 152#endif
fb0e7942 153#ifdef CONFIG_ZONE_DMA32
2f1b6248 154 256,
fb0e7942 155#endif
e53ef38d 156#ifdef CONFIG_HIGHMEM
2a1e274a 157 32,
e53ef38d 158#endif
2a1e274a 159 32,
2f1b6248 160};
1da177e4
LT
161
162EXPORT_SYMBOL(totalram_pages);
1da177e4 163
15ad7cdc 164static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 165#ifdef CONFIG_ZONE_DMA
2f1b6248 166 "DMA",
4b51d669 167#endif
fb0e7942 168#ifdef CONFIG_ZONE_DMA32
2f1b6248 169 "DMA32",
fb0e7942 170#endif
2f1b6248 171 "Normal",
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 "HighMem",
e53ef38d 174#endif
2a1e274a 175 "Movable",
2f1b6248
CL
176};
177
1da177e4
LT
178int min_free_kbytes = 1024;
179
2c85f51d
JB
180static unsigned long __meminitdata nr_kernel_pages;
181static unsigned long __meminitdata nr_all_pages;
a3142c8e 182static unsigned long __meminitdata dma_reserve;
1da177e4 183
c713216d
MG
184#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
185 /*
183ff22b 186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
187 * ranges of memory (RAM) that may be registered with add_active_range().
188 * Ranges passed to add_active_range() will be merged if possible
189 * so the number of times add_active_range() can be called is
190 * related to the number of nodes and the number of holes
191 */
192 #ifdef CONFIG_MAX_ACTIVE_REGIONS
193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
195 #else
196 #if MAX_NUMNODES >= 32
197 /* If there can be many nodes, allow up to 50 holes per node */
198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
199 #else
200 /* By default, allow up to 256 distinct regions */
201 #define MAX_ACTIVE_REGIONS 256
202 #endif
203 #endif
204
98011f56
JB
205 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
206 static int __meminitdata nr_nodemap_entries;
207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
208 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 209 static unsigned long __initdata required_kernelcore;
484f51f8 210 static unsigned long __initdata required_movablecore;
b69a7288 211 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
212
213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
214 int movable_zone;
215 EXPORT_SYMBOL(movable_zone);
c713216d
MG
216#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
217
418508c1
MS
218#if MAX_NUMNODES > 1
219int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 220int nr_online_nodes __read_mostly = 1;
418508c1 221EXPORT_SYMBOL(nr_node_ids);
62bc62a8 222EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
223#endif
224
9ef9acb0
MG
225int page_group_by_mobility_disabled __read_mostly;
226
b2a0ac88
MG
227static void set_pageblock_migratetype(struct page *page, int migratetype)
228{
49255c61
MG
229
230 if (unlikely(page_group_by_mobility_disabled))
231 migratetype = MIGRATE_UNMOVABLE;
232
b2a0ac88
MG
233 set_pageblock_flags_group(page, (unsigned long)migratetype,
234 PB_migrate, PB_migrate_end);
235}
236
7f33d49a
RW
237bool oom_killer_disabled __read_mostly;
238
13e7444b 239#ifdef CONFIG_DEBUG_VM
c6a57e19 240static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 241{
bdc8cb98
DH
242 int ret = 0;
243 unsigned seq;
244 unsigned long pfn = page_to_pfn(page);
c6a57e19 245
bdc8cb98
DH
246 do {
247 seq = zone_span_seqbegin(zone);
248 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
249 ret = 1;
250 else if (pfn < zone->zone_start_pfn)
251 ret = 1;
252 } while (zone_span_seqretry(zone, seq));
253
254 return ret;
c6a57e19
DH
255}
256
257static int page_is_consistent(struct zone *zone, struct page *page)
258{
14e07298 259 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 260 return 0;
1da177e4 261 if (zone != page_zone(page))
c6a57e19
DH
262 return 0;
263
264 return 1;
265}
266/*
267 * Temporary debugging check for pages not lying within a given zone.
268 */
269static int bad_range(struct zone *zone, struct page *page)
270{
271 if (page_outside_zone_boundaries(zone, page))
1da177e4 272 return 1;
c6a57e19
DH
273 if (!page_is_consistent(zone, page))
274 return 1;
275
1da177e4
LT
276 return 0;
277}
13e7444b
NP
278#else
279static inline int bad_range(struct zone *zone, struct page *page)
280{
281 return 0;
282}
283#endif
284
224abf92 285static void bad_page(struct page *page)
1da177e4 286{
d936cf9b
HD
287 static unsigned long resume;
288 static unsigned long nr_shown;
289 static unsigned long nr_unshown;
290
2a7684a2
WF
291 /* Don't complain about poisoned pages */
292 if (PageHWPoison(page)) {
ef2b4b95 293 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
294 return;
295 }
296
d936cf9b
HD
297 /*
298 * Allow a burst of 60 reports, then keep quiet for that minute;
299 * or allow a steady drip of one report per second.
300 */
301 if (nr_shown == 60) {
302 if (time_before(jiffies, resume)) {
303 nr_unshown++;
304 goto out;
305 }
306 if (nr_unshown) {
1e9e6365
HD
307 printk(KERN_ALERT
308 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
309 nr_unshown);
310 nr_unshown = 0;
311 }
312 nr_shown = 0;
313 }
314 if (nr_shown++ == 0)
315 resume = jiffies + 60 * HZ;
316
1e9e6365 317 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 318 current->comm, page_to_pfn(page));
718a3821 319 dump_page(page);
3dc14741 320
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
335 * All pages have PG_compound set. All pages have their ->private pointing at
336 * the head page (even the head page has this).
337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358
359 __SetPageTail(p);
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
6aa3001b
AM
405static inline void set_page_order(struct page *page, int order)
406{
4c21e2f2 407 set_page_private(page, order);
676165a8 408 __SetPageBuddy(page);
1da177e4
LT
409}
410
411static inline void rmv_page_order(struct page *page)
412{
676165a8 413 __ClearPageBuddy(page);
4c21e2f2 414 set_page_private(page, 0);
1da177e4
LT
415}
416
417/*
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
420 *
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
423 * B2 = B1 ^ (1 << O)
424 * For example, if the starting buddy (buddy2) is #8 its order
425 * 1 buddy is #10:
426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
427 *
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
430 * P = B & ~(1 << O)
431 *
d6e05edc 432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 433 */
1da177e4 434static inline unsigned long
43506fad 435__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 436{
43506fad 437 return page_idx ^ (1 << order);
1da177e4
LT
438}
439
440/*
441 * This function checks whether a page is free && is the buddy
442 * we can do coalesce a page and its buddy if
13e7444b 443 * (a) the buddy is not in a hole &&
676165a8 444 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
445 * (c) a page and its buddy have the same order &&
446 * (d) a page and its buddy are in the same zone.
676165a8 447 *
5f24ce5f
AA
448 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 450 *
676165a8 451 * For recording page's order, we use page_private(page).
1da177e4 452 */
cb2b95e1
AW
453static inline int page_is_buddy(struct page *page, struct page *buddy,
454 int order)
1da177e4 455{
14e07298 456 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 457 return 0;
13e7444b 458
cb2b95e1
AW
459 if (page_zone_id(page) != page_zone_id(buddy))
460 return 0;
461
462 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 463 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 464 return 1;
676165a8 465 }
6aa3001b 466 return 0;
1da177e4
LT
467}
468
469/*
470 * Freeing function for a buddy system allocator.
471 *
472 * The concept of a buddy system is to maintain direct-mapped table
473 * (containing bit values) for memory blocks of various "orders".
474 * The bottom level table contains the map for the smallest allocatable
475 * units of memory (here, pages), and each level above it describes
476 * pairs of units from the levels below, hence, "buddies".
477 * At a high level, all that happens here is marking the table entry
478 * at the bottom level available, and propagating the changes upward
479 * as necessary, plus some accounting needed to play nicely with other
480 * parts of the VM system.
481 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 483 * order is recorded in page_private(page) field.
1da177e4
LT
484 * So when we are allocating or freeing one, we can derive the state of the
485 * other. That is, if we allocate a small block, and both were
486 * free, the remainder of the region must be split into blocks.
487 * If a block is freed, and its buddy is also free, then this
488 * triggers coalescing into a block of larger size.
489 *
490 * -- wli
491 */
492
48db57f8 493static inline void __free_one_page(struct page *page,
ed0ae21d
MG
494 struct zone *zone, unsigned int order,
495 int migratetype)
1da177e4
LT
496{
497 unsigned long page_idx;
6dda9d55 498 unsigned long combined_idx;
43506fad 499 unsigned long uninitialized_var(buddy_idx);
6dda9d55 500 struct page *buddy;
1da177e4 501
224abf92 502 if (unlikely(PageCompound(page)))
8cc3b392
HD
503 if (unlikely(destroy_compound_page(page, order)))
504 return;
1da177e4 505
ed0ae21d
MG
506 VM_BUG_ON(migratetype == -1);
507
1da177e4
LT
508 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
509
f2260e6b 510 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 511 VM_BUG_ON(bad_range(zone, page));
1da177e4 512
1da177e4 513 while (order < MAX_ORDER-1) {
43506fad
KC
514 buddy_idx = __find_buddy_index(page_idx, order);
515 buddy = page + (buddy_idx - page_idx);
cb2b95e1 516 if (!page_is_buddy(page, buddy, order))
3c82d0ce 517 break;
13e7444b 518
3c82d0ce 519 /* Our buddy is free, merge with it and move up one order. */
1da177e4 520 list_del(&buddy->lru);
b2a0ac88 521 zone->free_area[order].nr_free--;
1da177e4 522 rmv_page_order(buddy);
43506fad 523 combined_idx = buddy_idx & page_idx;
1da177e4
LT
524 page = page + (combined_idx - page_idx);
525 page_idx = combined_idx;
526 order++;
527 }
528 set_page_order(page, order);
6dda9d55
CZ
529
530 /*
531 * If this is not the largest possible page, check if the buddy
532 * of the next-highest order is free. If it is, it's possible
533 * that pages are being freed that will coalesce soon. In case,
534 * that is happening, add the free page to the tail of the list
535 * so it's less likely to be used soon and more likely to be merged
536 * as a higher order page
537 */
b7f50cfa 538 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 539 struct page *higher_page, *higher_buddy;
43506fad
KC
540 combined_idx = buddy_idx & page_idx;
541 higher_page = page + (combined_idx - page_idx);
542 buddy_idx = __find_buddy_index(combined_idx, order + 1);
543 higher_buddy = page + (buddy_idx - combined_idx);
6dda9d55
CZ
544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545 list_add_tail(&page->lru,
546 &zone->free_area[order].free_list[migratetype]);
547 goto out;
548 }
549 }
550
551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552out:
1da177e4
LT
553 zone->free_area[order].nr_free++;
554}
555
092cead6
KM
556/*
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
560 */
561static inline void free_page_mlock(struct page *page)
562{
092cead6
KM
563 __dec_zone_page_state(page, NR_MLOCK);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED);
565}
092cead6 566
224abf92 567static inline int free_pages_check(struct page *page)
1da177e4 568{
92be2e33
NP
569 if (unlikely(page_mapcount(page) |
570 (page->mapping != NULL) |
a3af9c38 571 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
573 (mem_cgroup_bad_page_check(page)))) {
224abf92 574 bad_page(page);
79f4b7bf 575 return 1;
8cc3b392 576 }
79f4b7bf
HD
577 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
578 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
579 return 0;
1da177e4
LT
580}
581
582/*
5f8dcc21 583 * Frees a number of pages from the PCP lists
1da177e4 584 * Assumes all pages on list are in same zone, and of same order.
207f36ee 585 * count is the number of pages to free.
1da177e4
LT
586 *
587 * If the zone was previously in an "all pages pinned" state then look to
588 * see if this freeing clears that state.
589 *
590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
591 * pinned" detection logic.
592 */
5f8dcc21
MG
593static void free_pcppages_bulk(struct zone *zone, int count,
594 struct per_cpu_pages *pcp)
1da177e4 595{
5f8dcc21 596 int migratetype = 0;
a6f9edd6 597 int batch_free = 0;
72853e29 598 int to_free = count;
5f8dcc21 599
c54ad30c 600 spin_lock(&zone->lock);
93e4a89a 601 zone->all_unreclaimable = 0;
1da177e4 602 zone->pages_scanned = 0;
f2260e6b 603
72853e29 604 while (to_free) {
48db57f8 605 struct page *page;
5f8dcc21
MG
606 struct list_head *list;
607
608 /*
a6f9edd6
MG
609 * Remove pages from lists in a round-robin fashion. A
610 * batch_free count is maintained that is incremented when an
611 * empty list is encountered. This is so more pages are freed
612 * off fuller lists instead of spinning excessively around empty
613 * lists
5f8dcc21
MG
614 */
615 do {
a6f9edd6 616 batch_free++;
5f8dcc21
MG
617 if (++migratetype == MIGRATE_PCPTYPES)
618 migratetype = 0;
619 list = &pcp->lists[migratetype];
620 } while (list_empty(list));
48db57f8 621
1d16871d
NK
622 /* This is the only non-empty list. Free them all. */
623 if (batch_free == MIGRATE_PCPTYPES)
624 batch_free = to_free;
625
a6f9edd6
MG
626 do {
627 page = list_entry(list->prev, struct page, lru);
628 /* must delete as __free_one_page list manipulates */
629 list_del(&page->lru);
a7016235
HD
630 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
631 __free_one_page(page, zone, 0, page_private(page));
632 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 633 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 634 }
72853e29 635 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 636 spin_unlock(&zone->lock);
1da177e4
LT
637}
638
ed0ae21d
MG
639static void free_one_page(struct zone *zone, struct page *page, int order,
640 int migratetype)
1da177e4 641{
006d22d9 642 spin_lock(&zone->lock);
93e4a89a 643 zone->all_unreclaimable = 0;
006d22d9 644 zone->pages_scanned = 0;
f2260e6b 645
ed0ae21d 646 __free_one_page(page, zone, order, migratetype);
72853e29 647 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 648 spin_unlock(&zone->lock);
48db57f8
NP
649}
650
ec95f53a 651static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 652{
1da177e4 653 int i;
8cc3b392 654 int bad = 0;
1da177e4 655
f650316c 656 trace_mm_page_free_direct(page, order);
b1eeab67
VN
657 kmemcheck_free_shadow(page, order);
658
8dd60a3a
AA
659 if (PageAnon(page))
660 page->mapping = NULL;
661 for (i = 0; i < (1 << order); i++)
662 bad += free_pages_check(page + i);
8cc3b392 663 if (bad)
ec95f53a 664 return false;
689bcebf 665
3ac7fe5a 666 if (!PageHighMem(page)) {
9858db50 667 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
668 debug_check_no_obj_freed(page_address(page),
669 PAGE_SIZE << order);
670 }
dafb1367 671 arch_free_page(page, order);
48db57f8 672 kernel_map_pages(page, 1 << order, 0);
dafb1367 673
ec95f53a
KM
674 return true;
675}
676
677static void __free_pages_ok(struct page *page, unsigned int order)
678{
679 unsigned long flags;
680 int wasMlocked = __TestClearPageMlocked(page);
681
682 if (!free_pages_prepare(page, order))
683 return;
684
c54ad30c 685 local_irq_save(flags);
c277331d 686 if (unlikely(wasMlocked))
da456f14 687 free_page_mlock(page);
f8891e5e 688 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
689 free_one_page(page_zone(page), page, order,
690 get_pageblock_migratetype(page));
c54ad30c 691 local_irq_restore(flags);
1da177e4
LT
692}
693
a226f6c8
DH
694/*
695 * permit the bootmem allocator to evade page validation on high-order frees
696 */
af370fb8 697void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
698{
699 if (order == 0) {
700 __ClearPageReserved(page);
701 set_page_count(page, 0);
7835e98b 702 set_page_refcounted(page);
545b1ea9 703 __free_page(page);
a226f6c8 704 } else {
a226f6c8
DH
705 int loop;
706
545b1ea9 707 prefetchw(page);
a226f6c8
DH
708 for (loop = 0; loop < BITS_PER_LONG; loop++) {
709 struct page *p = &page[loop];
710
545b1ea9
NP
711 if (loop + 1 < BITS_PER_LONG)
712 prefetchw(p + 1);
a226f6c8
DH
713 __ClearPageReserved(p);
714 set_page_count(p, 0);
715 }
716
7835e98b 717 set_page_refcounted(page);
545b1ea9 718 __free_pages(page, order);
a226f6c8
DH
719 }
720}
721
1da177e4
LT
722
723/*
724 * The order of subdivision here is critical for the IO subsystem.
725 * Please do not alter this order without good reasons and regression
726 * testing. Specifically, as large blocks of memory are subdivided,
727 * the order in which smaller blocks are delivered depends on the order
728 * they're subdivided in this function. This is the primary factor
729 * influencing the order in which pages are delivered to the IO
730 * subsystem according to empirical testing, and this is also justified
731 * by considering the behavior of a buddy system containing a single
732 * large block of memory acted on by a series of small allocations.
733 * This behavior is a critical factor in sglist merging's success.
734 *
735 * -- wli
736 */
085cc7d5 737static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
738 int low, int high, struct free_area *area,
739 int migratetype)
1da177e4
LT
740{
741 unsigned long size = 1 << high;
742
743 while (high > low) {
744 area--;
745 high--;
746 size >>= 1;
725d704e 747 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 748 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
749 area->nr_free++;
750 set_page_order(&page[size], high);
751 }
1da177e4
LT
752}
753
1da177e4
LT
754/*
755 * This page is about to be returned from the page allocator
756 */
2a7684a2 757static inline int check_new_page(struct page *page)
1da177e4 758{
92be2e33
NP
759 if (unlikely(page_mapcount(page) |
760 (page->mapping != NULL) |
a3af9c38 761 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
762 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
763 (mem_cgroup_bad_page_check(page)))) {
224abf92 764 bad_page(page);
689bcebf 765 return 1;
8cc3b392 766 }
2a7684a2
WF
767 return 0;
768}
769
770static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
771{
772 int i;
773
774 for (i = 0; i < (1 << order); i++) {
775 struct page *p = page + i;
776 if (unlikely(check_new_page(p)))
777 return 1;
778 }
689bcebf 779
4c21e2f2 780 set_page_private(page, 0);
7835e98b 781 set_page_refcounted(page);
cc102509
NP
782
783 arch_alloc_page(page, order);
1da177e4 784 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
785
786 if (gfp_flags & __GFP_ZERO)
787 prep_zero_page(page, order, gfp_flags);
788
789 if (order && (gfp_flags & __GFP_COMP))
790 prep_compound_page(page, order);
791
689bcebf 792 return 0;
1da177e4
LT
793}
794
56fd56b8
MG
795/*
796 * Go through the free lists for the given migratetype and remove
797 * the smallest available page from the freelists
798 */
728ec980
MG
799static inline
800struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
801 int migratetype)
802{
803 unsigned int current_order;
804 struct free_area * area;
805 struct page *page;
806
807 /* Find a page of the appropriate size in the preferred list */
808 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
809 area = &(zone->free_area[current_order]);
810 if (list_empty(&area->free_list[migratetype]))
811 continue;
812
813 page = list_entry(area->free_list[migratetype].next,
814 struct page, lru);
815 list_del(&page->lru);
816 rmv_page_order(page);
817 area->nr_free--;
56fd56b8
MG
818 expand(zone, page, order, current_order, area, migratetype);
819 return page;
820 }
821
822 return NULL;
823}
824
825
b2a0ac88
MG
826/*
827 * This array describes the order lists are fallen back to when
828 * the free lists for the desirable migrate type are depleted
829 */
830static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
831 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
832 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
833 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
834 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
835};
836
c361be55
MG
837/*
838 * Move the free pages in a range to the free lists of the requested type.
d9c23400 839 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
840 * boundary. If alignment is required, use move_freepages_block()
841 */
b69a7288
AB
842static int move_freepages(struct zone *zone,
843 struct page *start_page, struct page *end_page,
844 int migratetype)
c361be55
MG
845{
846 struct page *page;
847 unsigned long order;
d100313f 848 int pages_moved = 0;
c361be55
MG
849
850#ifndef CONFIG_HOLES_IN_ZONE
851 /*
852 * page_zone is not safe to call in this context when
853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
854 * anyway as we check zone boundaries in move_freepages_block().
855 * Remove at a later date when no bug reports exist related to
ac0e5b7a 856 * grouping pages by mobility
c361be55
MG
857 */
858 BUG_ON(page_zone(start_page) != page_zone(end_page));
859#endif
860
861 for (page = start_page; page <= end_page;) {
344c790e
AL
862 /* Make sure we are not inadvertently changing nodes */
863 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
864
c361be55
MG
865 if (!pfn_valid_within(page_to_pfn(page))) {
866 page++;
867 continue;
868 }
869
870 if (!PageBuddy(page)) {
871 page++;
872 continue;
873 }
874
875 order = page_order(page);
84be48d8
KS
876 list_move(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
c361be55 878 page += 1 << order;
d100313f 879 pages_moved += 1 << order;
c361be55
MG
880 }
881
d100313f 882 return pages_moved;
c361be55
MG
883}
884
b69a7288
AB
885static int move_freepages_block(struct zone *zone, struct page *page,
886 int migratetype)
c361be55
MG
887{
888 unsigned long start_pfn, end_pfn;
889 struct page *start_page, *end_page;
890
891 start_pfn = page_to_pfn(page);
d9c23400 892 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 893 start_page = pfn_to_page(start_pfn);
d9c23400
MG
894 end_page = start_page + pageblock_nr_pages - 1;
895 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
896
897 /* Do not cross zone boundaries */
898 if (start_pfn < zone->zone_start_pfn)
899 start_page = page;
900 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
901 return 0;
902
903 return move_freepages(zone, start_page, end_page, migratetype);
904}
905
2f66a68f
MG
906static void change_pageblock_range(struct page *pageblock_page,
907 int start_order, int migratetype)
908{
909 int nr_pageblocks = 1 << (start_order - pageblock_order);
910
911 while (nr_pageblocks--) {
912 set_pageblock_migratetype(pageblock_page, migratetype);
913 pageblock_page += pageblock_nr_pages;
914 }
915}
916
b2a0ac88 917/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
918static inline struct page *
919__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
920{
921 struct free_area * area;
922 int current_order;
923 struct page *page;
924 int migratetype, i;
925
926 /* Find the largest possible block of pages in the other list */
927 for (current_order = MAX_ORDER-1; current_order >= order;
928 --current_order) {
929 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
930 migratetype = fallbacks[start_migratetype][i];
931
56fd56b8
MG
932 /* MIGRATE_RESERVE handled later if necessary */
933 if (migratetype == MIGRATE_RESERVE)
934 continue;
e010487d 935
b2a0ac88
MG
936 area = &(zone->free_area[current_order]);
937 if (list_empty(&area->free_list[migratetype]))
938 continue;
939
940 page = list_entry(area->free_list[migratetype].next,
941 struct page, lru);
942 area->nr_free--;
943
944 /*
c361be55 945 * If breaking a large block of pages, move all free
46dafbca
MG
946 * pages to the preferred allocation list. If falling
947 * back for a reclaimable kernel allocation, be more
25985edc 948 * aggressive about taking ownership of free pages
b2a0ac88 949 */
d9c23400 950 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
951 start_migratetype == MIGRATE_RECLAIMABLE ||
952 page_group_by_mobility_disabled) {
46dafbca
MG
953 unsigned long pages;
954 pages = move_freepages_block(zone, page,
955 start_migratetype);
956
957 /* Claim the whole block if over half of it is free */
dd5d241e
MG
958 if (pages >= (1 << (pageblock_order-1)) ||
959 page_group_by_mobility_disabled)
46dafbca
MG
960 set_pageblock_migratetype(page,
961 start_migratetype);
962
b2a0ac88 963 migratetype = start_migratetype;
c361be55 964 }
b2a0ac88
MG
965
966 /* Remove the page from the freelists */
967 list_del(&page->lru);
968 rmv_page_order(page);
b2a0ac88 969
2f66a68f
MG
970 /* Take ownership for orders >= pageblock_order */
971 if (current_order >= pageblock_order)
972 change_pageblock_range(page, current_order,
b2a0ac88
MG
973 start_migratetype);
974
975 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
976
977 trace_mm_page_alloc_extfrag(page, order, current_order,
978 start_migratetype, migratetype);
979
b2a0ac88
MG
980 return page;
981 }
982 }
983
728ec980 984 return NULL;
b2a0ac88
MG
985}
986
56fd56b8 987/*
1da177e4
LT
988 * Do the hard work of removing an element from the buddy allocator.
989 * Call me with the zone->lock already held.
990 */
b2a0ac88
MG
991static struct page *__rmqueue(struct zone *zone, unsigned int order,
992 int migratetype)
1da177e4 993{
1da177e4
LT
994 struct page *page;
995
728ec980 996retry_reserve:
56fd56b8 997 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 998
728ec980 999 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1000 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1001
728ec980
MG
1002 /*
1003 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1004 * is used because __rmqueue_smallest is an inline function
1005 * and we want just one call site
1006 */
1007 if (!page) {
1008 migratetype = MIGRATE_RESERVE;
1009 goto retry_reserve;
1010 }
1011 }
1012
0d3d062a 1013 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1014 return page;
1da177e4
LT
1015}
1016
1017/*
1018 * Obtain a specified number of elements from the buddy allocator, all under
1019 * a single hold of the lock, for efficiency. Add them to the supplied list.
1020 * Returns the number of new pages which were placed at *list.
1021 */
1022static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1023 unsigned long count, struct list_head *list,
e084b2d9 1024 int migratetype, int cold)
1da177e4 1025{
1da177e4 1026 int i;
1da177e4 1027
c54ad30c 1028 spin_lock(&zone->lock);
1da177e4 1029 for (i = 0; i < count; ++i) {
b2a0ac88 1030 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1031 if (unlikely(page == NULL))
1da177e4 1032 break;
81eabcbe
MG
1033
1034 /*
1035 * Split buddy pages returned by expand() are received here
1036 * in physical page order. The page is added to the callers and
1037 * list and the list head then moves forward. From the callers
1038 * perspective, the linked list is ordered by page number in
1039 * some conditions. This is useful for IO devices that can
1040 * merge IO requests if the physical pages are ordered
1041 * properly.
1042 */
e084b2d9
MG
1043 if (likely(cold == 0))
1044 list_add(&page->lru, list);
1045 else
1046 list_add_tail(&page->lru, list);
535131e6 1047 set_page_private(page, migratetype);
81eabcbe 1048 list = &page->lru;
1da177e4 1049 }
f2260e6b 1050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1051 spin_unlock(&zone->lock);
085cc7d5 1052 return i;
1da177e4
LT
1053}
1054
4ae7c039 1055#ifdef CONFIG_NUMA
8fce4d8e 1056/*
4037d452
CL
1057 * Called from the vmstat counter updater to drain pagesets of this
1058 * currently executing processor on remote nodes after they have
1059 * expired.
1060 *
879336c3
CL
1061 * Note that this function must be called with the thread pinned to
1062 * a single processor.
8fce4d8e 1063 */
4037d452 1064void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1065{
4ae7c039 1066 unsigned long flags;
4037d452 1067 int to_drain;
4ae7c039 1068
4037d452
CL
1069 local_irq_save(flags);
1070 if (pcp->count >= pcp->batch)
1071 to_drain = pcp->batch;
1072 else
1073 to_drain = pcp->count;
5f8dcc21 1074 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1075 pcp->count -= to_drain;
1076 local_irq_restore(flags);
4ae7c039
CL
1077}
1078#endif
1079
9f8f2172
CL
1080/*
1081 * Drain pages of the indicated processor.
1082 *
1083 * The processor must either be the current processor and the
1084 * thread pinned to the current processor or a processor that
1085 * is not online.
1086 */
1087static void drain_pages(unsigned int cpu)
1da177e4 1088{
c54ad30c 1089 unsigned long flags;
1da177e4 1090 struct zone *zone;
1da177e4 1091
ee99c71c 1092 for_each_populated_zone(zone) {
1da177e4 1093 struct per_cpu_pageset *pset;
3dfa5721 1094 struct per_cpu_pages *pcp;
1da177e4 1095
99dcc3e5
CL
1096 local_irq_save(flags);
1097 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1098
1099 pcp = &pset->pcp;
2ff754fa
DR
1100 if (pcp->count) {
1101 free_pcppages_bulk(zone, pcp->count, pcp);
1102 pcp->count = 0;
1103 }
3dfa5721 1104 local_irq_restore(flags);
1da177e4
LT
1105 }
1106}
1da177e4 1107
9f8f2172
CL
1108/*
1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1110 */
1111void drain_local_pages(void *arg)
1112{
1113 drain_pages(smp_processor_id());
1114}
1115
1116/*
1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1118 */
1119void drain_all_pages(void)
1120{
15c8b6c1 1121 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1122}
1123
296699de 1124#ifdef CONFIG_HIBERNATION
1da177e4
LT
1125
1126void mark_free_pages(struct zone *zone)
1127{
f623f0db
RW
1128 unsigned long pfn, max_zone_pfn;
1129 unsigned long flags;
b2a0ac88 1130 int order, t;
1da177e4
LT
1131 struct list_head *curr;
1132
1133 if (!zone->spanned_pages)
1134 return;
1135
1136 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1137
1138 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1139 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1140 if (pfn_valid(pfn)) {
1141 struct page *page = pfn_to_page(pfn);
1142
7be98234
RW
1143 if (!swsusp_page_is_forbidden(page))
1144 swsusp_unset_page_free(page);
f623f0db 1145 }
1da177e4 1146
b2a0ac88
MG
1147 for_each_migratetype_order(order, t) {
1148 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1149 unsigned long i;
1da177e4 1150
f623f0db
RW
1151 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1152 for (i = 0; i < (1UL << order); i++)
7be98234 1153 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1154 }
b2a0ac88 1155 }
1da177e4
LT
1156 spin_unlock_irqrestore(&zone->lock, flags);
1157}
e2c55dc8 1158#endif /* CONFIG_PM */
1da177e4 1159
1da177e4
LT
1160/*
1161 * Free a 0-order page
fc91668e 1162 * cold == 1 ? free a cold page : free a hot page
1da177e4 1163 */
fc91668e 1164void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1165{
1166 struct zone *zone = page_zone(page);
1167 struct per_cpu_pages *pcp;
1168 unsigned long flags;
5f8dcc21 1169 int migratetype;
451ea25d 1170 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1171
ec95f53a 1172 if (!free_pages_prepare(page, 0))
689bcebf
HD
1173 return;
1174
5f8dcc21
MG
1175 migratetype = get_pageblock_migratetype(page);
1176 set_page_private(page, migratetype);
1da177e4 1177 local_irq_save(flags);
c277331d 1178 if (unlikely(wasMlocked))
da456f14 1179 free_page_mlock(page);
f8891e5e 1180 __count_vm_event(PGFREE);
da456f14 1181
5f8dcc21
MG
1182 /*
1183 * We only track unmovable, reclaimable and movable on pcp lists.
1184 * Free ISOLATE pages back to the allocator because they are being
1185 * offlined but treat RESERVE as movable pages so we can get those
1186 * areas back if necessary. Otherwise, we may have to free
1187 * excessively into the page allocator
1188 */
1189 if (migratetype >= MIGRATE_PCPTYPES) {
1190 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1191 free_one_page(zone, page, 0, migratetype);
1192 goto out;
1193 }
1194 migratetype = MIGRATE_MOVABLE;
1195 }
1196
99dcc3e5 1197 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1198 if (cold)
5f8dcc21 1199 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1200 else
5f8dcc21 1201 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1202 pcp->count++;
48db57f8 1203 if (pcp->count >= pcp->high) {
5f8dcc21 1204 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1205 pcp->count -= pcp->batch;
1206 }
5f8dcc21
MG
1207
1208out:
1da177e4 1209 local_irq_restore(flags);
1da177e4
LT
1210}
1211
8dfcc9ba
NP
1212/*
1213 * split_page takes a non-compound higher-order page, and splits it into
1214 * n (1<<order) sub-pages: page[0..n]
1215 * Each sub-page must be freed individually.
1216 *
1217 * Note: this is probably too low level an operation for use in drivers.
1218 * Please consult with lkml before using this in your driver.
1219 */
1220void split_page(struct page *page, unsigned int order)
1221{
1222 int i;
1223
725d704e
NP
1224 VM_BUG_ON(PageCompound(page));
1225 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1226
1227#ifdef CONFIG_KMEMCHECK
1228 /*
1229 * Split shadow pages too, because free(page[0]) would
1230 * otherwise free the whole shadow.
1231 */
1232 if (kmemcheck_page_is_tracked(page))
1233 split_page(virt_to_page(page[0].shadow), order);
1234#endif
1235
7835e98b
NP
1236 for (i = 1; i < (1 << order); i++)
1237 set_page_refcounted(page + i);
8dfcc9ba 1238}
8dfcc9ba 1239
748446bb
MG
1240/*
1241 * Similar to split_page except the page is already free. As this is only
1242 * being used for migration, the migratetype of the block also changes.
1243 * As this is called with interrupts disabled, the caller is responsible
1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1245 * are enabled.
1246 *
1247 * Note: this is probably too low level an operation for use in drivers.
1248 * Please consult with lkml before using this in your driver.
1249 */
1250int split_free_page(struct page *page)
1251{
1252 unsigned int order;
1253 unsigned long watermark;
1254 struct zone *zone;
1255
1256 BUG_ON(!PageBuddy(page));
1257
1258 zone = page_zone(page);
1259 order = page_order(page);
1260
1261 /* Obey watermarks as if the page was being allocated */
1262 watermark = low_wmark_pages(zone) + (1 << order);
1263 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1264 return 0;
1265
1266 /* Remove page from free list */
1267 list_del(&page->lru);
1268 zone->free_area[order].nr_free--;
1269 rmv_page_order(page);
1270 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1271
1272 /* Split into individual pages */
1273 set_page_refcounted(page);
1274 split_page(page, order);
1275
1276 if (order >= pageblock_order - 1) {
1277 struct page *endpage = page + (1 << order) - 1;
1278 for (; page < endpage; page += pageblock_nr_pages)
1279 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1280 }
1281
1282 return 1 << order;
1283}
1284
1da177e4
LT
1285/*
1286 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1287 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1288 * or two.
1289 */
0a15c3e9
MG
1290static inline
1291struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1292 struct zone *zone, int order, gfp_t gfp_flags,
1293 int migratetype)
1da177e4
LT
1294{
1295 unsigned long flags;
689bcebf 1296 struct page *page;
1da177e4
LT
1297 int cold = !!(gfp_flags & __GFP_COLD);
1298
689bcebf 1299again:
48db57f8 1300 if (likely(order == 0)) {
1da177e4 1301 struct per_cpu_pages *pcp;
5f8dcc21 1302 struct list_head *list;
1da177e4 1303
1da177e4 1304 local_irq_save(flags);
99dcc3e5
CL
1305 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1306 list = &pcp->lists[migratetype];
5f8dcc21 1307 if (list_empty(list)) {
535131e6 1308 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1309 pcp->batch, list,
e084b2d9 1310 migratetype, cold);
5f8dcc21 1311 if (unlikely(list_empty(list)))
6fb332fa 1312 goto failed;
535131e6 1313 }
b92a6edd 1314
5f8dcc21
MG
1315 if (cold)
1316 page = list_entry(list->prev, struct page, lru);
1317 else
1318 page = list_entry(list->next, struct page, lru);
1319
b92a6edd
MG
1320 list_del(&page->lru);
1321 pcp->count--;
7fb1d9fc 1322 } else {
dab48dab
AM
1323 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1324 /*
1325 * __GFP_NOFAIL is not to be used in new code.
1326 *
1327 * All __GFP_NOFAIL callers should be fixed so that they
1328 * properly detect and handle allocation failures.
1329 *
1330 * We most definitely don't want callers attempting to
4923abf9 1331 * allocate greater than order-1 page units with
dab48dab
AM
1332 * __GFP_NOFAIL.
1333 */
4923abf9 1334 WARN_ON_ONCE(order > 1);
dab48dab 1335 }
1da177e4 1336 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1337 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1338 spin_unlock(&zone->lock);
1339 if (!page)
1340 goto failed;
6ccf80eb 1341 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1342 }
1343
f8891e5e 1344 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1345 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1346 local_irq_restore(flags);
1da177e4 1347
725d704e 1348 VM_BUG_ON(bad_range(zone, page));
17cf4406 1349 if (prep_new_page(page, order, gfp_flags))
a74609fa 1350 goto again;
1da177e4 1351 return page;
a74609fa
NP
1352
1353failed:
1354 local_irq_restore(flags);
a74609fa 1355 return NULL;
1da177e4
LT
1356}
1357
41858966
MG
1358/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359#define ALLOC_WMARK_MIN WMARK_MIN
1360#define ALLOC_WMARK_LOW WMARK_LOW
1361#define ALLOC_WMARK_HIGH WMARK_HIGH
1362#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1363
1364/* Mask to get the watermark bits */
1365#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1366
3148890b
NP
1367#define ALLOC_HARDER 0x10 /* try to alloc harder */
1368#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1369#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1370
933e312e
AM
1371#ifdef CONFIG_FAIL_PAGE_ALLOC
1372
1373static struct fail_page_alloc_attr {
1374 struct fault_attr attr;
1375
1376 u32 ignore_gfp_highmem;
1377 u32 ignore_gfp_wait;
54114994 1378 u32 min_order;
933e312e
AM
1379
1380#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1381
1382 struct dentry *ignore_gfp_highmem_file;
1383 struct dentry *ignore_gfp_wait_file;
54114994 1384 struct dentry *min_order_file;
933e312e
AM
1385
1386#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1387
1388} fail_page_alloc = {
1389 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1390 .ignore_gfp_wait = 1,
1391 .ignore_gfp_highmem = 1,
54114994 1392 .min_order = 1,
933e312e
AM
1393};
1394
1395static int __init setup_fail_page_alloc(char *str)
1396{
1397 return setup_fault_attr(&fail_page_alloc.attr, str);
1398}
1399__setup("fail_page_alloc=", setup_fail_page_alloc);
1400
1401static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1402{
54114994
AM
1403 if (order < fail_page_alloc.min_order)
1404 return 0;
933e312e
AM
1405 if (gfp_mask & __GFP_NOFAIL)
1406 return 0;
1407 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1408 return 0;
1409 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1410 return 0;
1411
1412 return should_fail(&fail_page_alloc.attr, 1 << order);
1413}
1414
1415#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1416
1417static int __init fail_page_alloc_debugfs(void)
1418{
1419 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1420 struct dentry *dir;
1421 int err;
1422
1423 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1424 "fail_page_alloc");
1425 if (err)
1426 return err;
7f5ddcc8 1427 dir = fail_page_alloc.attr.dir;
933e312e
AM
1428
1429 fail_page_alloc.ignore_gfp_wait_file =
1430 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1431 &fail_page_alloc.ignore_gfp_wait);
1432
1433 fail_page_alloc.ignore_gfp_highmem_file =
1434 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1435 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1436 fail_page_alloc.min_order_file =
1437 debugfs_create_u32("min-order", mode, dir,
1438 &fail_page_alloc.min_order);
933e312e
AM
1439
1440 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1441 !fail_page_alloc.ignore_gfp_highmem_file ||
1442 !fail_page_alloc.min_order_file) {
933e312e
AM
1443 err = -ENOMEM;
1444 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1445 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1446 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1447 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1448 }
1449
1450 return err;
1451}
1452
1453late_initcall(fail_page_alloc_debugfs);
1454
1455#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1456
1457#else /* CONFIG_FAIL_PAGE_ALLOC */
1458
1459static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1460{
1461 return 0;
1462}
1463
1464#endif /* CONFIG_FAIL_PAGE_ALLOC */
1465
1da177e4 1466/*
88f5acf8 1467 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1468 * of the allocation.
1469 */
88f5acf8
MG
1470static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1471 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1472{
1473 /* free_pages my go negative - that's OK */
d23ad423 1474 long min = mark;
1da177e4
LT
1475 int o;
1476
88f5acf8 1477 free_pages -= (1 << order) + 1;
7fb1d9fc 1478 if (alloc_flags & ALLOC_HIGH)
1da177e4 1479 min -= min / 2;
7fb1d9fc 1480 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1481 min -= min / 4;
1482
1483 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1484 return false;
1da177e4
LT
1485 for (o = 0; o < order; o++) {
1486 /* At the next order, this order's pages become unavailable */
1487 free_pages -= z->free_area[o].nr_free << o;
1488
1489 /* Require fewer higher order pages to be free */
1490 min >>= 1;
1491
1492 if (free_pages <= min)
88f5acf8 1493 return false;
1da177e4 1494 }
88f5acf8
MG
1495 return true;
1496}
1497
1498bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1499 int classzone_idx, int alloc_flags)
1500{
1501 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1502 zone_page_state(z, NR_FREE_PAGES));
1503}
1504
1505bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1506 int classzone_idx, int alloc_flags)
1507{
1508 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1509
1510 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1511 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1512
1513 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1514 free_pages);
1da177e4
LT
1515}
1516
9276b1bc
PJ
1517#ifdef CONFIG_NUMA
1518/*
1519 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1520 * skip over zones that are not allowed by the cpuset, or that have
1521 * been recently (in last second) found to be nearly full. See further
1522 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1523 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1524 *
1525 * If the zonelist cache is present in the passed in zonelist, then
1526 * returns a pointer to the allowed node mask (either the current
37b07e41 1527 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1528 *
1529 * If the zonelist cache is not available for this zonelist, does
1530 * nothing and returns NULL.
1531 *
1532 * If the fullzones BITMAP in the zonelist cache is stale (more than
1533 * a second since last zap'd) then we zap it out (clear its bits.)
1534 *
1535 * We hold off even calling zlc_setup, until after we've checked the
1536 * first zone in the zonelist, on the theory that most allocations will
1537 * be satisfied from that first zone, so best to examine that zone as
1538 * quickly as we can.
1539 */
1540static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1541{
1542 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1543 nodemask_t *allowednodes; /* zonelist_cache approximation */
1544
1545 zlc = zonelist->zlcache_ptr;
1546 if (!zlc)
1547 return NULL;
1548
f05111f5 1549 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1550 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1551 zlc->last_full_zap = jiffies;
1552 }
1553
1554 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1555 &cpuset_current_mems_allowed :
37b07e41 1556 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1557 return allowednodes;
1558}
1559
1560/*
1561 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1562 * if it is worth looking at further for free memory:
1563 * 1) Check that the zone isn't thought to be full (doesn't have its
1564 * bit set in the zonelist_cache fullzones BITMAP).
1565 * 2) Check that the zones node (obtained from the zonelist_cache
1566 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1567 * Return true (non-zero) if zone is worth looking at further, or
1568 * else return false (zero) if it is not.
1569 *
1570 * This check -ignores- the distinction between various watermarks,
1571 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1572 * found to be full for any variation of these watermarks, it will
1573 * be considered full for up to one second by all requests, unless
1574 * we are so low on memory on all allowed nodes that we are forced
1575 * into the second scan of the zonelist.
1576 *
1577 * In the second scan we ignore this zonelist cache and exactly
1578 * apply the watermarks to all zones, even it is slower to do so.
1579 * We are low on memory in the second scan, and should leave no stone
1580 * unturned looking for a free page.
1581 */
dd1a239f 1582static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1583 nodemask_t *allowednodes)
1584{
1585 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1586 int i; /* index of *z in zonelist zones */
1587 int n; /* node that zone *z is on */
1588
1589 zlc = zonelist->zlcache_ptr;
1590 if (!zlc)
1591 return 1;
1592
dd1a239f 1593 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1594 n = zlc->z_to_n[i];
1595
1596 /* This zone is worth trying if it is allowed but not full */
1597 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1598}
1599
1600/*
1601 * Given 'z' scanning a zonelist, set the corresponding bit in
1602 * zlc->fullzones, so that subsequent attempts to allocate a page
1603 * from that zone don't waste time re-examining it.
1604 */
dd1a239f 1605static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1606{
1607 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1608 int i; /* index of *z in zonelist zones */
1609
1610 zlc = zonelist->zlcache_ptr;
1611 if (!zlc)
1612 return;
1613
dd1a239f 1614 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1615
1616 set_bit(i, zlc->fullzones);
1617}
1618
76d3fbf8
MG
1619/*
1620 * clear all zones full, called after direct reclaim makes progress so that
1621 * a zone that was recently full is not skipped over for up to a second
1622 */
1623static void zlc_clear_zones_full(struct zonelist *zonelist)
1624{
1625 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1626
1627 zlc = zonelist->zlcache_ptr;
1628 if (!zlc)
1629 return;
1630
1631 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1632}
1633
9276b1bc
PJ
1634#else /* CONFIG_NUMA */
1635
1636static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1637{
1638 return NULL;
1639}
1640
dd1a239f 1641static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1642 nodemask_t *allowednodes)
1643{
1644 return 1;
1645}
1646
dd1a239f 1647static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1648{
1649}
76d3fbf8
MG
1650
1651static void zlc_clear_zones_full(struct zonelist *zonelist)
1652{
1653}
9276b1bc
PJ
1654#endif /* CONFIG_NUMA */
1655
7fb1d9fc 1656/*
0798e519 1657 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1658 * a page.
1659 */
1660static struct page *
19770b32 1661get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1662 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1663 struct zone *preferred_zone, int migratetype)
753ee728 1664{
dd1a239f 1665 struct zoneref *z;
7fb1d9fc 1666 struct page *page = NULL;
54a6eb5c 1667 int classzone_idx;
5117f45d 1668 struct zone *zone;
9276b1bc
PJ
1669 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1670 int zlc_active = 0; /* set if using zonelist_cache */
1671 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1672
19770b32 1673 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1674zonelist_scan:
7fb1d9fc 1675 /*
9276b1bc 1676 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1677 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1678 */
19770b32
MG
1679 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1680 high_zoneidx, nodemask) {
9276b1bc
PJ
1681 if (NUMA_BUILD && zlc_active &&
1682 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1683 continue;
7fb1d9fc 1684 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1685 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1686 continue;
7fb1d9fc 1687
41858966 1688 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1689 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1690 unsigned long mark;
fa5e084e
MG
1691 int ret;
1692
41858966 1693 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1694 if (zone_watermark_ok(zone, order, mark,
1695 classzone_idx, alloc_flags))
1696 goto try_this_zone;
1697
cd38b115
MG
1698 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1699 /*
1700 * we do zlc_setup if there are multiple nodes
1701 * and before considering the first zone allowed
1702 * by the cpuset.
1703 */
1704 allowednodes = zlc_setup(zonelist, alloc_flags);
1705 zlc_active = 1;
1706 did_zlc_setup = 1;
1707 }
1708
fa5e084e
MG
1709 if (zone_reclaim_mode == 0)
1710 goto this_zone_full;
1711
cd38b115
MG
1712 /*
1713 * As we may have just activated ZLC, check if the first
1714 * eligible zone has failed zone_reclaim recently.
1715 */
1716 if (NUMA_BUILD && zlc_active &&
1717 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1718 continue;
1719
fa5e084e
MG
1720 ret = zone_reclaim(zone, gfp_mask, order);
1721 switch (ret) {
1722 case ZONE_RECLAIM_NOSCAN:
1723 /* did not scan */
cd38b115 1724 continue;
fa5e084e
MG
1725 case ZONE_RECLAIM_FULL:
1726 /* scanned but unreclaimable */
cd38b115 1727 continue;
fa5e084e
MG
1728 default:
1729 /* did we reclaim enough */
1730 if (!zone_watermark_ok(zone, order, mark,
1731 classzone_idx, alloc_flags))
9276b1bc 1732 goto this_zone_full;
0798e519 1733 }
7fb1d9fc
RS
1734 }
1735
fa5e084e 1736try_this_zone:
3dd28266
MG
1737 page = buffered_rmqueue(preferred_zone, zone, order,
1738 gfp_mask, migratetype);
0798e519 1739 if (page)
7fb1d9fc 1740 break;
9276b1bc
PJ
1741this_zone_full:
1742 if (NUMA_BUILD)
1743 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1744 }
9276b1bc
PJ
1745
1746 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1747 /* Disable zlc cache for second zonelist scan */
1748 zlc_active = 0;
1749 goto zonelist_scan;
1750 }
7fb1d9fc 1751 return page;
753ee728
MH
1752}
1753
29423e77
DR
1754/*
1755 * Large machines with many possible nodes should not always dump per-node
1756 * meminfo in irq context.
1757 */
1758static inline bool should_suppress_show_mem(void)
1759{
1760 bool ret = false;
1761
1762#if NODES_SHIFT > 8
1763 ret = in_interrupt();
1764#endif
1765 return ret;
1766}
1767
a238ab5b
DH
1768static DEFINE_RATELIMIT_STATE(nopage_rs,
1769 DEFAULT_RATELIMIT_INTERVAL,
1770 DEFAULT_RATELIMIT_BURST);
1771
1772void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1773{
1774 va_list args;
1775 unsigned int filter = SHOW_MEM_FILTER_NODES;
1776
1777 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1778 return;
1779
1780 /*
1781 * This documents exceptions given to allocations in certain
1782 * contexts that are allowed to allocate outside current's set
1783 * of allowed nodes.
1784 */
1785 if (!(gfp_mask & __GFP_NOMEMALLOC))
1786 if (test_thread_flag(TIF_MEMDIE) ||
1787 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1788 filter &= ~SHOW_MEM_FILTER_NODES;
1789 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1790 filter &= ~SHOW_MEM_FILTER_NODES;
1791
1792 if (fmt) {
1793 printk(KERN_WARNING);
1794 va_start(args, fmt);
1795 vprintk(fmt, args);
1796 va_end(args);
1797 }
1798
1799 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1800 current->comm, order, gfp_mask);
1801
1802 dump_stack();
1803 if (!should_suppress_show_mem())
1804 show_mem(filter);
1805}
1806
11e33f6a
MG
1807static inline int
1808should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1809 unsigned long pages_reclaimed)
1da177e4 1810{
11e33f6a
MG
1811 /* Do not loop if specifically requested */
1812 if (gfp_mask & __GFP_NORETRY)
1813 return 0;
1da177e4 1814
11e33f6a
MG
1815 /*
1816 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1817 * means __GFP_NOFAIL, but that may not be true in other
1818 * implementations.
1819 */
1820 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1821 return 1;
1822
1823 /*
1824 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1825 * specified, then we retry until we no longer reclaim any pages
1826 * (above), or we've reclaimed an order of pages at least as
1827 * large as the allocation's order. In both cases, if the
1828 * allocation still fails, we stop retrying.
1829 */
1830 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1831 return 1;
cf40bd16 1832
11e33f6a
MG
1833 /*
1834 * Don't let big-order allocations loop unless the caller
1835 * explicitly requests that.
1836 */
1837 if (gfp_mask & __GFP_NOFAIL)
1838 return 1;
1da177e4 1839
11e33f6a
MG
1840 return 0;
1841}
933e312e 1842
11e33f6a
MG
1843static inline struct page *
1844__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1845 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1846 nodemask_t *nodemask, struct zone *preferred_zone,
1847 int migratetype)
11e33f6a
MG
1848{
1849 struct page *page;
1850
1851 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1852 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1853 schedule_timeout_uninterruptible(1);
1da177e4
LT
1854 return NULL;
1855 }
6b1de916 1856
11e33f6a
MG
1857 /*
1858 * Go through the zonelist yet one more time, keep very high watermark
1859 * here, this is only to catch a parallel oom killing, we must fail if
1860 * we're still under heavy pressure.
1861 */
1862 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1863 order, zonelist, high_zoneidx,
5117f45d 1864 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1865 preferred_zone, migratetype);
7fb1d9fc 1866 if (page)
11e33f6a
MG
1867 goto out;
1868
4365a567
KH
1869 if (!(gfp_mask & __GFP_NOFAIL)) {
1870 /* The OOM killer will not help higher order allocs */
1871 if (order > PAGE_ALLOC_COSTLY_ORDER)
1872 goto out;
03668b3c
DR
1873 /* The OOM killer does not needlessly kill tasks for lowmem */
1874 if (high_zoneidx < ZONE_NORMAL)
1875 goto out;
4365a567
KH
1876 /*
1877 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1878 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1879 * The caller should handle page allocation failure by itself if
1880 * it specifies __GFP_THISNODE.
1881 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1882 */
1883 if (gfp_mask & __GFP_THISNODE)
1884 goto out;
1885 }
11e33f6a 1886 /* Exhausted what can be done so it's blamo time */
4365a567 1887 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1888
1889out:
1890 clear_zonelist_oom(zonelist, gfp_mask);
1891 return page;
1892}
1893
56de7263
MG
1894#ifdef CONFIG_COMPACTION
1895/* Try memory compaction for high-order allocations before reclaim */
1896static struct page *
1897__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1898 struct zonelist *zonelist, enum zone_type high_zoneidx,
1899 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1900 int migratetype, unsigned long *did_some_progress,
1901 bool sync_migration)
56de7263
MG
1902{
1903 struct page *page;
1904
4f92e258 1905 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1906 return NULL;
1907
c06b1fca 1908 current->flags |= PF_MEMALLOC;
56de7263 1909 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 1910 nodemask, sync_migration);
c06b1fca 1911 current->flags &= ~PF_MEMALLOC;
56de7263
MG
1912 if (*did_some_progress != COMPACT_SKIPPED) {
1913
1914 /* Page migration frees to the PCP lists but we want merging */
1915 drain_pages(get_cpu());
1916 put_cpu();
1917
1918 page = get_page_from_freelist(gfp_mask, nodemask,
1919 order, zonelist, high_zoneidx,
1920 alloc_flags, preferred_zone,
1921 migratetype);
1922 if (page) {
4f92e258
MG
1923 preferred_zone->compact_considered = 0;
1924 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1925 count_vm_event(COMPACTSUCCESS);
1926 return page;
1927 }
1928
1929 /*
1930 * It's bad if compaction run occurs and fails.
1931 * The most likely reason is that pages exist,
1932 * but not enough to satisfy watermarks.
1933 */
1934 count_vm_event(COMPACTFAIL);
4f92e258 1935 defer_compaction(preferred_zone);
56de7263
MG
1936
1937 cond_resched();
1938 }
1939
1940 return NULL;
1941}
1942#else
1943static inline struct page *
1944__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1945 struct zonelist *zonelist, enum zone_type high_zoneidx,
1946 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1947 int migratetype, unsigned long *did_some_progress,
1948 bool sync_migration)
56de7263
MG
1949{
1950 return NULL;
1951}
1952#endif /* CONFIG_COMPACTION */
1953
11e33f6a
MG
1954/* The really slow allocator path where we enter direct reclaim */
1955static inline struct page *
1956__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1957 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1958 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1959 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1960{
1961 struct page *page = NULL;
1962 struct reclaim_state reclaim_state;
9ee493ce 1963 bool drained = false;
11e33f6a
MG
1964
1965 cond_resched();
1966
1967 /* We now go into synchronous reclaim */
1968 cpuset_memory_pressure_bump();
c06b1fca 1969 current->flags |= PF_MEMALLOC;
11e33f6a
MG
1970 lockdep_set_current_reclaim_state(gfp_mask);
1971 reclaim_state.reclaimed_slab = 0;
c06b1fca 1972 current->reclaim_state = &reclaim_state;
11e33f6a
MG
1973
1974 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1975
c06b1fca 1976 current->reclaim_state = NULL;
11e33f6a 1977 lockdep_clear_current_reclaim_state();
c06b1fca 1978 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
1979
1980 cond_resched();
1981
9ee493ce
MG
1982 if (unlikely(!(*did_some_progress)))
1983 return NULL;
11e33f6a 1984
76d3fbf8
MG
1985 /* After successful reclaim, reconsider all zones for allocation */
1986 if (NUMA_BUILD)
1987 zlc_clear_zones_full(zonelist);
1988
9ee493ce
MG
1989retry:
1990 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1991 zonelist, high_zoneidx,
3dd28266
MG
1992 alloc_flags, preferred_zone,
1993 migratetype);
9ee493ce
MG
1994
1995 /*
1996 * If an allocation failed after direct reclaim, it could be because
1997 * pages are pinned on the per-cpu lists. Drain them and try again
1998 */
1999 if (!page && !drained) {
2000 drain_all_pages();
2001 drained = true;
2002 goto retry;
2003 }
2004
11e33f6a
MG
2005 return page;
2006}
2007
1da177e4 2008/*
11e33f6a
MG
2009 * This is called in the allocator slow-path if the allocation request is of
2010 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2011 */
11e33f6a
MG
2012static inline struct page *
2013__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2014 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2015 nodemask_t *nodemask, struct zone *preferred_zone,
2016 int migratetype)
11e33f6a
MG
2017{
2018 struct page *page;
2019
2020 do {
2021 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2022 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2023 preferred_zone, migratetype);
11e33f6a
MG
2024
2025 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2026 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2027 } while (!page && (gfp_mask & __GFP_NOFAIL));
2028
2029 return page;
2030}
2031
2032static inline
2033void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2034 enum zone_type high_zoneidx,
2035 enum zone_type classzone_idx)
1da177e4 2036{
dd1a239f
MG
2037 struct zoneref *z;
2038 struct zone *zone;
1da177e4 2039
11e33f6a 2040 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2041 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2042}
cf40bd16 2043
341ce06f
PZ
2044static inline int
2045gfp_to_alloc_flags(gfp_t gfp_mask)
2046{
341ce06f
PZ
2047 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2048 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2049
a56f57ff 2050 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2051 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2052
341ce06f
PZ
2053 /*
2054 * The caller may dip into page reserves a bit more if the caller
2055 * cannot run direct reclaim, or if the caller has realtime scheduling
2056 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2057 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2058 */
e6223a3b 2059 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2060
341ce06f 2061 if (!wait) {
5c3240d9
AA
2062 /*
2063 * Not worth trying to allocate harder for
2064 * __GFP_NOMEMALLOC even if it can't schedule.
2065 */
2066 if (!(gfp_mask & __GFP_NOMEMALLOC))
2067 alloc_flags |= ALLOC_HARDER;
523b9458 2068 /*
341ce06f
PZ
2069 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2070 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2071 */
341ce06f 2072 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2073 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2074 alloc_flags |= ALLOC_HARDER;
2075
2076 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2077 if (!in_interrupt() &&
c06b1fca 2078 ((current->flags & PF_MEMALLOC) ||
341ce06f
PZ
2079 unlikely(test_thread_flag(TIF_MEMDIE))))
2080 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2081 }
6b1de916 2082
341ce06f
PZ
2083 return alloc_flags;
2084}
2085
11e33f6a
MG
2086static inline struct page *
2087__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2088 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2089 nodemask_t *nodemask, struct zone *preferred_zone,
2090 int migratetype)
11e33f6a
MG
2091{
2092 const gfp_t wait = gfp_mask & __GFP_WAIT;
2093 struct page *page = NULL;
2094 int alloc_flags;
2095 unsigned long pages_reclaimed = 0;
2096 unsigned long did_some_progress;
77f1fe6b 2097 bool sync_migration = false;
1da177e4 2098
72807a74
MG
2099 /*
2100 * In the slowpath, we sanity check order to avoid ever trying to
2101 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2102 * be using allocators in order of preference for an area that is
2103 * too large.
2104 */
1fc28b70
MG
2105 if (order >= MAX_ORDER) {
2106 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2107 return NULL;
1fc28b70 2108 }
1da177e4 2109
952f3b51
CL
2110 /*
2111 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2112 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2113 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2114 * using a larger set of nodes after it has established that the
2115 * allowed per node queues are empty and that nodes are
2116 * over allocated.
2117 */
2118 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2119 goto nopage;
2120
cc4a6851 2121restart:
32dba98e
AA
2122 if (!(gfp_mask & __GFP_NO_KSWAPD))
2123 wake_all_kswapd(order, zonelist, high_zoneidx,
99504748 2124 zone_idx(preferred_zone));
1da177e4 2125
9bf2229f 2126 /*
7fb1d9fc
RS
2127 * OK, we're below the kswapd watermark and have kicked background
2128 * reclaim. Now things get more complex, so set up alloc_flags according
2129 * to how we want to proceed.
9bf2229f 2130 */
341ce06f 2131 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2132
f33261d7
DR
2133 /*
2134 * Find the true preferred zone if the allocation is unconstrained by
2135 * cpusets.
2136 */
2137 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2138 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2139 &preferred_zone);
2140
cfa54a0f 2141rebalance:
341ce06f 2142 /* This is the last chance, in general, before the goto nopage. */
19770b32 2143 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2144 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2145 preferred_zone, migratetype);
7fb1d9fc
RS
2146 if (page)
2147 goto got_pg;
1da177e4 2148
11e33f6a 2149 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2150 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2151 page = __alloc_pages_high_priority(gfp_mask, order,
2152 zonelist, high_zoneidx, nodemask,
2153 preferred_zone, migratetype);
2154 if (page)
2155 goto got_pg;
1da177e4
LT
2156 }
2157
2158 /* Atomic allocations - we can't balance anything */
2159 if (!wait)
2160 goto nopage;
2161
341ce06f 2162 /* Avoid recursion of direct reclaim */
c06b1fca 2163 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2164 goto nopage;
2165
6583bb64
DR
2166 /* Avoid allocations with no watermarks from looping endlessly */
2167 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2168 goto nopage;
2169
77f1fe6b
MG
2170 /*
2171 * Try direct compaction. The first pass is asynchronous. Subsequent
2172 * attempts after direct reclaim are synchronous
2173 */
56de7263
MG
2174 page = __alloc_pages_direct_compact(gfp_mask, order,
2175 zonelist, high_zoneidx,
2176 nodemask,
2177 alloc_flags, preferred_zone,
77f1fe6b
MG
2178 migratetype, &did_some_progress,
2179 sync_migration);
56de7263
MG
2180 if (page)
2181 goto got_pg;
c6a140bf 2182 sync_migration = true;
56de7263 2183
11e33f6a
MG
2184 /* Try direct reclaim and then allocating */
2185 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2186 zonelist, high_zoneidx,
2187 nodemask,
5117f45d 2188 alloc_flags, preferred_zone,
3dd28266 2189 migratetype, &did_some_progress);
11e33f6a
MG
2190 if (page)
2191 goto got_pg;
1da177e4 2192
e33c3b5e 2193 /*
11e33f6a
MG
2194 * If we failed to make any progress reclaiming, then we are
2195 * running out of options and have to consider going OOM
e33c3b5e 2196 */
11e33f6a
MG
2197 if (!did_some_progress) {
2198 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2199 if (oom_killer_disabled)
2200 goto nopage;
11e33f6a
MG
2201 page = __alloc_pages_may_oom(gfp_mask, order,
2202 zonelist, high_zoneidx,
3dd28266
MG
2203 nodemask, preferred_zone,
2204 migratetype);
11e33f6a
MG
2205 if (page)
2206 goto got_pg;
1da177e4 2207
03668b3c
DR
2208 if (!(gfp_mask & __GFP_NOFAIL)) {
2209 /*
2210 * The oom killer is not called for high-order
2211 * allocations that may fail, so if no progress
2212 * is being made, there are no other options and
2213 * retrying is unlikely to help.
2214 */
2215 if (order > PAGE_ALLOC_COSTLY_ORDER)
2216 goto nopage;
2217 /*
2218 * The oom killer is not called for lowmem
2219 * allocations to prevent needlessly killing
2220 * innocent tasks.
2221 */
2222 if (high_zoneidx < ZONE_NORMAL)
2223 goto nopage;
2224 }
e2c55dc8 2225
ff0ceb9d
DR
2226 goto restart;
2227 }
1da177e4
LT
2228 }
2229
11e33f6a 2230 /* Check if we should retry the allocation */
a41f24ea 2231 pages_reclaimed += did_some_progress;
11e33f6a
MG
2232 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2233 /* Wait for some write requests to complete then retry */
0e093d99 2234 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2235 goto rebalance;
3e7d3449
MG
2236 } else {
2237 /*
2238 * High-order allocations do not necessarily loop after
2239 * direct reclaim and reclaim/compaction depends on compaction
2240 * being called after reclaim so call directly if necessary
2241 */
2242 page = __alloc_pages_direct_compact(gfp_mask, order,
2243 zonelist, high_zoneidx,
2244 nodemask,
2245 alloc_flags, preferred_zone,
77f1fe6b
MG
2246 migratetype, &did_some_progress,
2247 sync_migration);
3e7d3449
MG
2248 if (page)
2249 goto got_pg;
1da177e4
LT
2250 }
2251
2252nopage:
a238ab5b 2253 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2254 return page;
1da177e4 2255got_pg:
b1eeab67
VN
2256 if (kmemcheck_enabled)
2257 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2258 return page;
11e33f6a 2259
1da177e4 2260}
11e33f6a
MG
2261
2262/*
2263 * This is the 'heart' of the zoned buddy allocator.
2264 */
2265struct page *
2266__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2267 struct zonelist *zonelist, nodemask_t *nodemask)
2268{
2269 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2270 struct zone *preferred_zone;
11e33f6a 2271 struct page *page;
3dd28266 2272 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2273
dcce284a
BH
2274 gfp_mask &= gfp_allowed_mask;
2275
11e33f6a
MG
2276 lockdep_trace_alloc(gfp_mask);
2277
2278 might_sleep_if(gfp_mask & __GFP_WAIT);
2279
2280 if (should_fail_alloc_page(gfp_mask, order))
2281 return NULL;
2282
2283 /*
2284 * Check the zones suitable for the gfp_mask contain at least one
2285 * valid zone. It's possible to have an empty zonelist as a result
2286 * of GFP_THISNODE and a memoryless node
2287 */
2288 if (unlikely(!zonelist->_zonerefs->zone))
2289 return NULL;
2290
c0ff7453 2291 get_mems_allowed();
5117f45d 2292 /* The preferred zone is used for statistics later */
f33261d7
DR
2293 first_zones_zonelist(zonelist, high_zoneidx,
2294 nodemask ? : &cpuset_current_mems_allowed,
2295 &preferred_zone);
c0ff7453
MX
2296 if (!preferred_zone) {
2297 put_mems_allowed();
5117f45d 2298 return NULL;
c0ff7453 2299 }
5117f45d
MG
2300
2301 /* First allocation attempt */
11e33f6a 2302 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2303 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2304 preferred_zone, migratetype);
11e33f6a
MG
2305 if (unlikely(!page))
2306 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2307 zonelist, high_zoneidx, nodemask,
3dd28266 2308 preferred_zone, migratetype);
c0ff7453 2309 put_mems_allowed();
11e33f6a 2310
4b4f278c 2311 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2312 return page;
1da177e4 2313}
d239171e 2314EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2315
2316/*
2317 * Common helper functions.
2318 */
920c7a5d 2319unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2320{
945a1113
AM
2321 struct page *page;
2322
2323 /*
2324 * __get_free_pages() returns a 32-bit address, which cannot represent
2325 * a highmem page
2326 */
2327 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2328
1da177e4
LT
2329 page = alloc_pages(gfp_mask, order);
2330 if (!page)
2331 return 0;
2332 return (unsigned long) page_address(page);
2333}
1da177e4
LT
2334EXPORT_SYMBOL(__get_free_pages);
2335
920c7a5d 2336unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2337{
945a1113 2338 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2339}
1da177e4
LT
2340EXPORT_SYMBOL(get_zeroed_page);
2341
2342void __pagevec_free(struct pagevec *pvec)
2343{
2344 int i = pagevec_count(pvec);
2345
4b4f278c
MG
2346 while (--i >= 0) {
2347 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2348 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2349 }
1da177e4
LT
2350}
2351
920c7a5d 2352void __free_pages(struct page *page, unsigned int order)
1da177e4 2353{
b5810039 2354 if (put_page_testzero(page)) {
1da177e4 2355 if (order == 0)
fc91668e 2356 free_hot_cold_page(page, 0);
1da177e4
LT
2357 else
2358 __free_pages_ok(page, order);
2359 }
2360}
2361
2362EXPORT_SYMBOL(__free_pages);
2363
920c7a5d 2364void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2365{
2366 if (addr != 0) {
725d704e 2367 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2368 __free_pages(virt_to_page((void *)addr), order);
2369 }
2370}
2371
2372EXPORT_SYMBOL(free_pages);
2373
ee85c2e1
AK
2374static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2375{
2376 if (addr) {
2377 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2378 unsigned long used = addr + PAGE_ALIGN(size);
2379
2380 split_page(virt_to_page((void *)addr), order);
2381 while (used < alloc_end) {
2382 free_page(used);
2383 used += PAGE_SIZE;
2384 }
2385 }
2386 return (void *)addr;
2387}
2388
2be0ffe2
TT
2389/**
2390 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2391 * @size: the number of bytes to allocate
2392 * @gfp_mask: GFP flags for the allocation
2393 *
2394 * This function is similar to alloc_pages(), except that it allocates the
2395 * minimum number of pages to satisfy the request. alloc_pages() can only
2396 * allocate memory in power-of-two pages.
2397 *
2398 * This function is also limited by MAX_ORDER.
2399 *
2400 * Memory allocated by this function must be released by free_pages_exact().
2401 */
2402void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2403{
2404 unsigned int order = get_order(size);
2405 unsigned long addr;
2406
2407 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2408 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2409}
2410EXPORT_SYMBOL(alloc_pages_exact);
2411
ee85c2e1
AK
2412/**
2413 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2414 * pages on a node.
b5e6ab58 2415 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2416 * @size: the number of bytes to allocate
2417 * @gfp_mask: GFP flags for the allocation
2418 *
2419 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2420 * back.
2421 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2422 * but is not exact.
2423 */
2424void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2425{
2426 unsigned order = get_order(size);
2427 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2428 if (!p)
2429 return NULL;
2430 return make_alloc_exact((unsigned long)page_address(p), order, size);
2431}
2432EXPORT_SYMBOL(alloc_pages_exact_nid);
2433
2be0ffe2
TT
2434/**
2435 * free_pages_exact - release memory allocated via alloc_pages_exact()
2436 * @virt: the value returned by alloc_pages_exact.
2437 * @size: size of allocation, same value as passed to alloc_pages_exact().
2438 *
2439 * Release the memory allocated by a previous call to alloc_pages_exact.
2440 */
2441void free_pages_exact(void *virt, size_t size)
2442{
2443 unsigned long addr = (unsigned long)virt;
2444 unsigned long end = addr + PAGE_ALIGN(size);
2445
2446 while (addr < end) {
2447 free_page(addr);
2448 addr += PAGE_SIZE;
2449 }
2450}
2451EXPORT_SYMBOL(free_pages_exact);
2452
1da177e4
LT
2453static unsigned int nr_free_zone_pages(int offset)
2454{
dd1a239f 2455 struct zoneref *z;
54a6eb5c
MG
2456 struct zone *zone;
2457
e310fd43 2458 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2459 unsigned int sum = 0;
2460
0e88460d 2461 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2462
54a6eb5c 2463 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2464 unsigned long size = zone->present_pages;
41858966 2465 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2466 if (size > high)
2467 sum += size - high;
1da177e4
LT
2468 }
2469
2470 return sum;
2471}
2472
2473/*
2474 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2475 */
2476unsigned int nr_free_buffer_pages(void)
2477{
af4ca457 2478 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2479}
c2f1a551 2480EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2481
2482/*
2483 * Amount of free RAM allocatable within all zones
2484 */
2485unsigned int nr_free_pagecache_pages(void)
2486{
2a1e274a 2487 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2488}
08e0f6a9
CL
2489
2490static inline void show_node(struct zone *zone)
1da177e4 2491{
08e0f6a9 2492 if (NUMA_BUILD)
25ba77c1 2493 printk("Node %d ", zone_to_nid(zone));
1da177e4 2494}
1da177e4 2495
1da177e4
LT
2496void si_meminfo(struct sysinfo *val)
2497{
2498 val->totalram = totalram_pages;
2499 val->sharedram = 0;
d23ad423 2500 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2501 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2502 val->totalhigh = totalhigh_pages;
2503 val->freehigh = nr_free_highpages();
1da177e4
LT
2504 val->mem_unit = PAGE_SIZE;
2505}
2506
2507EXPORT_SYMBOL(si_meminfo);
2508
2509#ifdef CONFIG_NUMA
2510void si_meminfo_node(struct sysinfo *val, int nid)
2511{
2512 pg_data_t *pgdat = NODE_DATA(nid);
2513
2514 val->totalram = pgdat->node_present_pages;
d23ad423 2515 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2516#ifdef CONFIG_HIGHMEM
1da177e4 2517 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2518 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2519 NR_FREE_PAGES);
98d2b0eb
CL
2520#else
2521 val->totalhigh = 0;
2522 val->freehigh = 0;
2523#endif
1da177e4
LT
2524 val->mem_unit = PAGE_SIZE;
2525}
2526#endif
2527
ddd588b5 2528/*
7bf02ea2
DR
2529 * Determine whether the node should be displayed or not, depending on whether
2530 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2531 */
7bf02ea2 2532bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2533{
2534 bool ret = false;
2535
2536 if (!(flags & SHOW_MEM_FILTER_NODES))
2537 goto out;
2538
2539 get_mems_allowed();
7bf02ea2 2540 ret = !node_isset(nid, cpuset_current_mems_allowed);
ddd588b5
DR
2541 put_mems_allowed();
2542out:
2543 return ret;
2544}
2545
1da177e4
LT
2546#define K(x) ((x) << (PAGE_SHIFT-10))
2547
2548/*
2549 * Show free area list (used inside shift_scroll-lock stuff)
2550 * We also calculate the percentage fragmentation. We do this by counting the
2551 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2552 * Suppresses nodes that are not allowed by current's cpuset if
2553 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2554 */
7bf02ea2 2555void show_free_areas(unsigned int filter)
1da177e4 2556{
c7241913 2557 int cpu;
1da177e4
LT
2558 struct zone *zone;
2559
ee99c71c 2560 for_each_populated_zone(zone) {
7bf02ea2 2561 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2562 continue;
c7241913
JS
2563 show_node(zone);
2564 printk("%s per-cpu:\n", zone->name);
1da177e4 2565
6b482c67 2566 for_each_online_cpu(cpu) {
1da177e4
LT
2567 struct per_cpu_pageset *pageset;
2568
99dcc3e5 2569 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2570
3dfa5721
CL
2571 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2572 cpu, pageset->pcp.high,
2573 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2574 }
2575 }
2576
a731286d
KM
2577 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2578 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2579 " unevictable:%lu"
b76146ed 2580 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2581 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2582 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2583 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2584 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2585 global_page_state(NR_ISOLATED_ANON),
2586 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2587 global_page_state(NR_INACTIVE_FILE),
a731286d 2588 global_page_state(NR_ISOLATED_FILE),
7b854121 2589 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2590 global_page_state(NR_FILE_DIRTY),
ce866b34 2591 global_page_state(NR_WRITEBACK),
fd39fc85 2592 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2593 global_page_state(NR_FREE_PAGES),
3701b033
KM
2594 global_page_state(NR_SLAB_RECLAIMABLE),
2595 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2596 global_page_state(NR_FILE_MAPPED),
4b02108a 2597 global_page_state(NR_SHMEM),
a25700a5
AM
2598 global_page_state(NR_PAGETABLE),
2599 global_page_state(NR_BOUNCE));
1da177e4 2600
ee99c71c 2601 for_each_populated_zone(zone) {
1da177e4
LT
2602 int i;
2603
7bf02ea2 2604 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2605 continue;
1da177e4
LT
2606 show_node(zone);
2607 printk("%s"
2608 " free:%lukB"
2609 " min:%lukB"
2610 " low:%lukB"
2611 " high:%lukB"
4f98a2fe
RR
2612 " active_anon:%lukB"
2613 " inactive_anon:%lukB"
2614 " active_file:%lukB"
2615 " inactive_file:%lukB"
7b854121 2616 " unevictable:%lukB"
a731286d
KM
2617 " isolated(anon):%lukB"
2618 " isolated(file):%lukB"
1da177e4 2619 " present:%lukB"
4a0aa73f
KM
2620 " mlocked:%lukB"
2621 " dirty:%lukB"
2622 " writeback:%lukB"
2623 " mapped:%lukB"
4b02108a 2624 " shmem:%lukB"
4a0aa73f
KM
2625 " slab_reclaimable:%lukB"
2626 " slab_unreclaimable:%lukB"
c6a7f572 2627 " kernel_stack:%lukB"
4a0aa73f
KM
2628 " pagetables:%lukB"
2629 " unstable:%lukB"
2630 " bounce:%lukB"
2631 " writeback_tmp:%lukB"
1da177e4
LT
2632 " pages_scanned:%lu"
2633 " all_unreclaimable? %s"
2634 "\n",
2635 zone->name,
88f5acf8 2636 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2637 K(min_wmark_pages(zone)),
2638 K(low_wmark_pages(zone)),
2639 K(high_wmark_pages(zone)),
4f98a2fe
RR
2640 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2641 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2642 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2643 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2644 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2645 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2646 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2647 K(zone->present_pages),
4a0aa73f
KM
2648 K(zone_page_state(zone, NR_MLOCK)),
2649 K(zone_page_state(zone, NR_FILE_DIRTY)),
2650 K(zone_page_state(zone, NR_WRITEBACK)),
2651 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2652 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2653 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2654 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2655 zone_page_state(zone, NR_KERNEL_STACK) *
2656 THREAD_SIZE / 1024,
4a0aa73f
KM
2657 K(zone_page_state(zone, NR_PAGETABLE)),
2658 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2659 K(zone_page_state(zone, NR_BOUNCE)),
2660 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2661 zone->pages_scanned,
93e4a89a 2662 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2663 );
2664 printk("lowmem_reserve[]:");
2665 for (i = 0; i < MAX_NR_ZONES; i++)
2666 printk(" %lu", zone->lowmem_reserve[i]);
2667 printk("\n");
2668 }
2669
ee99c71c 2670 for_each_populated_zone(zone) {
8f9de51a 2671 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2672
7bf02ea2 2673 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2674 continue;
1da177e4
LT
2675 show_node(zone);
2676 printk("%s: ", zone->name);
1da177e4
LT
2677
2678 spin_lock_irqsave(&zone->lock, flags);
2679 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2680 nr[order] = zone->free_area[order].nr_free;
2681 total += nr[order] << order;
1da177e4
LT
2682 }
2683 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2684 for (order = 0; order < MAX_ORDER; order++)
2685 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2686 printk("= %lukB\n", K(total));
2687 }
2688
e6f3602d
LW
2689 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2690
1da177e4
LT
2691 show_swap_cache_info();
2692}
2693
19770b32
MG
2694static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2695{
2696 zoneref->zone = zone;
2697 zoneref->zone_idx = zone_idx(zone);
2698}
2699
1da177e4
LT
2700/*
2701 * Builds allocation fallback zone lists.
1a93205b
CL
2702 *
2703 * Add all populated zones of a node to the zonelist.
1da177e4 2704 */
f0c0b2b8
KH
2705static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2706 int nr_zones, enum zone_type zone_type)
1da177e4 2707{
1a93205b
CL
2708 struct zone *zone;
2709
98d2b0eb 2710 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2711 zone_type++;
02a68a5e
CL
2712
2713 do {
2f6726e5 2714 zone_type--;
070f8032 2715 zone = pgdat->node_zones + zone_type;
1a93205b 2716 if (populated_zone(zone)) {
dd1a239f
MG
2717 zoneref_set_zone(zone,
2718 &zonelist->_zonerefs[nr_zones++]);
070f8032 2719 check_highest_zone(zone_type);
1da177e4 2720 }
02a68a5e 2721
2f6726e5 2722 } while (zone_type);
070f8032 2723 return nr_zones;
1da177e4
LT
2724}
2725
f0c0b2b8
KH
2726
2727/*
2728 * zonelist_order:
2729 * 0 = automatic detection of better ordering.
2730 * 1 = order by ([node] distance, -zonetype)
2731 * 2 = order by (-zonetype, [node] distance)
2732 *
2733 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2734 * the same zonelist. So only NUMA can configure this param.
2735 */
2736#define ZONELIST_ORDER_DEFAULT 0
2737#define ZONELIST_ORDER_NODE 1
2738#define ZONELIST_ORDER_ZONE 2
2739
2740/* zonelist order in the kernel.
2741 * set_zonelist_order() will set this to NODE or ZONE.
2742 */
2743static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2744static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2745
2746
1da177e4 2747#ifdef CONFIG_NUMA
f0c0b2b8
KH
2748/* The value user specified ....changed by config */
2749static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2750/* string for sysctl */
2751#define NUMA_ZONELIST_ORDER_LEN 16
2752char numa_zonelist_order[16] = "default";
2753
2754/*
2755 * interface for configure zonelist ordering.
2756 * command line option "numa_zonelist_order"
2757 * = "[dD]efault - default, automatic configuration.
2758 * = "[nN]ode - order by node locality, then by zone within node
2759 * = "[zZ]one - order by zone, then by locality within zone
2760 */
2761
2762static int __parse_numa_zonelist_order(char *s)
2763{
2764 if (*s == 'd' || *s == 'D') {
2765 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2766 } else if (*s == 'n' || *s == 'N') {
2767 user_zonelist_order = ZONELIST_ORDER_NODE;
2768 } else if (*s == 'z' || *s == 'Z') {
2769 user_zonelist_order = ZONELIST_ORDER_ZONE;
2770 } else {
2771 printk(KERN_WARNING
2772 "Ignoring invalid numa_zonelist_order value: "
2773 "%s\n", s);
2774 return -EINVAL;
2775 }
2776 return 0;
2777}
2778
2779static __init int setup_numa_zonelist_order(char *s)
2780{
ecb256f8
VL
2781 int ret;
2782
2783 if (!s)
2784 return 0;
2785
2786 ret = __parse_numa_zonelist_order(s);
2787 if (ret == 0)
2788 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2789
2790 return ret;
f0c0b2b8
KH
2791}
2792early_param("numa_zonelist_order", setup_numa_zonelist_order);
2793
2794/*
2795 * sysctl handler for numa_zonelist_order
2796 */
2797int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2798 void __user *buffer, size_t *length,
f0c0b2b8
KH
2799 loff_t *ppos)
2800{
2801 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2802 int ret;
443c6f14 2803 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2804
443c6f14 2805 mutex_lock(&zl_order_mutex);
f0c0b2b8 2806 if (write)
443c6f14 2807 strcpy(saved_string, (char*)table->data);
8d65af78 2808 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2809 if (ret)
443c6f14 2810 goto out;
f0c0b2b8
KH
2811 if (write) {
2812 int oldval = user_zonelist_order;
2813 if (__parse_numa_zonelist_order((char*)table->data)) {
2814 /*
2815 * bogus value. restore saved string
2816 */
2817 strncpy((char*)table->data, saved_string,
2818 NUMA_ZONELIST_ORDER_LEN);
2819 user_zonelist_order = oldval;
4eaf3f64
HL
2820 } else if (oldval != user_zonelist_order) {
2821 mutex_lock(&zonelists_mutex);
1f522509 2822 build_all_zonelists(NULL);
4eaf3f64
HL
2823 mutex_unlock(&zonelists_mutex);
2824 }
f0c0b2b8 2825 }
443c6f14
AK
2826out:
2827 mutex_unlock(&zl_order_mutex);
2828 return ret;
f0c0b2b8
KH
2829}
2830
2831
62bc62a8 2832#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2833static int node_load[MAX_NUMNODES];
2834
1da177e4 2835/**
4dc3b16b 2836 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2837 * @node: node whose fallback list we're appending
2838 * @used_node_mask: nodemask_t of already used nodes
2839 *
2840 * We use a number of factors to determine which is the next node that should
2841 * appear on a given node's fallback list. The node should not have appeared
2842 * already in @node's fallback list, and it should be the next closest node
2843 * according to the distance array (which contains arbitrary distance values
2844 * from each node to each node in the system), and should also prefer nodes
2845 * with no CPUs, since presumably they'll have very little allocation pressure
2846 * on them otherwise.
2847 * It returns -1 if no node is found.
2848 */
f0c0b2b8 2849static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2850{
4cf808eb 2851 int n, val;
1da177e4
LT
2852 int min_val = INT_MAX;
2853 int best_node = -1;
a70f7302 2854 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2855
4cf808eb
LT
2856 /* Use the local node if we haven't already */
2857 if (!node_isset(node, *used_node_mask)) {
2858 node_set(node, *used_node_mask);
2859 return node;
2860 }
1da177e4 2861
37b07e41 2862 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2863
2864 /* Don't want a node to appear more than once */
2865 if (node_isset(n, *used_node_mask))
2866 continue;
2867
1da177e4
LT
2868 /* Use the distance array to find the distance */
2869 val = node_distance(node, n);
2870
4cf808eb
LT
2871 /* Penalize nodes under us ("prefer the next node") */
2872 val += (n < node);
2873
1da177e4 2874 /* Give preference to headless and unused nodes */
a70f7302
RR
2875 tmp = cpumask_of_node(n);
2876 if (!cpumask_empty(tmp))
1da177e4
LT
2877 val += PENALTY_FOR_NODE_WITH_CPUS;
2878
2879 /* Slight preference for less loaded node */
2880 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2881 val += node_load[n];
2882
2883 if (val < min_val) {
2884 min_val = val;
2885 best_node = n;
2886 }
2887 }
2888
2889 if (best_node >= 0)
2890 node_set(best_node, *used_node_mask);
2891
2892 return best_node;
2893}
2894
f0c0b2b8
KH
2895
2896/*
2897 * Build zonelists ordered by node and zones within node.
2898 * This results in maximum locality--normal zone overflows into local
2899 * DMA zone, if any--but risks exhausting DMA zone.
2900 */
2901static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2902{
f0c0b2b8 2903 int j;
1da177e4 2904 struct zonelist *zonelist;
f0c0b2b8 2905
54a6eb5c 2906 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2907 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2908 ;
2909 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2910 MAX_NR_ZONES - 1);
dd1a239f
MG
2911 zonelist->_zonerefs[j].zone = NULL;
2912 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2913}
2914
523b9458
CL
2915/*
2916 * Build gfp_thisnode zonelists
2917 */
2918static void build_thisnode_zonelists(pg_data_t *pgdat)
2919{
523b9458
CL
2920 int j;
2921 struct zonelist *zonelist;
2922
54a6eb5c
MG
2923 zonelist = &pgdat->node_zonelists[1];
2924 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2925 zonelist->_zonerefs[j].zone = NULL;
2926 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2927}
2928
f0c0b2b8
KH
2929/*
2930 * Build zonelists ordered by zone and nodes within zones.
2931 * This results in conserving DMA zone[s] until all Normal memory is
2932 * exhausted, but results in overflowing to remote node while memory
2933 * may still exist in local DMA zone.
2934 */
2935static int node_order[MAX_NUMNODES];
2936
2937static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2938{
f0c0b2b8
KH
2939 int pos, j, node;
2940 int zone_type; /* needs to be signed */
2941 struct zone *z;
2942 struct zonelist *zonelist;
2943
54a6eb5c
MG
2944 zonelist = &pgdat->node_zonelists[0];
2945 pos = 0;
2946 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2947 for (j = 0; j < nr_nodes; j++) {
2948 node = node_order[j];
2949 z = &NODE_DATA(node)->node_zones[zone_type];
2950 if (populated_zone(z)) {
dd1a239f
MG
2951 zoneref_set_zone(z,
2952 &zonelist->_zonerefs[pos++]);
54a6eb5c 2953 check_highest_zone(zone_type);
f0c0b2b8
KH
2954 }
2955 }
f0c0b2b8 2956 }
dd1a239f
MG
2957 zonelist->_zonerefs[pos].zone = NULL;
2958 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2959}
2960
2961static int default_zonelist_order(void)
2962{
2963 int nid, zone_type;
2964 unsigned long low_kmem_size,total_size;
2965 struct zone *z;
2966 int average_size;
2967 /*
88393161 2968 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2969 * If they are really small and used heavily, the system can fall
2970 * into OOM very easily.
e325c90f 2971 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2972 */
2973 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2974 low_kmem_size = 0;
2975 total_size = 0;
2976 for_each_online_node(nid) {
2977 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2978 z = &NODE_DATA(nid)->node_zones[zone_type];
2979 if (populated_zone(z)) {
2980 if (zone_type < ZONE_NORMAL)
2981 low_kmem_size += z->present_pages;
2982 total_size += z->present_pages;
e325c90f
DR
2983 } else if (zone_type == ZONE_NORMAL) {
2984 /*
2985 * If any node has only lowmem, then node order
2986 * is preferred to allow kernel allocations
2987 * locally; otherwise, they can easily infringe
2988 * on other nodes when there is an abundance of
2989 * lowmem available to allocate from.
2990 */
2991 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2992 }
2993 }
2994 }
2995 if (!low_kmem_size || /* there are no DMA area. */
2996 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2997 return ZONELIST_ORDER_NODE;
2998 /*
2999 * look into each node's config.
3000 * If there is a node whose DMA/DMA32 memory is very big area on
3001 * local memory, NODE_ORDER may be suitable.
3002 */
37b07e41
LS
3003 average_size = total_size /
3004 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3005 for_each_online_node(nid) {
3006 low_kmem_size = 0;
3007 total_size = 0;
3008 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3009 z = &NODE_DATA(nid)->node_zones[zone_type];
3010 if (populated_zone(z)) {
3011 if (zone_type < ZONE_NORMAL)
3012 low_kmem_size += z->present_pages;
3013 total_size += z->present_pages;
3014 }
3015 }
3016 if (low_kmem_size &&
3017 total_size > average_size && /* ignore small node */
3018 low_kmem_size > total_size * 70/100)
3019 return ZONELIST_ORDER_NODE;
3020 }
3021 return ZONELIST_ORDER_ZONE;
3022}
3023
3024static void set_zonelist_order(void)
3025{
3026 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3027 current_zonelist_order = default_zonelist_order();
3028 else
3029 current_zonelist_order = user_zonelist_order;
3030}
3031
3032static void build_zonelists(pg_data_t *pgdat)
3033{
3034 int j, node, load;
3035 enum zone_type i;
1da177e4 3036 nodemask_t used_mask;
f0c0b2b8
KH
3037 int local_node, prev_node;
3038 struct zonelist *zonelist;
3039 int order = current_zonelist_order;
1da177e4
LT
3040
3041 /* initialize zonelists */
523b9458 3042 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3043 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3044 zonelist->_zonerefs[0].zone = NULL;
3045 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3046 }
3047
3048 /* NUMA-aware ordering of nodes */
3049 local_node = pgdat->node_id;
62bc62a8 3050 load = nr_online_nodes;
1da177e4
LT
3051 prev_node = local_node;
3052 nodes_clear(used_mask);
f0c0b2b8 3053
f0c0b2b8
KH
3054 memset(node_order, 0, sizeof(node_order));
3055 j = 0;
3056
1da177e4 3057 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3058 int distance = node_distance(local_node, node);
3059
3060 /*
3061 * If another node is sufficiently far away then it is better
3062 * to reclaim pages in a zone before going off node.
3063 */
3064 if (distance > RECLAIM_DISTANCE)
3065 zone_reclaim_mode = 1;
3066
1da177e4
LT
3067 /*
3068 * We don't want to pressure a particular node.
3069 * So adding penalty to the first node in same
3070 * distance group to make it round-robin.
3071 */
9eeff239 3072 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3073 node_load[node] = load;
3074
1da177e4
LT
3075 prev_node = node;
3076 load--;
f0c0b2b8
KH
3077 if (order == ZONELIST_ORDER_NODE)
3078 build_zonelists_in_node_order(pgdat, node);
3079 else
3080 node_order[j++] = node; /* remember order */
3081 }
1da177e4 3082
f0c0b2b8
KH
3083 if (order == ZONELIST_ORDER_ZONE) {
3084 /* calculate node order -- i.e., DMA last! */
3085 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3086 }
523b9458
CL
3087
3088 build_thisnode_zonelists(pgdat);
1da177e4
LT
3089}
3090
9276b1bc 3091/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3092static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3093{
54a6eb5c
MG
3094 struct zonelist *zonelist;
3095 struct zonelist_cache *zlc;
dd1a239f 3096 struct zoneref *z;
9276b1bc 3097
54a6eb5c
MG
3098 zonelist = &pgdat->node_zonelists[0];
3099 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3100 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3101 for (z = zonelist->_zonerefs; z->zone; z++)
3102 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3103}
3104
7aac7898
LS
3105#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3106/*
3107 * Return node id of node used for "local" allocations.
3108 * I.e., first node id of first zone in arg node's generic zonelist.
3109 * Used for initializing percpu 'numa_mem', which is used primarily
3110 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3111 */
3112int local_memory_node(int node)
3113{
3114 struct zone *zone;
3115
3116 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3117 gfp_zone(GFP_KERNEL),
3118 NULL,
3119 &zone);
3120 return zone->node;
3121}
3122#endif
f0c0b2b8 3123
1da177e4
LT
3124#else /* CONFIG_NUMA */
3125
f0c0b2b8
KH
3126static void set_zonelist_order(void)
3127{
3128 current_zonelist_order = ZONELIST_ORDER_ZONE;
3129}
3130
3131static void build_zonelists(pg_data_t *pgdat)
1da177e4 3132{
19655d34 3133 int node, local_node;
54a6eb5c
MG
3134 enum zone_type j;
3135 struct zonelist *zonelist;
1da177e4
LT
3136
3137 local_node = pgdat->node_id;
1da177e4 3138
54a6eb5c
MG
3139 zonelist = &pgdat->node_zonelists[0];
3140 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3141
54a6eb5c
MG
3142 /*
3143 * Now we build the zonelist so that it contains the zones
3144 * of all the other nodes.
3145 * We don't want to pressure a particular node, so when
3146 * building the zones for node N, we make sure that the
3147 * zones coming right after the local ones are those from
3148 * node N+1 (modulo N)
3149 */
3150 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3151 if (!node_online(node))
3152 continue;
3153 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3154 MAX_NR_ZONES - 1);
1da177e4 3155 }
54a6eb5c
MG
3156 for (node = 0; node < local_node; node++) {
3157 if (!node_online(node))
3158 continue;
3159 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3160 MAX_NR_ZONES - 1);
3161 }
3162
dd1a239f
MG
3163 zonelist->_zonerefs[j].zone = NULL;
3164 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3165}
3166
9276b1bc 3167/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3168static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3169{
54a6eb5c 3170 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3171}
3172
1da177e4
LT
3173#endif /* CONFIG_NUMA */
3174
99dcc3e5
CL
3175/*
3176 * Boot pageset table. One per cpu which is going to be used for all
3177 * zones and all nodes. The parameters will be set in such a way
3178 * that an item put on a list will immediately be handed over to
3179 * the buddy list. This is safe since pageset manipulation is done
3180 * with interrupts disabled.
3181 *
3182 * The boot_pagesets must be kept even after bootup is complete for
3183 * unused processors and/or zones. They do play a role for bootstrapping
3184 * hotplugged processors.
3185 *
3186 * zoneinfo_show() and maybe other functions do
3187 * not check if the processor is online before following the pageset pointer.
3188 * Other parts of the kernel may not check if the zone is available.
3189 */
3190static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3191static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3192static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3193
4eaf3f64
HL
3194/*
3195 * Global mutex to protect against size modification of zonelists
3196 * as well as to serialize pageset setup for the new populated zone.
3197 */
3198DEFINE_MUTEX(zonelists_mutex);
3199
9b1a4d38 3200/* return values int ....just for stop_machine() */
1f522509 3201static __init_refok int __build_all_zonelists(void *data)
1da177e4 3202{
6811378e 3203 int nid;
99dcc3e5 3204 int cpu;
9276b1bc 3205
7f9cfb31
BL
3206#ifdef CONFIG_NUMA
3207 memset(node_load, 0, sizeof(node_load));
3208#endif
9276b1bc 3209 for_each_online_node(nid) {
7ea1530a
CL
3210 pg_data_t *pgdat = NODE_DATA(nid);
3211
3212 build_zonelists(pgdat);
3213 build_zonelist_cache(pgdat);
9276b1bc 3214 }
99dcc3e5
CL
3215
3216 /*
3217 * Initialize the boot_pagesets that are going to be used
3218 * for bootstrapping processors. The real pagesets for
3219 * each zone will be allocated later when the per cpu
3220 * allocator is available.
3221 *
3222 * boot_pagesets are used also for bootstrapping offline
3223 * cpus if the system is already booted because the pagesets
3224 * are needed to initialize allocators on a specific cpu too.
3225 * F.e. the percpu allocator needs the page allocator which
3226 * needs the percpu allocator in order to allocate its pagesets
3227 * (a chicken-egg dilemma).
3228 */
7aac7898 3229 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3230 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3231
7aac7898
LS
3232#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3233 /*
3234 * We now know the "local memory node" for each node--
3235 * i.e., the node of the first zone in the generic zonelist.
3236 * Set up numa_mem percpu variable for on-line cpus. During
3237 * boot, only the boot cpu should be on-line; we'll init the
3238 * secondary cpus' numa_mem as they come on-line. During
3239 * node/memory hotplug, we'll fixup all on-line cpus.
3240 */
3241 if (cpu_online(cpu))
3242 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3243#endif
3244 }
3245
6811378e
YG
3246 return 0;
3247}
3248
4eaf3f64
HL
3249/*
3250 * Called with zonelists_mutex held always
3251 * unless system_state == SYSTEM_BOOTING.
3252 */
9f6ae448 3253void __ref build_all_zonelists(void *data)
6811378e 3254{
f0c0b2b8
KH
3255 set_zonelist_order();
3256
6811378e 3257 if (system_state == SYSTEM_BOOTING) {
423b41d7 3258 __build_all_zonelists(NULL);
68ad8df4 3259 mminit_verify_zonelist();
6811378e
YG
3260 cpuset_init_current_mems_allowed();
3261 } else {
183ff22b 3262 /* we have to stop all cpus to guarantee there is no user
6811378e 3263 of zonelist */
e9959f0f
KH
3264#ifdef CONFIG_MEMORY_HOTPLUG
3265 if (data)
3266 setup_zone_pageset((struct zone *)data);
3267#endif
3268 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3269 /* cpuset refresh routine should be here */
3270 }
bd1e22b8 3271 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3272 /*
3273 * Disable grouping by mobility if the number of pages in the
3274 * system is too low to allow the mechanism to work. It would be
3275 * more accurate, but expensive to check per-zone. This check is
3276 * made on memory-hotadd so a system can start with mobility
3277 * disabled and enable it later
3278 */
d9c23400 3279 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3280 page_group_by_mobility_disabled = 1;
3281 else
3282 page_group_by_mobility_disabled = 0;
3283
3284 printk("Built %i zonelists in %s order, mobility grouping %s. "
3285 "Total pages: %ld\n",
62bc62a8 3286 nr_online_nodes,
f0c0b2b8 3287 zonelist_order_name[current_zonelist_order],
9ef9acb0 3288 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3289 vm_total_pages);
3290#ifdef CONFIG_NUMA
3291 printk("Policy zone: %s\n", zone_names[policy_zone]);
3292#endif
1da177e4
LT
3293}
3294
3295/*
3296 * Helper functions to size the waitqueue hash table.
3297 * Essentially these want to choose hash table sizes sufficiently
3298 * large so that collisions trying to wait on pages are rare.
3299 * But in fact, the number of active page waitqueues on typical
3300 * systems is ridiculously low, less than 200. So this is even
3301 * conservative, even though it seems large.
3302 *
3303 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3304 * waitqueues, i.e. the size of the waitq table given the number of pages.
3305 */
3306#define PAGES_PER_WAITQUEUE 256
3307
cca448fe 3308#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3309static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3310{
3311 unsigned long size = 1;
3312
3313 pages /= PAGES_PER_WAITQUEUE;
3314
3315 while (size < pages)
3316 size <<= 1;
3317
3318 /*
3319 * Once we have dozens or even hundreds of threads sleeping
3320 * on IO we've got bigger problems than wait queue collision.
3321 * Limit the size of the wait table to a reasonable size.
3322 */
3323 size = min(size, 4096UL);
3324
3325 return max(size, 4UL);
3326}
cca448fe
YG
3327#else
3328/*
3329 * A zone's size might be changed by hot-add, so it is not possible to determine
3330 * a suitable size for its wait_table. So we use the maximum size now.
3331 *
3332 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3333 *
3334 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3335 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3336 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3337 *
3338 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3339 * or more by the traditional way. (See above). It equals:
3340 *
3341 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3342 * ia64(16K page size) : = ( 8G + 4M)byte.
3343 * powerpc (64K page size) : = (32G +16M)byte.
3344 */
3345static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3346{
3347 return 4096UL;
3348}
3349#endif
1da177e4
LT
3350
3351/*
3352 * This is an integer logarithm so that shifts can be used later
3353 * to extract the more random high bits from the multiplicative
3354 * hash function before the remainder is taken.
3355 */
3356static inline unsigned long wait_table_bits(unsigned long size)
3357{
3358 return ffz(~size);
3359}
3360
3361#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3362
6d3163ce
AH
3363/*
3364 * Check if a pageblock contains reserved pages
3365 */
3366static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3367{
3368 unsigned long pfn;
3369
3370 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3371 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3372 return 1;
3373 }
3374 return 0;
3375}
3376
56fd56b8 3377/*
d9c23400 3378 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3379 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3380 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3381 * higher will lead to a bigger reserve which will get freed as contiguous
3382 * blocks as reclaim kicks in
3383 */
3384static void setup_zone_migrate_reserve(struct zone *zone)
3385{
6d3163ce 3386 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3387 struct page *page;
78986a67
MG
3388 unsigned long block_migratetype;
3389 int reserve;
56fd56b8
MG
3390
3391 /* Get the start pfn, end pfn and the number of blocks to reserve */
3392 start_pfn = zone->zone_start_pfn;
3393 end_pfn = start_pfn + zone->spanned_pages;
41858966 3394 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3395 pageblock_order;
56fd56b8 3396
78986a67
MG
3397 /*
3398 * Reserve blocks are generally in place to help high-order atomic
3399 * allocations that are short-lived. A min_free_kbytes value that
3400 * would result in more than 2 reserve blocks for atomic allocations
3401 * is assumed to be in place to help anti-fragmentation for the
3402 * future allocation of hugepages at runtime.
3403 */
3404 reserve = min(2, reserve);
3405
d9c23400 3406 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3407 if (!pfn_valid(pfn))
3408 continue;
3409 page = pfn_to_page(pfn);
3410
344c790e
AL
3411 /* Watch out for overlapping nodes */
3412 if (page_to_nid(page) != zone_to_nid(zone))
3413 continue;
3414
56fd56b8 3415 /* Blocks with reserved pages will never free, skip them. */
6d3163ce
AH
3416 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3417 if (pageblock_is_reserved(pfn, block_end_pfn))
56fd56b8
MG
3418 continue;
3419
3420 block_migratetype = get_pageblock_migratetype(page);
3421
3422 /* If this block is reserved, account for it */
3423 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3424 reserve--;
3425 continue;
3426 }
3427
3428 /* Suitable for reserving if this block is movable */
3429 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3430 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3431 move_freepages_block(zone, page, MIGRATE_RESERVE);
3432 reserve--;
3433 continue;
3434 }
3435
3436 /*
3437 * If the reserve is met and this is a previous reserved block,
3438 * take it back
3439 */
3440 if (block_migratetype == MIGRATE_RESERVE) {
3441 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3442 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3443 }
3444 }
3445}
ac0e5b7a 3446
1da177e4
LT
3447/*
3448 * Initially all pages are reserved - free ones are freed
3449 * up by free_all_bootmem() once the early boot process is
3450 * done. Non-atomic initialization, single-pass.
3451 */
c09b4240 3452void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3453 unsigned long start_pfn, enum memmap_context context)
1da177e4 3454{
1da177e4 3455 struct page *page;
29751f69
AW
3456 unsigned long end_pfn = start_pfn + size;
3457 unsigned long pfn;
86051ca5 3458 struct zone *z;
1da177e4 3459
22b31eec
HD
3460 if (highest_memmap_pfn < end_pfn - 1)
3461 highest_memmap_pfn = end_pfn - 1;
3462
86051ca5 3463 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3464 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3465 /*
3466 * There can be holes in boot-time mem_map[]s
3467 * handed to this function. They do not
3468 * exist on hotplugged memory.
3469 */
3470 if (context == MEMMAP_EARLY) {
3471 if (!early_pfn_valid(pfn))
3472 continue;
3473 if (!early_pfn_in_nid(pfn, nid))
3474 continue;
3475 }
d41dee36
AW
3476 page = pfn_to_page(pfn);
3477 set_page_links(page, zone, nid, pfn);
708614e6 3478 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3479 init_page_count(page);
1da177e4
LT
3480 reset_page_mapcount(page);
3481 SetPageReserved(page);
b2a0ac88
MG
3482 /*
3483 * Mark the block movable so that blocks are reserved for
3484 * movable at startup. This will force kernel allocations
3485 * to reserve their blocks rather than leaking throughout
3486 * the address space during boot when many long-lived
56fd56b8
MG
3487 * kernel allocations are made. Later some blocks near
3488 * the start are marked MIGRATE_RESERVE by
3489 * setup_zone_migrate_reserve()
86051ca5
KH
3490 *
3491 * bitmap is created for zone's valid pfn range. but memmap
3492 * can be created for invalid pages (for alignment)
3493 * check here not to call set_pageblock_migratetype() against
3494 * pfn out of zone.
b2a0ac88 3495 */
86051ca5
KH
3496 if ((z->zone_start_pfn <= pfn)
3497 && (pfn < z->zone_start_pfn + z->spanned_pages)
3498 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3499 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3500
1da177e4
LT
3501 INIT_LIST_HEAD(&page->lru);
3502#ifdef WANT_PAGE_VIRTUAL
3503 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3504 if (!is_highmem_idx(zone))
3212c6be 3505 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3506#endif
1da177e4
LT
3507 }
3508}
3509
1e548deb 3510static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3511{
b2a0ac88
MG
3512 int order, t;
3513 for_each_migratetype_order(order, t) {
3514 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3515 zone->free_area[order].nr_free = 0;
3516 }
3517}
3518
3519#ifndef __HAVE_ARCH_MEMMAP_INIT
3520#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3521 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3522#endif
3523
1d6f4e60 3524static int zone_batchsize(struct zone *zone)
e7c8d5c9 3525{
3a6be87f 3526#ifdef CONFIG_MMU
e7c8d5c9
CL
3527 int batch;
3528
3529 /*
3530 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3531 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3532 *
3533 * OK, so we don't know how big the cache is. So guess.
3534 */
3535 batch = zone->present_pages / 1024;
ba56e91c
SR
3536 if (batch * PAGE_SIZE > 512 * 1024)
3537 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3538 batch /= 4; /* We effectively *= 4 below */
3539 if (batch < 1)
3540 batch = 1;
3541
3542 /*
0ceaacc9
NP
3543 * Clamp the batch to a 2^n - 1 value. Having a power
3544 * of 2 value was found to be more likely to have
3545 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3546 *
0ceaacc9
NP
3547 * For example if 2 tasks are alternately allocating
3548 * batches of pages, one task can end up with a lot
3549 * of pages of one half of the possible page colors
3550 * and the other with pages of the other colors.
e7c8d5c9 3551 */
9155203a 3552 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3553
e7c8d5c9 3554 return batch;
3a6be87f
DH
3555
3556#else
3557 /* The deferral and batching of frees should be suppressed under NOMMU
3558 * conditions.
3559 *
3560 * The problem is that NOMMU needs to be able to allocate large chunks
3561 * of contiguous memory as there's no hardware page translation to
3562 * assemble apparent contiguous memory from discontiguous pages.
3563 *
3564 * Queueing large contiguous runs of pages for batching, however,
3565 * causes the pages to actually be freed in smaller chunks. As there
3566 * can be a significant delay between the individual batches being
3567 * recycled, this leads to the once large chunks of space being
3568 * fragmented and becoming unavailable for high-order allocations.
3569 */
3570 return 0;
3571#endif
e7c8d5c9
CL
3572}
3573
b69a7288 3574static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3575{
3576 struct per_cpu_pages *pcp;
5f8dcc21 3577 int migratetype;
2caaad41 3578
1c6fe946
MD
3579 memset(p, 0, sizeof(*p));
3580
3dfa5721 3581 pcp = &p->pcp;
2caaad41 3582 pcp->count = 0;
2caaad41
CL
3583 pcp->high = 6 * batch;
3584 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3585 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3586 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3587}
3588
8ad4b1fb
RS
3589/*
3590 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3591 * to the value high for the pageset p.
3592 */
3593
3594static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3595 unsigned long high)
3596{
3597 struct per_cpu_pages *pcp;
3598
3dfa5721 3599 pcp = &p->pcp;
8ad4b1fb
RS
3600 pcp->high = high;
3601 pcp->batch = max(1UL, high/4);
3602 if ((high/4) > (PAGE_SHIFT * 8))
3603 pcp->batch = PAGE_SHIFT * 8;
3604}
3605
58c2ee40 3606static void setup_zone_pageset(struct zone *zone)
319774e2
WF
3607{
3608 int cpu;
3609
3610 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3611
3612 for_each_possible_cpu(cpu) {
3613 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3614
3615 setup_pageset(pcp, zone_batchsize(zone));
3616
3617 if (percpu_pagelist_fraction)
3618 setup_pagelist_highmark(pcp,
3619 (zone->present_pages /
3620 percpu_pagelist_fraction));
3621 }
3622}
3623
2caaad41 3624/*
99dcc3e5
CL
3625 * Allocate per cpu pagesets and initialize them.
3626 * Before this call only boot pagesets were available.
e7c8d5c9 3627 */
99dcc3e5 3628void __init setup_per_cpu_pageset(void)
e7c8d5c9 3629{
99dcc3e5 3630 struct zone *zone;
e7c8d5c9 3631
319774e2
WF
3632 for_each_populated_zone(zone)
3633 setup_zone_pageset(zone);
e7c8d5c9
CL
3634}
3635
577a32f6 3636static noinline __init_refok
cca448fe 3637int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3638{
3639 int i;
3640 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3641 size_t alloc_size;
ed8ece2e
DH
3642
3643 /*
3644 * The per-page waitqueue mechanism uses hashed waitqueues
3645 * per zone.
3646 */
02b694de
YG
3647 zone->wait_table_hash_nr_entries =
3648 wait_table_hash_nr_entries(zone_size_pages);
3649 zone->wait_table_bits =
3650 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3651 alloc_size = zone->wait_table_hash_nr_entries
3652 * sizeof(wait_queue_head_t);
3653
cd94b9db 3654 if (!slab_is_available()) {
cca448fe 3655 zone->wait_table = (wait_queue_head_t *)
8f389a99 3656 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3657 } else {
3658 /*
3659 * This case means that a zone whose size was 0 gets new memory
3660 * via memory hot-add.
3661 * But it may be the case that a new node was hot-added. In
3662 * this case vmalloc() will not be able to use this new node's
3663 * memory - this wait_table must be initialized to use this new
3664 * node itself as well.
3665 * To use this new node's memory, further consideration will be
3666 * necessary.
3667 */
8691f3a7 3668 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3669 }
3670 if (!zone->wait_table)
3671 return -ENOMEM;
ed8ece2e 3672
02b694de 3673 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3674 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3675
3676 return 0;
ed8ece2e
DH
3677}
3678
112067f0
SL
3679static int __zone_pcp_update(void *data)
3680{
3681 struct zone *zone = data;
3682 int cpu;
3683 unsigned long batch = zone_batchsize(zone), flags;
3684
2d30a1f6 3685 for_each_possible_cpu(cpu) {
112067f0
SL
3686 struct per_cpu_pageset *pset;
3687 struct per_cpu_pages *pcp;
3688
99dcc3e5 3689 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3690 pcp = &pset->pcp;
3691
3692 local_irq_save(flags);
5f8dcc21 3693 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3694 setup_pageset(pset, batch);
3695 local_irq_restore(flags);
3696 }
3697 return 0;
3698}
3699
3700void zone_pcp_update(struct zone *zone)
3701{
3702 stop_machine(__zone_pcp_update, zone, NULL);
3703}
3704
c09b4240 3705static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3706{
99dcc3e5
CL
3707 /*
3708 * per cpu subsystem is not up at this point. The following code
3709 * relies on the ability of the linker to provide the
3710 * offset of a (static) per cpu variable into the per cpu area.
3711 */
3712 zone->pageset = &boot_pageset;
ed8ece2e 3713
f5335c0f 3714 if (zone->present_pages)
99dcc3e5
CL
3715 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3716 zone->name, zone->present_pages,
3717 zone_batchsize(zone));
ed8ece2e
DH
3718}
3719
718127cc
YG
3720__meminit int init_currently_empty_zone(struct zone *zone,
3721 unsigned long zone_start_pfn,
a2f3aa02
DH
3722 unsigned long size,
3723 enum memmap_context context)
ed8ece2e
DH
3724{
3725 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3726 int ret;
3727 ret = zone_wait_table_init(zone, size);
3728 if (ret)
3729 return ret;
ed8ece2e
DH
3730 pgdat->nr_zones = zone_idx(zone) + 1;
3731
ed8ece2e
DH
3732 zone->zone_start_pfn = zone_start_pfn;
3733
708614e6
MG
3734 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3735 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3736 pgdat->node_id,
3737 (unsigned long)zone_idx(zone),
3738 zone_start_pfn, (zone_start_pfn + size));
3739
1e548deb 3740 zone_init_free_lists(zone);
718127cc
YG
3741
3742 return 0;
ed8ece2e
DH
3743}
3744
c713216d
MG
3745#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3746/*
3747 * Basic iterator support. Return the first range of PFNs for a node
3748 * Note: nid == MAX_NUMNODES returns first region regardless of node
3749 */
a3142c8e 3750static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3751{
3752 int i;
3753
3754 for (i = 0; i < nr_nodemap_entries; i++)
3755 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3756 return i;
3757
3758 return -1;
3759}
3760
3761/*
3762 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3763 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3764 */
a3142c8e 3765static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3766{
3767 for (index = index + 1; index < nr_nodemap_entries; index++)
3768 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3769 return index;
3770
3771 return -1;
3772}
3773
3774#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3775/*
3776 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3777 * Architectures may implement their own version but if add_active_range()
3778 * was used and there are no special requirements, this is a convenient
3779 * alternative
3780 */
f2dbcfa7 3781int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3782{
3783 int i;
3784
3785 for (i = 0; i < nr_nodemap_entries; i++) {
3786 unsigned long start_pfn = early_node_map[i].start_pfn;
3787 unsigned long end_pfn = early_node_map[i].end_pfn;
3788
3789 if (start_pfn <= pfn && pfn < end_pfn)
3790 return early_node_map[i].nid;
3791 }
cc2559bc
KH
3792 /* This is a memory hole */
3793 return -1;
c713216d
MG
3794}
3795#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3796
f2dbcfa7
KH
3797int __meminit early_pfn_to_nid(unsigned long pfn)
3798{
cc2559bc
KH
3799 int nid;
3800
3801 nid = __early_pfn_to_nid(pfn);
3802 if (nid >= 0)
3803 return nid;
3804 /* just returns 0 */
3805 return 0;
f2dbcfa7
KH
3806}
3807
cc2559bc
KH
3808#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3809bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3810{
3811 int nid;
3812
3813 nid = __early_pfn_to_nid(pfn);
3814 if (nid >= 0 && nid != node)
3815 return false;
3816 return true;
3817}
3818#endif
f2dbcfa7 3819
c713216d
MG
3820/* Basic iterator support to walk early_node_map[] */
3821#define for_each_active_range_index_in_nid(i, nid) \
3822 for (i = first_active_region_index_in_nid(nid); i != -1; \
3823 i = next_active_region_index_in_nid(i, nid))
3824
3825/**
3826 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3827 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3828 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3829 *
3830 * If an architecture guarantees that all ranges registered with
3831 * add_active_ranges() contain no holes and may be freed, this
3832 * this function may be used instead of calling free_bootmem() manually.
3833 */
3834void __init free_bootmem_with_active_regions(int nid,
3835 unsigned long max_low_pfn)
3836{
3837 int i;
3838
3839 for_each_active_range_index_in_nid(i, nid) {
3840 unsigned long size_pages = 0;
3841 unsigned long end_pfn = early_node_map[i].end_pfn;
3842
3843 if (early_node_map[i].start_pfn >= max_low_pfn)
3844 continue;
3845
3846 if (end_pfn > max_low_pfn)
3847 end_pfn = max_low_pfn;
3848
3849 size_pages = end_pfn - early_node_map[i].start_pfn;
3850 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3851 PFN_PHYS(early_node_map[i].start_pfn),
3852 size_pages << PAGE_SHIFT);
3853 }
3854}
3855
edbe7d23 3856#ifdef CONFIG_HAVE_MEMBLOCK
cc289894
YL
3857/*
3858 * Basic iterator support. Return the last range of PFNs for a node
3859 * Note: nid == MAX_NUMNODES returns last region regardless of node
3860 */
3861static int __meminit last_active_region_index_in_nid(int nid)
3862{
3863 int i;
3864
3865 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3866 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3867 return i;
3868
3869 return -1;
3870}
3871
3872/*
3873 * Basic iterator support. Return the previous active range of PFNs for a node
3874 * Note: nid == MAX_NUMNODES returns next region regardless of node
3875 */
3876static int __meminit previous_active_region_index_in_nid(int index, int nid)
3877{
3878 for (index = index - 1; index >= 0; index--)
3879 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3880 return index;
3881
3882 return -1;
3883}
3884
3885#define for_each_active_range_index_in_nid_reverse(i, nid) \
3886 for (i = last_active_region_index_in_nid(nid); i != -1; \
3887 i = previous_active_region_index_in_nid(i, nid))
3888
edbe7d23
YL
3889u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3890 u64 goal, u64 limit)
3891{
3892 int i;
3893
3894 /* Need to go over early_node_map to find out good range for node */
1a4a678b 3895 for_each_active_range_index_in_nid_reverse(i, nid) {
edbe7d23
YL
3896 u64 addr;
3897 u64 ei_start, ei_last;
3898 u64 final_start, final_end;
3899
3900 ei_last = early_node_map[i].end_pfn;
3901 ei_last <<= PAGE_SHIFT;
3902 ei_start = early_node_map[i].start_pfn;
3903 ei_start <<= PAGE_SHIFT;
3904
3905 final_start = max(ei_start, goal);
3906 final_end = min(ei_last, limit);
3907
3908 if (final_start >= final_end)
3909 continue;
3910
3911 addr = memblock_find_in_range(final_start, final_end, size, align);
3912
3913 if (addr == MEMBLOCK_ERROR)
3914 continue;
3915
3916 return addr;
3917 }
3918
3919 return MEMBLOCK_ERROR;
3920}
3921#endif
3922
08677214
YL
3923int __init add_from_early_node_map(struct range *range, int az,
3924 int nr_range, int nid)
3925{
3926 int i;
3927 u64 start, end;
3928
3929 /* need to go over early_node_map to find out good range for node */
3930 for_each_active_range_index_in_nid(i, nid) {
3931 start = early_node_map[i].start_pfn;
3932 end = early_node_map[i].end_pfn;
3933 nr_range = add_range(range, az, nr_range, start, end);
3934 }
3935 return nr_range;
3936}
3937
b5bc6c0e
YL
3938void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3939{
3940 int i;
d52d53b8 3941 int ret;
b5bc6c0e 3942
d52d53b8
YL
3943 for_each_active_range_index_in_nid(i, nid) {
3944 ret = work_fn(early_node_map[i].start_pfn,
3945 early_node_map[i].end_pfn, data);
3946 if (ret)
3947 break;
3948 }
b5bc6c0e 3949}
c713216d
MG
3950/**
3951 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3952 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3953 *
3954 * If an architecture guarantees that all ranges registered with
3955 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3956 * function may be used instead of calling memory_present() manually.
c713216d
MG
3957 */
3958void __init sparse_memory_present_with_active_regions(int nid)
3959{
3960 int i;
3961
3962 for_each_active_range_index_in_nid(i, nid)
3963 memory_present(early_node_map[i].nid,
3964 early_node_map[i].start_pfn,
3965 early_node_map[i].end_pfn);
3966}
3967
3968/**
3969 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3970 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3971 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3972 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3973 *
3974 * It returns the start and end page frame of a node based on information
3975 * provided by an arch calling add_active_range(). If called for a node
3976 * with no available memory, a warning is printed and the start and end
88ca3b94 3977 * PFNs will be 0.
c713216d 3978 */
a3142c8e 3979void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3980 unsigned long *start_pfn, unsigned long *end_pfn)
3981{
3982 int i;
3983 *start_pfn = -1UL;
3984 *end_pfn = 0;
3985
3986 for_each_active_range_index_in_nid(i, nid) {
3987 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3988 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3989 }
3990
633c0666 3991 if (*start_pfn == -1UL)
c713216d 3992 *start_pfn = 0;
c713216d
MG
3993}
3994
2a1e274a
MG
3995/*
3996 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3997 * assumption is made that zones within a node are ordered in monotonic
3998 * increasing memory addresses so that the "highest" populated zone is used
3999 */
b69a7288 4000static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4001{
4002 int zone_index;
4003 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4004 if (zone_index == ZONE_MOVABLE)
4005 continue;
4006
4007 if (arch_zone_highest_possible_pfn[zone_index] >
4008 arch_zone_lowest_possible_pfn[zone_index])
4009 break;
4010 }
4011
4012 VM_BUG_ON(zone_index == -1);
4013 movable_zone = zone_index;
4014}
4015
4016/*
4017 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4018 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4019 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4020 * in each node depending on the size of each node and how evenly kernelcore
4021 * is distributed. This helper function adjusts the zone ranges
4022 * provided by the architecture for a given node by using the end of the
4023 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4024 * zones within a node are in order of monotonic increases memory addresses
4025 */
b69a7288 4026static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4027 unsigned long zone_type,
4028 unsigned long node_start_pfn,
4029 unsigned long node_end_pfn,
4030 unsigned long *zone_start_pfn,
4031 unsigned long *zone_end_pfn)
4032{
4033 /* Only adjust if ZONE_MOVABLE is on this node */
4034 if (zone_movable_pfn[nid]) {
4035 /* Size ZONE_MOVABLE */
4036 if (zone_type == ZONE_MOVABLE) {
4037 *zone_start_pfn = zone_movable_pfn[nid];
4038 *zone_end_pfn = min(node_end_pfn,
4039 arch_zone_highest_possible_pfn[movable_zone]);
4040
4041 /* Adjust for ZONE_MOVABLE starting within this range */
4042 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4043 *zone_end_pfn > zone_movable_pfn[nid]) {
4044 *zone_end_pfn = zone_movable_pfn[nid];
4045
4046 /* Check if this whole range is within ZONE_MOVABLE */
4047 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4048 *zone_start_pfn = *zone_end_pfn;
4049 }
4050}
4051
c713216d
MG
4052/*
4053 * Return the number of pages a zone spans in a node, including holes
4054 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4055 */
6ea6e688 4056static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4057 unsigned long zone_type,
4058 unsigned long *ignored)
4059{
4060 unsigned long node_start_pfn, node_end_pfn;
4061 unsigned long zone_start_pfn, zone_end_pfn;
4062
4063 /* Get the start and end of the node and zone */
4064 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4065 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4066 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4067 adjust_zone_range_for_zone_movable(nid, zone_type,
4068 node_start_pfn, node_end_pfn,
4069 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4070
4071 /* Check that this node has pages within the zone's required range */
4072 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4073 return 0;
4074
4075 /* Move the zone boundaries inside the node if necessary */
4076 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4077 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4078
4079 /* Return the spanned pages */
4080 return zone_end_pfn - zone_start_pfn;
4081}
4082
4083/*
4084 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4085 * then all holes in the requested range will be accounted for.
c713216d 4086 */
32996250 4087unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4088 unsigned long range_start_pfn,
4089 unsigned long range_end_pfn)
4090{
4091 int i = 0;
4092 unsigned long prev_end_pfn = 0, hole_pages = 0;
4093 unsigned long start_pfn;
4094
4095 /* Find the end_pfn of the first active range of pfns in the node */
4096 i = first_active_region_index_in_nid(nid);
4097 if (i == -1)
4098 return 0;
4099
b5445f95
MG
4100 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4101
9c7cd687
MG
4102 /* Account for ranges before physical memory on this node */
4103 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 4104 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
4105
4106 /* Find all holes for the zone within the node */
4107 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4108
4109 /* No need to continue if prev_end_pfn is outside the zone */
4110 if (prev_end_pfn >= range_end_pfn)
4111 break;
4112
4113 /* Make sure the end of the zone is not within the hole */
4114 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4115 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4116
4117 /* Update the hole size cound and move on */
4118 if (start_pfn > range_start_pfn) {
4119 BUG_ON(prev_end_pfn > start_pfn);
4120 hole_pages += start_pfn - prev_end_pfn;
4121 }
4122 prev_end_pfn = early_node_map[i].end_pfn;
4123 }
4124
9c7cd687
MG
4125 /* Account for ranges past physical memory on this node */
4126 if (range_end_pfn > prev_end_pfn)
0c6cb974 4127 hole_pages += range_end_pfn -
9c7cd687
MG
4128 max(range_start_pfn, prev_end_pfn);
4129
c713216d
MG
4130 return hole_pages;
4131}
4132
4133/**
4134 * absent_pages_in_range - Return number of page frames in holes within a range
4135 * @start_pfn: The start PFN to start searching for holes
4136 * @end_pfn: The end PFN to stop searching for holes
4137 *
88ca3b94 4138 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4139 */
4140unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4141 unsigned long end_pfn)
4142{
4143 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4144}
4145
4146/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4147static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4148 unsigned long zone_type,
4149 unsigned long *ignored)
4150{
9c7cd687
MG
4151 unsigned long node_start_pfn, node_end_pfn;
4152 unsigned long zone_start_pfn, zone_end_pfn;
4153
4154 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4155 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4156 node_start_pfn);
4157 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4158 node_end_pfn);
4159
2a1e274a
MG
4160 adjust_zone_range_for_zone_movable(nid, zone_type,
4161 node_start_pfn, node_end_pfn,
4162 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4163 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4164}
0e0b864e 4165
c713216d 4166#else
6ea6e688 4167static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4168 unsigned long zone_type,
4169 unsigned long *zones_size)
4170{
4171 return zones_size[zone_type];
4172}
4173
6ea6e688 4174static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4175 unsigned long zone_type,
4176 unsigned long *zholes_size)
4177{
4178 if (!zholes_size)
4179 return 0;
4180
4181 return zholes_size[zone_type];
4182}
0e0b864e 4183
c713216d
MG
4184#endif
4185
a3142c8e 4186static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4187 unsigned long *zones_size, unsigned long *zholes_size)
4188{
4189 unsigned long realtotalpages, totalpages = 0;
4190 enum zone_type i;
4191
4192 for (i = 0; i < MAX_NR_ZONES; i++)
4193 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4194 zones_size);
4195 pgdat->node_spanned_pages = totalpages;
4196
4197 realtotalpages = totalpages;
4198 for (i = 0; i < MAX_NR_ZONES; i++)
4199 realtotalpages -=
4200 zone_absent_pages_in_node(pgdat->node_id, i,
4201 zholes_size);
4202 pgdat->node_present_pages = realtotalpages;
4203 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4204 realtotalpages);
4205}
4206
835c134e
MG
4207#ifndef CONFIG_SPARSEMEM
4208/*
4209 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4210 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4211 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4212 * round what is now in bits to nearest long in bits, then return it in
4213 * bytes.
4214 */
4215static unsigned long __init usemap_size(unsigned long zonesize)
4216{
4217 unsigned long usemapsize;
4218
d9c23400
MG
4219 usemapsize = roundup(zonesize, pageblock_nr_pages);
4220 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4221 usemapsize *= NR_PAGEBLOCK_BITS;
4222 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4223
4224 return usemapsize / 8;
4225}
4226
4227static void __init setup_usemap(struct pglist_data *pgdat,
4228 struct zone *zone, unsigned long zonesize)
4229{
4230 unsigned long usemapsize = usemap_size(zonesize);
4231 zone->pageblock_flags = NULL;
58a01a45 4232 if (usemapsize)
8f389a99
YL
4233 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4234 usemapsize);
835c134e
MG
4235}
4236#else
fa9f90be 4237static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4238 struct zone *zone, unsigned long zonesize) {}
4239#endif /* CONFIG_SPARSEMEM */
4240
d9c23400 4241#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4242
4243/* Return a sensible default order for the pageblock size. */
4244static inline int pageblock_default_order(void)
4245{
4246 if (HPAGE_SHIFT > PAGE_SHIFT)
4247 return HUGETLB_PAGE_ORDER;
4248
4249 return MAX_ORDER-1;
4250}
4251
d9c23400
MG
4252/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4253static inline void __init set_pageblock_order(unsigned int order)
4254{
4255 /* Check that pageblock_nr_pages has not already been setup */
4256 if (pageblock_order)
4257 return;
4258
4259 /*
4260 * Assume the largest contiguous order of interest is a huge page.
4261 * This value may be variable depending on boot parameters on IA64
4262 */
4263 pageblock_order = order;
4264}
4265#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4266
ba72cb8c
MG
4267/*
4268 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4269 * and pageblock_default_order() are unused as pageblock_order is set
4270 * at compile-time. See include/linux/pageblock-flags.h for the values of
4271 * pageblock_order based on the kernel config
4272 */
4273static inline int pageblock_default_order(unsigned int order)
4274{
4275 return MAX_ORDER-1;
4276}
d9c23400
MG
4277#define set_pageblock_order(x) do {} while (0)
4278
4279#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4280
1da177e4
LT
4281/*
4282 * Set up the zone data structures:
4283 * - mark all pages reserved
4284 * - mark all memory queues empty
4285 * - clear the memory bitmaps
4286 */
b5a0e011 4287static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4288 unsigned long *zones_size, unsigned long *zholes_size)
4289{
2f1b6248 4290 enum zone_type j;
ed8ece2e 4291 int nid = pgdat->node_id;
1da177e4 4292 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4293 int ret;
1da177e4 4294
208d54e5 4295 pgdat_resize_init(pgdat);
1da177e4
LT
4296 pgdat->nr_zones = 0;
4297 init_waitqueue_head(&pgdat->kswapd_wait);
4298 pgdat->kswapd_max_order = 0;
52d4b9ac 4299 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4300
4301 for (j = 0; j < MAX_NR_ZONES; j++) {
4302 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4303 unsigned long size, realsize, memmap_pages;
b69408e8 4304 enum lru_list l;
1da177e4 4305
c713216d
MG
4306 size = zone_spanned_pages_in_node(nid, j, zones_size);
4307 realsize = size - zone_absent_pages_in_node(nid, j,
4308 zholes_size);
1da177e4 4309
0e0b864e
MG
4310 /*
4311 * Adjust realsize so that it accounts for how much memory
4312 * is used by this zone for memmap. This affects the watermark
4313 * and per-cpu initialisations
4314 */
f7232154
JW
4315 memmap_pages =
4316 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4317 if (realsize >= memmap_pages) {
4318 realsize -= memmap_pages;
5594c8c8
YL
4319 if (memmap_pages)
4320 printk(KERN_DEBUG
4321 " %s zone: %lu pages used for memmap\n",
4322 zone_names[j], memmap_pages);
0e0b864e
MG
4323 } else
4324 printk(KERN_WARNING
4325 " %s zone: %lu pages exceeds realsize %lu\n",
4326 zone_names[j], memmap_pages, realsize);
4327
6267276f
CL
4328 /* Account for reserved pages */
4329 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4330 realsize -= dma_reserve;
d903ef9f 4331 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4332 zone_names[0], dma_reserve);
0e0b864e
MG
4333 }
4334
98d2b0eb 4335 if (!is_highmem_idx(j))
1da177e4
LT
4336 nr_kernel_pages += realsize;
4337 nr_all_pages += realsize;
4338
4339 zone->spanned_pages = size;
4340 zone->present_pages = realsize;
9614634f 4341#ifdef CONFIG_NUMA
d5f541ed 4342 zone->node = nid;
8417bba4 4343 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4344 / 100;
0ff38490 4345 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4346#endif
1da177e4
LT
4347 zone->name = zone_names[j];
4348 spin_lock_init(&zone->lock);
4349 spin_lock_init(&zone->lru_lock);
bdc8cb98 4350 zone_seqlock_init(zone);
1da177e4 4351 zone->zone_pgdat = pgdat;
1da177e4 4352
ed8ece2e 4353 zone_pcp_init(zone);
246e87a9 4354 for_each_lru(l)
b69408e8 4355 INIT_LIST_HEAD(&zone->lru[l].list);
6e901571
KM
4356 zone->reclaim_stat.recent_rotated[0] = 0;
4357 zone->reclaim_stat.recent_rotated[1] = 0;
4358 zone->reclaim_stat.recent_scanned[0] = 0;
4359 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4360 zap_zone_vm_stats(zone);
e815af95 4361 zone->flags = 0;
1da177e4
LT
4362 if (!size)
4363 continue;
4364
ba72cb8c 4365 set_pageblock_order(pageblock_default_order());
835c134e 4366 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4367 ret = init_currently_empty_zone(zone, zone_start_pfn,
4368 size, MEMMAP_EARLY);
718127cc 4369 BUG_ON(ret);
76cdd58e 4370 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4371 zone_start_pfn += size;
1da177e4
LT
4372 }
4373}
4374
577a32f6 4375static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4376{
1da177e4
LT
4377 /* Skip empty nodes */
4378 if (!pgdat->node_spanned_pages)
4379 return;
4380
d41dee36 4381#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4382 /* ia64 gets its own node_mem_map, before this, without bootmem */
4383 if (!pgdat->node_mem_map) {
e984bb43 4384 unsigned long size, start, end;
d41dee36
AW
4385 struct page *map;
4386
e984bb43
BP
4387 /*
4388 * The zone's endpoints aren't required to be MAX_ORDER
4389 * aligned but the node_mem_map endpoints must be in order
4390 * for the buddy allocator to function correctly.
4391 */
4392 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4393 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4394 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4395 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4396 map = alloc_remap(pgdat->node_id, size);
4397 if (!map)
8f389a99 4398 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4399 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4400 }
12d810c1 4401#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4402 /*
4403 * With no DISCONTIG, the global mem_map is just set as node 0's
4404 */
c713216d 4405 if (pgdat == NODE_DATA(0)) {
1da177e4 4406 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4407#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4408 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4409 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4410#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4411 }
1da177e4 4412#endif
d41dee36 4413#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4414}
4415
9109fb7b
JW
4416void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4417 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4418{
9109fb7b
JW
4419 pg_data_t *pgdat = NODE_DATA(nid);
4420
1da177e4
LT
4421 pgdat->node_id = nid;
4422 pgdat->node_start_pfn = node_start_pfn;
c713216d 4423 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4424
4425 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4426#ifdef CONFIG_FLAT_NODE_MEM_MAP
4427 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4428 nid, (unsigned long)pgdat,
4429 (unsigned long)pgdat->node_mem_map);
4430#endif
1da177e4
LT
4431
4432 free_area_init_core(pgdat, zones_size, zholes_size);
4433}
4434
c713216d 4435#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4436
4437#if MAX_NUMNODES > 1
4438/*
4439 * Figure out the number of possible node ids.
4440 */
4441static void __init setup_nr_node_ids(void)
4442{
4443 unsigned int node;
4444 unsigned int highest = 0;
4445
4446 for_each_node_mask(node, node_possible_map)
4447 highest = node;
4448 nr_node_ids = highest + 1;
4449}
4450#else
4451static inline void setup_nr_node_ids(void)
4452{
4453}
4454#endif
4455
c713216d
MG
4456/**
4457 * add_active_range - Register a range of PFNs backed by physical memory
4458 * @nid: The node ID the range resides on
4459 * @start_pfn: The start PFN of the available physical memory
4460 * @end_pfn: The end PFN of the available physical memory
4461 *
4462 * These ranges are stored in an early_node_map[] and later used by
4463 * free_area_init_nodes() to calculate zone sizes and holes. If the
4464 * range spans a memory hole, it is up to the architecture to ensure
4465 * the memory is not freed by the bootmem allocator. If possible
4466 * the range being registered will be merged with existing ranges.
4467 */
4468void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4469 unsigned long end_pfn)
4470{
4471 int i;
4472
6b74ab97
MG
4473 mminit_dprintk(MMINIT_TRACE, "memory_register",
4474 "Entering add_active_range(%d, %#lx, %#lx) "
4475 "%d entries of %d used\n",
4476 nid, start_pfn, end_pfn,
4477 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4478
2dbb51c4
MG
4479 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4480
c713216d
MG
4481 /* Merge with existing active regions if possible */
4482 for (i = 0; i < nr_nodemap_entries; i++) {
4483 if (early_node_map[i].nid != nid)
4484 continue;
4485
4486 /* Skip if an existing region covers this new one */
4487 if (start_pfn >= early_node_map[i].start_pfn &&
4488 end_pfn <= early_node_map[i].end_pfn)
4489 return;
4490
4491 /* Merge forward if suitable */
4492 if (start_pfn <= early_node_map[i].end_pfn &&
4493 end_pfn > early_node_map[i].end_pfn) {
4494 early_node_map[i].end_pfn = end_pfn;
4495 return;
4496 }
4497
4498 /* Merge backward if suitable */
d2dbe08d 4499 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4500 end_pfn >= early_node_map[i].start_pfn) {
4501 early_node_map[i].start_pfn = start_pfn;
4502 return;
4503 }
4504 }
4505
4506 /* Check that early_node_map is large enough */
4507 if (i >= MAX_ACTIVE_REGIONS) {
4508 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4509 MAX_ACTIVE_REGIONS);
4510 return;
4511 }
4512
4513 early_node_map[i].nid = nid;
4514 early_node_map[i].start_pfn = start_pfn;
4515 early_node_map[i].end_pfn = end_pfn;
4516 nr_nodemap_entries = i + 1;
4517}
4518
4519/**
cc1050ba 4520 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4521 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4522 * @start_pfn: The new PFN of the range
4523 * @end_pfn: The new PFN of the range
c713216d
MG
4524 *
4525 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4526 * The map is kept near the end physical page range that has already been
4527 * registered. This function allows an arch to shrink an existing registered
4528 * range.
c713216d 4529 */
cc1050ba
YL
4530void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4531 unsigned long end_pfn)
c713216d 4532{
cc1a9d86
YL
4533 int i, j;
4534 int removed = 0;
c713216d 4535
cc1050ba
YL
4536 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4537 nid, start_pfn, end_pfn);
4538
c713216d 4539 /* Find the old active region end and shrink */
cc1a9d86 4540 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4541 if (early_node_map[i].start_pfn >= start_pfn &&
4542 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4543 /* clear it */
cc1050ba 4544 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4545 early_node_map[i].end_pfn = 0;
4546 removed = 1;
4547 continue;
4548 }
cc1050ba
YL
4549 if (early_node_map[i].start_pfn < start_pfn &&
4550 early_node_map[i].end_pfn > start_pfn) {
4551 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4552 early_node_map[i].end_pfn = start_pfn;
4553 if (temp_end_pfn > end_pfn)
4554 add_active_range(nid, end_pfn, temp_end_pfn);
4555 continue;
4556 }
4557 if (early_node_map[i].start_pfn >= start_pfn &&
4558 early_node_map[i].end_pfn > end_pfn &&
4559 early_node_map[i].start_pfn < end_pfn) {
4560 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4561 continue;
c713216d 4562 }
cc1a9d86
YL
4563 }
4564
4565 if (!removed)
4566 return;
4567
4568 /* remove the blank ones */
4569 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4570 if (early_node_map[i].nid != nid)
4571 continue;
4572 if (early_node_map[i].end_pfn)
4573 continue;
4574 /* we found it, get rid of it */
4575 for (j = i; j < nr_nodemap_entries - 1; j++)
4576 memcpy(&early_node_map[j], &early_node_map[j+1],
4577 sizeof(early_node_map[j]));
4578 j = nr_nodemap_entries - 1;
4579 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4580 nr_nodemap_entries--;
4581 }
c713216d
MG
4582}
4583
4584/**
4585 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4586 *
c713216d
MG
4587 * During discovery, it may be found that a table like SRAT is invalid
4588 * and an alternative discovery method must be used. This function removes
4589 * all currently registered regions.
4590 */
88ca3b94 4591void __init remove_all_active_ranges(void)
c713216d
MG
4592{
4593 memset(early_node_map, 0, sizeof(early_node_map));
4594 nr_nodemap_entries = 0;
4595}
4596
4597/* Compare two active node_active_regions */
4598static int __init cmp_node_active_region(const void *a, const void *b)
4599{
4600 struct node_active_region *arange = (struct node_active_region *)a;
4601 struct node_active_region *brange = (struct node_active_region *)b;
4602
4603 /* Done this way to avoid overflows */
4604 if (arange->start_pfn > brange->start_pfn)
4605 return 1;
4606 if (arange->start_pfn < brange->start_pfn)
4607 return -1;
4608
4609 return 0;
4610}
4611
4612/* sort the node_map by start_pfn */
32996250 4613void __init sort_node_map(void)
c713216d
MG
4614{
4615 sort(early_node_map, (size_t)nr_nodemap_entries,
4616 sizeof(struct node_active_region),
4617 cmp_node_active_region, NULL);
4618}
4619
1e01979c
TH
4620/**
4621 * node_map_pfn_alignment - determine the maximum internode alignment
4622 *
4623 * This function should be called after node map is populated and sorted.
4624 * It calculates the maximum power of two alignment which can distinguish
4625 * all the nodes.
4626 *
4627 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4628 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4629 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4630 * shifted, 1GiB is enough and this function will indicate so.
4631 *
4632 * This is used to test whether pfn -> nid mapping of the chosen memory
4633 * model has fine enough granularity to avoid incorrect mapping for the
4634 * populated node map.
4635 *
4636 * Returns the determined alignment in pfn's. 0 if there is no alignment
4637 * requirement (single node).
4638 */
4639unsigned long __init node_map_pfn_alignment(void)
4640{
4641 unsigned long accl_mask = 0, last_end = 0;
4642 int last_nid = -1;
4643 int i;
4644
4645 for_each_active_range_index_in_nid(i, MAX_NUMNODES) {
4646 int nid = early_node_map[i].nid;
4647 unsigned long start = early_node_map[i].start_pfn;
4648 unsigned long end = early_node_map[i].end_pfn;
4649 unsigned long mask;
4650
4651 if (!start || last_nid < 0 || last_nid == nid) {
4652 last_nid = nid;
4653 last_end = end;
4654 continue;
4655 }
4656
4657 /*
4658 * Start with a mask granular enough to pin-point to the
4659 * start pfn and tick off bits one-by-one until it becomes
4660 * too coarse to separate the current node from the last.
4661 */
4662 mask = ~((1 << __ffs(start)) - 1);
4663 while (mask && last_end <= (start & (mask << 1)))
4664 mask <<= 1;
4665
4666 /* accumulate all internode masks */
4667 accl_mask |= mask;
4668 }
4669
4670 /* convert mask to number of pages */
4671 return ~accl_mask + 1;
4672}
4673
a6af2bc3 4674/* Find the lowest pfn for a node */
b69a7288 4675static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4676{
4677 int i;
a6af2bc3 4678 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4679
c713216d
MG
4680 /* Assuming a sorted map, the first range found has the starting pfn */
4681 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4682 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4683
a6af2bc3
MG
4684 if (min_pfn == ULONG_MAX) {
4685 printk(KERN_WARNING
2bc0d261 4686 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4687 return 0;
4688 }
4689
4690 return min_pfn;
c713216d
MG
4691}
4692
4693/**
4694 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4695 *
4696 * It returns the minimum PFN based on information provided via
88ca3b94 4697 * add_active_range().
c713216d
MG
4698 */
4699unsigned long __init find_min_pfn_with_active_regions(void)
4700{
4701 return find_min_pfn_for_node(MAX_NUMNODES);
4702}
4703
37b07e41
LS
4704/*
4705 * early_calculate_totalpages()
4706 * Sum pages in active regions for movable zone.
4707 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4708 */
484f51f8 4709static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4710{
4711 int i;
4712 unsigned long totalpages = 0;
4713
37b07e41
LS
4714 for (i = 0; i < nr_nodemap_entries; i++) {
4715 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4716 early_node_map[i].start_pfn;
37b07e41
LS
4717 totalpages += pages;
4718 if (pages)
4719 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4720 }
4721 return totalpages;
7e63efef
MG
4722}
4723
2a1e274a
MG
4724/*
4725 * Find the PFN the Movable zone begins in each node. Kernel memory
4726 * is spread evenly between nodes as long as the nodes have enough
4727 * memory. When they don't, some nodes will have more kernelcore than
4728 * others
4729 */
b69a7288 4730static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4731{
4732 int i, nid;
4733 unsigned long usable_startpfn;
4734 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4735 /* save the state before borrow the nodemask */
4736 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4737 unsigned long totalpages = early_calculate_totalpages();
4738 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4739
7e63efef
MG
4740 /*
4741 * If movablecore was specified, calculate what size of
4742 * kernelcore that corresponds so that memory usable for
4743 * any allocation type is evenly spread. If both kernelcore
4744 * and movablecore are specified, then the value of kernelcore
4745 * will be used for required_kernelcore if it's greater than
4746 * what movablecore would have allowed.
4747 */
4748 if (required_movablecore) {
7e63efef
MG
4749 unsigned long corepages;
4750
4751 /*
4752 * Round-up so that ZONE_MOVABLE is at least as large as what
4753 * was requested by the user
4754 */
4755 required_movablecore =
4756 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4757 corepages = totalpages - required_movablecore;
4758
4759 required_kernelcore = max(required_kernelcore, corepages);
4760 }
4761
2a1e274a
MG
4762 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4763 if (!required_kernelcore)
66918dcd 4764 goto out;
2a1e274a
MG
4765
4766 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4767 find_usable_zone_for_movable();
4768 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4769
4770restart:
4771 /* Spread kernelcore memory as evenly as possible throughout nodes */
4772 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4773 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4774 /*
4775 * Recalculate kernelcore_node if the division per node
4776 * now exceeds what is necessary to satisfy the requested
4777 * amount of memory for the kernel
4778 */
4779 if (required_kernelcore < kernelcore_node)
4780 kernelcore_node = required_kernelcore / usable_nodes;
4781
4782 /*
4783 * As the map is walked, we track how much memory is usable
4784 * by the kernel using kernelcore_remaining. When it is
4785 * 0, the rest of the node is usable by ZONE_MOVABLE
4786 */
4787 kernelcore_remaining = kernelcore_node;
4788
4789 /* Go through each range of PFNs within this node */
4790 for_each_active_range_index_in_nid(i, nid) {
4791 unsigned long start_pfn, end_pfn;
4792 unsigned long size_pages;
4793
4794 start_pfn = max(early_node_map[i].start_pfn,
4795 zone_movable_pfn[nid]);
4796 end_pfn = early_node_map[i].end_pfn;
4797 if (start_pfn >= end_pfn)
4798 continue;
4799
4800 /* Account for what is only usable for kernelcore */
4801 if (start_pfn < usable_startpfn) {
4802 unsigned long kernel_pages;
4803 kernel_pages = min(end_pfn, usable_startpfn)
4804 - start_pfn;
4805
4806 kernelcore_remaining -= min(kernel_pages,
4807 kernelcore_remaining);
4808 required_kernelcore -= min(kernel_pages,
4809 required_kernelcore);
4810
4811 /* Continue if range is now fully accounted */
4812 if (end_pfn <= usable_startpfn) {
4813
4814 /*
4815 * Push zone_movable_pfn to the end so
4816 * that if we have to rebalance
4817 * kernelcore across nodes, we will
4818 * not double account here
4819 */
4820 zone_movable_pfn[nid] = end_pfn;
4821 continue;
4822 }
4823 start_pfn = usable_startpfn;
4824 }
4825
4826 /*
4827 * The usable PFN range for ZONE_MOVABLE is from
4828 * start_pfn->end_pfn. Calculate size_pages as the
4829 * number of pages used as kernelcore
4830 */
4831 size_pages = end_pfn - start_pfn;
4832 if (size_pages > kernelcore_remaining)
4833 size_pages = kernelcore_remaining;
4834 zone_movable_pfn[nid] = start_pfn + size_pages;
4835
4836 /*
4837 * Some kernelcore has been met, update counts and
4838 * break if the kernelcore for this node has been
4839 * satisified
4840 */
4841 required_kernelcore -= min(required_kernelcore,
4842 size_pages);
4843 kernelcore_remaining -= size_pages;
4844 if (!kernelcore_remaining)
4845 break;
4846 }
4847 }
4848
4849 /*
4850 * If there is still required_kernelcore, we do another pass with one
4851 * less node in the count. This will push zone_movable_pfn[nid] further
4852 * along on the nodes that still have memory until kernelcore is
4853 * satisified
4854 */
4855 usable_nodes--;
4856 if (usable_nodes && required_kernelcore > usable_nodes)
4857 goto restart;
4858
4859 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4860 for (nid = 0; nid < MAX_NUMNODES; nid++)
4861 zone_movable_pfn[nid] =
4862 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4863
4864out:
4865 /* restore the node_state */
4866 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4867}
4868
37b07e41
LS
4869/* Any regular memory on that node ? */
4870static void check_for_regular_memory(pg_data_t *pgdat)
4871{
4872#ifdef CONFIG_HIGHMEM
4873 enum zone_type zone_type;
4874
4875 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4876 struct zone *zone = &pgdat->node_zones[zone_type];
4877 if (zone->present_pages)
4878 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4879 }
4880#endif
4881}
4882
c713216d
MG
4883/**
4884 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4885 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4886 *
4887 * This will call free_area_init_node() for each active node in the system.
4888 * Using the page ranges provided by add_active_range(), the size of each
4889 * zone in each node and their holes is calculated. If the maximum PFN
4890 * between two adjacent zones match, it is assumed that the zone is empty.
4891 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4892 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4893 * starts where the previous one ended. For example, ZONE_DMA32 starts
4894 * at arch_max_dma_pfn.
4895 */
4896void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4897{
4898 unsigned long nid;
db99100d 4899 int i;
c713216d 4900
a6af2bc3
MG
4901 /* Sort early_node_map as initialisation assumes it is sorted */
4902 sort_node_map();
4903
c713216d
MG
4904 /* Record where the zone boundaries are */
4905 memset(arch_zone_lowest_possible_pfn, 0,
4906 sizeof(arch_zone_lowest_possible_pfn));
4907 memset(arch_zone_highest_possible_pfn, 0,
4908 sizeof(arch_zone_highest_possible_pfn));
4909 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4910 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4911 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4912 if (i == ZONE_MOVABLE)
4913 continue;
c713216d
MG
4914 arch_zone_lowest_possible_pfn[i] =
4915 arch_zone_highest_possible_pfn[i-1];
4916 arch_zone_highest_possible_pfn[i] =
4917 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4918 }
2a1e274a
MG
4919 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4920 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4921
4922 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4923 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4924 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4925
c713216d
MG
4926 /* Print out the zone ranges */
4927 printk("Zone PFN ranges:\n");
2a1e274a
MG
4928 for (i = 0; i < MAX_NR_ZONES; i++) {
4929 if (i == ZONE_MOVABLE)
4930 continue;
72f0ba02
DR
4931 printk(" %-8s ", zone_names[i]);
4932 if (arch_zone_lowest_possible_pfn[i] ==
4933 arch_zone_highest_possible_pfn[i])
4934 printk("empty\n");
4935 else
4936 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4937 arch_zone_lowest_possible_pfn[i],
4938 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4939 }
4940
4941 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4942 printk("Movable zone start PFN for each node\n");
4943 for (i = 0; i < MAX_NUMNODES; i++) {
4944 if (zone_movable_pfn[i])
4945 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4946 }
c713216d
MG
4947
4948 /* Print out the early_node_map[] */
4949 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4950 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4951 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4952 early_node_map[i].start_pfn,
4953 early_node_map[i].end_pfn);
4954
4955 /* Initialise every node */
708614e6 4956 mminit_verify_pageflags_layout();
8ef82866 4957 setup_nr_node_ids();
c713216d
MG
4958 for_each_online_node(nid) {
4959 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4960 free_area_init_node(nid, NULL,
c713216d 4961 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4962
4963 /* Any memory on that node */
4964 if (pgdat->node_present_pages)
4965 node_set_state(nid, N_HIGH_MEMORY);
4966 check_for_regular_memory(pgdat);
c713216d
MG
4967 }
4968}
2a1e274a 4969
7e63efef 4970static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4971{
4972 unsigned long long coremem;
4973 if (!p)
4974 return -EINVAL;
4975
4976 coremem = memparse(p, &p);
7e63efef 4977 *core = coremem >> PAGE_SHIFT;
2a1e274a 4978
7e63efef 4979 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4980 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4981
4982 return 0;
4983}
ed7ed365 4984
7e63efef
MG
4985/*
4986 * kernelcore=size sets the amount of memory for use for allocations that
4987 * cannot be reclaimed or migrated.
4988 */
4989static int __init cmdline_parse_kernelcore(char *p)
4990{
4991 return cmdline_parse_core(p, &required_kernelcore);
4992}
4993
4994/*
4995 * movablecore=size sets the amount of memory for use for allocations that
4996 * can be reclaimed or migrated.
4997 */
4998static int __init cmdline_parse_movablecore(char *p)
4999{
5000 return cmdline_parse_core(p, &required_movablecore);
5001}
5002
ed7ed365 5003early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5004early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5005
c713216d
MG
5006#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
5007
0e0b864e 5008/**
88ca3b94
RD
5009 * set_dma_reserve - set the specified number of pages reserved in the first zone
5010 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5011 *
5012 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5013 * In the DMA zone, a significant percentage may be consumed by kernel image
5014 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5015 * function may optionally be used to account for unfreeable pages in the
5016 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5017 * smaller per-cpu batchsize.
0e0b864e
MG
5018 */
5019void __init set_dma_reserve(unsigned long new_dma_reserve)
5020{
5021 dma_reserve = new_dma_reserve;
5022}
5023
1da177e4
LT
5024void __init free_area_init(unsigned long *zones_size)
5025{
9109fb7b 5026 free_area_init_node(0, zones_size,
1da177e4
LT
5027 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5028}
1da177e4 5029
1da177e4
LT
5030static int page_alloc_cpu_notify(struct notifier_block *self,
5031 unsigned long action, void *hcpu)
5032{
5033 int cpu = (unsigned long)hcpu;
1da177e4 5034
8bb78442 5035 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
5036 drain_pages(cpu);
5037
5038 /*
5039 * Spill the event counters of the dead processor
5040 * into the current processors event counters.
5041 * This artificially elevates the count of the current
5042 * processor.
5043 */
f8891e5e 5044 vm_events_fold_cpu(cpu);
9f8f2172
CL
5045
5046 /*
5047 * Zero the differential counters of the dead processor
5048 * so that the vm statistics are consistent.
5049 *
5050 * This is only okay since the processor is dead and cannot
5051 * race with what we are doing.
5052 */
2244b95a 5053 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5054 }
5055 return NOTIFY_OK;
5056}
1da177e4
LT
5057
5058void __init page_alloc_init(void)
5059{
5060 hotcpu_notifier(page_alloc_cpu_notify, 0);
5061}
5062
cb45b0e9
HA
5063/*
5064 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5065 * or min_free_kbytes changes.
5066 */
5067static void calculate_totalreserve_pages(void)
5068{
5069 struct pglist_data *pgdat;
5070 unsigned long reserve_pages = 0;
2f6726e5 5071 enum zone_type i, j;
cb45b0e9
HA
5072
5073 for_each_online_pgdat(pgdat) {
5074 for (i = 0; i < MAX_NR_ZONES; i++) {
5075 struct zone *zone = pgdat->node_zones + i;
5076 unsigned long max = 0;
5077
5078 /* Find valid and maximum lowmem_reserve in the zone */
5079 for (j = i; j < MAX_NR_ZONES; j++) {
5080 if (zone->lowmem_reserve[j] > max)
5081 max = zone->lowmem_reserve[j];
5082 }
5083
41858966
MG
5084 /* we treat the high watermark as reserved pages. */
5085 max += high_wmark_pages(zone);
cb45b0e9
HA
5086
5087 if (max > zone->present_pages)
5088 max = zone->present_pages;
5089 reserve_pages += max;
5090 }
5091 }
5092 totalreserve_pages = reserve_pages;
5093}
5094
1da177e4
LT
5095/*
5096 * setup_per_zone_lowmem_reserve - called whenever
5097 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5098 * has a correct pages reserved value, so an adequate number of
5099 * pages are left in the zone after a successful __alloc_pages().
5100 */
5101static void setup_per_zone_lowmem_reserve(void)
5102{
5103 struct pglist_data *pgdat;
2f6726e5 5104 enum zone_type j, idx;
1da177e4 5105
ec936fc5 5106 for_each_online_pgdat(pgdat) {
1da177e4
LT
5107 for (j = 0; j < MAX_NR_ZONES; j++) {
5108 struct zone *zone = pgdat->node_zones + j;
5109 unsigned long present_pages = zone->present_pages;
5110
5111 zone->lowmem_reserve[j] = 0;
5112
2f6726e5
CL
5113 idx = j;
5114 while (idx) {
1da177e4
LT
5115 struct zone *lower_zone;
5116
2f6726e5
CL
5117 idx--;
5118
1da177e4
LT
5119 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5120 sysctl_lowmem_reserve_ratio[idx] = 1;
5121
5122 lower_zone = pgdat->node_zones + idx;
5123 lower_zone->lowmem_reserve[j] = present_pages /
5124 sysctl_lowmem_reserve_ratio[idx];
5125 present_pages += lower_zone->present_pages;
5126 }
5127 }
5128 }
cb45b0e9
HA
5129
5130 /* update totalreserve_pages */
5131 calculate_totalreserve_pages();
1da177e4
LT
5132}
5133
88ca3b94 5134/**
bc75d33f 5135 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 5136 * or when memory is hot-{added|removed}
88ca3b94 5137 *
bc75d33f
MK
5138 * Ensures that the watermark[min,low,high] values for each zone are set
5139 * correctly with respect to min_free_kbytes.
1da177e4 5140 */
bc75d33f 5141void setup_per_zone_wmarks(void)
1da177e4
LT
5142{
5143 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5144 unsigned long lowmem_pages = 0;
5145 struct zone *zone;
5146 unsigned long flags;
5147
5148 /* Calculate total number of !ZONE_HIGHMEM pages */
5149 for_each_zone(zone) {
5150 if (!is_highmem(zone))
5151 lowmem_pages += zone->present_pages;
5152 }
5153
5154 for_each_zone(zone) {
ac924c60
AM
5155 u64 tmp;
5156
1125b4e3 5157 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5158 tmp = (u64)pages_min * zone->present_pages;
5159 do_div(tmp, lowmem_pages);
1da177e4
LT
5160 if (is_highmem(zone)) {
5161 /*
669ed175
NP
5162 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5163 * need highmem pages, so cap pages_min to a small
5164 * value here.
5165 *
41858966 5166 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5167 * deltas controls asynch page reclaim, and so should
5168 * not be capped for highmem.
1da177e4
LT
5169 */
5170 int min_pages;
5171
5172 min_pages = zone->present_pages / 1024;
5173 if (min_pages < SWAP_CLUSTER_MAX)
5174 min_pages = SWAP_CLUSTER_MAX;
5175 if (min_pages > 128)
5176 min_pages = 128;
41858966 5177 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5178 } else {
669ed175
NP
5179 /*
5180 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5181 * proportionate to the zone's size.
5182 */
41858966 5183 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5184 }
5185
41858966
MG
5186 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5187 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 5188 setup_zone_migrate_reserve(zone);
1125b4e3 5189 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5190 }
cb45b0e9
HA
5191
5192 /* update totalreserve_pages */
5193 calculate_totalreserve_pages();
1da177e4
LT
5194}
5195
55a4462a 5196/*
556adecb
RR
5197 * The inactive anon list should be small enough that the VM never has to
5198 * do too much work, but large enough that each inactive page has a chance
5199 * to be referenced again before it is swapped out.
5200 *
5201 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5202 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5203 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5204 * the anonymous pages are kept on the inactive list.
5205 *
5206 * total target max
5207 * memory ratio inactive anon
5208 * -------------------------------------
5209 * 10MB 1 5MB
5210 * 100MB 1 50MB
5211 * 1GB 3 250MB
5212 * 10GB 10 0.9GB
5213 * 100GB 31 3GB
5214 * 1TB 101 10GB
5215 * 10TB 320 32GB
5216 */
1b79acc9 5217static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5218{
96cb4df5 5219 unsigned int gb, ratio;
556adecb 5220
96cb4df5
MK
5221 /* Zone size in gigabytes */
5222 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5223 if (gb)
556adecb 5224 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5225 else
5226 ratio = 1;
556adecb 5227
96cb4df5
MK
5228 zone->inactive_ratio = ratio;
5229}
556adecb 5230
839a4fcc 5231static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5232{
5233 struct zone *zone;
5234
5235 for_each_zone(zone)
5236 calculate_zone_inactive_ratio(zone);
556adecb
RR
5237}
5238
1da177e4
LT
5239/*
5240 * Initialise min_free_kbytes.
5241 *
5242 * For small machines we want it small (128k min). For large machines
5243 * we want it large (64MB max). But it is not linear, because network
5244 * bandwidth does not increase linearly with machine size. We use
5245 *
5246 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5247 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5248 *
5249 * which yields
5250 *
5251 * 16MB: 512k
5252 * 32MB: 724k
5253 * 64MB: 1024k
5254 * 128MB: 1448k
5255 * 256MB: 2048k
5256 * 512MB: 2896k
5257 * 1024MB: 4096k
5258 * 2048MB: 5792k
5259 * 4096MB: 8192k
5260 * 8192MB: 11584k
5261 * 16384MB: 16384k
5262 */
1b79acc9 5263int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5264{
5265 unsigned long lowmem_kbytes;
5266
5267 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5268
5269 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5270 if (min_free_kbytes < 128)
5271 min_free_kbytes = 128;
5272 if (min_free_kbytes > 65536)
5273 min_free_kbytes = 65536;
bc75d33f 5274 setup_per_zone_wmarks();
a6cccdc3 5275 refresh_zone_stat_thresholds();
1da177e4 5276 setup_per_zone_lowmem_reserve();
556adecb 5277 setup_per_zone_inactive_ratio();
1da177e4
LT
5278 return 0;
5279}
bc75d33f 5280module_init(init_per_zone_wmark_min)
1da177e4
LT
5281
5282/*
5283 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5284 * that we can call two helper functions whenever min_free_kbytes
5285 * changes.
5286 */
5287int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5288 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5289{
8d65af78 5290 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5291 if (write)
bc75d33f 5292 setup_per_zone_wmarks();
1da177e4
LT
5293 return 0;
5294}
5295
9614634f
CL
5296#ifdef CONFIG_NUMA
5297int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5298 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5299{
5300 struct zone *zone;
5301 int rc;
5302
8d65af78 5303 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5304 if (rc)
5305 return rc;
5306
5307 for_each_zone(zone)
8417bba4 5308 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5309 sysctl_min_unmapped_ratio) / 100;
5310 return 0;
5311}
0ff38490
CL
5312
5313int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5314 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5315{
5316 struct zone *zone;
5317 int rc;
5318
8d65af78 5319 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5320 if (rc)
5321 return rc;
5322
5323 for_each_zone(zone)
5324 zone->min_slab_pages = (zone->present_pages *
5325 sysctl_min_slab_ratio) / 100;
5326 return 0;
5327}
9614634f
CL
5328#endif
5329
1da177e4
LT
5330/*
5331 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5332 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5333 * whenever sysctl_lowmem_reserve_ratio changes.
5334 *
5335 * The reserve ratio obviously has absolutely no relation with the
41858966 5336 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5337 * if in function of the boot time zone sizes.
5338 */
5339int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5340 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5341{
8d65af78 5342 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5343 setup_per_zone_lowmem_reserve();
5344 return 0;
5345}
5346
8ad4b1fb
RS
5347/*
5348 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5349 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5350 * can have before it gets flushed back to buddy allocator.
5351 */
5352
5353int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5354 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5355{
5356 struct zone *zone;
5357 unsigned int cpu;
5358 int ret;
5359
8d65af78 5360 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5361 if (!write || (ret == -EINVAL))
5362 return ret;
364df0eb 5363 for_each_populated_zone(zone) {
99dcc3e5 5364 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5365 unsigned long high;
5366 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5367 setup_pagelist_highmark(
5368 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5369 }
5370 }
5371 return 0;
5372}
5373
f034b5d4 5374int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5375
5376#ifdef CONFIG_NUMA
5377static int __init set_hashdist(char *str)
5378{
5379 if (!str)
5380 return 0;
5381 hashdist = simple_strtoul(str, &str, 0);
5382 return 1;
5383}
5384__setup("hashdist=", set_hashdist);
5385#endif
5386
5387/*
5388 * allocate a large system hash table from bootmem
5389 * - it is assumed that the hash table must contain an exact power-of-2
5390 * quantity of entries
5391 * - limit is the number of hash buckets, not the total allocation size
5392 */
5393void *__init alloc_large_system_hash(const char *tablename,
5394 unsigned long bucketsize,
5395 unsigned long numentries,
5396 int scale,
5397 int flags,
5398 unsigned int *_hash_shift,
5399 unsigned int *_hash_mask,
5400 unsigned long limit)
5401{
5402 unsigned long long max = limit;
5403 unsigned long log2qty, size;
5404 void *table = NULL;
5405
5406 /* allow the kernel cmdline to have a say */
5407 if (!numentries) {
5408 /* round applicable memory size up to nearest megabyte */
04903664 5409 numentries = nr_kernel_pages;
1da177e4
LT
5410 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5411 numentries >>= 20 - PAGE_SHIFT;
5412 numentries <<= 20 - PAGE_SHIFT;
5413
5414 /* limit to 1 bucket per 2^scale bytes of low memory */
5415 if (scale > PAGE_SHIFT)
5416 numentries >>= (scale - PAGE_SHIFT);
5417 else
5418 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5419
5420 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5421 if (unlikely(flags & HASH_SMALL)) {
5422 /* Makes no sense without HASH_EARLY */
5423 WARN_ON(!(flags & HASH_EARLY));
5424 if (!(numentries >> *_hash_shift)) {
5425 numentries = 1UL << *_hash_shift;
5426 BUG_ON(!numentries);
5427 }
5428 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5429 numentries = PAGE_SIZE / bucketsize;
1da177e4 5430 }
6e692ed3 5431 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5432
5433 /* limit allocation size to 1/16 total memory by default */
5434 if (max == 0) {
5435 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5436 do_div(max, bucketsize);
5437 }
5438
5439 if (numentries > max)
5440 numentries = max;
5441
f0d1b0b3 5442 log2qty = ilog2(numentries);
1da177e4
LT
5443
5444 do {
5445 size = bucketsize << log2qty;
5446 if (flags & HASH_EARLY)
74768ed8 5447 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5448 else if (hashdist)
5449 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5450 else {
1037b83b
ED
5451 /*
5452 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5453 * some pages at the end of hash table which
5454 * alloc_pages_exact() automatically does
1037b83b 5455 */
264ef8a9 5456 if (get_order(size) < MAX_ORDER) {
a1dd268c 5457 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5458 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5459 }
1da177e4
LT
5460 }
5461 } while (!table && size > PAGE_SIZE && --log2qty);
5462
5463 if (!table)
5464 panic("Failed to allocate %s hash table\n", tablename);
5465
f241e660 5466 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5467 tablename,
f241e660 5468 (1UL << log2qty),
f0d1b0b3 5469 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5470 size);
5471
5472 if (_hash_shift)
5473 *_hash_shift = log2qty;
5474 if (_hash_mask)
5475 *_hash_mask = (1 << log2qty) - 1;
5476
5477 return table;
5478}
a117e66e 5479
835c134e
MG
5480/* Return a pointer to the bitmap storing bits affecting a block of pages */
5481static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5482 unsigned long pfn)
5483{
5484#ifdef CONFIG_SPARSEMEM
5485 return __pfn_to_section(pfn)->pageblock_flags;
5486#else
5487 return zone->pageblock_flags;
5488#endif /* CONFIG_SPARSEMEM */
5489}
5490
5491static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5492{
5493#ifdef CONFIG_SPARSEMEM
5494 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5495 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5496#else
5497 pfn = pfn - zone->zone_start_pfn;
d9c23400 5498 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5499#endif /* CONFIG_SPARSEMEM */
5500}
5501
5502/**
d9c23400 5503 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5504 * @page: The page within the block of interest
5505 * @start_bitidx: The first bit of interest to retrieve
5506 * @end_bitidx: The last bit of interest
5507 * returns pageblock_bits flags
5508 */
5509unsigned long get_pageblock_flags_group(struct page *page,
5510 int start_bitidx, int end_bitidx)
5511{
5512 struct zone *zone;
5513 unsigned long *bitmap;
5514 unsigned long pfn, bitidx;
5515 unsigned long flags = 0;
5516 unsigned long value = 1;
5517
5518 zone = page_zone(page);
5519 pfn = page_to_pfn(page);
5520 bitmap = get_pageblock_bitmap(zone, pfn);
5521 bitidx = pfn_to_bitidx(zone, pfn);
5522
5523 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5524 if (test_bit(bitidx + start_bitidx, bitmap))
5525 flags |= value;
6220ec78 5526
835c134e
MG
5527 return flags;
5528}
5529
5530/**
d9c23400 5531 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5532 * @page: The page within the block of interest
5533 * @start_bitidx: The first bit of interest
5534 * @end_bitidx: The last bit of interest
5535 * @flags: The flags to set
5536 */
5537void set_pageblock_flags_group(struct page *page, unsigned long flags,
5538 int start_bitidx, int end_bitidx)
5539{
5540 struct zone *zone;
5541 unsigned long *bitmap;
5542 unsigned long pfn, bitidx;
5543 unsigned long value = 1;
5544
5545 zone = page_zone(page);
5546 pfn = page_to_pfn(page);
5547 bitmap = get_pageblock_bitmap(zone, pfn);
5548 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5549 VM_BUG_ON(pfn < zone->zone_start_pfn);
5550 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5551
5552 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5553 if (flags & value)
5554 __set_bit(bitidx + start_bitidx, bitmap);
5555 else
5556 __clear_bit(bitidx + start_bitidx, bitmap);
5557}
a5d76b54
KH
5558
5559/*
5560 * This is designed as sub function...plz see page_isolation.c also.
5561 * set/clear page block's type to be ISOLATE.
5562 * page allocater never alloc memory from ISOLATE block.
5563 */
5564
49ac8255
KH
5565static int
5566__count_immobile_pages(struct zone *zone, struct page *page, int count)
5567{
5568 unsigned long pfn, iter, found;
5569 /*
5570 * For avoiding noise data, lru_add_drain_all() should be called
5571 * If ZONE_MOVABLE, the zone never contains immobile pages
5572 */
5573 if (zone_idx(zone) == ZONE_MOVABLE)
5574 return true;
5575
5576 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5577 return true;
5578
5579 pfn = page_to_pfn(page);
5580 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5581 unsigned long check = pfn + iter;
5582
29723fcc 5583 if (!pfn_valid_within(check))
49ac8255 5584 continue;
29723fcc 5585
49ac8255
KH
5586 page = pfn_to_page(check);
5587 if (!page_count(page)) {
5588 if (PageBuddy(page))
5589 iter += (1 << page_order(page)) - 1;
5590 continue;
5591 }
5592 if (!PageLRU(page))
5593 found++;
5594 /*
5595 * If there are RECLAIMABLE pages, we need to check it.
5596 * But now, memory offline itself doesn't call shrink_slab()
5597 * and it still to be fixed.
5598 */
5599 /*
5600 * If the page is not RAM, page_count()should be 0.
5601 * we don't need more check. This is an _used_ not-movable page.
5602 *
5603 * The problematic thing here is PG_reserved pages. PG_reserved
5604 * is set to both of a memory hole page and a _used_ kernel
5605 * page at boot.
5606 */
5607 if (found > count)
5608 return false;
5609 }
5610 return true;
5611}
5612
5613bool is_pageblock_removable_nolock(struct page *page)
5614{
5615 struct zone *zone = page_zone(page);
5616 return __count_immobile_pages(zone, page, 0);
5617}
5618
a5d76b54
KH
5619int set_migratetype_isolate(struct page *page)
5620{
5621 struct zone *zone;
49ac8255 5622 unsigned long flags, pfn;
925cc71e
RJ
5623 struct memory_isolate_notify arg;
5624 int notifier_ret;
a5d76b54
KH
5625 int ret = -EBUSY;
5626
5627 zone = page_zone(page);
925cc71e 5628
a5d76b54 5629 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5630
5631 pfn = page_to_pfn(page);
5632 arg.start_pfn = pfn;
5633 arg.nr_pages = pageblock_nr_pages;
5634 arg.pages_found = 0;
5635
a5d76b54 5636 /*
925cc71e
RJ
5637 * It may be possible to isolate a pageblock even if the
5638 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5639 * notifier chain is used by balloon drivers to return the
5640 * number of pages in a range that are held by the balloon
5641 * driver to shrink memory. If all the pages are accounted for
5642 * by balloons, are free, or on the LRU, isolation can continue.
5643 * Later, for example, when memory hotplug notifier runs, these
5644 * pages reported as "can be isolated" should be isolated(freed)
5645 * by the balloon driver through the memory notifier chain.
a5d76b54 5646 */
925cc71e
RJ
5647 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5648 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5649 if (notifier_ret)
a5d76b54 5650 goto out;
49ac8255
KH
5651 /*
5652 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5653 * We just check MOVABLE pages.
5654 */
5655 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5656 ret = 0;
5657
49ac8255
KH
5658 /*
5659 * immobile means "not-on-lru" paes. If immobile is larger than
5660 * removable-by-driver pages reported by notifier, we'll fail.
5661 */
5662
a5d76b54 5663out:
925cc71e
RJ
5664 if (!ret) {
5665 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5666 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5667 }
5668
a5d76b54
KH
5669 spin_unlock_irqrestore(&zone->lock, flags);
5670 if (!ret)
9f8f2172 5671 drain_all_pages();
a5d76b54
KH
5672 return ret;
5673}
5674
5675void unset_migratetype_isolate(struct page *page)
5676{
5677 struct zone *zone;
5678 unsigned long flags;
5679 zone = page_zone(page);
5680 spin_lock_irqsave(&zone->lock, flags);
5681 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5682 goto out;
5683 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5684 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5685out:
5686 spin_unlock_irqrestore(&zone->lock, flags);
5687}
0c0e6195
KH
5688
5689#ifdef CONFIG_MEMORY_HOTREMOVE
5690/*
5691 * All pages in the range must be isolated before calling this.
5692 */
5693void
5694__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5695{
5696 struct page *page;
5697 struct zone *zone;
5698 int order, i;
5699 unsigned long pfn;
5700 unsigned long flags;
5701 /* find the first valid pfn */
5702 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5703 if (pfn_valid(pfn))
5704 break;
5705 if (pfn == end_pfn)
5706 return;
5707 zone = page_zone(pfn_to_page(pfn));
5708 spin_lock_irqsave(&zone->lock, flags);
5709 pfn = start_pfn;
5710 while (pfn < end_pfn) {
5711 if (!pfn_valid(pfn)) {
5712 pfn++;
5713 continue;
5714 }
5715 page = pfn_to_page(pfn);
5716 BUG_ON(page_count(page));
5717 BUG_ON(!PageBuddy(page));
5718 order = page_order(page);
5719#ifdef CONFIG_DEBUG_VM
5720 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5721 pfn, 1 << order, end_pfn);
5722#endif
5723 list_del(&page->lru);
5724 rmv_page_order(page);
5725 zone->free_area[order].nr_free--;
5726 __mod_zone_page_state(zone, NR_FREE_PAGES,
5727 - (1UL << order));
5728 for (i = 0; i < (1 << order); i++)
5729 SetPageReserved((page+i));
5730 pfn += (1 << order);
5731 }
5732 spin_unlock_irqrestore(&zone->lock, flags);
5733}
5734#endif
8d22ba1b
WF
5735
5736#ifdef CONFIG_MEMORY_FAILURE
5737bool is_free_buddy_page(struct page *page)
5738{
5739 struct zone *zone = page_zone(page);
5740 unsigned long pfn = page_to_pfn(page);
5741 unsigned long flags;
5742 int order;
5743
5744 spin_lock_irqsave(&zone->lock, flags);
5745 for (order = 0; order < MAX_ORDER; order++) {
5746 struct page *page_head = page - (pfn & ((1 << order) - 1));
5747
5748 if (PageBuddy(page_head) && page_order(page_head) >= order)
5749 break;
5750 }
5751 spin_unlock_irqrestore(&zone->lock, flags);
5752
5753 return order < MAX_ORDER;
5754}
5755#endif
718a3821
WF
5756
5757static struct trace_print_flags pageflag_names[] = {
5758 {1UL << PG_locked, "locked" },
5759 {1UL << PG_error, "error" },
5760 {1UL << PG_referenced, "referenced" },
5761 {1UL << PG_uptodate, "uptodate" },
5762 {1UL << PG_dirty, "dirty" },
5763 {1UL << PG_lru, "lru" },
5764 {1UL << PG_active, "active" },
5765 {1UL << PG_slab, "slab" },
5766 {1UL << PG_owner_priv_1, "owner_priv_1" },
5767 {1UL << PG_arch_1, "arch_1" },
5768 {1UL << PG_reserved, "reserved" },
5769 {1UL << PG_private, "private" },
5770 {1UL << PG_private_2, "private_2" },
5771 {1UL << PG_writeback, "writeback" },
5772#ifdef CONFIG_PAGEFLAGS_EXTENDED
5773 {1UL << PG_head, "head" },
5774 {1UL << PG_tail, "tail" },
5775#else
5776 {1UL << PG_compound, "compound" },
5777#endif
5778 {1UL << PG_swapcache, "swapcache" },
5779 {1UL << PG_mappedtodisk, "mappedtodisk" },
5780 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
5781 {1UL << PG_swapbacked, "swapbacked" },
5782 {1UL << PG_unevictable, "unevictable" },
5783#ifdef CONFIG_MMU
5784 {1UL << PG_mlocked, "mlocked" },
5785#endif
5786#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5787 {1UL << PG_uncached, "uncached" },
5788#endif
5789#ifdef CONFIG_MEMORY_FAILURE
5790 {1UL << PG_hwpoison, "hwpoison" },
5791#endif
5792 {-1UL, NULL },
5793};
5794
5795static void dump_page_flags(unsigned long flags)
5796{
5797 const char *delim = "";
5798 unsigned long mask;
5799 int i;
5800
5801 printk(KERN_ALERT "page flags: %#lx(", flags);
5802
5803 /* remove zone id */
5804 flags &= (1UL << NR_PAGEFLAGS) - 1;
5805
5806 for (i = 0; pageflag_names[i].name && flags; i++) {
5807
5808 mask = pageflag_names[i].mask;
5809 if ((flags & mask) != mask)
5810 continue;
5811
5812 flags &= ~mask;
5813 printk("%s%s", delim, pageflag_names[i].name);
5814 delim = "|";
5815 }
5816
5817 /* check for left over flags */
5818 if (flags)
5819 printk("%s%#lx", delim, flags);
5820
5821 printk(")\n");
5822}
5823
5824void dump_page(struct page *page)
5825{
5826 printk(KERN_ALERT
5827 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 5828 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
5829 page->mapping, page->index);
5830 dump_page_flags(page->flags);
f212ad7c 5831 mem_cgroup_print_bad_page(page);
718a3821 5832}
This page took 1.048834 seconds and 5 git commands to generate.