mm: reduce the amount of work done when updating min_free_kbytes
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
925cc71e 54#include <linux/memory.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
718a3821 57#include <linux/ftrace_event.h>
f212ad7c 58#include <linux/memcontrol.h>
268bb0ce 59#include <linux/prefetch.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
ac924c60 62#include <asm/div64.h>
1da177e4
LT
63#include "internal.h"
64
72812019
LS
65#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66DEFINE_PER_CPU(int, numa_node);
67EXPORT_PER_CPU_SYMBOL(numa_node);
68#endif
69
7aac7898
LS
70#ifdef CONFIG_HAVE_MEMORYLESS_NODES
71/*
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
76 */
77DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
78EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79#endif
80
1da177e4 81/*
13808910 82 * Array of node states.
1da177e4 83 */
13808910
CL
84nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85 [N_POSSIBLE] = NODE_MASK_ALL,
86 [N_ONLINE] = { { [0] = 1UL } },
87#ifndef CONFIG_NUMA
88 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
89#ifdef CONFIG_HIGHMEM
90 [N_HIGH_MEMORY] = { { [0] = 1UL } },
91#endif
92 [N_CPU] = { { [0] = 1UL } },
93#endif /* NUMA */
94};
95EXPORT_SYMBOL(node_states);
96
6c231b7b 97unsigned long totalram_pages __read_mostly;
cb45b0e9 98unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 99int percpu_pagelist_fraction;
dcce284a 100gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 101
452aa699
RW
102#ifdef CONFIG_PM_SLEEP
103/*
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
110 */
c9e664f1
RW
111
112static gfp_t saved_gfp_mask;
113
114void pm_restore_gfp_mask(void)
452aa699
RW
115{
116 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
117 if (saved_gfp_mask) {
118 gfp_allowed_mask = saved_gfp_mask;
119 saved_gfp_mask = 0;
120 }
452aa699
RW
121}
122
c9e664f1 123void pm_restrict_gfp_mask(void)
452aa699 124{
452aa699 125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 WARN_ON(saved_gfp_mask);
127 saved_gfp_mask = gfp_allowed_mask;
128 gfp_allowed_mask &= ~GFP_IOFS;
452aa699
RW
129}
130#endif /* CONFIG_PM_SLEEP */
131
d9c23400
MG
132#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133int pageblock_order __read_mostly;
134#endif
135
d98c7a09 136static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 137
1da177e4
LT
138/*
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 * 1G machine -> (16M dma, 784M normal, 224M high)
142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
145 *
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
1da177e4 148 */
2f1b6248 149int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 150#ifdef CONFIG_ZONE_DMA
2f1b6248 151 256,
4b51d669 152#endif
fb0e7942 153#ifdef CONFIG_ZONE_DMA32
2f1b6248 154 256,
fb0e7942 155#endif
e53ef38d 156#ifdef CONFIG_HIGHMEM
2a1e274a 157 32,
e53ef38d 158#endif
2a1e274a 159 32,
2f1b6248 160};
1da177e4
LT
161
162EXPORT_SYMBOL(totalram_pages);
1da177e4 163
15ad7cdc 164static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 165#ifdef CONFIG_ZONE_DMA
2f1b6248 166 "DMA",
4b51d669 167#endif
fb0e7942 168#ifdef CONFIG_ZONE_DMA32
2f1b6248 169 "DMA32",
fb0e7942 170#endif
2f1b6248 171 "Normal",
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 "HighMem",
e53ef38d 174#endif
2a1e274a 175 "Movable",
2f1b6248
CL
176};
177
1da177e4
LT
178int min_free_kbytes = 1024;
179
2c85f51d
JB
180static unsigned long __meminitdata nr_kernel_pages;
181static unsigned long __meminitdata nr_all_pages;
a3142c8e 182static unsigned long __meminitdata dma_reserve;
1da177e4 183
0ee332c1
TH
184#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
185static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
186static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
187static unsigned long __initdata required_kernelcore;
188static unsigned long __initdata required_movablecore;
189static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
190
191/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
192int movable_zone;
193EXPORT_SYMBOL(movable_zone);
194#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 195
418508c1
MS
196#if MAX_NUMNODES > 1
197int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 198int nr_online_nodes __read_mostly = 1;
418508c1 199EXPORT_SYMBOL(nr_node_ids);
62bc62a8 200EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
201#endif
202
9ef9acb0
MG
203int page_group_by_mobility_disabled __read_mostly;
204
b2a0ac88
MG
205static void set_pageblock_migratetype(struct page *page, int migratetype)
206{
49255c61
MG
207
208 if (unlikely(page_group_by_mobility_disabled))
209 migratetype = MIGRATE_UNMOVABLE;
210
b2a0ac88
MG
211 set_pageblock_flags_group(page, (unsigned long)migratetype,
212 PB_migrate, PB_migrate_end);
213}
214
7f33d49a
RW
215bool oom_killer_disabled __read_mostly;
216
13e7444b 217#ifdef CONFIG_DEBUG_VM
c6a57e19 218static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 219{
bdc8cb98
DH
220 int ret = 0;
221 unsigned seq;
222 unsigned long pfn = page_to_pfn(page);
c6a57e19 223
bdc8cb98
DH
224 do {
225 seq = zone_span_seqbegin(zone);
226 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
227 ret = 1;
228 else if (pfn < zone->zone_start_pfn)
229 ret = 1;
230 } while (zone_span_seqretry(zone, seq));
231
232 return ret;
c6a57e19
DH
233}
234
235static int page_is_consistent(struct zone *zone, struct page *page)
236{
14e07298 237 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 238 return 0;
1da177e4 239 if (zone != page_zone(page))
c6a57e19
DH
240 return 0;
241
242 return 1;
243}
244/*
245 * Temporary debugging check for pages not lying within a given zone.
246 */
247static int bad_range(struct zone *zone, struct page *page)
248{
249 if (page_outside_zone_boundaries(zone, page))
1da177e4 250 return 1;
c6a57e19
DH
251 if (!page_is_consistent(zone, page))
252 return 1;
253
1da177e4
LT
254 return 0;
255}
13e7444b
NP
256#else
257static inline int bad_range(struct zone *zone, struct page *page)
258{
259 return 0;
260}
261#endif
262
224abf92 263static void bad_page(struct page *page)
1da177e4 264{
d936cf9b
HD
265 static unsigned long resume;
266 static unsigned long nr_shown;
267 static unsigned long nr_unshown;
268
2a7684a2
WF
269 /* Don't complain about poisoned pages */
270 if (PageHWPoison(page)) {
ef2b4b95 271 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
272 return;
273 }
274
d936cf9b
HD
275 /*
276 * Allow a burst of 60 reports, then keep quiet for that minute;
277 * or allow a steady drip of one report per second.
278 */
279 if (nr_shown == 60) {
280 if (time_before(jiffies, resume)) {
281 nr_unshown++;
282 goto out;
283 }
284 if (nr_unshown) {
1e9e6365
HD
285 printk(KERN_ALERT
286 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
287 nr_unshown);
288 nr_unshown = 0;
289 }
290 nr_shown = 0;
291 }
292 if (nr_shown++ == 0)
293 resume = jiffies + 60 * HZ;
294
1e9e6365 295 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 296 current->comm, page_to_pfn(page));
718a3821 297 dump_page(page);
3dc14741 298
4f31888c 299 print_modules();
1da177e4 300 dump_stack();
d936cf9b 301out:
8cc3b392 302 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 303 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 304 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
305}
306
1da177e4
LT
307/*
308 * Higher-order pages are called "compound pages". They are structured thusly:
309 *
310 * The first PAGE_SIZE page is called the "head page".
311 *
312 * The remaining PAGE_SIZE pages are called "tail pages".
313 *
6416b9fa
WSH
314 * All pages have PG_compound set. All tail pages have their ->first_page
315 * pointing at the head page.
1da177e4 316 *
41d78ba5
HD
317 * The first tail page's ->lru.next holds the address of the compound page's
318 * put_page() function. Its ->lru.prev holds the order of allocation.
319 * This usage means that zero-order pages may not be compound.
1da177e4 320 */
d98c7a09
HD
321
322static void free_compound_page(struct page *page)
323{
d85f3385 324 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
325}
326
01ad1c08 327void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
328{
329 int i;
330 int nr_pages = 1 << order;
331
332 set_compound_page_dtor(page, free_compound_page);
333 set_compound_order(page, order);
334 __SetPageHead(page);
335 for (i = 1; i < nr_pages; i++) {
336 struct page *p = page + i;
18229df5 337 __SetPageTail(p);
58a84aa9 338 set_page_count(p, 0);
18229df5
AW
339 p->first_page = page;
340 }
341}
342
59ff4216 343/* update __split_huge_page_refcount if you change this function */
8cc3b392 344static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
345{
346 int i;
347 int nr_pages = 1 << order;
8cc3b392 348 int bad = 0;
1da177e4 349
8cc3b392
HD
350 if (unlikely(compound_order(page) != order) ||
351 unlikely(!PageHead(page))) {
224abf92 352 bad_page(page);
8cc3b392
HD
353 bad++;
354 }
1da177e4 355
6d777953 356 __ClearPageHead(page);
8cc3b392 357
18229df5
AW
358 for (i = 1; i < nr_pages; i++) {
359 struct page *p = page + i;
1da177e4 360
e713a21d 361 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 362 bad_page(page);
8cc3b392
HD
363 bad++;
364 }
d85f3385 365 __ClearPageTail(p);
1da177e4 366 }
8cc3b392
HD
367
368 return bad;
1da177e4 369}
1da177e4 370
17cf4406
NP
371static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
372{
373 int i;
374
6626c5d5
AM
375 /*
376 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
377 * and __GFP_HIGHMEM from hard or soft interrupt context.
378 */
725d704e 379 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
380 for (i = 0; i < (1 << order); i++)
381 clear_highpage(page + i);
382}
383
6aa3001b
AM
384static inline void set_page_order(struct page *page, int order)
385{
4c21e2f2 386 set_page_private(page, order);
676165a8 387 __SetPageBuddy(page);
1da177e4
LT
388}
389
390static inline void rmv_page_order(struct page *page)
391{
676165a8 392 __ClearPageBuddy(page);
4c21e2f2 393 set_page_private(page, 0);
1da177e4
LT
394}
395
396/*
397 * Locate the struct page for both the matching buddy in our
398 * pair (buddy1) and the combined O(n+1) page they form (page).
399 *
400 * 1) Any buddy B1 will have an order O twin B2 which satisfies
401 * the following equation:
402 * B2 = B1 ^ (1 << O)
403 * For example, if the starting buddy (buddy2) is #8 its order
404 * 1 buddy is #10:
405 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
406 *
407 * 2) Any buddy B will have an order O+1 parent P which
408 * satisfies the following equation:
409 * P = B & ~(1 << O)
410 *
d6e05edc 411 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 412 */
1da177e4 413static inline unsigned long
43506fad 414__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 415{
43506fad 416 return page_idx ^ (1 << order);
1da177e4
LT
417}
418
419/*
420 * This function checks whether a page is free && is the buddy
421 * we can do coalesce a page and its buddy if
13e7444b 422 * (a) the buddy is not in a hole &&
676165a8 423 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
424 * (c) a page and its buddy have the same order &&
425 * (d) a page and its buddy are in the same zone.
676165a8 426 *
5f24ce5f
AA
427 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
428 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 429 *
676165a8 430 * For recording page's order, we use page_private(page).
1da177e4 431 */
cb2b95e1
AW
432static inline int page_is_buddy(struct page *page, struct page *buddy,
433 int order)
1da177e4 434{
14e07298 435 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 436 return 0;
13e7444b 437
cb2b95e1
AW
438 if (page_zone_id(page) != page_zone_id(buddy))
439 return 0;
440
441 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 442 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 443 return 1;
676165a8 444 }
6aa3001b 445 return 0;
1da177e4
LT
446}
447
448/*
449 * Freeing function for a buddy system allocator.
450 *
451 * The concept of a buddy system is to maintain direct-mapped table
452 * (containing bit values) for memory blocks of various "orders".
453 * The bottom level table contains the map for the smallest allocatable
454 * units of memory (here, pages), and each level above it describes
455 * pairs of units from the levels below, hence, "buddies".
456 * At a high level, all that happens here is marking the table entry
457 * at the bottom level available, and propagating the changes upward
458 * as necessary, plus some accounting needed to play nicely with other
459 * parts of the VM system.
460 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 461 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 462 * order is recorded in page_private(page) field.
1da177e4
LT
463 * So when we are allocating or freeing one, we can derive the state of the
464 * other. That is, if we allocate a small block, and both were
465 * free, the remainder of the region must be split into blocks.
466 * If a block is freed, and its buddy is also free, then this
467 * triggers coalescing into a block of larger size.
468 *
469 * -- wli
470 */
471
48db57f8 472static inline void __free_one_page(struct page *page,
ed0ae21d
MG
473 struct zone *zone, unsigned int order,
474 int migratetype)
1da177e4
LT
475{
476 unsigned long page_idx;
6dda9d55 477 unsigned long combined_idx;
43506fad 478 unsigned long uninitialized_var(buddy_idx);
6dda9d55 479 struct page *buddy;
1da177e4 480
224abf92 481 if (unlikely(PageCompound(page)))
8cc3b392
HD
482 if (unlikely(destroy_compound_page(page, order)))
483 return;
1da177e4 484
ed0ae21d
MG
485 VM_BUG_ON(migratetype == -1);
486
1da177e4
LT
487 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
488
f2260e6b 489 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 490 VM_BUG_ON(bad_range(zone, page));
1da177e4 491
1da177e4 492 while (order < MAX_ORDER-1) {
43506fad
KC
493 buddy_idx = __find_buddy_index(page_idx, order);
494 buddy = page + (buddy_idx - page_idx);
cb2b95e1 495 if (!page_is_buddy(page, buddy, order))
3c82d0ce 496 break;
13e7444b 497
3c82d0ce 498 /* Our buddy is free, merge with it and move up one order. */
1da177e4 499 list_del(&buddy->lru);
b2a0ac88 500 zone->free_area[order].nr_free--;
1da177e4 501 rmv_page_order(buddy);
43506fad 502 combined_idx = buddy_idx & page_idx;
1da177e4
LT
503 page = page + (combined_idx - page_idx);
504 page_idx = combined_idx;
505 order++;
506 }
507 set_page_order(page, order);
6dda9d55
CZ
508
509 /*
510 * If this is not the largest possible page, check if the buddy
511 * of the next-highest order is free. If it is, it's possible
512 * that pages are being freed that will coalesce soon. In case,
513 * that is happening, add the free page to the tail of the list
514 * so it's less likely to be used soon and more likely to be merged
515 * as a higher order page
516 */
b7f50cfa 517 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 518 struct page *higher_page, *higher_buddy;
43506fad
KC
519 combined_idx = buddy_idx & page_idx;
520 higher_page = page + (combined_idx - page_idx);
521 buddy_idx = __find_buddy_index(combined_idx, order + 1);
522 higher_buddy = page + (buddy_idx - combined_idx);
6dda9d55
CZ
523 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
524 list_add_tail(&page->lru,
525 &zone->free_area[order].free_list[migratetype]);
526 goto out;
527 }
528 }
529
530 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
531out:
1da177e4
LT
532 zone->free_area[order].nr_free++;
533}
534
092cead6
KM
535/*
536 * free_page_mlock() -- clean up attempts to free and mlocked() page.
537 * Page should not be on lru, so no need to fix that up.
538 * free_pages_check() will verify...
539 */
540static inline void free_page_mlock(struct page *page)
541{
092cead6
KM
542 __dec_zone_page_state(page, NR_MLOCK);
543 __count_vm_event(UNEVICTABLE_MLOCKFREED);
544}
092cead6 545
224abf92 546static inline int free_pages_check(struct page *page)
1da177e4 547{
92be2e33
NP
548 if (unlikely(page_mapcount(page) |
549 (page->mapping != NULL) |
a3af9c38 550 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
551 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
552 (mem_cgroup_bad_page_check(page)))) {
224abf92 553 bad_page(page);
79f4b7bf 554 return 1;
8cc3b392 555 }
79f4b7bf
HD
556 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
557 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
558 return 0;
1da177e4
LT
559}
560
561/*
5f8dcc21 562 * Frees a number of pages from the PCP lists
1da177e4 563 * Assumes all pages on list are in same zone, and of same order.
207f36ee 564 * count is the number of pages to free.
1da177e4
LT
565 *
566 * If the zone was previously in an "all pages pinned" state then look to
567 * see if this freeing clears that state.
568 *
569 * And clear the zone's pages_scanned counter, to hold off the "all pages are
570 * pinned" detection logic.
571 */
5f8dcc21
MG
572static void free_pcppages_bulk(struct zone *zone, int count,
573 struct per_cpu_pages *pcp)
1da177e4 574{
5f8dcc21 575 int migratetype = 0;
a6f9edd6 576 int batch_free = 0;
72853e29 577 int to_free = count;
5f8dcc21 578
c54ad30c 579 spin_lock(&zone->lock);
93e4a89a 580 zone->all_unreclaimable = 0;
1da177e4 581 zone->pages_scanned = 0;
f2260e6b 582
72853e29 583 while (to_free) {
48db57f8 584 struct page *page;
5f8dcc21
MG
585 struct list_head *list;
586
587 /*
a6f9edd6
MG
588 * Remove pages from lists in a round-robin fashion. A
589 * batch_free count is maintained that is incremented when an
590 * empty list is encountered. This is so more pages are freed
591 * off fuller lists instead of spinning excessively around empty
592 * lists
5f8dcc21
MG
593 */
594 do {
a6f9edd6 595 batch_free++;
5f8dcc21
MG
596 if (++migratetype == MIGRATE_PCPTYPES)
597 migratetype = 0;
598 list = &pcp->lists[migratetype];
599 } while (list_empty(list));
48db57f8 600
1d16871d
NK
601 /* This is the only non-empty list. Free them all. */
602 if (batch_free == MIGRATE_PCPTYPES)
603 batch_free = to_free;
604
a6f9edd6
MG
605 do {
606 page = list_entry(list->prev, struct page, lru);
607 /* must delete as __free_one_page list manipulates */
608 list_del(&page->lru);
a7016235
HD
609 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
610 __free_one_page(page, zone, 0, page_private(page));
611 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 612 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 613 }
72853e29 614 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 615 spin_unlock(&zone->lock);
1da177e4
LT
616}
617
ed0ae21d
MG
618static void free_one_page(struct zone *zone, struct page *page, int order,
619 int migratetype)
1da177e4 620{
006d22d9 621 spin_lock(&zone->lock);
93e4a89a 622 zone->all_unreclaimable = 0;
006d22d9 623 zone->pages_scanned = 0;
f2260e6b 624
ed0ae21d 625 __free_one_page(page, zone, order, migratetype);
72853e29 626 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 627 spin_unlock(&zone->lock);
48db57f8
NP
628}
629
ec95f53a 630static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 631{
1da177e4 632 int i;
8cc3b392 633 int bad = 0;
1da177e4 634
b413d48a 635 trace_mm_page_free(page, order);
b1eeab67
VN
636 kmemcheck_free_shadow(page, order);
637
8dd60a3a
AA
638 if (PageAnon(page))
639 page->mapping = NULL;
640 for (i = 0; i < (1 << order); i++)
641 bad += free_pages_check(page + i);
8cc3b392 642 if (bad)
ec95f53a 643 return false;
689bcebf 644
3ac7fe5a 645 if (!PageHighMem(page)) {
9858db50 646 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
647 debug_check_no_obj_freed(page_address(page),
648 PAGE_SIZE << order);
649 }
dafb1367 650 arch_free_page(page, order);
48db57f8 651 kernel_map_pages(page, 1 << order, 0);
dafb1367 652
ec95f53a
KM
653 return true;
654}
655
656static void __free_pages_ok(struct page *page, unsigned int order)
657{
658 unsigned long flags;
659 int wasMlocked = __TestClearPageMlocked(page);
660
661 if (!free_pages_prepare(page, order))
662 return;
663
c54ad30c 664 local_irq_save(flags);
c277331d 665 if (unlikely(wasMlocked))
da456f14 666 free_page_mlock(page);
f8891e5e 667 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
668 free_one_page(page_zone(page), page, order,
669 get_pageblock_migratetype(page));
c54ad30c 670 local_irq_restore(flags);
1da177e4
LT
671}
672
a226f6c8
DH
673/*
674 * permit the bootmem allocator to evade page validation on high-order frees
675 */
af370fb8 676void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
677{
678 if (order == 0) {
679 __ClearPageReserved(page);
680 set_page_count(page, 0);
7835e98b 681 set_page_refcounted(page);
545b1ea9 682 __free_page(page);
a226f6c8 683 } else {
a226f6c8
DH
684 int loop;
685
545b1ea9 686 prefetchw(page);
53348f27 687 for (loop = 0; loop < (1 << order); loop++) {
a226f6c8
DH
688 struct page *p = &page[loop];
689
53348f27 690 if (loop + 1 < (1 << order))
545b1ea9 691 prefetchw(p + 1);
a226f6c8
DH
692 __ClearPageReserved(p);
693 set_page_count(p, 0);
694 }
695
7835e98b 696 set_page_refcounted(page);
545b1ea9 697 __free_pages(page, order);
a226f6c8
DH
698 }
699}
700
1da177e4
LT
701
702/*
703 * The order of subdivision here is critical for the IO subsystem.
704 * Please do not alter this order without good reasons and regression
705 * testing. Specifically, as large blocks of memory are subdivided,
706 * the order in which smaller blocks are delivered depends on the order
707 * they're subdivided in this function. This is the primary factor
708 * influencing the order in which pages are delivered to the IO
709 * subsystem according to empirical testing, and this is also justified
710 * by considering the behavior of a buddy system containing a single
711 * large block of memory acted on by a series of small allocations.
712 * This behavior is a critical factor in sglist merging's success.
713 *
714 * -- wli
715 */
085cc7d5 716static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
717 int low, int high, struct free_area *area,
718 int migratetype)
1da177e4
LT
719{
720 unsigned long size = 1 << high;
721
722 while (high > low) {
723 area--;
724 high--;
725 size >>= 1;
725d704e 726 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 727 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
728 area->nr_free++;
729 set_page_order(&page[size], high);
730 }
1da177e4
LT
731}
732
1da177e4
LT
733/*
734 * This page is about to be returned from the page allocator
735 */
2a7684a2 736static inline int check_new_page(struct page *page)
1da177e4 737{
92be2e33
NP
738 if (unlikely(page_mapcount(page) |
739 (page->mapping != NULL) |
a3af9c38 740 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
741 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
742 (mem_cgroup_bad_page_check(page)))) {
224abf92 743 bad_page(page);
689bcebf 744 return 1;
8cc3b392 745 }
2a7684a2
WF
746 return 0;
747}
748
749static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
750{
751 int i;
752
753 for (i = 0; i < (1 << order); i++) {
754 struct page *p = page + i;
755 if (unlikely(check_new_page(p)))
756 return 1;
757 }
689bcebf 758
4c21e2f2 759 set_page_private(page, 0);
7835e98b 760 set_page_refcounted(page);
cc102509
NP
761
762 arch_alloc_page(page, order);
1da177e4 763 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
764
765 if (gfp_flags & __GFP_ZERO)
766 prep_zero_page(page, order, gfp_flags);
767
768 if (order && (gfp_flags & __GFP_COMP))
769 prep_compound_page(page, order);
770
689bcebf 771 return 0;
1da177e4
LT
772}
773
56fd56b8
MG
774/*
775 * Go through the free lists for the given migratetype and remove
776 * the smallest available page from the freelists
777 */
728ec980
MG
778static inline
779struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
780 int migratetype)
781{
782 unsigned int current_order;
783 struct free_area * area;
784 struct page *page;
785
786 /* Find a page of the appropriate size in the preferred list */
787 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
788 area = &(zone->free_area[current_order]);
789 if (list_empty(&area->free_list[migratetype]))
790 continue;
791
792 page = list_entry(area->free_list[migratetype].next,
793 struct page, lru);
794 list_del(&page->lru);
795 rmv_page_order(page);
796 area->nr_free--;
56fd56b8
MG
797 expand(zone, page, order, current_order, area, migratetype);
798 return page;
799 }
800
801 return NULL;
802}
803
804
b2a0ac88
MG
805/*
806 * This array describes the order lists are fallen back to when
807 * the free lists for the desirable migrate type are depleted
808 */
809static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
810 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
811 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
812 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
813 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
814};
815
c361be55
MG
816/*
817 * Move the free pages in a range to the free lists of the requested type.
d9c23400 818 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
819 * boundary. If alignment is required, use move_freepages_block()
820 */
b69a7288
AB
821static int move_freepages(struct zone *zone,
822 struct page *start_page, struct page *end_page,
823 int migratetype)
c361be55
MG
824{
825 struct page *page;
826 unsigned long order;
d100313f 827 int pages_moved = 0;
c361be55
MG
828
829#ifndef CONFIG_HOLES_IN_ZONE
830 /*
831 * page_zone is not safe to call in this context when
832 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
833 * anyway as we check zone boundaries in move_freepages_block().
834 * Remove at a later date when no bug reports exist related to
ac0e5b7a 835 * grouping pages by mobility
c361be55
MG
836 */
837 BUG_ON(page_zone(start_page) != page_zone(end_page));
838#endif
839
840 for (page = start_page; page <= end_page;) {
344c790e
AL
841 /* Make sure we are not inadvertently changing nodes */
842 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
843
c361be55
MG
844 if (!pfn_valid_within(page_to_pfn(page))) {
845 page++;
846 continue;
847 }
848
849 if (!PageBuddy(page)) {
850 page++;
851 continue;
852 }
853
854 order = page_order(page);
84be48d8
KS
855 list_move(&page->lru,
856 &zone->free_area[order].free_list[migratetype]);
c361be55 857 page += 1 << order;
d100313f 858 pages_moved += 1 << order;
c361be55
MG
859 }
860
d100313f 861 return pages_moved;
c361be55
MG
862}
863
b69a7288
AB
864static int move_freepages_block(struct zone *zone, struct page *page,
865 int migratetype)
c361be55
MG
866{
867 unsigned long start_pfn, end_pfn;
868 struct page *start_page, *end_page;
869
870 start_pfn = page_to_pfn(page);
d9c23400 871 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 872 start_page = pfn_to_page(start_pfn);
d9c23400
MG
873 end_page = start_page + pageblock_nr_pages - 1;
874 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
875
876 /* Do not cross zone boundaries */
877 if (start_pfn < zone->zone_start_pfn)
878 start_page = page;
879 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
880 return 0;
881
882 return move_freepages(zone, start_page, end_page, migratetype);
883}
884
2f66a68f
MG
885static void change_pageblock_range(struct page *pageblock_page,
886 int start_order, int migratetype)
887{
888 int nr_pageblocks = 1 << (start_order - pageblock_order);
889
890 while (nr_pageblocks--) {
891 set_pageblock_migratetype(pageblock_page, migratetype);
892 pageblock_page += pageblock_nr_pages;
893 }
894}
895
b2a0ac88 896/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
897static inline struct page *
898__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
899{
900 struct free_area * area;
901 int current_order;
902 struct page *page;
903 int migratetype, i;
904
905 /* Find the largest possible block of pages in the other list */
906 for (current_order = MAX_ORDER-1; current_order >= order;
907 --current_order) {
908 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
909 migratetype = fallbacks[start_migratetype][i];
910
56fd56b8
MG
911 /* MIGRATE_RESERVE handled later if necessary */
912 if (migratetype == MIGRATE_RESERVE)
913 continue;
e010487d 914
b2a0ac88
MG
915 area = &(zone->free_area[current_order]);
916 if (list_empty(&area->free_list[migratetype]))
917 continue;
918
919 page = list_entry(area->free_list[migratetype].next,
920 struct page, lru);
921 area->nr_free--;
922
923 /*
c361be55 924 * If breaking a large block of pages, move all free
46dafbca
MG
925 * pages to the preferred allocation list. If falling
926 * back for a reclaimable kernel allocation, be more
25985edc 927 * aggressive about taking ownership of free pages
b2a0ac88 928 */
d9c23400 929 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
930 start_migratetype == MIGRATE_RECLAIMABLE ||
931 page_group_by_mobility_disabled) {
46dafbca
MG
932 unsigned long pages;
933 pages = move_freepages_block(zone, page,
934 start_migratetype);
935
936 /* Claim the whole block if over half of it is free */
dd5d241e
MG
937 if (pages >= (1 << (pageblock_order-1)) ||
938 page_group_by_mobility_disabled)
46dafbca
MG
939 set_pageblock_migratetype(page,
940 start_migratetype);
941
b2a0ac88 942 migratetype = start_migratetype;
c361be55 943 }
b2a0ac88
MG
944
945 /* Remove the page from the freelists */
946 list_del(&page->lru);
947 rmv_page_order(page);
b2a0ac88 948
2f66a68f
MG
949 /* Take ownership for orders >= pageblock_order */
950 if (current_order >= pageblock_order)
951 change_pageblock_range(page, current_order,
b2a0ac88
MG
952 start_migratetype);
953
954 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
955
956 trace_mm_page_alloc_extfrag(page, order, current_order,
957 start_migratetype, migratetype);
958
b2a0ac88
MG
959 return page;
960 }
961 }
962
728ec980 963 return NULL;
b2a0ac88
MG
964}
965
56fd56b8 966/*
1da177e4
LT
967 * Do the hard work of removing an element from the buddy allocator.
968 * Call me with the zone->lock already held.
969 */
b2a0ac88
MG
970static struct page *__rmqueue(struct zone *zone, unsigned int order,
971 int migratetype)
1da177e4 972{
1da177e4
LT
973 struct page *page;
974
728ec980 975retry_reserve:
56fd56b8 976 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 977
728ec980 978 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 979 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 980
728ec980
MG
981 /*
982 * Use MIGRATE_RESERVE rather than fail an allocation. goto
983 * is used because __rmqueue_smallest is an inline function
984 * and we want just one call site
985 */
986 if (!page) {
987 migratetype = MIGRATE_RESERVE;
988 goto retry_reserve;
989 }
990 }
991
0d3d062a 992 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 993 return page;
1da177e4
LT
994}
995
996/*
997 * Obtain a specified number of elements from the buddy allocator, all under
998 * a single hold of the lock, for efficiency. Add them to the supplied list.
999 * Returns the number of new pages which were placed at *list.
1000 */
1001static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1002 unsigned long count, struct list_head *list,
e084b2d9 1003 int migratetype, int cold)
1da177e4 1004{
1da177e4 1005 int i;
1da177e4 1006
c54ad30c 1007 spin_lock(&zone->lock);
1da177e4 1008 for (i = 0; i < count; ++i) {
b2a0ac88 1009 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1010 if (unlikely(page == NULL))
1da177e4 1011 break;
81eabcbe
MG
1012
1013 /*
1014 * Split buddy pages returned by expand() are received here
1015 * in physical page order. The page is added to the callers and
1016 * list and the list head then moves forward. From the callers
1017 * perspective, the linked list is ordered by page number in
1018 * some conditions. This is useful for IO devices that can
1019 * merge IO requests if the physical pages are ordered
1020 * properly.
1021 */
e084b2d9
MG
1022 if (likely(cold == 0))
1023 list_add(&page->lru, list);
1024 else
1025 list_add_tail(&page->lru, list);
535131e6 1026 set_page_private(page, migratetype);
81eabcbe 1027 list = &page->lru;
1da177e4 1028 }
f2260e6b 1029 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1030 spin_unlock(&zone->lock);
085cc7d5 1031 return i;
1da177e4
LT
1032}
1033
4ae7c039 1034#ifdef CONFIG_NUMA
8fce4d8e 1035/*
4037d452
CL
1036 * Called from the vmstat counter updater to drain pagesets of this
1037 * currently executing processor on remote nodes after they have
1038 * expired.
1039 *
879336c3
CL
1040 * Note that this function must be called with the thread pinned to
1041 * a single processor.
8fce4d8e 1042 */
4037d452 1043void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1044{
4ae7c039 1045 unsigned long flags;
4037d452 1046 int to_drain;
4ae7c039 1047
4037d452
CL
1048 local_irq_save(flags);
1049 if (pcp->count >= pcp->batch)
1050 to_drain = pcp->batch;
1051 else
1052 to_drain = pcp->count;
5f8dcc21 1053 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1054 pcp->count -= to_drain;
1055 local_irq_restore(flags);
4ae7c039
CL
1056}
1057#endif
1058
9f8f2172
CL
1059/*
1060 * Drain pages of the indicated processor.
1061 *
1062 * The processor must either be the current processor and the
1063 * thread pinned to the current processor or a processor that
1064 * is not online.
1065 */
1066static void drain_pages(unsigned int cpu)
1da177e4 1067{
c54ad30c 1068 unsigned long flags;
1da177e4 1069 struct zone *zone;
1da177e4 1070
ee99c71c 1071 for_each_populated_zone(zone) {
1da177e4 1072 struct per_cpu_pageset *pset;
3dfa5721 1073 struct per_cpu_pages *pcp;
1da177e4 1074
99dcc3e5
CL
1075 local_irq_save(flags);
1076 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1077
1078 pcp = &pset->pcp;
2ff754fa
DR
1079 if (pcp->count) {
1080 free_pcppages_bulk(zone, pcp->count, pcp);
1081 pcp->count = 0;
1082 }
3dfa5721 1083 local_irq_restore(flags);
1da177e4
LT
1084 }
1085}
1da177e4 1086
9f8f2172
CL
1087/*
1088 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1089 */
1090void drain_local_pages(void *arg)
1091{
1092 drain_pages(smp_processor_id());
1093}
1094
1095/*
1096 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1097 */
1098void drain_all_pages(void)
1099{
15c8b6c1 1100 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1101}
1102
296699de 1103#ifdef CONFIG_HIBERNATION
1da177e4
LT
1104
1105void mark_free_pages(struct zone *zone)
1106{
f623f0db
RW
1107 unsigned long pfn, max_zone_pfn;
1108 unsigned long flags;
b2a0ac88 1109 int order, t;
1da177e4
LT
1110 struct list_head *curr;
1111
1112 if (!zone->spanned_pages)
1113 return;
1114
1115 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1116
1117 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1118 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1119 if (pfn_valid(pfn)) {
1120 struct page *page = pfn_to_page(pfn);
1121
7be98234
RW
1122 if (!swsusp_page_is_forbidden(page))
1123 swsusp_unset_page_free(page);
f623f0db 1124 }
1da177e4 1125
b2a0ac88
MG
1126 for_each_migratetype_order(order, t) {
1127 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1128 unsigned long i;
1da177e4 1129
f623f0db
RW
1130 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1131 for (i = 0; i < (1UL << order); i++)
7be98234 1132 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1133 }
b2a0ac88 1134 }
1da177e4
LT
1135 spin_unlock_irqrestore(&zone->lock, flags);
1136}
e2c55dc8 1137#endif /* CONFIG_PM */
1da177e4 1138
1da177e4
LT
1139/*
1140 * Free a 0-order page
fc91668e 1141 * cold == 1 ? free a cold page : free a hot page
1da177e4 1142 */
fc91668e 1143void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1144{
1145 struct zone *zone = page_zone(page);
1146 struct per_cpu_pages *pcp;
1147 unsigned long flags;
5f8dcc21 1148 int migratetype;
451ea25d 1149 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1150
ec95f53a 1151 if (!free_pages_prepare(page, 0))
689bcebf
HD
1152 return;
1153
5f8dcc21
MG
1154 migratetype = get_pageblock_migratetype(page);
1155 set_page_private(page, migratetype);
1da177e4 1156 local_irq_save(flags);
c277331d 1157 if (unlikely(wasMlocked))
da456f14 1158 free_page_mlock(page);
f8891e5e 1159 __count_vm_event(PGFREE);
da456f14 1160
5f8dcc21
MG
1161 /*
1162 * We only track unmovable, reclaimable and movable on pcp lists.
1163 * Free ISOLATE pages back to the allocator because they are being
1164 * offlined but treat RESERVE as movable pages so we can get those
1165 * areas back if necessary. Otherwise, we may have to free
1166 * excessively into the page allocator
1167 */
1168 if (migratetype >= MIGRATE_PCPTYPES) {
1169 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1170 free_one_page(zone, page, 0, migratetype);
1171 goto out;
1172 }
1173 migratetype = MIGRATE_MOVABLE;
1174 }
1175
99dcc3e5 1176 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1177 if (cold)
5f8dcc21 1178 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1179 else
5f8dcc21 1180 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1181 pcp->count++;
48db57f8 1182 if (pcp->count >= pcp->high) {
5f8dcc21 1183 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1184 pcp->count -= pcp->batch;
1185 }
5f8dcc21
MG
1186
1187out:
1da177e4 1188 local_irq_restore(flags);
1da177e4
LT
1189}
1190
cc59850e
KK
1191/*
1192 * Free a list of 0-order pages
1193 */
1194void free_hot_cold_page_list(struct list_head *list, int cold)
1195{
1196 struct page *page, *next;
1197
1198 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1199 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1200 free_hot_cold_page(page, cold);
1201 }
1202}
1203
8dfcc9ba
NP
1204/*
1205 * split_page takes a non-compound higher-order page, and splits it into
1206 * n (1<<order) sub-pages: page[0..n]
1207 * Each sub-page must be freed individually.
1208 *
1209 * Note: this is probably too low level an operation for use in drivers.
1210 * Please consult with lkml before using this in your driver.
1211 */
1212void split_page(struct page *page, unsigned int order)
1213{
1214 int i;
1215
725d704e
NP
1216 VM_BUG_ON(PageCompound(page));
1217 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1218
1219#ifdef CONFIG_KMEMCHECK
1220 /*
1221 * Split shadow pages too, because free(page[0]) would
1222 * otherwise free the whole shadow.
1223 */
1224 if (kmemcheck_page_is_tracked(page))
1225 split_page(virt_to_page(page[0].shadow), order);
1226#endif
1227
7835e98b
NP
1228 for (i = 1; i < (1 << order); i++)
1229 set_page_refcounted(page + i);
8dfcc9ba 1230}
8dfcc9ba 1231
748446bb
MG
1232/*
1233 * Similar to split_page except the page is already free. As this is only
1234 * being used for migration, the migratetype of the block also changes.
1235 * As this is called with interrupts disabled, the caller is responsible
1236 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1237 * are enabled.
1238 *
1239 * Note: this is probably too low level an operation for use in drivers.
1240 * Please consult with lkml before using this in your driver.
1241 */
1242int split_free_page(struct page *page)
1243{
1244 unsigned int order;
1245 unsigned long watermark;
1246 struct zone *zone;
1247
1248 BUG_ON(!PageBuddy(page));
1249
1250 zone = page_zone(page);
1251 order = page_order(page);
1252
1253 /* Obey watermarks as if the page was being allocated */
1254 watermark = low_wmark_pages(zone) + (1 << order);
1255 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1256 return 0;
1257
1258 /* Remove page from free list */
1259 list_del(&page->lru);
1260 zone->free_area[order].nr_free--;
1261 rmv_page_order(page);
1262 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1263
1264 /* Split into individual pages */
1265 set_page_refcounted(page);
1266 split_page(page, order);
1267
1268 if (order >= pageblock_order - 1) {
1269 struct page *endpage = page + (1 << order) - 1;
1270 for (; page < endpage; page += pageblock_nr_pages)
1271 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1272 }
1273
1274 return 1 << order;
1275}
1276
1da177e4
LT
1277/*
1278 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1279 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1280 * or two.
1281 */
0a15c3e9
MG
1282static inline
1283struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1284 struct zone *zone, int order, gfp_t gfp_flags,
1285 int migratetype)
1da177e4
LT
1286{
1287 unsigned long flags;
689bcebf 1288 struct page *page;
1da177e4
LT
1289 int cold = !!(gfp_flags & __GFP_COLD);
1290
689bcebf 1291again:
48db57f8 1292 if (likely(order == 0)) {
1da177e4 1293 struct per_cpu_pages *pcp;
5f8dcc21 1294 struct list_head *list;
1da177e4 1295
1da177e4 1296 local_irq_save(flags);
99dcc3e5
CL
1297 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1298 list = &pcp->lists[migratetype];
5f8dcc21 1299 if (list_empty(list)) {
535131e6 1300 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1301 pcp->batch, list,
e084b2d9 1302 migratetype, cold);
5f8dcc21 1303 if (unlikely(list_empty(list)))
6fb332fa 1304 goto failed;
535131e6 1305 }
b92a6edd 1306
5f8dcc21
MG
1307 if (cold)
1308 page = list_entry(list->prev, struct page, lru);
1309 else
1310 page = list_entry(list->next, struct page, lru);
1311
b92a6edd
MG
1312 list_del(&page->lru);
1313 pcp->count--;
7fb1d9fc 1314 } else {
dab48dab
AM
1315 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1316 /*
1317 * __GFP_NOFAIL is not to be used in new code.
1318 *
1319 * All __GFP_NOFAIL callers should be fixed so that they
1320 * properly detect and handle allocation failures.
1321 *
1322 * We most definitely don't want callers attempting to
4923abf9 1323 * allocate greater than order-1 page units with
dab48dab
AM
1324 * __GFP_NOFAIL.
1325 */
4923abf9 1326 WARN_ON_ONCE(order > 1);
dab48dab 1327 }
1da177e4 1328 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1329 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1330 spin_unlock(&zone->lock);
1331 if (!page)
1332 goto failed;
6ccf80eb 1333 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1334 }
1335
f8891e5e 1336 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1337 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1338 local_irq_restore(flags);
1da177e4 1339
725d704e 1340 VM_BUG_ON(bad_range(zone, page));
17cf4406 1341 if (prep_new_page(page, order, gfp_flags))
a74609fa 1342 goto again;
1da177e4 1343 return page;
a74609fa
NP
1344
1345failed:
1346 local_irq_restore(flags);
a74609fa 1347 return NULL;
1da177e4
LT
1348}
1349
41858966
MG
1350/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1351#define ALLOC_WMARK_MIN WMARK_MIN
1352#define ALLOC_WMARK_LOW WMARK_LOW
1353#define ALLOC_WMARK_HIGH WMARK_HIGH
1354#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1355
1356/* Mask to get the watermark bits */
1357#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1358
3148890b
NP
1359#define ALLOC_HARDER 0x10 /* try to alloc harder */
1360#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1361#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1362
933e312e
AM
1363#ifdef CONFIG_FAIL_PAGE_ALLOC
1364
b2588c4b 1365static struct {
933e312e
AM
1366 struct fault_attr attr;
1367
1368 u32 ignore_gfp_highmem;
1369 u32 ignore_gfp_wait;
54114994 1370 u32 min_order;
933e312e
AM
1371} fail_page_alloc = {
1372 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1373 .ignore_gfp_wait = 1,
1374 .ignore_gfp_highmem = 1,
54114994 1375 .min_order = 1,
933e312e
AM
1376};
1377
1378static int __init setup_fail_page_alloc(char *str)
1379{
1380 return setup_fault_attr(&fail_page_alloc.attr, str);
1381}
1382__setup("fail_page_alloc=", setup_fail_page_alloc);
1383
1384static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1385{
54114994
AM
1386 if (order < fail_page_alloc.min_order)
1387 return 0;
933e312e
AM
1388 if (gfp_mask & __GFP_NOFAIL)
1389 return 0;
1390 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1391 return 0;
1392 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1393 return 0;
1394
1395 return should_fail(&fail_page_alloc.attr, 1 << order);
1396}
1397
1398#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1399
1400static int __init fail_page_alloc_debugfs(void)
1401{
f4ae40a6 1402 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1403 struct dentry *dir;
933e312e 1404
dd48c085
AM
1405 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1406 &fail_page_alloc.attr);
1407 if (IS_ERR(dir))
1408 return PTR_ERR(dir);
933e312e 1409
b2588c4b
AM
1410 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1411 &fail_page_alloc.ignore_gfp_wait))
1412 goto fail;
1413 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1414 &fail_page_alloc.ignore_gfp_highmem))
1415 goto fail;
1416 if (!debugfs_create_u32("min-order", mode, dir,
1417 &fail_page_alloc.min_order))
1418 goto fail;
1419
1420 return 0;
1421fail:
dd48c085 1422 debugfs_remove_recursive(dir);
933e312e 1423
b2588c4b 1424 return -ENOMEM;
933e312e
AM
1425}
1426
1427late_initcall(fail_page_alloc_debugfs);
1428
1429#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1430
1431#else /* CONFIG_FAIL_PAGE_ALLOC */
1432
1433static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1434{
1435 return 0;
1436}
1437
1438#endif /* CONFIG_FAIL_PAGE_ALLOC */
1439
1da177e4 1440/*
88f5acf8 1441 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1442 * of the allocation.
1443 */
88f5acf8
MG
1444static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1445 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1446{
1447 /* free_pages my go negative - that's OK */
d23ad423 1448 long min = mark;
1da177e4
LT
1449 int o;
1450
88f5acf8 1451 free_pages -= (1 << order) + 1;
7fb1d9fc 1452 if (alloc_flags & ALLOC_HIGH)
1da177e4 1453 min -= min / 2;
7fb1d9fc 1454 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1455 min -= min / 4;
1456
1457 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1458 return false;
1da177e4
LT
1459 for (o = 0; o < order; o++) {
1460 /* At the next order, this order's pages become unavailable */
1461 free_pages -= z->free_area[o].nr_free << o;
1462
1463 /* Require fewer higher order pages to be free */
1464 min >>= 1;
1465
1466 if (free_pages <= min)
88f5acf8 1467 return false;
1da177e4 1468 }
88f5acf8
MG
1469 return true;
1470}
1471
1472bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1473 int classzone_idx, int alloc_flags)
1474{
1475 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1476 zone_page_state(z, NR_FREE_PAGES));
1477}
1478
1479bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1480 int classzone_idx, int alloc_flags)
1481{
1482 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1483
1484 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1485 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1486
1487 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1488 free_pages);
1da177e4
LT
1489}
1490
9276b1bc
PJ
1491#ifdef CONFIG_NUMA
1492/*
1493 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1494 * skip over zones that are not allowed by the cpuset, or that have
1495 * been recently (in last second) found to be nearly full. See further
1496 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1497 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1498 *
1499 * If the zonelist cache is present in the passed in zonelist, then
1500 * returns a pointer to the allowed node mask (either the current
37b07e41 1501 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1502 *
1503 * If the zonelist cache is not available for this zonelist, does
1504 * nothing and returns NULL.
1505 *
1506 * If the fullzones BITMAP in the zonelist cache is stale (more than
1507 * a second since last zap'd) then we zap it out (clear its bits.)
1508 *
1509 * We hold off even calling zlc_setup, until after we've checked the
1510 * first zone in the zonelist, on the theory that most allocations will
1511 * be satisfied from that first zone, so best to examine that zone as
1512 * quickly as we can.
1513 */
1514static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1515{
1516 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1517 nodemask_t *allowednodes; /* zonelist_cache approximation */
1518
1519 zlc = zonelist->zlcache_ptr;
1520 if (!zlc)
1521 return NULL;
1522
f05111f5 1523 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1524 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1525 zlc->last_full_zap = jiffies;
1526 }
1527
1528 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1529 &cpuset_current_mems_allowed :
37b07e41 1530 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1531 return allowednodes;
1532}
1533
1534/*
1535 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1536 * if it is worth looking at further for free memory:
1537 * 1) Check that the zone isn't thought to be full (doesn't have its
1538 * bit set in the zonelist_cache fullzones BITMAP).
1539 * 2) Check that the zones node (obtained from the zonelist_cache
1540 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1541 * Return true (non-zero) if zone is worth looking at further, or
1542 * else return false (zero) if it is not.
1543 *
1544 * This check -ignores- the distinction between various watermarks,
1545 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1546 * found to be full for any variation of these watermarks, it will
1547 * be considered full for up to one second by all requests, unless
1548 * we are so low on memory on all allowed nodes that we are forced
1549 * into the second scan of the zonelist.
1550 *
1551 * In the second scan we ignore this zonelist cache and exactly
1552 * apply the watermarks to all zones, even it is slower to do so.
1553 * We are low on memory in the second scan, and should leave no stone
1554 * unturned looking for a free page.
1555 */
dd1a239f 1556static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1557 nodemask_t *allowednodes)
1558{
1559 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1560 int i; /* index of *z in zonelist zones */
1561 int n; /* node that zone *z is on */
1562
1563 zlc = zonelist->zlcache_ptr;
1564 if (!zlc)
1565 return 1;
1566
dd1a239f 1567 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1568 n = zlc->z_to_n[i];
1569
1570 /* This zone is worth trying if it is allowed but not full */
1571 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1572}
1573
1574/*
1575 * Given 'z' scanning a zonelist, set the corresponding bit in
1576 * zlc->fullzones, so that subsequent attempts to allocate a page
1577 * from that zone don't waste time re-examining it.
1578 */
dd1a239f 1579static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1580{
1581 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1582 int i; /* index of *z in zonelist zones */
1583
1584 zlc = zonelist->zlcache_ptr;
1585 if (!zlc)
1586 return;
1587
dd1a239f 1588 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1589
1590 set_bit(i, zlc->fullzones);
1591}
1592
76d3fbf8
MG
1593/*
1594 * clear all zones full, called after direct reclaim makes progress so that
1595 * a zone that was recently full is not skipped over for up to a second
1596 */
1597static void zlc_clear_zones_full(struct zonelist *zonelist)
1598{
1599 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1600
1601 zlc = zonelist->zlcache_ptr;
1602 if (!zlc)
1603 return;
1604
1605 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1606}
1607
9276b1bc
PJ
1608#else /* CONFIG_NUMA */
1609
1610static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1611{
1612 return NULL;
1613}
1614
dd1a239f 1615static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1616 nodemask_t *allowednodes)
1617{
1618 return 1;
1619}
1620
dd1a239f 1621static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1622{
1623}
76d3fbf8
MG
1624
1625static void zlc_clear_zones_full(struct zonelist *zonelist)
1626{
1627}
9276b1bc
PJ
1628#endif /* CONFIG_NUMA */
1629
7fb1d9fc 1630/*
0798e519 1631 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1632 * a page.
1633 */
1634static struct page *
19770b32 1635get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1636 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1637 struct zone *preferred_zone, int migratetype)
753ee728 1638{
dd1a239f 1639 struct zoneref *z;
7fb1d9fc 1640 struct page *page = NULL;
54a6eb5c 1641 int classzone_idx;
5117f45d 1642 struct zone *zone;
9276b1bc
PJ
1643 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1644 int zlc_active = 0; /* set if using zonelist_cache */
1645 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1646
19770b32 1647 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1648zonelist_scan:
7fb1d9fc 1649 /*
9276b1bc 1650 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1651 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1652 */
19770b32
MG
1653 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1654 high_zoneidx, nodemask) {
9276b1bc
PJ
1655 if (NUMA_BUILD && zlc_active &&
1656 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1657 continue;
7fb1d9fc 1658 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1659 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1660 continue;
7fb1d9fc 1661
41858966 1662 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1663 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1664 unsigned long mark;
fa5e084e
MG
1665 int ret;
1666
41858966 1667 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1668 if (zone_watermark_ok(zone, order, mark,
1669 classzone_idx, alloc_flags))
1670 goto try_this_zone;
1671
cd38b115
MG
1672 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1673 /*
1674 * we do zlc_setup if there are multiple nodes
1675 * and before considering the first zone allowed
1676 * by the cpuset.
1677 */
1678 allowednodes = zlc_setup(zonelist, alloc_flags);
1679 zlc_active = 1;
1680 did_zlc_setup = 1;
1681 }
1682
fa5e084e
MG
1683 if (zone_reclaim_mode == 0)
1684 goto this_zone_full;
1685
cd38b115
MG
1686 /*
1687 * As we may have just activated ZLC, check if the first
1688 * eligible zone has failed zone_reclaim recently.
1689 */
1690 if (NUMA_BUILD && zlc_active &&
1691 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1692 continue;
1693
fa5e084e
MG
1694 ret = zone_reclaim(zone, gfp_mask, order);
1695 switch (ret) {
1696 case ZONE_RECLAIM_NOSCAN:
1697 /* did not scan */
cd38b115 1698 continue;
fa5e084e
MG
1699 case ZONE_RECLAIM_FULL:
1700 /* scanned but unreclaimable */
cd38b115 1701 continue;
fa5e084e
MG
1702 default:
1703 /* did we reclaim enough */
1704 if (!zone_watermark_ok(zone, order, mark,
1705 classzone_idx, alloc_flags))
9276b1bc 1706 goto this_zone_full;
0798e519 1707 }
7fb1d9fc
RS
1708 }
1709
fa5e084e 1710try_this_zone:
3dd28266
MG
1711 page = buffered_rmqueue(preferred_zone, zone, order,
1712 gfp_mask, migratetype);
0798e519 1713 if (page)
7fb1d9fc 1714 break;
9276b1bc
PJ
1715this_zone_full:
1716 if (NUMA_BUILD)
1717 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1718 }
9276b1bc
PJ
1719
1720 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1721 /* Disable zlc cache for second zonelist scan */
1722 zlc_active = 0;
1723 goto zonelist_scan;
1724 }
7fb1d9fc 1725 return page;
753ee728
MH
1726}
1727
29423e77
DR
1728/*
1729 * Large machines with many possible nodes should not always dump per-node
1730 * meminfo in irq context.
1731 */
1732static inline bool should_suppress_show_mem(void)
1733{
1734 bool ret = false;
1735
1736#if NODES_SHIFT > 8
1737 ret = in_interrupt();
1738#endif
1739 return ret;
1740}
1741
a238ab5b
DH
1742static DEFINE_RATELIMIT_STATE(nopage_rs,
1743 DEFAULT_RATELIMIT_INTERVAL,
1744 DEFAULT_RATELIMIT_BURST);
1745
1746void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1747{
a238ab5b
DH
1748 unsigned int filter = SHOW_MEM_FILTER_NODES;
1749
1750 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1751 return;
1752
1753 /*
1754 * This documents exceptions given to allocations in certain
1755 * contexts that are allowed to allocate outside current's set
1756 * of allowed nodes.
1757 */
1758 if (!(gfp_mask & __GFP_NOMEMALLOC))
1759 if (test_thread_flag(TIF_MEMDIE) ||
1760 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1761 filter &= ~SHOW_MEM_FILTER_NODES;
1762 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1763 filter &= ~SHOW_MEM_FILTER_NODES;
1764
1765 if (fmt) {
3ee9a4f0
JP
1766 struct va_format vaf;
1767 va_list args;
1768
a238ab5b 1769 va_start(args, fmt);
3ee9a4f0
JP
1770
1771 vaf.fmt = fmt;
1772 vaf.va = &args;
1773
1774 pr_warn("%pV", &vaf);
1775
a238ab5b
DH
1776 va_end(args);
1777 }
1778
3ee9a4f0
JP
1779 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1780 current->comm, order, gfp_mask);
a238ab5b
DH
1781
1782 dump_stack();
1783 if (!should_suppress_show_mem())
1784 show_mem(filter);
1785}
1786
11e33f6a
MG
1787static inline int
1788should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1789 unsigned long pages_reclaimed)
1da177e4 1790{
11e33f6a
MG
1791 /* Do not loop if specifically requested */
1792 if (gfp_mask & __GFP_NORETRY)
1793 return 0;
1da177e4 1794
11e33f6a
MG
1795 /*
1796 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1797 * means __GFP_NOFAIL, but that may not be true in other
1798 * implementations.
1799 */
1800 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1801 return 1;
1802
1803 /*
1804 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1805 * specified, then we retry until we no longer reclaim any pages
1806 * (above), or we've reclaimed an order of pages at least as
1807 * large as the allocation's order. In both cases, if the
1808 * allocation still fails, we stop retrying.
1809 */
1810 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1811 return 1;
cf40bd16 1812
11e33f6a
MG
1813 /*
1814 * Don't let big-order allocations loop unless the caller
1815 * explicitly requests that.
1816 */
1817 if (gfp_mask & __GFP_NOFAIL)
1818 return 1;
1da177e4 1819
11e33f6a
MG
1820 return 0;
1821}
933e312e 1822
11e33f6a
MG
1823static inline struct page *
1824__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1825 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1826 nodemask_t *nodemask, struct zone *preferred_zone,
1827 int migratetype)
11e33f6a
MG
1828{
1829 struct page *page;
1830
1831 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1832 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1833 schedule_timeout_uninterruptible(1);
1da177e4
LT
1834 return NULL;
1835 }
6b1de916 1836
11e33f6a
MG
1837 /*
1838 * Go through the zonelist yet one more time, keep very high watermark
1839 * here, this is only to catch a parallel oom killing, we must fail if
1840 * we're still under heavy pressure.
1841 */
1842 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1843 order, zonelist, high_zoneidx,
5117f45d 1844 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1845 preferred_zone, migratetype);
7fb1d9fc 1846 if (page)
11e33f6a
MG
1847 goto out;
1848
4365a567
KH
1849 if (!(gfp_mask & __GFP_NOFAIL)) {
1850 /* The OOM killer will not help higher order allocs */
1851 if (order > PAGE_ALLOC_COSTLY_ORDER)
1852 goto out;
03668b3c
DR
1853 /* The OOM killer does not needlessly kill tasks for lowmem */
1854 if (high_zoneidx < ZONE_NORMAL)
1855 goto out;
4365a567
KH
1856 /*
1857 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1858 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1859 * The caller should handle page allocation failure by itself if
1860 * it specifies __GFP_THISNODE.
1861 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1862 */
1863 if (gfp_mask & __GFP_THISNODE)
1864 goto out;
1865 }
11e33f6a 1866 /* Exhausted what can be done so it's blamo time */
4365a567 1867 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1868
1869out:
1870 clear_zonelist_oom(zonelist, gfp_mask);
1871 return page;
1872}
1873
56de7263
MG
1874#ifdef CONFIG_COMPACTION
1875/* Try memory compaction for high-order allocations before reclaim */
1876static struct page *
1877__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1878 struct zonelist *zonelist, enum zone_type high_zoneidx,
1879 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1880 int migratetype, unsigned long *did_some_progress,
1881 bool sync_migration)
56de7263
MG
1882{
1883 struct page *page;
1884
4f92e258 1885 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1886 return NULL;
1887
c06b1fca 1888 current->flags |= PF_MEMALLOC;
56de7263 1889 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 1890 nodemask, sync_migration);
c06b1fca 1891 current->flags &= ~PF_MEMALLOC;
56de7263
MG
1892 if (*did_some_progress != COMPACT_SKIPPED) {
1893
1894 /* Page migration frees to the PCP lists but we want merging */
1895 drain_pages(get_cpu());
1896 put_cpu();
1897
1898 page = get_page_from_freelist(gfp_mask, nodemask,
1899 order, zonelist, high_zoneidx,
1900 alloc_flags, preferred_zone,
1901 migratetype);
1902 if (page) {
4f92e258
MG
1903 preferred_zone->compact_considered = 0;
1904 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1905 count_vm_event(COMPACTSUCCESS);
1906 return page;
1907 }
1908
1909 /*
1910 * It's bad if compaction run occurs and fails.
1911 * The most likely reason is that pages exist,
1912 * but not enough to satisfy watermarks.
1913 */
1914 count_vm_event(COMPACTFAIL);
4f92e258 1915 defer_compaction(preferred_zone);
56de7263
MG
1916
1917 cond_resched();
1918 }
1919
1920 return NULL;
1921}
1922#else
1923static inline struct page *
1924__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1925 struct zonelist *zonelist, enum zone_type high_zoneidx,
1926 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1927 int migratetype, unsigned long *did_some_progress,
1928 bool sync_migration)
56de7263
MG
1929{
1930 return NULL;
1931}
1932#endif /* CONFIG_COMPACTION */
1933
11e33f6a
MG
1934/* The really slow allocator path where we enter direct reclaim */
1935static inline struct page *
1936__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1937 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1938 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1939 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1940{
1941 struct page *page = NULL;
1942 struct reclaim_state reclaim_state;
9ee493ce 1943 bool drained = false;
11e33f6a
MG
1944
1945 cond_resched();
1946
1947 /* We now go into synchronous reclaim */
1948 cpuset_memory_pressure_bump();
c06b1fca 1949 current->flags |= PF_MEMALLOC;
11e33f6a
MG
1950 lockdep_set_current_reclaim_state(gfp_mask);
1951 reclaim_state.reclaimed_slab = 0;
c06b1fca 1952 current->reclaim_state = &reclaim_state;
11e33f6a
MG
1953
1954 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1955
c06b1fca 1956 current->reclaim_state = NULL;
11e33f6a 1957 lockdep_clear_current_reclaim_state();
c06b1fca 1958 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
1959
1960 cond_resched();
1961
9ee493ce
MG
1962 if (unlikely(!(*did_some_progress)))
1963 return NULL;
11e33f6a 1964
76d3fbf8
MG
1965 /* After successful reclaim, reconsider all zones for allocation */
1966 if (NUMA_BUILD)
1967 zlc_clear_zones_full(zonelist);
1968
9ee493ce
MG
1969retry:
1970 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1971 zonelist, high_zoneidx,
3dd28266
MG
1972 alloc_flags, preferred_zone,
1973 migratetype);
9ee493ce
MG
1974
1975 /*
1976 * If an allocation failed after direct reclaim, it could be because
1977 * pages are pinned on the per-cpu lists. Drain them and try again
1978 */
1979 if (!page && !drained) {
1980 drain_all_pages();
1981 drained = true;
1982 goto retry;
1983 }
1984
11e33f6a
MG
1985 return page;
1986}
1987
1da177e4 1988/*
11e33f6a
MG
1989 * This is called in the allocator slow-path if the allocation request is of
1990 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1991 */
11e33f6a
MG
1992static inline struct page *
1993__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1994 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1995 nodemask_t *nodemask, struct zone *preferred_zone,
1996 int migratetype)
11e33f6a
MG
1997{
1998 struct page *page;
1999
2000 do {
2001 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2002 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2003 preferred_zone, migratetype);
11e33f6a
MG
2004
2005 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2006 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2007 } while (!page && (gfp_mask & __GFP_NOFAIL));
2008
2009 return page;
2010}
2011
2012static inline
2013void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2014 enum zone_type high_zoneidx,
2015 enum zone_type classzone_idx)
1da177e4 2016{
dd1a239f
MG
2017 struct zoneref *z;
2018 struct zone *zone;
1da177e4 2019
11e33f6a 2020 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2021 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2022}
cf40bd16 2023
341ce06f
PZ
2024static inline int
2025gfp_to_alloc_flags(gfp_t gfp_mask)
2026{
341ce06f
PZ
2027 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2028 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2029
a56f57ff 2030 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2031 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2032
341ce06f
PZ
2033 /*
2034 * The caller may dip into page reserves a bit more if the caller
2035 * cannot run direct reclaim, or if the caller has realtime scheduling
2036 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2037 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2038 */
e6223a3b 2039 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2040
341ce06f 2041 if (!wait) {
5c3240d9
AA
2042 /*
2043 * Not worth trying to allocate harder for
2044 * __GFP_NOMEMALLOC even if it can't schedule.
2045 */
2046 if (!(gfp_mask & __GFP_NOMEMALLOC))
2047 alloc_flags |= ALLOC_HARDER;
523b9458 2048 /*
341ce06f
PZ
2049 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2050 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2051 */
341ce06f 2052 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2053 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2054 alloc_flags |= ALLOC_HARDER;
2055
2056 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2057 if (!in_interrupt() &&
c06b1fca 2058 ((current->flags & PF_MEMALLOC) ||
341ce06f
PZ
2059 unlikely(test_thread_flag(TIF_MEMDIE))))
2060 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2061 }
6b1de916 2062
341ce06f
PZ
2063 return alloc_flags;
2064}
2065
11e33f6a
MG
2066static inline struct page *
2067__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2068 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2069 nodemask_t *nodemask, struct zone *preferred_zone,
2070 int migratetype)
11e33f6a
MG
2071{
2072 const gfp_t wait = gfp_mask & __GFP_WAIT;
2073 struct page *page = NULL;
2074 int alloc_flags;
2075 unsigned long pages_reclaimed = 0;
2076 unsigned long did_some_progress;
77f1fe6b 2077 bool sync_migration = false;
1da177e4 2078
72807a74
MG
2079 /*
2080 * In the slowpath, we sanity check order to avoid ever trying to
2081 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2082 * be using allocators in order of preference for an area that is
2083 * too large.
2084 */
1fc28b70
MG
2085 if (order >= MAX_ORDER) {
2086 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2087 return NULL;
1fc28b70 2088 }
1da177e4 2089
952f3b51
CL
2090 /*
2091 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2092 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2093 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2094 * using a larger set of nodes after it has established that the
2095 * allowed per node queues are empty and that nodes are
2096 * over allocated.
2097 */
2098 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2099 goto nopage;
2100
cc4a6851 2101restart:
32dba98e
AA
2102 if (!(gfp_mask & __GFP_NO_KSWAPD))
2103 wake_all_kswapd(order, zonelist, high_zoneidx,
99504748 2104 zone_idx(preferred_zone));
1da177e4 2105
9bf2229f 2106 /*
7fb1d9fc
RS
2107 * OK, we're below the kswapd watermark and have kicked background
2108 * reclaim. Now things get more complex, so set up alloc_flags according
2109 * to how we want to proceed.
9bf2229f 2110 */
341ce06f 2111 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2112
f33261d7
DR
2113 /*
2114 * Find the true preferred zone if the allocation is unconstrained by
2115 * cpusets.
2116 */
2117 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2118 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2119 &preferred_zone);
2120
cfa54a0f 2121rebalance:
341ce06f 2122 /* This is the last chance, in general, before the goto nopage. */
19770b32 2123 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2124 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2125 preferred_zone, migratetype);
7fb1d9fc
RS
2126 if (page)
2127 goto got_pg;
1da177e4 2128
11e33f6a 2129 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2130 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2131 page = __alloc_pages_high_priority(gfp_mask, order,
2132 zonelist, high_zoneidx, nodemask,
2133 preferred_zone, migratetype);
2134 if (page)
2135 goto got_pg;
1da177e4
LT
2136 }
2137
2138 /* Atomic allocations - we can't balance anything */
2139 if (!wait)
2140 goto nopage;
2141
341ce06f 2142 /* Avoid recursion of direct reclaim */
c06b1fca 2143 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2144 goto nopage;
2145
6583bb64
DR
2146 /* Avoid allocations with no watermarks from looping endlessly */
2147 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2148 goto nopage;
2149
77f1fe6b
MG
2150 /*
2151 * Try direct compaction. The first pass is asynchronous. Subsequent
2152 * attempts after direct reclaim are synchronous
2153 */
56de7263
MG
2154 page = __alloc_pages_direct_compact(gfp_mask, order,
2155 zonelist, high_zoneidx,
2156 nodemask,
2157 alloc_flags, preferred_zone,
77f1fe6b
MG
2158 migratetype, &did_some_progress,
2159 sync_migration);
56de7263
MG
2160 if (page)
2161 goto got_pg;
c6a140bf 2162 sync_migration = true;
56de7263 2163
11e33f6a
MG
2164 /* Try direct reclaim and then allocating */
2165 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2166 zonelist, high_zoneidx,
2167 nodemask,
5117f45d 2168 alloc_flags, preferred_zone,
3dd28266 2169 migratetype, &did_some_progress);
11e33f6a
MG
2170 if (page)
2171 goto got_pg;
1da177e4 2172
e33c3b5e 2173 /*
11e33f6a
MG
2174 * If we failed to make any progress reclaiming, then we are
2175 * running out of options and have to consider going OOM
e33c3b5e 2176 */
11e33f6a
MG
2177 if (!did_some_progress) {
2178 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2179 if (oom_killer_disabled)
2180 goto nopage;
11e33f6a
MG
2181 page = __alloc_pages_may_oom(gfp_mask, order,
2182 zonelist, high_zoneidx,
3dd28266
MG
2183 nodemask, preferred_zone,
2184 migratetype);
11e33f6a
MG
2185 if (page)
2186 goto got_pg;
1da177e4 2187
03668b3c
DR
2188 if (!(gfp_mask & __GFP_NOFAIL)) {
2189 /*
2190 * The oom killer is not called for high-order
2191 * allocations that may fail, so if no progress
2192 * is being made, there are no other options and
2193 * retrying is unlikely to help.
2194 */
2195 if (order > PAGE_ALLOC_COSTLY_ORDER)
2196 goto nopage;
2197 /*
2198 * The oom killer is not called for lowmem
2199 * allocations to prevent needlessly killing
2200 * innocent tasks.
2201 */
2202 if (high_zoneidx < ZONE_NORMAL)
2203 goto nopage;
2204 }
e2c55dc8 2205
ff0ceb9d
DR
2206 goto restart;
2207 }
1da177e4
LT
2208 }
2209
11e33f6a 2210 /* Check if we should retry the allocation */
a41f24ea 2211 pages_reclaimed += did_some_progress;
11e33f6a
MG
2212 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2213 /* Wait for some write requests to complete then retry */
0e093d99 2214 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2215 goto rebalance;
3e7d3449
MG
2216 } else {
2217 /*
2218 * High-order allocations do not necessarily loop after
2219 * direct reclaim and reclaim/compaction depends on compaction
2220 * being called after reclaim so call directly if necessary
2221 */
2222 page = __alloc_pages_direct_compact(gfp_mask, order,
2223 zonelist, high_zoneidx,
2224 nodemask,
2225 alloc_flags, preferred_zone,
77f1fe6b
MG
2226 migratetype, &did_some_progress,
2227 sync_migration);
3e7d3449
MG
2228 if (page)
2229 goto got_pg;
1da177e4
LT
2230 }
2231
2232nopage:
a238ab5b 2233 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2234 return page;
1da177e4 2235got_pg:
b1eeab67
VN
2236 if (kmemcheck_enabled)
2237 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2238 return page;
11e33f6a 2239
1da177e4 2240}
11e33f6a
MG
2241
2242/*
2243 * This is the 'heart' of the zoned buddy allocator.
2244 */
2245struct page *
2246__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2247 struct zonelist *zonelist, nodemask_t *nodemask)
2248{
2249 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2250 struct zone *preferred_zone;
11e33f6a 2251 struct page *page;
3dd28266 2252 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2253
dcce284a
BH
2254 gfp_mask &= gfp_allowed_mask;
2255
11e33f6a
MG
2256 lockdep_trace_alloc(gfp_mask);
2257
2258 might_sleep_if(gfp_mask & __GFP_WAIT);
2259
2260 if (should_fail_alloc_page(gfp_mask, order))
2261 return NULL;
2262
2263 /*
2264 * Check the zones suitable for the gfp_mask contain at least one
2265 * valid zone. It's possible to have an empty zonelist as a result
2266 * of GFP_THISNODE and a memoryless node
2267 */
2268 if (unlikely(!zonelist->_zonerefs->zone))
2269 return NULL;
2270
c0ff7453 2271 get_mems_allowed();
5117f45d 2272 /* The preferred zone is used for statistics later */
f33261d7
DR
2273 first_zones_zonelist(zonelist, high_zoneidx,
2274 nodemask ? : &cpuset_current_mems_allowed,
2275 &preferred_zone);
c0ff7453
MX
2276 if (!preferred_zone) {
2277 put_mems_allowed();
5117f45d 2278 return NULL;
c0ff7453 2279 }
5117f45d
MG
2280
2281 /* First allocation attempt */
11e33f6a 2282 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2283 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2284 preferred_zone, migratetype);
11e33f6a
MG
2285 if (unlikely(!page))
2286 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2287 zonelist, high_zoneidx, nodemask,
3dd28266 2288 preferred_zone, migratetype);
c0ff7453 2289 put_mems_allowed();
11e33f6a 2290
4b4f278c 2291 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2292 return page;
1da177e4 2293}
d239171e 2294EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2295
2296/*
2297 * Common helper functions.
2298 */
920c7a5d 2299unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2300{
945a1113
AM
2301 struct page *page;
2302
2303 /*
2304 * __get_free_pages() returns a 32-bit address, which cannot represent
2305 * a highmem page
2306 */
2307 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2308
1da177e4
LT
2309 page = alloc_pages(gfp_mask, order);
2310 if (!page)
2311 return 0;
2312 return (unsigned long) page_address(page);
2313}
1da177e4
LT
2314EXPORT_SYMBOL(__get_free_pages);
2315
920c7a5d 2316unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2317{
945a1113 2318 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2319}
1da177e4
LT
2320EXPORT_SYMBOL(get_zeroed_page);
2321
920c7a5d 2322void __free_pages(struct page *page, unsigned int order)
1da177e4 2323{
b5810039 2324 if (put_page_testzero(page)) {
1da177e4 2325 if (order == 0)
fc91668e 2326 free_hot_cold_page(page, 0);
1da177e4
LT
2327 else
2328 __free_pages_ok(page, order);
2329 }
2330}
2331
2332EXPORT_SYMBOL(__free_pages);
2333
920c7a5d 2334void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2335{
2336 if (addr != 0) {
725d704e 2337 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2338 __free_pages(virt_to_page((void *)addr), order);
2339 }
2340}
2341
2342EXPORT_SYMBOL(free_pages);
2343
ee85c2e1
AK
2344static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2345{
2346 if (addr) {
2347 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2348 unsigned long used = addr + PAGE_ALIGN(size);
2349
2350 split_page(virt_to_page((void *)addr), order);
2351 while (used < alloc_end) {
2352 free_page(used);
2353 used += PAGE_SIZE;
2354 }
2355 }
2356 return (void *)addr;
2357}
2358
2be0ffe2
TT
2359/**
2360 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2361 * @size: the number of bytes to allocate
2362 * @gfp_mask: GFP flags for the allocation
2363 *
2364 * This function is similar to alloc_pages(), except that it allocates the
2365 * minimum number of pages to satisfy the request. alloc_pages() can only
2366 * allocate memory in power-of-two pages.
2367 *
2368 * This function is also limited by MAX_ORDER.
2369 *
2370 * Memory allocated by this function must be released by free_pages_exact().
2371 */
2372void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2373{
2374 unsigned int order = get_order(size);
2375 unsigned long addr;
2376
2377 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2378 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2379}
2380EXPORT_SYMBOL(alloc_pages_exact);
2381
ee85c2e1
AK
2382/**
2383 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2384 * pages on a node.
b5e6ab58 2385 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2386 * @size: the number of bytes to allocate
2387 * @gfp_mask: GFP flags for the allocation
2388 *
2389 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2390 * back.
2391 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2392 * but is not exact.
2393 */
2394void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2395{
2396 unsigned order = get_order(size);
2397 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2398 if (!p)
2399 return NULL;
2400 return make_alloc_exact((unsigned long)page_address(p), order, size);
2401}
2402EXPORT_SYMBOL(alloc_pages_exact_nid);
2403
2be0ffe2
TT
2404/**
2405 * free_pages_exact - release memory allocated via alloc_pages_exact()
2406 * @virt: the value returned by alloc_pages_exact.
2407 * @size: size of allocation, same value as passed to alloc_pages_exact().
2408 *
2409 * Release the memory allocated by a previous call to alloc_pages_exact.
2410 */
2411void free_pages_exact(void *virt, size_t size)
2412{
2413 unsigned long addr = (unsigned long)virt;
2414 unsigned long end = addr + PAGE_ALIGN(size);
2415
2416 while (addr < end) {
2417 free_page(addr);
2418 addr += PAGE_SIZE;
2419 }
2420}
2421EXPORT_SYMBOL(free_pages_exact);
2422
1da177e4
LT
2423static unsigned int nr_free_zone_pages(int offset)
2424{
dd1a239f 2425 struct zoneref *z;
54a6eb5c
MG
2426 struct zone *zone;
2427
e310fd43 2428 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2429 unsigned int sum = 0;
2430
0e88460d 2431 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2432
54a6eb5c 2433 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2434 unsigned long size = zone->present_pages;
41858966 2435 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2436 if (size > high)
2437 sum += size - high;
1da177e4
LT
2438 }
2439
2440 return sum;
2441}
2442
2443/*
2444 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2445 */
2446unsigned int nr_free_buffer_pages(void)
2447{
af4ca457 2448 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2449}
c2f1a551 2450EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2451
2452/*
2453 * Amount of free RAM allocatable within all zones
2454 */
2455unsigned int nr_free_pagecache_pages(void)
2456{
2a1e274a 2457 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2458}
08e0f6a9
CL
2459
2460static inline void show_node(struct zone *zone)
1da177e4 2461{
08e0f6a9 2462 if (NUMA_BUILD)
25ba77c1 2463 printk("Node %d ", zone_to_nid(zone));
1da177e4 2464}
1da177e4 2465
1da177e4
LT
2466void si_meminfo(struct sysinfo *val)
2467{
2468 val->totalram = totalram_pages;
2469 val->sharedram = 0;
d23ad423 2470 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2471 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2472 val->totalhigh = totalhigh_pages;
2473 val->freehigh = nr_free_highpages();
1da177e4
LT
2474 val->mem_unit = PAGE_SIZE;
2475}
2476
2477EXPORT_SYMBOL(si_meminfo);
2478
2479#ifdef CONFIG_NUMA
2480void si_meminfo_node(struct sysinfo *val, int nid)
2481{
2482 pg_data_t *pgdat = NODE_DATA(nid);
2483
2484 val->totalram = pgdat->node_present_pages;
d23ad423 2485 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2486#ifdef CONFIG_HIGHMEM
1da177e4 2487 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2488 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2489 NR_FREE_PAGES);
98d2b0eb
CL
2490#else
2491 val->totalhigh = 0;
2492 val->freehigh = 0;
2493#endif
1da177e4
LT
2494 val->mem_unit = PAGE_SIZE;
2495}
2496#endif
2497
ddd588b5 2498/*
7bf02ea2
DR
2499 * Determine whether the node should be displayed or not, depending on whether
2500 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2501 */
7bf02ea2 2502bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2503{
2504 bool ret = false;
2505
2506 if (!(flags & SHOW_MEM_FILTER_NODES))
2507 goto out;
2508
2509 get_mems_allowed();
7bf02ea2 2510 ret = !node_isset(nid, cpuset_current_mems_allowed);
ddd588b5
DR
2511 put_mems_allowed();
2512out:
2513 return ret;
2514}
2515
1da177e4
LT
2516#define K(x) ((x) << (PAGE_SHIFT-10))
2517
2518/*
2519 * Show free area list (used inside shift_scroll-lock stuff)
2520 * We also calculate the percentage fragmentation. We do this by counting the
2521 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2522 * Suppresses nodes that are not allowed by current's cpuset if
2523 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2524 */
7bf02ea2 2525void show_free_areas(unsigned int filter)
1da177e4 2526{
c7241913 2527 int cpu;
1da177e4
LT
2528 struct zone *zone;
2529
ee99c71c 2530 for_each_populated_zone(zone) {
7bf02ea2 2531 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2532 continue;
c7241913
JS
2533 show_node(zone);
2534 printk("%s per-cpu:\n", zone->name);
1da177e4 2535
6b482c67 2536 for_each_online_cpu(cpu) {
1da177e4
LT
2537 struct per_cpu_pageset *pageset;
2538
99dcc3e5 2539 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2540
3dfa5721
CL
2541 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2542 cpu, pageset->pcp.high,
2543 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2544 }
2545 }
2546
a731286d
KM
2547 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2548 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2549 " unevictable:%lu"
b76146ed 2550 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2551 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2552 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2553 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2554 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2555 global_page_state(NR_ISOLATED_ANON),
2556 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2557 global_page_state(NR_INACTIVE_FILE),
a731286d 2558 global_page_state(NR_ISOLATED_FILE),
7b854121 2559 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2560 global_page_state(NR_FILE_DIRTY),
ce866b34 2561 global_page_state(NR_WRITEBACK),
fd39fc85 2562 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2563 global_page_state(NR_FREE_PAGES),
3701b033
KM
2564 global_page_state(NR_SLAB_RECLAIMABLE),
2565 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2566 global_page_state(NR_FILE_MAPPED),
4b02108a 2567 global_page_state(NR_SHMEM),
a25700a5
AM
2568 global_page_state(NR_PAGETABLE),
2569 global_page_state(NR_BOUNCE));
1da177e4 2570
ee99c71c 2571 for_each_populated_zone(zone) {
1da177e4
LT
2572 int i;
2573
7bf02ea2 2574 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2575 continue;
1da177e4
LT
2576 show_node(zone);
2577 printk("%s"
2578 " free:%lukB"
2579 " min:%lukB"
2580 " low:%lukB"
2581 " high:%lukB"
4f98a2fe
RR
2582 " active_anon:%lukB"
2583 " inactive_anon:%lukB"
2584 " active_file:%lukB"
2585 " inactive_file:%lukB"
7b854121 2586 " unevictable:%lukB"
a731286d
KM
2587 " isolated(anon):%lukB"
2588 " isolated(file):%lukB"
1da177e4 2589 " present:%lukB"
4a0aa73f
KM
2590 " mlocked:%lukB"
2591 " dirty:%lukB"
2592 " writeback:%lukB"
2593 " mapped:%lukB"
4b02108a 2594 " shmem:%lukB"
4a0aa73f
KM
2595 " slab_reclaimable:%lukB"
2596 " slab_unreclaimable:%lukB"
c6a7f572 2597 " kernel_stack:%lukB"
4a0aa73f
KM
2598 " pagetables:%lukB"
2599 " unstable:%lukB"
2600 " bounce:%lukB"
2601 " writeback_tmp:%lukB"
1da177e4
LT
2602 " pages_scanned:%lu"
2603 " all_unreclaimable? %s"
2604 "\n",
2605 zone->name,
88f5acf8 2606 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2607 K(min_wmark_pages(zone)),
2608 K(low_wmark_pages(zone)),
2609 K(high_wmark_pages(zone)),
4f98a2fe
RR
2610 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2611 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2612 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2613 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2614 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2615 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2616 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2617 K(zone->present_pages),
4a0aa73f
KM
2618 K(zone_page_state(zone, NR_MLOCK)),
2619 K(zone_page_state(zone, NR_FILE_DIRTY)),
2620 K(zone_page_state(zone, NR_WRITEBACK)),
2621 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2622 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2623 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2624 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2625 zone_page_state(zone, NR_KERNEL_STACK) *
2626 THREAD_SIZE / 1024,
4a0aa73f
KM
2627 K(zone_page_state(zone, NR_PAGETABLE)),
2628 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2629 K(zone_page_state(zone, NR_BOUNCE)),
2630 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2631 zone->pages_scanned,
93e4a89a 2632 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2633 );
2634 printk("lowmem_reserve[]:");
2635 for (i = 0; i < MAX_NR_ZONES; i++)
2636 printk(" %lu", zone->lowmem_reserve[i]);
2637 printk("\n");
2638 }
2639
ee99c71c 2640 for_each_populated_zone(zone) {
8f9de51a 2641 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2642
7bf02ea2 2643 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2644 continue;
1da177e4
LT
2645 show_node(zone);
2646 printk("%s: ", zone->name);
1da177e4
LT
2647
2648 spin_lock_irqsave(&zone->lock, flags);
2649 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2650 nr[order] = zone->free_area[order].nr_free;
2651 total += nr[order] << order;
1da177e4
LT
2652 }
2653 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2654 for (order = 0; order < MAX_ORDER; order++)
2655 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2656 printk("= %lukB\n", K(total));
2657 }
2658
e6f3602d
LW
2659 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2660
1da177e4
LT
2661 show_swap_cache_info();
2662}
2663
19770b32
MG
2664static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2665{
2666 zoneref->zone = zone;
2667 zoneref->zone_idx = zone_idx(zone);
2668}
2669
1da177e4
LT
2670/*
2671 * Builds allocation fallback zone lists.
1a93205b
CL
2672 *
2673 * Add all populated zones of a node to the zonelist.
1da177e4 2674 */
f0c0b2b8
KH
2675static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2676 int nr_zones, enum zone_type zone_type)
1da177e4 2677{
1a93205b
CL
2678 struct zone *zone;
2679
98d2b0eb 2680 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2681 zone_type++;
02a68a5e
CL
2682
2683 do {
2f6726e5 2684 zone_type--;
070f8032 2685 zone = pgdat->node_zones + zone_type;
1a93205b 2686 if (populated_zone(zone)) {
dd1a239f
MG
2687 zoneref_set_zone(zone,
2688 &zonelist->_zonerefs[nr_zones++]);
070f8032 2689 check_highest_zone(zone_type);
1da177e4 2690 }
02a68a5e 2691
2f6726e5 2692 } while (zone_type);
070f8032 2693 return nr_zones;
1da177e4
LT
2694}
2695
f0c0b2b8
KH
2696
2697/*
2698 * zonelist_order:
2699 * 0 = automatic detection of better ordering.
2700 * 1 = order by ([node] distance, -zonetype)
2701 * 2 = order by (-zonetype, [node] distance)
2702 *
2703 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2704 * the same zonelist. So only NUMA can configure this param.
2705 */
2706#define ZONELIST_ORDER_DEFAULT 0
2707#define ZONELIST_ORDER_NODE 1
2708#define ZONELIST_ORDER_ZONE 2
2709
2710/* zonelist order in the kernel.
2711 * set_zonelist_order() will set this to NODE or ZONE.
2712 */
2713static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2714static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2715
2716
1da177e4 2717#ifdef CONFIG_NUMA
f0c0b2b8
KH
2718/* The value user specified ....changed by config */
2719static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2720/* string for sysctl */
2721#define NUMA_ZONELIST_ORDER_LEN 16
2722char numa_zonelist_order[16] = "default";
2723
2724/*
2725 * interface for configure zonelist ordering.
2726 * command line option "numa_zonelist_order"
2727 * = "[dD]efault - default, automatic configuration.
2728 * = "[nN]ode - order by node locality, then by zone within node
2729 * = "[zZ]one - order by zone, then by locality within zone
2730 */
2731
2732static int __parse_numa_zonelist_order(char *s)
2733{
2734 if (*s == 'd' || *s == 'D') {
2735 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2736 } else if (*s == 'n' || *s == 'N') {
2737 user_zonelist_order = ZONELIST_ORDER_NODE;
2738 } else if (*s == 'z' || *s == 'Z') {
2739 user_zonelist_order = ZONELIST_ORDER_ZONE;
2740 } else {
2741 printk(KERN_WARNING
2742 "Ignoring invalid numa_zonelist_order value: "
2743 "%s\n", s);
2744 return -EINVAL;
2745 }
2746 return 0;
2747}
2748
2749static __init int setup_numa_zonelist_order(char *s)
2750{
ecb256f8
VL
2751 int ret;
2752
2753 if (!s)
2754 return 0;
2755
2756 ret = __parse_numa_zonelist_order(s);
2757 if (ret == 0)
2758 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2759
2760 return ret;
f0c0b2b8
KH
2761}
2762early_param("numa_zonelist_order", setup_numa_zonelist_order);
2763
2764/*
2765 * sysctl handler for numa_zonelist_order
2766 */
2767int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2768 void __user *buffer, size_t *length,
f0c0b2b8
KH
2769 loff_t *ppos)
2770{
2771 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2772 int ret;
443c6f14 2773 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2774
443c6f14 2775 mutex_lock(&zl_order_mutex);
f0c0b2b8 2776 if (write)
443c6f14 2777 strcpy(saved_string, (char*)table->data);
8d65af78 2778 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2779 if (ret)
443c6f14 2780 goto out;
f0c0b2b8
KH
2781 if (write) {
2782 int oldval = user_zonelist_order;
2783 if (__parse_numa_zonelist_order((char*)table->data)) {
2784 /*
2785 * bogus value. restore saved string
2786 */
2787 strncpy((char*)table->data, saved_string,
2788 NUMA_ZONELIST_ORDER_LEN);
2789 user_zonelist_order = oldval;
4eaf3f64
HL
2790 } else if (oldval != user_zonelist_order) {
2791 mutex_lock(&zonelists_mutex);
1f522509 2792 build_all_zonelists(NULL);
4eaf3f64
HL
2793 mutex_unlock(&zonelists_mutex);
2794 }
f0c0b2b8 2795 }
443c6f14
AK
2796out:
2797 mutex_unlock(&zl_order_mutex);
2798 return ret;
f0c0b2b8
KH
2799}
2800
2801
62bc62a8 2802#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2803static int node_load[MAX_NUMNODES];
2804
1da177e4 2805/**
4dc3b16b 2806 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2807 * @node: node whose fallback list we're appending
2808 * @used_node_mask: nodemask_t of already used nodes
2809 *
2810 * We use a number of factors to determine which is the next node that should
2811 * appear on a given node's fallback list. The node should not have appeared
2812 * already in @node's fallback list, and it should be the next closest node
2813 * according to the distance array (which contains arbitrary distance values
2814 * from each node to each node in the system), and should also prefer nodes
2815 * with no CPUs, since presumably they'll have very little allocation pressure
2816 * on them otherwise.
2817 * It returns -1 if no node is found.
2818 */
f0c0b2b8 2819static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2820{
4cf808eb 2821 int n, val;
1da177e4
LT
2822 int min_val = INT_MAX;
2823 int best_node = -1;
a70f7302 2824 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2825
4cf808eb
LT
2826 /* Use the local node if we haven't already */
2827 if (!node_isset(node, *used_node_mask)) {
2828 node_set(node, *used_node_mask);
2829 return node;
2830 }
1da177e4 2831
37b07e41 2832 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2833
2834 /* Don't want a node to appear more than once */
2835 if (node_isset(n, *used_node_mask))
2836 continue;
2837
1da177e4
LT
2838 /* Use the distance array to find the distance */
2839 val = node_distance(node, n);
2840
4cf808eb
LT
2841 /* Penalize nodes under us ("prefer the next node") */
2842 val += (n < node);
2843
1da177e4 2844 /* Give preference to headless and unused nodes */
a70f7302
RR
2845 tmp = cpumask_of_node(n);
2846 if (!cpumask_empty(tmp))
1da177e4
LT
2847 val += PENALTY_FOR_NODE_WITH_CPUS;
2848
2849 /* Slight preference for less loaded node */
2850 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2851 val += node_load[n];
2852
2853 if (val < min_val) {
2854 min_val = val;
2855 best_node = n;
2856 }
2857 }
2858
2859 if (best_node >= 0)
2860 node_set(best_node, *used_node_mask);
2861
2862 return best_node;
2863}
2864
f0c0b2b8
KH
2865
2866/*
2867 * Build zonelists ordered by node and zones within node.
2868 * This results in maximum locality--normal zone overflows into local
2869 * DMA zone, if any--but risks exhausting DMA zone.
2870 */
2871static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2872{
f0c0b2b8 2873 int j;
1da177e4 2874 struct zonelist *zonelist;
f0c0b2b8 2875
54a6eb5c 2876 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2877 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2878 ;
2879 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2880 MAX_NR_ZONES - 1);
dd1a239f
MG
2881 zonelist->_zonerefs[j].zone = NULL;
2882 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2883}
2884
523b9458
CL
2885/*
2886 * Build gfp_thisnode zonelists
2887 */
2888static void build_thisnode_zonelists(pg_data_t *pgdat)
2889{
523b9458
CL
2890 int j;
2891 struct zonelist *zonelist;
2892
54a6eb5c
MG
2893 zonelist = &pgdat->node_zonelists[1];
2894 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2895 zonelist->_zonerefs[j].zone = NULL;
2896 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2897}
2898
f0c0b2b8
KH
2899/*
2900 * Build zonelists ordered by zone and nodes within zones.
2901 * This results in conserving DMA zone[s] until all Normal memory is
2902 * exhausted, but results in overflowing to remote node while memory
2903 * may still exist in local DMA zone.
2904 */
2905static int node_order[MAX_NUMNODES];
2906
2907static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2908{
f0c0b2b8
KH
2909 int pos, j, node;
2910 int zone_type; /* needs to be signed */
2911 struct zone *z;
2912 struct zonelist *zonelist;
2913
54a6eb5c
MG
2914 zonelist = &pgdat->node_zonelists[0];
2915 pos = 0;
2916 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2917 for (j = 0; j < nr_nodes; j++) {
2918 node = node_order[j];
2919 z = &NODE_DATA(node)->node_zones[zone_type];
2920 if (populated_zone(z)) {
dd1a239f
MG
2921 zoneref_set_zone(z,
2922 &zonelist->_zonerefs[pos++]);
54a6eb5c 2923 check_highest_zone(zone_type);
f0c0b2b8
KH
2924 }
2925 }
f0c0b2b8 2926 }
dd1a239f
MG
2927 zonelist->_zonerefs[pos].zone = NULL;
2928 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2929}
2930
2931static int default_zonelist_order(void)
2932{
2933 int nid, zone_type;
2934 unsigned long low_kmem_size,total_size;
2935 struct zone *z;
2936 int average_size;
2937 /*
88393161 2938 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2939 * If they are really small and used heavily, the system can fall
2940 * into OOM very easily.
e325c90f 2941 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2942 */
2943 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2944 low_kmem_size = 0;
2945 total_size = 0;
2946 for_each_online_node(nid) {
2947 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2948 z = &NODE_DATA(nid)->node_zones[zone_type];
2949 if (populated_zone(z)) {
2950 if (zone_type < ZONE_NORMAL)
2951 low_kmem_size += z->present_pages;
2952 total_size += z->present_pages;
e325c90f
DR
2953 } else if (zone_type == ZONE_NORMAL) {
2954 /*
2955 * If any node has only lowmem, then node order
2956 * is preferred to allow kernel allocations
2957 * locally; otherwise, they can easily infringe
2958 * on other nodes when there is an abundance of
2959 * lowmem available to allocate from.
2960 */
2961 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2962 }
2963 }
2964 }
2965 if (!low_kmem_size || /* there are no DMA area. */
2966 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2967 return ZONELIST_ORDER_NODE;
2968 /*
2969 * look into each node's config.
2970 * If there is a node whose DMA/DMA32 memory is very big area on
2971 * local memory, NODE_ORDER may be suitable.
2972 */
37b07e41
LS
2973 average_size = total_size /
2974 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2975 for_each_online_node(nid) {
2976 low_kmem_size = 0;
2977 total_size = 0;
2978 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2979 z = &NODE_DATA(nid)->node_zones[zone_type];
2980 if (populated_zone(z)) {
2981 if (zone_type < ZONE_NORMAL)
2982 low_kmem_size += z->present_pages;
2983 total_size += z->present_pages;
2984 }
2985 }
2986 if (low_kmem_size &&
2987 total_size > average_size && /* ignore small node */
2988 low_kmem_size > total_size * 70/100)
2989 return ZONELIST_ORDER_NODE;
2990 }
2991 return ZONELIST_ORDER_ZONE;
2992}
2993
2994static void set_zonelist_order(void)
2995{
2996 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2997 current_zonelist_order = default_zonelist_order();
2998 else
2999 current_zonelist_order = user_zonelist_order;
3000}
3001
3002static void build_zonelists(pg_data_t *pgdat)
3003{
3004 int j, node, load;
3005 enum zone_type i;
1da177e4 3006 nodemask_t used_mask;
f0c0b2b8
KH
3007 int local_node, prev_node;
3008 struct zonelist *zonelist;
3009 int order = current_zonelist_order;
1da177e4
LT
3010
3011 /* initialize zonelists */
523b9458 3012 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3013 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3014 zonelist->_zonerefs[0].zone = NULL;
3015 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3016 }
3017
3018 /* NUMA-aware ordering of nodes */
3019 local_node = pgdat->node_id;
62bc62a8 3020 load = nr_online_nodes;
1da177e4
LT
3021 prev_node = local_node;
3022 nodes_clear(used_mask);
f0c0b2b8 3023
f0c0b2b8
KH
3024 memset(node_order, 0, sizeof(node_order));
3025 j = 0;
3026
1da177e4 3027 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3028 int distance = node_distance(local_node, node);
3029
3030 /*
3031 * If another node is sufficiently far away then it is better
3032 * to reclaim pages in a zone before going off node.
3033 */
3034 if (distance > RECLAIM_DISTANCE)
3035 zone_reclaim_mode = 1;
3036
1da177e4
LT
3037 /*
3038 * We don't want to pressure a particular node.
3039 * So adding penalty to the first node in same
3040 * distance group to make it round-robin.
3041 */
9eeff239 3042 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3043 node_load[node] = load;
3044
1da177e4
LT
3045 prev_node = node;
3046 load--;
f0c0b2b8
KH
3047 if (order == ZONELIST_ORDER_NODE)
3048 build_zonelists_in_node_order(pgdat, node);
3049 else
3050 node_order[j++] = node; /* remember order */
3051 }
1da177e4 3052
f0c0b2b8
KH
3053 if (order == ZONELIST_ORDER_ZONE) {
3054 /* calculate node order -- i.e., DMA last! */
3055 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3056 }
523b9458
CL
3057
3058 build_thisnode_zonelists(pgdat);
1da177e4
LT
3059}
3060
9276b1bc 3061/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3062static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3063{
54a6eb5c
MG
3064 struct zonelist *zonelist;
3065 struct zonelist_cache *zlc;
dd1a239f 3066 struct zoneref *z;
9276b1bc 3067
54a6eb5c
MG
3068 zonelist = &pgdat->node_zonelists[0];
3069 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3070 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3071 for (z = zonelist->_zonerefs; z->zone; z++)
3072 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3073}
3074
7aac7898
LS
3075#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3076/*
3077 * Return node id of node used for "local" allocations.
3078 * I.e., first node id of first zone in arg node's generic zonelist.
3079 * Used for initializing percpu 'numa_mem', which is used primarily
3080 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3081 */
3082int local_memory_node(int node)
3083{
3084 struct zone *zone;
3085
3086 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3087 gfp_zone(GFP_KERNEL),
3088 NULL,
3089 &zone);
3090 return zone->node;
3091}
3092#endif
f0c0b2b8 3093
1da177e4
LT
3094#else /* CONFIG_NUMA */
3095
f0c0b2b8
KH
3096static void set_zonelist_order(void)
3097{
3098 current_zonelist_order = ZONELIST_ORDER_ZONE;
3099}
3100
3101static void build_zonelists(pg_data_t *pgdat)
1da177e4 3102{
19655d34 3103 int node, local_node;
54a6eb5c
MG
3104 enum zone_type j;
3105 struct zonelist *zonelist;
1da177e4
LT
3106
3107 local_node = pgdat->node_id;
1da177e4 3108
54a6eb5c
MG
3109 zonelist = &pgdat->node_zonelists[0];
3110 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3111
54a6eb5c
MG
3112 /*
3113 * Now we build the zonelist so that it contains the zones
3114 * of all the other nodes.
3115 * We don't want to pressure a particular node, so when
3116 * building the zones for node N, we make sure that the
3117 * zones coming right after the local ones are those from
3118 * node N+1 (modulo N)
3119 */
3120 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3121 if (!node_online(node))
3122 continue;
3123 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3124 MAX_NR_ZONES - 1);
1da177e4 3125 }
54a6eb5c
MG
3126 for (node = 0; node < local_node; node++) {
3127 if (!node_online(node))
3128 continue;
3129 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3130 MAX_NR_ZONES - 1);
3131 }
3132
dd1a239f
MG
3133 zonelist->_zonerefs[j].zone = NULL;
3134 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3135}
3136
9276b1bc 3137/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3138static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3139{
54a6eb5c 3140 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3141}
3142
1da177e4
LT
3143#endif /* CONFIG_NUMA */
3144
99dcc3e5
CL
3145/*
3146 * Boot pageset table. One per cpu which is going to be used for all
3147 * zones and all nodes. The parameters will be set in such a way
3148 * that an item put on a list will immediately be handed over to
3149 * the buddy list. This is safe since pageset manipulation is done
3150 * with interrupts disabled.
3151 *
3152 * The boot_pagesets must be kept even after bootup is complete for
3153 * unused processors and/or zones. They do play a role for bootstrapping
3154 * hotplugged processors.
3155 *
3156 * zoneinfo_show() and maybe other functions do
3157 * not check if the processor is online before following the pageset pointer.
3158 * Other parts of the kernel may not check if the zone is available.
3159 */
3160static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3161static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3162static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3163
4eaf3f64
HL
3164/*
3165 * Global mutex to protect against size modification of zonelists
3166 * as well as to serialize pageset setup for the new populated zone.
3167 */
3168DEFINE_MUTEX(zonelists_mutex);
3169
9b1a4d38 3170/* return values int ....just for stop_machine() */
1f522509 3171static __init_refok int __build_all_zonelists(void *data)
1da177e4 3172{
6811378e 3173 int nid;
99dcc3e5 3174 int cpu;
9276b1bc 3175
7f9cfb31
BL
3176#ifdef CONFIG_NUMA
3177 memset(node_load, 0, sizeof(node_load));
3178#endif
9276b1bc 3179 for_each_online_node(nid) {
7ea1530a
CL
3180 pg_data_t *pgdat = NODE_DATA(nid);
3181
3182 build_zonelists(pgdat);
3183 build_zonelist_cache(pgdat);
9276b1bc 3184 }
99dcc3e5
CL
3185
3186 /*
3187 * Initialize the boot_pagesets that are going to be used
3188 * for bootstrapping processors. The real pagesets for
3189 * each zone will be allocated later when the per cpu
3190 * allocator is available.
3191 *
3192 * boot_pagesets are used also for bootstrapping offline
3193 * cpus if the system is already booted because the pagesets
3194 * are needed to initialize allocators on a specific cpu too.
3195 * F.e. the percpu allocator needs the page allocator which
3196 * needs the percpu allocator in order to allocate its pagesets
3197 * (a chicken-egg dilemma).
3198 */
7aac7898 3199 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3200 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3201
7aac7898
LS
3202#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3203 /*
3204 * We now know the "local memory node" for each node--
3205 * i.e., the node of the first zone in the generic zonelist.
3206 * Set up numa_mem percpu variable for on-line cpus. During
3207 * boot, only the boot cpu should be on-line; we'll init the
3208 * secondary cpus' numa_mem as they come on-line. During
3209 * node/memory hotplug, we'll fixup all on-line cpus.
3210 */
3211 if (cpu_online(cpu))
3212 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3213#endif
3214 }
3215
6811378e
YG
3216 return 0;
3217}
3218
4eaf3f64
HL
3219/*
3220 * Called with zonelists_mutex held always
3221 * unless system_state == SYSTEM_BOOTING.
3222 */
9f6ae448 3223void __ref build_all_zonelists(void *data)
6811378e 3224{
f0c0b2b8
KH
3225 set_zonelist_order();
3226
6811378e 3227 if (system_state == SYSTEM_BOOTING) {
423b41d7 3228 __build_all_zonelists(NULL);
68ad8df4 3229 mminit_verify_zonelist();
6811378e
YG
3230 cpuset_init_current_mems_allowed();
3231 } else {
183ff22b 3232 /* we have to stop all cpus to guarantee there is no user
6811378e 3233 of zonelist */
e9959f0f
KH
3234#ifdef CONFIG_MEMORY_HOTPLUG
3235 if (data)
3236 setup_zone_pageset((struct zone *)data);
3237#endif
3238 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3239 /* cpuset refresh routine should be here */
3240 }
bd1e22b8 3241 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3242 /*
3243 * Disable grouping by mobility if the number of pages in the
3244 * system is too low to allow the mechanism to work. It would be
3245 * more accurate, but expensive to check per-zone. This check is
3246 * made on memory-hotadd so a system can start with mobility
3247 * disabled and enable it later
3248 */
d9c23400 3249 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3250 page_group_by_mobility_disabled = 1;
3251 else
3252 page_group_by_mobility_disabled = 0;
3253
3254 printk("Built %i zonelists in %s order, mobility grouping %s. "
3255 "Total pages: %ld\n",
62bc62a8 3256 nr_online_nodes,
f0c0b2b8 3257 zonelist_order_name[current_zonelist_order],
9ef9acb0 3258 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3259 vm_total_pages);
3260#ifdef CONFIG_NUMA
3261 printk("Policy zone: %s\n", zone_names[policy_zone]);
3262#endif
1da177e4
LT
3263}
3264
3265/*
3266 * Helper functions to size the waitqueue hash table.
3267 * Essentially these want to choose hash table sizes sufficiently
3268 * large so that collisions trying to wait on pages are rare.
3269 * But in fact, the number of active page waitqueues on typical
3270 * systems is ridiculously low, less than 200. So this is even
3271 * conservative, even though it seems large.
3272 *
3273 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3274 * waitqueues, i.e. the size of the waitq table given the number of pages.
3275 */
3276#define PAGES_PER_WAITQUEUE 256
3277
cca448fe 3278#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3279static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3280{
3281 unsigned long size = 1;
3282
3283 pages /= PAGES_PER_WAITQUEUE;
3284
3285 while (size < pages)
3286 size <<= 1;
3287
3288 /*
3289 * Once we have dozens or even hundreds of threads sleeping
3290 * on IO we've got bigger problems than wait queue collision.
3291 * Limit the size of the wait table to a reasonable size.
3292 */
3293 size = min(size, 4096UL);
3294
3295 return max(size, 4UL);
3296}
cca448fe
YG
3297#else
3298/*
3299 * A zone's size might be changed by hot-add, so it is not possible to determine
3300 * a suitable size for its wait_table. So we use the maximum size now.
3301 *
3302 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3303 *
3304 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3305 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3306 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3307 *
3308 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3309 * or more by the traditional way. (See above). It equals:
3310 *
3311 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3312 * ia64(16K page size) : = ( 8G + 4M)byte.
3313 * powerpc (64K page size) : = (32G +16M)byte.
3314 */
3315static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3316{
3317 return 4096UL;
3318}
3319#endif
1da177e4
LT
3320
3321/*
3322 * This is an integer logarithm so that shifts can be used later
3323 * to extract the more random high bits from the multiplicative
3324 * hash function before the remainder is taken.
3325 */
3326static inline unsigned long wait_table_bits(unsigned long size)
3327{
3328 return ffz(~size);
3329}
3330
3331#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3332
6d3163ce
AH
3333/*
3334 * Check if a pageblock contains reserved pages
3335 */
3336static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3337{
3338 unsigned long pfn;
3339
3340 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3341 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3342 return 1;
3343 }
3344 return 0;
3345}
3346
56fd56b8 3347/*
d9c23400 3348 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3349 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3350 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3351 * higher will lead to a bigger reserve which will get freed as contiguous
3352 * blocks as reclaim kicks in
3353 */
3354static void setup_zone_migrate_reserve(struct zone *zone)
3355{
6d3163ce 3356 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3357 struct page *page;
78986a67
MG
3358 unsigned long block_migratetype;
3359 int reserve;
56fd56b8 3360
d0215638
MH
3361 /*
3362 * Get the start pfn, end pfn and the number of blocks to reserve
3363 * We have to be careful to be aligned to pageblock_nr_pages to
3364 * make sure that we always check pfn_valid for the first page in
3365 * the block.
3366 */
56fd56b8
MG
3367 start_pfn = zone->zone_start_pfn;
3368 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3369 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3370 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3371 pageblock_order;
56fd56b8 3372
78986a67
MG
3373 /*
3374 * Reserve blocks are generally in place to help high-order atomic
3375 * allocations that are short-lived. A min_free_kbytes value that
3376 * would result in more than 2 reserve blocks for atomic allocations
3377 * is assumed to be in place to help anti-fragmentation for the
3378 * future allocation of hugepages at runtime.
3379 */
3380 reserve = min(2, reserve);
3381
d9c23400 3382 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3383 if (!pfn_valid(pfn))
3384 continue;
3385 page = pfn_to_page(pfn);
3386
344c790e
AL
3387 /* Watch out for overlapping nodes */
3388 if (page_to_nid(page) != zone_to_nid(zone))
3389 continue;
3390
56fd56b8
MG
3391 block_migratetype = get_pageblock_migratetype(page);
3392
938929f1
MG
3393 /* Only test what is necessary when the reserves are not met */
3394 if (reserve > 0) {
3395 /*
3396 * Blocks with reserved pages will never free, skip
3397 * them.
3398 */
3399 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3400 if (pageblock_is_reserved(pfn, block_end_pfn))
3401 continue;
56fd56b8 3402
938929f1
MG
3403 /* If this block is reserved, account for it */
3404 if (block_migratetype == MIGRATE_RESERVE) {
3405 reserve--;
3406 continue;
3407 }
3408
3409 /* Suitable for reserving if this block is movable */
3410 if (block_migratetype == MIGRATE_MOVABLE) {
3411 set_pageblock_migratetype(page,
3412 MIGRATE_RESERVE);
3413 move_freepages_block(zone, page,
3414 MIGRATE_RESERVE);
3415 reserve--;
3416 continue;
3417 }
56fd56b8
MG
3418 }
3419
3420 /*
3421 * If the reserve is met and this is a previous reserved block,
3422 * take it back
3423 */
3424 if (block_migratetype == MIGRATE_RESERVE) {
3425 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3426 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3427 }
3428 }
3429}
ac0e5b7a 3430
1da177e4
LT
3431/*
3432 * Initially all pages are reserved - free ones are freed
3433 * up by free_all_bootmem() once the early boot process is
3434 * done. Non-atomic initialization, single-pass.
3435 */
c09b4240 3436void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3437 unsigned long start_pfn, enum memmap_context context)
1da177e4 3438{
1da177e4 3439 struct page *page;
29751f69
AW
3440 unsigned long end_pfn = start_pfn + size;
3441 unsigned long pfn;
86051ca5 3442 struct zone *z;
1da177e4 3443
22b31eec
HD
3444 if (highest_memmap_pfn < end_pfn - 1)
3445 highest_memmap_pfn = end_pfn - 1;
3446
86051ca5 3447 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3448 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3449 /*
3450 * There can be holes in boot-time mem_map[]s
3451 * handed to this function. They do not
3452 * exist on hotplugged memory.
3453 */
3454 if (context == MEMMAP_EARLY) {
3455 if (!early_pfn_valid(pfn))
3456 continue;
3457 if (!early_pfn_in_nid(pfn, nid))
3458 continue;
3459 }
d41dee36
AW
3460 page = pfn_to_page(pfn);
3461 set_page_links(page, zone, nid, pfn);
708614e6 3462 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3463 init_page_count(page);
1da177e4
LT
3464 reset_page_mapcount(page);
3465 SetPageReserved(page);
b2a0ac88
MG
3466 /*
3467 * Mark the block movable so that blocks are reserved for
3468 * movable at startup. This will force kernel allocations
3469 * to reserve their blocks rather than leaking throughout
3470 * the address space during boot when many long-lived
56fd56b8
MG
3471 * kernel allocations are made. Later some blocks near
3472 * the start are marked MIGRATE_RESERVE by
3473 * setup_zone_migrate_reserve()
86051ca5
KH
3474 *
3475 * bitmap is created for zone's valid pfn range. but memmap
3476 * can be created for invalid pages (for alignment)
3477 * check here not to call set_pageblock_migratetype() against
3478 * pfn out of zone.
b2a0ac88 3479 */
86051ca5
KH
3480 if ((z->zone_start_pfn <= pfn)
3481 && (pfn < z->zone_start_pfn + z->spanned_pages)
3482 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3483 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3484
1da177e4
LT
3485 INIT_LIST_HEAD(&page->lru);
3486#ifdef WANT_PAGE_VIRTUAL
3487 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3488 if (!is_highmem_idx(zone))
3212c6be 3489 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3490#endif
1da177e4
LT
3491 }
3492}
3493
1e548deb 3494static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3495{
b2a0ac88
MG
3496 int order, t;
3497 for_each_migratetype_order(order, t) {
3498 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3499 zone->free_area[order].nr_free = 0;
3500 }
3501}
3502
3503#ifndef __HAVE_ARCH_MEMMAP_INIT
3504#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3505 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3506#endif
3507
1d6f4e60 3508static int zone_batchsize(struct zone *zone)
e7c8d5c9 3509{
3a6be87f 3510#ifdef CONFIG_MMU
e7c8d5c9
CL
3511 int batch;
3512
3513 /*
3514 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3515 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3516 *
3517 * OK, so we don't know how big the cache is. So guess.
3518 */
3519 batch = zone->present_pages / 1024;
ba56e91c
SR
3520 if (batch * PAGE_SIZE > 512 * 1024)
3521 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3522 batch /= 4; /* We effectively *= 4 below */
3523 if (batch < 1)
3524 batch = 1;
3525
3526 /*
0ceaacc9
NP
3527 * Clamp the batch to a 2^n - 1 value. Having a power
3528 * of 2 value was found to be more likely to have
3529 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3530 *
0ceaacc9
NP
3531 * For example if 2 tasks are alternately allocating
3532 * batches of pages, one task can end up with a lot
3533 * of pages of one half of the possible page colors
3534 * and the other with pages of the other colors.
e7c8d5c9 3535 */
9155203a 3536 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3537
e7c8d5c9 3538 return batch;
3a6be87f
DH
3539
3540#else
3541 /* The deferral and batching of frees should be suppressed under NOMMU
3542 * conditions.
3543 *
3544 * The problem is that NOMMU needs to be able to allocate large chunks
3545 * of contiguous memory as there's no hardware page translation to
3546 * assemble apparent contiguous memory from discontiguous pages.
3547 *
3548 * Queueing large contiguous runs of pages for batching, however,
3549 * causes the pages to actually be freed in smaller chunks. As there
3550 * can be a significant delay between the individual batches being
3551 * recycled, this leads to the once large chunks of space being
3552 * fragmented and becoming unavailable for high-order allocations.
3553 */
3554 return 0;
3555#endif
e7c8d5c9
CL
3556}
3557
b69a7288 3558static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3559{
3560 struct per_cpu_pages *pcp;
5f8dcc21 3561 int migratetype;
2caaad41 3562
1c6fe946
MD
3563 memset(p, 0, sizeof(*p));
3564
3dfa5721 3565 pcp = &p->pcp;
2caaad41 3566 pcp->count = 0;
2caaad41
CL
3567 pcp->high = 6 * batch;
3568 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3569 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3570 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3571}
3572
8ad4b1fb
RS
3573/*
3574 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3575 * to the value high for the pageset p.
3576 */
3577
3578static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3579 unsigned long high)
3580{
3581 struct per_cpu_pages *pcp;
3582
3dfa5721 3583 pcp = &p->pcp;
8ad4b1fb
RS
3584 pcp->high = high;
3585 pcp->batch = max(1UL, high/4);
3586 if ((high/4) > (PAGE_SHIFT * 8))
3587 pcp->batch = PAGE_SHIFT * 8;
3588}
3589
58c2ee40 3590static void setup_zone_pageset(struct zone *zone)
319774e2
WF
3591{
3592 int cpu;
3593
3594 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3595
3596 for_each_possible_cpu(cpu) {
3597 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3598
3599 setup_pageset(pcp, zone_batchsize(zone));
3600
3601 if (percpu_pagelist_fraction)
3602 setup_pagelist_highmark(pcp,
3603 (zone->present_pages /
3604 percpu_pagelist_fraction));
3605 }
3606}
3607
2caaad41 3608/*
99dcc3e5
CL
3609 * Allocate per cpu pagesets and initialize them.
3610 * Before this call only boot pagesets were available.
e7c8d5c9 3611 */
99dcc3e5 3612void __init setup_per_cpu_pageset(void)
e7c8d5c9 3613{
99dcc3e5 3614 struct zone *zone;
e7c8d5c9 3615
319774e2
WF
3616 for_each_populated_zone(zone)
3617 setup_zone_pageset(zone);
e7c8d5c9
CL
3618}
3619
577a32f6 3620static noinline __init_refok
cca448fe 3621int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3622{
3623 int i;
3624 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3625 size_t alloc_size;
ed8ece2e
DH
3626
3627 /*
3628 * The per-page waitqueue mechanism uses hashed waitqueues
3629 * per zone.
3630 */
02b694de
YG
3631 zone->wait_table_hash_nr_entries =
3632 wait_table_hash_nr_entries(zone_size_pages);
3633 zone->wait_table_bits =
3634 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3635 alloc_size = zone->wait_table_hash_nr_entries
3636 * sizeof(wait_queue_head_t);
3637
cd94b9db 3638 if (!slab_is_available()) {
cca448fe 3639 zone->wait_table = (wait_queue_head_t *)
8f389a99 3640 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3641 } else {
3642 /*
3643 * This case means that a zone whose size was 0 gets new memory
3644 * via memory hot-add.
3645 * But it may be the case that a new node was hot-added. In
3646 * this case vmalloc() will not be able to use this new node's
3647 * memory - this wait_table must be initialized to use this new
3648 * node itself as well.
3649 * To use this new node's memory, further consideration will be
3650 * necessary.
3651 */
8691f3a7 3652 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3653 }
3654 if (!zone->wait_table)
3655 return -ENOMEM;
ed8ece2e 3656
02b694de 3657 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3658 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3659
3660 return 0;
ed8ece2e
DH
3661}
3662
112067f0
SL
3663static int __zone_pcp_update(void *data)
3664{
3665 struct zone *zone = data;
3666 int cpu;
3667 unsigned long batch = zone_batchsize(zone), flags;
3668
2d30a1f6 3669 for_each_possible_cpu(cpu) {
112067f0
SL
3670 struct per_cpu_pageset *pset;
3671 struct per_cpu_pages *pcp;
3672
99dcc3e5 3673 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3674 pcp = &pset->pcp;
3675
3676 local_irq_save(flags);
5f8dcc21 3677 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3678 setup_pageset(pset, batch);
3679 local_irq_restore(flags);
3680 }
3681 return 0;
3682}
3683
3684void zone_pcp_update(struct zone *zone)
3685{
3686 stop_machine(__zone_pcp_update, zone, NULL);
3687}
3688
c09b4240 3689static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3690{
99dcc3e5
CL
3691 /*
3692 * per cpu subsystem is not up at this point. The following code
3693 * relies on the ability of the linker to provide the
3694 * offset of a (static) per cpu variable into the per cpu area.
3695 */
3696 zone->pageset = &boot_pageset;
ed8ece2e 3697
f5335c0f 3698 if (zone->present_pages)
99dcc3e5
CL
3699 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3700 zone->name, zone->present_pages,
3701 zone_batchsize(zone));
ed8ece2e
DH
3702}
3703
718127cc
YG
3704__meminit int init_currently_empty_zone(struct zone *zone,
3705 unsigned long zone_start_pfn,
a2f3aa02
DH
3706 unsigned long size,
3707 enum memmap_context context)
ed8ece2e
DH
3708{
3709 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3710 int ret;
3711 ret = zone_wait_table_init(zone, size);
3712 if (ret)
3713 return ret;
ed8ece2e
DH
3714 pgdat->nr_zones = zone_idx(zone) + 1;
3715
ed8ece2e
DH
3716 zone->zone_start_pfn = zone_start_pfn;
3717
708614e6
MG
3718 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3719 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3720 pgdat->node_id,
3721 (unsigned long)zone_idx(zone),
3722 zone_start_pfn, (zone_start_pfn + size));
3723
1e548deb 3724 zone_init_free_lists(zone);
718127cc
YG
3725
3726 return 0;
ed8ece2e
DH
3727}
3728
0ee332c1 3729#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
3730#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3731/*
3732 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3733 * Architectures may implement their own version but if add_active_range()
3734 * was used and there are no special requirements, this is a convenient
3735 * alternative
3736 */
f2dbcfa7 3737int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 3738{
c13291a5
TH
3739 unsigned long start_pfn, end_pfn;
3740 int i, nid;
c713216d 3741
c13291a5 3742 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 3743 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 3744 return nid;
cc2559bc
KH
3745 /* This is a memory hole */
3746 return -1;
c713216d
MG
3747}
3748#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3749
f2dbcfa7
KH
3750int __meminit early_pfn_to_nid(unsigned long pfn)
3751{
cc2559bc
KH
3752 int nid;
3753
3754 nid = __early_pfn_to_nid(pfn);
3755 if (nid >= 0)
3756 return nid;
3757 /* just returns 0 */
3758 return 0;
f2dbcfa7
KH
3759}
3760
cc2559bc
KH
3761#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3762bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3763{
3764 int nid;
3765
3766 nid = __early_pfn_to_nid(pfn);
3767 if (nid >= 0 && nid != node)
3768 return false;
3769 return true;
3770}
3771#endif
f2dbcfa7 3772
c713216d
MG
3773/**
3774 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3775 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3776 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3777 *
3778 * If an architecture guarantees that all ranges registered with
3779 * add_active_ranges() contain no holes and may be freed, this
3780 * this function may be used instead of calling free_bootmem() manually.
3781 */
c13291a5 3782void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 3783{
c13291a5
TH
3784 unsigned long start_pfn, end_pfn;
3785 int i, this_nid;
edbe7d23 3786
c13291a5
TH
3787 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
3788 start_pfn = min(start_pfn, max_low_pfn);
3789 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 3790
c13291a5
TH
3791 if (start_pfn < end_pfn)
3792 free_bootmem_node(NODE_DATA(this_nid),
3793 PFN_PHYS(start_pfn),
3794 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 3795 }
edbe7d23 3796}
edbe7d23 3797
08677214
YL
3798int __init add_from_early_node_map(struct range *range, int az,
3799 int nr_range, int nid)
3800{
c13291a5 3801 unsigned long start_pfn, end_pfn;
08677214 3802 int i;
08677214
YL
3803
3804 /* need to go over early_node_map to find out good range for node */
c13291a5
TH
3805 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL)
3806 nr_range = add_range(range, az, nr_range, start_pfn, end_pfn);
08677214
YL
3807 return nr_range;
3808}
3809
c713216d
MG
3810/**
3811 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3812 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3813 *
3814 * If an architecture guarantees that all ranges registered with
3815 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3816 * function may be used instead of calling memory_present() manually.
c713216d
MG
3817 */
3818void __init sparse_memory_present_with_active_regions(int nid)
3819{
c13291a5
TH
3820 unsigned long start_pfn, end_pfn;
3821 int i, this_nid;
c713216d 3822
c13291a5
TH
3823 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
3824 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
3825}
3826
3827/**
3828 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3829 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3830 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3831 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3832 *
3833 * It returns the start and end page frame of a node based on information
3834 * provided by an arch calling add_active_range(). If called for a node
3835 * with no available memory, a warning is printed and the start and end
88ca3b94 3836 * PFNs will be 0.
c713216d 3837 */
a3142c8e 3838void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3839 unsigned long *start_pfn, unsigned long *end_pfn)
3840{
c13291a5 3841 unsigned long this_start_pfn, this_end_pfn;
c713216d 3842 int i;
c13291a5 3843
c713216d
MG
3844 *start_pfn = -1UL;
3845 *end_pfn = 0;
3846
c13291a5
TH
3847 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
3848 *start_pfn = min(*start_pfn, this_start_pfn);
3849 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
3850 }
3851
633c0666 3852 if (*start_pfn == -1UL)
c713216d 3853 *start_pfn = 0;
c713216d
MG
3854}
3855
2a1e274a
MG
3856/*
3857 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3858 * assumption is made that zones within a node are ordered in monotonic
3859 * increasing memory addresses so that the "highest" populated zone is used
3860 */
b69a7288 3861static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3862{
3863 int zone_index;
3864 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3865 if (zone_index == ZONE_MOVABLE)
3866 continue;
3867
3868 if (arch_zone_highest_possible_pfn[zone_index] >
3869 arch_zone_lowest_possible_pfn[zone_index])
3870 break;
3871 }
3872
3873 VM_BUG_ON(zone_index == -1);
3874 movable_zone = zone_index;
3875}
3876
3877/*
3878 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 3879 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
3880 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3881 * in each node depending on the size of each node and how evenly kernelcore
3882 * is distributed. This helper function adjusts the zone ranges
3883 * provided by the architecture for a given node by using the end of the
3884 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3885 * zones within a node are in order of monotonic increases memory addresses
3886 */
b69a7288 3887static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3888 unsigned long zone_type,
3889 unsigned long node_start_pfn,
3890 unsigned long node_end_pfn,
3891 unsigned long *zone_start_pfn,
3892 unsigned long *zone_end_pfn)
3893{
3894 /* Only adjust if ZONE_MOVABLE is on this node */
3895 if (zone_movable_pfn[nid]) {
3896 /* Size ZONE_MOVABLE */
3897 if (zone_type == ZONE_MOVABLE) {
3898 *zone_start_pfn = zone_movable_pfn[nid];
3899 *zone_end_pfn = min(node_end_pfn,
3900 arch_zone_highest_possible_pfn[movable_zone]);
3901
3902 /* Adjust for ZONE_MOVABLE starting within this range */
3903 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3904 *zone_end_pfn > zone_movable_pfn[nid]) {
3905 *zone_end_pfn = zone_movable_pfn[nid];
3906
3907 /* Check if this whole range is within ZONE_MOVABLE */
3908 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3909 *zone_start_pfn = *zone_end_pfn;
3910 }
3911}
3912
c713216d
MG
3913/*
3914 * Return the number of pages a zone spans in a node, including holes
3915 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3916 */
6ea6e688 3917static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3918 unsigned long zone_type,
3919 unsigned long *ignored)
3920{
3921 unsigned long node_start_pfn, node_end_pfn;
3922 unsigned long zone_start_pfn, zone_end_pfn;
3923
3924 /* Get the start and end of the node and zone */
3925 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3926 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3927 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3928 adjust_zone_range_for_zone_movable(nid, zone_type,
3929 node_start_pfn, node_end_pfn,
3930 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3931
3932 /* Check that this node has pages within the zone's required range */
3933 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3934 return 0;
3935
3936 /* Move the zone boundaries inside the node if necessary */
3937 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3938 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3939
3940 /* Return the spanned pages */
3941 return zone_end_pfn - zone_start_pfn;
3942}
3943
3944/*
3945 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3946 * then all holes in the requested range will be accounted for.
c713216d 3947 */
32996250 3948unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3949 unsigned long range_start_pfn,
3950 unsigned long range_end_pfn)
3951{
96e907d1
TH
3952 unsigned long nr_absent = range_end_pfn - range_start_pfn;
3953 unsigned long start_pfn, end_pfn;
3954 int i;
c713216d 3955
96e907d1
TH
3956 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
3957 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
3958 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
3959 nr_absent -= end_pfn - start_pfn;
c713216d 3960 }
96e907d1 3961 return nr_absent;
c713216d
MG
3962}
3963
3964/**
3965 * absent_pages_in_range - Return number of page frames in holes within a range
3966 * @start_pfn: The start PFN to start searching for holes
3967 * @end_pfn: The end PFN to stop searching for holes
3968 *
88ca3b94 3969 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3970 */
3971unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3972 unsigned long end_pfn)
3973{
3974 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3975}
3976
3977/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3978static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3979 unsigned long zone_type,
3980 unsigned long *ignored)
3981{
96e907d1
TH
3982 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
3983 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
3984 unsigned long node_start_pfn, node_end_pfn;
3985 unsigned long zone_start_pfn, zone_end_pfn;
3986
3987 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
3988 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
3989 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 3990
2a1e274a
MG
3991 adjust_zone_range_for_zone_movable(nid, zone_type,
3992 node_start_pfn, node_end_pfn,
3993 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3994 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3995}
0e0b864e 3996
0ee332c1 3997#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 3998static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3999 unsigned long zone_type,
4000 unsigned long *zones_size)
4001{
4002 return zones_size[zone_type];
4003}
4004
6ea6e688 4005static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4006 unsigned long zone_type,
4007 unsigned long *zholes_size)
4008{
4009 if (!zholes_size)
4010 return 0;
4011
4012 return zholes_size[zone_type];
4013}
0e0b864e 4014
0ee332c1 4015#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4016
a3142c8e 4017static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4018 unsigned long *zones_size, unsigned long *zholes_size)
4019{
4020 unsigned long realtotalpages, totalpages = 0;
4021 enum zone_type i;
4022
4023 for (i = 0; i < MAX_NR_ZONES; i++)
4024 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4025 zones_size);
4026 pgdat->node_spanned_pages = totalpages;
4027
4028 realtotalpages = totalpages;
4029 for (i = 0; i < MAX_NR_ZONES; i++)
4030 realtotalpages -=
4031 zone_absent_pages_in_node(pgdat->node_id, i,
4032 zholes_size);
4033 pgdat->node_present_pages = realtotalpages;
4034 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4035 realtotalpages);
4036}
4037
835c134e
MG
4038#ifndef CONFIG_SPARSEMEM
4039/*
4040 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4041 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4042 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4043 * round what is now in bits to nearest long in bits, then return it in
4044 * bytes.
4045 */
4046static unsigned long __init usemap_size(unsigned long zonesize)
4047{
4048 unsigned long usemapsize;
4049
d9c23400
MG
4050 usemapsize = roundup(zonesize, pageblock_nr_pages);
4051 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4052 usemapsize *= NR_PAGEBLOCK_BITS;
4053 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4054
4055 return usemapsize / 8;
4056}
4057
4058static void __init setup_usemap(struct pglist_data *pgdat,
4059 struct zone *zone, unsigned long zonesize)
4060{
4061 unsigned long usemapsize = usemap_size(zonesize);
4062 zone->pageblock_flags = NULL;
58a01a45 4063 if (usemapsize)
8f389a99
YL
4064 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4065 usemapsize);
835c134e
MG
4066}
4067#else
fa9f90be 4068static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4069 struct zone *zone, unsigned long zonesize) {}
4070#endif /* CONFIG_SPARSEMEM */
4071
d9c23400 4072#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4073
4074/* Return a sensible default order for the pageblock size. */
4075static inline int pageblock_default_order(void)
4076{
4077 if (HPAGE_SHIFT > PAGE_SHIFT)
4078 return HUGETLB_PAGE_ORDER;
4079
4080 return MAX_ORDER-1;
4081}
4082
d9c23400
MG
4083/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4084static inline void __init set_pageblock_order(unsigned int order)
4085{
4086 /* Check that pageblock_nr_pages has not already been setup */
4087 if (pageblock_order)
4088 return;
4089
4090 /*
4091 * Assume the largest contiguous order of interest is a huge page.
4092 * This value may be variable depending on boot parameters on IA64
4093 */
4094 pageblock_order = order;
4095}
4096#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4097
ba72cb8c
MG
4098/*
4099 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4100 * and pageblock_default_order() are unused as pageblock_order is set
4101 * at compile-time. See include/linux/pageblock-flags.h for the values of
4102 * pageblock_order based on the kernel config
4103 */
4104static inline int pageblock_default_order(unsigned int order)
4105{
4106 return MAX_ORDER-1;
4107}
d9c23400
MG
4108#define set_pageblock_order(x) do {} while (0)
4109
4110#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4111
1da177e4
LT
4112/*
4113 * Set up the zone data structures:
4114 * - mark all pages reserved
4115 * - mark all memory queues empty
4116 * - clear the memory bitmaps
4117 */
b5a0e011 4118static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4119 unsigned long *zones_size, unsigned long *zholes_size)
4120{
2f1b6248 4121 enum zone_type j;
ed8ece2e 4122 int nid = pgdat->node_id;
1da177e4 4123 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4124 int ret;
1da177e4 4125
208d54e5 4126 pgdat_resize_init(pgdat);
1da177e4
LT
4127 pgdat->nr_zones = 0;
4128 init_waitqueue_head(&pgdat->kswapd_wait);
4129 pgdat->kswapd_max_order = 0;
52d4b9ac 4130 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4131
4132 for (j = 0; j < MAX_NR_ZONES; j++) {
4133 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4134 unsigned long size, realsize, memmap_pages;
b69408e8 4135 enum lru_list l;
1da177e4 4136
c713216d
MG
4137 size = zone_spanned_pages_in_node(nid, j, zones_size);
4138 realsize = size - zone_absent_pages_in_node(nid, j,
4139 zholes_size);
1da177e4 4140
0e0b864e
MG
4141 /*
4142 * Adjust realsize so that it accounts for how much memory
4143 * is used by this zone for memmap. This affects the watermark
4144 * and per-cpu initialisations
4145 */
f7232154
JW
4146 memmap_pages =
4147 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4148 if (realsize >= memmap_pages) {
4149 realsize -= memmap_pages;
5594c8c8
YL
4150 if (memmap_pages)
4151 printk(KERN_DEBUG
4152 " %s zone: %lu pages used for memmap\n",
4153 zone_names[j], memmap_pages);
0e0b864e
MG
4154 } else
4155 printk(KERN_WARNING
4156 " %s zone: %lu pages exceeds realsize %lu\n",
4157 zone_names[j], memmap_pages, realsize);
4158
6267276f
CL
4159 /* Account for reserved pages */
4160 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4161 realsize -= dma_reserve;
d903ef9f 4162 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4163 zone_names[0], dma_reserve);
0e0b864e
MG
4164 }
4165
98d2b0eb 4166 if (!is_highmem_idx(j))
1da177e4
LT
4167 nr_kernel_pages += realsize;
4168 nr_all_pages += realsize;
4169
4170 zone->spanned_pages = size;
4171 zone->present_pages = realsize;
9614634f 4172#ifdef CONFIG_NUMA
d5f541ed 4173 zone->node = nid;
8417bba4 4174 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4175 / 100;
0ff38490 4176 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4177#endif
1da177e4
LT
4178 zone->name = zone_names[j];
4179 spin_lock_init(&zone->lock);
4180 spin_lock_init(&zone->lru_lock);
bdc8cb98 4181 zone_seqlock_init(zone);
1da177e4 4182 zone->zone_pgdat = pgdat;
1da177e4 4183
ed8ece2e 4184 zone_pcp_init(zone);
246e87a9 4185 for_each_lru(l)
b69408e8 4186 INIT_LIST_HEAD(&zone->lru[l].list);
6e901571
KM
4187 zone->reclaim_stat.recent_rotated[0] = 0;
4188 zone->reclaim_stat.recent_rotated[1] = 0;
4189 zone->reclaim_stat.recent_scanned[0] = 0;
4190 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4191 zap_zone_vm_stats(zone);
e815af95 4192 zone->flags = 0;
1da177e4
LT
4193 if (!size)
4194 continue;
4195
ba72cb8c 4196 set_pageblock_order(pageblock_default_order());
835c134e 4197 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4198 ret = init_currently_empty_zone(zone, zone_start_pfn,
4199 size, MEMMAP_EARLY);
718127cc 4200 BUG_ON(ret);
76cdd58e 4201 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4202 zone_start_pfn += size;
1da177e4
LT
4203 }
4204}
4205
577a32f6 4206static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4207{
1da177e4
LT
4208 /* Skip empty nodes */
4209 if (!pgdat->node_spanned_pages)
4210 return;
4211
d41dee36 4212#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4213 /* ia64 gets its own node_mem_map, before this, without bootmem */
4214 if (!pgdat->node_mem_map) {
e984bb43 4215 unsigned long size, start, end;
d41dee36
AW
4216 struct page *map;
4217
e984bb43
BP
4218 /*
4219 * The zone's endpoints aren't required to be MAX_ORDER
4220 * aligned but the node_mem_map endpoints must be in order
4221 * for the buddy allocator to function correctly.
4222 */
4223 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4224 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4225 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4226 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4227 map = alloc_remap(pgdat->node_id, size);
4228 if (!map)
8f389a99 4229 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4230 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4231 }
12d810c1 4232#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4233 /*
4234 * With no DISCONTIG, the global mem_map is just set as node 0's
4235 */
c713216d 4236 if (pgdat == NODE_DATA(0)) {
1da177e4 4237 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4238#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4239 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4240 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4241#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4242 }
1da177e4 4243#endif
d41dee36 4244#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4245}
4246
9109fb7b
JW
4247void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4248 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4249{
9109fb7b
JW
4250 pg_data_t *pgdat = NODE_DATA(nid);
4251
1da177e4
LT
4252 pgdat->node_id = nid;
4253 pgdat->node_start_pfn = node_start_pfn;
c713216d 4254 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4255
4256 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4257#ifdef CONFIG_FLAT_NODE_MEM_MAP
4258 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4259 nid, (unsigned long)pgdat,
4260 (unsigned long)pgdat->node_mem_map);
4261#endif
1da177e4
LT
4262
4263 free_area_init_core(pgdat, zones_size, zholes_size);
4264}
4265
0ee332c1 4266#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4267
4268#if MAX_NUMNODES > 1
4269/*
4270 * Figure out the number of possible node ids.
4271 */
4272static void __init setup_nr_node_ids(void)
4273{
4274 unsigned int node;
4275 unsigned int highest = 0;
4276
4277 for_each_node_mask(node, node_possible_map)
4278 highest = node;
4279 nr_node_ids = highest + 1;
4280}
4281#else
4282static inline void setup_nr_node_ids(void)
4283{
4284}
4285#endif
4286
1e01979c
TH
4287/**
4288 * node_map_pfn_alignment - determine the maximum internode alignment
4289 *
4290 * This function should be called after node map is populated and sorted.
4291 * It calculates the maximum power of two alignment which can distinguish
4292 * all the nodes.
4293 *
4294 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4295 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4296 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4297 * shifted, 1GiB is enough and this function will indicate so.
4298 *
4299 * This is used to test whether pfn -> nid mapping of the chosen memory
4300 * model has fine enough granularity to avoid incorrect mapping for the
4301 * populated node map.
4302 *
4303 * Returns the determined alignment in pfn's. 0 if there is no alignment
4304 * requirement (single node).
4305 */
4306unsigned long __init node_map_pfn_alignment(void)
4307{
4308 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4309 unsigned long start, end, mask;
1e01979c 4310 int last_nid = -1;
c13291a5 4311 int i, nid;
1e01979c 4312
c13291a5 4313 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4314 if (!start || last_nid < 0 || last_nid == nid) {
4315 last_nid = nid;
4316 last_end = end;
4317 continue;
4318 }
4319
4320 /*
4321 * Start with a mask granular enough to pin-point to the
4322 * start pfn and tick off bits one-by-one until it becomes
4323 * too coarse to separate the current node from the last.
4324 */
4325 mask = ~((1 << __ffs(start)) - 1);
4326 while (mask && last_end <= (start & (mask << 1)))
4327 mask <<= 1;
4328
4329 /* accumulate all internode masks */
4330 accl_mask |= mask;
4331 }
4332
4333 /* convert mask to number of pages */
4334 return ~accl_mask + 1;
4335}
4336
a6af2bc3 4337/* Find the lowest pfn for a node */
b69a7288 4338static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4339{
a6af2bc3 4340 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4341 unsigned long start_pfn;
4342 int i;
1abbfb41 4343
c13291a5
TH
4344 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4345 min_pfn = min(min_pfn, start_pfn);
c713216d 4346
a6af2bc3
MG
4347 if (min_pfn == ULONG_MAX) {
4348 printk(KERN_WARNING
2bc0d261 4349 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4350 return 0;
4351 }
4352
4353 return min_pfn;
c713216d
MG
4354}
4355
4356/**
4357 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4358 *
4359 * It returns the minimum PFN based on information provided via
88ca3b94 4360 * add_active_range().
c713216d
MG
4361 */
4362unsigned long __init find_min_pfn_with_active_regions(void)
4363{
4364 return find_min_pfn_for_node(MAX_NUMNODES);
4365}
4366
37b07e41
LS
4367/*
4368 * early_calculate_totalpages()
4369 * Sum pages in active regions for movable zone.
4370 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4371 */
484f51f8 4372static unsigned long __init early_calculate_totalpages(void)
7e63efef 4373{
7e63efef 4374 unsigned long totalpages = 0;
c13291a5
TH
4375 unsigned long start_pfn, end_pfn;
4376 int i, nid;
4377
4378 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4379 unsigned long pages = end_pfn - start_pfn;
7e63efef 4380
37b07e41
LS
4381 totalpages += pages;
4382 if (pages)
c13291a5 4383 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4384 }
4385 return totalpages;
7e63efef
MG
4386}
4387
2a1e274a
MG
4388/*
4389 * Find the PFN the Movable zone begins in each node. Kernel memory
4390 * is spread evenly between nodes as long as the nodes have enough
4391 * memory. When they don't, some nodes will have more kernelcore than
4392 * others
4393 */
b69a7288 4394static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4395{
4396 int i, nid;
4397 unsigned long usable_startpfn;
4398 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4399 /* save the state before borrow the nodemask */
4400 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4401 unsigned long totalpages = early_calculate_totalpages();
4402 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4403
7e63efef
MG
4404 /*
4405 * If movablecore was specified, calculate what size of
4406 * kernelcore that corresponds so that memory usable for
4407 * any allocation type is evenly spread. If both kernelcore
4408 * and movablecore are specified, then the value of kernelcore
4409 * will be used for required_kernelcore if it's greater than
4410 * what movablecore would have allowed.
4411 */
4412 if (required_movablecore) {
7e63efef
MG
4413 unsigned long corepages;
4414
4415 /*
4416 * Round-up so that ZONE_MOVABLE is at least as large as what
4417 * was requested by the user
4418 */
4419 required_movablecore =
4420 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4421 corepages = totalpages - required_movablecore;
4422
4423 required_kernelcore = max(required_kernelcore, corepages);
4424 }
4425
2a1e274a
MG
4426 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4427 if (!required_kernelcore)
66918dcd 4428 goto out;
2a1e274a
MG
4429
4430 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4431 find_usable_zone_for_movable();
4432 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4433
4434restart:
4435 /* Spread kernelcore memory as evenly as possible throughout nodes */
4436 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4437 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4438 unsigned long start_pfn, end_pfn;
4439
2a1e274a
MG
4440 /*
4441 * Recalculate kernelcore_node if the division per node
4442 * now exceeds what is necessary to satisfy the requested
4443 * amount of memory for the kernel
4444 */
4445 if (required_kernelcore < kernelcore_node)
4446 kernelcore_node = required_kernelcore / usable_nodes;
4447
4448 /*
4449 * As the map is walked, we track how much memory is usable
4450 * by the kernel using kernelcore_remaining. When it is
4451 * 0, the rest of the node is usable by ZONE_MOVABLE
4452 */
4453 kernelcore_remaining = kernelcore_node;
4454
4455 /* Go through each range of PFNs within this node */
c13291a5 4456 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4457 unsigned long size_pages;
4458
c13291a5 4459 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4460 if (start_pfn >= end_pfn)
4461 continue;
4462
4463 /* Account for what is only usable for kernelcore */
4464 if (start_pfn < usable_startpfn) {
4465 unsigned long kernel_pages;
4466 kernel_pages = min(end_pfn, usable_startpfn)
4467 - start_pfn;
4468
4469 kernelcore_remaining -= min(kernel_pages,
4470 kernelcore_remaining);
4471 required_kernelcore -= min(kernel_pages,
4472 required_kernelcore);
4473
4474 /* Continue if range is now fully accounted */
4475 if (end_pfn <= usable_startpfn) {
4476
4477 /*
4478 * Push zone_movable_pfn to the end so
4479 * that if we have to rebalance
4480 * kernelcore across nodes, we will
4481 * not double account here
4482 */
4483 zone_movable_pfn[nid] = end_pfn;
4484 continue;
4485 }
4486 start_pfn = usable_startpfn;
4487 }
4488
4489 /*
4490 * The usable PFN range for ZONE_MOVABLE is from
4491 * start_pfn->end_pfn. Calculate size_pages as the
4492 * number of pages used as kernelcore
4493 */
4494 size_pages = end_pfn - start_pfn;
4495 if (size_pages > kernelcore_remaining)
4496 size_pages = kernelcore_remaining;
4497 zone_movable_pfn[nid] = start_pfn + size_pages;
4498
4499 /*
4500 * Some kernelcore has been met, update counts and
4501 * break if the kernelcore for this node has been
4502 * satisified
4503 */
4504 required_kernelcore -= min(required_kernelcore,
4505 size_pages);
4506 kernelcore_remaining -= size_pages;
4507 if (!kernelcore_remaining)
4508 break;
4509 }
4510 }
4511
4512 /*
4513 * If there is still required_kernelcore, we do another pass with one
4514 * less node in the count. This will push zone_movable_pfn[nid] further
4515 * along on the nodes that still have memory until kernelcore is
4516 * satisified
4517 */
4518 usable_nodes--;
4519 if (usable_nodes && required_kernelcore > usable_nodes)
4520 goto restart;
4521
4522 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4523 for (nid = 0; nid < MAX_NUMNODES; nid++)
4524 zone_movable_pfn[nid] =
4525 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4526
4527out:
4528 /* restore the node_state */
4529 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4530}
4531
37b07e41
LS
4532/* Any regular memory on that node ? */
4533static void check_for_regular_memory(pg_data_t *pgdat)
4534{
4535#ifdef CONFIG_HIGHMEM
4536 enum zone_type zone_type;
4537
4538 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4539 struct zone *zone = &pgdat->node_zones[zone_type];
4540 if (zone->present_pages)
4541 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4542 }
4543#endif
4544}
4545
c713216d
MG
4546/**
4547 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4548 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4549 *
4550 * This will call free_area_init_node() for each active node in the system.
4551 * Using the page ranges provided by add_active_range(), the size of each
4552 * zone in each node and their holes is calculated. If the maximum PFN
4553 * between two adjacent zones match, it is assumed that the zone is empty.
4554 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4555 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4556 * starts where the previous one ended. For example, ZONE_DMA32 starts
4557 * at arch_max_dma_pfn.
4558 */
4559void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4560{
c13291a5
TH
4561 unsigned long start_pfn, end_pfn;
4562 int i, nid;
a6af2bc3 4563
c713216d
MG
4564 /* Record where the zone boundaries are */
4565 memset(arch_zone_lowest_possible_pfn, 0,
4566 sizeof(arch_zone_lowest_possible_pfn));
4567 memset(arch_zone_highest_possible_pfn, 0,
4568 sizeof(arch_zone_highest_possible_pfn));
4569 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4570 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4571 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4572 if (i == ZONE_MOVABLE)
4573 continue;
c713216d
MG
4574 arch_zone_lowest_possible_pfn[i] =
4575 arch_zone_highest_possible_pfn[i-1];
4576 arch_zone_highest_possible_pfn[i] =
4577 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4578 }
2a1e274a
MG
4579 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4580 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4581
4582 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4583 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4584 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4585
c713216d
MG
4586 /* Print out the zone ranges */
4587 printk("Zone PFN ranges:\n");
2a1e274a
MG
4588 for (i = 0; i < MAX_NR_ZONES; i++) {
4589 if (i == ZONE_MOVABLE)
4590 continue;
72f0ba02
DR
4591 printk(" %-8s ", zone_names[i]);
4592 if (arch_zone_lowest_possible_pfn[i] ==
4593 arch_zone_highest_possible_pfn[i])
4594 printk("empty\n");
4595 else
4596 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4597 arch_zone_lowest_possible_pfn[i],
4598 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4599 }
4600
4601 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4602 printk("Movable zone start PFN for each node\n");
4603 for (i = 0; i < MAX_NUMNODES; i++) {
4604 if (zone_movable_pfn[i])
4605 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4606 }
c713216d
MG
4607
4608 /* Print out the early_node_map[] */
c13291a5
TH
4609 printk("Early memory PFN ranges\n");
4610 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4611 printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
c713216d
MG
4612
4613 /* Initialise every node */
708614e6 4614 mminit_verify_pageflags_layout();
8ef82866 4615 setup_nr_node_ids();
c713216d
MG
4616 for_each_online_node(nid) {
4617 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4618 free_area_init_node(nid, NULL,
c713216d 4619 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4620
4621 /* Any memory on that node */
4622 if (pgdat->node_present_pages)
4623 node_set_state(nid, N_HIGH_MEMORY);
4624 check_for_regular_memory(pgdat);
c713216d
MG
4625 }
4626}
2a1e274a 4627
7e63efef 4628static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4629{
4630 unsigned long long coremem;
4631 if (!p)
4632 return -EINVAL;
4633
4634 coremem = memparse(p, &p);
7e63efef 4635 *core = coremem >> PAGE_SHIFT;
2a1e274a 4636
7e63efef 4637 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4638 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4639
4640 return 0;
4641}
ed7ed365 4642
7e63efef
MG
4643/*
4644 * kernelcore=size sets the amount of memory for use for allocations that
4645 * cannot be reclaimed or migrated.
4646 */
4647static int __init cmdline_parse_kernelcore(char *p)
4648{
4649 return cmdline_parse_core(p, &required_kernelcore);
4650}
4651
4652/*
4653 * movablecore=size sets the amount of memory for use for allocations that
4654 * can be reclaimed or migrated.
4655 */
4656static int __init cmdline_parse_movablecore(char *p)
4657{
4658 return cmdline_parse_core(p, &required_movablecore);
4659}
4660
ed7ed365 4661early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4662early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4663
0ee332c1 4664#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4665
0e0b864e 4666/**
88ca3b94
RD
4667 * set_dma_reserve - set the specified number of pages reserved in the first zone
4668 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4669 *
4670 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4671 * In the DMA zone, a significant percentage may be consumed by kernel image
4672 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4673 * function may optionally be used to account for unfreeable pages in the
4674 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4675 * smaller per-cpu batchsize.
0e0b864e
MG
4676 */
4677void __init set_dma_reserve(unsigned long new_dma_reserve)
4678{
4679 dma_reserve = new_dma_reserve;
4680}
4681
1da177e4
LT
4682void __init free_area_init(unsigned long *zones_size)
4683{
9109fb7b 4684 free_area_init_node(0, zones_size,
1da177e4
LT
4685 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4686}
1da177e4 4687
1da177e4
LT
4688static int page_alloc_cpu_notify(struct notifier_block *self,
4689 unsigned long action, void *hcpu)
4690{
4691 int cpu = (unsigned long)hcpu;
1da177e4 4692
8bb78442 4693 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4694 drain_pages(cpu);
4695
4696 /*
4697 * Spill the event counters of the dead processor
4698 * into the current processors event counters.
4699 * This artificially elevates the count of the current
4700 * processor.
4701 */
f8891e5e 4702 vm_events_fold_cpu(cpu);
9f8f2172
CL
4703
4704 /*
4705 * Zero the differential counters of the dead processor
4706 * so that the vm statistics are consistent.
4707 *
4708 * This is only okay since the processor is dead and cannot
4709 * race with what we are doing.
4710 */
2244b95a 4711 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4712 }
4713 return NOTIFY_OK;
4714}
1da177e4
LT
4715
4716void __init page_alloc_init(void)
4717{
4718 hotcpu_notifier(page_alloc_cpu_notify, 0);
4719}
4720
cb45b0e9
HA
4721/*
4722 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4723 * or min_free_kbytes changes.
4724 */
4725static void calculate_totalreserve_pages(void)
4726{
4727 struct pglist_data *pgdat;
4728 unsigned long reserve_pages = 0;
2f6726e5 4729 enum zone_type i, j;
cb45b0e9
HA
4730
4731 for_each_online_pgdat(pgdat) {
4732 for (i = 0; i < MAX_NR_ZONES; i++) {
4733 struct zone *zone = pgdat->node_zones + i;
4734 unsigned long max = 0;
4735
4736 /* Find valid and maximum lowmem_reserve in the zone */
4737 for (j = i; j < MAX_NR_ZONES; j++) {
4738 if (zone->lowmem_reserve[j] > max)
4739 max = zone->lowmem_reserve[j];
4740 }
4741
41858966
MG
4742 /* we treat the high watermark as reserved pages. */
4743 max += high_wmark_pages(zone);
cb45b0e9
HA
4744
4745 if (max > zone->present_pages)
4746 max = zone->present_pages;
4747 reserve_pages += max;
4748 }
4749 }
4750 totalreserve_pages = reserve_pages;
4751}
4752
1da177e4
LT
4753/*
4754 * setup_per_zone_lowmem_reserve - called whenever
4755 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4756 * has a correct pages reserved value, so an adequate number of
4757 * pages are left in the zone after a successful __alloc_pages().
4758 */
4759static void setup_per_zone_lowmem_reserve(void)
4760{
4761 struct pglist_data *pgdat;
2f6726e5 4762 enum zone_type j, idx;
1da177e4 4763
ec936fc5 4764 for_each_online_pgdat(pgdat) {
1da177e4
LT
4765 for (j = 0; j < MAX_NR_ZONES; j++) {
4766 struct zone *zone = pgdat->node_zones + j;
4767 unsigned long present_pages = zone->present_pages;
4768
4769 zone->lowmem_reserve[j] = 0;
4770
2f6726e5
CL
4771 idx = j;
4772 while (idx) {
1da177e4
LT
4773 struct zone *lower_zone;
4774
2f6726e5
CL
4775 idx--;
4776
1da177e4
LT
4777 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4778 sysctl_lowmem_reserve_ratio[idx] = 1;
4779
4780 lower_zone = pgdat->node_zones + idx;
4781 lower_zone->lowmem_reserve[j] = present_pages /
4782 sysctl_lowmem_reserve_ratio[idx];
4783 present_pages += lower_zone->present_pages;
4784 }
4785 }
4786 }
cb45b0e9
HA
4787
4788 /* update totalreserve_pages */
4789 calculate_totalreserve_pages();
1da177e4
LT
4790}
4791
88ca3b94 4792/**
bc75d33f 4793 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4794 * or when memory is hot-{added|removed}
88ca3b94 4795 *
bc75d33f
MK
4796 * Ensures that the watermark[min,low,high] values for each zone are set
4797 * correctly with respect to min_free_kbytes.
1da177e4 4798 */
bc75d33f 4799void setup_per_zone_wmarks(void)
1da177e4
LT
4800{
4801 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4802 unsigned long lowmem_pages = 0;
4803 struct zone *zone;
4804 unsigned long flags;
4805
4806 /* Calculate total number of !ZONE_HIGHMEM pages */
4807 for_each_zone(zone) {
4808 if (!is_highmem(zone))
4809 lowmem_pages += zone->present_pages;
4810 }
4811
4812 for_each_zone(zone) {
ac924c60
AM
4813 u64 tmp;
4814
1125b4e3 4815 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4816 tmp = (u64)pages_min * zone->present_pages;
4817 do_div(tmp, lowmem_pages);
1da177e4
LT
4818 if (is_highmem(zone)) {
4819 /*
669ed175
NP
4820 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4821 * need highmem pages, so cap pages_min to a small
4822 * value here.
4823 *
41858966 4824 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4825 * deltas controls asynch page reclaim, and so should
4826 * not be capped for highmem.
1da177e4
LT
4827 */
4828 int min_pages;
4829
4830 min_pages = zone->present_pages / 1024;
4831 if (min_pages < SWAP_CLUSTER_MAX)
4832 min_pages = SWAP_CLUSTER_MAX;
4833 if (min_pages > 128)
4834 min_pages = 128;
41858966 4835 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4836 } else {
669ed175
NP
4837 /*
4838 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4839 * proportionate to the zone's size.
4840 */
41858966 4841 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4842 }
4843
41858966
MG
4844 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4845 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4846 setup_zone_migrate_reserve(zone);
1125b4e3 4847 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4848 }
cb45b0e9
HA
4849
4850 /* update totalreserve_pages */
4851 calculate_totalreserve_pages();
1da177e4
LT
4852}
4853
55a4462a 4854/*
556adecb
RR
4855 * The inactive anon list should be small enough that the VM never has to
4856 * do too much work, but large enough that each inactive page has a chance
4857 * to be referenced again before it is swapped out.
4858 *
4859 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4860 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4861 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4862 * the anonymous pages are kept on the inactive list.
4863 *
4864 * total target max
4865 * memory ratio inactive anon
4866 * -------------------------------------
4867 * 10MB 1 5MB
4868 * 100MB 1 50MB
4869 * 1GB 3 250MB
4870 * 10GB 10 0.9GB
4871 * 100GB 31 3GB
4872 * 1TB 101 10GB
4873 * 10TB 320 32GB
4874 */
1b79acc9 4875static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4876{
96cb4df5 4877 unsigned int gb, ratio;
556adecb 4878
96cb4df5
MK
4879 /* Zone size in gigabytes */
4880 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4881 if (gb)
556adecb 4882 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4883 else
4884 ratio = 1;
556adecb 4885
96cb4df5
MK
4886 zone->inactive_ratio = ratio;
4887}
556adecb 4888
839a4fcc 4889static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
4890{
4891 struct zone *zone;
4892
4893 for_each_zone(zone)
4894 calculate_zone_inactive_ratio(zone);
556adecb
RR
4895}
4896
1da177e4
LT
4897/*
4898 * Initialise min_free_kbytes.
4899 *
4900 * For small machines we want it small (128k min). For large machines
4901 * we want it large (64MB max). But it is not linear, because network
4902 * bandwidth does not increase linearly with machine size. We use
4903 *
4904 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4905 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4906 *
4907 * which yields
4908 *
4909 * 16MB: 512k
4910 * 32MB: 724k
4911 * 64MB: 1024k
4912 * 128MB: 1448k
4913 * 256MB: 2048k
4914 * 512MB: 2896k
4915 * 1024MB: 4096k
4916 * 2048MB: 5792k
4917 * 4096MB: 8192k
4918 * 8192MB: 11584k
4919 * 16384MB: 16384k
4920 */
1b79acc9 4921int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
4922{
4923 unsigned long lowmem_kbytes;
4924
4925 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4926
4927 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4928 if (min_free_kbytes < 128)
4929 min_free_kbytes = 128;
4930 if (min_free_kbytes > 65536)
4931 min_free_kbytes = 65536;
bc75d33f 4932 setup_per_zone_wmarks();
a6cccdc3 4933 refresh_zone_stat_thresholds();
1da177e4 4934 setup_per_zone_lowmem_reserve();
556adecb 4935 setup_per_zone_inactive_ratio();
1da177e4
LT
4936 return 0;
4937}
bc75d33f 4938module_init(init_per_zone_wmark_min)
1da177e4
LT
4939
4940/*
4941 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4942 * that we can call two helper functions whenever min_free_kbytes
4943 * changes.
4944 */
4945int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 4946 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4947{
8d65af78 4948 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 4949 if (write)
bc75d33f 4950 setup_per_zone_wmarks();
1da177e4
LT
4951 return 0;
4952}
4953
9614634f
CL
4954#ifdef CONFIG_NUMA
4955int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4956 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
4957{
4958 struct zone *zone;
4959 int rc;
4960
8d65af78 4961 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
4962 if (rc)
4963 return rc;
4964
4965 for_each_zone(zone)
8417bba4 4966 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4967 sysctl_min_unmapped_ratio) / 100;
4968 return 0;
4969}
0ff38490
CL
4970
4971int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4972 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
4973{
4974 struct zone *zone;
4975 int rc;
4976
8d65af78 4977 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
4978 if (rc)
4979 return rc;
4980
4981 for_each_zone(zone)
4982 zone->min_slab_pages = (zone->present_pages *
4983 sysctl_min_slab_ratio) / 100;
4984 return 0;
4985}
9614634f
CL
4986#endif
4987
1da177e4
LT
4988/*
4989 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4990 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4991 * whenever sysctl_lowmem_reserve_ratio changes.
4992 *
4993 * The reserve ratio obviously has absolutely no relation with the
41858966 4994 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4995 * if in function of the boot time zone sizes.
4996 */
4997int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4998 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4999{
8d65af78 5000 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5001 setup_per_zone_lowmem_reserve();
5002 return 0;
5003}
5004
8ad4b1fb
RS
5005/*
5006 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5007 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5008 * can have before it gets flushed back to buddy allocator.
5009 */
5010
5011int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5012 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5013{
5014 struct zone *zone;
5015 unsigned int cpu;
5016 int ret;
5017
8d65af78 5018 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5019 if (!write || (ret == -EINVAL))
5020 return ret;
364df0eb 5021 for_each_populated_zone(zone) {
99dcc3e5 5022 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5023 unsigned long high;
5024 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5025 setup_pagelist_highmark(
5026 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5027 }
5028 }
5029 return 0;
5030}
5031
f034b5d4 5032int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5033
5034#ifdef CONFIG_NUMA
5035static int __init set_hashdist(char *str)
5036{
5037 if (!str)
5038 return 0;
5039 hashdist = simple_strtoul(str, &str, 0);
5040 return 1;
5041}
5042__setup("hashdist=", set_hashdist);
5043#endif
5044
5045/*
5046 * allocate a large system hash table from bootmem
5047 * - it is assumed that the hash table must contain an exact power-of-2
5048 * quantity of entries
5049 * - limit is the number of hash buckets, not the total allocation size
5050 */
5051void *__init alloc_large_system_hash(const char *tablename,
5052 unsigned long bucketsize,
5053 unsigned long numentries,
5054 int scale,
5055 int flags,
5056 unsigned int *_hash_shift,
5057 unsigned int *_hash_mask,
5058 unsigned long limit)
5059{
5060 unsigned long long max = limit;
5061 unsigned long log2qty, size;
5062 void *table = NULL;
5063
5064 /* allow the kernel cmdline to have a say */
5065 if (!numentries) {
5066 /* round applicable memory size up to nearest megabyte */
04903664 5067 numentries = nr_kernel_pages;
1da177e4
LT
5068 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5069 numentries >>= 20 - PAGE_SHIFT;
5070 numentries <<= 20 - PAGE_SHIFT;
5071
5072 /* limit to 1 bucket per 2^scale bytes of low memory */
5073 if (scale > PAGE_SHIFT)
5074 numentries >>= (scale - PAGE_SHIFT);
5075 else
5076 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5077
5078 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5079 if (unlikely(flags & HASH_SMALL)) {
5080 /* Makes no sense without HASH_EARLY */
5081 WARN_ON(!(flags & HASH_EARLY));
5082 if (!(numentries >> *_hash_shift)) {
5083 numentries = 1UL << *_hash_shift;
5084 BUG_ON(!numentries);
5085 }
5086 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5087 numentries = PAGE_SIZE / bucketsize;
1da177e4 5088 }
6e692ed3 5089 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5090
5091 /* limit allocation size to 1/16 total memory by default */
5092 if (max == 0) {
5093 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5094 do_div(max, bucketsize);
5095 }
5096
5097 if (numentries > max)
5098 numentries = max;
5099
f0d1b0b3 5100 log2qty = ilog2(numentries);
1da177e4
LT
5101
5102 do {
5103 size = bucketsize << log2qty;
5104 if (flags & HASH_EARLY)
74768ed8 5105 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5106 else if (hashdist)
5107 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5108 else {
1037b83b
ED
5109 /*
5110 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5111 * some pages at the end of hash table which
5112 * alloc_pages_exact() automatically does
1037b83b 5113 */
264ef8a9 5114 if (get_order(size) < MAX_ORDER) {
a1dd268c 5115 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5116 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5117 }
1da177e4
LT
5118 }
5119 } while (!table && size > PAGE_SIZE && --log2qty);
5120
5121 if (!table)
5122 panic("Failed to allocate %s hash table\n", tablename);
5123
f241e660 5124 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5125 tablename,
f241e660 5126 (1UL << log2qty),
f0d1b0b3 5127 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5128 size);
5129
5130 if (_hash_shift)
5131 *_hash_shift = log2qty;
5132 if (_hash_mask)
5133 *_hash_mask = (1 << log2qty) - 1;
5134
5135 return table;
5136}
a117e66e 5137
835c134e
MG
5138/* Return a pointer to the bitmap storing bits affecting a block of pages */
5139static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5140 unsigned long pfn)
5141{
5142#ifdef CONFIG_SPARSEMEM
5143 return __pfn_to_section(pfn)->pageblock_flags;
5144#else
5145 return zone->pageblock_flags;
5146#endif /* CONFIG_SPARSEMEM */
5147}
5148
5149static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5150{
5151#ifdef CONFIG_SPARSEMEM
5152 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5153 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5154#else
5155 pfn = pfn - zone->zone_start_pfn;
d9c23400 5156 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5157#endif /* CONFIG_SPARSEMEM */
5158}
5159
5160/**
d9c23400 5161 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5162 * @page: The page within the block of interest
5163 * @start_bitidx: The first bit of interest to retrieve
5164 * @end_bitidx: The last bit of interest
5165 * returns pageblock_bits flags
5166 */
5167unsigned long get_pageblock_flags_group(struct page *page,
5168 int start_bitidx, int end_bitidx)
5169{
5170 struct zone *zone;
5171 unsigned long *bitmap;
5172 unsigned long pfn, bitidx;
5173 unsigned long flags = 0;
5174 unsigned long value = 1;
5175
5176 zone = page_zone(page);
5177 pfn = page_to_pfn(page);
5178 bitmap = get_pageblock_bitmap(zone, pfn);
5179 bitidx = pfn_to_bitidx(zone, pfn);
5180
5181 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5182 if (test_bit(bitidx + start_bitidx, bitmap))
5183 flags |= value;
6220ec78 5184
835c134e
MG
5185 return flags;
5186}
5187
5188/**
d9c23400 5189 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5190 * @page: The page within the block of interest
5191 * @start_bitidx: The first bit of interest
5192 * @end_bitidx: The last bit of interest
5193 * @flags: The flags to set
5194 */
5195void set_pageblock_flags_group(struct page *page, unsigned long flags,
5196 int start_bitidx, int end_bitidx)
5197{
5198 struct zone *zone;
5199 unsigned long *bitmap;
5200 unsigned long pfn, bitidx;
5201 unsigned long value = 1;
5202
5203 zone = page_zone(page);
5204 pfn = page_to_pfn(page);
5205 bitmap = get_pageblock_bitmap(zone, pfn);
5206 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5207 VM_BUG_ON(pfn < zone->zone_start_pfn);
5208 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5209
5210 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5211 if (flags & value)
5212 __set_bit(bitidx + start_bitidx, bitmap);
5213 else
5214 __clear_bit(bitidx + start_bitidx, bitmap);
5215}
a5d76b54
KH
5216
5217/*
5218 * This is designed as sub function...plz see page_isolation.c also.
5219 * set/clear page block's type to be ISOLATE.
5220 * page allocater never alloc memory from ISOLATE block.
5221 */
5222
49ac8255
KH
5223static int
5224__count_immobile_pages(struct zone *zone, struct page *page, int count)
5225{
5226 unsigned long pfn, iter, found;
5227 /*
5228 * For avoiding noise data, lru_add_drain_all() should be called
5229 * If ZONE_MOVABLE, the zone never contains immobile pages
5230 */
5231 if (zone_idx(zone) == ZONE_MOVABLE)
5232 return true;
5233
5234 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5235 return true;
5236
5237 pfn = page_to_pfn(page);
5238 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5239 unsigned long check = pfn + iter;
5240
29723fcc 5241 if (!pfn_valid_within(check))
49ac8255 5242 continue;
29723fcc 5243
49ac8255
KH
5244 page = pfn_to_page(check);
5245 if (!page_count(page)) {
5246 if (PageBuddy(page))
5247 iter += (1 << page_order(page)) - 1;
5248 continue;
5249 }
5250 if (!PageLRU(page))
5251 found++;
5252 /*
5253 * If there are RECLAIMABLE pages, we need to check it.
5254 * But now, memory offline itself doesn't call shrink_slab()
5255 * and it still to be fixed.
5256 */
5257 /*
5258 * If the page is not RAM, page_count()should be 0.
5259 * we don't need more check. This is an _used_ not-movable page.
5260 *
5261 * The problematic thing here is PG_reserved pages. PG_reserved
5262 * is set to both of a memory hole page and a _used_ kernel
5263 * page at boot.
5264 */
5265 if (found > count)
5266 return false;
5267 }
5268 return true;
5269}
5270
5271bool is_pageblock_removable_nolock(struct page *page)
5272{
5273 struct zone *zone = page_zone(page);
5274 return __count_immobile_pages(zone, page, 0);
5275}
5276
a5d76b54
KH
5277int set_migratetype_isolate(struct page *page)
5278{
5279 struct zone *zone;
49ac8255 5280 unsigned long flags, pfn;
925cc71e
RJ
5281 struct memory_isolate_notify arg;
5282 int notifier_ret;
a5d76b54
KH
5283 int ret = -EBUSY;
5284
5285 zone = page_zone(page);
925cc71e 5286
a5d76b54 5287 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5288
5289 pfn = page_to_pfn(page);
5290 arg.start_pfn = pfn;
5291 arg.nr_pages = pageblock_nr_pages;
5292 arg.pages_found = 0;
5293
a5d76b54 5294 /*
925cc71e
RJ
5295 * It may be possible to isolate a pageblock even if the
5296 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5297 * notifier chain is used by balloon drivers to return the
5298 * number of pages in a range that are held by the balloon
5299 * driver to shrink memory. If all the pages are accounted for
5300 * by balloons, are free, or on the LRU, isolation can continue.
5301 * Later, for example, when memory hotplug notifier runs, these
5302 * pages reported as "can be isolated" should be isolated(freed)
5303 * by the balloon driver through the memory notifier chain.
a5d76b54 5304 */
925cc71e
RJ
5305 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5306 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5307 if (notifier_ret)
a5d76b54 5308 goto out;
49ac8255
KH
5309 /*
5310 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5311 * We just check MOVABLE pages.
5312 */
5313 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5314 ret = 0;
5315
49ac8255
KH
5316 /*
5317 * immobile means "not-on-lru" paes. If immobile is larger than
5318 * removable-by-driver pages reported by notifier, we'll fail.
5319 */
5320
a5d76b54 5321out:
925cc71e
RJ
5322 if (!ret) {
5323 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5324 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5325 }
5326
a5d76b54
KH
5327 spin_unlock_irqrestore(&zone->lock, flags);
5328 if (!ret)
9f8f2172 5329 drain_all_pages();
a5d76b54
KH
5330 return ret;
5331}
5332
5333void unset_migratetype_isolate(struct page *page)
5334{
5335 struct zone *zone;
5336 unsigned long flags;
5337 zone = page_zone(page);
5338 spin_lock_irqsave(&zone->lock, flags);
5339 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5340 goto out;
5341 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5342 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5343out:
5344 spin_unlock_irqrestore(&zone->lock, flags);
5345}
0c0e6195
KH
5346
5347#ifdef CONFIG_MEMORY_HOTREMOVE
5348/*
5349 * All pages in the range must be isolated before calling this.
5350 */
5351void
5352__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5353{
5354 struct page *page;
5355 struct zone *zone;
5356 int order, i;
5357 unsigned long pfn;
5358 unsigned long flags;
5359 /* find the first valid pfn */
5360 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5361 if (pfn_valid(pfn))
5362 break;
5363 if (pfn == end_pfn)
5364 return;
5365 zone = page_zone(pfn_to_page(pfn));
5366 spin_lock_irqsave(&zone->lock, flags);
5367 pfn = start_pfn;
5368 while (pfn < end_pfn) {
5369 if (!pfn_valid(pfn)) {
5370 pfn++;
5371 continue;
5372 }
5373 page = pfn_to_page(pfn);
5374 BUG_ON(page_count(page));
5375 BUG_ON(!PageBuddy(page));
5376 order = page_order(page);
5377#ifdef CONFIG_DEBUG_VM
5378 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5379 pfn, 1 << order, end_pfn);
5380#endif
5381 list_del(&page->lru);
5382 rmv_page_order(page);
5383 zone->free_area[order].nr_free--;
5384 __mod_zone_page_state(zone, NR_FREE_PAGES,
5385 - (1UL << order));
5386 for (i = 0; i < (1 << order); i++)
5387 SetPageReserved((page+i));
5388 pfn += (1 << order);
5389 }
5390 spin_unlock_irqrestore(&zone->lock, flags);
5391}
5392#endif
8d22ba1b
WF
5393
5394#ifdef CONFIG_MEMORY_FAILURE
5395bool is_free_buddy_page(struct page *page)
5396{
5397 struct zone *zone = page_zone(page);
5398 unsigned long pfn = page_to_pfn(page);
5399 unsigned long flags;
5400 int order;
5401
5402 spin_lock_irqsave(&zone->lock, flags);
5403 for (order = 0; order < MAX_ORDER; order++) {
5404 struct page *page_head = page - (pfn & ((1 << order) - 1));
5405
5406 if (PageBuddy(page_head) && page_order(page_head) >= order)
5407 break;
5408 }
5409 spin_unlock_irqrestore(&zone->lock, flags);
5410
5411 return order < MAX_ORDER;
5412}
5413#endif
718a3821
WF
5414
5415static struct trace_print_flags pageflag_names[] = {
5416 {1UL << PG_locked, "locked" },
5417 {1UL << PG_error, "error" },
5418 {1UL << PG_referenced, "referenced" },
5419 {1UL << PG_uptodate, "uptodate" },
5420 {1UL << PG_dirty, "dirty" },
5421 {1UL << PG_lru, "lru" },
5422 {1UL << PG_active, "active" },
5423 {1UL << PG_slab, "slab" },
5424 {1UL << PG_owner_priv_1, "owner_priv_1" },
5425 {1UL << PG_arch_1, "arch_1" },
5426 {1UL << PG_reserved, "reserved" },
5427 {1UL << PG_private, "private" },
5428 {1UL << PG_private_2, "private_2" },
5429 {1UL << PG_writeback, "writeback" },
5430#ifdef CONFIG_PAGEFLAGS_EXTENDED
5431 {1UL << PG_head, "head" },
5432 {1UL << PG_tail, "tail" },
5433#else
5434 {1UL << PG_compound, "compound" },
5435#endif
5436 {1UL << PG_swapcache, "swapcache" },
5437 {1UL << PG_mappedtodisk, "mappedtodisk" },
5438 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
5439 {1UL << PG_swapbacked, "swapbacked" },
5440 {1UL << PG_unevictable, "unevictable" },
5441#ifdef CONFIG_MMU
5442 {1UL << PG_mlocked, "mlocked" },
5443#endif
5444#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5445 {1UL << PG_uncached, "uncached" },
5446#endif
5447#ifdef CONFIG_MEMORY_FAILURE
5448 {1UL << PG_hwpoison, "hwpoison" },
5449#endif
5450 {-1UL, NULL },
5451};
5452
5453static void dump_page_flags(unsigned long flags)
5454{
5455 const char *delim = "";
5456 unsigned long mask;
5457 int i;
5458
5459 printk(KERN_ALERT "page flags: %#lx(", flags);
5460
5461 /* remove zone id */
5462 flags &= (1UL << NR_PAGEFLAGS) - 1;
5463
5464 for (i = 0; pageflag_names[i].name && flags; i++) {
5465
5466 mask = pageflag_names[i].mask;
5467 if ((flags & mask) != mask)
5468 continue;
5469
5470 flags &= ~mask;
5471 printk("%s%s", delim, pageflag_names[i].name);
5472 delim = "|";
5473 }
5474
5475 /* check for left over flags */
5476 if (flags)
5477 printk("%s%#lx", delim, flags);
5478
5479 printk(")\n");
5480}
5481
5482void dump_page(struct page *page)
5483{
5484 printk(KERN_ALERT
5485 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 5486 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
5487 page->mapping, page->index);
5488 dump_page_flags(page->flags);
f212ad7c 5489 mem_cgroup_print_bad_page(page);
718a3821 5490}
This page took 1.091231 seconds and 5 git commands to generate.