sched/fair: Fix reschedule which is generated on throttled cfs_rq
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 #ifdef smp_mb__before_atomic
94 void __smp_mb__before_atomic(void)
95 {
96 smp_mb__before_atomic();
97 }
98 EXPORT_SYMBOL(__smp_mb__before_atomic);
99 #endif
100
101 #ifdef smp_mb__after_atomic
102 void __smp_mb__after_atomic(void)
103 {
104 smp_mb__after_atomic();
105 }
106 EXPORT_SYMBOL(__smp_mb__after_atomic);
107 #endif
108
109 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110 {
111 unsigned long delta;
112 ktime_t soft, hard, now;
113
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
117
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
120
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
126 }
127 }
128
129 DEFINE_MUTEX(sched_domains_mutex);
130 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131
132 static void update_rq_clock_task(struct rq *rq, s64 delta);
133
134 void update_rq_clock(struct rq *rq)
135 {
136 s64 delta;
137
138 if (rq->skip_clock_update > 0)
139 return;
140
141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142 if (delta < 0)
143 return;
144 rq->clock += delta;
145 update_rq_clock_task(rq, delta);
146 }
147
148 /*
149 * Debugging: various feature bits
150 */
151
152 #define SCHED_FEAT(name, enabled) \
153 (1UL << __SCHED_FEAT_##name) * enabled |
154
155 const_debug unsigned int sysctl_sched_features =
156 #include "features.h"
157 0;
158
159 #undef SCHED_FEAT
160
161 #ifdef CONFIG_SCHED_DEBUG
162 #define SCHED_FEAT(name, enabled) \
163 #name ,
164
165 static const char * const sched_feat_names[] = {
166 #include "features.h"
167 };
168
169 #undef SCHED_FEAT
170
171 static int sched_feat_show(struct seq_file *m, void *v)
172 {
173 int i;
174
175 for (i = 0; i < __SCHED_FEAT_NR; i++) {
176 if (!(sysctl_sched_features & (1UL << i)))
177 seq_puts(m, "NO_");
178 seq_printf(m, "%s ", sched_feat_names[i]);
179 }
180 seq_puts(m, "\n");
181
182 return 0;
183 }
184
185 #ifdef HAVE_JUMP_LABEL
186
187 #define jump_label_key__true STATIC_KEY_INIT_TRUE
188 #define jump_label_key__false STATIC_KEY_INIT_FALSE
189
190 #define SCHED_FEAT(name, enabled) \
191 jump_label_key__##enabled ,
192
193 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
194 #include "features.h"
195 };
196
197 #undef SCHED_FEAT
198
199 static void sched_feat_disable(int i)
200 {
201 if (static_key_enabled(&sched_feat_keys[i]))
202 static_key_slow_dec(&sched_feat_keys[i]);
203 }
204
205 static void sched_feat_enable(int i)
206 {
207 if (!static_key_enabled(&sched_feat_keys[i]))
208 static_key_slow_inc(&sched_feat_keys[i]);
209 }
210 #else
211 static void sched_feat_disable(int i) { };
212 static void sched_feat_enable(int i) { };
213 #endif /* HAVE_JUMP_LABEL */
214
215 static int sched_feat_set(char *cmp)
216 {
217 int i;
218 int neg = 0;
219
220 if (strncmp(cmp, "NO_", 3) == 0) {
221 neg = 1;
222 cmp += 3;
223 }
224
225 for (i = 0; i < __SCHED_FEAT_NR; i++) {
226 if (strcmp(cmp, sched_feat_names[i]) == 0) {
227 if (neg) {
228 sysctl_sched_features &= ~(1UL << i);
229 sched_feat_disable(i);
230 } else {
231 sysctl_sched_features |= (1UL << i);
232 sched_feat_enable(i);
233 }
234 break;
235 }
236 }
237
238 return i;
239 }
240
241 static ssize_t
242 sched_feat_write(struct file *filp, const char __user *ubuf,
243 size_t cnt, loff_t *ppos)
244 {
245 char buf[64];
246 char *cmp;
247 int i;
248 struct inode *inode;
249
250 if (cnt > 63)
251 cnt = 63;
252
253 if (copy_from_user(&buf, ubuf, cnt))
254 return -EFAULT;
255
256 buf[cnt] = 0;
257 cmp = strstrip(buf);
258
259 /* Ensure the static_key remains in a consistent state */
260 inode = file_inode(filp);
261 mutex_lock(&inode->i_mutex);
262 i = sched_feat_set(cmp);
263 mutex_unlock(&inode->i_mutex);
264 if (i == __SCHED_FEAT_NR)
265 return -EINVAL;
266
267 *ppos += cnt;
268
269 return cnt;
270 }
271
272 static int sched_feat_open(struct inode *inode, struct file *filp)
273 {
274 return single_open(filp, sched_feat_show, NULL);
275 }
276
277 static const struct file_operations sched_feat_fops = {
278 .open = sched_feat_open,
279 .write = sched_feat_write,
280 .read = seq_read,
281 .llseek = seq_lseek,
282 .release = single_release,
283 };
284
285 static __init int sched_init_debug(void)
286 {
287 debugfs_create_file("sched_features", 0644, NULL, NULL,
288 &sched_feat_fops);
289
290 return 0;
291 }
292 late_initcall(sched_init_debug);
293 #endif /* CONFIG_SCHED_DEBUG */
294
295 /*
296 * Number of tasks to iterate in a single balance run.
297 * Limited because this is done with IRQs disabled.
298 */
299 const_debug unsigned int sysctl_sched_nr_migrate = 32;
300
301 /*
302 * period over which we average the RT time consumption, measured
303 * in ms.
304 *
305 * default: 1s
306 */
307 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
308
309 /*
310 * period over which we measure -rt task cpu usage in us.
311 * default: 1s
312 */
313 unsigned int sysctl_sched_rt_period = 1000000;
314
315 __read_mostly int scheduler_running;
316
317 /*
318 * part of the period that we allow rt tasks to run in us.
319 * default: 0.95s
320 */
321 int sysctl_sched_rt_runtime = 950000;
322
323 /*
324 * __task_rq_lock - lock the rq @p resides on.
325 */
326 static inline struct rq *__task_rq_lock(struct task_struct *p)
327 __acquires(rq->lock)
328 {
329 struct rq *rq;
330
331 lockdep_assert_held(&p->pi_lock);
332
333 for (;;) {
334 rq = task_rq(p);
335 raw_spin_lock(&rq->lock);
336 if (likely(rq == task_rq(p)))
337 return rq;
338 raw_spin_unlock(&rq->lock);
339 }
340 }
341
342 /*
343 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
344 */
345 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
346 __acquires(p->pi_lock)
347 __acquires(rq->lock)
348 {
349 struct rq *rq;
350
351 for (;;) {
352 raw_spin_lock_irqsave(&p->pi_lock, *flags);
353 rq = task_rq(p);
354 raw_spin_lock(&rq->lock);
355 if (likely(rq == task_rq(p)))
356 return rq;
357 raw_spin_unlock(&rq->lock);
358 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
359 }
360 }
361
362 static void __task_rq_unlock(struct rq *rq)
363 __releases(rq->lock)
364 {
365 raw_spin_unlock(&rq->lock);
366 }
367
368 static inline void
369 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
370 __releases(rq->lock)
371 __releases(p->pi_lock)
372 {
373 raw_spin_unlock(&rq->lock);
374 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
375 }
376
377 /*
378 * this_rq_lock - lock this runqueue and disable interrupts.
379 */
380 static struct rq *this_rq_lock(void)
381 __acquires(rq->lock)
382 {
383 struct rq *rq;
384
385 local_irq_disable();
386 rq = this_rq();
387 raw_spin_lock(&rq->lock);
388
389 return rq;
390 }
391
392 #ifdef CONFIG_SCHED_HRTICK
393 /*
394 * Use HR-timers to deliver accurate preemption points.
395 */
396
397 static void hrtick_clear(struct rq *rq)
398 {
399 if (hrtimer_active(&rq->hrtick_timer))
400 hrtimer_cancel(&rq->hrtick_timer);
401 }
402
403 /*
404 * High-resolution timer tick.
405 * Runs from hardirq context with interrupts disabled.
406 */
407 static enum hrtimer_restart hrtick(struct hrtimer *timer)
408 {
409 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
410
411 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
412
413 raw_spin_lock(&rq->lock);
414 update_rq_clock(rq);
415 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
416 raw_spin_unlock(&rq->lock);
417
418 return HRTIMER_NORESTART;
419 }
420
421 #ifdef CONFIG_SMP
422
423 static int __hrtick_restart(struct rq *rq)
424 {
425 struct hrtimer *timer = &rq->hrtick_timer;
426 ktime_t time = hrtimer_get_softexpires(timer);
427
428 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
429 }
430
431 /*
432 * called from hardirq (IPI) context
433 */
434 static void __hrtick_start(void *arg)
435 {
436 struct rq *rq = arg;
437
438 raw_spin_lock(&rq->lock);
439 __hrtick_restart(rq);
440 rq->hrtick_csd_pending = 0;
441 raw_spin_unlock(&rq->lock);
442 }
443
444 /*
445 * Called to set the hrtick timer state.
446 *
447 * called with rq->lock held and irqs disabled
448 */
449 void hrtick_start(struct rq *rq, u64 delay)
450 {
451 struct hrtimer *timer = &rq->hrtick_timer;
452 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
453
454 hrtimer_set_expires(timer, time);
455
456 if (rq == this_rq()) {
457 __hrtick_restart(rq);
458 } else if (!rq->hrtick_csd_pending) {
459 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
460 rq->hrtick_csd_pending = 1;
461 }
462 }
463
464 static int
465 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
466 {
467 int cpu = (int)(long)hcpu;
468
469 switch (action) {
470 case CPU_UP_CANCELED:
471 case CPU_UP_CANCELED_FROZEN:
472 case CPU_DOWN_PREPARE:
473 case CPU_DOWN_PREPARE_FROZEN:
474 case CPU_DEAD:
475 case CPU_DEAD_FROZEN:
476 hrtick_clear(cpu_rq(cpu));
477 return NOTIFY_OK;
478 }
479
480 return NOTIFY_DONE;
481 }
482
483 static __init void init_hrtick(void)
484 {
485 hotcpu_notifier(hotplug_hrtick, 0);
486 }
487 #else
488 /*
489 * Called to set the hrtick timer state.
490 *
491 * called with rq->lock held and irqs disabled
492 */
493 void hrtick_start(struct rq *rq, u64 delay)
494 {
495 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
496 HRTIMER_MODE_REL_PINNED, 0);
497 }
498
499 static inline void init_hrtick(void)
500 {
501 }
502 #endif /* CONFIG_SMP */
503
504 static void init_rq_hrtick(struct rq *rq)
505 {
506 #ifdef CONFIG_SMP
507 rq->hrtick_csd_pending = 0;
508
509 rq->hrtick_csd.flags = 0;
510 rq->hrtick_csd.func = __hrtick_start;
511 rq->hrtick_csd.info = rq;
512 #endif
513
514 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
515 rq->hrtick_timer.function = hrtick;
516 }
517 #else /* CONFIG_SCHED_HRTICK */
518 static inline void hrtick_clear(struct rq *rq)
519 {
520 }
521
522 static inline void init_rq_hrtick(struct rq *rq)
523 {
524 }
525
526 static inline void init_hrtick(void)
527 {
528 }
529 #endif /* CONFIG_SCHED_HRTICK */
530
531 /*
532 * cmpxchg based fetch_or, macro so it works for different integer types
533 */
534 #define fetch_or(ptr, val) \
535 ({ typeof(*(ptr)) __old, __val = *(ptr); \
536 for (;;) { \
537 __old = cmpxchg((ptr), __val, __val | (val)); \
538 if (__old == __val) \
539 break; \
540 __val = __old; \
541 } \
542 __old; \
543 })
544
545 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
546 /*
547 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
548 * this avoids any races wrt polling state changes and thereby avoids
549 * spurious IPIs.
550 */
551 static bool set_nr_and_not_polling(struct task_struct *p)
552 {
553 struct thread_info *ti = task_thread_info(p);
554 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
555 }
556
557 /*
558 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
559 *
560 * If this returns true, then the idle task promises to call
561 * sched_ttwu_pending() and reschedule soon.
562 */
563 static bool set_nr_if_polling(struct task_struct *p)
564 {
565 struct thread_info *ti = task_thread_info(p);
566 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
567
568 for (;;) {
569 if (!(val & _TIF_POLLING_NRFLAG))
570 return false;
571 if (val & _TIF_NEED_RESCHED)
572 return true;
573 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
574 if (old == val)
575 break;
576 val = old;
577 }
578 return true;
579 }
580
581 #else
582 static bool set_nr_and_not_polling(struct task_struct *p)
583 {
584 set_tsk_need_resched(p);
585 return true;
586 }
587
588 #ifdef CONFIG_SMP
589 static bool set_nr_if_polling(struct task_struct *p)
590 {
591 return false;
592 }
593 #endif
594 #endif
595
596 /*
597 * resched_curr - mark rq's current task 'to be rescheduled now'.
598 *
599 * On UP this means the setting of the need_resched flag, on SMP it
600 * might also involve a cross-CPU call to trigger the scheduler on
601 * the target CPU.
602 */
603 void resched_curr(struct rq *rq)
604 {
605 struct task_struct *curr = rq->curr;
606 int cpu;
607
608 lockdep_assert_held(&rq->lock);
609
610 if (test_tsk_need_resched(curr))
611 return;
612
613 cpu = cpu_of(rq);
614
615 if (cpu == smp_processor_id()) {
616 set_tsk_need_resched(curr);
617 set_preempt_need_resched();
618 return;
619 }
620
621 if (set_nr_and_not_polling(curr))
622 smp_send_reschedule(cpu);
623 else
624 trace_sched_wake_idle_without_ipi(cpu);
625 }
626
627 void resched_cpu(int cpu)
628 {
629 struct rq *rq = cpu_rq(cpu);
630 unsigned long flags;
631
632 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
633 return;
634 resched_curr(rq);
635 raw_spin_unlock_irqrestore(&rq->lock, flags);
636 }
637
638 #ifdef CONFIG_SMP
639 #ifdef CONFIG_NO_HZ_COMMON
640 /*
641 * In the semi idle case, use the nearest busy cpu for migrating timers
642 * from an idle cpu. This is good for power-savings.
643 *
644 * We don't do similar optimization for completely idle system, as
645 * selecting an idle cpu will add more delays to the timers than intended
646 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
647 */
648 int get_nohz_timer_target(int pinned)
649 {
650 int cpu = smp_processor_id();
651 int i;
652 struct sched_domain *sd;
653
654 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
655 return cpu;
656
657 rcu_read_lock();
658 for_each_domain(cpu, sd) {
659 for_each_cpu(i, sched_domain_span(sd)) {
660 if (!idle_cpu(i)) {
661 cpu = i;
662 goto unlock;
663 }
664 }
665 }
666 unlock:
667 rcu_read_unlock();
668 return cpu;
669 }
670 /*
671 * When add_timer_on() enqueues a timer into the timer wheel of an
672 * idle CPU then this timer might expire before the next timer event
673 * which is scheduled to wake up that CPU. In case of a completely
674 * idle system the next event might even be infinite time into the
675 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
676 * leaves the inner idle loop so the newly added timer is taken into
677 * account when the CPU goes back to idle and evaluates the timer
678 * wheel for the next timer event.
679 */
680 static void wake_up_idle_cpu(int cpu)
681 {
682 struct rq *rq = cpu_rq(cpu);
683
684 if (cpu == smp_processor_id())
685 return;
686
687 if (set_nr_and_not_polling(rq->idle))
688 smp_send_reschedule(cpu);
689 else
690 trace_sched_wake_idle_without_ipi(cpu);
691 }
692
693 static bool wake_up_full_nohz_cpu(int cpu)
694 {
695 /*
696 * We just need the target to call irq_exit() and re-evaluate
697 * the next tick. The nohz full kick at least implies that.
698 * If needed we can still optimize that later with an
699 * empty IRQ.
700 */
701 if (tick_nohz_full_cpu(cpu)) {
702 if (cpu != smp_processor_id() ||
703 tick_nohz_tick_stopped())
704 tick_nohz_full_kick_cpu(cpu);
705 return true;
706 }
707
708 return false;
709 }
710
711 void wake_up_nohz_cpu(int cpu)
712 {
713 if (!wake_up_full_nohz_cpu(cpu))
714 wake_up_idle_cpu(cpu);
715 }
716
717 static inline bool got_nohz_idle_kick(void)
718 {
719 int cpu = smp_processor_id();
720
721 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
722 return false;
723
724 if (idle_cpu(cpu) && !need_resched())
725 return true;
726
727 /*
728 * We can't run Idle Load Balance on this CPU for this time so we
729 * cancel it and clear NOHZ_BALANCE_KICK
730 */
731 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
732 return false;
733 }
734
735 #else /* CONFIG_NO_HZ_COMMON */
736
737 static inline bool got_nohz_idle_kick(void)
738 {
739 return false;
740 }
741
742 #endif /* CONFIG_NO_HZ_COMMON */
743
744 #ifdef CONFIG_NO_HZ_FULL
745 bool sched_can_stop_tick(void)
746 {
747 /*
748 * More than one running task need preemption.
749 * nr_running update is assumed to be visible
750 * after IPI is sent from wakers.
751 */
752 if (this_rq()->nr_running > 1)
753 return false;
754
755 return true;
756 }
757 #endif /* CONFIG_NO_HZ_FULL */
758
759 void sched_avg_update(struct rq *rq)
760 {
761 s64 period = sched_avg_period();
762
763 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
764 /*
765 * Inline assembly required to prevent the compiler
766 * optimising this loop into a divmod call.
767 * See __iter_div_u64_rem() for another example of this.
768 */
769 asm("" : "+rm" (rq->age_stamp));
770 rq->age_stamp += period;
771 rq->rt_avg /= 2;
772 }
773 }
774
775 #endif /* CONFIG_SMP */
776
777 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
778 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
779 /*
780 * Iterate task_group tree rooted at *from, calling @down when first entering a
781 * node and @up when leaving it for the final time.
782 *
783 * Caller must hold rcu_lock or sufficient equivalent.
784 */
785 int walk_tg_tree_from(struct task_group *from,
786 tg_visitor down, tg_visitor up, void *data)
787 {
788 struct task_group *parent, *child;
789 int ret;
790
791 parent = from;
792
793 down:
794 ret = (*down)(parent, data);
795 if (ret)
796 goto out;
797 list_for_each_entry_rcu(child, &parent->children, siblings) {
798 parent = child;
799 goto down;
800
801 up:
802 continue;
803 }
804 ret = (*up)(parent, data);
805 if (ret || parent == from)
806 goto out;
807
808 child = parent;
809 parent = parent->parent;
810 if (parent)
811 goto up;
812 out:
813 return ret;
814 }
815
816 int tg_nop(struct task_group *tg, void *data)
817 {
818 return 0;
819 }
820 #endif
821
822 static void set_load_weight(struct task_struct *p)
823 {
824 int prio = p->static_prio - MAX_RT_PRIO;
825 struct load_weight *load = &p->se.load;
826
827 /*
828 * SCHED_IDLE tasks get minimal weight:
829 */
830 if (p->policy == SCHED_IDLE) {
831 load->weight = scale_load(WEIGHT_IDLEPRIO);
832 load->inv_weight = WMULT_IDLEPRIO;
833 return;
834 }
835
836 load->weight = scale_load(prio_to_weight[prio]);
837 load->inv_weight = prio_to_wmult[prio];
838 }
839
840 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
841 {
842 update_rq_clock(rq);
843 sched_info_queued(rq, p);
844 p->sched_class->enqueue_task(rq, p, flags);
845 }
846
847 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
848 {
849 update_rq_clock(rq);
850 sched_info_dequeued(rq, p);
851 p->sched_class->dequeue_task(rq, p, flags);
852 }
853
854 void activate_task(struct rq *rq, struct task_struct *p, int flags)
855 {
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible--;
858
859 enqueue_task(rq, p, flags);
860 }
861
862 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
863 {
864 if (task_contributes_to_load(p))
865 rq->nr_uninterruptible++;
866
867 dequeue_task(rq, p, flags);
868 }
869
870 static void update_rq_clock_task(struct rq *rq, s64 delta)
871 {
872 /*
873 * In theory, the compile should just see 0 here, and optimize out the call
874 * to sched_rt_avg_update. But I don't trust it...
875 */
876 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
877 s64 steal = 0, irq_delta = 0;
878 #endif
879 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
880 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
881
882 /*
883 * Since irq_time is only updated on {soft,}irq_exit, we might run into
884 * this case when a previous update_rq_clock() happened inside a
885 * {soft,}irq region.
886 *
887 * When this happens, we stop ->clock_task and only update the
888 * prev_irq_time stamp to account for the part that fit, so that a next
889 * update will consume the rest. This ensures ->clock_task is
890 * monotonic.
891 *
892 * It does however cause some slight miss-attribution of {soft,}irq
893 * time, a more accurate solution would be to update the irq_time using
894 * the current rq->clock timestamp, except that would require using
895 * atomic ops.
896 */
897 if (irq_delta > delta)
898 irq_delta = delta;
899
900 rq->prev_irq_time += irq_delta;
901 delta -= irq_delta;
902 #endif
903 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
904 if (static_key_false((&paravirt_steal_rq_enabled))) {
905 steal = paravirt_steal_clock(cpu_of(rq));
906 steal -= rq->prev_steal_time_rq;
907
908 if (unlikely(steal > delta))
909 steal = delta;
910
911 rq->prev_steal_time_rq += steal;
912 delta -= steal;
913 }
914 #endif
915
916 rq->clock_task += delta;
917
918 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
919 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
920 sched_rt_avg_update(rq, irq_delta + steal);
921 #endif
922 }
923
924 void sched_set_stop_task(int cpu, struct task_struct *stop)
925 {
926 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
927 struct task_struct *old_stop = cpu_rq(cpu)->stop;
928
929 if (stop) {
930 /*
931 * Make it appear like a SCHED_FIFO task, its something
932 * userspace knows about and won't get confused about.
933 *
934 * Also, it will make PI more or less work without too
935 * much confusion -- but then, stop work should not
936 * rely on PI working anyway.
937 */
938 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
939
940 stop->sched_class = &stop_sched_class;
941 }
942
943 cpu_rq(cpu)->stop = stop;
944
945 if (old_stop) {
946 /*
947 * Reset it back to a normal scheduling class so that
948 * it can die in pieces.
949 */
950 old_stop->sched_class = &rt_sched_class;
951 }
952 }
953
954 /*
955 * __normal_prio - return the priority that is based on the static prio
956 */
957 static inline int __normal_prio(struct task_struct *p)
958 {
959 return p->static_prio;
960 }
961
962 /*
963 * Calculate the expected normal priority: i.e. priority
964 * without taking RT-inheritance into account. Might be
965 * boosted by interactivity modifiers. Changes upon fork,
966 * setprio syscalls, and whenever the interactivity
967 * estimator recalculates.
968 */
969 static inline int normal_prio(struct task_struct *p)
970 {
971 int prio;
972
973 if (task_has_dl_policy(p))
974 prio = MAX_DL_PRIO-1;
975 else if (task_has_rt_policy(p))
976 prio = MAX_RT_PRIO-1 - p->rt_priority;
977 else
978 prio = __normal_prio(p);
979 return prio;
980 }
981
982 /*
983 * Calculate the current priority, i.e. the priority
984 * taken into account by the scheduler. This value might
985 * be boosted by RT tasks, or might be boosted by
986 * interactivity modifiers. Will be RT if the task got
987 * RT-boosted. If not then it returns p->normal_prio.
988 */
989 static int effective_prio(struct task_struct *p)
990 {
991 p->normal_prio = normal_prio(p);
992 /*
993 * If we are RT tasks or we were boosted to RT priority,
994 * keep the priority unchanged. Otherwise, update priority
995 * to the normal priority:
996 */
997 if (!rt_prio(p->prio))
998 return p->normal_prio;
999 return p->prio;
1000 }
1001
1002 /**
1003 * task_curr - is this task currently executing on a CPU?
1004 * @p: the task in question.
1005 *
1006 * Return: 1 if the task is currently executing. 0 otherwise.
1007 */
1008 inline int task_curr(const struct task_struct *p)
1009 {
1010 return cpu_curr(task_cpu(p)) == p;
1011 }
1012
1013 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1014 const struct sched_class *prev_class,
1015 int oldprio)
1016 {
1017 if (prev_class != p->sched_class) {
1018 if (prev_class->switched_from)
1019 prev_class->switched_from(rq, p);
1020 p->sched_class->switched_to(rq, p);
1021 } else if (oldprio != p->prio || dl_task(p))
1022 p->sched_class->prio_changed(rq, p, oldprio);
1023 }
1024
1025 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1026 {
1027 const struct sched_class *class;
1028
1029 if (p->sched_class == rq->curr->sched_class) {
1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 } else {
1032 for_each_class(class) {
1033 if (class == rq->curr->sched_class)
1034 break;
1035 if (class == p->sched_class) {
1036 resched_curr(rq);
1037 break;
1038 }
1039 }
1040 }
1041
1042 /*
1043 * A queue event has occurred, and we're going to schedule. In
1044 * this case, we can save a useless back to back clock update.
1045 */
1046 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1047 rq->skip_clock_update = 1;
1048 }
1049
1050 #ifdef CONFIG_SMP
1051 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1052 {
1053 #ifdef CONFIG_SCHED_DEBUG
1054 /*
1055 * We should never call set_task_cpu() on a blocked task,
1056 * ttwu() will sort out the placement.
1057 */
1058 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1059 !(task_preempt_count(p) & PREEMPT_ACTIVE));
1060
1061 #ifdef CONFIG_LOCKDEP
1062 /*
1063 * The caller should hold either p->pi_lock or rq->lock, when changing
1064 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1065 *
1066 * sched_move_task() holds both and thus holding either pins the cgroup,
1067 * see task_group().
1068 *
1069 * Furthermore, all task_rq users should acquire both locks, see
1070 * task_rq_lock().
1071 */
1072 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1073 lockdep_is_held(&task_rq(p)->lock)));
1074 #endif
1075 #endif
1076
1077 trace_sched_migrate_task(p, new_cpu);
1078
1079 if (task_cpu(p) != new_cpu) {
1080 if (p->sched_class->migrate_task_rq)
1081 p->sched_class->migrate_task_rq(p, new_cpu);
1082 p->se.nr_migrations++;
1083 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1084 }
1085
1086 __set_task_cpu(p, new_cpu);
1087 }
1088
1089 static void __migrate_swap_task(struct task_struct *p, int cpu)
1090 {
1091 if (p->on_rq) {
1092 struct rq *src_rq, *dst_rq;
1093
1094 src_rq = task_rq(p);
1095 dst_rq = cpu_rq(cpu);
1096
1097 deactivate_task(src_rq, p, 0);
1098 set_task_cpu(p, cpu);
1099 activate_task(dst_rq, p, 0);
1100 check_preempt_curr(dst_rq, p, 0);
1101 } else {
1102 /*
1103 * Task isn't running anymore; make it appear like we migrated
1104 * it before it went to sleep. This means on wakeup we make the
1105 * previous cpu our targer instead of where it really is.
1106 */
1107 p->wake_cpu = cpu;
1108 }
1109 }
1110
1111 struct migration_swap_arg {
1112 struct task_struct *src_task, *dst_task;
1113 int src_cpu, dst_cpu;
1114 };
1115
1116 static int migrate_swap_stop(void *data)
1117 {
1118 struct migration_swap_arg *arg = data;
1119 struct rq *src_rq, *dst_rq;
1120 int ret = -EAGAIN;
1121
1122 src_rq = cpu_rq(arg->src_cpu);
1123 dst_rq = cpu_rq(arg->dst_cpu);
1124
1125 double_raw_lock(&arg->src_task->pi_lock,
1126 &arg->dst_task->pi_lock);
1127 double_rq_lock(src_rq, dst_rq);
1128 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1129 goto unlock;
1130
1131 if (task_cpu(arg->src_task) != arg->src_cpu)
1132 goto unlock;
1133
1134 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1135 goto unlock;
1136
1137 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1138 goto unlock;
1139
1140 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1141 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1142
1143 ret = 0;
1144
1145 unlock:
1146 double_rq_unlock(src_rq, dst_rq);
1147 raw_spin_unlock(&arg->dst_task->pi_lock);
1148 raw_spin_unlock(&arg->src_task->pi_lock);
1149
1150 return ret;
1151 }
1152
1153 /*
1154 * Cross migrate two tasks
1155 */
1156 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1157 {
1158 struct migration_swap_arg arg;
1159 int ret = -EINVAL;
1160
1161 arg = (struct migration_swap_arg){
1162 .src_task = cur,
1163 .src_cpu = task_cpu(cur),
1164 .dst_task = p,
1165 .dst_cpu = task_cpu(p),
1166 };
1167
1168 if (arg.src_cpu == arg.dst_cpu)
1169 goto out;
1170
1171 /*
1172 * These three tests are all lockless; this is OK since all of them
1173 * will be re-checked with proper locks held further down the line.
1174 */
1175 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1176 goto out;
1177
1178 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1179 goto out;
1180
1181 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1182 goto out;
1183
1184 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1185 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1186
1187 out:
1188 return ret;
1189 }
1190
1191 struct migration_arg {
1192 struct task_struct *task;
1193 int dest_cpu;
1194 };
1195
1196 static int migration_cpu_stop(void *data);
1197
1198 /*
1199 * wait_task_inactive - wait for a thread to unschedule.
1200 *
1201 * If @match_state is nonzero, it's the @p->state value just checked and
1202 * not expected to change. If it changes, i.e. @p might have woken up,
1203 * then return zero. When we succeed in waiting for @p to be off its CPU,
1204 * we return a positive number (its total switch count). If a second call
1205 * a short while later returns the same number, the caller can be sure that
1206 * @p has remained unscheduled the whole time.
1207 *
1208 * The caller must ensure that the task *will* unschedule sometime soon,
1209 * else this function might spin for a *long* time. This function can't
1210 * be called with interrupts off, or it may introduce deadlock with
1211 * smp_call_function() if an IPI is sent by the same process we are
1212 * waiting to become inactive.
1213 */
1214 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1215 {
1216 unsigned long flags;
1217 int running, on_rq;
1218 unsigned long ncsw;
1219 struct rq *rq;
1220
1221 for (;;) {
1222 /*
1223 * We do the initial early heuristics without holding
1224 * any task-queue locks at all. We'll only try to get
1225 * the runqueue lock when things look like they will
1226 * work out!
1227 */
1228 rq = task_rq(p);
1229
1230 /*
1231 * If the task is actively running on another CPU
1232 * still, just relax and busy-wait without holding
1233 * any locks.
1234 *
1235 * NOTE! Since we don't hold any locks, it's not
1236 * even sure that "rq" stays as the right runqueue!
1237 * But we don't care, since "task_running()" will
1238 * return false if the runqueue has changed and p
1239 * is actually now running somewhere else!
1240 */
1241 while (task_running(rq, p)) {
1242 if (match_state && unlikely(p->state != match_state))
1243 return 0;
1244 cpu_relax();
1245 }
1246
1247 /*
1248 * Ok, time to look more closely! We need the rq
1249 * lock now, to be *sure*. If we're wrong, we'll
1250 * just go back and repeat.
1251 */
1252 rq = task_rq_lock(p, &flags);
1253 trace_sched_wait_task(p);
1254 running = task_running(rq, p);
1255 on_rq = p->on_rq;
1256 ncsw = 0;
1257 if (!match_state || p->state == match_state)
1258 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1259 task_rq_unlock(rq, p, &flags);
1260
1261 /*
1262 * If it changed from the expected state, bail out now.
1263 */
1264 if (unlikely(!ncsw))
1265 break;
1266
1267 /*
1268 * Was it really running after all now that we
1269 * checked with the proper locks actually held?
1270 *
1271 * Oops. Go back and try again..
1272 */
1273 if (unlikely(running)) {
1274 cpu_relax();
1275 continue;
1276 }
1277
1278 /*
1279 * It's not enough that it's not actively running,
1280 * it must be off the runqueue _entirely_, and not
1281 * preempted!
1282 *
1283 * So if it was still runnable (but just not actively
1284 * running right now), it's preempted, and we should
1285 * yield - it could be a while.
1286 */
1287 if (unlikely(on_rq)) {
1288 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1289
1290 set_current_state(TASK_UNINTERRUPTIBLE);
1291 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1292 continue;
1293 }
1294
1295 /*
1296 * Ahh, all good. It wasn't running, and it wasn't
1297 * runnable, which means that it will never become
1298 * running in the future either. We're all done!
1299 */
1300 break;
1301 }
1302
1303 return ncsw;
1304 }
1305
1306 /***
1307 * kick_process - kick a running thread to enter/exit the kernel
1308 * @p: the to-be-kicked thread
1309 *
1310 * Cause a process which is running on another CPU to enter
1311 * kernel-mode, without any delay. (to get signals handled.)
1312 *
1313 * NOTE: this function doesn't have to take the runqueue lock,
1314 * because all it wants to ensure is that the remote task enters
1315 * the kernel. If the IPI races and the task has been migrated
1316 * to another CPU then no harm is done and the purpose has been
1317 * achieved as well.
1318 */
1319 void kick_process(struct task_struct *p)
1320 {
1321 int cpu;
1322
1323 preempt_disable();
1324 cpu = task_cpu(p);
1325 if ((cpu != smp_processor_id()) && task_curr(p))
1326 smp_send_reschedule(cpu);
1327 preempt_enable();
1328 }
1329 EXPORT_SYMBOL_GPL(kick_process);
1330 #endif /* CONFIG_SMP */
1331
1332 #ifdef CONFIG_SMP
1333 /*
1334 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1335 */
1336 static int select_fallback_rq(int cpu, struct task_struct *p)
1337 {
1338 int nid = cpu_to_node(cpu);
1339 const struct cpumask *nodemask = NULL;
1340 enum { cpuset, possible, fail } state = cpuset;
1341 int dest_cpu;
1342
1343 /*
1344 * If the node that the cpu is on has been offlined, cpu_to_node()
1345 * will return -1. There is no cpu on the node, and we should
1346 * select the cpu on the other node.
1347 */
1348 if (nid != -1) {
1349 nodemask = cpumask_of_node(nid);
1350
1351 /* Look for allowed, online CPU in same node. */
1352 for_each_cpu(dest_cpu, nodemask) {
1353 if (!cpu_online(dest_cpu))
1354 continue;
1355 if (!cpu_active(dest_cpu))
1356 continue;
1357 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1358 return dest_cpu;
1359 }
1360 }
1361
1362 for (;;) {
1363 /* Any allowed, online CPU? */
1364 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1365 if (!cpu_online(dest_cpu))
1366 continue;
1367 if (!cpu_active(dest_cpu))
1368 continue;
1369 goto out;
1370 }
1371
1372 switch (state) {
1373 case cpuset:
1374 /* No more Mr. Nice Guy. */
1375 cpuset_cpus_allowed_fallback(p);
1376 state = possible;
1377 break;
1378
1379 case possible:
1380 do_set_cpus_allowed(p, cpu_possible_mask);
1381 state = fail;
1382 break;
1383
1384 case fail:
1385 BUG();
1386 break;
1387 }
1388 }
1389
1390 out:
1391 if (state != cpuset) {
1392 /*
1393 * Don't tell them about moving exiting tasks or
1394 * kernel threads (both mm NULL), since they never
1395 * leave kernel.
1396 */
1397 if (p->mm && printk_ratelimit()) {
1398 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1399 task_pid_nr(p), p->comm, cpu);
1400 }
1401 }
1402
1403 return dest_cpu;
1404 }
1405
1406 /*
1407 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1408 */
1409 static inline
1410 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1411 {
1412 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1413
1414 /*
1415 * In order not to call set_task_cpu() on a blocking task we need
1416 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1417 * cpu.
1418 *
1419 * Since this is common to all placement strategies, this lives here.
1420 *
1421 * [ this allows ->select_task() to simply return task_cpu(p) and
1422 * not worry about this generic constraint ]
1423 */
1424 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1425 !cpu_online(cpu)))
1426 cpu = select_fallback_rq(task_cpu(p), p);
1427
1428 return cpu;
1429 }
1430
1431 static void update_avg(u64 *avg, u64 sample)
1432 {
1433 s64 diff = sample - *avg;
1434 *avg += diff >> 3;
1435 }
1436 #endif
1437
1438 static void
1439 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1440 {
1441 #ifdef CONFIG_SCHEDSTATS
1442 struct rq *rq = this_rq();
1443
1444 #ifdef CONFIG_SMP
1445 int this_cpu = smp_processor_id();
1446
1447 if (cpu == this_cpu) {
1448 schedstat_inc(rq, ttwu_local);
1449 schedstat_inc(p, se.statistics.nr_wakeups_local);
1450 } else {
1451 struct sched_domain *sd;
1452
1453 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1454 rcu_read_lock();
1455 for_each_domain(this_cpu, sd) {
1456 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1457 schedstat_inc(sd, ttwu_wake_remote);
1458 break;
1459 }
1460 }
1461 rcu_read_unlock();
1462 }
1463
1464 if (wake_flags & WF_MIGRATED)
1465 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1466
1467 #endif /* CONFIG_SMP */
1468
1469 schedstat_inc(rq, ttwu_count);
1470 schedstat_inc(p, se.statistics.nr_wakeups);
1471
1472 if (wake_flags & WF_SYNC)
1473 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1474
1475 #endif /* CONFIG_SCHEDSTATS */
1476 }
1477
1478 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1479 {
1480 activate_task(rq, p, en_flags);
1481 p->on_rq = 1;
1482
1483 /* if a worker is waking up, notify workqueue */
1484 if (p->flags & PF_WQ_WORKER)
1485 wq_worker_waking_up(p, cpu_of(rq));
1486 }
1487
1488 /*
1489 * Mark the task runnable and perform wakeup-preemption.
1490 */
1491 static void
1492 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1493 {
1494 check_preempt_curr(rq, p, wake_flags);
1495 trace_sched_wakeup(p, true);
1496
1497 p->state = TASK_RUNNING;
1498 #ifdef CONFIG_SMP
1499 if (p->sched_class->task_woken)
1500 p->sched_class->task_woken(rq, p);
1501
1502 if (rq->idle_stamp) {
1503 u64 delta = rq_clock(rq) - rq->idle_stamp;
1504 u64 max = 2*rq->max_idle_balance_cost;
1505
1506 update_avg(&rq->avg_idle, delta);
1507
1508 if (rq->avg_idle > max)
1509 rq->avg_idle = max;
1510
1511 rq->idle_stamp = 0;
1512 }
1513 #endif
1514 }
1515
1516 static void
1517 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1518 {
1519 #ifdef CONFIG_SMP
1520 if (p->sched_contributes_to_load)
1521 rq->nr_uninterruptible--;
1522 #endif
1523
1524 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1525 ttwu_do_wakeup(rq, p, wake_flags);
1526 }
1527
1528 /*
1529 * Called in case the task @p isn't fully descheduled from its runqueue,
1530 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1531 * since all we need to do is flip p->state to TASK_RUNNING, since
1532 * the task is still ->on_rq.
1533 */
1534 static int ttwu_remote(struct task_struct *p, int wake_flags)
1535 {
1536 struct rq *rq;
1537 int ret = 0;
1538
1539 rq = __task_rq_lock(p);
1540 if (p->on_rq) {
1541 /* check_preempt_curr() may use rq clock */
1542 update_rq_clock(rq);
1543 ttwu_do_wakeup(rq, p, wake_flags);
1544 ret = 1;
1545 }
1546 __task_rq_unlock(rq);
1547
1548 return ret;
1549 }
1550
1551 #ifdef CONFIG_SMP
1552 void sched_ttwu_pending(void)
1553 {
1554 struct rq *rq = this_rq();
1555 struct llist_node *llist = llist_del_all(&rq->wake_list);
1556 struct task_struct *p;
1557 unsigned long flags;
1558
1559 if (!llist)
1560 return;
1561
1562 raw_spin_lock_irqsave(&rq->lock, flags);
1563
1564 while (llist) {
1565 p = llist_entry(llist, struct task_struct, wake_entry);
1566 llist = llist_next(llist);
1567 ttwu_do_activate(rq, p, 0);
1568 }
1569
1570 raw_spin_unlock_irqrestore(&rq->lock, flags);
1571 }
1572
1573 void scheduler_ipi(void)
1574 {
1575 /*
1576 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1577 * TIF_NEED_RESCHED remotely (for the first time) will also send
1578 * this IPI.
1579 */
1580 preempt_fold_need_resched();
1581
1582 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1583 return;
1584
1585 /*
1586 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1587 * traditionally all their work was done from the interrupt return
1588 * path. Now that we actually do some work, we need to make sure
1589 * we do call them.
1590 *
1591 * Some archs already do call them, luckily irq_enter/exit nest
1592 * properly.
1593 *
1594 * Arguably we should visit all archs and update all handlers,
1595 * however a fair share of IPIs are still resched only so this would
1596 * somewhat pessimize the simple resched case.
1597 */
1598 irq_enter();
1599 sched_ttwu_pending();
1600
1601 /*
1602 * Check if someone kicked us for doing the nohz idle load balance.
1603 */
1604 if (unlikely(got_nohz_idle_kick())) {
1605 this_rq()->idle_balance = 1;
1606 raise_softirq_irqoff(SCHED_SOFTIRQ);
1607 }
1608 irq_exit();
1609 }
1610
1611 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1612 {
1613 struct rq *rq = cpu_rq(cpu);
1614
1615 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1616 if (!set_nr_if_polling(rq->idle))
1617 smp_send_reschedule(cpu);
1618 else
1619 trace_sched_wake_idle_without_ipi(cpu);
1620 }
1621 }
1622
1623 bool cpus_share_cache(int this_cpu, int that_cpu)
1624 {
1625 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1626 }
1627 #endif /* CONFIG_SMP */
1628
1629 static void ttwu_queue(struct task_struct *p, int cpu)
1630 {
1631 struct rq *rq = cpu_rq(cpu);
1632
1633 #if defined(CONFIG_SMP)
1634 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1635 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1636 ttwu_queue_remote(p, cpu);
1637 return;
1638 }
1639 #endif
1640
1641 raw_spin_lock(&rq->lock);
1642 ttwu_do_activate(rq, p, 0);
1643 raw_spin_unlock(&rq->lock);
1644 }
1645
1646 /**
1647 * try_to_wake_up - wake up a thread
1648 * @p: the thread to be awakened
1649 * @state: the mask of task states that can be woken
1650 * @wake_flags: wake modifier flags (WF_*)
1651 *
1652 * Put it on the run-queue if it's not already there. The "current"
1653 * thread is always on the run-queue (except when the actual
1654 * re-schedule is in progress), and as such you're allowed to do
1655 * the simpler "current->state = TASK_RUNNING" to mark yourself
1656 * runnable without the overhead of this.
1657 *
1658 * Return: %true if @p was woken up, %false if it was already running.
1659 * or @state didn't match @p's state.
1660 */
1661 static int
1662 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1663 {
1664 unsigned long flags;
1665 int cpu, success = 0;
1666
1667 /*
1668 * If we are going to wake up a thread waiting for CONDITION we
1669 * need to ensure that CONDITION=1 done by the caller can not be
1670 * reordered with p->state check below. This pairs with mb() in
1671 * set_current_state() the waiting thread does.
1672 */
1673 smp_mb__before_spinlock();
1674 raw_spin_lock_irqsave(&p->pi_lock, flags);
1675 if (!(p->state & state))
1676 goto out;
1677
1678 success = 1; /* we're going to change ->state */
1679 cpu = task_cpu(p);
1680
1681 if (p->on_rq && ttwu_remote(p, wake_flags))
1682 goto stat;
1683
1684 #ifdef CONFIG_SMP
1685 /*
1686 * If the owning (remote) cpu is still in the middle of schedule() with
1687 * this task as prev, wait until its done referencing the task.
1688 */
1689 while (p->on_cpu)
1690 cpu_relax();
1691 /*
1692 * Pairs with the smp_wmb() in finish_lock_switch().
1693 */
1694 smp_rmb();
1695
1696 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1697 p->state = TASK_WAKING;
1698
1699 if (p->sched_class->task_waking)
1700 p->sched_class->task_waking(p);
1701
1702 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1703 if (task_cpu(p) != cpu) {
1704 wake_flags |= WF_MIGRATED;
1705 set_task_cpu(p, cpu);
1706 }
1707 #endif /* CONFIG_SMP */
1708
1709 ttwu_queue(p, cpu);
1710 stat:
1711 ttwu_stat(p, cpu, wake_flags);
1712 out:
1713 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1714
1715 return success;
1716 }
1717
1718 /**
1719 * try_to_wake_up_local - try to wake up a local task with rq lock held
1720 * @p: the thread to be awakened
1721 *
1722 * Put @p on the run-queue if it's not already there. The caller must
1723 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1724 * the current task.
1725 */
1726 static void try_to_wake_up_local(struct task_struct *p)
1727 {
1728 struct rq *rq = task_rq(p);
1729
1730 if (WARN_ON_ONCE(rq != this_rq()) ||
1731 WARN_ON_ONCE(p == current))
1732 return;
1733
1734 lockdep_assert_held(&rq->lock);
1735
1736 if (!raw_spin_trylock(&p->pi_lock)) {
1737 raw_spin_unlock(&rq->lock);
1738 raw_spin_lock(&p->pi_lock);
1739 raw_spin_lock(&rq->lock);
1740 }
1741
1742 if (!(p->state & TASK_NORMAL))
1743 goto out;
1744
1745 if (!p->on_rq)
1746 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1747
1748 ttwu_do_wakeup(rq, p, 0);
1749 ttwu_stat(p, smp_processor_id(), 0);
1750 out:
1751 raw_spin_unlock(&p->pi_lock);
1752 }
1753
1754 /**
1755 * wake_up_process - Wake up a specific process
1756 * @p: The process to be woken up.
1757 *
1758 * Attempt to wake up the nominated process and move it to the set of runnable
1759 * processes.
1760 *
1761 * Return: 1 if the process was woken up, 0 if it was already running.
1762 *
1763 * It may be assumed that this function implies a write memory barrier before
1764 * changing the task state if and only if any tasks are woken up.
1765 */
1766 int wake_up_process(struct task_struct *p)
1767 {
1768 WARN_ON(task_is_stopped_or_traced(p));
1769 return try_to_wake_up(p, TASK_NORMAL, 0);
1770 }
1771 EXPORT_SYMBOL(wake_up_process);
1772
1773 int wake_up_state(struct task_struct *p, unsigned int state)
1774 {
1775 return try_to_wake_up(p, state, 0);
1776 }
1777
1778 /*
1779 * Perform scheduler related setup for a newly forked process p.
1780 * p is forked by current.
1781 *
1782 * __sched_fork() is basic setup used by init_idle() too:
1783 */
1784 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1785 {
1786 p->on_rq = 0;
1787
1788 p->se.on_rq = 0;
1789 p->se.exec_start = 0;
1790 p->se.sum_exec_runtime = 0;
1791 p->se.prev_sum_exec_runtime = 0;
1792 p->se.nr_migrations = 0;
1793 p->se.vruntime = 0;
1794 INIT_LIST_HEAD(&p->se.group_node);
1795
1796 #ifdef CONFIG_SCHEDSTATS
1797 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1798 #endif
1799
1800 RB_CLEAR_NODE(&p->dl.rb_node);
1801 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1802 p->dl.dl_runtime = p->dl.runtime = 0;
1803 p->dl.dl_deadline = p->dl.deadline = 0;
1804 p->dl.dl_period = 0;
1805 p->dl.flags = 0;
1806
1807 INIT_LIST_HEAD(&p->rt.run_list);
1808
1809 #ifdef CONFIG_PREEMPT_NOTIFIERS
1810 INIT_HLIST_HEAD(&p->preempt_notifiers);
1811 #endif
1812
1813 #ifdef CONFIG_NUMA_BALANCING
1814 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1815 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1816 p->mm->numa_scan_seq = 0;
1817 }
1818
1819 if (clone_flags & CLONE_VM)
1820 p->numa_preferred_nid = current->numa_preferred_nid;
1821 else
1822 p->numa_preferred_nid = -1;
1823
1824 p->node_stamp = 0ULL;
1825 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1826 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1827 p->numa_work.next = &p->numa_work;
1828 p->numa_faults_memory = NULL;
1829 p->numa_faults_buffer_memory = NULL;
1830 p->last_task_numa_placement = 0;
1831 p->last_sum_exec_runtime = 0;
1832
1833 INIT_LIST_HEAD(&p->numa_entry);
1834 p->numa_group = NULL;
1835 #endif /* CONFIG_NUMA_BALANCING */
1836 }
1837
1838 #ifdef CONFIG_NUMA_BALANCING
1839 #ifdef CONFIG_SCHED_DEBUG
1840 void set_numabalancing_state(bool enabled)
1841 {
1842 if (enabled)
1843 sched_feat_set("NUMA");
1844 else
1845 sched_feat_set("NO_NUMA");
1846 }
1847 #else
1848 __read_mostly bool numabalancing_enabled;
1849
1850 void set_numabalancing_state(bool enabled)
1851 {
1852 numabalancing_enabled = enabled;
1853 }
1854 #endif /* CONFIG_SCHED_DEBUG */
1855
1856 #ifdef CONFIG_PROC_SYSCTL
1857 int sysctl_numa_balancing(struct ctl_table *table, int write,
1858 void __user *buffer, size_t *lenp, loff_t *ppos)
1859 {
1860 struct ctl_table t;
1861 int err;
1862 int state = numabalancing_enabled;
1863
1864 if (write && !capable(CAP_SYS_ADMIN))
1865 return -EPERM;
1866
1867 t = *table;
1868 t.data = &state;
1869 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1870 if (err < 0)
1871 return err;
1872 if (write)
1873 set_numabalancing_state(state);
1874 return err;
1875 }
1876 #endif
1877 #endif
1878
1879 /*
1880 * fork()/clone()-time setup:
1881 */
1882 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1883 {
1884 unsigned long flags;
1885 int cpu = get_cpu();
1886
1887 __sched_fork(clone_flags, p);
1888 /*
1889 * We mark the process as running here. This guarantees that
1890 * nobody will actually run it, and a signal or other external
1891 * event cannot wake it up and insert it on the runqueue either.
1892 */
1893 p->state = TASK_RUNNING;
1894
1895 /*
1896 * Make sure we do not leak PI boosting priority to the child.
1897 */
1898 p->prio = current->normal_prio;
1899
1900 /*
1901 * Revert to default priority/policy on fork if requested.
1902 */
1903 if (unlikely(p->sched_reset_on_fork)) {
1904 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1905 p->policy = SCHED_NORMAL;
1906 p->static_prio = NICE_TO_PRIO(0);
1907 p->rt_priority = 0;
1908 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1909 p->static_prio = NICE_TO_PRIO(0);
1910
1911 p->prio = p->normal_prio = __normal_prio(p);
1912 set_load_weight(p);
1913
1914 /*
1915 * We don't need the reset flag anymore after the fork. It has
1916 * fulfilled its duty:
1917 */
1918 p->sched_reset_on_fork = 0;
1919 }
1920
1921 if (dl_prio(p->prio)) {
1922 put_cpu();
1923 return -EAGAIN;
1924 } else if (rt_prio(p->prio)) {
1925 p->sched_class = &rt_sched_class;
1926 } else {
1927 p->sched_class = &fair_sched_class;
1928 }
1929
1930 if (p->sched_class->task_fork)
1931 p->sched_class->task_fork(p);
1932
1933 /*
1934 * The child is not yet in the pid-hash so no cgroup attach races,
1935 * and the cgroup is pinned to this child due to cgroup_fork()
1936 * is ran before sched_fork().
1937 *
1938 * Silence PROVE_RCU.
1939 */
1940 raw_spin_lock_irqsave(&p->pi_lock, flags);
1941 set_task_cpu(p, cpu);
1942 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1943
1944 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1945 if (likely(sched_info_on()))
1946 memset(&p->sched_info, 0, sizeof(p->sched_info));
1947 #endif
1948 #if defined(CONFIG_SMP)
1949 p->on_cpu = 0;
1950 #endif
1951 init_task_preempt_count(p);
1952 #ifdef CONFIG_SMP
1953 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1954 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1955 #endif
1956
1957 put_cpu();
1958 return 0;
1959 }
1960
1961 unsigned long to_ratio(u64 period, u64 runtime)
1962 {
1963 if (runtime == RUNTIME_INF)
1964 return 1ULL << 20;
1965
1966 /*
1967 * Doing this here saves a lot of checks in all
1968 * the calling paths, and returning zero seems
1969 * safe for them anyway.
1970 */
1971 if (period == 0)
1972 return 0;
1973
1974 return div64_u64(runtime << 20, period);
1975 }
1976
1977 #ifdef CONFIG_SMP
1978 inline struct dl_bw *dl_bw_of(int i)
1979 {
1980 return &cpu_rq(i)->rd->dl_bw;
1981 }
1982
1983 static inline int dl_bw_cpus(int i)
1984 {
1985 struct root_domain *rd = cpu_rq(i)->rd;
1986 int cpus = 0;
1987
1988 for_each_cpu_and(i, rd->span, cpu_active_mask)
1989 cpus++;
1990
1991 return cpus;
1992 }
1993 #else
1994 inline struct dl_bw *dl_bw_of(int i)
1995 {
1996 return &cpu_rq(i)->dl.dl_bw;
1997 }
1998
1999 static inline int dl_bw_cpus(int i)
2000 {
2001 return 1;
2002 }
2003 #endif
2004
2005 static inline
2006 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2007 {
2008 dl_b->total_bw -= tsk_bw;
2009 }
2010
2011 static inline
2012 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2013 {
2014 dl_b->total_bw += tsk_bw;
2015 }
2016
2017 static inline
2018 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2019 {
2020 return dl_b->bw != -1 &&
2021 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2022 }
2023
2024 /*
2025 * We must be sure that accepting a new task (or allowing changing the
2026 * parameters of an existing one) is consistent with the bandwidth
2027 * constraints. If yes, this function also accordingly updates the currently
2028 * allocated bandwidth to reflect the new situation.
2029 *
2030 * This function is called while holding p's rq->lock.
2031 */
2032 static int dl_overflow(struct task_struct *p, int policy,
2033 const struct sched_attr *attr)
2034 {
2035
2036 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2037 u64 period = attr->sched_period ?: attr->sched_deadline;
2038 u64 runtime = attr->sched_runtime;
2039 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2040 int cpus, err = -1;
2041
2042 if (new_bw == p->dl.dl_bw)
2043 return 0;
2044
2045 /*
2046 * Either if a task, enters, leave, or stays -deadline but changes
2047 * its parameters, we may need to update accordingly the total
2048 * allocated bandwidth of the container.
2049 */
2050 raw_spin_lock(&dl_b->lock);
2051 cpus = dl_bw_cpus(task_cpu(p));
2052 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2053 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2054 __dl_add(dl_b, new_bw);
2055 err = 0;
2056 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2057 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2058 __dl_clear(dl_b, p->dl.dl_bw);
2059 __dl_add(dl_b, new_bw);
2060 err = 0;
2061 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2062 __dl_clear(dl_b, p->dl.dl_bw);
2063 err = 0;
2064 }
2065 raw_spin_unlock(&dl_b->lock);
2066
2067 return err;
2068 }
2069
2070 extern void init_dl_bw(struct dl_bw *dl_b);
2071
2072 /*
2073 * wake_up_new_task - wake up a newly created task for the first time.
2074 *
2075 * This function will do some initial scheduler statistics housekeeping
2076 * that must be done for every newly created context, then puts the task
2077 * on the runqueue and wakes it.
2078 */
2079 void wake_up_new_task(struct task_struct *p)
2080 {
2081 unsigned long flags;
2082 struct rq *rq;
2083
2084 raw_spin_lock_irqsave(&p->pi_lock, flags);
2085 #ifdef CONFIG_SMP
2086 /*
2087 * Fork balancing, do it here and not earlier because:
2088 * - cpus_allowed can change in the fork path
2089 * - any previously selected cpu might disappear through hotplug
2090 */
2091 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2092 #endif
2093
2094 /* Initialize new task's runnable average */
2095 init_task_runnable_average(p);
2096 rq = __task_rq_lock(p);
2097 activate_task(rq, p, 0);
2098 p->on_rq = 1;
2099 trace_sched_wakeup_new(p, true);
2100 check_preempt_curr(rq, p, WF_FORK);
2101 #ifdef CONFIG_SMP
2102 if (p->sched_class->task_woken)
2103 p->sched_class->task_woken(rq, p);
2104 #endif
2105 task_rq_unlock(rq, p, &flags);
2106 }
2107
2108 #ifdef CONFIG_PREEMPT_NOTIFIERS
2109
2110 /**
2111 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2112 * @notifier: notifier struct to register
2113 */
2114 void preempt_notifier_register(struct preempt_notifier *notifier)
2115 {
2116 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2117 }
2118 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2119
2120 /**
2121 * preempt_notifier_unregister - no longer interested in preemption notifications
2122 * @notifier: notifier struct to unregister
2123 *
2124 * This is safe to call from within a preemption notifier.
2125 */
2126 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2127 {
2128 hlist_del(&notifier->link);
2129 }
2130 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2131
2132 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2133 {
2134 struct preempt_notifier *notifier;
2135
2136 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2137 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2138 }
2139
2140 static void
2141 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2142 struct task_struct *next)
2143 {
2144 struct preempt_notifier *notifier;
2145
2146 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2147 notifier->ops->sched_out(notifier, next);
2148 }
2149
2150 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2151
2152 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2153 {
2154 }
2155
2156 static void
2157 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2158 struct task_struct *next)
2159 {
2160 }
2161
2162 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2163
2164 /**
2165 * prepare_task_switch - prepare to switch tasks
2166 * @rq: the runqueue preparing to switch
2167 * @prev: the current task that is being switched out
2168 * @next: the task we are going to switch to.
2169 *
2170 * This is called with the rq lock held and interrupts off. It must
2171 * be paired with a subsequent finish_task_switch after the context
2172 * switch.
2173 *
2174 * prepare_task_switch sets up locking and calls architecture specific
2175 * hooks.
2176 */
2177 static inline void
2178 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2179 struct task_struct *next)
2180 {
2181 trace_sched_switch(prev, next);
2182 sched_info_switch(rq, prev, next);
2183 perf_event_task_sched_out(prev, next);
2184 fire_sched_out_preempt_notifiers(prev, next);
2185 prepare_lock_switch(rq, next);
2186 prepare_arch_switch(next);
2187 }
2188
2189 /**
2190 * finish_task_switch - clean up after a task-switch
2191 * @rq: runqueue associated with task-switch
2192 * @prev: the thread we just switched away from.
2193 *
2194 * finish_task_switch must be called after the context switch, paired
2195 * with a prepare_task_switch call before the context switch.
2196 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2197 * and do any other architecture-specific cleanup actions.
2198 *
2199 * Note that we may have delayed dropping an mm in context_switch(). If
2200 * so, we finish that here outside of the runqueue lock. (Doing it
2201 * with the lock held can cause deadlocks; see schedule() for
2202 * details.)
2203 */
2204 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2205 __releases(rq->lock)
2206 {
2207 struct mm_struct *mm = rq->prev_mm;
2208 long prev_state;
2209
2210 rq->prev_mm = NULL;
2211
2212 /*
2213 * A task struct has one reference for the use as "current".
2214 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2215 * schedule one last time. The schedule call will never return, and
2216 * the scheduled task must drop that reference.
2217 * The test for TASK_DEAD must occur while the runqueue locks are
2218 * still held, otherwise prev could be scheduled on another cpu, die
2219 * there before we look at prev->state, and then the reference would
2220 * be dropped twice.
2221 * Manfred Spraul <manfred@colorfullife.com>
2222 */
2223 prev_state = prev->state;
2224 vtime_task_switch(prev);
2225 finish_arch_switch(prev);
2226 perf_event_task_sched_in(prev, current);
2227 finish_lock_switch(rq, prev);
2228 finish_arch_post_lock_switch();
2229
2230 fire_sched_in_preempt_notifiers(current);
2231 if (mm)
2232 mmdrop(mm);
2233 if (unlikely(prev_state == TASK_DEAD)) {
2234 if (prev->sched_class->task_dead)
2235 prev->sched_class->task_dead(prev);
2236
2237 /*
2238 * Remove function-return probe instances associated with this
2239 * task and put them back on the free list.
2240 */
2241 kprobe_flush_task(prev);
2242 put_task_struct(prev);
2243 }
2244
2245 tick_nohz_task_switch(current);
2246 }
2247
2248 #ifdef CONFIG_SMP
2249
2250 /* rq->lock is NOT held, but preemption is disabled */
2251 static inline void post_schedule(struct rq *rq)
2252 {
2253 if (rq->post_schedule) {
2254 unsigned long flags;
2255
2256 raw_spin_lock_irqsave(&rq->lock, flags);
2257 if (rq->curr->sched_class->post_schedule)
2258 rq->curr->sched_class->post_schedule(rq);
2259 raw_spin_unlock_irqrestore(&rq->lock, flags);
2260
2261 rq->post_schedule = 0;
2262 }
2263 }
2264
2265 #else
2266
2267 static inline void post_schedule(struct rq *rq)
2268 {
2269 }
2270
2271 #endif
2272
2273 /**
2274 * schedule_tail - first thing a freshly forked thread must call.
2275 * @prev: the thread we just switched away from.
2276 */
2277 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2278 __releases(rq->lock)
2279 {
2280 struct rq *rq = this_rq();
2281
2282 finish_task_switch(rq, prev);
2283
2284 /*
2285 * FIXME: do we need to worry about rq being invalidated by the
2286 * task_switch?
2287 */
2288 post_schedule(rq);
2289
2290 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2291 /* In this case, finish_task_switch does not reenable preemption */
2292 preempt_enable();
2293 #endif
2294 if (current->set_child_tid)
2295 put_user(task_pid_vnr(current), current->set_child_tid);
2296 }
2297
2298 /*
2299 * context_switch - switch to the new MM and the new
2300 * thread's register state.
2301 */
2302 static inline void
2303 context_switch(struct rq *rq, struct task_struct *prev,
2304 struct task_struct *next)
2305 {
2306 struct mm_struct *mm, *oldmm;
2307
2308 prepare_task_switch(rq, prev, next);
2309
2310 mm = next->mm;
2311 oldmm = prev->active_mm;
2312 /*
2313 * For paravirt, this is coupled with an exit in switch_to to
2314 * combine the page table reload and the switch backend into
2315 * one hypercall.
2316 */
2317 arch_start_context_switch(prev);
2318
2319 if (!mm) {
2320 next->active_mm = oldmm;
2321 atomic_inc(&oldmm->mm_count);
2322 enter_lazy_tlb(oldmm, next);
2323 } else
2324 switch_mm(oldmm, mm, next);
2325
2326 if (!prev->mm) {
2327 prev->active_mm = NULL;
2328 rq->prev_mm = oldmm;
2329 }
2330 /*
2331 * Since the runqueue lock will be released by the next
2332 * task (which is an invalid locking op but in the case
2333 * of the scheduler it's an obvious special-case), so we
2334 * do an early lockdep release here:
2335 */
2336 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2337 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2338 #endif
2339
2340 context_tracking_task_switch(prev, next);
2341 /* Here we just switch the register state and the stack. */
2342 switch_to(prev, next, prev);
2343
2344 barrier();
2345 /*
2346 * this_rq must be evaluated again because prev may have moved
2347 * CPUs since it called schedule(), thus the 'rq' on its stack
2348 * frame will be invalid.
2349 */
2350 finish_task_switch(this_rq(), prev);
2351 }
2352
2353 /*
2354 * nr_running and nr_context_switches:
2355 *
2356 * externally visible scheduler statistics: current number of runnable
2357 * threads, total number of context switches performed since bootup.
2358 */
2359 unsigned long nr_running(void)
2360 {
2361 unsigned long i, sum = 0;
2362
2363 for_each_online_cpu(i)
2364 sum += cpu_rq(i)->nr_running;
2365
2366 return sum;
2367 }
2368
2369 unsigned long long nr_context_switches(void)
2370 {
2371 int i;
2372 unsigned long long sum = 0;
2373
2374 for_each_possible_cpu(i)
2375 sum += cpu_rq(i)->nr_switches;
2376
2377 return sum;
2378 }
2379
2380 unsigned long nr_iowait(void)
2381 {
2382 unsigned long i, sum = 0;
2383
2384 for_each_possible_cpu(i)
2385 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2386
2387 return sum;
2388 }
2389
2390 unsigned long nr_iowait_cpu(int cpu)
2391 {
2392 struct rq *this = cpu_rq(cpu);
2393 return atomic_read(&this->nr_iowait);
2394 }
2395
2396 #ifdef CONFIG_SMP
2397
2398 /*
2399 * sched_exec - execve() is a valuable balancing opportunity, because at
2400 * this point the task has the smallest effective memory and cache footprint.
2401 */
2402 void sched_exec(void)
2403 {
2404 struct task_struct *p = current;
2405 unsigned long flags;
2406 int dest_cpu;
2407
2408 raw_spin_lock_irqsave(&p->pi_lock, flags);
2409 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2410 if (dest_cpu == smp_processor_id())
2411 goto unlock;
2412
2413 if (likely(cpu_active(dest_cpu))) {
2414 struct migration_arg arg = { p, dest_cpu };
2415
2416 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2417 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2418 return;
2419 }
2420 unlock:
2421 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2422 }
2423
2424 #endif
2425
2426 DEFINE_PER_CPU(struct kernel_stat, kstat);
2427 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2428
2429 EXPORT_PER_CPU_SYMBOL(kstat);
2430 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2431
2432 /*
2433 * Return any ns on the sched_clock that have not yet been accounted in
2434 * @p in case that task is currently running.
2435 *
2436 * Called with task_rq_lock() held on @rq.
2437 */
2438 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2439 {
2440 u64 ns = 0;
2441
2442 /*
2443 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2444 * project cycles that may never be accounted to this
2445 * thread, breaking clock_gettime().
2446 */
2447 if (task_current(rq, p) && p->on_rq) {
2448 update_rq_clock(rq);
2449 ns = rq_clock_task(rq) - p->se.exec_start;
2450 if ((s64)ns < 0)
2451 ns = 0;
2452 }
2453
2454 return ns;
2455 }
2456
2457 unsigned long long task_delta_exec(struct task_struct *p)
2458 {
2459 unsigned long flags;
2460 struct rq *rq;
2461 u64 ns = 0;
2462
2463 rq = task_rq_lock(p, &flags);
2464 ns = do_task_delta_exec(p, rq);
2465 task_rq_unlock(rq, p, &flags);
2466
2467 return ns;
2468 }
2469
2470 /*
2471 * Return accounted runtime for the task.
2472 * In case the task is currently running, return the runtime plus current's
2473 * pending runtime that have not been accounted yet.
2474 */
2475 unsigned long long task_sched_runtime(struct task_struct *p)
2476 {
2477 unsigned long flags;
2478 struct rq *rq;
2479 u64 ns = 0;
2480
2481 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2482 /*
2483 * 64-bit doesn't need locks to atomically read a 64bit value.
2484 * So we have a optimization chance when the task's delta_exec is 0.
2485 * Reading ->on_cpu is racy, but this is ok.
2486 *
2487 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2488 * If we race with it entering cpu, unaccounted time is 0. This is
2489 * indistinguishable from the read occurring a few cycles earlier.
2490 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2491 * been accounted, so we're correct here as well.
2492 */
2493 if (!p->on_cpu || !p->on_rq)
2494 return p->se.sum_exec_runtime;
2495 #endif
2496
2497 rq = task_rq_lock(p, &flags);
2498 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2499 task_rq_unlock(rq, p, &flags);
2500
2501 return ns;
2502 }
2503
2504 /*
2505 * This function gets called by the timer code, with HZ frequency.
2506 * We call it with interrupts disabled.
2507 */
2508 void scheduler_tick(void)
2509 {
2510 int cpu = smp_processor_id();
2511 struct rq *rq = cpu_rq(cpu);
2512 struct task_struct *curr = rq->curr;
2513
2514 sched_clock_tick();
2515
2516 raw_spin_lock(&rq->lock);
2517 update_rq_clock(rq);
2518 curr->sched_class->task_tick(rq, curr, 0);
2519 update_cpu_load_active(rq);
2520 raw_spin_unlock(&rq->lock);
2521
2522 perf_event_task_tick();
2523
2524 #ifdef CONFIG_SMP
2525 rq->idle_balance = idle_cpu(cpu);
2526 trigger_load_balance(rq);
2527 #endif
2528 rq_last_tick_reset(rq);
2529 }
2530
2531 #ifdef CONFIG_NO_HZ_FULL
2532 /**
2533 * scheduler_tick_max_deferment
2534 *
2535 * Keep at least one tick per second when a single
2536 * active task is running because the scheduler doesn't
2537 * yet completely support full dynticks environment.
2538 *
2539 * This makes sure that uptime, CFS vruntime, load
2540 * balancing, etc... continue to move forward, even
2541 * with a very low granularity.
2542 *
2543 * Return: Maximum deferment in nanoseconds.
2544 */
2545 u64 scheduler_tick_max_deferment(void)
2546 {
2547 struct rq *rq = this_rq();
2548 unsigned long next, now = ACCESS_ONCE(jiffies);
2549
2550 next = rq->last_sched_tick + HZ;
2551
2552 if (time_before_eq(next, now))
2553 return 0;
2554
2555 return jiffies_to_nsecs(next - now);
2556 }
2557 #endif
2558
2559 notrace unsigned long get_parent_ip(unsigned long addr)
2560 {
2561 if (in_lock_functions(addr)) {
2562 addr = CALLER_ADDR2;
2563 if (in_lock_functions(addr))
2564 addr = CALLER_ADDR3;
2565 }
2566 return addr;
2567 }
2568
2569 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2570 defined(CONFIG_PREEMPT_TRACER))
2571
2572 void preempt_count_add(int val)
2573 {
2574 #ifdef CONFIG_DEBUG_PREEMPT
2575 /*
2576 * Underflow?
2577 */
2578 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2579 return;
2580 #endif
2581 __preempt_count_add(val);
2582 #ifdef CONFIG_DEBUG_PREEMPT
2583 /*
2584 * Spinlock count overflowing soon?
2585 */
2586 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2587 PREEMPT_MASK - 10);
2588 #endif
2589 if (preempt_count() == val) {
2590 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2591 #ifdef CONFIG_DEBUG_PREEMPT
2592 current->preempt_disable_ip = ip;
2593 #endif
2594 trace_preempt_off(CALLER_ADDR0, ip);
2595 }
2596 }
2597 EXPORT_SYMBOL(preempt_count_add);
2598 NOKPROBE_SYMBOL(preempt_count_add);
2599
2600 void preempt_count_sub(int val)
2601 {
2602 #ifdef CONFIG_DEBUG_PREEMPT
2603 /*
2604 * Underflow?
2605 */
2606 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2607 return;
2608 /*
2609 * Is the spinlock portion underflowing?
2610 */
2611 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2612 !(preempt_count() & PREEMPT_MASK)))
2613 return;
2614 #endif
2615
2616 if (preempt_count() == val)
2617 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2618 __preempt_count_sub(val);
2619 }
2620 EXPORT_SYMBOL(preempt_count_sub);
2621 NOKPROBE_SYMBOL(preempt_count_sub);
2622
2623 #endif
2624
2625 /*
2626 * Print scheduling while atomic bug:
2627 */
2628 static noinline void __schedule_bug(struct task_struct *prev)
2629 {
2630 if (oops_in_progress)
2631 return;
2632
2633 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2634 prev->comm, prev->pid, preempt_count());
2635
2636 debug_show_held_locks(prev);
2637 print_modules();
2638 if (irqs_disabled())
2639 print_irqtrace_events(prev);
2640 #ifdef CONFIG_DEBUG_PREEMPT
2641 if (in_atomic_preempt_off()) {
2642 pr_err("Preemption disabled at:");
2643 print_ip_sym(current->preempt_disable_ip);
2644 pr_cont("\n");
2645 }
2646 #endif
2647 dump_stack();
2648 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2649 }
2650
2651 /*
2652 * Various schedule()-time debugging checks and statistics:
2653 */
2654 static inline void schedule_debug(struct task_struct *prev)
2655 {
2656 /*
2657 * Test if we are atomic. Since do_exit() needs to call into
2658 * schedule() atomically, we ignore that path. Otherwise whine
2659 * if we are scheduling when we should not.
2660 */
2661 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2662 __schedule_bug(prev);
2663 rcu_sleep_check();
2664
2665 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2666
2667 schedstat_inc(this_rq(), sched_count);
2668 }
2669
2670 /*
2671 * Pick up the highest-prio task:
2672 */
2673 static inline struct task_struct *
2674 pick_next_task(struct rq *rq, struct task_struct *prev)
2675 {
2676 const struct sched_class *class = &fair_sched_class;
2677 struct task_struct *p;
2678
2679 /*
2680 * Optimization: we know that if all tasks are in
2681 * the fair class we can call that function directly:
2682 */
2683 if (likely(prev->sched_class == class &&
2684 rq->nr_running == rq->cfs.h_nr_running)) {
2685 p = fair_sched_class.pick_next_task(rq, prev);
2686 if (unlikely(p == RETRY_TASK))
2687 goto again;
2688
2689 /* assumes fair_sched_class->next == idle_sched_class */
2690 if (unlikely(!p))
2691 p = idle_sched_class.pick_next_task(rq, prev);
2692
2693 return p;
2694 }
2695
2696 again:
2697 for_each_class(class) {
2698 p = class->pick_next_task(rq, prev);
2699 if (p) {
2700 if (unlikely(p == RETRY_TASK))
2701 goto again;
2702 return p;
2703 }
2704 }
2705
2706 BUG(); /* the idle class will always have a runnable task */
2707 }
2708
2709 /*
2710 * __schedule() is the main scheduler function.
2711 *
2712 * The main means of driving the scheduler and thus entering this function are:
2713 *
2714 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2715 *
2716 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2717 * paths. For example, see arch/x86/entry_64.S.
2718 *
2719 * To drive preemption between tasks, the scheduler sets the flag in timer
2720 * interrupt handler scheduler_tick().
2721 *
2722 * 3. Wakeups don't really cause entry into schedule(). They add a
2723 * task to the run-queue and that's it.
2724 *
2725 * Now, if the new task added to the run-queue preempts the current
2726 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2727 * called on the nearest possible occasion:
2728 *
2729 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2730 *
2731 * - in syscall or exception context, at the next outmost
2732 * preempt_enable(). (this might be as soon as the wake_up()'s
2733 * spin_unlock()!)
2734 *
2735 * - in IRQ context, return from interrupt-handler to
2736 * preemptible context
2737 *
2738 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2739 * then at the next:
2740 *
2741 * - cond_resched() call
2742 * - explicit schedule() call
2743 * - return from syscall or exception to user-space
2744 * - return from interrupt-handler to user-space
2745 */
2746 static void __sched __schedule(void)
2747 {
2748 struct task_struct *prev, *next;
2749 unsigned long *switch_count;
2750 struct rq *rq;
2751 int cpu;
2752
2753 need_resched:
2754 preempt_disable();
2755 cpu = smp_processor_id();
2756 rq = cpu_rq(cpu);
2757 rcu_note_context_switch(cpu);
2758 prev = rq->curr;
2759
2760 schedule_debug(prev);
2761
2762 if (sched_feat(HRTICK))
2763 hrtick_clear(rq);
2764
2765 /*
2766 * Make sure that signal_pending_state()->signal_pending() below
2767 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2768 * done by the caller to avoid the race with signal_wake_up().
2769 */
2770 smp_mb__before_spinlock();
2771 raw_spin_lock_irq(&rq->lock);
2772
2773 switch_count = &prev->nivcsw;
2774 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2775 if (unlikely(signal_pending_state(prev->state, prev))) {
2776 prev->state = TASK_RUNNING;
2777 } else {
2778 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2779 prev->on_rq = 0;
2780
2781 /*
2782 * If a worker went to sleep, notify and ask workqueue
2783 * whether it wants to wake up a task to maintain
2784 * concurrency.
2785 */
2786 if (prev->flags & PF_WQ_WORKER) {
2787 struct task_struct *to_wakeup;
2788
2789 to_wakeup = wq_worker_sleeping(prev, cpu);
2790 if (to_wakeup)
2791 try_to_wake_up_local(to_wakeup);
2792 }
2793 }
2794 switch_count = &prev->nvcsw;
2795 }
2796
2797 if (prev->on_rq || rq->skip_clock_update < 0)
2798 update_rq_clock(rq);
2799
2800 next = pick_next_task(rq, prev);
2801 clear_tsk_need_resched(prev);
2802 clear_preempt_need_resched();
2803 rq->skip_clock_update = 0;
2804
2805 if (likely(prev != next)) {
2806 rq->nr_switches++;
2807 rq->curr = next;
2808 ++*switch_count;
2809
2810 context_switch(rq, prev, next); /* unlocks the rq */
2811 /*
2812 * The context switch have flipped the stack from under us
2813 * and restored the local variables which were saved when
2814 * this task called schedule() in the past. prev == current
2815 * is still correct, but it can be moved to another cpu/rq.
2816 */
2817 cpu = smp_processor_id();
2818 rq = cpu_rq(cpu);
2819 } else
2820 raw_spin_unlock_irq(&rq->lock);
2821
2822 post_schedule(rq);
2823
2824 sched_preempt_enable_no_resched();
2825 if (need_resched())
2826 goto need_resched;
2827 }
2828
2829 static inline void sched_submit_work(struct task_struct *tsk)
2830 {
2831 if (!tsk->state || tsk_is_pi_blocked(tsk))
2832 return;
2833 /*
2834 * If we are going to sleep and we have plugged IO queued,
2835 * make sure to submit it to avoid deadlocks.
2836 */
2837 if (blk_needs_flush_plug(tsk))
2838 blk_schedule_flush_plug(tsk);
2839 }
2840
2841 asmlinkage __visible void __sched schedule(void)
2842 {
2843 struct task_struct *tsk = current;
2844
2845 sched_submit_work(tsk);
2846 __schedule();
2847 }
2848 EXPORT_SYMBOL(schedule);
2849
2850 #ifdef CONFIG_CONTEXT_TRACKING
2851 asmlinkage __visible void __sched schedule_user(void)
2852 {
2853 /*
2854 * If we come here after a random call to set_need_resched(),
2855 * or we have been woken up remotely but the IPI has not yet arrived,
2856 * we haven't yet exited the RCU idle mode. Do it here manually until
2857 * we find a better solution.
2858 */
2859 user_exit();
2860 schedule();
2861 user_enter();
2862 }
2863 #endif
2864
2865 /**
2866 * schedule_preempt_disabled - called with preemption disabled
2867 *
2868 * Returns with preemption disabled. Note: preempt_count must be 1
2869 */
2870 void __sched schedule_preempt_disabled(void)
2871 {
2872 sched_preempt_enable_no_resched();
2873 schedule();
2874 preempt_disable();
2875 }
2876
2877 #ifdef CONFIG_PREEMPT
2878 /*
2879 * this is the entry point to schedule() from in-kernel preemption
2880 * off of preempt_enable. Kernel preemptions off return from interrupt
2881 * occur there and call schedule directly.
2882 */
2883 asmlinkage __visible void __sched notrace preempt_schedule(void)
2884 {
2885 /*
2886 * If there is a non-zero preempt_count or interrupts are disabled,
2887 * we do not want to preempt the current task. Just return..
2888 */
2889 if (likely(!preemptible()))
2890 return;
2891
2892 do {
2893 __preempt_count_add(PREEMPT_ACTIVE);
2894 __schedule();
2895 __preempt_count_sub(PREEMPT_ACTIVE);
2896
2897 /*
2898 * Check again in case we missed a preemption opportunity
2899 * between schedule and now.
2900 */
2901 barrier();
2902 } while (need_resched());
2903 }
2904 NOKPROBE_SYMBOL(preempt_schedule);
2905 EXPORT_SYMBOL(preempt_schedule);
2906 #endif /* CONFIG_PREEMPT */
2907
2908 /*
2909 * this is the entry point to schedule() from kernel preemption
2910 * off of irq context.
2911 * Note, that this is called and return with irqs disabled. This will
2912 * protect us against recursive calling from irq.
2913 */
2914 asmlinkage __visible void __sched preempt_schedule_irq(void)
2915 {
2916 enum ctx_state prev_state;
2917
2918 /* Catch callers which need to be fixed */
2919 BUG_ON(preempt_count() || !irqs_disabled());
2920
2921 prev_state = exception_enter();
2922
2923 do {
2924 __preempt_count_add(PREEMPT_ACTIVE);
2925 local_irq_enable();
2926 __schedule();
2927 local_irq_disable();
2928 __preempt_count_sub(PREEMPT_ACTIVE);
2929
2930 /*
2931 * Check again in case we missed a preemption opportunity
2932 * between schedule and now.
2933 */
2934 barrier();
2935 } while (need_resched());
2936
2937 exception_exit(prev_state);
2938 }
2939
2940 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2941 void *key)
2942 {
2943 return try_to_wake_up(curr->private, mode, wake_flags);
2944 }
2945 EXPORT_SYMBOL(default_wake_function);
2946
2947 #ifdef CONFIG_RT_MUTEXES
2948
2949 /*
2950 * rt_mutex_setprio - set the current priority of a task
2951 * @p: task
2952 * @prio: prio value (kernel-internal form)
2953 *
2954 * This function changes the 'effective' priority of a task. It does
2955 * not touch ->normal_prio like __setscheduler().
2956 *
2957 * Used by the rt_mutex code to implement priority inheritance
2958 * logic. Call site only calls if the priority of the task changed.
2959 */
2960 void rt_mutex_setprio(struct task_struct *p, int prio)
2961 {
2962 int oldprio, on_rq, running, enqueue_flag = 0;
2963 struct rq *rq;
2964 const struct sched_class *prev_class;
2965
2966 BUG_ON(prio > MAX_PRIO);
2967
2968 rq = __task_rq_lock(p);
2969
2970 /*
2971 * Idle task boosting is a nono in general. There is one
2972 * exception, when PREEMPT_RT and NOHZ is active:
2973 *
2974 * The idle task calls get_next_timer_interrupt() and holds
2975 * the timer wheel base->lock on the CPU and another CPU wants
2976 * to access the timer (probably to cancel it). We can safely
2977 * ignore the boosting request, as the idle CPU runs this code
2978 * with interrupts disabled and will complete the lock
2979 * protected section without being interrupted. So there is no
2980 * real need to boost.
2981 */
2982 if (unlikely(p == rq->idle)) {
2983 WARN_ON(p != rq->curr);
2984 WARN_ON(p->pi_blocked_on);
2985 goto out_unlock;
2986 }
2987
2988 trace_sched_pi_setprio(p, prio);
2989 oldprio = p->prio;
2990 prev_class = p->sched_class;
2991 on_rq = p->on_rq;
2992 running = task_current(rq, p);
2993 if (on_rq)
2994 dequeue_task(rq, p, 0);
2995 if (running)
2996 p->sched_class->put_prev_task(rq, p);
2997
2998 /*
2999 * Boosting condition are:
3000 * 1. -rt task is running and holds mutex A
3001 * --> -dl task blocks on mutex A
3002 *
3003 * 2. -dl task is running and holds mutex A
3004 * --> -dl task blocks on mutex A and could preempt the
3005 * running task
3006 */
3007 if (dl_prio(prio)) {
3008 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3009 if (!dl_prio(p->normal_prio) ||
3010 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3011 p->dl.dl_boosted = 1;
3012 p->dl.dl_throttled = 0;
3013 enqueue_flag = ENQUEUE_REPLENISH;
3014 } else
3015 p->dl.dl_boosted = 0;
3016 p->sched_class = &dl_sched_class;
3017 } else if (rt_prio(prio)) {
3018 if (dl_prio(oldprio))
3019 p->dl.dl_boosted = 0;
3020 if (oldprio < prio)
3021 enqueue_flag = ENQUEUE_HEAD;
3022 p->sched_class = &rt_sched_class;
3023 } else {
3024 if (dl_prio(oldprio))
3025 p->dl.dl_boosted = 0;
3026 p->sched_class = &fair_sched_class;
3027 }
3028
3029 p->prio = prio;
3030
3031 if (running)
3032 p->sched_class->set_curr_task(rq);
3033 if (on_rq)
3034 enqueue_task(rq, p, enqueue_flag);
3035
3036 check_class_changed(rq, p, prev_class, oldprio);
3037 out_unlock:
3038 __task_rq_unlock(rq);
3039 }
3040 #endif
3041
3042 void set_user_nice(struct task_struct *p, long nice)
3043 {
3044 int old_prio, delta, on_rq;
3045 unsigned long flags;
3046 struct rq *rq;
3047
3048 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3049 return;
3050 /*
3051 * We have to be careful, if called from sys_setpriority(),
3052 * the task might be in the middle of scheduling on another CPU.
3053 */
3054 rq = task_rq_lock(p, &flags);
3055 /*
3056 * The RT priorities are set via sched_setscheduler(), but we still
3057 * allow the 'normal' nice value to be set - but as expected
3058 * it wont have any effect on scheduling until the task is
3059 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3060 */
3061 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3062 p->static_prio = NICE_TO_PRIO(nice);
3063 goto out_unlock;
3064 }
3065 on_rq = p->on_rq;
3066 if (on_rq)
3067 dequeue_task(rq, p, 0);
3068
3069 p->static_prio = NICE_TO_PRIO(nice);
3070 set_load_weight(p);
3071 old_prio = p->prio;
3072 p->prio = effective_prio(p);
3073 delta = p->prio - old_prio;
3074
3075 if (on_rq) {
3076 enqueue_task(rq, p, 0);
3077 /*
3078 * If the task increased its priority or is running and
3079 * lowered its priority, then reschedule its CPU:
3080 */
3081 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3082 resched_curr(rq);
3083 }
3084 out_unlock:
3085 task_rq_unlock(rq, p, &flags);
3086 }
3087 EXPORT_SYMBOL(set_user_nice);
3088
3089 /*
3090 * can_nice - check if a task can reduce its nice value
3091 * @p: task
3092 * @nice: nice value
3093 */
3094 int can_nice(const struct task_struct *p, const int nice)
3095 {
3096 /* convert nice value [19,-20] to rlimit style value [1,40] */
3097 int nice_rlim = nice_to_rlimit(nice);
3098
3099 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3100 capable(CAP_SYS_NICE));
3101 }
3102
3103 #ifdef __ARCH_WANT_SYS_NICE
3104
3105 /*
3106 * sys_nice - change the priority of the current process.
3107 * @increment: priority increment
3108 *
3109 * sys_setpriority is a more generic, but much slower function that
3110 * does similar things.
3111 */
3112 SYSCALL_DEFINE1(nice, int, increment)
3113 {
3114 long nice, retval;
3115
3116 /*
3117 * Setpriority might change our priority at the same moment.
3118 * We don't have to worry. Conceptually one call occurs first
3119 * and we have a single winner.
3120 */
3121 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3122 nice = task_nice(current) + increment;
3123
3124 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3125 if (increment < 0 && !can_nice(current, nice))
3126 return -EPERM;
3127
3128 retval = security_task_setnice(current, nice);
3129 if (retval)
3130 return retval;
3131
3132 set_user_nice(current, nice);
3133 return 0;
3134 }
3135
3136 #endif
3137
3138 /**
3139 * task_prio - return the priority value of a given task.
3140 * @p: the task in question.
3141 *
3142 * Return: The priority value as seen by users in /proc.
3143 * RT tasks are offset by -200. Normal tasks are centered
3144 * around 0, value goes from -16 to +15.
3145 */
3146 int task_prio(const struct task_struct *p)
3147 {
3148 return p->prio - MAX_RT_PRIO;
3149 }
3150
3151 /**
3152 * idle_cpu - is a given cpu idle currently?
3153 * @cpu: the processor in question.
3154 *
3155 * Return: 1 if the CPU is currently idle. 0 otherwise.
3156 */
3157 int idle_cpu(int cpu)
3158 {
3159 struct rq *rq = cpu_rq(cpu);
3160
3161 if (rq->curr != rq->idle)
3162 return 0;
3163
3164 if (rq->nr_running)
3165 return 0;
3166
3167 #ifdef CONFIG_SMP
3168 if (!llist_empty(&rq->wake_list))
3169 return 0;
3170 #endif
3171
3172 return 1;
3173 }
3174
3175 /**
3176 * idle_task - return the idle task for a given cpu.
3177 * @cpu: the processor in question.
3178 *
3179 * Return: The idle task for the cpu @cpu.
3180 */
3181 struct task_struct *idle_task(int cpu)
3182 {
3183 return cpu_rq(cpu)->idle;
3184 }
3185
3186 /**
3187 * find_process_by_pid - find a process with a matching PID value.
3188 * @pid: the pid in question.
3189 *
3190 * The task of @pid, if found. %NULL otherwise.
3191 */
3192 static struct task_struct *find_process_by_pid(pid_t pid)
3193 {
3194 return pid ? find_task_by_vpid(pid) : current;
3195 }
3196
3197 /*
3198 * This function initializes the sched_dl_entity of a newly becoming
3199 * SCHED_DEADLINE task.
3200 *
3201 * Only the static values are considered here, the actual runtime and the
3202 * absolute deadline will be properly calculated when the task is enqueued
3203 * for the first time with its new policy.
3204 */
3205 static void
3206 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3207 {
3208 struct sched_dl_entity *dl_se = &p->dl;
3209
3210 init_dl_task_timer(dl_se);
3211 dl_se->dl_runtime = attr->sched_runtime;
3212 dl_se->dl_deadline = attr->sched_deadline;
3213 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3214 dl_se->flags = attr->sched_flags;
3215 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3216 dl_se->dl_throttled = 0;
3217 dl_se->dl_new = 1;
3218 dl_se->dl_yielded = 0;
3219 }
3220
3221 /*
3222 * sched_setparam() passes in -1 for its policy, to let the functions
3223 * it calls know not to change it.
3224 */
3225 #define SETPARAM_POLICY -1
3226
3227 static void __setscheduler_params(struct task_struct *p,
3228 const struct sched_attr *attr)
3229 {
3230 int policy = attr->sched_policy;
3231
3232 if (policy == SETPARAM_POLICY)
3233 policy = p->policy;
3234
3235 p->policy = policy;
3236
3237 if (dl_policy(policy))
3238 __setparam_dl(p, attr);
3239 else if (fair_policy(policy))
3240 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3241
3242 /*
3243 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3244 * !rt_policy. Always setting this ensures that things like
3245 * getparam()/getattr() don't report silly values for !rt tasks.
3246 */
3247 p->rt_priority = attr->sched_priority;
3248 p->normal_prio = normal_prio(p);
3249 set_load_weight(p);
3250 }
3251
3252 /* Actually do priority change: must hold pi & rq lock. */
3253 static void __setscheduler(struct rq *rq, struct task_struct *p,
3254 const struct sched_attr *attr)
3255 {
3256 __setscheduler_params(p, attr);
3257
3258 /*
3259 * If we get here, there was no pi waiters boosting the
3260 * task. It is safe to use the normal prio.
3261 */
3262 p->prio = normal_prio(p);
3263
3264 if (dl_prio(p->prio))
3265 p->sched_class = &dl_sched_class;
3266 else if (rt_prio(p->prio))
3267 p->sched_class = &rt_sched_class;
3268 else
3269 p->sched_class = &fair_sched_class;
3270 }
3271
3272 static void
3273 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3274 {
3275 struct sched_dl_entity *dl_se = &p->dl;
3276
3277 attr->sched_priority = p->rt_priority;
3278 attr->sched_runtime = dl_se->dl_runtime;
3279 attr->sched_deadline = dl_se->dl_deadline;
3280 attr->sched_period = dl_se->dl_period;
3281 attr->sched_flags = dl_se->flags;
3282 }
3283
3284 /*
3285 * This function validates the new parameters of a -deadline task.
3286 * We ask for the deadline not being zero, and greater or equal
3287 * than the runtime, as well as the period of being zero or
3288 * greater than deadline. Furthermore, we have to be sure that
3289 * user parameters are above the internal resolution of 1us (we
3290 * check sched_runtime only since it is always the smaller one) and
3291 * below 2^63 ns (we have to check both sched_deadline and
3292 * sched_period, as the latter can be zero).
3293 */
3294 static bool
3295 __checkparam_dl(const struct sched_attr *attr)
3296 {
3297 /* deadline != 0 */
3298 if (attr->sched_deadline == 0)
3299 return false;
3300
3301 /*
3302 * Since we truncate DL_SCALE bits, make sure we're at least
3303 * that big.
3304 */
3305 if (attr->sched_runtime < (1ULL << DL_SCALE))
3306 return false;
3307
3308 /*
3309 * Since we use the MSB for wrap-around and sign issues, make
3310 * sure it's not set (mind that period can be equal to zero).
3311 */
3312 if (attr->sched_deadline & (1ULL << 63) ||
3313 attr->sched_period & (1ULL << 63))
3314 return false;
3315
3316 /* runtime <= deadline <= period (if period != 0) */
3317 if ((attr->sched_period != 0 &&
3318 attr->sched_period < attr->sched_deadline) ||
3319 attr->sched_deadline < attr->sched_runtime)
3320 return false;
3321
3322 return true;
3323 }
3324
3325 /*
3326 * check the target process has a UID that matches the current process's
3327 */
3328 static bool check_same_owner(struct task_struct *p)
3329 {
3330 const struct cred *cred = current_cred(), *pcred;
3331 bool match;
3332
3333 rcu_read_lock();
3334 pcred = __task_cred(p);
3335 match = (uid_eq(cred->euid, pcred->euid) ||
3336 uid_eq(cred->euid, pcred->uid));
3337 rcu_read_unlock();
3338 return match;
3339 }
3340
3341 static int __sched_setscheduler(struct task_struct *p,
3342 const struct sched_attr *attr,
3343 bool user)
3344 {
3345 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3346 MAX_RT_PRIO - 1 - attr->sched_priority;
3347 int retval, oldprio, oldpolicy = -1, on_rq, running;
3348 int policy = attr->sched_policy;
3349 unsigned long flags;
3350 const struct sched_class *prev_class;
3351 struct rq *rq;
3352 int reset_on_fork;
3353
3354 /* may grab non-irq protected spin_locks */
3355 BUG_ON(in_interrupt());
3356 recheck:
3357 /* double check policy once rq lock held */
3358 if (policy < 0) {
3359 reset_on_fork = p->sched_reset_on_fork;
3360 policy = oldpolicy = p->policy;
3361 } else {
3362 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3363
3364 if (policy != SCHED_DEADLINE &&
3365 policy != SCHED_FIFO && policy != SCHED_RR &&
3366 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3367 policy != SCHED_IDLE)
3368 return -EINVAL;
3369 }
3370
3371 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3372 return -EINVAL;
3373
3374 /*
3375 * Valid priorities for SCHED_FIFO and SCHED_RR are
3376 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3377 * SCHED_BATCH and SCHED_IDLE is 0.
3378 */
3379 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3380 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3381 return -EINVAL;
3382 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3383 (rt_policy(policy) != (attr->sched_priority != 0)))
3384 return -EINVAL;
3385
3386 /*
3387 * Allow unprivileged RT tasks to decrease priority:
3388 */
3389 if (user && !capable(CAP_SYS_NICE)) {
3390 if (fair_policy(policy)) {
3391 if (attr->sched_nice < task_nice(p) &&
3392 !can_nice(p, attr->sched_nice))
3393 return -EPERM;
3394 }
3395
3396 if (rt_policy(policy)) {
3397 unsigned long rlim_rtprio =
3398 task_rlimit(p, RLIMIT_RTPRIO);
3399
3400 /* can't set/change the rt policy */
3401 if (policy != p->policy && !rlim_rtprio)
3402 return -EPERM;
3403
3404 /* can't increase priority */
3405 if (attr->sched_priority > p->rt_priority &&
3406 attr->sched_priority > rlim_rtprio)
3407 return -EPERM;
3408 }
3409
3410 /*
3411 * Can't set/change SCHED_DEADLINE policy at all for now
3412 * (safest behavior); in the future we would like to allow
3413 * unprivileged DL tasks to increase their relative deadline
3414 * or reduce their runtime (both ways reducing utilization)
3415 */
3416 if (dl_policy(policy))
3417 return -EPERM;
3418
3419 /*
3420 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3421 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3422 */
3423 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3424 if (!can_nice(p, task_nice(p)))
3425 return -EPERM;
3426 }
3427
3428 /* can't change other user's priorities */
3429 if (!check_same_owner(p))
3430 return -EPERM;
3431
3432 /* Normal users shall not reset the sched_reset_on_fork flag */
3433 if (p->sched_reset_on_fork && !reset_on_fork)
3434 return -EPERM;
3435 }
3436
3437 if (user) {
3438 retval = security_task_setscheduler(p);
3439 if (retval)
3440 return retval;
3441 }
3442
3443 /*
3444 * make sure no PI-waiters arrive (or leave) while we are
3445 * changing the priority of the task:
3446 *
3447 * To be able to change p->policy safely, the appropriate
3448 * runqueue lock must be held.
3449 */
3450 rq = task_rq_lock(p, &flags);
3451
3452 /*
3453 * Changing the policy of the stop threads its a very bad idea
3454 */
3455 if (p == rq->stop) {
3456 task_rq_unlock(rq, p, &flags);
3457 return -EINVAL;
3458 }
3459
3460 /*
3461 * If not changing anything there's no need to proceed further,
3462 * but store a possible modification of reset_on_fork.
3463 */
3464 if (unlikely(policy == p->policy)) {
3465 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3466 goto change;
3467 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3468 goto change;
3469 if (dl_policy(policy))
3470 goto change;
3471
3472 p->sched_reset_on_fork = reset_on_fork;
3473 task_rq_unlock(rq, p, &flags);
3474 return 0;
3475 }
3476 change:
3477
3478 if (user) {
3479 #ifdef CONFIG_RT_GROUP_SCHED
3480 /*
3481 * Do not allow realtime tasks into groups that have no runtime
3482 * assigned.
3483 */
3484 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3485 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3486 !task_group_is_autogroup(task_group(p))) {
3487 task_rq_unlock(rq, p, &flags);
3488 return -EPERM;
3489 }
3490 #endif
3491 #ifdef CONFIG_SMP
3492 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3493 cpumask_t *span = rq->rd->span;
3494
3495 /*
3496 * Don't allow tasks with an affinity mask smaller than
3497 * the entire root_domain to become SCHED_DEADLINE. We
3498 * will also fail if there's no bandwidth available.
3499 */
3500 if (!cpumask_subset(span, &p->cpus_allowed) ||
3501 rq->rd->dl_bw.bw == 0) {
3502 task_rq_unlock(rq, p, &flags);
3503 return -EPERM;
3504 }
3505 }
3506 #endif
3507 }
3508
3509 /* recheck policy now with rq lock held */
3510 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3511 policy = oldpolicy = -1;
3512 task_rq_unlock(rq, p, &flags);
3513 goto recheck;
3514 }
3515
3516 /*
3517 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3518 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3519 * is available.
3520 */
3521 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3522 task_rq_unlock(rq, p, &flags);
3523 return -EBUSY;
3524 }
3525
3526 p->sched_reset_on_fork = reset_on_fork;
3527 oldprio = p->prio;
3528
3529 /*
3530 * Special case for priority boosted tasks.
3531 *
3532 * If the new priority is lower or equal (user space view)
3533 * than the current (boosted) priority, we just store the new
3534 * normal parameters and do not touch the scheduler class and
3535 * the runqueue. This will be done when the task deboost
3536 * itself.
3537 */
3538 if (rt_mutex_check_prio(p, newprio)) {
3539 __setscheduler_params(p, attr);
3540 task_rq_unlock(rq, p, &flags);
3541 return 0;
3542 }
3543
3544 on_rq = p->on_rq;
3545 running = task_current(rq, p);
3546 if (on_rq)
3547 dequeue_task(rq, p, 0);
3548 if (running)
3549 p->sched_class->put_prev_task(rq, p);
3550
3551 prev_class = p->sched_class;
3552 __setscheduler(rq, p, attr);
3553
3554 if (running)
3555 p->sched_class->set_curr_task(rq);
3556 if (on_rq) {
3557 /*
3558 * We enqueue to tail when the priority of a task is
3559 * increased (user space view).
3560 */
3561 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3562 }
3563
3564 check_class_changed(rq, p, prev_class, oldprio);
3565 task_rq_unlock(rq, p, &flags);
3566
3567 rt_mutex_adjust_pi(p);
3568
3569 return 0;
3570 }
3571
3572 static int _sched_setscheduler(struct task_struct *p, int policy,
3573 const struct sched_param *param, bool check)
3574 {
3575 struct sched_attr attr = {
3576 .sched_policy = policy,
3577 .sched_priority = param->sched_priority,
3578 .sched_nice = PRIO_TO_NICE(p->static_prio),
3579 };
3580
3581 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3582 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3583 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3584 policy &= ~SCHED_RESET_ON_FORK;
3585 attr.sched_policy = policy;
3586 }
3587
3588 return __sched_setscheduler(p, &attr, check);
3589 }
3590 /**
3591 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3592 * @p: the task in question.
3593 * @policy: new policy.
3594 * @param: structure containing the new RT priority.
3595 *
3596 * Return: 0 on success. An error code otherwise.
3597 *
3598 * NOTE that the task may be already dead.
3599 */
3600 int sched_setscheduler(struct task_struct *p, int policy,
3601 const struct sched_param *param)
3602 {
3603 return _sched_setscheduler(p, policy, param, true);
3604 }
3605 EXPORT_SYMBOL_GPL(sched_setscheduler);
3606
3607 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3608 {
3609 return __sched_setscheduler(p, attr, true);
3610 }
3611 EXPORT_SYMBOL_GPL(sched_setattr);
3612
3613 /**
3614 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3615 * @p: the task in question.
3616 * @policy: new policy.
3617 * @param: structure containing the new RT priority.
3618 *
3619 * Just like sched_setscheduler, only don't bother checking if the
3620 * current context has permission. For example, this is needed in
3621 * stop_machine(): we create temporary high priority worker threads,
3622 * but our caller might not have that capability.
3623 *
3624 * Return: 0 on success. An error code otherwise.
3625 */
3626 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3627 const struct sched_param *param)
3628 {
3629 return _sched_setscheduler(p, policy, param, false);
3630 }
3631
3632 static int
3633 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3634 {
3635 struct sched_param lparam;
3636 struct task_struct *p;
3637 int retval;
3638
3639 if (!param || pid < 0)
3640 return -EINVAL;
3641 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3642 return -EFAULT;
3643
3644 rcu_read_lock();
3645 retval = -ESRCH;
3646 p = find_process_by_pid(pid);
3647 if (p != NULL)
3648 retval = sched_setscheduler(p, policy, &lparam);
3649 rcu_read_unlock();
3650
3651 return retval;
3652 }
3653
3654 /*
3655 * Mimics kernel/events/core.c perf_copy_attr().
3656 */
3657 static int sched_copy_attr(struct sched_attr __user *uattr,
3658 struct sched_attr *attr)
3659 {
3660 u32 size;
3661 int ret;
3662
3663 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3664 return -EFAULT;
3665
3666 /*
3667 * zero the full structure, so that a short copy will be nice.
3668 */
3669 memset(attr, 0, sizeof(*attr));
3670
3671 ret = get_user(size, &uattr->size);
3672 if (ret)
3673 return ret;
3674
3675 if (size > PAGE_SIZE) /* silly large */
3676 goto err_size;
3677
3678 if (!size) /* abi compat */
3679 size = SCHED_ATTR_SIZE_VER0;
3680
3681 if (size < SCHED_ATTR_SIZE_VER0)
3682 goto err_size;
3683
3684 /*
3685 * If we're handed a bigger struct than we know of,
3686 * ensure all the unknown bits are 0 - i.e. new
3687 * user-space does not rely on any kernel feature
3688 * extensions we dont know about yet.
3689 */
3690 if (size > sizeof(*attr)) {
3691 unsigned char __user *addr;
3692 unsigned char __user *end;
3693 unsigned char val;
3694
3695 addr = (void __user *)uattr + sizeof(*attr);
3696 end = (void __user *)uattr + size;
3697
3698 for (; addr < end; addr++) {
3699 ret = get_user(val, addr);
3700 if (ret)
3701 return ret;
3702 if (val)
3703 goto err_size;
3704 }
3705 size = sizeof(*attr);
3706 }
3707
3708 ret = copy_from_user(attr, uattr, size);
3709 if (ret)
3710 return -EFAULT;
3711
3712 /*
3713 * XXX: do we want to be lenient like existing syscalls; or do we want
3714 * to be strict and return an error on out-of-bounds values?
3715 */
3716 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3717
3718 return 0;
3719
3720 err_size:
3721 put_user(sizeof(*attr), &uattr->size);
3722 return -E2BIG;
3723 }
3724
3725 /**
3726 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3727 * @pid: the pid in question.
3728 * @policy: new policy.
3729 * @param: structure containing the new RT priority.
3730 *
3731 * Return: 0 on success. An error code otherwise.
3732 */
3733 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3734 struct sched_param __user *, param)
3735 {
3736 /* negative values for policy are not valid */
3737 if (policy < 0)
3738 return -EINVAL;
3739
3740 return do_sched_setscheduler(pid, policy, param);
3741 }
3742
3743 /**
3744 * sys_sched_setparam - set/change the RT priority of a thread
3745 * @pid: the pid in question.
3746 * @param: structure containing the new RT priority.
3747 *
3748 * Return: 0 on success. An error code otherwise.
3749 */
3750 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3751 {
3752 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3753 }
3754
3755 /**
3756 * sys_sched_setattr - same as above, but with extended sched_attr
3757 * @pid: the pid in question.
3758 * @uattr: structure containing the extended parameters.
3759 * @flags: for future extension.
3760 */
3761 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3762 unsigned int, flags)
3763 {
3764 struct sched_attr attr;
3765 struct task_struct *p;
3766 int retval;
3767
3768 if (!uattr || pid < 0 || flags)
3769 return -EINVAL;
3770
3771 retval = sched_copy_attr(uattr, &attr);
3772 if (retval)
3773 return retval;
3774
3775 if ((int)attr.sched_policy < 0)
3776 return -EINVAL;
3777
3778 rcu_read_lock();
3779 retval = -ESRCH;
3780 p = find_process_by_pid(pid);
3781 if (p != NULL)
3782 retval = sched_setattr(p, &attr);
3783 rcu_read_unlock();
3784
3785 return retval;
3786 }
3787
3788 /**
3789 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3790 * @pid: the pid in question.
3791 *
3792 * Return: On success, the policy of the thread. Otherwise, a negative error
3793 * code.
3794 */
3795 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3796 {
3797 struct task_struct *p;
3798 int retval;
3799
3800 if (pid < 0)
3801 return -EINVAL;
3802
3803 retval = -ESRCH;
3804 rcu_read_lock();
3805 p = find_process_by_pid(pid);
3806 if (p) {
3807 retval = security_task_getscheduler(p);
3808 if (!retval)
3809 retval = p->policy
3810 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3811 }
3812 rcu_read_unlock();
3813 return retval;
3814 }
3815
3816 /**
3817 * sys_sched_getparam - get the RT priority of a thread
3818 * @pid: the pid in question.
3819 * @param: structure containing the RT priority.
3820 *
3821 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3822 * code.
3823 */
3824 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3825 {
3826 struct sched_param lp = { .sched_priority = 0 };
3827 struct task_struct *p;
3828 int retval;
3829
3830 if (!param || pid < 0)
3831 return -EINVAL;
3832
3833 rcu_read_lock();
3834 p = find_process_by_pid(pid);
3835 retval = -ESRCH;
3836 if (!p)
3837 goto out_unlock;
3838
3839 retval = security_task_getscheduler(p);
3840 if (retval)
3841 goto out_unlock;
3842
3843 if (task_has_rt_policy(p))
3844 lp.sched_priority = p->rt_priority;
3845 rcu_read_unlock();
3846
3847 /*
3848 * This one might sleep, we cannot do it with a spinlock held ...
3849 */
3850 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3851
3852 return retval;
3853
3854 out_unlock:
3855 rcu_read_unlock();
3856 return retval;
3857 }
3858
3859 static int sched_read_attr(struct sched_attr __user *uattr,
3860 struct sched_attr *attr,
3861 unsigned int usize)
3862 {
3863 int ret;
3864
3865 if (!access_ok(VERIFY_WRITE, uattr, usize))
3866 return -EFAULT;
3867
3868 /*
3869 * If we're handed a smaller struct than we know of,
3870 * ensure all the unknown bits are 0 - i.e. old
3871 * user-space does not get uncomplete information.
3872 */
3873 if (usize < sizeof(*attr)) {
3874 unsigned char *addr;
3875 unsigned char *end;
3876
3877 addr = (void *)attr + usize;
3878 end = (void *)attr + sizeof(*attr);
3879
3880 for (; addr < end; addr++) {
3881 if (*addr)
3882 return -EFBIG;
3883 }
3884
3885 attr->size = usize;
3886 }
3887
3888 ret = copy_to_user(uattr, attr, attr->size);
3889 if (ret)
3890 return -EFAULT;
3891
3892 return 0;
3893 }
3894
3895 /**
3896 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3897 * @pid: the pid in question.
3898 * @uattr: structure containing the extended parameters.
3899 * @size: sizeof(attr) for fwd/bwd comp.
3900 * @flags: for future extension.
3901 */
3902 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3903 unsigned int, size, unsigned int, flags)
3904 {
3905 struct sched_attr attr = {
3906 .size = sizeof(struct sched_attr),
3907 };
3908 struct task_struct *p;
3909 int retval;
3910
3911 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3912 size < SCHED_ATTR_SIZE_VER0 || flags)
3913 return -EINVAL;
3914
3915 rcu_read_lock();
3916 p = find_process_by_pid(pid);
3917 retval = -ESRCH;
3918 if (!p)
3919 goto out_unlock;
3920
3921 retval = security_task_getscheduler(p);
3922 if (retval)
3923 goto out_unlock;
3924
3925 attr.sched_policy = p->policy;
3926 if (p->sched_reset_on_fork)
3927 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3928 if (task_has_dl_policy(p))
3929 __getparam_dl(p, &attr);
3930 else if (task_has_rt_policy(p))
3931 attr.sched_priority = p->rt_priority;
3932 else
3933 attr.sched_nice = task_nice(p);
3934
3935 rcu_read_unlock();
3936
3937 retval = sched_read_attr(uattr, &attr, size);
3938 return retval;
3939
3940 out_unlock:
3941 rcu_read_unlock();
3942 return retval;
3943 }
3944
3945 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3946 {
3947 cpumask_var_t cpus_allowed, new_mask;
3948 struct task_struct *p;
3949 int retval;
3950
3951 rcu_read_lock();
3952
3953 p = find_process_by_pid(pid);
3954 if (!p) {
3955 rcu_read_unlock();
3956 return -ESRCH;
3957 }
3958
3959 /* Prevent p going away */
3960 get_task_struct(p);
3961 rcu_read_unlock();
3962
3963 if (p->flags & PF_NO_SETAFFINITY) {
3964 retval = -EINVAL;
3965 goto out_put_task;
3966 }
3967 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3968 retval = -ENOMEM;
3969 goto out_put_task;
3970 }
3971 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3972 retval = -ENOMEM;
3973 goto out_free_cpus_allowed;
3974 }
3975 retval = -EPERM;
3976 if (!check_same_owner(p)) {
3977 rcu_read_lock();
3978 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3979 rcu_read_unlock();
3980 goto out_unlock;
3981 }
3982 rcu_read_unlock();
3983 }
3984
3985 retval = security_task_setscheduler(p);
3986 if (retval)
3987 goto out_unlock;
3988
3989
3990 cpuset_cpus_allowed(p, cpus_allowed);
3991 cpumask_and(new_mask, in_mask, cpus_allowed);
3992
3993 /*
3994 * Since bandwidth control happens on root_domain basis,
3995 * if admission test is enabled, we only admit -deadline
3996 * tasks allowed to run on all the CPUs in the task's
3997 * root_domain.
3998 */
3999 #ifdef CONFIG_SMP
4000 if (task_has_dl_policy(p)) {
4001 const struct cpumask *span = task_rq(p)->rd->span;
4002
4003 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
4004 retval = -EBUSY;
4005 goto out_unlock;
4006 }
4007 }
4008 #endif
4009 again:
4010 retval = set_cpus_allowed_ptr(p, new_mask);
4011
4012 if (!retval) {
4013 cpuset_cpus_allowed(p, cpus_allowed);
4014 if (!cpumask_subset(new_mask, cpus_allowed)) {
4015 /*
4016 * We must have raced with a concurrent cpuset
4017 * update. Just reset the cpus_allowed to the
4018 * cpuset's cpus_allowed
4019 */
4020 cpumask_copy(new_mask, cpus_allowed);
4021 goto again;
4022 }
4023 }
4024 out_unlock:
4025 free_cpumask_var(new_mask);
4026 out_free_cpus_allowed:
4027 free_cpumask_var(cpus_allowed);
4028 out_put_task:
4029 put_task_struct(p);
4030 return retval;
4031 }
4032
4033 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4034 struct cpumask *new_mask)
4035 {
4036 if (len < cpumask_size())
4037 cpumask_clear(new_mask);
4038 else if (len > cpumask_size())
4039 len = cpumask_size();
4040
4041 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4042 }
4043
4044 /**
4045 * sys_sched_setaffinity - set the cpu affinity of a process
4046 * @pid: pid of the process
4047 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4048 * @user_mask_ptr: user-space pointer to the new cpu mask
4049 *
4050 * Return: 0 on success. An error code otherwise.
4051 */
4052 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4053 unsigned long __user *, user_mask_ptr)
4054 {
4055 cpumask_var_t new_mask;
4056 int retval;
4057
4058 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4059 return -ENOMEM;
4060
4061 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4062 if (retval == 0)
4063 retval = sched_setaffinity(pid, new_mask);
4064 free_cpumask_var(new_mask);
4065 return retval;
4066 }
4067
4068 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4069 {
4070 struct task_struct *p;
4071 unsigned long flags;
4072 int retval;
4073
4074 rcu_read_lock();
4075
4076 retval = -ESRCH;
4077 p = find_process_by_pid(pid);
4078 if (!p)
4079 goto out_unlock;
4080
4081 retval = security_task_getscheduler(p);
4082 if (retval)
4083 goto out_unlock;
4084
4085 raw_spin_lock_irqsave(&p->pi_lock, flags);
4086 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4087 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4088
4089 out_unlock:
4090 rcu_read_unlock();
4091
4092 return retval;
4093 }
4094
4095 /**
4096 * sys_sched_getaffinity - get the cpu affinity of a process
4097 * @pid: pid of the process
4098 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4099 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4100 *
4101 * Return: 0 on success. An error code otherwise.
4102 */
4103 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4104 unsigned long __user *, user_mask_ptr)
4105 {
4106 int ret;
4107 cpumask_var_t mask;
4108
4109 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4110 return -EINVAL;
4111 if (len & (sizeof(unsigned long)-1))
4112 return -EINVAL;
4113
4114 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4115 return -ENOMEM;
4116
4117 ret = sched_getaffinity(pid, mask);
4118 if (ret == 0) {
4119 size_t retlen = min_t(size_t, len, cpumask_size());
4120
4121 if (copy_to_user(user_mask_ptr, mask, retlen))
4122 ret = -EFAULT;
4123 else
4124 ret = retlen;
4125 }
4126 free_cpumask_var(mask);
4127
4128 return ret;
4129 }
4130
4131 /**
4132 * sys_sched_yield - yield the current processor to other threads.
4133 *
4134 * This function yields the current CPU to other tasks. If there are no
4135 * other threads running on this CPU then this function will return.
4136 *
4137 * Return: 0.
4138 */
4139 SYSCALL_DEFINE0(sched_yield)
4140 {
4141 struct rq *rq = this_rq_lock();
4142
4143 schedstat_inc(rq, yld_count);
4144 current->sched_class->yield_task(rq);
4145
4146 /*
4147 * Since we are going to call schedule() anyway, there's
4148 * no need to preempt or enable interrupts:
4149 */
4150 __release(rq->lock);
4151 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4152 do_raw_spin_unlock(&rq->lock);
4153 sched_preempt_enable_no_resched();
4154
4155 schedule();
4156
4157 return 0;
4158 }
4159
4160 static void __cond_resched(void)
4161 {
4162 __preempt_count_add(PREEMPT_ACTIVE);
4163 __schedule();
4164 __preempt_count_sub(PREEMPT_ACTIVE);
4165 }
4166
4167 int __sched _cond_resched(void)
4168 {
4169 if (should_resched()) {
4170 __cond_resched();
4171 return 1;
4172 }
4173 return 0;
4174 }
4175 EXPORT_SYMBOL(_cond_resched);
4176
4177 /*
4178 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4179 * call schedule, and on return reacquire the lock.
4180 *
4181 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4182 * operations here to prevent schedule() from being called twice (once via
4183 * spin_unlock(), once by hand).
4184 */
4185 int __cond_resched_lock(spinlock_t *lock)
4186 {
4187 int resched = should_resched();
4188 int ret = 0;
4189
4190 lockdep_assert_held(lock);
4191
4192 if (spin_needbreak(lock) || resched) {
4193 spin_unlock(lock);
4194 if (resched)
4195 __cond_resched();
4196 else
4197 cpu_relax();
4198 ret = 1;
4199 spin_lock(lock);
4200 }
4201 return ret;
4202 }
4203 EXPORT_SYMBOL(__cond_resched_lock);
4204
4205 int __sched __cond_resched_softirq(void)
4206 {
4207 BUG_ON(!in_softirq());
4208
4209 if (should_resched()) {
4210 local_bh_enable();
4211 __cond_resched();
4212 local_bh_disable();
4213 return 1;
4214 }
4215 return 0;
4216 }
4217 EXPORT_SYMBOL(__cond_resched_softirq);
4218
4219 /**
4220 * yield - yield the current processor to other threads.
4221 *
4222 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4223 *
4224 * The scheduler is at all times free to pick the calling task as the most
4225 * eligible task to run, if removing the yield() call from your code breaks
4226 * it, its already broken.
4227 *
4228 * Typical broken usage is:
4229 *
4230 * while (!event)
4231 * yield();
4232 *
4233 * where one assumes that yield() will let 'the other' process run that will
4234 * make event true. If the current task is a SCHED_FIFO task that will never
4235 * happen. Never use yield() as a progress guarantee!!
4236 *
4237 * If you want to use yield() to wait for something, use wait_event().
4238 * If you want to use yield() to be 'nice' for others, use cond_resched().
4239 * If you still want to use yield(), do not!
4240 */
4241 void __sched yield(void)
4242 {
4243 set_current_state(TASK_RUNNING);
4244 sys_sched_yield();
4245 }
4246 EXPORT_SYMBOL(yield);
4247
4248 /**
4249 * yield_to - yield the current processor to another thread in
4250 * your thread group, or accelerate that thread toward the
4251 * processor it's on.
4252 * @p: target task
4253 * @preempt: whether task preemption is allowed or not
4254 *
4255 * It's the caller's job to ensure that the target task struct
4256 * can't go away on us before we can do any checks.
4257 *
4258 * Return:
4259 * true (>0) if we indeed boosted the target task.
4260 * false (0) if we failed to boost the target.
4261 * -ESRCH if there's no task to yield to.
4262 */
4263 int __sched yield_to(struct task_struct *p, bool preempt)
4264 {
4265 struct task_struct *curr = current;
4266 struct rq *rq, *p_rq;
4267 unsigned long flags;
4268 int yielded = 0;
4269
4270 local_irq_save(flags);
4271 rq = this_rq();
4272
4273 again:
4274 p_rq = task_rq(p);
4275 /*
4276 * If we're the only runnable task on the rq and target rq also
4277 * has only one task, there's absolutely no point in yielding.
4278 */
4279 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4280 yielded = -ESRCH;
4281 goto out_irq;
4282 }
4283
4284 double_rq_lock(rq, p_rq);
4285 if (task_rq(p) != p_rq) {
4286 double_rq_unlock(rq, p_rq);
4287 goto again;
4288 }
4289
4290 if (!curr->sched_class->yield_to_task)
4291 goto out_unlock;
4292
4293 if (curr->sched_class != p->sched_class)
4294 goto out_unlock;
4295
4296 if (task_running(p_rq, p) || p->state)
4297 goto out_unlock;
4298
4299 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4300 if (yielded) {
4301 schedstat_inc(rq, yld_count);
4302 /*
4303 * Make p's CPU reschedule; pick_next_entity takes care of
4304 * fairness.
4305 */
4306 if (preempt && rq != p_rq)
4307 resched_curr(p_rq);
4308 }
4309
4310 out_unlock:
4311 double_rq_unlock(rq, p_rq);
4312 out_irq:
4313 local_irq_restore(flags);
4314
4315 if (yielded > 0)
4316 schedule();
4317
4318 return yielded;
4319 }
4320 EXPORT_SYMBOL_GPL(yield_to);
4321
4322 /*
4323 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4324 * that process accounting knows that this is a task in IO wait state.
4325 */
4326 void __sched io_schedule(void)
4327 {
4328 struct rq *rq = raw_rq();
4329
4330 delayacct_blkio_start();
4331 atomic_inc(&rq->nr_iowait);
4332 blk_flush_plug(current);
4333 current->in_iowait = 1;
4334 schedule();
4335 current->in_iowait = 0;
4336 atomic_dec(&rq->nr_iowait);
4337 delayacct_blkio_end();
4338 }
4339 EXPORT_SYMBOL(io_schedule);
4340
4341 long __sched io_schedule_timeout(long timeout)
4342 {
4343 struct rq *rq = raw_rq();
4344 long ret;
4345
4346 delayacct_blkio_start();
4347 atomic_inc(&rq->nr_iowait);
4348 blk_flush_plug(current);
4349 current->in_iowait = 1;
4350 ret = schedule_timeout(timeout);
4351 current->in_iowait = 0;
4352 atomic_dec(&rq->nr_iowait);
4353 delayacct_blkio_end();
4354 return ret;
4355 }
4356
4357 /**
4358 * sys_sched_get_priority_max - return maximum RT priority.
4359 * @policy: scheduling class.
4360 *
4361 * Return: On success, this syscall returns the maximum
4362 * rt_priority that can be used by a given scheduling class.
4363 * On failure, a negative error code is returned.
4364 */
4365 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4366 {
4367 int ret = -EINVAL;
4368
4369 switch (policy) {
4370 case SCHED_FIFO:
4371 case SCHED_RR:
4372 ret = MAX_USER_RT_PRIO-1;
4373 break;
4374 case SCHED_DEADLINE:
4375 case SCHED_NORMAL:
4376 case SCHED_BATCH:
4377 case SCHED_IDLE:
4378 ret = 0;
4379 break;
4380 }
4381 return ret;
4382 }
4383
4384 /**
4385 * sys_sched_get_priority_min - return minimum RT priority.
4386 * @policy: scheduling class.
4387 *
4388 * Return: On success, this syscall returns the minimum
4389 * rt_priority that can be used by a given scheduling class.
4390 * On failure, a negative error code is returned.
4391 */
4392 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4393 {
4394 int ret = -EINVAL;
4395
4396 switch (policy) {
4397 case SCHED_FIFO:
4398 case SCHED_RR:
4399 ret = 1;
4400 break;
4401 case SCHED_DEADLINE:
4402 case SCHED_NORMAL:
4403 case SCHED_BATCH:
4404 case SCHED_IDLE:
4405 ret = 0;
4406 }
4407 return ret;
4408 }
4409
4410 /**
4411 * sys_sched_rr_get_interval - return the default timeslice of a process.
4412 * @pid: pid of the process.
4413 * @interval: userspace pointer to the timeslice value.
4414 *
4415 * this syscall writes the default timeslice value of a given process
4416 * into the user-space timespec buffer. A value of '0' means infinity.
4417 *
4418 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4419 * an error code.
4420 */
4421 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4422 struct timespec __user *, interval)
4423 {
4424 struct task_struct *p;
4425 unsigned int time_slice;
4426 unsigned long flags;
4427 struct rq *rq;
4428 int retval;
4429 struct timespec t;
4430
4431 if (pid < 0)
4432 return -EINVAL;
4433
4434 retval = -ESRCH;
4435 rcu_read_lock();
4436 p = find_process_by_pid(pid);
4437 if (!p)
4438 goto out_unlock;
4439
4440 retval = security_task_getscheduler(p);
4441 if (retval)
4442 goto out_unlock;
4443
4444 rq = task_rq_lock(p, &flags);
4445 time_slice = 0;
4446 if (p->sched_class->get_rr_interval)
4447 time_slice = p->sched_class->get_rr_interval(rq, p);
4448 task_rq_unlock(rq, p, &flags);
4449
4450 rcu_read_unlock();
4451 jiffies_to_timespec(time_slice, &t);
4452 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4453 return retval;
4454
4455 out_unlock:
4456 rcu_read_unlock();
4457 return retval;
4458 }
4459
4460 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4461
4462 void sched_show_task(struct task_struct *p)
4463 {
4464 unsigned long free = 0;
4465 int ppid;
4466 unsigned state;
4467
4468 state = p->state ? __ffs(p->state) + 1 : 0;
4469 printk(KERN_INFO "%-15.15s %c", p->comm,
4470 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4471 #if BITS_PER_LONG == 32
4472 if (state == TASK_RUNNING)
4473 printk(KERN_CONT " running ");
4474 else
4475 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4476 #else
4477 if (state == TASK_RUNNING)
4478 printk(KERN_CONT " running task ");
4479 else
4480 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4481 #endif
4482 #ifdef CONFIG_DEBUG_STACK_USAGE
4483 free = stack_not_used(p);
4484 #endif
4485 rcu_read_lock();
4486 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4487 rcu_read_unlock();
4488 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4489 task_pid_nr(p), ppid,
4490 (unsigned long)task_thread_info(p)->flags);
4491
4492 print_worker_info(KERN_INFO, p);
4493 show_stack(p, NULL);
4494 }
4495
4496 void show_state_filter(unsigned long state_filter)
4497 {
4498 struct task_struct *g, *p;
4499
4500 #if BITS_PER_LONG == 32
4501 printk(KERN_INFO
4502 " task PC stack pid father\n");
4503 #else
4504 printk(KERN_INFO
4505 " task PC stack pid father\n");
4506 #endif
4507 rcu_read_lock();
4508 for_each_process_thread(g, p) {
4509 /*
4510 * reset the NMI-timeout, listing all files on a slow
4511 * console might take a lot of time:
4512 */
4513 touch_nmi_watchdog();
4514 if (!state_filter || (p->state & state_filter))
4515 sched_show_task(p);
4516 }
4517
4518 touch_all_softlockup_watchdogs();
4519
4520 #ifdef CONFIG_SCHED_DEBUG
4521 sysrq_sched_debug_show();
4522 #endif
4523 rcu_read_unlock();
4524 /*
4525 * Only show locks if all tasks are dumped:
4526 */
4527 if (!state_filter)
4528 debug_show_all_locks();
4529 }
4530
4531 void init_idle_bootup_task(struct task_struct *idle)
4532 {
4533 idle->sched_class = &idle_sched_class;
4534 }
4535
4536 /**
4537 * init_idle - set up an idle thread for a given CPU
4538 * @idle: task in question
4539 * @cpu: cpu the idle task belongs to
4540 *
4541 * NOTE: this function does not set the idle thread's NEED_RESCHED
4542 * flag, to make booting more robust.
4543 */
4544 void init_idle(struct task_struct *idle, int cpu)
4545 {
4546 struct rq *rq = cpu_rq(cpu);
4547 unsigned long flags;
4548
4549 raw_spin_lock_irqsave(&rq->lock, flags);
4550
4551 __sched_fork(0, idle);
4552 idle->state = TASK_RUNNING;
4553 idle->se.exec_start = sched_clock();
4554
4555 do_set_cpus_allowed(idle, cpumask_of(cpu));
4556 /*
4557 * We're having a chicken and egg problem, even though we are
4558 * holding rq->lock, the cpu isn't yet set to this cpu so the
4559 * lockdep check in task_group() will fail.
4560 *
4561 * Similar case to sched_fork(). / Alternatively we could
4562 * use task_rq_lock() here and obtain the other rq->lock.
4563 *
4564 * Silence PROVE_RCU
4565 */
4566 rcu_read_lock();
4567 __set_task_cpu(idle, cpu);
4568 rcu_read_unlock();
4569
4570 rq->curr = rq->idle = idle;
4571 idle->on_rq = 1;
4572 #if defined(CONFIG_SMP)
4573 idle->on_cpu = 1;
4574 #endif
4575 raw_spin_unlock_irqrestore(&rq->lock, flags);
4576
4577 /* Set the preempt count _outside_ the spinlocks! */
4578 init_idle_preempt_count(idle, cpu);
4579
4580 /*
4581 * The idle tasks have their own, simple scheduling class:
4582 */
4583 idle->sched_class = &idle_sched_class;
4584 ftrace_graph_init_idle_task(idle, cpu);
4585 vtime_init_idle(idle, cpu);
4586 #if defined(CONFIG_SMP)
4587 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4588 #endif
4589 }
4590
4591 #ifdef CONFIG_SMP
4592 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4593 {
4594 if (p->sched_class && p->sched_class->set_cpus_allowed)
4595 p->sched_class->set_cpus_allowed(p, new_mask);
4596
4597 cpumask_copy(&p->cpus_allowed, new_mask);
4598 p->nr_cpus_allowed = cpumask_weight(new_mask);
4599 }
4600
4601 /*
4602 * This is how migration works:
4603 *
4604 * 1) we invoke migration_cpu_stop() on the target CPU using
4605 * stop_one_cpu().
4606 * 2) stopper starts to run (implicitly forcing the migrated thread
4607 * off the CPU)
4608 * 3) it checks whether the migrated task is still in the wrong runqueue.
4609 * 4) if it's in the wrong runqueue then the migration thread removes
4610 * it and puts it into the right queue.
4611 * 5) stopper completes and stop_one_cpu() returns and the migration
4612 * is done.
4613 */
4614
4615 /*
4616 * Change a given task's CPU affinity. Migrate the thread to a
4617 * proper CPU and schedule it away if the CPU it's executing on
4618 * is removed from the allowed bitmask.
4619 *
4620 * NOTE: the caller must have a valid reference to the task, the
4621 * task must not exit() & deallocate itself prematurely. The
4622 * call is not atomic; no spinlocks may be held.
4623 */
4624 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4625 {
4626 unsigned long flags;
4627 struct rq *rq;
4628 unsigned int dest_cpu;
4629 int ret = 0;
4630
4631 rq = task_rq_lock(p, &flags);
4632
4633 if (cpumask_equal(&p->cpus_allowed, new_mask))
4634 goto out;
4635
4636 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4637 ret = -EINVAL;
4638 goto out;
4639 }
4640
4641 do_set_cpus_allowed(p, new_mask);
4642
4643 /* Can the task run on the task's current CPU? If so, we're done */
4644 if (cpumask_test_cpu(task_cpu(p), new_mask))
4645 goto out;
4646
4647 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4648 if (p->on_rq) {
4649 struct migration_arg arg = { p, dest_cpu };
4650 /* Need help from migration thread: drop lock and wait. */
4651 task_rq_unlock(rq, p, &flags);
4652 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4653 tlb_migrate_finish(p->mm);
4654 return 0;
4655 }
4656 out:
4657 task_rq_unlock(rq, p, &flags);
4658
4659 return ret;
4660 }
4661 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4662
4663 /*
4664 * Move (not current) task off this cpu, onto dest cpu. We're doing
4665 * this because either it can't run here any more (set_cpus_allowed()
4666 * away from this CPU, or CPU going down), or because we're
4667 * attempting to rebalance this task on exec (sched_exec).
4668 *
4669 * So we race with normal scheduler movements, but that's OK, as long
4670 * as the task is no longer on this CPU.
4671 *
4672 * Returns non-zero if task was successfully migrated.
4673 */
4674 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4675 {
4676 struct rq *rq_dest, *rq_src;
4677 int ret = 0;
4678
4679 if (unlikely(!cpu_active(dest_cpu)))
4680 return ret;
4681
4682 rq_src = cpu_rq(src_cpu);
4683 rq_dest = cpu_rq(dest_cpu);
4684
4685 raw_spin_lock(&p->pi_lock);
4686 double_rq_lock(rq_src, rq_dest);
4687 /* Already moved. */
4688 if (task_cpu(p) != src_cpu)
4689 goto done;
4690 /* Affinity changed (again). */
4691 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4692 goto fail;
4693
4694 /*
4695 * If we're not on a rq, the next wake-up will ensure we're
4696 * placed properly.
4697 */
4698 if (p->on_rq) {
4699 dequeue_task(rq_src, p, 0);
4700 set_task_cpu(p, dest_cpu);
4701 enqueue_task(rq_dest, p, 0);
4702 check_preempt_curr(rq_dest, p, 0);
4703 }
4704 done:
4705 ret = 1;
4706 fail:
4707 double_rq_unlock(rq_src, rq_dest);
4708 raw_spin_unlock(&p->pi_lock);
4709 return ret;
4710 }
4711
4712 #ifdef CONFIG_NUMA_BALANCING
4713 /* Migrate current task p to target_cpu */
4714 int migrate_task_to(struct task_struct *p, int target_cpu)
4715 {
4716 struct migration_arg arg = { p, target_cpu };
4717 int curr_cpu = task_cpu(p);
4718
4719 if (curr_cpu == target_cpu)
4720 return 0;
4721
4722 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4723 return -EINVAL;
4724
4725 /* TODO: This is not properly updating schedstats */
4726
4727 trace_sched_move_numa(p, curr_cpu, target_cpu);
4728 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4729 }
4730
4731 /*
4732 * Requeue a task on a given node and accurately track the number of NUMA
4733 * tasks on the runqueues
4734 */
4735 void sched_setnuma(struct task_struct *p, int nid)
4736 {
4737 struct rq *rq;
4738 unsigned long flags;
4739 bool on_rq, running;
4740
4741 rq = task_rq_lock(p, &flags);
4742 on_rq = p->on_rq;
4743 running = task_current(rq, p);
4744
4745 if (on_rq)
4746 dequeue_task(rq, p, 0);
4747 if (running)
4748 p->sched_class->put_prev_task(rq, p);
4749
4750 p->numa_preferred_nid = nid;
4751
4752 if (running)
4753 p->sched_class->set_curr_task(rq);
4754 if (on_rq)
4755 enqueue_task(rq, p, 0);
4756 task_rq_unlock(rq, p, &flags);
4757 }
4758 #endif
4759
4760 /*
4761 * migration_cpu_stop - this will be executed by a highprio stopper thread
4762 * and performs thread migration by bumping thread off CPU then
4763 * 'pushing' onto another runqueue.
4764 */
4765 static int migration_cpu_stop(void *data)
4766 {
4767 struct migration_arg *arg = data;
4768
4769 /*
4770 * The original target cpu might have gone down and we might
4771 * be on another cpu but it doesn't matter.
4772 */
4773 local_irq_disable();
4774 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4775 local_irq_enable();
4776 return 0;
4777 }
4778
4779 #ifdef CONFIG_HOTPLUG_CPU
4780
4781 /*
4782 * Ensures that the idle task is using init_mm right before its cpu goes
4783 * offline.
4784 */
4785 void idle_task_exit(void)
4786 {
4787 struct mm_struct *mm = current->active_mm;
4788
4789 BUG_ON(cpu_online(smp_processor_id()));
4790
4791 if (mm != &init_mm) {
4792 switch_mm(mm, &init_mm, current);
4793 finish_arch_post_lock_switch();
4794 }
4795 mmdrop(mm);
4796 }
4797
4798 /*
4799 * Since this CPU is going 'away' for a while, fold any nr_active delta
4800 * we might have. Assumes we're called after migrate_tasks() so that the
4801 * nr_active count is stable.
4802 *
4803 * Also see the comment "Global load-average calculations".
4804 */
4805 static void calc_load_migrate(struct rq *rq)
4806 {
4807 long delta = calc_load_fold_active(rq);
4808 if (delta)
4809 atomic_long_add(delta, &calc_load_tasks);
4810 }
4811
4812 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4813 {
4814 }
4815
4816 static const struct sched_class fake_sched_class = {
4817 .put_prev_task = put_prev_task_fake,
4818 };
4819
4820 static struct task_struct fake_task = {
4821 /*
4822 * Avoid pull_{rt,dl}_task()
4823 */
4824 .prio = MAX_PRIO + 1,
4825 .sched_class = &fake_sched_class,
4826 };
4827
4828 /*
4829 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4830 * try_to_wake_up()->select_task_rq().
4831 *
4832 * Called with rq->lock held even though we'er in stop_machine() and
4833 * there's no concurrency possible, we hold the required locks anyway
4834 * because of lock validation efforts.
4835 */
4836 static void migrate_tasks(unsigned int dead_cpu)
4837 {
4838 struct rq *rq = cpu_rq(dead_cpu);
4839 struct task_struct *next, *stop = rq->stop;
4840 int dest_cpu;
4841
4842 /*
4843 * Fudge the rq selection such that the below task selection loop
4844 * doesn't get stuck on the currently eligible stop task.
4845 *
4846 * We're currently inside stop_machine() and the rq is either stuck
4847 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4848 * either way we should never end up calling schedule() until we're
4849 * done here.
4850 */
4851 rq->stop = NULL;
4852
4853 /*
4854 * put_prev_task() and pick_next_task() sched
4855 * class method both need to have an up-to-date
4856 * value of rq->clock[_task]
4857 */
4858 update_rq_clock(rq);
4859
4860 for ( ; ; ) {
4861 /*
4862 * There's this thread running, bail when that's the only
4863 * remaining thread.
4864 */
4865 if (rq->nr_running == 1)
4866 break;
4867
4868 next = pick_next_task(rq, &fake_task);
4869 BUG_ON(!next);
4870 next->sched_class->put_prev_task(rq, next);
4871
4872 /* Find suitable destination for @next, with force if needed. */
4873 dest_cpu = select_fallback_rq(dead_cpu, next);
4874 raw_spin_unlock(&rq->lock);
4875
4876 __migrate_task(next, dead_cpu, dest_cpu);
4877
4878 raw_spin_lock(&rq->lock);
4879 }
4880
4881 rq->stop = stop;
4882 }
4883
4884 #endif /* CONFIG_HOTPLUG_CPU */
4885
4886 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4887
4888 static struct ctl_table sd_ctl_dir[] = {
4889 {
4890 .procname = "sched_domain",
4891 .mode = 0555,
4892 },
4893 {}
4894 };
4895
4896 static struct ctl_table sd_ctl_root[] = {
4897 {
4898 .procname = "kernel",
4899 .mode = 0555,
4900 .child = sd_ctl_dir,
4901 },
4902 {}
4903 };
4904
4905 static struct ctl_table *sd_alloc_ctl_entry(int n)
4906 {
4907 struct ctl_table *entry =
4908 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4909
4910 return entry;
4911 }
4912
4913 static void sd_free_ctl_entry(struct ctl_table **tablep)
4914 {
4915 struct ctl_table *entry;
4916
4917 /*
4918 * In the intermediate directories, both the child directory and
4919 * procname are dynamically allocated and could fail but the mode
4920 * will always be set. In the lowest directory the names are
4921 * static strings and all have proc handlers.
4922 */
4923 for (entry = *tablep; entry->mode; entry++) {
4924 if (entry->child)
4925 sd_free_ctl_entry(&entry->child);
4926 if (entry->proc_handler == NULL)
4927 kfree(entry->procname);
4928 }
4929
4930 kfree(*tablep);
4931 *tablep = NULL;
4932 }
4933
4934 static int min_load_idx = 0;
4935 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4936
4937 static void
4938 set_table_entry(struct ctl_table *entry,
4939 const char *procname, void *data, int maxlen,
4940 umode_t mode, proc_handler *proc_handler,
4941 bool load_idx)
4942 {
4943 entry->procname = procname;
4944 entry->data = data;
4945 entry->maxlen = maxlen;
4946 entry->mode = mode;
4947 entry->proc_handler = proc_handler;
4948
4949 if (load_idx) {
4950 entry->extra1 = &min_load_idx;
4951 entry->extra2 = &max_load_idx;
4952 }
4953 }
4954
4955 static struct ctl_table *
4956 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4957 {
4958 struct ctl_table *table = sd_alloc_ctl_entry(14);
4959
4960 if (table == NULL)
4961 return NULL;
4962
4963 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4964 sizeof(long), 0644, proc_doulongvec_minmax, false);
4965 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4966 sizeof(long), 0644, proc_doulongvec_minmax, false);
4967 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4968 sizeof(int), 0644, proc_dointvec_minmax, true);
4969 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4970 sizeof(int), 0644, proc_dointvec_minmax, true);
4971 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4972 sizeof(int), 0644, proc_dointvec_minmax, true);
4973 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4974 sizeof(int), 0644, proc_dointvec_minmax, true);
4975 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4976 sizeof(int), 0644, proc_dointvec_minmax, true);
4977 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4978 sizeof(int), 0644, proc_dointvec_minmax, false);
4979 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4980 sizeof(int), 0644, proc_dointvec_minmax, false);
4981 set_table_entry(&table[9], "cache_nice_tries",
4982 &sd->cache_nice_tries,
4983 sizeof(int), 0644, proc_dointvec_minmax, false);
4984 set_table_entry(&table[10], "flags", &sd->flags,
4985 sizeof(int), 0644, proc_dointvec_minmax, false);
4986 set_table_entry(&table[11], "max_newidle_lb_cost",
4987 &sd->max_newidle_lb_cost,
4988 sizeof(long), 0644, proc_doulongvec_minmax, false);
4989 set_table_entry(&table[12], "name", sd->name,
4990 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4991 /* &table[13] is terminator */
4992
4993 return table;
4994 }
4995
4996 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4997 {
4998 struct ctl_table *entry, *table;
4999 struct sched_domain *sd;
5000 int domain_num = 0, i;
5001 char buf[32];
5002
5003 for_each_domain(cpu, sd)
5004 domain_num++;
5005 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5006 if (table == NULL)
5007 return NULL;
5008
5009 i = 0;
5010 for_each_domain(cpu, sd) {
5011 snprintf(buf, 32, "domain%d", i);
5012 entry->procname = kstrdup(buf, GFP_KERNEL);
5013 entry->mode = 0555;
5014 entry->child = sd_alloc_ctl_domain_table(sd);
5015 entry++;
5016 i++;
5017 }
5018 return table;
5019 }
5020
5021 static struct ctl_table_header *sd_sysctl_header;
5022 static void register_sched_domain_sysctl(void)
5023 {
5024 int i, cpu_num = num_possible_cpus();
5025 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5026 char buf[32];
5027
5028 WARN_ON(sd_ctl_dir[0].child);
5029 sd_ctl_dir[0].child = entry;
5030
5031 if (entry == NULL)
5032 return;
5033
5034 for_each_possible_cpu(i) {
5035 snprintf(buf, 32, "cpu%d", i);
5036 entry->procname = kstrdup(buf, GFP_KERNEL);
5037 entry->mode = 0555;
5038 entry->child = sd_alloc_ctl_cpu_table(i);
5039 entry++;
5040 }
5041
5042 WARN_ON(sd_sysctl_header);
5043 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5044 }
5045
5046 /* may be called multiple times per register */
5047 static void unregister_sched_domain_sysctl(void)
5048 {
5049 if (sd_sysctl_header)
5050 unregister_sysctl_table(sd_sysctl_header);
5051 sd_sysctl_header = NULL;
5052 if (sd_ctl_dir[0].child)
5053 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5054 }
5055 #else
5056 static void register_sched_domain_sysctl(void)
5057 {
5058 }
5059 static void unregister_sched_domain_sysctl(void)
5060 {
5061 }
5062 #endif
5063
5064 static void set_rq_online(struct rq *rq)
5065 {
5066 if (!rq->online) {
5067 const struct sched_class *class;
5068
5069 cpumask_set_cpu(rq->cpu, rq->rd->online);
5070 rq->online = 1;
5071
5072 for_each_class(class) {
5073 if (class->rq_online)
5074 class->rq_online(rq);
5075 }
5076 }
5077 }
5078
5079 static void set_rq_offline(struct rq *rq)
5080 {
5081 if (rq->online) {
5082 const struct sched_class *class;
5083
5084 for_each_class(class) {
5085 if (class->rq_offline)
5086 class->rq_offline(rq);
5087 }
5088
5089 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5090 rq->online = 0;
5091 }
5092 }
5093
5094 /*
5095 * migration_call - callback that gets triggered when a CPU is added.
5096 * Here we can start up the necessary migration thread for the new CPU.
5097 */
5098 static int
5099 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5100 {
5101 int cpu = (long)hcpu;
5102 unsigned long flags;
5103 struct rq *rq = cpu_rq(cpu);
5104
5105 switch (action & ~CPU_TASKS_FROZEN) {
5106
5107 case CPU_UP_PREPARE:
5108 rq->calc_load_update = calc_load_update;
5109 break;
5110
5111 case CPU_ONLINE:
5112 /* Update our root-domain */
5113 raw_spin_lock_irqsave(&rq->lock, flags);
5114 if (rq->rd) {
5115 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5116
5117 set_rq_online(rq);
5118 }
5119 raw_spin_unlock_irqrestore(&rq->lock, flags);
5120 break;
5121
5122 #ifdef CONFIG_HOTPLUG_CPU
5123 case CPU_DYING:
5124 sched_ttwu_pending();
5125 /* Update our root-domain */
5126 raw_spin_lock_irqsave(&rq->lock, flags);
5127 if (rq->rd) {
5128 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5129 set_rq_offline(rq);
5130 }
5131 migrate_tasks(cpu);
5132 BUG_ON(rq->nr_running != 1); /* the migration thread */
5133 raw_spin_unlock_irqrestore(&rq->lock, flags);
5134 break;
5135
5136 case CPU_DEAD:
5137 calc_load_migrate(rq);
5138 break;
5139 #endif
5140 }
5141
5142 update_max_interval();
5143
5144 return NOTIFY_OK;
5145 }
5146
5147 /*
5148 * Register at high priority so that task migration (migrate_all_tasks)
5149 * happens before everything else. This has to be lower priority than
5150 * the notifier in the perf_event subsystem, though.
5151 */
5152 static struct notifier_block migration_notifier = {
5153 .notifier_call = migration_call,
5154 .priority = CPU_PRI_MIGRATION,
5155 };
5156
5157 static void __cpuinit set_cpu_rq_start_time(void)
5158 {
5159 int cpu = smp_processor_id();
5160 struct rq *rq = cpu_rq(cpu);
5161 rq->age_stamp = sched_clock_cpu(cpu);
5162 }
5163
5164 static int sched_cpu_active(struct notifier_block *nfb,
5165 unsigned long action, void *hcpu)
5166 {
5167 switch (action & ~CPU_TASKS_FROZEN) {
5168 case CPU_STARTING:
5169 set_cpu_rq_start_time();
5170 return NOTIFY_OK;
5171 case CPU_DOWN_FAILED:
5172 set_cpu_active((long)hcpu, true);
5173 return NOTIFY_OK;
5174 default:
5175 return NOTIFY_DONE;
5176 }
5177 }
5178
5179 static int sched_cpu_inactive(struct notifier_block *nfb,
5180 unsigned long action, void *hcpu)
5181 {
5182 unsigned long flags;
5183 long cpu = (long)hcpu;
5184
5185 switch (action & ~CPU_TASKS_FROZEN) {
5186 case CPU_DOWN_PREPARE:
5187 set_cpu_active(cpu, false);
5188
5189 /* explicitly allow suspend */
5190 if (!(action & CPU_TASKS_FROZEN)) {
5191 struct dl_bw *dl_b = dl_bw_of(cpu);
5192 bool overflow;
5193 int cpus;
5194
5195 raw_spin_lock_irqsave(&dl_b->lock, flags);
5196 cpus = dl_bw_cpus(cpu);
5197 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5198 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5199
5200 if (overflow)
5201 return notifier_from_errno(-EBUSY);
5202 }
5203 return NOTIFY_OK;
5204 }
5205
5206 return NOTIFY_DONE;
5207 }
5208
5209 static int __init migration_init(void)
5210 {
5211 void *cpu = (void *)(long)smp_processor_id();
5212 int err;
5213
5214 /* Initialize migration for the boot CPU */
5215 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5216 BUG_ON(err == NOTIFY_BAD);
5217 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5218 register_cpu_notifier(&migration_notifier);
5219
5220 /* Register cpu active notifiers */
5221 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5222 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5223
5224 return 0;
5225 }
5226 early_initcall(migration_init);
5227 #endif
5228
5229 #ifdef CONFIG_SMP
5230
5231 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5232
5233 #ifdef CONFIG_SCHED_DEBUG
5234
5235 static __read_mostly int sched_debug_enabled;
5236
5237 static int __init sched_debug_setup(char *str)
5238 {
5239 sched_debug_enabled = 1;
5240
5241 return 0;
5242 }
5243 early_param("sched_debug", sched_debug_setup);
5244
5245 static inline bool sched_debug(void)
5246 {
5247 return sched_debug_enabled;
5248 }
5249
5250 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5251 struct cpumask *groupmask)
5252 {
5253 struct sched_group *group = sd->groups;
5254 char str[256];
5255
5256 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5257 cpumask_clear(groupmask);
5258
5259 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5260
5261 if (!(sd->flags & SD_LOAD_BALANCE)) {
5262 printk("does not load-balance\n");
5263 if (sd->parent)
5264 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5265 " has parent");
5266 return -1;
5267 }
5268
5269 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5270
5271 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5272 printk(KERN_ERR "ERROR: domain->span does not contain "
5273 "CPU%d\n", cpu);
5274 }
5275 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5276 printk(KERN_ERR "ERROR: domain->groups does not contain"
5277 " CPU%d\n", cpu);
5278 }
5279
5280 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5281 do {
5282 if (!group) {
5283 printk("\n");
5284 printk(KERN_ERR "ERROR: group is NULL\n");
5285 break;
5286 }
5287
5288 /*
5289 * Even though we initialize ->capacity to something semi-sane,
5290 * we leave capacity_orig unset. This allows us to detect if
5291 * domain iteration is still funny without causing /0 traps.
5292 */
5293 if (!group->sgc->capacity_orig) {
5294 printk(KERN_CONT "\n");
5295 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5296 break;
5297 }
5298
5299 if (!cpumask_weight(sched_group_cpus(group))) {
5300 printk(KERN_CONT "\n");
5301 printk(KERN_ERR "ERROR: empty group\n");
5302 break;
5303 }
5304
5305 if (!(sd->flags & SD_OVERLAP) &&
5306 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5307 printk(KERN_CONT "\n");
5308 printk(KERN_ERR "ERROR: repeated CPUs\n");
5309 break;
5310 }
5311
5312 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5313
5314 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5315
5316 printk(KERN_CONT " %s", str);
5317 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5318 printk(KERN_CONT " (cpu_capacity = %d)",
5319 group->sgc->capacity);
5320 }
5321
5322 group = group->next;
5323 } while (group != sd->groups);
5324 printk(KERN_CONT "\n");
5325
5326 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5327 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5328
5329 if (sd->parent &&
5330 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5331 printk(KERN_ERR "ERROR: parent span is not a superset "
5332 "of domain->span\n");
5333 return 0;
5334 }
5335
5336 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5337 {
5338 int level = 0;
5339
5340 if (!sched_debug_enabled)
5341 return;
5342
5343 if (!sd) {
5344 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5345 return;
5346 }
5347
5348 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5349
5350 for (;;) {
5351 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5352 break;
5353 level++;
5354 sd = sd->parent;
5355 if (!sd)
5356 break;
5357 }
5358 }
5359 #else /* !CONFIG_SCHED_DEBUG */
5360 # define sched_domain_debug(sd, cpu) do { } while (0)
5361 static inline bool sched_debug(void)
5362 {
5363 return false;
5364 }
5365 #endif /* CONFIG_SCHED_DEBUG */
5366
5367 static int sd_degenerate(struct sched_domain *sd)
5368 {
5369 if (cpumask_weight(sched_domain_span(sd)) == 1)
5370 return 1;
5371
5372 /* Following flags need at least 2 groups */
5373 if (sd->flags & (SD_LOAD_BALANCE |
5374 SD_BALANCE_NEWIDLE |
5375 SD_BALANCE_FORK |
5376 SD_BALANCE_EXEC |
5377 SD_SHARE_CPUCAPACITY |
5378 SD_SHARE_PKG_RESOURCES |
5379 SD_SHARE_POWERDOMAIN)) {
5380 if (sd->groups != sd->groups->next)
5381 return 0;
5382 }
5383
5384 /* Following flags don't use groups */
5385 if (sd->flags & (SD_WAKE_AFFINE))
5386 return 0;
5387
5388 return 1;
5389 }
5390
5391 static int
5392 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5393 {
5394 unsigned long cflags = sd->flags, pflags = parent->flags;
5395
5396 if (sd_degenerate(parent))
5397 return 1;
5398
5399 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5400 return 0;
5401
5402 /* Flags needing groups don't count if only 1 group in parent */
5403 if (parent->groups == parent->groups->next) {
5404 pflags &= ~(SD_LOAD_BALANCE |
5405 SD_BALANCE_NEWIDLE |
5406 SD_BALANCE_FORK |
5407 SD_BALANCE_EXEC |
5408 SD_SHARE_CPUCAPACITY |
5409 SD_SHARE_PKG_RESOURCES |
5410 SD_PREFER_SIBLING |
5411 SD_SHARE_POWERDOMAIN);
5412 if (nr_node_ids == 1)
5413 pflags &= ~SD_SERIALIZE;
5414 }
5415 if (~cflags & pflags)
5416 return 0;
5417
5418 return 1;
5419 }
5420
5421 static void free_rootdomain(struct rcu_head *rcu)
5422 {
5423 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5424
5425 cpupri_cleanup(&rd->cpupri);
5426 cpudl_cleanup(&rd->cpudl);
5427 free_cpumask_var(rd->dlo_mask);
5428 free_cpumask_var(rd->rto_mask);
5429 free_cpumask_var(rd->online);
5430 free_cpumask_var(rd->span);
5431 kfree(rd);
5432 }
5433
5434 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5435 {
5436 struct root_domain *old_rd = NULL;
5437 unsigned long flags;
5438
5439 raw_spin_lock_irqsave(&rq->lock, flags);
5440
5441 if (rq->rd) {
5442 old_rd = rq->rd;
5443
5444 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5445 set_rq_offline(rq);
5446
5447 cpumask_clear_cpu(rq->cpu, old_rd->span);
5448
5449 /*
5450 * If we dont want to free the old_rd yet then
5451 * set old_rd to NULL to skip the freeing later
5452 * in this function:
5453 */
5454 if (!atomic_dec_and_test(&old_rd->refcount))
5455 old_rd = NULL;
5456 }
5457
5458 atomic_inc(&rd->refcount);
5459 rq->rd = rd;
5460
5461 cpumask_set_cpu(rq->cpu, rd->span);
5462 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5463 set_rq_online(rq);
5464
5465 raw_spin_unlock_irqrestore(&rq->lock, flags);
5466
5467 if (old_rd)
5468 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5469 }
5470
5471 static int init_rootdomain(struct root_domain *rd)
5472 {
5473 memset(rd, 0, sizeof(*rd));
5474
5475 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5476 goto out;
5477 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5478 goto free_span;
5479 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5480 goto free_online;
5481 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5482 goto free_dlo_mask;
5483
5484 init_dl_bw(&rd->dl_bw);
5485 if (cpudl_init(&rd->cpudl) != 0)
5486 goto free_dlo_mask;
5487
5488 if (cpupri_init(&rd->cpupri) != 0)
5489 goto free_rto_mask;
5490 return 0;
5491
5492 free_rto_mask:
5493 free_cpumask_var(rd->rto_mask);
5494 free_dlo_mask:
5495 free_cpumask_var(rd->dlo_mask);
5496 free_online:
5497 free_cpumask_var(rd->online);
5498 free_span:
5499 free_cpumask_var(rd->span);
5500 out:
5501 return -ENOMEM;
5502 }
5503
5504 /*
5505 * By default the system creates a single root-domain with all cpus as
5506 * members (mimicking the global state we have today).
5507 */
5508 struct root_domain def_root_domain;
5509
5510 static void init_defrootdomain(void)
5511 {
5512 init_rootdomain(&def_root_domain);
5513
5514 atomic_set(&def_root_domain.refcount, 1);
5515 }
5516
5517 static struct root_domain *alloc_rootdomain(void)
5518 {
5519 struct root_domain *rd;
5520
5521 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5522 if (!rd)
5523 return NULL;
5524
5525 if (init_rootdomain(rd) != 0) {
5526 kfree(rd);
5527 return NULL;
5528 }
5529
5530 return rd;
5531 }
5532
5533 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5534 {
5535 struct sched_group *tmp, *first;
5536
5537 if (!sg)
5538 return;
5539
5540 first = sg;
5541 do {
5542 tmp = sg->next;
5543
5544 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5545 kfree(sg->sgc);
5546
5547 kfree(sg);
5548 sg = tmp;
5549 } while (sg != first);
5550 }
5551
5552 static void free_sched_domain(struct rcu_head *rcu)
5553 {
5554 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5555
5556 /*
5557 * If its an overlapping domain it has private groups, iterate and
5558 * nuke them all.
5559 */
5560 if (sd->flags & SD_OVERLAP) {
5561 free_sched_groups(sd->groups, 1);
5562 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5563 kfree(sd->groups->sgc);
5564 kfree(sd->groups);
5565 }
5566 kfree(sd);
5567 }
5568
5569 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5570 {
5571 call_rcu(&sd->rcu, free_sched_domain);
5572 }
5573
5574 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5575 {
5576 for (; sd; sd = sd->parent)
5577 destroy_sched_domain(sd, cpu);
5578 }
5579
5580 /*
5581 * Keep a special pointer to the highest sched_domain that has
5582 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5583 * allows us to avoid some pointer chasing select_idle_sibling().
5584 *
5585 * Also keep a unique ID per domain (we use the first cpu number in
5586 * the cpumask of the domain), this allows us to quickly tell if
5587 * two cpus are in the same cache domain, see cpus_share_cache().
5588 */
5589 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5590 DEFINE_PER_CPU(int, sd_llc_size);
5591 DEFINE_PER_CPU(int, sd_llc_id);
5592 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5593 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5594 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5595
5596 static void update_top_cache_domain(int cpu)
5597 {
5598 struct sched_domain *sd;
5599 struct sched_domain *busy_sd = NULL;
5600 int id = cpu;
5601 int size = 1;
5602
5603 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5604 if (sd) {
5605 id = cpumask_first(sched_domain_span(sd));
5606 size = cpumask_weight(sched_domain_span(sd));
5607 busy_sd = sd->parent; /* sd_busy */
5608 }
5609 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5610
5611 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5612 per_cpu(sd_llc_size, cpu) = size;
5613 per_cpu(sd_llc_id, cpu) = id;
5614
5615 sd = lowest_flag_domain(cpu, SD_NUMA);
5616 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5617
5618 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5619 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5620 }
5621
5622 /*
5623 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5624 * hold the hotplug lock.
5625 */
5626 static void
5627 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5628 {
5629 struct rq *rq = cpu_rq(cpu);
5630 struct sched_domain *tmp;
5631
5632 /* Remove the sched domains which do not contribute to scheduling. */
5633 for (tmp = sd; tmp; ) {
5634 struct sched_domain *parent = tmp->parent;
5635 if (!parent)
5636 break;
5637
5638 if (sd_parent_degenerate(tmp, parent)) {
5639 tmp->parent = parent->parent;
5640 if (parent->parent)
5641 parent->parent->child = tmp;
5642 /*
5643 * Transfer SD_PREFER_SIBLING down in case of a
5644 * degenerate parent; the spans match for this
5645 * so the property transfers.
5646 */
5647 if (parent->flags & SD_PREFER_SIBLING)
5648 tmp->flags |= SD_PREFER_SIBLING;
5649 destroy_sched_domain(parent, cpu);
5650 } else
5651 tmp = tmp->parent;
5652 }
5653
5654 if (sd && sd_degenerate(sd)) {
5655 tmp = sd;
5656 sd = sd->parent;
5657 destroy_sched_domain(tmp, cpu);
5658 if (sd)
5659 sd->child = NULL;
5660 }
5661
5662 sched_domain_debug(sd, cpu);
5663
5664 rq_attach_root(rq, rd);
5665 tmp = rq->sd;
5666 rcu_assign_pointer(rq->sd, sd);
5667 destroy_sched_domains(tmp, cpu);
5668
5669 update_top_cache_domain(cpu);
5670 }
5671
5672 /* cpus with isolated domains */
5673 static cpumask_var_t cpu_isolated_map;
5674
5675 /* Setup the mask of cpus configured for isolated domains */
5676 static int __init isolated_cpu_setup(char *str)
5677 {
5678 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5679 cpulist_parse(str, cpu_isolated_map);
5680 return 1;
5681 }
5682
5683 __setup("isolcpus=", isolated_cpu_setup);
5684
5685 struct s_data {
5686 struct sched_domain ** __percpu sd;
5687 struct root_domain *rd;
5688 };
5689
5690 enum s_alloc {
5691 sa_rootdomain,
5692 sa_sd,
5693 sa_sd_storage,
5694 sa_none,
5695 };
5696
5697 /*
5698 * Build an iteration mask that can exclude certain CPUs from the upwards
5699 * domain traversal.
5700 *
5701 * Asymmetric node setups can result in situations where the domain tree is of
5702 * unequal depth, make sure to skip domains that already cover the entire
5703 * range.
5704 *
5705 * In that case build_sched_domains() will have terminated the iteration early
5706 * and our sibling sd spans will be empty. Domains should always include the
5707 * cpu they're built on, so check that.
5708 *
5709 */
5710 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5711 {
5712 const struct cpumask *span = sched_domain_span(sd);
5713 struct sd_data *sdd = sd->private;
5714 struct sched_domain *sibling;
5715 int i;
5716
5717 for_each_cpu(i, span) {
5718 sibling = *per_cpu_ptr(sdd->sd, i);
5719 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5720 continue;
5721
5722 cpumask_set_cpu(i, sched_group_mask(sg));
5723 }
5724 }
5725
5726 /*
5727 * Return the canonical balance cpu for this group, this is the first cpu
5728 * of this group that's also in the iteration mask.
5729 */
5730 int group_balance_cpu(struct sched_group *sg)
5731 {
5732 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5733 }
5734
5735 static int
5736 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5737 {
5738 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5739 const struct cpumask *span = sched_domain_span(sd);
5740 struct cpumask *covered = sched_domains_tmpmask;
5741 struct sd_data *sdd = sd->private;
5742 struct sched_domain *sibling;
5743 int i;
5744
5745 cpumask_clear(covered);
5746
5747 for_each_cpu(i, span) {
5748 struct cpumask *sg_span;
5749
5750 if (cpumask_test_cpu(i, covered))
5751 continue;
5752
5753 sibling = *per_cpu_ptr(sdd->sd, i);
5754
5755 /* See the comment near build_group_mask(). */
5756 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5757 continue;
5758
5759 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5760 GFP_KERNEL, cpu_to_node(cpu));
5761
5762 if (!sg)
5763 goto fail;
5764
5765 sg_span = sched_group_cpus(sg);
5766 if (sibling->child)
5767 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5768 else
5769 cpumask_set_cpu(i, sg_span);
5770
5771 cpumask_or(covered, covered, sg_span);
5772
5773 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5774 if (atomic_inc_return(&sg->sgc->ref) == 1)
5775 build_group_mask(sd, sg);
5776
5777 /*
5778 * Initialize sgc->capacity such that even if we mess up the
5779 * domains and no possible iteration will get us here, we won't
5780 * die on a /0 trap.
5781 */
5782 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5783 sg->sgc->capacity_orig = sg->sgc->capacity;
5784
5785 /*
5786 * Make sure the first group of this domain contains the
5787 * canonical balance cpu. Otherwise the sched_domain iteration
5788 * breaks. See update_sg_lb_stats().
5789 */
5790 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5791 group_balance_cpu(sg) == cpu)
5792 groups = sg;
5793
5794 if (!first)
5795 first = sg;
5796 if (last)
5797 last->next = sg;
5798 last = sg;
5799 last->next = first;
5800 }
5801 sd->groups = groups;
5802
5803 return 0;
5804
5805 fail:
5806 free_sched_groups(first, 0);
5807
5808 return -ENOMEM;
5809 }
5810
5811 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5812 {
5813 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5814 struct sched_domain *child = sd->child;
5815
5816 if (child)
5817 cpu = cpumask_first(sched_domain_span(child));
5818
5819 if (sg) {
5820 *sg = *per_cpu_ptr(sdd->sg, cpu);
5821 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5822 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5823 }
5824
5825 return cpu;
5826 }
5827
5828 /*
5829 * build_sched_groups will build a circular linked list of the groups
5830 * covered by the given span, and will set each group's ->cpumask correctly,
5831 * and ->cpu_capacity to 0.
5832 *
5833 * Assumes the sched_domain tree is fully constructed
5834 */
5835 static int
5836 build_sched_groups(struct sched_domain *sd, int cpu)
5837 {
5838 struct sched_group *first = NULL, *last = NULL;
5839 struct sd_data *sdd = sd->private;
5840 const struct cpumask *span = sched_domain_span(sd);
5841 struct cpumask *covered;
5842 int i;
5843
5844 get_group(cpu, sdd, &sd->groups);
5845 atomic_inc(&sd->groups->ref);
5846
5847 if (cpu != cpumask_first(span))
5848 return 0;
5849
5850 lockdep_assert_held(&sched_domains_mutex);
5851 covered = sched_domains_tmpmask;
5852
5853 cpumask_clear(covered);
5854
5855 for_each_cpu(i, span) {
5856 struct sched_group *sg;
5857 int group, j;
5858
5859 if (cpumask_test_cpu(i, covered))
5860 continue;
5861
5862 group = get_group(i, sdd, &sg);
5863 cpumask_setall(sched_group_mask(sg));
5864
5865 for_each_cpu(j, span) {
5866 if (get_group(j, sdd, NULL) != group)
5867 continue;
5868
5869 cpumask_set_cpu(j, covered);
5870 cpumask_set_cpu(j, sched_group_cpus(sg));
5871 }
5872
5873 if (!first)
5874 first = sg;
5875 if (last)
5876 last->next = sg;
5877 last = sg;
5878 }
5879 last->next = first;
5880
5881 return 0;
5882 }
5883
5884 /*
5885 * Initialize sched groups cpu_capacity.
5886 *
5887 * cpu_capacity indicates the capacity of sched group, which is used while
5888 * distributing the load between different sched groups in a sched domain.
5889 * Typically cpu_capacity for all the groups in a sched domain will be same
5890 * unless there are asymmetries in the topology. If there are asymmetries,
5891 * group having more cpu_capacity will pickup more load compared to the
5892 * group having less cpu_capacity.
5893 */
5894 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5895 {
5896 struct sched_group *sg = sd->groups;
5897
5898 WARN_ON(!sg);
5899
5900 do {
5901 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5902 sg = sg->next;
5903 } while (sg != sd->groups);
5904
5905 if (cpu != group_balance_cpu(sg))
5906 return;
5907
5908 update_group_capacity(sd, cpu);
5909 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5910 }
5911
5912 /*
5913 * Initializers for schedule domains
5914 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5915 */
5916
5917 static int default_relax_domain_level = -1;
5918 int sched_domain_level_max;
5919
5920 static int __init setup_relax_domain_level(char *str)
5921 {
5922 if (kstrtoint(str, 0, &default_relax_domain_level))
5923 pr_warn("Unable to set relax_domain_level\n");
5924
5925 return 1;
5926 }
5927 __setup("relax_domain_level=", setup_relax_domain_level);
5928
5929 static void set_domain_attribute(struct sched_domain *sd,
5930 struct sched_domain_attr *attr)
5931 {
5932 int request;
5933
5934 if (!attr || attr->relax_domain_level < 0) {
5935 if (default_relax_domain_level < 0)
5936 return;
5937 else
5938 request = default_relax_domain_level;
5939 } else
5940 request = attr->relax_domain_level;
5941 if (request < sd->level) {
5942 /* turn off idle balance on this domain */
5943 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5944 } else {
5945 /* turn on idle balance on this domain */
5946 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5947 }
5948 }
5949
5950 static void __sdt_free(const struct cpumask *cpu_map);
5951 static int __sdt_alloc(const struct cpumask *cpu_map);
5952
5953 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5954 const struct cpumask *cpu_map)
5955 {
5956 switch (what) {
5957 case sa_rootdomain:
5958 if (!atomic_read(&d->rd->refcount))
5959 free_rootdomain(&d->rd->rcu); /* fall through */
5960 case sa_sd:
5961 free_percpu(d->sd); /* fall through */
5962 case sa_sd_storage:
5963 __sdt_free(cpu_map); /* fall through */
5964 case sa_none:
5965 break;
5966 }
5967 }
5968
5969 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5970 const struct cpumask *cpu_map)
5971 {
5972 memset(d, 0, sizeof(*d));
5973
5974 if (__sdt_alloc(cpu_map))
5975 return sa_sd_storage;
5976 d->sd = alloc_percpu(struct sched_domain *);
5977 if (!d->sd)
5978 return sa_sd_storage;
5979 d->rd = alloc_rootdomain();
5980 if (!d->rd)
5981 return sa_sd;
5982 return sa_rootdomain;
5983 }
5984
5985 /*
5986 * NULL the sd_data elements we've used to build the sched_domain and
5987 * sched_group structure so that the subsequent __free_domain_allocs()
5988 * will not free the data we're using.
5989 */
5990 static void claim_allocations(int cpu, struct sched_domain *sd)
5991 {
5992 struct sd_data *sdd = sd->private;
5993
5994 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5995 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5996
5997 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5998 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5999
6000 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6001 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6002 }
6003
6004 #ifdef CONFIG_NUMA
6005 static int sched_domains_numa_levels;
6006 static int *sched_domains_numa_distance;
6007 static struct cpumask ***sched_domains_numa_masks;
6008 static int sched_domains_curr_level;
6009 #endif
6010
6011 /*
6012 * SD_flags allowed in topology descriptions.
6013 *
6014 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6015 * SD_SHARE_PKG_RESOURCES - describes shared caches
6016 * SD_NUMA - describes NUMA topologies
6017 * SD_SHARE_POWERDOMAIN - describes shared power domain
6018 *
6019 * Odd one out:
6020 * SD_ASYM_PACKING - describes SMT quirks
6021 */
6022 #define TOPOLOGY_SD_FLAGS \
6023 (SD_SHARE_CPUCAPACITY | \
6024 SD_SHARE_PKG_RESOURCES | \
6025 SD_NUMA | \
6026 SD_ASYM_PACKING | \
6027 SD_SHARE_POWERDOMAIN)
6028
6029 static struct sched_domain *
6030 sd_init(struct sched_domain_topology_level *tl, int cpu)
6031 {
6032 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6033 int sd_weight, sd_flags = 0;
6034
6035 #ifdef CONFIG_NUMA
6036 /*
6037 * Ugly hack to pass state to sd_numa_mask()...
6038 */
6039 sched_domains_curr_level = tl->numa_level;
6040 #endif
6041
6042 sd_weight = cpumask_weight(tl->mask(cpu));
6043
6044 if (tl->sd_flags)
6045 sd_flags = (*tl->sd_flags)();
6046 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6047 "wrong sd_flags in topology description\n"))
6048 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6049
6050 *sd = (struct sched_domain){
6051 .min_interval = sd_weight,
6052 .max_interval = 2*sd_weight,
6053 .busy_factor = 32,
6054 .imbalance_pct = 125,
6055
6056 .cache_nice_tries = 0,
6057 .busy_idx = 0,
6058 .idle_idx = 0,
6059 .newidle_idx = 0,
6060 .wake_idx = 0,
6061 .forkexec_idx = 0,
6062
6063 .flags = 1*SD_LOAD_BALANCE
6064 | 1*SD_BALANCE_NEWIDLE
6065 | 1*SD_BALANCE_EXEC
6066 | 1*SD_BALANCE_FORK
6067 | 0*SD_BALANCE_WAKE
6068 | 1*SD_WAKE_AFFINE
6069 | 0*SD_SHARE_CPUCAPACITY
6070 | 0*SD_SHARE_PKG_RESOURCES
6071 | 0*SD_SERIALIZE
6072 | 0*SD_PREFER_SIBLING
6073 | 0*SD_NUMA
6074 | sd_flags
6075 ,
6076
6077 .last_balance = jiffies,
6078 .balance_interval = sd_weight,
6079 .smt_gain = 0,
6080 .max_newidle_lb_cost = 0,
6081 .next_decay_max_lb_cost = jiffies,
6082 #ifdef CONFIG_SCHED_DEBUG
6083 .name = tl->name,
6084 #endif
6085 };
6086
6087 /*
6088 * Convert topological properties into behaviour.
6089 */
6090
6091 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6092 sd->imbalance_pct = 110;
6093 sd->smt_gain = 1178; /* ~15% */
6094
6095 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6096 sd->imbalance_pct = 117;
6097 sd->cache_nice_tries = 1;
6098 sd->busy_idx = 2;
6099
6100 #ifdef CONFIG_NUMA
6101 } else if (sd->flags & SD_NUMA) {
6102 sd->cache_nice_tries = 2;
6103 sd->busy_idx = 3;
6104 sd->idle_idx = 2;
6105
6106 sd->flags |= SD_SERIALIZE;
6107 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6108 sd->flags &= ~(SD_BALANCE_EXEC |
6109 SD_BALANCE_FORK |
6110 SD_WAKE_AFFINE);
6111 }
6112
6113 #endif
6114 } else {
6115 sd->flags |= SD_PREFER_SIBLING;
6116 sd->cache_nice_tries = 1;
6117 sd->busy_idx = 2;
6118 sd->idle_idx = 1;
6119 }
6120
6121 sd->private = &tl->data;
6122
6123 return sd;
6124 }
6125
6126 /*
6127 * Topology list, bottom-up.
6128 */
6129 static struct sched_domain_topology_level default_topology[] = {
6130 #ifdef CONFIG_SCHED_SMT
6131 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6132 #endif
6133 #ifdef CONFIG_SCHED_MC
6134 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6135 #endif
6136 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6137 { NULL, },
6138 };
6139
6140 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6141
6142 #define for_each_sd_topology(tl) \
6143 for (tl = sched_domain_topology; tl->mask; tl++)
6144
6145 void set_sched_topology(struct sched_domain_topology_level *tl)
6146 {
6147 sched_domain_topology = tl;
6148 }
6149
6150 #ifdef CONFIG_NUMA
6151
6152 static const struct cpumask *sd_numa_mask(int cpu)
6153 {
6154 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6155 }
6156
6157 static void sched_numa_warn(const char *str)
6158 {
6159 static int done = false;
6160 int i,j;
6161
6162 if (done)
6163 return;
6164
6165 done = true;
6166
6167 printk(KERN_WARNING "ERROR: %s\n\n", str);
6168
6169 for (i = 0; i < nr_node_ids; i++) {
6170 printk(KERN_WARNING " ");
6171 for (j = 0; j < nr_node_ids; j++)
6172 printk(KERN_CONT "%02d ", node_distance(i,j));
6173 printk(KERN_CONT "\n");
6174 }
6175 printk(KERN_WARNING "\n");
6176 }
6177
6178 static bool find_numa_distance(int distance)
6179 {
6180 int i;
6181
6182 if (distance == node_distance(0, 0))
6183 return true;
6184
6185 for (i = 0; i < sched_domains_numa_levels; i++) {
6186 if (sched_domains_numa_distance[i] == distance)
6187 return true;
6188 }
6189
6190 return false;
6191 }
6192
6193 static void sched_init_numa(void)
6194 {
6195 int next_distance, curr_distance = node_distance(0, 0);
6196 struct sched_domain_topology_level *tl;
6197 int level = 0;
6198 int i, j, k;
6199
6200 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6201 if (!sched_domains_numa_distance)
6202 return;
6203
6204 /*
6205 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6206 * unique distances in the node_distance() table.
6207 *
6208 * Assumes node_distance(0,j) includes all distances in
6209 * node_distance(i,j) in order to avoid cubic time.
6210 */
6211 next_distance = curr_distance;
6212 for (i = 0; i < nr_node_ids; i++) {
6213 for (j = 0; j < nr_node_ids; j++) {
6214 for (k = 0; k < nr_node_ids; k++) {
6215 int distance = node_distance(i, k);
6216
6217 if (distance > curr_distance &&
6218 (distance < next_distance ||
6219 next_distance == curr_distance))
6220 next_distance = distance;
6221
6222 /*
6223 * While not a strong assumption it would be nice to know
6224 * about cases where if node A is connected to B, B is not
6225 * equally connected to A.
6226 */
6227 if (sched_debug() && node_distance(k, i) != distance)
6228 sched_numa_warn("Node-distance not symmetric");
6229
6230 if (sched_debug() && i && !find_numa_distance(distance))
6231 sched_numa_warn("Node-0 not representative");
6232 }
6233 if (next_distance != curr_distance) {
6234 sched_domains_numa_distance[level++] = next_distance;
6235 sched_domains_numa_levels = level;
6236 curr_distance = next_distance;
6237 } else break;
6238 }
6239
6240 /*
6241 * In case of sched_debug() we verify the above assumption.
6242 */
6243 if (!sched_debug())
6244 break;
6245 }
6246 /*
6247 * 'level' contains the number of unique distances, excluding the
6248 * identity distance node_distance(i,i).
6249 *
6250 * The sched_domains_numa_distance[] array includes the actual distance
6251 * numbers.
6252 */
6253
6254 /*
6255 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6256 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6257 * the array will contain less then 'level' members. This could be
6258 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6259 * in other functions.
6260 *
6261 * We reset it to 'level' at the end of this function.
6262 */
6263 sched_domains_numa_levels = 0;
6264
6265 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6266 if (!sched_domains_numa_masks)
6267 return;
6268
6269 /*
6270 * Now for each level, construct a mask per node which contains all
6271 * cpus of nodes that are that many hops away from us.
6272 */
6273 for (i = 0; i < level; i++) {
6274 sched_domains_numa_masks[i] =
6275 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6276 if (!sched_domains_numa_masks[i])
6277 return;
6278
6279 for (j = 0; j < nr_node_ids; j++) {
6280 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6281 if (!mask)
6282 return;
6283
6284 sched_domains_numa_masks[i][j] = mask;
6285
6286 for (k = 0; k < nr_node_ids; k++) {
6287 if (node_distance(j, k) > sched_domains_numa_distance[i])
6288 continue;
6289
6290 cpumask_or(mask, mask, cpumask_of_node(k));
6291 }
6292 }
6293 }
6294
6295 /* Compute default topology size */
6296 for (i = 0; sched_domain_topology[i].mask; i++);
6297
6298 tl = kzalloc((i + level + 1) *
6299 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6300 if (!tl)
6301 return;
6302
6303 /*
6304 * Copy the default topology bits..
6305 */
6306 for (i = 0; sched_domain_topology[i].mask; i++)
6307 tl[i] = sched_domain_topology[i];
6308
6309 /*
6310 * .. and append 'j' levels of NUMA goodness.
6311 */
6312 for (j = 0; j < level; i++, j++) {
6313 tl[i] = (struct sched_domain_topology_level){
6314 .mask = sd_numa_mask,
6315 .sd_flags = cpu_numa_flags,
6316 .flags = SDTL_OVERLAP,
6317 .numa_level = j,
6318 SD_INIT_NAME(NUMA)
6319 };
6320 }
6321
6322 sched_domain_topology = tl;
6323
6324 sched_domains_numa_levels = level;
6325 }
6326
6327 static void sched_domains_numa_masks_set(int cpu)
6328 {
6329 int i, j;
6330 int node = cpu_to_node(cpu);
6331
6332 for (i = 0; i < sched_domains_numa_levels; i++) {
6333 for (j = 0; j < nr_node_ids; j++) {
6334 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6335 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6336 }
6337 }
6338 }
6339
6340 static void sched_domains_numa_masks_clear(int cpu)
6341 {
6342 int i, j;
6343 for (i = 0; i < sched_domains_numa_levels; i++) {
6344 for (j = 0; j < nr_node_ids; j++)
6345 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6346 }
6347 }
6348
6349 /*
6350 * Update sched_domains_numa_masks[level][node] array when new cpus
6351 * are onlined.
6352 */
6353 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6354 unsigned long action,
6355 void *hcpu)
6356 {
6357 int cpu = (long)hcpu;
6358
6359 switch (action & ~CPU_TASKS_FROZEN) {
6360 case CPU_ONLINE:
6361 sched_domains_numa_masks_set(cpu);
6362 break;
6363
6364 case CPU_DEAD:
6365 sched_domains_numa_masks_clear(cpu);
6366 break;
6367
6368 default:
6369 return NOTIFY_DONE;
6370 }
6371
6372 return NOTIFY_OK;
6373 }
6374 #else
6375 static inline void sched_init_numa(void)
6376 {
6377 }
6378
6379 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6380 unsigned long action,
6381 void *hcpu)
6382 {
6383 return 0;
6384 }
6385 #endif /* CONFIG_NUMA */
6386
6387 static int __sdt_alloc(const struct cpumask *cpu_map)
6388 {
6389 struct sched_domain_topology_level *tl;
6390 int j;
6391
6392 for_each_sd_topology(tl) {
6393 struct sd_data *sdd = &tl->data;
6394
6395 sdd->sd = alloc_percpu(struct sched_domain *);
6396 if (!sdd->sd)
6397 return -ENOMEM;
6398
6399 sdd->sg = alloc_percpu(struct sched_group *);
6400 if (!sdd->sg)
6401 return -ENOMEM;
6402
6403 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6404 if (!sdd->sgc)
6405 return -ENOMEM;
6406
6407 for_each_cpu(j, cpu_map) {
6408 struct sched_domain *sd;
6409 struct sched_group *sg;
6410 struct sched_group_capacity *sgc;
6411
6412 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6413 GFP_KERNEL, cpu_to_node(j));
6414 if (!sd)
6415 return -ENOMEM;
6416
6417 *per_cpu_ptr(sdd->sd, j) = sd;
6418
6419 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6420 GFP_KERNEL, cpu_to_node(j));
6421 if (!sg)
6422 return -ENOMEM;
6423
6424 sg->next = sg;
6425
6426 *per_cpu_ptr(sdd->sg, j) = sg;
6427
6428 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6429 GFP_KERNEL, cpu_to_node(j));
6430 if (!sgc)
6431 return -ENOMEM;
6432
6433 *per_cpu_ptr(sdd->sgc, j) = sgc;
6434 }
6435 }
6436
6437 return 0;
6438 }
6439
6440 static void __sdt_free(const struct cpumask *cpu_map)
6441 {
6442 struct sched_domain_topology_level *tl;
6443 int j;
6444
6445 for_each_sd_topology(tl) {
6446 struct sd_data *sdd = &tl->data;
6447
6448 for_each_cpu(j, cpu_map) {
6449 struct sched_domain *sd;
6450
6451 if (sdd->sd) {
6452 sd = *per_cpu_ptr(sdd->sd, j);
6453 if (sd && (sd->flags & SD_OVERLAP))
6454 free_sched_groups(sd->groups, 0);
6455 kfree(*per_cpu_ptr(sdd->sd, j));
6456 }
6457
6458 if (sdd->sg)
6459 kfree(*per_cpu_ptr(sdd->sg, j));
6460 if (sdd->sgc)
6461 kfree(*per_cpu_ptr(sdd->sgc, j));
6462 }
6463 free_percpu(sdd->sd);
6464 sdd->sd = NULL;
6465 free_percpu(sdd->sg);
6466 sdd->sg = NULL;
6467 free_percpu(sdd->sgc);
6468 sdd->sgc = NULL;
6469 }
6470 }
6471
6472 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6473 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6474 struct sched_domain *child, int cpu)
6475 {
6476 struct sched_domain *sd = sd_init(tl, cpu);
6477 if (!sd)
6478 return child;
6479
6480 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6481 if (child) {
6482 sd->level = child->level + 1;
6483 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6484 child->parent = sd;
6485 sd->child = child;
6486
6487 if (!cpumask_subset(sched_domain_span(child),
6488 sched_domain_span(sd))) {
6489 pr_err("BUG: arch topology borken\n");
6490 #ifdef CONFIG_SCHED_DEBUG
6491 pr_err(" the %s domain not a subset of the %s domain\n",
6492 child->name, sd->name);
6493 #endif
6494 /* Fixup, ensure @sd has at least @child cpus. */
6495 cpumask_or(sched_domain_span(sd),
6496 sched_domain_span(sd),
6497 sched_domain_span(child));
6498 }
6499
6500 }
6501 set_domain_attribute(sd, attr);
6502
6503 return sd;
6504 }
6505
6506 /*
6507 * Build sched domains for a given set of cpus and attach the sched domains
6508 * to the individual cpus
6509 */
6510 static int build_sched_domains(const struct cpumask *cpu_map,
6511 struct sched_domain_attr *attr)
6512 {
6513 enum s_alloc alloc_state;
6514 struct sched_domain *sd;
6515 struct s_data d;
6516 int i, ret = -ENOMEM;
6517
6518 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6519 if (alloc_state != sa_rootdomain)
6520 goto error;
6521
6522 /* Set up domains for cpus specified by the cpu_map. */
6523 for_each_cpu(i, cpu_map) {
6524 struct sched_domain_topology_level *tl;
6525
6526 sd = NULL;
6527 for_each_sd_topology(tl) {
6528 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6529 if (tl == sched_domain_topology)
6530 *per_cpu_ptr(d.sd, i) = sd;
6531 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6532 sd->flags |= SD_OVERLAP;
6533 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6534 break;
6535 }
6536 }
6537
6538 /* Build the groups for the domains */
6539 for_each_cpu(i, cpu_map) {
6540 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6541 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6542 if (sd->flags & SD_OVERLAP) {
6543 if (build_overlap_sched_groups(sd, i))
6544 goto error;
6545 } else {
6546 if (build_sched_groups(sd, i))
6547 goto error;
6548 }
6549 }
6550 }
6551
6552 /* Calculate CPU capacity for physical packages and nodes */
6553 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6554 if (!cpumask_test_cpu(i, cpu_map))
6555 continue;
6556
6557 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6558 claim_allocations(i, sd);
6559 init_sched_groups_capacity(i, sd);
6560 }
6561 }
6562
6563 /* Attach the domains */
6564 rcu_read_lock();
6565 for_each_cpu(i, cpu_map) {
6566 sd = *per_cpu_ptr(d.sd, i);
6567 cpu_attach_domain(sd, d.rd, i);
6568 }
6569 rcu_read_unlock();
6570
6571 ret = 0;
6572 error:
6573 __free_domain_allocs(&d, alloc_state, cpu_map);
6574 return ret;
6575 }
6576
6577 static cpumask_var_t *doms_cur; /* current sched domains */
6578 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6579 static struct sched_domain_attr *dattr_cur;
6580 /* attribues of custom domains in 'doms_cur' */
6581
6582 /*
6583 * Special case: If a kmalloc of a doms_cur partition (array of
6584 * cpumask) fails, then fallback to a single sched domain,
6585 * as determined by the single cpumask fallback_doms.
6586 */
6587 static cpumask_var_t fallback_doms;
6588
6589 /*
6590 * arch_update_cpu_topology lets virtualized architectures update the
6591 * cpu core maps. It is supposed to return 1 if the topology changed
6592 * or 0 if it stayed the same.
6593 */
6594 int __weak arch_update_cpu_topology(void)
6595 {
6596 return 0;
6597 }
6598
6599 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6600 {
6601 int i;
6602 cpumask_var_t *doms;
6603
6604 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6605 if (!doms)
6606 return NULL;
6607 for (i = 0; i < ndoms; i++) {
6608 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6609 free_sched_domains(doms, i);
6610 return NULL;
6611 }
6612 }
6613 return doms;
6614 }
6615
6616 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6617 {
6618 unsigned int i;
6619 for (i = 0; i < ndoms; i++)
6620 free_cpumask_var(doms[i]);
6621 kfree(doms);
6622 }
6623
6624 /*
6625 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6626 * For now this just excludes isolated cpus, but could be used to
6627 * exclude other special cases in the future.
6628 */
6629 static int init_sched_domains(const struct cpumask *cpu_map)
6630 {
6631 int err;
6632
6633 arch_update_cpu_topology();
6634 ndoms_cur = 1;
6635 doms_cur = alloc_sched_domains(ndoms_cur);
6636 if (!doms_cur)
6637 doms_cur = &fallback_doms;
6638 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6639 err = build_sched_domains(doms_cur[0], NULL);
6640 register_sched_domain_sysctl();
6641
6642 return err;
6643 }
6644
6645 /*
6646 * Detach sched domains from a group of cpus specified in cpu_map
6647 * These cpus will now be attached to the NULL domain
6648 */
6649 static void detach_destroy_domains(const struct cpumask *cpu_map)
6650 {
6651 int i;
6652
6653 rcu_read_lock();
6654 for_each_cpu(i, cpu_map)
6655 cpu_attach_domain(NULL, &def_root_domain, i);
6656 rcu_read_unlock();
6657 }
6658
6659 /* handle null as "default" */
6660 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6661 struct sched_domain_attr *new, int idx_new)
6662 {
6663 struct sched_domain_attr tmp;
6664
6665 /* fast path */
6666 if (!new && !cur)
6667 return 1;
6668
6669 tmp = SD_ATTR_INIT;
6670 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6671 new ? (new + idx_new) : &tmp,
6672 sizeof(struct sched_domain_attr));
6673 }
6674
6675 /*
6676 * Partition sched domains as specified by the 'ndoms_new'
6677 * cpumasks in the array doms_new[] of cpumasks. This compares
6678 * doms_new[] to the current sched domain partitioning, doms_cur[].
6679 * It destroys each deleted domain and builds each new domain.
6680 *
6681 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6682 * The masks don't intersect (don't overlap.) We should setup one
6683 * sched domain for each mask. CPUs not in any of the cpumasks will
6684 * not be load balanced. If the same cpumask appears both in the
6685 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6686 * it as it is.
6687 *
6688 * The passed in 'doms_new' should be allocated using
6689 * alloc_sched_domains. This routine takes ownership of it and will
6690 * free_sched_domains it when done with it. If the caller failed the
6691 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6692 * and partition_sched_domains() will fallback to the single partition
6693 * 'fallback_doms', it also forces the domains to be rebuilt.
6694 *
6695 * If doms_new == NULL it will be replaced with cpu_online_mask.
6696 * ndoms_new == 0 is a special case for destroying existing domains,
6697 * and it will not create the default domain.
6698 *
6699 * Call with hotplug lock held
6700 */
6701 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6702 struct sched_domain_attr *dattr_new)
6703 {
6704 int i, j, n;
6705 int new_topology;
6706
6707 mutex_lock(&sched_domains_mutex);
6708
6709 /* always unregister in case we don't destroy any domains */
6710 unregister_sched_domain_sysctl();
6711
6712 /* Let architecture update cpu core mappings. */
6713 new_topology = arch_update_cpu_topology();
6714
6715 n = doms_new ? ndoms_new : 0;
6716
6717 /* Destroy deleted domains */
6718 for (i = 0; i < ndoms_cur; i++) {
6719 for (j = 0; j < n && !new_topology; j++) {
6720 if (cpumask_equal(doms_cur[i], doms_new[j])
6721 && dattrs_equal(dattr_cur, i, dattr_new, j))
6722 goto match1;
6723 }
6724 /* no match - a current sched domain not in new doms_new[] */
6725 detach_destroy_domains(doms_cur[i]);
6726 match1:
6727 ;
6728 }
6729
6730 n = ndoms_cur;
6731 if (doms_new == NULL) {
6732 n = 0;
6733 doms_new = &fallback_doms;
6734 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6735 WARN_ON_ONCE(dattr_new);
6736 }
6737
6738 /* Build new domains */
6739 for (i = 0; i < ndoms_new; i++) {
6740 for (j = 0; j < n && !new_topology; j++) {
6741 if (cpumask_equal(doms_new[i], doms_cur[j])
6742 && dattrs_equal(dattr_new, i, dattr_cur, j))
6743 goto match2;
6744 }
6745 /* no match - add a new doms_new */
6746 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6747 match2:
6748 ;
6749 }
6750
6751 /* Remember the new sched domains */
6752 if (doms_cur != &fallback_doms)
6753 free_sched_domains(doms_cur, ndoms_cur);
6754 kfree(dattr_cur); /* kfree(NULL) is safe */
6755 doms_cur = doms_new;
6756 dattr_cur = dattr_new;
6757 ndoms_cur = ndoms_new;
6758
6759 register_sched_domain_sysctl();
6760
6761 mutex_unlock(&sched_domains_mutex);
6762 }
6763
6764 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6765
6766 /*
6767 * Update cpusets according to cpu_active mask. If cpusets are
6768 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6769 * around partition_sched_domains().
6770 *
6771 * If we come here as part of a suspend/resume, don't touch cpusets because we
6772 * want to restore it back to its original state upon resume anyway.
6773 */
6774 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6775 void *hcpu)
6776 {
6777 switch (action) {
6778 case CPU_ONLINE_FROZEN:
6779 case CPU_DOWN_FAILED_FROZEN:
6780
6781 /*
6782 * num_cpus_frozen tracks how many CPUs are involved in suspend
6783 * resume sequence. As long as this is not the last online
6784 * operation in the resume sequence, just build a single sched
6785 * domain, ignoring cpusets.
6786 */
6787 num_cpus_frozen--;
6788 if (likely(num_cpus_frozen)) {
6789 partition_sched_domains(1, NULL, NULL);
6790 break;
6791 }
6792
6793 /*
6794 * This is the last CPU online operation. So fall through and
6795 * restore the original sched domains by considering the
6796 * cpuset configurations.
6797 */
6798
6799 case CPU_ONLINE:
6800 case CPU_DOWN_FAILED:
6801 cpuset_update_active_cpus(true);
6802 break;
6803 default:
6804 return NOTIFY_DONE;
6805 }
6806 return NOTIFY_OK;
6807 }
6808
6809 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6810 void *hcpu)
6811 {
6812 switch (action) {
6813 case CPU_DOWN_PREPARE:
6814 cpuset_update_active_cpus(false);
6815 break;
6816 case CPU_DOWN_PREPARE_FROZEN:
6817 num_cpus_frozen++;
6818 partition_sched_domains(1, NULL, NULL);
6819 break;
6820 default:
6821 return NOTIFY_DONE;
6822 }
6823 return NOTIFY_OK;
6824 }
6825
6826 void __init sched_init_smp(void)
6827 {
6828 cpumask_var_t non_isolated_cpus;
6829
6830 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6831 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6832
6833 sched_init_numa();
6834
6835 /*
6836 * There's no userspace yet to cause hotplug operations; hence all the
6837 * cpu masks are stable and all blatant races in the below code cannot
6838 * happen.
6839 */
6840 mutex_lock(&sched_domains_mutex);
6841 init_sched_domains(cpu_active_mask);
6842 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6843 if (cpumask_empty(non_isolated_cpus))
6844 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6845 mutex_unlock(&sched_domains_mutex);
6846
6847 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6848 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6849 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6850
6851 init_hrtick();
6852
6853 /* Move init over to a non-isolated CPU */
6854 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6855 BUG();
6856 sched_init_granularity();
6857 free_cpumask_var(non_isolated_cpus);
6858
6859 init_sched_rt_class();
6860 init_sched_dl_class();
6861 }
6862 #else
6863 void __init sched_init_smp(void)
6864 {
6865 sched_init_granularity();
6866 }
6867 #endif /* CONFIG_SMP */
6868
6869 const_debug unsigned int sysctl_timer_migration = 1;
6870
6871 int in_sched_functions(unsigned long addr)
6872 {
6873 return in_lock_functions(addr) ||
6874 (addr >= (unsigned long)__sched_text_start
6875 && addr < (unsigned long)__sched_text_end);
6876 }
6877
6878 #ifdef CONFIG_CGROUP_SCHED
6879 /*
6880 * Default task group.
6881 * Every task in system belongs to this group at bootup.
6882 */
6883 struct task_group root_task_group;
6884 LIST_HEAD(task_groups);
6885 #endif
6886
6887 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6888
6889 void __init sched_init(void)
6890 {
6891 int i, j;
6892 unsigned long alloc_size = 0, ptr;
6893
6894 #ifdef CONFIG_FAIR_GROUP_SCHED
6895 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6896 #endif
6897 #ifdef CONFIG_RT_GROUP_SCHED
6898 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6899 #endif
6900 #ifdef CONFIG_CPUMASK_OFFSTACK
6901 alloc_size += num_possible_cpus() * cpumask_size();
6902 #endif
6903 if (alloc_size) {
6904 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6905
6906 #ifdef CONFIG_FAIR_GROUP_SCHED
6907 root_task_group.se = (struct sched_entity **)ptr;
6908 ptr += nr_cpu_ids * sizeof(void **);
6909
6910 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6911 ptr += nr_cpu_ids * sizeof(void **);
6912
6913 #endif /* CONFIG_FAIR_GROUP_SCHED */
6914 #ifdef CONFIG_RT_GROUP_SCHED
6915 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6916 ptr += nr_cpu_ids * sizeof(void **);
6917
6918 root_task_group.rt_rq = (struct rt_rq **)ptr;
6919 ptr += nr_cpu_ids * sizeof(void **);
6920
6921 #endif /* CONFIG_RT_GROUP_SCHED */
6922 #ifdef CONFIG_CPUMASK_OFFSTACK
6923 for_each_possible_cpu(i) {
6924 per_cpu(load_balance_mask, i) = (void *)ptr;
6925 ptr += cpumask_size();
6926 }
6927 #endif /* CONFIG_CPUMASK_OFFSTACK */
6928 }
6929
6930 init_rt_bandwidth(&def_rt_bandwidth,
6931 global_rt_period(), global_rt_runtime());
6932 init_dl_bandwidth(&def_dl_bandwidth,
6933 global_rt_period(), global_rt_runtime());
6934
6935 #ifdef CONFIG_SMP
6936 init_defrootdomain();
6937 #endif
6938
6939 #ifdef CONFIG_RT_GROUP_SCHED
6940 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6941 global_rt_period(), global_rt_runtime());
6942 #endif /* CONFIG_RT_GROUP_SCHED */
6943
6944 #ifdef CONFIG_CGROUP_SCHED
6945 list_add(&root_task_group.list, &task_groups);
6946 INIT_LIST_HEAD(&root_task_group.children);
6947 INIT_LIST_HEAD(&root_task_group.siblings);
6948 autogroup_init(&init_task);
6949
6950 #endif /* CONFIG_CGROUP_SCHED */
6951
6952 for_each_possible_cpu(i) {
6953 struct rq *rq;
6954
6955 rq = cpu_rq(i);
6956 raw_spin_lock_init(&rq->lock);
6957 rq->nr_running = 0;
6958 rq->calc_load_active = 0;
6959 rq->calc_load_update = jiffies + LOAD_FREQ;
6960 init_cfs_rq(&rq->cfs);
6961 init_rt_rq(&rq->rt, rq);
6962 init_dl_rq(&rq->dl, rq);
6963 #ifdef CONFIG_FAIR_GROUP_SCHED
6964 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6965 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6966 /*
6967 * How much cpu bandwidth does root_task_group get?
6968 *
6969 * In case of task-groups formed thr' the cgroup filesystem, it
6970 * gets 100% of the cpu resources in the system. This overall
6971 * system cpu resource is divided among the tasks of
6972 * root_task_group and its child task-groups in a fair manner,
6973 * based on each entity's (task or task-group's) weight
6974 * (se->load.weight).
6975 *
6976 * In other words, if root_task_group has 10 tasks of weight
6977 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6978 * then A0's share of the cpu resource is:
6979 *
6980 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6981 *
6982 * We achieve this by letting root_task_group's tasks sit
6983 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6984 */
6985 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6986 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6987 #endif /* CONFIG_FAIR_GROUP_SCHED */
6988
6989 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6990 #ifdef CONFIG_RT_GROUP_SCHED
6991 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6992 #endif
6993
6994 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6995 rq->cpu_load[j] = 0;
6996
6997 rq->last_load_update_tick = jiffies;
6998
6999 #ifdef CONFIG_SMP
7000 rq->sd = NULL;
7001 rq->rd = NULL;
7002 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7003 rq->post_schedule = 0;
7004 rq->active_balance = 0;
7005 rq->next_balance = jiffies;
7006 rq->push_cpu = 0;
7007 rq->cpu = i;
7008 rq->online = 0;
7009 rq->idle_stamp = 0;
7010 rq->avg_idle = 2*sysctl_sched_migration_cost;
7011 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7012
7013 INIT_LIST_HEAD(&rq->cfs_tasks);
7014
7015 rq_attach_root(rq, &def_root_domain);
7016 #ifdef CONFIG_NO_HZ_COMMON
7017 rq->nohz_flags = 0;
7018 #endif
7019 #ifdef CONFIG_NO_HZ_FULL
7020 rq->last_sched_tick = 0;
7021 #endif
7022 #endif
7023 init_rq_hrtick(rq);
7024 atomic_set(&rq->nr_iowait, 0);
7025 }
7026
7027 set_load_weight(&init_task);
7028
7029 #ifdef CONFIG_PREEMPT_NOTIFIERS
7030 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7031 #endif
7032
7033 /*
7034 * The boot idle thread does lazy MMU switching as well:
7035 */
7036 atomic_inc(&init_mm.mm_count);
7037 enter_lazy_tlb(&init_mm, current);
7038
7039 /*
7040 * Make us the idle thread. Technically, schedule() should not be
7041 * called from this thread, however somewhere below it might be,
7042 * but because we are the idle thread, we just pick up running again
7043 * when this runqueue becomes "idle".
7044 */
7045 init_idle(current, smp_processor_id());
7046
7047 calc_load_update = jiffies + LOAD_FREQ;
7048
7049 /*
7050 * During early bootup we pretend to be a normal task:
7051 */
7052 current->sched_class = &fair_sched_class;
7053
7054 #ifdef CONFIG_SMP
7055 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7056 /* May be allocated at isolcpus cmdline parse time */
7057 if (cpu_isolated_map == NULL)
7058 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7059 idle_thread_set_boot_cpu();
7060 set_cpu_rq_start_time();
7061 #endif
7062 init_sched_fair_class();
7063
7064 scheduler_running = 1;
7065 }
7066
7067 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7068 static inline int preempt_count_equals(int preempt_offset)
7069 {
7070 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7071
7072 return (nested == preempt_offset);
7073 }
7074
7075 void __might_sleep(const char *file, int line, int preempt_offset)
7076 {
7077 static unsigned long prev_jiffy; /* ratelimiting */
7078
7079 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7080 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7081 !is_idle_task(current)) ||
7082 system_state != SYSTEM_RUNNING || oops_in_progress)
7083 return;
7084 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7085 return;
7086 prev_jiffy = jiffies;
7087
7088 printk(KERN_ERR
7089 "BUG: sleeping function called from invalid context at %s:%d\n",
7090 file, line);
7091 printk(KERN_ERR
7092 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7093 in_atomic(), irqs_disabled(),
7094 current->pid, current->comm);
7095
7096 debug_show_held_locks(current);
7097 if (irqs_disabled())
7098 print_irqtrace_events(current);
7099 #ifdef CONFIG_DEBUG_PREEMPT
7100 if (!preempt_count_equals(preempt_offset)) {
7101 pr_err("Preemption disabled at:");
7102 print_ip_sym(current->preempt_disable_ip);
7103 pr_cont("\n");
7104 }
7105 #endif
7106 dump_stack();
7107 }
7108 EXPORT_SYMBOL(__might_sleep);
7109 #endif
7110
7111 #ifdef CONFIG_MAGIC_SYSRQ
7112 static void normalize_task(struct rq *rq, struct task_struct *p)
7113 {
7114 const struct sched_class *prev_class = p->sched_class;
7115 struct sched_attr attr = {
7116 .sched_policy = SCHED_NORMAL,
7117 };
7118 int old_prio = p->prio;
7119 int on_rq;
7120
7121 on_rq = p->on_rq;
7122 if (on_rq)
7123 dequeue_task(rq, p, 0);
7124 __setscheduler(rq, p, &attr);
7125 if (on_rq) {
7126 enqueue_task(rq, p, 0);
7127 resched_curr(rq);
7128 }
7129
7130 check_class_changed(rq, p, prev_class, old_prio);
7131 }
7132
7133 void normalize_rt_tasks(void)
7134 {
7135 struct task_struct *g, *p;
7136 unsigned long flags;
7137 struct rq *rq;
7138
7139 read_lock_irqsave(&tasklist_lock, flags);
7140 for_each_process_thread(g, p) {
7141 /*
7142 * Only normalize user tasks:
7143 */
7144 if (!p->mm)
7145 continue;
7146
7147 p->se.exec_start = 0;
7148 #ifdef CONFIG_SCHEDSTATS
7149 p->se.statistics.wait_start = 0;
7150 p->se.statistics.sleep_start = 0;
7151 p->se.statistics.block_start = 0;
7152 #endif
7153
7154 if (!dl_task(p) && !rt_task(p)) {
7155 /*
7156 * Renice negative nice level userspace
7157 * tasks back to 0:
7158 */
7159 if (task_nice(p) < 0 && p->mm)
7160 set_user_nice(p, 0);
7161 continue;
7162 }
7163
7164 raw_spin_lock(&p->pi_lock);
7165 rq = __task_rq_lock(p);
7166
7167 normalize_task(rq, p);
7168
7169 __task_rq_unlock(rq);
7170 raw_spin_unlock(&p->pi_lock);
7171 }
7172 read_unlock_irqrestore(&tasklist_lock, flags);
7173 }
7174
7175 #endif /* CONFIG_MAGIC_SYSRQ */
7176
7177 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7178 /*
7179 * These functions are only useful for the IA64 MCA handling, or kdb.
7180 *
7181 * They can only be called when the whole system has been
7182 * stopped - every CPU needs to be quiescent, and no scheduling
7183 * activity can take place. Using them for anything else would
7184 * be a serious bug, and as a result, they aren't even visible
7185 * under any other configuration.
7186 */
7187
7188 /**
7189 * curr_task - return the current task for a given cpu.
7190 * @cpu: the processor in question.
7191 *
7192 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7193 *
7194 * Return: The current task for @cpu.
7195 */
7196 struct task_struct *curr_task(int cpu)
7197 {
7198 return cpu_curr(cpu);
7199 }
7200
7201 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7202
7203 #ifdef CONFIG_IA64
7204 /**
7205 * set_curr_task - set the current task for a given cpu.
7206 * @cpu: the processor in question.
7207 * @p: the task pointer to set.
7208 *
7209 * Description: This function must only be used when non-maskable interrupts
7210 * are serviced on a separate stack. It allows the architecture to switch the
7211 * notion of the current task on a cpu in a non-blocking manner. This function
7212 * must be called with all CPU's synchronized, and interrupts disabled, the
7213 * and caller must save the original value of the current task (see
7214 * curr_task() above) and restore that value before reenabling interrupts and
7215 * re-starting the system.
7216 *
7217 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7218 */
7219 void set_curr_task(int cpu, struct task_struct *p)
7220 {
7221 cpu_curr(cpu) = p;
7222 }
7223
7224 #endif
7225
7226 #ifdef CONFIG_CGROUP_SCHED
7227 /* task_group_lock serializes the addition/removal of task groups */
7228 static DEFINE_SPINLOCK(task_group_lock);
7229
7230 static void free_sched_group(struct task_group *tg)
7231 {
7232 free_fair_sched_group(tg);
7233 free_rt_sched_group(tg);
7234 autogroup_free(tg);
7235 kfree(tg);
7236 }
7237
7238 /* allocate runqueue etc for a new task group */
7239 struct task_group *sched_create_group(struct task_group *parent)
7240 {
7241 struct task_group *tg;
7242
7243 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7244 if (!tg)
7245 return ERR_PTR(-ENOMEM);
7246
7247 if (!alloc_fair_sched_group(tg, parent))
7248 goto err;
7249
7250 if (!alloc_rt_sched_group(tg, parent))
7251 goto err;
7252
7253 return tg;
7254
7255 err:
7256 free_sched_group(tg);
7257 return ERR_PTR(-ENOMEM);
7258 }
7259
7260 void sched_online_group(struct task_group *tg, struct task_group *parent)
7261 {
7262 unsigned long flags;
7263
7264 spin_lock_irqsave(&task_group_lock, flags);
7265 list_add_rcu(&tg->list, &task_groups);
7266
7267 WARN_ON(!parent); /* root should already exist */
7268
7269 tg->parent = parent;
7270 INIT_LIST_HEAD(&tg->children);
7271 list_add_rcu(&tg->siblings, &parent->children);
7272 spin_unlock_irqrestore(&task_group_lock, flags);
7273 }
7274
7275 /* rcu callback to free various structures associated with a task group */
7276 static void free_sched_group_rcu(struct rcu_head *rhp)
7277 {
7278 /* now it should be safe to free those cfs_rqs */
7279 free_sched_group(container_of(rhp, struct task_group, rcu));
7280 }
7281
7282 /* Destroy runqueue etc associated with a task group */
7283 void sched_destroy_group(struct task_group *tg)
7284 {
7285 /* wait for possible concurrent references to cfs_rqs complete */
7286 call_rcu(&tg->rcu, free_sched_group_rcu);
7287 }
7288
7289 void sched_offline_group(struct task_group *tg)
7290 {
7291 unsigned long flags;
7292 int i;
7293
7294 /* end participation in shares distribution */
7295 for_each_possible_cpu(i)
7296 unregister_fair_sched_group(tg, i);
7297
7298 spin_lock_irqsave(&task_group_lock, flags);
7299 list_del_rcu(&tg->list);
7300 list_del_rcu(&tg->siblings);
7301 spin_unlock_irqrestore(&task_group_lock, flags);
7302 }
7303
7304 /* change task's runqueue when it moves between groups.
7305 * The caller of this function should have put the task in its new group
7306 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7307 * reflect its new group.
7308 */
7309 void sched_move_task(struct task_struct *tsk)
7310 {
7311 struct task_group *tg;
7312 int on_rq, running;
7313 unsigned long flags;
7314 struct rq *rq;
7315
7316 rq = task_rq_lock(tsk, &flags);
7317
7318 running = task_current(rq, tsk);
7319 on_rq = tsk->on_rq;
7320
7321 if (on_rq)
7322 dequeue_task(rq, tsk, 0);
7323 if (unlikely(running))
7324 tsk->sched_class->put_prev_task(rq, tsk);
7325
7326 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7327 lockdep_is_held(&tsk->sighand->siglock)),
7328 struct task_group, css);
7329 tg = autogroup_task_group(tsk, tg);
7330 tsk->sched_task_group = tg;
7331
7332 #ifdef CONFIG_FAIR_GROUP_SCHED
7333 if (tsk->sched_class->task_move_group)
7334 tsk->sched_class->task_move_group(tsk, on_rq);
7335 else
7336 #endif
7337 set_task_rq(tsk, task_cpu(tsk));
7338
7339 if (unlikely(running))
7340 tsk->sched_class->set_curr_task(rq);
7341 if (on_rq)
7342 enqueue_task(rq, tsk, 0);
7343
7344 task_rq_unlock(rq, tsk, &flags);
7345 }
7346 #endif /* CONFIG_CGROUP_SCHED */
7347
7348 #ifdef CONFIG_RT_GROUP_SCHED
7349 /*
7350 * Ensure that the real time constraints are schedulable.
7351 */
7352 static DEFINE_MUTEX(rt_constraints_mutex);
7353
7354 /* Must be called with tasklist_lock held */
7355 static inline int tg_has_rt_tasks(struct task_group *tg)
7356 {
7357 struct task_struct *g, *p;
7358
7359 for_each_process_thread(g, p) {
7360 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7361 return 1;
7362 }
7363
7364 return 0;
7365 }
7366
7367 struct rt_schedulable_data {
7368 struct task_group *tg;
7369 u64 rt_period;
7370 u64 rt_runtime;
7371 };
7372
7373 static int tg_rt_schedulable(struct task_group *tg, void *data)
7374 {
7375 struct rt_schedulable_data *d = data;
7376 struct task_group *child;
7377 unsigned long total, sum = 0;
7378 u64 period, runtime;
7379
7380 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7381 runtime = tg->rt_bandwidth.rt_runtime;
7382
7383 if (tg == d->tg) {
7384 period = d->rt_period;
7385 runtime = d->rt_runtime;
7386 }
7387
7388 /*
7389 * Cannot have more runtime than the period.
7390 */
7391 if (runtime > period && runtime != RUNTIME_INF)
7392 return -EINVAL;
7393
7394 /*
7395 * Ensure we don't starve existing RT tasks.
7396 */
7397 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7398 return -EBUSY;
7399
7400 total = to_ratio(period, runtime);
7401
7402 /*
7403 * Nobody can have more than the global setting allows.
7404 */
7405 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7406 return -EINVAL;
7407
7408 /*
7409 * The sum of our children's runtime should not exceed our own.
7410 */
7411 list_for_each_entry_rcu(child, &tg->children, siblings) {
7412 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7413 runtime = child->rt_bandwidth.rt_runtime;
7414
7415 if (child == d->tg) {
7416 period = d->rt_period;
7417 runtime = d->rt_runtime;
7418 }
7419
7420 sum += to_ratio(period, runtime);
7421 }
7422
7423 if (sum > total)
7424 return -EINVAL;
7425
7426 return 0;
7427 }
7428
7429 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7430 {
7431 int ret;
7432
7433 struct rt_schedulable_data data = {
7434 .tg = tg,
7435 .rt_period = period,
7436 .rt_runtime = runtime,
7437 };
7438
7439 rcu_read_lock();
7440 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7441 rcu_read_unlock();
7442
7443 return ret;
7444 }
7445
7446 static int tg_set_rt_bandwidth(struct task_group *tg,
7447 u64 rt_period, u64 rt_runtime)
7448 {
7449 int i, err = 0;
7450
7451 mutex_lock(&rt_constraints_mutex);
7452 read_lock(&tasklist_lock);
7453 err = __rt_schedulable(tg, rt_period, rt_runtime);
7454 if (err)
7455 goto unlock;
7456
7457 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7458 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7459 tg->rt_bandwidth.rt_runtime = rt_runtime;
7460
7461 for_each_possible_cpu(i) {
7462 struct rt_rq *rt_rq = tg->rt_rq[i];
7463
7464 raw_spin_lock(&rt_rq->rt_runtime_lock);
7465 rt_rq->rt_runtime = rt_runtime;
7466 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7467 }
7468 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7469 unlock:
7470 read_unlock(&tasklist_lock);
7471 mutex_unlock(&rt_constraints_mutex);
7472
7473 return err;
7474 }
7475
7476 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7477 {
7478 u64 rt_runtime, rt_period;
7479
7480 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7481 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7482 if (rt_runtime_us < 0)
7483 rt_runtime = RUNTIME_INF;
7484
7485 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7486 }
7487
7488 static long sched_group_rt_runtime(struct task_group *tg)
7489 {
7490 u64 rt_runtime_us;
7491
7492 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7493 return -1;
7494
7495 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7496 do_div(rt_runtime_us, NSEC_PER_USEC);
7497 return rt_runtime_us;
7498 }
7499
7500 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7501 {
7502 u64 rt_runtime, rt_period;
7503
7504 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7505 rt_runtime = tg->rt_bandwidth.rt_runtime;
7506
7507 if (rt_period == 0)
7508 return -EINVAL;
7509
7510 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7511 }
7512
7513 static long sched_group_rt_period(struct task_group *tg)
7514 {
7515 u64 rt_period_us;
7516
7517 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7518 do_div(rt_period_us, NSEC_PER_USEC);
7519 return rt_period_us;
7520 }
7521 #endif /* CONFIG_RT_GROUP_SCHED */
7522
7523 #ifdef CONFIG_RT_GROUP_SCHED
7524 static int sched_rt_global_constraints(void)
7525 {
7526 int ret = 0;
7527
7528 mutex_lock(&rt_constraints_mutex);
7529 read_lock(&tasklist_lock);
7530 ret = __rt_schedulable(NULL, 0, 0);
7531 read_unlock(&tasklist_lock);
7532 mutex_unlock(&rt_constraints_mutex);
7533
7534 return ret;
7535 }
7536
7537 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7538 {
7539 /* Don't accept realtime tasks when there is no way for them to run */
7540 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7541 return 0;
7542
7543 return 1;
7544 }
7545
7546 #else /* !CONFIG_RT_GROUP_SCHED */
7547 static int sched_rt_global_constraints(void)
7548 {
7549 unsigned long flags;
7550 int i, ret = 0;
7551
7552 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7553 for_each_possible_cpu(i) {
7554 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7555
7556 raw_spin_lock(&rt_rq->rt_runtime_lock);
7557 rt_rq->rt_runtime = global_rt_runtime();
7558 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7559 }
7560 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7561
7562 return ret;
7563 }
7564 #endif /* CONFIG_RT_GROUP_SCHED */
7565
7566 static int sched_dl_global_constraints(void)
7567 {
7568 u64 runtime = global_rt_runtime();
7569 u64 period = global_rt_period();
7570 u64 new_bw = to_ratio(period, runtime);
7571 int cpu, ret = 0;
7572 unsigned long flags;
7573
7574 /*
7575 * Here we want to check the bandwidth not being set to some
7576 * value smaller than the currently allocated bandwidth in
7577 * any of the root_domains.
7578 *
7579 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7580 * cycling on root_domains... Discussion on different/better
7581 * solutions is welcome!
7582 */
7583 for_each_possible_cpu(cpu) {
7584 struct dl_bw *dl_b = dl_bw_of(cpu);
7585
7586 raw_spin_lock_irqsave(&dl_b->lock, flags);
7587 if (new_bw < dl_b->total_bw)
7588 ret = -EBUSY;
7589 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7590
7591 if (ret)
7592 break;
7593 }
7594
7595 return ret;
7596 }
7597
7598 static void sched_dl_do_global(void)
7599 {
7600 u64 new_bw = -1;
7601 int cpu;
7602 unsigned long flags;
7603
7604 def_dl_bandwidth.dl_period = global_rt_period();
7605 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7606
7607 if (global_rt_runtime() != RUNTIME_INF)
7608 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7609
7610 /*
7611 * FIXME: As above...
7612 */
7613 for_each_possible_cpu(cpu) {
7614 struct dl_bw *dl_b = dl_bw_of(cpu);
7615
7616 raw_spin_lock_irqsave(&dl_b->lock, flags);
7617 dl_b->bw = new_bw;
7618 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7619 }
7620 }
7621
7622 static int sched_rt_global_validate(void)
7623 {
7624 if (sysctl_sched_rt_period <= 0)
7625 return -EINVAL;
7626
7627 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7628 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7629 return -EINVAL;
7630
7631 return 0;
7632 }
7633
7634 static void sched_rt_do_global(void)
7635 {
7636 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7637 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7638 }
7639
7640 int sched_rt_handler(struct ctl_table *table, int write,
7641 void __user *buffer, size_t *lenp,
7642 loff_t *ppos)
7643 {
7644 int old_period, old_runtime;
7645 static DEFINE_MUTEX(mutex);
7646 int ret;
7647
7648 mutex_lock(&mutex);
7649 old_period = sysctl_sched_rt_period;
7650 old_runtime = sysctl_sched_rt_runtime;
7651
7652 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7653
7654 if (!ret && write) {
7655 ret = sched_rt_global_validate();
7656 if (ret)
7657 goto undo;
7658
7659 ret = sched_rt_global_constraints();
7660 if (ret)
7661 goto undo;
7662
7663 ret = sched_dl_global_constraints();
7664 if (ret)
7665 goto undo;
7666
7667 sched_rt_do_global();
7668 sched_dl_do_global();
7669 }
7670 if (0) {
7671 undo:
7672 sysctl_sched_rt_period = old_period;
7673 sysctl_sched_rt_runtime = old_runtime;
7674 }
7675 mutex_unlock(&mutex);
7676
7677 return ret;
7678 }
7679
7680 int sched_rr_handler(struct ctl_table *table, int write,
7681 void __user *buffer, size_t *lenp,
7682 loff_t *ppos)
7683 {
7684 int ret;
7685 static DEFINE_MUTEX(mutex);
7686
7687 mutex_lock(&mutex);
7688 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7689 /* make sure that internally we keep jiffies */
7690 /* also, writing zero resets timeslice to default */
7691 if (!ret && write) {
7692 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7693 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7694 }
7695 mutex_unlock(&mutex);
7696 return ret;
7697 }
7698
7699 #ifdef CONFIG_CGROUP_SCHED
7700
7701 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7702 {
7703 return css ? container_of(css, struct task_group, css) : NULL;
7704 }
7705
7706 static struct cgroup_subsys_state *
7707 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7708 {
7709 struct task_group *parent = css_tg(parent_css);
7710 struct task_group *tg;
7711
7712 if (!parent) {
7713 /* This is early initialization for the top cgroup */
7714 return &root_task_group.css;
7715 }
7716
7717 tg = sched_create_group(parent);
7718 if (IS_ERR(tg))
7719 return ERR_PTR(-ENOMEM);
7720
7721 return &tg->css;
7722 }
7723
7724 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7725 {
7726 struct task_group *tg = css_tg(css);
7727 struct task_group *parent = css_tg(css->parent);
7728
7729 if (parent)
7730 sched_online_group(tg, parent);
7731 return 0;
7732 }
7733
7734 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7735 {
7736 struct task_group *tg = css_tg(css);
7737
7738 sched_destroy_group(tg);
7739 }
7740
7741 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7742 {
7743 struct task_group *tg = css_tg(css);
7744
7745 sched_offline_group(tg);
7746 }
7747
7748 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7749 struct cgroup_taskset *tset)
7750 {
7751 struct task_struct *task;
7752
7753 cgroup_taskset_for_each(task, tset) {
7754 #ifdef CONFIG_RT_GROUP_SCHED
7755 if (!sched_rt_can_attach(css_tg(css), task))
7756 return -EINVAL;
7757 #else
7758 /* We don't support RT-tasks being in separate groups */
7759 if (task->sched_class != &fair_sched_class)
7760 return -EINVAL;
7761 #endif
7762 }
7763 return 0;
7764 }
7765
7766 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7767 struct cgroup_taskset *tset)
7768 {
7769 struct task_struct *task;
7770
7771 cgroup_taskset_for_each(task, tset)
7772 sched_move_task(task);
7773 }
7774
7775 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7776 struct cgroup_subsys_state *old_css,
7777 struct task_struct *task)
7778 {
7779 /*
7780 * cgroup_exit() is called in the copy_process() failure path.
7781 * Ignore this case since the task hasn't ran yet, this avoids
7782 * trying to poke a half freed task state from generic code.
7783 */
7784 if (!(task->flags & PF_EXITING))
7785 return;
7786
7787 sched_move_task(task);
7788 }
7789
7790 #ifdef CONFIG_FAIR_GROUP_SCHED
7791 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7792 struct cftype *cftype, u64 shareval)
7793 {
7794 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7795 }
7796
7797 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7798 struct cftype *cft)
7799 {
7800 struct task_group *tg = css_tg(css);
7801
7802 return (u64) scale_load_down(tg->shares);
7803 }
7804
7805 #ifdef CONFIG_CFS_BANDWIDTH
7806 static DEFINE_MUTEX(cfs_constraints_mutex);
7807
7808 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7809 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7810
7811 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7812
7813 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7814 {
7815 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7816 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7817
7818 if (tg == &root_task_group)
7819 return -EINVAL;
7820
7821 /*
7822 * Ensure we have at some amount of bandwidth every period. This is
7823 * to prevent reaching a state of large arrears when throttled via
7824 * entity_tick() resulting in prolonged exit starvation.
7825 */
7826 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7827 return -EINVAL;
7828
7829 /*
7830 * Likewise, bound things on the otherside by preventing insane quota
7831 * periods. This also allows us to normalize in computing quota
7832 * feasibility.
7833 */
7834 if (period > max_cfs_quota_period)
7835 return -EINVAL;
7836
7837 /*
7838 * Prevent race between setting of cfs_rq->runtime_enabled and
7839 * unthrottle_offline_cfs_rqs().
7840 */
7841 get_online_cpus();
7842 mutex_lock(&cfs_constraints_mutex);
7843 ret = __cfs_schedulable(tg, period, quota);
7844 if (ret)
7845 goto out_unlock;
7846
7847 runtime_enabled = quota != RUNTIME_INF;
7848 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7849 /*
7850 * If we need to toggle cfs_bandwidth_used, off->on must occur
7851 * before making related changes, and on->off must occur afterwards
7852 */
7853 if (runtime_enabled && !runtime_was_enabled)
7854 cfs_bandwidth_usage_inc();
7855 raw_spin_lock_irq(&cfs_b->lock);
7856 cfs_b->period = ns_to_ktime(period);
7857 cfs_b->quota = quota;
7858
7859 __refill_cfs_bandwidth_runtime(cfs_b);
7860 /* restart the period timer (if active) to handle new period expiry */
7861 if (runtime_enabled && cfs_b->timer_active) {
7862 /* force a reprogram */
7863 __start_cfs_bandwidth(cfs_b, true);
7864 }
7865 raw_spin_unlock_irq(&cfs_b->lock);
7866
7867 for_each_online_cpu(i) {
7868 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7869 struct rq *rq = cfs_rq->rq;
7870
7871 raw_spin_lock_irq(&rq->lock);
7872 cfs_rq->runtime_enabled = runtime_enabled;
7873 cfs_rq->runtime_remaining = 0;
7874
7875 if (cfs_rq->throttled)
7876 unthrottle_cfs_rq(cfs_rq);
7877 raw_spin_unlock_irq(&rq->lock);
7878 }
7879 if (runtime_was_enabled && !runtime_enabled)
7880 cfs_bandwidth_usage_dec();
7881 out_unlock:
7882 mutex_unlock(&cfs_constraints_mutex);
7883 put_online_cpus();
7884
7885 return ret;
7886 }
7887
7888 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7889 {
7890 u64 quota, period;
7891
7892 period = ktime_to_ns(tg->cfs_bandwidth.period);
7893 if (cfs_quota_us < 0)
7894 quota = RUNTIME_INF;
7895 else
7896 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7897
7898 return tg_set_cfs_bandwidth(tg, period, quota);
7899 }
7900
7901 long tg_get_cfs_quota(struct task_group *tg)
7902 {
7903 u64 quota_us;
7904
7905 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7906 return -1;
7907
7908 quota_us = tg->cfs_bandwidth.quota;
7909 do_div(quota_us, NSEC_PER_USEC);
7910
7911 return quota_us;
7912 }
7913
7914 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7915 {
7916 u64 quota, period;
7917
7918 period = (u64)cfs_period_us * NSEC_PER_USEC;
7919 quota = tg->cfs_bandwidth.quota;
7920
7921 return tg_set_cfs_bandwidth(tg, period, quota);
7922 }
7923
7924 long tg_get_cfs_period(struct task_group *tg)
7925 {
7926 u64 cfs_period_us;
7927
7928 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7929 do_div(cfs_period_us, NSEC_PER_USEC);
7930
7931 return cfs_period_us;
7932 }
7933
7934 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7935 struct cftype *cft)
7936 {
7937 return tg_get_cfs_quota(css_tg(css));
7938 }
7939
7940 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7941 struct cftype *cftype, s64 cfs_quota_us)
7942 {
7943 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7944 }
7945
7946 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7947 struct cftype *cft)
7948 {
7949 return tg_get_cfs_period(css_tg(css));
7950 }
7951
7952 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7953 struct cftype *cftype, u64 cfs_period_us)
7954 {
7955 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7956 }
7957
7958 struct cfs_schedulable_data {
7959 struct task_group *tg;
7960 u64 period, quota;
7961 };
7962
7963 /*
7964 * normalize group quota/period to be quota/max_period
7965 * note: units are usecs
7966 */
7967 static u64 normalize_cfs_quota(struct task_group *tg,
7968 struct cfs_schedulable_data *d)
7969 {
7970 u64 quota, period;
7971
7972 if (tg == d->tg) {
7973 period = d->period;
7974 quota = d->quota;
7975 } else {
7976 period = tg_get_cfs_period(tg);
7977 quota = tg_get_cfs_quota(tg);
7978 }
7979
7980 /* note: these should typically be equivalent */
7981 if (quota == RUNTIME_INF || quota == -1)
7982 return RUNTIME_INF;
7983
7984 return to_ratio(period, quota);
7985 }
7986
7987 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7988 {
7989 struct cfs_schedulable_data *d = data;
7990 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7991 s64 quota = 0, parent_quota = -1;
7992
7993 if (!tg->parent) {
7994 quota = RUNTIME_INF;
7995 } else {
7996 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7997
7998 quota = normalize_cfs_quota(tg, d);
7999 parent_quota = parent_b->hierarchal_quota;
8000
8001 /*
8002 * ensure max(child_quota) <= parent_quota, inherit when no
8003 * limit is set
8004 */
8005 if (quota == RUNTIME_INF)
8006 quota = parent_quota;
8007 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8008 return -EINVAL;
8009 }
8010 cfs_b->hierarchal_quota = quota;
8011
8012 return 0;
8013 }
8014
8015 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8016 {
8017 int ret;
8018 struct cfs_schedulable_data data = {
8019 .tg = tg,
8020 .period = period,
8021 .quota = quota,
8022 };
8023
8024 if (quota != RUNTIME_INF) {
8025 do_div(data.period, NSEC_PER_USEC);
8026 do_div(data.quota, NSEC_PER_USEC);
8027 }
8028
8029 rcu_read_lock();
8030 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8031 rcu_read_unlock();
8032
8033 return ret;
8034 }
8035
8036 static int cpu_stats_show(struct seq_file *sf, void *v)
8037 {
8038 struct task_group *tg = css_tg(seq_css(sf));
8039 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8040
8041 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8042 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8043 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8044
8045 return 0;
8046 }
8047 #endif /* CONFIG_CFS_BANDWIDTH */
8048 #endif /* CONFIG_FAIR_GROUP_SCHED */
8049
8050 #ifdef CONFIG_RT_GROUP_SCHED
8051 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8052 struct cftype *cft, s64 val)
8053 {
8054 return sched_group_set_rt_runtime(css_tg(css), val);
8055 }
8056
8057 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8058 struct cftype *cft)
8059 {
8060 return sched_group_rt_runtime(css_tg(css));
8061 }
8062
8063 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8064 struct cftype *cftype, u64 rt_period_us)
8065 {
8066 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8067 }
8068
8069 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8070 struct cftype *cft)
8071 {
8072 return sched_group_rt_period(css_tg(css));
8073 }
8074 #endif /* CONFIG_RT_GROUP_SCHED */
8075
8076 static struct cftype cpu_files[] = {
8077 #ifdef CONFIG_FAIR_GROUP_SCHED
8078 {
8079 .name = "shares",
8080 .read_u64 = cpu_shares_read_u64,
8081 .write_u64 = cpu_shares_write_u64,
8082 },
8083 #endif
8084 #ifdef CONFIG_CFS_BANDWIDTH
8085 {
8086 .name = "cfs_quota_us",
8087 .read_s64 = cpu_cfs_quota_read_s64,
8088 .write_s64 = cpu_cfs_quota_write_s64,
8089 },
8090 {
8091 .name = "cfs_period_us",
8092 .read_u64 = cpu_cfs_period_read_u64,
8093 .write_u64 = cpu_cfs_period_write_u64,
8094 },
8095 {
8096 .name = "stat",
8097 .seq_show = cpu_stats_show,
8098 },
8099 #endif
8100 #ifdef CONFIG_RT_GROUP_SCHED
8101 {
8102 .name = "rt_runtime_us",
8103 .read_s64 = cpu_rt_runtime_read,
8104 .write_s64 = cpu_rt_runtime_write,
8105 },
8106 {
8107 .name = "rt_period_us",
8108 .read_u64 = cpu_rt_period_read_uint,
8109 .write_u64 = cpu_rt_period_write_uint,
8110 },
8111 #endif
8112 { } /* terminate */
8113 };
8114
8115 struct cgroup_subsys cpu_cgrp_subsys = {
8116 .css_alloc = cpu_cgroup_css_alloc,
8117 .css_free = cpu_cgroup_css_free,
8118 .css_online = cpu_cgroup_css_online,
8119 .css_offline = cpu_cgroup_css_offline,
8120 .can_attach = cpu_cgroup_can_attach,
8121 .attach = cpu_cgroup_attach,
8122 .exit = cpu_cgroup_exit,
8123 .legacy_cftypes = cpu_files,
8124 .early_init = 1,
8125 };
8126
8127 #endif /* CONFIG_CGROUP_SCHED */
8128
8129 void dump_cpu_task(int cpu)
8130 {
8131 pr_info("Task dump for CPU %d:\n", cpu);
8132 sched_show_task(cpu_curr(cpu));
8133 }
This page took 0.186815 seconds and 6 git commands to generate.