Merge remote-tracking branch 'mmc-uh/next'
[deliverable/linux.git] / arch / arm64 / mm / dma-mapping.c
1 /*
2 * SWIOTLB-based DMA API implementation
3 *
4 * Copyright (C) 2012 ARM Ltd.
5 * Author: Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/bootmem.h>
23 #include <linux/cache.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/genalloc.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/vmalloc.h>
30 #include <linux/swiotlb.h>
31
32 #include <asm/cacheflush.h>
33
34 static int swiotlb __ro_after_init;
35
36 static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
37 bool coherent)
38 {
39 if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
40 return pgprot_writecombine(prot);
41 return prot;
42 }
43
44 static struct gen_pool *atomic_pool;
45
46 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
47 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
48
49 static int __init early_coherent_pool(char *p)
50 {
51 atomic_pool_size = memparse(p, &p);
52 return 0;
53 }
54 early_param("coherent_pool", early_coherent_pool);
55
56 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
57 {
58 unsigned long val;
59 void *ptr = NULL;
60
61 if (!atomic_pool) {
62 WARN(1, "coherent pool not initialised!\n");
63 return NULL;
64 }
65
66 val = gen_pool_alloc(atomic_pool, size);
67 if (val) {
68 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
69
70 *ret_page = phys_to_page(phys);
71 ptr = (void *)val;
72 memset(ptr, 0, size);
73 }
74
75 return ptr;
76 }
77
78 static bool __in_atomic_pool(void *start, size_t size)
79 {
80 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
81 }
82
83 static int __free_from_pool(void *start, size_t size)
84 {
85 if (!__in_atomic_pool(start, size))
86 return 0;
87
88 gen_pool_free(atomic_pool, (unsigned long)start, size);
89
90 return 1;
91 }
92
93 static void *__dma_alloc_coherent(struct device *dev, size_t size,
94 dma_addr_t *dma_handle, gfp_t flags,
95 unsigned long attrs)
96 {
97 if (dev == NULL) {
98 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
99 return NULL;
100 }
101
102 if (IS_ENABLED(CONFIG_ZONE_DMA) &&
103 dev->coherent_dma_mask <= DMA_BIT_MASK(32))
104 flags |= GFP_DMA;
105 if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
106 struct page *page;
107 void *addr;
108
109 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
110 get_order(size));
111 if (!page)
112 return NULL;
113
114 *dma_handle = phys_to_dma(dev, page_to_phys(page));
115 addr = page_address(page);
116 memset(addr, 0, size);
117 return addr;
118 } else {
119 return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
120 }
121 }
122
123 static void __dma_free_coherent(struct device *dev, size_t size,
124 void *vaddr, dma_addr_t dma_handle,
125 unsigned long attrs)
126 {
127 bool freed;
128 phys_addr_t paddr = dma_to_phys(dev, dma_handle);
129
130 if (dev == NULL) {
131 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
132 return;
133 }
134
135 freed = dma_release_from_contiguous(dev,
136 phys_to_page(paddr),
137 size >> PAGE_SHIFT);
138 if (!freed)
139 swiotlb_free_coherent(dev, size, vaddr, dma_handle);
140 }
141
142 static void *__dma_alloc(struct device *dev, size_t size,
143 dma_addr_t *dma_handle, gfp_t flags,
144 unsigned long attrs)
145 {
146 struct page *page;
147 void *ptr, *coherent_ptr;
148 bool coherent = is_device_dma_coherent(dev);
149 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
150
151 size = PAGE_ALIGN(size);
152
153 if (!coherent && !gfpflags_allow_blocking(flags)) {
154 struct page *page = NULL;
155 void *addr = __alloc_from_pool(size, &page, flags);
156
157 if (addr)
158 *dma_handle = phys_to_dma(dev, page_to_phys(page));
159
160 return addr;
161 }
162
163 ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
164 if (!ptr)
165 goto no_mem;
166
167 /* no need for non-cacheable mapping if coherent */
168 if (coherent)
169 return ptr;
170
171 /* remove any dirty cache lines on the kernel alias */
172 __dma_flush_area(ptr, size);
173
174 /* create a coherent mapping */
175 page = virt_to_page(ptr);
176 coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
177 prot, NULL);
178 if (!coherent_ptr)
179 goto no_map;
180
181 return coherent_ptr;
182
183 no_map:
184 __dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
185 no_mem:
186 *dma_handle = DMA_ERROR_CODE;
187 return NULL;
188 }
189
190 static void __dma_free(struct device *dev, size_t size,
191 void *vaddr, dma_addr_t dma_handle,
192 unsigned long attrs)
193 {
194 void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
195
196 size = PAGE_ALIGN(size);
197
198 if (!is_device_dma_coherent(dev)) {
199 if (__free_from_pool(vaddr, size))
200 return;
201 vunmap(vaddr);
202 }
203 __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
204 }
205
206 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
207 unsigned long offset, size_t size,
208 enum dma_data_direction dir,
209 unsigned long attrs)
210 {
211 dma_addr_t dev_addr;
212
213 dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
214 if (!is_device_dma_coherent(dev))
215 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
216
217 return dev_addr;
218 }
219
220
221 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
222 size_t size, enum dma_data_direction dir,
223 unsigned long attrs)
224 {
225 if (!is_device_dma_coherent(dev))
226 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
227 swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
228 }
229
230 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
231 int nelems, enum dma_data_direction dir,
232 unsigned long attrs)
233 {
234 struct scatterlist *sg;
235 int i, ret;
236
237 ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
238 if (!is_device_dma_coherent(dev))
239 for_each_sg(sgl, sg, ret, i)
240 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
241 sg->length, dir);
242
243 return ret;
244 }
245
246 static void __swiotlb_unmap_sg_attrs(struct device *dev,
247 struct scatterlist *sgl, int nelems,
248 enum dma_data_direction dir,
249 unsigned long attrs)
250 {
251 struct scatterlist *sg;
252 int i;
253
254 if (!is_device_dma_coherent(dev))
255 for_each_sg(sgl, sg, nelems, i)
256 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
257 sg->length, dir);
258 swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
259 }
260
261 static void __swiotlb_sync_single_for_cpu(struct device *dev,
262 dma_addr_t dev_addr, size_t size,
263 enum dma_data_direction dir)
264 {
265 if (!is_device_dma_coherent(dev))
266 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
267 swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
268 }
269
270 static void __swiotlb_sync_single_for_device(struct device *dev,
271 dma_addr_t dev_addr, size_t size,
272 enum dma_data_direction dir)
273 {
274 swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
275 if (!is_device_dma_coherent(dev))
276 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
277 }
278
279 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
280 struct scatterlist *sgl, int nelems,
281 enum dma_data_direction dir)
282 {
283 struct scatterlist *sg;
284 int i;
285
286 if (!is_device_dma_coherent(dev))
287 for_each_sg(sgl, sg, nelems, i)
288 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
289 sg->length, dir);
290 swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
291 }
292
293 static void __swiotlb_sync_sg_for_device(struct device *dev,
294 struct scatterlist *sgl, int nelems,
295 enum dma_data_direction dir)
296 {
297 struct scatterlist *sg;
298 int i;
299
300 swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
301 if (!is_device_dma_coherent(dev))
302 for_each_sg(sgl, sg, nelems, i)
303 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
304 sg->length, dir);
305 }
306
307 static int __swiotlb_mmap(struct device *dev,
308 struct vm_area_struct *vma,
309 void *cpu_addr, dma_addr_t dma_addr, size_t size,
310 unsigned long attrs)
311 {
312 int ret = -ENXIO;
313 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
314 PAGE_SHIFT;
315 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
316 unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
317 unsigned long off = vma->vm_pgoff;
318
319 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
320 is_device_dma_coherent(dev));
321
322 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
323 return ret;
324
325 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
326 ret = remap_pfn_range(vma, vma->vm_start,
327 pfn + off,
328 vma->vm_end - vma->vm_start,
329 vma->vm_page_prot);
330 }
331
332 return ret;
333 }
334
335 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
336 void *cpu_addr, dma_addr_t handle, size_t size,
337 unsigned long attrs)
338 {
339 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
340
341 if (!ret)
342 sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)),
343 PAGE_ALIGN(size), 0);
344
345 return ret;
346 }
347
348 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
349 {
350 if (swiotlb)
351 return swiotlb_dma_supported(hwdev, mask);
352 return 1;
353 }
354
355 static struct dma_map_ops swiotlb_dma_ops = {
356 .alloc = __dma_alloc,
357 .free = __dma_free,
358 .mmap = __swiotlb_mmap,
359 .get_sgtable = __swiotlb_get_sgtable,
360 .map_page = __swiotlb_map_page,
361 .unmap_page = __swiotlb_unmap_page,
362 .map_sg = __swiotlb_map_sg_attrs,
363 .unmap_sg = __swiotlb_unmap_sg_attrs,
364 .sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
365 .sync_single_for_device = __swiotlb_sync_single_for_device,
366 .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
367 .sync_sg_for_device = __swiotlb_sync_sg_for_device,
368 .dma_supported = __swiotlb_dma_supported,
369 .mapping_error = swiotlb_dma_mapping_error,
370 };
371
372 static int __init atomic_pool_init(void)
373 {
374 pgprot_t prot = __pgprot(PROT_NORMAL_NC);
375 unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
376 struct page *page;
377 void *addr;
378 unsigned int pool_size_order = get_order(atomic_pool_size);
379
380 if (dev_get_cma_area(NULL))
381 page = dma_alloc_from_contiguous(NULL, nr_pages,
382 pool_size_order);
383 else
384 page = alloc_pages(GFP_DMA, pool_size_order);
385
386 if (page) {
387 int ret;
388 void *page_addr = page_address(page);
389
390 memset(page_addr, 0, atomic_pool_size);
391 __dma_flush_area(page_addr, atomic_pool_size);
392
393 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
394 if (!atomic_pool)
395 goto free_page;
396
397 addr = dma_common_contiguous_remap(page, atomic_pool_size,
398 VM_USERMAP, prot, atomic_pool_init);
399
400 if (!addr)
401 goto destroy_genpool;
402
403 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
404 page_to_phys(page),
405 atomic_pool_size, -1);
406 if (ret)
407 goto remove_mapping;
408
409 gen_pool_set_algo(atomic_pool,
410 gen_pool_first_fit_order_align,
411 (void *)PAGE_SHIFT);
412
413 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
414 atomic_pool_size / 1024);
415 return 0;
416 }
417 goto out;
418
419 remove_mapping:
420 dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
421 destroy_genpool:
422 gen_pool_destroy(atomic_pool);
423 atomic_pool = NULL;
424 free_page:
425 if (!dma_release_from_contiguous(NULL, page, nr_pages))
426 __free_pages(page, pool_size_order);
427 out:
428 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
429 atomic_pool_size / 1024);
430 return -ENOMEM;
431 }
432
433 /********************************************
434 * The following APIs are for dummy DMA ops *
435 ********************************************/
436
437 static void *__dummy_alloc(struct device *dev, size_t size,
438 dma_addr_t *dma_handle, gfp_t flags,
439 unsigned long attrs)
440 {
441 return NULL;
442 }
443
444 static void __dummy_free(struct device *dev, size_t size,
445 void *vaddr, dma_addr_t dma_handle,
446 unsigned long attrs)
447 {
448 }
449
450 static int __dummy_mmap(struct device *dev,
451 struct vm_area_struct *vma,
452 void *cpu_addr, dma_addr_t dma_addr, size_t size,
453 unsigned long attrs)
454 {
455 return -ENXIO;
456 }
457
458 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
459 unsigned long offset, size_t size,
460 enum dma_data_direction dir,
461 unsigned long attrs)
462 {
463 return DMA_ERROR_CODE;
464 }
465
466 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
467 size_t size, enum dma_data_direction dir,
468 unsigned long attrs)
469 {
470 }
471
472 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
473 int nelems, enum dma_data_direction dir,
474 unsigned long attrs)
475 {
476 return 0;
477 }
478
479 static void __dummy_unmap_sg(struct device *dev,
480 struct scatterlist *sgl, int nelems,
481 enum dma_data_direction dir,
482 unsigned long attrs)
483 {
484 }
485
486 static void __dummy_sync_single(struct device *dev,
487 dma_addr_t dev_addr, size_t size,
488 enum dma_data_direction dir)
489 {
490 }
491
492 static void __dummy_sync_sg(struct device *dev,
493 struct scatterlist *sgl, int nelems,
494 enum dma_data_direction dir)
495 {
496 }
497
498 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
499 {
500 return 1;
501 }
502
503 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
504 {
505 return 0;
506 }
507
508 struct dma_map_ops dummy_dma_ops = {
509 .alloc = __dummy_alloc,
510 .free = __dummy_free,
511 .mmap = __dummy_mmap,
512 .map_page = __dummy_map_page,
513 .unmap_page = __dummy_unmap_page,
514 .map_sg = __dummy_map_sg,
515 .unmap_sg = __dummy_unmap_sg,
516 .sync_single_for_cpu = __dummy_sync_single,
517 .sync_single_for_device = __dummy_sync_single,
518 .sync_sg_for_cpu = __dummy_sync_sg,
519 .sync_sg_for_device = __dummy_sync_sg,
520 .mapping_error = __dummy_mapping_error,
521 .dma_supported = __dummy_dma_supported,
522 };
523 EXPORT_SYMBOL(dummy_dma_ops);
524
525 static int __init arm64_dma_init(void)
526 {
527 if (swiotlb_force || max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
528 swiotlb = 1;
529
530 return atomic_pool_init();
531 }
532 arch_initcall(arm64_dma_init);
533
534 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
535
536 static int __init dma_debug_do_init(void)
537 {
538 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
539 return 0;
540 }
541 fs_initcall(dma_debug_do_init);
542
543
544 #ifdef CONFIG_IOMMU_DMA
545 #include <linux/dma-iommu.h>
546 #include <linux/platform_device.h>
547 #include <linux/amba/bus.h>
548
549 /* Thankfully, all cache ops are by VA so we can ignore phys here */
550 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
551 {
552 __dma_flush_area(virt, PAGE_SIZE);
553 }
554
555 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
556 dma_addr_t *handle, gfp_t gfp,
557 unsigned long attrs)
558 {
559 bool coherent = is_device_dma_coherent(dev);
560 int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent);
561 size_t iosize = size;
562 void *addr;
563
564 if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
565 return NULL;
566
567 size = PAGE_ALIGN(size);
568
569 /*
570 * Some drivers rely on this, and we probably don't want the
571 * possibility of stale kernel data being read by devices anyway.
572 */
573 gfp |= __GFP_ZERO;
574
575 if (gfpflags_allow_blocking(gfp)) {
576 struct page **pages;
577 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
578
579 pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
580 handle, flush_page);
581 if (!pages)
582 return NULL;
583
584 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
585 __builtin_return_address(0));
586 if (!addr)
587 iommu_dma_free(dev, pages, iosize, handle);
588 } else {
589 struct page *page;
590 /*
591 * In atomic context we can't remap anything, so we'll only
592 * get the virtually contiguous buffer we need by way of a
593 * physically contiguous allocation.
594 */
595 if (coherent) {
596 page = alloc_pages(gfp, get_order(size));
597 addr = page ? page_address(page) : NULL;
598 } else {
599 addr = __alloc_from_pool(size, &page, gfp);
600 }
601 if (!addr)
602 return NULL;
603
604 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
605 if (iommu_dma_mapping_error(dev, *handle)) {
606 if (coherent)
607 __free_pages(page, get_order(size));
608 else
609 __free_from_pool(addr, size);
610 addr = NULL;
611 }
612 }
613 return addr;
614 }
615
616 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
617 dma_addr_t handle, unsigned long attrs)
618 {
619 size_t iosize = size;
620
621 size = PAGE_ALIGN(size);
622 /*
623 * @cpu_addr will be one of 3 things depending on how it was allocated:
624 * - A remapped array of pages from iommu_dma_alloc(), for all
625 * non-atomic allocations.
626 * - A non-cacheable alias from the atomic pool, for atomic
627 * allocations by non-coherent devices.
628 * - A normal lowmem address, for atomic allocations by
629 * coherent devices.
630 * Hence how dodgy the below logic looks...
631 */
632 if (__in_atomic_pool(cpu_addr, size)) {
633 iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
634 __free_from_pool(cpu_addr, size);
635 } else if (is_vmalloc_addr(cpu_addr)){
636 struct vm_struct *area = find_vm_area(cpu_addr);
637
638 if (WARN_ON(!area || !area->pages))
639 return;
640 iommu_dma_free(dev, area->pages, iosize, &handle);
641 dma_common_free_remap(cpu_addr, size, VM_USERMAP);
642 } else {
643 iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
644 __free_pages(virt_to_page(cpu_addr), get_order(size));
645 }
646 }
647
648 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
649 void *cpu_addr, dma_addr_t dma_addr, size_t size,
650 unsigned long attrs)
651 {
652 struct vm_struct *area;
653 int ret;
654
655 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
656 is_device_dma_coherent(dev));
657
658 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
659 return ret;
660
661 area = find_vm_area(cpu_addr);
662 if (WARN_ON(!area || !area->pages))
663 return -ENXIO;
664
665 return iommu_dma_mmap(area->pages, size, vma);
666 }
667
668 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
669 void *cpu_addr, dma_addr_t dma_addr,
670 size_t size, unsigned long attrs)
671 {
672 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
673 struct vm_struct *area = find_vm_area(cpu_addr);
674
675 if (WARN_ON(!area || !area->pages))
676 return -ENXIO;
677
678 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
679 GFP_KERNEL);
680 }
681
682 static void __iommu_sync_single_for_cpu(struct device *dev,
683 dma_addr_t dev_addr, size_t size,
684 enum dma_data_direction dir)
685 {
686 phys_addr_t phys;
687
688 if (is_device_dma_coherent(dev))
689 return;
690
691 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
692 __dma_unmap_area(phys_to_virt(phys), size, dir);
693 }
694
695 static void __iommu_sync_single_for_device(struct device *dev,
696 dma_addr_t dev_addr, size_t size,
697 enum dma_data_direction dir)
698 {
699 phys_addr_t phys;
700
701 if (is_device_dma_coherent(dev))
702 return;
703
704 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
705 __dma_map_area(phys_to_virt(phys), size, dir);
706 }
707
708 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
709 unsigned long offset, size_t size,
710 enum dma_data_direction dir,
711 unsigned long attrs)
712 {
713 bool coherent = is_device_dma_coherent(dev);
714 int prot = dma_direction_to_prot(dir, coherent);
715 dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
716
717 if (!iommu_dma_mapping_error(dev, dev_addr) &&
718 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
719 __iommu_sync_single_for_device(dev, dev_addr, size, dir);
720
721 return dev_addr;
722 }
723
724 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
725 size_t size, enum dma_data_direction dir,
726 unsigned long attrs)
727 {
728 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
729 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
730
731 iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
732 }
733
734 static void __iommu_sync_sg_for_cpu(struct device *dev,
735 struct scatterlist *sgl, int nelems,
736 enum dma_data_direction dir)
737 {
738 struct scatterlist *sg;
739 int i;
740
741 if (is_device_dma_coherent(dev))
742 return;
743
744 for_each_sg(sgl, sg, nelems, i)
745 __dma_unmap_area(sg_virt(sg), sg->length, dir);
746 }
747
748 static void __iommu_sync_sg_for_device(struct device *dev,
749 struct scatterlist *sgl, int nelems,
750 enum dma_data_direction dir)
751 {
752 struct scatterlist *sg;
753 int i;
754
755 if (is_device_dma_coherent(dev))
756 return;
757
758 for_each_sg(sgl, sg, nelems, i)
759 __dma_map_area(sg_virt(sg), sg->length, dir);
760 }
761
762 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
763 int nelems, enum dma_data_direction dir,
764 unsigned long attrs)
765 {
766 bool coherent = is_device_dma_coherent(dev);
767
768 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
769 __iommu_sync_sg_for_device(dev, sgl, nelems, dir);
770
771 return iommu_dma_map_sg(dev, sgl, nelems,
772 dma_direction_to_prot(dir, coherent));
773 }
774
775 static void __iommu_unmap_sg_attrs(struct device *dev,
776 struct scatterlist *sgl, int nelems,
777 enum dma_data_direction dir,
778 unsigned long attrs)
779 {
780 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
781 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
782
783 iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
784 }
785
786 static struct dma_map_ops iommu_dma_ops = {
787 .alloc = __iommu_alloc_attrs,
788 .free = __iommu_free_attrs,
789 .mmap = __iommu_mmap_attrs,
790 .get_sgtable = __iommu_get_sgtable,
791 .map_page = __iommu_map_page,
792 .unmap_page = __iommu_unmap_page,
793 .map_sg = __iommu_map_sg_attrs,
794 .unmap_sg = __iommu_unmap_sg_attrs,
795 .sync_single_for_cpu = __iommu_sync_single_for_cpu,
796 .sync_single_for_device = __iommu_sync_single_for_device,
797 .sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
798 .sync_sg_for_device = __iommu_sync_sg_for_device,
799 .dma_supported = iommu_dma_supported,
800 .mapping_error = iommu_dma_mapping_error,
801 };
802
803 /*
804 * TODO: Right now __iommu_setup_dma_ops() gets called too early to do
805 * everything it needs to - the device is only partially created and the
806 * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we
807 * need this delayed attachment dance. Once IOMMU probe ordering is sorted
808 * to move the arch_setup_dma_ops() call later, all the notifier bits below
809 * become unnecessary, and will go away.
810 */
811 struct iommu_dma_notifier_data {
812 struct list_head list;
813 struct device *dev;
814 const struct iommu_ops *ops;
815 u64 dma_base;
816 u64 size;
817 };
818 static LIST_HEAD(iommu_dma_masters);
819 static DEFINE_MUTEX(iommu_dma_notifier_lock);
820
821 static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops,
822 u64 dma_base, u64 size)
823 {
824 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
825
826 /*
827 * If the IOMMU driver has the DMA domain support that we require,
828 * then the IOMMU core will have already configured a group for this
829 * device, and allocated the default domain for that group.
830 */
831 if (!domain || iommu_dma_init_domain(domain, dma_base, size)) {
832 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
833 dev_name(dev));
834 return false;
835 }
836
837 dev->archdata.dma_ops = &iommu_dma_ops;
838 return true;
839 }
840
841 static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops,
842 u64 dma_base, u64 size)
843 {
844 struct iommu_dma_notifier_data *iommudata;
845
846 iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL);
847 if (!iommudata)
848 return;
849
850 iommudata->dev = dev;
851 iommudata->ops = ops;
852 iommudata->dma_base = dma_base;
853 iommudata->size = size;
854
855 mutex_lock(&iommu_dma_notifier_lock);
856 list_add(&iommudata->list, &iommu_dma_masters);
857 mutex_unlock(&iommu_dma_notifier_lock);
858 }
859
860 static int __iommu_attach_notifier(struct notifier_block *nb,
861 unsigned long action, void *data)
862 {
863 struct iommu_dma_notifier_data *master, *tmp;
864
865 if (action != BUS_NOTIFY_BIND_DRIVER)
866 return 0;
867
868 mutex_lock(&iommu_dma_notifier_lock);
869 list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) {
870 if (data == master->dev && do_iommu_attach(master->dev,
871 master->ops, master->dma_base, master->size)) {
872 list_del(&master->list);
873 kfree(master);
874 break;
875 }
876 }
877 mutex_unlock(&iommu_dma_notifier_lock);
878 return 0;
879 }
880
881 static int __init register_iommu_dma_ops_notifier(struct bus_type *bus)
882 {
883 struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL);
884 int ret;
885
886 if (!nb)
887 return -ENOMEM;
888
889 nb->notifier_call = __iommu_attach_notifier;
890
891 ret = bus_register_notifier(bus, nb);
892 if (ret) {
893 pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n",
894 bus->name);
895 kfree(nb);
896 }
897 return ret;
898 }
899
900 static int __init __iommu_dma_init(void)
901 {
902 int ret;
903
904 ret = iommu_dma_init();
905 if (!ret)
906 ret = register_iommu_dma_ops_notifier(&platform_bus_type);
907 if (!ret)
908 ret = register_iommu_dma_ops_notifier(&amba_bustype);
909 #ifdef CONFIG_PCI
910 if (!ret)
911 ret = register_iommu_dma_ops_notifier(&pci_bus_type);
912 #endif
913 return ret;
914 }
915 arch_initcall(__iommu_dma_init);
916
917 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
918 const struct iommu_ops *ops)
919 {
920 struct iommu_group *group;
921
922 if (!ops)
923 return;
924 /*
925 * TODO: As a concession to the future, we're ready to handle being
926 * called both early and late (i.e. after bus_add_device). Once all
927 * the platform bus code is reworked to call us late and the notifier
928 * junk above goes away, move the body of do_iommu_attach here.
929 */
930 group = iommu_group_get(dev);
931 if (group) {
932 do_iommu_attach(dev, ops, dma_base, size);
933 iommu_group_put(group);
934 } else {
935 queue_iommu_attach(dev, ops, dma_base, size);
936 }
937 }
938
939 void arch_teardown_dma_ops(struct device *dev)
940 {
941 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
942
943 if (WARN_ON(domain))
944 iommu_detach_device(domain, dev);
945
946 dev->archdata.dma_ops = NULL;
947 }
948
949 #else
950
951 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
952 const struct iommu_ops *iommu)
953 { }
954
955 #endif /* CONFIG_IOMMU_DMA */
956
957 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
958 const struct iommu_ops *iommu, bool coherent)
959 {
960 if (!dev->archdata.dma_ops)
961 dev->archdata.dma_ops = &swiotlb_dma_ops;
962
963 dev->archdata.dma_coherent = coherent;
964 __iommu_setup_dma_ops(dev, dma_base, size, iommu);
965 }
This page took 0.051249 seconds and 5 git commands to generate.