Merge remote-tracking branch 'mmc-uh/next'
[deliverable/linux.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 struct f2fs_fault_info f2fs_fault;
44
45 char *fault_name[FAULT_MAX] = {
46 [FAULT_KMALLOC] = "kmalloc",
47 [FAULT_PAGE_ALLOC] = "page alloc",
48 [FAULT_ALLOC_NID] = "alloc nid",
49 [FAULT_ORPHAN] = "orphan",
50 [FAULT_BLOCK] = "no more block",
51 [FAULT_DIR_DEPTH] = "too big dir depth",
52 [FAULT_EVICT_INODE] = "evict_inode fail",
53 };
54
55 static void f2fs_build_fault_attr(unsigned int rate)
56 {
57 if (rate) {
58 atomic_set(&f2fs_fault.inject_ops, 0);
59 f2fs_fault.inject_rate = rate;
60 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1;
61 } else {
62 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info));
63 }
64 }
65 #endif
66
67 /* f2fs-wide shrinker description */
68 static struct shrinker f2fs_shrinker_info = {
69 .scan_objects = f2fs_shrink_scan,
70 .count_objects = f2fs_shrink_count,
71 .seeks = DEFAULT_SEEKS,
72 };
73
74 enum {
75 Opt_gc_background,
76 Opt_disable_roll_forward,
77 Opt_norecovery,
78 Opt_discard,
79 Opt_nodiscard,
80 Opt_noheap,
81 Opt_user_xattr,
82 Opt_nouser_xattr,
83 Opt_acl,
84 Opt_noacl,
85 Opt_active_logs,
86 Opt_disable_ext_identify,
87 Opt_inline_xattr,
88 Opt_inline_data,
89 Opt_inline_dentry,
90 Opt_noinline_dentry,
91 Opt_flush_merge,
92 Opt_noflush_merge,
93 Opt_nobarrier,
94 Opt_fastboot,
95 Opt_extent_cache,
96 Opt_noextent_cache,
97 Opt_noinline_data,
98 Opt_data_flush,
99 Opt_mode,
100 Opt_fault_injection,
101 Opt_lazytime,
102 Opt_nolazytime,
103 Opt_err,
104 };
105
106 static match_table_t f2fs_tokens = {
107 {Opt_gc_background, "background_gc=%s"},
108 {Opt_disable_roll_forward, "disable_roll_forward"},
109 {Opt_norecovery, "norecovery"},
110 {Opt_discard, "discard"},
111 {Opt_nodiscard, "nodiscard"},
112 {Opt_noheap, "no_heap"},
113 {Opt_user_xattr, "user_xattr"},
114 {Opt_nouser_xattr, "nouser_xattr"},
115 {Opt_acl, "acl"},
116 {Opt_noacl, "noacl"},
117 {Opt_active_logs, "active_logs=%u"},
118 {Opt_disable_ext_identify, "disable_ext_identify"},
119 {Opt_inline_xattr, "inline_xattr"},
120 {Opt_inline_data, "inline_data"},
121 {Opt_inline_dentry, "inline_dentry"},
122 {Opt_noinline_dentry, "noinline_dentry"},
123 {Opt_flush_merge, "flush_merge"},
124 {Opt_noflush_merge, "noflush_merge"},
125 {Opt_nobarrier, "nobarrier"},
126 {Opt_fastboot, "fastboot"},
127 {Opt_extent_cache, "extent_cache"},
128 {Opt_noextent_cache, "noextent_cache"},
129 {Opt_noinline_data, "noinline_data"},
130 {Opt_data_flush, "data_flush"},
131 {Opt_mode, "mode=%s"},
132 {Opt_fault_injection, "fault_injection=%u"},
133 {Opt_lazytime, "lazytime"},
134 {Opt_nolazytime, "nolazytime"},
135 {Opt_err, NULL},
136 };
137
138 /* Sysfs support for f2fs */
139 enum {
140 GC_THREAD, /* struct f2fs_gc_thread */
141 SM_INFO, /* struct f2fs_sm_info */
142 NM_INFO, /* struct f2fs_nm_info */
143 F2FS_SBI, /* struct f2fs_sb_info */
144 #ifdef CONFIG_F2FS_FAULT_INJECTION
145 FAULT_INFO_RATE, /* struct f2fs_fault_info */
146 FAULT_INFO_TYPE, /* struct f2fs_fault_info */
147 #endif
148 };
149
150 struct f2fs_attr {
151 struct attribute attr;
152 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
153 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
154 const char *, size_t);
155 int struct_type;
156 int offset;
157 };
158
159 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
160 {
161 if (struct_type == GC_THREAD)
162 return (unsigned char *)sbi->gc_thread;
163 else if (struct_type == SM_INFO)
164 return (unsigned char *)SM_I(sbi);
165 else if (struct_type == NM_INFO)
166 return (unsigned char *)NM_I(sbi);
167 else if (struct_type == F2FS_SBI)
168 return (unsigned char *)sbi;
169 #ifdef CONFIG_F2FS_FAULT_INJECTION
170 else if (struct_type == FAULT_INFO_RATE ||
171 struct_type == FAULT_INFO_TYPE)
172 return (unsigned char *)&f2fs_fault;
173 #endif
174 return NULL;
175 }
176
177 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
178 struct f2fs_sb_info *sbi, char *buf)
179 {
180 struct super_block *sb = sbi->sb;
181
182 if (!sb->s_bdev->bd_part)
183 return snprintf(buf, PAGE_SIZE, "0\n");
184
185 return snprintf(buf, PAGE_SIZE, "%llu\n",
186 (unsigned long long)(sbi->kbytes_written +
187 BD_PART_WRITTEN(sbi)));
188 }
189
190 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
191 struct f2fs_sb_info *sbi, char *buf)
192 {
193 unsigned char *ptr = NULL;
194 unsigned int *ui;
195
196 ptr = __struct_ptr(sbi, a->struct_type);
197 if (!ptr)
198 return -EINVAL;
199
200 ui = (unsigned int *)(ptr + a->offset);
201
202 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
203 }
204
205 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
206 struct f2fs_sb_info *sbi,
207 const char *buf, size_t count)
208 {
209 unsigned char *ptr;
210 unsigned long t;
211 unsigned int *ui;
212 ssize_t ret;
213
214 ptr = __struct_ptr(sbi, a->struct_type);
215 if (!ptr)
216 return -EINVAL;
217
218 ui = (unsigned int *)(ptr + a->offset);
219
220 ret = kstrtoul(skip_spaces(buf), 0, &t);
221 if (ret < 0)
222 return ret;
223 #ifdef CONFIG_F2FS_FAULT_INJECTION
224 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
225 return -EINVAL;
226 #endif
227 *ui = t;
228 return count;
229 }
230
231 static ssize_t f2fs_attr_show(struct kobject *kobj,
232 struct attribute *attr, char *buf)
233 {
234 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
235 s_kobj);
236 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
237
238 return a->show ? a->show(a, sbi, buf) : 0;
239 }
240
241 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
242 const char *buf, size_t len)
243 {
244 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
245 s_kobj);
246 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
247
248 return a->store ? a->store(a, sbi, buf, len) : 0;
249 }
250
251 static void f2fs_sb_release(struct kobject *kobj)
252 {
253 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
254 s_kobj);
255 complete(&sbi->s_kobj_unregister);
256 }
257
258 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
259 static struct f2fs_attr f2fs_attr_##_name = { \
260 .attr = {.name = __stringify(_name), .mode = _mode }, \
261 .show = _show, \
262 .store = _store, \
263 .struct_type = _struct_type, \
264 .offset = _offset \
265 }
266
267 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
268 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
269 f2fs_sbi_show, f2fs_sbi_store, \
270 offsetof(struct struct_name, elname))
271
272 #define F2FS_GENERAL_RO_ATTR(name) \
273 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
274
275 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
276 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
277 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
278 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
279 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
280 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
281 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
282 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
283 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
284 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
285 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
286 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
287 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
288 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
289 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
290 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
291 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
292 #ifdef CONFIG_F2FS_FAULT_INJECTION
293 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
294 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
295 #endif
296 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
297
298 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
299 static struct attribute *f2fs_attrs[] = {
300 ATTR_LIST(gc_min_sleep_time),
301 ATTR_LIST(gc_max_sleep_time),
302 ATTR_LIST(gc_no_gc_sleep_time),
303 ATTR_LIST(gc_idle),
304 ATTR_LIST(reclaim_segments),
305 ATTR_LIST(max_small_discards),
306 ATTR_LIST(batched_trim_sections),
307 ATTR_LIST(ipu_policy),
308 ATTR_LIST(min_ipu_util),
309 ATTR_LIST(min_fsync_blocks),
310 ATTR_LIST(max_victim_search),
311 ATTR_LIST(dir_level),
312 ATTR_LIST(ram_thresh),
313 ATTR_LIST(ra_nid_pages),
314 ATTR_LIST(dirty_nats_ratio),
315 ATTR_LIST(cp_interval),
316 ATTR_LIST(idle_interval),
317 ATTR_LIST(lifetime_write_kbytes),
318 NULL,
319 };
320
321 static const struct sysfs_ops f2fs_attr_ops = {
322 .show = f2fs_attr_show,
323 .store = f2fs_attr_store,
324 };
325
326 static struct kobj_type f2fs_ktype = {
327 .default_attrs = f2fs_attrs,
328 .sysfs_ops = &f2fs_attr_ops,
329 .release = f2fs_sb_release,
330 };
331
332 #ifdef CONFIG_F2FS_FAULT_INJECTION
333 /* sysfs for f2fs fault injection */
334 static struct kobject f2fs_fault_inject;
335
336 static struct attribute *f2fs_fault_attrs[] = {
337 ATTR_LIST(inject_rate),
338 ATTR_LIST(inject_type),
339 NULL
340 };
341
342 static struct kobj_type f2fs_fault_ktype = {
343 .default_attrs = f2fs_fault_attrs,
344 .sysfs_ops = &f2fs_attr_ops,
345 };
346 #endif
347
348 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
349 {
350 struct va_format vaf;
351 va_list args;
352
353 va_start(args, fmt);
354 vaf.fmt = fmt;
355 vaf.va = &args;
356 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
357 va_end(args);
358 }
359
360 static void init_once(void *foo)
361 {
362 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
363
364 inode_init_once(&fi->vfs_inode);
365 }
366
367 static int parse_options(struct super_block *sb, char *options)
368 {
369 struct f2fs_sb_info *sbi = F2FS_SB(sb);
370 struct request_queue *q;
371 substring_t args[MAX_OPT_ARGS];
372 char *p, *name;
373 int arg = 0;
374
375 #ifdef CONFIG_F2FS_FAULT_INJECTION
376 f2fs_build_fault_attr(0);
377 #endif
378
379 if (!options)
380 return 0;
381
382 while ((p = strsep(&options, ",")) != NULL) {
383 int token;
384 if (!*p)
385 continue;
386 /*
387 * Initialize args struct so we know whether arg was
388 * found; some options take optional arguments.
389 */
390 args[0].to = args[0].from = NULL;
391 token = match_token(p, f2fs_tokens, args);
392
393 switch (token) {
394 case Opt_gc_background:
395 name = match_strdup(&args[0]);
396
397 if (!name)
398 return -ENOMEM;
399 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
400 set_opt(sbi, BG_GC);
401 clear_opt(sbi, FORCE_FG_GC);
402 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
403 clear_opt(sbi, BG_GC);
404 clear_opt(sbi, FORCE_FG_GC);
405 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
406 set_opt(sbi, BG_GC);
407 set_opt(sbi, FORCE_FG_GC);
408 } else {
409 kfree(name);
410 return -EINVAL;
411 }
412 kfree(name);
413 break;
414 case Opt_disable_roll_forward:
415 set_opt(sbi, DISABLE_ROLL_FORWARD);
416 break;
417 case Opt_norecovery:
418 /* this option mounts f2fs with ro */
419 set_opt(sbi, DISABLE_ROLL_FORWARD);
420 if (!f2fs_readonly(sb))
421 return -EINVAL;
422 break;
423 case Opt_discard:
424 q = bdev_get_queue(sb->s_bdev);
425 if (blk_queue_discard(q)) {
426 set_opt(sbi, DISCARD);
427 } else {
428 f2fs_msg(sb, KERN_WARNING,
429 "mounting with \"discard\" option, but "
430 "the device does not support discard");
431 }
432 break;
433 case Opt_nodiscard:
434 clear_opt(sbi, DISCARD);
435 case Opt_noheap:
436 set_opt(sbi, NOHEAP);
437 break;
438 #ifdef CONFIG_F2FS_FS_XATTR
439 case Opt_user_xattr:
440 set_opt(sbi, XATTR_USER);
441 break;
442 case Opt_nouser_xattr:
443 clear_opt(sbi, XATTR_USER);
444 break;
445 case Opt_inline_xattr:
446 set_opt(sbi, INLINE_XATTR);
447 break;
448 #else
449 case Opt_user_xattr:
450 f2fs_msg(sb, KERN_INFO,
451 "user_xattr options not supported");
452 break;
453 case Opt_nouser_xattr:
454 f2fs_msg(sb, KERN_INFO,
455 "nouser_xattr options not supported");
456 break;
457 case Opt_inline_xattr:
458 f2fs_msg(sb, KERN_INFO,
459 "inline_xattr options not supported");
460 break;
461 #endif
462 #ifdef CONFIG_F2FS_FS_POSIX_ACL
463 case Opt_acl:
464 set_opt(sbi, POSIX_ACL);
465 break;
466 case Opt_noacl:
467 clear_opt(sbi, POSIX_ACL);
468 break;
469 #else
470 case Opt_acl:
471 f2fs_msg(sb, KERN_INFO, "acl options not supported");
472 break;
473 case Opt_noacl:
474 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
475 break;
476 #endif
477 case Opt_active_logs:
478 if (args->from && match_int(args, &arg))
479 return -EINVAL;
480 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
481 return -EINVAL;
482 sbi->active_logs = arg;
483 break;
484 case Opt_disable_ext_identify:
485 set_opt(sbi, DISABLE_EXT_IDENTIFY);
486 break;
487 case Opt_inline_data:
488 set_opt(sbi, INLINE_DATA);
489 break;
490 case Opt_inline_dentry:
491 set_opt(sbi, INLINE_DENTRY);
492 break;
493 case Opt_noinline_dentry:
494 clear_opt(sbi, INLINE_DENTRY);
495 break;
496 case Opt_flush_merge:
497 set_opt(sbi, FLUSH_MERGE);
498 break;
499 case Opt_noflush_merge:
500 clear_opt(sbi, FLUSH_MERGE);
501 break;
502 case Opt_nobarrier:
503 set_opt(sbi, NOBARRIER);
504 break;
505 case Opt_fastboot:
506 set_opt(sbi, FASTBOOT);
507 break;
508 case Opt_extent_cache:
509 set_opt(sbi, EXTENT_CACHE);
510 break;
511 case Opt_noextent_cache:
512 clear_opt(sbi, EXTENT_CACHE);
513 break;
514 case Opt_noinline_data:
515 clear_opt(sbi, INLINE_DATA);
516 break;
517 case Opt_data_flush:
518 set_opt(sbi, DATA_FLUSH);
519 break;
520 case Opt_mode:
521 name = match_strdup(&args[0]);
522
523 if (!name)
524 return -ENOMEM;
525 if (strlen(name) == 8 &&
526 !strncmp(name, "adaptive", 8)) {
527 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
528 } else if (strlen(name) == 3 &&
529 !strncmp(name, "lfs", 3)) {
530 set_opt_mode(sbi, F2FS_MOUNT_LFS);
531 } else {
532 kfree(name);
533 return -EINVAL;
534 }
535 kfree(name);
536 break;
537 case Opt_fault_injection:
538 if (args->from && match_int(args, &arg))
539 return -EINVAL;
540 #ifdef CONFIG_F2FS_FAULT_INJECTION
541 f2fs_build_fault_attr(arg);
542 #else
543 f2fs_msg(sb, KERN_INFO,
544 "FAULT_INJECTION was not selected");
545 #endif
546 break;
547 case Opt_lazytime:
548 sb->s_flags |= MS_LAZYTIME;
549 break;
550 case Opt_nolazytime:
551 sb->s_flags &= ~MS_LAZYTIME;
552 break;
553 default:
554 f2fs_msg(sb, KERN_ERR,
555 "Unrecognized mount option \"%s\" or missing value",
556 p);
557 return -EINVAL;
558 }
559 }
560 return 0;
561 }
562
563 static struct inode *f2fs_alloc_inode(struct super_block *sb)
564 {
565 struct f2fs_inode_info *fi;
566
567 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
568 if (!fi)
569 return NULL;
570
571 init_once((void *) fi);
572
573 if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
574 kmem_cache_free(f2fs_inode_cachep, fi);
575 return NULL;
576 }
577
578 /* Initialize f2fs-specific inode info */
579 fi->vfs_inode.i_version = 1;
580 fi->i_current_depth = 1;
581 fi->i_advise = 0;
582 init_rwsem(&fi->i_sem);
583 INIT_LIST_HEAD(&fi->dirty_list);
584 INIT_LIST_HEAD(&fi->gdirty_list);
585 INIT_LIST_HEAD(&fi->inmem_pages);
586 mutex_init(&fi->inmem_lock);
587 init_rwsem(&fi->dio_rwsem[READ]);
588 init_rwsem(&fi->dio_rwsem[WRITE]);
589
590 /* Will be used by directory only */
591 fi->i_dir_level = F2FS_SB(sb)->dir_level;
592 return &fi->vfs_inode;
593 }
594
595 static int f2fs_drop_inode(struct inode *inode)
596 {
597 /*
598 * This is to avoid a deadlock condition like below.
599 * writeback_single_inode(inode)
600 * - f2fs_write_data_page
601 * - f2fs_gc -> iput -> evict
602 * - inode_wait_for_writeback(inode)
603 */
604 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
605 if (!inode->i_nlink && !is_bad_inode(inode)) {
606 /* to avoid evict_inode call simultaneously */
607 atomic_inc(&inode->i_count);
608 spin_unlock(&inode->i_lock);
609
610 /* some remained atomic pages should discarded */
611 if (f2fs_is_atomic_file(inode))
612 drop_inmem_pages(inode);
613
614 /* should remain fi->extent_tree for writepage */
615 f2fs_destroy_extent_node(inode);
616
617 sb_start_intwrite(inode->i_sb);
618 f2fs_i_size_write(inode, 0);
619
620 if (F2FS_HAS_BLOCKS(inode))
621 f2fs_truncate(inode);
622
623 sb_end_intwrite(inode->i_sb);
624
625 fscrypt_put_encryption_info(inode, NULL);
626 spin_lock(&inode->i_lock);
627 atomic_dec(&inode->i_count);
628 }
629 return 0;
630 }
631
632 return generic_drop_inode(inode);
633 }
634
635 int f2fs_inode_dirtied(struct inode *inode)
636 {
637 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
638
639 spin_lock(&sbi->inode_lock[DIRTY_META]);
640 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
641 spin_unlock(&sbi->inode_lock[DIRTY_META]);
642 return 1;
643 }
644
645 set_inode_flag(inode, FI_DIRTY_INODE);
646 list_add_tail(&F2FS_I(inode)->gdirty_list,
647 &sbi->inode_list[DIRTY_META]);
648 inc_page_count(sbi, F2FS_DIRTY_IMETA);
649 stat_inc_dirty_inode(sbi, DIRTY_META);
650 spin_unlock(&sbi->inode_lock[DIRTY_META]);
651
652 return 0;
653 }
654
655 void f2fs_inode_synced(struct inode *inode)
656 {
657 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
658
659 spin_lock(&sbi->inode_lock[DIRTY_META]);
660 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
661 spin_unlock(&sbi->inode_lock[DIRTY_META]);
662 return;
663 }
664 list_del_init(&F2FS_I(inode)->gdirty_list);
665 clear_inode_flag(inode, FI_DIRTY_INODE);
666 clear_inode_flag(inode, FI_AUTO_RECOVER);
667 dec_page_count(sbi, F2FS_DIRTY_IMETA);
668 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
669 spin_unlock(&sbi->inode_lock[DIRTY_META]);
670 }
671
672 /*
673 * f2fs_dirty_inode() is called from __mark_inode_dirty()
674 *
675 * We should call set_dirty_inode to write the dirty inode through write_inode.
676 */
677 static void f2fs_dirty_inode(struct inode *inode, int flags)
678 {
679 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
680
681 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
682 inode->i_ino == F2FS_META_INO(sbi))
683 return;
684
685 if (flags == I_DIRTY_TIME)
686 return;
687
688 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
689 clear_inode_flag(inode, FI_AUTO_RECOVER);
690
691 f2fs_inode_dirtied(inode);
692 }
693
694 static void f2fs_i_callback(struct rcu_head *head)
695 {
696 struct inode *inode = container_of(head, struct inode, i_rcu);
697 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
698 }
699
700 static void f2fs_destroy_inode(struct inode *inode)
701 {
702 percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
703 call_rcu(&inode->i_rcu, f2fs_i_callback);
704 }
705
706 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
707 {
708 int i;
709
710 for (i = 0; i < NR_COUNT_TYPE; i++)
711 percpu_counter_destroy(&sbi->nr_pages[i]);
712 percpu_counter_destroy(&sbi->alloc_valid_block_count);
713 percpu_counter_destroy(&sbi->total_valid_inode_count);
714 }
715
716 static void f2fs_put_super(struct super_block *sb)
717 {
718 struct f2fs_sb_info *sbi = F2FS_SB(sb);
719
720 if (sbi->s_proc) {
721 remove_proc_entry("segment_info", sbi->s_proc);
722 remove_proc_entry("segment_bits", sbi->s_proc);
723 remove_proc_entry(sb->s_id, f2fs_proc_root);
724 }
725 kobject_del(&sbi->s_kobj);
726
727 stop_gc_thread(sbi);
728
729 /* prevent remaining shrinker jobs */
730 mutex_lock(&sbi->umount_mutex);
731
732 /*
733 * We don't need to do checkpoint when superblock is clean.
734 * But, the previous checkpoint was not done by umount, it needs to do
735 * clean checkpoint again.
736 */
737 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
738 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
739 struct cp_control cpc = {
740 .reason = CP_UMOUNT,
741 };
742 write_checkpoint(sbi, &cpc);
743 }
744
745 /* write_checkpoint can update stat informaion */
746 f2fs_destroy_stats(sbi);
747
748 /*
749 * normally superblock is clean, so we need to release this.
750 * In addition, EIO will skip do checkpoint, we need this as well.
751 */
752 release_ino_entry(sbi, true);
753 release_discard_addrs(sbi);
754
755 f2fs_leave_shrinker(sbi);
756 mutex_unlock(&sbi->umount_mutex);
757
758 /* our cp_error case, we can wait for any writeback page */
759 f2fs_flush_merged_bios(sbi);
760
761 iput(sbi->node_inode);
762 iput(sbi->meta_inode);
763
764 /* destroy f2fs internal modules */
765 destroy_node_manager(sbi);
766 destroy_segment_manager(sbi);
767
768 kfree(sbi->ckpt);
769 kobject_put(&sbi->s_kobj);
770 wait_for_completion(&sbi->s_kobj_unregister);
771
772 sb->s_fs_info = NULL;
773 if (sbi->s_chksum_driver)
774 crypto_free_shash(sbi->s_chksum_driver);
775 kfree(sbi->raw_super);
776
777 destroy_percpu_info(sbi);
778 kfree(sbi);
779 }
780
781 int f2fs_sync_fs(struct super_block *sb, int sync)
782 {
783 struct f2fs_sb_info *sbi = F2FS_SB(sb);
784 int err = 0;
785
786 trace_f2fs_sync_fs(sb, sync);
787
788 if (sync) {
789 struct cp_control cpc;
790
791 cpc.reason = __get_cp_reason(sbi);
792
793 mutex_lock(&sbi->gc_mutex);
794 err = write_checkpoint(sbi, &cpc);
795 mutex_unlock(&sbi->gc_mutex);
796 }
797 f2fs_trace_ios(NULL, 1);
798
799 return err;
800 }
801
802 static int f2fs_freeze(struct super_block *sb)
803 {
804 int err;
805
806 if (f2fs_readonly(sb))
807 return 0;
808
809 err = f2fs_sync_fs(sb, 1);
810 return err;
811 }
812
813 static int f2fs_unfreeze(struct super_block *sb)
814 {
815 return 0;
816 }
817
818 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
819 {
820 struct super_block *sb = dentry->d_sb;
821 struct f2fs_sb_info *sbi = F2FS_SB(sb);
822 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
823 block_t total_count, user_block_count, start_count, ovp_count;
824
825 total_count = le64_to_cpu(sbi->raw_super->block_count);
826 user_block_count = sbi->user_block_count;
827 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
828 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
829 buf->f_type = F2FS_SUPER_MAGIC;
830 buf->f_bsize = sbi->blocksize;
831
832 buf->f_blocks = total_count - start_count;
833 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
834 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
835
836 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
837 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
838
839 buf->f_namelen = F2FS_NAME_LEN;
840 buf->f_fsid.val[0] = (u32)id;
841 buf->f_fsid.val[1] = (u32)(id >> 32);
842
843 return 0;
844 }
845
846 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
847 {
848 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
849
850 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
851 if (test_opt(sbi, FORCE_FG_GC))
852 seq_printf(seq, ",background_gc=%s", "sync");
853 else
854 seq_printf(seq, ",background_gc=%s", "on");
855 } else {
856 seq_printf(seq, ",background_gc=%s", "off");
857 }
858 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
859 seq_puts(seq, ",disable_roll_forward");
860 if (test_opt(sbi, DISCARD))
861 seq_puts(seq, ",discard");
862 if (test_opt(sbi, NOHEAP))
863 seq_puts(seq, ",no_heap_alloc");
864 #ifdef CONFIG_F2FS_FS_XATTR
865 if (test_opt(sbi, XATTR_USER))
866 seq_puts(seq, ",user_xattr");
867 else
868 seq_puts(seq, ",nouser_xattr");
869 if (test_opt(sbi, INLINE_XATTR))
870 seq_puts(seq, ",inline_xattr");
871 #endif
872 #ifdef CONFIG_F2FS_FS_POSIX_ACL
873 if (test_opt(sbi, POSIX_ACL))
874 seq_puts(seq, ",acl");
875 else
876 seq_puts(seq, ",noacl");
877 #endif
878 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
879 seq_puts(seq, ",disable_ext_identify");
880 if (test_opt(sbi, INLINE_DATA))
881 seq_puts(seq, ",inline_data");
882 else
883 seq_puts(seq, ",noinline_data");
884 if (test_opt(sbi, INLINE_DENTRY))
885 seq_puts(seq, ",inline_dentry");
886 else
887 seq_puts(seq, ",noinline_dentry");
888 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
889 seq_puts(seq, ",flush_merge");
890 if (test_opt(sbi, NOBARRIER))
891 seq_puts(seq, ",nobarrier");
892 if (test_opt(sbi, FASTBOOT))
893 seq_puts(seq, ",fastboot");
894 if (test_opt(sbi, EXTENT_CACHE))
895 seq_puts(seq, ",extent_cache");
896 else
897 seq_puts(seq, ",noextent_cache");
898 if (test_opt(sbi, DATA_FLUSH))
899 seq_puts(seq, ",data_flush");
900
901 seq_puts(seq, ",mode=");
902 if (test_opt(sbi, ADAPTIVE))
903 seq_puts(seq, "adaptive");
904 else if (test_opt(sbi, LFS))
905 seq_puts(seq, "lfs");
906 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
907
908 return 0;
909 }
910
911 static int segment_info_seq_show(struct seq_file *seq, void *offset)
912 {
913 struct super_block *sb = seq->private;
914 struct f2fs_sb_info *sbi = F2FS_SB(sb);
915 unsigned int total_segs =
916 le32_to_cpu(sbi->raw_super->segment_count_main);
917 int i;
918
919 seq_puts(seq, "format: segment_type|valid_blocks\n"
920 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
921
922 for (i = 0; i < total_segs; i++) {
923 struct seg_entry *se = get_seg_entry(sbi, i);
924
925 if ((i % 10) == 0)
926 seq_printf(seq, "%-10d", i);
927 seq_printf(seq, "%d|%-3u", se->type,
928 get_valid_blocks(sbi, i, 1));
929 if ((i % 10) == 9 || i == (total_segs - 1))
930 seq_putc(seq, '\n');
931 else
932 seq_putc(seq, ' ');
933 }
934
935 return 0;
936 }
937
938 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
939 {
940 struct super_block *sb = seq->private;
941 struct f2fs_sb_info *sbi = F2FS_SB(sb);
942 unsigned int total_segs =
943 le32_to_cpu(sbi->raw_super->segment_count_main);
944 int i, j;
945
946 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
947 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
948
949 for (i = 0; i < total_segs; i++) {
950 struct seg_entry *se = get_seg_entry(sbi, i);
951
952 seq_printf(seq, "%-10d", i);
953 seq_printf(seq, "%d|%-3u|", se->type,
954 get_valid_blocks(sbi, i, 1));
955 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
956 seq_printf(seq, "%x ", se->cur_valid_map[j]);
957 seq_putc(seq, '\n');
958 }
959 return 0;
960 }
961
962 #define F2FS_PROC_FILE_DEF(_name) \
963 static int _name##_open_fs(struct inode *inode, struct file *file) \
964 { \
965 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
966 } \
967 \
968 static const struct file_operations f2fs_seq_##_name##_fops = { \
969 .open = _name##_open_fs, \
970 .read = seq_read, \
971 .llseek = seq_lseek, \
972 .release = single_release, \
973 };
974
975 F2FS_PROC_FILE_DEF(segment_info);
976 F2FS_PROC_FILE_DEF(segment_bits);
977
978 static void default_options(struct f2fs_sb_info *sbi)
979 {
980 /* init some FS parameters */
981 sbi->active_logs = NR_CURSEG_TYPE;
982
983 set_opt(sbi, BG_GC);
984 set_opt(sbi, INLINE_DATA);
985 set_opt(sbi, INLINE_DENTRY);
986 set_opt(sbi, EXTENT_CACHE);
987 sbi->sb->s_flags |= MS_LAZYTIME;
988 set_opt(sbi, FLUSH_MERGE);
989 if (f2fs_sb_mounted_hmsmr(sbi->sb)) {
990 set_opt_mode(sbi, F2FS_MOUNT_LFS);
991 set_opt(sbi, DISCARD);
992 } else {
993 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
994 }
995
996 #ifdef CONFIG_F2FS_FS_XATTR
997 set_opt(sbi, XATTR_USER);
998 #endif
999 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1000 set_opt(sbi, POSIX_ACL);
1001 #endif
1002 }
1003
1004 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1005 {
1006 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1007 struct f2fs_mount_info org_mount_opt;
1008 int err, active_logs;
1009 bool need_restart_gc = false;
1010 bool need_stop_gc = false;
1011 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1012
1013 /*
1014 * Save the old mount options in case we
1015 * need to restore them.
1016 */
1017 org_mount_opt = sbi->mount_opt;
1018 active_logs = sbi->active_logs;
1019
1020 /* recover superblocks we couldn't write due to previous RO mount */
1021 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1022 err = f2fs_commit_super(sbi, false);
1023 f2fs_msg(sb, KERN_INFO,
1024 "Try to recover all the superblocks, ret: %d", err);
1025 if (!err)
1026 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1027 }
1028
1029 sbi->mount_opt.opt = 0;
1030 default_options(sbi);
1031
1032 /* parse mount options */
1033 err = parse_options(sb, data);
1034 if (err)
1035 goto restore_opts;
1036
1037 /*
1038 * Previous and new state of filesystem is RO,
1039 * so skip checking GC and FLUSH_MERGE conditions.
1040 */
1041 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1042 goto skip;
1043
1044 /* disallow enable/disable extent_cache dynamically */
1045 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1046 err = -EINVAL;
1047 f2fs_msg(sbi->sb, KERN_WARNING,
1048 "switch extent_cache option is not allowed");
1049 goto restore_opts;
1050 }
1051
1052 /*
1053 * We stop the GC thread if FS is mounted as RO
1054 * or if background_gc = off is passed in mount
1055 * option. Also sync the filesystem.
1056 */
1057 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1058 if (sbi->gc_thread) {
1059 stop_gc_thread(sbi);
1060 need_restart_gc = true;
1061 }
1062 } else if (!sbi->gc_thread) {
1063 err = start_gc_thread(sbi);
1064 if (err)
1065 goto restore_opts;
1066 need_stop_gc = true;
1067 }
1068
1069 if (*flags & MS_RDONLY) {
1070 writeback_inodes_sb(sb, WB_REASON_SYNC);
1071 sync_inodes_sb(sb);
1072
1073 set_sbi_flag(sbi, SBI_IS_DIRTY);
1074 set_sbi_flag(sbi, SBI_IS_CLOSE);
1075 f2fs_sync_fs(sb, 1);
1076 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1077 }
1078
1079 /*
1080 * We stop issue flush thread if FS is mounted as RO
1081 * or if flush_merge is not passed in mount option.
1082 */
1083 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1084 destroy_flush_cmd_control(sbi);
1085 } else if (!SM_I(sbi)->cmd_control_info) {
1086 err = create_flush_cmd_control(sbi);
1087 if (err)
1088 goto restore_gc;
1089 }
1090 skip:
1091 /* Update the POSIXACL Flag */
1092 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1093 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1094
1095 return 0;
1096 restore_gc:
1097 if (need_restart_gc) {
1098 if (start_gc_thread(sbi))
1099 f2fs_msg(sbi->sb, KERN_WARNING,
1100 "background gc thread has stopped");
1101 } else if (need_stop_gc) {
1102 stop_gc_thread(sbi);
1103 }
1104 restore_opts:
1105 sbi->mount_opt = org_mount_opt;
1106 sbi->active_logs = active_logs;
1107 return err;
1108 }
1109
1110 static struct super_operations f2fs_sops = {
1111 .alloc_inode = f2fs_alloc_inode,
1112 .drop_inode = f2fs_drop_inode,
1113 .destroy_inode = f2fs_destroy_inode,
1114 .write_inode = f2fs_write_inode,
1115 .dirty_inode = f2fs_dirty_inode,
1116 .show_options = f2fs_show_options,
1117 .evict_inode = f2fs_evict_inode,
1118 .put_super = f2fs_put_super,
1119 .sync_fs = f2fs_sync_fs,
1120 .freeze_fs = f2fs_freeze,
1121 .unfreeze_fs = f2fs_unfreeze,
1122 .statfs = f2fs_statfs,
1123 .remount_fs = f2fs_remount,
1124 };
1125
1126 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1127 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1128 {
1129 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1130 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1131 ctx, len, NULL);
1132 }
1133
1134 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1135 {
1136 *key = F2FS_I_SB(inode)->key_prefix;
1137 return F2FS_I_SB(inode)->key_prefix_size;
1138 }
1139
1140 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1141 void *fs_data)
1142 {
1143 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1144 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1145 ctx, len, fs_data, XATTR_CREATE);
1146 }
1147
1148 static unsigned f2fs_max_namelen(struct inode *inode)
1149 {
1150 return S_ISLNK(inode->i_mode) ?
1151 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1152 }
1153
1154 static struct fscrypt_operations f2fs_cryptops = {
1155 .get_context = f2fs_get_context,
1156 .key_prefix = f2fs_key_prefix,
1157 .set_context = f2fs_set_context,
1158 .is_encrypted = f2fs_encrypted_inode,
1159 .empty_dir = f2fs_empty_dir,
1160 .max_namelen = f2fs_max_namelen,
1161 };
1162 #else
1163 static struct fscrypt_operations f2fs_cryptops = {
1164 .is_encrypted = f2fs_encrypted_inode,
1165 };
1166 #endif
1167
1168 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1169 u64 ino, u32 generation)
1170 {
1171 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1172 struct inode *inode;
1173
1174 if (check_nid_range(sbi, ino))
1175 return ERR_PTR(-ESTALE);
1176
1177 /*
1178 * f2fs_iget isn't quite right if the inode is currently unallocated!
1179 * However f2fs_iget currently does appropriate checks to handle stale
1180 * inodes so everything is OK.
1181 */
1182 inode = f2fs_iget(sb, ino);
1183 if (IS_ERR(inode))
1184 return ERR_CAST(inode);
1185 if (unlikely(generation && inode->i_generation != generation)) {
1186 /* we didn't find the right inode.. */
1187 iput(inode);
1188 return ERR_PTR(-ESTALE);
1189 }
1190 return inode;
1191 }
1192
1193 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1194 int fh_len, int fh_type)
1195 {
1196 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1197 f2fs_nfs_get_inode);
1198 }
1199
1200 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1201 int fh_len, int fh_type)
1202 {
1203 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1204 f2fs_nfs_get_inode);
1205 }
1206
1207 static const struct export_operations f2fs_export_ops = {
1208 .fh_to_dentry = f2fs_fh_to_dentry,
1209 .fh_to_parent = f2fs_fh_to_parent,
1210 .get_parent = f2fs_get_parent,
1211 };
1212
1213 static loff_t max_file_blocks(void)
1214 {
1215 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1216 loff_t leaf_count = ADDRS_PER_BLOCK;
1217
1218 /* two direct node blocks */
1219 result += (leaf_count * 2);
1220
1221 /* two indirect node blocks */
1222 leaf_count *= NIDS_PER_BLOCK;
1223 result += (leaf_count * 2);
1224
1225 /* one double indirect node block */
1226 leaf_count *= NIDS_PER_BLOCK;
1227 result += leaf_count;
1228
1229 return result;
1230 }
1231
1232 static int __f2fs_commit_super(struct buffer_head *bh,
1233 struct f2fs_super_block *super)
1234 {
1235 lock_buffer(bh);
1236 if (super)
1237 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1238 set_buffer_uptodate(bh);
1239 set_buffer_dirty(bh);
1240 unlock_buffer(bh);
1241
1242 /* it's rare case, we can do fua all the time */
1243 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1244 }
1245
1246 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1247 struct buffer_head *bh)
1248 {
1249 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1250 (bh->b_data + F2FS_SUPER_OFFSET);
1251 struct super_block *sb = sbi->sb;
1252 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1253 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1254 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1255 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1256 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1257 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1258 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1259 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1260 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1261 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1262 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1263 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1264 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1265 u64 main_end_blkaddr = main_blkaddr +
1266 (segment_count_main << log_blocks_per_seg);
1267 u64 seg_end_blkaddr = segment0_blkaddr +
1268 (segment_count << log_blocks_per_seg);
1269
1270 if (segment0_blkaddr != cp_blkaddr) {
1271 f2fs_msg(sb, KERN_INFO,
1272 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1273 segment0_blkaddr, cp_blkaddr);
1274 return true;
1275 }
1276
1277 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1278 sit_blkaddr) {
1279 f2fs_msg(sb, KERN_INFO,
1280 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1281 cp_blkaddr, sit_blkaddr,
1282 segment_count_ckpt << log_blocks_per_seg);
1283 return true;
1284 }
1285
1286 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1287 nat_blkaddr) {
1288 f2fs_msg(sb, KERN_INFO,
1289 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1290 sit_blkaddr, nat_blkaddr,
1291 segment_count_sit << log_blocks_per_seg);
1292 return true;
1293 }
1294
1295 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1296 ssa_blkaddr) {
1297 f2fs_msg(sb, KERN_INFO,
1298 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1299 nat_blkaddr, ssa_blkaddr,
1300 segment_count_nat << log_blocks_per_seg);
1301 return true;
1302 }
1303
1304 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1305 main_blkaddr) {
1306 f2fs_msg(sb, KERN_INFO,
1307 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1308 ssa_blkaddr, main_blkaddr,
1309 segment_count_ssa << log_blocks_per_seg);
1310 return true;
1311 }
1312
1313 if (main_end_blkaddr > seg_end_blkaddr) {
1314 f2fs_msg(sb, KERN_INFO,
1315 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1316 main_blkaddr,
1317 segment0_blkaddr +
1318 (segment_count << log_blocks_per_seg),
1319 segment_count_main << log_blocks_per_seg);
1320 return true;
1321 } else if (main_end_blkaddr < seg_end_blkaddr) {
1322 int err = 0;
1323 char *res;
1324
1325 /* fix in-memory information all the time */
1326 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1327 segment0_blkaddr) >> log_blocks_per_seg);
1328
1329 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1330 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1331 res = "internally";
1332 } else {
1333 err = __f2fs_commit_super(bh, NULL);
1334 res = err ? "failed" : "done";
1335 }
1336 f2fs_msg(sb, KERN_INFO,
1337 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1338 res, main_blkaddr,
1339 segment0_blkaddr +
1340 (segment_count << log_blocks_per_seg),
1341 segment_count_main << log_blocks_per_seg);
1342 if (err)
1343 return true;
1344 }
1345 return false;
1346 }
1347
1348 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1349 struct buffer_head *bh)
1350 {
1351 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1352 (bh->b_data + F2FS_SUPER_OFFSET);
1353 struct super_block *sb = sbi->sb;
1354 unsigned int blocksize;
1355
1356 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1357 f2fs_msg(sb, KERN_INFO,
1358 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1359 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1360 return 1;
1361 }
1362
1363 /* Currently, support only 4KB page cache size */
1364 if (F2FS_BLKSIZE != PAGE_SIZE) {
1365 f2fs_msg(sb, KERN_INFO,
1366 "Invalid page_cache_size (%lu), supports only 4KB\n",
1367 PAGE_SIZE);
1368 return 1;
1369 }
1370
1371 /* Currently, support only 4KB block size */
1372 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1373 if (blocksize != F2FS_BLKSIZE) {
1374 f2fs_msg(sb, KERN_INFO,
1375 "Invalid blocksize (%u), supports only 4KB\n",
1376 blocksize);
1377 return 1;
1378 }
1379
1380 /* check log blocks per segment */
1381 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1382 f2fs_msg(sb, KERN_INFO,
1383 "Invalid log blocks per segment (%u)\n",
1384 le32_to_cpu(raw_super->log_blocks_per_seg));
1385 return 1;
1386 }
1387
1388 /* Currently, support 512/1024/2048/4096 bytes sector size */
1389 if (le32_to_cpu(raw_super->log_sectorsize) >
1390 F2FS_MAX_LOG_SECTOR_SIZE ||
1391 le32_to_cpu(raw_super->log_sectorsize) <
1392 F2FS_MIN_LOG_SECTOR_SIZE) {
1393 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1394 le32_to_cpu(raw_super->log_sectorsize));
1395 return 1;
1396 }
1397 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1398 le32_to_cpu(raw_super->log_sectorsize) !=
1399 F2FS_MAX_LOG_SECTOR_SIZE) {
1400 f2fs_msg(sb, KERN_INFO,
1401 "Invalid log sectors per block(%u) log sectorsize(%u)",
1402 le32_to_cpu(raw_super->log_sectors_per_block),
1403 le32_to_cpu(raw_super->log_sectorsize));
1404 return 1;
1405 }
1406
1407 /* check reserved ino info */
1408 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1409 le32_to_cpu(raw_super->meta_ino) != 2 ||
1410 le32_to_cpu(raw_super->root_ino) != 3) {
1411 f2fs_msg(sb, KERN_INFO,
1412 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1413 le32_to_cpu(raw_super->node_ino),
1414 le32_to_cpu(raw_super->meta_ino),
1415 le32_to_cpu(raw_super->root_ino));
1416 return 1;
1417 }
1418
1419 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1420 if (sanity_check_area_boundary(sbi, bh))
1421 return 1;
1422
1423 return 0;
1424 }
1425
1426 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1427 {
1428 unsigned int total, fsmeta;
1429 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1430 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1431
1432 total = le32_to_cpu(raw_super->segment_count);
1433 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1434 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1435 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1436 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1437 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1438
1439 if (unlikely(fsmeta >= total))
1440 return 1;
1441
1442 if (unlikely(f2fs_cp_error(sbi))) {
1443 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1444 return 1;
1445 }
1446 return 0;
1447 }
1448
1449 static void init_sb_info(struct f2fs_sb_info *sbi)
1450 {
1451 struct f2fs_super_block *raw_super = sbi->raw_super;
1452
1453 sbi->log_sectors_per_block =
1454 le32_to_cpu(raw_super->log_sectors_per_block);
1455 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1456 sbi->blocksize = 1 << sbi->log_blocksize;
1457 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1458 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1459 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1460 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1461 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1462 sbi->total_node_count =
1463 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1464 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1465 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1466 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1467 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1468 sbi->cur_victim_sec = NULL_SECNO;
1469 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1470
1471 sbi->dir_level = DEF_DIR_LEVEL;
1472 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1473 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1474 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1475
1476 INIT_LIST_HEAD(&sbi->s_list);
1477 mutex_init(&sbi->umount_mutex);
1478 mutex_init(&sbi->wio_mutex[NODE]);
1479 mutex_init(&sbi->wio_mutex[DATA]);
1480
1481 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1482 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1483 F2FS_KEY_DESC_PREFIX_SIZE);
1484 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1485 #endif
1486 }
1487
1488 static int init_percpu_info(struct f2fs_sb_info *sbi)
1489 {
1490 int i, err;
1491
1492 for (i = 0; i < NR_COUNT_TYPE; i++) {
1493 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1494 if (err)
1495 return err;
1496 }
1497
1498 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1499 if (err)
1500 return err;
1501
1502 return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1503 GFP_KERNEL);
1504 }
1505
1506 /*
1507 * Read f2fs raw super block.
1508 * Because we have two copies of super block, so read both of them
1509 * to get the first valid one. If any one of them is broken, we pass
1510 * them recovery flag back to the caller.
1511 */
1512 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1513 struct f2fs_super_block **raw_super,
1514 int *valid_super_block, int *recovery)
1515 {
1516 struct super_block *sb = sbi->sb;
1517 int block;
1518 struct buffer_head *bh;
1519 struct f2fs_super_block *super;
1520 int err = 0;
1521
1522 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1523 if (!super)
1524 return -ENOMEM;
1525
1526 for (block = 0; block < 2; block++) {
1527 bh = sb_bread(sb, block);
1528 if (!bh) {
1529 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1530 block + 1);
1531 err = -EIO;
1532 continue;
1533 }
1534
1535 /* sanity checking of raw super */
1536 if (sanity_check_raw_super(sbi, bh)) {
1537 f2fs_msg(sb, KERN_ERR,
1538 "Can't find valid F2FS filesystem in %dth superblock",
1539 block + 1);
1540 err = -EINVAL;
1541 brelse(bh);
1542 continue;
1543 }
1544
1545 if (!*raw_super) {
1546 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1547 sizeof(*super));
1548 *valid_super_block = block;
1549 *raw_super = super;
1550 }
1551 brelse(bh);
1552 }
1553
1554 /* Fail to read any one of the superblocks*/
1555 if (err < 0)
1556 *recovery = 1;
1557
1558 /* No valid superblock */
1559 if (!*raw_super)
1560 kfree(super);
1561 else
1562 err = 0;
1563
1564 return err;
1565 }
1566
1567 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1568 {
1569 struct buffer_head *bh;
1570 int err;
1571
1572 if ((recover && f2fs_readonly(sbi->sb)) ||
1573 bdev_read_only(sbi->sb->s_bdev)) {
1574 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1575 return -EROFS;
1576 }
1577
1578 /* write back-up superblock first */
1579 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1580 if (!bh)
1581 return -EIO;
1582 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1583 brelse(bh);
1584
1585 /* if we are in recovery path, skip writing valid superblock */
1586 if (recover || err)
1587 return err;
1588
1589 /* write current valid superblock */
1590 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1591 if (!bh)
1592 return -EIO;
1593 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1594 brelse(bh);
1595 return err;
1596 }
1597
1598 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1599 {
1600 struct f2fs_sb_info *sbi;
1601 struct f2fs_super_block *raw_super;
1602 struct inode *root;
1603 int err;
1604 bool retry = true, need_fsck = false;
1605 char *options = NULL;
1606 int recovery, i, valid_super_block;
1607 struct curseg_info *seg_i;
1608
1609 try_onemore:
1610 err = -EINVAL;
1611 raw_super = NULL;
1612 valid_super_block = -1;
1613 recovery = 0;
1614
1615 /* allocate memory for f2fs-specific super block info */
1616 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1617 if (!sbi)
1618 return -ENOMEM;
1619
1620 sbi->sb = sb;
1621
1622 /* Load the checksum driver */
1623 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1624 if (IS_ERR(sbi->s_chksum_driver)) {
1625 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1626 err = PTR_ERR(sbi->s_chksum_driver);
1627 sbi->s_chksum_driver = NULL;
1628 goto free_sbi;
1629 }
1630
1631 /* set a block size */
1632 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1633 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1634 goto free_sbi;
1635 }
1636
1637 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1638 &recovery);
1639 if (err)
1640 goto free_sbi;
1641
1642 sb->s_fs_info = sbi;
1643 sbi->raw_super = raw_super;
1644
1645 default_options(sbi);
1646 /* parse mount options */
1647 options = kstrdup((const char *)data, GFP_KERNEL);
1648 if (data && !options) {
1649 err = -ENOMEM;
1650 goto free_sb_buf;
1651 }
1652
1653 err = parse_options(sb, options);
1654 if (err)
1655 goto free_options;
1656
1657 sbi->max_file_blocks = max_file_blocks();
1658 sb->s_maxbytes = sbi->max_file_blocks <<
1659 le32_to_cpu(raw_super->log_blocksize);
1660 sb->s_max_links = F2FS_LINK_MAX;
1661 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1662
1663 sb->s_op = &f2fs_sops;
1664 sb->s_cop = &f2fs_cryptops;
1665 sb->s_xattr = f2fs_xattr_handlers;
1666 sb->s_export_op = &f2fs_export_ops;
1667 sb->s_magic = F2FS_SUPER_MAGIC;
1668 sb->s_time_gran = 1;
1669 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1670 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1671 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1672
1673 /* init f2fs-specific super block info */
1674 sbi->valid_super_block = valid_super_block;
1675 mutex_init(&sbi->gc_mutex);
1676 mutex_init(&sbi->cp_mutex);
1677 init_rwsem(&sbi->node_write);
1678
1679 /* disallow all the data/node/meta page writes */
1680 set_sbi_flag(sbi, SBI_POR_DOING);
1681 spin_lock_init(&sbi->stat_lock);
1682
1683 init_rwsem(&sbi->read_io.io_rwsem);
1684 sbi->read_io.sbi = sbi;
1685 sbi->read_io.bio = NULL;
1686 for (i = 0; i < NR_PAGE_TYPE; i++) {
1687 init_rwsem(&sbi->write_io[i].io_rwsem);
1688 sbi->write_io[i].sbi = sbi;
1689 sbi->write_io[i].bio = NULL;
1690 }
1691
1692 init_rwsem(&sbi->cp_rwsem);
1693 init_waitqueue_head(&sbi->cp_wait);
1694 init_sb_info(sbi);
1695
1696 err = init_percpu_info(sbi);
1697 if (err)
1698 goto free_options;
1699
1700 /* get an inode for meta space */
1701 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1702 if (IS_ERR(sbi->meta_inode)) {
1703 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1704 err = PTR_ERR(sbi->meta_inode);
1705 goto free_options;
1706 }
1707
1708 err = get_valid_checkpoint(sbi);
1709 if (err) {
1710 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1711 goto free_meta_inode;
1712 }
1713
1714 sbi->total_valid_node_count =
1715 le32_to_cpu(sbi->ckpt->valid_node_count);
1716 percpu_counter_set(&sbi->total_valid_inode_count,
1717 le32_to_cpu(sbi->ckpt->valid_inode_count));
1718 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1719 sbi->total_valid_block_count =
1720 le64_to_cpu(sbi->ckpt->valid_block_count);
1721 sbi->last_valid_block_count = sbi->total_valid_block_count;
1722
1723 for (i = 0; i < NR_INODE_TYPE; i++) {
1724 INIT_LIST_HEAD(&sbi->inode_list[i]);
1725 spin_lock_init(&sbi->inode_lock[i]);
1726 }
1727
1728 init_extent_cache_info(sbi);
1729
1730 init_ino_entry_info(sbi);
1731
1732 /* setup f2fs internal modules */
1733 err = build_segment_manager(sbi);
1734 if (err) {
1735 f2fs_msg(sb, KERN_ERR,
1736 "Failed to initialize F2FS segment manager");
1737 goto free_sm;
1738 }
1739 err = build_node_manager(sbi);
1740 if (err) {
1741 f2fs_msg(sb, KERN_ERR,
1742 "Failed to initialize F2FS node manager");
1743 goto free_nm;
1744 }
1745
1746 /* For write statistics */
1747 if (sb->s_bdev->bd_part)
1748 sbi->sectors_written_start =
1749 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1750
1751 /* Read accumulated write IO statistics if exists */
1752 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1753 if (__exist_node_summaries(sbi))
1754 sbi->kbytes_written =
1755 le64_to_cpu(seg_i->journal->info.kbytes_written);
1756
1757 build_gc_manager(sbi);
1758
1759 /* get an inode for node space */
1760 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1761 if (IS_ERR(sbi->node_inode)) {
1762 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1763 err = PTR_ERR(sbi->node_inode);
1764 goto free_nm;
1765 }
1766
1767 f2fs_join_shrinker(sbi);
1768
1769 /* if there are nt orphan nodes free them */
1770 err = recover_orphan_inodes(sbi);
1771 if (err)
1772 goto free_node_inode;
1773
1774 /* read root inode and dentry */
1775 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1776 if (IS_ERR(root)) {
1777 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1778 err = PTR_ERR(root);
1779 goto free_node_inode;
1780 }
1781 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1782 iput(root);
1783 err = -EINVAL;
1784 goto free_node_inode;
1785 }
1786
1787 sb->s_root = d_make_root(root); /* allocate root dentry */
1788 if (!sb->s_root) {
1789 err = -ENOMEM;
1790 goto free_root_inode;
1791 }
1792
1793 err = f2fs_build_stats(sbi);
1794 if (err)
1795 goto free_root_inode;
1796
1797 if (f2fs_proc_root)
1798 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1799
1800 if (sbi->s_proc) {
1801 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1802 &f2fs_seq_segment_info_fops, sb);
1803 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1804 &f2fs_seq_segment_bits_fops, sb);
1805 }
1806
1807 sbi->s_kobj.kset = f2fs_kset;
1808 init_completion(&sbi->s_kobj_unregister);
1809 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1810 "%s", sb->s_id);
1811 if (err)
1812 goto free_proc;
1813
1814 /* recover fsynced data */
1815 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1816 /*
1817 * mount should be failed, when device has readonly mode, and
1818 * previous checkpoint was not done by clean system shutdown.
1819 */
1820 if (bdev_read_only(sb->s_bdev) &&
1821 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1822 err = -EROFS;
1823 goto free_kobj;
1824 }
1825
1826 if (need_fsck)
1827 set_sbi_flag(sbi, SBI_NEED_FSCK);
1828
1829 err = recover_fsync_data(sbi, false);
1830 if (err < 0) {
1831 need_fsck = true;
1832 f2fs_msg(sb, KERN_ERR,
1833 "Cannot recover all fsync data errno=%d", err);
1834 goto free_kobj;
1835 }
1836 } else {
1837 err = recover_fsync_data(sbi, true);
1838
1839 if (!f2fs_readonly(sb) && err > 0) {
1840 err = -EINVAL;
1841 f2fs_msg(sb, KERN_ERR,
1842 "Need to recover fsync data");
1843 goto free_kobj;
1844 }
1845 }
1846
1847 /* recover_fsync_data() cleared this already */
1848 clear_sbi_flag(sbi, SBI_POR_DOING);
1849
1850 /*
1851 * If filesystem is not mounted as read-only then
1852 * do start the gc_thread.
1853 */
1854 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1855 /* After POR, we can run background GC thread.*/
1856 err = start_gc_thread(sbi);
1857 if (err)
1858 goto free_kobj;
1859 }
1860 kfree(options);
1861
1862 /* recover broken superblock */
1863 if (recovery) {
1864 err = f2fs_commit_super(sbi, true);
1865 f2fs_msg(sb, KERN_INFO,
1866 "Try to recover %dth superblock, ret: %d",
1867 sbi->valid_super_block ? 1 : 2, err);
1868 }
1869
1870 f2fs_update_time(sbi, CP_TIME);
1871 f2fs_update_time(sbi, REQ_TIME);
1872 return 0;
1873
1874 free_kobj:
1875 f2fs_sync_inode_meta(sbi);
1876 kobject_del(&sbi->s_kobj);
1877 kobject_put(&sbi->s_kobj);
1878 wait_for_completion(&sbi->s_kobj_unregister);
1879 free_proc:
1880 if (sbi->s_proc) {
1881 remove_proc_entry("segment_info", sbi->s_proc);
1882 remove_proc_entry("segment_bits", sbi->s_proc);
1883 remove_proc_entry(sb->s_id, f2fs_proc_root);
1884 }
1885 f2fs_destroy_stats(sbi);
1886 free_root_inode:
1887 dput(sb->s_root);
1888 sb->s_root = NULL;
1889 free_node_inode:
1890 mutex_lock(&sbi->umount_mutex);
1891 f2fs_leave_shrinker(sbi);
1892 iput(sbi->node_inode);
1893 mutex_unlock(&sbi->umount_mutex);
1894 free_nm:
1895 destroy_node_manager(sbi);
1896 free_sm:
1897 destroy_segment_manager(sbi);
1898 kfree(sbi->ckpt);
1899 free_meta_inode:
1900 make_bad_inode(sbi->meta_inode);
1901 iput(sbi->meta_inode);
1902 free_options:
1903 destroy_percpu_info(sbi);
1904 kfree(options);
1905 free_sb_buf:
1906 kfree(raw_super);
1907 free_sbi:
1908 if (sbi->s_chksum_driver)
1909 crypto_free_shash(sbi->s_chksum_driver);
1910 kfree(sbi);
1911
1912 /* give only one another chance */
1913 if (retry) {
1914 retry = false;
1915 shrink_dcache_sb(sb);
1916 goto try_onemore;
1917 }
1918 return err;
1919 }
1920
1921 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1922 const char *dev_name, void *data)
1923 {
1924 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1925 }
1926
1927 static void kill_f2fs_super(struct super_block *sb)
1928 {
1929 if (sb->s_root)
1930 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1931 kill_block_super(sb);
1932 }
1933
1934 static struct file_system_type f2fs_fs_type = {
1935 .owner = THIS_MODULE,
1936 .name = "f2fs",
1937 .mount = f2fs_mount,
1938 .kill_sb = kill_f2fs_super,
1939 .fs_flags = FS_REQUIRES_DEV,
1940 };
1941 MODULE_ALIAS_FS("f2fs");
1942
1943 static int __init init_inodecache(void)
1944 {
1945 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1946 sizeof(struct f2fs_inode_info), 0,
1947 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1948 if (!f2fs_inode_cachep)
1949 return -ENOMEM;
1950 return 0;
1951 }
1952
1953 static void destroy_inodecache(void)
1954 {
1955 /*
1956 * Make sure all delayed rcu free inodes are flushed before we
1957 * destroy cache.
1958 */
1959 rcu_barrier();
1960 kmem_cache_destroy(f2fs_inode_cachep);
1961 }
1962
1963 static int __init init_f2fs_fs(void)
1964 {
1965 int err;
1966
1967 f2fs_build_trace_ios();
1968
1969 err = init_inodecache();
1970 if (err)
1971 goto fail;
1972 err = create_node_manager_caches();
1973 if (err)
1974 goto free_inodecache;
1975 err = create_segment_manager_caches();
1976 if (err)
1977 goto free_node_manager_caches;
1978 err = create_checkpoint_caches();
1979 if (err)
1980 goto free_segment_manager_caches;
1981 err = create_extent_cache();
1982 if (err)
1983 goto free_checkpoint_caches;
1984 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1985 if (!f2fs_kset) {
1986 err = -ENOMEM;
1987 goto free_extent_cache;
1988 }
1989 #ifdef CONFIG_F2FS_FAULT_INJECTION
1990 f2fs_fault_inject.kset = f2fs_kset;
1991 f2fs_build_fault_attr(0);
1992 err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype,
1993 NULL, "fault_injection");
1994 if (err) {
1995 f2fs_fault_inject.kset = NULL;
1996 goto free_kset;
1997 }
1998 #endif
1999 err = register_shrinker(&f2fs_shrinker_info);
2000 if (err)
2001 goto free_kset;
2002
2003 err = register_filesystem(&f2fs_fs_type);
2004 if (err)
2005 goto free_shrinker;
2006 err = f2fs_create_root_stats();
2007 if (err)
2008 goto free_filesystem;
2009 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
2010 return 0;
2011
2012 free_filesystem:
2013 unregister_filesystem(&f2fs_fs_type);
2014 free_shrinker:
2015 unregister_shrinker(&f2fs_shrinker_info);
2016 free_kset:
2017 #ifdef CONFIG_F2FS_FAULT_INJECTION
2018 if (f2fs_fault_inject.kset)
2019 kobject_put(&f2fs_fault_inject);
2020 #endif
2021 kset_unregister(f2fs_kset);
2022 free_extent_cache:
2023 destroy_extent_cache();
2024 free_checkpoint_caches:
2025 destroy_checkpoint_caches();
2026 free_segment_manager_caches:
2027 destroy_segment_manager_caches();
2028 free_node_manager_caches:
2029 destroy_node_manager_caches();
2030 free_inodecache:
2031 destroy_inodecache();
2032 fail:
2033 return err;
2034 }
2035
2036 static void __exit exit_f2fs_fs(void)
2037 {
2038 remove_proc_entry("fs/f2fs", NULL);
2039 f2fs_destroy_root_stats();
2040 unregister_filesystem(&f2fs_fs_type);
2041 unregister_shrinker(&f2fs_shrinker_info);
2042 #ifdef CONFIG_F2FS_FAULT_INJECTION
2043 kobject_put(&f2fs_fault_inject);
2044 #endif
2045 kset_unregister(f2fs_kset);
2046 destroy_extent_cache();
2047 destroy_checkpoint_caches();
2048 destroy_segment_manager_caches();
2049 destroy_node_manager_caches();
2050 destroy_inodecache();
2051 f2fs_destroy_trace_ios();
2052 }
2053
2054 module_init(init_f2fs_fs)
2055 module_exit(exit_f2fs_fs)
2056
2057 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2058 MODULE_DESCRIPTION("Flash Friendly File System");
2059 MODULE_LICENSE("GPL");
This page took 0.079958 seconds and 5 git commands to generate.