infrun.c:handle_inferior_event: Make process_event_stop_test label a function.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "record-full.h"
53 #include "inline-frame.h"
54 #include "jit.h"
55 #include "tracepoint.h"
56 #include "continuations.h"
57 #include "interps.h"
58 #include "skip.h"
59 #include "probe.h"
60 #include "objfiles.h"
61 #include "completer.h"
62 #include "target-descriptions.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static void set_schedlock_func (char *args, int from_tty,
83 struct cmd_list_element *c);
84
85 static int currently_stepping (struct thread_info *tp);
86
87 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
89
90 static void xdb_handle_command (char *args, int from_tty);
91
92 static int prepare_to_proceed (int);
93
94 static void print_exited_reason (int exitstatus);
95
96 static void print_signal_exited_reason (enum gdb_signal siggnal);
97
98 static void print_no_history_reason (void);
99
100 static void print_signal_received_reason (enum gdb_signal siggnal);
101
102 static void print_end_stepping_range_reason (void);
103
104 void _initialize_infrun (void);
105
106 void nullify_last_target_wait_ptid (void);
107
108 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
109
110 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
112 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
114 /* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117 int step_stop_if_no_debug = 0;
118 static void
119 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123 }
124
125 /* In asynchronous mode, but simulating synchronous execution. */
126
127 int sync_execution = 0;
128
129 /* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
131 running in. */
132
133 static ptid_t previous_inferior_ptid;
134
135 /* If set (default for legacy reasons), when following a fork, GDB
136 will detach from one of the fork branches, child or parent.
137 Exactly which branch is detached depends on 'set follow-fork-mode'
138 setting. */
139
140 static int detach_fork = 1;
141
142 int debug_displaced = 0;
143 static void
144 show_debug_displaced (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
148 }
149
150 unsigned int debug_infrun = 0;
151 static void
152 show_debug_infrun (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
156 }
157
158
159 /* Support for disabling address space randomization. */
160
161 int disable_randomization = 1;
162
163 static void
164 show_disable_randomization (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 if (target_supports_disable_randomization ())
168 fprintf_filtered (file,
169 _("Disabling randomization of debuggee's "
170 "virtual address space is %s.\n"),
171 value);
172 else
173 fputs_filtered (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform.\n"), file);
176 }
177
178 static void
179 set_disable_randomization (char *args, int from_tty,
180 struct cmd_list_element *c)
181 {
182 if (!target_supports_disable_randomization ())
183 error (_("Disabling randomization of debuggee's "
184 "virtual address space is unsupported on\n"
185 "this platform."));
186 }
187
188 /* User interface for non-stop mode. */
189
190 int non_stop = 0;
191 static int non_stop_1 = 0;
192
193 static void
194 set_non_stop (char *args, int from_tty,
195 struct cmd_list_element *c)
196 {
197 if (target_has_execution)
198 {
199 non_stop_1 = non_stop;
200 error (_("Cannot change this setting while the inferior is running."));
201 }
202
203 non_stop = non_stop_1;
204 }
205
206 static void
207 show_non_stop (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file,
211 _("Controlling the inferior in non-stop mode is %s.\n"),
212 value);
213 }
214
215 /* "Observer mode" is somewhat like a more extreme version of
216 non-stop, in which all GDB operations that might affect the
217 target's execution have been disabled. */
218
219 int observer_mode = 0;
220 static int observer_mode_1 = 0;
221
222 static void
223 set_observer_mode (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (target_has_execution)
227 {
228 observer_mode_1 = observer_mode;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 observer_mode = observer_mode_1;
233
234 may_write_registers = !observer_mode;
235 may_write_memory = !observer_mode;
236 may_insert_breakpoints = !observer_mode;
237 may_insert_tracepoints = !observer_mode;
238 /* We can insert fast tracepoints in or out of observer mode,
239 but enable them if we're going into this mode. */
240 if (observer_mode)
241 may_insert_fast_tracepoints = 1;
242 may_stop = !observer_mode;
243 update_target_permissions ();
244
245 /* Going *into* observer mode we must force non-stop, then
246 going out we leave it that way. */
247 if (observer_mode)
248 {
249 target_async_permitted = 1;
250 pagination_enabled = 0;
251 non_stop = non_stop_1 = 1;
252 }
253
254 if (from_tty)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (observer_mode ? "on" : "off"));
257 }
258
259 static void
260 show_observer_mode (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
264 }
265
266 /* This updates the value of observer mode based on changes in
267 permissions. Note that we are deliberately ignoring the values of
268 may-write-registers and may-write-memory, since the user may have
269 reason to enable these during a session, for instance to turn on a
270 debugging-related global. */
271
272 void
273 update_observer_mode (void)
274 {
275 int newval;
276
277 newval = (!may_insert_breakpoints
278 && !may_insert_tracepoints
279 && may_insert_fast_tracepoints
280 && !may_stop
281 && non_stop);
282
283 /* Let the user know if things change. */
284 if (newval != observer_mode)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (newval ? "on" : "off"));
287
288 observer_mode = observer_mode_1 = newval;
289 }
290
291 /* Tables of how to react to signals; the user sets them. */
292
293 static unsigned char *signal_stop;
294 static unsigned char *signal_print;
295 static unsigned char *signal_program;
296
297 /* Table of signals that are registered with "catch signal". A
298 non-zero entry indicates that the signal is caught by some "catch
299 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
300 signals. */
301 static unsigned char *signal_catch;
302
303 /* Table of signals that the target may silently handle.
304 This is automatically determined from the flags above,
305 and simply cached here. */
306 static unsigned char *signal_pass;
307
308 #define SET_SIGS(nsigs,sigs,flags) \
309 do { \
310 int signum = (nsigs); \
311 while (signum-- > 0) \
312 if ((sigs)[signum]) \
313 (flags)[signum] = 1; \
314 } while (0)
315
316 #define UNSET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 0; \
322 } while (0)
323
324 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
325 this function is to avoid exporting `signal_program'. */
326
327 void
328 update_signals_program_target (void)
329 {
330 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
331 }
332
333 /* Value to pass to target_resume() to cause all threads to resume. */
334
335 #define RESUME_ALL minus_one_ptid
336
337 /* Command list pointer for the "stop" placeholder. */
338
339 static struct cmd_list_element *stop_command;
340
341 /* Function inferior was in as of last step command. */
342
343 static struct symbol *step_start_function;
344
345 /* Nonzero if we want to give control to the user when we're notified
346 of shared library events by the dynamic linker. */
347 int stop_on_solib_events;
348
349 /* Enable or disable optional shared library event breakpoints
350 as appropriate when the above flag is changed. */
351
352 static void
353 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
354 {
355 update_solib_breakpoints ();
356 }
357
358 static void
359 show_stop_on_solib_events (struct ui_file *file, int from_tty,
360 struct cmd_list_element *c, const char *value)
361 {
362 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
363 value);
364 }
365
366 /* Nonzero means expecting a trace trap
367 and should stop the inferior and return silently when it happens. */
368
369 int stop_after_trap;
370
371 /* Save register contents here when executing a "finish" command or are
372 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
373 Thus this contains the return value from the called function (assuming
374 values are returned in a register). */
375
376 struct regcache *stop_registers;
377
378 /* Nonzero after stop if current stack frame should be printed. */
379
380 static int stop_print_frame;
381
382 /* This is a cached copy of the pid/waitstatus of the last event
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
385 static ptid_t target_last_wait_ptid;
386 static struct target_waitstatus target_last_waitstatus;
387
388 static void context_switch (ptid_t ptid);
389
390 void init_thread_stepping_state (struct thread_info *tss);
391
392 static void init_infwait_state (void);
393
394 static const char follow_fork_mode_child[] = "child";
395 static const char follow_fork_mode_parent[] = "parent";
396
397 static const char *const follow_fork_mode_kind_names[] = {
398 follow_fork_mode_child,
399 follow_fork_mode_parent,
400 NULL
401 };
402
403 static const char *follow_fork_mode_string = follow_fork_mode_parent;
404 static void
405 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407 {
408 fprintf_filtered (file,
409 _("Debugger response to a program "
410 "call of fork or vfork is \"%s\".\n"),
411 value);
412 }
413 \f
414
415 /* Tell the target to follow the fork we're stopped at. Returns true
416 if the inferior should be resumed; false, if the target for some
417 reason decided it's best not to resume. */
418
419 static int
420 follow_fork (void)
421 {
422 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
423 int should_resume = 1;
424 struct thread_info *tp;
425
426 /* Copy user stepping state to the new inferior thread. FIXME: the
427 followed fork child thread should have a copy of most of the
428 parent thread structure's run control related fields, not just these.
429 Initialized to avoid "may be used uninitialized" warnings from gcc. */
430 struct breakpoint *step_resume_breakpoint = NULL;
431 struct breakpoint *exception_resume_breakpoint = NULL;
432 CORE_ADDR step_range_start = 0;
433 CORE_ADDR step_range_end = 0;
434 struct frame_id step_frame_id = { 0 };
435
436 if (!non_stop)
437 {
438 ptid_t wait_ptid;
439 struct target_waitstatus wait_status;
440
441 /* Get the last target status returned by target_wait(). */
442 get_last_target_status (&wait_ptid, &wait_status);
443
444 /* If not stopped at a fork event, then there's nothing else to
445 do. */
446 if (wait_status.kind != TARGET_WAITKIND_FORKED
447 && wait_status.kind != TARGET_WAITKIND_VFORKED)
448 return 1;
449
450 /* Check if we switched over from WAIT_PTID, since the event was
451 reported. */
452 if (!ptid_equal (wait_ptid, minus_one_ptid)
453 && !ptid_equal (inferior_ptid, wait_ptid))
454 {
455 /* We did. Switch back to WAIT_PTID thread, to tell the
456 target to follow it (in either direction). We'll
457 afterwards refuse to resume, and inform the user what
458 happened. */
459 switch_to_thread (wait_ptid);
460 should_resume = 0;
461 }
462 }
463
464 tp = inferior_thread ();
465
466 /* If there were any forks/vforks that were caught and are now to be
467 followed, then do so now. */
468 switch (tp->pending_follow.kind)
469 {
470 case TARGET_WAITKIND_FORKED:
471 case TARGET_WAITKIND_VFORKED:
472 {
473 ptid_t parent, child;
474
475 /* If the user did a next/step, etc, over a fork call,
476 preserve the stepping state in the fork child. */
477 if (follow_child && should_resume)
478 {
479 step_resume_breakpoint = clone_momentary_breakpoint
480 (tp->control.step_resume_breakpoint);
481 step_range_start = tp->control.step_range_start;
482 step_range_end = tp->control.step_range_end;
483 step_frame_id = tp->control.step_frame_id;
484 exception_resume_breakpoint
485 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
486
487 /* For now, delete the parent's sr breakpoint, otherwise,
488 parent/child sr breakpoints are considered duplicates,
489 and the child version will not be installed. Remove
490 this when the breakpoints module becomes aware of
491 inferiors and address spaces. */
492 delete_step_resume_breakpoint (tp);
493 tp->control.step_range_start = 0;
494 tp->control.step_range_end = 0;
495 tp->control.step_frame_id = null_frame_id;
496 delete_exception_resume_breakpoint (tp);
497 }
498
499 parent = inferior_ptid;
500 child = tp->pending_follow.value.related_pid;
501
502 /* Tell the target to do whatever is necessary to follow
503 either parent or child. */
504 if (target_follow_fork (follow_child, detach_fork))
505 {
506 /* Target refused to follow, or there's some other reason
507 we shouldn't resume. */
508 should_resume = 0;
509 }
510 else
511 {
512 /* This pending follow fork event is now handled, one way
513 or another. The previous selected thread may be gone
514 from the lists by now, but if it is still around, need
515 to clear the pending follow request. */
516 tp = find_thread_ptid (parent);
517 if (tp)
518 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
519
520 /* This makes sure we don't try to apply the "Switched
521 over from WAIT_PID" logic above. */
522 nullify_last_target_wait_ptid ();
523
524 /* If we followed the child, switch to it... */
525 if (follow_child)
526 {
527 switch_to_thread (child);
528
529 /* ... and preserve the stepping state, in case the
530 user was stepping over the fork call. */
531 if (should_resume)
532 {
533 tp = inferior_thread ();
534 tp->control.step_resume_breakpoint
535 = step_resume_breakpoint;
536 tp->control.step_range_start = step_range_start;
537 tp->control.step_range_end = step_range_end;
538 tp->control.step_frame_id = step_frame_id;
539 tp->control.exception_resume_breakpoint
540 = exception_resume_breakpoint;
541 }
542 else
543 {
544 /* If we get here, it was because we're trying to
545 resume from a fork catchpoint, but, the user
546 has switched threads away from the thread that
547 forked. In that case, the resume command
548 issued is most likely not applicable to the
549 child, so just warn, and refuse to resume. */
550 warning (_("Not resuming: switched threads "
551 "before following fork child.\n"));
552 }
553
554 /* Reset breakpoints in the child as appropriate. */
555 follow_inferior_reset_breakpoints ();
556 }
557 else
558 switch_to_thread (parent);
559 }
560 }
561 break;
562 case TARGET_WAITKIND_SPURIOUS:
563 /* Nothing to follow. */
564 break;
565 default:
566 internal_error (__FILE__, __LINE__,
567 "Unexpected pending_follow.kind %d\n",
568 tp->pending_follow.kind);
569 break;
570 }
571
572 return should_resume;
573 }
574
575 void
576 follow_inferior_reset_breakpoints (void)
577 {
578 struct thread_info *tp = inferior_thread ();
579
580 /* Was there a step_resume breakpoint? (There was if the user
581 did a "next" at the fork() call.) If so, explicitly reset its
582 thread number.
583
584 step_resumes are a form of bp that are made to be per-thread.
585 Since we created the step_resume bp when the parent process
586 was being debugged, and now are switching to the child process,
587 from the breakpoint package's viewpoint, that's a switch of
588 "threads". We must update the bp's notion of which thread
589 it is for, or it'll be ignored when it triggers. */
590
591 if (tp->control.step_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
593
594 if (tp->control.exception_resume_breakpoint)
595 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
596
597 /* Reinsert all breakpoints in the child. The user may have set
598 breakpoints after catching the fork, in which case those
599 were never set in the child, but only in the parent. This makes
600 sure the inserted breakpoints match the breakpoint list. */
601
602 breakpoint_re_set ();
603 insert_breakpoints ();
604 }
605
606 /* The child has exited or execed: resume threads of the parent the
607 user wanted to be executing. */
608
609 static int
610 proceed_after_vfork_done (struct thread_info *thread,
611 void *arg)
612 {
613 int pid = * (int *) arg;
614
615 if (ptid_get_pid (thread->ptid) == pid
616 && is_running (thread->ptid)
617 && !is_executing (thread->ptid)
618 && !thread->stop_requested
619 && thread->suspend.stop_signal == GDB_SIGNAL_0)
620 {
621 if (debug_infrun)
622 fprintf_unfiltered (gdb_stdlog,
623 "infrun: resuming vfork parent thread %s\n",
624 target_pid_to_str (thread->ptid));
625
626 switch_to_thread (thread->ptid);
627 clear_proceed_status ();
628 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
629 }
630
631 return 0;
632 }
633
634 /* Called whenever we notice an exec or exit event, to handle
635 detaching or resuming a vfork parent. */
636
637 static void
638 handle_vfork_child_exec_or_exit (int exec)
639 {
640 struct inferior *inf = current_inferior ();
641
642 if (inf->vfork_parent)
643 {
644 int resume_parent = -1;
645
646 /* This exec or exit marks the end of the shared memory region
647 between the parent and the child. If the user wanted to
648 detach from the parent, now is the time. */
649
650 if (inf->vfork_parent->pending_detach)
651 {
652 struct thread_info *tp;
653 struct cleanup *old_chain;
654 struct program_space *pspace;
655 struct address_space *aspace;
656
657 /* follow-fork child, detach-on-fork on. */
658
659 inf->vfork_parent->pending_detach = 0;
660
661 if (!exec)
662 {
663 /* If we're handling a child exit, then inferior_ptid
664 points at the inferior's pid, not to a thread. */
665 old_chain = save_inferior_ptid ();
666 save_current_program_space ();
667 save_current_inferior ();
668 }
669 else
670 old_chain = save_current_space_and_thread ();
671
672 /* We're letting loose of the parent. */
673 tp = any_live_thread_of_process (inf->vfork_parent->pid);
674 switch_to_thread (tp->ptid);
675
676 /* We're about to detach from the parent, which implicitly
677 removes breakpoints from its address space. There's a
678 catch here: we want to reuse the spaces for the child,
679 but, parent/child are still sharing the pspace at this
680 point, although the exec in reality makes the kernel give
681 the child a fresh set of new pages. The problem here is
682 that the breakpoints module being unaware of this, would
683 likely chose the child process to write to the parent
684 address space. Swapping the child temporarily away from
685 the spaces has the desired effect. Yes, this is "sort
686 of" a hack. */
687
688 pspace = inf->pspace;
689 aspace = inf->aspace;
690 inf->aspace = NULL;
691 inf->pspace = NULL;
692
693 if (debug_infrun || info_verbose)
694 {
695 target_terminal_ours ();
696
697 if (exec)
698 fprintf_filtered (gdb_stdlog,
699 "Detaching vfork parent process "
700 "%d after child exec.\n",
701 inf->vfork_parent->pid);
702 else
703 fprintf_filtered (gdb_stdlog,
704 "Detaching vfork parent process "
705 "%d after child exit.\n",
706 inf->vfork_parent->pid);
707 }
708
709 target_detach (NULL, 0);
710
711 /* Put it back. */
712 inf->pspace = pspace;
713 inf->aspace = aspace;
714
715 do_cleanups (old_chain);
716 }
717 else if (exec)
718 {
719 /* We're staying attached to the parent, so, really give the
720 child a new address space. */
721 inf->pspace = add_program_space (maybe_new_address_space ());
722 inf->aspace = inf->pspace->aspace;
723 inf->removable = 1;
724 set_current_program_space (inf->pspace);
725
726 resume_parent = inf->vfork_parent->pid;
727
728 /* Break the bonds. */
729 inf->vfork_parent->vfork_child = NULL;
730 }
731 else
732 {
733 struct cleanup *old_chain;
734 struct program_space *pspace;
735
736 /* If this is a vfork child exiting, then the pspace and
737 aspaces were shared with the parent. Since we're
738 reporting the process exit, we'll be mourning all that is
739 found in the address space, and switching to null_ptid,
740 preparing to start a new inferior. But, since we don't
741 want to clobber the parent's address/program spaces, we
742 go ahead and create a new one for this exiting
743 inferior. */
744
745 /* Switch to null_ptid, so that clone_program_space doesn't want
746 to read the selected frame of a dead process. */
747 old_chain = save_inferior_ptid ();
748 inferior_ptid = null_ptid;
749
750 /* This inferior is dead, so avoid giving the breakpoints
751 module the option to write through to it (cloning a
752 program space resets breakpoints). */
753 inf->aspace = NULL;
754 inf->pspace = NULL;
755 pspace = add_program_space (maybe_new_address_space ());
756 set_current_program_space (pspace);
757 inf->removable = 1;
758 inf->symfile_flags = SYMFILE_NO_READ;
759 clone_program_space (pspace, inf->vfork_parent->pspace);
760 inf->pspace = pspace;
761 inf->aspace = pspace->aspace;
762
763 /* Put back inferior_ptid. We'll continue mourning this
764 inferior. */
765 do_cleanups (old_chain);
766
767 resume_parent = inf->vfork_parent->pid;
768 /* Break the bonds. */
769 inf->vfork_parent->vfork_child = NULL;
770 }
771
772 inf->vfork_parent = NULL;
773
774 gdb_assert (current_program_space == inf->pspace);
775
776 if (non_stop && resume_parent != -1)
777 {
778 /* If the user wanted the parent to be running, let it go
779 free now. */
780 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
781
782 if (debug_infrun)
783 fprintf_unfiltered (gdb_stdlog,
784 "infrun: resuming vfork parent process %d\n",
785 resume_parent);
786
787 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
788
789 do_cleanups (old_chain);
790 }
791 }
792 }
793
794 /* Enum strings for "set|show follow-exec-mode". */
795
796 static const char follow_exec_mode_new[] = "new";
797 static const char follow_exec_mode_same[] = "same";
798 static const char *const follow_exec_mode_names[] =
799 {
800 follow_exec_mode_new,
801 follow_exec_mode_same,
802 NULL,
803 };
804
805 static const char *follow_exec_mode_string = follow_exec_mode_same;
806 static void
807 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809 {
810 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
811 }
812
813 /* EXECD_PATHNAME is assumed to be non-NULL. */
814
815 static void
816 follow_exec (ptid_t pid, char *execd_pathname)
817 {
818 struct thread_info *th = inferior_thread ();
819 struct inferior *inf = current_inferior ();
820
821 /* This is an exec event that we actually wish to pay attention to.
822 Refresh our symbol table to the newly exec'd program, remove any
823 momentary bp's, etc.
824
825 If there are breakpoints, they aren't really inserted now,
826 since the exec() transformed our inferior into a fresh set
827 of instructions.
828
829 We want to preserve symbolic breakpoints on the list, since
830 we have hopes that they can be reset after the new a.out's
831 symbol table is read.
832
833 However, any "raw" breakpoints must be removed from the list
834 (e.g., the solib bp's), since their address is probably invalid
835 now.
836
837 And, we DON'T want to call delete_breakpoints() here, since
838 that may write the bp's "shadow contents" (the instruction
839 value that was overwritten witha TRAP instruction). Since
840 we now have a new a.out, those shadow contents aren't valid. */
841
842 mark_breakpoints_out ();
843
844 update_breakpoints_after_exec ();
845
846 /* If there was one, it's gone now. We cannot truly step-to-next
847 statement through an exec(). */
848 th->control.step_resume_breakpoint = NULL;
849 th->control.exception_resume_breakpoint = NULL;
850 th->control.step_range_start = 0;
851 th->control.step_range_end = 0;
852
853 /* The target reports the exec event to the main thread, even if
854 some other thread does the exec, and even if the main thread was
855 already stopped --- if debugging in non-stop mode, it's possible
856 the user had the main thread held stopped in the previous image
857 --- release it now. This is the same behavior as step-over-exec
858 with scheduler-locking on in all-stop mode. */
859 th->stop_requested = 0;
860
861 /* What is this a.out's name? */
862 printf_unfiltered (_("%s is executing new program: %s\n"),
863 target_pid_to_str (inferior_ptid),
864 execd_pathname);
865
866 /* We've followed the inferior through an exec. Therefore, the
867 inferior has essentially been killed & reborn. */
868
869 gdb_flush (gdb_stdout);
870
871 breakpoint_init_inferior (inf_execd);
872
873 if (gdb_sysroot && *gdb_sysroot)
874 {
875 char *name = alloca (strlen (gdb_sysroot)
876 + strlen (execd_pathname)
877 + 1);
878
879 strcpy (name, gdb_sysroot);
880 strcat (name, execd_pathname);
881 execd_pathname = name;
882 }
883
884 /* Reset the shared library package. This ensures that we get a
885 shlib event when the child reaches "_start", at which point the
886 dld will have had a chance to initialize the child. */
887 /* Also, loading a symbol file below may trigger symbol lookups, and
888 we don't want those to be satisfied by the libraries of the
889 previous incarnation of this process. */
890 no_shared_libraries (NULL, 0);
891
892 if (follow_exec_mode_string == follow_exec_mode_new)
893 {
894 struct program_space *pspace;
895
896 /* The user wants to keep the old inferior and program spaces
897 around. Create a new fresh one, and switch to it. */
898
899 inf = add_inferior (current_inferior ()->pid);
900 pspace = add_program_space (maybe_new_address_space ());
901 inf->pspace = pspace;
902 inf->aspace = pspace->aspace;
903
904 exit_inferior_num_silent (current_inferior ()->num);
905
906 set_current_inferior (inf);
907 set_current_program_space (pspace);
908 }
909 else
910 {
911 /* The old description may no longer be fit for the new image.
912 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
913 old description; we'll read a new one below. No need to do
914 this on "follow-exec-mode new", as the old inferior stays
915 around (its description is later cleared/refetched on
916 restart). */
917 target_clear_description ();
918 }
919
920 gdb_assert (current_program_space == inf->pspace);
921
922 /* That a.out is now the one to use. */
923 exec_file_attach (execd_pathname, 0);
924
925 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
926 (Position Independent Executable) main symbol file will get applied by
927 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
928 the breakpoints with the zero displacement. */
929
930 symbol_file_add (execd_pathname,
931 (inf->symfile_flags
932 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
933 NULL, 0);
934
935 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
936 set_initial_language ();
937
938 /* If the target can specify a description, read it. Must do this
939 after flipping to the new executable (because the target supplied
940 description must be compatible with the executable's
941 architecture, and the old executable may e.g., be 32-bit, while
942 the new one 64-bit), and before anything involving memory or
943 registers. */
944 target_find_description ();
945
946 solib_create_inferior_hook (0);
947
948 jit_inferior_created_hook ();
949
950 breakpoint_re_set ();
951
952 /* Reinsert all breakpoints. (Those which were symbolic have
953 been reset to the proper address in the new a.out, thanks
954 to symbol_file_command...). */
955 insert_breakpoints ();
956
957 /* The next resume of this inferior should bring it to the shlib
958 startup breakpoints. (If the user had also set bp's on
959 "main" from the old (parent) process, then they'll auto-
960 matically get reset there in the new process.). */
961 }
962
963 /* Non-zero if we just simulating a single-step. This is needed
964 because we cannot remove the breakpoints in the inferior process
965 until after the `wait' in `wait_for_inferior'. */
966 static int singlestep_breakpoints_inserted_p = 0;
967
968 /* The thread we inserted single-step breakpoints for. */
969 static ptid_t singlestep_ptid;
970
971 /* PC when we started this single-step. */
972 static CORE_ADDR singlestep_pc;
973
974 /* If another thread hit the singlestep breakpoint, we save the original
975 thread here so that we can resume single-stepping it later. */
976 static ptid_t saved_singlestep_ptid;
977 static int stepping_past_singlestep_breakpoint;
978
979 /* If not equal to null_ptid, this means that after stepping over breakpoint
980 is finished, we need to switch to deferred_step_ptid, and step it.
981
982 The use case is when one thread has hit a breakpoint, and then the user
983 has switched to another thread and issued 'step'. We need to step over
984 breakpoint in the thread which hit the breakpoint, but then continue
985 stepping the thread user has selected. */
986 static ptid_t deferred_step_ptid;
987 \f
988 /* Displaced stepping. */
989
990 /* In non-stop debugging mode, we must take special care to manage
991 breakpoints properly; in particular, the traditional strategy for
992 stepping a thread past a breakpoint it has hit is unsuitable.
993 'Displaced stepping' is a tactic for stepping one thread past a
994 breakpoint it has hit while ensuring that other threads running
995 concurrently will hit the breakpoint as they should.
996
997 The traditional way to step a thread T off a breakpoint in a
998 multi-threaded program in all-stop mode is as follows:
999
1000 a0) Initially, all threads are stopped, and breakpoints are not
1001 inserted.
1002 a1) We single-step T, leaving breakpoints uninserted.
1003 a2) We insert breakpoints, and resume all threads.
1004
1005 In non-stop debugging, however, this strategy is unsuitable: we
1006 don't want to have to stop all threads in the system in order to
1007 continue or step T past a breakpoint. Instead, we use displaced
1008 stepping:
1009
1010 n0) Initially, T is stopped, other threads are running, and
1011 breakpoints are inserted.
1012 n1) We copy the instruction "under" the breakpoint to a separate
1013 location, outside the main code stream, making any adjustments
1014 to the instruction, register, and memory state as directed by
1015 T's architecture.
1016 n2) We single-step T over the instruction at its new location.
1017 n3) We adjust the resulting register and memory state as directed
1018 by T's architecture. This includes resetting T's PC to point
1019 back into the main instruction stream.
1020 n4) We resume T.
1021
1022 This approach depends on the following gdbarch methods:
1023
1024 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1025 indicate where to copy the instruction, and how much space must
1026 be reserved there. We use these in step n1.
1027
1028 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1029 address, and makes any necessary adjustments to the instruction,
1030 register contents, and memory. We use this in step n1.
1031
1032 - gdbarch_displaced_step_fixup adjusts registers and memory after
1033 we have successfuly single-stepped the instruction, to yield the
1034 same effect the instruction would have had if we had executed it
1035 at its original address. We use this in step n3.
1036
1037 - gdbarch_displaced_step_free_closure provides cleanup.
1038
1039 The gdbarch_displaced_step_copy_insn and
1040 gdbarch_displaced_step_fixup functions must be written so that
1041 copying an instruction with gdbarch_displaced_step_copy_insn,
1042 single-stepping across the copied instruction, and then applying
1043 gdbarch_displaced_insn_fixup should have the same effects on the
1044 thread's memory and registers as stepping the instruction in place
1045 would have. Exactly which responsibilities fall to the copy and
1046 which fall to the fixup is up to the author of those functions.
1047
1048 See the comments in gdbarch.sh for details.
1049
1050 Note that displaced stepping and software single-step cannot
1051 currently be used in combination, although with some care I think
1052 they could be made to. Software single-step works by placing
1053 breakpoints on all possible subsequent instructions; if the
1054 displaced instruction is a PC-relative jump, those breakpoints
1055 could fall in very strange places --- on pages that aren't
1056 executable, or at addresses that are not proper instruction
1057 boundaries. (We do generally let other threads run while we wait
1058 to hit the software single-step breakpoint, and they might
1059 encounter such a corrupted instruction.) One way to work around
1060 this would be to have gdbarch_displaced_step_copy_insn fully
1061 simulate the effect of PC-relative instructions (and return NULL)
1062 on architectures that use software single-stepping.
1063
1064 In non-stop mode, we can have independent and simultaneous step
1065 requests, so more than one thread may need to simultaneously step
1066 over a breakpoint. The current implementation assumes there is
1067 only one scratch space per process. In this case, we have to
1068 serialize access to the scratch space. If thread A wants to step
1069 over a breakpoint, but we are currently waiting for some other
1070 thread to complete a displaced step, we leave thread A stopped and
1071 place it in the displaced_step_request_queue. Whenever a displaced
1072 step finishes, we pick the next thread in the queue and start a new
1073 displaced step operation on it. See displaced_step_prepare and
1074 displaced_step_fixup for details. */
1075
1076 struct displaced_step_request
1077 {
1078 ptid_t ptid;
1079 struct displaced_step_request *next;
1080 };
1081
1082 /* Per-inferior displaced stepping state. */
1083 struct displaced_step_inferior_state
1084 {
1085 /* Pointer to next in linked list. */
1086 struct displaced_step_inferior_state *next;
1087
1088 /* The process this displaced step state refers to. */
1089 int pid;
1090
1091 /* A queue of pending displaced stepping requests. One entry per
1092 thread that needs to do a displaced step. */
1093 struct displaced_step_request *step_request_queue;
1094
1095 /* If this is not null_ptid, this is the thread carrying out a
1096 displaced single-step in process PID. This thread's state will
1097 require fixing up once it has completed its step. */
1098 ptid_t step_ptid;
1099
1100 /* The architecture the thread had when we stepped it. */
1101 struct gdbarch *step_gdbarch;
1102
1103 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1104 for post-step cleanup. */
1105 struct displaced_step_closure *step_closure;
1106
1107 /* The address of the original instruction, and the copy we
1108 made. */
1109 CORE_ADDR step_original, step_copy;
1110
1111 /* Saved contents of copy area. */
1112 gdb_byte *step_saved_copy;
1113 };
1114
1115 /* The list of states of processes involved in displaced stepping
1116 presently. */
1117 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1118
1119 /* Get the displaced stepping state of process PID. */
1120
1121 static struct displaced_step_inferior_state *
1122 get_displaced_stepping_state (int pid)
1123 {
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 return NULL;
1133 }
1134
1135 /* Add a new displaced stepping state for process PID to the displaced
1136 stepping state list, or return a pointer to an already existing
1137 entry, if it already exists. Never returns NULL. */
1138
1139 static struct displaced_step_inferior_state *
1140 add_displaced_stepping_state (int pid)
1141 {
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
1149
1150 state = xcalloc (1, sizeof (*state));
1151 state->pid = pid;
1152 state->next = displaced_step_inferior_states;
1153 displaced_step_inferior_states = state;
1154
1155 return state;
1156 }
1157
1158 /* If inferior is in displaced stepping, and ADDR equals to starting address
1159 of copy area, return corresponding displaced_step_closure. Otherwise,
1160 return NULL. */
1161
1162 struct displaced_step_closure*
1163 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1164 {
1165 struct displaced_step_inferior_state *displaced
1166 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1167
1168 /* If checking the mode of displaced instruction in copy area. */
1169 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1170 && (displaced->step_copy == addr))
1171 return displaced->step_closure;
1172
1173 return NULL;
1174 }
1175
1176 /* Remove the displaced stepping state of process PID. */
1177
1178 static void
1179 remove_displaced_stepping_state (int pid)
1180 {
1181 struct displaced_step_inferior_state *it, **prev_next_p;
1182
1183 gdb_assert (pid != 0);
1184
1185 it = displaced_step_inferior_states;
1186 prev_next_p = &displaced_step_inferior_states;
1187 while (it)
1188 {
1189 if (it->pid == pid)
1190 {
1191 *prev_next_p = it->next;
1192 xfree (it);
1193 return;
1194 }
1195
1196 prev_next_p = &it->next;
1197 it = *prev_next_p;
1198 }
1199 }
1200
1201 static void
1202 infrun_inferior_exit (struct inferior *inf)
1203 {
1204 remove_displaced_stepping_state (inf->pid);
1205 }
1206
1207 /* If ON, and the architecture supports it, GDB will use displaced
1208 stepping to step over breakpoints. If OFF, or if the architecture
1209 doesn't support it, GDB will instead use the traditional
1210 hold-and-step approach. If AUTO (which is the default), GDB will
1211 decide which technique to use to step over breakpoints depending on
1212 which of all-stop or non-stop mode is active --- displaced stepping
1213 in non-stop mode; hold-and-step in all-stop mode. */
1214
1215 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1216
1217 static void
1218 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1219 struct cmd_list_element *c,
1220 const char *value)
1221 {
1222 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s (currently %s).\n"),
1226 value, non_stop ? "on" : "off");
1227 else
1228 fprintf_filtered (file,
1229 _("Debugger's willingness to use displaced stepping "
1230 "to step over breakpoints is %s.\n"), value);
1231 }
1232
1233 /* Return non-zero if displaced stepping can/should be used to step
1234 over breakpoints. */
1235
1236 static int
1237 use_displaced_stepping (struct gdbarch *gdbarch)
1238 {
1239 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1240 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1241 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1242 && !RECORD_IS_USED);
1243 }
1244
1245 /* Clean out any stray displaced stepping state. */
1246 static void
1247 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1248 {
1249 /* Indicate that there is no cleanup pending. */
1250 displaced->step_ptid = null_ptid;
1251
1252 if (displaced->step_closure)
1253 {
1254 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1255 displaced->step_closure);
1256 displaced->step_closure = NULL;
1257 }
1258 }
1259
1260 static void
1261 displaced_step_clear_cleanup (void *arg)
1262 {
1263 struct displaced_step_inferior_state *state = arg;
1264
1265 displaced_step_clear (state);
1266 }
1267
1268 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1269 void
1270 displaced_step_dump_bytes (struct ui_file *file,
1271 const gdb_byte *buf,
1272 size_t len)
1273 {
1274 int i;
1275
1276 for (i = 0; i < len; i++)
1277 fprintf_unfiltered (file, "%02x ", buf[i]);
1278 fputs_unfiltered ("\n", file);
1279 }
1280
1281 /* Prepare to single-step, using displaced stepping.
1282
1283 Note that we cannot use displaced stepping when we have a signal to
1284 deliver. If we have a signal to deliver and an instruction to step
1285 over, then after the step, there will be no indication from the
1286 target whether the thread entered a signal handler or ignored the
1287 signal and stepped over the instruction successfully --- both cases
1288 result in a simple SIGTRAP. In the first case we mustn't do a
1289 fixup, and in the second case we must --- but we can't tell which.
1290 Comments in the code for 'random signals' in handle_inferior_event
1291 explain how we handle this case instead.
1292
1293 Returns 1 if preparing was successful -- this thread is going to be
1294 stepped now; or 0 if displaced stepping this thread got queued. */
1295 static int
1296 displaced_step_prepare (ptid_t ptid)
1297 {
1298 struct cleanup *old_cleanups, *ignore_cleanups;
1299 struct thread_info *tp = find_thread_ptid (ptid);
1300 struct regcache *regcache = get_thread_regcache (ptid);
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 CORE_ADDR original, copy;
1303 ULONGEST len;
1304 struct displaced_step_closure *closure;
1305 struct displaced_step_inferior_state *displaced;
1306 int status;
1307
1308 /* We should never reach this function if the architecture does not
1309 support displaced stepping. */
1310 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1311
1312 /* Disable range stepping while executing in the scratch pad. We
1313 want a single-step even if executing the displaced instruction in
1314 the scratch buffer lands within the stepping range (e.g., a
1315 jump/branch). */
1316 tp->control.may_range_step = 0;
1317
1318 /* We have to displaced step one thread at a time, as we only have
1319 access to a single scratch space per inferior. */
1320
1321 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1322
1323 if (!ptid_equal (displaced->step_ptid, null_ptid))
1324 {
1325 /* Already waiting for a displaced step to finish. Defer this
1326 request and place in queue. */
1327 struct displaced_step_request *req, *new_req;
1328
1329 if (debug_displaced)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "displaced: defering step of %s\n",
1332 target_pid_to_str (ptid));
1333
1334 new_req = xmalloc (sizeof (*new_req));
1335 new_req->ptid = ptid;
1336 new_req->next = NULL;
1337
1338 if (displaced->step_request_queue)
1339 {
1340 for (req = displaced->step_request_queue;
1341 req && req->next;
1342 req = req->next)
1343 ;
1344 req->next = new_req;
1345 }
1346 else
1347 displaced->step_request_queue = new_req;
1348
1349 return 0;
1350 }
1351 else
1352 {
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: stepping %s now\n",
1356 target_pid_to_str (ptid));
1357 }
1358
1359 displaced_step_clear (displaced);
1360
1361 old_cleanups = save_inferior_ptid ();
1362 inferior_ptid = ptid;
1363
1364 original = regcache_read_pc (regcache);
1365
1366 copy = gdbarch_displaced_step_location (gdbarch);
1367 len = gdbarch_max_insn_length (gdbarch);
1368
1369 /* Save the original contents of the copy area. */
1370 displaced->step_saved_copy = xmalloc (len);
1371 ignore_cleanups = make_cleanup (free_current_contents,
1372 &displaced->step_saved_copy);
1373 status = target_read_memory (copy, displaced->step_saved_copy, len);
1374 if (status != 0)
1375 throw_error (MEMORY_ERROR,
1376 _("Error accessing memory address %s (%s) for "
1377 "displaced-stepping scratch space."),
1378 paddress (gdbarch, copy), safe_strerror (status));
1379 if (debug_displaced)
1380 {
1381 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1382 paddress (gdbarch, copy));
1383 displaced_step_dump_bytes (gdb_stdlog,
1384 displaced->step_saved_copy,
1385 len);
1386 };
1387
1388 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1389 original, copy, regcache);
1390
1391 /* We don't support the fully-simulated case at present. */
1392 gdb_assert (closure);
1393
1394 /* Save the information we need to fix things up if the step
1395 succeeds. */
1396 displaced->step_ptid = ptid;
1397 displaced->step_gdbarch = gdbarch;
1398 displaced->step_closure = closure;
1399 displaced->step_original = original;
1400 displaced->step_copy = copy;
1401
1402 make_cleanup (displaced_step_clear_cleanup, displaced);
1403
1404 /* Resume execution at the copy. */
1405 regcache_write_pc (regcache, copy);
1406
1407 discard_cleanups (ignore_cleanups);
1408
1409 do_cleanups (old_cleanups);
1410
1411 if (debug_displaced)
1412 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1413 paddress (gdbarch, copy));
1414
1415 return 1;
1416 }
1417
1418 static void
1419 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1420 const gdb_byte *myaddr, int len)
1421 {
1422 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1423
1424 inferior_ptid = ptid;
1425 write_memory (memaddr, myaddr, len);
1426 do_cleanups (ptid_cleanup);
1427 }
1428
1429 /* Restore the contents of the copy area for thread PTID. */
1430
1431 static void
1432 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1433 ptid_t ptid)
1434 {
1435 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1436
1437 write_memory_ptid (ptid, displaced->step_copy,
1438 displaced->step_saved_copy, len);
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1441 target_pid_to_str (ptid),
1442 paddress (displaced->step_gdbarch,
1443 displaced->step_copy));
1444 }
1445
1446 static void
1447 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1448 {
1449 struct cleanup *old_cleanups;
1450 struct displaced_step_inferior_state *displaced
1451 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1452
1453 /* Was any thread of this process doing a displaced step? */
1454 if (displaced == NULL)
1455 return;
1456
1457 /* Was this event for the pid we displaced? */
1458 if (ptid_equal (displaced->step_ptid, null_ptid)
1459 || ! ptid_equal (displaced->step_ptid, event_ptid))
1460 return;
1461
1462 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1463
1464 displaced_step_restore (displaced, displaced->step_ptid);
1465
1466 /* Did the instruction complete successfully? */
1467 if (signal == GDB_SIGNAL_TRAP)
1468 {
1469 /* Fix up the resulting state. */
1470 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1471 displaced->step_closure,
1472 displaced->step_original,
1473 displaced->step_copy,
1474 get_thread_regcache (displaced->step_ptid));
1475 }
1476 else
1477 {
1478 /* Since the instruction didn't complete, all we can do is
1479 relocate the PC. */
1480 struct regcache *regcache = get_thread_regcache (event_ptid);
1481 CORE_ADDR pc = regcache_read_pc (regcache);
1482
1483 pc = displaced->step_original + (pc - displaced->step_copy);
1484 regcache_write_pc (regcache, pc);
1485 }
1486
1487 do_cleanups (old_cleanups);
1488
1489 displaced->step_ptid = null_ptid;
1490
1491 /* Are there any pending displaced stepping requests? If so, run
1492 one now. Leave the state object around, since we're likely to
1493 need it again soon. */
1494 while (displaced->step_request_queue)
1495 {
1496 struct displaced_step_request *head;
1497 ptid_t ptid;
1498 struct regcache *regcache;
1499 struct gdbarch *gdbarch;
1500 CORE_ADDR actual_pc;
1501 struct address_space *aspace;
1502
1503 head = displaced->step_request_queue;
1504 ptid = head->ptid;
1505 displaced->step_request_queue = head->next;
1506 xfree (head);
1507
1508 context_switch (ptid);
1509
1510 regcache = get_thread_regcache (ptid);
1511 actual_pc = regcache_read_pc (regcache);
1512 aspace = get_regcache_aspace (regcache);
1513
1514 if (breakpoint_here_p (aspace, actual_pc))
1515 {
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: stepping queued %s now\n",
1519 target_pid_to_str (ptid));
1520
1521 displaced_step_prepare (ptid);
1522
1523 gdbarch = get_regcache_arch (regcache);
1524
1525 if (debug_displaced)
1526 {
1527 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1528 gdb_byte buf[4];
1529
1530 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1531 paddress (gdbarch, actual_pc));
1532 read_memory (actual_pc, buf, sizeof (buf));
1533 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1534 }
1535
1536 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1537 displaced->step_closure))
1538 target_resume (ptid, 1, GDB_SIGNAL_0);
1539 else
1540 target_resume (ptid, 0, GDB_SIGNAL_0);
1541
1542 /* Done, we're stepping a thread. */
1543 break;
1544 }
1545 else
1546 {
1547 int step;
1548 struct thread_info *tp = inferior_thread ();
1549
1550 /* The breakpoint we were sitting under has since been
1551 removed. */
1552 tp->control.trap_expected = 0;
1553
1554 /* Go back to what we were trying to do. */
1555 step = currently_stepping (tp);
1556
1557 if (debug_displaced)
1558 fprintf_unfiltered (gdb_stdlog,
1559 "displaced: breakpoint is gone: %s, step(%d)\n",
1560 target_pid_to_str (tp->ptid), step);
1561
1562 target_resume (ptid, step, GDB_SIGNAL_0);
1563 tp->suspend.stop_signal = GDB_SIGNAL_0;
1564
1565 /* This request was discarded. See if there's any other
1566 thread waiting for its turn. */
1567 }
1568 }
1569 }
1570
1571 /* Update global variables holding ptids to hold NEW_PTID if they were
1572 holding OLD_PTID. */
1573 static void
1574 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1575 {
1576 struct displaced_step_request *it;
1577 struct displaced_step_inferior_state *displaced;
1578
1579 if (ptid_equal (inferior_ptid, old_ptid))
1580 inferior_ptid = new_ptid;
1581
1582 if (ptid_equal (singlestep_ptid, old_ptid))
1583 singlestep_ptid = new_ptid;
1584
1585 if (ptid_equal (deferred_step_ptid, old_ptid))
1586 deferred_step_ptid = new_ptid;
1587
1588 for (displaced = displaced_step_inferior_states;
1589 displaced;
1590 displaced = displaced->next)
1591 {
1592 if (ptid_equal (displaced->step_ptid, old_ptid))
1593 displaced->step_ptid = new_ptid;
1594
1595 for (it = displaced->step_request_queue; it; it = it->next)
1596 if (ptid_equal (it->ptid, old_ptid))
1597 it->ptid = new_ptid;
1598 }
1599 }
1600
1601 \f
1602 /* Resuming. */
1603
1604 /* Things to clean up if we QUIT out of resume (). */
1605 static void
1606 resume_cleanups (void *ignore)
1607 {
1608 normal_stop ();
1609 }
1610
1611 static const char schedlock_off[] = "off";
1612 static const char schedlock_on[] = "on";
1613 static const char schedlock_step[] = "step";
1614 static const char *const scheduler_enums[] = {
1615 schedlock_off,
1616 schedlock_on,
1617 schedlock_step,
1618 NULL
1619 };
1620 static const char *scheduler_mode = schedlock_off;
1621 static void
1622 show_scheduler_mode (struct ui_file *file, int from_tty,
1623 struct cmd_list_element *c, const char *value)
1624 {
1625 fprintf_filtered (file,
1626 _("Mode for locking scheduler "
1627 "during execution is \"%s\".\n"),
1628 value);
1629 }
1630
1631 static void
1632 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1633 {
1634 if (!target_can_lock_scheduler)
1635 {
1636 scheduler_mode = schedlock_off;
1637 error (_("Target '%s' cannot support this command."), target_shortname);
1638 }
1639 }
1640
1641 /* True if execution commands resume all threads of all processes by
1642 default; otherwise, resume only threads of the current inferior
1643 process. */
1644 int sched_multi = 0;
1645
1646 /* Try to setup for software single stepping over the specified location.
1647 Return 1 if target_resume() should use hardware single step.
1648
1649 GDBARCH the current gdbarch.
1650 PC the location to step over. */
1651
1652 static int
1653 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1654 {
1655 int hw_step = 1;
1656
1657 if (execution_direction == EXEC_FORWARD
1658 && gdbarch_software_single_step_p (gdbarch)
1659 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1660 {
1661 hw_step = 0;
1662 /* Do not pull these breakpoints until after a `wait' in
1663 `wait_for_inferior'. */
1664 singlestep_breakpoints_inserted_p = 1;
1665 singlestep_ptid = inferior_ptid;
1666 singlestep_pc = pc;
1667 }
1668 return hw_step;
1669 }
1670
1671 /* Return a ptid representing the set of threads that we will proceed,
1672 in the perspective of the user/frontend. We may actually resume
1673 fewer threads at first, e.g., if a thread is stopped at a
1674 breakpoint that needs stepping-off, but that should not be visible
1675 to the user/frontend, and neither should the frontend/user be
1676 allowed to proceed any of the threads that happen to be stopped for
1677 internal run control handling, if a previous command wanted them
1678 resumed. */
1679
1680 ptid_t
1681 user_visible_resume_ptid (int step)
1682 {
1683 /* By default, resume all threads of all processes. */
1684 ptid_t resume_ptid = RESUME_ALL;
1685
1686 /* Maybe resume only all threads of the current process. */
1687 if (!sched_multi && target_supports_multi_process ())
1688 {
1689 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1690 }
1691
1692 /* Maybe resume a single thread after all. */
1693 if (non_stop)
1694 {
1695 /* With non-stop mode on, threads are always handled
1696 individually. */
1697 resume_ptid = inferior_ptid;
1698 }
1699 else if ((scheduler_mode == schedlock_on)
1700 || (scheduler_mode == schedlock_step
1701 && (step || singlestep_breakpoints_inserted_p)))
1702 {
1703 /* User-settable 'scheduler' mode requires solo thread resume. */
1704 resume_ptid = inferior_ptid;
1705 }
1706
1707 return resume_ptid;
1708 }
1709
1710 /* Resume the inferior, but allow a QUIT. This is useful if the user
1711 wants to interrupt some lengthy single-stepping operation
1712 (for child processes, the SIGINT goes to the inferior, and so
1713 we get a SIGINT random_signal, but for remote debugging and perhaps
1714 other targets, that's not true).
1715
1716 STEP nonzero if we should step (zero to continue instead).
1717 SIG is the signal to give the inferior (zero for none). */
1718 void
1719 resume (int step, enum gdb_signal sig)
1720 {
1721 int should_resume = 1;
1722 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1723 struct regcache *regcache = get_current_regcache ();
1724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1725 struct thread_info *tp = inferior_thread ();
1726 CORE_ADDR pc = regcache_read_pc (regcache);
1727 struct address_space *aspace = get_regcache_aspace (regcache);
1728
1729 QUIT;
1730
1731 if (current_inferior ()->waiting_for_vfork_done)
1732 {
1733 /* Don't try to single-step a vfork parent that is waiting for
1734 the child to get out of the shared memory region (by exec'ing
1735 or exiting). This is particularly important on software
1736 single-step archs, as the child process would trip on the
1737 software single step breakpoint inserted for the parent
1738 process. Since the parent will not actually execute any
1739 instruction until the child is out of the shared region (such
1740 are vfork's semantics), it is safe to simply continue it.
1741 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1742 the parent, and tell it to `keep_going', which automatically
1743 re-sets it stepping. */
1744 if (debug_infrun)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "infrun: resume : clear step\n");
1747 step = 0;
1748 }
1749
1750 if (debug_infrun)
1751 fprintf_unfiltered (gdb_stdlog,
1752 "infrun: resume (step=%d, signal=%s), "
1753 "trap_expected=%d, current thread [%s] at %s\n",
1754 step, gdb_signal_to_symbol_string (sig),
1755 tp->control.trap_expected,
1756 target_pid_to_str (inferior_ptid),
1757 paddress (gdbarch, pc));
1758
1759 /* Normally, by the time we reach `resume', the breakpoints are either
1760 removed or inserted, as appropriate. The exception is if we're sitting
1761 at a permanent breakpoint; we need to step over it, but permanent
1762 breakpoints can't be removed. So we have to test for it here. */
1763 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1764 {
1765 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1766 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1767 else
1768 error (_("\
1769 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1770 how to step past a permanent breakpoint on this architecture. Try using\n\
1771 a command like `return' or `jump' to continue execution."));
1772 }
1773
1774 /* If we have a breakpoint to step over, make sure to do a single
1775 step only. Same if we have software watchpoints. */
1776 if (tp->control.trap_expected || bpstat_should_step ())
1777 tp->control.may_range_step = 0;
1778
1779 /* If enabled, step over breakpoints by executing a copy of the
1780 instruction at a different address.
1781
1782 We can't use displaced stepping when we have a signal to deliver;
1783 the comments for displaced_step_prepare explain why. The
1784 comments in the handle_inferior event for dealing with 'random
1785 signals' explain what we do instead.
1786
1787 We can't use displaced stepping when we are waiting for vfork_done
1788 event, displaced stepping breaks the vfork child similarly as single
1789 step software breakpoint. */
1790 if (use_displaced_stepping (gdbarch)
1791 && (tp->control.trap_expected
1792 || (step && gdbarch_software_single_step_p (gdbarch)))
1793 && sig == GDB_SIGNAL_0
1794 && !current_inferior ()->waiting_for_vfork_done)
1795 {
1796 struct displaced_step_inferior_state *displaced;
1797
1798 if (!displaced_step_prepare (inferior_ptid))
1799 {
1800 /* Got placed in displaced stepping queue. Will be resumed
1801 later when all the currently queued displaced stepping
1802 requests finish. The thread is not executing at this point,
1803 and the call to set_executing will be made later. But we
1804 need to call set_running here, since from frontend point of view,
1805 the thread is running. */
1806 set_running (inferior_ptid, 1);
1807 discard_cleanups (old_cleanups);
1808 return;
1809 }
1810
1811 /* Update pc to reflect the new address from which we will execute
1812 instructions due to displaced stepping. */
1813 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1814
1815 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1816 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1817 displaced->step_closure);
1818 }
1819
1820 /* Do we need to do it the hard way, w/temp breakpoints? */
1821 else if (step)
1822 step = maybe_software_singlestep (gdbarch, pc);
1823
1824 /* Currently, our software single-step implementation leads to different
1825 results than hardware single-stepping in one situation: when stepping
1826 into delivering a signal which has an associated signal handler,
1827 hardware single-step will stop at the first instruction of the handler,
1828 while software single-step will simply skip execution of the handler.
1829
1830 For now, this difference in behavior is accepted since there is no
1831 easy way to actually implement single-stepping into a signal handler
1832 without kernel support.
1833
1834 However, there is one scenario where this difference leads to follow-on
1835 problems: if we're stepping off a breakpoint by removing all breakpoints
1836 and then single-stepping. In this case, the software single-step
1837 behavior means that even if there is a *breakpoint* in the signal
1838 handler, GDB still would not stop.
1839
1840 Fortunately, we can at least fix this particular issue. We detect
1841 here the case where we are about to deliver a signal while software
1842 single-stepping with breakpoints removed. In this situation, we
1843 revert the decisions to remove all breakpoints and insert single-
1844 step breakpoints, and instead we install a step-resume breakpoint
1845 at the current address, deliver the signal without stepping, and
1846 once we arrive back at the step-resume breakpoint, actually step
1847 over the breakpoint we originally wanted to step over. */
1848 if (singlestep_breakpoints_inserted_p
1849 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1850 {
1851 /* If we have nested signals or a pending signal is delivered
1852 immediately after a handler returns, might might already have
1853 a step-resume breakpoint set on the earlier handler. We cannot
1854 set another step-resume breakpoint; just continue on until the
1855 original breakpoint is hit. */
1856 if (tp->control.step_resume_breakpoint == NULL)
1857 {
1858 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1859 tp->step_after_step_resume_breakpoint = 1;
1860 }
1861
1862 remove_single_step_breakpoints ();
1863 singlestep_breakpoints_inserted_p = 0;
1864
1865 insert_breakpoints ();
1866 tp->control.trap_expected = 0;
1867 }
1868
1869 if (should_resume)
1870 {
1871 ptid_t resume_ptid;
1872
1873 /* If STEP is set, it's a request to use hardware stepping
1874 facilities. But in that case, we should never
1875 use singlestep breakpoint. */
1876 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1877
1878 /* Decide the set of threads to ask the target to resume. Start
1879 by assuming everything will be resumed, than narrow the set
1880 by applying increasingly restricting conditions. */
1881 resume_ptid = user_visible_resume_ptid (step);
1882
1883 /* Maybe resume a single thread after all. */
1884 if (singlestep_breakpoints_inserted_p
1885 && stepping_past_singlestep_breakpoint)
1886 {
1887 /* The situation here is as follows. In thread T1 we wanted to
1888 single-step. Lacking hardware single-stepping we've
1889 set breakpoint at the PC of the next instruction -- call it
1890 P. After resuming, we've hit that breakpoint in thread T2.
1891 Now we've removed original breakpoint, inserted breakpoint
1892 at P+1, and try to step to advance T2 past breakpoint.
1893 We need to step only T2, as if T1 is allowed to freely run,
1894 it can run past P, and if other threads are allowed to run,
1895 they can hit breakpoint at P+1, and nested hits of single-step
1896 breakpoints is not something we'd want -- that's complicated
1897 to support, and has no value. */
1898 resume_ptid = inferior_ptid;
1899 }
1900 else if ((step || singlestep_breakpoints_inserted_p)
1901 && tp->control.trap_expected)
1902 {
1903 /* We're allowing a thread to run past a breakpoint it has
1904 hit, by single-stepping the thread with the breakpoint
1905 removed. In which case, we need to single-step only this
1906 thread, and keep others stopped, as they can miss this
1907 breakpoint if allowed to run.
1908
1909 The current code actually removes all breakpoints when
1910 doing this, not just the one being stepped over, so if we
1911 let other threads run, we can actually miss any
1912 breakpoint, not just the one at PC. */
1913 resume_ptid = inferior_ptid;
1914 }
1915
1916 if (gdbarch_cannot_step_breakpoint (gdbarch))
1917 {
1918 /* Most targets can step a breakpoint instruction, thus
1919 executing it normally. But if this one cannot, just
1920 continue and we will hit it anyway. */
1921 if (step && breakpoint_inserted_here_p (aspace, pc))
1922 step = 0;
1923 }
1924
1925 if (debug_displaced
1926 && use_displaced_stepping (gdbarch)
1927 && tp->control.trap_expected)
1928 {
1929 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1930 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1931 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1932 gdb_byte buf[4];
1933
1934 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1935 paddress (resume_gdbarch, actual_pc));
1936 read_memory (actual_pc, buf, sizeof (buf));
1937 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1938 }
1939
1940 if (tp->control.may_range_step)
1941 {
1942 /* If we're resuming a thread with the PC out of the step
1943 range, then we're doing some nested/finer run control
1944 operation, like stepping the thread out of the dynamic
1945 linker or the displaced stepping scratch pad. We
1946 shouldn't have allowed a range step then. */
1947 gdb_assert (pc_in_thread_step_range (pc, tp));
1948 }
1949
1950 /* Install inferior's terminal modes. */
1951 target_terminal_inferior ();
1952
1953 /* Avoid confusing the next resume, if the next stop/resume
1954 happens to apply to another thread. */
1955 tp->suspend.stop_signal = GDB_SIGNAL_0;
1956
1957 /* Advise target which signals may be handled silently. If we have
1958 removed breakpoints because we are stepping over one (which can
1959 happen only if we are not using displaced stepping), we need to
1960 receive all signals to avoid accidentally skipping a breakpoint
1961 during execution of a signal handler. */
1962 if ((step || singlestep_breakpoints_inserted_p)
1963 && tp->control.trap_expected
1964 && !use_displaced_stepping (gdbarch))
1965 target_pass_signals (0, NULL);
1966 else
1967 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1968
1969 target_resume (resume_ptid, step, sig);
1970 }
1971
1972 discard_cleanups (old_cleanups);
1973 }
1974 \f
1975 /* Proceeding. */
1976
1977 /* Clear out all variables saying what to do when inferior is continued.
1978 First do this, then set the ones you want, then call `proceed'. */
1979
1980 static void
1981 clear_proceed_status_thread (struct thread_info *tp)
1982 {
1983 if (debug_infrun)
1984 fprintf_unfiltered (gdb_stdlog,
1985 "infrun: clear_proceed_status_thread (%s)\n",
1986 target_pid_to_str (tp->ptid));
1987
1988 tp->control.trap_expected = 0;
1989 tp->control.step_range_start = 0;
1990 tp->control.step_range_end = 0;
1991 tp->control.may_range_step = 0;
1992 tp->control.step_frame_id = null_frame_id;
1993 tp->control.step_stack_frame_id = null_frame_id;
1994 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1995 tp->stop_requested = 0;
1996
1997 tp->control.stop_step = 0;
1998
1999 tp->control.proceed_to_finish = 0;
2000
2001 /* Discard any remaining commands or status from previous stop. */
2002 bpstat_clear (&tp->control.stop_bpstat);
2003 }
2004
2005 static int
2006 clear_proceed_status_callback (struct thread_info *tp, void *data)
2007 {
2008 if (is_exited (tp->ptid))
2009 return 0;
2010
2011 clear_proceed_status_thread (tp);
2012 return 0;
2013 }
2014
2015 void
2016 clear_proceed_status (void)
2017 {
2018 if (!non_stop)
2019 {
2020 /* In all-stop mode, delete the per-thread status of all
2021 threads, even if inferior_ptid is null_ptid, there may be
2022 threads on the list. E.g., we may be launching a new
2023 process, while selecting the executable. */
2024 iterate_over_threads (clear_proceed_status_callback, NULL);
2025 }
2026
2027 if (!ptid_equal (inferior_ptid, null_ptid))
2028 {
2029 struct inferior *inferior;
2030
2031 if (non_stop)
2032 {
2033 /* If in non-stop mode, only delete the per-thread status of
2034 the current thread. */
2035 clear_proceed_status_thread (inferior_thread ());
2036 }
2037
2038 inferior = current_inferior ();
2039 inferior->control.stop_soon = NO_STOP_QUIETLY;
2040 }
2041
2042 stop_after_trap = 0;
2043
2044 observer_notify_about_to_proceed ();
2045
2046 if (stop_registers)
2047 {
2048 regcache_xfree (stop_registers);
2049 stop_registers = NULL;
2050 }
2051 }
2052
2053 /* Check the current thread against the thread that reported the most recent
2054 event. If a step-over is required return TRUE and set the current thread
2055 to the old thread. Otherwise return FALSE.
2056
2057 This should be suitable for any targets that support threads. */
2058
2059 static int
2060 prepare_to_proceed (int step)
2061 {
2062 ptid_t wait_ptid;
2063 struct target_waitstatus wait_status;
2064 int schedlock_enabled;
2065
2066 /* With non-stop mode on, threads are always handled individually. */
2067 gdb_assert (! non_stop);
2068
2069 /* Get the last target status returned by target_wait(). */
2070 get_last_target_status (&wait_ptid, &wait_status);
2071
2072 /* Make sure we were stopped at a breakpoint. */
2073 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2074 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2075 && wait_status.value.sig != GDB_SIGNAL_ILL
2076 && wait_status.value.sig != GDB_SIGNAL_SEGV
2077 && wait_status.value.sig != GDB_SIGNAL_EMT))
2078 {
2079 return 0;
2080 }
2081
2082 schedlock_enabled = (scheduler_mode == schedlock_on
2083 || (scheduler_mode == schedlock_step
2084 && step));
2085
2086 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2087 if (schedlock_enabled)
2088 return 0;
2089
2090 /* Don't switch over if we're about to resume some other process
2091 other than WAIT_PTID's, and schedule-multiple is off. */
2092 if (!sched_multi
2093 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2094 return 0;
2095
2096 /* Switched over from WAIT_PID. */
2097 if (!ptid_equal (wait_ptid, minus_one_ptid)
2098 && !ptid_equal (inferior_ptid, wait_ptid))
2099 {
2100 struct regcache *regcache = get_thread_regcache (wait_ptid);
2101
2102 if (breakpoint_here_p (get_regcache_aspace (regcache),
2103 regcache_read_pc (regcache)))
2104 {
2105 /* If stepping, remember current thread to switch back to. */
2106 if (step)
2107 deferred_step_ptid = inferior_ptid;
2108
2109 /* Switch back to WAIT_PID thread. */
2110 switch_to_thread (wait_ptid);
2111
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "infrun: prepare_to_proceed (step=%d), "
2115 "switched to [%s]\n",
2116 step, target_pid_to_str (inferior_ptid));
2117
2118 /* We return 1 to indicate that there is a breakpoint here,
2119 so we need to step over it before continuing to avoid
2120 hitting it straight away. */
2121 return 1;
2122 }
2123 }
2124
2125 return 0;
2126 }
2127
2128 /* Basic routine for continuing the program in various fashions.
2129
2130 ADDR is the address to resume at, or -1 for resume where stopped.
2131 SIGGNAL is the signal to give it, or 0 for none,
2132 or -1 for act according to how it stopped.
2133 STEP is nonzero if should trap after one instruction.
2134 -1 means return after that and print nothing.
2135 You should probably set various step_... variables
2136 before calling here, if you are stepping.
2137
2138 You should call clear_proceed_status before calling proceed. */
2139
2140 void
2141 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2142 {
2143 struct regcache *regcache;
2144 struct gdbarch *gdbarch;
2145 struct thread_info *tp;
2146 CORE_ADDR pc;
2147 struct address_space *aspace;
2148 /* GDB may force the inferior to step due to various reasons. */
2149 int force_step = 0;
2150
2151 /* If we're stopped at a fork/vfork, follow the branch set by the
2152 "set follow-fork-mode" command; otherwise, we'll just proceed
2153 resuming the current thread. */
2154 if (!follow_fork ())
2155 {
2156 /* The target for some reason decided not to resume. */
2157 normal_stop ();
2158 if (target_can_async_p ())
2159 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2160 return;
2161 }
2162
2163 /* We'll update this if & when we switch to a new thread. */
2164 previous_inferior_ptid = inferior_ptid;
2165
2166 regcache = get_current_regcache ();
2167 gdbarch = get_regcache_arch (regcache);
2168 aspace = get_regcache_aspace (regcache);
2169 pc = regcache_read_pc (regcache);
2170
2171 if (step > 0)
2172 step_start_function = find_pc_function (pc);
2173 if (step < 0)
2174 stop_after_trap = 1;
2175
2176 if (addr == (CORE_ADDR) -1)
2177 {
2178 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2179 && execution_direction != EXEC_REVERSE)
2180 /* There is a breakpoint at the address we will resume at,
2181 step one instruction before inserting breakpoints so that
2182 we do not stop right away (and report a second hit at this
2183 breakpoint).
2184
2185 Note, we don't do this in reverse, because we won't
2186 actually be executing the breakpoint insn anyway.
2187 We'll be (un-)executing the previous instruction. */
2188
2189 force_step = 1;
2190 else if (gdbarch_single_step_through_delay_p (gdbarch)
2191 && gdbarch_single_step_through_delay (gdbarch,
2192 get_current_frame ()))
2193 /* We stepped onto an instruction that needs to be stepped
2194 again before re-inserting the breakpoint, do so. */
2195 force_step = 1;
2196 }
2197 else
2198 {
2199 regcache_write_pc (regcache, addr);
2200 }
2201
2202 if (debug_infrun)
2203 fprintf_unfiltered (gdb_stdlog,
2204 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2205 paddress (gdbarch, addr),
2206 gdb_signal_to_symbol_string (siggnal), step);
2207
2208 if (non_stop)
2209 /* In non-stop, each thread is handled individually. The context
2210 must already be set to the right thread here. */
2211 ;
2212 else
2213 {
2214 /* In a multi-threaded task we may select another thread and
2215 then continue or step.
2216
2217 But if the old thread was stopped at a breakpoint, it will
2218 immediately cause another breakpoint stop without any
2219 execution (i.e. it will report a breakpoint hit incorrectly).
2220 So we must step over it first.
2221
2222 prepare_to_proceed checks the current thread against the
2223 thread that reported the most recent event. If a step-over
2224 is required it returns TRUE and sets the current thread to
2225 the old thread. */
2226 if (prepare_to_proceed (step))
2227 force_step = 1;
2228 }
2229
2230 /* prepare_to_proceed may change the current thread. */
2231 tp = inferior_thread ();
2232
2233 if (force_step)
2234 {
2235 tp->control.trap_expected = 1;
2236 /* If displaced stepping is enabled, we can step over the
2237 breakpoint without hitting it, so leave all breakpoints
2238 inserted. Otherwise we need to disable all breakpoints, step
2239 one instruction, and then re-add them when that step is
2240 finished. */
2241 if (!use_displaced_stepping (gdbarch))
2242 remove_breakpoints ();
2243 }
2244
2245 /* We can insert breakpoints if we're not trying to step over one,
2246 or if we are stepping over one but we're using displaced stepping
2247 to do so. */
2248 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2249 insert_breakpoints ();
2250
2251 if (!non_stop)
2252 {
2253 /* Pass the last stop signal to the thread we're resuming,
2254 irrespective of whether the current thread is the thread that
2255 got the last event or not. This was historically GDB's
2256 behaviour before keeping a stop_signal per thread. */
2257
2258 struct thread_info *last_thread;
2259 ptid_t last_ptid;
2260 struct target_waitstatus last_status;
2261
2262 get_last_target_status (&last_ptid, &last_status);
2263 if (!ptid_equal (inferior_ptid, last_ptid)
2264 && !ptid_equal (last_ptid, null_ptid)
2265 && !ptid_equal (last_ptid, minus_one_ptid))
2266 {
2267 last_thread = find_thread_ptid (last_ptid);
2268 if (last_thread)
2269 {
2270 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2271 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2272 }
2273 }
2274 }
2275
2276 if (siggnal != GDB_SIGNAL_DEFAULT)
2277 tp->suspend.stop_signal = siggnal;
2278 /* If this signal should not be seen by program,
2279 give it zero. Used for debugging signals. */
2280 else if (!signal_program[tp->suspend.stop_signal])
2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
2282
2283 annotate_starting ();
2284
2285 /* Make sure that output from GDB appears before output from the
2286 inferior. */
2287 gdb_flush (gdb_stdout);
2288
2289 /* Refresh prev_pc value just prior to resuming. This used to be
2290 done in stop_stepping, however, setting prev_pc there did not handle
2291 scenarios such as inferior function calls or returning from
2292 a function via the return command. In those cases, the prev_pc
2293 value was not set properly for subsequent commands. The prev_pc value
2294 is used to initialize the starting line number in the ecs. With an
2295 invalid value, the gdb next command ends up stopping at the position
2296 represented by the next line table entry past our start position.
2297 On platforms that generate one line table entry per line, this
2298 is not a problem. However, on the ia64, the compiler generates
2299 extraneous line table entries that do not increase the line number.
2300 When we issue the gdb next command on the ia64 after an inferior call
2301 or a return command, we often end up a few instructions forward, still
2302 within the original line we started.
2303
2304 An attempt was made to refresh the prev_pc at the same time the
2305 execution_control_state is initialized (for instance, just before
2306 waiting for an inferior event). But this approach did not work
2307 because of platforms that use ptrace, where the pc register cannot
2308 be read unless the inferior is stopped. At that point, we are not
2309 guaranteed the inferior is stopped and so the regcache_read_pc() call
2310 can fail. Setting the prev_pc value here ensures the value is updated
2311 correctly when the inferior is stopped. */
2312 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2313
2314 /* Fill in with reasonable starting values. */
2315 init_thread_stepping_state (tp);
2316
2317 /* Reset to normal state. */
2318 init_infwait_state ();
2319
2320 /* Resume inferior. */
2321 resume (force_step || step || bpstat_should_step (),
2322 tp->suspend.stop_signal);
2323
2324 /* Wait for it to stop (if not standalone)
2325 and in any case decode why it stopped, and act accordingly. */
2326 /* Do this only if we are not using the event loop, or if the target
2327 does not support asynchronous execution. */
2328 if (!target_can_async_p ())
2329 {
2330 wait_for_inferior ();
2331 normal_stop ();
2332 }
2333 }
2334 \f
2335
2336 /* Start remote-debugging of a machine over a serial link. */
2337
2338 void
2339 start_remote (int from_tty)
2340 {
2341 struct inferior *inferior;
2342
2343 inferior = current_inferior ();
2344 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2345
2346 /* Always go on waiting for the target, regardless of the mode. */
2347 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2348 indicate to wait_for_inferior that a target should timeout if
2349 nothing is returned (instead of just blocking). Because of this,
2350 targets expecting an immediate response need to, internally, set
2351 things up so that the target_wait() is forced to eventually
2352 timeout. */
2353 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2354 differentiate to its caller what the state of the target is after
2355 the initial open has been performed. Here we're assuming that
2356 the target has stopped. It should be possible to eventually have
2357 target_open() return to the caller an indication that the target
2358 is currently running and GDB state should be set to the same as
2359 for an async run. */
2360 wait_for_inferior ();
2361
2362 /* Now that the inferior has stopped, do any bookkeeping like
2363 loading shared libraries. We want to do this before normal_stop,
2364 so that the displayed frame is up to date. */
2365 post_create_inferior (&current_target, from_tty);
2366
2367 normal_stop ();
2368 }
2369
2370 /* Initialize static vars when a new inferior begins. */
2371
2372 void
2373 init_wait_for_inferior (void)
2374 {
2375 /* These are meaningless until the first time through wait_for_inferior. */
2376
2377 breakpoint_init_inferior (inf_starting);
2378
2379 clear_proceed_status ();
2380
2381 stepping_past_singlestep_breakpoint = 0;
2382 deferred_step_ptid = null_ptid;
2383
2384 target_last_wait_ptid = minus_one_ptid;
2385
2386 previous_inferior_ptid = inferior_ptid;
2387 init_infwait_state ();
2388
2389 /* Discard any skipped inlined frames. */
2390 clear_inline_frame_state (minus_one_ptid);
2391 }
2392
2393 \f
2394 /* This enum encodes possible reasons for doing a target_wait, so that
2395 wfi can call target_wait in one place. (Ultimately the call will be
2396 moved out of the infinite loop entirely.) */
2397
2398 enum infwait_states
2399 {
2400 infwait_normal_state,
2401 infwait_thread_hop_state,
2402 infwait_step_watch_state,
2403 infwait_nonstep_watch_state
2404 };
2405
2406 /* The PTID we'll do a target_wait on.*/
2407 ptid_t waiton_ptid;
2408
2409 /* Current inferior wait state. */
2410 static enum infwait_states infwait_state;
2411
2412 /* Data to be passed around while handling an event. This data is
2413 discarded between events. */
2414 struct execution_control_state
2415 {
2416 ptid_t ptid;
2417 /* The thread that got the event, if this was a thread event; NULL
2418 otherwise. */
2419 struct thread_info *event_thread;
2420
2421 struct target_waitstatus ws;
2422 int random_signal;
2423 int stop_func_filled_in;
2424 CORE_ADDR stop_func_start;
2425 CORE_ADDR stop_func_end;
2426 const char *stop_func_name;
2427 int wait_some_more;
2428 };
2429
2430 static void handle_inferior_event (struct execution_control_state *ecs);
2431
2432 static void handle_step_into_function (struct gdbarch *gdbarch,
2433 struct execution_control_state *ecs);
2434 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2435 struct execution_control_state *ecs);
2436 static void check_exception_resume (struct execution_control_state *,
2437 struct frame_info *);
2438
2439 static void stop_stepping (struct execution_control_state *ecs);
2440 static void prepare_to_wait (struct execution_control_state *ecs);
2441 static void keep_going (struct execution_control_state *ecs);
2442 static void process_event_stop_test (struct execution_control_state *ecs);
2443 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2444
2445 /* Callback for iterate over threads. If the thread is stopped, but
2446 the user/frontend doesn't know about that yet, go through
2447 normal_stop, as if the thread had just stopped now. ARG points at
2448 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2449 ptid_is_pid(PTID) is true, applies to all threads of the process
2450 pointed at by PTID. Otherwise, apply only to the thread pointed by
2451 PTID. */
2452
2453 static int
2454 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2455 {
2456 ptid_t ptid = * (ptid_t *) arg;
2457
2458 if ((ptid_equal (info->ptid, ptid)
2459 || ptid_equal (minus_one_ptid, ptid)
2460 || (ptid_is_pid (ptid)
2461 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2462 && is_running (info->ptid)
2463 && !is_executing (info->ptid))
2464 {
2465 struct cleanup *old_chain;
2466 struct execution_control_state ecss;
2467 struct execution_control_state *ecs = &ecss;
2468
2469 memset (ecs, 0, sizeof (*ecs));
2470
2471 old_chain = make_cleanup_restore_current_thread ();
2472
2473 /* Go through handle_inferior_event/normal_stop, so we always
2474 have consistent output as if the stop event had been
2475 reported. */
2476 ecs->ptid = info->ptid;
2477 ecs->event_thread = find_thread_ptid (info->ptid);
2478 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2479 ecs->ws.value.sig = GDB_SIGNAL_0;
2480
2481 handle_inferior_event (ecs);
2482
2483 if (!ecs->wait_some_more)
2484 {
2485 struct thread_info *tp;
2486
2487 normal_stop ();
2488
2489 /* Finish off the continuations. */
2490 tp = inferior_thread ();
2491 do_all_intermediate_continuations_thread (tp, 1);
2492 do_all_continuations_thread (tp, 1);
2493 }
2494
2495 do_cleanups (old_chain);
2496 }
2497
2498 return 0;
2499 }
2500
2501 /* This function is attached as a "thread_stop_requested" observer.
2502 Cleanup local state that assumed the PTID was to be resumed, and
2503 report the stop to the frontend. */
2504
2505 static void
2506 infrun_thread_stop_requested (ptid_t ptid)
2507 {
2508 struct displaced_step_inferior_state *displaced;
2509
2510 /* PTID was requested to stop. Remove it from the displaced
2511 stepping queue, so we don't try to resume it automatically. */
2512
2513 for (displaced = displaced_step_inferior_states;
2514 displaced;
2515 displaced = displaced->next)
2516 {
2517 struct displaced_step_request *it, **prev_next_p;
2518
2519 it = displaced->step_request_queue;
2520 prev_next_p = &displaced->step_request_queue;
2521 while (it)
2522 {
2523 if (ptid_match (it->ptid, ptid))
2524 {
2525 *prev_next_p = it->next;
2526 it->next = NULL;
2527 xfree (it);
2528 }
2529 else
2530 {
2531 prev_next_p = &it->next;
2532 }
2533
2534 it = *prev_next_p;
2535 }
2536 }
2537
2538 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2539 }
2540
2541 static void
2542 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2543 {
2544 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2545 nullify_last_target_wait_ptid ();
2546 }
2547
2548 /* Callback for iterate_over_threads. */
2549
2550 static int
2551 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2552 {
2553 if (is_exited (info->ptid))
2554 return 0;
2555
2556 delete_step_resume_breakpoint (info);
2557 delete_exception_resume_breakpoint (info);
2558 return 0;
2559 }
2560
2561 /* In all-stop, delete the step resume breakpoint of any thread that
2562 had one. In non-stop, delete the step resume breakpoint of the
2563 thread that just stopped. */
2564
2565 static void
2566 delete_step_thread_step_resume_breakpoint (void)
2567 {
2568 if (!target_has_execution
2569 || ptid_equal (inferior_ptid, null_ptid))
2570 /* If the inferior has exited, we have already deleted the step
2571 resume breakpoints out of GDB's lists. */
2572 return;
2573
2574 if (non_stop)
2575 {
2576 /* If in non-stop mode, only delete the step-resume or
2577 longjmp-resume breakpoint of the thread that just stopped
2578 stepping. */
2579 struct thread_info *tp = inferior_thread ();
2580
2581 delete_step_resume_breakpoint (tp);
2582 delete_exception_resume_breakpoint (tp);
2583 }
2584 else
2585 /* In all-stop mode, delete all step-resume and longjmp-resume
2586 breakpoints of any thread that had them. */
2587 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2588 }
2589
2590 /* A cleanup wrapper. */
2591
2592 static void
2593 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2594 {
2595 delete_step_thread_step_resume_breakpoint ();
2596 }
2597
2598 /* Pretty print the results of target_wait, for debugging purposes. */
2599
2600 static void
2601 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2602 const struct target_waitstatus *ws)
2603 {
2604 char *status_string = target_waitstatus_to_string (ws);
2605 struct ui_file *tmp_stream = mem_fileopen ();
2606 char *text;
2607
2608 /* The text is split over several lines because it was getting too long.
2609 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2610 output as a unit; we want only one timestamp printed if debug_timestamp
2611 is set. */
2612
2613 fprintf_unfiltered (tmp_stream,
2614 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2615 if (ptid_get_pid (waiton_ptid) != -1)
2616 fprintf_unfiltered (tmp_stream,
2617 " [%s]", target_pid_to_str (waiton_ptid));
2618 fprintf_unfiltered (tmp_stream, ", status) =\n");
2619 fprintf_unfiltered (tmp_stream,
2620 "infrun: %d [%s],\n",
2621 ptid_get_pid (result_ptid),
2622 target_pid_to_str (result_ptid));
2623 fprintf_unfiltered (tmp_stream,
2624 "infrun: %s\n",
2625 status_string);
2626
2627 text = ui_file_xstrdup (tmp_stream, NULL);
2628
2629 /* This uses %s in part to handle %'s in the text, but also to avoid
2630 a gcc error: the format attribute requires a string literal. */
2631 fprintf_unfiltered (gdb_stdlog, "%s", text);
2632
2633 xfree (status_string);
2634 xfree (text);
2635 ui_file_delete (tmp_stream);
2636 }
2637
2638 /* Prepare and stabilize the inferior for detaching it. E.g.,
2639 detaching while a thread is displaced stepping is a recipe for
2640 crashing it, as nothing would readjust the PC out of the scratch
2641 pad. */
2642
2643 void
2644 prepare_for_detach (void)
2645 {
2646 struct inferior *inf = current_inferior ();
2647 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2648 struct cleanup *old_chain_1;
2649 struct displaced_step_inferior_state *displaced;
2650
2651 displaced = get_displaced_stepping_state (inf->pid);
2652
2653 /* Is any thread of this process displaced stepping? If not,
2654 there's nothing else to do. */
2655 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2656 return;
2657
2658 if (debug_infrun)
2659 fprintf_unfiltered (gdb_stdlog,
2660 "displaced-stepping in-process while detaching");
2661
2662 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2663 inf->detaching = 1;
2664
2665 while (!ptid_equal (displaced->step_ptid, null_ptid))
2666 {
2667 struct cleanup *old_chain_2;
2668 struct execution_control_state ecss;
2669 struct execution_control_state *ecs;
2670
2671 ecs = &ecss;
2672 memset (ecs, 0, sizeof (*ecs));
2673
2674 overlay_cache_invalid = 1;
2675
2676 if (deprecated_target_wait_hook)
2677 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2678 else
2679 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2680
2681 if (debug_infrun)
2682 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2683
2684 /* If an error happens while handling the event, propagate GDB's
2685 knowledge of the executing state to the frontend/user running
2686 state. */
2687 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2688 &minus_one_ptid);
2689
2690 /* Now figure out what to do with the result of the result. */
2691 handle_inferior_event (ecs);
2692
2693 /* No error, don't finish the state yet. */
2694 discard_cleanups (old_chain_2);
2695
2696 /* Breakpoints and watchpoints are not installed on the target
2697 at this point, and signals are passed directly to the
2698 inferior, so this must mean the process is gone. */
2699 if (!ecs->wait_some_more)
2700 {
2701 discard_cleanups (old_chain_1);
2702 error (_("Program exited while detaching"));
2703 }
2704 }
2705
2706 discard_cleanups (old_chain_1);
2707 }
2708
2709 /* Wait for control to return from inferior to debugger.
2710
2711 If inferior gets a signal, we may decide to start it up again
2712 instead of returning. That is why there is a loop in this function.
2713 When this function actually returns it means the inferior
2714 should be left stopped and GDB should read more commands. */
2715
2716 void
2717 wait_for_inferior (void)
2718 {
2719 struct cleanup *old_cleanups;
2720
2721 if (debug_infrun)
2722 fprintf_unfiltered
2723 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2724
2725 old_cleanups =
2726 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2727
2728 while (1)
2729 {
2730 struct execution_control_state ecss;
2731 struct execution_control_state *ecs = &ecss;
2732 struct cleanup *old_chain;
2733
2734 memset (ecs, 0, sizeof (*ecs));
2735
2736 overlay_cache_invalid = 1;
2737
2738 if (deprecated_target_wait_hook)
2739 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2740 else
2741 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2742
2743 if (debug_infrun)
2744 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2745
2746 /* If an error happens while handling the event, propagate GDB's
2747 knowledge of the executing state to the frontend/user running
2748 state. */
2749 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2750
2751 /* Now figure out what to do with the result of the result. */
2752 handle_inferior_event (ecs);
2753
2754 /* No error, don't finish the state yet. */
2755 discard_cleanups (old_chain);
2756
2757 if (!ecs->wait_some_more)
2758 break;
2759 }
2760
2761 do_cleanups (old_cleanups);
2762 }
2763
2764 /* Asynchronous version of wait_for_inferior. It is called by the
2765 event loop whenever a change of state is detected on the file
2766 descriptor corresponding to the target. It can be called more than
2767 once to complete a single execution command. In such cases we need
2768 to keep the state in a global variable ECSS. If it is the last time
2769 that this function is called for a single execution command, then
2770 report to the user that the inferior has stopped, and do the
2771 necessary cleanups. */
2772
2773 void
2774 fetch_inferior_event (void *client_data)
2775 {
2776 struct execution_control_state ecss;
2777 struct execution_control_state *ecs = &ecss;
2778 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2779 struct cleanup *ts_old_chain;
2780 int was_sync = sync_execution;
2781 int cmd_done = 0;
2782
2783 memset (ecs, 0, sizeof (*ecs));
2784
2785 /* We're handling a live event, so make sure we're doing live
2786 debugging. If we're looking at traceframes while the target is
2787 running, we're going to need to get back to that mode after
2788 handling the event. */
2789 if (non_stop)
2790 {
2791 make_cleanup_restore_current_traceframe ();
2792 set_current_traceframe (-1);
2793 }
2794
2795 if (non_stop)
2796 /* In non-stop mode, the user/frontend should not notice a thread
2797 switch due to internal events. Make sure we reverse to the
2798 user selected thread and frame after handling the event and
2799 running any breakpoint commands. */
2800 make_cleanup_restore_current_thread ();
2801
2802 overlay_cache_invalid = 1;
2803
2804 make_cleanup_restore_integer (&execution_direction);
2805 execution_direction = target_execution_direction ();
2806
2807 if (deprecated_target_wait_hook)
2808 ecs->ptid =
2809 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2810 else
2811 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2812
2813 if (debug_infrun)
2814 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2815
2816 /* If an error happens while handling the event, propagate GDB's
2817 knowledge of the executing state to the frontend/user running
2818 state. */
2819 if (!non_stop)
2820 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2821 else
2822 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2823
2824 /* Get executed before make_cleanup_restore_current_thread above to apply
2825 still for the thread which has thrown the exception. */
2826 make_bpstat_clear_actions_cleanup ();
2827
2828 /* Now figure out what to do with the result of the result. */
2829 handle_inferior_event (ecs);
2830
2831 if (!ecs->wait_some_more)
2832 {
2833 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2834
2835 delete_step_thread_step_resume_breakpoint ();
2836
2837 /* We may not find an inferior if this was a process exit. */
2838 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2839 normal_stop ();
2840
2841 if (target_has_execution
2842 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2843 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2844 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2845 && ecs->event_thread->step_multi
2846 && ecs->event_thread->control.stop_step)
2847 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2848 else
2849 {
2850 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2851 cmd_done = 1;
2852 }
2853 }
2854
2855 /* No error, don't finish the thread states yet. */
2856 discard_cleanups (ts_old_chain);
2857
2858 /* Revert thread and frame. */
2859 do_cleanups (old_chain);
2860
2861 /* If the inferior was in sync execution mode, and now isn't,
2862 restore the prompt (a synchronous execution command has finished,
2863 and we're ready for input). */
2864 if (interpreter_async && was_sync && !sync_execution)
2865 display_gdb_prompt (0);
2866
2867 if (cmd_done
2868 && !was_sync
2869 && exec_done_display_p
2870 && (ptid_equal (inferior_ptid, null_ptid)
2871 || !is_running (inferior_ptid)))
2872 printf_unfiltered (_("completed.\n"));
2873 }
2874
2875 /* Record the frame and location we're currently stepping through. */
2876 void
2877 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2878 {
2879 struct thread_info *tp = inferior_thread ();
2880
2881 tp->control.step_frame_id = get_frame_id (frame);
2882 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2883
2884 tp->current_symtab = sal.symtab;
2885 tp->current_line = sal.line;
2886 }
2887
2888 /* Clear context switchable stepping state. */
2889
2890 void
2891 init_thread_stepping_state (struct thread_info *tss)
2892 {
2893 tss->stepping_over_breakpoint = 0;
2894 tss->step_after_step_resume_breakpoint = 0;
2895 }
2896
2897 /* Return the cached copy of the last pid/waitstatus returned by
2898 target_wait()/deprecated_target_wait_hook(). The data is actually
2899 cached by handle_inferior_event(), which gets called immediately
2900 after target_wait()/deprecated_target_wait_hook(). */
2901
2902 void
2903 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2904 {
2905 *ptidp = target_last_wait_ptid;
2906 *status = target_last_waitstatus;
2907 }
2908
2909 void
2910 nullify_last_target_wait_ptid (void)
2911 {
2912 target_last_wait_ptid = minus_one_ptid;
2913 }
2914
2915 /* Switch thread contexts. */
2916
2917 static void
2918 context_switch (ptid_t ptid)
2919 {
2920 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2921 {
2922 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2923 target_pid_to_str (inferior_ptid));
2924 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2925 target_pid_to_str (ptid));
2926 }
2927
2928 switch_to_thread (ptid);
2929 }
2930
2931 static void
2932 adjust_pc_after_break (struct execution_control_state *ecs)
2933 {
2934 struct regcache *regcache;
2935 struct gdbarch *gdbarch;
2936 struct address_space *aspace;
2937 CORE_ADDR breakpoint_pc;
2938
2939 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2940 we aren't, just return.
2941
2942 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2943 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2944 implemented by software breakpoints should be handled through the normal
2945 breakpoint layer.
2946
2947 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2948 different signals (SIGILL or SIGEMT for instance), but it is less
2949 clear where the PC is pointing afterwards. It may not match
2950 gdbarch_decr_pc_after_break. I don't know any specific target that
2951 generates these signals at breakpoints (the code has been in GDB since at
2952 least 1992) so I can not guess how to handle them here.
2953
2954 In earlier versions of GDB, a target with
2955 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2956 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2957 target with both of these set in GDB history, and it seems unlikely to be
2958 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2959
2960 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2961 return;
2962
2963 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2964 return;
2965
2966 /* In reverse execution, when a breakpoint is hit, the instruction
2967 under it has already been de-executed. The reported PC always
2968 points at the breakpoint address, so adjusting it further would
2969 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2970 architecture:
2971
2972 B1 0x08000000 : INSN1
2973 B2 0x08000001 : INSN2
2974 0x08000002 : INSN3
2975 PC -> 0x08000003 : INSN4
2976
2977 Say you're stopped at 0x08000003 as above. Reverse continuing
2978 from that point should hit B2 as below. Reading the PC when the
2979 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2980 been de-executed already.
2981
2982 B1 0x08000000 : INSN1
2983 B2 PC -> 0x08000001 : INSN2
2984 0x08000002 : INSN3
2985 0x08000003 : INSN4
2986
2987 We can't apply the same logic as for forward execution, because
2988 we would wrongly adjust the PC to 0x08000000, since there's a
2989 breakpoint at PC - 1. We'd then report a hit on B1, although
2990 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2991 behaviour. */
2992 if (execution_direction == EXEC_REVERSE)
2993 return;
2994
2995 /* If this target does not decrement the PC after breakpoints, then
2996 we have nothing to do. */
2997 regcache = get_thread_regcache (ecs->ptid);
2998 gdbarch = get_regcache_arch (regcache);
2999 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
3000 return;
3001
3002 aspace = get_regcache_aspace (regcache);
3003
3004 /* Find the location where (if we've hit a breakpoint) the
3005 breakpoint would be. */
3006 breakpoint_pc = regcache_read_pc (regcache)
3007 - gdbarch_decr_pc_after_break (gdbarch);
3008
3009 /* Check whether there actually is a software breakpoint inserted at
3010 that location.
3011
3012 If in non-stop mode, a race condition is possible where we've
3013 removed a breakpoint, but stop events for that breakpoint were
3014 already queued and arrive later. To suppress those spurious
3015 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3016 and retire them after a number of stop events are reported. */
3017 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3018 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3019 {
3020 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3021
3022 if (RECORD_IS_USED)
3023 record_full_gdb_operation_disable_set ();
3024
3025 /* When using hardware single-step, a SIGTRAP is reported for both
3026 a completed single-step and a software breakpoint. Need to
3027 differentiate between the two, as the latter needs adjusting
3028 but the former does not.
3029
3030 The SIGTRAP can be due to a completed hardware single-step only if
3031 - we didn't insert software single-step breakpoints
3032 - the thread to be examined is still the current thread
3033 - this thread is currently being stepped
3034
3035 If any of these events did not occur, we must have stopped due
3036 to hitting a software breakpoint, and have to back up to the
3037 breakpoint address.
3038
3039 As a special case, we could have hardware single-stepped a
3040 software breakpoint. In this case (prev_pc == breakpoint_pc),
3041 we also need to back up to the breakpoint address. */
3042
3043 if (singlestep_breakpoints_inserted_p
3044 || !ptid_equal (ecs->ptid, inferior_ptid)
3045 || !currently_stepping (ecs->event_thread)
3046 || ecs->event_thread->prev_pc == breakpoint_pc)
3047 regcache_write_pc (regcache, breakpoint_pc);
3048
3049 do_cleanups (old_cleanups);
3050 }
3051 }
3052
3053 static void
3054 init_infwait_state (void)
3055 {
3056 waiton_ptid = pid_to_ptid (-1);
3057 infwait_state = infwait_normal_state;
3058 }
3059
3060 static int
3061 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3062 {
3063 for (frame = get_prev_frame (frame);
3064 frame != NULL;
3065 frame = get_prev_frame (frame))
3066 {
3067 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3068 return 1;
3069 if (get_frame_type (frame) != INLINE_FRAME)
3070 break;
3071 }
3072
3073 return 0;
3074 }
3075
3076 /* Auxiliary function that handles syscall entry/return events.
3077 It returns 1 if the inferior should keep going (and GDB
3078 should ignore the event), or 0 if the event deserves to be
3079 processed. */
3080
3081 static int
3082 handle_syscall_event (struct execution_control_state *ecs)
3083 {
3084 struct regcache *regcache;
3085 int syscall_number;
3086
3087 if (!ptid_equal (ecs->ptid, inferior_ptid))
3088 context_switch (ecs->ptid);
3089
3090 regcache = get_thread_regcache (ecs->ptid);
3091 syscall_number = ecs->ws.value.syscall_number;
3092 stop_pc = regcache_read_pc (regcache);
3093
3094 if (catch_syscall_enabled () > 0
3095 && catching_syscall_number (syscall_number) > 0)
3096 {
3097 enum bpstat_signal_value sval;
3098
3099 if (debug_infrun)
3100 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3101 syscall_number);
3102
3103 ecs->event_thread->control.stop_bpstat
3104 = bpstat_stop_status (get_regcache_aspace (regcache),
3105 stop_pc, ecs->ptid, &ecs->ws);
3106
3107 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3108 GDB_SIGNAL_TRAP);
3109 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3110
3111 if (!ecs->random_signal)
3112 {
3113 /* Catchpoint hit. */
3114 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3115 return 0;
3116 }
3117 }
3118
3119 /* If no catchpoint triggered for this, then keep going. */
3120 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3121 keep_going (ecs);
3122 return 1;
3123 }
3124
3125 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3126
3127 static void
3128 fill_in_stop_func (struct gdbarch *gdbarch,
3129 struct execution_control_state *ecs)
3130 {
3131 if (!ecs->stop_func_filled_in)
3132 {
3133 /* Don't care about return value; stop_func_start and stop_func_name
3134 will both be 0 if it doesn't work. */
3135 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3136 &ecs->stop_func_start, &ecs->stop_func_end);
3137 ecs->stop_func_start
3138 += gdbarch_deprecated_function_start_offset (gdbarch);
3139
3140 ecs->stop_func_filled_in = 1;
3141 }
3142 }
3143
3144 /* Given an execution control state that has been freshly filled in
3145 by an event from the inferior, figure out what it means and take
3146 appropriate action. */
3147
3148 static void
3149 handle_inferior_event (struct execution_control_state *ecs)
3150 {
3151 struct frame_info *frame;
3152 struct gdbarch *gdbarch;
3153 int stopped_by_watchpoint;
3154 int stepped_after_stopped_by_watchpoint = 0;
3155 enum stop_kind stop_soon;
3156
3157 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3158 {
3159 /* We had an event in the inferior, but we are not interested in
3160 handling it at this level. The lower layers have already
3161 done what needs to be done, if anything.
3162
3163 One of the possible circumstances for this is when the
3164 inferior produces output for the console. The inferior has
3165 not stopped, and we are ignoring the event. Another possible
3166 circumstance is any event which the lower level knows will be
3167 reported multiple times without an intervening resume. */
3168 if (debug_infrun)
3169 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3170 prepare_to_wait (ecs);
3171 return;
3172 }
3173
3174 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3175 && target_can_async_p () && !sync_execution)
3176 {
3177 /* There were no unwaited-for children left in the target, but,
3178 we're not synchronously waiting for events either. Just
3179 ignore. Otherwise, if we were running a synchronous
3180 execution command, we need to cancel it and give the user
3181 back the terminal. */
3182 if (debug_infrun)
3183 fprintf_unfiltered (gdb_stdlog,
3184 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3185 prepare_to_wait (ecs);
3186 return;
3187 }
3188
3189 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3190 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3191 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3192 {
3193 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3194
3195 gdb_assert (inf);
3196 stop_soon = inf->control.stop_soon;
3197 }
3198 else
3199 stop_soon = NO_STOP_QUIETLY;
3200
3201 /* Cache the last pid/waitstatus. */
3202 target_last_wait_ptid = ecs->ptid;
3203 target_last_waitstatus = ecs->ws;
3204
3205 /* Always clear state belonging to the previous time we stopped. */
3206 stop_stack_dummy = STOP_NONE;
3207
3208 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3209 {
3210 /* No unwaited-for children left. IOW, all resumed children
3211 have exited. */
3212 if (debug_infrun)
3213 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3214
3215 stop_print_frame = 0;
3216 stop_stepping (ecs);
3217 return;
3218 }
3219
3220 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3221 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3222 {
3223 ecs->event_thread = find_thread_ptid (ecs->ptid);
3224 /* If it's a new thread, add it to the thread database. */
3225 if (ecs->event_thread == NULL)
3226 ecs->event_thread = add_thread (ecs->ptid);
3227
3228 /* Disable range stepping. If the next step request could use a
3229 range, this will be end up re-enabled then. */
3230 ecs->event_thread->control.may_range_step = 0;
3231 }
3232
3233 /* Dependent on valid ECS->EVENT_THREAD. */
3234 adjust_pc_after_break (ecs);
3235
3236 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3237 reinit_frame_cache ();
3238
3239 breakpoint_retire_moribund ();
3240
3241 /* First, distinguish signals caused by the debugger from signals
3242 that have to do with the program's own actions. Note that
3243 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3244 on the operating system version. Here we detect when a SIGILL or
3245 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3246 something similar for SIGSEGV, since a SIGSEGV will be generated
3247 when we're trying to execute a breakpoint instruction on a
3248 non-executable stack. This happens for call dummy breakpoints
3249 for architectures like SPARC that place call dummies on the
3250 stack. */
3251 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3252 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3253 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3254 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3255 {
3256 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3257
3258 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3259 regcache_read_pc (regcache)))
3260 {
3261 if (debug_infrun)
3262 fprintf_unfiltered (gdb_stdlog,
3263 "infrun: Treating signal as SIGTRAP\n");
3264 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3265 }
3266 }
3267
3268 /* Mark the non-executing threads accordingly. In all-stop, all
3269 threads of all processes are stopped when we get any event
3270 reported. In non-stop mode, only the event thread stops. If
3271 we're handling a process exit in non-stop mode, there's nothing
3272 to do, as threads of the dead process are gone, and threads of
3273 any other process were left running. */
3274 if (!non_stop)
3275 set_executing (minus_one_ptid, 0);
3276 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3277 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3278 set_executing (ecs->ptid, 0);
3279
3280 switch (infwait_state)
3281 {
3282 case infwait_thread_hop_state:
3283 if (debug_infrun)
3284 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3285 break;
3286
3287 case infwait_normal_state:
3288 if (debug_infrun)
3289 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3290 break;
3291
3292 case infwait_step_watch_state:
3293 if (debug_infrun)
3294 fprintf_unfiltered (gdb_stdlog,
3295 "infrun: infwait_step_watch_state\n");
3296
3297 stepped_after_stopped_by_watchpoint = 1;
3298 break;
3299
3300 case infwait_nonstep_watch_state:
3301 if (debug_infrun)
3302 fprintf_unfiltered (gdb_stdlog,
3303 "infrun: infwait_nonstep_watch_state\n");
3304 insert_breakpoints ();
3305
3306 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3307 handle things like signals arriving and other things happening
3308 in combination correctly? */
3309 stepped_after_stopped_by_watchpoint = 1;
3310 break;
3311
3312 default:
3313 internal_error (__FILE__, __LINE__, _("bad switch"));
3314 }
3315
3316 infwait_state = infwait_normal_state;
3317 waiton_ptid = pid_to_ptid (-1);
3318
3319 switch (ecs->ws.kind)
3320 {
3321 case TARGET_WAITKIND_LOADED:
3322 if (debug_infrun)
3323 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3324 /* Ignore gracefully during startup of the inferior, as it might
3325 be the shell which has just loaded some objects, otherwise
3326 add the symbols for the newly loaded objects. Also ignore at
3327 the beginning of an attach or remote session; we will query
3328 the full list of libraries once the connection is
3329 established. */
3330 if (stop_soon == NO_STOP_QUIETLY)
3331 {
3332 struct regcache *regcache;
3333 enum bpstat_signal_value sval;
3334
3335 if (!ptid_equal (ecs->ptid, inferior_ptid))
3336 context_switch (ecs->ptid);
3337 regcache = get_thread_regcache (ecs->ptid);
3338
3339 handle_solib_event ();
3340
3341 ecs->event_thread->control.stop_bpstat
3342 = bpstat_stop_status (get_regcache_aspace (regcache),
3343 stop_pc, ecs->ptid, &ecs->ws);
3344
3345 sval
3346 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3347 GDB_SIGNAL_TRAP);
3348 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
3349
3350 if (!ecs->random_signal)
3351 {
3352 /* A catchpoint triggered. */
3353 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3354 process_event_stop_test (ecs);
3355 return;
3356 }
3357
3358 /* If requested, stop when the dynamic linker notifies
3359 gdb of events. This allows the user to get control
3360 and place breakpoints in initializer routines for
3361 dynamically loaded objects (among other things). */
3362 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3363 if (stop_on_solib_events)
3364 {
3365 /* Make sure we print "Stopped due to solib-event" in
3366 normal_stop. */
3367 stop_print_frame = 1;
3368
3369 stop_stepping (ecs);
3370 return;
3371 }
3372 }
3373
3374 /* If we are skipping through a shell, or through shared library
3375 loading that we aren't interested in, resume the program. If
3376 we're running the program normally, also resume. But stop if
3377 we're attaching or setting up a remote connection. */
3378 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3379 {
3380 if (!ptid_equal (ecs->ptid, inferior_ptid))
3381 context_switch (ecs->ptid);
3382
3383 /* Loading of shared libraries might have changed breakpoint
3384 addresses. Make sure new breakpoints are inserted. */
3385 if (stop_soon == NO_STOP_QUIETLY
3386 && !breakpoints_always_inserted_mode ())
3387 insert_breakpoints ();
3388 resume (0, GDB_SIGNAL_0);
3389 prepare_to_wait (ecs);
3390 return;
3391 }
3392
3393 break;
3394
3395 case TARGET_WAITKIND_SPURIOUS:
3396 if (debug_infrun)
3397 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3398 if (!ptid_equal (ecs->ptid, inferior_ptid))
3399 context_switch (ecs->ptid);
3400 resume (0, GDB_SIGNAL_0);
3401 prepare_to_wait (ecs);
3402 return;
3403
3404 case TARGET_WAITKIND_EXITED:
3405 case TARGET_WAITKIND_SIGNALLED:
3406 if (debug_infrun)
3407 {
3408 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3409 fprintf_unfiltered (gdb_stdlog,
3410 "infrun: TARGET_WAITKIND_EXITED\n");
3411 else
3412 fprintf_unfiltered (gdb_stdlog,
3413 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3414 }
3415
3416 inferior_ptid = ecs->ptid;
3417 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3418 set_current_program_space (current_inferior ()->pspace);
3419 handle_vfork_child_exec_or_exit (0);
3420 target_terminal_ours (); /* Must do this before mourn anyway. */
3421
3422 /* Clearing any previous state of convenience variables. */
3423 clear_exit_convenience_vars ();
3424
3425 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3426 {
3427 /* Record the exit code in the convenience variable $_exitcode, so
3428 that the user can inspect this again later. */
3429 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3430 (LONGEST) ecs->ws.value.integer);
3431
3432 /* Also record this in the inferior itself. */
3433 current_inferior ()->has_exit_code = 1;
3434 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3435
3436 print_exited_reason (ecs->ws.value.integer);
3437 }
3438 else
3439 {
3440 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3441 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3442
3443 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3444 {
3445 /* Set the value of the internal variable $_exitsignal,
3446 which holds the signal uncaught by the inferior. */
3447 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3448 gdbarch_gdb_signal_to_target (gdbarch,
3449 ecs->ws.value.sig));
3450 }
3451 else
3452 {
3453 /* We don't have access to the target's method used for
3454 converting between signal numbers (GDB's internal
3455 representation <-> target's representation).
3456 Therefore, we cannot do a good job at displaying this
3457 information to the user. It's better to just warn
3458 her about it (if infrun debugging is enabled), and
3459 give up. */
3460 if (debug_infrun)
3461 fprintf_filtered (gdb_stdlog, _("\
3462 Cannot fill $_exitsignal with the correct signal number.\n"));
3463 }
3464
3465 print_signal_exited_reason (ecs->ws.value.sig);
3466 }
3467
3468 gdb_flush (gdb_stdout);
3469 target_mourn_inferior ();
3470 singlestep_breakpoints_inserted_p = 0;
3471 cancel_single_step_breakpoints ();
3472 stop_print_frame = 0;
3473 stop_stepping (ecs);
3474 return;
3475
3476 /* The following are the only cases in which we keep going;
3477 the above cases end in a continue or goto. */
3478 case TARGET_WAITKIND_FORKED:
3479 case TARGET_WAITKIND_VFORKED:
3480 if (debug_infrun)
3481 {
3482 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3483 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3484 else
3485 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3486 }
3487
3488 /* Check whether the inferior is displaced stepping. */
3489 {
3490 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3491 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3492 struct displaced_step_inferior_state *displaced
3493 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3494
3495 /* If checking displaced stepping is supported, and thread
3496 ecs->ptid is displaced stepping. */
3497 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3498 {
3499 struct inferior *parent_inf
3500 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3501 struct regcache *child_regcache;
3502 CORE_ADDR parent_pc;
3503
3504 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3505 indicating that the displaced stepping of syscall instruction
3506 has been done. Perform cleanup for parent process here. Note
3507 that this operation also cleans up the child process for vfork,
3508 because their pages are shared. */
3509 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3510
3511 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3512 {
3513 /* Restore scratch pad for child process. */
3514 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3515 }
3516
3517 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3518 the child's PC is also within the scratchpad. Set the child's PC
3519 to the parent's PC value, which has already been fixed up.
3520 FIXME: we use the parent's aspace here, although we're touching
3521 the child, because the child hasn't been added to the inferior
3522 list yet at this point. */
3523
3524 child_regcache
3525 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3526 gdbarch,
3527 parent_inf->aspace);
3528 /* Read PC value of parent process. */
3529 parent_pc = regcache_read_pc (regcache);
3530
3531 if (debug_displaced)
3532 fprintf_unfiltered (gdb_stdlog,
3533 "displaced: write child pc from %s to %s\n",
3534 paddress (gdbarch,
3535 regcache_read_pc (child_regcache)),
3536 paddress (gdbarch, parent_pc));
3537
3538 regcache_write_pc (child_regcache, parent_pc);
3539 }
3540 }
3541
3542 if (!ptid_equal (ecs->ptid, inferior_ptid))
3543 context_switch (ecs->ptid);
3544
3545 /* Immediately detach breakpoints from the child before there's
3546 any chance of letting the user delete breakpoints from the
3547 breakpoint lists. If we don't do this early, it's easy to
3548 leave left over traps in the child, vis: "break foo; catch
3549 fork; c; <fork>; del; c; <child calls foo>". We only follow
3550 the fork on the last `continue', and by that time the
3551 breakpoint at "foo" is long gone from the breakpoint table.
3552 If we vforked, then we don't need to unpatch here, since both
3553 parent and child are sharing the same memory pages; we'll
3554 need to unpatch at follow/detach time instead to be certain
3555 that new breakpoints added between catchpoint hit time and
3556 vfork follow are detached. */
3557 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3558 {
3559 /* This won't actually modify the breakpoint list, but will
3560 physically remove the breakpoints from the child. */
3561 detach_breakpoints (ecs->ws.value.related_pid);
3562 }
3563
3564 if (singlestep_breakpoints_inserted_p)
3565 {
3566 /* Pull the single step breakpoints out of the target. */
3567 remove_single_step_breakpoints ();
3568 singlestep_breakpoints_inserted_p = 0;
3569 }
3570
3571 /* In case the event is caught by a catchpoint, remember that
3572 the event is to be followed at the next resume of the thread,
3573 and not immediately. */
3574 ecs->event_thread->pending_follow = ecs->ws;
3575
3576 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3577
3578 ecs->event_thread->control.stop_bpstat
3579 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3580 stop_pc, ecs->ptid, &ecs->ws);
3581
3582 /* Note that we're interested in knowing the bpstat actually
3583 causes a stop, not just if it may explain the signal.
3584 Software watchpoints, for example, always appear in the
3585 bpstat. */
3586 ecs->random_signal
3587 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3588
3589 /* If no catchpoint triggered for this, then keep going. */
3590 if (ecs->random_signal)
3591 {
3592 ptid_t parent;
3593 ptid_t child;
3594 int should_resume;
3595 int follow_child
3596 = (follow_fork_mode_string == follow_fork_mode_child);
3597
3598 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3599
3600 should_resume = follow_fork ();
3601
3602 parent = ecs->ptid;
3603 child = ecs->ws.value.related_pid;
3604
3605 /* In non-stop mode, also resume the other branch. */
3606 if (non_stop && !detach_fork)
3607 {
3608 if (follow_child)
3609 switch_to_thread (parent);
3610 else
3611 switch_to_thread (child);
3612
3613 ecs->event_thread = inferior_thread ();
3614 ecs->ptid = inferior_ptid;
3615 keep_going (ecs);
3616 }
3617
3618 if (follow_child)
3619 switch_to_thread (child);
3620 else
3621 switch_to_thread (parent);
3622
3623 ecs->event_thread = inferior_thread ();
3624 ecs->ptid = inferior_ptid;
3625
3626 if (should_resume)
3627 keep_going (ecs);
3628 else
3629 stop_stepping (ecs);
3630 return;
3631 }
3632 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3633 process_event_stop_test (ecs);
3634 return;
3635
3636 case TARGET_WAITKIND_VFORK_DONE:
3637 /* Done with the shared memory region. Re-insert breakpoints in
3638 the parent, and keep going. */
3639
3640 if (debug_infrun)
3641 fprintf_unfiltered (gdb_stdlog,
3642 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3643
3644 if (!ptid_equal (ecs->ptid, inferior_ptid))
3645 context_switch (ecs->ptid);
3646
3647 current_inferior ()->waiting_for_vfork_done = 0;
3648 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3649 /* This also takes care of reinserting breakpoints in the
3650 previously locked inferior. */
3651 keep_going (ecs);
3652 return;
3653
3654 case TARGET_WAITKIND_EXECD:
3655 if (debug_infrun)
3656 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3657
3658 if (!ptid_equal (ecs->ptid, inferior_ptid))
3659 context_switch (ecs->ptid);
3660
3661 singlestep_breakpoints_inserted_p = 0;
3662 cancel_single_step_breakpoints ();
3663
3664 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3665
3666 /* Do whatever is necessary to the parent branch of the vfork. */
3667 handle_vfork_child_exec_or_exit (1);
3668
3669 /* This causes the eventpoints and symbol table to be reset.
3670 Must do this now, before trying to determine whether to
3671 stop. */
3672 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3673
3674 ecs->event_thread->control.stop_bpstat
3675 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3676 stop_pc, ecs->ptid, &ecs->ws);
3677 ecs->random_signal
3678 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3679 GDB_SIGNAL_TRAP)
3680 == BPSTAT_SIGNAL_NO);
3681
3682 /* Note that this may be referenced from inside
3683 bpstat_stop_status above, through inferior_has_execd. */
3684 xfree (ecs->ws.value.execd_pathname);
3685 ecs->ws.value.execd_pathname = NULL;
3686
3687 /* If no catchpoint triggered for this, then keep going. */
3688 if (ecs->random_signal)
3689 {
3690 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3691 keep_going (ecs);
3692 return;
3693 }
3694 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3695 process_event_stop_test (ecs);
3696 return;
3697
3698 /* Be careful not to try to gather much state about a thread
3699 that's in a syscall. It's frequently a losing proposition. */
3700 case TARGET_WAITKIND_SYSCALL_ENTRY:
3701 if (debug_infrun)
3702 fprintf_unfiltered (gdb_stdlog,
3703 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3704 /* Getting the current syscall number. */
3705 if (handle_syscall_event (ecs) == 0)
3706 process_event_stop_test (ecs);
3707 return;
3708
3709 /* Before examining the threads further, step this thread to
3710 get it entirely out of the syscall. (We get notice of the
3711 event when the thread is just on the verge of exiting a
3712 syscall. Stepping one instruction seems to get it back
3713 into user code.) */
3714 case TARGET_WAITKIND_SYSCALL_RETURN:
3715 if (debug_infrun)
3716 fprintf_unfiltered (gdb_stdlog,
3717 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3718 if (handle_syscall_event (ecs) == 0)
3719 process_event_stop_test (ecs);
3720 return;
3721
3722 case TARGET_WAITKIND_STOPPED:
3723 if (debug_infrun)
3724 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3725 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3726 break;
3727
3728 case TARGET_WAITKIND_NO_HISTORY:
3729 if (debug_infrun)
3730 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3731 /* Reverse execution: target ran out of history info. */
3732
3733 /* Pull the single step breakpoints out of the target. */
3734 if (singlestep_breakpoints_inserted_p)
3735 {
3736 if (!ptid_equal (ecs->ptid, inferior_ptid))
3737 context_switch (ecs->ptid);
3738 remove_single_step_breakpoints ();
3739 singlestep_breakpoints_inserted_p = 0;
3740 }
3741 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3742 print_no_history_reason ();
3743 stop_stepping (ecs);
3744 return;
3745 }
3746
3747 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3748 {
3749 /* Do we need to clean up the state of a thread that has
3750 completed a displaced single-step? (Doing so usually affects
3751 the PC, so do it here, before we set stop_pc.) */
3752 displaced_step_fixup (ecs->ptid,
3753 ecs->event_thread->suspend.stop_signal);
3754
3755 /* If we either finished a single-step or hit a breakpoint, but
3756 the user wanted this thread to be stopped, pretend we got a
3757 SIG0 (generic unsignaled stop). */
3758
3759 if (ecs->event_thread->stop_requested
3760 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3761 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3762 }
3763
3764 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3765
3766 if (debug_infrun)
3767 {
3768 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3769 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3770 struct cleanup *old_chain = save_inferior_ptid ();
3771
3772 inferior_ptid = ecs->ptid;
3773
3774 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3775 paddress (gdbarch, stop_pc));
3776 if (target_stopped_by_watchpoint ())
3777 {
3778 CORE_ADDR addr;
3779
3780 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3781
3782 if (target_stopped_data_address (&current_target, &addr))
3783 fprintf_unfiltered (gdb_stdlog,
3784 "infrun: stopped data address = %s\n",
3785 paddress (gdbarch, addr));
3786 else
3787 fprintf_unfiltered (gdb_stdlog,
3788 "infrun: (no data address available)\n");
3789 }
3790
3791 do_cleanups (old_chain);
3792 }
3793
3794 if (stepping_past_singlestep_breakpoint)
3795 {
3796 gdb_assert (singlestep_breakpoints_inserted_p);
3797 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3798 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3799
3800 stepping_past_singlestep_breakpoint = 0;
3801
3802 /* We've either finished single-stepping past the single-step
3803 breakpoint, or stopped for some other reason. It would be nice if
3804 we could tell, but we can't reliably. */
3805 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3806 {
3807 if (debug_infrun)
3808 fprintf_unfiltered (gdb_stdlog,
3809 "infrun: stepping_past_"
3810 "singlestep_breakpoint\n");
3811 /* Pull the single step breakpoints out of the target. */
3812 if (!ptid_equal (ecs->ptid, inferior_ptid))
3813 context_switch (ecs->ptid);
3814 remove_single_step_breakpoints ();
3815 singlestep_breakpoints_inserted_p = 0;
3816
3817 ecs->event_thread->control.trap_expected = 0;
3818
3819 context_switch (saved_singlestep_ptid);
3820 if (deprecated_context_hook)
3821 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3822
3823 resume (1, GDB_SIGNAL_0);
3824 prepare_to_wait (ecs);
3825 return;
3826 }
3827 }
3828
3829 if (!ptid_equal (deferred_step_ptid, null_ptid))
3830 {
3831 /* In non-stop mode, there's never a deferred_step_ptid set. */
3832 gdb_assert (!non_stop);
3833
3834 /* If we stopped for some other reason than single-stepping, ignore
3835 the fact that we were supposed to switch back. */
3836 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3837 {
3838 if (debug_infrun)
3839 fprintf_unfiltered (gdb_stdlog,
3840 "infrun: handling deferred step\n");
3841
3842 /* Pull the single step breakpoints out of the target. */
3843 if (singlestep_breakpoints_inserted_p)
3844 {
3845 if (!ptid_equal (ecs->ptid, inferior_ptid))
3846 context_switch (ecs->ptid);
3847 remove_single_step_breakpoints ();
3848 singlestep_breakpoints_inserted_p = 0;
3849 }
3850
3851 ecs->event_thread->control.trap_expected = 0;
3852
3853 context_switch (deferred_step_ptid);
3854 deferred_step_ptid = null_ptid;
3855 /* Suppress spurious "Switching to ..." message. */
3856 previous_inferior_ptid = inferior_ptid;
3857
3858 resume (1, GDB_SIGNAL_0);
3859 prepare_to_wait (ecs);
3860 return;
3861 }
3862
3863 deferred_step_ptid = null_ptid;
3864 }
3865
3866 /* See if a thread hit a thread-specific breakpoint that was meant for
3867 another thread. If so, then step that thread past the breakpoint,
3868 and continue it. */
3869
3870 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3871 {
3872 int thread_hop_needed = 0;
3873 struct address_space *aspace =
3874 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3875
3876 /* Check if a regular breakpoint has been hit before checking
3877 for a potential single step breakpoint. Otherwise, GDB will
3878 not see this breakpoint hit when stepping onto breakpoints. */
3879 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3880 {
3881 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3882 thread_hop_needed = 1;
3883 }
3884 else if (singlestep_breakpoints_inserted_p)
3885 {
3886 /* We have not context switched yet, so this should be true
3887 no matter which thread hit the singlestep breakpoint. */
3888 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3889 if (debug_infrun)
3890 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3891 "trap for %s\n",
3892 target_pid_to_str (ecs->ptid));
3893
3894 /* The call to in_thread_list is necessary because PTIDs sometimes
3895 change when we go from single-threaded to multi-threaded. If
3896 the singlestep_ptid is still in the list, assume that it is
3897 really different from ecs->ptid. */
3898 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3899 && in_thread_list (singlestep_ptid))
3900 {
3901 /* If the PC of the thread we were trying to single-step
3902 has changed, discard this event (which we were going
3903 to ignore anyway), and pretend we saw that thread
3904 trap. This prevents us continuously moving the
3905 single-step breakpoint forward, one instruction at a
3906 time. If the PC has changed, then the thread we were
3907 trying to single-step has trapped or been signalled,
3908 but the event has not been reported to GDB yet.
3909
3910 There might be some cases where this loses signal
3911 information, if a signal has arrived at exactly the
3912 same time that the PC changed, but this is the best
3913 we can do with the information available. Perhaps we
3914 should arrange to report all events for all threads
3915 when they stop, or to re-poll the remote looking for
3916 this particular thread (i.e. temporarily enable
3917 schedlock). */
3918
3919 CORE_ADDR new_singlestep_pc
3920 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3921
3922 if (new_singlestep_pc != singlestep_pc)
3923 {
3924 enum gdb_signal stop_signal;
3925
3926 if (debug_infrun)
3927 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3928 " but expected thread advanced also\n");
3929
3930 /* The current context still belongs to
3931 singlestep_ptid. Don't swap here, since that's
3932 the context we want to use. Just fudge our
3933 state and continue. */
3934 stop_signal = ecs->event_thread->suspend.stop_signal;
3935 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3936 ecs->ptid = singlestep_ptid;
3937 ecs->event_thread = find_thread_ptid (ecs->ptid);
3938 ecs->event_thread->suspend.stop_signal = stop_signal;
3939 stop_pc = new_singlestep_pc;
3940 }
3941 else
3942 {
3943 if (debug_infrun)
3944 fprintf_unfiltered (gdb_stdlog,
3945 "infrun: unexpected thread\n");
3946
3947 thread_hop_needed = 1;
3948 stepping_past_singlestep_breakpoint = 1;
3949 saved_singlestep_ptid = singlestep_ptid;
3950 }
3951 }
3952 }
3953
3954 if (thread_hop_needed)
3955 {
3956 struct regcache *thread_regcache;
3957 int remove_status = 0;
3958
3959 if (debug_infrun)
3960 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3961
3962 /* Switch context before touching inferior memory, the
3963 previous thread may have exited. */
3964 if (!ptid_equal (inferior_ptid, ecs->ptid))
3965 context_switch (ecs->ptid);
3966
3967 /* Saw a breakpoint, but it was hit by the wrong thread.
3968 Just continue. */
3969
3970 if (singlestep_breakpoints_inserted_p)
3971 {
3972 /* Pull the single step breakpoints out of the target. */
3973 remove_single_step_breakpoints ();
3974 singlestep_breakpoints_inserted_p = 0;
3975 }
3976
3977 /* If the arch can displace step, don't remove the
3978 breakpoints. */
3979 thread_regcache = get_thread_regcache (ecs->ptid);
3980 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3981 remove_status = remove_breakpoints ();
3982
3983 /* Did we fail to remove breakpoints? If so, try
3984 to set the PC past the bp. (There's at least
3985 one situation in which we can fail to remove
3986 the bp's: On HP-UX's that use ttrace, we can't
3987 change the address space of a vforking child
3988 process until the child exits (well, okay, not
3989 then either :-) or execs. */
3990 if (remove_status != 0)
3991 error (_("Cannot step over breakpoint hit in wrong thread"));
3992 else
3993 { /* Single step */
3994 if (!non_stop)
3995 {
3996 /* Only need to require the next event from this
3997 thread in all-stop mode. */
3998 waiton_ptid = ecs->ptid;
3999 infwait_state = infwait_thread_hop_state;
4000 }
4001
4002 ecs->event_thread->stepping_over_breakpoint = 1;
4003 keep_going (ecs);
4004 return;
4005 }
4006 }
4007 }
4008
4009 /* See if something interesting happened to the non-current thread. If
4010 so, then switch to that thread. */
4011 if (!ptid_equal (ecs->ptid, inferior_ptid))
4012 {
4013 if (debug_infrun)
4014 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4015
4016 context_switch (ecs->ptid);
4017
4018 if (deprecated_context_hook)
4019 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4020 }
4021
4022 /* At this point, get hold of the now-current thread's frame. */
4023 frame = get_current_frame ();
4024 gdbarch = get_frame_arch (frame);
4025
4026 if (singlestep_breakpoints_inserted_p)
4027 {
4028 /* Pull the single step breakpoints out of the target. */
4029 remove_single_step_breakpoints ();
4030 singlestep_breakpoints_inserted_p = 0;
4031 }
4032
4033 if (stepped_after_stopped_by_watchpoint)
4034 stopped_by_watchpoint = 0;
4035 else
4036 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4037
4038 /* If necessary, step over this watchpoint. We'll be back to display
4039 it in a moment. */
4040 if (stopped_by_watchpoint
4041 && (target_have_steppable_watchpoint
4042 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4043 {
4044 /* At this point, we are stopped at an instruction which has
4045 attempted to write to a piece of memory under control of
4046 a watchpoint. The instruction hasn't actually executed
4047 yet. If we were to evaluate the watchpoint expression
4048 now, we would get the old value, and therefore no change
4049 would seem to have occurred.
4050
4051 In order to make watchpoints work `right', we really need
4052 to complete the memory write, and then evaluate the
4053 watchpoint expression. We do this by single-stepping the
4054 target.
4055
4056 It may not be necessary to disable the watchpoint to stop over
4057 it. For example, the PA can (with some kernel cooperation)
4058 single step over a watchpoint without disabling the watchpoint.
4059
4060 It is far more common to need to disable a watchpoint to step
4061 the inferior over it. If we have non-steppable watchpoints,
4062 we must disable the current watchpoint; it's simplest to
4063 disable all watchpoints and breakpoints. */
4064 int hw_step = 1;
4065
4066 if (!target_have_steppable_watchpoint)
4067 {
4068 remove_breakpoints ();
4069 /* See comment in resume why we need to stop bypassing signals
4070 while breakpoints have been removed. */
4071 target_pass_signals (0, NULL);
4072 }
4073 /* Single step */
4074 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4075 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4076 waiton_ptid = ecs->ptid;
4077 if (target_have_steppable_watchpoint)
4078 infwait_state = infwait_step_watch_state;
4079 else
4080 infwait_state = infwait_nonstep_watch_state;
4081 prepare_to_wait (ecs);
4082 return;
4083 }
4084
4085 ecs->event_thread->stepping_over_breakpoint = 0;
4086 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4087 ecs->event_thread->control.stop_step = 0;
4088 stop_print_frame = 1;
4089 stopped_by_random_signal = 0;
4090
4091 /* Hide inlined functions starting here, unless we just performed stepi or
4092 nexti. After stepi and nexti, always show the innermost frame (not any
4093 inline function call sites). */
4094 if (ecs->event_thread->control.step_range_end != 1)
4095 {
4096 struct address_space *aspace =
4097 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4098
4099 /* skip_inline_frames is expensive, so we avoid it if we can
4100 determine that the address is one where functions cannot have
4101 been inlined. This improves performance with inferiors that
4102 load a lot of shared libraries, because the solib event
4103 breakpoint is defined as the address of a function (i.e. not
4104 inline). Note that we have to check the previous PC as well
4105 as the current one to catch cases when we have just
4106 single-stepped off a breakpoint prior to reinstating it.
4107 Note that we're assuming that the code we single-step to is
4108 not inline, but that's not definitive: there's nothing
4109 preventing the event breakpoint function from containing
4110 inlined code, and the single-step ending up there. If the
4111 user had set a breakpoint on that inlined code, the missing
4112 skip_inline_frames call would break things. Fortunately
4113 that's an extremely unlikely scenario. */
4114 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4115 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4116 && ecs->event_thread->control.trap_expected
4117 && pc_at_non_inline_function (aspace,
4118 ecs->event_thread->prev_pc,
4119 &ecs->ws)))
4120 {
4121 skip_inline_frames (ecs->ptid);
4122
4123 /* Re-fetch current thread's frame in case that invalidated
4124 the frame cache. */
4125 frame = get_current_frame ();
4126 gdbarch = get_frame_arch (frame);
4127 }
4128 }
4129
4130 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4131 && ecs->event_thread->control.trap_expected
4132 && gdbarch_single_step_through_delay_p (gdbarch)
4133 && currently_stepping (ecs->event_thread))
4134 {
4135 /* We're trying to step off a breakpoint. Turns out that we're
4136 also on an instruction that needs to be stepped multiple
4137 times before it's been fully executing. E.g., architectures
4138 with a delay slot. It needs to be stepped twice, once for
4139 the instruction and once for the delay slot. */
4140 int step_through_delay
4141 = gdbarch_single_step_through_delay (gdbarch, frame);
4142
4143 if (debug_infrun && step_through_delay)
4144 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4145 if (ecs->event_thread->control.step_range_end == 0
4146 && step_through_delay)
4147 {
4148 /* The user issued a continue when stopped at a breakpoint.
4149 Set up for another trap and get out of here. */
4150 ecs->event_thread->stepping_over_breakpoint = 1;
4151 keep_going (ecs);
4152 return;
4153 }
4154 else if (step_through_delay)
4155 {
4156 /* The user issued a step when stopped at a breakpoint.
4157 Maybe we should stop, maybe we should not - the delay
4158 slot *might* correspond to a line of source. In any
4159 case, don't decide that here, just set
4160 ecs->stepping_over_breakpoint, making sure we
4161 single-step again before breakpoints are re-inserted. */
4162 ecs->event_thread->stepping_over_breakpoint = 1;
4163 }
4164 }
4165
4166 /* Look at the cause of the stop, and decide what to do.
4167 The alternatives are:
4168 1) stop_stepping and return; to really stop and return to the debugger,
4169 2) keep_going and return to start up again
4170 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4171 3) set ecs->random_signal to 1, and the decision between 1 and 2
4172 will be made according to the signal handling tables. */
4173
4174 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4175 && stop_after_trap)
4176 {
4177 if (debug_infrun)
4178 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4179 stop_print_frame = 0;
4180 stop_stepping (ecs);
4181 return;
4182 }
4183
4184 /* This is originated from start_remote(), start_inferior() and
4185 shared libraries hook functions. */
4186 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4187 {
4188 if (debug_infrun)
4189 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4190 stop_stepping (ecs);
4191 return;
4192 }
4193
4194 /* This originates from attach_command(). We need to overwrite
4195 the stop_signal here, because some kernels don't ignore a
4196 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4197 See more comments in inferior.h. On the other hand, if we
4198 get a non-SIGSTOP, report it to the user - assume the backend
4199 will handle the SIGSTOP if it should show up later.
4200
4201 Also consider that the attach is complete when we see a
4202 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4203 target extended-remote report it instead of a SIGSTOP
4204 (e.g. gdbserver). We already rely on SIGTRAP being our
4205 signal, so this is no exception.
4206
4207 Also consider that the attach is complete when we see a
4208 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4209 the target to stop all threads of the inferior, in case the
4210 low level attach operation doesn't stop them implicitly. If
4211 they weren't stopped implicitly, then the stub will report a
4212 GDB_SIGNAL_0, meaning: stopped for no particular reason
4213 other than GDB's request. */
4214 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4215 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4216 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4217 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4218 {
4219 stop_stepping (ecs);
4220 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4221 return;
4222 }
4223
4224 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4225 handles this event. */
4226 ecs->event_thread->control.stop_bpstat
4227 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4228 stop_pc, ecs->ptid, &ecs->ws);
4229
4230 /* Following in case break condition called a
4231 function. */
4232 stop_print_frame = 1;
4233
4234 /* This is where we handle "moribund" watchpoints. Unlike
4235 software breakpoints traps, hardware watchpoint traps are
4236 always distinguishable from random traps. If no high-level
4237 watchpoint is associated with the reported stop data address
4238 anymore, then the bpstat does not explain the signal ---
4239 simply make sure to ignore it if `stopped_by_watchpoint' is
4240 set. */
4241
4242 if (debug_infrun
4243 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4244 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4245 GDB_SIGNAL_TRAP)
4246 == BPSTAT_SIGNAL_NO)
4247 && stopped_by_watchpoint)
4248 fprintf_unfiltered (gdb_stdlog,
4249 "infrun: no user watchpoint explains "
4250 "watchpoint SIGTRAP, ignoring\n");
4251
4252 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4253 at one stage in the past included checks for an inferior
4254 function call's call dummy's return breakpoint. The original
4255 comment, that went with the test, read:
4256
4257 ``End of a stack dummy. Some systems (e.g. Sony news) give
4258 another signal besides SIGTRAP, so check here as well as
4259 above.''
4260
4261 If someone ever tries to get call dummys on a
4262 non-executable stack to work (where the target would stop
4263 with something like a SIGSEGV), then those tests might need
4264 to be re-instated. Given, however, that the tests were only
4265 enabled when momentary breakpoints were not being used, I
4266 suspect that it won't be the case.
4267
4268 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4269 be necessary for call dummies on a non-executable stack on
4270 SPARC. */
4271
4272 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4273 ecs->random_signal
4274 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4275 GDB_SIGNAL_TRAP)
4276 != BPSTAT_SIGNAL_NO)
4277 || stopped_by_watchpoint
4278 || ecs->event_thread->control.trap_expected
4279 || (ecs->event_thread->control.step_range_end
4280 && (ecs->event_thread->control.step_resume_breakpoint
4281 == NULL)));
4282 else
4283 {
4284 enum bpstat_signal_value sval;
4285
4286 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4287 ecs->event_thread->suspend.stop_signal);
4288 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4289
4290 if (sval == BPSTAT_SIGNAL_HIDE)
4291 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4292 }
4293
4294 /* For the program's own signals, act according to
4295 the signal handling tables. */
4296
4297 if (ecs->random_signal)
4298 {
4299 /* Signal not for debugging purposes. */
4300 int printed = 0;
4301 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4302 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4303
4304 if (debug_infrun)
4305 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4306 gdb_signal_to_symbol_string (stop_signal));
4307
4308 stopped_by_random_signal = 1;
4309
4310 if (signal_print[ecs->event_thread->suspend.stop_signal])
4311 {
4312 printed = 1;
4313 target_terminal_ours_for_output ();
4314 print_signal_received_reason
4315 (ecs->event_thread->suspend.stop_signal);
4316 }
4317 /* Always stop on signals if we're either just gaining control
4318 of the program, or the user explicitly requested this thread
4319 to remain stopped. */
4320 if (stop_soon != NO_STOP_QUIETLY
4321 || ecs->event_thread->stop_requested
4322 || (!inf->detaching
4323 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4324 {
4325 stop_stepping (ecs);
4326 return;
4327 }
4328 /* If not going to stop, give terminal back
4329 if we took it away. */
4330 else if (printed)
4331 target_terminal_inferior ();
4332
4333 /* Clear the signal if it should not be passed. */
4334 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4335 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4336
4337 if (ecs->event_thread->prev_pc == stop_pc
4338 && ecs->event_thread->control.trap_expected
4339 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4340 {
4341 /* We were just starting a new sequence, attempting to
4342 single-step off of a breakpoint and expecting a SIGTRAP.
4343 Instead this signal arrives. This signal will take us out
4344 of the stepping range so GDB needs to remember to, when
4345 the signal handler returns, resume stepping off that
4346 breakpoint. */
4347 /* To simplify things, "continue" is forced to use the same
4348 code paths as single-step - set a breakpoint at the
4349 signal return address and then, once hit, step off that
4350 breakpoint. */
4351 if (debug_infrun)
4352 fprintf_unfiltered (gdb_stdlog,
4353 "infrun: signal arrived while stepping over "
4354 "breakpoint\n");
4355
4356 insert_hp_step_resume_breakpoint_at_frame (frame);
4357 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4358 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4359 ecs->event_thread->control.trap_expected = 0;
4360 keep_going (ecs);
4361 return;
4362 }
4363
4364 if (ecs->event_thread->control.step_range_end != 0
4365 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4366 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4367 && frame_id_eq (get_stack_frame_id (frame),
4368 ecs->event_thread->control.step_stack_frame_id)
4369 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4370 {
4371 /* The inferior is about to take a signal that will take it
4372 out of the single step range. Set a breakpoint at the
4373 current PC (which is presumably where the signal handler
4374 will eventually return) and then allow the inferior to
4375 run free.
4376
4377 Note that this is only needed for a signal delivered
4378 while in the single-step range. Nested signals aren't a
4379 problem as they eventually all return. */
4380 if (debug_infrun)
4381 fprintf_unfiltered (gdb_stdlog,
4382 "infrun: signal may take us out of "
4383 "single-step range\n");
4384
4385 insert_hp_step_resume_breakpoint_at_frame (frame);
4386 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4387 ecs->event_thread->control.trap_expected = 0;
4388 keep_going (ecs);
4389 return;
4390 }
4391
4392 /* Note: step_resume_breakpoint may be non-NULL. This occures
4393 when either there's a nested signal, or when there's a
4394 pending signal enabled just as the signal handler returns
4395 (leaving the inferior at the step-resume-breakpoint without
4396 actually executing it). Either way continue until the
4397 breakpoint is really hit. */
4398
4399 if (!switch_back_to_stepped_thread (ecs))
4400 {
4401 if (debug_infrun)
4402 fprintf_unfiltered (gdb_stdlog,
4403 "infrun: random signal, keep going\n");
4404
4405 keep_going (ecs);
4406 }
4407 return;
4408 }
4409
4410 process_event_stop_test (ecs);
4411 }
4412
4413 /* Come here when we've got some debug event / signal we can explain
4414 (IOW, not a random signal), and test whether it should cause a
4415 stop, or whether we should resume the inferior (transparently).
4416 E.g., could be a breakpoint whose condition evaluates false; we
4417 could be still stepping within the line; etc. */
4418
4419 static void
4420 process_event_stop_test (struct execution_control_state *ecs)
4421 {
4422 struct symtab_and_line stop_pc_sal;
4423 struct frame_info *frame;
4424 struct gdbarch *gdbarch;
4425
4426 {
4427 /* Handle cases caused by hitting a breakpoint. */
4428
4429 CORE_ADDR jmp_buf_pc;
4430 struct bpstat_what what;
4431
4432 frame = get_current_frame ();
4433 gdbarch = get_frame_arch (frame);
4434
4435 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4436
4437 if (what.call_dummy)
4438 {
4439 stop_stack_dummy = what.call_dummy;
4440 }
4441
4442 /* If we hit an internal event that triggers symbol changes, the
4443 current frame will be invalidated within bpstat_what (e.g.,
4444 if we hit an internal solib event). Re-fetch it. */
4445 frame = get_current_frame ();
4446 gdbarch = get_frame_arch (frame);
4447
4448 switch (what.main_action)
4449 {
4450 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4451 /* If we hit the breakpoint at longjmp while stepping, we
4452 install a momentary breakpoint at the target of the
4453 jmp_buf. */
4454
4455 if (debug_infrun)
4456 fprintf_unfiltered (gdb_stdlog,
4457 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4458
4459 ecs->event_thread->stepping_over_breakpoint = 1;
4460
4461 if (what.is_longjmp)
4462 {
4463 struct value *arg_value;
4464
4465 /* If we set the longjmp breakpoint via a SystemTap
4466 probe, then use it to extract the arguments. The
4467 destination PC is the third argument to the
4468 probe. */
4469 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4470 if (arg_value)
4471 jmp_buf_pc = value_as_address (arg_value);
4472 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4473 || !gdbarch_get_longjmp_target (gdbarch,
4474 frame, &jmp_buf_pc))
4475 {
4476 if (debug_infrun)
4477 fprintf_unfiltered (gdb_stdlog,
4478 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4479 "(!gdbarch_get_longjmp_target)\n");
4480 keep_going (ecs);
4481 return;
4482 }
4483
4484 /* Insert a breakpoint at resume address. */
4485 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4486 }
4487 else
4488 check_exception_resume (ecs, frame);
4489 keep_going (ecs);
4490 return;
4491
4492 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4493 {
4494 struct frame_info *init_frame;
4495
4496 /* There are several cases to consider.
4497
4498 1. The initiating frame no longer exists. In this case
4499 we must stop, because the exception or longjmp has gone
4500 too far.
4501
4502 2. The initiating frame exists, and is the same as the
4503 current frame. We stop, because the exception or
4504 longjmp has been caught.
4505
4506 3. The initiating frame exists and is different from
4507 the current frame. This means the exception or longjmp
4508 has been caught beneath the initiating frame, so keep
4509 going.
4510
4511 4. longjmp breakpoint has been placed just to protect
4512 against stale dummy frames and user is not interested
4513 in stopping around longjmps. */
4514
4515 if (debug_infrun)
4516 fprintf_unfiltered (gdb_stdlog,
4517 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4518
4519 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4520 != NULL);
4521 delete_exception_resume_breakpoint (ecs->event_thread);
4522
4523 if (what.is_longjmp)
4524 {
4525 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4526
4527 if (!frame_id_p (ecs->event_thread->initiating_frame))
4528 {
4529 /* Case 4. */
4530 keep_going (ecs);
4531 return;
4532 }
4533 }
4534
4535 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4536
4537 if (init_frame)
4538 {
4539 struct frame_id current_id
4540 = get_frame_id (get_current_frame ());
4541 if (frame_id_eq (current_id,
4542 ecs->event_thread->initiating_frame))
4543 {
4544 /* Case 2. Fall through. */
4545 }
4546 else
4547 {
4548 /* Case 3. */
4549 keep_going (ecs);
4550 return;
4551 }
4552 }
4553
4554 /* For Cases 1 and 2, remove the step-resume breakpoint,
4555 if it exists. */
4556 delete_step_resume_breakpoint (ecs->event_thread);
4557
4558 ecs->event_thread->control.stop_step = 1;
4559 print_end_stepping_range_reason ();
4560 stop_stepping (ecs);
4561 }
4562 return;
4563
4564 case BPSTAT_WHAT_SINGLE:
4565 if (debug_infrun)
4566 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4567 ecs->event_thread->stepping_over_breakpoint = 1;
4568 /* Still need to check other stuff, at least the case where
4569 we are stepping and step out of the right range. */
4570 break;
4571
4572 case BPSTAT_WHAT_STEP_RESUME:
4573 if (debug_infrun)
4574 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4575
4576 delete_step_resume_breakpoint (ecs->event_thread);
4577 if (ecs->event_thread->control.proceed_to_finish
4578 && execution_direction == EXEC_REVERSE)
4579 {
4580 struct thread_info *tp = ecs->event_thread;
4581
4582 /* We are finishing a function in reverse, and just hit
4583 the step-resume breakpoint at the start address of
4584 the function, and we're almost there -- just need to
4585 back up by one more single-step, which should take us
4586 back to the function call. */
4587 tp->control.step_range_start = tp->control.step_range_end = 1;
4588 keep_going (ecs);
4589 return;
4590 }
4591 fill_in_stop_func (gdbarch, ecs);
4592 if (stop_pc == ecs->stop_func_start
4593 && execution_direction == EXEC_REVERSE)
4594 {
4595 /* We are stepping over a function call in reverse, and
4596 just hit the step-resume breakpoint at the start
4597 address of the function. Go back to single-stepping,
4598 which should take us back to the function call. */
4599 ecs->event_thread->stepping_over_breakpoint = 1;
4600 keep_going (ecs);
4601 return;
4602 }
4603 break;
4604
4605 case BPSTAT_WHAT_STOP_NOISY:
4606 if (debug_infrun)
4607 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4608 stop_print_frame = 1;
4609
4610 /* We are about to nuke the step_resume_breakpointt via the
4611 cleanup chain, so no need to worry about it here. */
4612
4613 stop_stepping (ecs);
4614 return;
4615
4616 case BPSTAT_WHAT_STOP_SILENT:
4617 if (debug_infrun)
4618 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4619 stop_print_frame = 0;
4620
4621 /* We are about to nuke the step_resume_breakpoin via the
4622 cleanup chain, so no need to worry about it here. */
4623
4624 stop_stepping (ecs);
4625 return;
4626
4627 case BPSTAT_WHAT_HP_STEP_RESUME:
4628 if (debug_infrun)
4629 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4630
4631 delete_step_resume_breakpoint (ecs->event_thread);
4632 if (ecs->event_thread->step_after_step_resume_breakpoint)
4633 {
4634 /* Back when the step-resume breakpoint was inserted, we
4635 were trying to single-step off a breakpoint. Go back
4636 to doing that. */
4637 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4638 ecs->event_thread->stepping_over_breakpoint = 1;
4639 keep_going (ecs);
4640 return;
4641 }
4642 break;
4643
4644 case BPSTAT_WHAT_KEEP_CHECKING:
4645 break;
4646 }
4647 }
4648
4649 /* We come here if we hit a breakpoint but should not
4650 stop for it. Possibly we also were stepping
4651 and should stop for that. So fall through and
4652 test for stepping. But, if not stepping,
4653 do not stop. */
4654
4655 /* In all-stop mode, if we're currently stepping but have stopped in
4656 some other thread, we need to switch back to the stepped thread. */
4657 if (switch_back_to_stepped_thread (ecs))
4658 return;
4659
4660 if (ecs->event_thread->control.step_resume_breakpoint)
4661 {
4662 if (debug_infrun)
4663 fprintf_unfiltered (gdb_stdlog,
4664 "infrun: step-resume breakpoint is inserted\n");
4665
4666 /* Having a step-resume breakpoint overrides anything
4667 else having to do with stepping commands until
4668 that breakpoint is reached. */
4669 keep_going (ecs);
4670 return;
4671 }
4672
4673 if (ecs->event_thread->control.step_range_end == 0)
4674 {
4675 if (debug_infrun)
4676 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4677 /* Likewise if we aren't even stepping. */
4678 keep_going (ecs);
4679 return;
4680 }
4681
4682 /* Re-fetch current thread's frame in case the code above caused
4683 the frame cache to be re-initialized, making our FRAME variable
4684 a dangling pointer. */
4685 frame = get_current_frame ();
4686 gdbarch = get_frame_arch (frame);
4687 fill_in_stop_func (gdbarch, ecs);
4688
4689 /* If stepping through a line, keep going if still within it.
4690
4691 Note that step_range_end is the address of the first instruction
4692 beyond the step range, and NOT the address of the last instruction
4693 within it!
4694
4695 Note also that during reverse execution, we may be stepping
4696 through a function epilogue and therefore must detect when
4697 the current-frame changes in the middle of a line. */
4698
4699 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4700 && (execution_direction != EXEC_REVERSE
4701 || frame_id_eq (get_frame_id (frame),
4702 ecs->event_thread->control.step_frame_id)))
4703 {
4704 if (debug_infrun)
4705 fprintf_unfiltered
4706 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4707 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4708 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4709
4710 /* Tentatively re-enable range stepping; `resume' disables it if
4711 necessary (e.g., if we're stepping over a breakpoint or we
4712 have software watchpoints). */
4713 ecs->event_thread->control.may_range_step = 1;
4714
4715 /* When stepping backward, stop at beginning of line range
4716 (unless it's the function entry point, in which case
4717 keep going back to the call point). */
4718 if (stop_pc == ecs->event_thread->control.step_range_start
4719 && stop_pc != ecs->stop_func_start
4720 && execution_direction == EXEC_REVERSE)
4721 {
4722 ecs->event_thread->control.stop_step = 1;
4723 print_end_stepping_range_reason ();
4724 stop_stepping (ecs);
4725 }
4726 else
4727 keep_going (ecs);
4728
4729 return;
4730 }
4731
4732 /* We stepped out of the stepping range. */
4733
4734 /* If we are stepping at the source level and entered the runtime
4735 loader dynamic symbol resolution code...
4736
4737 EXEC_FORWARD: we keep on single stepping until we exit the run
4738 time loader code and reach the callee's address.
4739
4740 EXEC_REVERSE: we've already executed the callee (backward), and
4741 the runtime loader code is handled just like any other
4742 undebuggable function call. Now we need only keep stepping
4743 backward through the trampoline code, and that's handled further
4744 down, so there is nothing for us to do here. */
4745
4746 if (execution_direction != EXEC_REVERSE
4747 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4748 && in_solib_dynsym_resolve_code (stop_pc))
4749 {
4750 CORE_ADDR pc_after_resolver =
4751 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4752
4753 if (debug_infrun)
4754 fprintf_unfiltered (gdb_stdlog,
4755 "infrun: stepped into dynsym resolve code\n");
4756
4757 if (pc_after_resolver)
4758 {
4759 /* Set up a step-resume breakpoint at the address
4760 indicated by SKIP_SOLIB_RESOLVER. */
4761 struct symtab_and_line sr_sal;
4762
4763 init_sal (&sr_sal);
4764 sr_sal.pc = pc_after_resolver;
4765 sr_sal.pspace = get_frame_program_space (frame);
4766
4767 insert_step_resume_breakpoint_at_sal (gdbarch,
4768 sr_sal, null_frame_id);
4769 }
4770
4771 keep_going (ecs);
4772 return;
4773 }
4774
4775 if (ecs->event_thread->control.step_range_end != 1
4776 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4777 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4778 && get_frame_type (frame) == SIGTRAMP_FRAME)
4779 {
4780 if (debug_infrun)
4781 fprintf_unfiltered (gdb_stdlog,
4782 "infrun: stepped into signal trampoline\n");
4783 /* The inferior, while doing a "step" or "next", has ended up in
4784 a signal trampoline (either by a signal being delivered or by
4785 the signal handler returning). Just single-step until the
4786 inferior leaves the trampoline (either by calling the handler
4787 or returning). */
4788 keep_going (ecs);
4789 return;
4790 }
4791
4792 /* If we're in the return path from a shared library trampoline,
4793 we want to proceed through the trampoline when stepping. */
4794 /* macro/2012-04-25: This needs to come before the subroutine
4795 call check below as on some targets return trampolines look
4796 like subroutine calls (MIPS16 return thunks). */
4797 if (gdbarch_in_solib_return_trampoline (gdbarch,
4798 stop_pc, ecs->stop_func_name)
4799 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4800 {
4801 /* Determine where this trampoline returns. */
4802 CORE_ADDR real_stop_pc;
4803
4804 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4805
4806 if (debug_infrun)
4807 fprintf_unfiltered (gdb_stdlog,
4808 "infrun: stepped into solib return tramp\n");
4809
4810 /* Only proceed through if we know where it's going. */
4811 if (real_stop_pc)
4812 {
4813 /* And put the step-breakpoint there and go until there. */
4814 struct symtab_and_line sr_sal;
4815
4816 init_sal (&sr_sal); /* initialize to zeroes */
4817 sr_sal.pc = real_stop_pc;
4818 sr_sal.section = find_pc_overlay (sr_sal.pc);
4819 sr_sal.pspace = get_frame_program_space (frame);
4820
4821 /* Do not specify what the fp should be when we stop since
4822 on some machines the prologue is where the new fp value
4823 is established. */
4824 insert_step_resume_breakpoint_at_sal (gdbarch,
4825 sr_sal, null_frame_id);
4826
4827 /* Restart without fiddling with the step ranges or
4828 other state. */
4829 keep_going (ecs);
4830 return;
4831 }
4832 }
4833
4834 /* Check for subroutine calls. The check for the current frame
4835 equalling the step ID is not necessary - the check of the
4836 previous frame's ID is sufficient - but it is a common case and
4837 cheaper than checking the previous frame's ID.
4838
4839 NOTE: frame_id_eq will never report two invalid frame IDs as
4840 being equal, so to get into this block, both the current and
4841 previous frame must have valid frame IDs. */
4842 /* The outer_frame_id check is a heuristic to detect stepping
4843 through startup code. If we step over an instruction which
4844 sets the stack pointer from an invalid value to a valid value,
4845 we may detect that as a subroutine call from the mythical
4846 "outermost" function. This could be fixed by marking
4847 outermost frames as !stack_p,code_p,special_p. Then the
4848 initial outermost frame, before sp was valid, would
4849 have code_addr == &_start. See the comment in frame_id_eq
4850 for more. */
4851 if (!frame_id_eq (get_stack_frame_id (frame),
4852 ecs->event_thread->control.step_stack_frame_id)
4853 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4854 ecs->event_thread->control.step_stack_frame_id)
4855 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4856 outer_frame_id)
4857 || step_start_function != find_pc_function (stop_pc))))
4858 {
4859 CORE_ADDR real_stop_pc;
4860
4861 if (debug_infrun)
4862 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4863
4864 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4865 || ((ecs->event_thread->control.step_range_end == 1)
4866 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4867 ecs->stop_func_start)))
4868 {
4869 /* I presume that step_over_calls is only 0 when we're
4870 supposed to be stepping at the assembly language level
4871 ("stepi"). Just stop. */
4872 /* Also, maybe we just did a "nexti" inside a prolog, so we
4873 thought it was a subroutine call but it was not. Stop as
4874 well. FENN */
4875 /* And this works the same backward as frontward. MVS */
4876 ecs->event_thread->control.stop_step = 1;
4877 print_end_stepping_range_reason ();
4878 stop_stepping (ecs);
4879 return;
4880 }
4881
4882 /* Reverse stepping through solib trampolines. */
4883
4884 if (execution_direction == EXEC_REVERSE
4885 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4886 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4887 || (ecs->stop_func_start == 0
4888 && in_solib_dynsym_resolve_code (stop_pc))))
4889 {
4890 /* Any solib trampoline code can be handled in reverse
4891 by simply continuing to single-step. We have already
4892 executed the solib function (backwards), and a few
4893 steps will take us back through the trampoline to the
4894 caller. */
4895 keep_going (ecs);
4896 return;
4897 }
4898
4899 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4900 {
4901 /* We're doing a "next".
4902
4903 Normal (forward) execution: set a breakpoint at the
4904 callee's return address (the address at which the caller
4905 will resume).
4906
4907 Reverse (backward) execution. set the step-resume
4908 breakpoint at the start of the function that we just
4909 stepped into (backwards), and continue to there. When we
4910 get there, we'll need to single-step back to the caller. */
4911
4912 if (execution_direction == EXEC_REVERSE)
4913 {
4914 /* If we're already at the start of the function, we've either
4915 just stepped backward into a single instruction function,
4916 or stepped back out of a signal handler to the first instruction
4917 of the function. Just keep going, which will single-step back
4918 to the caller. */
4919 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
4920 {
4921 struct symtab_and_line sr_sal;
4922
4923 /* Normal function call return (static or dynamic). */
4924 init_sal (&sr_sal);
4925 sr_sal.pc = ecs->stop_func_start;
4926 sr_sal.pspace = get_frame_program_space (frame);
4927 insert_step_resume_breakpoint_at_sal (gdbarch,
4928 sr_sal, null_frame_id);
4929 }
4930 }
4931 else
4932 insert_step_resume_breakpoint_at_caller (frame);
4933
4934 keep_going (ecs);
4935 return;
4936 }
4937
4938 /* If we are in a function call trampoline (a stub between the
4939 calling routine and the real function), locate the real
4940 function. That's what tells us (a) whether we want to step
4941 into it at all, and (b) what prologue we want to run to the
4942 end of, if we do step into it. */
4943 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4944 if (real_stop_pc == 0)
4945 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4946 if (real_stop_pc != 0)
4947 ecs->stop_func_start = real_stop_pc;
4948
4949 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4950 {
4951 struct symtab_and_line sr_sal;
4952
4953 init_sal (&sr_sal);
4954 sr_sal.pc = ecs->stop_func_start;
4955 sr_sal.pspace = get_frame_program_space (frame);
4956
4957 insert_step_resume_breakpoint_at_sal (gdbarch,
4958 sr_sal, null_frame_id);
4959 keep_going (ecs);
4960 return;
4961 }
4962
4963 /* If we have line number information for the function we are
4964 thinking of stepping into and the function isn't on the skip
4965 list, step into it.
4966
4967 If there are several symtabs at that PC (e.g. with include
4968 files), just want to know whether *any* of them have line
4969 numbers. find_pc_line handles this. */
4970 {
4971 struct symtab_and_line tmp_sal;
4972
4973 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4974 if (tmp_sal.line != 0
4975 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4976 &tmp_sal))
4977 {
4978 if (execution_direction == EXEC_REVERSE)
4979 handle_step_into_function_backward (gdbarch, ecs);
4980 else
4981 handle_step_into_function (gdbarch, ecs);
4982 return;
4983 }
4984 }
4985
4986 /* If we have no line number and the step-stop-if-no-debug is
4987 set, we stop the step so that the user has a chance to switch
4988 in assembly mode. */
4989 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4990 && step_stop_if_no_debug)
4991 {
4992 ecs->event_thread->control.stop_step = 1;
4993 print_end_stepping_range_reason ();
4994 stop_stepping (ecs);
4995 return;
4996 }
4997
4998 if (execution_direction == EXEC_REVERSE)
4999 {
5000 /* If we're already at the start of the function, we've either just
5001 stepped backward into a single instruction function without line
5002 number info, or stepped back out of a signal handler to the first
5003 instruction of the function without line number info. Just keep
5004 going, which will single-step back to the caller. */
5005 if (ecs->stop_func_start != stop_pc)
5006 {
5007 /* Set a breakpoint at callee's start address.
5008 From there we can step once and be back in the caller. */
5009 struct symtab_and_line sr_sal;
5010
5011 init_sal (&sr_sal);
5012 sr_sal.pc = ecs->stop_func_start;
5013 sr_sal.pspace = get_frame_program_space (frame);
5014 insert_step_resume_breakpoint_at_sal (gdbarch,
5015 sr_sal, null_frame_id);
5016 }
5017 }
5018 else
5019 /* Set a breakpoint at callee's return address (the address
5020 at which the caller will resume). */
5021 insert_step_resume_breakpoint_at_caller (frame);
5022
5023 keep_going (ecs);
5024 return;
5025 }
5026
5027 /* Reverse stepping through solib trampolines. */
5028
5029 if (execution_direction == EXEC_REVERSE
5030 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5031 {
5032 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5033 || (ecs->stop_func_start == 0
5034 && in_solib_dynsym_resolve_code (stop_pc)))
5035 {
5036 /* Any solib trampoline code can be handled in reverse
5037 by simply continuing to single-step. We have already
5038 executed the solib function (backwards), and a few
5039 steps will take us back through the trampoline to the
5040 caller. */
5041 keep_going (ecs);
5042 return;
5043 }
5044 else if (in_solib_dynsym_resolve_code (stop_pc))
5045 {
5046 /* Stepped backward into the solib dynsym resolver.
5047 Set a breakpoint at its start and continue, then
5048 one more step will take us out. */
5049 struct symtab_and_line sr_sal;
5050
5051 init_sal (&sr_sal);
5052 sr_sal.pc = ecs->stop_func_start;
5053 sr_sal.pspace = get_frame_program_space (frame);
5054 insert_step_resume_breakpoint_at_sal (gdbarch,
5055 sr_sal, null_frame_id);
5056 keep_going (ecs);
5057 return;
5058 }
5059 }
5060
5061 stop_pc_sal = find_pc_line (stop_pc, 0);
5062
5063 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5064 the trampoline processing logic, however, there are some trampolines
5065 that have no names, so we should do trampoline handling first. */
5066 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5067 && ecs->stop_func_name == NULL
5068 && stop_pc_sal.line == 0)
5069 {
5070 if (debug_infrun)
5071 fprintf_unfiltered (gdb_stdlog,
5072 "infrun: stepped into undebuggable function\n");
5073
5074 /* The inferior just stepped into, or returned to, an
5075 undebuggable function (where there is no debugging information
5076 and no line number corresponding to the address where the
5077 inferior stopped). Since we want to skip this kind of code,
5078 we keep going until the inferior returns from this
5079 function - unless the user has asked us not to (via
5080 set step-mode) or we no longer know how to get back
5081 to the call site. */
5082 if (step_stop_if_no_debug
5083 || !frame_id_p (frame_unwind_caller_id (frame)))
5084 {
5085 /* If we have no line number and the step-stop-if-no-debug
5086 is set, we stop the step so that the user has a chance to
5087 switch in assembly mode. */
5088 ecs->event_thread->control.stop_step = 1;
5089 print_end_stepping_range_reason ();
5090 stop_stepping (ecs);
5091 return;
5092 }
5093 else
5094 {
5095 /* Set a breakpoint at callee's return address (the address
5096 at which the caller will resume). */
5097 insert_step_resume_breakpoint_at_caller (frame);
5098 keep_going (ecs);
5099 return;
5100 }
5101 }
5102
5103 if (ecs->event_thread->control.step_range_end == 1)
5104 {
5105 /* It is stepi or nexti. We always want to stop stepping after
5106 one instruction. */
5107 if (debug_infrun)
5108 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5109 ecs->event_thread->control.stop_step = 1;
5110 print_end_stepping_range_reason ();
5111 stop_stepping (ecs);
5112 return;
5113 }
5114
5115 if (stop_pc_sal.line == 0)
5116 {
5117 /* We have no line number information. That means to stop
5118 stepping (does this always happen right after one instruction,
5119 when we do "s" in a function with no line numbers,
5120 or can this happen as a result of a return or longjmp?). */
5121 if (debug_infrun)
5122 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5123 ecs->event_thread->control.stop_step = 1;
5124 print_end_stepping_range_reason ();
5125 stop_stepping (ecs);
5126 return;
5127 }
5128
5129 /* Look for "calls" to inlined functions, part one. If the inline
5130 frame machinery detected some skipped call sites, we have entered
5131 a new inline function. */
5132
5133 if (frame_id_eq (get_frame_id (get_current_frame ()),
5134 ecs->event_thread->control.step_frame_id)
5135 && inline_skipped_frames (ecs->ptid))
5136 {
5137 struct symtab_and_line call_sal;
5138
5139 if (debug_infrun)
5140 fprintf_unfiltered (gdb_stdlog,
5141 "infrun: stepped into inlined function\n");
5142
5143 find_frame_sal (get_current_frame (), &call_sal);
5144
5145 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5146 {
5147 /* For "step", we're going to stop. But if the call site
5148 for this inlined function is on the same source line as
5149 we were previously stepping, go down into the function
5150 first. Otherwise stop at the call site. */
5151
5152 if (call_sal.line == ecs->event_thread->current_line
5153 && call_sal.symtab == ecs->event_thread->current_symtab)
5154 step_into_inline_frame (ecs->ptid);
5155
5156 ecs->event_thread->control.stop_step = 1;
5157 print_end_stepping_range_reason ();
5158 stop_stepping (ecs);
5159 return;
5160 }
5161 else
5162 {
5163 /* For "next", we should stop at the call site if it is on a
5164 different source line. Otherwise continue through the
5165 inlined function. */
5166 if (call_sal.line == ecs->event_thread->current_line
5167 && call_sal.symtab == ecs->event_thread->current_symtab)
5168 keep_going (ecs);
5169 else
5170 {
5171 ecs->event_thread->control.stop_step = 1;
5172 print_end_stepping_range_reason ();
5173 stop_stepping (ecs);
5174 }
5175 return;
5176 }
5177 }
5178
5179 /* Look for "calls" to inlined functions, part two. If we are still
5180 in the same real function we were stepping through, but we have
5181 to go further up to find the exact frame ID, we are stepping
5182 through a more inlined call beyond its call site. */
5183
5184 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5185 && !frame_id_eq (get_frame_id (get_current_frame ()),
5186 ecs->event_thread->control.step_frame_id)
5187 && stepped_in_from (get_current_frame (),
5188 ecs->event_thread->control.step_frame_id))
5189 {
5190 if (debug_infrun)
5191 fprintf_unfiltered (gdb_stdlog,
5192 "infrun: stepping through inlined function\n");
5193
5194 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5195 keep_going (ecs);
5196 else
5197 {
5198 ecs->event_thread->control.stop_step = 1;
5199 print_end_stepping_range_reason ();
5200 stop_stepping (ecs);
5201 }
5202 return;
5203 }
5204
5205 if ((stop_pc == stop_pc_sal.pc)
5206 && (ecs->event_thread->current_line != stop_pc_sal.line
5207 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5208 {
5209 /* We are at the start of a different line. So stop. Note that
5210 we don't stop if we step into the middle of a different line.
5211 That is said to make things like for (;;) statements work
5212 better. */
5213 if (debug_infrun)
5214 fprintf_unfiltered (gdb_stdlog,
5215 "infrun: stepped to a different line\n");
5216 ecs->event_thread->control.stop_step = 1;
5217 print_end_stepping_range_reason ();
5218 stop_stepping (ecs);
5219 return;
5220 }
5221
5222 /* We aren't done stepping.
5223
5224 Optimize by setting the stepping range to the line.
5225 (We might not be in the original line, but if we entered a
5226 new line in mid-statement, we continue stepping. This makes
5227 things like for(;;) statements work better.) */
5228
5229 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5230 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5231 ecs->event_thread->control.may_range_step = 1;
5232 set_step_info (frame, stop_pc_sal);
5233
5234 if (debug_infrun)
5235 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5236 keep_going (ecs);
5237 }
5238
5239 /* In all-stop mode, if we're currently stepping but have stopped in
5240 some other thread, we may need to switch back to the stepped
5241 thread. Returns true we set the inferior running, false if we left
5242 it stopped (and the event needs further processing). */
5243
5244 static int
5245 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5246 {
5247 if (!non_stop)
5248 {
5249 struct thread_info *tp;
5250
5251 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5252 ecs->event_thread);
5253 if (tp)
5254 {
5255 /* However, if the current thread is blocked on some internal
5256 breakpoint, and we simply need to step over that breakpoint
5257 to get it going again, do that first. */
5258 if ((ecs->event_thread->control.trap_expected
5259 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5260 || ecs->event_thread->stepping_over_breakpoint)
5261 {
5262 keep_going (ecs);
5263 return 1;
5264 }
5265
5266 /* If the stepping thread exited, then don't try to switch
5267 back and resume it, which could fail in several different
5268 ways depending on the target. Instead, just keep going.
5269
5270 We can find a stepping dead thread in the thread list in
5271 two cases:
5272
5273 - The target supports thread exit events, and when the
5274 target tries to delete the thread from the thread list,
5275 inferior_ptid pointed at the exiting thread. In such
5276 case, calling delete_thread does not really remove the
5277 thread from the list; instead, the thread is left listed,
5278 with 'exited' state.
5279
5280 - The target's debug interface does not support thread
5281 exit events, and so we have no idea whatsoever if the
5282 previously stepping thread is still alive. For that
5283 reason, we need to synchronously query the target
5284 now. */
5285 if (is_exited (tp->ptid)
5286 || !target_thread_alive (tp->ptid))
5287 {
5288 if (debug_infrun)
5289 fprintf_unfiltered (gdb_stdlog,
5290 "infrun: not switching back to "
5291 "stepped thread, it has vanished\n");
5292
5293 delete_thread (tp->ptid);
5294 keep_going (ecs);
5295 return 1;
5296 }
5297
5298 /* Otherwise, we no longer expect a trap in the current thread.
5299 Clear the trap_expected flag before switching back -- this is
5300 what keep_going would do as well, if we called it. */
5301 ecs->event_thread->control.trap_expected = 0;
5302
5303 if (debug_infrun)
5304 fprintf_unfiltered (gdb_stdlog,
5305 "infrun: switching back to stepped thread\n");
5306
5307 ecs->event_thread = tp;
5308 ecs->ptid = tp->ptid;
5309 context_switch (ecs->ptid);
5310 keep_going (ecs);
5311 return 1;
5312 }
5313 }
5314 return 0;
5315 }
5316
5317 /* Is thread TP in the middle of single-stepping? */
5318
5319 static int
5320 currently_stepping (struct thread_info *tp)
5321 {
5322 return ((tp->control.step_range_end
5323 && tp->control.step_resume_breakpoint == NULL)
5324 || tp->control.trap_expected
5325 || bpstat_should_step ());
5326 }
5327
5328 /* Returns true if any thread *but* the one passed in "data" is in the
5329 middle of stepping or of handling a "next". */
5330
5331 static int
5332 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5333 {
5334 if (tp == data)
5335 return 0;
5336
5337 return (tp->control.step_range_end
5338 || tp->control.trap_expected);
5339 }
5340
5341 /* Inferior has stepped into a subroutine call with source code that
5342 we should not step over. Do step to the first line of code in
5343 it. */
5344
5345 static void
5346 handle_step_into_function (struct gdbarch *gdbarch,
5347 struct execution_control_state *ecs)
5348 {
5349 struct symtab *s;
5350 struct symtab_and_line stop_func_sal, sr_sal;
5351
5352 fill_in_stop_func (gdbarch, ecs);
5353
5354 s = find_pc_symtab (stop_pc);
5355 if (s && s->language != language_asm)
5356 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5357 ecs->stop_func_start);
5358
5359 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5360 /* Use the step_resume_break to step until the end of the prologue,
5361 even if that involves jumps (as it seems to on the vax under
5362 4.2). */
5363 /* If the prologue ends in the middle of a source line, continue to
5364 the end of that source line (if it is still within the function).
5365 Otherwise, just go to end of prologue. */
5366 if (stop_func_sal.end
5367 && stop_func_sal.pc != ecs->stop_func_start
5368 && stop_func_sal.end < ecs->stop_func_end)
5369 ecs->stop_func_start = stop_func_sal.end;
5370
5371 /* Architectures which require breakpoint adjustment might not be able
5372 to place a breakpoint at the computed address. If so, the test
5373 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5374 ecs->stop_func_start to an address at which a breakpoint may be
5375 legitimately placed.
5376
5377 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5378 made, GDB will enter an infinite loop when stepping through
5379 optimized code consisting of VLIW instructions which contain
5380 subinstructions corresponding to different source lines. On
5381 FR-V, it's not permitted to place a breakpoint on any but the
5382 first subinstruction of a VLIW instruction. When a breakpoint is
5383 set, GDB will adjust the breakpoint address to the beginning of
5384 the VLIW instruction. Thus, we need to make the corresponding
5385 adjustment here when computing the stop address. */
5386
5387 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5388 {
5389 ecs->stop_func_start
5390 = gdbarch_adjust_breakpoint_address (gdbarch,
5391 ecs->stop_func_start);
5392 }
5393
5394 if (ecs->stop_func_start == stop_pc)
5395 {
5396 /* We are already there: stop now. */
5397 ecs->event_thread->control.stop_step = 1;
5398 print_end_stepping_range_reason ();
5399 stop_stepping (ecs);
5400 return;
5401 }
5402 else
5403 {
5404 /* Put the step-breakpoint there and go until there. */
5405 init_sal (&sr_sal); /* initialize to zeroes */
5406 sr_sal.pc = ecs->stop_func_start;
5407 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5408 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5409
5410 /* Do not specify what the fp should be when we stop since on
5411 some machines the prologue is where the new fp value is
5412 established. */
5413 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5414
5415 /* And make sure stepping stops right away then. */
5416 ecs->event_thread->control.step_range_end
5417 = ecs->event_thread->control.step_range_start;
5418 }
5419 keep_going (ecs);
5420 }
5421
5422 /* Inferior has stepped backward into a subroutine call with source
5423 code that we should not step over. Do step to the beginning of the
5424 last line of code in it. */
5425
5426 static void
5427 handle_step_into_function_backward (struct gdbarch *gdbarch,
5428 struct execution_control_state *ecs)
5429 {
5430 struct symtab *s;
5431 struct symtab_and_line stop_func_sal;
5432
5433 fill_in_stop_func (gdbarch, ecs);
5434
5435 s = find_pc_symtab (stop_pc);
5436 if (s && s->language != language_asm)
5437 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5438 ecs->stop_func_start);
5439
5440 stop_func_sal = find_pc_line (stop_pc, 0);
5441
5442 /* OK, we're just going to keep stepping here. */
5443 if (stop_func_sal.pc == stop_pc)
5444 {
5445 /* We're there already. Just stop stepping now. */
5446 ecs->event_thread->control.stop_step = 1;
5447 print_end_stepping_range_reason ();
5448 stop_stepping (ecs);
5449 }
5450 else
5451 {
5452 /* Else just reset the step range and keep going.
5453 No step-resume breakpoint, they don't work for
5454 epilogues, which can have multiple entry paths. */
5455 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5456 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5457 keep_going (ecs);
5458 }
5459 return;
5460 }
5461
5462 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5463 This is used to both functions and to skip over code. */
5464
5465 static void
5466 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5467 struct symtab_and_line sr_sal,
5468 struct frame_id sr_id,
5469 enum bptype sr_type)
5470 {
5471 /* There should never be more than one step-resume or longjmp-resume
5472 breakpoint per thread, so we should never be setting a new
5473 step_resume_breakpoint when one is already active. */
5474 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5475 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5476
5477 if (debug_infrun)
5478 fprintf_unfiltered (gdb_stdlog,
5479 "infrun: inserting step-resume breakpoint at %s\n",
5480 paddress (gdbarch, sr_sal.pc));
5481
5482 inferior_thread ()->control.step_resume_breakpoint
5483 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5484 }
5485
5486 void
5487 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5488 struct symtab_and_line sr_sal,
5489 struct frame_id sr_id)
5490 {
5491 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5492 sr_sal, sr_id,
5493 bp_step_resume);
5494 }
5495
5496 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5497 This is used to skip a potential signal handler.
5498
5499 This is called with the interrupted function's frame. The signal
5500 handler, when it returns, will resume the interrupted function at
5501 RETURN_FRAME.pc. */
5502
5503 static void
5504 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5505 {
5506 struct symtab_and_line sr_sal;
5507 struct gdbarch *gdbarch;
5508
5509 gdb_assert (return_frame != NULL);
5510 init_sal (&sr_sal); /* initialize to zeros */
5511
5512 gdbarch = get_frame_arch (return_frame);
5513 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5514 sr_sal.section = find_pc_overlay (sr_sal.pc);
5515 sr_sal.pspace = get_frame_program_space (return_frame);
5516
5517 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5518 get_stack_frame_id (return_frame),
5519 bp_hp_step_resume);
5520 }
5521
5522 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5523 is used to skip a function after stepping into it (for "next" or if
5524 the called function has no debugging information).
5525
5526 The current function has almost always been reached by single
5527 stepping a call or return instruction. NEXT_FRAME belongs to the
5528 current function, and the breakpoint will be set at the caller's
5529 resume address.
5530
5531 This is a separate function rather than reusing
5532 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5533 get_prev_frame, which may stop prematurely (see the implementation
5534 of frame_unwind_caller_id for an example). */
5535
5536 static void
5537 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5538 {
5539 struct symtab_and_line sr_sal;
5540 struct gdbarch *gdbarch;
5541
5542 /* We shouldn't have gotten here if we don't know where the call site
5543 is. */
5544 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5545
5546 init_sal (&sr_sal); /* initialize to zeros */
5547
5548 gdbarch = frame_unwind_caller_arch (next_frame);
5549 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5550 frame_unwind_caller_pc (next_frame));
5551 sr_sal.section = find_pc_overlay (sr_sal.pc);
5552 sr_sal.pspace = frame_unwind_program_space (next_frame);
5553
5554 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5555 frame_unwind_caller_id (next_frame));
5556 }
5557
5558 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5559 new breakpoint at the target of a jmp_buf. The handling of
5560 longjmp-resume uses the same mechanisms used for handling
5561 "step-resume" breakpoints. */
5562
5563 static void
5564 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5565 {
5566 /* There should never be more than one longjmp-resume breakpoint per
5567 thread, so we should never be setting a new
5568 longjmp_resume_breakpoint when one is already active. */
5569 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5570
5571 if (debug_infrun)
5572 fprintf_unfiltered (gdb_stdlog,
5573 "infrun: inserting longjmp-resume breakpoint at %s\n",
5574 paddress (gdbarch, pc));
5575
5576 inferior_thread ()->control.exception_resume_breakpoint =
5577 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5578 }
5579
5580 /* Insert an exception resume breakpoint. TP is the thread throwing
5581 the exception. The block B is the block of the unwinder debug hook
5582 function. FRAME is the frame corresponding to the call to this
5583 function. SYM is the symbol of the function argument holding the
5584 target PC of the exception. */
5585
5586 static void
5587 insert_exception_resume_breakpoint (struct thread_info *tp,
5588 struct block *b,
5589 struct frame_info *frame,
5590 struct symbol *sym)
5591 {
5592 volatile struct gdb_exception e;
5593
5594 /* We want to ignore errors here. */
5595 TRY_CATCH (e, RETURN_MASK_ERROR)
5596 {
5597 struct symbol *vsym;
5598 struct value *value;
5599 CORE_ADDR handler;
5600 struct breakpoint *bp;
5601
5602 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5603 value = read_var_value (vsym, frame);
5604 /* If the value was optimized out, revert to the old behavior. */
5605 if (! value_optimized_out (value))
5606 {
5607 handler = value_as_address (value);
5608
5609 if (debug_infrun)
5610 fprintf_unfiltered (gdb_stdlog,
5611 "infrun: exception resume at %lx\n",
5612 (unsigned long) handler);
5613
5614 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5615 handler, bp_exception_resume);
5616
5617 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5618 frame = NULL;
5619
5620 bp->thread = tp->num;
5621 inferior_thread ()->control.exception_resume_breakpoint = bp;
5622 }
5623 }
5624 }
5625
5626 /* A helper for check_exception_resume that sets an
5627 exception-breakpoint based on a SystemTap probe. */
5628
5629 static void
5630 insert_exception_resume_from_probe (struct thread_info *tp,
5631 const struct probe *probe,
5632 struct frame_info *frame)
5633 {
5634 struct value *arg_value;
5635 CORE_ADDR handler;
5636 struct breakpoint *bp;
5637
5638 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5639 if (!arg_value)
5640 return;
5641
5642 handler = value_as_address (arg_value);
5643
5644 if (debug_infrun)
5645 fprintf_unfiltered (gdb_stdlog,
5646 "infrun: exception resume at %s\n",
5647 paddress (get_objfile_arch (probe->objfile),
5648 handler));
5649
5650 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5651 handler, bp_exception_resume);
5652 bp->thread = tp->num;
5653 inferior_thread ()->control.exception_resume_breakpoint = bp;
5654 }
5655
5656 /* This is called when an exception has been intercepted. Check to
5657 see whether the exception's destination is of interest, and if so,
5658 set an exception resume breakpoint there. */
5659
5660 static void
5661 check_exception_resume (struct execution_control_state *ecs,
5662 struct frame_info *frame)
5663 {
5664 volatile struct gdb_exception e;
5665 const struct probe *probe;
5666 struct symbol *func;
5667
5668 /* First see if this exception unwinding breakpoint was set via a
5669 SystemTap probe point. If so, the probe has two arguments: the
5670 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5671 set a breakpoint there. */
5672 probe = find_probe_by_pc (get_frame_pc (frame));
5673 if (probe)
5674 {
5675 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5676 return;
5677 }
5678
5679 func = get_frame_function (frame);
5680 if (!func)
5681 return;
5682
5683 TRY_CATCH (e, RETURN_MASK_ERROR)
5684 {
5685 struct block *b;
5686 struct block_iterator iter;
5687 struct symbol *sym;
5688 int argno = 0;
5689
5690 /* The exception breakpoint is a thread-specific breakpoint on
5691 the unwinder's debug hook, declared as:
5692
5693 void _Unwind_DebugHook (void *cfa, void *handler);
5694
5695 The CFA argument indicates the frame to which control is
5696 about to be transferred. HANDLER is the destination PC.
5697
5698 We ignore the CFA and set a temporary breakpoint at HANDLER.
5699 This is not extremely efficient but it avoids issues in gdb
5700 with computing the DWARF CFA, and it also works even in weird
5701 cases such as throwing an exception from inside a signal
5702 handler. */
5703
5704 b = SYMBOL_BLOCK_VALUE (func);
5705 ALL_BLOCK_SYMBOLS (b, iter, sym)
5706 {
5707 if (!SYMBOL_IS_ARGUMENT (sym))
5708 continue;
5709
5710 if (argno == 0)
5711 ++argno;
5712 else
5713 {
5714 insert_exception_resume_breakpoint (ecs->event_thread,
5715 b, frame, sym);
5716 break;
5717 }
5718 }
5719 }
5720 }
5721
5722 static void
5723 stop_stepping (struct execution_control_state *ecs)
5724 {
5725 if (debug_infrun)
5726 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5727
5728 /* Let callers know we don't want to wait for the inferior anymore. */
5729 ecs->wait_some_more = 0;
5730 }
5731
5732 /* Called when we should continue running the inferior, because the
5733 current event doesn't cause a user visible stop. This does the
5734 resuming part; waiting for the next event is done elsewhere. */
5735
5736 static void
5737 keep_going (struct execution_control_state *ecs)
5738 {
5739 /* Make sure normal_stop is called if we get a QUIT handled before
5740 reaching resume. */
5741 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5742
5743 /* Save the pc before execution, to compare with pc after stop. */
5744 ecs->event_thread->prev_pc
5745 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5746
5747 if (ecs->event_thread->control.trap_expected
5748 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5749 {
5750 /* We haven't yet gotten our trap, and either: intercepted a
5751 non-signal event (e.g., a fork); or took a signal which we
5752 are supposed to pass through to the inferior. Simply
5753 continue. */
5754 discard_cleanups (old_cleanups);
5755 resume (currently_stepping (ecs->event_thread),
5756 ecs->event_thread->suspend.stop_signal);
5757 }
5758 else
5759 {
5760 /* Either the trap was not expected, but we are continuing
5761 anyway (if we got a signal, the user asked it be passed to
5762 the child)
5763 -- or --
5764 We got our expected trap, but decided we should resume from
5765 it.
5766
5767 We're going to run this baby now!
5768
5769 Note that insert_breakpoints won't try to re-insert
5770 already inserted breakpoints. Therefore, we don't
5771 care if breakpoints were already inserted, or not. */
5772
5773 if (ecs->event_thread->stepping_over_breakpoint)
5774 {
5775 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5776
5777 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5778 {
5779 /* Since we can't do a displaced step, we have to remove
5780 the breakpoint while we step it. To keep things
5781 simple, we remove them all. */
5782 remove_breakpoints ();
5783 }
5784 }
5785 else
5786 {
5787 volatile struct gdb_exception e;
5788
5789 /* Stop stepping if inserting breakpoints fails. */
5790 TRY_CATCH (e, RETURN_MASK_ERROR)
5791 {
5792 insert_breakpoints ();
5793 }
5794 if (e.reason < 0)
5795 {
5796 exception_print (gdb_stderr, e);
5797 stop_stepping (ecs);
5798 return;
5799 }
5800 }
5801
5802 ecs->event_thread->control.trap_expected
5803 = ecs->event_thread->stepping_over_breakpoint;
5804
5805 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5806 explicitly specifies that such a signal should be delivered
5807 to the target program). Typically, that would occur when a
5808 user is debugging a target monitor on a simulator: the target
5809 monitor sets a breakpoint; the simulator encounters this
5810 breakpoint and halts the simulation handing control to GDB;
5811 GDB, noting that the stop address doesn't map to any known
5812 breakpoint, returns control back to the simulator; the
5813 simulator then delivers the hardware equivalent of a
5814 GDB_SIGNAL_TRAP to the program being debugged. */
5815 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5816 && !signal_program[ecs->event_thread->suspend.stop_signal])
5817 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5818
5819 discard_cleanups (old_cleanups);
5820 resume (currently_stepping (ecs->event_thread),
5821 ecs->event_thread->suspend.stop_signal);
5822 }
5823
5824 prepare_to_wait (ecs);
5825 }
5826
5827 /* This function normally comes after a resume, before
5828 handle_inferior_event exits. It takes care of any last bits of
5829 housekeeping, and sets the all-important wait_some_more flag. */
5830
5831 static void
5832 prepare_to_wait (struct execution_control_state *ecs)
5833 {
5834 if (debug_infrun)
5835 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5836
5837 /* This is the old end of the while loop. Let everybody know we
5838 want to wait for the inferior some more and get called again
5839 soon. */
5840 ecs->wait_some_more = 1;
5841 }
5842
5843 /* Several print_*_reason functions to print why the inferior has stopped.
5844 We always print something when the inferior exits, or receives a signal.
5845 The rest of the cases are dealt with later on in normal_stop and
5846 print_it_typical. Ideally there should be a call to one of these
5847 print_*_reason functions functions from handle_inferior_event each time
5848 stop_stepping is called. */
5849
5850 /* Print why the inferior has stopped.
5851 We are done with a step/next/si/ni command, print why the inferior has
5852 stopped. For now print nothing. Print a message only if not in the middle
5853 of doing a "step n" operation for n > 1. */
5854
5855 static void
5856 print_end_stepping_range_reason (void)
5857 {
5858 if ((!inferior_thread ()->step_multi
5859 || !inferior_thread ()->control.stop_step)
5860 && ui_out_is_mi_like_p (current_uiout))
5861 ui_out_field_string (current_uiout, "reason",
5862 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5863 }
5864
5865 /* The inferior was terminated by a signal, print why it stopped. */
5866
5867 static void
5868 print_signal_exited_reason (enum gdb_signal siggnal)
5869 {
5870 struct ui_out *uiout = current_uiout;
5871
5872 annotate_signalled ();
5873 if (ui_out_is_mi_like_p (uiout))
5874 ui_out_field_string
5875 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5876 ui_out_text (uiout, "\nProgram terminated with signal ");
5877 annotate_signal_name ();
5878 ui_out_field_string (uiout, "signal-name",
5879 gdb_signal_to_name (siggnal));
5880 annotate_signal_name_end ();
5881 ui_out_text (uiout, ", ");
5882 annotate_signal_string ();
5883 ui_out_field_string (uiout, "signal-meaning",
5884 gdb_signal_to_string (siggnal));
5885 annotate_signal_string_end ();
5886 ui_out_text (uiout, ".\n");
5887 ui_out_text (uiout, "The program no longer exists.\n");
5888 }
5889
5890 /* The inferior program is finished, print why it stopped. */
5891
5892 static void
5893 print_exited_reason (int exitstatus)
5894 {
5895 struct inferior *inf = current_inferior ();
5896 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5897 struct ui_out *uiout = current_uiout;
5898
5899 annotate_exited (exitstatus);
5900 if (exitstatus)
5901 {
5902 if (ui_out_is_mi_like_p (uiout))
5903 ui_out_field_string (uiout, "reason",
5904 async_reason_lookup (EXEC_ASYNC_EXITED));
5905 ui_out_text (uiout, "[Inferior ");
5906 ui_out_text (uiout, plongest (inf->num));
5907 ui_out_text (uiout, " (");
5908 ui_out_text (uiout, pidstr);
5909 ui_out_text (uiout, ") exited with code ");
5910 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5911 ui_out_text (uiout, "]\n");
5912 }
5913 else
5914 {
5915 if (ui_out_is_mi_like_p (uiout))
5916 ui_out_field_string
5917 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5918 ui_out_text (uiout, "[Inferior ");
5919 ui_out_text (uiout, plongest (inf->num));
5920 ui_out_text (uiout, " (");
5921 ui_out_text (uiout, pidstr);
5922 ui_out_text (uiout, ") exited normally]\n");
5923 }
5924 /* Support the --return-child-result option. */
5925 return_child_result_value = exitstatus;
5926 }
5927
5928 /* Signal received, print why the inferior has stopped. The signal table
5929 tells us to print about it. */
5930
5931 static void
5932 print_signal_received_reason (enum gdb_signal siggnal)
5933 {
5934 struct ui_out *uiout = current_uiout;
5935
5936 annotate_signal ();
5937
5938 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5939 {
5940 struct thread_info *t = inferior_thread ();
5941
5942 ui_out_text (uiout, "\n[");
5943 ui_out_field_string (uiout, "thread-name",
5944 target_pid_to_str (t->ptid));
5945 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5946 ui_out_text (uiout, " stopped");
5947 }
5948 else
5949 {
5950 ui_out_text (uiout, "\nProgram received signal ");
5951 annotate_signal_name ();
5952 if (ui_out_is_mi_like_p (uiout))
5953 ui_out_field_string
5954 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5955 ui_out_field_string (uiout, "signal-name",
5956 gdb_signal_to_name (siggnal));
5957 annotate_signal_name_end ();
5958 ui_out_text (uiout, ", ");
5959 annotate_signal_string ();
5960 ui_out_field_string (uiout, "signal-meaning",
5961 gdb_signal_to_string (siggnal));
5962 annotate_signal_string_end ();
5963 }
5964 ui_out_text (uiout, ".\n");
5965 }
5966
5967 /* Reverse execution: target ran out of history info, print why the inferior
5968 has stopped. */
5969
5970 static void
5971 print_no_history_reason (void)
5972 {
5973 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5974 }
5975
5976 /* Here to return control to GDB when the inferior stops for real.
5977 Print appropriate messages, remove breakpoints, give terminal our modes.
5978
5979 STOP_PRINT_FRAME nonzero means print the executing frame
5980 (pc, function, args, file, line number and line text).
5981 BREAKPOINTS_FAILED nonzero means stop was due to error
5982 attempting to insert breakpoints. */
5983
5984 void
5985 normal_stop (void)
5986 {
5987 struct target_waitstatus last;
5988 ptid_t last_ptid;
5989 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5990
5991 get_last_target_status (&last_ptid, &last);
5992
5993 /* If an exception is thrown from this point on, make sure to
5994 propagate GDB's knowledge of the executing state to the
5995 frontend/user running state. A QUIT is an easy exception to see
5996 here, so do this before any filtered output. */
5997 if (!non_stop)
5998 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5999 else if (last.kind != TARGET_WAITKIND_SIGNALLED
6000 && last.kind != TARGET_WAITKIND_EXITED
6001 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6002 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
6003
6004 /* In non-stop mode, we don't want GDB to switch threads behind the
6005 user's back, to avoid races where the user is typing a command to
6006 apply to thread x, but GDB switches to thread y before the user
6007 finishes entering the command. */
6008
6009 /* As with the notification of thread events, we want to delay
6010 notifying the user that we've switched thread context until
6011 the inferior actually stops.
6012
6013 There's no point in saying anything if the inferior has exited.
6014 Note that SIGNALLED here means "exited with a signal", not
6015 "received a signal". */
6016 if (!non_stop
6017 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6018 && target_has_execution
6019 && last.kind != TARGET_WAITKIND_SIGNALLED
6020 && last.kind != TARGET_WAITKIND_EXITED
6021 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6022 {
6023 target_terminal_ours_for_output ();
6024 printf_filtered (_("[Switching to %s]\n"),
6025 target_pid_to_str (inferior_ptid));
6026 annotate_thread_changed ();
6027 previous_inferior_ptid = inferior_ptid;
6028 }
6029
6030 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6031 {
6032 gdb_assert (sync_execution || !target_can_async_p ());
6033
6034 target_terminal_ours_for_output ();
6035 printf_filtered (_("No unwaited-for children left.\n"));
6036 }
6037
6038 if (!breakpoints_always_inserted_mode () && target_has_execution)
6039 {
6040 if (remove_breakpoints ())
6041 {
6042 target_terminal_ours_for_output ();
6043 printf_filtered (_("Cannot remove breakpoints because "
6044 "program is no longer writable.\nFurther "
6045 "execution is probably impossible.\n"));
6046 }
6047 }
6048
6049 /* If an auto-display called a function and that got a signal,
6050 delete that auto-display to avoid an infinite recursion. */
6051
6052 if (stopped_by_random_signal)
6053 disable_current_display ();
6054
6055 /* Don't print a message if in the middle of doing a "step n"
6056 operation for n > 1 */
6057 if (target_has_execution
6058 && last.kind != TARGET_WAITKIND_SIGNALLED
6059 && last.kind != TARGET_WAITKIND_EXITED
6060 && inferior_thread ()->step_multi
6061 && inferior_thread ()->control.stop_step)
6062 goto done;
6063
6064 target_terminal_ours ();
6065 async_enable_stdin ();
6066
6067 /* Set the current source location. This will also happen if we
6068 display the frame below, but the current SAL will be incorrect
6069 during a user hook-stop function. */
6070 if (has_stack_frames () && !stop_stack_dummy)
6071 set_current_sal_from_frame (get_current_frame (), 1);
6072
6073 /* Let the user/frontend see the threads as stopped. */
6074 do_cleanups (old_chain);
6075
6076 /* Look up the hook_stop and run it (CLI internally handles problem
6077 of stop_command's pre-hook not existing). */
6078 if (stop_command)
6079 catch_errors (hook_stop_stub, stop_command,
6080 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6081
6082 if (!has_stack_frames ())
6083 goto done;
6084
6085 if (last.kind == TARGET_WAITKIND_SIGNALLED
6086 || last.kind == TARGET_WAITKIND_EXITED)
6087 goto done;
6088
6089 /* Select innermost stack frame - i.e., current frame is frame 0,
6090 and current location is based on that.
6091 Don't do this on return from a stack dummy routine,
6092 or if the program has exited. */
6093
6094 if (!stop_stack_dummy)
6095 {
6096 select_frame (get_current_frame ());
6097
6098 /* Print current location without a level number, if
6099 we have changed functions or hit a breakpoint.
6100 Print source line if we have one.
6101 bpstat_print() contains the logic deciding in detail
6102 what to print, based on the event(s) that just occurred. */
6103
6104 /* If --batch-silent is enabled then there's no need to print the current
6105 source location, and to try risks causing an error message about
6106 missing source files. */
6107 if (stop_print_frame && !batch_silent)
6108 {
6109 int bpstat_ret;
6110 int source_flag;
6111 int do_frame_printing = 1;
6112 struct thread_info *tp = inferior_thread ();
6113
6114 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6115 switch (bpstat_ret)
6116 {
6117 case PRINT_UNKNOWN:
6118 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6119 (or should) carry around the function and does (or
6120 should) use that when doing a frame comparison. */
6121 if (tp->control.stop_step
6122 && frame_id_eq (tp->control.step_frame_id,
6123 get_frame_id (get_current_frame ()))
6124 && step_start_function == find_pc_function (stop_pc))
6125 source_flag = SRC_LINE; /* Finished step, just
6126 print source line. */
6127 else
6128 source_flag = SRC_AND_LOC; /* Print location and
6129 source line. */
6130 break;
6131 case PRINT_SRC_AND_LOC:
6132 source_flag = SRC_AND_LOC; /* Print location and
6133 source line. */
6134 break;
6135 case PRINT_SRC_ONLY:
6136 source_flag = SRC_LINE;
6137 break;
6138 case PRINT_NOTHING:
6139 source_flag = SRC_LINE; /* something bogus */
6140 do_frame_printing = 0;
6141 break;
6142 default:
6143 internal_error (__FILE__, __LINE__, _("Unknown value."));
6144 }
6145
6146 /* The behavior of this routine with respect to the source
6147 flag is:
6148 SRC_LINE: Print only source line
6149 LOCATION: Print only location
6150 SRC_AND_LOC: Print location and source line. */
6151 if (do_frame_printing)
6152 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6153
6154 /* Display the auto-display expressions. */
6155 do_displays ();
6156 }
6157 }
6158
6159 /* Save the function value return registers, if we care.
6160 We might be about to restore their previous contents. */
6161 if (inferior_thread ()->control.proceed_to_finish
6162 && execution_direction != EXEC_REVERSE)
6163 {
6164 /* This should not be necessary. */
6165 if (stop_registers)
6166 regcache_xfree (stop_registers);
6167
6168 /* NB: The copy goes through to the target picking up the value of
6169 all the registers. */
6170 stop_registers = regcache_dup (get_current_regcache ());
6171 }
6172
6173 if (stop_stack_dummy == STOP_STACK_DUMMY)
6174 {
6175 /* Pop the empty frame that contains the stack dummy.
6176 This also restores inferior state prior to the call
6177 (struct infcall_suspend_state). */
6178 struct frame_info *frame = get_current_frame ();
6179
6180 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6181 frame_pop (frame);
6182 /* frame_pop() calls reinit_frame_cache as the last thing it
6183 does which means there's currently no selected frame. We
6184 don't need to re-establish a selected frame if the dummy call
6185 returns normally, that will be done by
6186 restore_infcall_control_state. However, we do have to handle
6187 the case where the dummy call is returning after being
6188 stopped (e.g. the dummy call previously hit a breakpoint).
6189 We can't know which case we have so just always re-establish
6190 a selected frame here. */
6191 select_frame (get_current_frame ());
6192 }
6193
6194 done:
6195 annotate_stopped ();
6196
6197 /* Suppress the stop observer if we're in the middle of:
6198
6199 - a step n (n > 1), as there still more steps to be done.
6200
6201 - a "finish" command, as the observer will be called in
6202 finish_command_continuation, so it can include the inferior
6203 function's return value.
6204
6205 - calling an inferior function, as we pretend we inferior didn't
6206 run at all. The return value of the call is handled by the
6207 expression evaluator, through call_function_by_hand. */
6208
6209 if (!target_has_execution
6210 || last.kind == TARGET_WAITKIND_SIGNALLED
6211 || last.kind == TARGET_WAITKIND_EXITED
6212 || last.kind == TARGET_WAITKIND_NO_RESUMED
6213 || (!(inferior_thread ()->step_multi
6214 && inferior_thread ()->control.stop_step)
6215 && !(inferior_thread ()->control.stop_bpstat
6216 && inferior_thread ()->control.proceed_to_finish)
6217 && !inferior_thread ()->control.in_infcall))
6218 {
6219 if (!ptid_equal (inferior_ptid, null_ptid))
6220 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6221 stop_print_frame);
6222 else
6223 observer_notify_normal_stop (NULL, stop_print_frame);
6224 }
6225
6226 if (target_has_execution)
6227 {
6228 if (last.kind != TARGET_WAITKIND_SIGNALLED
6229 && last.kind != TARGET_WAITKIND_EXITED)
6230 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6231 Delete any breakpoint that is to be deleted at the next stop. */
6232 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6233 }
6234
6235 /* Try to get rid of automatically added inferiors that are no
6236 longer needed. Keeping those around slows down things linearly.
6237 Note that this never removes the current inferior. */
6238 prune_inferiors ();
6239 }
6240
6241 static int
6242 hook_stop_stub (void *cmd)
6243 {
6244 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6245 return (0);
6246 }
6247 \f
6248 int
6249 signal_stop_state (int signo)
6250 {
6251 return signal_stop[signo];
6252 }
6253
6254 int
6255 signal_print_state (int signo)
6256 {
6257 return signal_print[signo];
6258 }
6259
6260 int
6261 signal_pass_state (int signo)
6262 {
6263 return signal_program[signo];
6264 }
6265
6266 static void
6267 signal_cache_update (int signo)
6268 {
6269 if (signo == -1)
6270 {
6271 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6272 signal_cache_update (signo);
6273
6274 return;
6275 }
6276
6277 signal_pass[signo] = (signal_stop[signo] == 0
6278 && signal_print[signo] == 0
6279 && signal_program[signo] == 1
6280 && signal_catch[signo] == 0);
6281 }
6282
6283 int
6284 signal_stop_update (int signo, int state)
6285 {
6286 int ret = signal_stop[signo];
6287
6288 signal_stop[signo] = state;
6289 signal_cache_update (signo);
6290 return ret;
6291 }
6292
6293 int
6294 signal_print_update (int signo, int state)
6295 {
6296 int ret = signal_print[signo];
6297
6298 signal_print[signo] = state;
6299 signal_cache_update (signo);
6300 return ret;
6301 }
6302
6303 int
6304 signal_pass_update (int signo, int state)
6305 {
6306 int ret = signal_program[signo];
6307
6308 signal_program[signo] = state;
6309 signal_cache_update (signo);
6310 return ret;
6311 }
6312
6313 /* Update the global 'signal_catch' from INFO and notify the
6314 target. */
6315
6316 void
6317 signal_catch_update (const unsigned int *info)
6318 {
6319 int i;
6320
6321 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6322 signal_catch[i] = info[i] > 0;
6323 signal_cache_update (-1);
6324 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6325 }
6326
6327 static void
6328 sig_print_header (void)
6329 {
6330 printf_filtered (_("Signal Stop\tPrint\tPass "
6331 "to program\tDescription\n"));
6332 }
6333
6334 static void
6335 sig_print_info (enum gdb_signal oursig)
6336 {
6337 const char *name = gdb_signal_to_name (oursig);
6338 int name_padding = 13 - strlen (name);
6339
6340 if (name_padding <= 0)
6341 name_padding = 0;
6342
6343 printf_filtered ("%s", name);
6344 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6345 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6346 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6347 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6348 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6349 }
6350
6351 /* Specify how various signals in the inferior should be handled. */
6352
6353 static void
6354 handle_command (char *args, int from_tty)
6355 {
6356 char **argv;
6357 int digits, wordlen;
6358 int sigfirst, signum, siglast;
6359 enum gdb_signal oursig;
6360 int allsigs;
6361 int nsigs;
6362 unsigned char *sigs;
6363 struct cleanup *old_chain;
6364
6365 if (args == NULL)
6366 {
6367 error_no_arg (_("signal to handle"));
6368 }
6369
6370 /* Allocate and zero an array of flags for which signals to handle. */
6371
6372 nsigs = (int) GDB_SIGNAL_LAST;
6373 sigs = (unsigned char *) alloca (nsigs);
6374 memset (sigs, 0, nsigs);
6375
6376 /* Break the command line up into args. */
6377
6378 argv = gdb_buildargv (args);
6379 old_chain = make_cleanup_freeargv (argv);
6380
6381 /* Walk through the args, looking for signal oursigs, signal names, and
6382 actions. Signal numbers and signal names may be interspersed with
6383 actions, with the actions being performed for all signals cumulatively
6384 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6385
6386 while (*argv != NULL)
6387 {
6388 wordlen = strlen (*argv);
6389 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6390 {;
6391 }
6392 allsigs = 0;
6393 sigfirst = siglast = -1;
6394
6395 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6396 {
6397 /* Apply action to all signals except those used by the
6398 debugger. Silently skip those. */
6399 allsigs = 1;
6400 sigfirst = 0;
6401 siglast = nsigs - 1;
6402 }
6403 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6404 {
6405 SET_SIGS (nsigs, sigs, signal_stop);
6406 SET_SIGS (nsigs, sigs, signal_print);
6407 }
6408 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6409 {
6410 UNSET_SIGS (nsigs, sigs, signal_program);
6411 }
6412 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6413 {
6414 SET_SIGS (nsigs, sigs, signal_print);
6415 }
6416 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6417 {
6418 SET_SIGS (nsigs, sigs, signal_program);
6419 }
6420 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6421 {
6422 UNSET_SIGS (nsigs, sigs, signal_stop);
6423 }
6424 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6425 {
6426 SET_SIGS (nsigs, sigs, signal_program);
6427 }
6428 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6429 {
6430 UNSET_SIGS (nsigs, sigs, signal_print);
6431 UNSET_SIGS (nsigs, sigs, signal_stop);
6432 }
6433 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6434 {
6435 UNSET_SIGS (nsigs, sigs, signal_program);
6436 }
6437 else if (digits > 0)
6438 {
6439 /* It is numeric. The numeric signal refers to our own
6440 internal signal numbering from target.h, not to host/target
6441 signal number. This is a feature; users really should be
6442 using symbolic names anyway, and the common ones like
6443 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6444
6445 sigfirst = siglast = (int)
6446 gdb_signal_from_command (atoi (*argv));
6447 if ((*argv)[digits] == '-')
6448 {
6449 siglast = (int)
6450 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6451 }
6452 if (sigfirst > siglast)
6453 {
6454 /* Bet he didn't figure we'd think of this case... */
6455 signum = sigfirst;
6456 sigfirst = siglast;
6457 siglast = signum;
6458 }
6459 }
6460 else
6461 {
6462 oursig = gdb_signal_from_name (*argv);
6463 if (oursig != GDB_SIGNAL_UNKNOWN)
6464 {
6465 sigfirst = siglast = (int) oursig;
6466 }
6467 else
6468 {
6469 /* Not a number and not a recognized flag word => complain. */
6470 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6471 }
6472 }
6473
6474 /* If any signal numbers or symbol names were found, set flags for
6475 which signals to apply actions to. */
6476
6477 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6478 {
6479 switch ((enum gdb_signal) signum)
6480 {
6481 case GDB_SIGNAL_TRAP:
6482 case GDB_SIGNAL_INT:
6483 if (!allsigs && !sigs[signum])
6484 {
6485 if (query (_("%s is used by the debugger.\n\
6486 Are you sure you want to change it? "),
6487 gdb_signal_to_name ((enum gdb_signal) signum)))
6488 {
6489 sigs[signum] = 1;
6490 }
6491 else
6492 {
6493 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6494 gdb_flush (gdb_stdout);
6495 }
6496 }
6497 break;
6498 case GDB_SIGNAL_0:
6499 case GDB_SIGNAL_DEFAULT:
6500 case GDB_SIGNAL_UNKNOWN:
6501 /* Make sure that "all" doesn't print these. */
6502 break;
6503 default:
6504 sigs[signum] = 1;
6505 break;
6506 }
6507 }
6508
6509 argv++;
6510 }
6511
6512 for (signum = 0; signum < nsigs; signum++)
6513 if (sigs[signum])
6514 {
6515 signal_cache_update (-1);
6516 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6517 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6518
6519 if (from_tty)
6520 {
6521 /* Show the results. */
6522 sig_print_header ();
6523 for (; signum < nsigs; signum++)
6524 if (sigs[signum])
6525 sig_print_info (signum);
6526 }
6527
6528 break;
6529 }
6530
6531 do_cleanups (old_chain);
6532 }
6533
6534 /* Complete the "handle" command. */
6535
6536 static VEC (char_ptr) *
6537 handle_completer (struct cmd_list_element *ignore,
6538 const char *text, const char *word)
6539 {
6540 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6541 static const char * const keywords[] =
6542 {
6543 "all",
6544 "stop",
6545 "ignore",
6546 "print",
6547 "pass",
6548 "nostop",
6549 "noignore",
6550 "noprint",
6551 "nopass",
6552 NULL,
6553 };
6554
6555 vec_signals = signal_completer (ignore, text, word);
6556 vec_keywords = complete_on_enum (keywords, word, word);
6557
6558 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6559 VEC_free (char_ptr, vec_signals);
6560 VEC_free (char_ptr, vec_keywords);
6561 return return_val;
6562 }
6563
6564 static void
6565 xdb_handle_command (char *args, int from_tty)
6566 {
6567 char **argv;
6568 struct cleanup *old_chain;
6569
6570 if (args == NULL)
6571 error_no_arg (_("xdb command"));
6572
6573 /* Break the command line up into args. */
6574
6575 argv = gdb_buildargv (args);
6576 old_chain = make_cleanup_freeargv (argv);
6577 if (argv[1] != (char *) NULL)
6578 {
6579 char *argBuf;
6580 int bufLen;
6581
6582 bufLen = strlen (argv[0]) + 20;
6583 argBuf = (char *) xmalloc (bufLen);
6584 if (argBuf)
6585 {
6586 int validFlag = 1;
6587 enum gdb_signal oursig;
6588
6589 oursig = gdb_signal_from_name (argv[0]);
6590 memset (argBuf, 0, bufLen);
6591 if (strcmp (argv[1], "Q") == 0)
6592 sprintf (argBuf, "%s %s", argv[0], "noprint");
6593 else
6594 {
6595 if (strcmp (argv[1], "s") == 0)
6596 {
6597 if (!signal_stop[oursig])
6598 sprintf (argBuf, "%s %s", argv[0], "stop");
6599 else
6600 sprintf (argBuf, "%s %s", argv[0], "nostop");
6601 }
6602 else if (strcmp (argv[1], "i") == 0)
6603 {
6604 if (!signal_program[oursig])
6605 sprintf (argBuf, "%s %s", argv[0], "pass");
6606 else
6607 sprintf (argBuf, "%s %s", argv[0], "nopass");
6608 }
6609 else if (strcmp (argv[1], "r") == 0)
6610 {
6611 if (!signal_print[oursig])
6612 sprintf (argBuf, "%s %s", argv[0], "print");
6613 else
6614 sprintf (argBuf, "%s %s", argv[0], "noprint");
6615 }
6616 else
6617 validFlag = 0;
6618 }
6619 if (validFlag)
6620 handle_command (argBuf, from_tty);
6621 else
6622 printf_filtered (_("Invalid signal handling flag.\n"));
6623 if (argBuf)
6624 xfree (argBuf);
6625 }
6626 }
6627 do_cleanups (old_chain);
6628 }
6629
6630 enum gdb_signal
6631 gdb_signal_from_command (int num)
6632 {
6633 if (num >= 1 && num <= 15)
6634 return (enum gdb_signal) num;
6635 error (_("Only signals 1-15 are valid as numeric signals.\n\
6636 Use \"info signals\" for a list of symbolic signals."));
6637 }
6638
6639 /* Print current contents of the tables set by the handle command.
6640 It is possible we should just be printing signals actually used
6641 by the current target (but for things to work right when switching
6642 targets, all signals should be in the signal tables). */
6643
6644 static void
6645 signals_info (char *signum_exp, int from_tty)
6646 {
6647 enum gdb_signal oursig;
6648
6649 sig_print_header ();
6650
6651 if (signum_exp)
6652 {
6653 /* First see if this is a symbol name. */
6654 oursig = gdb_signal_from_name (signum_exp);
6655 if (oursig == GDB_SIGNAL_UNKNOWN)
6656 {
6657 /* No, try numeric. */
6658 oursig =
6659 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6660 }
6661 sig_print_info (oursig);
6662 return;
6663 }
6664
6665 printf_filtered ("\n");
6666 /* These ugly casts brought to you by the native VAX compiler. */
6667 for (oursig = GDB_SIGNAL_FIRST;
6668 (int) oursig < (int) GDB_SIGNAL_LAST;
6669 oursig = (enum gdb_signal) ((int) oursig + 1))
6670 {
6671 QUIT;
6672
6673 if (oursig != GDB_SIGNAL_UNKNOWN
6674 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6675 sig_print_info (oursig);
6676 }
6677
6678 printf_filtered (_("\nUse the \"handle\" command "
6679 "to change these tables.\n"));
6680 }
6681
6682 /* Check if it makes sense to read $_siginfo from the current thread
6683 at this point. If not, throw an error. */
6684
6685 static void
6686 validate_siginfo_access (void)
6687 {
6688 /* No current inferior, no siginfo. */
6689 if (ptid_equal (inferior_ptid, null_ptid))
6690 error (_("No thread selected."));
6691
6692 /* Don't try to read from a dead thread. */
6693 if (is_exited (inferior_ptid))
6694 error (_("The current thread has terminated"));
6695
6696 /* ... or from a spinning thread. */
6697 if (is_running (inferior_ptid))
6698 error (_("Selected thread is running."));
6699 }
6700
6701 /* The $_siginfo convenience variable is a bit special. We don't know
6702 for sure the type of the value until we actually have a chance to
6703 fetch the data. The type can change depending on gdbarch, so it is
6704 also dependent on which thread you have selected.
6705
6706 1. making $_siginfo be an internalvar that creates a new value on
6707 access.
6708
6709 2. making the value of $_siginfo be an lval_computed value. */
6710
6711 /* This function implements the lval_computed support for reading a
6712 $_siginfo value. */
6713
6714 static void
6715 siginfo_value_read (struct value *v)
6716 {
6717 LONGEST transferred;
6718
6719 validate_siginfo_access ();
6720
6721 transferred =
6722 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6723 NULL,
6724 value_contents_all_raw (v),
6725 value_offset (v),
6726 TYPE_LENGTH (value_type (v)));
6727
6728 if (transferred != TYPE_LENGTH (value_type (v)))
6729 error (_("Unable to read siginfo"));
6730 }
6731
6732 /* This function implements the lval_computed support for writing a
6733 $_siginfo value. */
6734
6735 static void
6736 siginfo_value_write (struct value *v, struct value *fromval)
6737 {
6738 LONGEST transferred;
6739
6740 validate_siginfo_access ();
6741
6742 transferred = target_write (&current_target,
6743 TARGET_OBJECT_SIGNAL_INFO,
6744 NULL,
6745 value_contents_all_raw (fromval),
6746 value_offset (v),
6747 TYPE_LENGTH (value_type (fromval)));
6748
6749 if (transferred != TYPE_LENGTH (value_type (fromval)))
6750 error (_("Unable to write siginfo"));
6751 }
6752
6753 static const struct lval_funcs siginfo_value_funcs =
6754 {
6755 siginfo_value_read,
6756 siginfo_value_write
6757 };
6758
6759 /* Return a new value with the correct type for the siginfo object of
6760 the current thread using architecture GDBARCH. Return a void value
6761 if there's no object available. */
6762
6763 static struct value *
6764 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6765 void *ignore)
6766 {
6767 if (target_has_stack
6768 && !ptid_equal (inferior_ptid, null_ptid)
6769 && gdbarch_get_siginfo_type_p (gdbarch))
6770 {
6771 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6772
6773 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6774 }
6775
6776 return allocate_value (builtin_type (gdbarch)->builtin_void);
6777 }
6778
6779 \f
6780 /* infcall_suspend_state contains state about the program itself like its
6781 registers and any signal it received when it last stopped.
6782 This state must be restored regardless of how the inferior function call
6783 ends (either successfully, or after it hits a breakpoint or signal)
6784 if the program is to properly continue where it left off. */
6785
6786 struct infcall_suspend_state
6787 {
6788 struct thread_suspend_state thread_suspend;
6789 #if 0 /* Currently unused and empty structures are not valid C. */
6790 struct inferior_suspend_state inferior_suspend;
6791 #endif
6792
6793 /* Other fields: */
6794 CORE_ADDR stop_pc;
6795 struct regcache *registers;
6796
6797 /* Format of SIGINFO_DATA or NULL if it is not present. */
6798 struct gdbarch *siginfo_gdbarch;
6799
6800 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6801 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6802 content would be invalid. */
6803 gdb_byte *siginfo_data;
6804 };
6805
6806 struct infcall_suspend_state *
6807 save_infcall_suspend_state (void)
6808 {
6809 struct infcall_suspend_state *inf_state;
6810 struct thread_info *tp = inferior_thread ();
6811 #if 0
6812 struct inferior *inf = current_inferior ();
6813 #endif
6814 struct regcache *regcache = get_current_regcache ();
6815 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6816 gdb_byte *siginfo_data = NULL;
6817
6818 if (gdbarch_get_siginfo_type_p (gdbarch))
6819 {
6820 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6821 size_t len = TYPE_LENGTH (type);
6822 struct cleanup *back_to;
6823
6824 siginfo_data = xmalloc (len);
6825 back_to = make_cleanup (xfree, siginfo_data);
6826
6827 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6828 siginfo_data, 0, len) == len)
6829 discard_cleanups (back_to);
6830 else
6831 {
6832 /* Errors ignored. */
6833 do_cleanups (back_to);
6834 siginfo_data = NULL;
6835 }
6836 }
6837
6838 inf_state = XZALLOC (struct infcall_suspend_state);
6839
6840 if (siginfo_data)
6841 {
6842 inf_state->siginfo_gdbarch = gdbarch;
6843 inf_state->siginfo_data = siginfo_data;
6844 }
6845
6846 inf_state->thread_suspend = tp->suspend;
6847 #if 0 /* Currently unused and empty structures are not valid C. */
6848 inf_state->inferior_suspend = inf->suspend;
6849 #endif
6850
6851 /* run_inferior_call will not use the signal due to its `proceed' call with
6852 GDB_SIGNAL_0 anyway. */
6853 tp->suspend.stop_signal = GDB_SIGNAL_0;
6854
6855 inf_state->stop_pc = stop_pc;
6856
6857 inf_state->registers = regcache_dup (regcache);
6858
6859 return inf_state;
6860 }
6861
6862 /* Restore inferior session state to INF_STATE. */
6863
6864 void
6865 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6866 {
6867 struct thread_info *tp = inferior_thread ();
6868 #if 0
6869 struct inferior *inf = current_inferior ();
6870 #endif
6871 struct regcache *regcache = get_current_regcache ();
6872 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6873
6874 tp->suspend = inf_state->thread_suspend;
6875 #if 0 /* Currently unused and empty structures are not valid C. */
6876 inf->suspend = inf_state->inferior_suspend;
6877 #endif
6878
6879 stop_pc = inf_state->stop_pc;
6880
6881 if (inf_state->siginfo_gdbarch == gdbarch)
6882 {
6883 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6884
6885 /* Errors ignored. */
6886 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6887 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6888 }
6889
6890 /* The inferior can be gone if the user types "print exit(0)"
6891 (and perhaps other times). */
6892 if (target_has_execution)
6893 /* NB: The register write goes through to the target. */
6894 regcache_cpy (regcache, inf_state->registers);
6895
6896 discard_infcall_suspend_state (inf_state);
6897 }
6898
6899 static void
6900 do_restore_infcall_suspend_state_cleanup (void *state)
6901 {
6902 restore_infcall_suspend_state (state);
6903 }
6904
6905 struct cleanup *
6906 make_cleanup_restore_infcall_suspend_state
6907 (struct infcall_suspend_state *inf_state)
6908 {
6909 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6910 }
6911
6912 void
6913 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6914 {
6915 regcache_xfree (inf_state->registers);
6916 xfree (inf_state->siginfo_data);
6917 xfree (inf_state);
6918 }
6919
6920 struct regcache *
6921 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6922 {
6923 return inf_state->registers;
6924 }
6925
6926 /* infcall_control_state contains state regarding gdb's control of the
6927 inferior itself like stepping control. It also contains session state like
6928 the user's currently selected frame. */
6929
6930 struct infcall_control_state
6931 {
6932 struct thread_control_state thread_control;
6933 struct inferior_control_state inferior_control;
6934
6935 /* Other fields: */
6936 enum stop_stack_kind stop_stack_dummy;
6937 int stopped_by_random_signal;
6938 int stop_after_trap;
6939
6940 /* ID if the selected frame when the inferior function call was made. */
6941 struct frame_id selected_frame_id;
6942 };
6943
6944 /* Save all of the information associated with the inferior<==>gdb
6945 connection. */
6946
6947 struct infcall_control_state *
6948 save_infcall_control_state (void)
6949 {
6950 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6951 struct thread_info *tp = inferior_thread ();
6952 struct inferior *inf = current_inferior ();
6953
6954 inf_status->thread_control = tp->control;
6955 inf_status->inferior_control = inf->control;
6956
6957 tp->control.step_resume_breakpoint = NULL;
6958 tp->control.exception_resume_breakpoint = NULL;
6959
6960 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6961 chain. If caller's caller is walking the chain, they'll be happier if we
6962 hand them back the original chain when restore_infcall_control_state is
6963 called. */
6964 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6965
6966 /* Other fields: */
6967 inf_status->stop_stack_dummy = stop_stack_dummy;
6968 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6969 inf_status->stop_after_trap = stop_after_trap;
6970
6971 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6972
6973 return inf_status;
6974 }
6975
6976 static int
6977 restore_selected_frame (void *args)
6978 {
6979 struct frame_id *fid = (struct frame_id *) args;
6980 struct frame_info *frame;
6981
6982 frame = frame_find_by_id (*fid);
6983
6984 /* If inf_status->selected_frame_id is NULL, there was no previously
6985 selected frame. */
6986 if (frame == NULL)
6987 {
6988 warning (_("Unable to restore previously selected frame."));
6989 return 0;
6990 }
6991
6992 select_frame (frame);
6993
6994 return (1);
6995 }
6996
6997 /* Restore inferior session state to INF_STATUS. */
6998
6999 void
7000 restore_infcall_control_state (struct infcall_control_state *inf_status)
7001 {
7002 struct thread_info *tp = inferior_thread ();
7003 struct inferior *inf = current_inferior ();
7004
7005 if (tp->control.step_resume_breakpoint)
7006 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7007
7008 if (tp->control.exception_resume_breakpoint)
7009 tp->control.exception_resume_breakpoint->disposition
7010 = disp_del_at_next_stop;
7011
7012 /* Handle the bpstat_copy of the chain. */
7013 bpstat_clear (&tp->control.stop_bpstat);
7014
7015 tp->control = inf_status->thread_control;
7016 inf->control = inf_status->inferior_control;
7017
7018 /* Other fields: */
7019 stop_stack_dummy = inf_status->stop_stack_dummy;
7020 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7021 stop_after_trap = inf_status->stop_after_trap;
7022
7023 if (target_has_stack)
7024 {
7025 /* The point of catch_errors is that if the stack is clobbered,
7026 walking the stack might encounter a garbage pointer and
7027 error() trying to dereference it. */
7028 if (catch_errors
7029 (restore_selected_frame, &inf_status->selected_frame_id,
7030 "Unable to restore previously selected frame:\n",
7031 RETURN_MASK_ERROR) == 0)
7032 /* Error in restoring the selected frame. Select the innermost
7033 frame. */
7034 select_frame (get_current_frame ());
7035 }
7036
7037 xfree (inf_status);
7038 }
7039
7040 static void
7041 do_restore_infcall_control_state_cleanup (void *sts)
7042 {
7043 restore_infcall_control_state (sts);
7044 }
7045
7046 struct cleanup *
7047 make_cleanup_restore_infcall_control_state
7048 (struct infcall_control_state *inf_status)
7049 {
7050 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7051 }
7052
7053 void
7054 discard_infcall_control_state (struct infcall_control_state *inf_status)
7055 {
7056 if (inf_status->thread_control.step_resume_breakpoint)
7057 inf_status->thread_control.step_resume_breakpoint->disposition
7058 = disp_del_at_next_stop;
7059
7060 if (inf_status->thread_control.exception_resume_breakpoint)
7061 inf_status->thread_control.exception_resume_breakpoint->disposition
7062 = disp_del_at_next_stop;
7063
7064 /* See save_infcall_control_state for info on stop_bpstat. */
7065 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7066
7067 xfree (inf_status);
7068 }
7069 \f
7070 int
7071 ptid_match (ptid_t ptid, ptid_t filter)
7072 {
7073 if (ptid_equal (filter, minus_one_ptid))
7074 return 1;
7075 if (ptid_is_pid (filter)
7076 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7077 return 1;
7078 else if (ptid_equal (ptid, filter))
7079 return 1;
7080
7081 return 0;
7082 }
7083
7084 /* restore_inferior_ptid() will be used by the cleanup machinery
7085 to restore the inferior_ptid value saved in a call to
7086 save_inferior_ptid(). */
7087
7088 static void
7089 restore_inferior_ptid (void *arg)
7090 {
7091 ptid_t *saved_ptid_ptr = arg;
7092
7093 inferior_ptid = *saved_ptid_ptr;
7094 xfree (arg);
7095 }
7096
7097 /* Save the value of inferior_ptid so that it may be restored by a
7098 later call to do_cleanups(). Returns the struct cleanup pointer
7099 needed for later doing the cleanup. */
7100
7101 struct cleanup *
7102 save_inferior_ptid (void)
7103 {
7104 ptid_t *saved_ptid_ptr;
7105
7106 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7107 *saved_ptid_ptr = inferior_ptid;
7108 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7109 }
7110
7111 /* See inferior.h. */
7112
7113 void
7114 clear_exit_convenience_vars (void)
7115 {
7116 clear_internalvar (lookup_internalvar ("_exitsignal"));
7117 clear_internalvar (lookup_internalvar ("_exitcode"));
7118 }
7119 \f
7120
7121 /* User interface for reverse debugging:
7122 Set exec-direction / show exec-direction commands
7123 (returns error unless target implements to_set_exec_direction method). */
7124
7125 int execution_direction = EXEC_FORWARD;
7126 static const char exec_forward[] = "forward";
7127 static const char exec_reverse[] = "reverse";
7128 static const char *exec_direction = exec_forward;
7129 static const char *const exec_direction_names[] = {
7130 exec_forward,
7131 exec_reverse,
7132 NULL
7133 };
7134
7135 static void
7136 set_exec_direction_func (char *args, int from_tty,
7137 struct cmd_list_element *cmd)
7138 {
7139 if (target_can_execute_reverse)
7140 {
7141 if (!strcmp (exec_direction, exec_forward))
7142 execution_direction = EXEC_FORWARD;
7143 else if (!strcmp (exec_direction, exec_reverse))
7144 execution_direction = EXEC_REVERSE;
7145 }
7146 else
7147 {
7148 exec_direction = exec_forward;
7149 error (_("Target does not support this operation."));
7150 }
7151 }
7152
7153 static void
7154 show_exec_direction_func (struct ui_file *out, int from_tty,
7155 struct cmd_list_element *cmd, const char *value)
7156 {
7157 switch (execution_direction) {
7158 case EXEC_FORWARD:
7159 fprintf_filtered (out, _("Forward.\n"));
7160 break;
7161 case EXEC_REVERSE:
7162 fprintf_filtered (out, _("Reverse.\n"));
7163 break;
7164 default:
7165 internal_error (__FILE__, __LINE__,
7166 _("bogus execution_direction value: %d"),
7167 (int) execution_direction);
7168 }
7169 }
7170
7171 static void
7172 show_schedule_multiple (struct ui_file *file, int from_tty,
7173 struct cmd_list_element *c, const char *value)
7174 {
7175 fprintf_filtered (file, _("Resuming the execution of threads "
7176 "of all processes is %s.\n"), value);
7177 }
7178
7179 /* Implementation of `siginfo' variable. */
7180
7181 static const struct internalvar_funcs siginfo_funcs =
7182 {
7183 siginfo_make_value,
7184 NULL,
7185 NULL
7186 };
7187
7188 void
7189 _initialize_infrun (void)
7190 {
7191 int i;
7192 int numsigs;
7193 struct cmd_list_element *c;
7194
7195 add_info ("signals", signals_info, _("\
7196 What debugger does when program gets various signals.\n\
7197 Specify a signal as argument to print info on that signal only."));
7198 add_info_alias ("handle", "signals", 0);
7199
7200 c = add_com ("handle", class_run, handle_command, _("\
7201 Specify how to handle signals.\n\
7202 Usage: handle SIGNAL [ACTIONS]\n\
7203 Args are signals and actions to apply to those signals.\n\
7204 If no actions are specified, the current settings for the specified signals\n\
7205 will be displayed instead.\n\
7206 \n\
7207 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7208 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7209 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7210 The special arg \"all\" is recognized to mean all signals except those\n\
7211 used by the debugger, typically SIGTRAP and SIGINT.\n\
7212 \n\
7213 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7214 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7215 Stop means reenter debugger if this signal happens (implies print).\n\
7216 Print means print a message if this signal happens.\n\
7217 Pass means let program see this signal; otherwise program doesn't know.\n\
7218 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7219 Pass and Stop may be combined.\n\
7220 \n\
7221 Multiple signals may be specified. Signal numbers and signal names\n\
7222 may be interspersed with actions, with the actions being performed for\n\
7223 all signals cumulatively specified."));
7224 set_cmd_completer (c, handle_completer);
7225
7226 if (xdb_commands)
7227 {
7228 add_com ("lz", class_info, signals_info, _("\
7229 What debugger does when program gets various signals.\n\
7230 Specify a signal as argument to print info on that signal only."));
7231 add_com ("z", class_run, xdb_handle_command, _("\
7232 Specify how to handle a signal.\n\
7233 Args are signals and actions to apply to those signals.\n\
7234 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7235 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7236 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7237 The special arg \"all\" is recognized to mean all signals except those\n\
7238 used by the debugger, typically SIGTRAP and SIGINT.\n\
7239 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7240 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7241 nopass), \"Q\" (noprint)\n\
7242 Stop means reenter debugger if this signal happens (implies print).\n\
7243 Print means print a message if this signal happens.\n\
7244 Pass means let program see this signal; otherwise program doesn't know.\n\
7245 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7246 Pass and Stop may be combined."));
7247 }
7248
7249 if (!dbx_commands)
7250 stop_command = add_cmd ("stop", class_obscure,
7251 not_just_help_class_command, _("\
7252 There is no `stop' command, but you can set a hook on `stop'.\n\
7253 This allows you to set a list of commands to be run each time execution\n\
7254 of the program stops."), &cmdlist);
7255
7256 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7257 Set inferior debugging."), _("\
7258 Show inferior debugging."), _("\
7259 When non-zero, inferior specific debugging is enabled."),
7260 NULL,
7261 show_debug_infrun,
7262 &setdebuglist, &showdebuglist);
7263
7264 add_setshow_boolean_cmd ("displaced", class_maintenance,
7265 &debug_displaced, _("\
7266 Set displaced stepping debugging."), _("\
7267 Show displaced stepping debugging."), _("\
7268 When non-zero, displaced stepping specific debugging is enabled."),
7269 NULL,
7270 show_debug_displaced,
7271 &setdebuglist, &showdebuglist);
7272
7273 add_setshow_boolean_cmd ("non-stop", no_class,
7274 &non_stop_1, _("\
7275 Set whether gdb controls the inferior in non-stop mode."), _("\
7276 Show whether gdb controls the inferior in non-stop mode."), _("\
7277 When debugging a multi-threaded program and this setting is\n\
7278 off (the default, also called all-stop mode), when one thread stops\n\
7279 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7280 all other threads in the program while you interact with the thread of\n\
7281 interest. When you continue or step a thread, you can allow the other\n\
7282 threads to run, or have them remain stopped, but while you inspect any\n\
7283 thread's state, all threads stop.\n\
7284 \n\
7285 In non-stop mode, when one thread stops, other threads can continue\n\
7286 to run freely. You'll be able to step each thread independently,\n\
7287 leave it stopped or free to run as needed."),
7288 set_non_stop,
7289 show_non_stop,
7290 &setlist,
7291 &showlist);
7292
7293 numsigs = (int) GDB_SIGNAL_LAST;
7294 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7295 signal_print = (unsigned char *)
7296 xmalloc (sizeof (signal_print[0]) * numsigs);
7297 signal_program = (unsigned char *)
7298 xmalloc (sizeof (signal_program[0]) * numsigs);
7299 signal_catch = (unsigned char *)
7300 xmalloc (sizeof (signal_catch[0]) * numsigs);
7301 signal_pass = (unsigned char *)
7302 xmalloc (sizeof (signal_program[0]) * numsigs);
7303 for (i = 0; i < numsigs; i++)
7304 {
7305 signal_stop[i] = 1;
7306 signal_print[i] = 1;
7307 signal_program[i] = 1;
7308 signal_catch[i] = 0;
7309 }
7310
7311 /* Signals caused by debugger's own actions
7312 should not be given to the program afterwards. */
7313 signal_program[GDB_SIGNAL_TRAP] = 0;
7314 signal_program[GDB_SIGNAL_INT] = 0;
7315
7316 /* Signals that are not errors should not normally enter the debugger. */
7317 signal_stop[GDB_SIGNAL_ALRM] = 0;
7318 signal_print[GDB_SIGNAL_ALRM] = 0;
7319 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7320 signal_print[GDB_SIGNAL_VTALRM] = 0;
7321 signal_stop[GDB_SIGNAL_PROF] = 0;
7322 signal_print[GDB_SIGNAL_PROF] = 0;
7323 signal_stop[GDB_SIGNAL_CHLD] = 0;
7324 signal_print[GDB_SIGNAL_CHLD] = 0;
7325 signal_stop[GDB_SIGNAL_IO] = 0;
7326 signal_print[GDB_SIGNAL_IO] = 0;
7327 signal_stop[GDB_SIGNAL_POLL] = 0;
7328 signal_print[GDB_SIGNAL_POLL] = 0;
7329 signal_stop[GDB_SIGNAL_URG] = 0;
7330 signal_print[GDB_SIGNAL_URG] = 0;
7331 signal_stop[GDB_SIGNAL_WINCH] = 0;
7332 signal_print[GDB_SIGNAL_WINCH] = 0;
7333 signal_stop[GDB_SIGNAL_PRIO] = 0;
7334 signal_print[GDB_SIGNAL_PRIO] = 0;
7335
7336 /* These signals are used internally by user-level thread
7337 implementations. (See signal(5) on Solaris.) Like the above
7338 signals, a healthy program receives and handles them as part of
7339 its normal operation. */
7340 signal_stop[GDB_SIGNAL_LWP] = 0;
7341 signal_print[GDB_SIGNAL_LWP] = 0;
7342 signal_stop[GDB_SIGNAL_WAITING] = 0;
7343 signal_print[GDB_SIGNAL_WAITING] = 0;
7344 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7345 signal_print[GDB_SIGNAL_CANCEL] = 0;
7346
7347 /* Update cached state. */
7348 signal_cache_update (-1);
7349
7350 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7351 &stop_on_solib_events, _("\
7352 Set stopping for shared library events."), _("\
7353 Show stopping for shared library events."), _("\
7354 If nonzero, gdb will give control to the user when the dynamic linker\n\
7355 notifies gdb of shared library events. The most common event of interest\n\
7356 to the user would be loading/unloading of a new library."),
7357 set_stop_on_solib_events,
7358 show_stop_on_solib_events,
7359 &setlist, &showlist);
7360
7361 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7362 follow_fork_mode_kind_names,
7363 &follow_fork_mode_string, _("\
7364 Set debugger response to a program call of fork or vfork."), _("\
7365 Show debugger response to a program call of fork or vfork."), _("\
7366 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7367 parent - the original process is debugged after a fork\n\
7368 child - the new process is debugged after a fork\n\
7369 The unfollowed process will continue to run.\n\
7370 By default, the debugger will follow the parent process."),
7371 NULL,
7372 show_follow_fork_mode_string,
7373 &setlist, &showlist);
7374
7375 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7376 follow_exec_mode_names,
7377 &follow_exec_mode_string, _("\
7378 Set debugger response to a program call of exec."), _("\
7379 Show debugger response to a program call of exec."), _("\
7380 An exec call replaces the program image of a process.\n\
7381 \n\
7382 follow-exec-mode can be:\n\
7383 \n\
7384 new - the debugger creates a new inferior and rebinds the process\n\
7385 to this new inferior. The program the process was running before\n\
7386 the exec call can be restarted afterwards by restarting the original\n\
7387 inferior.\n\
7388 \n\
7389 same - the debugger keeps the process bound to the same inferior.\n\
7390 The new executable image replaces the previous executable loaded in\n\
7391 the inferior. Restarting the inferior after the exec call restarts\n\
7392 the executable the process was running after the exec call.\n\
7393 \n\
7394 By default, the debugger will use the same inferior."),
7395 NULL,
7396 show_follow_exec_mode_string,
7397 &setlist, &showlist);
7398
7399 add_setshow_enum_cmd ("scheduler-locking", class_run,
7400 scheduler_enums, &scheduler_mode, _("\
7401 Set mode for locking scheduler during execution."), _("\
7402 Show mode for locking scheduler during execution."), _("\
7403 off == no locking (threads may preempt at any time)\n\
7404 on == full locking (no thread except the current thread may run)\n\
7405 step == scheduler locked during every single-step operation.\n\
7406 In this mode, no other thread may run during a step command.\n\
7407 Other threads may run while stepping over a function call ('next')."),
7408 set_schedlock_func, /* traps on target vector */
7409 show_scheduler_mode,
7410 &setlist, &showlist);
7411
7412 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7413 Set mode for resuming threads of all processes."), _("\
7414 Show mode for resuming threads of all processes."), _("\
7415 When on, execution commands (such as 'continue' or 'next') resume all\n\
7416 threads of all processes. When off (which is the default), execution\n\
7417 commands only resume the threads of the current process. The set of\n\
7418 threads that are resumed is further refined by the scheduler-locking\n\
7419 mode (see help set scheduler-locking)."),
7420 NULL,
7421 show_schedule_multiple,
7422 &setlist, &showlist);
7423
7424 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7425 Set mode of the step operation."), _("\
7426 Show mode of the step operation."), _("\
7427 When set, doing a step over a function without debug line information\n\
7428 will stop at the first instruction of that function. Otherwise, the\n\
7429 function is skipped and the step command stops at a different source line."),
7430 NULL,
7431 show_step_stop_if_no_debug,
7432 &setlist, &showlist);
7433
7434 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7435 &can_use_displaced_stepping, _("\
7436 Set debugger's willingness to use displaced stepping."), _("\
7437 Show debugger's willingness to use displaced stepping."), _("\
7438 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7439 supported by the target architecture. If off, gdb will not use displaced\n\
7440 stepping to step over breakpoints, even if such is supported by the target\n\
7441 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7442 if the target architecture supports it and non-stop mode is active, but will not\n\
7443 use it in all-stop mode (see help set non-stop)."),
7444 NULL,
7445 show_can_use_displaced_stepping,
7446 &setlist, &showlist);
7447
7448 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7449 &exec_direction, _("Set direction of execution.\n\
7450 Options are 'forward' or 'reverse'."),
7451 _("Show direction of execution (forward/reverse)."),
7452 _("Tells gdb whether to execute forward or backward."),
7453 set_exec_direction_func, show_exec_direction_func,
7454 &setlist, &showlist);
7455
7456 /* Set/show detach-on-fork: user-settable mode. */
7457
7458 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7459 Set whether gdb will detach the child of a fork."), _("\
7460 Show whether gdb will detach the child of a fork."), _("\
7461 Tells gdb whether to detach the child of a fork."),
7462 NULL, NULL, &setlist, &showlist);
7463
7464 /* Set/show disable address space randomization mode. */
7465
7466 add_setshow_boolean_cmd ("disable-randomization", class_support,
7467 &disable_randomization, _("\
7468 Set disabling of debuggee's virtual address space randomization."), _("\
7469 Show disabling of debuggee's virtual address space randomization."), _("\
7470 When this mode is on (which is the default), randomization of the virtual\n\
7471 address space is disabled. Standalone programs run with the randomization\n\
7472 enabled by default on some platforms."),
7473 &set_disable_randomization,
7474 &show_disable_randomization,
7475 &setlist, &showlist);
7476
7477 /* ptid initializations */
7478 inferior_ptid = null_ptid;
7479 target_last_wait_ptid = minus_one_ptid;
7480
7481 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7482 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7483 observer_attach_thread_exit (infrun_thread_thread_exit);
7484 observer_attach_inferior_exit (infrun_inferior_exit);
7485
7486 /* Explicitly create without lookup, since that tries to create a
7487 value with a void typed value, and when we get here, gdbarch
7488 isn't initialized yet. At this point, we're quite sure there
7489 isn't another convenience variable of the same name. */
7490 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7491
7492 add_setshow_boolean_cmd ("observer", no_class,
7493 &observer_mode_1, _("\
7494 Set whether gdb controls the inferior in observer mode."), _("\
7495 Show whether gdb controls the inferior in observer mode."), _("\
7496 In observer mode, GDB can get data from the inferior, but not\n\
7497 affect its execution. Registers and memory may not be changed,\n\
7498 breakpoints may not be set, and the program cannot be interrupted\n\
7499 or signalled."),
7500 set_observer_mode,
7501 show_observer_mode,
7502 &setlist,
7503 &showlist);
7504 }
This page took 0.266112 seconds and 5 git commands to generate.