infrun.c:handle_inferior_event: Make process_event_stop_test label a function.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
28e7fd62 4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
d02ed0bb 52#include "record-full.h"
edb3359d 53#include "inline-frame.h"
4efc6507 54#include "jit.h"
06cd862c 55#include "tracepoint.h"
be34f849 56#include "continuations.h"
b4a14fd0 57#include "interps.h"
1bfeeb0f 58#include "skip.h"
28106bc2
SDJ
59#include "probe.h"
60#include "objfiles.h"
de0bea00 61#include "completer.h"
9107fc8d 62#include "target-descriptions.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820
JM
81
82static void set_schedlock_func (char *args, int from_tty,
488f131b 83 struct cmd_list_element *c);
96baa820 84
a289b8f6
JK
85static int currently_stepping (struct thread_info *tp);
86
b3444185
PA
87static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
a7212384 89
96baa820
JM
90static void xdb_handle_command (char *args, int from_tty);
91
6a6b96b9 92static int prepare_to_proceed (int);
ea67f13b 93
33d62d64
JK
94static void print_exited_reason (int exitstatus);
95
2ea28649 96static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
97
98static void print_no_history_reason (void);
99
2ea28649 100static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
101
102static void print_end_stepping_range_reason (void);
103
96baa820 104void _initialize_infrun (void);
43ff13b4 105
e58b0e63
PA
106void nullify_last_target_wait_ptid (void);
107
2c03e5be 108static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
109
110static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
2484c66b
UW
112static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
5fbbeb29
CF
114/* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117int step_stop_if_no_debug = 0;
920d2a44
AC
118static void
119show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121{
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123}
5fbbeb29 124
1777feb0 125/* In asynchronous mode, but simulating synchronous execution. */
96baa820 126
43ff13b4
JM
127int sync_execution = 0;
128
c906108c
SS
129/* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
96baa820
JM
131 running in. */
132
39f77062 133static ptid_t previous_inferior_ptid;
7a292a7a 134
07107ca6
LM
135/* If set (default for legacy reasons), when following a fork, GDB
136 will detach from one of the fork branches, child or parent.
137 Exactly which branch is detached depends on 'set follow-fork-mode'
138 setting. */
139
140static int detach_fork = 1;
6c95b8df 141
237fc4c9
PA
142int debug_displaced = 0;
143static void
144show_debug_displaced (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146{
147 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
148}
149
ccce17b0 150unsigned int debug_infrun = 0;
920d2a44
AC
151static void
152show_debug_infrun (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154{
155 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
156}
527159b7 157
03583c20
UW
158
159/* Support for disabling address space randomization. */
160
161int disable_randomization = 1;
162
163static void
164show_disable_randomization (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 if (target_supports_disable_randomization ())
168 fprintf_filtered (file,
169 _("Disabling randomization of debuggee's "
170 "virtual address space is %s.\n"),
171 value);
172 else
173 fputs_filtered (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform.\n"), file);
176}
177
178static void
179set_disable_randomization (char *args, int from_tty,
180 struct cmd_list_element *c)
181{
182 if (!target_supports_disable_randomization ())
183 error (_("Disabling randomization of debuggee's "
184 "virtual address space is unsupported on\n"
185 "this platform."));
186}
187
d32dc48e
PA
188/* User interface for non-stop mode. */
189
190int non_stop = 0;
191static int non_stop_1 = 0;
192
193static void
194set_non_stop (char *args, int from_tty,
195 struct cmd_list_element *c)
196{
197 if (target_has_execution)
198 {
199 non_stop_1 = non_stop;
200 error (_("Cannot change this setting while the inferior is running."));
201 }
202
203 non_stop = non_stop_1;
204}
205
206static void
207show_non_stop (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209{
210 fprintf_filtered (file,
211 _("Controlling the inferior in non-stop mode is %s.\n"),
212 value);
213}
214
d914c394
SS
215/* "Observer mode" is somewhat like a more extreme version of
216 non-stop, in which all GDB operations that might affect the
217 target's execution have been disabled. */
218
d914c394
SS
219int observer_mode = 0;
220static int observer_mode_1 = 0;
221
222static void
223set_observer_mode (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
d914c394
SS
226 if (target_has_execution)
227 {
228 observer_mode_1 = observer_mode;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 observer_mode = observer_mode_1;
233
234 may_write_registers = !observer_mode;
235 may_write_memory = !observer_mode;
236 may_insert_breakpoints = !observer_mode;
237 may_insert_tracepoints = !observer_mode;
238 /* We can insert fast tracepoints in or out of observer mode,
239 but enable them if we're going into this mode. */
240 if (observer_mode)
241 may_insert_fast_tracepoints = 1;
242 may_stop = !observer_mode;
243 update_target_permissions ();
244
245 /* Going *into* observer mode we must force non-stop, then
246 going out we leave it that way. */
247 if (observer_mode)
248 {
249 target_async_permitted = 1;
250 pagination_enabled = 0;
251 non_stop = non_stop_1 = 1;
252 }
253
254 if (from_tty)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (observer_mode ? "on" : "off"));
257}
258
259static void
260show_observer_mode (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262{
263 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
264}
265
266/* This updates the value of observer mode based on changes in
267 permissions. Note that we are deliberately ignoring the values of
268 may-write-registers and may-write-memory, since the user may have
269 reason to enable these during a session, for instance to turn on a
270 debugging-related global. */
271
272void
273update_observer_mode (void)
274{
275 int newval;
276
277 newval = (!may_insert_breakpoints
278 && !may_insert_tracepoints
279 && may_insert_fast_tracepoints
280 && !may_stop
281 && non_stop);
282
283 /* Let the user know if things change. */
284 if (newval != observer_mode)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (newval ? "on" : "off"));
287
288 observer_mode = observer_mode_1 = newval;
289}
c2c6d25f 290
c906108c
SS
291/* Tables of how to react to signals; the user sets them. */
292
293static unsigned char *signal_stop;
294static unsigned char *signal_print;
295static unsigned char *signal_program;
296
ab04a2af
TT
297/* Table of signals that are registered with "catch signal". A
298 non-zero entry indicates that the signal is caught by some "catch
299 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
300 signals. */
301static unsigned char *signal_catch;
302
2455069d
UW
303/* Table of signals that the target may silently handle.
304 This is automatically determined from the flags above,
305 and simply cached here. */
306static unsigned char *signal_pass;
307
c906108c
SS
308#define SET_SIGS(nsigs,sigs,flags) \
309 do { \
310 int signum = (nsigs); \
311 while (signum-- > 0) \
312 if ((sigs)[signum]) \
313 (flags)[signum] = 1; \
314 } while (0)
315
316#define UNSET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 0; \
322 } while (0)
323
9b224c5e
PA
324/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
325 this function is to avoid exporting `signal_program'. */
326
327void
328update_signals_program_target (void)
329{
a493e3e2 330 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
331}
332
1777feb0 333/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 334
edb3359d 335#define RESUME_ALL minus_one_ptid
c906108c
SS
336
337/* Command list pointer for the "stop" placeholder. */
338
339static struct cmd_list_element *stop_command;
340
c906108c
SS
341/* Function inferior was in as of last step command. */
342
343static struct symbol *step_start_function;
344
c906108c
SS
345/* Nonzero if we want to give control to the user when we're notified
346 of shared library events by the dynamic linker. */
628fe4e4 347int stop_on_solib_events;
f9e14852
GB
348
349/* Enable or disable optional shared library event breakpoints
350 as appropriate when the above flag is changed. */
351
352static void
353set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
354{
355 update_solib_breakpoints ();
356}
357
920d2a44
AC
358static void
359show_stop_on_solib_events (struct ui_file *file, int from_tty,
360 struct cmd_list_element *c, const char *value)
361{
362 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
363 value);
364}
c906108c 365
c906108c
SS
366/* Nonzero means expecting a trace trap
367 and should stop the inferior and return silently when it happens. */
368
369int stop_after_trap;
370
642fd101
DE
371/* Save register contents here when executing a "finish" command or are
372 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
373 Thus this contains the return value from the called function (assuming
374 values are returned in a register). */
375
72cec141 376struct regcache *stop_registers;
c906108c 377
c906108c
SS
378/* Nonzero after stop if current stack frame should be printed. */
379
380static int stop_print_frame;
381
e02bc4cc 382/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
39f77062 385static ptid_t target_last_wait_ptid;
e02bc4cc
DS
386static struct target_waitstatus target_last_waitstatus;
387
0d1e5fa7
PA
388static void context_switch (ptid_t ptid);
389
4e1c45ea 390void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 391
7a76f5b8 392static void init_infwait_state (void);
a474d7c2 393
53904c9e
AC
394static const char follow_fork_mode_child[] = "child";
395static const char follow_fork_mode_parent[] = "parent";
396
40478521 397static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
398 follow_fork_mode_child,
399 follow_fork_mode_parent,
400 NULL
ef346e04 401};
c906108c 402
53904c9e 403static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
404static void
405show_follow_fork_mode_string (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407{
3e43a32a
MS
408 fprintf_filtered (file,
409 _("Debugger response to a program "
410 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
411 value);
412}
c906108c
SS
413\f
414
e58b0e63
PA
415/* Tell the target to follow the fork we're stopped at. Returns true
416 if the inferior should be resumed; false, if the target for some
417 reason decided it's best not to resume. */
418
6604731b 419static int
4ef3f3be 420follow_fork (void)
c906108c 421{
ea1dd7bc 422 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
423 int should_resume = 1;
424 struct thread_info *tp;
425
426 /* Copy user stepping state to the new inferior thread. FIXME: the
427 followed fork child thread should have a copy of most of the
4e3990f4
DE
428 parent thread structure's run control related fields, not just these.
429 Initialized to avoid "may be used uninitialized" warnings from gcc. */
430 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 431 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
432 CORE_ADDR step_range_start = 0;
433 CORE_ADDR step_range_end = 0;
434 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
435
436 if (!non_stop)
437 {
438 ptid_t wait_ptid;
439 struct target_waitstatus wait_status;
440
441 /* Get the last target status returned by target_wait(). */
442 get_last_target_status (&wait_ptid, &wait_status);
443
444 /* If not stopped at a fork event, then there's nothing else to
445 do. */
446 if (wait_status.kind != TARGET_WAITKIND_FORKED
447 && wait_status.kind != TARGET_WAITKIND_VFORKED)
448 return 1;
449
450 /* Check if we switched over from WAIT_PTID, since the event was
451 reported. */
452 if (!ptid_equal (wait_ptid, minus_one_ptid)
453 && !ptid_equal (inferior_ptid, wait_ptid))
454 {
455 /* We did. Switch back to WAIT_PTID thread, to tell the
456 target to follow it (in either direction). We'll
457 afterwards refuse to resume, and inform the user what
458 happened. */
459 switch_to_thread (wait_ptid);
460 should_resume = 0;
461 }
462 }
463
464 tp = inferior_thread ();
465
466 /* If there were any forks/vforks that were caught and are now to be
467 followed, then do so now. */
468 switch (tp->pending_follow.kind)
469 {
470 case TARGET_WAITKIND_FORKED:
471 case TARGET_WAITKIND_VFORKED:
472 {
473 ptid_t parent, child;
474
475 /* If the user did a next/step, etc, over a fork call,
476 preserve the stepping state in the fork child. */
477 if (follow_child && should_resume)
478 {
8358c15c
JK
479 step_resume_breakpoint = clone_momentary_breakpoint
480 (tp->control.step_resume_breakpoint);
16c381f0
JK
481 step_range_start = tp->control.step_range_start;
482 step_range_end = tp->control.step_range_end;
483 step_frame_id = tp->control.step_frame_id;
186c406b
TT
484 exception_resume_breakpoint
485 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
486
487 /* For now, delete the parent's sr breakpoint, otherwise,
488 parent/child sr breakpoints are considered duplicates,
489 and the child version will not be installed. Remove
490 this when the breakpoints module becomes aware of
491 inferiors and address spaces. */
492 delete_step_resume_breakpoint (tp);
16c381f0
JK
493 tp->control.step_range_start = 0;
494 tp->control.step_range_end = 0;
495 tp->control.step_frame_id = null_frame_id;
186c406b 496 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
497 }
498
499 parent = inferior_ptid;
500 child = tp->pending_follow.value.related_pid;
501
502 /* Tell the target to do whatever is necessary to follow
503 either parent or child. */
07107ca6 504 if (target_follow_fork (follow_child, detach_fork))
e58b0e63
PA
505 {
506 /* Target refused to follow, or there's some other reason
507 we shouldn't resume. */
508 should_resume = 0;
509 }
510 else
511 {
512 /* This pending follow fork event is now handled, one way
513 or another. The previous selected thread may be gone
514 from the lists by now, but if it is still around, need
515 to clear the pending follow request. */
e09875d4 516 tp = find_thread_ptid (parent);
e58b0e63
PA
517 if (tp)
518 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
519
520 /* This makes sure we don't try to apply the "Switched
521 over from WAIT_PID" logic above. */
522 nullify_last_target_wait_ptid ();
523
1777feb0 524 /* If we followed the child, switch to it... */
e58b0e63
PA
525 if (follow_child)
526 {
527 switch_to_thread (child);
528
529 /* ... and preserve the stepping state, in case the
530 user was stepping over the fork call. */
531 if (should_resume)
532 {
533 tp = inferior_thread ();
8358c15c
JK
534 tp->control.step_resume_breakpoint
535 = step_resume_breakpoint;
16c381f0
JK
536 tp->control.step_range_start = step_range_start;
537 tp->control.step_range_end = step_range_end;
538 tp->control.step_frame_id = step_frame_id;
186c406b
TT
539 tp->control.exception_resume_breakpoint
540 = exception_resume_breakpoint;
e58b0e63
PA
541 }
542 else
543 {
544 /* If we get here, it was because we're trying to
545 resume from a fork catchpoint, but, the user
546 has switched threads away from the thread that
547 forked. In that case, the resume command
548 issued is most likely not applicable to the
549 child, so just warn, and refuse to resume. */
3e43a32a
MS
550 warning (_("Not resuming: switched threads "
551 "before following fork child.\n"));
e58b0e63
PA
552 }
553
554 /* Reset breakpoints in the child as appropriate. */
555 follow_inferior_reset_breakpoints ();
556 }
557 else
558 switch_to_thread (parent);
559 }
560 }
561 break;
562 case TARGET_WAITKIND_SPURIOUS:
563 /* Nothing to follow. */
564 break;
565 default:
566 internal_error (__FILE__, __LINE__,
567 "Unexpected pending_follow.kind %d\n",
568 tp->pending_follow.kind);
569 break;
570 }
c906108c 571
e58b0e63 572 return should_resume;
c906108c
SS
573}
574
6604731b
DJ
575void
576follow_inferior_reset_breakpoints (void)
c906108c 577{
4e1c45ea
PA
578 struct thread_info *tp = inferior_thread ();
579
6604731b
DJ
580 /* Was there a step_resume breakpoint? (There was if the user
581 did a "next" at the fork() call.) If so, explicitly reset its
582 thread number.
583
584 step_resumes are a form of bp that are made to be per-thread.
585 Since we created the step_resume bp when the parent process
586 was being debugged, and now are switching to the child process,
587 from the breakpoint package's viewpoint, that's a switch of
588 "threads". We must update the bp's notion of which thread
589 it is for, or it'll be ignored when it triggers. */
590
8358c15c
JK
591 if (tp->control.step_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 593
186c406b
TT
594 if (tp->control.exception_resume_breakpoint)
595 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
596
6604731b
DJ
597 /* Reinsert all breakpoints in the child. The user may have set
598 breakpoints after catching the fork, in which case those
599 were never set in the child, but only in the parent. This makes
600 sure the inserted breakpoints match the breakpoint list. */
601
602 breakpoint_re_set ();
603 insert_breakpoints ();
c906108c 604}
c906108c 605
6c95b8df
PA
606/* The child has exited or execed: resume threads of the parent the
607 user wanted to be executing. */
608
609static int
610proceed_after_vfork_done (struct thread_info *thread,
611 void *arg)
612{
613 int pid = * (int *) arg;
614
615 if (ptid_get_pid (thread->ptid) == pid
616 && is_running (thread->ptid)
617 && !is_executing (thread->ptid)
618 && !thread->stop_requested
a493e3e2 619 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
620 {
621 if (debug_infrun)
622 fprintf_unfiltered (gdb_stdlog,
623 "infrun: resuming vfork parent thread %s\n",
624 target_pid_to_str (thread->ptid));
625
626 switch_to_thread (thread->ptid);
627 clear_proceed_status ();
a493e3e2 628 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
629 }
630
631 return 0;
632}
633
634/* Called whenever we notice an exec or exit event, to handle
635 detaching or resuming a vfork parent. */
636
637static void
638handle_vfork_child_exec_or_exit (int exec)
639{
640 struct inferior *inf = current_inferior ();
641
642 if (inf->vfork_parent)
643 {
644 int resume_parent = -1;
645
646 /* This exec or exit marks the end of the shared memory region
647 between the parent and the child. If the user wanted to
648 detach from the parent, now is the time. */
649
650 if (inf->vfork_parent->pending_detach)
651 {
652 struct thread_info *tp;
653 struct cleanup *old_chain;
654 struct program_space *pspace;
655 struct address_space *aspace;
656
1777feb0 657 /* follow-fork child, detach-on-fork on. */
6c95b8df 658
68c9da30
PA
659 inf->vfork_parent->pending_detach = 0;
660
f50f4e56
PA
661 if (!exec)
662 {
663 /* If we're handling a child exit, then inferior_ptid
664 points at the inferior's pid, not to a thread. */
665 old_chain = save_inferior_ptid ();
666 save_current_program_space ();
667 save_current_inferior ();
668 }
669 else
670 old_chain = save_current_space_and_thread ();
6c95b8df
PA
671
672 /* We're letting loose of the parent. */
673 tp = any_live_thread_of_process (inf->vfork_parent->pid);
674 switch_to_thread (tp->ptid);
675
676 /* We're about to detach from the parent, which implicitly
677 removes breakpoints from its address space. There's a
678 catch here: we want to reuse the spaces for the child,
679 but, parent/child are still sharing the pspace at this
680 point, although the exec in reality makes the kernel give
681 the child a fresh set of new pages. The problem here is
682 that the breakpoints module being unaware of this, would
683 likely chose the child process to write to the parent
684 address space. Swapping the child temporarily away from
685 the spaces has the desired effect. Yes, this is "sort
686 of" a hack. */
687
688 pspace = inf->pspace;
689 aspace = inf->aspace;
690 inf->aspace = NULL;
691 inf->pspace = NULL;
692
693 if (debug_infrun || info_verbose)
694 {
695 target_terminal_ours ();
696
697 if (exec)
698 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
699 "Detaching vfork parent process "
700 "%d after child exec.\n",
6c95b8df
PA
701 inf->vfork_parent->pid);
702 else
703 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
704 "Detaching vfork parent process "
705 "%d after child exit.\n",
6c95b8df
PA
706 inf->vfork_parent->pid);
707 }
708
709 target_detach (NULL, 0);
710
711 /* Put it back. */
712 inf->pspace = pspace;
713 inf->aspace = aspace;
714
715 do_cleanups (old_chain);
716 }
717 else if (exec)
718 {
719 /* We're staying attached to the parent, so, really give the
720 child a new address space. */
721 inf->pspace = add_program_space (maybe_new_address_space ());
722 inf->aspace = inf->pspace->aspace;
723 inf->removable = 1;
724 set_current_program_space (inf->pspace);
725
726 resume_parent = inf->vfork_parent->pid;
727
728 /* Break the bonds. */
729 inf->vfork_parent->vfork_child = NULL;
730 }
731 else
732 {
733 struct cleanup *old_chain;
734 struct program_space *pspace;
735
736 /* If this is a vfork child exiting, then the pspace and
737 aspaces were shared with the parent. Since we're
738 reporting the process exit, we'll be mourning all that is
739 found in the address space, and switching to null_ptid,
740 preparing to start a new inferior. But, since we don't
741 want to clobber the parent's address/program spaces, we
742 go ahead and create a new one for this exiting
743 inferior. */
744
745 /* Switch to null_ptid, so that clone_program_space doesn't want
746 to read the selected frame of a dead process. */
747 old_chain = save_inferior_ptid ();
748 inferior_ptid = null_ptid;
749
750 /* This inferior is dead, so avoid giving the breakpoints
751 module the option to write through to it (cloning a
752 program space resets breakpoints). */
753 inf->aspace = NULL;
754 inf->pspace = NULL;
755 pspace = add_program_space (maybe_new_address_space ());
756 set_current_program_space (pspace);
757 inf->removable = 1;
7dcd53a0 758 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
759 clone_program_space (pspace, inf->vfork_parent->pspace);
760 inf->pspace = pspace;
761 inf->aspace = pspace->aspace;
762
763 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 764 inferior. */
6c95b8df
PA
765 do_cleanups (old_chain);
766
767 resume_parent = inf->vfork_parent->pid;
768 /* Break the bonds. */
769 inf->vfork_parent->vfork_child = NULL;
770 }
771
772 inf->vfork_parent = NULL;
773
774 gdb_assert (current_program_space == inf->pspace);
775
776 if (non_stop && resume_parent != -1)
777 {
778 /* If the user wanted the parent to be running, let it go
779 free now. */
780 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
781
782 if (debug_infrun)
3e43a32a
MS
783 fprintf_unfiltered (gdb_stdlog,
784 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
785 resume_parent);
786
787 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
788
789 do_cleanups (old_chain);
790 }
791 }
792}
793
eb6c553b 794/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
795
796static const char follow_exec_mode_new[] = "new";
797static const char follow_exec_mode_same[] = "same";
40478521 798static const char *const follow_exec_mode_names[] =
6c95b8df
PA
799{
800 follow_exec_mode_new,
801 follow_exec_mode_same,
802 NULL,
803};
804
805static const char *follow_exec_mode_string = follow_exec_mode_same;
806static void
807show_follow_exec_mode_string (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809{
810 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
811}
812
1777feb0 813/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 814
c906108c 815static void
3a3e9ee3 816follow_exec (ptid_t pid, char *execd_pathname)
c906108c 817{
4e1c45ea 818 struct thread_info *th = inferior_thread ();
6c95b8df 819 struct inferior *inf = current_inferior ();
7a292a7a 820
c906108c
SS
821 /* This is an exec event that we actually wish to pay attention to.
822 Refresh our symbol table to the newly exec'd program, remove any
823 momentary bp's, etc.
824
825 If there are breakpoints, they aren't really inserted now,
826 since the exec() transformed our inferior into a fresh set
827 of instructions.
828
829 We want to preserve symbolic breakpoints on the list, since
830 we have hopes that they can be reset after the new a.out's
831 symbol table is read.
832
833 However, any "raw" breakpoints must be removed from the list
834 (e.g., the solib bp's), since their address is probably invalid
835 now.
836
837 And, we DON'T want to call delete_breakpoints() here, since
838 that may write the bp's "shadow contents" (the instruction
839 value that was overwritten witha TRAP instruction). Since
1777feb0 840 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
841
842 mark_breakpoints_out ();
843
c906108c
SS
844 update_breakpoints_after_exec ();
845
846 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 847 statement through an exec(). */
8358c15c 848 th->control.step_resume_breakpoint = NULL;
186c406b 849 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
850 th->control.step_range_start = 0;
851 th->control.step_range_end = 0;
c906108c 852
a75724bc
PA
853 /* The target reports the exec event to the main thread, even if
854 some other thread does the exec, and even if the main thread was
855 already stopped --- if debugging in non-stop mode, it's possible
856 the user had the main thread held stopped in the previous image
857 --- release it now. This is the same behavior as step-over-exec
858 with scheduler-locking on in all-stop mode. */
859 th->stop_requested = 0;
860
1777feb0 861 /* What is this a.out's name? */
6c95b8df
PA
862 printf_unfiltered (_("%s is executing new program: %s\n"),
863 target_pid_to_str (inferior_ptid),
864 execd_pathname);
c906108c
SS
865
866 /* We've followed the inferior through an exec. Therefore, the
1777feb0 867 inferior has essentially been killed & reborn. */
7a292a7a 868
c906108c 869 gdb_flush (gdb_stdout);
6ca15a4b
PA
870
871 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
872
873 if (gdb_sysroot && *gdb_sysroot)
874 {
875 char *name = alloca (strlen (gdb_sysroot)
876 + strlen (execd_pathname)
877 + 1);
abbb1732 878
e85a822c
DJ
879 strcpy (name, gdb_sysroot);
880 strcat (name, execd_pathname);
881 execd_pathname = name;
882 }
c906108c 883
cce9b6bf
PA
884 /* Reset the shared library package. This ensures that we get a
885 shlib event when the child reaches "_start", at which point the
886 dld will have had a chance to initialize the child. */
887 /* Also, loading a symbol file below may trigger symbol lookups, and
888 we don't want those to be satisfied by the libraries of the
889 previous incarnation of this process. */
890 no_shared_libraries (NULL, 0);
891
6c95b8df
PA
892 if (follow_exec_mode_string == follow_exec_mode_new)
893 {
894 struct program_space *pspace;
6c95b8df
PA
895
896 /* The user wants to keep the old inferior and program spaces
897 around. Create a new fresh one, and switch to it. */
898
899 inf = add_inferior (current_inferior ()->pid);
900 pspace = add_program_space (maybe_new_address_space ());
901 inf->pspace = pspace;
902 inf->aspace = pspace->aspace;
903
904 exit_inferior_num_silent (current_inferior ()->num);
905
906 set_current_inferior (inf);
907 set_current_program_space (pspace);
908 }
9107fc8d
PA
909 else
910 {
911 /* The old description may no longer be fit for the new image.
912 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
913 old description; we'll read a new one below. No need to do
914 this on "follow-exec-mode new", as the old inferior stays
915 around (its description is later cleared/refetched on
916 restart). */
917 target_clear_description ();
918 }
6c95b8df
PA
919
920 gdb_assert (current_program_space == inf->pspace);
921
1777feb0 922 /* That a.out is now the one to use. */
6c95b8df
PA
923 exec_file_attach (execd_pathname, 0);
924
c1e56572
JK
925 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
926 (Position Independent Executable) main symbol file will get applied by
927 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
928 the breakpoints with the zero displacement. */
929
7dcd53a0
TT
930 symbol_file_add (execd_pathname,
931 (inf->symfile_flags
932 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
933 NULL, 0);
934
7dcd53a0
TT
935 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
936 set_initial_language ();
c906108c 937
9107fc8d
PA
938 /* If the target can specify a description, read it. Must do this
939 after flipping to the new executable (because the target supplied
940 description must be compatible with the executable's
941 architecture, and the old executable may e.g., be 32-bit, while
942 the new one 64-bit), and before anything involving memory or
943 registers. */
944 target_find_description ();
945
268a4a75 946 solib_create_inferior_hook (0);
c906108c 947
4efc6507
DE
948 jit_inferior_created_hook ();
949
c1e56572
JK
950 breakpoint_re_set ();
951
c906108c
SS
952 /* Reinsert all breakpoints. (Those which were symbolic have
953 been reset to the proper address in the new a.out, thanks
1777feb0 954 to symbol_file_command...). */
c906108c
SS
955 insert_breakpoints ();
956
957 /* The next resume of this inferior should bring it to the shlib
958 startup breakpoints. (If the user had also set bp's on
959 "main" from the old (parent) process, then they'll auto-
1777feb0 960 matically get reset there in the new process.). */
c906108c
SS
961}
962
963/* Non-zero if we just simulating a single-step. This is needed
964 because we cannot remove the breakpoints in the inferior process
965 until after the `wait' in `wait_for_inferior'. */
966static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
967
968/* The thread we inserted single-step breakpoints for. */
969static ptid_t singlestep_ptid;
970
fd48f117
DJ
971/* PC when we started this single-step. */
972static CORE_ADDR singlestep_pc;
973
9f976b41
DJ
974/* If another thread hit the singlestep breakpoint, we save the original
975 thread here so that we can resume single-stepping it later. */
976static ptid_t saved_singlestep_ptid;
977static int stepping_past_singlestep_breakpoint;
6a6b96b9 978
ca67fcb8
VP
979/* If not equal to null_ptid, this means that after stepping over breakpoint
980 is finished, we need to switch to deferred_step_ptid, and step it.
981
982 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 983 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
984 breakpoint in the thread which hit the breakpoint, but then continue
985 stepping the thread user has selected. */
986static ptid_t deferred_step_ptid;
c906108c 987\f
237fc4c9
PA
988/* Displaced stepping. */
989
990/* In non-stop debugging mode, we must take special care to manage
991 breakpoints properly; in particular, the traditional strategy for
992 stepping a thread past a breakpoint it has hit is unsuitable.
993 'Displaced stepping' is a tactic for stepping one thread past a
994 breakpoint it has hit while ensuring that other threads running
995 concurrently will hit the breakpoint as they should.
996
997 The traditional way to step a thread T off a breakpoint in a
998 multi-threaded program in all-stop mode is as follows:
999
1000 a0) Initially, all threads are stopped, and breakpoints are not
1001 inserted.
1002 a1) We single-step T, leaving breakpoints uninserted.
1003 a2) We insert breakpoints, and resume all threads.
1004
1005 In non-stop debugging, however, this strategy is unsuitable: we
1006 don't want to have to stop all threads in the system in order to
1007 continue or step T past a breakpoint. Instead, we use displaced
1008 stepping:
1009
1010 n0) Initially, T is stopped, other threads are running, and
1011 breakpoints are inserted.
1012 n1) We copy the instruction "under" the breakpoint to a separate
1013 location, outside the main code stream, making any adjustments
1014 to the instruction, register, and memory state as directed by
1015 T's architecture.
1016 n2) We single-step T over the instruction at its new location.
1017 n3) We adjust the resulting register and memory state as directed
1018 by T's architecture. This includes resetting T's PC to point
1019 back into the main instruction stream.
1020 n4) We resume T.
1021
1022 This approach depends on the following gdbarch methods:
1023
1024 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1025 indicate where to copy the instruction, and how much space must
1026 be reserved there. We use these in step n1.
1027
1028 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1029 address, and makes any necessary adjustments to the instruction,
1030 register contents, and memory. We use this in step n1.
1031
1032 - gdbarch_displaced_step_fixup adjusts registers and memory after
1033 we have successfuly single-stepped the instruction, to yield the
1034 same effect the instruction would have had if we had executed it
1035 at its original address. We use this in step n3.
1036
1037 - gdbarch_displaced_step_free_closure provides cleanup.
1038
1039 The gdbarch_displaced_step_copy_insn and
1040 gdbarch_displaced_step_fixup functions must be written so that
1041 copying an instruction with gdbarch_displaced_step_copy_insn,
1042 single-stepping across the copied instruction, and then applying
1043 gdbarch_displaced_insn_fixup should have the same effects on the
1044 thread's memory and registers as stepping the instruction in place
1045 would have. Exactly which responsibilities fall to the copy and
1046 which fall to the fixup is up to the author of those functions.
1047
1048 See the comments in gdbarch.sh for details.
1049
1050 Note that displaced stepping and software single-step cannot
1051 currently be used in combination, although with some care I think
1052 they could be made to. Software single-step works by placing
1053 breakpoints on all possible subsequent instructions; if the
1054 displaced instruction is a PC-relative jump, those breakpoints
1055 could fall in very strange places --- on pages that aren't
1056 executable, or at addresses that are not proper instruction
1057 boundaries. (We do generally let other threads run while we wait
1058 to hit the software single-step breakpoint, and they might
1059 encounter such a corrupted instruction.) One way to work around
1060 this would be to have gdbarch_displaced_step_copy_insn fully
1061 simulate the effect of PC-relative instructions (and return NULL)
1062 on architectures that use software single-stepping.
1063
1064 In non-stop mode, we can have independent and simultaneous step
1065 requests, so more than one thread may need to simultaneously step
1066 over a breakpoint. The current implementation assumes there is
1067 only one scratch space per process. In this case, we have to
1068 serialize access to the scratch space. If thread A wants to step
1069 over a breakpoint, but we are currently waiting for some other
1070 thread to complete a displaced step, we leave thread A stopped and
1071 place it in the displaced_step_request_queue. Whenever a displaced
1072 step finishes, we pick the next thread in the queue and start a new
1073 displaced step operation on it. See displaced_step_prepare and
1074 displaced_step_fixup for details. */
1075
237fc4c9
PA
1076struct displaced_step_request
1077{
1078 ptid_t ptid;
1079 struct displaced_step_request *next;
1080};
1081
fc1cf338
PA
1082/* Per-inferior displaced stepping state. */
1083struct displaced_step_inferior_state
1084{
1085 /* Pointer to next in linked list. */
1086 struct displaced_step_inferior_state *next;
1087
1088 /* The process this displaced step state refers to. */
1089 int pid;
1090
1091 /* A queue of pending displaced stepping requests. One entry per
1092 thread that needs to do a displaced step. */
1093 struct displaced_step_request *step_request_queue;
1094
1095 /* If this is not null_ptid, this is the thread carrying out a
1096 displaced single-step in process PID. This thread's state will
1097 require fixing up once it has completed its step. */
1098 ptid_t step_ptid;
1099
1100 /* The architecture the thread had when we stepped it. */
1101 struct gdbarch *step_gdbarch;
1102
1103 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1104 for post-step cleanup. */
1105 struct displaced_step_closure *step_closure;
1106
1107 /* The address of the original instruction, and the copy we
1108 made. */
1109 CORE_ADDR step_original, step_copy;
1110
1111 /* Saved contents of copy area. */
1112 gdb_byte *step_saved_copy;
1113};
1114
1115/* The list of states of processes involved in displaced stepping
1116 presently. */
1117static struct displaced_step_inferior_state *displaced_step_inferior_states;
1118
1119/* Get the displaced stepping state of process PID. */
1120
1121static struct displaced_step_inferior_state *
1122get_displaced_stepping_state (int pid)
1123{
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 return NULL;
1133}
1134
1135/* Add a new displaced stepping state for process PID to the displaced
1136 stepping state list, or return a pointer to an already existing
1137 entry, if it already exists. Never returns NULL. */
1138
1139static struct displaced_step_inferior_state *
1140add_displaced_stepping_state (int pid)
1141{
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
237fc4c9 1149
fc1cf338
PA
1150 state = xcalloc (1, sizeof (*state));
1151 state->pid = pid;
1152 state->next = displaced_step_inferior_states;
1153 displaced_step_inferior_states = state;
237fc4c9 1154
fc1cf338
PA
1155 return state;
1156}
1157
a42244db
YQ
1158/* If inferior is in displaced stepping, and ADDR equals to starting address
1159 of copy area, return corresponding displaced_step_closure. Otherwise,
1160 return NULL. */
1161
1162struct displaced_step_closure*
1163get_displaced_step_closure_by_addr (CORE_ADDR addr)
1164{
1165 struct displaced_step_inferior_state *displaced
1166 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1167
1168 /* If checking the mode of displaced instruction in copy area. */
1169 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1170 && (displaced->step_copy == addr))
1171 return displaced->step_closure;
1172
1173 return NULL;
1174}
1175
fc1cf338 1176/* Remove the displaced stepping state of process PID. */
237fc4c9 1177
fc1cf338
PA
1178static void
1179remove_displaced_stepping_state (int pid)
1180{
1181 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1182
fc1cf338
PA
1183 gdb_assert (pid != 0);
1184
1185 it = displaced_step_inferior_states;
1186 prev_next_p = &displaced_step_inferior_states;
1187 while (it)
1188 {
1189 if (it->pid == pid)
1190 {
1191 *prev_next_p = it->next;
1192 xfree (it);
1193 return;
1194 }
1195
1196 prev_next_p = &it->next;
1197 it = *prev_next_p;
1198 }
1199}
1200
1201static void
1202infrun_inferior_exit (struct inferior *inf)
1203{
1204 remove_displaced_stepping_state (inf->pid);
1205}
237fc4c9 1206
fff08868
HZ
1207/* If ON, and the architecture supports it, GDB will use displaced
1208 stepping to step over breakpoints. If OFF, or if the architecture
1209 doesn't support it, GDB will instead use the traditional
1210 hold-and-step approach. If AUTO (which is the default), GDB will
1211 decide which technique to use to step over breakpoints depending on
1212 which of all-stop or non-stop mode is active --- displaced stepping
1213 in non-stop mode; hold-and-step in all-stop mode. */
1214
72d0e2c5 1215static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1216
237fc4c9
PA
1217static void
1218show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1219 struct cmd_list_element *c,
1220 const char *value)
1221{
72d0e2c5 1222 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1226 value, non_stop ? "on" : "off");
1227 else
3e43a32a
MS
1228 fprintf_filtered (file,
1229 _("Debugger's willingness to use displaced stepping "
1230 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1231}
1232
fff08868
HZ
1233/* Return non-zero if displaced stepping can/should be used to step
1234 over breakpoints. */
1235
237fc4c9
PA
1236static int
1237use_displaced_stepping (struct gdbarch *gdbarch)
1238{
72d0e2c5
YQ
1239 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1240 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8
HZ
1241 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1242 && !RECORD_IS_USED);
237fc4c9
PA
1243}
1244
1245/* Clean out any stray displaced stepping state. */
1246static void
fc1cf338 1247displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1248{
1249 /* Indicate that there is no cleanup pending. */
fc1cf338 1250 displaced->step_ptid = null_ptid;
237fc4c9 1251
fc1cf338 1252 if (displaced->step_closure)
237fc4c9 1253 {
fc1cf338
PA
1254 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1255 displaced->step_closure);
1256 displaced->step_closure = NULL;
237fc4c9
PA
1257 }
1258}
1259
1260static void
fc1cf338 1261displaced_step_clear_cleanup (void *arg)
237fc4c9 1262{
fc1cf338
PA
1263 struct displaced_step_inferior_state *state = arg;
1264
1265 displaced_step_clear (state);
237fc4c9
PA
1266}
1267
1268/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1269void
1270displaced_step_dump_bytes (struct ui_file *file,
1271 const gdb_byte *buf,
1272 size_t len)
1273{
1274 int i;
1275
1276 for (i = 0; i < len; i++)
1277 fprintf_unfiltered (file, "%02x ", buf[i]);
1278 fputs_unfiltered ("\n", file);
1279}
1280
1281/* Prepare to single-step, using displaced stepping.
1282
1283 Note that we cannot use displaced stepping when we have a signal to
1284 deliver. If we have a signal to deliver and an instruction to step
1285 over, then after the step, there will be no indication from the
1286 target whether the thread entered a signal handler or ignored the
1287 signal and stepped over the instruction successfully --- both cases
1288 result in a simple SIGTRAP. In the first case we mustn't do a
1289 fixup, and in the second case we must --- but we can't tell which.
1290 Comments in the code for 'random signals' in handle_inferior_event
1291 explain how we handle this case instead.
1292
1293 Returns 1 if preparing was successful -- this thread is going to be
1294 stepped now; or 0 if displaced stepping this thread got queued. */
1295static int
1296displaced_step_prepare (ptid_t ptid)
1297{
ad53cd71 1298 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1299 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1300 struct regcache *regcache = get_thread_regcache (ptid);
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 CORE_ADDR original, copy;
1303 ULONGEST len;
1304 struct displaced_step_closure *closure;
fc1cf338 1305 struct displaced_step_inferior_state *displaced;
9e529e1d 1306 int status;
237fc4c9
PA
1307
1308 /* We should never reach this function if the architecture does not
1309 support displaced stepping. */
1310 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1311
c1e36e3e
PA
1312 /* Disable range stepping while executing in the scratch pad. We
1313 want a single-step even if executing the displaced instruction in
1314 the scratch buffer lands within the stepping range (e.g., a
1315 jump/branch). */
1316 tp->control.may_range_step = 0;
1317
fc1cf338
PA
1318 /* We have to displaced step one thread at a time, as we only have
1319 access to a single scratch space per inferior. */
237fc4c9 1320
fc1cf338
PA
1321 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1322
1323 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1324 {
1325 /* Already waiting for a displaced step to finish. Defer this
1326 request and place in queue. */
1327 struct displaced_step_request *req, *new_req;
1328
1329 if (debug_displaced)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "displaced: defering step of %s\n",
1332 target_pid_to_str (ptid));
1333
1334 new_req = xmalloc (sizeof (*new_req));
1335 new_req->ptid = ptid;
1336 new_req->next = NULL;
1337
fc1cf338 1338 if (displaced->step_request_queue)
237fc4c9 1339 {
fc1cf338 1340 for (req = displaced->step_request_queue;
237fc4c9
PA
1341 req && req->next;
1342 req = req->next)
1343 ;
1344 req->next = new_req;
1345 }
1346 else
fc1cf338 1347 displaced->step_request_queue = new_req;
237fc4c9
PA
1348
1349 return 0;
1350 }
1351 else
1352 {
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: stepping %s now\n",
1356 target_pid_to_str (ptid));
1357 }
1358
fc1cf338 1359 displaced_step_clear (displaced);
237fc4c9 1360
ad53cd71
PA
1361 old_cleanups = save_inferior_ptid ();
1362 inferior_ptid = ptid;
1363
515630c5 1364 original = regcache_read_pc (regcache);
237fc4c9
PA
1365
1366 copy = gdbarch_displaced_step_location (gdbarch);
1367 len = gdbarch_max_insn_length (gdbarch);
1368
1369 /* Save the original contents of the copy area. */
fc1cf338 1370 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1371 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1372 &displaced->step_saved_copy);
9e529e1d
JK
1373 status = target_read_memory (copy, displaced->step_saved_copy, len);
1374 if (status != 0)
1375 throw_error (MEMORY_ERROR,
1376 _("Error accessing memory address %s (%s) for "
1377 "displaced-stepping scratch space."),
1378 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1379 if (debug_displaced)
1380 {
5af949e3
UW
1381 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1382 paddress (gdbarch, copy));
fc1cf338
PA
1383 displaced_step_dump_bytes (gdb_stdlog,
1384 displaced->step_saved_copy,
1385 len);
237fc4c9
PA
1386 };
1387
1388 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1389 original, copy, regcache);
237fc4c9
PA
1390
1391 /* We don't support the fully-simulated case at present. */
1392 gdb_assert (closure);
1393
9f5a595d
UW
1394 /* Save the information we need to fix things up if the step
1395 succeeds. */
fc1cf338
PA
1396 displaced->step_ptid = ptid;
1397 displaced->step_gdbarch = gdbarch;
1398 displaced->step_closure = closure;
1399 displaced->step_original = original;
1400 displaced->step_copy = copy;
9f5a595d 1401
fc1cf338 1402 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1403
1404 /* Resume execution at the copy. */
515630c5 1405 regcache_write_pc (regcache, copy);
237fc4c9 1406
ad53cd71
PA
1407 discard_cleanups (ignore_cleanups);
1408
1409 do_cleanups (old_cleanups);
237fc4c9
PA
1410
1411 if (debug_displaced)
5af949e3
UW
1412 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1413 paddress (gdbarch, copy));
237fc4c9 1414
237fc4c9
PA
1415 return 1;
1416}
1417
237fc4c9 1418static void
3e43a32a
MS
1419write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1420 const gdb_byte *myaddr, int len)
237fc4c9
PA
1421{
1422 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1423
237fc4c9
PA
1424 inferior_ptid = ptid;
1425 write_memory (memaddr, myaddr, len);
1426 do_cleanups (ptid_cleanup);
1427}
1428
e2d96639
YQ
1429/* Restore the contents of the copy area for thread PTID. */
1430
1431static void
1432displaced_step_restore (struct displaced_step_inferior_state *displaced,
1433 ptid_t ptid)
1434{
1435 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1436
1437 write_memory_ptid (ptid, displaced->step_copy,
1438 displaced->step_saved_copy, len);
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1441 target_pid_to_str (ptid),
1442 paddress (displaced->step_gdbarch,
1443 displaced->step_copy));
1444}
1445
237fc4c9 1446static void
2ea28649 1447displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1448{
1449 struct cleanup *old_cleanups;
fc1cf338
PA
1450 struct displaced_step_inferior_state *displaced
1451 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1452
1453 /* Was any thread of this process doing a displaced step? */
1454 if (displaced == NULL)
1455 return;
237fc4c9
PA
1456
1457 /* Was this event for the pid we displaced? */
fc1cf338
PA
1458 if (ptid_equal (displaced->step_ptid, null_ptid)
1459 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1460 return;
1461
fc1cf338 1462 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1463
e2d96639 1464 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1465
1466 /* Did the instruction complete successfully? */
a493e3e2 1467 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1468 {
1469 /* Fix up the resulting state. */
fc1cf338
PA
1470 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1471 displaced->step_closure,
1472 displaced->step_original,
1473 displaced->step_copy,
1474 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1475 }
1476 else
1477 {
1478 /* Since the instruction didn't complete, all we can do is
1479 relocate the PC. */
515630c5
UW
1480 struct regcache *regcache = get_thread_regcache (event_ptid);
1481 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1482
fc1cf338 1483 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1484 regcache_write_pc (regcache, pc);
237fc4c9
PA
1485 }
1486
1487 do_cleanups (old_cleanups);
1488
fc1cf338 1489 displaced->step_ptid = null_ptid;
1c5cfe86 1490
237fc4c9 1491 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1492 one now. Leave the state object around, since we're likely to
1493 need it again soon. */
1494 while (displaced->step_request_queue)
237fc4c9
PA
1495 {
1496 struct displaced_step_request *head;
1497 ptid_t ptid;
5af949e3 1498 struct regcache *regcache;
929dfd4f 1499 struct gdbarch *gdbarch;
1c5cfe86 1500 CORE_ADDR actual_pc;
6c95b8df 1501 struct address_space *aspace;
237fc4c9 1502
fc1cf338 1503 head = displaced->step_request_queue;
237fc4c9 1504 ptid = head->ptid;
fc1cf338 1505 displaced->step_request_queue = head->next;
237fc4c9
PA
1506 xfree (head);
1507
ad53cd71
PA
1508 context_switch (ptid);
1509
5af949e3
UW
1510 regcache = get_thread_regcache (ptid);
1511 actual_pc = regcache_read_pc (regcache);
6c95b8df 1512 aspace = get_regcache_aspace (regcache);
1c5cfe86 1513
6c95b8df 1514 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1515 {
1c5cfe86
PA
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: stepping queued %s now\n",
1519 target_pid_to_str (ptid));
1520
1521 displaced_step_prepare (ptid);
1522
929dfd4f
JB
1523 gdbarch = get_regcache_arch (regcache);
1524
1c5cfe86
PA
1525 if (debug_displaced)
1526 {
929dfd4f 1527 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1528 gdb_byte buf[4];
1529
5af949e3
UW
1530 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1531 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1532 read_memory (actual_pc, buf, sizeof (buf));
1533 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1534 }
1535
fc1cf338
PA
1536 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1537 displaced->step_closure))
a493e3e2 1538 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1539 else
a493e3e2 1540 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1541
1542 /* Done, we're stepping a thread. */
1543 break;
ad53cd71 1544 }
1c5cfe86
PA
1545 else
1546 {
1547 int step;
1548 struct thread_info *tp = inferior_thread ();
1549
1550 /* The breakpoint we were sitting under has since been
1551 removed. */
16c381f0 1552 tp->control.trap_expected = 0;
1c5cfe86
PA
1553
1554 /* Go back to what we were trying to do. */
1555 step = currently_stepping (tp);
ad53cd71 1556
1c5cfe86 1557 if (debug_displaced)
3e43a32a 1558 fprintf_unfiltered (gdb_stdlog,
27d2932e 1559 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1560 target_pid_to_str (tp->ptid), step);
1561
a493e3e2
PA
1562 target_resume (ptid, step, GDB_SIGNAL_0);
1563 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1564
1565 /* This request was discarded. See if there's any other
1566 thread waiting for its turn. */
1567 }
237fc4c9
PA
1568 }
1569}
1570
5231c1fd
PA
1571/* Update global variables holding ptids to hold NEW_PTID if they were
1572 holding OLD_PTID. */
1573static void
1574infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1575{
1576 struct displaced_step_request *it;
fc1cf338 1577 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1578
1579 if (ptid_equal (inferior_ptid, old_ptid))
1580 inferior_ptid = new_ptid;
1581
1582 if (ptid_equal (singlestep_ptid, old_ptid))
1583 singlestep_ptid = new_ptid;
1584
5231c1fd
PA
1585 if (ptid_equal (deferred_step_ptid, old_ptid))
1586 deferred_step_ptid = new_ptid;
1587
fc1cf338
PA
1588 for (displaced = displaced_step_inferior_states;
1589 displaced;
1590 displaced = displaced->next)
1591 {
1592 if (ptid_equal (displaced->step_ptid, old_ptid))
1593 displaced->step_ptid = new_ptid;
1594
1595 for (it = displaced->step_request_queue; it; it = it->next)
1596 if (ptid_equal (it->ptid, old_ptid))
1597 it->ptid = new_ptid;
1598 }
5231c1fd
PA
1599}
1600
237fc4c9
PA
1601\f
1602/* Resuming. */
c906108c
SS
1603
1604/* Things to clean up if we QUIT out of resume (). */
c906108c 1605static void
74b7792f 1606resume_cleanups (void *ignore)
c906108c
SS
1607{
1608 normal_stop ();
1609}
1610
53904c9e
AC
1611static const char schedlock_off[] = "off";
1612static const char schedlock_on[] = "on";
1613static const char schedlock_step[] = "step";
40478521 1614static const char *const scheduler_enums[] = {
ef346e04
AC
1615 schedlock_off,
1616 schedlock_on,
1617 schedlock_step,
1618 NULL
1619};
920d2a44
AC
1620static const char *scheduler_mode = schedlock_off;
1621static void
1622show_scheduler_mode (struct ui_file *file, int from_tty,
1623 struct cmd_list_element *c, const char *value)
1624{
3e43a32a
MS
1625 fprintf_filtered (file,
1626 _("Mode for locking scheduler "
1627 "during execution is \"%s\".\n"),
920d2a44
AC
1628 value);
1629}
c906108c
SS
1630
1631static void
96baa820 1632set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1633{
eefe576e
AC
1634 if (!target_can_lock_scheduler)
1635 {
1636 scheduler_mode = schedlock_off;
1637 error (_("Target '%s' cannot support this command."), target_shortname);
1638 }
c906108c
SS
1639}
1640
d4db2f36
PA
1641/* True if execution commands resume all threads of all processes by
1642 default; otherwise, resume only threads of the current inferior
1643 process. */
1644int sched_multi = 0;
1645
2facfe5c
DD
1646/* Try to setup for software single stepping over the specified location.
1647 Return 1 if target_resume() should use hardware single step.
1648
1649 GDBARCH the current gdbarch.
1650 PC the location to step over. */
1651
1652static int
1653maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1654{
1655 int hw_step = 1;
1656
f02253f1
HZ
1657 if (execution_direction == EXEC_FORWARD
1658 && gdbarch_software_single_step_p (gdbarch)
99e40580 1659 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1660 {
99e40580
UW
1661 hw_step = 0;
1662 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1663 `wait_for_inferior'. */
99e40580
UW
1664 singlestep_breakpoints_inserted_p = 1;
1665 singlestep_ptid = inferior_ptid;
1666 singlestep_pc = pc;
2facfe5c
DD
1667 }
1668 return hw_step;
1669}
c906108c 1670
09cee04b
PA
1671/* Return a ptid representing the set of threads that we will proceed,
1672 in the perspective of the user/frontend. We may actually resume
1673 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1674 breakpoint that needs stepping-off, but that should not be visible
1675 to the user/frontend, and neither should the frontend/user be
1676 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1677 internal run control handling, if a previous command wanted them
1678 resumed. */
1679
1680ptid_t
1681user_visible_resume_ptid (int step)
1682{
1683 /* By default, resume all threads of all processes. */
1684 ptid_t resume_ptid = RESUME_ALL;
1685
1686 /* Maybe resume only all threads of the current process. */
1687 if (!sched_multi && target_supports_multi_process ())
1688 {
1689 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1690 }
1691
1692 /* Maybe resume a single thread after all. */
1693 if (non_stop)
1694 {
1695 /* With non-stop mode on, threads are always handled
1696 individually. */
1697 resume_ptid = inferior_ptid;
1698 }
1699 else if ((scheduler_mode == schedlock_on)
1700 || (scheduler_mode == schedlock_step
1701 && (step || singlestep_breakpoints_inserted_p)))
1702 {
1703 /* User-settable 'scheduler' mode requires solo thread resume. */
1704 resume_ptid = inferior_ptid;
1705 }
1706
1707 return resume_ptid;
1708}
1709
c906108c
SS
1710/* Resume the inferior, but allow a QUIT. This is useful if the user
1711 wants to interrupt some lengthy single-stepping operation
1712 (for child processes, the SIGINT goes to the inferior, and so
1713 we get a SIGINT random_signal, but for remote debugging and perhaps
1714 other targets, that's not true).
1715
1716 STEP nonzero if we should step (zero to continue instead).
1717 SIG is the signal to give the inferior (zero for none). */
1718void
2ea28649 1719resume (int step, enum gdb_signal sig)
c906108c
SS
1720{
1721 int should_resume = 1;
74b7792f 1722 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1723 struct regcache *regcache = get_current_regcache ();
1724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1725 struct thread_info *tp = inferior_thread ();
515630c5 1726 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1727 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1728
c906108c
SS
1729 QUIT;
1730
74609e71
YQ
1731 if (current_inferior ()->waiting_for_vfork_done)
1732 {
48f9886d
PA
1733 /* Don't try to single-step a vfork parent that is waiting for
1734 the child to get out of the shared memory region (by exec'ing
1735 or exiting). This is particularly important on software
1736 single-step archs, as the child process would trip on the
1737 software single step breakpoint inserted for the parent
1738 process. Since the parent will not actually execute any
1739 instruction until the child is out of the shared region (such
1740 are vfork's semantics), it is safe to simply continue it.
1741 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1742 the parent, and tell it to `keep_going', which automatically
1743 re-sets it stepping. */
74609e71
YQ
1744 if (debug_infrun)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "infrun: resume : clear step\n");
1747 step = 0;
1748 }
1749
527159b7 1750 if (debug_infrun)
237fc4c9 1751 fprintf_unfiltered (gdb_stdlog,
c9737c08 1752 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 1753 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
1754 step, gdb_signal_to_symbol_string (sig),
1755 tp->control.trap_expected,
0d9a9a5f
PA
1756 target_pid_to_str (inferior_ptid),
1757 paddress (gdbarch, pc));
c906108c 1758
c2c6d25f
JM
1759 /* Normally, by the time we reach `resume', the breakpoints are either
1760 removed or inserted, as appropriate. The exception is if we're sitting
1761 at a permanent breakpoint; we need to step over it, but permanent
1762 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1763 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1764 {
515630c5
UW
1765 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1766 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1767 else
ac74f770
MS
1768 error (_("\
1769The program is stopped at a permanent breakpoint, but GDB does not know\n\
1770how to step past a permanent breakpoint on this architecture. Try using\n\
1771a command like `return' or `jump' to continue execution."));
6d350bb5 1772 }
c2c6d25f 1773
c1e36e3e
PA
1774 /* If we have a breakpoint to step over, make sure to do a single
1775 step only. Same if we have software watchpoints. */
1776 if (tp->control.trap_expected || bpstat_should_step ())
1777 tp->control.may_range_step = 0;
1778
237fc4c9
PA
1779 /* If enabled, step over breakpoints by executing a copy of the
1780 instruction at a different address.
1781
1782 We can't use displaced stepping when we have a signal to deliver;
1783 the comments for displaced_step_prepare explain why. The
1784 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1785 signals' explain what we do instead.
1786
1787 We can't use displaced stepping when we are waiting for vfork_done
1788 event, displaced stepping breaks the vfork child similarly as single
1789 step software breakpoint. */
515630c5 1790 if (use_displaced_stepping (gdbarch)
16c381f0 1791 && (tp->control.trap_expected
929dfd4f 1792 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1793 && sig == GDB_SIGNAL_0
74609e71 1794 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1795 {
fc1cf338
PA
1796 struct displaced_step_inferior_state *displaced;
1797
237fc4c9 1798 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1799 {
1800 /* Got placed in displaced stepping queue. Will be resumed
1801 later when all the currently queued displaced stepping
7f7efbd9
VP
1802 requests finish. The thread is not executing at this point,
1803 and the call to set_executing will be made later. But we
1804 need to call set_running here, since from frontend point of view,
1805 the thread is running. */
1806 set_running (inferior_ptid, 1);
d56b7306
VP
1807 discard_cleanups (old_cleanups);
1808 return;
1809 }
99e40580 1810
ca7781d2
LM
1811 /* Update pc to reflect the new address from which we will execute
1812 instructions due to displaced stepping. */
1813 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1814
fc1cf338
PA
1815 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1816 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1817 displaced->step_closure);
237fc4c9
PA
1818 }
1819
2facfe5c 1820 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1821 else if (step)
2facfe5c 1822 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1823
30852783
UW
1824 /* Currently, our software single-step implementation leads to different
1825 results than hardware single-stepping in one situation: when stepping
1826 into delivering a signal which has an associated signal handler,
1827 hardware single-step will stop at the first instruction of the handler,
1828 while software single-step will simply skip execution of the handler.
1829
1830 For now, this difference in behavior is accepted since there is no
1831 easy way to actually implement single-stepping into a signal handler
1832 without kernel support.
1833
1834 However, there is one scenario where this difference leads to follow-on
1835 problems: if we're stepping off a breakpoint by removing all breakpoints
1836 and then single-stepping. In this case, the software single-step
1837 behavior means that even if there is a *breakpoint* in the signal
1838 handler, GDB still would not stop.
1839
1840 Fortunately, we can at least fix this particular issue. We detect
1841 here the case where we are about to deliver a signal while software
1842 single-stepping with breakpoints removed. In this situation, we
1843 revert the decisions to remove all breakpoints and insert single-
1844 step breakpoints, and instead we install a step-resume breakpoint
1845 at the current address, deliver the signal without stepping, and
1846 once we arrive back at the step-resume breakpoint, actually step
1847 over the breakpoint we originally wanted to step over. */
1848 if (singlestep_breakpoints_inserted_p
a493e3e2 1849 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1850 {
1851 /* If we have nested signals or a pending signal is delivered
1852 immediately after a handler returns, might might already have
1853 a step-resume breakpoint set on the earlier handler. We cannot
1854 set another step-resume breakpoint; just continue on until the
1855 original breakpoint is hit. */
1856 if (tp->control.step_resume_breakpoint == NULL)
1857 {
2c03e5be 1858 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1859 tp->step_after_step_resume_breakpoint = 1;
1860 }
1861
1862 remove_single_step_breakpoints ();
1863 singlestep_breakpoints_inserted_p = 0;
1864
1865 insert_breakpoints ();
1866 tp->control.trap_expected = 0;
1867 }
1868
c906108c
SS
1869 if (should_resume)
1870 {
39f77062 1871 ptid_t resume_ptid;
dfcd3bfb 1872
cd76b0b7
VP
1873 /* If STEP is set, it's a request to use hardware stepping
1874 facilities. But in that case, we should never
1875 use singlestep breakpoint. */
1876 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1877
d4db2f36
PA
1878 /* Decide the set of threads to ask the target to resume. Start
1879 by assuming everything will be resumed, than narrow the set
1880 by applying increasingly restricting conditions. */
09cee04b 1881 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1882
1883 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1884 if (singlestep_breakpoints_inserted_p
1885 && stepping_past_singlestep_breakpoint)
c906108c 1886 {
cd76b0b7
VP
1887 /* The situation here is as follows. In thread T1 we wanted to
1888 single-step. Lacking hardware single-stepping we've
1889 set breakpoint at the PC of the next instruction -- call it
1890 P. After resuming, we've hit that breakpoint in thread T2.
1891 Now we've removed original breakpoint, inserted breakpoint
1892 at P+1, and try to step to advance T2 past breakpoint.
1893 We need to step only T2, as if T1 is allowed to freely run,
1894 it can run past P, and if other threads are allowed to run,
1895 they can hit breakpoint at P+1, and nested hits of single-step
1896 breakpoints is not something we'd want -- that's complicated
1897 to support, and has no value. */
1898 resume_ptid = inferior_ptid;
1899 }
d4db2f36 1900 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1901 && tp->control.trap_expected)
cd76b0b7 1902 {
74960c60
VP
1903 /* We're allowing a thread to run past a breakpoint it has
1904 hit, by single-stepping the thread with the breakpoint
1905 removed. In which case, we need to single-step only this
1906 thread, and keep others stopped, as they can miss this
1907 breakpoint if allowed to run.
1908
1909 The current code actually removes all breakpoints when
1910 doing this, not just the one being stepped over, so if we
1911 let other threads run, we can actually miss any
1912 breakpoint, not just the one at PC. */
ef5cf84e 1913 resume_ptid = inferior_ptid;
c906108c 1914 }
ef5cf84e 1915
515630c5 1916 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1917 {
1918 /* Most targets can step a breakpoint instruction, thus
1919 executing it normally. But if this one cannot, just
1920 continue and we will hit it anyway. */
6c95b8df 1921 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1922 step = 0;
1923 }
237fc4c9
PA
1924
1925 if (debug_displaced
515630c5 1926 && use_displaced_stepping (gdbarch)
16c381f0 1927 && tp->control.trap_expected)
237fc4c9 1928 {
515630c5 1929 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1930 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1931 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1932 gdb_byte buf[4];
1933
5af949e3
UW
1934 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1935 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1936 read_memory (actual_pc, buf, sizeof (buf));
1937 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1938 }
1939
c1e36e3e
PA
1940 if (tp->control.may_range_step)
1941 {
1942 /* If we're resuming a thread with the PC out of the step
1943 range, then we're doing some nested/finer run control
1944 operation, like stepping the thread out of the dynamic
1945 linker or the displaced stepping scratch pad. We
1946 shouldn't have allowed a range step then. */
1947 gdb_assert (pc_in_thread_step_range (pc, tp));
1948 }
1949
e58b0e63
PA
1950 /* Install inferior's terminal modes. */
1951 target_terminal_inferior ();
1952
2020b7ab
PA
1953 /* Avoid confusing the next resume, if the next stop/resume
1954 happens to apply to another thread. */
a493e3e2 1955 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1956
2455069d
UW
1957 /* Advise target which signals may be handled silently. If we have
1958 removed breakpoints because we are stepping over one (which can
1959 happen only if we are not using displaced stepping), we need to
1960 receive all signals to avoid accidentally skipping a breakpoint
1961 during execution of a signal handler. */
1962 if ((step || singlestep_breakpoints_inserted_p)
1963 && tp->control.trap_expected
1964 && !use_displaced_stepping (gdbarch))
1965 target_pass_signals (0, NULL);
1966 else
a493e3e2 1967 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1968
607cecd2 1969 target_resume (resume_ptid, step, sig);
c906108c
SS
1970 }
1971
1972 discard_cleanups (old_cleanups);
1973}
1974\f
237fc4c9 1975/* Proceeding. */
c906108c
SS
1976
1977/* Clear out all variables saying what to do when inferior is continued.
1978 First do this, then set the ones you want, then call `proceed'. */
1979
a7212384
UW
1980static void
1981clear_proceed_status_thread (struct thread_info *tp)
c906108c 1982{
a7212384
UW
1983 if (debug_infrun)
1984 fprintf_unfiltered (gdb_stdlog,
1985 "infrun: clear_proceed_status_thread (%s)\n",
1986 target_pid_to_str (tp->ptid));
d6b48e9c 1987
16c381f0
JK
1988 tp->control.trap_expected = 0;
1989 tp->control.step_range_start = 0;
1990 tp->control.step_range_end = 0;
c1e36e3e 1991 tp->control.may_range_step = 0;
16c381f0
JK
1992 tp->control.step_frame_id = null_frame_id;
1993 tp->control.step_stack_frame_id = null_frame_id;
1994 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1995 tp->stop_requested = 0;
4e1c45ea 1996
16c381f0 1997 tp->control.stop_step = 0;
32400beb 1998
16c381f0 1999 tp->control.proceed_to_finish = 0;
414c69f7 2000
a7212384 2001 /* Discard any remaining commands or status from previous stop. */
16c381f0 2002 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2003}
32400beb 2004
a7212384
UW
2005static int
2006clear_proceed_status_callback (struct thread_info *tp, void *data)
2007{
2008 if (is_exited (tp->ptid))
2009 return 0;
d6b48e9c 2010
a7212384
UW
2011 clear_proceed_status_thread (tp);
2012 return 0;
2013}
2014
2015void
2016clear_proceed_status (void)
2017{
6c95b8df
PA
2018 if (!non_stop)
2019 {
2020 /* In all-stop mode, delete the per-thread status of all
2021 threads, even if inferior_ptid is null_ptid, there may be
2022 threads on the list. E.g., we may be launching a new
2023 process, while selecting the executable. */
2024 iterate_over_threads (clear_proceed_status_callback, NULL);
2025 }
2026
a7212384
UW
2027 if (!ptid_equal (inferior_ptid, null_ptid))
2028 {
2029 struct inferior *inferior;
2030
2031 if (non_stop)
2032 {
6c95b8df
PA
2033 /* If in non-stop mode, only delete the per-thread status of
2034 the current thread. */
a7212384
UW
2035 clear_proceed_status_thread (inferior_thread ());
2036 }
6c95b8df 2037
d6b48e9c 2038 inferior = current_inferior ();
16c381f0 2039 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2040 }
2041
c906108c 2042 stop_after_trap = 0;
f3b1572e
PA
2043
2044 observer_notify_about_to_proceed ();
c906108c 2045
d5c31457
UW
2046 if (stop_registers)
2047 {
2048 regcache_xfree (stop_registers);
2049 stop_registers = NULL;
2050 }
c906108c
SS
2051}
2052
5a437975
DE
2053/* Check the current thread against the thread that reported the most recent
2054 event. If a step-over is required return TRUE and set the current thread
2055 to the old thread. Otherwise return FALSE.
2056
1777feb0 2057 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2058
2059static int
6a6b96b9 2060prepare_to_proceed (int step)
ea67f13b
DJ
2061{
2062 ptid_t wait_ptid;
2063 struct target_waitstatus wait_status;
5a437975
DE
2064 int schedlock_enabled;
2065
2066 /* With non-stop mode on, threads are always handled individually. */
2067 gdb_assert (! non_stop);
ea67f13b
DJ
2068
2069 /* Get the last target status returned by target_wait(). */
2070 get_last_target_status (&wait_ptid, &wait_status);
2071
6a6b96b9 2072 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2073 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2074 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2075 && wait_status.value.sig != GDB_SIGNAL_ILL
2076 && wait_status.value.sig != GDB_SIGNAL_SEGV
2077 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2078 {
2079 return 0;
2080 }
2081
5a437975
DE
2082 schedlock_enabled = (scheduler_mode == schedlock_on
2083 || (scheduler_mode == schedlock_step
2084 && step));
2085
d4db2f36
PA
2086 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2087 if (schedlock_enabled)
2088 return 0;
2089
2090 /* Don't switch over if we're about to resume some other process
2091 other than WAIT_PTID's, and schedule-multiple is off. */
2092 if (!sched_multi
2093 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2094 return 0;
2095
6a6b96b9 2096 /* Switched over from WAIT_PID. */
ea67f13b 2097 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2098 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2099 {
515630c5
UW
2100 struct regcache *regcache = get_thread_regcache (wait_ptid);
2101
6c95b8df
PA
2102 if (breakpoint_here_p (get_regcache_aspace (regcache),
2103 regcache_read_pc (regcache)))
ea67f13b 2104 {
515630c5
UW
2105 /* If stepping, remember current thread to switch back to. */
2106 if (step)
2107 deferred_step_ptid = inferior_ptid;
ea67f13b 2108
515630c5
UW
2109 /* Switch back to WAIT_PID thread. */
2110 switch_to_thread (wait_ptid);
6a6b96b9 2111
0d9a9a5f
PA
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "infrun: prepare_to_proceed (step=%d), "
2115 "switched to [%s]\n",
2116 step, target_pid_to_str (inferior_ptid));
2117
515630c5
UW
2118 /* We return 1 to indicate that there is a breakpoint here,
2119 so we need to step over it before continuing to avoid
1777feb0 2120 hitting it straight away. */
515630c5
UW
2121 return 1;
2122 }
ea67f13b
DJ
2123 }
2124
2125 return 0;
ea67f13b 2126}
e4846b08 2127
c906108c
SS
2128/* Basic routine for continuing the program in various fashions.
2129
2130 ADDR is the address to resume at, or -1 for resume where stopped.
2131 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2132 or -1 for act according to how it stopped.
c906108c 2133 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2134 -1 means return after that and print nothing.
2135 You should probably set various step_... variables
2136 before calling here, if you are stepping.
c906108c
SS
2137
2138 You should call clear_proceed_status before calling proceed. */
2139
2140void
2ea28649 2141proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2142{
e58b0e63
PA
2143 struct regcache *regcache;
2144 struct gdbarch *gdbarch;
4e1c45ea 2145 struct thread_info *tp;
e58b0e63 2146 CORE_ADDR pc;
6c95b8df 2147 struct address_space *aspace;
0de5618e
YQ
2148 /* GDB may force the inferior to step due to various reasons. */
2149 int force_step = 0;
c906108c 2150
e58b0e63
PA
2151 /* If we're stopped at a fork/vfork, follow the branch set by the
2152 "set follow-fork-mode" command; otherwise, we'll just proceed
2153 resuming the current thread. */
2154 if (!follow_fork ())
2155 {
2156 /* The target for some reason decided not to resume. */
2157 normal_stop ();
f148b27e
PA
2158 if (target_can_async_p ())
2159 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2160 return;
2161 }
2162
842951eb
PA
2163 /* We'll update this if & when we switch to a new thread. */
2164 previous_inferior_ptid = inferior_ptid;
2165
e58b0e63
PA
2166 regcache = get_current_regcache ();
2167 gdbarch = get_regcache_arch (regcache);
6c95b8df 2168 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2169 pc = regcache_read_pc (regcache);
2170
c906108c 2171 if (step > 0)
515630c5 2172 step_start_function = find_pc_function (pc);
c906108c
SS
2173 if (step < 0)
2174 stop_after_trap = 1;
2175
2acceee2 2176 if (addr == (CORE_ADDR) -1)
c906108c 2177 {
6c95b8df 2178 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2179 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2180 /* There is a breakpoint at the address we will resume at,
2181 step one instruction before inserting breakpoints so that
2182 we do not stop right away (and report a second hit at this
b2175913
MS
2183 breakpoint).
2184
2185 Note, we don't do this in reverse, because we won't
2186 actually be executing the breakpoint insn anyway.
2187 We'll be (un-)executing the previous instruction. */
2188
0de5618e 2189 force_step = 1;
515630c5
UW
2190 else if (gdbarch_single_step_through_delay_p (gdbarch)
2191 && gdbarch_single_step_through_delay (gdbarch,
2192 get_current_frame ()))
3352ef37
AC
2193 /* We stepped onto an instruction that needs to be stepped
2194 again before re-inserting the breakpoint, do so. */
0de5618e 2195 force_step = 1;
c906108c
SS
2196 }
2197 else
2198 {
515630c5 2199 regcache_write_pc (regcache, addr);
c906108c
SS
2200 }
2201
527159b7 2202 if (debug_infrun)
8a9de0e4 2203 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2204 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2205 paddress (gdbarch, addr),
2206 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2207
94cc34af
PA
2208 if (non_stop)
2209 /* In non-stop, each thread is handled individually. The context
2210 must already be set to the right thread here. */
2211 ;
2212 else
2213 {
2214 /* In a multi-threaded task we may select another thread and
2215 then continue or step.
c906108c 2216
94cc34af
PA
2217 But if the old thread was stopped at a breakpoint, it will
2218 immediately cause another breakpoint stop without any
2219 execution (i.e. it will report a breakpoint hit incorrectly).
2220 So we must step over it first.
c906108c 2221
94cc34af
PA
2222 prepare_to_proceed checks the current thread against the
2223 thread that reported the most recent event. If a step-over
2224 is required it returns TRUE and sets the current thread to
1777feb0 2225 the old thread. */
94cc34af 2226 if (prepare_to_proceed (step))
0de5618e 2227 force_step = 1;
94cc34af 2228 }
c906108c 2229
4e1c45ea
PA
2230 /* prepare_to_proceed may change the current thread. */
2231 tp = inferior_thread ();
2232
0de5618e 2233 if (force_step)
30852783
UW
2234 {
2235 tp->control.trap_expected = 1;
2236 /* If displaced stepping is enabled, we can step over the
2237 breakpoint without hitting it, so leave all breakpoints
2238 inserted. Otherwise we need to disable all breakpoints, step
2239 one instruction, and then re-add them when that step is
2240 finished. */
2241 if (!use_displaced_stepping (gdbarch))
2242 remove_breakpoints ();
2243 }
2244
2245 /* We can insert breakpoints if we're not trying to step over one,
2246 or if we are stepping over one but we're using displaced stepping
2247 to do so. */
2248 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2249 insert_breakpoints ();
2250
2020b7ab
PA
2251 if (!non_stop)
2252 {
2253 /* Pass the last stop signal to the thread we're resuming,
2254 irrespective of whether the current thread is the thread that
2255 got the last event or not. This was historically GDB's
2256 behaviour before keeping a stop_signal per thread. */
2257
2258 struct thread_info *last_thread;
2259 ptid_t last_ptid;
2260 struct target_waitstatus last_status;
2261
2262 get_last_target_status (&last_ptid, &last_status);
2263 if (!ptid_equal (inferior_ptid, last_ptid)
2264 && !ptid_equal (last_ptid, null_ptid)
2265 && !ptid_equal (last_ptid, minus_one_ptid))
2266 {
e09875d4 2267 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2268 if (last_thread)
2269 {
16c381f0 2270 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2271 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2272 }
2273 }
2274 }
2275
a493e3e2 2276 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2277 tp->suspend.stop_signal = siggnal;
c906108c
SS
2278 /* If this signal should not be seen by program,
2279 give it zero. Used for debugging signals. */
16c381f0 2280 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2282
2283 annotate_starting ();
2284
2285 /* Make sure that output from GDB appears before output from the
2286 inferior. */
2287 gdb_flush (gdb_stdout);
2288
e4846b08
JJ
2289 /* Refresh prev_pc value just prior to resuming. This used to be
2290 done in stop_stepping, however, setting prev_pc there did not handle
2291 scenarios such as inferior function calls or returning from
2292 a function via the return command. In those cases, the prev_pc
2293 value was not set properly for subsequent commands. The prev_pc value
2294 is used to initialize the starting line number in the ecs. With an
2295 invalid value, the gdb next command ends up stopping at the position
2296 represented by the next line table entry past our start position.
2297 On platforms that generate one line table entry per line, this
2298 is not a problem. However, on the ia64, the compiler generates
2299 extraneous line table entries that do not increase the line number.
2300 When we issue the gdb next command on the ia64 after an inferior call
2301 or a return command, we often end up a few instructions forward, still
2302 within the original line we started.
2303
d5cd6034
JB
2304 An attempt was made to refresh the prev_pc at the same time the
2305 execution_control_state is initialized (for instance, just before
2306 waiting for an inferior event). But this approach did not work
2307 because of platforms that use ptrace, where the pc register cannot
2308 be read unless the inferior is stopped. At that point, we are not
2309 guaranteed the inferior is stopped and so the regcache_read_pc() call
2310 can fail. Setting the prev_pc value here ensures the value is updated
2311 correctly when the inferior is stopped. */
4e1c45ea 2312 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2313
59f0d5d9 2314 /* Fill in with reasonable starting values. */
4e1c45ea 2315 init_thread_stepping_state (tp);
59f0d5d9 2316
59f0d5d9
PA
2317 /* Reset to normal state. */
2318 init_infwait_state ();
2319
c906108c 2320 /* Resume inferior. */
0de5618e
YQ
2321 resume (force_step || step || bpstat_should_step (),
2322 tp->suspend.stop_signal);
c906108c
SS
2323
2324 /* Wait for it to stop (if not standalone)
2325 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2326 /* Do this only if we are not using the event loop, or if the target
1777feb0 2327 does not support asynchronous execution. */
362646f5 2328 if (!target_can_async_p ())
43ff13b4 2329 {
e4c8541f 2330 wait_for_inferior ();
43ff13b4
JM
2331 normal_stop ();
2332 }
c906108c 2333}
c906108c
SS
2334\f
2335
2336/* Start remote-debugging of a machine over a serial link. */
96baa820 2337
c906108c 2338void
8621d6a9 2339start_remote (int from_tty)
c906108c 2340{
d6b48e9c 2341 struct inferior *inferior;
d6b48e9c
PA
2342
2343 inferior = current_inferior ();
16c381f0 2344 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2345
1777feb0 2346 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2347 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2348 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2349 nothing is returned (instead of just blocking). Because of this,
2350 targets expecting an immediate response need to, internally, set
2351 things up so that the target_wait() is forced to eventually
1777feb0 2352 timeout. */
6426a772
JM
2353 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2354 differentiate to its caller what the state of the target is after
2355 the initial open has been performed. Here we're assuming that
2356 the target has stopped. It should be possible to eventually have
2357 target_open() return to the caller an indication that the target
2358 is currently running and GDB state should be set to the same as
1777feb0 2359 for an async run. */
e4c8541f 2360 wait_for_inferior ();
8621d6a9
DJ
2361
2362 /* Now that the inferior has stopped, do any bookkeeping like
2363 loading shared libraries. We want to do this before normal_stop,
2364 so that the displayed frame is up to date. */
2365 post_create_inferior (&current_target, from_tty);
2366
6426a772 2367 normal_stop ();
c906108c
SS
2368}
2369
2370/* Initialize static vars when a new inferior begins. */
2371
2372void
96baa820 2373init_wait_for_inferior (void)
c906108c
SS
2374{
2375 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2376
c906108c
SS
2377 breakpoint_init_inferior (inf_starting);
2378
c906108c 2379 clear_proceed_status ();
9f976b41
DJ
2380
2381 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2382 deferred_step_ptid = null_ptid;
ca005067
DJ
2383
2384 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2385
842951eb 2386 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2387 init_infwait_state ();
2388
edb3359d
DJ
2389 /* Discard any skipped inlined frames. */
2390 clear_inline_frame_state (minus_one_ptid);
c906108c 2391}
237fc4c9 2392
c906108c 2393\f
b83266a0
SS
2394/* This enum encodes possible reasons for doing a target_wait, so that
2395 wfi can call target_wait in one place. (Ultimately the call will be
2396 moved out of the infinite loop entirely.) */
2397
c5aa993b
JM
2398enum infwait_states
2399{
cd0fc7c3
SS
2400 infwait_normal_state,
2401 infwait_thread_hop_state,
d983da9c 2402 infwait_step_watch_state,
cd0fc7c3 2403 infwait_nonstep_watch_state
b83266a0
SS
2404};
2405
0d1e5fa7
PA
2406/* The PTID we'll do a target_wait on.*/
2407ptid_t waiton_ptid;
2408
2409/* Current inferior wait state. */
8870954f 2410static enum infwait_states infwait_state;
cd0fc7c3 2411
0d1e5fa7
PA
2412/* Data to be passed around while handling an event. This data is
2413 discarded between events. */
c5aa993b 2414struct execution_control_state
488f131b 2415{
0d1e5fa7 2416 ptid_t ptid;
4e1c45ea
PA
2417 /* The thread that got the event, if this was a thread event; NULL
2418 otherwise. */
2419 struct thread_info *event_thread;
2420
488f131b 2421 struct target_waitstatus ws;
488f131b 2422 int random_signal;
7e324e48 2423 int stop_func_filled_in;
488f131b
JB
2424 CORE_ADDR stop_func_start;
2425 CORE_ADDR stop_func_end;
2c02bd72 2426 const char *stop_func_name;
488f131b
JB
2427 int wait_some_more;
2428};
2429
ec9499be 2430static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2431
568d6575
UW
2432static void handle_step_into_function (struct gdbarch *gdbarch,
2433 struct execution_control_state *ecs);
2434static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2435 struct execution_control_state *ecs);
186c406b 2436static void check_exception_resume (struct execution_control_state *,
28106bc2 2437 struct frame_info *);
611c83ae 2438
104c1213
JM
2439static void stop_stepping (struct execution_control_state *ecs);
2440static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2441static void keep_going (struct execution_control_state *ecs);
94c57d6a 2442static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2443static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2444
252fbfc8
PA
2445/* Callback for iterate over threads. If the thread is stopped, but
2446 the user/frontend doesn't know about that yet, go through
2447 normal_stop, as if the thread had just stopped now. ARG points at
2448 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2449 ptid_is_pid(PTID) is true, applies to all threads of the process
2450 pointed at by PTID. Otherwise, apply only to the thread pointed by
2451 PTID. */
2452
2453static int
2454infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2455{
2456 ptid_t ptid = * (ptid_t *) arg;
2457
2458 if ((ptid_equal (info->ptid, ptid)
2459 || ptid_equal (minus_one_ptid, ptid)
2460 || (ptid_is_pid (ptid)
2461 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2462 && is_running (info->ptid)
2463 && !is_executing (info->ptid))
2464 {
2465 struct cleanup *old_chain;
2466 struct execution_control_state ecss;
2467 struct execution_control_state *ecs = &ecss;
2468
2469 memset (ecs, 0, sizeof (*ecs));
2470
2471 old_chain = make_cleanup_restore_current_thread ();
2472
252fbfc8
PA
2473 /* Go through handle_inferior_event/normal_stop, so we always
2474 have consistent output as if the stop event had been
2475 reported. */
2476 ecs->ptid = info->ptid;
e09875d4 2477 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2478 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2479 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2480
2481 handle_inferior_event (ecs);
2482
2483 if (!ecs->wait_some_more)
2484 {
2485 struct thread_info *tp;
2486
2487 normal_stop ();
2488
fa4cd53f 2489 /* Finish off the continuations. */
252fbfc8 2490 tp = inferior_thread ();
fa4cd53f
PA
2491 do_all_intermediate_continuations_thread (tp, 1);
2492 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2493 }
2494
2495 do_cleanups (old_chain);
2496 }
2497
2498 return 0;
2499}
2500
2501/* This function is attached as a "thread_stop_requested" observer.
2502 Cleanup local state that assumed the PTID was to be resumed, and
2503 report the stop to the frontend. */
2504
2c0b251b 2505static void
252fbfc8
PA
2506infrun_thread_stop_requested (ptid_t ptid)
2507{
fc1cf338 2508 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2509
2510 /* PTID was requested to stop. Remove it from the displaced
2511 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2512
2513 for (displaced = displaced_step_inferior_states;
2514 displaced;
2515 displaced = displaced->next)
252fbfc8 2516 {
fc1cf338 2517 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2518
fc1cf338
PA
2519 it = displaced->step_request_queue;
2520 prev_next_p = &displaced->step_request_queue;
2521 while (it)
252fbfc8 2522 {
fc1cf338
PA
2523 if (ptid_match (it->ptid, ptid))
2524 {
2525 *prev_next_p = it->next;
2526 it->next = NULL;
2527 xfree (it);
2528 }
252fbfc8 2529 else
fc1cf338
PA
2530 {
2531 prev_next_p = &it->next;
2532 }
252fbfc8 2533
fc1cf338 2534 it = *prev_next_p;
252fbfc8 2535 }
252fbfc8
PA
2536 }
2537
2538 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2539}
2540
a07daef3
PA
2541static void
2542infrun_thread_thread_exit (struct thread_info *tp, int silent)
2543{
2544 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2545 nullify_last_target_wait_ptid ();
2546}
2547
4e1c45ea
PA
2548/* Callback for iterate_over_threads. */
2549
2550static int
2551delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2552{
2553 if (is_exited (info->ptid))
2554 return 0;
2555
2556 delete_step_resume_breakpoint (info);
186c406b 2557 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2558 return 0;
2559}
2560
2561/* In all-stop, delete the step resume breakpoint of any thread that
2562 had one. In non-stop, delete the step resume breakpoint of the
2563 thread that just stopped. */
2564
2565static void
2566delete_step_thread_step_resume_breakpoint (void)
2567{
2568 if (!target_has_execution
2569 || ptid_equal (inferior_ptid, null_ptid))
2570 /* If the inferior has exited, we have already deleted the step
2571 resume breakpoints out of GDB's lists. */
2572 return;
2573
2574 if (non_stop)
2575 {
2576 /* If in non-stop mode, only delete the step-resume or
2577 longjmp-resume breakpoint of the thread that just stopped
2578 stepping. */
2579 struct thread_info *tp = inferior_thread ();
abbb1732 2580
4e1c45ea 2581 delete_step_resume_breakpoint (tp);
186c406b 2582 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2583 }
2584 else
2585 /* In all-stop mode, delete all step-resume and longjmp-resume
2586 breakpoints of any thread that had them. */
2587 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2588}
2589
1777feb0 2590/* A cleanup wrapper. */
4e1c45ea
PA
2591
2592static void
2593delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2594{
2595 delete_step_thread_step_resume_breakpoint ();
2596}
2597
223698f8
DE
2598/* Pretty print the results of target_wait, for debugging purposes. */
2599
2600static void
2601print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2602 const struct target_waitstatus *ws)
2603{
2604 char *status_string = target_waitstatus_to_string (ws);
2605 struct ui_file *tmp_stream = mem_fileopen ();
2606 char *text;
223698f8
DE
2607
2608 /* The text is split over several lines because it was getting too long.
2609 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2610 output as a unit; we want only one timestamp printed if debug_timestamp
2611 is set. */
2612
2613 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
2614 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2615 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
2616 fprintf_unfiltered (tmp_stream,
2617 " [%s]", target_pid_to_str (waiton_ptid));
2618 fprintf_unfiltered (tmp_stream, ", status) =\n");
2619 fprintf_unfiltered (tmp_stream,
2620 "infrun: %d [%s],\n",
dfd4cc63
LM
2621 ptid_get_pid (result_ptid),
2622 target_pid_to_str (result_ptid));
223698f8
DE
2623 fprintf_unfiltered (tmp_stream,
2624 "infrun: %s\n",
2625 status_string);
2626
759ef836 2627 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2628
2629 /* This uses %s in part to handle %'s in the text, but also to avoid
2630 a gcc error: the format attribute requires a string literal. */
2631 fprintf_unfiltered (gdb_stdlog, "%s", text);
2632
2633 xfree (status_string);
2634 xfree (text);
2635 ui_file_delete (tmp_stream);
2636}
2637
24291992
PA
2638/* Prepare and stabilize the inferior for detaching it. E.g.,
2639 detaching while a thread is displaced stepping is a recipe for
2640 crashing it, as nothing would readjust the PC out of the scratch
2641 pad. */
2642
2643void
2644prepare_for_detach (void)
2645{
2646 struct inferior *inf = current_inferior ();
2647 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2648 struct cleanup *old_chain_1;
2649 struct displaced_step_inferior_state *displaced;
2650
2651 displaced = get_displaced_stepping_state (inf->pid);
2652
2653 /* Is any thread of this process displaced stepping? If not,
2654 there's nothing else to do. */
2655 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2656 return;
2657
2658 if (debug_infrun)
2659 fprintf_unfiltered (gdb_stdlog,
2660 "displaced-stepping in-process while detaching");
2661
2662 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2663 inf->detaching = 1;
2664
2665 while (!ptid_equal (displaced->step_ptid, null_ptid))
2666 {
2667 struct cleanup *old_chain_2;
2668 struct execution_control_state ecss;
2669 struct execution_control_state *ecs;
2670
2671 ecs = &ecss;
2672 memset (ecs, 0, sizeof (*ecs));
2673
2674 overlay_cache_invalid = 1;
2675
24291992
PA
2676 if (deprecated_target_wait_hook)
2677 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2678 else
2679 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2680
2681 if (debug_infrun)
2682 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2683
2684 /* If an error happens while handling the event, propagate GDB's
2685 knowledge of the executing state to the frontend/user running
2686 state. */
3e43a32a
MS
2687 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2688 &minus_one_ptid);
24291992
PA
2689
2690 /* Now figure out what to do with the result of the result. */
2691 handle_inferior_event (ecs);
2692
2693 /* No error, don't finish the state yet. */
2694 discard_cleanups (old_chain_2);
2695
2696 /* Breakpoints and watchpoints are not installed on the target
2697 at this point, and signals are passed directly to the
2698 inferior, so this must mean the process is gone. */
2699 if (!ecs->wait_some_more)
2700 {
2701 discard_cleanups (old_chain_1);
2702 error (_("Program exited while detaching"));
2703 }
2704 }
2705
2706 discard_cleanups (old_chain_1);
2707}
2708
cd0fc7c3 2709/* Wait for control to return from inferior to debugger.
ae123ec6 2710
cd0fc7c3
SS
2711 If inferior gets a signal, we may decide to start it up again
2712 instead of returning. That is why there is a loop in this function.
2713 When this function actually returns it means the inferior
2714 should be left stopped and GDB should read more commands. */
2715
2716void
e4c8541f 2717wait_for_inferior (void)
cd0fc7c3
SS
2718{
2719 struct cleanup *old_cleanups;
c906108c 2720
527159b7 2721 if (debug_infrun)
ae123ec6 2722 fprintf_unfiltered
e4c8541f 2723 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2724
4e1c45ea
PA
2725 old_cleanups =
2726 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2727
c906108c
SS
2728 while (1)
2729 {
ae25568b
PA
2730 struct execution_control_state ecss;
2731 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2732 struct cleanup *old_chain;
2733
ae25568b
PA
2734 memset (ecs, 0, sizeof (*ecs));
2735
ec9499be 2736 overlay_cache_invalid = 1;
ec9499be 2737
9a4105ab 2738 if (deprecated_target_wait_hook)
47608cb1 2739 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2740 else
47608cb1 2741 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2742
f00150c9 2743 if (debug_infrun)
223698f8 2744 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2745
29f49a6a
PA
2746 /* If an error happens while handling the event, propagate GDB's
2747 knowledge of the executing state to the frontend/user running
2748 state. */
2749 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2750
cd0fc7c3
SS
2751 /* Now figure out what to do with the result of the result. */
2752 handle_inferior_event (ecs);
c906108c 2753
29f49a6a
PA
2754 /* No error, don't finish the state yet. */
2755 discard_cleanups (old_chain);
2756
cd0fc7c3
SS
2757 if (!ecs->wait_some_more)
2758 break;
2759 }
4e1c45ea 2760
cd0fc7c3
SS
2761 do_cleanups (old_cleanups);
2762}
c906108c 2763
1777feb0 2764/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2765 event loop whenever a change of state is detected on the file
1777feb0
MS
2766 descriptor corresponding to the target. It can be called more than
2767 once to complete a single execution command. In such cases we need
2768 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2769 that this function is called for a single execution command, then
2770 report to the user that the inferior has stopped, and do the
1777feb0 2771 necessary cleanups. */
43ff13b4
JM
2772
2773void
fba45db2 2774fetch_inferior_event (void *client_data)
43ff13b4 2775{
0d1e5fa7 2776 struct execution_control_state ecss;
a474d7c2 2777 struct execution_control_state *ecs = &ecss;
4f8d22e3 2778 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2779 struct cleanup *ts_old_chain;
4f8d22e3 2780 int was_sync = sync_execution;
0f641c01 2781 int cmd_done = 0;
43ff13b4 2782
0d1e5fa7
PA
2783 memset (ecs, 0, sizeof (*ecs));
2784
c5187ac6
PA
2785 /* We're handling a live event, so make sure we're doing live
2786 debugging. If we're looking at traceframes while the target is
2787 running, we're going to need to get back to that mode after
2788 handling the event. */
2789 if (non_stop)
2790 {
2791 make_cleanup_restore_current_traceframe ();
e6e4e701 2792 set_current_traceframe (-1);
c5187ac6
PA
2793 }
2794
4f8d22e3
PA
2795 if (non_stop)
2796 /* In non-stop mode, the user/frontend should not notice a thread
2797 switch due to internal events. Make sure we reverse to the
2798 user selected thread and frame after handling the event and
2799 running any breakpoint commands. */
2800 make_cleanup_restore_current_thread ();
2801
ec9499be 2802 overlay_cache_invalid = 1;
3dd5b83d 2803
32231432
PA
2804 make_cleanup_restore_integer (&execution_direction);
2805 execution_direction = target_execution_direction ();
2806
9a4105ab 2807 if (deprecated_target_wait_hook)
a474d7c2 2808 ecs->ptid =
47608cb1 2809 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2810 else
47608cb1 2811 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2812
f00150c9 2813 if (debug_infrun)
223698f8 2814 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2815
29f49a6a
PA
2816 /* If an error happens while handling the event, propagate GDB's
2817 knowledge of the executing state to the frontend/user running
2818 state. */
2819 if (!non_stop)
2820 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2821 else
2822 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2823
353d1d73
JK
2824 /* Get executed before make_cleanup_restore_current_thread above to apply
2825 still for the thread which has thrown the exception. */
2826 make_bpstat_clear_actions_cleanup ();
2827
43ff13b4 2828 /* Now figure out what to do with the result of the result. */
a474d7c2 2829 handle_inferior_event (ecs);
43ff13b4 2830
a474d7c2 2831 if (!ecs->wait_some_more)
43ff13b4 2832 {
d6b48e9c
PA
2833 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2834
4e1c45ea 2835 delete_step_thread_step_resume_breakpoint ();
f107f563 2836
d6b48e9c 2837 /* We may not find an inferior if this was a process exit. */
16c381f0 2838 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2839 normal_stop ();
2840
af679fd0 2841 if (target_has_execution
0e5bf2a8 2842 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2843 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2844 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2845 && ecs->event_thread->step_multi
16c381f0 2846 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2847 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2848 else
0f641c01
PA
2849 {
2850 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2851 cmd_done = 1;
2852 }
43ff13b4 2853 }
4f8d22e3 2854
29f49a6a
PA
2855 /* No error, don't finish the thread states yet. */
2856 discard_cleanups (ts_old_chain);
2857
4f8d22e3
PA
2858 /* Revert thread and frame. */
2859 do_cleanups (old_chain);
2860
2861 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2862 restore the prompt (a synchronous execution command has finished,
2863 and we're ready for input). */
b4a14fd0 2864 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2865 display_gdb_prompt (0);
0f641c01
PA
2866
2867 if (cmd_done
2868 && !was_sync
2869 && exec_done_display_p
2870 && (ptid_equal (inferior_ptid, null_ptid)
2871 || !is_running (inferior_ptid)))
2872 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2873}
2874
edb3359d
DJ
2875/* Record the frame and location we're currently stepping through. */
2876void
2877set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2878{
2879 struct thread_info *tp = inferior_thread ();
2880
16c381f0
JK
2881 tp->control.step_frame_id = get_frame_id (frame);
2882 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2883
2884 tp->current_symtab = sal.symtab;
2885 tp->current_line = sal.line;
2886}
2887
0d1e5fa7
PA
2888/* Clear context switchable stepping state. */
2889
2890void
4e1c45ea 2891init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2892{
2893 tss->stepping_over_breakpoint = 0;
2894 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2895}
2896
e02bc4cc 2897/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2898 target_wait()/deprecated_target_wait_hook(). The data is actually
2899 cached by handle_inferior_event(), which gets called immediately
2900 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2901
2902void
488f131b 2903get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2904{
39f77062 2905 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2906 *status = target_last_waitstatus;
2907}
2908
ac264b3b
MS
2909void
2910nullify_last_target_wait_ptid (void)
2911{
2912 target_last_wait_ptid = minus_one_ptid;
2913}
2914
dcf4fbde 2915/* Switch thread contexts. */
dd80620e
MS
2916
2917static void
0d1e5fa7 2918context_switch (ptid_t ptid)
dd80620e 2919{
4b51d87b 2920 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2921 {
2922 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2923 target_pid_to_str (inferior_ptid));
2924 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2925 target_pid_to_str (ptid));
fd48f117
DJ
2926 }
2927
0d1e5fa7 2928 switch_to_thread (ptid);
dd80620e
MS
2929}
2930
4fa8626c
DJ
2931static void
2932adjust_pc_after_break (struct execution_control_state *ecs)
2933{
24a73cce
UW
2934 struct regcache *regcache;
2935 struct gdbarch *gdbarch;
6c95b8df 2936 struct address_space *aspace;
8aad930b 2937 CORE_ADDR breakpoint_pc;
4fa8626c 2938
4fa8626c
DJ
2939 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2940 we aren't, just return.
9709f61c
DJ
2941
2942 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2943 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2944 implemented by software breakpoints should be handled through the normal
2945 breakpoint layer.
8fb3e588 2946
4fa8626c
DJ
2947 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2948 different signals (SIGILL or SIGEMT for instance), but it is less
2949 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2950 gdbarch_decr_pc_after_break. I don't know any specific target that
2951 generates these signals at breakpoints (the code has been in GDB since at
2952 least 1992) so I can not guess how to handle them here.
8fb3e588 2953
e6cf7916
UW
2954 In earlier versions of GDB, a target with
2955 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2956 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2957 target with both of these set in GDB history, and it seems unlikely to be
2958 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2959
2960 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2961 return;
2962
a493e3e2 2963 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2964 return;
2965
4058b839
PA
2966 /* In reverse execution, when a breakpoint is hit, the instruction
2967 under it has already been de-executed. The reported PC always
2968 points at the breakpoint address, so adjusting it further would
2969 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2970 architecture:
2971
2972 B1 0x08000000 : INSN1
2973 B2 0x08000001 : INSN2
2974 0x08000002 : INSN3
2975 PC -> 0x08000003 : INSN4
2976
2977 Say you're stopped at 0x08000003 as above. Reverse continuing
2978 from that point should hit B2 as below. Reading the PC when the
2979 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2980 been de-executed already.
2981
2982 B1 0x08000000 : INSN1
2983 B2 PC -> 0x08000001 : INSN2
2984 0x08000002 : INSN3
2985 0x08000003 : INSN4
2986
2987 We can't apply the same logic as for forward execution, because
2988 we would wrongly adjust the PC to 0x08000000, since there's a
2989 breakpoint at PC - 1. We'd then report a hit on B1, although
2990 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2991 behaviour. */
2992 if (execution_direction == EXEC_REVERSE)
2993 return;
2994
24a73cce
UW
2995 /* If this target does not decrement the PC after breakpoints, then
2996 we have nothing to do. */
2997 regcache = get_thread_regcache (ecs->ptid);
2998 gdbarch = get_regcache_arch (regcache);
2999 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
3000 return;
3001
6c95b8df
PA
3002 aspace = get_regcache_aspace (regcache);
3003
8aad930b
AC
3004 /* Find the location where (if we've hit a breakpoint) the
3005 breakpoint would be. */
515630c5
UW
3006 breakpoint_pc = regcache_read_pc (regcache)
3007 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 3008
1c5cfe86
PA
3009 /* Check whether there actually is a software breakpoint inserted at
3010 that location.
3011
3012 If in non-stop mode, a race condition is possible where we've
3013 removed a breakpoint, but stop events for that breakpoint were
3014 already queued and arrive later. To suppress those spurious
3015 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3016 and retire them after a number of stop events are reported. */
6c95b8df
PA
3017 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3018 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3019 {
77f9e713 3020 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3021
96429cc8 3022 if (RECORD_IS_USED)
77f9e713 3023 record_full_gdb_operation_disable_set ();
96429cc8 3024
1c0fdd0e
UW
3025 /* When using hardware single-step, a SIGTRAP is reported for both
3026 a completed single-step and a software breakpoint. Need to
3027 differentiate between the two, as the latter needs adjusting
3028 but the former does not.
3029
3030 The SIGTRAP can be due to a completed hardware single-step only if
3031 - we didn't insert software single-step breakpoints
3032 - the thread to be examined is still the current thread
3033 - this thread is currently being stepped
3034
3035 If any of these events did not occur, we must have stopped due
3036 to hitting a software breakpoint, and have to back up to the
3037 breakpoint address.
3038
3039 As a special case, we could have hardware single-stepped a
3040 software breakpoint. In this case (prev_pc == breakpoint_pc),
3041 we also need to back up to the breakpoint address. */
3042
3043 if (singlestep_breakpoints_inserted_p
3044 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3045 || !currently_stepping (ecs->event_thread)
3046 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3047 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3048
77f9e713 3049 do_cleanups (old_cleanups);
8aad930b 3050 }
4fa8626c
DJ
3051}
3052
7a76f5b8 3053static void
0d1e5fa7
PA
3054init_infwait_state (void)
3055{
3056 waiton_ptid = pid_to_ptid (-1);
3057 infwait_state = infwait_normal_state;
3058}
3059
edb3359d
DJ
3060static int
3061stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3062{
3063 for (frame = get_prev_frame (frame);
3064 frame != NULL;
3065 frame = get_prev_frame (frame))
3066 {
3067 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3068 return 1;
3069 if (get_frame_type (frame) != INLINE_FRAME)
3070 break;
3071 }
3072
3073 return 0;
3074}
3075
a96d9b2e
SDJ
3076/* Auxiliary function that handles syscall entry/return events.
3077 It returns 1 if the inferior should keep going (and GDB
3078 should ignore the event), or 0 if the event deserves to be
3079 processed. */
ca2163eb 3080
a96d9b2e 3081static int
ca2163eb 3082handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3083{
ca2163eb 3084 struct regcache *regcache;
ca2163eb
PA
3085 int syscall_number;
3086
3087 if (!ptid_equal (ecs->ptid, inferior_ptid))
3088 context_switch (ecs->ptid);
3089
3090 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3091 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3092 stop_pc = regcache_read_pc (regcache);
3093
a96d9b2e
SDJ
3094 if (catch_syscall_enabled () > 0
3095 && catching_syscall_number (syscall_number) > 0)
3096 {
ab04a2af
TT
3097 enum bpstat_signal_value sval;
3098
a96d9b2e
SDJ
3099 if (debug_infrun)
3100 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3101 syscall_number);
a96d9b2e 3102
16c381f0 3103 ecs->event_thread->control.stop_bpstat
6c95b8df 3104 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3105 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3106
427cd150
TT
3107 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3108 GDB_SIGNAL_TRAP);
ab04a2af 3109 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
a96d9b2e 3110
ca2163eb
PA
3111 if (!ecs->random_signal)
3112 {
3113 /* Catchpoint hit. */
a493e3e2 3114 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
ca2163eb
PA
3115 return 0;
3116 }
a96d9b2e 3117 }
ca2163eb
PA
3118
3119 /* If no catchpoint triggered for this, then keep going. */
a493e3e2 3120 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
ca2163eb
PA
3121 keep_going (ecs);
3122 return 1;
a96d9b2e
SDJ
3123}
3124
7e324e48
GB
3125/* Lazily fill in the execution_control_state's stop_func_* fields. */
3126
3127static void
3128fill_in_stop_func (struct gdbarch *gdbarch,
3129 struct execution_control_state *ecs)
3130{
3131 if (!ecs->stop_func_filled_in)
3132 {
3133 /* Don't care about return value; stop_func_start and stop_func_name
3134 will both be 0 if it doesn't work. */
3135 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3136 &ecs->stop_func_start, &ecs->stop_func_end);
3137 ecs->stop_func_start
3138 += gdbarch_deprecated_function_start_offset (gdbarch);
3139
3140 ecs->stop_func_filled_in = 1;
3141 }
3142}
3143
cd0fc7c3
SS
3144/* Given an execution control state that has been freshly filled in
3145 by an event from the inferior, figure out what it means and take
3146 appropriate action. */
c906108c 3147
ec9499be 3148static void
96baa820 3149handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3150{
568d6575
UW
3151 struct frame_info *frame;
3152 struct gdbarch *gdbarch;
d983da9c
DJ
3153 int stopped_by_watchpoint;
3154 int stepped_after_stopped_by_watchpoint = 0;
d6b48e9c
PA
3155 enum stop_kind stop_soon;
3156
28736962
PA
3157 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3158 {
3159 /* We had an event in the inferior, but we are not interested in
3160 handling it at this level. The lower layers have already
3161 done what needs to be done, if anything.
3162
3163 One of the possible circumstances for this is when the
3164 inferior produces output for the console. The inferior has
3165 not stopped, and we are ignoring the event. Another possible
3166 circumstance is any event which the lower level knows will be
3167 reported multiple times without an intervening resume. */
3168 if (debug_infrun)
3169 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3170 prepare_to_wait (ecs);
3171 return;
3172 }
3173
0e5bf2a8
PA
3174 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3175 && target_can_async_p () && !sync_execution)
3176 {
3177 /* There were no unwaited-for children left in the target, but,
3178 we're not synchronously waiting for events either. Just
3179 ignore. Otherwise, if we were running a synchronous
3180 execution command, we need to cancel it and give the user
3181 back the terminal. */
3182 if (debug_infrun)
3183 fprintf_unfiltered (gdb_stdlog,
3184 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3185 prepare_to_wait (ecs);
3186 return;
3187 }
3188
d6b48e9c 3189 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3190 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3191 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3192 {
3193 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3194
d6b48e9c 3195 gdb_assert (inf);
16c381f0 3196 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3197 }
3198 else
3199 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3200
1777feb0 3201 /* Cache the last pid/waitstatus. */
39f77062 3202 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3203 target_last_waitstatus = ecs->ws;
e02bc4cc 3204
ca005067 3205 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3206 stop_stack_dummy = STOP_NONE;
ca005067 3207
0e5bf2a8
PA
3208 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3209 {
3210 /* No unwaited-for children left. IOW, all resumed children
3211 have exited. */
3212 if (debug_infrun)
3213 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3214
3215 stop_print_frame = 0;
3216 stop_stepping (ecs);
3217 return;
3218 }
3219
8c90c137 3220 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3221 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3222 {
3223 ecs->event_thread = find_thread_ptid (ecs->ptid);
3224 /* If it's a new thread, add it to the thread database. */
3225 if (ecs->event_thread == NULL)
3226 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3227
3228 /* Disable range stepping. If the next step request could use a
3229 range, this will be end up re-enabled then. */
3230 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3231 }
88ed393a
JK
3232
3233 /* Dependent on valid ECS->EVENT_THREAD. */
3234 adjust_pc_after_break (ecs);
3235
3236 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3237 reinit_frame_cache ();
3238
28736962
PA
3239 breakpoint_retire_moribund ();
3240
2b009048
DJ
3241 /* First, distinguish signals caused by the debugger from signals
3242 that have to do with the program's own actions. Note that
3243 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3244 on the operating system version. Here we detect when a SIGILL or
3245 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3246 something similar for SIGSEGV, since a SIGSEGV will be generated
3247 when we're trying to execute a breakpoint instruction on a
3248 non-executable stack. This happens for call dummy breakpoints
3249 for architectures like SPARC that place call dummies on the
3250 stack. */
2b009048 3251 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3252 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3253 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3254 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3255 {
de0a0249
UW
3256 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3257
3258 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3259 regcache_read_pc (regcache)))
3260 {
3261 if (debug_infrun)
3262 fprintf_unfiltered (gdb_stdlog,
3263 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3264 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3265 }
2b009048
DJ
3266 }
3267
28736962
PA
3268 /* Mark the non-executing threads accordingly. In all-stop, all
3269 threads of all processes are stopped when we get any event
3270 reported. In non-stop mode, only the event thread stops. If
3271 we're handling a process exit in non-stop mode, there's nothing
3272 to do, as threads of the dead process are gone, and threads of
3273 any other process were left running. */
3274 if (!non_stop)
3275 set_executing (minus_one_ptid, 0);
3276 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3277 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3278 set_executing (ecs->ptid, 0);
8c90c137 3279
0d1e5fa7 3280 switch (infwait_state)
488f131b
JB
3281 {
3282 case infwait_thread_hop_state:
527159b7 3283 if (debug_infrun)
8a9de0e4 3284 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3285 break;
b83266a0 3286
488f131b 3287 case infwait_normal_state:
527159b7 3288 if (debug_infrun)
8a9de0e4 3289 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3290 break;
3291
3292 case infwait_step_watch_state:
3293 if (debug_infrun)
3294 fprintf_unfiltered (gdb_stdlog,
3295 "infrun: infwait_step_watch_state\n");
3296
3297 stepped_after_stopped_by_watchpoint = 1;
488f131b 3298 break;
b83266a0 3299
488f131b 3300 case infwait_nonstep_watch_state:
527159b7 3301 if (debug_infrun)
8a9de0e4
AC
3302 fprintf_unfiltered (gdb_stdlog,
3303 "infrun: infwait_nonstep_watch_state\n");
488f131b 3304 insert_breakpoints ();
c906108c 3305
488f131b
JB
3306 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3307 handle things like signals arriving and other things happening
3308 in combination correctly? */
3309 stepped_after_stopped_by_watchpoint = 1;
3310 break;
65e82032
AC
3311
3312 default:
e2e0b3e5 3313 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3314 }
ec9499be 3315
0d1e5fa7 3316 infwait_state = infwait_normal_state;
ec9499be 3317 waiton_ptid = pid_to_ptid (-1);
c906108c 3318
488f131b
JB
3319 switch (ecs->ws.kind)
3320 {
3321 case TARGET_WAITKIND_LOADED:
527159b7 3322 if (debug_infrun)
8a9de0e4 3323 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3324 /* Ignore gracefully during startup of the inferior, as it might
3325 be the shell which has just loaded some objects, otherwise
3326 add the symbols for the newly loaded objects. Also ignore at
3327 the beginning of an attach or remote session; we will query
3328 the full list of libraries once the connection is
3329 established. */
c0236d92 3330 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3331 {
edcc5120 3332 struct regcache *regcache;
ab04a2af 3333 enum bpstat_signal_value sval;
edcc5120
TT
3334
3335 if (!ptid_equal (ecs->ptid, inferior_ptid))
3336 context_switch (ecs->ptid);
3337 regcache = get_thread_regcache (ecs->ptid);
3338
3339 handle_solib_event ();
3340
3341 ecs->event_thread->control.stop_bpstat
3342 = bpstat_stop_status (get_regcache_aspace (regcache),
3343 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af
TT
3344
3345 sval
427cd150
TT
3346 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3347 GDB_SIGNAL_TRAP);
ab04a2af 3348 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
edcc5120
TT
3349
3350 if (!ecs->random_signal)
3351 {
3352 /* A catchpoint triggered. */
a493e3e2 3353 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
94c57d6a
PA
3354 process_event_stop_test (ecs);
3355 return;
edcc5120 3356 }
488f131b 3357
b0f4b84b
DJ
3358 /* If requested, stop when the dynamic linker notifies
3359 gdb of events. This allows the user to get control
3360 and place breakpoints in initializer routines for
3361 dynamically loaded objects (among other things). */
a493e3e2 3362 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3363 if (stop_on_solib_events)
3364 {
55409f9d
DJ
3365 /* Make sure we print "Stopped due to solib-event" in
3366 normal_stop. */
3367 stop_print_frame = 1;
3368
b0f4b84b
DJ
3369 stop_stepping (ecs);
3370 return;
3371 }
488f131b 3372 }
b0f4b84b
DJ
3373
3374 /* If we are skipping through a shell, or through shared library
3375 loading that we aren't interested in, resume the program. If
3376 we're running the program normally, also resume. But stop if
3377 we're attaching or setting up a remote connection. */
3378 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3379 {
8b3ee56d
PA
3380 if (!ptid_equal (ecs->ptid, inferior_ptid))
3381 context_switch (ecs->ptid);
3382
74960c60
VP
3383 /* Loading of shared libraries might have changed breakpoint
3384 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3385 if (stop_soon == NO_STOP_QUIETLY
3386 && !breakpoints_always_inserted_mode ())
74960c60 3387 insert_breakpoints ();
a493e3e2 3388 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3389 prepare_to_wait (ecs);
3390 return;
3391 }
3392
3393 break;
c5aa993b 3394
488f131b 3395 case TARGET_WAITKIND_SPURIOUS:
527159b7 3396 if (debug_infrun)
8a9de0e4 3397 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3398 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3399 context_switch (ecs->ptid);
a493e3e2 3400 resume (0, GDB_SIGNAL_0);
488f131b
JB
3401 prepare_to_wait (ecs);
3402 return;
c5aa993b 3403
488f131b 3404 case TARGET_WAITKIND_EXITED:
940c3c06 3405 case TARGET_WAITKIND_SIGNALLED:
527159b7 3406 if (debug_infrun)
940c3c06
PA
3407 {
3408 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3409 fprintf_unfiltered (gdb_stdlog,
3410 "infrun: TARGET_WAITKIND_EXITED\n");
3411 else
3412 fprintf_unfiltered (gdb_stdlog,
3413 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3414 }
3415
fb66883a 3416 inferior_ptid = ecs->ptid;
6c95b8df
PA
3417 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3418 set_current_program_space (current_inferior ()->pspace);
3419 handle_vfork_child_exec_or_exit (0);
1777feb0 3420 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3421
0c557179
SDJ
3422 /* Clearing any previous state of convenience variables. */
3423 clear_exit_convenience_vars ();
3424
940c3c06
PA
3425 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3426 {
3427 /* Record the exit code in the convenience variable $_exitcode, so
3428 that the user can inspect this again later. */
3429 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3430 (LONGEST) ecs->ws.value.integer);
3431
3432 /* Also record this in the inferior itself. */
3433 current_inferior ()->has_exit_code = 1;
3434 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3435
940c3c06
PA
3436 print_exited_reason (ecs->ws.value.integer);
3437 }
3438 else
0c557179
SDJ
3439 {
3440 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3441 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3442
3443 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3444 {
3445 /* Set the value of the internal variable $_exitsignal,
3446 which holds the signal uncaught by the inferior. */
3447 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3448 gdbarch_gdb_signal_to_target (gdbarch,
3449 ecs->ws.value.sig));
3450 }
3451 else
3452 {
3453 /* We don't have access to the target's method used for
3454 converting between signal numbers (GDB's internal
3455 representation <-> target's representation).
3456 Therefore, we cannot do a good job at displaying this
3457 information to the user. It's better to just warn
3458 her about it (if infrun debugging is enabled), and
3459 give up. */
3460 if (debug_infrun)
3461 fprintf_filtered (gdb_stdlog, _("\
3462Cannot fill $_exitsignal with the correct signal number.\n"));
3463 }
3464
3465 print_signal_exited_reason (ecs->ws.value.sig);
3466 }
8cf64490 3467
488f131b
JB
3468 gdb_flush (gdb_stdout);
3469 target_mourn_inferior ();
1c0fdd0e 3470 singlestep_breakpoints_inserted_p = 0;
d03285ec 3471 cancel_single_step_breakpoints ();
488f131b
JB
3472 stop_print_frame = 0;
3473 stop_stepping (ecs);
3474 return;
c5aa993b 3475
488f131b 3476 /* The following are the only cases in which we keep going;
1777feb0 3477 the above cases end in a continue or goto. */
488f131b 3478 case TARGET_WAITKIND_FORKED:
deb3b17b 3479 case TARGET_WAITKIND_VFORKED:
527159b7 3480 if (debug_infrun)
fed708ed
PA
3481 {
3482 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3483 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3484 else
3485 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3486 }
c906108c 3487
e2d96639
YQ
3488 /* Check whether the inferior is displaced stepping. */
3489 {
3490 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3491 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3492 struct displaced_step_inferior_state *displaced
3493 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3494
3495 /* If checking displaced stepping is supported, and thread
3496 ecs->ptid is displaced stepping. */
3497 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3498 {
3499 struct inferior *parent_inf
3500 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3501 struct regcache *child_regcache;
3502 CORE_ADDR parent_pc;
3503
3504 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3505 indicating that the displaced stepping of syscall instruction
3506 has been done. Perform cleanup for parent process here. Note
3507 that this operation also cleans up the child process for vfork,
3508 because their pages are shared. */
a493e3e2 3509 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3510
3511 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3512 {
3513 /* Restore scratch pad for child process. */
3514 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3515 }
3516
3517 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3518 the child's PC is also within the scratchpad. Set the child's PC
3519 to the parent's PC value, which has already been fixed up.
3520 FIXME: we use the parent's aspace here, although we're touching
3521 the child, because the child hasn't been added to the inferior
3522 list yet at this point. */
3523
3524 child_regcache
3525 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3526 gdbarch,
3527 parent_inf->aspace);
3528 /* Read PC value of parent process. */
3529 parent_pc = regcache_read_pc (regcache);
3530
3531 if (debug_displaced)
3532 fprintf_unfiltered (gdb_stdlog,
3533 "displaced: write child pc from %s to %s\n",
3534 paddress (gdbarch,
3535 regcache_read_pc (child_regcache)),
3536 paddress (gdbarch, parent_pc));
3537
3538 regcache_write_pc (child_regcache, parent_pc);
3539 }
3540 }
3541
5a2901d9 3542 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3543 context_switch (ecs->ptid);
5a2901d9 3544
b242c3c2
PA
3545 /* Immediately detach breakpoints from the child before there's
3546 any chance of letting the user delete breakpoints from the
3547 breakpoint lists. If we don't do this early, it's easy to
3548 leave left over traps in the child, vis: "break foo; catch
3549 fork; c; <fork>; del; c; <child calls foo>". We only follow
3550 the fork on the last `continue', and by that time the
3551 breakpoint at "foo" is long gone from the breakpoint table.
3552 If we vforked, then we don't need to unpatch here, since both
3553 parent and child are sharing the same memory pages; we'll
3554 need to unpatch at follow/detach time instead to be certain
3555 that new breakpoints added between catchpoint hit time and
3556 vfork follow are detached. */
3557 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3558 {
b242c3c2
PA
3559 /* This won't actually modify the breakpoint list, but will
3560 physically remove the breakpoints from the child. */
d80ee84f 3561 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3562 }
3563
d03285ec
UW
3564 if (singlestep_breakpoints_inserted_p)
3565 {
1777feb0 3566 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3567 remove_single_step_breakpoints ();
3568 singlestep_breakpoints_inserted_p = 0;
3569 }
3570
e58b0e63
PA
3571 /* In case the event is caught by a catchpoint, remember that
3572 the event is to be followed at the next resume of the thread,
3573 and not immediately. */
3574 ecs->event_thread->pending_follow = ecs->ws;
3575
fb14de7b 3576 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3577
16c381f0 3578 ecs->event_thread->control.stop_bpstat
6c95b8df 3579 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3580 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3581
67822962
PA
3582 /* Note that we're interested in knowing the bpstat actually
3583 causes a stop, not just if it may explain the signal.
3584 Software watchpoints, for example, always appear in the
3585 bpstat. */
16c381f0
JK
3586 ecs->random_signal
3587 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3588
3589 /* If no catchpoint triggered for this, then keep going. */
3590 if (ecs->random_signal)
3591 {
6c95b8df
PA
3592 ptid_t parent;
3593 ptid_t child;
e58b0e63 3594 int should_resume;
3e43a32a
MS
3595 int follow_child
3596 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3597
a493e3e2 3598 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3599
3600 should_resume = follow_fork ();
3601
6c95b8df
PA
3602 parent = ecs->ptid;
3603 child = ecs->ws.value.related_pid;
3604
3605 /* In non-stop mode, also resume the other branch. */
3606 if (non_stop && !detach_fork)
3607 {
3608 if (follow_child)
3609 switch_to_thread (parent);
3610 else
3611 switch_to_thread (child);
3612
3613 ecs->event_thread = inferior_thread ();
3614 ecs->ptid = inferior_ptid;
3615 keep_going (ecs);
3616 }
3617
3618 if (follow_child)
3619 switch_to_thread (child);
3620 else
3621 switch_to_thread (parent);
3622
e58b0e63
PA
3623 ecs->event_thread = inferior_thread ();
3624 ecs->ptid = inferior_ptid;
3625
3626 if (should_resume)
3627 keep_going (ecs);
3628 else
3629 stop_stepping (ecs);
04e68871
DJ
3630 return;
3631 }
a493e3e2 3632 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
94c57d6a
PA
3633 process_event_stop_test (ecs);
3634 return;
488f131b 3635
6c95b8df
PA
3636 case TARGET_WAITKIND_VFORK_DONE:
3637 /* Done with the shared memory region. Re-insert breakpoints in
3638 the parent, and keep going. */
3639
3640 if (debug_infrun)
3e43a32a
MS
3641 fprintf_unfiltered (gdb_stdlog,
3642 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3643
3644 if (!ptid_equal (ecs->ptid, inferior_ptid))
3645 context_switch (ecs->ptid);
3646
3647 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3648 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3649 /* This also takes care of reinserting breakpoints in the
3650 previously locked inferior. */
3651 keep_going (ecs);
3652 return;
3653
488f131b 3654 case TARGET_WAITKIND_EXECD:
527159b7 3655 if (debug_infrun)
fc5261f2 3656 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3657
5a2901d9 3658 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3659 context_switch (ecs->ptid);
5a2901d9 3660
d03285ec
UW
3661 singlestep_breakpoints_inserted_p = 0;
3662 cancel_single_step_breakpoints ();
3663
fb14de7b 3664 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3665
6c95b8df
PA
3666 /* Do whatever is necessary to the parent branch of the vfork. */
3667 handle_vfork_child_exec_or_exit (1);
3668
795e548f
PA
3669 /* This causes the eventpoints and symbol table to be reset.
3670 Must do this now, before trying to determine whether to
3671 stop. */
71b43ef8 3672 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3673
16c381f0 3674 ecs->event_thread->control.stop_bpstat
6c95b8df 3675 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3676 stop_pc, ecs->ptid, &ecs->ws);
16c381f0 3677 ecs->random_signal
427cd150
TT
3678 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
3679 GDB_SIGNAL_TRAP)
ab04a2af 3680 == BPSTAT_SIGNAL_NO);
795e548f 3681
71b43ef8
PA
3682 /* Note that this may be referenced from inside
3683 bpstat_stop_status above, through inferior_has_execd. */
3684 xfree (ecs->ws.value.execd_pathname);
3685 ecs->ws.value.execd_pathname = NULL;
3686
04e68871
DJ
3687 /* If no catchpoint triggered for this, then keep going. */
3688 if (ecs->random_signal)
3689 {
a493e3e2 3690 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3691 keep_going (ecs);
3692 return;
3693 }
a493e3e2 3694 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
94c57d6a
PA
3695 process_event_stop_test (ecs);
3696 return;
488f131b 3697
b4dc5ffa
MK
3698 /* Be careful not to try to gather much state about a thread
3699 that's in a syscall. It's frequently a losing proposition. */
488f131b 3700 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3701 if (debug_infrun)
3e43a32a
MS
3702 fprintf_unfiltered (gdb_stdlog,
3703 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3704 /* Getting the current syscall number. */
94c57d6a
PA
3705 if (handle_syscall_event (ecs) == 0)
3706 process_event_stop_test (ecs);
3707 return;
c906108c 3708
488f131b
JB
3709 /* Before examining the threads further, step this thread to
3710 get it entirely out of the syscall. (We get notice of the
3711 event when the thread is just on the verge of exiting a
3712 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3713 into user code.) */
488f131b 3714 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3715 if (debug_infrun)
3e43a32a
MS
3716 fprintf_unfiltered (gdb_stdlog,
3717 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
3718 if (handle_syscall_event (ecs) == 0)
3719 process_event_stop_test (ecs);
3720 return;
c906108c 3721
488f131b 3722 case TARGET_WAITKIND_STOPPED:
527159b7 3723 if (debug_infrun)
8a9de0e4 3724 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3725 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3726 break;
c906108c 3727
b2175913 3728 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3729 if (debug_infrun)
3730 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3731 /* Reverse execution: target ran out of history info. */
eab402df
PA
3732
3733 /* Pull the single step breakpoints out of the target. */
3734 if (singlestep_breakpoints_inserted_p)
3735 {
3736 if (!ptid_equal (ecs->ptid, inferior_ptid))
3737 context_switch (ecs->ptid);
3738 remove_single_step_breakpoints ();
3739 singlestep_breakpoints_inserted_p = 0;
3740 }
fb14de7b 3741 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3742 print_no_history_reason ();
b2175913
MS
3743 stop_stepping (ecs);
3744 return;
488f131b 3745 }
c906108c 3746
2020b7ab 3747 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3748 {
3749 /* Do we need to clean up the state of a thread that has
3750 completed a displaced single-step? (Doing so usually affects
3751 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3752 displaced_step_fixup (ecs->ptid,
3753 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3754
3755 /* If we either finished a single-step or hit a breakpoint, but
3756 the user wanted this thread to be stopped, pretend we got a
3757 SIG0 (generic unsignaled stop). */
3758
3759 if (ecs->event_thread->stop_requested
a493e3e2
PA
3760 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3761 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
252fbfc8 3762 }
237fc4c9 3763
515630c5 3764 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3765
527159b7 3766 if (debug_infrun)
237fc4c9 3767 {
5af949e3
UW
3768 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3769 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3770 struct cleanup *old_chain = save_inferior_ptid ();
3771
3772 inferior_ptid = ecs->ptid;
5af949e3
UW
3773
3774 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3775 paddress (gdbarch, stop_pc));
d92524f1 3776 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3777 {
3778 CORE_ADDR addr;
abbb1732 3779
237fc4c9
PA
3780 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3781
3782 if (target_stopped_data_address (&current_target, &addr))
3783 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3784 "infrun: stopped data address = %s\n",
3785 paddress (gdbarch, addr));
237fc4c9
PA
3786 else
3787 fprintf_unfiltered (gdb_stdlog,
3788 "infrun: (no data address available)\n");
3789 }
7f82dfc7
JK
3790
3791 do_cleanups (old_chain);
237fc4c9 3792 }
527159b7 3793
9f976b41
DJ
3794 if (stepping_past_singlestep_breakpoint)
3795 {
1c0fdd0e 3796 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3797 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3798 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3799
3800 stepping_past_singlestep_breakpoint = 0;
3801
3802 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3803 breakpoint, or stopped for some other reason. It would be nice if
3804 we could tell, but we can't reliably. */
a493e3e2 3805 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3806 {
527159b7 3807 if (debug_infrun)
3e43a32a
MS
3808 fprintf_unfiltered (gdb_stdlog,
3809 "infrun: stepping_past_"
3810 "singlestep_breakpoint\n");
9f976b41 3811 /* Pull the single step breakpoints out of the target. */
8b3ee56d
PA
3812 if (!ptid_equal (ecs->ptid, inferior_ptid))
3813 context_switch (ecs->ptid);
e0cd558a 3814 remove_single_step_breakpoints ();
9f976b41
DJ
3815 singlestep_breakpoints_inserted_p = 0;
3816
16c381f0 3817 ecs->event_thread->control.trap_expected = 0;
9f976b41 3818
0d1e5fa7 3819 context_switch (saved_singlestep_ptid);
9a4105ab 3820 if (deprecated_context_hook)
de9f1b68 3821 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
9f976b41 3822
a493e3e2 3823 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3824 prepare_to_wait (ecs);
3825 return;
3826 }
3827 }
3828
ca67fcb8 3829 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3830 {
94cc34af
PA
3831 /* In non-stop mode, there's never a deferred_step_ptid set. */
3832 gdb_assert (!non_stop);
3833
6a6b96b9
UW
3834 /* If we stopped for some other reason than single-stepping, ignore
3835 the fact that we were supposed to switch back. */
a493e3e2 3836 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6a6b96b9
UW
3837 {
3838 if (debug_infrun)
3839 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3840 "infrun: handling deferred step\n");
6a6b96b9
UW
3841
3842 /* Pull the single step breakpoints out of the target. */
3843 if (singlestep_breakpoints_inserted_p)
3844 {
8b3ee56d
PA
3845 if (!ptid_equal (ecs->ptid, inferior_ptid))
3846 context_switch (ecs->ptid);
6a6b96b9
UW
3847 remove_single_step_breakpoints ();
3848 singlestep_breakpoints_inserted_p = 0;
3849 }
3850
cd3da28e
PA
3851 ecs->event_thread->control.trap_expected = 0;
3852
d25f45d9 3853 context_switch (deferred_step_ptid);
ca67fcb8 3854 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3855 /* Suppress spurious "Switching to ..." message. */
3856 previous_inferior_ptid = inferior_ptid;
3857
a493e3e2 3858 resume (1, GDB_SIGNAL_0);
6a6b96b9
UW
3859 prepare_to_wait (ecs);
3860 return;
3861 }
ca67fcb8
VP
3862
3863 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3864 }
3865
488f131b
JB
3866 /* See if a thread hit a thread-specific breakpoint that was meant for
3867 another thread. If so, then step that thread past the breakpoint,
3868 and continue it. */
3869
a493e3e2 3870 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3871 {
9f976b41 3872 int thread_hop_needed = 0;
cf00dfa7
VP
3873 struct address_space *aspace =
3874 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3875
f8d40ec8 3876 /* Check if a regular breakpoint has been hit before checking
1777feb0 3877 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3878 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3879 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3880 {
6c95b8df 3881 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3882 thread_hop_needed = 1;
3883 }
1c0fdd0e 3884 else if (singlestep_breakpoints_inserted_p)
9f976b41 3885 {
fd48f117
DJ
3886 /* We have not context switched yet, so this should be true
3887 no matter which thread hit the singlestep breakpoint. */
3888 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3889 if (debug_infrun)
3890 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3891 "trap for %s\n",
3892 target_pid_to_str (ecs->ptid));
3893
9f976b41
DJ
3894 /* The call to in_thread_list is necessary because PTIDs sometimes
3895 change when we go from single-threaded to multi-threaded. If
3896 the singlestep_ptid is still in the list, assume that it is
3897 really different from ecs->ptid. */
3898 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3899 && in_thread_list (singlestep_ptid))
3900 {
fd48f117
DJ
3901 /* If the PC of the thread we were trying to single-step
3902 has changed, discard this event (which we were going
3903 to ignore anyway), and pretend we saw that thread
3904 trap. This prevents us continuously moving the
3905 single-step breakpoint forward, one instruction at a
3906 time. If the PC has changed, then the thread we were
3907 trying to single-step has trapped or been signalled,
3908 but the event has not been reported to GDB yet.
3909
3910 There might be some cases where this loses signal
3911 information, if a signal has arrived at exactly the
3912 same time that the PC changed, but this is the best
3913 we can do with the information available. Perhaps we
3914 should arrange to report all events for all threads
3915 when they stop, or to re-poll the remote looking for
3916 this particular thread (i.e. temporarily enable
3917 schedlock). */
515630c5
UW
3918
3919 CORE_ADDR new_singlestep_pc
3920 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3921
3922 if (new_singlestep_pc != singlestep_pc)
fd48f117 3923 {
2ea28649 3924 enum gdb_signal stop_signal;
2020b7ab 3925
fd48f117
DJ
3926 if (debug_infrun)
3927 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3928 " but expected thread advanced also\n");
3929
3930 /* The current context still belongs to
3931 singlestep_ptid. Don't swap here, since that's
3932 the context we want to use. Just fudge our
3933 state and continue. */
16c381f0 3934 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 3935 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 3936 ecs->ptid = singlestep_ptid;
e09875d4 3937 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3938 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3939 stop_pc = new_singlestep_pc;
fd48f117
DJ
3940 }
3941 else
3942 {
3943 if (debug_infrun)
3944 fprintf_unfiltered (gdb_stdlog,
3945 "infrun: unexpected thread\n");
3946
3947 thread_hop_needed = 1;
3948 stepping_past_singlestep_breakpoint = 1;
3949 saved_singlestep_ptid = singlestep_ptid;
3950 }
9f976b41
DJ
3951 }
3952 }
3953
3954 if (thread_hop_needed)
8fb3e588 3955 {
9f5a595d 3956 struct regcache *thread_regcache;
237fc4c9 3957 int remove_status = 0;
8fb3e588 3958
527159b7 3959 if (debug_infrun)
8a9de0e4 3960 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3961
b3444185
PA
3962 /* Switch context before touching inferior memory, the
3963 previous thread may have exited. */
3964 if (!ptid_equal (inferior_ptid, ecs->ptid))
3965 context_switch (ecs->ptid);
3966
8fb3e588 3967 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3968 Just continue. */
8fb3e588 3969
1c0fdd0e 3970 if (singlestep_breakpoints_inserted_p)
488f131b 3971 {
1777feb0 3972 /* Pull the single step breakpoints out of the target. */
e0cd558a 3973 remove_single_step_breakpoints ();
8fb3e588
AC
3974 singlestep_breakpoints_inserted_p = 0;
3975 }
3976
237fc4c9
PA
3977 /* If the arch can displace step, don't remove the
3978 breakpoints. */
9f5a595d
UW
3979 thread_regcache = get_thread_regcache (ecs->ptid);
3980 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3981 remove_status = remove_breakpoints ();
3982
8fb3e588
AC
3983 /* Did we fail to remove breakpoints? If so, try
3984 to set the PC past the bp. (There's at least
3985 one situation in which we can fail to remove
3986 the bp's: On HP-UX's that use ttrace, we can't
3987 change the address space of a vforking child
3988 process until the child exits (well, okay, not
1777feb0 3989 then either :-) or execs. */
8fb3e588 3990 if (remove_status != 0)
9d9cd7ac 3991 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3992 else
3993 { /* Single step */
94cc34af
PA
3994 if (!non_stop)
3995 {
3996 /* Only need to require the next event from this
3997 thread in all-stop mode. */
3998 waiton_ptid = ecs->ptid;
3999 infwait_state = infwait_thread_hop_state;
4000 }
8fb3e588 4001
4e1c45ea 4002 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 4003 keep_going (ecs);
8fb3e588
AC
4004 return;
4005 }
488f131b
JB
4006 }
4007 }
c906108c 4008
488f131b 4009 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4010 so, then switch to that thread. */
4011 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4012 {
527159b7 4013 if (debug_infrun)
8a9de0e4 4014 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4015
0d1e5fa7 4016 context_switch (ecs->ptid);
c5aa993b 4017
9a4105ab
AC
4018 if (deprecated_context_hook)
4019 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4020 }
c906108c 4021
568d6575
UW
4022 /* At this point, get hold of the now-current thread's frame. */
4023 frame = get_current_frame ();
4024 gdbarch = get_frame_arch (frame);
4025
1c0fdd0e 4026 if (singlestep_breakpoints_inserted_p)
488f131b 4027 {
1777feb0 4028 /* Pull the single step breakpoints out of the target. */
e0cd558a 4029 remove_single_step_breakpoints ();
488f131b
JB
4030 singlestep_breakpoints_inserted_p = 0;
4031 }
c906108c 4032
d983da9c
DJ
4033 if (stepped_after_stopped_by_watchpoint)
4034 stopped_by_watchpoint = 0;
4035 else
4036 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4037
4038 /* If necessary, step over this watchpoint. We'll be back to display
4039 it in a moment. */
4040 if (stopped_by_watchpoint
d92524f1 4041 && (target_have_steppable_watchpoint
568d6575 4042 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4043 {
488f131b
JB
4044 /* At this point, we are stopped at an instruction which has
4045 attempted to write to a piece of memory under control of
4046 a watchpoint. The instruction hasn't actually executed
4047 yet. If we were to evaluate the watchpoint expression
4048 now, we would get the old value, and therefore no change
4049 would seem to have occurred.
4050
4051 In order to make watchpoints work `right', we really need
4052 to complete the memory write, and then evaluate the
d983da9c
DJ
4053 watchpoint expression. We do this by single-stepping the
4054 target.
4055
4056 It may not be necessary to disable the watchpoint to stop over
4057 it. For example, the PA can (with some kernel cooperation)
4058 single step over a watchpoint without disabling the watchpoint.
4059
4060 It is far more common to need to disable a watchpoint to step
4061 the inferior over it. If we have non-steppable watchpoints,
4062 we must disable the current watchpoint; it's simplest to
4063 disable all watchpoints and breakpoints. */
2facfe5c
DD
4064 int hw_step = 1;
4065
d92524f1 4066 if (!target_have_steppable_watchpoint)
2455069d
UW
4067 {
4068 remove_breakpoints ();
4069 /* See comment in resume why we need to stop bypassing signals
4070 while breakpoints have been removed. */
4071 target_pass_signals (0, NULL);
4072 }
2facfe5c 4073 /* Single step */
568d6575 4074 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4075 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4076 waiton_ptid = ecs->ptid;
d92524f1 4077 if (target_have_steppable_watchpoint)
0d1e5fa7 4078 infwait_state = infwait_step_watch_state;
d983da9c 4079 else
0d1e5fa7 4080 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4081 prepare_to_wait (ecs);
4082 return;
4083 }
4084
4e1c45ea 4085 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4086 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4087 ecs->event_thread->control.stop_step = 0;
488f131b 4088 stop_print_frame = 1;
488f131b 4089 stopped_by_random_signal = 0;
488f131b 4090
edb3359d
DJ
4091 /* Hide inlined functions starting here, unless we just performed stepi or
4092 nexti. After stepi and nexti, always show the innermost frame (not any
4093 inline function call sites). */
16c381f0 4094 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4095 {
4096 struct address_space *aspace =
4097 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4098
4099 /* skip_inline_frames is expensive, so we avoid it if we can
4100 determine that the address is one where functions cannot have
4101 been inlined. This improves performance with inferiors that
4102 load a lot of shared libraries, because the solib event
4103 breakpoint is defined as the address of a function (i.e. not
4104 inline). Note that we have to check the previous PC as well
4105 as the current one to catch cases when we have just
4106 single-stepped off a breakpoint prior to reinstating it.
4107 Note that we're assuming that the code we single-step to is
4108 not inline, but that's not definitive: there's nothing
4109 preventing the event breakpoint function from containing
4110 inlined code, and the single-step ending up there. If the
4111 user had set a breakpoint on that inlined code, the missing
4112 skip_inline_frames call would break things. Fortunately
4113 that's an extremely unlikely scenario. */
09ac7c10 4114 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4115 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4116 && ecs->event_thread->control.trap_expected
4117 && pc_at_non_inline_function (aspace,
4118 ecs->event_thread->prev_pc,
09ac7c10 4119 &ecs->ws)))
1c5a993e
MR
4120 {
4121 skip_inline_frames (ecs->ptid);
4122
4123 /* Re-fetch current thread's frame in case that invalidated
4124 the frame cache. */
4125 frame = get_current_frame ();
4126 gdbarch = get_frame_arch (frame);
4127 }
0574c78f 4128 }
edb3359d 4129
a493e3e2 4130 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4131 && ecs->event_thread->control.trap_expected
568d6575 4132 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4133 && currently_stepping (ecs->event_thread))
3352ef37 4134 {
b50d7442 4135 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4136 also on an instruction that needs to be stepped multiple
1777feb0 4137 times before it's been fully executing. E.g., architectures
3352ef37
AC
4138 with a delay slot. It needs to be stepped twice, once for
4139 the instruction and once for the delay slot. */
4140 int step_through_delay
568d6575 4141 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4142
527159b7 4143 if (debug_infrun && step_through_delay)
8a9de0e4 4144 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4145 if (ecs->event_thread->control.step_range_end == 0
4146 && step_through_delay)
3352ef37
AC
4147 {
4148 /* The user issued a continue when stopped at a breakpoint.
4149 Set up for another trap and get out of here. */
4e1c45ea 4150 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4151 keep_going (ecs);
4152 return;
4153 }
4154 else if (step_through_delay)
4155 {
4156 /* The user issued a step when stopped at a breakpoint.
4157 Maybe we should stop, maybe we should not - the delay
4158 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4159 case, don't decide that here, just set
4160 ecs->stepping_over_breakpoint, making sure we
4161 single-step again before breakpoints are re-inserted. */
4e1c45ea 4162 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4163 }
4164 }
4165
488f131b
JB
4166 /* Look at the cause of the stop, and decide what to do.
4167 The alternatives are:
0d1e5fa7
PA
4168 1) stop_stepping and return; to really stop and return to the debugger,
4169 2) keep_going and return to start up again
4e1c45ea 4170 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4171 3) set ecs->random_signal to 1, and the decision between 1 and 2
4172 will be made according to the signal handling tables. */
4173
a493e3e2 4174 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
ab04a2af 4175 && stop_after_trap)
488f131b 4176 {
ab04a2af
TT
4177 if (debug_infrun)
4178 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4179 stop_print_frame = 0;
4180 stop_stepping (ecs);
4181 return;
4182 }
488f131b 4183
ab04a2af
TT
4184 /* This is originated from start_remote(), start_inferior() and
4185 shared libraries hook functions. */
4186 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4187 {
4188 if (debug_infrun)
4189 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4190 stop_stepping (ecs);
4191 return;
4192 }
c54cfec8 4193
ab04a2af
TT
4194 /* This originates from attach_command(). We need to overwrite
4195 the stop_signal here, because some kernels don't ignore a
4196 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4197 See more comments in inferior.h. On the other hand, if we
4198 get a non-SIGSTOP, report it to the user - assume the backend
4199 will handle the SIGSTOP if it should show up later.
4200
4201 Also consider that the attach is complete when we see a
4202 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4203 target extended-remote report it instead of a SIGSTOP
4204 (e.g. gdbserver). We already rely on SIGTRAP being our
4205 signal, so this is no exception.
4206
4207 Also consider that the attach is complete when we see a
4208 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4209 the target to stop all threads of the inferior, in case the
4210 low level attach operation doesn't stop them implicitly. If
4211 they weren't stopped implicitly, then the stub will report a
4212 GDB_SIGNAL_0, meaning: stopped for no particular reason
4213 other than GDB's request. */
4214 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4215 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4216 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4217 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4218 {
4219 stop_stepping (ecs);
4220 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4221 return;
4222 }
6c95b8df 4223
ab04a2af
TT
4224 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4225 handles this event. */
4226 ecs->event_thread->control.stop_bpstat
4227 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4228 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4229
ab04a2af
TT
4230 /* Following in case break condition called a
4231 function. */
4232 stop_print_frame = 1;
73dd234f 4233
ab04a2af
TT
4234 /* This is where we handle "moribund" watchpoints. Unlike
4235 software breakpoints traps, hardware watchpoint traps are
4236 always distinguishable from random traps. If no high-level
4237 watchpoint is associated with the reported stop data address
4238 anymore, then the bpstat does not explain the signal ---
4239 simply make sure to ignore it if `stopped_by_watchpoint' is
4240 set. */
4241
4242 if (debug_infrun
4243 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
427cd150
TT
4244 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4245 GDB_SIGNAL_TRAP)
ab04a2af
TT
4246 == BPSTAT_SIGNAL_NO)
4247 && stopped_by_watchpoint)
4248 fprintf_unfiltered (gdb_stdlog,
4249 "infrun: no user watchpoint explains "
4250 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4251
ab04a2af
TT
4252 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4253 at one stage in the past included checks for an inferior
4254 function call's call dummy's return breakpoint. The original
4255 comment, that went with the test, read:
03cebad2 4256
ab04a2af
TT
4257 ``End of a stack dummy. Some systems (e.g. Sony news) give
4258 another signal besides SIGTRAP, so check here as well as
4259 above.''
73dd234f 4260
ab04a2af
TT
4261 If someone ever tries to get call dummys on a
4262 non-executable stack to work (where the target would stop
4263 with something like a SIGSEGV), then those tests might need
4264 to be re-instated. Given, however, that the tests were only
4265 enabled when momentary breakpoints were not being used, I
4266 suspect that it won't be the case.
488f131b 4267
ab04a2af
TT
4268 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4269 be necessary for call dummies on a non-executable stack on
4270 SPARC. */
488f131b 4271
ab04a2af
TT
4272 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4273 ecs->random_signal
427cd150
TT
4274 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4275 GDB_SIGNAL_TRAP)
ab04a2af
TT
4276 != BPSTAT_SIGNAL_NO)
4277 || stopped_by_watchpoint
4278 || ecs->event_thread->control.trap_expected
4279 || (ecs->event_thread->control.step_range_end
4280 && (ecs->event_thread->control.step_resume_breakpoint
4281 == NULL)));
488f131b 4282 else
ab04a2af
TT
4283 {
4284 enum bpstat_signal_value sval;
4285
427cd150
TT
4286 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4287 ecs->event_thread->suspend.stop_signal);
ab04a2af
TT
4288 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4289
4290 if (sval == BPSTAT_SIGNAL_HIDE)
4291 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4292 }
488f131b
JB
4293
4294 /* For the program's own signals, act according to
4295 the signal handling tables. */
4296
4297 if (ecs->random_signal)
4298 {
4299 /* Signal not for debugging purposes. */
4300 int printed = 0;
24291992 4301 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
c9737c08 4302 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4303
527159b7 4304 if (debug_infrun)
c9737c08
PA
4305 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4306 gdb_signal_to_symbol_string (stop_signal));
527159b7 4307
488f131b
JB
4308 stopped_by_random_signal = 1;
4309
16c381f0 4310 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4311 {
4312 printed = 1;
4313 target_terminal_ours_for_output ();
16c381f0
JK
4314 print_signal_received_reason
4315 (ecs->event_thread->suspend.stop_signal);
488f131b 4316 }
252fbfc8
PA
4317 /* Always stop on signals if we're either just gaining control
4318 of the program, or the user explicitly requested this thread
4319 to remain stopped. */
d6b48e9c 4320 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4321 || ecs->event_thread->stop_requested
24291992 4322 || (!inf->detaching
16c381f0 4323 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4324 {
4325 stop_stepping (ecs);
4326 return;
4327 }
4328 /* If not going to stop, give terminal back
4329 if we took it away. */
4330 else if (printed)
4331 target_terminal_inferior ();
4332
4333 /* Clear the signal if it should not be passed. */
16c381f0 4334 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4335 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4336
fb14de7b 4337 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4338 && ecs->event_thread->control.trap_expected
8358c15c 4339 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4340 {
4341 /* We were just starting a new sequence, attempting to
4342 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4343 Instead this signal arrives. This signal will take us out
68f53502
AC
4344 of the stepping range so GDB needs to remember to, when
4345 the signal handler returns, resume stepping off that
4346 breakpoint. */
4347 /* To simplify things, "continue" is forced to use the same
4348 code paths as single-step - set a breakpoint at the
4349 signal return address and then, once hit, step off that
4350 breakpoint. */
237fc4c9
PA
4351 if (debug_infrun)
4352 fprintf_unfiltered (gdb_stdlog,
4353 "infrun: signal arrived while stepping over "
4354 "breakpoint\n");
d3169d93 4355
2c03e5be 4356 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4357 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4358 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4359 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4360 keep_going (ecs);
4361 return;
68f53502 4362 }
9d799f85 4363
16c381f0 4364 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4365 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
ce4c476a 4366 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
edb3359d 4367 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4368 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4369 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4370 {
4371 /* The inferior is about to take a signal that will take it
4372 out of the single step range. Set a breakpoint at the
4373 current PC (which is presumably where the signal handler
4374 will eventually return) and then allow the inferior to
4375 run free.
4376
4377 Note that this is only needed for a signal delivered
4378 while in the single-step range. Nested signals aren't a
4379 problem as they eventually all return. */
237fc4c9
PA
4380 if (debug_infrun)
4381 fprintf_unfiltered (gdb_stdlog,
4382 "infrun: signal may take us out of "
4383 "single-step range\n");
4384
2c03e5be 4385 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4386 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4387 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4388 keep_going (ecs);
4389 return;
d303a6c7 4390 }
9d799f85
AC
4391
4392 /* Note: step_resume_breakpoint may be non-NULL. This occures
4393 when either there's a nested signal, or when there's a
4394 pending signal enabled just as the signal handler returns
4395 (leaving the inferior at the step-resume-breakpoint without
4396 actually executing it). Either way continue until the
4397 breakpoint is really hit. */
c447ac0b
PA
4398
4399 if (!switch_back_to_stepped_thread (ecs))
4400 {
4401 if (debug_infrun)
4402 fprintf_unfiltered (gdb_stdlog,
4403 "infrun: random signal, keep going\n");
4404
4405 keep_going (ecs);
4406 }
4407 return;
488f131b 4408 }
94c57d6a
PA
4409
4410 process_event_stop_test (ecs);
4411}
4412
4413/* Come here when we've got some debug event / signal we can explain
4414 (IOW, not a random signal), and test whether it should cause a
4415 stop, or whether we should resume the inferior (transparently).
4416 E.g., could be a breakpoint whose condition evaluates false; we
4417 could be still stepping within the line; etc. */
4418
4419static void
4420process_event_stop_test (struct execution_control_state *ecs)
4421{
4422 struct symtab_and_line stop_pc_sal;
4423 struct frame_info *frame;
4424 struct gdbarch *gdbarch;
4425
e5ef252a
PA
4426 {
4427 /* Handle cases caused by hitting a breakpoint. */
488f131b 4428
e5ef252a
PA
4429 CORE_ADDR jmp_buf_pc;
4430 struct bpstat_what what;
611c83ae 4431
fcf3daef
PA
4432 frame = get_current_frame ();
4433 gdbarch = get_frame_arch (frame);
4434
e5ef252a 4435 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4436
e5ef252a 4437 if (what.call_dummy)
e81a37f7 4438 {
e5ef252a
PA
4439 stop_stack_dummy = what.call_dummy;
4440 }
186c406b 4441
e5ef252a
PA
4442 /* If we hit an internal event that triggers symbol changes, the
4443 current frame will be invalidated within bpstat_what (e.g.,
4444 if we hit an internal solib event). Re-fetch it. */
4445 frame = get_current_frame ();
4446 gdbarch = get_frame_arch (frame);
e2e4d78b 4447
e5ef252a
PA
4448 switch (what.main_action)
4449 {
4450 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4451 /* If we hit the breakpoint at longjmp while stepping, we
4452 install a momentary breakpoint at the target of the
4453 jmp_buf. */
186c406b 4454
e81a37f7
TT
4455 if (debug_infrun)
4456 fprintf_unfiltered (gdb_stdlog,
e5ef252a 4457 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4458
e5ef252a 4459 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4460
e2e4d78b
JK
4461 if (what.is_longjmp)
4462 {
e5ef252a
PA
4463 struct value *arg_value;
4464
4465 /* If we set the longjmp breakpoint via a SystemTap
4466 probe, then use it to extract the arguments. The
4467 destination PC is the third argument to the
4468 probe. */
4469 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4470 if (arg_value)
4471 jmp_buf_pc = value_as_address (arg_value);
4472 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4473 || !gdbarch_get_longjmp_target (gdbarch,
4474 frame, &jmp_buf_pc))
e2e4d78b 4475 {
e5ef252a
PA
4476 if (debug_infrun)
4477 fprintf_unfiltered (gdb_stdlog,
4478 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4479 "(!gdbarch_get_longjmp_target)\n");
e2e4d78b
JK
4480 keep_going (ecs);
4481 return;
4482 }
e5ef252a
PA
4483
4484 /* Insert a breakpoint at resume address. */
4485 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
e2e4d78b 4486 }
e5ef252a
PA
4487 else
4488 check_exception_resume (ecs, frame);
4489 keep_going (ecs);
4490 return;
e2e4d78b 4491
e5ef252a
PA
4492 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4493 {
4494 struct frame_info *init_frame;
e2e4d78b 4495
e5ef252a 4496 /* There are several cases to consider.
e81a37f7 4497
e5ef252a
PA
4498 1. The initiating frame no longer exists. In this case
4499 we must stop, because the exception or longjmp has gone
4500 too far.
e81a37f7 4501
e5ef252a
PA
4502 2. The initiating frame exists, and is the same as the
4503 current frame. We stop, because the exception or
4504 longjmp has been caught.
c906108c 4505
e5ef252a
PA
4506 3. The initiating frame exists and is different from
4507 the current frame. This means the exception or longjmp
4508 has been caught beneath the initiating frame, so keep
4509 going.
2c03e5be 4510
e5ef252a
PA
4511 4. longjmp breakpoint has been placed just to protect
4512 against stale dummy frames and user is not interested
4513 in stopping around longjmps. */
2c03e5be 4514
e5ef252a
PA
4515 if (debug_infrun)
4516 fprintf_unfiltered (gdb_stdlog,
4517 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c906108c 4518
e5ef252a
PA
4519 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4520 != NULL);
4521 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4522
e5ef252a
PA
4523 if (what.is_longjmp)
4524 {
4525 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
c5aa993b 4526
e5ef252a
PA
4527 if (!frame_id_p (ecs->event_thread->initiating_frame))
4528 {
4529 /* Case 4. */
4530 keep_going (ecs);
4531 return;
4532 }
4533 }
c5aa993b 4534
e5ef252a 4535 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
c5aa993b 4536
e5ef252a
PA
4537 if (init_frame)
4538 {
4539 struct frame_id current_id
4540 = get_frame_id (get_current_frame ());
4541 if (frame_id_eq (current_id,
4542 ecs->event_thread->initiating_frame))
4543 {
4544 /* Case 2. Fall through. */
4545 }
4546 else
4547 {
4548 /* Case 3. */
4549 keep_going (ecs);
4550 return;
4551 }
4552 }
c5aa993b 4553
e5ef252a
PA
4554 /* For Cases 1 and 2, remove the step-resume breakpoint,
4555 if it exists. */
4556 delete_step_resume_breakpoint (ecs->event_thread);
527159b7 4557
e5ef252a
PA
4558 ecs->event_thread->control.stop_step = 1;
4559 print_end_stepping_range_reason ();
4560 stop_stepping (ecs);
68f53502 4561 }
e5ef252a 4562 return;
488f131b 4563
e5ef252a
PA
4564 case BPSTAT_WHAT_SINGLE:
4565 if (debug_infrun)
4566 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4567 ecs->event_thread->stepping_over_breakpoint = 1;
4568 /* Still need to check other stuff, at least the case where
4569 we are stepping and step out of the right range. */
4570 break;
4571
4572 case BPSTAT_WHAT_STEP_RESUME:
4573 if (debug_infrun)
4574 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4575
4576 delete_step_resume_breakpoint (ecs->event_thread);
4577 if (ecs->event_thread->control.proceed_to_finish
4578 && execution_direction == EXEC_REVERSE)
4579 {
4580 struct thread_info *tp = ecs->event_thread;
4581
4582 /* We are finishing a function in reverse, and just hit
4583 the step-resume breakpoint at the start address of
4584 the function, and we're almost there -- just need to
4585 back up by one more single-step, which should take us
4586 back to the function call. */
4587 tp->control.step_range_start = tp->control.step_range_end = 1;
4588 keep_going (ecs);
4589 return;
4590 }
4591 fill_in_stop_func (gdbarch, ecs);
4592 if (stop_pc == ecs->stop_func_start
4593 && execution_direction == EXEC_REVERSE)
4594 {
4595 /* We are stepping over a function call in reverse, and
4596 just hit the step-resume breakpoint at the start
4597 address of the function. Go back to single-stepping,
4598 which should take us back to the function call. */
4599 ecs->event_thread->stepping_over_breakpoint = 1;
4600 keep_going (ecs);
4601 return;
4602 }
4603 break;
4604
4605 case BPSTAT_WHAT_STOP_NOISY:
4606 if (debug_infrun)
4607 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4608 stop_print_frame = 1;
4609
4610 /* We are about to nuke the step_resume_breakpointt via the
4611 cleanup chain, so no need to worry about it here. */
4612
4613 stop_stepping (ecs);
4614 return;
4615
4616 case BPSTAT_WHAT_STOP_SILENT:
4617 if (debug_infrun)
4618 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4619 stop_print_frame = 0;
4620
4621 /* We are about to nuke the step_resume_breakpoin via the
4622 cleanup chain, so no need to worry about it here. */
4623
4624 stop_stepping (ecs);
4625 return;
4626
4627 case BPSTAT_WHAT_HP_STEP_RESUME:
4628 if (debug_infrun)
4629 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4630
4631 delete_step_resume_breakpoint (ecs->event_thread);
4632 if (ecs->event_thread->step_after_step_resume_breakpoint)
4633 {
4634 /* Back when the step-resume breakpoint was inserted, we
4635 were trying to single-step off a breakpoint. Go back
4636 to doing that. */
4637 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4638 ecs->event_thread->stepping_over_breakpoint = 1;
4639 keep_going (ecs);
4640 return;
4641 }
4642 break;
4643
4644 case BPSTAT_WHAT_KEEP_CHECKING:
4645 break;
4646 }
4647 }
c906108c 4648
488f131b
JB
4649 /* We come here if we hit a breakpoint but should not
4650 stop for it. Possibly we also were stepping
4651 and should stop for that. So fall through and
4652 test for stepping. But, if not stepping,
4653 do not stop. */
c906108c 4654
a7212384
UW
4655 /* In all-stop mode, if we're currently stepping but have stopped in
4656 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
4657 if (switch_back_to_stepped_thread (ecs))
4658 return;
776f04fa 4659
8358c15c 4660 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4661 {
527159b7 4662 if (debug_infrun)
d3169d93
DJ
4663 fprintf_unfiltered (gdb_stdlog,
4664 "infrun: step-resume breakpoint is inserted\n");
527159b7 4665
488f131b
JB
4666 /* Having a step-resume breakpoint overrides anything
4667 else having to do with stepping commands until
4668 that breakpoint is reached. */
488f131b
JB
4669 keep_going (ecs);
4670 return;
4671 }
c5aa993b 4672
16c381f0 4673 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4674 {
527159b7 4675 if (debug_infrun)
8a9de0e4 4676 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4677 /* Likewise if we aren't even stepping. */
488f131b
JB
4678 keep_going (ecs);
4679 return;
4680 }
c5aa993b 4681
4b7703ad
JB
4682 /* Re-fetch current thread's frame in case the code above caused
4683 the frame cache to be re-initialized, making our FRAME variable
4684 a dangling pointer. */
4685 frame = get_current_frame ();
628fe4e4 4686 gdbarch = get_frame_arch (frame);
7e324e48 4687 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4688
488f131b 4689 /* If stepping through a line, keep going if still within it.
c906108c 4690
488f131b
JB
4691 Note that step_range_end is the address of the first instruction
4692 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4693 within it!
4694
4695 Note also that during reverse execution, we may be stepping
4696 through a function epilogue and therefore must detect when
4697 the current-frame changes in the middle of a line. */
4698
ce4c476a 4699 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4700 && (execution_direction != EXEC_REVERSE
388a8562 4701 || frame_id_eq (get_frame_id (frame),
16c381f0 4702 ecs->event_thread->control.step_frame_id)))
488f131b 4703 {
527159b7 4704 if (debug_infrun)
5af949e3
UW
4705 fprintf_unfiltered
4706 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4707 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4708 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4709
c1e36e3e
PA
4710 /* Tentatively re-enable range stepping; `resume' disables it if
4711 necessary (e.g., if we're stepping over a breakpoint or we
4712 have software watchpoints). */
4713 ecs->event_thread->control.may_range_step = 1;
4714
b2175913
MS
4715 /* When stepping backward, stop at beginning of line range
4716 (unless it's the function entry point, in which case
4717 keep going back to the call point). */
16c381f0 4718 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4719 && stop_pc != ecs->stop_func_start
4720 && execution_direction == EXEC_REVERSE)
4721 {
16c381f0 4722 ecs->event_thread->control.stop_step = 1;
33d62d64 4723 print_end_stepping_range_reason ();
b2175913
MS
4724 stop_stepping (ecs);
4725 }
4726 else
4727 keep_going (ecs);
4728
488f131b
JB
4729 return;
4730 }
c5aa993b 4731
488f131b 4732 /* We stepped out of the stepping range. */
c906108c 4733
488f131b 4734 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4735 loader dynamic symbol resolution code...
4736
4737 EXEC_FORWARD: we keep on single stepping until we exit the run
4738 time loader code and reach the callee's address.
4739
4740 EXEC_REVERSE: we've already executed the callee (backward), and
4741 the runtime loader code is handled just like any other
4742 undebuggable function call. Now we need only keep stepping
4743 backward through the trampoline code, and that's handled further
4744 down, so there is nothing for us to do here. */
4745
4746 if (execution_direction != EXEC_REVERSE
16c381f0 4747 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4748 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4749 {
4c8c40e6 4750 CORE_ADDR pc_after_resolver =
568d6575 4751 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4752
527159b7 4753 if (debug_infrun)
3e43a32a
MS
4754 fprintf_unfiltered (gdb_stdlog,
4755 "infrun: stepped into dynsym resolve code\n");
527159b7 4756
488f131b
JB
4757 if (pc_after_resolver)
4758 {
4759 /* Set up a step-resume breakpoint at the address
4760 indicated by SKIP_SOLIB_RESOLVER. */
4761 struct symtab_and_line sr_sal;
abbb1732 4762
fe39c653 4763 init_sal (&sr_sal);
488f131b 4764 sr_sal.pc = pc_after_resolver;
6c95b8df 4765 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4766
a6d9a66e
UW
4767 insert_step_resume_breakpoint_at_sal (gdbarch,
4768 sr_sal, null_frame_id);
c5aa993b 4769 }
c906108c 4770
488f131b
JB
4771 keep_going (ecs);
4772 return;
4773 }
c906108c 4774
16c381f0
JK
4775 if (ecs->event_thread->control.step_range_end != 1
4776 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4777 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4778 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4779 {
527159b7 4780 if (debug_infrun)
3e43a32a
MS
4781 fprintf_unfiltered (gdb_stdlog,
4782 "infrun: stepped into signal trampoline\n");
42edda50 4783 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4784 a signal trampoline (either by a signal being delivered or by
4785 the signal handler returning). Just single-step until the
4786 inferior leaves the trampoline (either by calling the handler
4787 or returning). */
488f131b
JB
4788 keep_going (ecs);
4789 return;
4790 }
c906108c 4791
14132e89
MR
4792 /* If we're in the return path from a shared library trampoline,
4793 we want to proceed through the trampoline when stepping. */
4794 /* macro/2012-04-25: This needs to come before the subroutine
4795 call check below as on some targets return trampolines look
4796 like subroutine calls (MIPS16 return thunks). */
4797 if (gdbarch_in_solib_return_trampoline (gdbarch,
4798 stop_pc, ecs->stop_func_name)
4799 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4800 {
4801 /* Determine where this trampoline returns. */
4802 CORE_ADDR real_stop_pc;
4803
4804 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4805
4806 if (debug_infrun)
4807 fprintf_unfiltered (gdb_stdlog,
4808 "infrun: stepped into solib return tramp\n");
4809
4810 /* Only proceed through if we know where it's going. */
4811 if (real_stop_pc)
4812 {
4813 /* And put the step-breakpoint there and go until there. */
4814 struct symtab_and_line sr_sal;
4815
4816 init_sal (&sr_sal); /* initialize to zeroes */
4817 sr_sal.pc = real_stop_pc;
4818 sr_sal.section = find_pc_overlay (sr_sal.pc);
4819 sr_sal.pspace = get_frame_program_space (frame);
4820
4821 /* Do not specify what the fp should be when we stop since
4822 on some machines the prologue is where the new fp value
4823 is established. */
4824 insert_step_resume_breakpoint_at_sal (gdbarch,
4825 sr_sal, null_frame_id);
4826
4827 /* Restart without fiddling with the step ranges or
4828 other state. */
4829 keep_going (ecs);
4830 return;
4831 }
4832 }
4833
c17eaafe
DJ
4834 /* Check for subroutine calls. The check for the current frame
4835 equalling the step ID is not necessary - the check of the
4836 previous frame's ID is sufficient - but it is a common case and
4837 cheaper than checking the previous frame's ID.
14e60db5
DJ
4838
4839 NOTE: frame_id_eq will never report two invalid frame IDs as
4840 being equal, so to get into this block, both the current and
4841 previous frame must have valid frame IDs. */
005ca36a
JB
4842 /* The outer_frame_id check is a heuristic to detect stepping
4843 through startup code. If we step over an instruction which
4844 sets the stack pointer from an invalid value to a valid value,
4845 we may detect that as a subroutine call from the mythical
4846 "outermost" function. This could be fixed by marking
4847 outermost frames as !stack_p,code_p,special_p. Then the
4848 initial outermost frame, before sp was valid, would
ce6cca6d 4849 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4850 for more. */
edb3359d 4851 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4852 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4853 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4854 ecs->event_thread->control.step_stack_frame_id)
4855 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4856 outer_frame_id)
4857 || step_start_function != find_pc_function (stop_pc))))
488f131b 4858 {
95918acb 4859 CORE_ADDR real_stop_pc;
8fb3e588 4860
527159b7 4861 if (debug_infrun)
8a9de0e4 4862 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4863
16c381f0
JK
4864 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4865 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4866 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4867 ecs->stop_func_start)))
95918acb
AC
4868 {
4869 /* I presume that step_over_calls is only 0 when we're
4870 supposed to be stepping at the assembly language level
4871 ("stepi"). Just stop. */
4872 /* Also, maybe we just did a "nexti" inside a prolog, so we
4873 thought it was a subroutine call but it was not. Stop as
4874 well. FENN */
388a8562 4875 /* And this works the same backward as frontward. MVS */
16c381f0 4876 ecs->event_thread->control.stop_step = 1;
33d62d64 4877 print_end_stepping_range_reason ();
95918acb
AC
4878 stop_stepping (ecs);
4879 return;
4880 }
8fb3e588 4881
388a8562
MS
4882 /* Reverse stepping through solib trampolines. */
4883
4884 if (execution_direction == EXEC_REVERSE
16c381f0 4885 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4886 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4887 || (ecs->stop_func_start == 0
4888 && in_solib_dynsym_resolve_code (stop_pc))))
4889 {
4890 /* Any solib trampoline code can be handled in reverse
4891 by simply continuing to single-step. We have already
4892 executed the solib function (backwards), and a few
4893 steps will take us back through the trampoline to the
4894 caller. */
4895 keep_going (ecs);
4896 return;
4897 }
4898
16c381f0 4899 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4900 {
b2175913
MS
4901 /* We're doing a "next".
4902
4903 Normal (forward) execution: set a breakpoint at the
4904 callee's return address (the address at which the caller
4905 will resume).
4906
4907 Reverse (backward) execution. set the step-resume
4908 breakpoint at the start of the function that we just
4909 stepped into (backwards), and continue to there. When we
6130d0b7 4910 get there, we'll need to single-step back to the caller. */
b2175913
MS
4911
4912 if (execution_direction == EXEC_REVERSE)
4913 {
acf9414f
JK
4914 /* If we're already at the start of the function, we've either
4915 just stepped backward into a single instruction function,
4916 or stepped back out of a signal handler to the first instruction
4917 of the function. Just keep going, which will single-step back
4918 to the caller. */
58c48e72 4919 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
4920 {
4921 struct symtab_and_line sr_sal;
4922
4923 /* Normal function call return (static or dynamic). */
4924 init_sal (&sr_sal);
4925 sr_sal.pc = ecs->stop_func_start;
4926 sr_sal.pspace = get_frame_program_space (frame);
4927 insert_step_resume_breakpoint_at_sal (gdbarch,
4928 sr_sal, null_frame_id);
4929 }
b2175913
MS
4930 }
4931 else
568d6575 4932 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4933
8567c30f
AC
4934 keep_going (ecs);
4935 return;
4936 }
a53c66de 4937
95918acb 4938 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4939 calling routine and the real function), locate the real
4940 function. That's what tells us (a) whether we want to step
4941 into it at all, and (b) what prologue we want to run to the
4942 end of, if we do step into it. */
568d6575 4943 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4944 if (real_stop_pc == 0)
568d6575 4945 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4946 if (real_stop_pc != 0)
4947 ecs->stop_func_start = real_stop_pc;
8fb3e588 4948
db5f024e 4949 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4950 {
4951 struct symtab_and_line sr_sal;
abbb1732 4952
1b2bfbb9
RC
4953 init_sal (&sr_sal);
4954 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4955 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4956
a6d9a66e
UW
4957 insert_step_resume_breakpoint_at_sal (gdbarch,
4958 sr_sal, null_frame_id);
8fb3e588
AC
4959 keep_going (ecs);
4960 return;
1b2bfbb9
RC
4961 }
4962
95918acb 4963 /* If we have line number information for the function we are
1bfeeb0f
JL
4964 thinking of stepping into and the function isn't on the skip
4965 list, step into it.
95918acb 4966
8fb3e588
AC
4967 If there are several symtabs at that PC (e.g. with include
4968 files), just want to know whether *any* of them have line
4969 numbers. find_pc_line handles this. */
95918acb
AC
4970 {
4971 struct symtab_and_line tmp_sal;
8fb3e588 4972
95918acb 4973 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 4974 if (tmp_sal.line != 0
85817405
JK
4975 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4976 &tmp_sal))
95918acb 4977 {
b2175913 4978 if (execution_direction == EXEC_REVERSE)
568d6575 4979 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4980 else
568d6575 4981 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4982 return;
4983 }
4984 }
4985
4986 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4987 set, we stop the step so that the user has a chance to switch
4988 in assembly mode. */
16c381f0 4989 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4990 && step_stop_if_no_debug)
95918acb 4991 {
16c381f0 4992 ecs->event_thread->control.stop_step = 1;
33d62d64 4993 print_end_stepping_range_reason ();
95918acb
AC
4994 stop_stepping (ecs);
4995 return;
4996 }
4997
b2175913
MS
4998 if (execution_direction == EXEC_REVERSE)
4999 {
acf9414f
JK
5000 /* If we're already at the start of the function, we've either just
5001 stepped backward into a single instruction function without line
5002 number info, or stepped back out of a signal handler to the first
5003 instruction of the function without line number info. Just keep
5004 going, which will single-step back to the caller. */
5005 if (ecs->stop_func_start != stop_pc)
5006 {
5007 /* Set a breakpoint at callee's start address.
5008 From there we can step once and be back in the caller. */
5009 struct symtab_and_line sr_sal;
abbb1732 5010
acf9414f
JK
5011 init_sal (&sr_sal);
5012 sr_sal.pc = ecs->stop_func_start;
5013 sr_sal.pspace = get_frame_program_space (frame);
5014 insert_step_resume_breakpoint_at_sal (gdbarch,
5015 sr_sal, null_frame_id);
5016 }
b2175913
MS
5017 }
5018 else
5019 /* Set a breakpoint at callee's return address (the address
5020 at which the caller will resume). */
568d6575 5021 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5022
95918acb 5023 keep_going (ecs);
488f131b 5024 return;
488f131b 5025 }
c906108c 5026
fdd654f3
MS
5027 /* Reverse stepping through solib trampolines. */
5028
5029 if (execution_direction == EXEC_REVERSE
16c381f0 5030 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5031 {
5032 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5033 || (ecs->stop_func_start == 0
5034 && in_solib_dynsym_resolve_code (stop_pc)))
5035 {
5036 /* Any solib trampoline code can be handled in reverse
5037 by simply continuing to single-step. We have already
5038 executed the solib function (backwards), and a few
5039 steps will take us back through the trampoline to the
5040 caller. */
5041 keep_going (ecs);
5042 return;
5043 }
5044 else if (in_solib_dynsym_resolve_code (stop_pc))
5045 {
5046 /* Stepped backward into the solib dynsym resolver.
5047 Set a breakpoint at its start and continue, then
5048 one more step will take us out. */
5049 struct symtab_and_line sr_sal;
abbb1732 5050
fdd654f3
MS
5051 init_sal (&sr_sal);
5052 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5053 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5054 insert_step_resume_breakpoint_at_sal (gdbarch,
5055 sr_sal, null_frame_id);
5056 keep_going (ecs);
5057 return;
5058 }
5059 }
5060
2afb61aa 5061 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5062
1b2bfbb9
RC
5063 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5064 the trampoline processing logic, however, there are some trampolines
5065 that have no names, so we should do trampoline handling first. */
16c381f0 5066 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5067 && ecs->stop_func_name == NULL
2afb61aa 5068 && stop_pc_sal.line == 0)
1b2bfbb9 5069 {
527159b7 5070 if (debug_infrun)
3e43a32a
MS
5071 fprintf_unfiltered (gdb_stdlog,
5072 "infrun: stepped into undebuggable function\n");
527159b7 5073
1b2bfbb9 5074 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5075 undebuggable function (where there is no debugging information
5076 and no line number corresponding to the address where the
1b2bfbb9
RC
5077 inferior stopped). Since we want to skip this kind of code,
5078 we keep going until the inferior returns from this
14e60db5
DJ
5079 function - unless the user has asked us not to (via
5080 set step-mode) or we no longer know how to get back
5081 to the call site. */
5082 if (step_stop_if_no_debug
c7ce8faa 5083 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5084 {
5085 /* If we have no line number and the step-stop-if-no-debug
5086 is set, we stop the step so that the user has a chance to
5087 switch in assembly mode. */
16c381f0 5088 ecs->event_thread->control.stop_step = 1;
33d62d64 5089 print_end_stepping_range_reason ();
1b2bfbb9
RC
5090 stop_stepping (ecs);
5091 return;
5092 }
5093 else
5094 {
5095 /* Set a breakpoint at callee's return address (the address
5096 at which the caller will resume). */
568d6575 5097 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5098 keep_going (ecs);
5099 return;
5100 }
5101 }
5102
16c381f0 5103 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5104 {
5105 /* It is stepi or nexti. We always want to stop stepping after
5106 one instruction. */
527159b7 5107 if (debug_infrun)
8a9de0e4 5108 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5109 ecs->event_thread->control.stop_step = 1;
33d62d64 5110 print_end_stepping_range_reason ();
1b2bfbb9
RC
5111 stop_stepping (ecs);
5112 return;
5113 }
5114
2afb61aa 5115 if (stop_pc_sal.line == 0)
488f131b
JB
5116 {
5117 /* We have no line number information. That means to stop
5118 stepping (does this always happen right after one instruction,
5119 when we do "s" in a function with no line numbers,
5120 or can this happen as a result of a return or longjmp?). */
527159b7 5121 if (debug_infrun)
8a9de0e4 5122 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5123 ecs->event_thread->control.stop_step = 1;
33d62d64 5124 print_end_stepping_range_reason ();
488f131b
JB
5125 stop_stepping (ecs);
5126 return;
5127 }
c906108c 5128
edb3359d
DJ
5129 /* Look for "calls" to inlined functions, part one. If the inline
5130 frame machinery detected some skipped call sites, we have entered
5131 a new inline function. */
5132
5133 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5134 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5135 && inline_skipped_frames (ecs->ptid))
5136 {
5137 struct symtab_and_line call_sal;
5138
5139 if (debug_infrun)
5140 fprintf_unfiltered (gdb_stdlog,
5141 "infrun: stepped into inlined function\n");
5142
5143 find_frame_sal (get_current_frame (), &call_sal);
5144
16c381f0 5145 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5146 {
5147 /* For "step", we're going to stop. But if the call site
5148 for this inlined function is on the same source line as
5149 we were previously stepping, go down into the function
5150 first. Otherwise stop at the call site. */
5151
5152 if (call_sal.line == ecs->event_thread->current_line
5153 && call_sal.symtab == ecs->event_thread->current_symtab)
5154 step_into_inline_frame (ecs->ptid);
5155
16c381f0 5156 ecs->event_thread->control.stop_step = 1;
33d62d64 5157 print_end_stepping_range_reason ();
edb3359d
DJ
5158 stop_stepping (ecs);
5159 return;
5160 }
5161 else
5162 {
5163 /* For "next", we should stop at the call site if it is on a
5164 different source line. Otherwise continue through the
5165 inlined function. */
5166 if (call_sal.line == ecs->event_thread->current_line
5167 && call_sal.symtab == ecs->event_thread->current_symtab)
5168 keep_going (ecs);
5169 else
5170 {
16c381f0 5171 ecs->event_thread->control.stop_step = 1;
33d62d64 5172 print_end_stepping_range_reason ();
edb3359d
DJ
5173 stop_stepping (ecs);
5174 }
5175 return;
5176 }
5177 }
5178
5179 /* Look for "calls" to inlined functions, part two. If we are still
5180 in the same real function we were stepping through, but we have
5181 to go further up to find the exact frame ID, we are stepping
5182 through a more inlined call beyond its call site. */
5183
5184 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5185 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5186 ecs->event_thread->control.step_frame_id)
edb3359d 5187 && stepped_in_from (get_current_frame (),
16c381f0 5188 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5189 {
5190 if (debug_infrun)
5191 fprintf_unfiltered (gdb_stdlog,
5192 "infrun: stepping through inlined function\n");
5193
16c381f0 5194 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5195 keep_going (ecs);
5196 else
5197 {
16c381f0 5198 ecs->event_thread->control.stop_step = 1;
33d62d64 5199 print_end_stepping_range_reason ();
edb3359d
DJ
5200 stop_stepping (ecs);
5201 }
5202 return;
5203 }
5204
2afb61aa 5205 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5206 && (ecs->event_thread->current_line != stop_pc_sal.line
5207 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5208 {
5209 /* We are at the start of a different line. So stop. Note that
5210 we don't stop if we step into the middle of a different line.
5211 That is said to make things like for (;;) statements work
5212 better. */
527159b7 5213 if (debug_infrun)
3e43a32a
MS
5214 fprintf_unfiltered (gdb_stdlog,
5215 "infrun: stepped to a different line\n");
16c381f0 5216 ecs->event_thread->control.stop_step = 1;
33d62d64 5217 print_end_stepping_range_reason ();
488f131b
JB
5218 stop_stepping (ecs);
5219 return;
5220 }
c906108c 5221
488f131b 5222 /* We aren't done stepping.
c906108c 5223
488f131b
JB
5224 Optimize by setting the stepping range to the line.
5225 (We might not be in the original line, but if we entered a
5226 new line in mid-statement, we continue stepping. This makes
5227 things like for(;;) statements work better.) */
c906108c 5228
16c381f0
JK
5229 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5230 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5231 ecs->event_thread->control.may_range_step = 1;
edb3359d 5232 set_step_info (frame, stop_pc_sal);
488f131b 5233
527159b7 5234 if (debug_infrun)
8a9de0e4 5235 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5236 keep_going (ecs);
104c1213
JM
5237}
5238
c447ac0b
PA
5239/* In all-stop mode, if we're currently stepping but have stopped in
5240 some other thread, we may need to switch back to the stepped
5241 thread. Returns true we set the inferior running, false if we left
5242 it stopped (and the event needs further processing). */
5243
5244static int
5245switch_back_to_stepped_thread (struct execution_control_state *ecs)
5246{
5247 if (!non_stop)
5248 {
5249 struct thread_info *tp;
5250
5251 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5252 ecs->event_thread);
5253 if (tp)
5254 {
5255 /* However, if the current thread is blocked on some internal
5256 breakpoint, and we simply need to step over that breakpoint
5257 to get it going again, do that first. */
5258 if ((ecs->event_thread->control.trap_expected
5259 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5260 || ecs->event_thread->stepping_over_breakpoint)
5261 {
5262 keep_going (ecs);
5263 return 1;
5264 }
5265
5266 /* If the stepping thread exited, then don't try to switch
5267 back and resume it, which could fail in several different
5268 ways depending on the target. Instead, just keep going.
5269
5270 We can find a stepping dead thread in the thread list in
5271 two cases:
5272
5273 - The target supports thread exit events, and when the
5274 target tries to delete the thread from the thread list,
5275 inferior_ptid pointed at the exiting thread. In such
5276 case, calling delete_thread does not really remove the
5277 thread from the list; instead, the thread is left listed,
5278 with 'exited' state.
5279
5280 - The target's debug interface does not support thread
5281 exit events, and so we have no idea whatsoever if the
5282 previously stepping thread is still alive. For that
5283 reason, we need to synchronously query the target
5284 now. */
5285 if (is_exited (tp->ptid)
5286 || !target_thread_alive (tp->ptid))
5287 {
5288 if (debug_infrun)
5289 fprintf_unfiltered (gdb_stdlog,
5290 "infrun: not switching back to "
5291 "stepped thread, it has vanished\n");
5292
5293 delete_thread (tp->ptid);
5294 keep_going (ecs);
5295 return 1;
5296 }
5297
5298 /* Otherwise, we no longer expect a trap in the current thread.
5299 Clear the trap_expected flag before switching back -- this is
5300 what keep_going would do as well, if we called it. */
5301 ecs->event_thread->control.trap_expected = 0;
5302
5303 if (debug_infrun)
5304 fprintf_unfiltered (gdb_stdlog,
5305 "infrun: switching back to stepped thread\n");
5306
5307 ecs->event_thread = tp;
5308 ecs->ptid = tp->ptid;
5309 context_switch (ecs->ptid);
5310 keep_going (ecs);
5311 return 1;
5312 }
5313 }
5314 return 0;
5315}
5316
b3444185 5317/* Is thread TP in the middle of single-stepping? */
104c1213 5318
a289b8f6 5319static int
b3444185 5320currently_stepping (struct thread_info *tp)
a7212384 5321{
8358c15c
JK
5322 return ((tp->control.step_range_end
5323 && tp->control.step_resume_breakpoint == NULL)
5324 || tp->control.trap_expected
8358c15c 5325 || bpstat_should_step ());
a7212384
UW
5326}
5327
b3444185
PA
5328/* Returns true if any thread *but* the one passed in "data" is in the
5329 middle of stepping or of handling a "next". */
a7212384 5330
104c1213 5331static int
b3444185 5332currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5333{
b3444185
PA
5334 if (tp == data)
5335 return 0;
5336
16c381f0 5337 return (tp->control.step_range_end
ede1849f 5338 || tp->control.trap_expected);
104c1213 5339}
c906108c 5340
b2175913
MS
5341/* Inferior has stepped into a subroutine call with source code that
5342 we should not step over. Do step to the first line of code in
5343 it. */
c2c6d25f
JM
5344
5345static void
568d6575
UW
5346handle_step_into_function (struct gdbarch *gdbarch,
5347 struct execution_control_state *ecs)
c2c6d25f
JM
5348{
5349 struct symtab *s;
2afb61aa 5350 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5351
7e324e48
GB
5352 fill_in_stop_func (gdbarch, ecs);
5353
c2c6d25f
JM
5354 s = find_pc_symtab (stop_pc);
5355 if (s && s->language != language_asm)
568d6575 5356 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5357 ecs->stop_func_start);
c2c6d25f 5358
2afb61aa 5359 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5360 /* Use the step_resume_break to step until the end of the prologue,
5361 even if that involves jumps (as it seems to on the vax under
5362 4.2). */
5363 /* If the prologue ends in the middle of a source line, continue to
5364 the end of that source line (if it is still within the function).
5365 Otherwise, just go to end of prologue. */
2afb61aa
PA
5366 if (stop_func_sal.end
5367 && stop_func_sal.pc != ecs->stop_func_start
5368 && stop_func_sal.end < ecs->stop_func_end)
5369 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5370
2dbd5e30
KB
5371 /* Architectures which require breakpoint adjustment might not be able
5372 to place a breakpoint at the computed address. If so, the test
5373 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5374 ecs->stop_func_start to an address at which a breakpoint may be
5375 legitimately placed.
8fb3e588 5376
2dbd5e30
KB
5377 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5378 made, GDB will enter an infinite loop when stepping through
5379 optimized code consisting of VLIW instructions which contain
5380 subinstructions corresponding to different source lines. On
5381 FR-V, it's not permitted to place a breakpoint on any but the
5382 first subinstruction of a VLIW instruction. When a breakpoint is
5383 set, GDB will adjust the breakpoint address to the beginning of
5384 the VLIW instruction. Thus, we need to make the corresponding
5385 adjustment here when computing the stop address. */
8fb3e588 5386
568d6575 5387 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5388 {
5389 ecs->stop_func_start
568d6575 5390 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5391 ecs->stop_func_start);
2dbd5e30
KB
5392 }
5393
c2c6d25f
JM
5394 if (ecs->stop_func_start == stop_pc)
5395 {
5396 /* We are already there: stop now. */
16c381f0 5397 ecs->event_thread->control.stop_step = 1;
33d62d64 5398 print_end_stepping_range_reason ();
c2c6d25f
JM
5399 stop_stepping (ecs);
5400 return;
5401 }
5402 else
5403 {
5404 /* Put the step-breakpoint there and go until there. */
fe39c653 5405 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5406 sr_sal.pc = ecs->stop_func_start;
5407 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5408 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5409
c2c6d25f 5410 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5411 some machines the prologue is where the new fp value is
5412 established. */
a6d9a66e 5413 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5414
5415 /* And make sure stepping stops right away then. */
16c381f0
JK
5416 ecs->event_thread->control.step_range_end
5417 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5418 }
5419 keep_going (ecs);
5420}
d4f3574e 5421
b2175913
MS
5422/* Inferior has stepped backward into a subroutine call with source
5423 code that we should not step over. Do step to the beginning of the
5424 last line of code in it. */
5425
5426static void
568d6575
UW
5427handle_step_into_function_backward (struct gdbarch *gdbarch,
5428 struct execution_control_state *ecs)
b2175913
MS
5429{
5430 struct symtab *s;
167e4384 5431 struct symtab_and_line stop_func_sal;
b2175913 5432
7e324e48
GB
5433 fill_in_stop_func (gdbarch, ecs);
5434
b2175913
MS
5435 s = find_pc_symtab (stop_pc);
5436 if (s && s->language != language_asm)
568d6575 5437 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5438 ecs->stop_func_start);
5439
5440 stop_func_sal = find_pc_line (stop_pc, 0);
5441
5442 /* OK, we're just going to keep stepping here. */
5443 if (stop_func_sal.pc == stop_pc)
5444 {
5445 /* We're there already. Just stop stepping now. */
16c381f0 5446 ecs->event_thread->control.stop_step = 1;
33d62d64 5447 print_end_stepping_range_reason ();
b2175913
MS
5448 stop_stepping (ecs);
5449 }
5450 else
5451 {
5452 /* Else just reset the step range and keep going.
5453 No step-resume breakpoint, they don't work for
5454 epilogues, which can have multiple entry paths. */
16c381f0
JK
5455 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5456 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5457 keep_going (ecs);
5458 }
5459 return;
5460}
5461
d3169d93 5462/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5463 This is used to both functions and to skip over code. */
5464
5465static void
2c03e5be
PA
5466insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5467 struct symtab_and_line sr_sal,
5468 struct frame_id sr_id,
5469 enum bptype sr_type)
44cbf7b5 5470{
611c83ae
PA
5471 /* There should never be more than one step-resume or longjmp-resume
5472 breakpoint per thread, so we should never be setting a new
44cbf7b5 5473 step_resume_breakpoint when one is already active. */
8358c15c 5474 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5475 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5476
5477 if (debug_infrun)
5478 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5479 "infrun: inserting step-resume breakpoint at %s\n",
5480 paddress (gdbarch, sr_sal.pc));
d3169d93 5481
8358c15c 5482 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5483 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5484}
5485
9da8c2a0 5486void
2c03e5be
PA
5487insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5488 struct symtab_and_line sr_sal,
5489 struct frame_id sr_id)
5490{
5491 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5492 sr_sal, sr_id,
5493 bp_step_resume);
44cbf7b5 5494}
7ce450bd 5495
2c03e5be
PA
5496/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5497 This is used to skip a potential signal handler.
7ce450bd 5498
14e60db5
DJ
5499 This is called with the interrupted function's frame. The signal
5500 handler, when it returns, will resume the interrupted function at
5501 RETURN_FRAME.pc. */
d303a6c7
AC
5502
5503static void
2c03e5be 5504insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5505{
5506 struct symtab_and_line sr_sal;
a6d9a66e 5507 struct gdbarch *gdbarch;
d303a6c7 5508
f4c1edd8 5509 gdb_assert (return_frame != NULL);
d303a6c7
AC
5510 init_sal (&sr_sal); /* initialize to zeros */
5511
a6d9a66e 5512 gdbarch = get_frame_arch (return_frame);
568d6575 5513 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5514 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5515 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5516
2c03e5be
PA
5517 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5518 get_stack_frame_id (return_frame),
5519 bp_hp_step_resume);
d303a6c7
AC
5520}
5521
2c03e5be
PA
5522/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5523 is used to skip a function after stepping into it (for "next" or if
5524 the called function has no debugging information).
14e60db5
DJ
5525
5526 The current function has almost always been reached by single
5527 stepping a call or return instruction. NEXT_FRAME belongs to the
5528 current function, and the breakpoint will be set at the caller's
5529 resume address.
5530
5531 This is a separate function rather than reusing
2c03e5be 5532 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5533 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5534 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5535
5536static void
5537insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5538{
5539 struct symtab_and_line sr_sal;
a6d9a66e 5540 struct gdbarch *gdbarch;
14e60db5
DJ
5541
5542 /* We shouldn't have gotten here if we don't know where the call site
5543 is. */
c7ce8faa 5544 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5545
5546 init_sal (&sr_sal); /* initialize to zeros */
5547
a6d9a66e 5548 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5549 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5550 frame_unwind_caller_pc (next_frame));
14e60db5 5551 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5552 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5553
a6d9a66e 5554 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5555 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5556}
5557
611c83ae
PA
5558/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5559 new breakpoint at the target of a jmp_buf. The handling of
5560 longjmp-resume uses the same mechanisms used for handling
5561 "step-resume" breakpoints. */
5562
5563static void
a6d9a66e 5564insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5565{
e81a37f7
TT
5566 /* There should never be more than one longjmp-resume breakpoint per
5567 thread, so we should never be setting a new
611c83ae 5568 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5569 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5570
5571 if (debug_infrun)
5572 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5573 "infrun: inserting longjmp-resume breakpoint at %s\n",
5574 paddress (gdbarch, pc));
611c83ae 5575
e81a37f7 5576 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5577 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5578}
5579
186c406b
TT
5580/* Insert an exception resume breakpoint. TP is the thread throwing
5581 the exception. The block B is the block of the unwinder debug hook
5582 function. FRAME is the frame corresponding to the call to this
5583 function. SYM is the symbol of the function argument holding the
5584 target PC of the exception. */
5585
5586static void
5587insert_exception_resume_breakpoint (struct thread_info *tp,
5588 struct block *b,
5589 struct frame_info *frame,
5590 struct symbol *sym)
5591{
bfd189b1 5592 volatile struct gdb_exception e;
186c406b
TT
5593
5594 /* We want to ignore errors here. */
5595 TRY_CATCH (e, RETURN_MASK_ERROR)
5596 {
5597 struct symbol *vsym;
5598 struct value *value;
5599 CORE_ADDR handler;
5600 struct breakpoint *bp;
5601
5602 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5603 value = read_var_value (vsym, frame);
5604 /* If the value was optimized out, revert to the old behavior. */
5605 if (! value_optimized_out (value))
5606 {
5607 handler = value_as_address (value);
5608
5609 if (debug_infrun)
5610 fprintf_unfiltered (gdb_stdlog,
5611 "infrun: exception resume at %lx\n",
5612 (unsigned long) handler);
5613
5614 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5615 handler, bp_exception_resume);
c70a6932
JK
5616
5617 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5618 frame = NULL;
5619
186c406b
TT
5620 bp->thread = tp->num;
5621 inferior_thread ()->control.exception_resume_breakpoint = bp;
5622 }
5623 }
5624}
5625
28106bc2
SDJ
5626/* A helper for check_exception_resume that sets an
5627 exception-breakpoint based on a SystemTap probe. */
5628
5629static void
5630insert_exception_resume_from_probe (struct thread_info *tp,
5631 const struct probe *probe,
28106bc2
SDJ
5632 struct frame_info *frame)
5633{
5634 struct value *arg_value;
5635 CORE_ADDR handler;
5636 struct breakpoint *bp;
5637
5638 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5639 if (!arg_value)
5640 return;
5641
5642 handler = value_as_address (arg_value);
5643
5644 if (debug_infrun)
5645 fprintf_unfiltered (gdb_stdlog,
5646 "infrun: exception resume at %s\n",
6bac7473 5647 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5648 handler));
5649
5650 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5651 handler, bp_exception_resume);
5652 bp->thread = tp->num;
5653 inferior_thread ()->control.exception_resume_breakpoint = bp;
5654}
5655
186c406b
TT
5656/* This is called when an exception has been intercepted. Check to
5657 see whether the exception's destination is of interest, and if so,
5658 set an exception resume breakpoint there. */
5659
5660static void
5661check_exception_resume (struct execution_control_state *ecs,
28106bc2 5662 struct frame_info *frame)
186c406b 5663{
bfd189b1 5664 volatile struct gdb_exception e;
28106bc2
SDJ
5665 const struct probe *probe;
5666 struct symbol *func;
5667
5668 /* First see if this exception unwinding breakpoint was set via a
5669 SystemTap probe point. If so, the probe has two arguments: the
5670 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5671 set a breakpoint there. */
6bac7473 5672 probe = find_probe_by_pc (get_frame_pc (frame));
28106bc2
SDJ
5673 if (probe)
5674 {
6bac7473 5675 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
28106bc2
SDJ
5676 return;
5677 }
5678
5679 func = get_frame_function (frame);
5680 if (!func)
5681 return;
186c406b
TT
5682
5683 TRY_CATCH (e, RETURN_MASK_ERROR)
5684 {
5685 struct block *b;
8157b174 5686 struct block_iterator iter;
186c406b
TT
5687 struct symbol *sym;
5688 int argno = 0;
5689
5690 /* The exception breakpoint is a thread-specific breakpoint on
5691 the unwinder's debug hook, declared as:
5692
5693 void _Unwind_DebugHook (void *cfa, void *handler);
5694
5695 The CFA argument indicates the frame to which control is
5696 about to be transferred. HANDLER is the destination PC.
5697
5698 We ignore the CFA and set a temporary breakpoint at HANDLER.
5699 This is not extremely efficient but it avoids issues in gdb
5700 with computing the DWARF CFA, and it also works even in weird
5701 cases such as throwing an exception from inside a signal
5702 handler. */
5703
5704 b = SYMBOL_BLOCK_VALUE (func);
5705 ALL_BLOCK_SYMBOLS (b, iter, sym)
5706 {
5707 if (!SYMBOL_IS_ARGUMENT (sym))
5708 continue;
5709
5710 if (argno == 0)
5711 ++argno;
5712 else
5713 {
5714 insert_exception_resume_breakpoint (ecs->event_thread,
5715 b, frame, sym);
5716 break;
5717 }
5718 }
5719 }
5720}
5721
104c1213
JM
5722static void
5723stop_stepping (struct execution_control_state *ecs)
5724{
527159b7 5725 if (debug_infrun)
8a9de0e4 5726 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5727
cd0fc7c3
SS
5728 /* Let callers know we don't want to wait for the inferior anymore. */
5729 ecs->wait_some_more = 0;
5730}
5731
a9ba6bae
PA
5732/* Called when we should continue running the inferior, because the
5733 current event doesn't cause a user visible stop. This does the
5734 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
5735
5736static void
5737keep_going (struct execution_control_state *ecs)
5738{
c4dbc9af
PA
5739 /* Make sure normal_stop is called if we get a QUIT handled before
5740 reaching resume. */
5741 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5742
d4f3574e 5743 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5744 ecs->event_thread->prev_pc
5745 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5746
16c381f0 5747 if (ecs->event_thread->control.trap_expected
a493e3e2 5748 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 5749 {
a9ba6bae
PA
5750 /* We haven't yet gotten our trap, and either: intercepted a
5751 non-signal event (e.g., a fork); or took a signal which we
5752 are supposed to pass through to the inferior. Simply
5753 continue. */
c4dbc9af 5754 discard_cleanups (old_cleanups);
2020b7ab 5755 resume (currently_stepping (ecs->event_thread),
16c381f0 5756 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5757 }
5758 else
5759 {
5760 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
5761 anyway (if we got a signal, the user asked it be passed to
5762 the child)
5763 -- or --
5764 We got our expected trap, but decided we should resume from
5765 it.
d4f3574e 5766
a9ba6bae 5767 We're going to run this baby now!
d4f3574e 5768
c36b740a
VP
5769 Note that insert_breakpoints won't try to re-insert
5770 already inserted breakpoints. Therefore, we don't
5771 care if breakpoints were already inserted, or not. */
a9ba6bae 5772
4e1c45ea 5773 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5774 {
9f5a595d 5775 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5776
9f5a595d 5777 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
a9ba6bae
PA
5778 {
5779 /* Since we can't do a displaced step, we have to remove
5780 the breakpoint while we step it. To keep things
5781 simple, we remove them all. */
5782 remove_breakpoints ();
5783 }
45e8c884
VP
5784 }
5785 else
d4f3574e 5786 {
bfd189b1 5787 volatile struct gdb_exception e;
abbb1732 5788
a9ba6bae 5789 /* Stop stepping if inserting breakpoints fails. */
e236ba44
VP
5790 TRY_CATCH (e, RETURN_MASK_ERROR)
5791 {
5792 insert_breakpoints ();
5793 }
5794 if (e.reason < 0)
d4f3574e 5795 {
97bd5475 5796 exception_print (gdb_stderr, e);
d4f3574e
SS
5797 stop_stepping (ecs);
5798 return;
5799 }
d4f3574e
SS
5800 }
5801
16c381f0
JK
5802 ecs->event_thread->control.trap_expected
5803 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e 5804
a9ba6bae
PA
5805 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5806 explicitly specifies that such a signal should be delivered
5807 to the target program). Typically, that would occur when a
5808 user is debugging a target monitor on a simulator: the target
5809 monitor sets a breakpoint; the simulator encounters this
5810 breakpoint and halts the simulation handing control to GDB;
5811 GDB, noting that the stop address doesn't map to any known
5812 breakpoint, returns control back to the simulator; the
5813 simulator then delivers the hardware equivalent of a
5814 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 5815 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5816 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5817 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5818
c4dbc9af 5819 discard_cleanups (old_cleanups);
2020b7ab 5820 resume (currently_stepping (ecs->event_thread),
16c381f0 5821 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5822 }
5823
488f131b 5824 prepare_to_wait (ecs);
d4f3574e
SS
5825}
5826
104c1213
JM
5827/* This function normally comes after a resume, before
5828 handle_inferior_event exits. It takes care of any last bits of
5829 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5830
104c1213
JM
5831static void
5832prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5833{
527159b7 5834 if (debug_infrun)
8a9de0e4 5835 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5836
104c1213
JM
5837 /* This is the old end of the while loop. Let everybody know we
5838 want to wait for the inferior some more and get called again
5839 soon. */
5840 ecs->wait_some_more = 1;
c906108c 5841}
11cf8741 5842
33d62d64
JK
5843/* Several print_*_reason functions to print why the inferior has stopped.
5844 We always print something when the inferior exits, or receives a signal.
5845 The rest of the cases are dealt with later on in normal_stop and
5846 print_it_typical. Ideally there should be a call to one of these
5847 print_*_reason functions functions from handle_inferior_event each time
5848 stop_stepping is called. */
5849
5850/* Print why the inferior has stopped.
5851 We are done with a step/next/si/ni command, print why the inferior has
5852 stopped. For now print nothing. Print a message only if not in the middle
5853 of doing a "step n" operation for n > 1. */
5854
5855static void
5856print_end_stepping_range_reason (void)
5857{
16c381f0
JK
5858 if ((!inferior_thread ()->step_multi
5859 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5860 && ui_out_is_mi_like_p (current_uiout))
5861 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5862 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5863}
5864
5865/* The inferior was terminated by a signal, print why it stopped. */
5866
11cf8741 5867static void
2ea28649 5868print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5869{
79a45e25
PA
5870 struct ui_out *uiout = current_uiout;
5871
33d62d64
JK
5872 annotate_signalled ();
5873 if (ui_out_is_mi_like_p (uiout))
5874 ui_out_field_string
5875 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5876 ui_out_text (uiout, "\nProgram terminated with signal ");
5877 annotate_signal_name ();
5878 ui_out_field_string (uiout, "signal-name",
2ea28649 5879 gdb_signal_to_name (siggnal));
33d62d64
JK
5880 annotate_signal_name_end ();
5881 ui_out_text (uiout, ", ");
5882 annotate_signal_string ();
5883 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5884 gdb_signal_to_string (siggnal));
33d62d64
JK
5885 annotate_signal_string_end ();
5886 ui_out_text (uiout, ".\n");
5887 ui_out_text (uiout, "The program no longer exists.\n");
5888}
5889
5890/* The inferior program is finished, print why it stopped. */
5891
5892static void
5893print_exited_reason (int exitstatus)
5894{
fda326dd
TT
5895 struct inferior *inf = current_inferior ();
5896 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5897 struct ui_out *uiout = current_uiout;
fda326dd 5898
33d62d64
JK
5899 annotate_exited (exitstatus);
5900 if (exitstatus)
5901 {
5902 if (ui_out_is_mi_like_p (uiout))
5903 ui_out_field_string (uiout, "reason",
5904 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5905 ui_out_text (uiout, "[Inferior ");
5906 ui_out_text (uiout, plongest (inf->num));
5907 ui_out_text (uiout, " (");
5908 ui_out_text (uiout, pidstr);
5909 ui_out_text (uiout, ") exited with code ");
33d62d64 5910 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5911 ui_out_text (uiout, "]\n");
33d62d64
JK
5912 }
5913 else
11cf8741 5914 {
9dc5e2a9 5915 if (ui_out_is_mi_like_p (uiout))
034dad6f 5916 ui_out_field_string
33d62d64 5917 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5918 ui_out_text (uiout, "[Inferior ");
5919 ui_out_text (uiout, plongest (inf->num));
5920 ui_out_text (uiout, " (");
5921 ui_out_text (uiout, pidstr);
5922 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5923 }
5924 /* Support the --return-child-result option. */
5925 return_child_result_value = exitstatus;
5926}
5927
5928/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5929 tells us to print about it. */
33d62d64
JK
5930
5931static void
2ea28649 5932print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5933{
79a45e25
PA
5934 struct ui_out *uiout = current_uiout;
5935
33d62d64
JK
5936 annotate_signal ();
5937
a493e3e2 5938 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5939 {
5940 struct thread_info *t = inferior_thread ();
5941
5942 ui_out_text (uiout, "\n[");
5943 ui_out_field_string (uiout, "thread-name",
5944 target_pid_to_str (t->ptid));
5945 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5946 ui_out_text (uiout, " stopped");
5947 }
5948 else
5949 {
5950 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5951 annotate_signal_name ();
33d62d64
JK
5952 if (ui_out_is_mi_like_p (uiout))
5953 ui_out_field_string
5954 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5955 ui_out_field_string (uiout, "signal-name",
2ea28649 5956 gdb_signal_to_name (siggnal));
8b93c638
JM
5957 annotate_signal_name_end ();
5958 ui_out_text (uiout, ", ");
5959 annotate_signal_string ();
488f131b 5960 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5961 gdb_signal_to_string (siggnal));
8b93c638 5962 annotate_signal_string_end ();
33d62d64
JK
5963 }
5964 ui_out_text (uiout, ".\n");
5965}
252fbfc8 5966
33d62d64
JK
5967/* Reverse execution: target ran out of history info, print why the inferior
5968 has stopped. */
252fbfc8 5969
33d62d64
JK
5970static void
5971print_no_history_reason (void)
5972{
79a45e25 5973 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5974}
43ff13b4 5975
c906108c
SS
5976/* Here to return control to GDB when the inferior stops for real.
5977 Print appropriate messages, remove breakpoints, give terminal our modes.
5978
5979 STOP_PRINT_FRAME nonzero means print the executing frame
5980 (pc, function, args, file, line number and line text).
5981 BREAKPOINTS_FAILED nonzero means stop was due to error
5982 attempting to insert breakpoints. */
5983
5984void
96baa820 5985normal_stop (void)
c906108c 5986{
73b65bb0
DJ
5987 struct target_waitstatus last;
5988 ptid_t last_ptid;
29f49a6a 5989 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5990
5991 get_last_target_status (&last_ptid, &last);
5992
29f49a6a
PA
5993 /* If an exception is thrown from this point on, make sure to
5994 propagate GDB's knowledge of the executing state to the
5995 frontend/user running state. A QUIT is an easy exception to see
5996 here, so do this before any filtered output. */
c35b1492
PA
5997 if (!non_stop)
5998 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5999 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6000 && last.kind != TARGET_WAITKIND_EXITED
6001 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 6002 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 6003
4f8d22e3
PA
6004 /* In non-stop mode, we don't want GDB to switch threads behind the
6005 user's back, to avoid races where the user is typing a command to
6006 apply to thread x, but GDB switches to thread y before the user
6007 finishes entering the command. */
6008
c906108c
SS
6009 /* As with the notification of thread events, we want to delay
6010 notifying the user that we've switched thread context until
6011 the inferior actually stops.
6012
73b65bb0
DJ
6013 There's no point in saying anything if the inferior has exited.
6014 Note that SIGNALLED here means "exited with a signal", not
6015 "received a signal". */
4f8d22e3
PA
6016 if (!non_stop
6017 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6018 && target_has_execution
6019 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6020 && last.kind != TARGET_WAITKIND_EXITED
6021 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6022 {
6023 target_terminal_ours_for_output ();
a3f17187 6024 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6025 target_pid_to_str (inferior_ptid));
b8fa951a 6026 annotate_thread_changed ();
39f77062 6027 previous_inferior_ptid = inferior_ptid;
c906108c 6028 }
c906108c 6029
0e5bf2a8
PA
6030 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6031 {
6032 gdb_assert (sync_execution || !target_can_async_p ());
6033
6034 target_terminal_ours_for_output ();
6035 printf_filtered (_("No unwaited-for children left.\n"));
6036 }
6037
74960c60 6038 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
6039 {
6040 if (remove_breakpoints ())
6041 {
6042 target_terminal_ours_for_output ();
3e43a32a
MS
6043 printf_filtered (_("Cannot remove breakpoints because "
6044 "program is no longer writable.\nFurther "
6045 "execution is probably impossible.\n"));
c906108c
SS
6046 }
6047 }
c906108c 6048
c906108c
SS
6049 /* If an auto-display called a function and that got a signal,
6050 delete that auto-display to avoid an infinite recursion. */
6051
6052 if (stopped_by_random_signal)
6053 disable_current_display ();
6054
6055 /* Don't print a message if in the middle of doing a "step n"
6056 operation for n > 1 */
af679fd0
PA
6057 if (target_has_execution
6058 && last.kind != TARGET_WAITKIND_SIGNALLED
6059 && last.kind != TARGET_WAITKIND_EXITED
6060 && inferior_thread ()->step_multi
16c381f0 6061 && inferior_thread ()->control.stop_step)
c906108c
SS
6062 goto done;
6063
6064 target_terminal_ours ();
0f641c01 6065 async_enable_stdin ();
c906108c 6066
7abfe014
DJ
6067 /* Set the current source location. This will also happen if we
6068 display the frame below, but the current SAL will be incorrect
6069 during a user hook-stop function. */
d729566a 6070 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
6071 set_current_sal_from_frame (get_current_frame (), 1);
6072
dd7e2d2b
PA
6073 /* Let the user/frontend see the threads as stopped. */
6074 do_cleanups (old_chain);
6075
6076 /* Look up the hook_stop and run it (CLI internally handles problem
6077 of stop_command's pre-hook not existing). */
6078 if (stop_command)
6079 catch_errors (hook_stop_stub, stop_command,
6080 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6081
d729566a 6082 if (!has_stack_frames ())
d51fd4c8 6083 goto done;
c906108c 6084
32400beb
PA
6085 if (last.kind == TARGET_WAITKIND_SIGNALLED
6086 || last.kind == TARGET_WAITKIND_EXITED)
6087 goto done;
6088
c906108c
SS
6089 /* Select innermost stack frame - i.e., current frame is frame 0,
6090 and current location is based on that.
6091 Don't do this on return from a stack dummy routine,
1777feb0 6092 or if the program has exited. */
c906108c
SS
6093
6094 if (!stop_stack_dummy)
6095 {
0f7d239c 6096 select_frame (get_current_frame ());
c906108c
SS
6097
6098 /* Print current location without a level number, if
c5aa993b
JM
6099 we have changed functions or hit a breakpoint.
6100 Print source line if we have one.
6101 bpstat_print() contains the logic deciding in detail
1777feb0 6102 what to print, based on the event(s) that just occurred. */
c906108c 6103
d01a8610
AS
6104 /* If --batch-silent is enabled then there's no need to print the current
6105 source location, and to try risks causing an error message about
6106 missing source files. */
6107 if (stop_print_frame && !batch_silent)
c906108c
SS
6108 {
6109 int bpstat_ret;
6110 int source_flag;
917317f4 6111 int do_frame_printing = 1;
347bddb7 6112 struct thread_info *tp = inferior_thread ();
c906108c 6113
36dfb11c 6114 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
6115 switch (bpstat_ret)
6116 {
6117 case PRINT_UNKNOWN:
aa0cd9c1 6118 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6119 (or should) carry around the function and does (or
6120 should) use that when doing a frame comparison. */
16c381f0
JK
6121 if (tp->control.stop_step
6122 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6123 get_frame_id (get_current_frame ()))
917317f4 6124 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6125 source_flag = SRC_LINE; /* Finished step, just
6126 print source line. */
917317f4 6127 else
1777feb0
MS
6128 source_flag = SRC_AND_LOC; /* Print location and
6129 source line. */
917317f4
JM
6130 break;
6131 case PRINT_SRC_AND_LOC:
1777feb0
MS
6132 source_flag = SRC_AND_LOC; /* Print location and
6133 source line. */
917317f4
JM
6134 break;
6135 case PRINT_SRC_ONLY:
c5394b80 6136 source_flag = SRC_LINE;
917317f4
JM
6137 break;
6138 case PRINT_NOTHING:
488f131b 6139 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6140 do_frame_printing = 0;
6141 break;
6142 default:
e2e0b3e5 6143 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6144 }
c906108c
SS
6145
6146 /* The behavior of this routine with respect to the source
6147 flag is:
c5394b80
JM
6148 SRC_LINE: Print only source line
6149 LOCATION: Print only location
1777feb0 6150 SRC_AND_LOC: Print location and source line. */
917317f4 6151 if (do_frame_printing)
08d72866 6152 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
c906108c
SS
6153
6154 /* Display the auto-display expressions. */
6155 do_displays ();
6156 }
6157 }
6158
6159 /* Save the function value return registers, if we care.
6160 We might be about to restore their previous contents. */
9da8c2a0
PA
6161 if (inferior_thread ()->control.proceed_to_finish
6162 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6163 {
6164 /* This should not be necessary. */
6165 if (stop_registers)
6166 regcache_xfree (stop_registers);
6167
6168 /* NB: The copy goes through to the target picking up the value of
6169 all the registers. */
6170 stop_registers = regcache_dup (get_current_regcache ());
6171 }
c906108c 6172
aa7d318d 6173 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6174 {
b89667eb
DE
6175 /* Pop the empty frame that contains the stack dummy.
6176 This also restores inferior state prior to the call
16c381f0 6177 (struct infcall_suspend_state). */
b89667eb 6178 struct frame_info *frame = get_current_frame ();
abbb1732 6179
b89667eb
DE
6180 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6181 frame_pop (frame);
3e43a32a
MS
6182 /* frame_pop() calls reinit_frame_cache as the last thing it
6183 does which means there's currently no selected frame. We
6184 don't need to re-establish a selected frame if the dummy call
6185 returns normally, that will be done by
6186 restore_infcall_control_state. However, we do have to handle
6187 the case where the dummy call is returning after being
6188 stopped (e.g. the dummy call previously hit a breakpoint).
6189 We can't know which case we have so just always re-establish
6190 a selected frame here. */
0f7d239c 6191 select_frame (get_current_frame ());
c906108c
SS
6192 }
6193
c906108c
SS
6194done:
6195 annotate_stopped ();
41d2bdb4
PA
6196
6197 /* Suppress the stop observer if we're in the middle of:
6198
6199 - a step n (n > 1), as there still more steps to be done.
6200
6201 - a "finish" command, as the observer will be called in
6202 finish_command_continuation, so it can include the inferior
6203 function's return value.
6204
6205 - calling an inferior function, as we pretend we inferior didn't
6206 run at all. The return value of the call is handled by the
6207 expression evaluator, through call_function_by_hand. */
6208
6209 if (!target_has_execution
6210 || last.kind == TARGET_WAITKIND_SIGNALLED
6211 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6212 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6213 || (!(inferior_thread ()->step_multi
6214 && inferior_thread ()->control.stop_step)
16c381f0
JK
6215 && !(inferior_thread ()->control.stop_bpstat
6216 && inferior_thread ()->control.proceed_to_finish)
6217 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6218 {
6219 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6220 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6221 stop_print_frame);
347bddb7 6222 else
1d33d6ba 6223 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6224 }
347bddb7 6225
48844aa6
PA
6226 if (target_has_execution)
6227 {
6228 if (last.kind != TARGET_WAITKIND_SIGNALLED
6229 && last.kind != TARGET_WAITKIND_EXITED)
6230 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6231 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6232 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6233 }
6c95b8df
PA
6234
6235 /* Try to get rid of automatically added inferiors that are no
6236 longer needed. Keeping those around slows down things linearly.
6237 Note that this never removes the current inferior. */
6238 prune_inferiors ();
c906108c
SS
6239}
6240
6241static int
96baa820 6242hook_stop_stub (void *cmd)
c906108c 6243{
5913bcb0 6244 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6245 return (0);
6246}
6247\f
c5aa993b 6248int
96baa820 6249signal_stop_state (int signo)
c906108c 6250{
d6b48e9c 6251 return signal_stop[signo];
c906108c
SS
6252}
6253
c5aa993b 6254int
96baa820 6255signal_print_state (int signo)
c906108c
SS
6256{
6257 return signal_print[signo];
6258}
6259
c5aa993b 6260int
96baa820 6261signal_pass_state (int signo)
c906108c
SS
6262{
6263 return signal_program[signo];
6264}
6265
2455069d
UW
6266static void
6267signal_cache_update (int signo)
6268{
6269 if (signo == -1)
6270 {
a493e3e2 6271 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6272 signal_cache_update (signo);
6273
6274 return;
6275 }
6276
6277 signal_pass[signo] = (signal_stop[signo] == 0
6278 && signal_print[signo] == 0
ab04a2af
TT
6279 && signal_program[signo] == 1
6280 && signal_catch[signo] == 0);
2455069d
UW
6281}
6282
488f131b 6283int
7bda5e4a 6284signal_stop_update (int signo, int state)
d4f3574e
SS
6285{
6286 int ret = signal_stop[signo];
abbb1732 6287
d4f3574e 6288 signal_stop[signo] = state;
2455069d 6289 signal_cache_update (signo);
d4f3574e
SS
6290 return ret;
6291}
6292
488f131b 6293int
7bda5e4a 6294signal_print_update (int signo, int state)
d4f3574e
SS
6295{
6296 int ret = signal_print[signo];
abbb1732 6297
d4f3574e 6298 signal_print[signo] = state;
2455069d 6299 signal_cache_update (signo);
d4f3574e
SS
6300 return ret;
6301}
6302
488f131b 6303int
7bda5e4a 6304signal_pass_update (int signo, int state)
d4f3574e
SS
6305{
6306 int ret = signal_program[signo];
abbb1732 6307
d4f3574e 6308 signal_program[signo] = state;
2455069d 6309 signal_cache_update (signo);
d4f3574e
SS
6310 return ret;
6311}
6312
ab04a2af
TT
6313/* Update the global 'signal_catch' from INFO and notify the
6314 target. */
6315
6316void
6317signal_catch_update (const unsigned int *info)
6318{
6319 int i;
6320
6321 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6322 signal_catch[i] = info[i] > 0;
6323 signal_cache_update (-1);
6324 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6325}
6326
c906108c 6327static void
96baa820 6328sig_print_header (void)
c906108c 6329{
3e43a32a
MS
6330 printf_filtered (_("Signal Stop\tPrint\tPass "
6331 "to program\tDescription\n"));
c906108c
SS
6332}
6333
6334static void
2ea28649 6335sig_print_info (enum gdb_signal oursig)
c906108c 6336{
2ea28649 6337 const char *name = gdb_signal_to_name (oursig);
c906108c 6338 int name_padding = 13 - strlen (name);
96baa820 6339
c906108c
SS
6340 if (name_padding <= 0)
6341 name_padding = 0;
6342
6343 printf_filtered ("%s", name);
488f131b 6344 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6345 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6346 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6347 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6348 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6349}
6350
6351/* Specify how various signals in the inferior should be handled. */
6352
6353static void
96baa820 6354handle_command (char *args, int from_tty)
c906108c
SS
6355{
6356 char **argv;
6357 int digits, wordlen;
6358 int sigfirst, signum, siglast;
2ea28649 6359 enum gdb_signal oursig;
c906108c
SS
6360 int allsigs;
6361 int nsigs;
6362 unsigned char *sigs;
6363 struct cleanup *old_chain;
6364
6365 if (args == NULL)
6366 {
e2e0b3e5 6367 error_no_arg (_("signal to handle"));
c906108c
SS
6368 }
6369
1777feb0 6370 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6371
a493e3e2 6372 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6373 sigs = (unsigned char *) alloca (nsigs);
6374 memset (sigs, 0, nsigs);
6375
1777feb0 6376 /* Break the command line up into args. */
c906108c 6377
d1a41061 6378 argv = gdb_buildargv (args);
7a292a7a 6379 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6380
6381 /* Walk through the args, looking for signal oursigs, signal names, and
6382 actions. Signal numbers and signal names may be interspersed with
6383 actions, with the actions being performed for all signals cumulatively
1777feb0 6384 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6385
6386 while (*argv != NULL)
6387 {
6388 wordlen = strlen (*argv);
6389 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6390 {;
6391 }
6392 allsigs = 0;
6393 sigfirst = siglast = -1;
6394
6395 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6396 {
6397 /* Apply action to all signals except those used by the
1777feb0 6398 debugger. Silently skip those. */
c906108c
SS
6399 allsigs = 1;
6400 sigfirst = 0;
6401 siglast = nsigs - 1;
6402 }
6403 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6404 {
6405 SET_SIGS (nsigs, sigs, signal_stop);
6406 SET_SIGS (nsigs, sigs, signal_print);
6407 }
6408 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6409 {
6410 UNSET_SIGS (nsigs, sigs, signal_program);
6411 }
6412 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6413 {
6414 SET_SIGS (nsigs, sigs, signal_print);
6415 }
6416 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6417 {
6418 SET_SIGS (nsigs, sigs, signal_program);
6419 }
6420 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6421 {
6422 UNSET_SIGS (nsigs, sigs, signal_stop);
6423 }
6424 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6425 {
6426 SET_SIGS (nsigs, sigs, signal_program);
6427 }
6428 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6429 {
6430 UNSET_SIGS (nsigs, sigs, signal_print);
6431 UNSET_SIGS (nsigs, sigs, signal_stop);
6432 }
6433 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6434 {
6435 UNSET_SIGS (nsigs, sigs, signal_program);
6436 }
6437 else if (digits > 0)
6438 {
6439 /* It is numeric. The numeric signal refers to our own
6440 internal signal numbering from target.h, not to host/target
6441 signal number. This is a feature; users really should be
6442 using symbolic names anyway, and the common ones like
6443 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6444
6445 sigfirst = siglast = (int)
2ea28649 6446 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6447 if ((*argv)[digits] == '-')
6448 {
6449 siglast = (int)
2ea28649 6450 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6451 }
6452 if (sigfirst > siglast)
6453 {
1777feb0 6454 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6455 signum = sigfirst;
6456 sigfirst = siglast;
6457 siglast = signum;
6458 }
6459 }
6460 else
6461 {
2ea28649 6462 oursig = gdb_signal_from_name (*argv);
a493e3e2 6463 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6464 {
6465 sigfirst = siglast = (int) oursig;
6466 }
6467 else
6468 {
6469 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6470 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6471 }
6472 }
6473
6474 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6475 which signals to apply actions to. */
c906108c
SS
6476
6477 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6478 {
2ea28649 6479 switch ((enum gdb_signal) signum)
c906108c 6480 {
a493e3e2
PA
6481 case GDB_SIGNAL_TRAP:
6482 case GDB_SIGNAL_INT:
c906108c
SS
6483 if (!allsigs && !sigs[signum])
6484 {
9e2f0ad4 6485 if (query (_("%s is used by the debugger.\n\
3e43a32a 6486Are you sure you want to change it? "),
2ea28649 6487 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6488 {
6489 sigs[signum] = 1;
6490 }
6491 else
6492 {
a3f17187 6493 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6494 gdb_flush (gdb_stdout);
6495 }
6496 }
6497 break;
a493e3e2
PA
6498 case GDB_SIGNAL_0:
6499 case GDB_SIGNAL_DEFAULT:
6500 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6501 /* Make sure that "all" doesn't print these. */
6502 break;
6503 default:
6504 sigs[signum] = 1;
6505 break;
6506 }
6507 }
6508
6509 argv++;
6510 }
6511
3a031f65
PA
6512 for (signum = 0; signum < nsigs; signum++)
6513 if (sigs[signum])
6514 {
2455069d 6515 signal_cache_update (-1);
a493e3e2
PA
6516 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6517 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6518
3a031f65
PA
6519 if (from_tty)
6520 {
6521 /* Show the results. */
6522 sig_print_header ();
6523 for (; signum < nsigs; signum++)
6524 if (sigs[signum])
6525 sig_print_info (signum);
6526 }
6527
6528 break;
6529 }
c906108c
SS
6530
6531 do_cleanups (old_chain);
6532}
6533
de0bea00
MF
6534/* Complete the "handle" command. */
6535
6536static VEC (char_ptr) *
6537handle_completer (struct cmd_list_element *ignore,
6f937416 6538 const char *text, const char *word)
de0bea00
MF
6539{
6540 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6541 static const char * const keywords[] =
6542 {
6543 "all",
6544 "stop",
6545 "ignore",
6546 "print",
6547 "pass",
6548 "nostop",
6549 "noignore",
6550 "noprint",
6551 "nopass",
6552 NULL,
6553 };
6554
6555 vec_signals = signal_completer (ignore, text, word);
6556 vec_keywords = complete_on_enum (keywords, word, word);
6557
6558 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6559 VEC_free (char_ptr, vec_signals);
6560 VEC_free (char_ptr, vec_keywords);
6561 return return_val;
6562}
6563
c906108c 6564static void
96baa820 6565xdb_handle_command (char *args, int from_tty)
c906108c
SS
6566{
6567 char **argv;
6568 struct cleanup *old_chain;
6569
d1a41061
PP
6570 if (args == NULL)
6571 error_no_arg (_("xdb command"));
6572
1777feb0 6573 /* Break the command line up into args. */
c906108c 6574
d1a41061 6575 argv = gdb_buildargv (args);
7a292a7a 6576 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6577 if (argv[1] != (char *) NULL)
6578 {
6579 char *argBuf;
6580 int bufLen;
6581
6582 bufLen = strlen (argv[0]) + 20;
6583 argBuf = (char *) xmalloc (bufLen);
6584 if (argBuf)
6585 {
6586 int validFlag = 1;
2ea28649 6587 enum gdb_signal oursig;
c906108c 6588
2ea28649 6589 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6590 memset (argBuf, 0, bufLen);
6591 if (strcmp (argv[1], "Q") == 0)
6592 sprintf (argBuf, "%s %s", argv[0], "noprint");
6593 else
6594 {
6595 if (strcmp (argv[1], "s") == 0)
6596 {
6597 if (!signal_stop[oursig])
6598 sprintf (argBuf, "%s %s", argv[0], "stop");
6599 else
6600 sprintf (argBuf, "%s %s", argv[0], "nostop");
6601 }
6602 else if (strcmp (argv[1], "i") == 0)
6603 {
6604 if (!signal_program[oursig])
6605 sprintf (argBuf, "%s %s", argv[0], "pass");
6606 else
6607 sprintf (argBuf, "%s %s", argv[0], "nopass");
6608 }
6609 else if (strcmp (argv[1], "r") == 0)
6610 {
6611 if (!signal_print[oursig])
6612 sprintf (argBuf, "%s %s", argv[0], "print");
6613 else
6614 sprintf (argBuf, "%s %s", argv[0], "noprint");
6615 }
6616 else
6617 validFlag = 0;
6618 }
6619 if (validFlag)
6620 handle_command (argBuf, from_tty);
6621 else
a3f17187 6622 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6623 if (argBuf)
b8c9b27d 6624 xfree (argBuf);
c906108c
SS
6625 }
6626 }
6627 do_cleanups (old_chain);
6628}
6629
2ea28649
PA
6630enum gdb_signal
6631gdb_signal_from_command (int num)
ed01b82c
PA
6632{
6633 if (num >= 1 && num <= 15)
2ea28649 6634 return (enum gdb_signal) num;
ed01b82c
PA
6635 error (_("Only signals 1-15 are valid as numeric signals.\n\
6636Use \"info signals\" for a list of symbolic signals."));
6637}
6638
c906108c
SS
6639/* Print current contents of the tables set by the handle command.
6640 It is possible we should just be printing signals actually used
6641 by the current target (but for things to work right when switching
6642 targets, all signals should be in the signal tables). */
6643
6644static void
96baa820 6645signals_info (char *signum_exp, int from_tty)
c906108c 6646{
2ea28649 6647 enum gdb_signal oursig;
abbb1732 6648
c906108c
SS
6649 sig_print_header ();
6650
6651 if (signum_exp)
6652 {
6653 /* First see if this is a symbol name. */
2ea28649 6654 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6655 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6656 {
6657 /* No, try numeric. */
6658 oursig =
2ea28649 6659 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6660 }
6661 sig_print_info (oursig);
6662 return;
6663 }
6664
6665 printf_filtered ("\n");
6666 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6667 for (oursig = GDB_SIGNAL_FIRST;
6668 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6669 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6670 {
6671 QUIT;
6672
a493e3e2
PA
6673 if (oursig != GDB_SIGNAL_UNKNOWN
6674 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6675 sig_print_info (oursig);
6676 }
6677
3e43a32a
MS
6678 printf_filtered (_("\nUse the \"handle\" command "
6679 "to change these tables.\n"));
c906108c 6680}
4aa995e1 6681
c709acd1
PA
6682/* Check if it makes sense to read $_siginfo from the current thread
6683 at this point. If not, throw an error. */
6684
6685static void
6686validate_siginfo_access (void)
6687{
6688 /* No current inferior, no siginfo. */
6689 if (ptid_equal (inferior_ptid, null_ptid))
6690 error (_("No thread selected."));
6691
6692 /* Don't try to read from a dead thread. */
6693 if (is_exited (inferior_ptid))
6694 error (_("The current thread has terminated"));
6695
6696 /* ... or from a spinning thread. */
6697 if (is_running (inferior_ptid))
6698 error (_("Selected thread is running."));
6699}
6700
4aa995e1
PA
6701/* The $_siginfo convenience variable is a bit special. We don't know
6702 for sure the type of the value until we actually have a chance to
7a9dd1b2 6703 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6704 also dependent on which thread you have selected.
6705
6706 1. making $_siginfo be an internalvar that creates a new value on
6707 access.
6708
6709 2. making the value of $_siginfo be an lval_computed value. */
6710
6711/* This function implements the lval_computed support for reading a
6712 $_siginfo value. */
6713
6714static void
6715siginfo_value_read (struct value *v)
6716{
6717 LONGEST transferred;
6718
c709acd1
PA
6719 validate_siginfo_access ();
6720
4aa995e1
PA
6721 transferred =
6722 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6723 NULL,
6724 value_contents_all_raw (v),
6725 value_offset (v),
6726 TYPE_LENGTH (value_type (v)));
6727
6728 if (transferred != TYPE_LENGTH (value_type (v)))
6729 error (_("Unable to read siginfo"));
6730}
6731
6732/* This function implements the lval_computed support for writing a
6733 $_siginfo value. */
6734
6735static void
6736siginfo_value_write (struct value *v, struct value *fromval)
6737{
6738 LONGEST transferred;
6739
c709acd1
PA
6740 validate_siginfo_access ();
6741
4aa995e1
PA
6742 transferred = target_write (&current_target,
6743 TARGET_OBJECT_SIGNAL_INFO,
6744 NULL,
6745 value_contents_all_raw (fromval),
6746 value_offset (v),
6747 TYPE_LENGTH (value_type (fromval)));
6748
6749 if (transferred != TYPE_LENGTH (value_type (fromval)))
6750 error (_("Unable to write siginfo"));
6751}
6752
c8f2448a 6753static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6754 {
6755 siginfo_value_read,
6756 siginfo_value_write
6757 };
6758
6759/* Return a new value with the correct type for the siginfo object of
78267919
UW
6760 the current thread using architecture GDBARCH. Return a void value
6761 if there's no object available. */
4aa995e1 6762
2c0b251b 6763static struct value *
22d2b532
SDJ
6764siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6765 void *ignore)
4aa995e1 6766{
4aa995e1 6767 if (target_has_stack
78267919
UW
6768 && !ptid_equal (inferior_ptid, null_ptid)
6769 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6770 {
78267919 6771 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6772
78267919 6773 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6774 }
6775
78267919 6776 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6777}
6778
c906108c 6779\f
16c381f0
JK
6780/* infcall_suspend_state contains state about the program itself like its
6781 registers and any signal it received when it last stopped.
6782 This state must be restored regardless of how the inferior function call
6783 ends (either successfully, or after it hits a breakpoint or signal)
6784 if the program is to properly continue where it left off. */
6785
6786struct infcall_suspend_state
7a292a7a 6787{
16c381f0 6788 struct thread_suspend_state thread_suspend;
dd80ea3c 6789#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6790 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6791#endif
16c381f0
JK
6792
6793 /* Other fields: */
7a292a7a 6794 CORE_ADDR stop_pc;
b89667eb 6795 struct regcache *registers;
1736ad11 6796
35515841 6797 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6798 struct gdbarch *siginfo_gdbarch;
6799
6800 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6801 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6802 content would be invalid. */
6803 gdb_byte *siginfo_data;
b89667eb
DE
6804};
6805
16c381f0
JK
6806struct infcall_suspend_state *
6807save_infcall_suspend_state (void)
b89667eb 6808{
16c381f0 6809 struct infcall_suspend_state *inf_state;
b89667eb 6810 struct thread_info *tp = inferior_thread ();
974a734b 6811#if 0
16c381f0 6812 struct inferior *inf = current_inferior ();
974a734b 6813#endif
1736ad11
JK
6814 struct regcache *regcache = get_current_regcache ();
6815 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6816 gdb_byte *siginfo_data = NULL;
6817
6818 if (gdbarch_get_siginfo_type_p (gdbarch))
6819 {
6820 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6821 size_t len = TYPE_LENGTH (type);
6822 struct cleanup *back_to;
6823
6824 siginfo_data = xmalloc (len);
6825 back_to = make_cleanup (xfree, siginfo_data);
6826
6827 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6828 siginfo_data, 0, len) == len)
6829 discard_cleanups (back_to);
6830 else
6831 {
6832 /* Errors ignored. */
6833 do_cleanups (back_to);
6834 siginfo_data = NULL;
6835 }
6836 }
6837
16c381f0 6838 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6839
6840 if (siginfo_data)
6841 {
6842 inf_state->siginfo_gdbarch = gdbarch;
6843 inf_state->siginfo_data = siginfo_data;
6844 }
b89667eb 6845
16c381f0 6846 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6847#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6848 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6849#endif
16c381f0 6850
35515841 6851 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6852 GDB_SIGNAL_0 anyway. */
6853 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6854
b89667eb
DE
6855 inf_state->stop_pc = stop_pc;
6856
1736ad11 6857 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6858
6859 return inf_state;
6860}
6861
6862/* Restore inferior session state to INF_STATE. */
6863
6864void
16c381f0 6865restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6866{
6867 struct thread_info *tp = inferior_thread ();
974a734b 6868#if 0
16c381f0 6869 struct inferior *inf = current_inferior ();
974a734b 6870#endif
1736ad11
JK
6871 struct regcache *regcache = get_current_regcache ();
6872 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6873
16c381f0 6874 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6875#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6876 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6877#endif
16c381f0 6878
b89667eb
DE
6879 stop_pc = inf_state->stop_pc;
6880
1736ad11
JK
6881 if (inf_state->siginfo_gdbarch == gdbarch)
6882 {
6883 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
6884
6885 /* Errors ignored. */
6886 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 6887 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
6888 }
6889
b89667eb
DE
6890 /* The inferior can be gone if the user types "print exit(0)"
6891 (and perhaps other times). */
6892 if (target_has_execution)
6893 /* NB: The register write goes through to the target. */
1736ad11 6894 regcache_cpy (regcache, inf_state->registers);
803b5f95 6895
16c381f0 6896 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6897}
6898
6899static void
16c381f0 6900do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6901{
16c381f0 6902 restore_infcall_suspend_state (state);
b89667eb
DE
6903}
6904
6905struct cleanup *
16c381f0
JK
6906make_cleanup_restore_infcall_suspend_state
6907 (struct infcall_suspend_state *inf_state)
b89667eb 6908{
16c381f0 6909 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6910}
6911
6912void
16c381f0 6913discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6914{
6915 regcache_xfree (inf_state->registers);
803b5f95 6916 xfree (inf_state->siginfo_data);
b89667eb
DE
6917 xfree (inf_state);
6918}
6919
6920struct regcache *
16c381f0 6921get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6922{
6923 return inf_state->registers;
6924}
6925
16c381f0
JK
6926/* infcall_control_state contains state regarding gdb's control of the
6927 inferior itself like stepping control. It also contains session state like
6928 the user's currently selected frame. */
b89667eb 6929
16c381f0 6930struct infcall_control_state
b89667eb 6931{
16c381f0
JK
6932 struct thread_control_state thread_control;
6933 struct inferior_control_state inferior_control;
d82142e2
JK
6934
6935 /* Other fields: */
6936 enum stop_stack_kind stop_stack_dummy;
6937 int stopped_by_random_signal;
7a292a7a 6938 int stop_after_trap;
7a292a7a 6939
b89667eb 6940 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6941 struct frame_id selected_frame_id;
7a292a7a
SS
6942};
6943
c906108c 6944/* Save all of the information associated with the inferior<==>gdb
b89667eb 6945 connection. */
c906108c 6946
16c381f0
JK
6947struct infcall_control_state *
6948save_infcall_control_state (void)
c906108c 6949{
16c381f0 6950 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6951 struct thread_info *tp = inferior_thread ();
d6b48e9c 6952 struct inferior *inf = current_inferior ();
7a292a7a 6953
16c381f0
JK
6954 inf_status->thread_control = tp->control;
6955 inf_status->inferior_control = inf->control;
d82142e2 6956
8358c15c 6957 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6958 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6959
16c381f0
JK
6960 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6961 chain. If caller's caller is walking the chain, they'll be happier if we
6962 hand them back the original chain when restore_infcall_control_state is
6963 called. */
6964 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6965
6966 /* Other fields: */
6967 inf_status->stop_stack_dummy = stop_stack_dummy;
6968 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6969 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6970
206415a3 6971 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6972
7a292a7a 6973 return inf_status;
c906108c
SS
6974}
6975
c906108c 6976static int
96baa820 6977restore_selected_frame (void *args)
c906108c 6978{
488f131b 6979 struct frame_id *fid = (struct frame_id *) args;
c906108c 6980 struct frame_info *frame;
c906108c 6981
101dcfbe 6982 frame = frame_find_by_id (*fid);
c906108c 6983
aa0cd9c1
AC
6984 /* If inf_status->selected_frame_id is NULL, there was no previously
6985 selected frame. */
101dcfbe 6986 if (frame == NULL)
c906108c 6987 {
8a3fe4f8 6988 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6989 return 0;
6990 }
6991
0f7d239c 6992 select_frame (frame);
c906108c
SS
6993
6994 return (1);
6995}
6996
b89667eb
DE
6997/* Restore inferior session state to INF_STATUS. */
6998
c906108c 6999void
16c381f0 7000restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 7001{
4e1c45ea 7002 struct thread_info *tp = inferior_thread ();
d6b48e9c 7003 struct inferior *inf = current_inferior ();
4e1c45ea 7004
8358c15c
JK
7005 if (tp->control.step_resume_breakpoint)
7006 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7007
5b79abe7
TT
7008 if (tp->control.exception_resume_breakpoint)
7009 tp->control.exception_resume_breakpoint->disposition
7010 = disp_del_at_next_stop;
7011
d82142e2 7012 /* Handle the bpstat_copy of the chain. */
16c381f0 7013 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7014
16c381f0
JK
7015 tp->control = inf_status->thread_control;
7016 inf->control = inf_status->inferior_control;
d82142e2
JK
7017
7018 /* Other fields: */
7019 stop_stack_dummy = inf_status->stop_stack_dummy;
7020 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7021 stop_after_trap = inf_status->stop_after_trap;
c906108c 7022
b89667eb 7023 if (target_has_stack)
c906108c 7024 {
c906108c 7025 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7026 walking the stack might encounter a garbage pointer and
7027 error() trying to dereference it. */
488f131b
JB
7028 if (catch_errors
7029 (restore_selected_frame, &inf_status->selected_frame_id,
7030 "Unable to restore previously selected frame:\n",
7031 RETURN_MASK_ERROR) == 0)
c906108c
SS
7032 /* Error in restoring the selected frame. Select the innermost
7033 frame. */
0f7d239c 7034 select_frame (get_current_frame ());
c906108c 7035 }
c906108c 7036
72cec141 7037 xfree (inf_status);
7a292a7a 7038}
c906108c 7039
74b7792f 7040static void
16c381f0 7041do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7042{
16c381f0 7043 restore_infcall_control_state (sts);
74b7792f
AC
7044}
7045
7046struct cleanup *
16c381f0
JK
7047make_cleanup_restore_infcall_control_state
7048 (struct infcall_control_state *inf_status)
74b7792f 7049{
16c381f0 7050 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7051}
7052
c906108c 7053void
16c381f0 7054discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7055{
8358c15c
JK
7056 if (inf_status->thread_control.step_resume_breakpoint)
7057 inf_status->thread_control.step_resume_breakpoint->disposition
7058 = disp_del_at_next_stop;
7059
5b79abe7
TT
7060 if (inf_status->thread_control.exception_resume_breakpoint)
7061 inf_status->thread_control.exception_resume_breakpoint->disposition
7062 = disp_del_at_next_stop;
7063
1777feb0 7064 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7065 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7066
72cec141 7067 xfree (inf_status);
7a292a7a 7068}
b89667eb 7069\f
0723dbf5
PA
7070int
7071ptid_match (ptid_t ptid, ptid_t filter)
7072{
0723dbf5
PA
7073 if (ptid_equal (filter, minus_one_ptid))
7074 return 1;
7075 if (ptid_is_pid (filter)
7076 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7077 return 1;
7078 else if (ptid_equal (ptid, filter))
7079 return 1;
7080
7081 return 0;
7082}
7083
ca6724c1
KB
7084/* restore_inferior_ptid() will be used by the cleanup machinery
7085 to restore the inferior_ptid value saved in a call to
7086 save_inferior_ptid(). */
ce696e05
KB
7087
7088static void
7089restore_inferior_ptid (void *arg)
7090{
7091 ptid_t *saved_ptid_ptr = arg;
abbb1732 7092
ce696e05
KB
7093 inferior_ptid = *saved_ptid_ptr;
7094 xfree (arg);
7095}
7096
7097/* Save the value of inferior_ptid so that it may be restored by a
7098 later call to do_cleanups(). Returns the struct cleanup pointer
7099 needed for later doing the cleanup. */
7100
7101struct cleanup *
7102save_inferior_ptid (void)
7103{
7104 ptid_t *saved_ptid_ptr;
7105
7106 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7107 *saved_ptid_ptr = inferior_ptid;
7108 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7109}
0c557179
SDJ
7110
7111/* See inferior.h. */
7112
7113void
7114clear_exit_convenience_vars (void)
7115{
7116 clear_internalvar (lookup_internalvar ("_exitsignal"));
7117 clear_internalvar (lookup_internalvar ("_exitcode"));
7118}
c5aa993b 7119\f
488f131b 7120
b2175913
MS
7121/* User interface for reverse debugging:
7122 Set exec-direction / show exec-direction commands
7123 (returns error unless target implements to_set_exec_direction method). */
7124
32231432 7125int execution_direction = EXEC_FORWARD;
b2175913
MS
7126static const char exec_forward[] = "forward";
7127static const char exec_reverse[] = "reverse";
7128static const char *exec_direction = exec_forward;
40478521 7129static const char *const exec_direction_names[] = {
b2175913
MS
7130 exec_forward,
7131 exec_reverse,
7132 NULL
7133};
7134
7135static void
7136set_exec_direction_func (char *args, int from_tty,
7137 struct cmd_list_element *cmd)
7138{
7139 if (target_can_execute_reverse)
7140 {
7141 if (!strcmp (exec_direction, exec_forward))
7142 execution_direction = EXEC_FORWARD;
7143 else if (!strcmp (exec_direction, exec_reverse))
7144 execution_direction = EXEC_REVERSE;
7145 }
8bbed405
MS
7146 else
7147 {
7148 exec_direction = exec_forward;
7149 error (_("Target does not support this operation."));
7150 }
b2175913
MS
7151}
7152
7153static void
7154show_exec_direction_func (struct ui_file *out, int from_tty,
7155 struct cmd_list_element *cmd, const char *value)
7156{
7157 switch (execution_direction) {
7158 case EXEC_FORWARD:
7159 fprintf_filtered (out, _("Forward.\n"));
7160 break;
7161 case EXEC_REVERSE:
7162 fprintf_filtered (out, _("Reverse.\n"));
7163 break;
b2175913 7164 default:
d8b34453
PA
7165 internal_error (__FILE__, __LINE__,
7166 _("bogus execution_direction value: %d"),
7167 (int) execution_direction);
b2175913
MS
7168 }
7169}
7170
d4db2f36
PA
7171static void
7172show_schedule_multiple (struct ui_file *file, int from_tty,
7173 struct cmd_list_element *c, const char *value)
7174{
3e43a32a
MS
7175 fprintf_filtered (file, _("Resuming the execution of threads "
7176 "of all processes is %s.\n"), value);
d4db2f36 7177}
ad52ddc6 7178
22d2b532
SDJ
7179/* Implementation of `siginfo' variable. */
7180
7181static const struct internalvar_funcs siginfo_funcs =
7182{
7183 siginfo_make_value,
7184 NULL,
7185 NULL
7186};
7187
c906108c 7188void
96baa820 7189_initialize_infrun (void)
c906108c 7190{
52f0bd74
AC
7191 int i;
7192 int numsigs;
de0bea00 7193 struct cmd_list_element *c;
c906108c 7194
1bedd215
AC
7195 add_info ("signals", signals_info, _("\
7196What debugger does when program gets various signals.\n\
7197Specify a signal as argument to print info on that signal only."));
c906108c
SS
7198 add_info_alias ("handle", "signals", 0);
7199
de0bea00 7200 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7201Specify how to handle signals.\n\
486c7739 7202Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7203Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7204If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7205will be displayed instead.\n\
7206\n\
c906108c
SS
7207Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7208from 1-15 are allowed for compatibility with old versions of GDB.\n\
7209Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7210The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7211used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7212\n\
1bedd215 7213Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7214\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7215Stop means reenter debugger if this signal happens (implies print).\n\
7216Print means print a message if this signal happens.\n\
7217Pass means let program see this signal; otherwise program doesn't know.\n\
7218Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7219Pass and Stop may be combined.\n\
7220\n\
7221Multiple signals may be specified. Signal numbers and signal names\n\
7222may be interspersed with actions, with the actions being performed for\n\
7223all signals cumulatively specified."));
de0bea00 7224 set_cmd_completer (c, handle_completer);
486c7739 7225
c906108c
SS
7226 if (xdb_commands)
7227 {
1bedd215
AC
7228 add_com ("lz", class_info, signals_info, _("\
7229What debugger does when program gets various signals.\n\
7230Specify a signal as argument to print info on that signal only."));
7231 add_com ("z", class_run, xdb_handle_command, _("\
7232Specify how to handle a signal.\n\
c906108c
SS
7233Args are signals and actions to apply to those signals.\n\
7234Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7235from 1-15 are allowed for compatibility with old versions of GDB.\n\
7236Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7237The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7238used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7239Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7240\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7241nopass), \"Q\" (noprint)\n\
7242Stop means reenter debugger if this signal happens (implies print).\n\
7243Print means print a message if this signal happens.\n\
7244Pass means let program see this signal; otherwise program doesn't know.\n\
7245Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7246Pass and Stop may be combined."));
c906108c
SS
7247 }
7248
7249 if (!dbx_commands)
1a966eab
AC
7250 stop_command = add_cmd ("stop", class_obscure,
7251 not_just_help_class_command, _("\
7252There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7253This allows you to set a list of commands to be run each time execution\n\
1a966eab 7254of the program stops."), &cmdlist);
c906108c 7255
ccce17b0 7256 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7257Set inferior debugging."), _("\
7258Show inferior debugging."), _("\
7259When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7260 NULL,
7261 show_debug_infrun,
7262 &setdebuglist, &showdebuglist);
527159b7 7263
3e43a32a
MS
7264 add_setshow_boolean_cmd ("displaced", class_maintenance,
7265 &debug_displaced, _("\
237fc4c9
PA
7266Set displaced stepping debugging."), _("\
7267Show displaced stepping debugging."), _("\
7268When non-zero, displaced stepping specific debugging is enabled."),
7269 NULL,
7270 show_debug_displaced,
7271 &setdebuglist, &showdebuglist);
7272
ad52ddc6
PA
7273 add_setshow_boolean_cmd ("non-stop", no_class,
7274 &non_stop_1, _("\
7275Set whether gdb controls the inferior in non-stop mode."), _("\
7276Show whether gdb controls the inferior in non-stop mode."), _("\
7277When debugging a multi-threaded program and this setting is\n\
7278off (the default, also called all-stop mode), when one thread stops\n\
7279(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7280all other threads in the program while you interact with the thread of\n\
7281interest. When you continue or step a thread, you can allow the other\n\
7282threads to run, or have them remain stopped, but while you inspect any\n\
7283thread's state, all threads stop.\n\
7284\n\
7285In non-stop mode, when one thread stops, other threads can continue\n\
7286to run freely. You'll be able to step each thread independently,\n\
7287leave it stopped or free to run as needed."),
7288 set_non_stop,
7289 show_non_stop,
7290 &setlist,
7291 &showlist);
7292
a493e3e2 7293 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7294 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7295 signal_print = (unsigned char *)
7296 xmalloc (sizeof (signal_print[0]) * numsigs);
7297 signal_program = (unsigned char *)
7298 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7299 signal_catch = (unsigned char *)
7300 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d
UW
7301 signal_pass = (unsigned char *)
7302 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7303 for (i = 0; i < numsigs; i++)
7304 {
7305 signal_stop[i] = 1;
7306 signal_print[i] = 1;
7307 signal_program[i] = 1;
ab04a2af 7308 signal_catch[i] = 0;
c906108c
SS
7309 }
7310
7311 /* Signals caused by debugger's own actions
7312 should not be given to the program afterwards. */
a493e3e2
PA
7313 signal_program[GDB_SIGNAL_TRAP] = 0;
7314 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7315
7316 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7317 signal_stop[GDB_SIGNAL_ALRM] = 0;
7318 signal_print[GDB_SIGNAL_ALRM] = 0;
7319 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7320 signal_print[GDB_SIGNAL_VTALRM] = 0;
7321 signal_stop[GDB_SIGNAL_PROF] = 0;
7322 signal_print[GDB_SIGNAL_PROF] = 0;
7323 signal_stop[GDB_SIGNAL_CHLD] = 0;
7324 signal_print[GDB_SIGNAL_CHLD] = 0;
7325 signal_stop[GDB_SIGNAL_IO] = 0;
7326 signal_print[GDB_SIGNAL_IO] = 0;
7327 signal_stop[GDB_SIGNAL_POLL] = 0;
7328 signal_print[GDB_SIGNAL_POLL] = 0;
7329 signal_stop[GDB_SIGNAL_URG] = 0;
7330 signal_print[GDB_SIGNAL_URG] = 0;
7331 signal_stop[GDB_SIGNAL_WINCH] = 0;
7332 signal_print[GDB_SIGNAL_WINCH] = 0;
7333 signal_stop[GDB_SIGNAL_PRIO] = 0;
7334 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7335
cd0fc7c3
SS
7336 /* These signals are used internally by user-level thread
7337 implementations. (See signal(5) on Solaris.) Like the above
7338 signals, a healthy program receives and handles them as part of
7339 its normal operation. */
a493e3e2
PA
7340 signal_stop[GDB_SIGNAL_LWP] = 0;
7341 signal_print[GDB_SIGNAL_LWP] = 0;
7342 signal_stop[GDB_SIGNAL_WAITING] = 0;
7343 signal_print[GDB_SIGNAL_WAITING] = 0;
7344 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7345 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7346
2455069d
UW
7347 /* Update cached state. */
7348 signal_cache_update (-1);
7349
85c07804
AC
7350 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7351 &stop_on_solib_events, _("\
7352Set stopping for shared library events."), _("\
7353Show stopping for shared library events."), _("\
c906108c
SS
7354If nonzero, gdb will give control to the user when the dynamic linker\n\
7355notifies gdb of shared library events. The most common event of interest\n\
85c07804 7356to the user would be loading/unloading of a new library."),
f9e14852 7357 set_stop_on_solib_events,
920d2a44 7358 show_stop_on_solib_events,
85c07804 7359 &setlist, &showlist);
c906108c 7360
7ab04401
AC
7361 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7362 follow_fork_mode_kind_names,
7363 &follow_fork_mode_string, _("\
7364Set debugger response to a program call of fork or vfork."), _("\
7365Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7366A fork or vfork creates a new process. follow-fork-mode can be:\n\
7367 parent - the original process is debugged after a fork\n\
7368 child - the new process is debugged after a fork\n\
ea1dd7bc 7369The unfollowed process will continue to run.\n\
7ab04401
AC
7370By default, the debugger will follow the parent process."),
7371 NULL,
920d2a44 7372 show_follow_fork_mode_string,
7ab04401
AC
7373 &setlist, &showlist);
7374
6c95b8df
PA
7375 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7376 follow_exec_mode_names,
7377 &follow_exec_mode_string, _("\
7378Set debugger response to a program call of exec."), _("\
7379Show debugger response to a program call of exec."), _("\
7380An exec call replaces the program image of a process.\n\
7381\n\
7382follow-exec-mode can be:\n\
7383\n\
cce7e648 7384 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7385to this new inferior. The program the process was running before\n\
7386the exec call can be restarted afterwards by restarting the original\n\
7387inferior.\n\
7388\n\
7389 same - the debugger keeps the process bound to the same inferior.\n\
7390The new executable image replaces the previous executable loaded in\n\
7391the inferior. Restarting the inferior after the exec call restarts\n\
7392the executable the process was running after the exec call.\n\
7393\n\
7394By default, the debugger will use the same inferior."),
7395 NULL,
7396 show_follow_exec_mode_string,
7397 &setlist, &showlist);
7398
7ab04401
AC
7399 add_setshow_enum_cmd ("scheduler-locking", class_run,
7400 scheduler_enums, &scheduler_mode, _("\
7401Set mode for locking scheduler during execution."), _("\
7402Show mode for locking scheduler during execution."), _("\
c906108c
SS
7403off == no locking (threads may preempt at any time)\n\
7404on == full locking (no thread except the current thread may run)\n\
7405step == scheduler locked during every single-step operation.\n\
7406 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7407 Other threads may run while stepping over a function call ('next')."),
7408 set_schedlock_func, /* traps on target vector */
920d2a44 7409 show_scheduler_mode,
7ab04401 7410 &setlist, &showlist);
5fbbeb29 7411
d4db2f36
PA
7412 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7413Set mode for resuming threads of all processes."), _("\
7414Show mode for resuming threads of all processes."), _("\
7415When on, execution commands (such as 'continue' or 'next') resume all\n\
7416threads of all processes. When off (which is the default), execution\n\
7417commands only resume the threads of the current process. The set of\n\
7418threads that are resumed is further refined by the scheduler-locking\n\
7419mode (see help set scheduler-locking)."),
7420 NULL,
7421 show_schedule_multiple,
7422 &setlist, &showlist);
7423
5bf193a2
AC
7424 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7425Set mode of the step operation."), _("\
7426Show mode of the step operation."), _("\
7427When set, doing a step over a function without debug line information\n\
7428will stop at the first instruction of that function. Otherwise, the\n\
7429function is skipped and the step command stops at a different source line."),
7430 NULL,
920d2a44 7431 show_step_stop_if_no_debug,
5bf193a2 7432 &setlist, &showlist);
ca6724c1 7433
72d0e2c5
YQ
7434 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7435 &can_use_displaced_stepping, _("\
237fc4c9
PA
7436Set debugger's willingness to use displaced stepping."), _("\
7437Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7438If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7439supported by the target architecture. If off, gdb will not use displaced\n\
7440stepping to step over breakpoints, even if such is supported by the target\n\
7441architecture. If auto (which is the default), gdb will use displaced stepping\n\
7442if the target architecture supports it and non-stop mode is active, but will not\n\
7443use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7444 NULL,
7445 show_can_use_displaced_stepping,
7446 &setlist, &showlist);
237fc4c9 7447
b2175913
MS
7448 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7449 &exec_direction, _("Set direction of execution.\n\
7450Options are 'forward' or 'reverse'."),
7451 _("Show direction of execution (forward/reverse)."),
7452 _("Tells gdb whether to execute forward or backward."),
7453 set_exec_direction_func, show_exec_direction_func,
7454 &setlist, &showlist);
7455
6c95b8df
PA
7456 /* Set/show detach-on-fork: user-settable mode. */
7457
7458 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7459Set whether gdb will detach the child of a fork."), _("\
7460Show whether gdb will detach the child of a fork."), _("\
7461Tells gdb whether to detach the child of a fork."),
7462 NULL, NULL, &setlist, &showlist);
7463
03583c20
UW
7464 /* Set/show disable address space randomization mode. */
7465
7466 add_setshow_boolean_cmd ("disable-randomization", class_support,
7467 &disable_randomization, _("\
7468Set disabling of debuggee's virtual address space randomization."), _("\
7469Show disabling of debuggee's virtual address space randomization."), _("\
7470When this mode is on (which is the default), randomization of the virtual\n\
7471address space is disabled. Standalone programs run with the randomization\n\
7472enabled by default on some platforms."),
7473 &set_disable_randomization,
7474 &show_disable_randomization,
7475 &setlist, &showlist);
7476
ca6724c1 7477 /* ptid initializations */
ca6724c1
KB
7478 inferior_ptid = null_ptid;
7479 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7480
7481 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7482 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7483 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7484 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7485
7486 /* Explicitly create without lookup, since that tries to create a
7487 value with a void typed value, and when we get here, gdbarch
7488 isn't initialized yet. At this point, we're quite sure there
7489 isn't another convenience variable of the same name. */
22d2b532 7490 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7491
7492 add_setshow_boolean_cmd ("observer", no_class,
7493 &observer_mode_1, _("\
7494Set whether gdb controls the inferior in observer mode."), _("\
7495Show whether gdb controls the inferior in observer mode."), _("\
7496In observer mode, GDB can get data from the inferior, but not\n\
7497affect its execution. Registers and memory may not be changed,\n\
7498breakpoints may not be set, and the program cannot be interrupted\n\
7499or signalled."),
7500 set_observer_mode,
7501 show_observer_mode,
7502 &setlist,
7503 &showlist);
c906108c 7504}
This page took 1.745421 seconds and 4 git commands to generate.