Merge branch 'for-linus' of git://neil.brown.name/md
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b1eeab67 26#include <linux/kmemcheck.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
5a3135c2 32#include <linux/oom.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
4be38e35 41#include <linux/mempolicy.h>
6811378e 42#include <linux/stop_machine.h>
c713216d
MG
43#include <linux/sort.h>
44#include <linux/pfn.h>
3fcfab16 45#include <linux/backing-dev.h>
933e312e 46#include <linux/fault-inject.h>
a5d76b54 47#include <linux/page-isolation.h>
52d4b9ac 48#include <linux/page_cgroup.h>
3ac7fe5a 49#include <linux/debugobjects.h>
dbb1f81c 50#include <linux/kmemleak.h>
1da177e4
LT
51
52#include <asm/tlbflush.h>
ac924c60 53#include <asm/div64.h>
1da177e4
LT
54#include "internal.h"
55
56/*
13808910 57 * Array of node states.
1da177e4 58 */
13808910
CL
59nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60 [N_POSSIBLE] = NODE_MASK_ALL,
61 [N_ONLINE] = { { [0] = 1UL } },
62#ifndef CONFIG_NUMA
63 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
64#ifdef CONFIG_HIGHMEM
65 [N_HIGH_MEMORY] = { { [0] = 1UL } },
66#endif
67 [N_CPU] = { { [0] = 1UL } },
68#endif /* NUMA */
69};
70EXPORT_SYMBOL(node_states);
71
6c231b7b 72unsigned long totalram_pages __read_mostly;
cb45b0e9 73unsigned long totalreserve_pages __read_mostly;
22b31eec 74unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 75int percpu_pagelist_fraction;
1da177e4 76
d9c23400
MG
77#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
78int pageblock_order __read_mostly;
79#endif
80
d98c7a09 81static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 82
1da177e4
LT
83/*
84 * results with 256, 32 in the lowmem_reserve sysctl:
85 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
86 * 1G machine -> (16M dma, 784M normal, 224M high)
87 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
88 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
89 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
90 *
91 * TBD: should special case ZONE_DMA32 machines here - in those we normally
92 * don't need any ZONE_NORMAL reservation
1da177e4 93 */
2f1b6248 94int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 95#ifdef CONFIG_ZONE_DMA
2f1b6248 96 256,
4b51d669 97#endif
fb0e7942 98#ifdef CONFIG_ZONE_DMA32
2f1b6248 99 256,
fb0e7942 100#endif
e53ef38d 101#ifdef CONFIG_HIGHMEM
2a1e274a 102 32,
e53ef38d 103#endif
2a1e274a 104 32,
2f1b6248 105};
1da177e4
LT
106
107EXPORT_SYMBOL(totalram_pages);
1da177e4 108
15ad7cdc 109static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 110#ifdef CONFIG_ZONE_DMA
2f1b6248 111 "DMA",
4b51d669 112#endif
fb0e7942 113#ifdef CONFIG_ZONE_DMA32
2f1b6248 114 "DMA32",
fb0e7942 115#endif
2f1b6248 116 "Normal",
e53ef38d 117#ifdef CONFIG_HIGHMEM
2a1e274a 118 "HighMem",
e53ef38d 119#endif
2a1e274a 120 "Movable",
2f1b6248
CL
121};
122
1da177e4
LT
123int min_free_kbytes = 1024;
124
86356ab1
YG
125unsigned long __meminitdata nr_kernel_pages;
126unsigned long __meminitdata nr_all_pages;
a3142c8e 127static unsigned long __meminitdata dma_reserve;
1da177e4 128
c713216d
MG
129#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
130 /*
183ff22b 131 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
132 * ranges of memory (RAM) that may be registered with add_active_range().
133 * Ranges passed to add_active_range() will be merged if possible
134 * so the number of times add_active_range() can be called is
135 * related to the number of nodes and the number of holes
136 */
137 #ifdef CONFIG_MAX_ACTIVE_REGIONS
138 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
139 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
140 #else
141 #if MAX_NUMNODES >= 32
142 /* If there can be many nodes, allow up to 50 holes per node */
143 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
144 #else
145 /* By default, allow up to 256 distinct regions */
146 #define MAX_ACTIVE_REGIONS 256
147 #endif
148 #endif
149
98011f56
JB
150 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
151 static int __meminitdata nr_nodemap_entries;
152 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
153 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 154 static unsigned long __initdata required_kernelcore;
484f51f8 155 static unsigned long __initdata required_movablecore;
b69a7288 156 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
157
158 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
159 int movable_zone;
160 EXPORT_SYMBOL(movable_zone);
c713216d
MG
161#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
162
418508c1
MS
163#if MAX_NUMNODES > 1
164int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 165int nr_online_nodes __read_mostly = 1;
418508c1 166EXPORT_SYMBOL(nr_node_ids);
62bc62a8 167EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
168#endif
169
9ef9acb0
MG
170int page_group_by_mobility_disabled __read_mostly;
171
b2a0ac88
MG
172static void set_pageblock_migratetype(struct page *page, int migratetype)
173{
49255c61
MG
174
175 if (unlikely(page_group_by_mobility_disabled))
176 migratetype = MIGRATE_UNMOVABLE;
177
b2a0ac88
MG
178 set_pageblock_flags_group(page, (unsigned long)migratetype,
179 PB_migrate, PB_migrate_end);
180}
181
7f33d49a
RW
182bool oom_killer_disabled __read_mostly;
183
13e7444b 184#ifdef CONFIG_DEBUG_VM
c6a57e19 185static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 186{
bdc8cb98
DH
187 int ret = 0;
188 unsigned seq;
189 unsigned long pfn = page_to_pfn(page);
c6a57e19 190
bdc8cb98
DH
191 do {
192 seq = zone_span_seqbegin(zone);
193 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
194 ret = 1;
195 else if (pfn < zone->zone_start_pfn)
196 ret = 1;
197 } while (zone_span_seqretry(zone, seq));
198
199 return ret;
c6a57e19
DH
200}
201
202static int page_is_consistent(struct zone *zone, struct page *page)
203{
14e07298 204 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 205 return 0;
1da177e4 206 if (zone != page_zone(page))
c6a57e19
DH
207 return 0;
208
209 return 1;
210}
211/*
212 * Temporary debugging check for pages not lying within a given zone.
213 */
214static int bad_range(struct zone *zone, struct page *page)
215{
216 if (page_outside_zone_boundaries(zone, page))
1da177e4 217 return 1;
c6a57e19
DH
218 if (!page_is_consistent(zone, page))
219 return 1;
220
1da177e4
LT
221 return 0;
222}
13e7444b
NP
223#else
224static inline int bad_range(struct zone *zone, struct page *page)
225{
226 return 0;
227}
228#endif
229
224abf92 230static void bad_page(struct page *page)
1da177e4 231{
d936cf9b
HD
232 static unsigned long resume;
233 static unsigned long nr_shown;
234 static unsigned long nr_unshown;
235
236 /*
237 * Allow a burst of 60 reports, then keep quiet for that minute;
238 * or allow a steady drip of one report per second.
239 */
240 if (nr_shown == 60) {
241 if (time_before(jiffies, resume)) {
242 nr_unshown++;
243 goto out;
244 }
245 if (nr_unshown) {
1e9e6365
HD
246 printk(KERN_ALERT
247 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
248 nr_unshown);
249 nr_unshown = 0;
250 }
251 nr_shown = 0;
252 }
253 if (nr_shown++ == 0)
254 resume = jiffies + 60 * HZ;
255
1e9e6365 256 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 257 current->comm, page_to_pfn(page));
1e9e6365 258 printk(KERN_ALERT
3dc14741
HD
259 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
260 page, (void *)page->flags, page_count(page),
261 page_mapcount(page), page->mapping, page->index);
3dc14741 262
1da177e4 263 dump_stack();
d936cf9b 264out:
8cc3b392
HD
265 /* Leave bad fields for debug, except PageBuddy could make trouble */
266 __ClearPageBuddy(page);
9f158333 267 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
268}
269
1da177e4
LT
270/*
271 * Higher-order pages are called "compound pages". They are structured thusly:
272 *
273 * The first PAGE_SIZE page is called the "head page".
274 *
275 * The remaining PAGE_SIZE pages are called "tail pages".
276 *
277 * All pages have PG_compound set. All pages have their ->private pointing at
278 * the head page (even the head page has this).
279 *
41d78ba5
HD
280 * The first tail page's ->lru.next holds the address of the compound page's
281 * put_page() function. Its ->lru.prev holds the order of allocation.
282 * This usage means that zero-order pages may not be compound.
1da177e4 283 */
d98c7a09
HD
284
285static void free_compound_page(struct page *page)
286{
d85f3385 287 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
288}
289
01ad1c08 290void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
291{
292 int i;
293 int nr_pages = 1 << order;
294
295 set_compound_page_dtor(page, free_compound_page);
296 set_compound_order(page, order);
297 __SetPageHead(page);
298 for (i = 1; i < nr_pages; i++) {
299 struct page *p = page + i;
300
301 __SetPageTail(p);
302 p->first_page = page;
303 }
304}
305
8cc3b392 306static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
307{
308 int i;
309 int nr_pages = 1 << order;
8cc3b392 310 int bad = 0;
1da177e4 311
8cc3b392
HD
312 if (unlikely(compound_order(page) != order) ||
313 unlikely(!PageHead(page))) {
224abf92 314 bad_page(page);
8cc3b392
HD
315 bad++;
316 }
1da177e4 317
6d777953 318 __ClearPageHead(page);
8cc3b392 319
18229df5
AW
320 for (i = 1; i < nr_pages; i++) {
321 struct page *p = page + i;
1da177e4 322
e713a21d 323 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 324 bad_page(page);
8cc3b392
HD
325 bad++;
326 }
d85f3385 327 __ClearPageTail(p);
1da177e4 328 }
8cc3b392
HD
329
330 return bad;
1da177e4 331}
1da177e4 332
17cf4406
NP
333static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
334{
335 int i;
336
6626c5d5
AM
337 /*
338 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
339 * and __GFP_HIGHMEM from hard or soft interrupt context.
340 */
725d704e 341 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
342 for (i = 0; i < (1 << order); i++)
343 clear_highpage(page + i);
344}
345
6aa3001b
AM
346static inline void set_page_order(struct page *page, int order)
347{
4c21e2f2 348 set_page_private(page, order);
676165a8 349 __SetPageBuddy(page);
1da177e4
LT
350}
351
352static inline void rmv_page_order(struct page *page)
353{
676165a8 354 __ClearPageBuddy(page);
4c21e2f2 355 set_page_private(page, 0);
1da177e4
LT
356}
357
358/*
359 * Locate the struct page for both the matching buddy in our
360 * pair (buddy1) and the combined O(n+1) page they form (page).
361 *
362 * 1) Any buddy B1 will have an order O twin B2 which satisfies
363 * the following equation:
364 * B2 = B1 ^ (1 << O)
365 * For example, if the starting buddy (buddy2) is #8 its order
366 * 1 buddy is #10:
367 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
368 *
369 * 2) Any buddy B will have an order O+1 parent P which
370 * satisfies the following equation:
371 * P = B & ~(1 << O)
372 *
d6e05edc 373 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
374 */
375static inline struct page *
376__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
377{
378 unsigned long buddy_idx = page_idx ^ (1 << order);
379
380 return page + (buddy_idx - page_idx);
381}
382
383static inline unsigned long
384__find_combined_index(unsigned long page_idx, unsigned int order)
385{
386 return (page_idx & ~(1 << order));
387}
388
389/*
390 * This function checks whether a page is free && is the buddy
391 * we can do coalesce a page and its buddy if
13e7444b 392 * (a) the buddy is not in a hole &&
676165a8 393 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
394 * (c) a page and its buddy have the same order &&
395 * (d) a page and its buddy are in the same zone.
676165a8
NP
396 *
397 * For recording whether a page is in the buddy system, we use PG_buddy.
398 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 399 *
676165a8 400 * For recording page's order, we use page_private(page).
1da177e4 401 */
cb2b95e1
AW
402static inline int page_is_buddy(struct page *page, struct page *buddy,
403 int order)
1da177e4 404{
14e07298 405 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 406 return 0;
13e7444b 407
cb2b95e1
AW
408 if (page_zone_id(page) != page_zone_id(buddy))
409 return 0;
410
411 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 412 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 413 return 1;
676165a8 414 }
6aa3001b 415 return 0;
1da177e4
LT
416}
417
418/*
419 * Freeing function for a buddy system allocator.
420 *
421 * The concept of a buddy system is to maintain direct-mapped table
422 * (containing bit values) for memory blocks of various "orders".
423 * The bottom level table contains the map for the smallest allocatable
424 * units of memory (here, pages), and each level above it describes
425 * pairs of units from the levels below, hence, "buddies".
426 * At a high level, all that happens here is marking the table entry
427 * at the bottom level available, and propagating the changes upward
428 * as necessary, plus some accounting needed to play nicely with other
429 * parts of the VM system.
430 * At each level, we keep a list of pages, which are heads of continuous
676165a8 431 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 432 * order is recorded in page_private(page) field.
1da177e4
LT
433 * So when we are allocating or freeing one, we can derive the state of the
434 * other. That is, if we allocate a small block, and both were
435 * free, the remainder of the region must be split into blocks.
436 * If a block is freed, and its buddy is also free, then this
437 * triggers coalescing into a block of larger size.
438 *
439 * -- wli
440 */
441
48db57f8 442static inline void __free_one_page(struct page *page,
ed0ae21d
MG
443 struct zone *zone, unsigned int order,
444 int migratetype)
1da177e4
LT
445{
446 unsigned long page_idx;
1da177e4 447
224abf92 448 if (unlikely(PageCompound(page)))
8cc3b392
HD
449 if (unlikely(destroy_compound_page(page, order)))
450 return;
1da177e4 451
ed0ae21d
MG
452 VM_BUG_ON(migratetype == -1);
453
1da177e4
LT
454 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
455
f2260e6b 456 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 457 VM_BUG_ON(bad_range(zone, page));
1da177e4 458
1da177e4
LT
459 while (order < MAX_ORDER-1) {
460 unsigned long combined_idx;
1da177e4
LT
461 struct page *buddy;
462
1da177e4 463 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 464 if (!page_is_buddy(page, buddy, order))
3c82d0ce 465 break;
13e7444b 466
3c82d0ce 467 /* Our buddy is free, merge with it and move up one order. */
1da177e4 468 list_del(&buddy->lru);
b2a0ac88 469 zone->free_area[order].nr_free--;
1da177e4 470 rmv_page_order(buddy);
13e7444b 471 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
472 page = page + (combined_idx - page_idx);
473 page_idx = combined_idx;
474 order++;
475 }
476 set_page_order(page, order);
b2a0ac88
MG
477 list_add(&page->lru,
478 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
479 zone->free_area[order].nr_free++;
480}
481
092cead6
KM
482#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
483/*
484 * free_page_mlock() -- clean up attempts to free and mlocked() page.
485 * Page should not be on lru, so no need to fix that up.
486 * free_pages_check() will verify...
487 */
488static inline void free_page_mlock(struct page *page)
489{
490 __ClearPageMlocked(page);
491 __dec_zone_page_state(page, NR_MLOCK);
492 __count_vm_event(UNEVICTABLE_MLOCKFREED);
493}
494#else
495static void free_page_mlock(struct page *page) { }
496#endif
497
224abf92 498static inline int free_pages_check(struct page *page)
1da177e4 499{
92be2e33
NP
500 if (unlikely(page_mapcount(page) |
501 (page->mapping != NULL) |
a3af9c38 502 (atomic_read(&page->_count) != 0) |
8cc3b392 503 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 504 bad_page(page);
79f4b7bf 505 return 1;
8cc3b392 506 }
79f4b7bf
HD
507 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509 return 0;
1da177e4
LT
510}
511
512/*
513 * Frees a list of pages.
514 * Assumes all pages on list are in same zone, and of same order.
207f36ee 515 * count is the number of pages to free.
1da177e4
LT
516 *
517 * If the zone was previously in an "all pages pinned" state then look to
518 * see if this freeing clears that state.
519 *
520 * And clear the zone's pages_scanned counter, to hold off the "all pages are
521 * pinned" detection logic.
522 */
48db57f8
NP
523static void free_pages_bulk(struct zone *zone, int count,
524 struct list_head *list, int order)
1da177e4 525{
c54ad30c 526 spin_lock(&zone->lock);
e815af95 527 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 528 zone->pages_scanned = 0;
f2260e6b
MG
529
530 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
48db57f8
NP
531 while (count--) {
532 struct page *page;
533
725d704e 534 VM_BUG_ON(list_empty(list));
1da177e4 535 page = list_entry(list->prev, struct page, lru);
48db57f8 536 /* have to delete it as __free_one_page list manipulates */
1da177e4 537 list_del(&page->lru);
ed0ae21d 538 __free_one_page(page, zone, order, page_private(page));
1da177e4 539 }
c54ad30c 540 spin_unlock(&zone->lock);
1da177e4
LT
541}
542
ed0ae21d
MG
543static void free_one_page(struct zone *zone, struct page *page, int order,
544 int migratetype)
1da177e4 545{
006d22d9 546 spin_lock(&zone->lock);
e815af95 547 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 548 zone->pages_scanned = 0;
f2260e6b
MG
549
550 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 551 __free_one_page(page, zone, order, migratetype);
006d22d9 552 spin_unlock(&zone->lock);
48db57f8
NP
553}
554
555static void __free_pages_ok(struct page *page, unsigned int order)
556{
557 unsigned long flags;
1da177e4 558 int i;
8cc3b392 559 int bad = 0;
da456f14 560 int clearMlocked = PageMlocked(page);
1da177e4 561
b1eeab67
VN
562 kmemcheck_free_shadow(page, order);
563
1da177e4 564 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
565 bad += free_pages_check(page + i);
566 if (bad)
689bcebf
HD
567 return;
568
3ac7fe5a 569 if (!PageHighMem(page)) {
9858db50 570 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
571 debug_check_no_obj_freed(page_address(page),
572 PAGE_SIZE << order);
573 }
dafb1367 574 arch_free_page(page, order);
48db57f8 575 kernel_map_pages(page, 1 << order, 0);
dafb1367 576
c54ad30c 577 local_irq_save(flags);
da456f14
MG
578 if (unlikely(clearMlocked))
579 free_page_mlock(page);
f8891e5e 580 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
581 free_one_page(page_zone(page), page, order,
582 get_pageblock_migratetype(page));
c54ad30c 583 local_irq_restore(flags);
1da177e4
LT
584}
585
a226f6c8
DH
586/*
587 * permit the bootmem allocator to evade page validation on high-order frees
588 */
af370fb8 589void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
590{
591 if (order == 0) {
592 __ClearPageReserved(page);
593 set_page_count(page, 0);
7835e98b 594 set_page_refcounted(page);
545b1ea9 595 __free_page(page);
a226f6c8 596 } else {
a226f6c8
DH
597 int loop;
598
545b1ea9 599 prefetchw(page);
a226f6c8
DH
600 for (loop = 0; loop < BITS_PER_LONG; loop++) {
601 struct page *p = &page[loop];
602
545b1ea9
NP
603 if (loop + 1 < BITS_PER_LONG)
604 prefetchw(p + 1);
a226f6c8
DH
605 __ClearPageReserved(p);
606 set_page_count(p, 0);
607 }
608
7835e98b 609 set_page_refcounted(page);
545b1ea9 610 __free_pages(page, order);
a226f6c8
DH
611 }
612}
613
1da177e4
LT
614
615/*
616 * The order of subdivision here is critical for the IO subsystem.
617 * Please do not alter this order without good reasons and regression
618 * testing. Specifically, as large blocks of memory are subdivided,
619 * the order in which smaller blocks are delivered depends on the order
620 * they're subdivided in this function. This is the primary factor
621 * influencing the order in which pages are delivered to the IO
622 * subsystem according to empirical testing, and this is also justified
623 * by considering the behavior of a buddy system containing a single
624 * large block of memory acted on by a series of small allocations.
625 * This behavior is a critical factor in sglist merging's success.
626 *
627 * -- wli
628 */
085cc7d5 629static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
630 int low, int high, struct free_area *area,
631 int migratetype)
1da177e4
LT
632{
633 unsigned long size = 1 << high;
634
635 while (high > low) {
636 area--;
637 high--;
638 size >>= 1;
725d704e 639 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 640 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
641 area->nr_free++;
642 set_page_order(&page[size], high);
643 }
1da177e4
LT
644}
645
1da177e4
LT
646/*
647 * This page is about to be returned from the page allocator
648 */
17cf4406 649static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 650{
92be2e33
NP
651 if (unlikely(page_mapcount(page) |
652 (page->mapping != NULL) |
a3af9c38 653 (atomic_read(&page->_count) != 0) |
8cc3b392 654 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 655 bad_page(page);
689bcebf 656 return 1;
8cc3b392 657 }
689bcebf 658
4c21e2f2 659 set_page_private(page, 0);
7835e98b 660 set_page_refcounted(page);
cc102509
NP
661
662 arch_alloc_page(page, order);
1da177e4 663 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
664
665 if (gfp_flags & __GFP_ZERO)
666 prep_zero_page(page, order, gfp_flags);
667
668 if (order && (gfp_flags & __GFP_COMP))
669 prep_compound_page(page, order);
670
689bcebf 671 return 0;
1da177e4
LT
672}
673
56fd56b8
MG
674/*
675 * Go through the free lists for the given migratetype and remove
676 * the smallest available page from the freelists
677 */
728ec980
MG
678static inline
679struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
680 int migratetype)
681{
682 unsigned int current_order;
683 struct free_area * area;
684 struct page *page;
685
686 /* Find a page of the appropriate size in the preferred list */
687 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
688 area = &(zone->free_area[current_order]);
689 if (list_empty(&area->free_list[migratetype]))
690 continue;
691
692 page = list_entry(area->free_list[migratetype].next,
693 struct page, lru);
694 list_del(&page->lru);
695 rmv_page_order(page);
696 area->nr_free--;
56fd56b8
MG
697 expand(zone, page, order, current_order, area, migratetype);
698 return page;
699 }
700
701 return NULL;
702}
703
704
b2a0ac88
MG
705/*
706 * This array describes the order lists are fallen back to when
707 * the free lists for the desirable migrate type are depleted
708 */
709static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
710 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
711 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
712 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
713 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
714};
715
c361be55
MG
716/*
717 * Move the free pages in a range to the free lists of the requested type.
d9c23400 718 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
719 * boundary. If alignment is required, use move_freepages_block()
720 */
b69a7288
AB
721static int move_freepages(struct zone *zone,
722 struct page *start_page, struct page *end_page,
723 int migratetype)
c361be55
MG
724{
725 struct page *page;
726 unsigned long order;
d100313f 727 int pages_moved = 0;
c361be55
MG
728
729#ifndef CONFIG_HOLES_IN_ZONE
730 /*
731 * page_zone is not safe to call in this context when
732 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
733 * anyway as we check zone boundaries in move_freepages_block().
734 * Remove at a later date when no bug reports exist related to
ac0e5b7a 735 * grouping pages by mobility
c361be55
MG
736 */
737 BUG_ON(page_zone(start_page) != page_zone(end_page));
738#endif
739
740 for (page = start_page; page <= end_page;) {
344c790e
AL
741 /* Make sure we are not inadvertently changing nodes */
742 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
743
c361be55
MG
744 if (!pfn_valid_within(page_to_pfn(page))) {
745 page++;
746 continue;
747 }
748
749 if (!PageBuddy(page)) {
750 page++;
751 continue;
752 }
753
754 order = page_order(page);
755 list_del(&page->lru);
756 list_add(&page->lru,
757 &zone->free_area[order].free_list[migratetype]);
758 page += 1 << order;
d100313f 759 pages_moved += 1 << order;
c361be55
MG
760 }
761
d100313f 762 return pages_moved;
c361be55
MG
763}
764
b69a7288
AB
765static int move_freepages_block(struct zone *zone, struct page *page,
766 int migratetype)
c361be55
MG
767{
768 unsigned long start_pfn, end_pfn;
769 struct page *start_page, *end_page;
770
771 start_pfn = page_to_pfn(page);
d9c23400 772 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 773 start_page = pfn_to_page(start_pfn);
d9c23400
MG
774 end_page = start_page + pageblock_nr_pages - 1;
775 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
776
777 /* Do not cross zone boundaries */
778 if (start_pfn < zone->zone_start_pfn)
779 start_page = page;
780 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
781 return 0;
782
783 return move_freepages(zone, start_page, end_page, migratetype);
784}
785
b2a0ac88 786/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
787static inline struct page *
788__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
789{
790 struct free_area * area;
791 int current_order;
792 struct page *page;
793 int migratetype, i;
794
795 /* Find the largest possible block of pages in the other list */
796 for (current_order = MAX_ORDER-1; current_order >= order;
797 --current_order) {
798 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
799 migratetype = fallbacks[start_migratetype][i];
800
56fd56b8
MG
801 /* MIGRATE_RESERVE handled later if necessary */
802 if (migratetype == MIGRATE_RESERVE)
803 continue;
e010487d 804
b2a0ac88
MG
805 area = &(zone->free_area[current_order]);
806 if (list_empty(&area->free_list[migratetype]))
807 continue;
808
809 page = list_entry(area->free_list[migratetype].next,
810 struct page, lru);
811 area->nr_free--;
812
813 /*
c361be55 814 * If breaking a large block of pages, move all free
46dafbca
MG
815 * pages to the preferred allocation list. If falling
816 * back for a reclaimable kernel allocation, be more
817 * agressive about taking ownership of free pages
b2a0ac88 818 */
d9c23400 819 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
820 start_migratetype == MIGRATE_RECLAIMABLE) {
821 unsigned long pages;
822 pages = move_freepages_block(zone, page,
823 start_migratetype);
824
825 /* Claim the whole block if over half of it is free */
d9c23400 826 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
827 set_pageblock_migratetype(page,
828 start_migratetype);
829
b2a0ac88 830 migratetype = start_migratetype;
c361be55 831 }
b2a0ac88
MG
832
833 /* Remove the page from the freelists */
834 list_del(&page->lru);
835 rmv_page_order(page);
b2a0ac88 836
d9c23400 837 if (current_order == pageblock_order)
b2a0ac88
MG
838 set_pageblock_migratetype(page,
839 start_migratetype);
840
841 expand(zone, page, order, current_order, area, migratetype);
842 return page;
843 }
844 }
845
728ec980 846 return NULL;
b2a0ac88
MG
847}
848
56fd56b8 849/*
1da177e4
LT
850 * Do the hard work of removing an element from the buddy allocator.
851 * Call me with the zone->lock already held.
852 */
b2a0ac88
MG
853static struct page *__rmqueue(struct zone *zone, unsigned int order,
854 int migratetype)
1da177e4 855{
1da177e4
LT
856 struct page *page;
857
728ec980 858retry_reserve:
56fd56b8 859 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 860
728ec980 861 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 862 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 863
728ec980
MG
864 /*
865 * Use MIGRATE_RESERVE rather than fail an allocation. goto
866 * is used because __rmqueue_smallest is an inline function
867 * and we want just one call site
868 */
869 if (!page) {
870 migratetype = MIGRATE_RESERVE;
871 goto retry_reserve;
872 }
873 }
874
b2a0ac88 875 return page;
1da177e4
LT
876}
877
878/*
879 * Obtain a specified number of elements from the buddy allocator, all under
880 * a single hold of the lock, for efficiency. Add them to the supplied list.
881 * Returns the number of new pages which were placed at *list.
882 */
883static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
884 unsigned long count, struct list_head *list,
885 int migratetype)
1da177e4 886{
1da177e4 887 int i;
1da177e4 888
c54ad30c 889 spin_lock(&zone->lock);
1da177e4 890 for (i = 0; i < count; ++i) {
b2a0ac88 891 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 892 if (unlikely(page == NULL))
1da177e4 893 break;
81eabcbe
MG
894
895 /*
896 * Split buddy pages returned by expand() are received here
897 * in physical page order. The page is added to the callers and
898 * list and the list head then moves forward. From the callers
899 * perspective, the linked list is ordered by page number in
900 * some conditions. This is useful for IO devices that can
901 * merge IO requests if the physical pages are ordered
902 * properly.
903 */
535131e6
MG
904 list_add(&page->lru, list);
905 set_page_private(page, migratetype);
81eabcbe 906 list = &page->lru;
1da177e4 907 }
f2260e6b 908 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 909 spin_unlock(&zone->lock);
085cc7d5 910 return i;
1da177e4
LT
911}
912
4ae7c039 913#ifdef CONFIG_NUMA
8fce4d8e 914/*
4037d452
CL
915 * Called from the vmstat counter updater to drain pagesets of this
916 * currently executing processor on remote nodes after they have
917 * expired.
918 *
879336c3
CL
919 * Note that this function must be called with the thread pinned to
920 * a single processor.
8fce4d8e 921 */
4037d452 922void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 923{
4ae7c039 924 unsigned long flags;
4037d452 925 int to_drain;
4ae7c039 926
4037d452
CL
927 local_irq_save(flags);
928 if (pcp->count >= pcp->batch)
929 to_drain = pcp->batch;
930 else
931 to_drain = pcp->count;
932 free_pages_bulk(zone, to_drain, &pcp->list, 0);
933 pcp->count -= to_drain;
934 local_irq_restore(flags);
4ae7c039
CL
935}
936#endif
937
9f8f2172
CL
938/*
939 * Drain pages of the indicated processor.
940 *
941 * The processor must either be the current processor and the
942 * thread pinned to the current processor or a processor that
943 * is not online.
944 */
945static void drain_pages(unsigned int cpu)
1da177e4 946{
c54ad30c 947 unsigned long flags;
1da177e4 948 struct zone *zone;
1da177e4 949
ee99c71c 950 for_each_populated_zone(zone) {
1da177e4 951 struct per_cpu_pageset *pset;
3dfa5721 952 struct per_cpu_pages *pcp;
1da177e4 953
e7c8d5c9 954 pset = zone_pcp(zone, cpu);
3dfa5721
CL
955
956 pcp = &pset->pcp;
957 local_irq_save(flags);
958 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
959 pcp->count = 0;
960 local_irq_restore(flags);
1da177e4
LT
961 }
962}
1da177e4 963
9f8f2172
CL
964/*
965 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
966 */
967void drain_local_pages(void *arg)
968{
969 drain_pages(smp_processor_id());
970}
971
972/*
973 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
974 */
975void drain_all_pages(void)
976{
15c8b6c1 977 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
978}
979
296699de 980#ifdef CONFIG_HIBERNATION
1da177e4
LT
981
982void mark_free_pages(struct zone *zone)
983{
f623f0db
RW
984 unsigned long pfn, max_zone_pfn;
985 unsigned long flags;
b2a0ac88 986 int order, t;
1da177e4
LT
987 struct list_head *curr;
988
989 if (!zone->spanned_pages)
990 return;
991
992 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
993
994 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
995 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
996 if (pfn_valid(pfn)) {
997 struct page *page = pfn_to_page(pfn);
998
7be98234
RW
999 if (!swsusp_page_is_forbidden(page))
1000 swsusp_unset_page_free(page);
f623f0db 1001 }
1da177e4 1002
b2a0ac88
MG
1003 for_each_migratetype_order(order, t) {
1004 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1005 unsigned long i;
1da177e4 1006
f623f0db
RW
1007 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1008 for (i = 0; i < (1UL << order); i++)
7be98234 1009 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1010 }
b2a0ac88 1011 }
1da177e4
LT
1012 spin_unlock_irqrestore(&zone->lock, flags);
1013}
e2c55dc8 1014#endif /* CONFIG_PM */
1da177e4 1015
1da177e4
LT
1016/*
1017 * Free a 0-order page
1018 */
920c7a5d 1019static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1020{
1021 struct zone *zone = page_zone(page);
1022 struct per_cpu_pages *pcp;
1023 unsigned long flags;
da456f14 1024 int clearMlocked = PageMlocked(page);
1da177e4 1025
b1eeab67
VN
1026 kmemcheck_free_shadow(page, 0);
1027
1da177e4
LT
1028 if (PageAnon(page))
1029 page->mapping = NULL;
224abf92 1030 if (free_pages_check(page))
689bcebf
HD
1031 return;
1032
3ac7fe5a 1033 if (!PageHighMem(page)) {
9858db50 1034 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1035 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1036 }
dafb1367 1037 arch_free_page(page, 0);
689bcebf
HD
1038 kernel_map_pages(page, 1, 0);
1039
3dfa5721 1040 pcp = &zone_pcp(zone, get_cpu())->pcp;
974709bd 1041 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1042 local_irq_save(flags);
da456f14
MG
1043 if (unlikely(clearMlocked))
1044 free_page_mlock(page);
f8891e5e 1045 __count_vm_event(PGFREE);
da456f14 1046
3dfa5721
CL
1047 if (cold)
1048 list_add_tail(&page->lru, &pcp->list);
1049 else
1050 list_add(&page->lru, &pcp->list);
1da177e4 1051 pcp->count++;
48db57f8
NP
1052 if (pcp->count >= pcp->high) {
1053 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1054 pcp->count -= pcp->batch;
1055 }
1da177e4
LT
1056 local_irq_restore(flags);
1057 put_cpu();
1058}
1059
920c7a5d 1060void free_hot_page(struct page *page)
1da177e4
LT
1061{
1062 free_hot_cold_page(page, 0);
1063}
1064
920c7a5d 1065void free_cold_page(struct page *page)
1da177e4
LT
1066{
1067 free_hot_cold_page(page, 1);
1068}
1069
8dfcc9ba
NP
1070/*
1071 * split_page takes a non-compound higher-order page, and splits it into
1072 * n (1<<order) sub-pages: page[0..n]
1073 * Each sub-page must be freed individually.
1074 *
1075 * Note: this is probably too low level an operation for use in drivers.
1076 * Please consult with lkml before using this in your driver.
1077 */
1078void split_page(struct page *page, unsigned int order)
1079{
1080 int i;
1081
725d704e
NP
1082 VM_BUG_ON(PageCompound(page));
1083 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1084
1085#ifdef CONFIG_KMEMCHECK
1086 /*
1087 * Split shadow pages too, because free(page[0]) would
1088 * otherwise free the whole shadow.
1089 */
1090 if (kmemcheck_page_is_tracked(page))
1091 split_page(virt_to_page(page[0].shadow), order);
1092#endif
1093
7835e98b
NP
1094 for (i = 1; i < (1 << order); i++)
1095 set_page_refcounted(page + i);
8dfcc9ba 1096}
8dfcc9ba 1097
1da177e4
LT
1098/*
1099 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1100 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1101 * or two.
1102 */
0a15c3e9
MG
1103static inline
1104struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1105 struct zone *zone, int order, gfp_t gfp_flags,
1106 int migratetype)
1da177e4
LT
1107{
1108 unsigned long flags;
689bcebf 1109 struct page *page;
1da177e4 1110 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1111 int cpu;
1da177e4 1112
689bcebf 1113again:
a74609fa 1114 cpu = get_cpu();
48db57f8 1115 if (likely(order == 0)) {
1da177e4
LT
1116 struct per_cpu_pages *pcp;
1117
3dfa5721 1118 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1119 local_irq_save(flags);
a74609fa 1120 if (!pcp->count) {
941c7105 1121 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1122 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1123 if (unlikely(!pcp->count))
1124 goto failed;
1da177e4 1125 }
b92a6edd 1126
535131e6 1127 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1128 if (cold) {
1129 list_for_each_entry_reverse(page, &pcp->list, lru)
1130 if (page_private(page) == migratetype)
1131 break;
1132 } else {
1133 list_for_each_entry(page, &pcp->list, lru)
1134 if (page_private(page) == migratetype)
1135 break;
1136 }
535131e6 1137
b92a6edd
MG
1138 /* Allocate more to the pcp list if necessary */
1139 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1140 pcp->count += rmqueue_bulk(zone, 0,
1141 pcp->batch, &pcp->list, migratetype);
1142 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1143 }
b92a6edd
MG
1144
1145 list_del(&page->lru);
1146 pcp->count--;
7fb1d9fc 1147 } else {
dab48dab
AM
1148 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1149 /*
1150 * __GFP_NOFAIL is not to be used in new code.
1151 *
1152 * All __GFP_NOFAIL callers should be fixed so that they
1153 * properly detect and handle allocation failures.
1154 *
1155 * We most definitely don't want callers attempting to
1156 * allocate greater than single-page units with
1157 * __GFP_NOFAIL.
1158 */
1159 WARN_ON_ONCE(order > 0);
1160 }
1da177e4 1161 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1162 page = __rmqueue(zone, order, migratetype);
f2260e6b 1163 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
a74609fa
NP
1164 spin_unlock(&zone->lock);
1165 if (!page)
1166 goto failed;
1da177e4
LT
1167 }
1168
f8891e5e 1169 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1170 zone_statistics(preferred_zone, zone);
a74609fa
NP
1171 local_irq_restore(flags);
1172 put_cpu();
1da177e4 1173
725d704e 1174 VM_BUG_ON(bad_range(zone, page));
17cf4406 1175 if (prep_new_page(page, order, gfp_flags))
a74609fa 1176 goto again;
1da177e4 1177 return page;
a74609fa
NP
1178
1179failed:
1180 local_irq_restore(flags);
1181 put_cpu();
1182 return NULL;
1da177e4
LT
1183}
1184
41858966
MG
1185/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1186#define ALLOC_WMARK_MIN WMARK_MIN
1187#define ALLOC_WMARK_LOW WMARK_LOW
1188#define ALLOC_WMARK_HIGH WMARK_HIGH
1189#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1190
1191/* Mask to get the watermark bits */
1192#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1193
3148890b
NP
1194#define ALLOC_HARDER 0x10 /* try to alloc harder */
1195#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1196#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1197
933e312e
AM
1198#ifdef CONFIG_FAIL_PAGE_ALLOC
1199
1200static struct fail_page_alloc_attr {
1201 struct fault_attr attr;
1202
1203 u32 ignore_gfp_highmem;
1204 u32 ignore_gfp_wait;
54114994 1205 u32 min_order;
933e312e
AM
1206
1207#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1208
1209 struct dentry *ignore_gfp_highmem_file;
1210 struct dentry *ignore_gfp_wait_file;
54114994 1211 struct dentry *min_order_file;
933e312e
AM
1212
1213#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1214
1215} fail_page_alloc = {
1216 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1217 .ignore_gfp_wait = 1,
1218 .ignore_gfp_highmem = 1,
54114994 1219 .min_order = 1,
933e312e
AM
1220};
1221
1222static int __init setup_fail_page_alloc(char *str)
1223{
1224 return setup_fault_attr(&fail_page_alloc.attr, str);
1225}
1226__setup("fail_page_alloc=", setup_fail_page_alloc);
1227
1228static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1229{
54114994
AM
1230 if (order < fail_page_alloc.min_order)
1231 return 0;
933e312e
AM
1232 if (gfp_mask & __GFP_NOFAIL)
1233 return 0;
1234 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1235 return 0;
1236 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1237 return 0;
1238
1239 return should_fail(&fail_page_alloc.attr, 1 << order);
1240}
1241
1242#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1243
1244static int __init fail_page_alloc_debugfs(void)
1245{
1246 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1247 struct dentry *dir;
1248 int err;
1249
1250 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1251 "fail_page_alloc");
1252 if (err)
1253 return err;
1254 dir = fail_page_alloc.attr.dentries.dir;
1255
1256 fail_page_alloc.ignore_gfp_wait_file =
1257 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1258 &fail_page_alloc.ignore_gfp_wait);
1259
1260 fail_page_alloc.ignore_gfp_highmem_file =
1261 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1262 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1263 fail_page_alloc.min_order_file =
1264 debugfs_create_u32("min-order", mode, dir,
1265 &fail_page_alloc.min_order);
933e312e
AM
1266
1267 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1268 !fail_page_alloc.ignore_gfp_highmem_file ||
1269 !fail_page_alloc.min_order_file) {
933e312e
AM
1270 err = -ENOMEM;
1271 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1272 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1273 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1274 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1275 }
1276
1277 return err;
1278}
1279
1280late_initcall(fail_page_alloc_debugfs);
1281
1282#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1283
1284#else /* CONFIG_FAIL_PAGE_ALLOC */
1285
1286static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1287{
1288 return 0;
1289}
1290
1291#endif /* CONFIG_FAIL_PAGE_ALLOC */
1292
1da177e4
LT
1293/*
1294 * Return 1 if free pages are above 'mark'. This takes into account the order
1295 * of the allocation.
1296 */
1297int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1298 int classzone_idx, int alloc_flags)
1da177e4
LT
1299{
1300 /* free_pages my go negative - that's OK */
d23ad423
CL
1301 long min = mark;
1302 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1303 int o;
1304
7fb1d9fc 1305 if (alloc_flags & ALLOC_HIGH)
1da177e4 1306 min -= min / 2;
7fb1d9fc 1307 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1308 min -= min / 4;
1309
1310 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1311 return 0;
1312 for (o = 0; o < order; o++) {
1313 /* At the next order, this order's pages become unavailable */
1314 free_pages -= z->free_area[o].nr_free << o;
1315
1316 /* Require fewer higher order pages to be free */
1317 min >>= 1;
1318
1319 if (free_pages <= min)
1320 return 0;
1321 }
1322 return 1;
1323}
1324
9276b1bc
PJ
1325#ifdef CONFIG_NUMA
1326/*
1327 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1328 * skip over zones that are not allowed by the cpuset, or that have
1329 * been recently (in last second) found to be nearly full. See further
1330 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1331 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1332 *
1333 * If the zonelist cache is present in the passed in zonelist, then
1334 * returns a pointer to the allowed node mask (either the current
37b07e41 1335 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1336 *
1337 * If the zonelist cache is not available for this zonelist, does
1338 * nothing and returns NULL.
1339 *
1340 * If the fullzones BITMAP in the zonelist cache is stale (more than
1341 * a second since last zap'd) then we zap it out (clear its bits.)
1342 *
1343 * We hold off even calling zlc_setup, until after we've checked the
1344 * first zone in the zonelist, on the theory that most allocations will
1345 * be satisfied from that first zone, so best to examine that zone as
1346 * quickly as we can.
1347 */
1348static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1349{
1350 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1351 nodemask_t *allowednodes; /* zonelist_cache approximation */
1352
1353 zlc = zonelist->zlcache_ptr;
1354 if (!zlc)
1355 return NULL;
1356
f05111f5 1357 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1358 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1359 zlc->last_full_zap = jiffies;
1360 }
1361
1362 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1363 &cpuset_current_mems_allowed :
37b07e41 1364 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1365 return allowednodes;
1366}
1367
1368/*
1369 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1370 * if it is worth looking at further for free memory:
1371 * 1) Check that the zone isn't thought to be full (doesn't have its
1372 * bit set in the zonelist_cache fullzones BITMAP).
1373 * 2) Check that the zones node (obtained from the zonelist_cache
1374 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1375 * Return true (non-zero) if zone is worth looking at further, or
1376 * else return false (zero) if it is not.
1377 *
1378 * This check -ignores- the distinction between various watermarks,
1379 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1380 * found to be full for any variation of these watermarks, it will
1381 * be considered full for up to one second by all requests, unless
1382 * we are so low on memory on all allowed nodes that we are forced
1383 * into the second scan of the zonelist.
1384 *
1385 * In the second scan we ignore this zonelist cache and exactly
1386 * apply the watermarks to all zones, even it is slower to do so.
1387 * We are low on memory in the second scan, and should leave no stone
1388 * unturned looking for a free page.
1389 */
dd1a239f 1390static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1391 nodemask_t *allowednodes)
1392{
1393 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1394 int i; /* index of *z in zonelist zones */
1395 int n; /* node that zone *z is on */
1396
1397 zlc = zonelist->zlcache_ptr;
1398 if (!zlc)
1399 return 1;
1400
dd1a239f 1401 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1402 n = zlc->z_to_n[i];
1403
1404 /* This zone is worth trying if it is allowed but not full */
1405 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1406}
1407
1408/*
1409 * Given 'z' scanning a zonelist, set the corresponding bit in
1410 * zlc->fullzones, so that subsequent attempts to allocate a page
1411 * from that zone don't waste time re-examining it.
1412 */
dd1a239f 1413static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1414{
1415 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1416 int i; /* index of *z in zonelist zones */
1417
1418 zlc = zonelist->zlcache_ptr;
1419 if (!zlc)
1420 return;
1421
dd1a239f 1422 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1423
1424 set_bit(i, zlc->fullzones);
1425}
1426
1427#else /* CONFIG_NUMA */
1428
1429static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1430{
1431 return NULL;
1432}
1433
dd1a239f 1434static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1435 nodemask_t *allowednodes)
1436{
1437 return 1;
1438}
1439
dd1a239f 1440static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1441{
1442}
1443#endif /* CONFIG_NUMA */
1444
7fb1d9fc 1445/*
0798e519 1446 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1447 * a page.
1448 */
1449static struct page *
19770b32 1450get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1451 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1452 struct zone *preferred_zone, int migratetype)
753ee728 1453{
dd1a239f 1454 struct zoneref *z;
7fb1d9fc 1455 struct page *page = NULL;
54a6eb5c 1456 int classzone_idx;
5117f45d 1457 struct zone *zone;
9276b1bc
PJ
1458 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1459 int zlc_active = 0; /* set if using zonelist_cache */
1460 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1461
19770b32 1462 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1463zonelist_scan:
7fb1d9fc 1464 /*
9276b1bc 1465 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1466 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1467 */
19770b32
MG
1468 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1469 high_zoneidx, nodemask) {
9276b1bc
PJ
1470 if (NUMA_BUILD && zlc_active &&
1471 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1472 continue;
7fb1d9fc 1473 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1474 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1475 goto try_next_zone;
7fb1d9fc 1476
41858966 1477 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1478 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1479 unsigned long mark;
fa5e084e
MG
1480 int ret;
1481
41858966 1482 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1483 if (zone_watermark_ok(zone, order, mark,
1484 classzone_idx, alloc_flags))
1485 goto try_this_zone;
1486
1487 if (zone_reclaim_mode == 0)
1488 goto this_zone_full;
1489
1490 ret = zone_reclaim(zone, gfp_mask, order);
1491 switch (ret) {
1492 case ZONE_RECLAIM_NOSCAN:
1493 /* did not scan */
1494 goto try_next_zone;
1495 case ZONE_RECLAIM_FULL:
1496 /* scanned but unreclaimable */
1497 goto this_zone_full;
1498 default:
1499 /* did we reclaim enough */
1500 if (!zone_watermark_ok(zone, order, mark,
1501 classzone_idx, alloc_flags))
9276b1bc 1502 goto this_zone_full;
0798e519 1503 }
7fb1d9fc
RS
1504 }
1505
fa5e084e 1506try_this_zone:
3dd28266
MG
1507 page = buffered_rmqueue(preferred_zone, zone, order,
1508 gfp_mask, migratetype);
0798e519 1509 if (page)
7fb1d9fc 1510 break;
9276b1bc
PJ
1511this_zone_full:
1512 if (NUMA_BUILD)
1513 zlc_mark_zone_full(zonelist, z);
1514try_next_zone:
62bc62a8 1515 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1516 /*
1517 * we do zlc_setup after the first zone is tried but only
1518 * if there are multiple nodes make it worthwhile
1519 */
9276b1bc
PJ
1520 allowednodes = zlc_setup(zonelist, alloc_flags);
1521 zlc_active = 1;
1522 did_zlc_setup = 1;
1523 }
54a6eb5c 1524 }
9276b1bc
PJ
1525
1526 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1527 /* Disable zlc cache for second zonelist scan */
1528 zlc_active = 0;
1529 goto zonelist_scan;
1530 }
7fb1d9fc 1531 return page;
753ee728
MH
1532}
1533
11e33f6a
MG
1534static inline int
1535should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1536 unsigned long pages_reclaimed)
1da177e4 1537{
11e33f6a
MG
1538 /* Do not loop if specifically requested */
1539 if (gfp_mask & __GFP_NORETRY)
1540 return 0;
1da177e4 1541
11e33f6a
MG
1542 /*
1543 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1544 * means __GFP_NOFAIL, but that may not be true in other
1545 * implementations.
1546 */
1547 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1548 return 1;
1549
1550 /*
1551 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1552 * specified, then we retry until we no longer reclaim any pages
1553 * (above), or we've reclaimed an order of pages at least as
1554 * large as the allocation's order. In both cases, if the
1555 * allocation still fails, we stop retrying.
1556 */
1557 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1558 return 1;
cf40bd16 1559
11e33f6a
MG
1560 /*
1561 * Don't let big-order allocations loop unless the caller
1562 * explicitly requests that.
1563 */
1564 if (gfp_mask & __GFP_NOFAIL)
1565 return 1;
1da177e4 1566
11e33f6a
MG
1567 return 0;
1568}
933e312e 1569
11e33f6a
MG
1570static inline struct page *
1571__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1572 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1573 nodemask_t *nodemask, struct zone *preferred_zone,
1574 int migratetype)
11e33f6a
MG
1575{
1576 struct page *page;
1577
1578 /* Acquire the OOM killer lock for the zones in zonelist */
1579 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1580 schedule_timeout_uninterruptible(1);
1da177e4
LT
1581 return NULL;
1582 }
6b1de916 1583
11e33f6a
MG
1584 /*
1585 * Go through the zonelist yet one more time, keep very high watermark
1586 * here, this is only to catch a parallel oom killing, we must fail if
1587 * we're still under heavy pressure.
1588 */
1589 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1590 order, zonelist, high_zoneidx,
5117f45d 1591 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1592 preferred_zone, migratetype);
7fb1d9fc 1593 if (page)
11e33f6a
MG
1594 goto out;
1595
1596 /* The OOM killer will not help higher order allocs */
82553a93 1597 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
11e33f6a
MG
1598 goto out;
1599
1600 /* Exhausted what can be done so it's blamo time */
1601 out_of_memory(zonelist, gfp_mask, order);
1602
1603out:
1604 clear_zonelist_oom(zonelist, gfp_mask);
1605 return page;
1606}
1607
1608/* The really slow allocator path where we enter direct reclaim */
1609static inline struct page *
1610__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1611 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1612 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1613 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1614{
1615 struct page *page = NULL;
1616 struct reclaim_state reclaim_state;
1617 struct task_struct *p = current;
1618
1619 cond_resched();
1620
1621 /* We now go into synchronous reclaim */
1622 cpuset_memory_pressure_bump();
1623
1624 /*
1625 * The task's cpuset might have expanded its set of allowable nodes
1626 */
1627 p->flags |= PF_MEMALLOC;
1628 lockdep_set_current_reclaim_state(gfp_mask);
1629 reclaim_state.reclaimed_slab = 0;
1630 p->reclaim_state = &reclaim_state;
1631
1632 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1633
1634 p->reclaim_state = NULL;
1635 lockdep_clear_current_reclaim_state();
1636 p->flags &= ~PF_MEMALLOC;
1637
1638 cond_resched();
1639
1640 if (order != 0)
1641 drain_all_pages();
1642
1643 if (likely(*did_some_progress))
1644 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1645 zonelist, high_zoneidx,
3dd28266
MG
1646 alloc_flags, preferred_zone,
1647 migratetype);
11e33f6a
MG
1648 return page;
1649}
1650
1da177e4 1651/*
11e33f6a
MG
1652 * This is called in the allocator slow-path if the allocation request is of
1653 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1654 */
11e33f6a
MG
1655static inline struct page *
1656__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1657 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1658 nodemask_t *nodemask, struct zone *preferred_zone,
1659 int migratetype)
11e33f6a
MG
1660{
1661 struct page *page;
1662
1663 do {
1664 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1665 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1666 preferred_zone, migratetype);
11e33f6a
MG
1667
1668 if (!page && gfp_mask & __GFP_NOFAIL)
1669 congestion_wait(WRITE, HZ/50);
1670 } while (!page && (gfp_mask & __GFP_NOFAIL));
1671
1672 return page;
1673}
1674
1675static inline
1676void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1677 enum zone_type high_zoneidx)
1da177e4 1678{
dd1a239f
MG
1679 struct zoneref *z;
1680 struct zone *zone;
1da177e4 1681
11e33f6a
MG
1682 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1683 wakeup_kswapd(zone, order);
1684}
cf40bd16 1685
341ce06f
PZ
1686static inline int
1687gfp_to_alloc_flags(gfp_t gfp_mask)
1688{
1689 struct task_struct *p = current;
1690 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1691 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1692
a56f57ff
MG
1693 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1694 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
933e312e 1695
341ce06f
PZ
1696 /*
1697 * The caller may dip into page reserves a bit more if the caller
1698 * cannot run direct reclaim, or if the caller has realtime scheduling
1699 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1700 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1701 */
a56f57ff 1702 alloc_flags |= (gfp_mask & __GFP_HIGH);
1da177e4 1703
341ce06f
PZ
1704 if (!wait) {
1705 alloc_flags |= ALLOC_HARDER;
523b9458 1706 /*
341ce06f
PZ
1707 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1708 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1709 */
341ce06f
PZ
1710 alloc_flags &= ~ALLOC_CPUSET;
1711 } else if (unlikely(rt_task(p)))
1712 alloc_flags |= ALLOC_HARDER;
1713
1714 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1715 if (!in_interrupt() &&
1716 ((p->flags & PF_MEMALLOC) ||
1717 unlikely(test_thread_flag(TIF_MEMDIE))))
1718 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1719 }
6b1de916 1720
341ce06f
PZ
1721 return alloc_flags;
1722}
1723
11e33f6a
MG
1724static inline struct page *
1725__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1726 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1727 nodemask_t *nodemask, struct zone *preferred_zone,
1728 int migratetype)
11e33f6a
MG
1729{
1730 const gfp_t wait = gfp_mask & __GFP_WAIT;
1731 struct page *page = NULL;
1732 int alloc_flags;
1733 unsigned long pages_reclaimed = 0;
1734 unsigned long did_some_progress;
1735 struct task_struct *p = current;
1da177e4 1736
72807a74
MG
1737 /*
1738 * In the slowpath, we sanity check order to avoid ever trying to
1739 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1740 * be using allocators in order of preference for an area that is
1741 * too large.
1742 */
1743 if (WARN_ON_ONCE(order >= MAX_ORDER))
1744 return NULL;
1da177e4 1745
952f3b51
CL
1746 /*
1747 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1748 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1749 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1750 * using a larger set of nodes after it has established that the
1751 * allowed per node queues are empty and that nodes are
1752 * over allocated.
1753 */
1754 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1755 goto nopage;
1756
11e33f6a 1757 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1758
9bf2229f 1759 /*
7fb1d9fc
RS
1760 * OK, we're below the kswapd watermark and have kicked background
1761 * reclaim. Now things get more complex, so set up alloc_flags according
1762 * to how we want to proceed.
9bf2229f 1763 */
341ce06f 1764 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1765
11e33f6a 1766restart:
341ce06f 1767 /* This is the last chance, in general, before the goto nopage. */
19770b32 1768 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1769 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1770 preferred_zone, migratetype);
7fb1d9fc
RS
1771 if (page)
1772 goto got_pg;
1da177e4 1773
b43a57bb 1774rebalance:
11e33f6a 1775 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1776 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1777 page = __alloc_pages_high_priority(gfp_mask, order,
1778 zonelist, high_zoneidx, nodemask,
1779 preferred_zone, migratetype);
1780 if (page)
1781 goto got_pg;
1da177e4
LT
1782 }
1783
1784 /* Atomic allocations - we can't balance anything */
1785 if (!wait)
1786 goto nopage;
1787
341ce06f
PZ
1788 /* Avoid recursion of direct reclaim */
1789 if (p->flags & PF_MEMALLOC)
1790 goto nopage;
1791
11e33f6a
MG
1792 /* Try direct reclaim and then allocating */
1793 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1794 zonelist, high_zoneidx,
1795 nodemask,
5117f45d 1796 alloc_flags, preferred_zone,
3dd28266 1797 migratetype, &did_some_progress);
11e33f6a
MG
1798 if (page)
1799 goto got_pg;
1da177e4 1800
e33c3b5e 1801 /*
11e33f6a
MG
1802 * If we failed to make any progress reclaiming, then we are
1803 * running out of options and have to consider going OOM
e33c3b5e 1804 */
11e33f6a
MG
1805 if (!did_some_progress) {
1806 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
1807 if (oom_killer_disabled)
1808 goto nopage;
11e33f6a
MG
1809 page = __alloc_pages_may_oom(gfp_mask, order,
1810 zonelist, high_zoneidx,
3dd28266
MG
1811 nodemask, preferred_zone,
1812 migratetype);
11e33f6a
MG
1813 if (page)
1814 goto got_pg;
1da177e4 1815
11e33f6a 1816 /*
82553a93
DR
1817 * The OOM killer does not trigger for high-order
1818 * ~__GFP_NOFAIL allocations so if no progress is being
1819 * made, there are no other options and retrying is
1820 * unlikely to help.
11e33f6a 1821 */
82553a93
DR
1822 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1823 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 1824 goto nopage;
e2c55dc8 1825
ff0ceb9d
DR
1826 goto restart;
1827 }
1da177e4
LT
1828 }
1829
11e33f6a 1830 /* Check if we should retry the allocation */
a41f24ea 1831 pages_reclaimed += did_some_progress;
11e33f6a
MG
1832 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1833 /* Wait for some write requests to complete then retry */
3fcfab16 1834 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1835 goto rebalance;
1836 }
1837
1838nopage:
1839 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1840 printk(KERN_WARNING "%s: page allocation failure."
1841 " order:%d, mode:0x%x\n",
1842 p->comm, order, gfp_mask);
1843 dump_stack();
578c2fd6 1844 show_mem();
1da177e4 1845 }
b1eeab67 1846 return page;
1da177e4 1847got_pg:
b1eeab67
VN
1848 if (kmemcheck_enabled)
1849 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 1850 return page;
11e33f6a 1851
1da177e4 1852}
11e33f6a
MG
1853
1854/*
1855 * This is the 'heart' of the zoned buddy allocator.
1856 */
1857struct page *
1858__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1859 struct zonelist *zonelist, nodemask_t *nodemask)
1860{
1861 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1862 struct zone *preferred_zone;
11e33f6a 1863 struct page *page;
3dd28266 1864 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a
MG
1865
1866 lockdep_trace_alloc(gfp_mask);
1867
1868 might_sleep_if(gfp_mask & __GFP_WAIT);
1869
1870 if (should_fail_alloc_page(gfp_mask, order))
1871 return NULL;
1872
1873 /*
1874 * Check the zones suitable for the gfp_mask contain at least one
1875 * valid zone. It's possible to have an empty zonelist as a result
1876 * of GFP_THISNODE and a memoryless node
1877 */
1878 if (unlikely(!zonelist->_zonerefs->zone))
1879 return NULL;
1880
5117f45d
MG
1881 /* The preferred zone is used for statistics later */
1882 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1883 if (!preferred_zone)
1884 return NULL;
1885
1886 /* First allocation attempt */
11e33f6a 1887 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 1888 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 1889 preferred_zone, migratetype);
11e33f6a
MG
1890 if (unlikely(!page))
1891 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 1892 zonelist, high_zoneidx, nodemask,
3dd28266 1893 preferred_zone, migratetype);
11e33f6a
MG
1894
1895 return page;
1da177e4 1896}
d239171e 1897EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1898
1899/*
1900 * Common helper functions.
1901 */
920c7a5d 1902unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1903{
1904 struct page * page;
1905 page = alloc_pages(gfp_mask, order);
1906 if (!page)
1907 return 0;
1908 return (unsigned long) page_address(page);
1909}
1910
1911EXPORT_SYMBOL(__get_free_pages);
1912
920c7a5d 1913unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1914{
1915 struct page * page;
1916
1917 /*
1918 * get_zeroed_page() returns a 32-bit address, which cannot represent
1919 * a highmem page
1920 */
725d704e 1921 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1922
1923 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1924 if (page)
1925 return (unsigned long) page_address(page);
1926 return 0;
1927}
1928
1929EXPORT_SYMBOL(get_zeroed_page);
1930
1931void __pagevec_free(struct pagevec *pvec)
1932{
1933 int i = pagevec_count(pvec);
1934
1935 while (--i >= 0)
1936 free_hot_cold_page(pvec->pages[i], pvec->cold);
1937}
1938
920c7a5d 1939void __free_pages(struct page *page, unsigned int order)
1da177e4 1940{
b5810039 1941 if (put_page_testzero(page)) {
1da177e4
LT
1942 if (order == 0)
1943 free_hot_page(page);
1944 else
1945 __free_pages_ok(page, order);
1946 }
1947}
1948
1949EXPORT_SYMBOL(__free_pages);
1950
920c7a5d 1951void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1952{
1953 if (addr != 0) {
725d704e 1954 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1955 __free_pages(virt_to_page((void *)addr), order);
1956 }
1957}
1958
1959EXPORT_SYMBOL(free_pages);
1960
2be0ffe2
TT
1961/**
1962 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1963 * @size: the number of bytes to allocate
1964 * @gfp_mask: GFP flags for the allocation
1965 *
1966 * This function is similar to alloc_pages(), except that it allocates the
1967 * minimum number of pages to satisfy the request. alloc_pages() can only
1968 * allocate memory in power-of-two pages.
1969 *
1970 * This function is also limited by MAX_ORDER.
1971 *
1972 * Memory allocated by this function must be released by free_pages_exact().
1973 */
1974void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1975{
1976 unsigned int order = get_order(size);
1977 unsigned long addr;
1978
1979 addr = __get_free_pages(gfp_mask, order);
1980 if (addr) {
1981 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1982 unsigned long used = addr + PAGE_ALIGN(size);
1983
1984 split_page(virt_to_page(addr), order);
1985 while (used < alloc_end) {
1986 free_page(used);
1987 used += PAGE_SIZE;
1988 }
1989 }
1990
1991 return (void *)addr;
1992}
1993EXPORT_SYMBOL(alloc_pages_exact);
1994
1995/**
1996 * free_pages_exact - release memory allocated via alloc_pages_exact()
1997 * @virt: the value returned by alloc_pages_exact.
1998 * @size: size of allocation, same value as passed to alloc_pages_exact().
1999 *
2000 * Release the memory allocated by a previous call to alloc_pages_exact.
2001 */
2002void free_pages_exact(void *virt, size_t size)
2003{
2004 unsigned long addr = (unsigned long)virt;
2005 unsigned long end = addr + PAGE_ALIGN(size);
2006
2007 while (addr < end) {
2008 free_page(addr);
2009 addr += PAGE_SIZE;
2010 }
2011}
2012EXPORT_SYMBOL(free_pages_exact);
2013
1da177e4
LT
2014static unsigned int nr_free_zone_pages(int offset)
2015{
dd1a239f 2016 struct zoneref *z;
54a6eb5c
MG
2017 struct zone *zone;
2018
e310fd43 2019 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2020 unsigned int sum = 0;
2021
0e88460d 2022 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2023
54a6eb5c 2024 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2025 unsigned long size = zone->present_pages;
41858966 2026 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2027 if (size > high)
2028 sum += size - high;
1da177e4
LT
2029 }
2030
2031 return sum;
2032}
2033
2034/*
2035 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2036 */
2037unsigned int nr_free_buffer_pages(void)
2038{
af4ca457 2039 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2040}
c2f1a551 2041EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2042
2043/*
2044 * Amount of free RAM allocatable within all zones
2045 */
2046unsigned int nr_free_pagecache_pages(void)
2047{
2a1e274a 2048 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2049}
08e0f6a9
CL
2050
2051static inline void show_node(struct zone *zone)
1da177e4 2052{
08e0f6a9 2053 if (NUMA_BUILD)
25ba77c1 2054 printk("Node %d ", zone_to_nid(zone));
1da177e4 2055}
1da177e4 2056
1da177e4
LT
2057void si_meminfo(struct sysinfo *val)
2058{
2059 val->totalram = totalram_pages;
2060 val->sharedram = 0;
d23ad423 2061 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2062 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2063 val->totalhigh = totalhigh_pages;
2064 val->freehigh = nr_free_highpages();
1da177e4
LT
2065 val->mem_unit = PAGE_SIZE;
2066}
2067
2068EXPORT_SYMBOL(si_meminfo);
2069
2070#ifdef CONFIG_NUMA
2071void si_meminfo_node(struct sysinfo *val, int nid)
2072{
2073 pg_data_t *pgdat = NODE_DATA(nid);
2074
2075 val->totalram = pgdat->node_present_pages;
d23ad423 2076 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2077#ifdef CONFIG_HIGHMEM
1da177e4 2078 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2079 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2080 NR_FREE_PAGES);
98d2b0eb
CL
2081#else
2082 val->totalhigh = 0;
2083 val->freehigh = 0;
2084#endif
1da177e4
LT
2085 val->mem_unit = PAGE_SIZE;
2086}
2087#endif
2088
2089#define K(x) ((x) << (PAGE_SHIFT-10))
2090
2091/*
2092 * Show free area list (used inside shift_scroll-lock stuff)
2093 * We also calculate the percentage fragmentation. We do this by counting the
2094 * memory on each free list with the exception of the first item on the list.
2095 */
2096void show_free_areas(void)
2097{
c7241913 2098 int cpu;
1da177e4
LT
2099 struct zone *zone;
2100
ee99c71c 2101 for_each_populated_zone(zone) {
c7241913
JS
2102 show_node(zone);
2103 printk("%s per-cpu:\n", zone->name);
1da177e4 2104
6b482c67 2105 for_each_online_cpu(cpu) {
1da177e4
LT
2106 struct per_cpu_pageset *pageset;
2107
e7c8d5c9 2108 pageset = zone_pcp(zone, cpu);
1da177e4 2109
3dfa5721
CL
2110 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2111 cpu, pageset->pcp.high,
2112 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2113 }
2114 }
2115
7b854121
LS
2116 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2117 " inactive_file:%lu"
7b854121 2118 " unevictable:%lu"
7b854121 2119 " dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 2120 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe
RR
2121 global_page_state(NR_ACTIVE_ANON),
2122 global_page_state(NR_ACTIVE_FILE),
2123 global_page_state(NR_INACTIVE_ANON),
2124 global_page_state(NR_INACTIVE_FILE),
7b854121 2125 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2126 global_page_state(NR_FILE_DIRTY),
ce866b34 2127 global_page_state(NR_WRITEBACK),
fd39fc85 2128 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2129 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
2130 global_page_state(NR_SLAB_RECLAIMABLE) +
2131 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2132 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
2133 global_page_state(NR_PAGETABLE),
2134 global_page_state(NR_BOUNCE));
1da177e4 2135
ee99c71c 2136 for_each_populated_zone(zone) {
1da177e4
LT
2137 int i;
2138
2139 show_node(zone);
2140 printk("%s"
2141 " free:%lukB"
2142 " min:%lukB"
2143 " low:%lukB"
2144 " high:%lukB"
4f98a2fe
RR
2145 " active_anon:%lukB"
2146 " inactive_anon:%lukB"
2147 " active_file:%lukB"
2148 " inactive_file:%lukB"
7b854121 2149 " unevictable:%lukB"
1da177e4
LT
2150 " present:%lukB"
2151 " pages_scanned:%lu"
2152 " all_unreclaimable? %s"
2153 "\n",
2154 zone->name,
d23ad423 2155 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2156 K(min_wmark_pages(zone)),
2157 K(low_wmark_pages(zone)),
2158 K(high_wmark_pages(zone)),
4f98a2fe
RR
2159 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2160 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2161 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2162 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2163 K(zone_page_state(zone, NR_UNEVICTABLE)),
1da177e4
LT
2164 K(zone->present_pages),
2165 zone->pages_scanned,
e815af95 2166 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2167 );
2168 printk("lowmem_reserve[]:");
2169 for (i = 0; i < MAX_NR_ZONES; i++)
2170 printk(" %lu", zone->lowmem_reserve[i]);
2171 printk("\n");
2172 }
2173
ee99c71c 2174 for_each_populated_zone(zone) {
8f9de51a 2175 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2176
2177 show_node(zone);
2178 printk("%s: ", zone->name);
1da177e4
LT
2179
2180 spin_lock_irqsave(&zone->lock, flags);
2181 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2182 nr[order] = zone->free_area[order].nr_free;
2183 total += nr[order] << order;
1da177e4
LT
2184 }
2185 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2186 for (order = 0; order < MAX_ORDER; order++)
2187 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2188 printk("= %lukB\n", K(total));
2189 }
2190
e6f3602d
LW
2191 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2192
1da177e4
LT
2193 show_swap_cache_info();
2194}
2195
19770b32
MG
2196static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2197{
2198 zoneref->zone = zone;
2199 zoneref->zone_idx = zone_idx(zone);
2200}
2201
1da177e4
LT
2202/*
2203 * Builds allocation fallback zone lists.
1a93205b
CL
2204 *
2205 * Add all populated zones of a node to the zonelist.
1da177e4 2206 */
f0c0b2b8
KH
2207static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2208 int nr_zones, enum zone_type zone_type)
1da177e4 2209{
1a93205b
CL
2210 struct zone *zone;
2211
98d2b0eb 2212 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2213 zone_type++;
02a68a5e
CL
2214
2215 do {
2f6726e5 2216 zone_type--;
070f8032 2217 zone = pgdat->node_zones + zone_type;
1a93205b 2218 if (populated_zone(zone)) {
dd1a239f
MG
2219 zoneref_set_zone(zone,
2220 &zonelist->_zonerefs[nr_zones++]);
070f8032 2221 check_highest_zone(zone_type);
1da177e4 2222 }
02a68a5e 2223
2f6726e5 2224 } while (zone_type);
070f8032 2225 return nr_zones;
1da177e4
LT
2226}
2227
f0c0b2b8
KH
2228
2229/*
2230 * zonelist_order:
2231 * 0 = automatic detection of better ordering.
2232 * 1 = order by ([node] distance, -zonetype)
2233 * 2 = order by (-zonetype, [node] distance)
2234 *
2235 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2236 * the same zonelist. So only NUMA can configure this param.
2237 */
2238#define ZONELIST_ORDER_DEFAULT 0
2239#define ZONELIST_ORDER_NODE 1
2240#define ZONELIST_ORDER_ZONE 2
2241
2242/* zonelist order in the kernel.
2243 * set_zonelist_order() will set this to NODE or ZONE.
2244 */
2245static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2246static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2247
2248
1da177e4 2249#ifdef CONFIG_NUMA
f0c0b2b8
KH
2250/* The value user specified ....changed by config */
2251static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2252/* string for sysctl */
2253#define NUMA_ZONELIST_ORDER_LEN 16
2254char numa_zonelist_order[16] = "default";
2255
2256/*
2257 * interface for configure zonelist ordering.
2258 * command line option "numa_zonelist_order"
2259 * = "[dD]efault - default, automatic configuration.
2260 * = "[nN]ode - order by node locality, then by zone within node
2261 * = "[zZ]one - order by zone, then by locality within zone
2262 */
2263
2264static int __parse_numa_zonelist_order(char *s)
2265{
2266 if (*s == 'd' || *s == 'D') {
2267 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2268 } else if (*s == 'n' || *s == 'N') {
2269 user_zonelist_order = ZONELIST_ORDER_NODE;
2270 } else if (*s == 'z' || *s == 'Z') {
2271 user_zonelist_order = ZONELIST_ORDER_ZONE;
2272 } else {
2273 printk(KERN_WARNING
2274 "Ignoring invalid numa_zonelist_order value: "
2275 "%s\n", s);
2276 return -EINVAL;
2277 }
2278 return 0;
2279}
2280
2281static __init int setup_numa_zonelist_order(char *s)
2282{
2283 if (s)
2284 return __parse_numa_zonelist_order(s);
2285 return 0;
2286}
2287early_param("numa_zonelist_order", setup_numa_zonelist_order);
2288
2289/*
2290 * sysctl handler for numa_zonelist_order
2291 */
2292int numa_zonelist_order_handler(ctl_table *table, int write,
2293 struct file *file, void __user *buffer, size_t *length,
2294 loff_t *ppos)
2295{
2296 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2297 int ret;
2298
2299 if (write)
2300 strncpy(saved_string, (char*)table->data,
2301 NUMA_ZONELIST_ORDER_LEN);
2302 ret = proc_dostring(table, write, file, buffer, length, ppos);
2303 if (ret)
2304 return ret;
2305 if (write) {
2306 int oldval = user_zonelist_order;
2307 if (__parse_numa_zonelist_order((char*)table->data)) {
2308 /*
2309 * bogus value. restore saved string
2310 */
2311 strncpy((char*)table->data, saved_string,
2312 NUMA_ZONELIST_ORDER_LEN);
2313 user_zonelist_order = oldval;
2314 } else if (oldval != user_zonelist_order)
2315 build_all_zonelists();
2316 }
2317 return 0;
2318}
2319
2320
62bc62a8 2321#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2322static int node_load[MAX_NUMNODES];
2323
1da177e4 2324/**
4dc3b16b 2325 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2326 * @node: node whose fallback list we're appending
2327 * @used_node_mask: nodemask_t of already used nodes
2328 *
2329 * We use a number of factors to determine which is the next node that should
2330 * appear on a given node's fallback list. The node should not have appeared
2331 * already in @node's fallback list, and it should be the next closest node
2332 * according to the distance array (which contains arbitrary distance values
2333 * from each node to each node in the system), and should also prefer nodes
2334 * with no CPUs, since presumably they'll have very little allocation pressure
2335 * on them otherwise.
2336 * It returns -1 if no node is found.
2337 */
f0c0b2b8 2338static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2339{
4cf808eb 2340 int n, val;
1da177e4
LT
2341 int min_val = INT_MAX;
2342 int best_node = -1;
a70f7302 2343 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2344
4cf808eb
LT
2345 /* Use the local node if we haven't already */
2346 if (!node_isset(node, *used_node_mask)) {
2347 node_set(node, *used_node_mask);
2348 return node;
2349 }
1da177e4 2350
37b07e41 2351 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2352
2353 /* Don't want a node to appear more than once */
2354 if (node_isset(n, *used_node_mask))
2355 continue;
2356
1da177e4
LT
2357 /* Use the distance array to find the distance */
2358 val = node_distance(node, n);
2359
4cf808eb
LT
2360 /* Penalize nodes under us ("prefer the next node") */
2361 val += (n < node);
2362
1da177e4 2363 /* Give preference to headless and unused nodes */
a70f7302
RR
2364 tmp = cpumask_of_node(n);
2365 if (!cpumask_empty(tmp))
1da177e4
LT
2366 val += PENALTY_FOR_NODE_WITH_CPUS;
2367
2368 /* Slight preference for less loaded node */
2369 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2370 val += node_load[n];
2371
2372 if (val < min_val) {
2373 min_val = val;
2374 best_node = n;
2375 }
2376 }
2377
2378 if (best_node >= 0)
2379 node_set(best_node, *used_node_mask);
2380
2381 return best_node;
2382}
2383
f0c0b2b8
KH
2384
2385/*
2386 * Build zonelists ordered by node and zones within node.
2387 * This results in maximum locality--normal zone overflows into local
2388 * DMA zone, if any--but risks exhausting DMA zone.
2389 */
2390static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2391{
f0c0b2b8 2392 int j;
1da177e4 2393 struct zonelist *zonelist;
f0c0b2b8 2394
54a6eb5c 2395 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2396 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2397 ;
2398 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2399 MAX_NR_ZONES - 1);
dd1a239f
MG
2400 zonelist->_zonerefs[j].zone = NULL;
2401 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2402}
2403
523b9458
CL
2404/*
2405 * Build gfp_thisnode zonelists
2406 */
2407static void build_thisnode_zonelists(pg_data_t *pgdat)
2408{
523b9458
CL
2409 int j;
2410 struct zonelist *zonelist;
2411
54a6eb5c
MG
2412 zonelist = &pgdat->node_zonelists[1];
2413 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2414 zonelist->_zonerefs[j].zone = NULL;
2415 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2416}
2417
f0c0b2b8
KH
2418/*
2419 * Build zonelists ordered by zone and nodes within zones.
2420 * This results in conserving DMA zone[s] until all Normal memory is
2421 * exhausted, but results in overflowing to remote node while memory
2422 * may still exist in local DMA zone.
2423 */
2424static int node_order[MAX_NUMNODES];
2425
2426static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2427{
f0c0b2b8
KH
2428 int pos, j, node;
2429 int zone_type; /* needs to be signed */
2430 struct zone *z;
2431 struct zonelist *zonelist;
2432
54a6eb5c
MG
2433 zonelist = &pgdat->node_zonelists[0];
2434 pos = 0;
2435 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2436 for (j = 0; j < nr_nodes; j++) {
2437 node = node_order[j];
2438 z = &NODE_DATA(node)->node_zones[zone_type];
2439 if (populated_zone(z)) {
dd1a239f
MG
2440 zoneref_set_zone(z,
2441 &zonelist->_zonerefs[pos++]);
54a6eb5c 2442 check_highest_zone(zone_type);
f0c0b2b8
KH
2443 }
2444 }
f0c0b2b8 2445 }
dd1a239f
MG
2446 zonelist->_zonerefs[pos].zone = NULL;
2447 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2448}
2449
2450static int default_zonelist_order(void)
2451{
2452 int nid, zone_type;
2453 unsigned long low_kmem_size,total_size;
2454 struct zone *z;
2455 int average_size;
2456 /*
2457 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2458 * If they are really small and used heavily, the system can fall
2459 * into OOM very easily.
2460 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2461 */
2462 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2463 low_kmem_size = 0;
2464 total_size = 0;
2465 for_each_online_node(nid) {
2466 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2467 z = &NODE_DATA(nid)->node_zones[zone_type];
2468 if (populated_zone(z)) {
2469 if (zone_type < ZONE_NORMAL)
2470 low_kmem_size += z->present_pages;
2471 total_size += z->present_pages;
2472 }
2473 }
2474 }
2475 if (!low_kmem_size || /* there are no DMA area. */
2476 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2477 return ZONELIST_ORDER_NODE;
2478 /*
2479 * look into each node's config.
2480 * If there is a node whose DMA/DMA32 memory is very big area on
2481 * local memory, NODE_ORDER may be suitable.
2482 */
37b07e41
LS
2483 average_size = total_size /
2484 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2485 for_each_online_node(nid) {
2486 low_kmem_size = 0;
2487 total_size = 0;
2488 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2489 z = &NODE_DATA(nid)->node_zones[zone_type];
2490 if (populated_zone(z)) {
2491 if (zone_type < ZONE_NORMAL)
2492 low_kmem_size += z->present_pages;
2493 total_size += z->present_pages;
2494 }
2495 }
2496 if (low_kmem_size &&
2497 total_size > average_size && /* ignore small node */
2498 low_kmem_size > total_size * 70/100)
2499 return ZONELIST_ORDER_NODE;
2500 }
2501 return ZONELIST_ORDER_ZONE;
2502}
2503
2504static void set_zonelist_order(void)
2505{
2506 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2507 current_zonelist_order = default_zonelist_order();
2508 else
2509 current_zonelist_order = user_zonelist_order;
2510}
2511
2512static void build_zonelists(pg_data_t *pgdat)
2513{
2514 int j, node, load;
2515 enum zone_type i;
1da177e4 2516 nodemask_t used_mask;
f0c0b2b8
KH
2517 int local_node, prev_node;
2518 struct zonelist *zonelist;
2519 int order = current_zonelist_order;
1da177e4
LT
2520
2521 /* initialize zonelists */
523b9458 2522 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2523 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2524 zonelist->_zonerefs[0].zone = NULL;
2525 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2526 }
2527
2528 /* NUMA-aware ordering of nodes */
2529 local_node = pgdat->node_id;
62bc62a8 2530 load = nr_online_nodes;
1da177e4
LT
2531 prev_node = local_node;
2532 nodes_clear(used_mask);
f0c0b2b8
KH
2533
2534 memset(node_load, 0, sizeof(node_load));
2535 memset(node_order, 0, sizeof(node_order));
2536 j = 0;
2537
1da177e4 2538 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2539 int distance = node_distance(local_node, node);
2540
2541 /*
2542 * If another node is sufficiently far away then it is better
2543 * to reclaim pages in a zone before going off node.
2544 */
2545 if (distance > RECLAIM_DISTANCE)
2546 zone_reclaim_mode = 1;
2547
1da177e4
LT
2548 /*
2549 * We don't want to pressure a particular node.
2550 * So adding penalty to the first node in same
2551 * distance group to make it round-robin.
2552 */
9eeff239 2553 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2554 node_load[node] = load;
2555
1da177e4
LT
2556 prev_node = node;
2557 load--;
f0c0b2b8
KH
2558 if (order == ZONELIST_ORDER_NODE)
2559 build_zonelists_in_node_order(pgdat, node);
2560 else
2561 node_order[j++] = node; /* remember order */
2562 }
1da177e4 2563
f0c0b2b8
KH
2564 if (order == ZONELIST_ORDER_ZONE) {
2565 /* calculate node order -- i.e., DMA last! */
2566 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2567 }
523b9458
CL
2568
2569 build_thisnode_zonelists(pgdat);
1da177e4
LT
2570}
2571
9276b1bc 2572/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2573static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2574{
54a6eb5c
MG
2575 struct zonelist *zonelist;
2576 struct zonelist_cache *zlc;
dd1a239f 2577 struct zoneref *z;
9276b1bc 2578
54a6eb5c
MG
2579 zonelist = &pgdat->node_zonelists[0];
2580 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2581 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2582 for (z = zonelist->_zonerefs; z->zone; z++)
2583 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2584}
2585
f0c0b2b8 2586
1da177e4
LT
2587#else /* CONFIG_NUMA */
2588
f0c0b2b8
KH
2589static void set_zonelist_order(void)
2590{
2591 current_zonelist_order = ZONELIST_ORDER_ZONE;
2592}
2593
2594static void build_zonelists(pg_data_t *pgdat)
1da177e4 2595{
19655d34 2596 int node, local_node;
54a6eb5c
MG
2597 enum zone_type j;
2598 struct zonelist *zonelist;
1da177e4
LT
2599
2600 local_node = pgdat->node_id;
1da177e4 2601
54a6eb5c
MG
2602 zonelist = &pgdat->node_zonelists[0];
2603 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2604
54a6eb5c
MG
2605 /*
2606 * Now we build the zonelist so that it contains the zones
2607 * of all the other nodes.
2608 * We don't want to pressure a particular node, so when
2609 * building the zones for node N, we make sure that the
2610 * zones coming right after the local ones are those from
2611 * node N+1 (modulo N)
2612 */
2613 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2614 if (!node_online(node))
2615 continue;
2616 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2617 MAX_NR_ZONES - 1);
1da177e4 2618 }
54a6eb5c
MG
2619 for (node = 0; node < local_node; node++) {
2620 if (!node_online(node))
2621 continue;
2622 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2623 MAX_NR_ZONES - 1);
2624 }
2625
dd1a239f
MG
2626 zonelist->_zonerefs[j].zone = NULL;
2627 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2628}
2629
9276b1bc 2630/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2631static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2632{
54a6eb5c 2633 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2634}
2635
1da177e4
LT
2636#endif /* CONFIG_NUMA */
2637
9b1a4d38 2638/* return values int ....just for stop_machine() */
f0c0b2b8 2639static int __build_all_zonelists(void *dummy)
1da177e4 2640{
6811378e 2641 int nid;
9276b1bc
PJ
2642
2643 for_each_online_node(nid) {
7ea1530a
CL
2644 pg_data_t *pgdat = NODE_DATA(nid);
2645
2646 build_zonelists(pgdat);
2647 build_zonelist_cache(pgdat);
9276b1bc 2648 }
6811378e
YG
2649 return 0;
2650}
2651
f0c0b2b8 2652void build_all_zonelists(void)
6811378e 2653{
f0c0b2b8
KH
2654 set_zonelist_order();
2655
6811378e 2656 if (system_state == SYSTEM_BOOTING) {
423b41d7 2657 __build_all_zonelists(NULL);
68ad8df4 2658 mminit_verify_zonelist();
6811378e
YG
2659 cpuset_init_current_mems_allowed();
2660 } else {
183ff22b 2661 /* we have to stop all cpus to guarantee there is no user
6811378e 2662 of zonelist */
9b1a4d38 2663 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2664 /* cpuset refresh routine should be here */
2665 }
bd1e22b8 2666 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2667 /*
2668 * Disable grouping by mobility if the number of pages in the
2669 * system is too low to allow the mechanism to work. It would be
2670 * more accurate, but expensive to check per-zone. This check is
2671 * made on memory-hotadd so a system can start with mobility
2672 * disabled and enable it later
2673 */
d9c23400 2674 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2675 page_group_by_mobility_disabled = 1;
2676 else
2677 page_group_by_mobility_disabled = 0;
2678
2679 printk("Built %i zonelists in %s order, mobility grouping %s. "
2680 "Total pages: %ld\n",
62bc62a8 2681 nr_online_nodes,
f0c0b2b8 2682 zonelist_order_name[current_zonelist_order],
9ef9acb0 2683 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2684 vm_total_pages);
2685#ifdef CONFIG_NUMA
2686 printk("Policy zone: %s\n", zone_names[policy_zone]);
2687#endif
1da177e4
LT
2688}
2689
2690/*
2691 * Helper functions to size the waitqueue hash table.
2692 * Essentially these want to choose hash table sizes sufficiently
2693 * large so that collisions trying to wait on pages are rare.
2694 * But in fact, the number of active page waitqueues on typical
2695 * systems is ridiculously low, less than 200. So this is even
2696 * conservative, even though it seems large.
2697 *
2698 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2699 * waitqueues, i.e. the size of the waitq table given the number of pages.
2700 */
2701#define PAGES_PER_WAITQUEUE 256
2702
cca448fe 2703#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2704static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2705{
2706 unsigned long size = 1;
2707
2708 pages /= PAGES_PER_WAITQUEUE;
2709
2710 while (size < pages)
2711 size <<= 1;
2712
2713 /*
2714 * Once we have dozens or even hundreds of threads sleeping
2715 * on IO we've got bigger problems than wait queue collision.
2716 * Limit the size of the wait table to a reasonable size.
2717 */
2718 size = min(size, 4096UL);
2719
2720 return max(size, 4UL);
2721}
cca448fe
YG
2722#else
2723/*
2724 * A zone's size might be changed by hot-add, so it is not possible to determine
2725 * a suitable size for its wait_table. So we use the maximum size now.
2726 *
2727 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2728 *
2729 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2730 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2731 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2732 *
2733 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2734 * or more by the traditional way. (See above). It equals:
2735 *
2736 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2737 * ia64(16K page size) : = ( 8G + 4M)byte.
2738 * powerpc (64K page size) : = (32G +16M)byte.
2739 */
2740static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2741{
2742 return 4096UL;
2743}
2744#endif
1da177e4
LT
2745
2746/*
2747 * This is an integer logarithm so that shifts can be used later
2748 * to extract the more random high bits from the multiplicative
2749 * hash function before the remainder is taken.
2750 */
2751static inline unsigned long wait_table_bits(unsigned long size)
2752{
2753 return ffz(~size);
2754}
2755
2756#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2757
56fd56b8 2758/*
d9c23400 2759 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
2760 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2761 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
2762 * higher will lead to a bigger reserve which will get freed as contiguous
2763 * blocks as reclaim kicks in
2764 */
2765static void setup_zone_migrate_reserve(struct zone *zone)
2766{
2767 unsigned long start_pfn, pfn, end_pfn;
2768 struct page *page;
2769 unsigned long reserve, block_migratetype;
2770
2771 /* Get the start pfn, end pfn and the number of blocks to reserve */
2772 start_pfn = zone->zone_start_pfn;
2773 end_pfn = start_pfn + zone->spanned_pages;
41858966 2774 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 2775 pageblock_order;
56fd56b8 2776
d9c23400 2777 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2778 if (!pfn_valid(pfn))
2779 continue;
2780 page = pfn_to_page(pfn);
2781
344c790e
AL
2782 /* Watch out for overlapping nodes */
2783 if (page_to_nid(page) != zone_to_nid(zone))
2784 continue;
2785
56fd56b8
MG
2786 /* Blocks with reserved pages will never free, skip them. */
2787 if (PageReserved(page))
2788 continue;
2789
2790 block_migratetype = get_pageblock_migratetype(page);
2791
2792 /* If this block is reserved, account for it */
2793 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2794 reserve--;
2795 continue;
2796 }
2797
2798 /* Suitable for reserving if this block is movable */
2799 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2800 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2801 move_freepages_block(zone, page, MIGRATE_RESERVE);
2802 reserve--;
2803 continue;
2804 }
2805
2806 /*
2807 * If the reserve is met and this is a previous reserved block,
2808 * take it back
2809 */
2810 if (block_migratetype == MIGRATE_RESERVE) {
2811 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2812 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2813 }
2814 }
2815}
ac0e5b7a 2816
1da177e4
LT
2817/*
2818 * Initially all pages are reserved - free ones are freed
2819 * up by free_all_bootmem() once the early boot process is
2820 * done. Non-atomic initialization, single-pass.
2821 */
c09b4240 2822void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2823 unsigned long start_pfn, enum memmap_context context)
1da177e4 2824{
1da177e4 2825 struct page *page;
29751f69
AW
2826 unsigned long end_pfn = start_pfn + size;
2827 unsigned long pfn;
86051ca5 2828 struct zone *z;
1da177e4 2829
22b31eec
HD
2830 if (highest_memmap_pfn < end_pfn - 1)
2831 highest_memmap_pfn = end_pfn - 1;
2832
86051ca5 2833 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2834 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2835 /*
2836 * There can be holes in boot-time mem_map[]s
2837 * handed to this function. They do not
2838 * exist on hotplugged memory.
2839 */
2840 if (context == MEMMAP_EARLY) {
2841 if (!early_pfn_valid(pfn))
2842 continue;
2843 if (!early_pfn_in_nid(pfn, nid))
2844 continue;
2845 }
d41dee36
AW
2846 page = pfn_to_page(pfn);
2847 set_page_links(page, zone, nid, pfn);
708614e6 2848 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2849 init_page_count(page);
1da177e4
LT
2850 reset_page_mapcount(page);
2851 SetPageReserved(page);
b2a0ac88
MG
2852 /*
2853 * Mark the block movable so that blocks are reserved for
2854 * movable at startup. This will force kernel allocations
2855 * to reserve their blocks rather than leaking throughout
2856 * the address space during boot when many long-lived
56fd56b8
MG
2857 * kernel allocations are made. Later some blocks near
2858 * the start are marked MIGRATE_RESERVE by
2859 * setup_zone_migrate_reserve()
86051ca5
KH
2860 *
2861 * bitmap is created for zone's valid pfn range. but memmap
2862 * can be created for invalid pages (for alignment)
2863 * check here not to call set_pageblock_migratetype() against
2864 * pfn out of zone.
b2a0ac88 2865 */
86051ca5
KH
2866 if ((z->zone_start_pfn <= pfn)
2867 && (pfn < z->zone_start_pfn + z->spanned_pages)
2868 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2869 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2870
1da177e4
LT
2871 INIT_LIST_HEAD(&page->lru);
2872#ifdef WANT_PAGE_VIRTUAL
2873 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2874 if (!is_highmem_idx(zone))
3212c6be 2875 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2876#endif
1da177e4
LT
2877 }
2878}
2879
1e548deb 2880static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2881{
b2a0ac88
MG
2882 int order, t;
2883 for_each_migratetype_order(order, t) {
2884 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2885 zone->free_area[order].nr_free = 0;
2886 }
2887}
2888
2889#ifndef __HAVE_ARCH_MEMMAP_INIT
2890#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2891 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2892#endif
2893
1d6f4e60 2894static int zone_batchsize(struct zone *zone)
e7c8d5c9 2895{
3a6be87f 2896#ifdef CONFIG_MMU
e7c8d5c9
CL
2897 int batch;
2898
2899 /*
2900 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2901 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2902 *
2903 * OK, so we don't know how big the cache is. So guess.
2904 */
2905 batch = zone->present_pages / 1024;
ba56e91c
SR
2906 if (batch * PAGE_SIZE > 512 * 1024)
2907 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2908 batch /= 4; /* We effectively *= 4 below */
2909 if (batch < 1)
2910 batch = 1;
2911
2912 /*
0ceaacc9
NP
2913 * Clamp the batch to a 2^n - 1 value. Having a power
2914 * of 2 value was found to be more likely to have
2915 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2916 *
0ceaacc9
NP
2917 * For example if 2 tasks are alternately allocating
2918 * batches of pages, one task can end up with a lot
2919 * of pages of one half of the possible page colors
2920 * and the other with pages of the other colors.
e7c8d5c9 2921 */
9155203a 2922 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 2923
e7c8d5c9 2924 return batch;
3a6be87f
DH
2925
2926#else
2927 /* The deferral and batching of frees should be suppressed under NOMMU
2928 * conditions.
2929 *
2930 * The problem is that NOMMU needs to be able to allocate large chunks
2931 * of contiguous memory as there's no hardware page translation to
2932 * assemble apparent contiguous memory from discontiguous pages.
2933 *
2934 * Queueing large contiguous runs of pages for batching, however,
2935 * causes the pages to actually be freed in smaller chunks. As there
2936 * can be a significant delay between the individual batches being
2937 * recycled, this leads to the once large chunks of space being
2938 * fragmented and becoming unavailable for high-order allocations.
2939 */
2940 return 0;
2941#endif
e7c8d5c9
CL
2942}
2943
b69a7288 2944static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2945{
2946 struct per_cpu_pages *pcp;
2947
1c6fe946
MD
2948 memset(p, 0, sizeof(*p));
2949
3dfa5721 2950 pcp = &p->pcp;
2caaad41 2951 pcp->count = 0;
2caaad41
CL
2952 pcp->high = 6 * batch;
2953 pcp->batch = max(1UL, 1 * batch);
2954 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2955}
2956
8ad4b1fb
RS
2957/*
2958 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2959 * to the value high for the pageset p.
2960 */
2961
2962static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2963 unsigned long high)
2964{
2965 struct per_cpu_pages *pcp;
2966
3dfa5721 2967 pcp = &p->pcp;
8ad4b1fb
RS
2968 pcp->high = high;
2969 pcp->batch = max(1UL, high/4);
2970 if ((high/4) > (PAGE_SHIFT * 8))
2971 pcp->batch = PAGE_SHIFT * 8;
2972}
2973
2974
e7c8d5c9
CL
2975#ifdef CONFIG_NUMA
2976/*
2caaad41
CL
2977 * Boot pageset table. One per cpu which is going to be used for all
2978 * zones and all nodes. The parameters will be set in such a way
2979 * that an item put on a list will immediately be handed over to
2980 * the buddy list. This is safe since pageset manipulation is done
2981 * with interrupts disabled.
2982 *
2983 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2984 *
2985 * The boot_pagesets must be kept even after bootup is complete for
2986 * unused processors and/or zones. They do play a role for bootstrapping
2987 * hotplugged processors.
2988 *
2989 * zoneinfo_show() and maybe other functions do
2990 * not check if the processor is online before following the pageset pointer.
2991 * Other parts of the kernel may not check if the zone is available.
2caaad41 2992 */
88a2a4ac 2993static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2994
2995/*
2996 * Dynamically allocate memory for the
e7c8d5c9
CL
2997 * per cpu pageset array in struct zone.
2998 */
6292d9aa 2999static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
3000{
3001 struct zone *zone, *dzone;
37c0708d
CL
3002 int node = cpu_to_node(cpu);
3003
3004 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 3005
ee99c71c 3006 for_each_populated_zone(zone) {
23316bc8 3007 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 3008 GFP_KERNEL, node);
23316bc8 3009 if (!zone_pcp(zone, cpu))
e7c8d5c9 3010 goto bad;
e7c8d5c9 3011
23316bc8 3012 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
3013
3014 if (percpu_pagelist_fraction)
3015 setup_pagelist_highmark(zone_pcp(zone, cpu),
3016 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
3017 }
3018
3019 return 0;
3020bad:
3021 for_each_zone(dzone) {
64191688
AM
3022 if (!populated_zone(dzone))
3023 continue;
e7c8d5c9
CL
3024 if (dzone == zone)
3025 break;
23316bc8
NP
3026 kfree(zone_pcp(dzone, cpu));
3027 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
3028 }
3029 return -ENOMEM;
3030}
3031
3032static inline void free_zone_pagesets(int cpu)
3033{
e7c8d5c9
CL
3034 struct zone *zone;
3035
3036 for_each_zone(zone) {
3037 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3038
f3ef9ead
DR
3039 /* Free per_cpu_pageset if it is slab allocated */
3040 if (pset != &boot_pageset[cpu])
3041 kfree(pset);
e7c8d5c9 3042 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 3043 }
e7c8d5c9
CL
3044}
3045
9c7b216d 3046static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
3047 unsigned long action,
3048 void *hcpu)
3049{
3050 int cpu = (long)hcpu;
3051 int ret = NOTIFY_OK;
3052
3053 switch (action) {
ce421c79 3054 case CPU_UP_PREPARE:
8bb78442 3055 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
3056 if (process_zones(cpu))
3057 ret = NOTIFY_BAD;
3058 break;
3059 case CPU_UP_CANCELED:
8bb78442 3060 case CPU_UP_CANCELED_FROZEN:
ce421c79 3061 case CPU_DEAD:
8bb78442 3062 case CPU_DEAD_FROZEN:
ce421c79
AW
3063 free_zone_pagesets(cpu);
3064 break;
3065 default:
3066 break;
e7c8d5c9
CL
3067 }
3068 return ret;
3069}
3070
74b85f37 3071static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
3072 { &pageset_cpuup_callback, NULL, 0 };
3073
78d9955b 3074void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
3075{
3076 int err;
3077
3078 /* Initialize per_cpu_pageset for cpu 0.
3079 * A cpuup callback will do this for every cpu
3080 * as it comes online
3081 */
3082 err = process_zones(smp_processor_id());
3083 BUG_ON(err);
3084 register_cpu_notifier(&pageset_notifier);
3085}
3086
3087#endif
3088
577a32f6 3089static noinline __init_refok
cca448fe 3090int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3091{
3092 int i;
3093 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3094 size_t alloc_size;
ed8ece2e
DH
3095
3096 /*
3097 * The per-page waitqueue mechanism uses hashed waitqueues
3098 * per zone.
3099 */
02b694de
YG
3100 zone->wait_table_hash_nr_entries =
3101 wait_table_hash_nr_entries(zone_size_pages);
3102 zone->wait_table_bits =
3103 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3104 alloc_size = zone->wait_table_hash_nr_entries
3105 * sizeof(wait_queue_head_t);
3106
cd94b9db 3107 if (!slab_is_available()) {
cca448fe
YG
3108 zone->wait_table = (wait_queue_head_t *)
3109 alloc_bootmem_node(pgdat, alloc_size);
3110 } else {
3111 /*
3112 * This case means that a zone whose size was 0 gets new memory
3113 * via memory hot-add.
3114 * But it may be the case that a new node was hot-added. In
3115 * this case vmalloc() will not be able to use this new node's
3116 * memory - this wait_table must be initialized to use this new
3117 * node itself as well.
3118 * To use this new node's memory, further consideration will be
3119 * necessary.
3120 */
8691f3a7 3121 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3122 }
3123 if (!zone->wait_table)
3124 return -ENOMEM;
ed8ece2e 3125
02b694de 3126 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3127 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3128
3129 return 0;
ed8ece2e
DH
3130}
3131
c09b4240 3132static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3133{
3134 int cpu;
3135 unsigned long batch = zone_batchsize(zone);
3136
3137 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3138#ifdef CONFIG_NUMA
3139 /* Early boot. Slab allocator not functional yet */
23316bc8 3140 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3141 setup_pageset(&boot_pageset[cpu],0);
3142#else
3143 setup_pageset(zone_pcp(zone,cpu), batch);
3144#endif
3145 }
f5335c0f
AB
3146 if (zone->present_pages)
3147 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3148 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3149}
3150
718127cc
YG
3151__meminit int init_currently_empty_zone(struct zone *zone,
3152 unsigned long zone_start_pfn,
a2f3aa02
DH
3153 unsigned long size,
3154 enum memmap_context context)
ed8ece2e
DH
3155{
3156 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3157 int ret;
3158 ret = zone_wait_table_init(zone, size);
3159 if (ret)
3160 return ret;
ed8ece2e
DH
3161 pgdat->nr_zones = zone_idx(zone) + 1;
3162
ed8ece2e
DH
3163 zone->zone_start_pfn = zone_start_pfn;
3164
708614e6
MG
3165 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3166 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3167 pgdat->node_id,
3168 (unsigned long)zone_idx(zone),
3169 zone_start_pfn, (zone_start_pfn + size));
3170
1e548deb 3171 zone_init_free_lists(zone);
718127cc
YG
3172
3173 return 0;
ed8ece2e
DH
3174}
3175
c713216d
MG
3176#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3177/*
3178 * Basic iterator support. Return the first range of PFNs for a node
3179 * Note: nid == MAX_NUMNODES returns first region regardless of node
3180 */
a3142c8e 3181static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3182{
3183 int i;
3184
3185 for (i = 0; i < nr_nodemap_entries; i++)
3186 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3187 return i;
3188
3189 return -1;
3190}
3191
3192/*
3193 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3194 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3195 */
a3142c8e 3196static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3197{
3198 for (index = index + 1; index < nr_nodemap_entries; index++)
3199 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3200 return index;
3201
3202 return -1;
3203}
3204
3205#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3206/*
3207 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3208 * Architectures may implement their own version but if add_active_range()
3209 * was used and there are no special requirements, this is a convenient
3210 * alternative
3211 */
f2dbcfa7 3212int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3213{
3214 int i;
3215
3216 for (i = 0; i < nr_nodemap_entries; i++) {
3217 unsigned long start_pfn = early_node_map[i].start_pfn;
3218 unsigned long end_pfn = early_node_map[i].end_pfn;
3219
3220 if (start_pfn <= pfn && pfn < end_pfn)
3221 return early_node_map[i].nid;
3222 }
cc2559bc
KH
3223 /* This is a memory hole */
3224 return -1;
c713216d
MG
3225}
3226#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3227
f2dbcfa7
KH
3228int __meminit early_pfn_to_nid(unsigned long pfn)
3229{
cc2559bc
KH
3230 int nid;
3231
3232 nid = __early_pfn_to_nid(pfn);
3233 if (nid >= 0)
3234 return nid;
3235 /* just returns 0 */
3236 return 0;
f2dbcfa7
KH
3237}
3238
cc2559bc
KH
3239#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3240bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3241{
3242 int nid;
3243
3244 nid = __early_pfn_to_nid(pfn);
3245 if (nid >= 0 && nid != node)
3246 return false;
3247 return true;
3248}
3249#endif
f2dbcfa7 3250
c713216d
MG
3251/* Basic iterator support to walk early_node_map[] */
3252#define for_each_active_range_index_in_nid(i, nid) \
3253 for (i = first_active_region_index_in_nid(nid); i != -1; \
3254 i = next_active_region_index_in_nid(i, nid))
3255
3256/**
3257 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3258 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3259 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3260 *
3261 * If an architecture guarantees that all ranges registered with
3262 * add_active_ranges() contain no holes and may be freed, this
3263 * this function may be used instead of calling free_bootmem() manually.
3264 */
3265void __init free_bootmem_with_active_regions(int nid,
3266 unsigned long max_low_pfn)
3267{
3268 int i;
3269
3270 for_each_active_range_index_in_nid(i, nid) {
3271 unsigned long size_pages = 0;
3272 unsigned long end_pfn = early_node_map[i].end_pfn;
3273
3274 if (early_node_map[i].start_pfn >= max_low_pfn)
3275 continue;
3276
3277 if (end_pfn > max_low_pfn)
3278 end_pfn = max_low_pfn;
3279
3280 size_pages = end_pfn - early_node_map[i].start_pfn;
3281 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3282 PFN_PHYS(early_node_map[i].start_pfn),
3283 size_pages << PAGE_SHIFT);
3284 }
3285}
3286
b5bc6c0e
YL
3287void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3288{
3289 int i;
d52d53b8 3290 int ret;
b5bc6c0e 3291
d52d53b8
YL
3292 for_each_active_range_index_in_nid(i, nid) {
3293 ret = work_fn(early_node_map[i].start_pfn,
3294 early_node_map[i].end_pfn, data);
3295 if (ret)
3296 break;
3297 }
b5bc6c0e 3298}
c713216d
MG
3299/**
3300 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3301 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3302 *
3303 * If an architecture guarantees that all ranges registered with
3304 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3305 * function may be used instead of calling memory_present() manually.
c713216d
MG
3306 */
3307void __init sparse_memory_present_with_active_regions(int nid)
3308{
3309 int i;
3310
3311 for_each_active_range_index_in_nid(i, nid)
3312 memory_present(early_node_map[i].nid,
3313 early_node_map[i].start_pfn,
3314 early_node_map[i].end_pfn);
3315}
3316
3317/**
3318 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3319 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3320 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3321 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3322 *
3323 * It returns the start and end page frame of a node based on information
3324 * provided by an arch calling add_active_range(). If called for a node
3325 * with no available memory, a warning is printed and the start and end
88ca3b94 3326 * PFNs will be 0.
c713216d 3327 */
a3142c8e 3328void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3329 unsigned long *start_pfn, unsigned long *end_pfn)
3330{
3331 int i;
3332 *start_pfn = -1UL;
3333 *end_pfn = 0;
3334
3335 for_each_active_range_index_in_nid(i, nid) {
3336 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3337 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3338 }
3339
633c0666 3340 if (*start_pfn == -1UL)
c713216d 3341 *start_pfn = 0;
c713216d
MG
3342}
3343
2a1e274a
MG
3344/*
3345 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3346 * assumption is made that zones within a node are ordered in monotonic
3347 * increasing memory addresses so that the "highest" populated zone is used
3348 */
b69a7288 3349static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3350{
3351 int zone_index;
3352 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3353 if (zone_index == ZONE_MOVABLE)
3354 continue;
3355
3356 if (arch_zone_highest_possible_pfn[zone_index] >
3357 arch_zone_lowest_possible_pfn[zone_index])
3358 break;
3359 }
3360
3361 VM_BUG_ON(zone_index == -1);
3362 movable_zone = zone_index;
3363}
3364
3365/*
3366 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3367 * because it is sized independant of architecture. Unlike the other zones,
3368 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3369 * in each node depending on the size of each node and how evenly kernelcore
3370 * is distributed. This helper function adjusts the zone ranges
3371 * provided by the architecture for a given node by using the end of the
3372 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3373 * zones within a node are in order of monotonic increases memory addresses
3374 */
b69a7288 3375static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3376 unsigned long zone_type,
3377 unsigned long node_start_pfn,
3378 unsigned long node_end_pfn,
3379 unsigned long *zone_start_pfn,
3380 unsigned long *zone_end_pfn)
3381{
3382 /* Only adjust if ZONE_MOVABLE is on this node */
3383 if (zone_movable_pfn[nid]) {
3384 /* Size ZONE_MOVABLE */
3385 if (zone_type == ZONE_MOVABLE) {
3386 *zone_start_pfn = zone_movable_pfn[nid];
3387 *zone_end_pfn = min(node_end_pfn,
3388 arch_zone_highest_possible_pfn[movable_zone]);
3389
3390 /* Adjust for ZONE_MOVABLE starting within this range */
3391 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3392 *zone_end_pfn > zone_movable_pfn[nid]) {
3393 *zone_end_pfn = zone_movable_pfn[nid];
3394
3395 /* Check if this whole range is within ZONE_MOVABLE */
3396 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3397 *zone_start_pfn = *zone_end_pfn;
3398 }
3399}
3400
c713216d
MG
3401/*
3402 * Return the number of pages a zone spans in a node, including holes
3403 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3404 */
6ea6e688 3405static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3406 unsigned long zone_type,
3407 unsigned long *ignored)
3408{
3409 unsigned long node_start_pfn, node_end_pfn;
3410 unsigned long zone_start_pfn, zone_end_pfn;
3411
3412 /* Get the start and end of the node and zone */
3413 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3414 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3415 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3416 adjust_zone_range_for_zone_movable(nid, zone_type,
3417 node_start_pfn, node_end_pfn,
3418 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3419
3420 /* Check that this node has pages within the zone's required range */
3421 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3422 return 0;
3423
3424 /* Move the zone boundaries inside the node if necessary */
3425 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3426 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3427
3428 /* Return the spanned pages */
3429 return zone_end_pfn - zone_start_pfn;
3430}
3431
3432/*
3433 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3434 * then all holes in the requested range will be accounted for.
c713216d 3435 */
b69a7288 3436static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3437 unsigned long range_start_pfn,
3438 unsigned long range_end_pfn)
3439{
3440 int i = 0;
3441 unsigned long prev_end_pfn = 0, hole_pages = 0;
3442 unsigned long start_pfn;
3443
3444 /* Find the end_pfn of the first active range of pfns in the node */
3445 i = first_active_region_index_in_nid(nid);
3446 if (i == -1)
3447 return 0;
3448
b5445f95
MG
3449 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3450
9c7cd687
MG
3451 /* Account for ranges before physical memory on this node */
3452 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3453 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3454
3455 /* Find all holes for the zone within the node */
3456 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3457
3458 /* No need to continue if prev_end_pfn is outside the zone */
3459 if (prev_end_pfn >= range_end_pfn)
3460 break;
3461
3462 /* Make sure the end of the zone is not within the hole */
3463 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3464 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3465
3466 /* Update the hole size cound and move on */
3467 if (start_pfn > range_start_pfn) {
3468 BUG_ON(prev_end_pfn > start_pfn);
3469 hole_pages += start_pfn - prev_end_pfn;
3470 }
3471 prev_end_pfn = early_node_map[i].end_pfn;
3472 }
3473
9c7cd687
MG
3474 /* Account for ranges past physical memory on this node */
3475 if (range_end_pfn > prev_end_pfn)
0c6cb974 3476 hole_pages += range_end_pfn -
9c7cd687
MG
3477 max(range_start_pfn, prev_end_pfn);
3478
c713216d
MG
3479 return hole_pages;
3480}
3481
3482/**
3483 * absent_pages_in_range - Return number of page frames in holes within a range
3484 * @start_pfn: The start PFN to start searching for holes
3485 * @end_pfn: The end PFN to stop searching for holes
3486 *
88ca3b94 3487 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3488 */
3489unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3490 unsigned long end_pfn)
3491{
3492 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3493}
3494
3495/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3496static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3497 unsigned long zone_type,
3498 unsigned long *ignored)
3499{
9c7cd687
MG
3500 unsigned long node_start_pfn, node_end_pfn;
3501 unsigned long zone_start_pfn, zone_end_pfn;
3502
3503 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3504 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3505 node_start_pfn);
3506 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3507 node_end_pfn);
3508
2a1e274a
MG
3509 adjust_zone_range_for_zone_movable(nid, zone_type,
3510 node_start_pfn, node_end_pfn,
3511 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3512 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3513}
0e0b864e 3514
c713216d 3515#else
6ea6e688 3516static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3517 unsigned long zone_type,
3518 unsigned long *zones_size)
3519{
3520 return zones_size[zone_type];
3521}
3522
6ea6e688 3523static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3524 unsigned long zone_type,
3525 unsigned long *zholes_size)
3526{
3527 if (!zholes_size)
3528 return 0;
3529
3530 return zholes_size[zone_type];
3531}
0e0b864e 3532
c713216d
MG
3533#endif
3534
a3142c8e 3535static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3536 unsigned long *zones_size, unsigned long *zholes_size)
3537{
3538 unsigned long realtotalpages, totalpages = 0;
3539 enum zone_type i;
3540
3541 for (i = 0; i < MAX_NR_ZONES; i++)
3542 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3543 zones_size);
3544 pgdat->node_spanned_pages = totalpages;
3545
3546 realtotalpages = totalpages;
3547 for (i = 0; i < MAX_NR_ZONES; i++)
3548 realtotalpages -=
3549 zone_absent_pages_in_node(pgdat->node_id, i,
3550 zholes_size);
3551 pgdat->node_present_pages = realtotalpages;
3552 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3553 realtotalpages);
3554}
3555
835c134e
MG
3556#ifndef CONFIG_SPARSEMEM
3557/*
3558 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3559 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3560 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3561 * round what is now in bits to nearest long in bits, then return it in
3562 * bytes.
3563 */
3564static unsigned long __init usemap_size(unsigned long zonesize)
3565{
3566 unsigned long usemapsize;
3567
d9c23400
MG
3568 usemapsize = roundup(zonesize, pageblock_nr_pages);
3569 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3570 usemapsize *= NR_PAGEBLOCK_BITS;
3571 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3572
3573 return usemapsize / 8;
3574}
3575
3576static void __init setup_usemap(struct pglist_data *pgdat,
3577 struct zone *zone, unsigned long zonesize)
3578{
3579 unsigned long usemapsize = usemap_size(zonesize);
3580 zone->pageblock_flags = NULL;
58a01a45 3581 if (usemapsize)
835c134e 3582 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3583}
3584#else
3585static void inline setup_usemap(struct pglist_data *pgdat,
3586 struct zone *zone, unsigned long zonesize) {}
3587#endif /* CONFIG_SPARSEMEM */
3588
d9c23400 3589#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3590
3591/* Return a sensible default order for the pageblock size. */
3592static inline int pageblock_default_order(void)
3593{
3594 if (HPAGE_SHIFT > PAGE_SHIFT)
3595 return HUGETLB_PAGE_ORDER;
3596
3597 return MAX_ORDER-1;
3598}
3599
d9c23400
MG
3600/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3601static inline void __init set_pageblock_order(unsigned int order)
3602{
3603 /* Check that pageblock_nr_pages has not already been setup */
3604 if (pageblock_order)
3605 return;
3606
3607 /*
3608 * Assume the largest contiguous order of interest is a huge page.
3609 * This value may be variable depending on boot parameters on IA64
3610 */
3611 pageblock_order = order;
3612}
3613#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3614
ba72cb8c
MG
3615/*
3616 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3617 * and pageblock_default_order() are unused as pageblock_order is set
3618 * at compile-time. See include/linux/pageblock-flags.h for the values of
3619 * pageblock_order based on the kernel config
3620 */
3621static inline int pageblock_default_order(unsigned int order)
3622{
3623 return MAX_ORDER-1;
3624}
d9c23400
MG
3625#define set_pageblock_order(x) do {} while (0)
3626
3627#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3628
1da177e4
LT
3629/*
3630 * Set up the zone data structures:
3631 * - mark all pages reserved
3632 * - mark all memory queues empty
3633 * - clear the memory bitmaps
3634 */
b5a0e011 3635static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3636 unsigned long *zones_size, unsigned long *zholes_size)
3637{
2f1b6248 3638 enum zone_type j;
ed8ece2e 3639 int nid = pgdat->node_id;
1da177e4 3640 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3641 int ret;
1da177e4 3642
208d54e5 3643 pgdat_resize_init(pgdat);
1da177e4
LT
3644 pgdat->nr_zones = 0;
3645 init_waitqueue_head(&pgdat->kswapd_wait);
3646 pgdat->kswapd_max_order = 0;
52d4b9ac 3647 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3648
3649 for (j = 0; j < MAX_NR_ZONES; j++) {
3650 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3651 unsigned long size, realsize, memmap_pages;
b69408e8 3652 enum lru_list l;
1da177e4 3653
c713216d
MG
3654 size = zone_spanned_pages_in_node(nid, j, zones_size);
3655 realsize = size - zone_absent_pages_in_node(nid, j,
3656 zholes_size);
1da177e4 3657
0e0b864e
MG
3658 /*
3659 * Adjust realsize so that it accounts for how much memory
3660 * is used by this zone for memmap. This affects the watermark
3661 * and per-cpu initialisations
3662 */
f7232154
JW
3663 memmap_pages =
3664 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3665 if (realsize >= memmap_pages) {
3666 realsize -= memmap_pages;
5594c8c8
YL
3667 if (memmap_pages)
3668 printk(KERN_DEBUG
3669 " %s zone: %lu pages used for memmap\n",
3670 zone_names[j], memmap_pages);
0e0b864e
MG
3671 } else
3672 printk(KERN_WARNING
3673 " %s zone: %lu pages exceeds realsize %lu\n",
3674 zone_names[j], memmap_pages, realsize);
3675
6267276f
CL
3676 /* Account for reserved pages */
3677 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3678 realsize -= dma_reserve;
d903ef9f 3679 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3680 zone_names[0], dma_reserve);
0e0b864e
MG
3681 }
3682
98d2b0eb 3683 if (!is_highmem_idx(j))
1da177e4
LT
3684 nr_kernel_pages += realsize;
3685 nr_all_pages += realsize;
3686
3687 zone->spanned_pages = size;
3688 zone->present_pages = realsize;
9614634f 3689#ifdef CONFIG_NUMA
d5f541ed 3690 zone->node = nid;
8417bba4 3691 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3692 / 100;
0ff38490 3693 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3694#endif
1da177e4
LT
3695 zone->name = zone_names[j];
3696 spin_lock_init(&zone->lock);
3697 spin_lock_init(&zone->lru_lock);
bdc8cb98 3698 zone_seqlock_init(zone);
1da177e4 3699 zone->zone_pgdat = pgdat;
1da177e4 3700
3bb1a852 3701 zone->prev_priority = DEF_PRIORITY;
1da177e4 3702
ed8ece2e 3703 zone_pcp_init(zone);
b69408e8
CL
3704 for_each_lru(l) {
3705 INIT_LIST_HEAD(&zone->lru[l].list);
6e08a369 3706 zone->lru[l].nr_saved_scan = 0;
b69408e8 3707 }
6e901571
KM
3708 zone->reclaim_stat.recent_rotated[0] = 0;
3709 zone->reclaim_stat.recent_rotated[1] = 0;
3710 zone->reclaim_stat.recent_scanned[0] = 0;
3711 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3712 zap_zone_vm_stats(zone);
e815af95 3713 zone->flags = 0;
1da177e4
LT
3714 if (!size)
3715 continue;
3716
ba72cb8c 3717 set_pageblock_order(pageblock_default_order());
835c134e 3718 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3719 ret = init_currently_empty_zone(zone, zone_start_pfn,
3720 size, MEMMAP_EARLY);
718127cc 3721 BUG_ON(ret);
76cdd58e 3722 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3723 zone_start_pfn += size;
1da177e4
LT
3724 }
3725}
3726
577a32f6 3727static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3728{
1da177e4
LT
3729 /* Skip empty nodes */
3730 if (!pgdat->node_spanned_pages)
3731 return;
3732
d41dee36 3733#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3734 /* ia64 gets its own node_mem_map, before this, without bootmem */
3735 if (!pgdat->node_mem_map) {
e984bb43 3736 unsigned long size, start, end;
d41dee36
AW
3737 struct page *map;
3738
e984bb43
BP
3739 /*
3740 * The zone's endpoints aren't required to be MAX_ORDER
3741 * aligned but the node_mem_map endpoints must be in order
3742 * for the buddy allocator to function correctly.
3743 */
3744 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3745 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3746 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3747 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3748 map = alloc_remap(pgdat->node_id, size);
3749 if (!map)
3750 map = alloc_bootmem_node(pgdat, size);
e984bb43 3751 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3752 }
12d810c1 3753#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3754 /*
3755 * With no DISCONTIG, the global mem_map is just set as node 0's
3756 */
c713216d 3757 if (pgdat == NODE_DATA(0)) {
1da177e4 3758 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3759#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3760 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3761 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3762#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3763 }
1da177e4 3764#endif
d41dee36 3765#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3766}
3767
9109fb7b
JW
3768void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3769 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3770{
9109fb7b
JW
3771 pg_data_t *pgdat = NODE_DATA(nid);
3772
1da177e4
LT
3773 pgdat->node_id = nid;
3774 pgdat->node_start_pfn = node_start_pfn;
c713216d 3775 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3776
3777 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3778#ifdef CONFIG_FLAT_NODE_MEM_MAP
3779 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3780 nid, (unsigned long)pgdat,
3781 (unsigned long)pgdat->node_mem_map);
3782#endif
1da177e4
LT
3783
3784 free_area_init_core(pgdat, zones_size, zholes_size);
3785}
3786
c713216d 3787#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3788
3789#if MAX_NUMNODES > 1
3790/*
3791 * Figure out the number of possible node ids.
3792 */
3793static void __init setup_nr_node_ids(void)
3794{
3795 unsigned int node;
3796 unsigned int highest = 0;
3797
3798 for_each_node_mask(node, node_possible_map)
3799 highest = node;
3800 nr_node_ids = highest + 1;
3801}
3802#else
3803static inline void setup_nr_node_ids(void)
3804{
3805}
3806#endif
3807
c713216d
MG
3808/**
3809 * add_active_range - Register a range of PFNs backed by physical memory
3810 * @nid: The node ID the range resides on
3811 * @start_pfn: The start PFN of the available physical memory
3812 * @end_pfn: The end PFN of the available physical memory
3813 *
3814 * These ranges are stored in an early_node_map[] and later used by
3815 * free_area_init_nodes() to calculate zone sizes and holes. If the
3816 * range spans a memory hole, it is up to the architecture to ensure
3817 * the memory is not freed by the bootmem allocator. If possible
3818 * the range being registered will be merged with existing ranges.
3819 */
3820void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3821 unsigned long end_pfn)
3822{
3823 int i;
3824
6b74ab97
MG
3825 mminit_dprintk(MMINIT_TRACE, "memory_register",
3826 "Entering add_active_range(%d, %#lx, %#lx) "
3827 "%d entries of %d used\n",
3828 nid, start_pfn, end_pfn,
3829 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3830
2dbb51c4
MG
3831 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3832
c713216d
MG
3833 /* Merge with existing active regions if possible */
3834 for (i = 0; i < nr_nodemap_entries; i++) {
3835 if (early_node_map[i].nid != nid)
3836 continue;
3837
3838 /* Skip if an existing region covers this new one */
3839 if (start_pfn >= early_node_map[i].start_pfn &&
3840 end_pfn <= early_node_map[i].end_pfn)
3841 return;
3842
3843 /* Merge forward if suitable */
3844 if (start_pfn <= early_node_map[i].end_pfn &&
3845 end_pfn > early_node_map[i].end_pfn) {
3846 early_node_map[i].end_pfn = end_pfn;
3847 return;
3848 }
3849
3850 /* Merge backward if suitable */
3851 if (start_pfn < early_node_map[i].end_pfn &&
3852 end_pfn >= early_node_map[i].start_pfn) {
3853 early_node_map[i].start_pfn = start_pfn;
3854 return;
3855 }
3856 }
3857
3858 /* Check that early_node_map is large enough */
3859 if (i >= MAX_ACTIVE_REGIONS) {
3860 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3861 MAX_ACTIVE_REGIONS);
3862 return;
3863 }
3864
3865 early_node_map[i].nid = nid;
3866 early_node_map[i].start_pfn = start_pfn;
3867 early_node_map[i].end_pfn = end_pfn;
3868 nr_nodemap_entries = i + 1;
3869}
3870
3871/**
cc1050ba 3872 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3873 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3874 * @start_pfn: The new PFN of the range
3875 * @end_pfn: The new PFN of the range
c713216d
MG
3876 *
3877 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3878 * The map is kept near the end physical page range that has already been
3879 * registered. This function allows an arch to shrink an existing registered
3880 * range.
c713216d 3881 */
cc1050ba
YL
3882void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3883 unsigned long end_pfn)
c713216d 3884{
cc1a9d86
YL
3885 int i, j;
3886 int removed = 0;
c713216d 3887
cc1050ba
YL
3888 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3889 nid, start_pfn, end_pfn);
3890
c713216d 3891 /* Find the old active region end and shrink */
cc1a9d86 3892 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3893 if (early_node_map[i].start_pfn >= start_pfn &&
3894 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3895 /* clear it */
cc1050ba 3896 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3897 early_node_map[i].end_pfn = 0;
3898 removed = 1;
3899 continue;
3900 }
cc1050ba
YL
3901 if (early_node_map[i].start_pfn < start_pfn &&
3902 early_node_map[i].end_pfn > start_pfn) {
3903 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3904 early_node_map[i].end_pfn = start_pfn;
3905 if (temp_end_pfn > end_pfn)
3906 add_active_range(nid, end_pfn, temp_end_pfn);
3907 continue;
3908 }
3909 if (early_node_map[i].start_pfn >= start_pfn &&
3910 early_node_map[i].end_pfn > end_pfn &&
3911 early_node_map[i].start_pfn < end_pfn) {
3912 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3913 continue;
c713216d 3914 }
cc1a9d86
YL
3915 }
3916
3917 if (!removed)
3918 return;
3919
3920 /* remove the blank ones */
3921 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3922 if (early_node_map[i].nid != nid)
3923 continue;
3924 if (early_node_map[i].end_pfn)
3925 continue;
3926 /* we found it, get rid of it */
3927 for (j = i; j < nr_nodemap_entries - 1; j++)
3928 memcpy(&early_node_map[j], &early_node_map[j+1],
3929 sizeof(early_node_map[j]));
3930 j = nr_nodemap_entries - 1;
3931 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3932 nr_nodemap_entries--;
3933 }
c713216d
MG
3934}
3935
3936/**
3937 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3938 *
c713216d
MG
3939 * During discovery, it may be found that a table like SRAT is invalid
3940 * and an alternative discovery method must be used. This function removes
3941 * all currently registered regions.
3942 */
88ca3b94 3943void __init remove_all_active_ranges(void)
c713216d
MG
3944{
3945 memset(early_node_map, 0, sizeof(early_node_map));
3946 nr_nodemap_entries = 0;
3947}
3948
3949/* Compare two active node_active_regions */
3950static int __init cmp_node_active_region(const void *a, const void *b)
3951{
3952 struct node_active_region *arange = (struct node_active_region *)a;
3953 struct node_active_region *brange = (struct node_active_region *)b;
3954
3955 /* Done this way to avoid overflows */
3956 if (arange->start_pfn > brange->start_pfn)
3957 return 1;
3958 if (arange->start_pfn < brange->start_pfn)
3959 return -1;
3960
3961 return 0;
3962}
3963
3964/* sort the node_map by start_pfn */
3965static void __init sort_node_map(void)
3966{
3967 sort(early_node_map, (size_t)nr_nodemap_entries,
3968 sizeof(struct node_active_region),
3969 cmp_node_active_region, NULL);
3970}
3971
a6af2bc3 3972/* Find the lowest pfn for a node */
b69a7288 3973static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3974{
3975 int i;
a6af2bc3 3976 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3977
c713216d
MG
3978 /* Assuming a sorted map, the first range found has the starting pfn */
3979 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3980 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3981
a6af2bc3
MG
3982 if (min_pfn == ULONG_MAX) {
3983 printk(KERN_WARNING
2bc0d261 3984 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3985 return 0;
3986 }
3987
3988 return min_pfn;
c713216d
MG
3989}
3990
3991/**
3992 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3993 *
3994 * It returns the minimum PFN based on information provided via
88ca3b94 3995 * add_active_range().
c713216d
MG
3996 */
3997unsigned long __init find_min_pfn_with_active_regions(void)
3998{
3999 return find_min_pfn_for_node(MAX_NUMNODES);
4000}
4001
37b07e41
LS
4002/*
4003 * early_calculate_totalpages()
4004 * Sum pages in active regions for movable zone.
4005 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4006 */
484f51f8 4007static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4008{
4009 int i;
4010 unsigned long totalpages = 0;
4011
37b07e41
LS
4012 for (i = 0; i < nr_nodemap_entries; i++) {
4013 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4014 early_node_map[i].start_pfn;
37b07e41
LS
4015 totalpages += pages;
4016 if (pages)
4017 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4018 }
4019 return totalpages;
7e63efef
MG
4020}
4021
2a1e274a
MG
4022/*
4023 * Find the PFN the Movable zone begins in each node. Kernel memory
4024 * is spread evenly between nodes as long as the nodes have enough
4025 * memory. When they don't, some nodes will have more kernelcore than
4026 * others
4027 */
b69a7288 4028static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4029{
4030 int i, nid;
4031 unsigned long usable_startpfn;
4032 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
4033 unsigned long totalpages = early_calculate_totalpages();
4034 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4035
7e63efef
MG
4036 /*
4037 * If movablecore was specified, calculate what size of
4038 * kernelcore that corresponds so that memory usable for
4039 * any allocation type is evenly spread. If both kernelcore
4040 * and movablecore are specified, then the value of kernelcore
4041 * will be used for required_kernelcore if it's greater than
4042 * what movablecore would have allowed.
4043 */
4044 if (required_movablecore) {
7e63efef
MG
4045 unsigned long corepages;
4046
4047 /*
4048 * Round-up so that ZONE_MOVABLE is at least as large as what
4049 * was requested by the user
4050 */
4051 required_movablecore =
4052 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4053 corepages = totalpages - required_movablecore;
4054
4055 required_kernelcore = max(required_kernelcore, corepages);
4056 }
4057
2a1e274a
MG
4058 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4059 if (!required_kernelcore)
4060 return;
4061
4062 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4063 find_usable_zone_for_movable();
4064 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4065
4066restart:
4067 /* Spread kernelcore memory as evenly as possible throughout nodes */
4068 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4069 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4070 /*
4071 * Recalculate kernelcore_node if the division per node
4072 * now exceeds what is necessary to satisfy the requested
4073 * amount of memory for the kernel
4074 */
4075 if (required_kernelcore < kernelcore_node)
4076 kernelcore_node = required_kernelcore / usable_nodes;
4077
4078 /*
4079 * As the map is walked, we track how much memory is usable
4080 * by the kernel using kernelcore_remaining. When it is
4081 * 0, the rest of the node is usable by ZONE_MOVABLE
4082 */
4083 kernelcore_remaining = kernelcore_node;
4084
4085 /* Go through each range of PFNs within this node */
4086 for_each_active_range_index_in_nid(i, nid) {
4087 unsigned long start_pfn, end_pfn;
4088 unsigned long size_pages;
4089
4090 start_pfn = max(early_node_map[i].start_pfn,
4091 zone_movable_pfn[nid]);
4092 end_pfn = early_node_map[i].end_pfn;
4093 if (start_pfn >= end_pfn)
4094 continue;
4095
4096 /* Account for what is only usable for kernelcore */
4097 if (start_pfn < usable_startpfn) {
4098 unsigned long kernel_pages;
4099 kernel_pages = min(end_pfn, usable_startpfn)
4100 - start_pfn;
4101
4102 kernelcore_remaining -= min(kernel_pages,
4103 kernelcore_remaining);
4104 required_kernelcore -= min(kernel_pages,
4105 required_kernelcore);
4106
4107 /* Continue if range is now fully accounted */
4108 if (end_pfn <= usable_startpfn) {
4109
4110 /*
4111 * Push zone_movable_pfn to the end so
4112 * that if we have to rebalance
4113 * kernelcore across nodes, we will
4114 * not double account here
4115 */
4116 zone_movable_pfn[nid] = end_pfn;
4117 continue;
4118 }
4119 start_pfn = usable_startpfn;
4120 }
4121
4122 /*
4123 * The usable PFN range for ZONE_MOVABLE is from
4124 * start_pfn->end_pfn. Calculate size_pages as the
4125 * number of pages used as kernelcore
4126 */
4127 size_pages = end_pfn - start_pfn;
4128 if (size_pages > kernelcore_remaining)
4129 size_pages = kernelcore_remaining;
4130 zone_movable_pfn[nid] = start_pfn + size_pages;
4131
4132 /*
4133 * Some kernelcore has been met, update counts and
4134 * break if the kernelcore for this node has been
4135 * satisified
4136 */
4137 required_kernelcore -= min(required_kernelcore,
4138 size_pages);
4139 kernelcore_remaining -= size_pages;
4140 if (!kernelcore_remaining)
4141 break;
4142 }
4143 }
4144
4145 /*
4146 * If there is still required_kernelcore, we do another pass with one
4147 * less node in the count. This will push zone_movable_pfn[nid] further
4148 * along on the nodes that still have memory until kernelcore is
4149 * satisified
4150 */
4151 usable_nodes--;
4152 if (usable_nodes && required_kernelcore > usable_nodes)
4153 goto restart;
4154
4155 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4156 for (nid = 0; nid < MAX_NUMNODES; nid++)
4157 zone_movable_pfn[nid] =
4158 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4159}
4160
37b07e41
LS
4161/* Any regular memory on that node ? */
4162static void check_for_regular_memory(pg_data_t *pgdat)
4163{
4164#ifdef CONFIG_HIGHMEM
4165 enum zone_type zone_type;
4166
4167 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4168 struct zone *zone = &pgdat->node_zones[zone_type];
4169 if (zone->present_pages)
4170 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4171 }
4172#endif
4173}
4174
c713216d
MG
4175/**
4176 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4177 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4178 *
4179 * This will call free_area_init_node() for each active node in the system.
4180 * Using the page ranges provided by add_active_range(), the size of each
4181 * zone in each node and their holes is calculated. If the maximum PFN
4182 * between two adjacent zones match, it is assumed that the zone is empty.
4183 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4184 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4185 * starts where the previous one ended. For example, ZONE_DMA32 starts
4186 * at arch_max_dma_pfn.
4187 */
4188void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4189{
4190 unsigned long nid;
db99100d 4191 int i;
c713216d 4192
a6af2bc3
MG
4193 /* Sort early_node_map as initialisation assumes it is sorted */
4194 sort_node_map();
4195
c713216d
MG
4196 /* Record where the zone boundaries are */
4197 memset(arch_zone_lowest_possible_pfn, 0,
4198 sizeof(arch_zone_lowest_possible_pfn));
4199 memset(arch_zone_highest_possible_pfn, 0,
4200 sizeof(arch_zone_highest_possible_pfn));
4201 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4202 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4203 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4204 if (i == ZONE_MOVABLE)
4205 continue;
c713216d
MG
4206 arch_zone_lowest_possible_pfn[i] =
4207 arch_zone_highest_possible_pfn[i-1];
4208 arch_zone_highest_possible_pfn[i] =
4209 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4210 }
2a1e274a
MG
4211 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4212 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4213
4214 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4215 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4216 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4217
c713216d
MG
4218 /* Print out the zone ranges */
4219 printk("Zone PFN ranges:\n");
2a1e274a
MG
4220 for (i = 0; i < MAX_NR_ZONES; i++) {
4221 if (i == ZONE_MOVABLE)
4222 continue;
5dab8ec1 4223 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4224 zone_names[i],
4225 arch_zone_lowest_possible_pfn[i],
4226 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4227 }
4228
4229 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4230 printk("Movable zone start PFN for each node\n");
4231 for (i = 0; i < MAX_NUMNODES; i++) {
4232 if (zone_movable_pfn[i])
4233 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4234 }
c713216d
MG
4235
4236 /* Print out the early_node_map[] */
4237 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4238 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4239 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4240 early_node_map[i].start_pfn,
4241 early_node_map[i].end_pfn);
4242
73d60b7f
YL
4243 /*
4244 * find_zone_movable_pfns_for_nodes/early_calculate_totalpages init
4245 * that node_mask, clear it at first
4246 */
4247 nodes_clear(node_states[N_HIGH_MEMORY]);
c713216d 4248 /* Initialise every node */
708614e6 4249 mminit_verify_pageflags_layout();
8ef82866 4250 setup_nr_node_ids();
c713216d
MG
4251 for_each_online_node(nid) {
4252 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4253 free_area_init_node(nid, NULL,
c713216d 4254 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4255
4256 /* Any memory on that node */
4257 if (pgdat->node_present_pages)
4258 node_set_state(nid, N_HIGH_MEMORY);
4259 check_for_regular_memory(pgdat);
c713216d
MG
4260 }
4261}
2a1e274a 4262
7e63efef 4263static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4264{
4265 unsigned long long coremem;
4266 if (!p)
4267 return -EINVAL;
4268
4269 coremem = memparse(p, &p);
7e63efef 4270 *core = coremem >> PAGE_SHIFT;
2a1e274a 4271
7e63efef 4272 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4273 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4274
4275 return 0;
4276}
ed7ed365 4277
7e63efef
MG
4278/*
4279 * kernelcore=size sets the amount of memory for use for allocations that
4280 * cannot be reclaimed or migrated.
4281 */
4282static int __init cmdline_parse_kernelcore(char *p)
4283{
4284 return cmdline_parse_core(p, &required_kernelcore);
4285}
4286
4287/*
4288 * movablecore=size sets the amount of memory for use for allocations that
4289 * can be reclaimed or migrated.
4290 */
4291static int __init cmdline_parse_movablecore(char *p)
4292{
4293 return cmdline_parse_core(p, &required_movablecore);
4294}
4295
ed7ed365 4296early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4297early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4298
c713216d
MG
4299#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4300
0e0b864e 4301/**
88ca3b94
RD
4302 * set_dma_reserve - set the specified number of pages reserved in the first zone
4303 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4304 *
4305 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4306 * In the DMA zone, a significant percentage may be consumed by kernel image
4307 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4308 * function may optionally be used to account for unfreeable pages in the
4309 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4310 * smaller per-cpu batchsize.
0e0b864e
MG
4311 */
4312void __init set_dma_reserve(unsigned long new_dma_reserve)
4313{
4314 dma_reserve = new_dma_reserve;
4315}
4316
93b7504e 4317#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4318struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4319EXPORT_SYMBOL(contig_page_data);
93b7504e 4320#endif
1da177e4
LT
4321
4322void __init free_area_init(unsigned long *zones_size)
4323{
9109fb7b 4324 free_area_init_node(0, zones_size,
1da177e4
LT
4325 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4326}
1da177e4 4327
1da177e4
LT
4328static int page_alloc_cpu_notify(struct notifier_block *self,
4329 unsigned long action, void *hcpu)
4330{
4331 int cpu = (unsigned long)hcpu;
1da177e4 4332
8bb78442 4333 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4334 drain_pages(cpu);
4335
4336 /*
4337 * Spill the event counters of the dead processor
4338 * into the current processors event counters.
4339 * This artificially elevates the count of the current
4340 * processor.
4341 */
f8891e5e 4342 vm_events_fold_cpu(cpu);
9f8f2172
CL
4343
4344 /*
4345 * Zero the differential counters of the dead processor
4346 * so that the vm statistics are consistent.
4347 *
4348 * This is only okay since the processor is dead and cannot
4349 * race with what we are doing.
4350 */
2244b95a 4351 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4352 }
4353 return NOTIFY_OK;
4354}
1da177e4
LT
4355
4356void __init page_alloc_init(void)
4357{
4358 hotcpu_notifier(page_alloc_cpu_notify, 0);
4359}
4360
cb45b0e9
HA
4361/*
4362 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4363 * or min_free_kbytes changes.
4364 */
4365static void calculate_totalreserve_pages(void)
4366{
4367 struct pglist_data *pgdat;
4368 unsigned long reserve_pages = 0;
2f6726e5 4369 enum zone_type i, j;
cb45b0e9
HA
4370
4371 for_each_online_pgdat(pgdat) {
4372 for (i = 0; i < MAX_NR_ZONES; i++) {
4373 struct zone *zone = pgdat->node_zones + i;
4374 unsigned long max = 0;
4375
4376 /* Find valid and maximum lowmem_reserve in the zone */
4377 for (j = i; j < MAX_NR_ZONES; j++) {
4378 if (zone->lowmem_reserve[j] > max)
4379 max = zone->lowmem_reserve[j];
4380 }
4381
41858966
MG
4382 /* we treat the high watermark as reserved pages. */
4383 max += high_wmark_pages(zone);
cb45b0e9
HA
4384
4385 if (max > zone->present_pages)
4386 max = zone->present_pages;
4387 reserve_pages += max;
4388 }
4389 }
4390 totalreserve_pages = reserve_pages;
4391}
4392
1da177e4
LT
4393/*
4394 * setup_per_zone_lowmem_reserve - called whenever
4395 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4396 * has a correct pages reserved value, so an adequate number of
4397 * pages are left in the zone after a successful __alloc_pages().
4398 */
4399static void setup_per_zone_lowmem_reserve(void)
4400{
4401 struct pglist_data *pgdat;
2f6726e5 4402 enum zone_type j, idx;
1da177e4 4403
ec936fc5 4404 for_each_online_pgdat(pgdat) {
1da177e4
LT
4405 for (j = 0; j < MAX_NR_ZONES; j++) {
4406 struct zone *zone = pgdat->node_zones + j;
4407 unsigned long present_pages = zone->present_pages;
4408
4409 zone->lowmem_reserve[j] = 0;
4410
2f6726e5
CL
4411 idx = j;
4412 while (idx) {
1da177e4
LT
4413 struct zone *lower_zone;
4414
2f6726e5
CL
4415 idx--;
4416
1da177e4
LT
4417 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4418 sysctl_lowmem_reserve_ratio[idx] = 1;
4419
4420 lower_zone = pgdat->node_zones + idx;
4421 lower_zone->lowmem_reserve[j] = present_pages /
4422 sysctl_lowmem_reserve_ratio[idx];
4423 present_pages += lower_zone->present_pages;
4424 }
4425 }
4426 }
cb45b0e9
HA
4427
4428 /* update totalreserve_pages */
4429 calculate_totalreserve_pages();
1da177e4
LT
4430}
4431
88ca3b94 4432/**
bc75d33f 4433 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4434 * or when memory is hot-{added|removed}
88ca3b94 4435 *
bc75d33f
MK
4436 * Ensures that the watermark[min,low,high] values for each zone are set
4437 * correctly with respect to min_free_kbytes.
1da177e4 4438 */
bc75d33f 4439void setup_per_zone_wmarks(void)
1da177e4
LT
4440{
4441 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4442 unsigned long lowmem_pages = 0;
4443 struct zone *zone;
4444 unsigned long flags;
4445
4446 /* Calculate total number of !ZONE_HIGHMEM pages */
4447 for_each_zone(zone) {
4448 if (!is_highmem(zone))
4449 lowmem_pages += zone->present_pages;
4450 }
4451
4452 for_each_zone(zone) {
ac924c60
AM
4453 u64 tmp;
4454
1125b4e3 4455 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4456 tmp = (u64)pages_min * zone->present_pages;
4457 do_div(tmp, lowmem_pages);
1da177e4
LT
4458 if (is_highmem(zone)) {
4459 /*
669ed175
NP
4460 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4461 * need highmem pages, so cap pages_min to a small
4462 * value here.
4463 *
41858966 4464 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4465 * deltas controls asynch page reclaim, and so should
4466 * not be capped for highmem.
1da177e4
LT
4467 */
4468 int min_pages;
4469
4470 min_pages = zone->present_pages / 1024;
4471 if (min_pages < SWAP_CLUSTER_MAX)
4472 min_pages = SWAP_CLUSTER_MAX;
4473 if (min_pages > 128)
4474 min_pages = 128;
41858966 4475 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4476 } else {
669ed175
NP
4477 /*
4478 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4479 * proportionate to the zone's size.
4480 */
41858966 4481 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4482 }
4483
41858966
MG
4484 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4485 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4486 setup_zone_migrate_reserve(zone);
1125b4e3 4487 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4488 }
cb45b0e9
HA
4489
4490 /* update totalreserve_pages */
4491 calculate_totalreserve_pages();
1da177e4
LT
4492}
4493
556adecb 4494/**
556adecb
RR
4495 * The inactive anon list should be small enough that the VM never has to
4496 * do too much work, but large enough that each inactive page has a chance
4497 * to be referenced again before it is swapped out.
4498 *
4499 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4500 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4501 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4502 * the anonymous pages are kept on the inactive list.
4503 *
4504 * total target max
4505 * memory ratio inactive anon
4506 * -------------------------------------
4507 * 10MB 1 5MB
4508 * 100MB 1 50MB
4509 * 1GB 3 250MB
4510 * 10GB 10 0.9GB
4511 * 100GB 31 3GB
4512 * 1TB 101 10GB
4513 * 10TB 320 32GB
4514 */
96cb4df5 4515void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4516{
96cb4df5 4517 unsigned int gb, ratio;
556adecb 4518
96cb4df5
MK
4519 /* Zone size in gigabytes */
4520 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4521 if (gb)
556adecb 4522 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4523 else
4524 ratio = 1;
556adecb 4525
96cb4df5
MK
4526 zone->inactive_ratio = ratio;
4527}
556adecb 4528
96cb4df5
MK
4529static void __init setup_per_zone_inactive_ratio(void)
4530{
4531 struct zone *zone;
4532
4533 for_each_zone(zone)
4534 calculate_zone_inactive_ratio(zone);
556adecb
RR
4535}
4536
1da177e4
LT
4537/*
4538 * Initialise min_free_kbytes.
4539 *
4540 * For small machines we want it small (128k min). For large machines
4541 * we want it large (64MB max). But it is not linear, because network
4542 * bandwidth does not increase linearly with machine size. We use
4543 *
4544 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4545 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4546 *
4547 * which yields
4548 *
4549 * 16MB: 512k
4550 * 32MB: 724k
4551 * 64MB: 1024k
4552 * 128MB: 1448k
4553 * 256MB: 2048k
4554 * 512MB: 2896k
4555 * 1024MB: 4096k
4556 * 2048MB: 5792k
4557 * 4096MB: 8192k
4558 * 8192MB: 11584k
4559 * 16384MB: 16384k
4560 */
bc75d33f 4561static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4562{
4563 unsigned long lowmem_kbytes;
4564
4565 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4566
4567 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4568 if (min_free_kbytes < 128)
4569 min_free_kbytes = 128;
4570 if (min_free_kbytes > 65536)
4571 min_free_kbytes = 65536;
bc75d33f 4572 setup_per_zone_wmarks();
1da177e4 4573 setup_per_zone_lowmem_reserve();
556adecb 4574 setup_per_zone_inactive_ratio();
1da177e4
LT
4575 return 0;
4576}
bc75d33f 4577module_init(init_per_zone_wmark_min)
1da177e4
LT
4578
4579/*
4580 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4581 * that we can call two helper functions whenever min_free_kbytes
4582 * changes.
4583 */
4584int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4585 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4586{
4587 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5 4588 if (write)
bc75d33f 4589 setup_per_zone_wmarks();
1da177e4
LT
4590 return 0;
4591}
4592
9614634f
CL
4593#ifdef CONFIG_NUMA
4594int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4595 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4596{
4597 struct zone *zone;
4598 int rc;
4599
4600 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4601 if (rc)
4602 return rc;
4603
4604 for_each_zone(zone)
8417bba4 4605 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4606 sysctl_min_unmapped_ratio) / 100;
4607 return 0;
4608}
0ff38490
CL
4609
4610int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4611 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4612{
4613 struct zone *zone;
4614 int rc;
4615
4616 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4617 if (rc)
4618 return rc;
4619
4620 for_each_zone(zone)
4621 zone->min_slab_pages = (zone->present_pages *
4622 sysctl_min_slab_ratio) / 100;
4623 return 0;
4624}
9614634f
CL
4625#endif
4626
1da177e4
LT
4627/*
4628 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4629 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4630 * whenever sysctl_lowmem_reserve_ratio changes.
4631 *
4632 * The reserve ratio obviously has absolutely no relation with the
41858966 4633 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4634 * if in function of the boot time zone sizes.
4635 */
4636int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4637 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4638{
4639 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4640 setup_per_zone_lowmem_reserve();
4641 return 0;
4642}
4643
8ad4b1fb
RS
4644/*
4645 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4646 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4647 * can have before it gets flushed back to buddy allocator.
4648 */
4649
4650int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4651 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4652{
4653 struct zone *zone;
4654 unsigned int cpu;
4655 int ret;
4656
4657 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4658 if (!write || (ret == -EINVAL))
4659 return ret;
4660 for_each_zone(zone) {
4661 for_each_online_cpu(cpu) {
4662 unsigned long high;
4663 high = zone->present_pages / percpu_pagelist_fraction;
4664 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4665 }
4666 }
4667 return 0;
4668}
4669
f034b5d4 4670int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4671
4672#ifdef CONFIG_NUMA
4673static int __init set_hashdist(char *str)
4674{
4675 if (!str)
4676 return 0;
4677 hashdist = simple_strtoul(str, &str, 0);
4678 return 1;
4679}
4680__setup("hashdist=", set_hashdist);
4681#endif
4682
4683/*
4684 * allocate a large system hash table from bootmem
4685 * - it is assumed that the hash table must contain an exact power-of-2
4686 * quantity of entries
4687 * - limit is the number of hash buckets, not the total allocation size
4688 */
4689void *__init alloc_large_system_hash(const char *tablename,
4690 unsigned long bucketsize,
4691 unsigned long numentries,
4692 int scale,
4693 int flags,
4694 unsigned int *_hash_shift,
4695 unsigned int *_hash_mask,
4696 unsigned long limit)
4697{
4698 unsigned long long max = limit;
4699 unsigned long log2qty, size;
4700 void *table = NULL;
4701
4702 /* allow the kernel cmdline to have a say */
4703 if (!numentries) {
4704 /* round applicable memory size up to nearest megabyte */
04903664 4705 numentries = nr_kernel_pages;
1da177e4
LT
4706 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4707 numentries >>= 20 - PAGE_SHIFT;
4708 numentries <<= 20 - PAGE_SHIFT;
4709
4710 /* limit to 1 bucket per 2^scale bytes of low memory */
4711 if (scale > PAGE_SHIFT)
4712 numentries >>= (scale - PAGE_SHIFT);
4713 else
4714 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4715
4716 /* Make sure we've got at least a 0-order allocation.. */
4717 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4718 numentries = PAGE_SIZE / bucketsize;
1da177e4 4719 }
6e692ed3 4720 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4721
4722 /* limit allocation size to 1/16 total memory by default */
4723 if (max == 0) {
4724 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4725 do_div(max, bucketsize);
4726 }
4727
4728 if (numentries > max)
4729 numentries = max;
4730
f0d1b0b3 4731 log2qty = ilog2(numentries);
1da177e4
LT
4732
4733 do {
4734 size = bucketsize << log2qty;
4735 if (flags & HASH_EARLY)
74768ed8 4736 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4737 else if (hashdist)
4738 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4739 else {
1037b83b
ED
4740 /*
4741 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
4742 * some pages at the end of hash table which
4743 * alloc_pages_exact() automatically does
1037b83b 4744 */
a1dd268c
MG
4745 if (get_order(size) < MAX_ORDER)
4746 table = alloc_pages_exact(size, GFP_ATOMIC);
1da177e4
LT
4747 }
4748 } while (!table && size > PAGE_SIZE && --log2qty);
4749
4750 if (!table)
4751 panic("Failed to allocate %s hash table\n", tablename);
4752
b49ad484 4753 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4754 tablename,
4755 (1U << log2qty),
f0d1b0b3 4756 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4757 size);
4758
4759 if (_hash_shift)
4760 *_hash_shift = log2qty;
4761 if (_hash_mask)
4762 *_hash_mask = (1 << log2qty) - 1;
4763
dbb1f81c
CM
4764 /*
4765 * If hashdist is set, the table allocation is done with __vmalloc()
4766 * which invokes the kmemleak_alloc() callback. This function may also
4767 * be called before the slab and kmemleak are initialised when
4768 * kmemleak simply buffers the request to be executed later
4769 * (GFP_ATOMIC flag ignored in this case).
4770 */
4771 if (!hashdist)
4772 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4773
1da177e4
LT
4774 return table;
4775}
a117e66e 4776
835c134e
MG
4777/* Return a pointer to the bitmap storing bits affecting a block of pages */
4778static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4779 unsigned long pfn)
4780{
4781#ifdef CONFIG_SPARSEMEM
4782 return __pfn_to_section(pfn)->pageblock_flags;
4783#else
4784 return zone->pageblock_flags;
4785#endif /* CONFIG_SPARSEMEM */
4786}
4787
4788static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4789{
4790#ifdef CONFIG_SPARSEMEM
4791 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4792 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4793#else
4794 pfn = pfn - zone->zone_start_pfn;
d9c23400 4795 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4796#endif /* CONFIG_SPARSEMEM */
4797}
4798
4799/**
d9c23400 4800 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4801 * @page: The page within the block of interest
4802 * @start_bitidx: The first bit of interest to retrieve
4803 * @end_bitidx: The last bit of interest
4804 * returns pageblock_bits flags
4805 */
4806unsigned long get_pageblock_flags_group(struct page *page,
4807 int start_bitidx, int end_bitidx)
4808{
4809 struct zone *zone;
4810 unsigned long *bitmap;
4811 unsigned long pfn, bitidx;
4812 unsigned long flags = 0;
4813 unsigned long value = 1;
4814
4815 zone = page_zone(page);
4816 pfn = page_to_pfn(page);
4817 bitmap = get_pageblock_bitmap(zone, pfn);
4818 bitidx = pfn_to_bitidx(zone, pfn);
4819
4820 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4821 if (test_bit(bitidx + start_bitidx, bitmap))
4822 flags |= value;
6220ec78 4823
835c134e
MG
4824 return flags;
4825}
4826
4827/**
d9c23400 4828 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4829 * @page: The page within the block of interest
4830 * @start_bitidx: The first bit of interest
4831 * @end_bitidx: The last bit of interest
4832 * @flags: The flags to set
4833 */
4834void set_pageblock_flags_group(struct page *page, unsigned long flags,
4835 int start_bitidx, int end_bitidx)
4836{
4837 struct zone *zone;
4838 unsigned long *bitmap;
4839 unsigned long pfn, bitidx;
4840 unsigned long value = 1;
4841
4842 zone = page_zone(page);
4843 pfn = page_to_pfn(page);
4844 bitmap = get_pageblock_bitmap(zone, pfn);
4845 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4846 VM_BUG_ON(pfn < zone->zone_start_pfn);
4847 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4848
4849 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4850 if (flags & value)
4851 __set_bit(bitidx + start_bitidx, bitmap);
4852 else
4853 __clear_bit(bitidx + start_bitidx, bitmap);
4854}
a5d76b54
KH
4855
4856/*
4857 * This is designed as sub function...plz see page_isolation.c also.
4858 * set/clear page block's type to be ISOLATE.
4859 * page allocater never alloc memory from ISOLATE block.
4860 */
4861
4862int set_migratetype_isolate(struct page *page)
4863{
4864 struct zone *zone;
4865 unsigned long flags;
4866 int ret = -EBUSY;
4867
4868 zone = page_zone(page);
4869 spin_lock_irqsave(&zone->lock, flags);
4870 /*
4871 * In future, more migrate types will be able to be isolation target.
4872 */
4873 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4874 goto out;
4875 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4876 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4877 ret = 0;
4878out:
4879 spin_unlock_irqrestore(&zone->lock, flags);
4880 if (!ret)
9f8f2172 4881 drain_all_pages();
a5d76b54
KH
4882 return ret;
4883}
4884
4885void unset_migratetype_isolate(struct page *page)
4886{
4887 struct zone *zone;
4888 unsigned long flags;
4889 zone = page_zone(page);
4890 spin_lock_irqsave(&zone->lock, flags);
4891 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4892 goto out;
4893 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4894 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4895out:
4896 spin_unlock_irqrestore(&zone->lock, flags);
4897}
0c0e6195
KH
4898
4899#ifdef CONFIG_MEMORY_HOTREMOVE
4900/*
4901 * All pages in the range must be isolated before calling this.
4902 */
4903void
4904__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4905{
4906 struct page *page;
4907 struct zone *zone;
4908 int order, i;
4909 unsigned long pfn;
4910 unsigned long flags;
4911 /* find the first valid pfn */
4912 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4913 if (pfn_valid(pfn))
4914 break;
4915 if (pfn == end_pfn)
4916 return;
4917 zone = page_zone(pfn_to_page(pfn));
4918 spin_lock_irqsave(&zone->lock, flags);
4919 pfn = start_pfn;
4920 while (pfn < end_pfn) {
4921 if (!pfn_valid(pfn)) {
4922 pfn++;
4923 continue;
4924 }
4925 page = pfn_to_page(pfn);
4926 BUG_ON(page_count(page));
4927 BUG_ON(!PageBuddy(page));
4928 order = page_order(page);
4929#ifdef CONFIG_DEBUG_VM
4930 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4931 pfn, 1 << order, end_pfn);
4932#endif
4933 list_del(&page->lru);
4934 rmv_page_order(page);
4935 zone->free_area[order].nr_free--;
4936 __mod_zone_page_state(zone, NR_FREE_PAGES,
4937 - (1UL << order));
4938 for (i = 0; i < (1 << order); i++)
4939 SetPageReserved((page+i));
4940 pfn += (1 << order);
4941 }
4942 spin_unlock_irqrestore(&zone->lock, flags);
4943}
4944#endif
This page took 0.795484 seconds and 5 git commands to generate.