Merge remote-tracking branch 'mmc-uh/next'
[deliverable/linux.git] / arch / ia64 / kernel / setup.c
1 /*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * Rohit Seth <rohit.seth@intel.com>
9 * Suresh Siddha <suresh.b.siddha@intel.com>
10 * Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13 *
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 * Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian added the support for command line argument
22 * 06/24/99 W.Drummond added boot_cpu_data.
23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
24 */
25 #include <linux/module.h>
26 #include <linux/init.h>
27
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48
49 #include <asm/machvec.h>
50 #include <asm/mca.h>
51 #include <asm/meminit.h>
52 #include <asm/page.h>
53 #include <asm/patch.h>
54 #include <asm/pgtable.h>
55 #include <asm/processor.h>
56 #include <asm/sal.h>
57 #include <asm/sections.h>
58 #include <asm/setup.h>
59 #include <asm/smp.h>
60 #include <asm/tlbflush.h>
61 #include <asm/unistd.h>
62 #include <asm/hpsim.h>
63
64 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
65 # error "struct cpuinfo_ia64 too big!"
66 #endif
67
68 #ifdef CONFIG_SMP
69 unsigned long __per_cpu_offset[NR_CPUS];
70 EXPORT_SYMBOL(__per_cpu_offset);
71 #endif
72
73 DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
74 EXPORT_SYMBOL(ia64_cpu_info);
75 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
76 #ifdef CONFIG_SMP
77 EXPORT_SYMBOL(local_per_cpu_offset);
78 #endif
79 unsigned long ia64_cycles_per_usec;
80 struct ia64_boot_param *ia64_boot_param;
81 struct screen_info screen_info;
82 unsigned long vga_console_iobase;
83 unsigned long vga_console_membase;
84
85 static struct resource data_resource = {
86 .name = "Kernel data",
87 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
88 };
89
90 static struct resource code_resource = {
91 .name = "Kernel code",
92 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
93 };
94
95 static struct resource bss_resource = {
96 .name = "Kernel bss",
97 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
98 };
99
100 unsigned long ia64_max_cacheline_size;
101
102 unsigned long ia64_iobase; /* virtual address for I/O accesses */
103 EXPORT_SYMBOL(ia64_iobase);
104 struct io_space io_space[MAX_IO_SPACES];
105 EXPORT_SYMBOL(io_space);
106 unsigned int num_io_spaces;
107
108 /*
109 * "flush_icache_range()" needs to know what processor dependent stride size to use
110 * when it makes i-cache(s) coherent with d-caches.
111 */
112 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
113 unsigned long ia64_i_cache_stride_shift = ~0;
114 /*
115 * "clflush_cache_range()" needs to know what processor dependent stride size to
116 * use when it flushes cache lines including both d-cache and i-cache.
117 */
118 /* Safest way to go: 32 bytes by 32 bytes */
119 #define CACHE_STRIDE_SHIFT 5
120 unsigned long ia64_cache_stride_shift = ~0;
121
122 /*
123 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
124 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
125 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
126 * address of the second buffer must be aligned to (merge_mask+1) in order to be
127 * mergeable). By default, we assume there is no I/O MMU which can merge physically
128 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
129 * page-size of 2^64.
130 */
131 unsigned long ia64_max_iommu_merge_mask = ~0UL;
132 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
133
134 /*
135 * We use a special marker for the end of memory and it uses the extra (+1) slot
136 */
137 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
138 int num_rsvd_regions __initdata;
139
140
141 /*
142 * Filter incoming memory segments based on the primitive map created from the boot
143 * parameters. Segments contained in the map are removed from the memory ranges. A
144 * caller-specified function is called with the memory ranges that remain after filtering.
145 * This routine does not assume the incoming segments are sorted.
146 */
147 int __init
148 filter_rsvd_memory (u64 start, u64 end, void *arg)
149 {
150 u64 range_start, range_end, prev_start;
151 void (*func)(unsigned long, unsigned long, int);
152 int i;
153
154 #if IGNORE_PFN0
155 if (start == PAGE_OFFSET) {
156 printk(KERN_WARNING "warning: skipping physical page 0\n");
157 start += PAGE_SIZE;
158 if (start >= end) return 0;
159 }
160 #endif
161 /*
162 * lowest possible address(walker uses virtual)
163 */
164 prev_start = PAGE_OFFSET;
165 func = arg;
166
167 for (i = 0; i < num_rsvd_regions; ++i) {
168 range_start = max(start, prev_start);
169 range_end = min(end, rsvd_region[i].start);
170
171 if (range_start < range_end)
172 call_pernode_memory(__pa(range_start), range_end - range_start, func);
173
174 /* nothing more available in this segment */
175 if (range_end == end) return 0;
176
177 prev_start = rsvd_region[i].end;
178 }
179 /* end of memory marker allows full processing inside loop body */
180 return 0;
181 }
182
183 /*
184 * Similar to "filter_rsvd_memory()", but the reserved memory ranges
185 * are not filtered out.
186 */
187 int __init
188 filter_memory(u64 start, u64 end, void *arg)
189 {
190 void (*func)(unsigned long, unsigned long, int);
191
192 #if IGNORE_PFN0
193 if (start == PAGE_OFFSET) {
194 printk(KERN_WARNING "warning: skipping physical page 0\n");
195 start += PAGE_SIZE;
196 if (start >= end)
197 return 0;
198 }
199 #endif
200 func = arg;
201 if (start < end)
202 call_pernode_memory(__pa(start), end - start, func);
203 return 0;
204 }
205
206 static void __init
207 sort_regions (struct rsvd_region *rsvd_region, int max)
208 {
209 int j;
210
211 /* simple bubble sorting */
212 while (max--) {
213 for (j = 0; j < max; ++j) {
214 if (rsvd_region[j].start > rsvd_region[j+1].start) {
215 struct rsvd_region tmp;
216 tmp = rsvd_region[j];
217 rsvd_region[j] = rsvd_region[j + 1];
218 rsvd_region[j + 1] = tmp;
219 }
220 }
221 }
222 }
223
224 /* merge overlaps */
225 static int __init
226 merge_regions (struct rsvd_region *rsvd_region, int max)
227 {
228 int i;
229 for (i = 1; i < max; ++i) {
230 if (rsvd_region[i].start >= rsvd_region[i-1].end)
231 continue;
232 if (rsvd_region[i].end > rsvd_region[i-1].end)
233 rsvd_region[i-1].end = rsvd_region[i].end;
234 --max;
235 memmove(&rsvd_region[i], &rsvd_region[i+1],
236 (max - i) * sizeof(struct rsvd_region));
237 }
238 return max;
239 }
240
241 /*
242 * Request address space for all standard resources
243 */
244 static int __init register_memory(void)
245 {
246 code_resource.start = ia64_tpa(_text);
247 code_resource.end = ia64_tpa(_etext) - 1;
248 data_resource.start = ia64_tpa(_etext);
249 data_resource.end = ia64_tpa(_edata) - 1;
250 bss_resource.start = ia64_tpa(__bss_start);
251 bss_resource.end = ia64_tpa(_end) - 1;
252 efi_initialize_iomem_resources(&code_resource, &data_resource,
253 &bss_resource);
254
255 return 0;
256 }
257
258 __initcall(register_memory);
259
260
261 #ifdef CONFIG_KEXEC
262
263 /*
264 * This function checks if the reserved crashkernel is allowed on the specific
265 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
266 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
267 * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
268 * in kdump case. See the comment in sba_init() in sba_iommu.c.
269 *
270 * So, the only machvec that really supports loading the kdump kernel
271 * over 4 GB is "sn2".
272 */
273 static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
274 {
275 if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
276 return 1;
277 else
278 return pbase < (1UL << 32);
279 }
280
281 static void __init setup_crashkernel(unsigned long total, int *n)
282 {
283 unsigned long long base = 0, size = 0;
284 int ret;
285
286 ret = parse_crashkernel(boot_command_line, total,
287 &size, &base);
288 if (ret == 0 && size > 0) {
289 if (!base) {
290 sort_regions(rsvd_region, *n);
291 *n = merge_regions(rsvd_region, *n);
292 base = kdump_find_rsvd_region(size,
293 rsvd_region, *n);
294 }
295
296 if (!check_crashkernel_memory(base, size)) {
297 pr_warning("crashkernel: There would be kdump memory "
298 "at %ld GB but this is unusable because it "
299 "must\nbe below 4 GB. Change the memory "
300 "configuration of the machine.\n",
301 (unsigned long)(base >> 30));
302 return;
303 }
304
305 if (base != ~0UL) {
306 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
307 "for crashkernel (System RAM: %ldMB)\n",
308 (unsigned long)(size >> 20),
309 (unsigned long)(base >> 20),
310 (unsigned long)(total >> 20));
311 rsvd_region[*n].start =
312 (unsigned long)__va(base);
313 rsvd_region[*n].end =
314 (unsigned long)__va(base + size);
315 (*n)++;
316 crashk_res.start = base;
317 crashk_res.end = base + size - 1;
318 }
319 }
320 efi_memmap_res.start = ia64_boot_param->efi_memmap;
321 efi_memmap_res.end = efi_memmap_res.start +
322 ia64_boot_param->efi_memmap_size;
323 boot_param_res.start = __pa(ia64_boot_param);
324 boot_param_res.end = boot_param_res.start +
325 sizeof(*ia64_boot_param);
326 }
327 #else
328 static inline void __init setup_crashkernel(unsigned long total, int *n)
329 {}
330 #endif
331
332 /**
333 * reserve_memory - setup reserved memory areas
334 *
335 * Setup the reserved memory areas set aside for the boot parameters,
336 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
337 * see arch/ia64/include/asm/meminit.h if you need to define more.
338 */
339 void __init
340 reserve_memory (void)
341 {
342 int n = 0;
343 unsigned long total_memory;
344
345 /*
346 * none of the entries in this table overlap
347 */
348 rsvd_region[n].start = (unsigned long) ia64_boot_param;
349 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
350 n++;
351
352 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
353 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
354 n++;
355
356 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
357 rsvd_region[n].end = (rsvd_region[n].start
358 + strlen(__va(ia64_boot_param->command_line)) + 1);
359 n++;
360
361 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
362 rsvd_region[n].end = (unsigned long) ia64_imva(_end);
363 n++;
364
365 #ifdef CONFIG_BLK_DEV_INITRD
366 if (ia64_boot_param->initrd_start) {
367 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
368 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
369 n++;
370 }
371 #endif
372
373 #ifdef CONFIG_CRASH_DUMP
374 if (reserve_elfcorehdr(&rsvd_region[n].start,
375 &rsvd_region[n].end) == 0)
376 n++;
377 #endif
378
379 total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
380 n++;
381
382 setup_crashkernel(total_memory, &n);
383
384 /* end of memory marker */
385 rsvd_region[n].start = ~0UL;
386 rsvd_region[n].end = ~0UL;
387 n++;
388
389 num_rsvd_regions = n;
390 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
391
392 sort_regions(rsvd_region, num_rsvd_regions);
393 num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions);
394 }
395
396
397 /**
398 * find_initrd - get initrd parameters from the boot parameter structure
399 *
400 * Grab the initrd start and end from the boot parameter struct given us by
401 * the boot loader.
402 */
403 void __init
404 find_initrd (void)
405 {
406 #ifdef CONFIG_BLK_DEV_INITRD
407 if (ia64_boot_param->initrd_start) {
408 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
409 initrd_end = initrd_start+ia64_boot_param->initrd_size;
410
411 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
412 initrd_start, ia64_boot_param->initrd_size);
413 }
414 #endif
415 }
416
417 static void __init
418 io_port_init (void)
419 {
420 unsigned long phys_iobase;
421
422 /*
423 * Set `iobase' based on the EFI memory map or, failing that, the
424 * value firmware left in ar.k0.
425 *
426 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
427 * the port's virtual address, so ia32_load_state() loads it with a
428 * user virtual address. But in ia64 mode, glibc uses the
429 * *physical* address in ar.k0 to mmap the appropriate area from
430 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both
431 * cases, user-mode can only use the legacy 0-64K I/O port space.
432 *
433 * ar.k0 is not involved in kernel I/O port accesses, which can use
434 * any of the I/O port spaces and are done via MMIO using the
435 * virtual mmio_base from the appropriate io_space[].
436 */
437 phys_iobase = efi_get_iobase();
438 if (!phys_iobase) {
439 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
440 printk(KERN_INFO "No I/O port range found in EFI memory map, "
441 "falling back to AR.KR0 (0x%lx)\n", phys_iobase);
442 }
443 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
444 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
445
446 /* setup legacy IO port space */
447 io_space[0].mmio_base = ia64_iobase;
448 io_space[0].sparse = 1;
449 num_io_spaces = 1;
450 }
451
452 /**
453 * early_console_setup - setup debugging console
454 *
455 * Consoles started here require little enough setup that we can start using
456 * them very early in the boot process, either right after the machine
457 * vector initialization, or even before if the drivers can detect their hw.
458 *
459 * Returns non-zero if a console couldn't be setup.
460 */
461 static inline int __init
462 early_console_setup (char *cmdline)
463 {
464 int earlycons = 0;
465
466 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
467 {
468 extern int sn_serial_console_early_setup(void);
469 if (!sn_serial_console_early_setup())
470 earlycons++;
471 }
472 #endif
473 #ifdef CONFIG_EFI_PCDP
474 if (!efi_setup_pcdp_console(cmdline))
475 earlycons++;
476 #endif
477 if (!simcons_register())
478 earlycons++;
479
480 return (earlycons) ? 0 : -1;
481 }
482
483 static inline void
484 mark_bsp_online (void)
485 {
486 #ifdef CONFIG_SMP
487 /* If we register an early console, allow CPU 0 to printk */
488 set_cpu_online(smp_processor_id(), true);
489 #endif
490 }
491
492 static __initdata int nomca;
493 static __init int setup_nomca(char *s)
494 {
495 nomca = 1;
496 return 0;
497 }
498 early_param("nomca", setup_nomca);
499
500 #ifdef CONFIG_CRASH_DUMP
501 int __init reserve_elfcorehdr(u64 *start, u64 *end)
502 {
503 u64 length;
504
505 /* We get the address using the kernel command line,
506 * but the size is extracted from the EFI tables.
507 * Both address and size are required for reservation
508 * to work properly.
509 */
510
511 if (!is_vmcore_usable())
512 return -EINVAL;
513
514 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
515 vmcore_unusable();
516 return -EINVAL;
517 }
518
519 *start = (unsigned long)__va(elfcorehdr_addr);
520 *end = *start + length;
521 return 0;
522 }
523
524 #endif /* CONFIG_PROC_VMCORE */
525
526 void __init
527 setup_arch (char **cmdline_p)
528 {
529 unw_init();
530
531 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
532
533 *cmdline_p = __va(ia64_boot_param->command_line);
534 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
535
536 efi_init();
537 io_port_init();
538
539 #ifdef CONFIG_IA64_GENERIC
540 /* machvec needs to be parsed from the command line
541 * before parse_early_param() is called to ensure
542 * that ia64_mv is initialised before any command line
543 * settings may cause console setup to occur
544 */
545 machvec_init_from_cmdline(*cmdline_p);
546 #endif
547
548 parse_early_param();
549
550 if (early_console_setup(*cmdline_p) == 0)
551 mark_bsp_online();
552
553 #ifdef CONFIG_ACPI
554 /* Initialize the ACPI boot-time table parser */
555 acpi_table_init();
556 early_acpi_boot_init();
557 # ifdef CONFIG_ACPI_NUMA
558 acpi_numa_init();
559 acpi_numa_fixup();
560 # ifdef CONFIG_ACPI_HOTPLUG_CPU
561 prefill_possible_map();
562 # endif
563 per_cpu_scan_finalize((cpumask_weight(&early_cpu_possible_map) == 0 ?
564 32 : cpumask_weight(&early_cpu_possible_map)),
565 additional_cpus > 0 ? additional_cpus : 0);
566 # endif
567 #endif /* CONFIG_APCI_BOOT */
568
569 #ifdef CONFIG_SMP
570 smp_build_cpu_map();
571 #endif
572 find_memory();
573
574 /* process SAL system table: */
575 ia64_sal_init(__va(efi.sal_systab));
576
577 #ifdef CONFIG_ITANIUM
578 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
579 #else
580 {
581 unsigned long num_phys_stacked;
582
583 if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
584 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
585 }
586 #endif
587
588 #ifdef CONFIG_SMP
589 cpu_physical_id(0) = hard_smp_processor_id();
590 #endif
591
592 cpu_init(); /* initialize the bootstrap CPU */
593 mmu_context_init(); /* initialize context_id bitmap */
594
595 #ifdef CONFIG_VT
596 if (!conswitchp) {
597 # if defined(CONFIG_DUMMY_CONSOLE)
598 conswitchp = &dummy_con;
599 # endif
600 # if defined(CONFIG_VGA_CONSOLE)
601 /*
602 * Non-legacy systems may route legacy VGA MMIO range to system
603 * memory. vga_con probes the MMIO hole, so memory looks like
604 * a VGA device to it. The EFI memory map can tell us if it's
605 * memory so we can avoid this problem.
606 */
607 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
608 conswitchp = &vga_con;
609 # endif
610 }
611 #endif
612
613 /* enable IA-64 Machine Check Abort Handling unless disabled */
614 if (!nomca)
615 ia64_mca_init();
616
617 platform_setup(cmdline_p);
618 #ifndef CONFIG_IA64_HP_SIM
619 check_sal_cache_flush();
620 #endif
621 paging_init();
622 }
623
624 /*
625 * Display cpu info for all CPUs.
626 */
627 static int
628 show_cpuinfo (struct seq_file *m, void *v)
629 {
630 #ifdef CONFIG_SMP
631 # define lpj c->loops_per_jiffy
632 # define cpunum c->cpu
633 #else
634 # define lpj loops_per_jiffy
635 # define cpunum 0
636 #endif
637 static struct {
638 unsigned long mask;
639 const char *feature_name;
640 } feature_bits[] = {
641 { 1UL << 0, "branchlong" },
642 { 1UL << 1, "spontaneous deferral"},
643 { 1UL << 2, "16-byte atomic ops" }
644 };
645 char features[128], *cp, *sep;
646 struct cpuinfo_ia64 *c = v;
647 unsigned long mask;
648 unsigned long proc_freq;
649 int i, size;
650
651 mask = c->features;
652
653 /* build the feature string: */
654 memcpy(features, "standard", 9);
655 cp = features;
656 size = sizeof(features);
657 sep = "";
658 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
659 if (mask & feature_bits[i].mask) {
660 cp += snprintf(cp, size, "%s%s", sep,
661 feature_bits[i].feature_name),
662 sep = ", ";
663 mask &= ~feature_bits[i].mask;
664 size = sizeof(features) - (cp - features);
665 }
666 }
667 if (mask && size > 1) {
668 /* print unknown features as a hex value */
669 snprintf(cp, size, "%s0x%lx", sep, mask);
670 }
671
672 proc_freq = cpufreq_quick_get(cpunum);
673 if (!proc_freq)
674 proc_freq = c->proc_freq / 1000;
675
676 seq_printf(m,
677 "processor : %d\n"
678 "vendor : %s\n"
679 "arch : IA-64\n"
680 "family : %u\n"
681 "model : %u\n"
682 "model name : %s\n"
683 "revision : %u\n"
684 "archrev : %u\n"
685 "features : %s\n"
686 "cpu number : %lu\n"
687 "cpu regs : %u\n"
688 "cpu MHz : %lu.%03lu\n"
689 "itc MHz : %lu.%06lu\n"
690 "BogoMIPS : %lu.%02lu\n",
691 cpunum, c->vendor, c->family, c->model,
692 c->model_name, c->revision, c->archrev,
693 features, c->ppn, c->number,
694 proc_freq / 1000, proc_freq % 1000,
695 c->itc_freq / 1000000, c->itc_freq % 1000000,
696 lpj*HZ/500000, (lpj*HZ/5000) % 100);
697 #ifdef CONFIG_SMP
698 seq_printf(m, "siblings : %u\n",
699 cpumask_weight(&cpu_core_map[cpunum]));
700 if (c->socket_id != -1)
701 seq_printf(m, "physical id: %u\n", c->socket_id);
702 if (c->threads_per_core > 1 || c->cores_per_socket > 1)
703 seq_printf(m,
704 "core id : %u\n"
705 "thread id : %u\n",
706 c->core_id, c->thread_id);
707 #endif
708 seq_printf(m,"\n");
709
710 return 0;
711 }
712
713 static void *
714 c_start (struct seq_file *m, loff_t *pos)
715 {
716 #ifdef CONFIG_SMP
717 while (*pos < nr_cpu_ids && !cpu_online(*pos))
718 ++*pos;
719 #endif
720 return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
721 }
722
723 static void *
724 c_next (struct seq_file *m, void *v, loff_t *pos)
725 {
726 ++*pos;
727 return c_start(m, pos);
728 }
729
730 static void
731 c_stop (struct seq_file *m, void *v)
732 {
733 }
734
735 const struct seq_operations cpuinfo_op = {
736 .start = c_start,
737 .next = c_next,
738 .stop = c_stop,
739 .show = show_cpuinfo
740 };
741
742 #define MAX_BRANDS 8
743 static char brandname[MAX_BRANDS][128];
744
745 static char *
746 get_model_name(__u8 family, __u8 model)
747 {
748 static int overflow;
749 char brand[128];
750 int i;
751
752 memcpy(brand, "Unknown", 8);
753 if (ia64_pal_get_brand_info(brand)) {
754 if (family == 0x7)
755 memcpy(brand, "Merced", 7);
756 else if (family == 0x1f) switch (model) {
757 case 0: memcpy(brand, "McKinley", 9); break;
758 case 1: memcpy(brand, "Madison", 8); break;
759 case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
760 }
761 }
762 for (i = 0; i < MAX_BRANDS; i++)
763 if (strcmp(brandname[i], brand) == 0)
764 return brandname[i];
765 for (i = 0; i < MAX_BRANDS; i++)
766 if (brandname[i][0] == '\0')
767 return strcpy(brandname[i], brand);
768 if (overflow++ == 0)
769 printk(KERN_ERR
770 "%s: Table overflow. Some processor model information will be missing\n",
771 __func__);
772 return "Unknown";
773 }
774
775 static void
776 identify_cpu (struct cpuinfo_ia64 *c)
777 {
778 union {
779 unsigned long bits[5];
780 struct {
781 /* id 0 & 1: */
782 char vendor[16];
783
784 /* id 2 */
785 u64 ppn; /* processor serial number */
786
787 /* id 3: */
788 unsigned number : 8;
789 unsigned revision : 8;
790 unsigned model : 8;
791 unsigned family : 8;
792 unsigned archrev : 8;
793 unsigned reserved : 24;
794
795 /* id 4: */
796 u64 features;
797 } field;
798 } cpuid;
799 pal_vm_info_1_u_t vm1;
800 pal_vm_info_2_u_t vm2;
801 pal_status_t status;
802 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
803 int i;
804 for (i = 0; i < 5; ++i)
805 cpuid.bits[i] = ia64_get_cpuid(i);
806
807 memcpy(c->vendor, cpuid.field.vendor, 16);
808 #ifdef CONFIG_SMP
809 c->cpu = smp_processor_id();
810
811 /* below default values will be overwritten by identify_siblings()
812 * for Multi-Threading/Multi-Core capable CPUs
813 */
814 c->threads_per_core = c->cores_per_socket = c->num_log = 1;
815 c->socket_id = -1;
816
817 identify_siblings(c);
818
819 if (c->threads_per_core > smp_num_siblings)
820 smp_num_siblings = c->threads_per_core;
821 #endif
822 c->ppn = cpuid.field.ppn;
823 c->number = cpuid.field.number;
824 c->revision = cpuid.field.revision;
825 c->model = cpuid.field.model;
826 c->family = cpuid.field.family;
827 c->archrev = cpuid.field.archrev;
828 c->features = cpuid.field.features;
829 c->model_name = get_model_name(c->family, c->model);
830
831 status = ia64_pal_vm_summary(&vm1, &vm2);
832 if (status == PAL_STATUS_SUCCESS) {
833 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
834 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
835 }
836 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
837 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
838 }
839
840 /*
841 * Do the following calculations:
842 *
843 * 1. the max. cache line size.
844 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
845 * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
846 */
847 static void
848 get_cache_info(void)
849 {
850 unsigned long line_size, max = 1;
851 unsigned long l, levels, unique_caches;
852 pal_cache_config_info_t cci;
853 long status;
854
855 status = ia64_pal_cache_summary(&levels, &unique_caches);
856 if (status != 0) {
857 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
858 __func__, status);
859 max = SMP_CACHE_BYTES;
860 /* Safest setup for "flush_icache_range()" */
861 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
862 /* Safest setup for "clflush_cache_range()" */
863 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
864 goto out;
865 }
866
867 for (l = 0; l < levels; ++l) {
868 /* cache_type (data_or_unified)=2 */
869 status = ia64_pal_cache_config_info(l, 2, &cci);
870 if (status != 0) {
871 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
872 "(l=%lu, 2) failed (status=%ld)\n",
873 __func__, l, status);
874 max = SMP_CACHE_BYTES;
875 /* The safest setup for "flush_icache_range()" */
876 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
877 /* The safest setup for "clflush_cache_range()" */
878 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
879 cci.pcci_unified = 1;
880 } else {
881 if (cci.pcci_stride < ia64_cache_stride_shift)
882 ia64_cache_stride_shift = cci.pcci_stride;
883
884 line_size = 1 << cci.pcci_line_size;
885 if (line_size > max)
886 max = line_size;
887 }
888
889 if (!cci.pcci_unified) {
890 /* cache_type (instruction)=1*/
891 status = ia64_pal_cache_config_info(l, 1, &cci);
892 if (status != 0) {
893 printk(KERN_ERR "%s: ia64_pal_cache_config_info"
894 "(l=%lu, 1) failed (status=%ld)\n",
895 __func__, l, status);
896 /* The safest setup for flush_icache_range() */
897 cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
898 }
899 }
900 if (cci.pcci_stride < ia64_i_cache_stride_shift)
901 ia64_i_cache_stride_shift = cci.pcci_stride;
902 }
903 out:
904 if (max > ia64_max_cacheline_size)
905 ia64_max_cacheline_size = max;
906 }
907
908 /*
909 * cpu_init() initializes state that is per-CPU. This function acts
910 * as a 'CPU state barrier', nothing should get across.
911 */
912 void
913 cpu_init (void)
914 {
915 extern void ia64_mmu_init(void *);
916 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
917 unsigned long num_phys_stacked;
918 pal_vm_info_2_u_t vmi;
919 unsigned int max_ctx;
920 struct cpuinfo_ia64 *cpu_info;
921 void *cpu_data;
922
923 cpu_data = per_cpu_init();
924 #ifdef CONFIG_SMP
925 /*
926 * insert boot cpu into sibling and core mapes
927 * (must be done after per_cpu area is setup)
928 */
929 if (smp_processor_id() == 0) {
930 cpumask_set_cpu(0, &per_cpu(cpu_sibling_map, 0));
931 cpumask_set_cpu(0, &cpu_core_map[0]);
932 } else {
933 /*
934 * Set ar.k3 so that assembly code in MCA handler can compute
935 * physical addresses of per cpu variables with a simple:
936 * phys = ar.k3 + &per_cpu_var
937 * and the alt-dtlb-miss handler can set per-cpu mapping into
938 * the TLB when needed. head.S already did this for cpu0.
939 */
940 ia64_set_kr(IA64_KR_PER_CPU_DATA,
941 ia64_tpa(cpu_data) - (long) __per_cpu_start);
942 }
943 #endif
944
945 get_cache_info();
946
947 /*
948 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
949 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
950 * depends on the data returned by identify_cpu(). We break the dependency by
951 * accessing cpu_data() through the canonical per-CPU address.
952 */
953 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
954 identify_cpu(cpu_info);
955
956 #ifdef CONFIG_MCKINLEY
957 {
958 # define FEATURE_SET 16
959 struct ia64_pal_retval iprv;
960
961 if (cpu_info->family == 0x1f) {
962 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
963 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
964 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
965 (iprv.v1 | 0x80), FEATURE_SET, 0);
966 }
967 }
968 #endif
969
970 /* Clear the stack memory reserved for pt_regs: */
971 memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
972
973 ia64_set_kr(IA64_KR_FPU_OWNER, 0);
974
975 /*
976 * Initialize the page-table base register to a global
977 * directory with all zeroes. This ensure that we can handle
978 * TLB-misses to user address-space even before we created the
979 * first user address-space. This may happen, e.g., due to
980 * aggressive use of lfetch.fault.
981 */
982 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
983
984 /*
985 * Initialize default control register to defer speculative faults except
986 * for those arising from TLB misses, which are not deferred. The
987 * kernel MUST NOT depend on a particular setting of these bits (in other words,
988 * the kernel must have recovery code for all speculative accesses). Turn on
989 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps
990 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
991 * be fine).
992 */
993 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
994 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
995 atomic_inc(&init_mm.mm_count);
996 current->active_mm = &init_mm;
997 BUG_ON(current->mm);
998
999 ia64_mmu_init(ia64_imva(cpu_data));
1000 ia64_mca_cpu_init(ia64_imva(cpu_data));
1001
1002 /* Clear ITC to eliminate sched_clock() overflows in human time. */
1003 ia64_set_itc(0);
1004
1005 /* disable all local interrupt sources: */
1006 ia64_set_itv(1 << 16);
1007 ia64_set_lrr0(1 << 16);
1008 ia64_set_lrr1(1 << 16);
1009 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1010 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1011
1012 /* clear TPR & XTP to enable all interrupt classes: */
1013 ia64_setreg(_IA64_REG_CR_TPR, 0);
1014
1015 /* Clear any pending interrupts left by SAL/EFI */
1016 while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1017 ia64_eoi();
1018
1019 #ifdef CONFIG_SMP
1020 normal_xtp();
1021 #endif
1022
1023 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1024 if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1025 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1026 setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1027 } else {
1028 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1029 max_ctx = (1U << 15) - 1; /* use architected minimum */
1030 }
1031 while (max_ctx < ia64_ctx.max_ctx) {
1032 unsigned int old = ia64_ctx.max_ctx;
1033 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1034 break;
1035 }
1036
1037 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1038 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1039 "stacked regs\n");
1040 num_phys_stacked = 96;
1041 }
1042 /* size of physical stacked register partition plus 8 bytes: */
1043 if (num_phys_stacked > max_num_phys_stacked) {
1044 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1045 max_num_phys_stacked = num_phys_stacked;
1046 }
1047 platform_cpu_init();
1048 }
1049
1050 void __init
1051 check_bugs (void)
1052 {
1053 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1054 (unsigned long) __end___mckinley_e9_bundles);
1055 }
1056
1057 static int __init run_dmi_scan(void)
1058 {
1059 dmi_scan_machine();
1060 dmi_memdev_walk();
1061 dmi_set_dump_stack_arch_desc();
1062 return 0;
1063 }
1064 core_initcall(run_dmi_scan);
This page took 0.052399 seconds and 5 git commands to generate.