Merge remote-tracking branch 'mmc-uh/next'
[deliverable/linux.git] / arch / x86 / entry / entry_64.S
1 /*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
20 */
21 #include <linux/linkage.h>
22 #include <asm/segment.h>
23 #include <asm/cache.h>
24 #include <asm/errno.h>
25 #include "calling.h"
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <asm/export.h>
39 #include <linux/err.h>
40
41 /* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
42 #include <linux/elf-em.h>
43 #define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
44 #define __AUDIT_ARCH_64BIT 0x80000000
45 #define __AUDIT_ARCH_LE 0x40000000
46
47 .code64
48 .section .entry.text, "ax"
49
50 #ifdef CONFIG_PARAVIRT
51 ENTRY(native_usergs_sysret64)
52 swapgs
53 sysretq
54 ENDPROC(native_usergs_sysret64)
55 #endif /* CONFIG_PARAVIRT */
56
57 .macro TRACE_IRQS_IRETQ
58 #ifdef CONFIG_TRACE_IRQFLAGS
59 bt $9, EFLAGS(%rsp) /* interrupts off? */
60 jnc 1f
61 TRACE_IRQS_ON
62 1:
63 #endif
64 .endm
65
66 /*
67 * When dynamic function tracer is enabled it will add a breakpoint
68 * to all locations that it is about to modify, sync CPUs, update
69 * all the code, sync CPUs, then remove the breakpoints. In this time
70 * if lockdep is enabled, it might jump back into the debug handler
71 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
72 *
73 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
74 * make sure the stack pointer does not get reset back to the top
75 * of the debug stack, and instead just reuses the current stack.
76 */
77 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
78
79 .macro TRACE_IRQS_OFF_DEBUG
80 call debug_stack_set_zero
81 TRACE_IRQS_OFF
82 call debug_stack_reset
83 .endm
84
85 .macro TRACE_IRQS_ON_DEBUG
86 call debug_stack_set_zero
87 TRACE_IRQS_ON
88 call debug_stack_reset
89 .endm
90
91 .macro TRACE_IRQS_IRETQ_DEBUG
92 bt $9, EFLAGS(%rsp) /* interrupts off? */
93 jnc 1f
94 TRACE_IRQS_ON_DEBUG
95 1:
96 .endm
97
98 #else
99 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
100 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
101 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
102 #endif
103
104 /*
105 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
106 *
107 * This is the only entry point used for 64-bit system calls. The
108 * hardware interface is reasonably well designed and the register to
109 * argument mapping Linux uses fits well with the registers that are
110 * available when SYSCALL is used.
111 *
112 * SYSCALL instructions can be found inlined in libc implementations as
113 * well as some other programs and libraries. There are also a handful
114 * of SYSCALL instructions in the vDSO used, for example, as a
115 * clock_gettimeofday fallback.
116 *
117 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
118 * then loads new ss, cs, and rip from previously programmed MSRs.
119 * rflags gets masked by a value from another MSR (so CLD and CLAC
120 * are not needed). SYSCALL does not save anything on the stack
121 * and does not change rsp.
122 *
123 * Registers on entry:
124 * rax system call number
125 * rcx return address
126 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
127 * rdi arg0
128 * rsi arg1
129 * rdx arg2
130 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
131 * r8 arg4
132 * r9 arg5
133 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
134 *
135 * Only called from user space.
136 *
137 * When user can change pt_regs->foo always force IRET. That is because
138 * it deals with uncanonical addresses better. SYSRET has trouble
139 * with them due to bugs in both AMD and Intel CPUs.
140 */
141
142 ENTRY(entry_SYSCALL_64)
143 /*
144 * Interrupts are off on entry.
145 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
146 * it is too small to ever cause noticeable irq latency.
147 */
148 SWAPGS_UNSAFE_STACK
149 /*
150 * A hypervisor implementation might want to use a label
151 * after the swapgs, so that it can do the swapgs
152 * for the guest and jump here on syscall.
153 */
154 GLOBAL(entry_SYSCALL_64_after_swapgs)
155
156 movq %rsp, PER_CPU_VAR(rsp_scratch)
157 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
158
159 TRACE_IRQS_OFF
160
161 /* Construct struct pt_regs on stack */
162 pushq $__USER_DS /* pt_regs->ss */
163 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
164 pushq %r11 /* pt_regs->flags */
165 pushq $__USER_CS /* pt_regs->cs */
166 pushq %rcx /* pt_regs->ip */
167 pushq %rax /* pt_regs->orig_ax */
168 pushq %rdi /* pt_regs->di */
169 pushq %rsi /* pt_regs->si */
170 pushq %rdx /* pt_regs->dx */
171 pushq %rcx /* pt_regs->cx */
172 pushq $-ENOSYS /* pt_regs->ax */
173 pushq %r8 /* pt_regs->r8 */
174 pushq %r9 /* pt_regs->r9 */
175 pushq %r10 /* pt_regs->r10 */
176 pushq %r11 /* pt_regs->r11 */
177 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
178
179 /*
180 * If we need to do entry work or if we guess we'll need to do
181 * exit work, go straight to the slow path.
182 */
183 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
184 jnz entry_SYSCALL64_slow_path
185
186 entry_SYSCALL_64_fastpath:
187 /*
188 * Easy case: enable interrupts and issue the syscall. If the syscall
189 * needs pt_regs, we'll call a stub that disables interrupts again
190 * and jumps to the slow path.
191 */
192 TRACE_IRQS_ON
193 ENABLE_INTERRUPTS(CLBR_NONE)
194 #if __SYSCALL_MASK == ~0
195 cmpq $__NR_syscall_max, %rax
196 #else
197 andl $__SYSCALL_MASK, %eax
198 cmpl $__NR_syscall_max, %eax
199 #endif
200 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
201 movq %r10, %rcx
202
203 /*
204 * This call instruction is handled specially in stub_ptregs_64.
205 * It might end up jumping to the slow path. If it jumps, RAX
206 * and all argument registers are clobbered.
207 */
208 call *sys_call_table(, %rax, 8)
209 .Lentry_SYSCALL_64_after_fastpath_call:
210
211 movq %rax, RAX(%rsp)
212 1:
213
214 /*
215 * If we get here, then we know that pt_regs is clean for SYSRET64.
216 * If we see that no exit work is required (which we are required
217 * to check with IRQs off), then we can go straight to SYSRET64.
218 */
219 DISABLE_INTERRUPTS(CLBR_NONE)
220 TRACE_IRQS_OFF
221 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
222 jnz 1f
223
224 LOCKDEP_SYS_EXIT
225 TRACE_IRQS_ON /* user mode is traced as IRQs on */
226 movq RIP(%rsp), %rcx
227 movq EFLAGS(%rsp), %r11
228 RESTORE_C_REGS_EXCEPT_RCX_R11
229 movq RSP(%rsp), %rsp
230 USERGS_SYSRET64
231
232 1:
233 /*
234 * The fast path looked good when we started, but something changed
235 * along the way and we need to switch to the slow path. Calling
236 * raise(3) will trigger this, for example. IRQs are off.
237 */
238 TRACE_IRQS_ON
239 ENABLE_INTERRUPTS(CLBR_NONE)
240 SAVE_EXTRA_REGS
241 movq %rsp, %rdi
242 call syscall_return_slowpath /* returns with IRQs disabled */
243 jmp return_from_SYSCALL_64
244
245 entry_SYSCALL64_slow_path:
246 /* IRQs are off. */
247 SAVE_EXTRA_REGS
248 movq %rsp, %rdi
249 call do_syscall_64 /* returns with IRQs disabled */
250
251 return_from_SYSCALL_64:
252 RESTORE_EXTRA_REGS
253 TRACE_IRQS_IRETQ /* we're about to change IF */
254
255 /*
256 * Try to use SYSRET instead of IRET if we're returning to
257 * a completely clean 64-bit userspace context.
258 */
259 movq RCX(%rsp), %rcx
260 movq RIP(%rsp), %r11
261 cmpq %rcx, %r11 /* RCX == RIP */
262 jne opportunistic_sysret_failed
263
264 /*
265 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
266 * in kernel space. This essentially lets the user take over
267 * the kernel, since userspace controls RSP.
268 *
269 * If width of "canonical tail" ever becomes variable, this will need
270 * to be updated to remain correct on both old and new CPUs.
271 */
272 .ifne __VIRTUAL_MASK_SHIFT - 47
273 .error "virtual address width changed -- SYSRET checks need update"
274 .endif
275
276 /* Change top 16 bits to be the sign-extension of 47th bit */
277 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
278 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
279
280 /* If this changed %rcx, it was not canonical */
281 cmpq %rcx, %r11
282 jne opportunistic_sysret_failed
283
284 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
285 jne opportunistic_sysret_failed
286
287 movq R11(%rsp), %r11
288 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
289 jne opportunistic_sysret_failed
290
291 /*
292 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
293 * restore RF properly. If the slowpath sets it for whatever reason, we
294 * need to restore it correctly.
295 *
296 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
297 * trap from userspace immediately after SYSRET. This would cause an
298 * infinite loop whenever #DB happens with register state that satisfies
299 * the opportunistic SYSRET conditions. For example, single-stepping
300 * this user code:
301 *
302 * movq $stuck_here, %rcx
303 * pushfq
304 * popq %r11
305 * stuck_here:
306 *
307 * would never get past 'stuck_here'.
308 */
309 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
310 jnz opportunistic_sysret_failed
311
312 /* nothing to check for RSP */
313
314 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
315 jne opportunistic_sysret_failed
316
317 /*
318 * We win! This label is here just for ease of understanding
319 * perf profiles. Nothing jumps here.
320 */
321 syscall_return_via_sysret:
322 /* rcx and r11 are already restored (see code above) */
323 RESTORE_C_REGS_EXCEPT_RCX_R11
324 movq RSP(%rsp), %rsp
325 USERGS_SYSRET64
326
327 opportunistic_sysret_failed:
328 SWAPGS
329 jmp restore_c_regs_and_iret
330 END(entry_SYSCALL_64)
331
332 ENTRY(stub_ptregs_64)
333 /*
334 * Syscalls marked as needing ptregs land here.
335 * If we are on the fast path, we need to save the extra regs,
336 * which we achieve by trying again on the slow path. If we are on
337 * the slow path, the extra regs are already saved.
338 *
339 * RAX stores a pointer to the C function implementing the syscall.
340 * IRQs are on.
341 */
342 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
343 jne 1f
344
345 /*
346 * Called from fast path -- disable IRQs again, pop return address
347 * and jump to slow path
348 */
349 DISABLE_INTERRUPTS(CLBR_NONE)
350 TRACE_IRQS_OFF
351 popq %rax
352 jmp entry_SYSCALL64_slow_path
353
354 1:
355 /* Called from C */
356 jmp *%rax /* called from C */
357 END(stub_ptregs_64)
358
359 .macro ptregs_stub func
360 ENTRY(ptregs_\func)
361 leaq \func(%rip), %rax
362 jmp stub_ptregs_64
363 END(ptregs_\func)
364 .endm
365
366 /* Instantiate ptregs_stub for each ptregs-using syscall */
367 #define __SYSCALL_64_QUAL_(sym)
368 #define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
369 #define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
370 #include <asm/syscalls_64.h>
371
372 /*
373 * A newly forked process directly context switches into this address.
374 *
375 * rdi: prev task we switched from
376 */
377 ENTRY(ret_from_fork)
378 LOCK ; btr $TIF_FORK, TI_flags(%r8)
379
380 call schedule_tail /* rdi: 'prev' task parameter */
381
382 testb $3, CS(%rsp) /* from kernel_thread? */
383 jnz 1f
384
385 /*
386 * We came from kernel_thread. This code path is quite twisted, and
387 * someone should clean it up.
388 *
389 * copy_thread_tls stashes the function pointer in RBX and the
390 * parameter to be passed in RBP. The called function is permitted
391 * to call do_execve and thereby jump to user mode.
392 */
393 movq RBP(%rsp), %rdi
394 call *RBX(%rsp)
395 movl $0, RAX(%rsp)
396
397 /*
398 * Fall through as though we're exiting a syscall. This makes a
399 * twisted sort of sense if we just called do_execve.
400 */
401
402 1:
403 movq %rsp, %rdi
404 call syscall_return_slowpath /* returns with IRQs disabled */
405 TRACE_IRQS_ON /* user mode is traced as IRQS on */
406 SWAPGS
407 jmp restore_regs_and_iret
408 END(ret_from_fork)
409
410 /*
411 * Build the entry stubs with some assembler magic.
412 * We pack 1 stub into every 8-byte block.
413 */
414 .align 8
415 ENTRY(irq_entries_start)
416 vector=FIRST_EXTERNAL_VECTOR
417 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
418 pushq $(~vector+0x80) /* Note: always in signed byte range */
419 vector=vector+1
420 jmp common_interrupt
421 .align 8
422 .endr
423 END(irq_entries_start)
424
425 /*
426 * Interrupt entry/exit.
427 *
428 * Interrupt entry points save only callee clobbered registers in fast path.
429 *
430 * Entry runs with interrupts off.
431 */
432
433 /* 0(%rsp): ~(interrupt number) */
434 .macro interrupt func
435 cld
436 ALLOC_PT_GPREGS_ON_STACK
437 SAVE_C_REGS
438 SAVE_EXTRA_REGS
439
440 testb $3, CS(%rsp)
441 jz 1f
442
443 /*
444 * IRQ from user mode. Switch to kernel gsbase and inform context
445 * tracking that we're in kernel mode.
446 */
447 SWAPGS
448
449 /*
450 * We need to tell lockdep that IRQs are off. We can't do this until
451 * we fix gsbase, and we should do it before enter_from_user_mode
452 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
453 * the simplest way to handle it is to just call it twice if
454 * we enter from user mode. There's no reason to optimize this since
455 * TRACE_IRQS_OFF is a no-op if lockdep is off.
456 */
457 TRACE_IRQS_OFF
458
459 CALL_enter_from_user_mode
460
461 1:
462 /*
463 * Save previous stack pointer, optionally switch to interrupt stack.
464 * irq_count is used to check if a CPU is already on an interrupt stack
465 * or not. While this is essentially redundant with preempt_count it is
466 * a little cheaper to use a separate counter in the PDA (short of
467 * moving irq_enter into assembly, which would be too much work)
468 */
469 movq %rsp, %rdi
470 incl PER_CPU_VAR(irq_count)
471 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
472 pushq %rdi
473 /* We entered an interrupt context - irqs are off: */
474 TRACE_IRQS_OFF
475
476 call \func /* rdi points to pt_regs */
477 .endm
478
479 /*
480 * The interrupt stubs push (~vector+0x80) onto the stack and
481 * then jump to common_interrupt.
482 */
483 .p2align CONFIG_X86_L1_CACHE_SHIFT
484 common_interrupt:
485 ASM_CLAC
486 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
487 interrupt do_IRQ
488 /* 0(%rsp): old RSP */
489 ret_from_intr:
490 DISABLE_INTERRUPTS(CLBR_NONE)
491 TRACE_IRQS_OFF
492 decl PER_CPU_VAR(irq_count)
493
494 /* Restore saved previous stack */
495 popq %rsp
496
497 testb $3, CS(%rsp)
498 jz retint_kernel
499
500 /* Interrupt came from user space */
501 GLOBAL(retint_user)
502 mov %rsp,%rdi
503 call prepare_exit_to_usermode
504 TRACE_IRQS_IRETQ
505 SWAPGS
506 jmp restore_regs_and_iret
507
508 /* Returning to kernel space */
509 retint_kernel:
510 #ifdef CONFIG_PREEMPT
511 /* Interrupts are off */
512 /* Check if we need preemption */
513 bt $9, EFLAGS(%rsp) /* were interrupts off? */
514 jnc 1f
515 0: cmpl $0, PER_CPU_VAR(__preempt_count)
516 jnz 1f
517 call preempt_schedule_irq
518 jmp 0b
519 1:
520 #endif
521 /*
522 * The iretq could re-enable interrupts:
523 */
524 TRACE_IRQS_IRETQ
525
526 /*
527 * At this label, code paths which return to kernel and to user,
528 * which come from interrupts/exception and from syscalls, merge.
529 */
530 GLOBAL(restore_regs_and_iret)
531 RESTORE_EXTRA_REGS
532 restore_c_regs_and_iret:
533 RESTORE_C_REGS
534 REMOVE_PT_GPREGS_FROM_STACK 8
535 INTERRUPT_RETURN
536
537 ENTRY(native_iret)
538 /*
539 * Are we returning to a stack segment from the LDT? Note: in
540 * 64-bit mode SS:RSP on the exception stack is always valid.
541 */
542 #ifdef CONFIG_X86_ESPFIX64
543 testb $4, (SS-RIP)(%rsp)
544 jnz native_irq_return_ldt
545 #endif
546
547 .global native_irq_return_iret
548 native_irq_return_iret:
549 /*
550 * This may fault. Non-paranoid faults on return to userspace are
551 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
552 * Double-faults due to espfix64 are handled in do_double_fault.
553 * Other faults here are fatal.
554 */
555 iretq
556
557 #ifdef CONFIG_X86_ESPFIX64
558 native_irq_return_ldt:
559 pushq %rax
560 pushq %rdi
561 SWAPGS
562 movq PER_CPU_VAR(espfix_waddr), %rdi
563 movq %rax, (0*8)(%rdi) /* RAX */
564 movq (2*8)(%rsp), %rax /* RIP */
565 movq %rax, (1*8)(%rdi)
566 movq (3*8)(%rsp), %rax /* CS */
567 movq %rax, (2*8)(%rdi)
568 movq (4*8)(%rsp), %rax /* RFLAGS */
569 movq %rax, (3*8)(%rdi)
570 movq (6*8)(%rsp), %rax /* SS */
571 movq %rax, (5*8)(%rdi)
572 movq (5*8)(%rsp), %rax /* RSP */
573 movq %rax, (4*8)(%rdi)
574 andl $0xffff0000, %eax
575 popq %rdi
576 orq PER_CPU_VAR(espfix_stack), %rax
577 SWAPGS
578 movq %rax, %rsp
579 popq %rax
580 jmp native_irq_return_iret
581 #endif
582 END(common_interrupt)
583
584 /*
585 * APIC interrupts.
586 */
587 .macro apicinterrupt3 num sym do_sym
588 ENTRY(\sym)
589 ASM_CLAC
590 pushq $~(\num)
591 .Lcommon_\sym:
592 interrupt \do_sym
593 jmp ret_from_intr
594 END(\sym)
595 .endm
596
597 #ifdef CONFIG_TRACING
598 #define trace(sym) trace_##sym
599 #define smp_trace(sym) smp_trace_##sym
600
601 .macro trace_apicinterrupt num sym
602 apicinterrupt3 \num trace(\sym) smp_trace(\sym)
603 .endm
604 #else
605 .macro trace_apicinterrupt num sym do_sym
606 .endm
607 #endif
608
609 /* Make sure APIC interrupt handlers end up in the irqentry section: */
610 #if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
611 # define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
612 # define POP_SECTION_IRQENTRY .popsection
613 #else
614 # define PUSH_SECTION_IRQENTRY
615 # define POP_SECTION_IRQENTRY
616 #endif
617
618 .macro apicinterrupt num sym do_sym
619 PUSH_SECTION_IRQENTRY
620 apicinterrupt3 \num \sym \do_sym
621 trace_apicinterrupt \num \sym
622 POP_SECTION_IRQENTRY
623 .endm
624
625 #ifdef CONFIG_SMP
626 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
627 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
628 #endif
629
630 #ifdef CONFIG_X86_UV
631 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
632 #endif
633
634 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
635 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
636
637 #ifdef CONFIG_HAVE_KVM
638 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
639 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
640 #endif
641
642 #ifdef CONFIG_X86_MCE_THRESHOLD
643 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
644 #endif
645
646 #ifdef CONFIG_X86_MCE_AMD
647 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
648 #endif
649
650 #ifdef CONFIG_X86_THERMAL_VECTOR
651 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
652 #endif
653
654 #ifdef CONFIG_SMP
655 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
656 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
657 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
658 #endif
659
660 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
661 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
662
663 #ifdef CONFIG_IRQ_WORK
664 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
665 #endif
666
667 /*
668 * Exception entry points.
669 */
670 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
671
672 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
673 ENTRY(\sym)
674 /* Sanity check */
675 .if \shift_ist != -1 && \paranoid == 0
676 .error "using shift_ist requires paranoid=1"
677 .endif
678
679 ASM_CLAC
680 PARAVIRT_ADJUST_EXCEPTION_FRAME
681
682 .ifeq \has_error_code
683 pushq $-1 /* ORIG_RAX: no syscall to restart */
684 .endif
685
686 ALLOC_PT_GPREGS_ON_STACK
687
688 .if \paranoid
689 .if \paranoid == 1
690 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
691 jnz 1f
692 .endif
693 call paranoid_entry
694 .else
695 call error_entry
696 .endif
697 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
698
699 .if \paranoid
700 .if \shift_ist != -1
701 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
702 .else
703 TRACE_IRQS_OFF
704 .endif
705 .endif
706
707 movq %rsp, %rdi /* pt_regs pointer */
708
709 .if \has_error_code
710 movq ORIG_RAX(%rsp), %rsi /* get error code */
711 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
712 .else
713 xorl %esi, %esi /* no error code */
714 .endif
715
716 .if \shift_ist != -1
717 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
718 .endif
719
720 call \do_sym
721
722 .if \shift_ist != -1
723 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
724 .endif
725
726 /* these procedures expect "no swapgs" flag in ebx */
727 .if \paranoid
728 jmp paranoid_exit
729 .else
730 jmp error_exit
731 .endif
732
733 .if \paranoid == 1
734 /*
735 * Paranoid entry from userspace. Switch stacks and treat it
736 * as a normal entry. This means that paranoid handlers
737 * run in real process context if user_mode(regs).
738 */
739 1:
740 call error_entry
741
742
743 movq %rsp, %rdi /* pt_regs pointer */
744 call sync_regs
745 movq %rax, %rsp /* switch stack */
746
747 movq %rsp, %rdi /* pt_regs pointer */
748
749 .if \has_error_code
750 movq ORIG_RAX(%rsp), %rsi /* get error code */
751 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
752 .else
753 xorl %esi, %esi /* no error code */
754 .endif
755
756 call \do_sym
757
758 jmp error_exit /* %ebx: no swapgs flag */
759 .endif
760 END(\sym)
761 .endm
762
763 #ifdef CONFIG_TRACING
764 .macro trace_idtentry sym do_sym has_error_code:req
765 idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
766 idtentry \sym \do_sym has_error_code=\has_error_code
767 .endm
768 #else
769 .macro trace_idtentry sym do_sym has_error_code:req
770 idtentry \sym \do_sym has_error_code=\has_error_code
771 .endm
772 #endif
773
774 idtentry divide_error do_divide_error has_error_code=0
775 idtentry overflow do_overflow has_error_code=0
776 idtentry bounds do_bounds has_error_code=0
777 idtentry invalid_op do_invalid_op has_error_code=0
778 idtentry device_not_available do_device_not_available has_error_code=0
779 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
780 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
781 idtentry invalid_TSS do_invalid_TSS has_error_code=1
782 idtentry segment_not_present do_segment_not_present has_error_code=1
783 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
784 idtentry coprocessor_error do_coprocessor_error has_error_code=0
785 idtentry alignment_check do_alignment_check has_error_code=1
786 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
787
788
789 /*
790 * Reload gs selector with exception handling
791 * edi: new selector
792 */
793 ENTRY(native_load_gs_index)
794 pushfq
795 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
796 SWAPGS
797 .Lgs_change:
798 movl %edi, %gs
799 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
800 SWAPGS
801 popfq
802 ret
803 END(native_load_gs_index)
804 EXPORT_SYMBOL(native_load_gs_index)
805
806 _ASM_EXTABLE(.Lgs_change, bad_gs)
807 .section .fixup, "ax"
808 /* running with kernelgs */
809 bad_gs:
810 SWAPGS /* switch back to user gs */
811 .macro ZAP_GS
812 /* This can't be a string because the preprocessor needs to see it. */
813 movl $__USER_DS, %eax
814 movl %eax, %gs
815 .endm
816 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
817 xorl %eax, %eax
818 movl %eax, %gs
819 jmp 2b
820 .previous
821
822 /* Call softirq on interrupt stack. Interrupts are off. */
823 ENTRY(do_softirq_own_stack)
824 pushq %rbp
825 mov %rsp, %rbp
826 incl PER_CPU_VAR(irq_count)
827 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
828 push %rbp /* frame pointer backlink */
829 call __do_softirq
830 leaveq
831 decl PER_CPU_VAR(irq_count)
832 ret
833 END(do_softirq_own_stack)
834
835 #ifdef CONFIG_XEN
836 idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
837
838 /*
839 * A note on the "critical region" in our callback handler.
840 * We want to avoid stacking callback handlers due to events occurring
841 * during handling of the last event. To do this, we keep events disabled
842 * until we've done all processing. HOWEVER, we must enable events before
843 * popping the stack frame (can't be done atomically) and so it would still
844 * be possible to get enough handler activations to overflow the stack.
845 * Although unlikely, bugs of that kind are hard to track down, so we'd
846 * like to avoid the possibility.
847 * So, on entry to the handler we detect whether we interrupted an
848 * existing activation in its critical region -- if so, we pop the current
849 * activation and restart the handler using the previous one.
850 */
851 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
852
853 /*
854 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
855 * see the correct pointer to the pt_regs
856 */
857 movq %rdi, %rsp /* we don't return, adjust the stack frame */
858 11: incl PER_CPU_VAR(irq_count)
859 movq %rsp, %rbp
860 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
861 pushq %rbp /* frame pointer backlink */
862 call xen_evtchn_do_upcall
863 popq %rsp
864 decl PER_CPU_VAR(irq_count)
865 #ifndef CONFIG_PREEMPT
866 call xen_maybe_preempt_hcall
867 #endif
868 jmp error_exit
869 END(xen_do_hypervisor_callback)
870
871 /*
872 * Hypervisor uses this for application faults while it executes.
873 * We get here for two reasons:
874 * 1. Fault while reloading DS, ES, FS or GS
875 * 2. Fault while executing IRET
876 * Category 1 we do not need to fix up as Xen has already reloaded all segment
877 * registers that could be reloaded and zeroed the others.
878 * Category 2 we fix up by killing the current process. We cannot use the
879 * normal Linux return path in this case because if we use the IRET hypercall
880 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
881 * We distinguish between categories by comparing each saved segment register
882 * with its current contents: any discrepancy means we in category 1.
883 */
884 ENTRY(xen_failsafe_callback)
885 movl %ds, %ecx
886 cmpw %cx, 0x10(%rsp)
887 jne 1f
888 movl %es, %ecx
889 cmpw %cx, 0x18(%rsp)
890 jne 1f
891 movl %fs, %ecx
892 cmpw %cx, 0x20(%rsp)
893 jne 1f
894 movl %gs, %ecx
895 cmpw %cx, 0x28(%rsp)
896 jne 1f
897 /* All segments match their saved values => Category 2 (Bad IRET). */
898 movq (%rsp), %rcx
899 movq 8(%rsp), %r11
900 addq $0x30, %rsp
901 pushq $0 /* RIP */
902 pushq %r11
903 pushq %rcx
904 jmp general_protection
905 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
906 movq (%rsp), %rcx
907 movq 8(%rsp), %r11
908 addq $0x30, %rsp
909 pushq $-1 /* orig_ax = -1 => not a system call */
910 ALLOC_PT_GPREGS_ON_STACK
911 SAVE_C_REGS
912 SAVE_EXTRA_REGS
913 jmp error_exit
914 END(xen_failsafe_callback)
915
916 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
917 xen_hvm_callback_vector xen_evtchn_do_upcall
918
919 #endif /* CONFIG_XEN */
920
921 #if IS_ENABLED(CONFIG_HYPERV)
922 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
923 hyperv_callback_vector hyperv_vector_handler
924 #endif /* CONFIG_HYPERV */
925
926 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
927 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
928 idtentry stack_segment do_stack_segment has_error_code=1
929
930 #ifdef CONFIG_XEN
931 idtentry xen_debug do_debug has_error_code=0
932 idtentry xen_int3 do_int3 has_error_code=0
933 idtentry xen_stack_segment do_stack_segment has_error_code=1
934 #endif
935
936 idtentry general_protection do_general_protection has_error_code=1
937 trace_idtentry page_fault do_page_fault has_error_code=1
938
939 #ifdef CONFIG_KVM_GUEST
940 idtentry async_page_fault do_async_page_fault has_error_code=1
941 #endif
942
943 #ifdef CONFIG_X86_MCE
944 idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
945 #endif
946
947 /*
948 * Save all registers in pt_regs, and switch gs if needed.
949 * Use slow, but surefire "are we in kernel?" check.
950 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
951 */
952 ENTRY(paranoid_entry)
953 cld
954 SAVE_C_REGS 8
955 SAVE_EXTRA_REGS 8
956 movl $1, %ebx
957 movl $MSR_GS_BASE, %ecx
958 rdmsr
959 testl %edx, %edx
960 js 1f /* negative -> in kernel */
961 SWAPGS
962 xorl %ebx, %ebx
963 1: ret
964 END(paranoid_entry)
965
966 /*
967 * "Paranoid" exit path from exception stack. This is invoked
968 * only on return from non-NMI IST interrupts that came
969 * from kernel space.
970 *
971 * We may be returning to very strange contexts (e.g. very early
972 * in syscall entry), so checking for preemption here would
973 * be complicated. Fortunately, we there's no good reason
974 * to try to handle preemption here.
975 *
976 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
977 */
978 ENTRY(paranoid_exit)
979 DISABLE_INTERRUPTS(CLBR_NONE)
980 TRACE_IRQS_OFF_DEBUG
981 testl %ebx, %ebx /* swapgs needed? */
982 jnz paranoid_exit_no_swapgs
983 TRACE_IRQS_IRETQ
984 SWAPGS_UNSAFE_STACK
985 jmp paranoid_exit_restore
986 paranoid_exit_no_swapgs:
987 TRACE_IRQS_IRETQ_DEBUG
988 paranoid_exit_restore:
989 RESTORE_EXTRA_REGS
990 RESTORE_C_REGS
991 REMOVE_PT_GPREGS_FROM_STACK 8
992 INTERRUPT_RETURN
993 END(paranoid_exit)
994
995 /*
996 * Save all registers in pt_regs, and switch gs if needed.
997 * Return: EBX=0: came from user mode; EBX=1: otherwise
998 */
999 ENTRY(error_entry)
1000 cld
1001 SAVE_C_REGS 8
1002 SAVE_EXTRA_REGS 8
1003 xorl %ebx, %ebx
1004 testb $3, CS+8(%rsp)
1005 jz .Lerror_kernelspace
1006
1007 .Lerror_entry_from_usermode_swapgs:
1008 /*
1009 * We entered from user mode or we're pretending to have entered
1010 * from user mode due to an IRET fault.
1011 */
1012 SWAPGS
1013
1014 .Lerror_entry_from_usermode_after_swapgs:
1015 /*
1016 * We need to tell lockdep that IRQs are off. We can't do this until
1017 * we fix gsbase, and we should do it before enter_from_user_mode
1018 * (which can take locks).
1019 */
1020 TRACE_IRQS_OFF
1021 CALL_enter_from_user_mode
1022 ret
1023
1024 .Lerror_entry_done:
1025 TRACE_IRQS_OFF
1026 ret
1027
1028 /*
1029 * There are two places in the kernel that can potentially fault with
1030 * usergs. Handle them here. B stepping K8s sometimes report a
1031 * truncated RIP for IRET exceptions returning to compat mode. Check
1032 * for these here too.
1033 */
1034 .Lerror_kernelspace:
1035 incl %ebx
1036 leaq native_irq_return_iret(%rip), %rcx
1037 cmpq %rcx, RIP+8(%rsp)
1038 je .Lerror_bad_iret
1039 movl %ecx, %eax /* zero extend */
1040 cmpq %rax, RIP+8(%rsp)
1041 je .Lbstep_iret
1042 cmpq $.Lgs_change, RIP+8(%rsp)
1043 jne .Lerror_entry_done
1044
1045 /*
1046 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1047 * gsbase and proceed. We'll fix up the exception and land in
1048 * .Lgs_change's error handler with kernel gsbase.
1049 */
1050 jmp .Lerror_entry_from_usermode_swapgs
1051
1052 .Lbstep_iret:
1053 /* Fix truncated RIP */
1054 movq %rcx, RIP+8(%rsp)
1055 /* fall through */
1056
1057 .Lerror_bad_iret:
1058 /*
1059 * We came from an IRET to user mode, so we have user gsbase.
1060 * Switch to kernel gsbase:
1061 */
1062 SWAPGS
1063
1064 /*
1065 * Pretend that the exception came from user mode: set up pt_regs
1066 * as if we faulted immediately after IRET and clear EBX so that
1067 * error_exit knows that we will be returning to user mode.
1068 */
1069 mov %rsp, %rdi
1070 call fixup_bad_iret
1071 mov %rax, %rsp
1072 decl %ebx
1073 jmp .Lerror_entry_from_usermode_after_swapgs
1074 END(error_entry)
1075
1076
1077 /*
1078 * On entry, EBS is a "return to kernel mode" flag:
1079 * 1: already in kernel mode, don't need SWAPGS
1080 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1081 */
1082 ENTRY(error_exit)
1083 movl %ebx, %eax
1084 DISABLE_INTERRUPTS(CLBR_NONE)
1085 TRACE_IRQS_OFF
1086 testl %eax, %eax
1087 jnz retint_kernel
1088 jmp retint_user
1089 END(error_exit)
1090
1091 /* Runs on exception stack */
1092 ENTRY(nmi)
1093 /*
1094 * Fix up the exception frame if we're on Xen.
1095 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1096 * one value to the stack on native, so it may clobber the rdx
1097 * scratch slot, but it won't clobber any of the important
1098 * slots past it.
1099 *
1100 * Xen is a different story, because the Xen frame itself overlaps
1101 * the "NMI executing" variable.
1102 */
1103 PARAVIRT_ADJUST_EXCEPTION_FRAME
1104
1105 /*
1106 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1107 * the iretq it performs will take us out of NMI context.
1108 * This means that we can have nested NMIs where the next
1109 * NMI is using the top of the stack of the previous NMI. We
1110 * can't let it execute because the nested NMI will corrupt the
1111 * stack of the previous NMI. NMI handlers are not re-entrant
1112 * anyway.
1113 *
1114 * To handle this case we do the following:
1115 * Check the a special location on the stack that contains
1116 * a variable that is set when NMIs are executing.
1117 * The interrupted task's stack is also checked to see if it
1118 * is an NMI stack.
1119 * If the variable is not set and the stack is not the NMI
1120 * stack then:
1121 * o Set the special variable on the stack
1122 * o Copy the interrupt frame into an "outermost" location on the
1123 * stack
1124 * o Copy the interrupt frame into an "iret" location on the stack
1125 * o Continue processing the NMI
1126 * If the variable is set or the previous stack is the NMI stack:
1127 * o Modify the "iret" location to jump to the repeat_nmi
1128 * o return back to the first NMI
1129 *
1130 * Now on exit of the first NMI, we first clear the stack variable
1131 * The NMI stack will tell any nested NMIs at that point that it is
1132 * nested. Then we pop the stack normally with iret, and if there was
1133 * a nested NMI that updated the copy interrupt stack frame, a
1134 * jump will be made to the repeat_nmi code that will handle the second
1135 * NMI.
1136 *
1137 * However, espfix prevents us from directly returning to userspace
1138 * with a single IRET instruction. Similarly, IRET to user mode
1139 * can fault. We therefore handle NMIs from user space like
1140 * other IST entries.
1141 */
1142
1143 /* Use %rdx as our temp variable throughout */
1144 pushq %rdx
1145
1146 testb $3, CS-RIP+8(%rsp)
1147 jz .Lnmi_from_kernel
1148
1149 /*
1150 * NMI from user mode. We need to run on the thread stack, but we
1151 * can't go through the normal entry paths: NMIs are masked, and
1152 * we don't want to enable interrupts, because then we'll end
1153 * up in an awkward situation in which IRQs are on but NMIs
1154 * are off.
1155 *
1156 * We also must not push anything to the stack before switching
1157 * stacks lest we corrupt the "NMI executing" variable.
1158 */
1159
1160 SWAPGS_UNSAFE_STACK
1161 cld
1162 movq %rsp, %rdx
1163 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1164 pushq 5*8(%rdx) /* pt_regs->ss */
1165 pushq 4*8(%rdx) /* pt_regs->rsp */
1166 pushq 3*8(%rdx) /* pt_regs->flags */
1167 pushq 2*8(%rdx) /* pt_regs->cs */
1168 pushq 1*8(%rdx) /* pt_regs->rip */
1169 pushq $-1 /* pt_regs->orig_ax */
1170 pushq %rdi /* pt_regs->di */
1171 pushq %rsi /* pt_regs->si */
1172 pushq (%rdx) /* pt_regs->dx */
1173 pushq %rcx /* pt_regs->cx */
1174 pushq %rax /* pt_regs->ax */
1175 pushq %r8 /* pt_regs->r8 */
1176 pushq %r9 /* pt_regs->r9 */
1177 pushq %r10 /* pt_regs->r10 */
1178 pushq %r11 /* pt_regs->r11 */
1179 pushq %rbx /* pt_regs->rbx */
1180 pushq %rbp /* pt_regs->rbp */
1181 pushq %r12 /* pt_regs->r12 */
1182 pushq %r13 /* pt_regs->r13 */
1183 pushq %r14 /* pt_regs->r14 */
1184 pushq %r15 /* pt_regs->r15 */
1185
1186 /*
1187 * At this point we no longer need to worry about stack damage
1188 * due to nesting -- we're on the normal thread stack and we're
1189 * done with the NMI stack.
1190 */
1191
1192 movq %rsp, %rdi
1193 movq $-1, %rsi
1194 call do_nmi
1195
1196 /*
1197 * Return back to user mode. We must *not* do the normal exit
1198 * work, because we don't want to enable interrupts. Fortunately,
1199 * do_nmi doesn't modify pt_regs.
1200 */
1201 SWAPGS
1202 jmp restore_c_regs_and_iret
1203
1204 .Lnmi_from_kernel:
1205 /*
1206 * Here's what our stack frame will look like:
1207 * +---------------------------------------------------------+
1208 * | original SS |
1209 * | original Return RSP |
1210 * | original RFLAGS |
1211 * | original CS |
1212 * | original RIP |
1213 * +---------------------------------------------------------+
1214 * | temp storage for rdx |
1215 * +---------------------------------------------------------+
1216 * | "NMI executing" variable |
1217 * +---------------------------------------------------------+
1218 * | iret SS } Copied from "outermost" frame |
1219 * | iret Return RSP } on each loop iteration; overwritten |
1220 * | iret RFLAGS } by a nested NMI to force another |
1221 * | iret CS } iteration if needed. |
1222 * | iret RIP } |
1223 * +---------------------------------------------------------+
1224 * | outermost SS } initialized in first_nmi; |
1225 * | outermost Return RSP } will not be changed before |
1226 * | outermost RFLAGS } NMI processing is done. |
1227 * | outermost CS } Copied to "iret" frame on each |
1228 * | outermost RIP } iteration. |
1229 * +---------------------------------------------------------+
1230 * | pt_regs |
1231 * +---------------------------------------------------------+
1232 *
1233 * The "original" frame is used by hardware. Before re-enabling
1234 * NMIs, we need to be done with it, and we need to leave enough
1235 * space for the asm code here.
1236 *
1237 * We return by executing IRET while RSP points to the "iret" frame.
1238 * That will either return for real or it will loop back into NMI
1239 * processing.
1240 *
1241 * The "outermost" frame is copied to the "iret" frame on each
1242 * iteration of the loop, so each iteration starts with the "iret"
1243 * frame pointing to the final return target.
1244 */
1245
1246 /*
1247 * Determine whether we're a nested NMI.
1248 *
1249 * If we interrupted kernel code between repeat_nmi and
1250 * end_repeat_nmi, then we are a nested NMI. We must not
1251 * modify the "iret" frame because it's being written by
1252 * the outer NMI. That's okay; the outer NMI handler is
1253 * about to about to call do_nmi anyway, so we can just
1254 * resume the outer NMI.
1255 */
1256
1257 movq $repeat_nmi, %rdx
1258 cmpq 8(%rsp), %rdx
1259 ja 1f
1260 movq $end_repeat_nmi, %rdx
1261 cmpq 8(%rsp), %rdx
1262 ja nested_nmi_out
1263 1:
1264
1265 /*
1266 * Now check "NMI executing". If it's set, then we're nested.
1267 * This will not detect if we interrupted an outer NMI just
1268 * before IRET.
1269 */
1270 cmpl $1, -8(%rsp)
1271 je nested_nmi
1272
1273 /*
1274 * Now test if the previous stack was an NMI stack. This covers
1275 * the case where we interrupt an outer NMI after it clears
1276 * "NMI executing" but before IRET. We need to be careful, though:
1277 * there is one case in which RSP could point to the NMI stack
1278 * despite there being no NMI active: naughty userspace controls
1279 * RSP at the very beginning of the SYSCALL targets. We can
1280 * pull a fast one on naughty userspace, though: we program
1281 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1282 * if it controls the kernel's RSP. We set DF before we clear
1283 * "NMI executing".
1284 */
1285 lea 6*8(%rsp), %rdx
1286 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1287 cmpq %rdx, 4*8(%rsp)
1288 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1289 ja first_nmi
1290
1291 subq $EXCEPTION_STKSZ, %rdx
1292 cmpq %rdx, 4*8(%rsp)
1293 /* If it is below the NMI stack, it is a normal NMI */
1294 jb first_nmi
1295
1296 /* Ah, it is within the NMI stack. */
1297
1298 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1299 jz first_nmi /* RSP was user controlled. */
1300
1301 /* This is a nested NMI. */
1302
1303 nested_nmi:
1304 /*
1305 * Modify the "iret" frame to point to repeat_nmi, forcing another
1306 * iteration of NMI handling.
1307 */
1308 subq $8, %rsp
1309 leaq -10*8(%rsp), %rdx
1310 pushq $__KERNEL_DS
1311 pushq %rdx
1312 pushfq
1313 pushq $__KERNEL_CS
1314 pushq $repeat_nmi
1315
1316 /* Put stack back */
1317 addq $(6*8), %rsp
1318
1319 nested_nmi_out:
1320 popq %rdx
1321
1322 /* We are returning to kernel mode, so this cannot result in a fault. */
1323 INTERRUPT_RETURN
1324
1325 first_nmi:
1326 /* Restore rdx. */
1327 movq (%rsp), %rdx
1328
1329 /* Make room for "NMI executing". */
1330 pushq $0
1331
1332 /* Leave room for the "iret" frame */
1333 subq $(5*8), %rsp
1334
1335 /* Copy the "original" frame to the "outermost" frame */
1336 .rept 5
1337 pushq 11*8(%rsp)
1338 .endr
1339
1340 /* Everything up to here is safe from nested NMIs */
1341
1342 #ifdef CONFIG_DEBUG_ENTRY
1343 /*
1344 * For ease of testing, unmask NMIs right away. Disabled by
1345 * default because IRET is very expensive.
1346 */
1347 pushq $0 /* SS */
1348 pushq %rsp /* RSP (minus 8 because of the previous push) */
1349 addq $8, (%rsp) /* Fix up RSP */
1350 pushfq /* RFLAGS */
1351 pushq $__KERNEL_CS /* CS */
1352 pushq $1f /* RIP */
1353 INTERRUPT_RETURN /* continues at repeat_nmi below */
1354 1:
1355 #endif
1356
1357 repeat_nmi:
1358 /*
1359 * If there was a nested NMI, the first NMI's iret will return
1360 * here. But NMIs are still enabled and we can take another
1361 * nested NMI. The nested NMI checks the interrupted RIP to see
1362 * if it is between repeat_nmi and end_repeat_nmi, and if so
1363 * it will just return, as we are about to repeat an NMI anyway.
1364 * This makes it safe to copy to the stack frame that a nested
1365 * NMI will update.
1366 *
1367 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1368 * we're repeating an NMI, gsbase has the same value that it had on
1369 * the first iteration. paranoid_entry will load the kernel
1370 * gsbase if needed before we call do_nmi. "NMI executing"
1371 * is zero.
1372 */
1373 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1374
1375 /*
1376 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1377 * here must not modify the "iret" frame while we're writing to
1378 * it or it will end up containing garbage.
1379 */
1380 addq $(10*8), %rsp
1381 .rept 5
1382 pushq -6*8(%rsp)
1383 .endr
1384 subq $(5*8), %rsp
1385 end_repeat_nmi:
1386
1387 /*
1388 * Everything below this point can be preempted by a nested NMI.
1389 * If this happens, then the inner NMI will change the "iret"
1390 * frame to point back to repeat_nmi.
1391 */
1392 pushq $-1 /* ORIG_RAX: no syscall to restart */
1393 ALLOC_PT_GPREGS_ON_STACK
1394
1395 /*
1396 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1397 * as we should not be calling schedule in NMI context.
1398 * Even with normal interrupts enabled. An NMI should not be
1399 * setting NEED_RESCHED or anything that normal interrupts and
1400 * exceptions might do.
1401 */
1402 call paranoid_entry
1403
1404 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1405 movq %rsp, %rdi
1406 movq $-1, %rsi
1407 call do_nmi
1408
1409 testl %ebx, %ebx /* swapgs needed? */
1410 jnz nmi_restore
1411 nmi_swapgs:
1412 SWAPGS_UNSAFE_STACK
1413 nmi_restore:
1414 RESTORE_EXTRA_REGS
1415 RESTORE_C_REGS
1416
1417 /* Point RSP at the "iret" frame. */
1418 REMOVE_PT_GPREGS_FROM_STACK 6*8
1419
1420 /*
1421 * Clear "NMI executing". Set DF first so that we can easily
1422 * distinguish the remaining code between here and IRET from
1423 * the SYSCALL entry and exit paths. On a native kernel, we
1424 * could just inspect RIP, but, on paravirt kernels,
1425 * INTERRUPT_RETURN can translate into a jump into a
1426 * hypercall page.
1427 */
1428 std
1429 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1430
1431 /*
1432 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1433 * stack in a single instruction. We are returning to kernel
1434 * mode, so this cannot result in a fault.
1435 */
1436 INTERRUPT_RETURN
1437 END(nmi)
1438
1439 ENTRY(ignore_sysret)
1440 mov $-ENOSYS, %eax
1441 sysret
1442 END(ignore_sysret)
1443
1444 ENTRY(rewind_stack_do_exit)
1445 /* Prevent any naive code from trying to unwind to our caller. */
1446 xorl %ebp, %ebp
1447
1448 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1449 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1450
1451 call do_exit
1452 1: jmp 1b
1453 END(rewind_stack_do_exit)
This page took 0.066001 seconds and 6 git commands to generate.