Merge drm-fixes into drm-next.
[deliverable/linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 /**
10 * DOC: VC4 CRTC module
11 *
12 * In VC4, the Pixel Valve is what most closely corresponds to the
13 * DRM's concept of a CRTC. The PV generates video timings from the
14 * output's clock plus its configuration. It pulls scaled pixels from
15 * the HVS at that timing, and feeds it to the encoder.
16 *
17 * However, the DRM CRTC also collects the configuration of all the
18 * DRM planes attached to it. As a result, this file also manages
19 * setup of the VC4 HVS's display elements on the CRTC.
20 *
21 * The 2835 has 3 different pixel valves. pv0 in the audio power
22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
23 * image domain can feed either HDMI or the SDTV controller. The
24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25 * SDTV, etc.) according to which output type is chosen in the mux.
26 *
27 * For power management, the pixel valve's registers are all clocked
28 * by the AXI clock, while the timings and FIFOs make use of the
29 * output-specific clock. Since the encoders also directly consume
30 * the CPRMAN clocks, and know what timings they need, they are the
31 * ones that set the clock.
32 */
33
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43
44 struct vc4_crtc {
45 struct drm_crtc base;
46 const struct vc4_crtc_data *data;
47 void __iomem *regs;
48
49 /* Which HVS channel we're using for our CRTC. */
50 int channel;
51
52 struct drm_pending_vblank_event *event;
53 };
54
55 struct vc4_crtc_state {
56 struct drm_crtc_state base;
57 /* Dlist area for this CRTC configuration. */
58 struct drm_mm_node mm;
59 };
60
61 static inline struct vc4_crtc *
62 to_vc4_crtc(struct drm_crtc *crtc)
63 {
64 return (struct vc4_crtc *)crtc;
65 }
66
67 static inline struct vc4_crtc_state *
68 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
69 {
70 return (struct vc4_crtc_state *)crtc_state;
71 }
72
73 struct vc4_crtc_data {
74 /* Which channel of the HVS this pixelvalve sources from. */
75 int hvs_channel;
76
77 enum vc4_encoder_type encoder0_type;
78 enum vc4_encoder_type encoder1_type;
79 };
80
81 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
82 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
83
84 #define CRTC_REG(reg) { reg, #reg }
85 static const struct {
86 u32 reg;
87 const char *name;
88 } crtc_regs[] = {
89 CRTC_REG(PV_CONTROL),
90 CRTC_REG(PV_V_CONTROL),
91 CRTC_REG(PV_VSYNCD),
92 CRTC_REG(PV_HORZA),
93 CRTC_REG(PV_HORZB),
94 CRTC_REG(PV_VERTA),
95 CRTC_REG(PV_VERTB),
96 CRTC_REG(PV_VERTA_EVEN),
97 CRTC_REG(PV_VERTB_EVEN),
98 CRTC_REG(PV_INTEN),
99 CRTC_REG(PV_INTSTAT),
100 CRTC_REG(PV_STAT),
101 CRTC_REG(PV_HACT_ACT),
102 };
103
104 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
105 {
106 int i;
107
108 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
109 DRM_INFO("0x%04x (%s): 0x%08x\n",
110 crtc_regs[i].reg, crtc_regs[i].name,
111 CRTC_READ(crtc_regs[i].reg));
112 }
113 }
114
115 #ifdef CONFIG_DEBUG_FS
116 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
117 {
118 struct drm_info_node *node = (struct drm_info_node *)m->private;
119 struct drm_device *dev = node->minor->dev;
120 int crtc_index = (uintptr_t)node->info_ent->data;
121 struct drm_crtc *crtc;
122 struct vc4_crtc *vc4_crtc;
123 int i;
124
125 i = 0;
126 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
127 if (i == crtc_index)
128 break;
129 i++;
130 }
131 if (!crtc)
132 return 0;
133 vc4_crtc = to_vc4_crtc(crtc);
134
135 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
136 seq_printf(m, "%s (0x%04x): 0x%08x\n",
137 crtc_regs[i].name, crtc_regs[i].reg,
138 CRTC_READ(crtc_regs[i].reg));
139 }
140
141 return 0;
142 }
143 #endif
144
145 static void vc4_crtc_destroy(struct drm_crtc *crtc)
146 {
147 drm_crtc_cleanup(crtc);
148 }
149
150 static u32 vc4_get_fifo_full_level(u32 format)
151 {
152 static const u32 fifo_len_bytes = 64;
153 static const u32 hvs_latency_pix = 6;
154
155 switch (format) {
156 case PV_CONTROL_FORMAT_DSIV_16:
157 case PV_CONTROL_FORMAT_DSIC_16:
158 return fifo_len_bytes - 2 * hvs_latency_pix;
159 case PV_CONTROL_FORMAT_DSIV_18:
160 return fifo_len_bytes - 14;
161 case PV_CONTROL_FORMAT_24:
162 case PV_CONTROL_FORMAT_DSIV_24:
163 default:
164 return fifo_len_bytes - 3 * hvs_latency_pix;
165 }
166 }
167
168 /*
169 * Returns the clock select bit for the connector attached to the
170 * CRTC.
171 */
172 static int vc4_get_clock_select(struct drm_crtc *crtc)
173 {
174 struct drm_connector *connector;
175
176 drm_for_each_connector(connector, crtc->dev) {
177 if (connector->state->crtc == crtc) {
178 struct drm_encoder *encoder = connector->encoder;
179 struct vc4_encoder *vc4_encoder =
180 to_vc4_encoder(encoder);
181
182 return vc4_encoder->clock_select;
183 }
184 }
185
186 return -1;
187 }
188
189 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
190 {
191 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
192 struct drm_crtc_state *state = crtc->state;
193 struct drm_display_mode *mode = &state->adjusted_mode;
194 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
195 u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
196 u32 format = PV_CONTROL_FORMAT_24;
197 bool debug_dump_regs = false;
198 int clock_select = vc4_get_clock_select(crtc);
199
200 if (debug_dump_regs) {
201 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
202 vc4_crtc_dump_regs(vc4_crtc);
203 }
204
205 /* Reset the PV fifo. */
206 CRTC_WRITE(PV_CONTROL, 0);
207 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
208 CRTC_WRITE(PV_CONTROL, 0);
209
210 CRTC_WRITE(PV_HORZA,
211 VC4_SET_FIELD(mode->htotal - mode->hsync_end,
212 PV_HORZA_HBP) |
213 VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
214 PV_HORZA_HSYNC));
215 CRTC_WRITE(PV_HORZB,
216 VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
217 PV_HORZB_HFP) |
218 VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
219
220 if (interlace) {
221 CRTC_WRITE(PV_VERTA_EVEN,
222 VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
223 PV_VERTA_VBP) |
224 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
225 PV_VERTA_VSYNC));
226 CRTC_WRITE(PV_VERTB_EVEN,
227 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
228 PV_VERTB_VFP) |
229 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
230 }
231
232 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
233
234 CRTC_WRITE(PV_V_CONTROL,
235 PV_VCONTROL_CONTINUOUS |
236 (interlace ? PV_VCONTROL_INTERLACE : 0));
237
238 CRTC_WRITE(PV_CONTROL,
239 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
240 VC4_SET_FIELD(vc4_get_fifo_full_level(format),
241 PV_CONTROL_FIFO_LEVEL) |
242 PV_CONTROL_CLR_AT_START |
243 PV_CONTROL_TRIGGER_UNDERFLOW |
244 PV_CONTROL_WAIT_HSTART |
245 VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
246 PV_CONTROL_FIFO_CLR |
247 PV_CONTROL_EN);
248
249 if (debug_dump_regs) {
250 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
251 vc4_crtc_dump_regs(vc4_crtc);
252 }
253 }
254
255 static void require_hvs_enabled(struct drm_device *dev)
256 {
257 struct vc4_dev *vc4 = to_vc4_dev(dev);
258
259 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
260 SCALER_DISPCTRL_ENABLE);
261 }
262
263 static void vc4_crtc_disable(struct drm_crtc *crtc)
264 {
265 struct drm_device *dev = crtc->dev;
266 struct vc4_dev *vc4 = to_vc4_dev(dev);
267 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
268 u32 chan = vc4_crtc->channel;
269 int ret;
270 require_hvs_enabled(dev);
271
272 CRTC_WRITE(PV_V_CONTROL,
273 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
274 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
275 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
276
277 if (HVS_READ(SCALER_DISPCTRLX(chan)) &
278 SCALER_DISPCTRLX_ENABLE) {
279 HVS_WRITE(SCALER_DISPCTRLX(chan),
280 SCALER_DISPCTRLX_RESET);
281
282 /* While the docs say that reset is self-clearing, it
283 * seems it doesn't actually.
284 */
285 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
286 }
287
288 /* Once we leave, the scaler should be disabled and its fifo empty. */
289
290 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
291
292 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
293 SCALER_DISPSTATX_MODE) !=
294 SCALER_DISPSTATX_MODE_DISABLED);
295
296 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
297 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
298 SCALER_DISPSTATX_EMPTY);
299 }
300
301 static void vc4_crtc_enable(struct drm_crtc *crtc)
302 {
303 struct drm_device *dev = crtc->dev;
304 struct vc4_dev *vc4 = to_vc4_dev(dev);
305 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
306 struct drm_crtc_state *state = crtc->state;
307 struct drm_display_mode *mode = &state->adjusted_mode;
308
309 require_hvs_enabled(dev);
310
311 /* Turn on the scaler, which will wait for vstart to start
312 * compositing.
313 */
314 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
315 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
316 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
317 SCALER_DISPCTRLX_ENABLE);
318
319 /* Turn on the pixel valve, which will emit the vstart signal. */
320 CRTC_WRITE(PV_V_CONTROL,
321 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
322 }
323
324 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
325 struct drm_crtc_state *state)
326 {
327 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
328 struct drm_device *dev = crtc->dev;
329 struct vc4_dev *vc4 = to_vc4_dev(dev);
330 struct drm_plane *plane;
331 unsigned long flags;
332 u32 dlist_count = 0;
333 int ret;
334
335 /* The pixelvalve can only feed one encoder (and encoders are
336 * 1:1 with connectors.)
337 */
338 if (hweight32(state->connector_mask) > 1)
339 return -EINVAL;
340
341 drm_atomic_crtc_state_for_each_plane(plane, state) {
342 struct drm_plane_state *plane_state =
343 state->state->plane_states[drm_plane_index(plane)];
344
345 /* plane might not have changed, in which case take
346 * current state:
347 */
348 if (!plane_state)
349 plane_state = plane->state;
350
351 dlist_count += vc4_plane_dlist_size(plane_state);
352 }
353
354 dlist_count++; /* Account for SCALER_CTL0_END. */
355
356 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
357 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
358 dlist_count, 1, 0);
359 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
360 if (ret)
361 return ret;
362
363 return 0;
364 }
365
366 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
367 struct drm_crtc_state *old_state)
368 {
369 struct drm_device *dev = crtc->dev;
370 struct vc4_dev *vc4 = to_vc4_dev(dev);
371 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
372 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
373 struct drm_plane *plane;
374 bool debug_dump_regs = false;
375 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
376 u32 __iomem *dlist_next = dlist_start;
377
378 if (debug_dump_regs) {
379 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
380 vc4_hvs_dump_state(dev);
381 }
382
383 /* Copy all the active planes' dlist contents to the hardware dlist. */
384 drm_atomic_crtc_for_each_plane(plane, crtc) {
385 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
386 }
387
388 writel(SCALER_CTL0_END, dlist_next);
389 dlist_next++;
390
391 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
392
393 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
394 vc4_state->mm.start);
395
396 if (debug_dump_regs) {
397 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
398 vc4_hvs_dump_state(dev);
399 }
400
401 if (crtc->state->event) {
402 unsigned long flags;
403
404 crtc->state->event->pipe = drm_crtc_index(crtc);
405
406 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
407
408 spin_lock_irqsave(&dev->event_lock, flags);
409 vc4_crtc->event = crtc->state->event;
410 spin_unlock_irqrestore(&dev->event_lock, flags);
411 crtc->state->event = NULL;
412 }
413 }
414
415 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
416 {
417 struct vc4_dev *vc4 = to_vc4_dev(dev);
418 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
419
420 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
421
422 return 0;
423 }
424
425 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
426 {
427 struct vc4_dev *vc4 = to_vc4_dev(dev);
428 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
429
430 CRTC_WRITE(PV_INTEN, 0);
431 }
432
433 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
434 {
435 struct drm_crtc *crtc = &vc4_crtc->base;
436 struct drm_device *dev = crtc->dev;
437 unsigned long flags;
438
439 spin_lock_irqsave(&dev->event_lock, flags);
440 if (vc4_crtc->event) {
441 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
442 vc4_crtc->event = NULL;
443 }
444 spin_unlock_irqrestore(&dev->event_lock, flags);
445 }
446
447 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
448 {
449 struct vc4_crtc *vc4_crtc = data;
450 u32 stat = CRTC_READ(PV_INTSTAT);
451 irqreturn_t ret = IRQ_NONE;
452
453 if (stat & PV_INT_VFP_START) {
454 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
455 drm_crtc_handle_vblank(&vc4_crtc->base);
456 vc4_crtc_handle_page_flip(vc4_crtc);
457 ret = IRQ_HANDLED;
458 }
459
460 return ret;
461 }
462
463 struct vc4_async_flip_state {
464 struct drm_crtc *crtc;
465 struct drm_framebuffer *fb;
466 struct drm_pending_vblank_event *event;
467
468 struct vc4_seqno_cb cb;
469 };
470
471 /* Called when the V3D execution for the BO being flipped to is done, so that
472 * we can actually update the plane's address to point to it.
473 */
474 static void
475 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
476 {
477 struct vc4_async_flip_state *flip_state =
478 container_of(cb, struct vc4_async_flip_state, cb);
479 struct drm_crtc *crtc = flip_state->crtc;
480 struct drm_device *dev = crtc->dev;
481 struct vc4_dev *vc4 = to_vc4_dev(dev);
482 struct drm_plane *plane = crtc->primary;
483
484 vc4_plane_async_set_fb(plane, flip_state->fb);
485 if (flip_state->event) {
486 unsigned long flags;
487
488 spin_lock_irqsave(&dev->event_lock, flags);
489 drm_crtc_send_vblank_event(crtc, flip_state->event);
490 spin_unlock_irqrestore(&dev->event_lock, flags);
491 }
492
493 drm_framebuffer_unreference(flip_state->fb);
494 kfree(flip_state);
495
496 up(&vc4->async_modeset);
497 }
498
499 /* Implements async (non-vblank-synced) page flips.
500 *
501 * The page flip ioctl needs to return immediately, so we grab the
502 * modeset semaphore on the pipe, and queue the address update for
503 * when V3D is done with the BO being flipped to.
504 */
505 static int vc4_async_page_flip(struct drm_crtc *crtc,
506 struct drm_framebuffer *fb,
507 struct drm_pending_vblank_event *event,
508 uint32_t flags)
509 {
510 struct drm_device *dev = crtc->dev;
511 struct vc4_dev *vc4 = to_vc4_dev(dev);
512 struct drm_plane *plane = crtc->primary;
513 int ret = 0;
514 struct vc4_async_flip_state *flip_state;
515 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
516 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
517
518 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
519 if (!flip_state)
520 return -ENOMEM;
521
522 drm_framebuffer_reference(fb);
523 flip_state->fb = fb;
524 flip_state->crtc = crtc;
525 flip_state->event = event;
526
527 /* Make sure all other async modesetes have landed. */
528 ret = down_interruptible(&vc4->async_modeset);
529 if (ret) {
530 kfree(flip_state);
531 return ret;
532 }
533
534 /* Immediately update the plane's legacy fb pointer, so that later
535 * modeset prep sees the state that will be present when the semaphore
536 * is released.
537 */
538 drm_atomic_set_fb_for_plane(plane->state, fb);
539 plane->fb = fb;
540
541 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
542 vc4_async_page_flip_complete);
543
544 /* Driver takes ownership of state on successful async commit. */
545 return 0;
546 }
547
548 static int vc4_page_flip(struct drm_crtc *crtc,
549 struct drm_framebuffer *fb,
550 struct drm_pending_vblank_event *event,
551 uint32_t flags)
552 {
553 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
554 return vc4_async_page_flip(crtc, fb, event, flags);
555 else
556 return drm_atomic_helper_page_flip(crtc, fb, event, flags);
557 }
558
559 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
560 {
561 struct vc4_crtc_state *vc4_state;
562
563 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
564 if (!vc4_state)
565 return NULL;
566
567 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
568 return &vc4_state->base;
569 }
570
571 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
572 struct drm_crtc_state *state)
573 {
574 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
575 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
576
577 if (vc4_state->mm.allocated) {
578 unsigned long flags;
579
580 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
581 drm_mm_remove_node(&vc4_state->mm);
582 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
583
584 }
585
586 __drm_atomic_helper_crtc_destroy_state(crtc, state);
587 }
588
589 static const struct drm_crtc_funcs vc4_crtc_funcs = {
590 .set_config = drm_atomic_helper_set_config,
591 .destroy = vc4_crtc_destroy,
592 .page_flip = vc4_page_flip,
593 .set_property = NULL,
594 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
595 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
596 .reset = drm_atomic_helper_crtc_reset,
597 .atomic_duplicate_state = vc4_crtc_duplicate_state,
598 .atomic_destroy_state = vc4_crtc_destroy_state,
599 };
600
601 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
602 .mode_set_nofb = vc4_crtc_mode_set_nofb,
603 .disable = vc4_crtc_disable,
604 .enable = vc4_crtc_enable,
605 .atomic_check = vc4_crtc_atomic_check,
606 .atomic_flush = vc4_crtc_atomic_flush,
607 };
608
609 static const struct vc4_crtc_data pv0_data = {
610 .hvs_channel = 0,
611 .encoder0_type = VC4_ENCODER_TYPE_DSI0,
612 .encoder1_type = VC4_ENCODER_TYPE_DPI,
613 };
614
615 static const struct vc4_crtc_data pv1_data = {
616 .hvs_channel = 2,
617 .encoder0_type = VC4_ENCODER_TYPE_DSI1,
618 .encoder1_type = VC4_ENCODER_TYPE_SMI,
619 };
620
621 static const struct vc4_crtc_data pv2_data = {
622 .hvs_channel = 1,
623 .encoder0_type = VC4_ENCODER_TYPE_VEC,
624 .encoder1_type = VC4_ENCODER_TYPE_HDMI,
625 };
626
627 static const struct of_device_id vc4_crtc_dt_match[] = {
628 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
629 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
630 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
631 {}
632 };
633
634 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
635 struct drm_crtc *crtc)
636 {
637 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
638 struct drm_encoder *encoder;
639
640 drm_for_each_encoder(encoder, drm) {
641 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
642
643 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
644 vc4_encoder->clock_select = 0;
645 encoder->possible_crtcs |= drm_crtc_mask(crtc);
646 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
647 vc4_encoder->clock_select = 1;
648 encoder->possible_crtcs |= drm_crtc_mask(crtc);
649 }
650 }
651 }
652
653 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
654 {
655 struct platform_device *pdev = to_platform_device(dev);
656 struct drm_device *drm = dev_get_drvdata(master);
657 struct vc4_dev *vc4 = to_vc4_dev(drm);
658 struct vc4_crtc *vc4_crtc;
659 struct drm_crtc *crtc;
660 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
661 const struct of_device_id *match;
662 int ret, i;
663
664 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
665 if (!vc4_crtc)
666 return -ENOMEM;
667 crtc = &vc4_crtc->base;
668
669 match = of_match_device(vc4_crtc_dt_match, dev);
670 if (!match)
671 return -ENODEV;
672 vc4_crtc->data = match->data;
673
674 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
675 if (IS_ERR(vc4_crtc->regs))
676 return PTR_ERR(vc4_crtc->regs);
677
678 /* For now, we create just the primary and the legacy cursor
679 * planes. We should be able to stack more planes on easily,
680 * but to do that we would need to compute the bandwidth
681 * requirement of the plane configuration, and reject ones
682 * that will take too much.
683 */
684 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
685 if (IS_ERR(primary_plane)) {
686 dev_err(dev, "failed to construct primary plane\n");
687 ret = PTR_ERR(primary_plane);
688 goto err;
689 }
690
691 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
692 &vc4_crtc_funcs, NULL);
693 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
694 primary_plane->crtc = crtc;
695 vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
696 vc4_crtc->channel = vc4_crtc->data->hvs_channel;
697
698 /* Set up some arbitrary number of planes. We're not limited
699 * by a set number of physical registers, just the space in
700 * the HVS (16k) and how small an plane can be (28 bytes).
701 * However, each plane we set up takes up some memory, and
702 * increases the cost of looping over planes, which atomic
703 * modesetting does quite a bit. As a result, we pick a
704 * modest number of planes to expose, that should hopefully
705 * still cover any sane usecase.
706 */
707 for (i = 0; i < 8; i++) {
708 struct drm_plane *plane =
709 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
710
711 if (IS_ERR(plane))
712 continue;
713
714 plane->possible_crtcs = 1 << drm_crtc_index(crtc);
715 }
716
717 /* Set up the legacy cursor after overlay initialization,
718 * since we overlay planes on the CRTC in the order they were
719 * initialized.
720 */
721 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
722 if (!IS_ERR(cursor_plane)) {
723 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
724 cursor_plane->crtc = crtc;
725 crtc->cursor = cursor_plane;
726 }
727
728 CRTC_WRITE(PV_INTEN, 0);
729 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
730 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
731 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
732 if (ret)
733 goto err_destroy_planes;
734
735 vc4_set_crtc_possible_masks(drm, crtc);
736
737 platform_set_drvdata(pdev, vc4_crtc);
738
739 return 0;
740
741 err_destroy_planes:
742 list_for_each_entry_safe(destroy_plane, temp,
743 &drm->mode_config.plane_list, head) {
744 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
745 destroy_plane->funcs->destroy(destroy_plane);
746 }
747 err:
748 return ret;
749 }
750
751 static void vc4_crtc_unbind(struct device *dev, struct device *master,
752 void *data)
753 {
754 struct platform_device *pdev = to_platform_device(dev);
755 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
756
757 vc4_crtc_destroy(&vc4_crtc->base);
758
759 CRTC_WRITE(PV_INTEN, 0);
760
761 platform_set_drvdata(pdev, NULL);
762 }
763
764 static const struct component_ops vc4_crtc_ops = {
765 .bind = vc4_crtc_bind,
766 .unbind = vc4_crtc_unbind,
767 };
768
769 static int vc4_crtc_dev_probe(struct platform_device *pdev)
770 {
771 return component_add(&pdev->dev, &vc4_crtc_ops);
772 }
773
774 static int vc4_crtc_dev_remove(struct platform_device *pdev)
775 {
776 component_del(&pdev->dev, &vc4_crtc_ops);
777 return 0;
778 }
779
780 struct platform_driver vc4_crtc_driver = {
781 .probe = vc4_crtc_dev_probe,
782 .remove = vc4_crtc_dev_remove,
783 .driver = {
784 .name = "vc4_crtc",
785 .of_match_table = vc4_crtc_dt_match,
786 },
787 };
This page took 0.046801 seconds and 5 git commands to generate.