sched/fair: Fix reschedule which is generated on throttled cfs_rq
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
febdbfe8
PZ
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96 smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104 smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
029632fb 109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 110{
58088ad0
PT
111 unsigned long delta;
112 ktime_t soft, hard, now;
d0b27fa7 113
58088ad0
PT
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
117
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
d0b27fa7 120
58088ad0
PT
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
126 }
127}
128
029632fb
PZ
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 131
fe44d621 132static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 133
029632fb 134void update_rq_clock(struct rq *rq)
3e51f33f 135{
fe44d621 136 s64 delta;
305e6835 137
61eadef6 138 if (rq->skip_clock_update > 0)
f26f9aff 139 return;
aa483808 140
fe44d621 141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
142 if (delta < 0)
143 return;
fe44d621
PZ
144 rq->clock += delta;
145 update_rq_clock_task(rq, delta);
3e51f33f
PZ
146}
147
bf5c91ba
IM
148/*
149 * Debugging: various feature bits
150 */
f00b45c1 151
f00b45c1
PZ
152#define SCHED_FEAT(name, enabled) \
153 (1UL << __SCHED_FEAT_##name) * enabled |
154
bf5c91ba 155const_debug unsigned int sysctl_sched_features =
391e43da 156#include "features.h"
f00b45c1
PZ
157 0;
158
159#undef SCHED_FEAT
160
161#ifdef CONFIG_SCHED_DEBUG
162#define SCHED_FEAT(name, enabled) \
163 #name ,
164
1292531f 165static const char * const sched_feat_names[] = {
391e43da 166#include "features.h"
f00b45c1
PZ
167};
168
169#undef SCHED_FEAT
170
34f3a814 171static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 172{
f00b45c1
PZ
173 int i;
174
f8b6d1cc 175 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
176 if (!(sysctl_sched_features & (1UL << i)))
177 seq_puts(m, "NO_");
178 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 179 }
34f3a814 180 seq_puts(m, "\n");
f00b45c1 181
34f3a814 182 return 0;
f00b45c1
PZ
183}
184
f8b6d1cc
PZ
185#ifdef HAVE_JUMP_LABEL
186
c5905afb
IM
187#define jump_label_key__true STATIC_KEY_INIT_TRUE
188#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
189
190#define SCHED_FEAT(name, enabled) \
191 jump_label_key__##enabled ,
192
c5905afb 193struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
194#include "features.h"
195};
196
197#undef SCHED_FEAT
198
199static void sched_feat_disable(int i)
200{
c5905afb
IM
201 if (static_key_enabled(&sched_feat_keys[i]))
202 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
203}
204
205static void sched_feat_enable(int i)
206{
c5905afb
IM
207 if (!static_key_enabled(&sched_feat_keys[i]))
208 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
209}
210#else
211static void sched_feat_disable(int i) { };
212static void sched_feat_enable(int i) { };
213#endif /* HAVE_JUMP_LABEL */
214
1a687c2e 215static int sched_feat_set(char *cmp)
f00b45c1 216{
f00b45c1 217 int i;
1a687c2e 218 int neg = 0;
f00b45c1 219
524429c3 220 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
221 neg = 1;
222 cmp += 3;
223 }
224
f8b6d1cc 225 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 226 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 227 if (neg) {
f00b45c1 228 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
229 sched_feat_disable(i);
230 } else {
f00b45c1 231 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
232 sched_feat_enable(i);
233 }
f00b45c1
PZ
234 break;
235 }
236 }
237
1a687c2e
MG
238 return i;
239}
240
241static ssize_t
242sched_feat_write(struct file *filp, const char __user *ubuf,
243 size_t cnt, loff_t *ppos)
244{
245 char buf[64];
246 char *cmp;
247 int i;
5cd08fbf 248 struct inode *inode;
1a687c2e
MG
249
250 if (cnt > 63)
251 cnt = 63;
252
253 if (copy_from_user(&buf, ubuf, cnt))
254 return -EFAULT;
255
256 buf[cnt] = 0;
257 cmp = strstrip(buf);
258
5cd08fbf
JB
259 /* Ensure the static_key remains in a consistent state */
260 inode = file_inode(filp);
261 mutex_lock(&inode->i_mutex);
1a687c2e 262 i = sched_feat_set(cmp);
5cd08fbf 263 mutex_unlock(&inode->i_mutex);
f8b6d1cc 264 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
265 return -EINVAL;
266
42994724 267 *ppos += cnt;
f00b45c1
PZ
268
269 return cnt;
270}
271
34f3a814
LZ
272static int sched_feat_open(struct inode *inode, struct file *filp)
273{
274 return single_open(filp, sched_feat_show, NULL);
275}
276
828c0950 277static const struct file_operations sched_feat_fops = {
34f3a814
LZ
278 .open = sched_feat_open,
279 .write = sched_feat_write,
280 .read = seq_read,
281 .llseek = seq_lseek,
282 .release = single_release,
f00b45c1
PZ
283};
284
285static __init int sched_init_debug(void)
286{
f00b45c1
PZ
287 debugfs_create_file("sched_features", 0644, NULL, NULL,
288 &sched_feat_fops);
289
290 return 0;
291}
292late_initcall(sched_init_debug);
f8b6d1cc 293#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 294
b82d9fdd
PZ
295/*
296 * Number of tasks to iterate in a single balance run.
297 * Limited because this is done with IRQs disabled.
298 */
299const_debug unsigned int sysctl_sched_nr_migrate = 32;
300
e9e9250b
PZ
301/*
302 * period over which we average the RT time consumption, measured
303 * in ms.
304 *
305 * default: 1s
306 */
307const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
308
fa85ae24 309/*
9f0c1e56 310 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
311 * default: 1s
312 */
9f0c1e56 313unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 314
029632fb 315__read_mostly int scheduler_running;
6892b75e 316
9f0c1e56
PZ
317/*
318 * part of the period that we allow rt tasks to run in us.
319 * default: 0.95s
320 */
321int sysctl_sched_rt_runtime = 950000;
fa85ae24 322
0970d299 323/*
0122ec5b 324 * __task_rq_lock - lock the rq @p resides on.
b29739f9 325 */
70b97a7f 326static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
327 __acquires(rq->lock)
328{
0970d299
PZ
329 struct rq *rq;
330
0122ec5b
PZ
331 lockdep_assert_held(&p->pi_lock);
332
3a5c359a 333 for (;;) {
0970d299 334 rq = task_rq(p);
05fa785c 335 raw_spin_lock(&rq->lock);
65cc8e48 336 if (likely(rq == task_rq(p)))
3a5c359a 337 return rq;
05fa785c 338 raw_spin_unlock(&rq->lock);
b29739f9 339 }
b29739f9
IM
340}
341
1da177e4 342/*
0122ec5b 343 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 344 */
70b97a7f 345static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 346 __acquires(p->pi_lock)
1da177e4
LT
347 __acquires(rq->lock)
348{
70b97a7f 349 struct rq *rq;
1da177e4 350
3a5c359a 351 for (;;) {
0122ec5b 352 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 353 rq = task_rq(p);
05fa785c 354 raw_spin_lock(&rq->lock);
65cc8e48 355 if (likely(rq == task_rq(p)))
3a5c359a 356 return rq;
0122ec5b
PZ
357 raw_spin_unlock(&rq->lock);
358 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 359 }
1da177e4
LT
360}
361
a9957449 362static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
363 __releases(rq->lock)
364{
05fa785c 365 raw_spin_unlock(&rq->lock);
b29739f9
IM
366}
367
0122ec5b
PZ
368static inline void
369task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 370 __releases(rq->lock)
0122ec5b 371 __releases(p->pi_lock)
1da177e4 372{
0122ec5b
PZ
373 raw_spin_unlock(&rq->lock);
374 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
375}
376
1da177e4 377/*
cc2a73b5 378 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 379 */
a9957449 380static struct rq *this_rq_lock(void)
1da177e4
LT
381 __acquires(rq->lock)
382{
70b97a7f 383 struct rq *rq;
1da177e4
LT
384
385 local_irq_disable();
386 rq = this_rq();
05fa785c 387 raw_spin_lock(&rq->lock);
1da177e4
LT
388
389 return rq;
390}
391
8f4d37ec
PZ
392#ifdef CONFIG_SCHED_HRTICK
393/*
394 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 395 */
8f4d37ec 396
8f4d37ec
PZ
397static void hrtick_clear(struct rq *rq)
398{
399 if (hrtimer_active(&rq->hrtick_timer))
400 hrtimer_cancel(&rq->hrtick_timer);
401}
402
8f4d37ec
PZ
403/*
404 * High-resolution timer tick.
405 * Runs from hardirq context with interrupts disabled.
406 */
407static enum hrtimer_restart hrtick(struct hrtimer *timer)
408{
409 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
410
411 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
412
05fa785c 413 raw_spin_lock(&rq->lock);
3e51f33f 414 update_rq_clock(rq);
8f4d37ec 415 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 416 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
417
418 return HRTIMER_NORESTART;
419}
420
95e904c7 421#ifdef CONFIG_SMP
971ee28c
PZ
422
423static int __hrtick_restart(struct rq *rq)
424{
425 struct hrtimer *timer = &rq->hrtick_timer;
426 ktime_t time = hrtimer_get_softexpires(timer);
427
428 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
429}
430
31656519
PZ
431/*
432 * called from hardirq (IPI) context
433 */
434static void __hrtick_start(void *arg)
b328ca18 435{
31656519 436 struct rq *rq = arg;
b328ca18 437
05fa785c 438 raw_spin_lock(&rq->lock);
971ee28c 439 __hrtick_restart(rq);
31656519 440 rq->hrtick_csd_pending = 0;
05fa785c 441 raw_spin_unlock(&rq->lock);
b328ca18
PZ
442}
443
31656519
PZ
444/*
445 * Called to set the hrtick timer state.
446 *
447 * called with rq->lock held and irqs disabled
448 */
029632fb 449void hrtick_start(struct rq *rq, u64 delay)
b328ca18 450{
31656519
PZ
451 struct hrtimer *timer = &rq->hrtick_timer;
452 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 453
cc584b21 454 hrtimer_set_expires(timer, time);
31656519
PZ
455
456 if (rq == this_rq()) {
971ee28c 457 __hrtick_restart(rq);
31656519 458 } else if (!rq->hrtick_csd_pending) {
c46fff2a 459 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
460 rq->hrtick_csd_pending = 1;
461 }
b328ca18
PZ
462}
463
464static int
465hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
466{
467 int cpu = (int)(long)hcpu;
468
469 switch (action) {
470 case CPU_UP_CANCELED:
471 case CPU_UP_CANCELED_FROZEN:
472 case CPU_DOWN_PREPARE:
473 case CPU_DOWN_PREPARE_FROZEN:
474 case CPU_DEAD:
475 case CPU_DEAD_FROZEN:
31656519 476 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
477 return NOTIFY_OK;
478 }
479
480 return NOTIFY_DONE;
481}
482
fa748203 483static __init void init_hrtick(void)
b328ca18
PZ
484{
485 hotcpu_notifier(hotplug_hrtick, 0);
486}
31656519
PZ
487#else
488/*
489 * Called to set the hrtick timer state.
490 *
491 * called with rq->lock held and irqs disabled
492 */
029632fb 493void hrtick_start(struct rq *rq, u64 delay)
31656519 494{
7f1e2ca9 495 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 496 HRTIMER_MODE_REL_PINNED, 0);
31656519 497}
b328ca18 498
006c75f1 499static inline void init_hrtick(void)
8f4d37ec 500{
8f4d37ec 501}
31656519 502#endif /* CONFIG_SMP */
8f4d37ec 503
31656519 504static void init_rq_hrtick(struct rq *rq)
8f4d37ec 505{
31656519
PZ
506#ifdef CONFIG_SMP
507 rq->hrtick_csd_pending = 0;
8f4d37ec 508
31656519
PZ
509 rq->hrtick_csd.flags = 0;
510 rq->hrtick_csd.func = __hrtick_start;
511 rq->hrtick_csd.info = rq;
512#endif
8f4d37ec 513
31656519
PZ
514 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
515 rq->hrtick_timer.function = hrtick;
8f4d37ec 516}
006c75f1 517#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
518static inline void hrtick_clear(struct rq *rq)
519{
520}
521
8f4d37ec
PZ
522static inline void init_rq_hrtick(struct rq *rq)
523{
524}
525
b328ca18
PZ
526static inline void init_hrtick(void)
527{
528}
006c75f1 529#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 530
fd99f91a
PZ
531/*
532 * cmpxchg based fetch_or, macro so it works for different integer types
533 */
534#define fetch_or(ptr, val) \
535({ typeof(*(ptr)) __old, __val = *(ptr); \
536 for (;;) { \
537 __old = cmpxchg((ptr), __val, __val | (val)); \
538 if (__old == __val) \
539 break; \
540 __val = __old; \
541 } \
542 __old; \
543})
544
e3baac47 545#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
546/*
547 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
548 * this avoids any races wrt polling state changes and thereby avoids
549 * spurious IPIs.
550 */
551static bool set_nr_and_not_polling(struct task_struct *p)
552{
553 struct thread_info *ti = task_thread_info(p);
554 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
555}
e3baac47
PZ
556
557/*
558 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
559 *
560 * If this returns true, then the idle task promises to call
561 * sched_ttwu_pending() and reschedule soon.
562 */
563static bool set_nr_if_polling(struct task_struct *p)
564{
565 struct thread_info *ti = task_thread_info(p);
566 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
567
568 for (;;) {
569 if (!(val & _TIF_POLLING_NRFLAG))
570 return false;
571 if (val & _TIF_NEED_RESCHED)
572 return true;
573 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
574 if (old == val)
575 break;
576 val = old;
577 }
578 return true;
579}
580
fd99f91a
PZ
581#else
582static bool set_nr_and_not_polling(struct task_struct *p)
583{
584 set_tsk_need_resched(p);
585 return true;
586}
e3baac47
PZ
587
588#ifdef CONFIG_SMP
589static bool set_nr_if_polling(struct task_struct *p)
590{
591 return false;
592}
593#endif
fd99f91a
PZ
594#endif
595
c24d20db 596/*
8875125e 597 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
598 *
599 * On UP this means the setting of the need_resched flag, on SMP it
600 * might also involve a cross-CPU call to trigger the scheduler on
601 * the target CPU.
602 */
8875125e 603void resched_curr(struct rq *rq)
c24d20db 604{
8875125e 605 struct task_struct *curr = rq->curr;
c24d20db
IM
606 int cpu;
607
8875125e 608 lockdep_assert_held(&rq->lock);
c24d20db 609
8875125e 610 if (test_tsk_need_resched(curr))
c24d20db
IM
611 return;
612
8875125e 613 cpu = cpu_of(rq);
fd99f91a 614
f27dde8d 615 if (cpu == smp_processor_id()) {
8875125e 616 set_tsk_need_resched(curr);
f27dde8d 617 set_preempt_need_resched();
c24d20db 618 return;
f27dde8d 619 }
c24d20db 620
8875125e 621 if (set_nr_and_not_polling(curr))
c24d20db 622 smp_send_reschedule(cpu);
dfc68f29
AL
623 else
624 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
625}
626
029632fb 627void resched_cpu(int cpu)
c24d20db
IM
628{
629 struct rq *rq = cpu_rq(cpu);
630 unsigned long flags;
631
05fa785c 632 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 633 return;
8875125e 634 resched_curr(rq);
05fa785c 635 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 636}
06d8308c 637
b021fe3e 638#ifdef CONFIG_SMP
3451d024 639#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
640/*
641 * In the semi idle case, use the nearest busy cpu for migrating timers
642 * from an idle cpu. This is good for power-savings.
643 *
644 * We don't do similar optimization for completely idle system, as
645 * selecting an idle cpu will add more delays to the timers than intended
646 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
647 */
6201b4d6 648int get_nohz_timer_target(int pinned)
83cd4fe2
VP
649{
650 int cpu = smp_processor_id();
651 int i;
652 struct sched_domain *sd;
653
6201b4d6
VK
654 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
655 return cpu;
656
057f3fad 657 rcu_read_lock();
83cd4fe2 658 for_each_domain(cpu, sd) {
057f3fad
PZ
659 for_each_cpu(i, sched_domain_span(sd)) {
660 if (!idle_cpu(i)) {
661 cpu = i;
662 goto unlock;
663 }
664 }
83cd4fe2 665 }
057f3fad
PZ
666unlock:
667 rcu_read_unlock();
83cd4fe2
VP
668 return cpu;
669}
06d8308c
TG
670/*
671 * When add_timer_on() enqueues a timer into the timer wheel of an
672 * idle CPU then this timer might expire before the next timer event
673 * which is scheduled to wake up that CPU. In case of a completely
674 * idle system the next event might even be infinite time into the
675 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
676 * leaves the inner idle loop so the newly added timer is taken into
677 * account when the CPU goes back to idle and evaluates the timer
678 * wheel for the next timer event.
679 */
1c20091e 680static void wake_up_idle_cpu(int cpu)
06d8308c
TG
681{
682 struct rq *rq = cpu_rq(cpu);
683
684 if (cpu == smp_processor_id())
685 return;
686
67b9ca70 687 if (set_nr_and_not_polling(rq->idle))
06d8308c 688 smp_send_reschedule(cpu);
dfc68f29
AL
689 else
690 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
691}
692
c5bfece2 693static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 694{
53c5fa16
FW
695 /*
696 * We just need the target to call irq_exit() and re-evaluate
697 * the next tick. The nohz full kick at least implies that.
698 * If needed we can still optimize that later with an
699 * empty IRQ.
700 */
c5bfece2 701 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
702 if (cpu != smp_processor_id() ||
703 tick_nohz_tick_stopped())
53c5fa16 704 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
705 return true;
706 }
707
708 return false;
709}
710
711void wake_up_nohz_cpu(int cpu)
712{
c5bfece2 713 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
714 wake_up_idle_cpu(cpu);
715}
716
ca38062e 717static inline bool got_nohz_idle_kick(void)
45bf76df 718{
1c792db7 719 int cpu = smp_processor_id();
873b4c65
VG
720
721 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
722 return false;
723
724 if (idle_cpu(cpu) && !need_resched())
725 return true;
726
727 /*
728 * We can't run Idle Load Balance on this CPU for this time so we
729 * cancel it and clear NOHZ_BALANCE_KICK
730 */
731 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
732 return false;
45bf76df
IM
733}
734
3451d024 735#else /* CONFIG_NO_HZ_COMMON */
45bf76df 736
ca38062e 737static inline bool got_nohz_idle_kick(void)
2069dd75 738{
ca38062e 739 return false;
2069dd75
PZ
740}
741
3451d024 742#endif /* CONFIG_NO_HZ_COMMON */
d842de87 743
ce831b38
FW
744#ifdef CONFIG_NO_HZ_FULL
745bool sched_can_stop_tick(void)
746{
3882ec64
FW
747 /*
748 * More than one running task need preemption.
749 * nr_running update is assumed to be visible
750 * after IPI is sent from wakers.
751 */
541b8264
VK
752 if (this_rq()->nr_running > 1)
753 return false;
ce831b38 754
541b8264 755 return true;
ce831b38
FW
756}
757#endif /* CONFIG_NO_HZ_FULL */
d842de87 758
029632fb 759void sched_avg_update(struct rq *rq)
18d95a28 760{
e9e9250b
PZ
761 s64 period = sched_avg_period();
762
78becc27 763 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
764 /*
765 * Inline assembly required to prevent the compiler
766 * optimising this loop into a divmod call.
767 * See __iter_div_u64_rem() for another example of this.
768 */
769 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
770 rq->age_stamp += period;
771 rq->rt_avg /= 2;
772 }
18d95a28
PZ
773}
774
6d6bc0ad 775#endif /* CONFIG_SMP */
18d95a28 776
a790de99
PT
777#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
778 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 779/*
8277434e
PT
780 * Iterate task_group tree rooted at *from, calling @down when first entering a
781 * node and @up when leaving it for the final time.
782 *
783 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 784 */
029632fb 785int walk_tg_tree_from(struct task_group *from,
8277434e 786 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
787{
788 struct task_group *parent, *child;
eb755805 789 int ret;
c09595f6 790
8277434e
PT
791 parent = from;
792
c09595f6 793down:
eb755805
PZ
794 ret = (*down)(parent, data);
795 if (ret)
8277434e 796 goto out;
c09595f6
PZ
797 list_for_each_entry_rcu(child, &parent->children, siblings) {
798 parent = child;
799 goto down;
800
801up:
802 continue;
803 }
eb755805 804 ret = (*up)(parent, data);
8277434e
PT
805 if (ret || parent == from)
806 goto out;
c09595f6
PZ
807
808 child = parent;
809 parent = parent->parent;
810 if (parent)
811 goto up;
8277434e 812out:
eb755805 813 return ret;
c09595f6
PZ
814}
815
029632fb 816int tg_nop(struct task_group *tg, void *data)
eb755805 817{
e2b245f8 818 return 0;
eb755805 819}
18d95a28
PZ
820#endif
821
45bf76df
IM
822static void set_load_weight(struct task_struct *p)
823{
f05998d4
NR
824 int prio = p->static_prio - MAX_RT_PRIO;
825 struct load_weight *load = &p->se.load;
826
dd41f596
IM
827 /*
828 * SCHED_IDLE tasks get minimal weight:
829 */
830 if (p->policy == SCHED_IDLE) {
c8b28116 831 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 832 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
833 return;
834 }
71f8bd46 835
c8b28116 836 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 837 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
838}
839
371fd7e7 840static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 841{
a64692a3 842 update_rq_clock(rq);
43148951 843 sched_info_queued(rq, p);
371fd7e7 844 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
845}
846
371fd7e7 847static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 848{
a64692a3 849 update_rq_clock(rq);
43148951 850 sched_info_dequeued(rq, p);
371fd7e7 851 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
852}
853
029632fb 854void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
855{
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible--;
858
371fd7e7 859 enqueue_task(rq, p, flags);
1e3c88bd
PZ
860}
861
029632fb 862void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
863{
864 if (task_contributes_to_load(p))
865 rq->nr_uninterruptible++;
866
371fd7e7 867 dequeue_task(rq, p, flags);
1e3c88bd
PZ
868}
869
fe44d621 870static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 871{
095c0aa8
GC
872/*
873 * In theory, the compile should just see 0 here, and optimize out the call
874 * to sched_rt_avg_update. But I don't trust it...
875 */
876#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
877 s64 steal = 0, irq_delta = 0;
878#endif
879#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 880 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
881
882 /*
883 * Since irq_time is only updated on {soft,}irq_exit, we might run into
884 * this case when a previous update_rq_clock() happened inside a
885 * {soft,}irq region.
886 *
887 * When this happens, we stop ->clock_task and only update the
888 * prev_irq_time stamp to account for the part that fit, so that a next
889 * update will consume the rest. This ensures ->clock_task is
890 * monotonic.
891 *
892 * It does however cause some slight miss-attribution of {soft,}irq
893 * time, a more accurate solution would be to update the irq_time using
894 * the current rq->clock timestamp, except that would require using
895 * atomic ops.
896 */
897 if (irq_delta > delta)
898 irq_delta = delta;
899
900 rq->prev_irq_time += irq_delta;
901 delta -= irq_delta;
095c0aa8
GC
902#endif
903#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 904 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
905 steal = paravirt_steal_clock(cpu_of(rq));
906 steal -= rq->prev_steal_time_rq;
907
908 if (unlikely(steal > delta))
909 steal = delta;
910
095c0aa8 911 rq->prev_steal_time_rq += steal;
095c0aa8
GC
912 delta -= steal;
913 }
914#endif
915
fe44d621
PZ
916 rq->clock_task += delta;
917
095c0aa8 918#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 919 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
920 sched_rt_avg_update(rq, irq_delta + steal);
921#endif
aa483808
VP
922}
923
34f971f6
PZ
924void sched_set_stop_task(int cpu, struct task_struct *stop)
925{
926 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
927 struct task_struct *old_stop = cpu_rq(cpu)->stop;
928
929 if (stop) {
930 /*
931 * Make it appear like a SCHED_FIFO task, its something
932 * userspace knows about and won't get confused about.
933 *
934 * Also, it will make PI more or less work without too
935 * much confusion -- but then, stop work should not
936 * rely on PI working anyway.
937 */
938 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
939
940 stop->sched_class = &stop_sched_class;
941 }
942
943 cpu_rq(cpu)->stop = stop;
944
945 if (old_stop) {
946 /*
947 * Reset it back to a normal scheduling class so that
948 * it can die in pieces.
949 */
950 old_stop->sched_class = &rt_sched_class;
951 }
952}
953
14531189 954/*
dd41f596 955 * __normal_prio - return the priority that is based on the static prio
14531189 956 */
14531189
IM
957static inline int __normal_prio(struct task_struct *p)
958{
dd41f596 959 return p->static_prio;
14531189
IM
960}
961
b29739f9
IM
962/*
963 * Calculate the expected normal priority: i.e. priority
964 * without taking RT-inheritance into account. Might be
965 * boosted by interactivity modifiers. Changes upon fork,
966 * setprio syscalls, and whenever the interactivity
967 * estimator recalculates.
968 */
36c8b586 969static inline int normal_prio(struct task_struct *p)
b29739f9
IM
970{
971 int prio;
972
aab03e05
DF
973 if (task_has_dl_policy(p))
974 prio = MAX_DL_PRIO-1;
975 else if (task_has_rt_policy(p))
b29739f9
IM
976 prio = MAX_RT_PRIO-1 - p->rt_priority;
977 else
978 prio = __normal_prio(p);
979 return prio;
980}
981
982/*
983 * Calculate the current priority, i.e. the priority
984 * taken into account by the scheduler. This value might
985 * be boosted by RT tasks, or might be boosted by
986 * interactivity modifiers. Will be RT if the task got
987 * RT-boosted. If not then it returns p->normal_prio.
988 */
36c8b586 989static int effective_prio(struct task_struct *p)
b29739f9
IM
990{
991 p->normal_prio = normal_prio(p);
992 /*
993 * If we are RT tasks or we were boosted to RT priority,
994 * keep the priority unchanged. Otherwise, update priority
995 * to the normal priority:
996 */
997 if (!rt_prio(p->prio))
998 return p->normal_prio;
999 return p->prio;
1000}
1001
1da177e4
LT
1002/**
1003 * task_curr - is this task currently executing on a CPU?
1004 * @p: the task in question.
e69f6186
YB
1005 *
1006 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1007 */
36c8b586 1008inline int task_curr(const struct task_struct *p)
1da177e4
LT
1009{
1010 return cpu_curr(task_cpu(p)) == p;
1011}
1012
cb469845
SR
1013static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1014 const struct sched_class *prev_class,
da7a735e 1015 int oldprio)
cb469845
SR
1016{
1017 if (prev_class != p->sched_class) {
1018 if (prev_class->switched_from)
da7a735e
PZ
1019 prev_class->switched_from(rq, p);
1020 p->sched_class->switched_to(rq, p);
2d3d891d 1021 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1022 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1023}
1024
029632fb 1025void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1026{
1027 const struct sched_class *class;
1028
1029 if (p->sched_class == rq->curr->sched_class) {
1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 } else {
1032 for_each_class(class) {
1033 if (class == rq->curr->sched_class)
1034 break;
1035 if (class == p->sched_class) {
8875125e 1036 resched_curr(rq);
1e5a7405
PZ
1037 break;
1038 }
1039 }
1040 }
1041
1042 /*
1043 * A queue event has occurred, and we're going to schedule. In
1044 * this case, we can save a useless back to back clock update.
1045 */
fd2f4419 1046 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1047 rq->skip_clock_update = 1;
1048}
1049
1da177e4 1050#ifdef CONFIG_SMP
dd41f596 1051void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1052{
e2912009
PZ
1053#ifdef CONFIG_SCHED_DEBUG
1054 /*
1055 * We should never call set_task_cpu() on a blocked task,
1056 * ttwu() will sort out the placement.
1057 */
077614ee 1058 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1059 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1060
1061#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1062 /*
1063 * The caller should hold either p->pi_lock or rq->lock, when changing
1064 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1065 *
1066 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1067 * see task_group().
6c6c54e1
PZ
1068 *
1069 * Furthermore, all task_rq users should acquire both locks, see
1070 * task_rq_lock().
1071 */
0122ec5b
PZ
1072 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1073 lockdep_is_held(&task_rq(p)->lock)));
1074#endif
e2912009
PZ
1075#endif
1076
de1d7286 1077 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1078
0c69774e 1079 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1080 if (p->sched_class->migrate_task_rq)
1081 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1082 p->se.nr_migrations++;
a8b0ca17 1083 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1084 }
dd41f596
IM
1085
1086 __set_task_cpu(p, new_cpu);
c65cc870
IM
1087}
1088
ac66f547
PZ
1089static void __migrate_swap_task(struct task_struct *p, int cpu)
1090{
1091 if (p->on_rq) {
1092 struct rq *src_rq, *dst_rq;
1093
1094 src_rq = task_rq(p);
1095 dst_rq = cpu_rq(cpu);
1096
1097 deactivate_task(src_rq, p, 0);
1098 set_task_cpu(p, cpu);
1099 activate_task(dst_rq, p, 0);
1100 check_preempt_curr(dst_rq, p, 0);
1101 } else {
1102 /*
1103 * Task isn't running anymore; make it appear like we migrated
1104 * it before it went to sleep. This means on wakeup we make the
1105 * previous cpu our targer instead of where it really is.
1106 */
1107 p->wake_cpu = cpu;
1108 }
1109}
1110
1111struct migration_swap_arg {
1112 struct task_struct *src_task, *dst_task;
1113 int src_cpu, dst_cpu;
1114};
1115
1116static int migrate_swap_stop(void *data)
1117{
1118 struct migration_swap_arg *arg = data;
1119 struct rq *src_rq, *dst_rq;
1120 int ret = -EAGAIN;
1121
1122 src_rq = cpu_rq(arg->src_cpu);
1123 dst_rq = cpu_rq(arg->dst_cpu);
1124
74602315
PZ
1125 double_raw_lock(&arg->src_task->pi_lock,
1126 &arg->dst_task->pi_lock);
ac66f547
PZ
1127 double_rq_lock(src_rq, dst_rq);
1128 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1129 goto unlock;
1130
1131 if (task_cpu(arg->src_task) != arg->src_cpu)
1132 goto unlock;
1133
1134 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1135 goto unlock;
1136
1137 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1138 goto unlock;
1139
1140 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1141 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1142
1143 ret = 0;
1144
1145unlock:
1146 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1147 raw_spin_unlock(&arg->dst_task->pi_lock);
1148 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1149
1150 return ret;
1151}
1152
1153/*
1154 * Cross migrate two tasks
1155 */
1156int migrate_swap(struct task_struct *cur, struct task_struct *p)
1157{
1158 struct migration_swap_arg arg;
1159 int ret = -EINVAL;
1160
ac66f547
PZ
1161 arg = (struct migration_swap_arg){
1162 .src_task = cur,
1163 .src_cpu = task_cpu(cur),
1164 .dst_task = p,
1165 .dst_cpu = task_cpu(p),
1166 };
1167
1168 if (arg.src_cpu == arg.dst_cpu)
1169 goto out;
1170
6acce3ef
PZ
1171 /*
1172 * These three tests are all lockless; this is OK since all of them
1173 * will be re-checked with proper locks held further down the line.
1174 */
ac66f547
PZ
1175 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1176 goto out;
1177
1178 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1179 goto out;
1180
1181 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1182 goto out;
1183
286549dc 1184 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1185 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1186
1187out:
ac66f547
PZ
1188 return ret;
1189}
1190
969c7921 1191struct migration_arg {
36c8b586 1192 struct task_struct *task;
1da177e4 1193 int dest_cpu;
70b97a7f 1194};
1da177e4 1195
969c7921
TH
1196static int migration_cpu_stop(void *data);
1197
1da177e4
LT
1198/*
1199 * wait_task_inactive - wait for a thread to unschedule.
1200 *
85ba2d86
RM
1201 * If @match_state is nonzero, it's the @p->state value just checked and
1202 * not expected to change. If it changes, i.e. @p might have woken up,
1203 * then return zero. When we succeed in waiting for @p to be off its CPU,
1204 * we return a positive number (its total switch count). If a second call
1205 * a short while later returns the same number, the caller can be sure that
1206 * @p has remained unscheduled the whole time.
1207 *
1da177e4
LT
1208 * The caller must ensure that the task *will* unschedule sometime soon,
1209 * else this function might spin for a *long* time. This function can't
1210 * be called with interrupts off, or it may introduce deadlock with
1211 * smp_call_function() if an IPI is sent by the same process we are
1212 * waiting to become inactive.
1213 */
85ba2d86 1214unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1215{
1216 unsigned long flags;
dd41f596 1217 int running, on_rq;
85ba2d86 1218 unsigned long ncsw;
70b97a7f 1219 struct rq *rq;
1da177e4 1220
3a5c359a
AK
1221 for (;;) {
1222 /*
1223 * We do the initial early heuristics without holding
1224 * any task-queue locks at all. We'll only try to get
1225 * the runqueue lock when things look like they will
1226 * work out!
1227 */
1228 rq = task_rq(p);
fa490cfd 1229
3a5c359a
AK
1230 /*
1231 * If the task is actively running on another CPU
1232 * still, just relax and busy-wait without holding
1233 * any locks.
1234 *
1235 * NOTE! Since we don't hold any locks, it's not
1236 * even sure that "rq" stays as the right runqueue!
1237 * But we don't care, since "task_running()" will
1238 * return false if the runqueue has changed and p
1239 * is actually now running somewhere else!
1240 */
85ba2d86
RM
1241 while (task_running(rq, p)) {
1242 if (match_state && unlikely(p->state != match_state))
1243 return 0;
3a5c359a 1244 cpu_relax();
85ba2d86 1245 }
fa490cfd 1246
3a5c359a
AK
1247 /*
1248 * Ok, time to look more closely! We need the rq
1249 * lock now, to be *sure*. If we're wrong, we'll
1250 * just go back and repeat.
1251 */
1252 rq = task_rq_lock(p, &flags);
27a9da65 1253 trace_sched_wait_task(p);
3a5c359a 1254 running = task_running(rq, p);
fd2f4419 1255 on_rq = p->on_rq;
85ba2d86 1256 ncsw = 0;
f31e11d8 1257 if (!match_state || p->state == match_state)
93dcf55f 1258 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1259 task_rq_unlock(rq, p, &flags);
fa490cfd 1260
85ba2d86
RM
1261 /*
1262 * If it changed from the expected state, bail out now.
1263 */
1264 if (unlikely(!ncsw))
1265 break;
1266
3a5c359a
AK
1267 /*
1268 * Was it really running after all now that we
1269 * checked with the proper locks actually held?
1270 *
1271 * Oops. Go back and try again..
1272 */
1273 if (unlikely(running)) {
1274 cpu_relax();
1275 continue;
1276 }
fa490cfd 1277
3a5c359a
AK
1278 /*
1279 * It's not enough that it's not actively running,
1280 * it must be off the runqueue _entirely_, and not
1281 * preempted!
1282 *
80dd99b3 1283 * So if it was still runnable (but just not actively
3a5c359a
AK
1284 * running right now), it's preempted, and we should
1285 * yield - it could be a while.
1286 */
1287 if (unlikely(on_rq)) {
8eb90c30
TG
1288 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1289
1290 set_current_state(TASK_UNINTERRUPTIBLE);
1291 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1292 continue;
1293 }
fa490cfd 1294
3a5c359a
AK
1295 /*
1296 * Ahh, all good. It wasn't running, and it wasn't
1297 * runnable, which means that it will never become
1298 * running in the future either. We're all done!
1299 */
1300 break;
1301 }
85ba2d86
RM
1302
1303 return ncsw;
1da177e4
LT
1304}
1305
1306/***
1307 * kick_process - kick a running thread to enter/exit the kernel
1308 * @p: the to-be-kicked thread
1309 *
1310 * Cause a process which is running on another CPU to enter
1311 * kernel-mode, without any delay. (to get signals handled.)
1312 *
25985edc 1313 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1314 * because all it wants to ensure is that the remote task enters
1315 * the kernel. If the IPI races and the task has been migrated
1316 * to another CPU then no harm is done and the purpose has been
1317 * achieved as well.
1318 */
36c8b586 1319void kick_process(struct task_struct *p)
1da177e4
LT
1320{
1321 int cpu;
1322
1323 preempt_disable();
1324 cpu = task_cpu(p);
1325 if ((cpu != smp_processor_id()) && task_curr(p))
1326 smp_send_reschedule(cpu);
1327 preempt_enable();
1328}
b43e3521 1329EXPORT_SYMBOL_GPL(kick_process);
476d139c 1330#endif /* CONFIG_SMP */
1da177e4 1331
970b13ba 1332#ifdef CONFIG_SMP
30da688e 1333/*
013fdb80 1334 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1335 */
5da9a0fb
PZ
1336static int select_fallback_rq(int cpu, struct task_struct *p)
1337{
aa00d89c
TC
1338 int nid = cpu_to_node(cpu);
1339 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1340 enum { cpuset, possible, fail } state = cpuset;
1341 int dest_cpu;
5da9a0fb 1342
aa00d89c
TC
1343 /*
1344 * If the node that the cpu is on has been offlined, cpu_to_node()
1345 * will return -1. There is no cpu on the node, and we should
1346 * select the cpu on the other node.
1347 */
1348 if (nid != -1) {
1349 nodemask = cpumask_of_node(nid);
1350
1351 /* Look for allowed, online CPU in same node. */
1352 for_each_cpu(dest_cpu, nodemask) {
1353 if (!cpu_online(dest_cpu))
1354 continue;
1355 if (!cpu_active(dest_cpu))
1356 continue;
1357 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1358 return dest_cpu;
1359 }
2baab4e9 1360 }
5da9a0fb 1361
2baab4e9
PZ
1362 for (;;) {
1363 /* Any allowed, online CPU? */
e3831edd 1364 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1365 if (!cpu_online(dest_cpu))
1366 continue;
1367 if (!cpu_active(dest_cpu))
1368 continue;
1369 goto out;
1370 }
5da9a0fb 1371
2baab4e9
PZ
1372 switch (state) {
1373 case cpuset:
1374 /* No more Mr. Nice Guy. */
1375 cpuset_cpus_allowed_fallback(p);
1376 state = possible;
1377 break;
1378
1379 case possible:
1380 do_set_cpus_allowed(p, cpu_possible_mask);
1381 state = fail;
1382 break;
1383
1384 case fail:
1385 BUG();
1386 break;
1387 }
1388 }
1389
1390out:
1391 if (state != cpuset) {
1392 /*
1393 * Don't tell them about moving exiting tasks or
1394 * kernel threads (both mm NULL), since they never
1395 * leave kernel.
1396 */
1397 if (p->mm && printk_ratelimit()) {
aac74dc4 1398 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1399 task_pid_nr(p), p->comm, cpu);
1400 }
5da9a0fb
PZ
1401 }
1402
1403 return dest_cpu;
1404}
1405
e2912009 1406/*
013fdb80 1407 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1408 */
970b13ba 1409static inline
ac66f547 1410int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1411{
ac66f547 1412 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1413
1414 /*
1415 * In order not to call set_task_cpu() on a blocking task we need
1416 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1417 * cpu.
1418 *
1419 * Since this is common to all placement strategies, this lives here.
1420 *
1421 * [ this allows ->select_task() to simply return task_cpu(p) and
1422 * not worry about this generic constraint ]
1423 */
fa17b507 1424 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1425 !cpu_online(cpu)))
5da9a0fb 1426 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1427
1428 return cpu;
970b13ba 1429}
09a40af5
MG
1430
1431static void update_avg(u64 *avg, u64 sample)
1432{
1433 s64 diff = sample - *avg;
1434 *avg += diff >> 3;
1435}
970b13ba
PZ
1436#endif
1437
d7c01d27 1438static void
b84cb5df 1439ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1440{
d7c01d27 1441#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1442 struct rq *rq = this_rq();
1443
d7c01d27
PZ
1444#ifdef CONFIG_SMP
1445 int this_cpu = smp_processor_id();
1446
1447 if (cpu == this_cpu) {
1448 schedstat_inc(rq, ttwu_local);
1449 schedstat_inc(p, se.statistics.nr_wakeups_local);
1450 } else {
1451 struct sched_domain *sd;
1452
1453 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1454 rcu_read_lock();
d7c01d27
PZ
1455 for_each_domain(this_cpu, sd) {
1456 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1457 schedstat_inc(sd, ttwu_wake_remote);
1458 break;
1459 }
1460 }
057f3fad 1461 rcu_read_unlock();
d7c01d27 1462 }
f339b9dc
PZ
1463
1464 if (wake_flags & WF_MIGRATED)
1465 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1466
d7c01d27
PZ
1467#endif /* CONFIG_SMP */
1468
1469 schedstat_inc(rq, ttwu_count);
9ed3811a 1470 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1471
1472 if (wake_flags & WF_SYNC)
9ed3811a 1473 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1474
d7c01d27
PZ
1475#endif /* CONFIG_SCHEDSTATS */
1476}
1477
1478static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1479{
9ed3811a 1480 activate_task(rq, p, en_flags);
fd2f4419 1481 p->on_rq = 1;
c2f7115e
PZ
1482
1483 /* if a worker is waking up, notify workqueue */
1484 if (p->flags & PF_WQ_WORKER)
1485 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1486}
1487
23f41eeb
PZ
1488/*
1489 * Mark the task runnable and perform wakeup-preemption.
1490 */
89363381 1491static void
23f41eeb 1492ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1493{
9ed3811a 1494 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1495 trace_sched_wakeup(p, true);
9ed3811a
TH
1496
1497 p->state = TASK_RUNNING;
1498#ifdef CONFIG_SMP
1499 if (p->sched_class->task_woken)
1500 p->sched_class->task_woken(rq, p);
1501
e69c6341 1502 if (rq->idle_stamp) {
78becc27 1503 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1504 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1505
abfafa54
JL
1506 update_avg(&rq->avg_idle, delta);
1507
1508 if (rq->avg_idle > max)
9ed3811a 1509 rq->avg_idle = max;
abfafa54 1510
9ed3811a
TH
1511 rq->idle_stamp = 0;
1512 }
1513#endif
1514}
1515
c05fbafb
PZ
1516static void
1517ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1518{
1519#ifdef CONFIG_SMP
1520 if (p->sched_contributes_to_load)
1521 rq->nr_uninterruptible--;
1522#endif
1523
1524 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1525 ttwu_do_wakeup(rq, p, wake_flags);
1526}
1527
1528/*
1529 * Called in case the task @p isn't fully descheduled from its runqueue,
1530 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1531 * since all we need to do is flip p->state to TASK_RUNNING, since
1532 * the task is still ->on_rq.
1533 */
1534static int ttwu_remote(struct task_struct *p, int wake_flags)
1535{
1536 struct rq *rq;
1537 int ret = 0;
1538
1539 rq = __task_rq_lock(p);
1540 if (p->on_rq) {
1ad4ec0d
FW
1541 /* check_preempt_curr() may use rq clock */
1542 update_rq_clock(rq);
c05fbafb
PZ
1543 ttwu_do_wakeup(rq, p, wake_flags);
1544 ret = 1;
1545 }
1546 __task_rq_unlock(rq);
1547
1548 return ret;
1549}
1550
317f3941 1551#ifdef CONFIG_SMP
e3baac47 1552void sched_ttwu_pending(void)
317f3941
PZ
1553{
1554 struct rq *rq = this_rq();
fa14ff4a
PZ
1555 struct llist_node *llist = llist_del_all(&rq->wake_list);
1556 struct task_struct *p;
e3baac47 1557 unsigned long flags;
317f3941 1558
e3baac47
PZ
1559 if (!llist)
1560 return;
1561
1562 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1563
fa14ff4a
PZ
1564 while (llist) {
1565 p = llist_entry(llist, struct task_struct, wake_entry);
1566 llist = llist_next(llist);
317f3941
PZ
1567 ttwu_do_activate(rq, p, 0);
1568 }
1569
e3baac47 1570 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1571}
1572
1573void scheduler_ipi(void)
1574{
f27dde8d
PZ
1575 /*
1576 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1577 * TIF_NEED_RESCHED remotely (for the first time) will also send
1578 * this IPI.
1579 */
8cb75e0c 1580 preempt_fold_need_resched();
f27dde8d 1581
fd2ac4f4 1582 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1583 return;
1584
1585 /*
1586 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1587 * traditionally all their work was done from the interrupt return
1588 * path. Now that we actually do some work, we need to make sure
1589 * we do call them.
1590 *
1591 * Some archs already do call them, luckily irq_enter/exit nest
1592 * properly.
1593 *
1594 * Arguably we should visit all archs and update all handlers,
1595 * however a fair share of IPIs are still resched only so this would
1596 * somewhat pessimize the simple resched case.
1597 */
1598 irq_enter();
fa14ff4a 1599 sched_ttwu_pending();
ca38062e
SS
1600
1601 /*
1602 * Check if someone kicked us for doing the nohz idle load balance.
1603 */
873b4c65 1604 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1605 this_rq()->idle_balance = 1;
ca38062e 1606 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1607 }
c5d753a5 1608 irq_exit();
317f3941
PZ
1609}
1610
1611static void ttwu_queue_remote(struct task_struct *p, int cpu)
1612{
e3baac47
PZ
1613 struct rq *rq = cpu_rq(cpu);
1614
1615 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1616 if (!set_nr_if_polling(rq->idle))
1617 smp_send_reschedule(cpu);
1618 else
1619 trace_sched_wake_idle_without_ipi(cpu);
1620 }
317f3941 1621}
d6aa8f85 1622
39be3501 1623bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1624{
1625 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1626}
d6aa8f85 1627#endif /* CONFIG_SMP */
317f3941 1628
c05fbafb
PZ
1629static void ttwu_queue(struct task_struct *p, int cpu)
1630{
1631 struct rq *rq = cpu_rq(cpu);
1632
17d9f311 1633#if defined(CONFIG_SMP)
39be3501 1634 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1635 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1636 ttwu_queue_remote(p, cpu);
1637 return;
1638 }
1639#endif
1640
c05fbafb
PZ
1641 raw_spin_lock(&rq->lock);
1642 ttwu_do_activate(rq, p, 0);
1643 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1644}
1645
1646/**
1da177e4 1647 * try_to_wake_up - wake up a thread
9ed3811a 1648 * @p: the thread to be awakened
1da177e4 1649 * @state: the mask of task states that can be woken
9ed3811a 1650 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1651 *
1652 * Put it on the run-queue if it's not already there. The "current"
1653 * thread is always on the run-queue (except when the actual
1654 * re-schedule is in progress), and as such you're allowed to do
1655 * the simpler "current->state = TASK_RUNNING" to mark yourself
1656 * runnable without the overhead of this.
1657 *
e69f6186 1658 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1659 * or @state didn't match @p's state.
1da177e4 1660 */
e4a52bcb
PZ
1661static int
1662try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1663{
1da177e4 1664 unsigned long flags;
c05fbafb 1665 int cpu, success = 0;
2398f2c6 1666
e0acd0a6
ON
1667 /*
1668 * If we are going to wake up a thread waiting for CONDITION we
1669 * need to ensure that CONDITION=1 done by the caller can not be
1670 * reordered with p->state check below. This pairs with mb() in
1671 * set_current_state() the waiting thread does.
1672 */
1673 smp_mb__before_spinlock();
013fdb80 1674 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1675 if (!(p->state & state))
1da177e4
LT
1676 goto out;
1677
c05fbafb 1678 success = 1; /* we're going to change ->state */
1da177e4 1679 cpu = task_cpu(p);
1da177e4 1680
c05fbafb
PZ
1681 if (p->on_rq && ttwu_remote(p, wake_flags))
1682 goto stat;
1da177e4 1683
1da177e4 1684#ifdef CONFIG_SMP
e9c84311 1685 /*
c05fbafb
PZ
1686 * If the owning (remote) cpu is still in the middle of schedule() with
1687 * this task as prev, wait until its done referencing the task.
e9c84311 1688 */
f3e94786 1689 while (p->on_cpu)
e4a52bcb 1690 cpu_relax();
0970d299 1691 /*
e4a52bcb 1692 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1693 */
e4a52bcb 1694 smp_rmb();
1da177e4 1695
a8e4f2ea 1696 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1697 p->state = TASK_WAKING;
e7693a36 1698
e4a52bcb 1699 if (p->sched_class->task_waking)
74f8e4b2 1700 p->sched_class->task_waking(p);
efbbd05a 1701
ac66f547 1702 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1703 if (task_cpu(p) != cpu) {
1704 wake_flags |= WF_MIGRATED;
e4a52bcb 1705 set_task_cpu(p, cpu);
f339b9dc 1706 }
1da177e4 1707#endif /* CONFIG_SMP */
1da177e4 1708
c05fbafb
PZ
1709 ttwu_queue(p, cpu);
1710stat:
b84cb5df 1711 ttwu_stat(p, cpu, wake_flags);
1da177e4 1712out:
013fdb80 1713 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1714
1715 return success;
1716}
1717
21aa9af0
TH
1718/**
1719 * try_to_wake_up_local - try to wake up a local task with rq lock held
1720 * @p: the thread to be awakened
1721 *
2acca55e 1722 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1723 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1724 * the current task.
21aa9af0
TH
1725 */
1726static void try_to_wake_up_local(struct task_struct *p)
1727{
1728 struct rq *rq = task_rq(p);
21aa9af0 1729
383efcd0
TH
1730 if (WARN_ON_ONCE(rq != this_rq()) ||
1731 WARN_ON_ONCE(p == current))
1732 return;
1733
21aa9af0
TH
1734 lockdep_assert_held(&rq->lock);
1735
2acca55e
PZ
1736 if (!raw_spin_trylock(&p->pi_lock)) {
1737 raw_spin_unlock(&rq->lock);
1738 raw_spin_lock(&p->pi_lock);
1739 raw_spin_lock(&rq->lock);
1740 }
1741
21aa9af0 1742 if (!(p->state & TASK_NORMAL))
2acca55e 1743 goto out;
21aa9af0 1744
fd2f4419 1745 if (!p->on_rq)
d7c01d27
PZ
1746 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1747
23f41eeb 1748 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1749 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1750out:
1751 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1752}
1753
50fa610a
DH
1754/**
1755 * wake_up_process - Wake up a specific process
1756 * @p: The process to be woken up.
1757 *
1758 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1759 * processes.
1760 *
1761 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1762 *
1763 * It may be assumed that this function implies a write memory barrier before
1764 * changing the task state if and only if any tasks are woken up.
1765 */
7ad5b3a5 1766int wake_up_process(struct task_struct *p)
1da177e4 1767{
9067ac85
ON
1768 WARN_ON(task_is_stopped_or_traced(p));
1769 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1770}
1da177e4
LT
1771EXPORT_SYMBOL(wake_up_process);
1772
7ad5b3a5 1773int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1774{
1775 return try_to_wake_up(p, state, 0);
1776}
1777
1da177e4
LT
1778/*
1779 * Perform scheduler related setup for a newly forked process p.
1780 * p is forked by current.
dd41f596
IM
1781 *
1782 * __sched_fork() is basic setup used by init_idle() too:
1783 */
5e1576ed 1784static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1785{
fd2f4419
PZ
1786 p->on_rq = 0;
1787
1788 p->se.on_rq = 0;
dd41f596
IM
1789 p->se.exec_start = 0;
1790 p->se.sum_exec_runtime = 0;
f6cf891c 1791 p->se.prev_sum_exec_runtime = 0;
6c594c21 1792 p->se.nr_migrations = 0;
da7a735e 1793 p->se.vruntime = 0;
fd2f4419 1794 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1795
1796#ifdef CONFIG_SCHEDSTATS
41acab88 1797 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1798#endif
476d139c 1799
aab03e05
DF
1800 RB_CLEAR_NODE(&p->dl.rb_node);
1801 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1802 p->dl.dl_runtime = p->dl.runtime = 0;
1803 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1804 p->dl.dl_period = 0;
aab03e05
DF
1805 p->dl.flags = 0;
1806
fa717060 1807 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1808
e107be36
AK
1809#ifdef CONFIG_PREEMPT_NOTIFIERS
1810 INIT_HLIST_HEAD(&p->preempt_notifiers);
1811#endif
cbee9f88
PZ
1812
1813#ifdef CONFIG_NUMA_BALANCING
1814 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1815 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1816 p->mm->numa_scan_seq = 0;
1817 }
1818
5e1576ed
RR
1819 if (clone_flags & CLONE_VM)
1820 p->numa_preferred_nid = current->numa_preferred_nid;
1821 else
1822 p->numa_preferred_nid = -1;
1823
cbee9f88
PZ
1824 p->node_stamp = 0ULL;
1825 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1826 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1827 p->numa_work.next = &p->numa_work;
ff1df896
RR
1828 p->numa_faults_memory = NULL;
1829 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1830 p->last_task_numa_placement = 0;
1831 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1832
1833 INIT_LIST_HEAD(&p->numa_entry);
1834 p->numa_group = NULL;
cbee9f88 1835#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1836}
1837
1a687c2e 1838#ifdef CONFIG_NUMA_BALANCING
3105b86a 1839#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1840void set_numabalancing_state(bool enabled)
1841{
1842 if (enabled)
1843 sched_feat_set("NUMA");
1844 else
1845 sched_feat_set("NO_NUMA");
1846}
3105b86a
MG
1847#else
1848__read_mostly bool numabalancing_enabled;
1849
1850void set_numabalancing_state(bool enabled)
1851{
1852 numabalancing_enabled = enabled;
dd41f596 1853}
3105b86a 1854#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1855
1856#ifdef CONFIG_PROC_SYSCTL
1857int sysctl_numa_balancing(struct ctl_table *table, int write,
1858 void __user *buffer, size_t *lenp, loff_t *ppos)
1859{
1860 struct ctl_table t;
1861 int err;
1862 int state = numabalancing_enabled;
1863
1864 if (write && !capable(CAP_SYS_ADMIN))
1865 return -EPERM;
1866
1867 t = *table;
1868 t.data = &state;
1869 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1870 if (err < 0)
1871 return err;
1872 if (write)
1873 set_numabalancing_state(state);
1874 return err;
1875}
1876#endif
1877#endif
dd41f596
IM
1878
1879/*
1880 * fork()/clone()-time setup:
1881 */
aab03e05 1882int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1883{
0122ec5b 1884 unsigned long flags;
dd41f596
IM
1885 int cpu = get_cpu();
1886
5e1576ed 1887 __sched_fork(clone_flags, p);
06b83b5f 1888 /*
0017d735 1889 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1890 * nobody will actually run it, and a signal or other external
1891 * event cannot wake it up and insert it on the runqueue either.
1892 */
0017d735 1893 p->state = TASK_RUNNING;
dd41f596 1894
c350a04e
MG
1895 /*
1896 * Make sure we do not leak PI boosting priority to the child.
1897 */
1898 p->prio = current->normal_prio;
1899
b9dc29e7
MG
1900 /*
1901 * Revert to default priority/policy on fork if requested.
1902 */
1903 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1904 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1905 p->policy = SCHED_NORMAL;
6c697bdf 1906 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1907 p->rt_priority = 0;
1908 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1909 p->static_prio = NICE_TO_PRIO(0);
1910
1911 p->prio = p->normal_prio = __normal_prio(p);
1912 set_load_weight(p);
6c697bdf 1913
b9dc29e7
MG
1914 /*
1915 * We don't need the reset flag anymore after the fork. It has
1916 * fulfilled its duty:
1917 */
1918 p->sched_reset_on_fork = 0;
1919 }
ca94c442 1920
aab03e05
DF
1921 if (dl_prio(p->prio)) {
1922 put_cpu();
1923 return -EAGAIN;
1924 } else if (rt_prio(p->prio)) {
1925 p->sched_class = &rt_sched_class;
1926 } else {
2ddbf952 1927 p->sched_class = &fair_sched_class;
aab03e05 1928 }
b29739f9 1929
cd29fe6f
PZ
1930 if (p->sched_class->task_fork)
1931 p->sched_class->task_fork(p);
1932
86951599
PZ
1933 /*
1934 * The child is not yet in the pid-hash so no cgroup attach races,
1935 * and the cgroup is pinned to this child due to cgroup_fork()
1936 * is ran before sched_fork().
1937 *
1938 * Silence PROVE_RCU.
1939 */
0122ec5b 1940 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1941 set_task_cpu(p, cpu);
0122ec5b 1942 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1943
52f17b6c 1944#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1945 if (likely(sched_info_on()))
52f17b6c 1946 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1947#endif
3ca7a440
PZ
1948#if defined(CONFIG_SMP)
1949 p->on_cpu = 0;
4866cde0 1950#endif
01028747 1951 init_task_preempt_count(p);
806c09a7 1952#ifdef CONFIG_SMP
917b627d 1953 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1954 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1955#endif
917b627d 1956
476d139c 1957 put_cpu();
aab03e05 1958 return 0;
1da177e4
LT
1959}
1960
332ac17e
DF
1961unsigned long to_ratio(u64 period, u64 runtime)
1962{
1963 if (runtime == RUNTIME_INF)
1964 return 1ULL << 20;
1965
1966 /*
1967 * Doing this here saves a lot of checks in all
1968 * the calling paths, and returning zero seems
1969 * safe for them anyway.
1970 */
1971 if (period == 0)
1972 return 0;
1973
1974 return div64_u64(runtime << 20, period);
1975}
1976
1977#ifdef CONFIG_SMP
1978inline struct dl_bw *dl_bw_of(int i)
1979{
1980 return &cpu_rq(i)->rd->dl_bw;
1981}
1982
de212f18 1983static inline int dl_bw_cpus(int i)
332ac17e 1984{
de212f18
PZ
1985 struct root_domain *rd = cpu_rq(i)->rd;
1986 int cpus = 0;
1987
1988 for_each_cpu_and(i, rd->span, cpu_active_mask)
1989 cpus++;
1990
1991 return cpus;
332ac17e
DF
1992}
1993#else
1994inline struct dl_bw *dl_bw_of(int i)
1995{
1996 return &cpu_rq(i)->dl.dl_bw;
1997}
1998
de212f18 1999static inline int dl_bw_cpus(int i)
332ac17e
DF
2000{
2001 return 1;
2002}
2003#endif
2004
2005static inline
2006void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2007{
2008 dl_b->total_bw -= tsk_bw;
2009}
2010
2011static inline
2012void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2013{
2014 dl_b->total_bw += tsk_bw;
2015}
2016
2017static inline
2018bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2019{
2020 return dl_b->bw != -1 &&
2021 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2022}
2023
2024/*
2025 * We must be sure that accepting a new task (or allowing changing the
2026 * parameters of an existing one) is consistent with the bandwidth
2027 * constraints. If yes, this function also accordingly updates the currently
2028 * allocated bandwidth to reflect the new situation.
2029 *
2030 * This function is called while holding p's rq->lock.
2031 */
2032static int dl_overflow(struct task_struct *p, int policy,
2033 const struct sched_attr *attr)
2034{
2035
2036 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2037 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2038 u64 runtime = attr->sched_runtime;
2039 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2040 int cpus, err = -1;
332ac17e
DF
2041
2042 if (new_bw == p->dl.dl_bw)
2043 return 0;
2044
2045 /*
2046 * Either if a task, enters, leave, or stays -deadline but changes
2047 * its parameters, we may need to update accordingly the total
2048 * allocated bandwidth of the container.
2049 */
2050 raw_spin_lock(&dl_b->lock);
de212f18 2051 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2052 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2053 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2054 __dl_add(dl_b, new_bw);
2055 err = 0;
2056 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2057 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2058 __dl_clear(dl_b, p->dl.dl_bw);
2059 __dl_add(dl_b, new_bw);
2060 err = 0;
2061 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2062 __dl_clear(dl_b, p->dl.dl_bw);
2063 err = 0;
2064 }
2065 raw_spin_unlock(&dl_b->lock);
2066
2067 return err;
2068}
2069
2070extern void init_dl_bw(struct dl_bw *dl_b);
2071
1da177e4
LT
2072/*
2073 * wake_up_new_task - wake up a newly created task for the first time.
2074 *
2075 * This function will do some initial scheduler statistics housekeeping
2076 * that must be done for every newly created context, then puts the task
2077 * on the runqueue and wakes it.
2078 */
3e51e3ed 2079void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2080{
2081 unsigned long flags;
dd41f596 2082 struct rq *rq;
fabf318e 2083
ab2515c4 2084 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2085#ifdef CONFIG_SMP
2086 /*
2087 * Fork balancing, do it here and not earlier because:
2088 * - cpus_allowed can change in the fork path
2089 * - any previously selected cpu might disappear through hotplug
fabf318e 2090 */
ac66f547 2091 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2092#endif
2093
a75cdaa9
AS
2094 /* Initialize new task's runnable average */
2095 init_task_runnable_average(p);
ab2515c4 2096 rq = __task_rq_lock(p);
cd29fe6f 2097 activate_task(rq, p, 0);
fd2f4419 2098 p->on_rq = 1;
89363381 2099 trace_sched_wakeup_new(p, true);
a7558e01 2100 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2101#ifdef CONFIG_SMP
efbbd05a
PZ
2102 if (p->sched_class->task_woken)
2103 p->sched_class->task_woken(rq, p);
9a897c5a 2104#endif
0122ec5b 2105 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2106}
2107
e107be36
AK
2108#ifdef CONFIG_PREEMPT_NOTIFIERS
2109
2110/**
80dd99b3 2111 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2112 * @notifier: notifier struct to register
e107be36
AK
2113 */
2114void preempt_notifier_register(struct preempt_notifier *notifier)
2115{
2116 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2117}
2118EXPORT_SYMBOL_GPL(preempt_notifier_register);
2119
2120/**
2121 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2122 * @notifier: notifier struct to unregister
e107be36
AK
2123 *
2124 * This is safe to call from within a preemption notifier.
2125 */
2126void preempt_notifier_unregister(struct preempt_notifier *notifier)
2127{
2128 hlist_del(&notifier->link);
2129}
2130EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2131
2132static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2133{
2134 struct preempt_notifier *notifier;
e107be36 2135
b67bfe0d 2136 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2137 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2138}
2139
2140static void
2141fire_sched_out_preempt_notifiers(struct task_struct *curr,
2142 struct task_struct *next)
2143{
2144 struct preempt_notifier *notifier;
e107be36 2145
b67bfe0d 2146 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2147 notifier->ops->sched_out(notifier, next);
2148}
2149
6d6bc0ad 2150#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2151
2152static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2153{
2154}
2155
2156static void
2157fire_sched_out_preempt_notifiers(struct task_struct *curr,
2158 struct task_struct *next)
2159{
2160}
2161
6d6bc0ad 2162#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2163
4866cde0
NP
2164/**
2165 * prepare_task_switch - prepare to switch tasks
2166 * @rq: the runqueue preparing to switch
421cee29 2167 * @prev: the current task that is being switched out
4866cde0
NP
2168 * @next: the task we are going to switch to.
2169 *
2170 * This is called with the rq lock held and interrupts off. It must
2171 * be paired with a subsequent finish_task_switch after the context
2172 * switch.
2173 *
2174 * prepare_task_switch sets up locking and calls architecture specific
2175 * hooks.
2176 */
e107be36
AK
2177static inline void
2178prepare_task_switch(struct rq *rq, struct task_struct *prev,
2179 struct task_struct *next)
4866cde0 2180{
895dd92c 2181 trace_sched_switch(prev, next);
43148951 2182 sched_info_switch(rq, prev, next);
fe4b04fa 2183 perf_event_task_sched_out(prev, next);
e107be36 2184 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2185 prepare_lock_switch(rq, next);
2186 prepare_arch_switch(next);
2187}
2188
1da177e4
LT
2189/**
2190 * finish_task_switch - clean up after a task-switch
344babaa 2191 * @rq: runqueue associated with task-switch
1da177e4
LT
2192 * @prev: the thread we just switched away from.
2193 *
4866cde0
NP
2194 * finish_task_switch must be called after the context switch, paired
2195 * with a prepare_task_switch call before the context switch.
2196 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2197 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2198 *
2199 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2200 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2201 * with the lock held can cause deadlocks; see schedule() for
2202 * details.)
2203 */
a9957449 2204static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2205 __releases(rq->lock)
2206{
1da177e4 2207 struct mm_struct *mm = rq->prev_mm;
55a101f8 2208 long prev_state;
1da177e4
LT
2209
2210 rq->prev_mm = NULL;
2211
2212 /*
2213 * A task struct has one reference for the use as "current".
c394cc9f 2214 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2215 * schedule one last time. The schedule call will never return, and
2216 * the scheduled task must drop that reference.
c394cc9f 2217 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2218 * still held, otherwise prev could be scheduled on another cpu, die
2219 * there before we look at prev->state, and then the reference would
2220 * be dropped twice.
2221 * Manfred Spraul <manfred@colorfullife.com>
2222 */
55a101f8 2223 prev_state = prev->state;
bf9fae9f 2224 vtime_task_switch(prev);
4866cde0 2225 finish_arch_switch(prev);
a8d757ef 2226 perf_event_task_sched_in(prev, current);
4866cde0 2227 finish_lock_switch(rq, prev);
01f23e16 2228 finish_arch_post_lock_switch();
e8fa1362 2229
e107be36 2230 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2231 if (mm)
2232 mmdrop(mm);
c394cc9f 2233 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2234 if (prev->sched_class->task_dead)
2235 prev->sched_class->task_dead(prev);
2236
c6fd91f0 2237 /*
2238 * Remove function-return probe instances associated with this
2239 * task and put them back on the free list.
9761eea8 2240 */
c6fd91f0 2241 kprobe_flush_task(prev);
1da177e4 2242 put_task_struct(prev);
c6fd91f0 2243 }
99e5ada9
FW
2244
2245 tick_nohz_task_switch(current);
1da177e4
LT
2246}
2247
3f029d3c
GH
2248#ifdef CONFIG_SMP
2249
3f029d3c
GH
2250/* rq->lock is NOT held, but preemption is disabled */
2251static inline void post_schedule(struct rq *rq)
2252{
2253 if (rq->post_schedule) {
2254 unsigned long flags;
2255
05fa785c 2256 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2257 if (rq->curr->sched_class->post_schedule)
2258 rq->curr->sched_class->post_schedule(rq);
05fa785c 2259 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2260
2261 rq->post_schedule = 0;
2262 }
2263}
2264
2265#else
da19ab51 2266
3f029d3c
GH
2267static inline void post_schedule(struct rq *rq)
2268{
1da177e4
LT
2269}
2270
3f029d3c
GH
2271#endif
2272
1da177e4
LT
2273/**
2274 * schedule_tail - first thing a freshly forked thread must call.
2275 * @prev: the thread we just switched away from.
2276 */
722a9f92 2277asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2278 __releases(rq->lock)
2279{
70b97a7f
IM
2280 struct rq *rq = this_rq();
2281
4866cde0 2282 finish_task_switch(rq, prev);
da19ab51 2283
3f029d3c
GH
2284 /*
2285 * FIXME: do we need to worry about rq being invalidated by the
2286 * task_switch?
2287 */
2288 post_schedule(rq);
70b97a7f 2289
4866cde0
NP
2290#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2291 /* In this case, finish_task_switch does not reenable preemption */
2292 preempt_enable();
2293#endif
1da177e4 2294 if (current->set_child_tid)
b488893a 2295 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2296}
2297
2298/*
2299 * context_switch - switch to the new MM and the new
2300 * thread's register state.
2301 */
dd41f596 2302static inline void
70b97a7f 2303context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2304 struct task_struct *next)
1da177e4 2305{
dd41f596 2306 struct mm_struct *mm, *oldmm;
1da177e4 2307
e107be36 2308 prepare_task_switch(rq, prev, next);
fe4b04fa 2309
dd41f596
IM
2310 mm = next->mm;
2311 oldmm = prev->active_mm;
9226d125
ZA
2312 /*
2313 * For paravirt, this is coupled with an exit in switch_to to
2314 * combine the page table reload and the switch backend into
2315 * one hypercall.
2316 */
224101ed 2317 arch_start_context_switch(prev);
9226d125 2318
31915ab4 2319 if (!mm) {
1da177e4
LT
2320 next->active_mm = oldmm;
2321 atomic_inc(&oldmm->mm_count);
2322 enter_lazy_tlb(oldmm, next);
2323 } else
2324 switch_mm(oldmm, mm, next);
2325
31915ab4 2326 if (!prev->mm) {
1da177e4 2327 prev->active_mm = NULL;
1da177e4
LT
2328 rq->prev_mm = oldmm;
2329 }
3a5f5e48
IM
2330 /*
2331 * Since the runqueue lock will be released by the next
2332 * task (which is an invalid locking op but in the case
2333 * of the scheduler it's an obvious special-case), so we
2334 * do an early lockdep release here:
2335 */
2336#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2337 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2338#endif
1da177e4 2339
91d1aa43 2340 context_tracking_task_switch(prev, next);
1da177e4
LT
2341 /* Here we just switch the register state and the stack. */
2342 switch_to(prev, next, prev);
2343
dd41f596
IM
2344 barrier();
2345 /*
2346 * this_rq must be evaluated again because prev may have moved
2347 * CPUs since it called schedule(), thus the 'rq' on its stack
2348 * frame will be invalid.
2349 */
2350 finish_task_switch(this_rq(), prev);
1da177e4
LT
2351}
2352
2353/*
1c3e8264 2354 * nr_running and nr_context_switches:
1da177e4
LT
2355 *
2356 * externally visible scheduler statistics: current number of runnable
1c3e8264 2357 * threads, total number of context switches performed since bootup.
1da177e4
LT
2358 */
2359unsigned long nr_running(void)
2360{
2361 unsigned long i, sum = 0;
2362
2363 for_each_online_cpu(i)
2364 sum += cpu_rq(i)->nr_running;
2365
2366 return sum;
f711f609 2367}
1da177e4 2368
1da177e4 2369unsigned long long nr_context_switches(void)
46cb4b7c 2370{
cc94abfc
SR
2371 int i;
2372 unsigned long long sum = 0;
46cb4b7c 2373
0a945022 2374 for_each_possible_cpu(i)
1da177e4 2375 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2376
1da177e4
LT
2377 return sum;
2378}
483b4ee6 2379
1da177e4
LT
2380unsigned long nr_iowait(void)
2381{
2382 unsigned long i, sum = 0;
483b4ee6 2383
0a945022 2384 for_each_possible_cpu(i)
1da177e4 2385 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2386
1da177e4
LT
2387 return sum;
2388}
483b4ee6 2389
8c215bd3 2390unsigned long nr_iowait_cpu(int cpu)
69d25870 2391{
8c215bd3 2392 struct rq *this = cpu_rq(cpu);
69d25870
AV
2393 return atomic_read(&this->nr_iowait);
2394}
46cb4b7c 2395
dd41f596 2396#ifdef CONFIG_SMP
8a0be9ef 2397
46cb4b7c 2398/*
38022906
PZ
2399 * sched_exec - execve() is a valuable balancing opportunity, because at
2400 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2401 */
38022906 2402void sched_exec(void)
46cb4b7c 2403{
38022906 2404 struct task_struct *p = current;
1da177e4 2405 unsigned long flags;
0017d735 2406 int dest_cpu;
46cb4b7c 2407
8f42ced9 2408 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2409 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2410 if (dest_cpu == smp_processor_id())
2411 goto unlock;
38022906 2412
8f42ced9 2413 if (likely(cpu_active(dest_cpu))) {
969c7921 2414 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2415
8f42ced9
PZ
2416 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2417 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2418 return;
2419 }
0017d735 2420unlock:
8f42ced9 2421 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2422}
dd41f596 2423
1da177e4
LT
2424#endif
2425
1da177e4 2426DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2427DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2428
2429EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2430EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2431
2432/*
c5f8d995 2433 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2434 * @p in case that task is currently running.
c5f8d995
HS
2435 *
2436 * Called with task_rq_lock() held on @rq.
1da177e4 2437 */
c5f8d995
HS
2438static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2439{
2440 u64 ns = 0;
2441
4036ac15
MG
2442 /*
2443 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2444 * project cycles that may never be accounted to this
2445 * thread, breaking clock_gettime().
2446 */
2447 if (task_current(rq, p) && p->on_rq) {
c5f8d995 2448 update_rq_clock(rq);
78becc27 2449 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2450 if ((s64)ns < 0)
2451 ns = 0;
2452 }
2453
2454 return ns;
2455}
2456
bb34d92f 2457unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2458{
1da177e4 2459 unsigned long flags;
41b86e9c 2460 struct rq *rq;
bb34d92f 2461 u64 ns = 0;
48f24c4d 2462
41b86e9c 2463 rq = task_rq_lock(p, &flags);
c5f8d995 2464 ns = do_task_delta_exec(p, rq);
0122ec5b 2465 task_rq_unlock(rq, p, &flags);
1508487e 2466
c5f8d995
HS
2467 return ns;
2468}
f06febc9 2469
c5f8d995
HS
2470/*
2471 * Return accounted runtime for the task.
2472 * In case the task is currently running, return the runtime plus current's
2473 * pending runtime that have not been accounted yet.
2474 */
2475unsigned long long task_sched_runtime(struct task_struct *p)
2476{
2477 unsigned long flags;
2478 struct rq *rq;
2479 u64 ns = 0;
2480
911b2898
PZ
2481#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2482 /*
2483 * 64-bit doesn't need locks to atomically read a 64bit value.
2484 * So we have a optimization chance when the task's delta_exec is 0.
2485 * Reading ->on_cpu is racy, but this is ok.
2486 *
2487 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2488 * If we race with it entering cpu, unaccounted time is 0. This is
2489 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2490 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2491 * been accounted, so we're correct here as well.
911b2898 2492 */
4036ac15 2493 if (!p->on_cpu || !p->on_rq)
911b2898
PZ
2494 return p->se.sum_exec_runtime;
2495#endif
2496
c5f8d995
HS
2497 rq = task_rq_lock(p, &flags);
2498 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2499 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2500
2501 return ns;
2502}
48f24c4d 2503
7835b98b
CL
2504/*
2505 * This function gets called by the timer code, with HZ frequency.
2506 * We call it with interrupts disabled.
7835b98b
CL
2507 */
2508void scheduler_tick(void)
2509{
7835b98b
CL
2510 int cpu = smp_processor_id();
2511 struct rq *rq = cpu_rq(cpu);
dd41f596 2512 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2513
2514 sched_clock_tick();
dd41f596 2515
05fa785c 2516 raw_spin_lock(&rq->lock);
3e51f33f 2517 update_rq_clock(rq);
fa85ae24 2518 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2519 update_cpu_load_active(rq);
05fa785c 2520 raw_spin_unlock(&rq->lock);
7835b98b 2521
e9d2b064 2522 perf_event_task_tick();
e220d2dc 2523
e418e1c2 2524#ifdef CONFIG_SMP
6eb57e0d 2525 rq->idle_balance = idle_cpu(cpu);
7caff66f 2526 trigger_load_balance(rq);
e418e1c2 2527#endif
265f22a9 2528 rq_last_tick_reset(rq);
1da177e4
LT
2529}
2530
265f22a9
FW
2531#ifdef CONFIG_NO_HZ_FULL
2532/**
2533 * scheduler_tick_max_deferment
2534 *
2535 * Keep at least one tick per second when a single
2536 * active task is running because the scheduler doesn't
2537 * yet completely support full dynticks environment.
2538 *
2539 * This makes sure that uptime, CFS vruntime, load
2540 * balancing, etc... continue to move forward, even
2541 * with a very low granularity.
e69f6186
YB
2542 *
2543 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2544 */
2545u64 scheduler_tick_max_deferment(void)
2546{
2547 struct rq *rq = this_rq();
2548 unsigned long next, now = ACCESS_ONCE(jiffies);
2549
2550 next = rq->last_sched_tick + HZ;
2551
2552 if (time_before_eq(next, now))
2553 return 0;
2554
8fe8ff09 2555 return jiffies_to_nsecs(next - now);
1da177e4 2556}
265f22a9 2557#endif
1da177e4 2558
132380a0 2559notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2560{
2561 if (in_lock_functions(addr)) {
2562 addr = CALLER_ADDR2;
2563 if (in_lock_functions(addr))
2564 addr = CALLER_ADDR3;
2565 }
2566 return addr;
2567}
1da177e4 2568
7e49fcce
SR
2569#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2570 defined(CONFIG_PREEMPT_TRACER))
2571
edafe3a5 2572void preempt_count_add(int val)
1da177e4 2573{
6cd8a4bb 2574#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2575 /*
2576 * Underflow?
2577 */
9a11b49a
IM
2578 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2579 return;
6cd8a4bb 2580#endif
bdb43806 2581 __preempt_count_add(val);
6cd8a4bb 2582#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2583 /*
2584 * Spinlock count overflowing soon?
2585 */
33859f7f
MOS
2586 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2587 PREEMPT_MASK - 10);
6cd8a4bb 2588#endif
8f47b187
TG
2589 if (preempt_count() == val) {
2590 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2591#ifdef CONFIG_DEBUG_PREEMPT
2592 current->preempt_disable_ip = ip;
2593#endif
2594 trace_preempt_off(CALLER_ADDR0, ip);
2595 }
1da177e4 2596}
bdb43806 2597EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2598NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2599
edafe3a5 2600void preempt_count_sub(int val)
1da177e4 2601{
6cd8a4bb 2602#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2603 /*
2604 * Underflow?
2605 */
01e3eb82 2606 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2607 return;
1da177e4
LT
2608 /*
2609 * Is the spinlock portion underflowing?
2610 */
9a11b49a
IM
2611 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2612 !(preempt_count() & PREEMPT_MASK)))
2613 return;
6cd8a4bb 2614#endif
9a11b49a 2615
6cd8a4bb
SR
2616 if (preempt_count() == val)
2617 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2618 __preempt_count_sub(val);
1da177e4 2619}
bdb43806 2620EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2621NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2622
2623#endif
2624
2625/*
dd41f596 2626 * Print scheduling while atomic bug:
1da177e4 2627 */
dd41f596 2628static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2629{
664dfa65
DJ
2630 if (oops_in_progress)
2631 return;
2632
3df0fc5b
PZ
2633 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2634 prev->comm, prev->pid, preempt_count());
838225b4 2635
dd41f596 2636 debug_show_held_locks(prev);
e21f5b15 2637 print_modules();
dd41f596
IM
2638 if (irqs_disabled())
2639 print_irqtrace_events(prev);
8f47b187
TG
2640#ifdef CONFIG_DEBUG_PREEMPT
2641 if (in_atomic_preempt_off()) {
2642 pr_err("Preemption disabled at:");
2643 print_ip_sym(current->preempt_disable_ip);
2644 pr_cont("\n");
2645 }
2646#endif
6135fc1e 2647 dump_stack();
373d4d09 2648 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2649}
1da177e4 2650
dd41f596
IM
2651/*
2652 * Various schedule()-time debugging checks and statistics:
2653 */
2654static inline void schedule_debug(struct task_struct *prev)
2655{
1da177e4 2656 /*
41a2d6cf 2657 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2658 * schedule() atomically, we ignore that path. Otherwise whine
2659 * if we are scheduling when we should not.
1da177e4 2660 */
192301e7 2661 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2662 __schedule_bug(prev);
b3fbab05 2663 rcu_sleep_check();
dd41f596 2664
1da177e4
LT
2665 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2666
2d72376b 2667 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2668}
2669
2670/*
2671 * Pick up the highest-prio task:
2672 */
2673static inline struct task_struct *
606dba2e 2674pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2675{
37e117c0 2676 const struct sched_class *class = &fair_sched_class;
dd41f596 2677 struct task_struct *p;
1da177e4
LT
2678
2679 /*
dd41f596
IM
2680 * Optimization: we know that if all tasks are in
2681 * the fair class we can call that function directly:
1da177e4 2682 */
37e117c0 2683 if (likely(prev->sched_class == class &&
38033c37 2684 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2685 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2686 if (unlikely(p == RETRY_TASK))
2687 goto again;
2688
2689 /* assumes fair_sched_class->next == idle_sched_class */
2690 if (unlikely(!p))
2691 p = idle_sched_class.pick_next_task(rq, prev);
2692
2693 return p;
1da177e4
LT
2694 }
2695
37e117c0 2696again:
34f971f6 2697 for_each_class(class) {
606dba2e 2698 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2699 if (p) {
2700 if (unlikely(p == RETRY_TASK))
2701 goto again;
dd41f596 2702 return p;
37e117c0 2703 }
dd41f596 2704 }
34f971f6
PZ
2705
2706 BUG(); /* the idle class will always have a runnable task */
dd41f596 2707}
1da177e4 2708
dd41f596 2709/*
c259e01a 2710 * __schedule() is the main scheduler function.
edde96ea
PE
2711 *
2712 * The main means of driving the scheduler and thus entering this function are:
2713 *
2714 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2715 *
2716 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2717 * paths. For example, see arch/x86/entry_64.S.
2718 *
2719 * To drive preemption between tasks, the scheduler sets the flag in timer
2720 * interrupt handler scheduler_tick().
2721 *
2722 * 3. Wakeups don't really cause entry into schedule(). They add a
2723 * task to the run-queue and that's it.
2724 *
2725 * Now, if the new task added to the run-queue preempts the current
2726 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2727 * called on the nearest possible occasion:
2728 *
2729 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2730 *
2731 * - in syscall or exception context, at the next outmost
2732 * preempt_enable(). (this might be as soon as the wake_up()'s
2733 * spin_unlock()!)
2734 *
2735 * - in IRQ context, return from interrupt-handler to
2736 * preemptible context
2737 *
2738 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2739 * then at the next:
2740 *
2741 * - cond_resched() call
2742 * - explicit schedule() call
2743 * - return from syscall or exception to user-space
2744 * - return from interrupt-handler to user-space
dd41f596 2745 */
c259e01a 2746static void __sched __schedule(void)
dd41f596
IM
2747{
2748 struct task_struct *prev, *next;
67ca7bde 2749 unsigned long *switch_count;
dd41f596 2750 struct rq *rq;
31656519 2751 int cpu;
dd41f596 2752
ff743345
PZ
2753need_resched:
2754 preempt_disable();
dd41f596
IM
2755 cpu = smp_processor_id();
2756 rq = cpu_rq(cpu);
25502a6c 2757 rcu_note_context_switch(cpu);
dd41f596 2758 prev = rq->curr;
dd41f596 2759
dd41f596 2760 schedule_debug(prev);
1da177e4 2761
31656519 2762 if (sched_feat(HRTICK))
f333fdc9 2763 hrtick_clear(rq);
8f4d37ec 2764
e0acd0a6
ON
2765 /*
2766 * Make sure that signal_pending_state()->signal_pending() below
2767 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2768 * done by the caller to avoid the race with signal_wake_up().
2769 */
2770 smp_mb__before_spinlock();
05fa785c 2771 raw_spin_lock_irq(&rq->lock);
1da177e4 2772
246d86b5 2773 switch_count = &prev->nivcsw;
1da177e4 2774 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2775 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2776 prev->state = TASK_RUNNING;
21aa9af0 2777 } else {
2acca55e
PZ
2778 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2779 prev->on_rq = 0;
2780
21aa9af0 2781 /*
2acca55e
PZ
2782 * If a worker went to sleep, notify and ask workqueue
2783 * whether it wants to wake up a task to maintain
2784 * concurrency.
21aa9af0
TH
2785 */
2786 if (prev->flags & PF_WQ_WORKER) {
2787 struct task_struct *to_wakeup;
2788
2789 to_wakeup = wq_worker_sleeping(prev, cpu);
2790 if (to_wakeup)
2791 try_to_wake_up_local(to_wakeup);
2792 }
21aa9af0 2793 }
dd41f596 2794 switch_count = &prev->nvcsw;
1da177e4
LT
2795 }
2796
606dba2e
PZ
2797 if (prev->on_rq || rq->skip_clock_update < 0)
2798 update_rq_clock(rq);
2799
2800 next = pick_next_task(rq, prev);
f26f9aff 2801 clear_tsk_need_resched(prev);
f27dde8d 2802 clear_preempt_need_resched();
f26f9aff 2803 rq->skip_clock_update = 0;
1da177e4 2804
1da177e4 2805 if (likely(prev != next)) {
1da177e4
LT
2806 rq->nr_switches++;
2807 rq->curr = next;
2808 ++*switch_count;
2809
dd41f596 2810 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2811 /*
246d86b5
ON
2812 * The context switch have flipped the stack from under us
2813 * and restored the local variables which were saved when
2814 * this task called schedule() in the past. prev == current
2815 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2816 */
2817 cpu = smp_processor_id();
2818 rq = cpu_rq(cpu);
1da177e4 2819 } else
05fa785c 2820 raw_spin_unlock_irq(&rq->lock);
1da177e4 2821
3f029d3c 2822 post_schedule(rq);
1da177e4 2823
ba74c144 2824 sched_preempt_enable_no_resched();
ff743345 2825 if (need_resched())
1da177e4
LT
2826 goto need_resched;
2827}
c259e01a 2828
9c40cef2
TG
2829static inline void sched_submit_work(struct task_struct *tsk)
2830{
3c7d5184 2831 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2832 return;
2833 /*
2834 * If we are going to sleep and we have plugged IO queued,
2835 * make sure to submit it to avoid deadlocks.
2836 */
2837 if (blk_needs_flush_plug(tsk))
2838 blk_schedule_flush_plug(tsk);
2839}
2840
722a9f92 2841asmlinkage __visible void __sched schedule(void)
c259e01a 2842{
9c40cef2
TG
2843 struct task_struct *tsk = current;
2844
2845 sched_submit_work(tsk);
c259e01a
TG
2846 __schedule();
2847}
1da177e4
LT
2848EXPORT_SYMBOL(schedule);
2849
91d1aa43 2850#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2851asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2852{
2853 /*
2854 * If we come here after a random call to set_need_resched(),
2855 * or we have been woken up remotely but the IPI has not yet arrived,
2856 * we haven't yet exited the RCU idle mode. Do it here manually until
2857 * we find a better solution.
2858 */
91d1aa43 2859 user_exit();
20ab65e3 2860 schedule();
91d1aa43 2861 user_enter();
20ab65e3
FW
2862}
2863#endif
2864
c5491ea7
TG
2865/**
2866 * schedule_preempt_disabled - called with preemption disabled
2867 *
2868 * Returns with preemption disabled. Note: preempt_count must be 1
2869 */
2870void __sched schedule_preempt_disabled(void)
2871{
ba74c144 2872 sched_preempt_enable_no_resched();
c5491ea7
TG
2873 schedule();
2874 preempt_disable();
2875}
2876
1da177e4
LT
2877#ifdef CONFIG_PREEMPT
2878/*
2ed6e34f 2879 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2880 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2881 * occur there and call schedule directly.
2882 */
722a9f92 2883asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2884{
1da177e4
LT
2885 /*
2886 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2887 * we do not want to preempt the current task. Just return..
1da177e4 2888 */
fbb00b56 2889 if (likely(!preemptible()))
1da177e4
LT
2890 return;
2891
3a5c359a 2892 do {
bdb43806 2893 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2894 __schedule();
bdb43806 2895 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2896
3a5c359a
AK
2897 /*
2898 * Check again in case we missed a preemption opportunity
2899 * between schedule and now.
2900 */
2901 barrier();
5ed0cec0 2902 } while (need_resched());
1da177e4 2903}
376e2424 2904NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2905EXPORT_SYMBOL(preempt_schedule);
32e475d7 2906#endif /* CONFIG_PREEMPT */
1da177e4
LT
2907
2908/*
2ed6e34f 2909 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2910 * off of irq context.
2911 * Note, that this is called and return with irqs disabled. This will
2912 * protect us against recursive calling from irq.
2913 */
722a9f92 2914asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2915{
b22366cd 2916 enum ctx_state prev_state;
6478d880 2917
2ed6e34f 2918 /* Catch callers which need to be fixed */
f27dde8d 2919 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2920
b22366cd
FW
2921 prev_state = exception_enter();
2922
3a5c359a 2923 do {
bdb43806 2924 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2925 local_irq_enable();
c259e01a 2926 __schedule();
3a5c359a 2927 local_irq_disable();
bdb43806 2928 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2929
3a5c359a
AK
2930 /*
2931 * Check again in case we missed a preemption opportunity
2932 * between schedule and now.
2933 */
2934 barrier();
5ed0cec0 2935 } while (need_resched());
b22366cd
FW
2936
2937 exception_exit(prev_state);
1da177e4
LT
2938}
2939
63859d4f 2940int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2941 void *key)
1da177e4 2942{
63859d4f 2943 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2944}
1da177e4
LT
2945EXPORT_SYMBOL(default_wake_function);
2946
b29739f9
IM
2947#ifdef CONFIG_RT_MUTEXES
2948
2949/*
2950 * rt_mutex_setprio - set the current priority of a task
2951 * @p: task
2952 * @prio: prio value (kernel-internal form)
2953 *
2954 * This function changes the 'effective' priority of a task. It does
2955 * not touch ->normal_prio like __setscheduler().
2956 *
c365c292
TG
2957 * Used by the rt_mutex code to implement priority inheritance
2958 * logic. Call site only calls if the priority of the task changed.
b29739f9 2959 */
36c8b586 2960void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2961{
2d3d891d 2962 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2963 struct rq *rq;
83ab0aa0 2964 const struct sched_class *prev_class;
b29739f9 2965
aab03e05 2966 BUG_ON(prio > MAX_PRIO);
b29739f9 2967
0122ec5b 2968 rq = __task_rq_lock(p);
b29739f9 2969
1c4dd99b
TG
2970 /*
2971 * Idle task boosting is a nono in general. There is one
2972 * exception, when PREEMPT_RT and NOHZ is active:
2973 *
2974 * The idle task calls get_next_timer_interrupt() and holds
2975 * the timer wheel base->lock on the CPU and another CPU wants
2976 * to access the timer (probably to cancel it). We can safely
2977 * ignore the boosting request, as the idle CPU runs this code
2978 * with interrupts disabled and will complete the lock
2979 * protected section without being interrupted. So there is no
2980 * real need to boost.
2981 */
2982 if (unlikely(p == rq->idle)) {
2983 WARN_ON(p != rq->curr);
2984 WARN_ON(p->pi_blocked_on);
2985 goto out_unlock;
2986 }
2987
a8027073 2988 trace_sched_pi_setprio(p, prio);
d5f9f942 2989 oldprio = p->prio;
83ab0aa0 2990 prev_class = p->sched_class;
fd2f4419 2991 on_rq = p->on_rq;
051a1d1a 2992 running = task_current(rq, p);
0e1f3483 2993 if (on_rq)
69be72c1 2994 dequeue_task(rq, p, 0);
0e1f3483
HS
2995 if (running)
2996 p->sched_class->put_prev_task(rq, p);
dd41f596 2997
2d3d891d
DF
2998 /*
2999 * Boosting condition are:
3000 * 1. -rt task is running and holds mutex A
3001 * --> -dl task blocks on mutex A
3002 *
3003 * 2. -dl task is running and holds mutex A
3004 * --> -dl task blocks on mutex A and could preempt the
3005 * running task
3006 */
3007 if (dl_prio(prio)) {
466af29b
ON
3008 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3009 if (!dl_prio(p->normal_prio) ||
3010 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3011 p->dl.dl_boosted = 1;
3012 p->dl.dl_throttled = 0;
3013 enqueue_flag = ENQUEUE_REPLENISH;
3014 } else
3015 p->dl.dl_boosted = 0;
aab03e05 3016 p->sched_class = &dl_sched_class;
2d3d891d
DF
3017 } else if (rt_prio(prio)) {
3018 if (dl_prio(oldprio))
3019 p->dl.dl_boosted = 0;
3020 if (oldprio < prio)
3021 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3022 p->sched_class = &rt_sched_class;
2d3d891d
DF
3023 } else {
3024 if (dl_prio(oldprio))
3025 p->dl.dl_boosted = 0;
dd41f596 3026 p->sched_class = &fair_sched_class;
2d3d891d 3027 }
dd41f596 3028
b29739f9
IM
3029 p->prio = prio;
3030
0e1f3483
HS
3031 if (running)
3032 p->sched_class->set_curr_task(rq);
da7a735e 3033 if (on_rq)
2d3d891d 3034 enqueue_task(rq, p, enqueue_flag);
cb469845 3035
da7a735e 3036 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3037out_unlock:
0122ec5b 3038 __task_rq_unlock(rq);
b29739f9 3039}
b29739f9 3040#endif
d50dde5a 3041
36c8b586 3042void set_user_nice(struct task_struct *p, long nice)
1da177e4 3043{
dd41f596 3044 int old_prio, delta, on_rq;
1da177e4 3045 unsigned long flags;
70b97a7f 3046 struct rq *rq;
1da177e4 3047
75e45d51 3048 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3049 return;
3050 /*
3051 * We have to be careful, if called from sys_setpriority(),
3052 * the task might be in the middle of scheduling on another CPU.
3053 */
3054 rq = task_rq_lock(p, &flags);
3055 /*
3056 * The RT priorities are set via sched_setscheduler(), but we still
3057 * allow the 'normal' nice value to be set - but as expected
3058 * it wont have any effect on scheduling until the task is
aab03e05 3059 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3060 */
aab03e05 3061 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3062 p->static_prio = NICE_TO_PRIO(nice);
3063 goto out_unlock;
3064 }
fd2f4419 3065 on_rq = p->on_rq;
c09595f6 3066 if (on_rq)
69be72c1 3067 dequeue_task(rq, p, 0);
1da177e4 3068
1da177e4 3069 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3070 set_load_weight(p);
b29739f9
IM
3071 old_prio = p->prio;
3072 p->prio = effective_prio(p);
3073 delta = p->prio - old_prio;
1da177e4 3074
dd41f596 3075 if (on_rq) {
371fd7e7 3076 enqueue_task(rq, p, 0);
1da177e4 3077 /*
d5f9f942
AM
3078 * If the task increased its priority or is running and
3079 * lowered its priority, then reschedule its CPU:
1da177e4 3080 */
d5f9f942 3081 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3082 resched_curr(rq);
1da177e4
LT
3083 }
3084out_unlock:
0122ec5b 3085 task_rq_unlock(rq, p, &flags);
1da177e4 3086}
1da177e4
LT
3087EXPORT_SYMBOL(set_user_nice);
3088
e43379f1
MM
3089/*
3090 * can_nice - check if a task can reduce its nice value
3091 * @p: task
3092 * @nice: nice value
3093 */
36c8b586 3094int can_nice(const struct task_struct *p, const int nice)
e43379f1 3095{
024f4747 3096 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3097 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3098
78d7d407 3099 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3100 capable(CAP_SYS_NICE));
3101}
3102
1da177e4
LT
3103#ifdef __ARCH_WANT_SYS_NICE
3104
3105/*
3106 * sys_nice - change the priority of the current process.
3107 * @increment: priority increment
3108 *
3109 * sys_setpriority is a more generic, but much slower function that
3110 * does similar things.
3111 */
5add95d4 3112SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3113{
48f24c4d 3114 long nice, retval;
1da177e4
LT
3115
3116 /*
3117 * Setpriority might change our priority at the same moment.
3118 * We don't have to worry. Conceptually one call occurs first
3119 * and we have a single winner.
3120 */
a9467fa3 3121 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3122 nice = task_nice(current) + increment;
1da177e4 3123
a9467fa3 3124 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3125 if (increment < 0 && !can_nice(current, nice))
3126 return -EPERM;
3127
1da177e4
LT
3128 retval = security_task_setnice(current, nice);
3129 if (retval)
3130 return retval;
3131
3132 set_user_nice(current, nice);
3133 return 0;
3134}
3135
3136#endif
3137
3138/**
3139 * task_prio - return the priority value of a given task.
3140 * @p: the task in question.
3141 *
e69f6186 3142 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3143 * RT tasks are offset by -200. Normal tasks are centered
3144 * around 0, value goes from -16 to +15.
3145 */
36c8b586 3146int task_prio(const struct task_struct *p)
1da177e4
LT
3147{
3148 return p->prio - MAX_RT_PRIO;
3149}
3150
1da177e4
LT
3151/**
3152 * idle_cpu - is a given cpu idle currently?
3153 * @cpu: the processor in question.
e69f6186
YB
3154 *
3155 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3156 */
3157int idle_cpu(int cpu)
3158{
908a3283
TG
3159 struct rq *rq = cpu_rq(cpu);
3160
3161 if (rq->curr != rq->idle)
3162 return 0;
3163
3164 if (rq->nr_running)
3165 return 0;
3166
3167#ifdef CONFIG_SMP
3168 if (!llist_empty(&rq->wake_list))
3169 return 0;
3170#endif
3171
3172 return 1;
1da177e4
LT
3173}
3174
1da177e4
LT
3175/**
3176 * idle_task - return the idle task for a given cpu.
3177 * @cpu: the processor in question.
e69f6186
YB
3178 *
3179 * Return: The idle task for the cpu @cpu.
1da177e4 3180 */
36c8b586 3181struct task_struct *idle_task(int cpu)
1da177e4
LT
3182{
3183 return cpu_rq(cpu)->idle;
3184}
3185
3186/**
3187 * find_process_by_pid - find a process with a matching PID value.
3188 * @pid: the pid in question.
e69f6186
YB
3189 *
3190 * The task of @pid, if found. %NULL otherwise.
1da177e4 3191 */
a9957449 3192static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3193{
228ebcbe 3194 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3195}
3196
aab03e05
DF
3197/*
3198 * This function initializes the sched_dl_entity of a newly becoming
3199 * SCHED_DEADLINE task.
3200 *
3201 * Only the static values are considered here, the actual runtime and the
3202 * absolute deadline will be properly calculated when the task is enqueued
3203 * for the first time with its new policy.
3204 */
3205static void
3206__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3207{
3208 struct sched_dl_entity *dl_se = &p->dl;
3209
3210 init_dl_task_timer(dl_se);
3211 dl_se->dl_runtime = attr->sched_runtime;
3212 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3213 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3214 dl_se->flags = attr->sched_flags;
332ac17e 3215 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3216 dl_se->dl_throttled = 0;
3217 dl_se->dl_new = 1;
5bfd126e 3218 dl_se->dl_yielded = 0;
aab03e05
DF
3219}
3220
c13db6b1
SR
3221/*
3222 * sched_setparam() passes in -1 for its policy, to let the functions
3223 * it calls know not to change it.
3224 */
3225#define SETPARAM_POLICY -1
3226
c365c292
TG
3227static void __setscheduler_params(struct task_struct *p,
3228 const struct sched_attr *attr)
1da177e4 3229{
d50dde5a
DF
3230 int policy = attr->sched_policy;
3231
c13db6b1 3232 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3233 policy = p->policy;
3234
1da177e4 3235 p->policy = policy;
d50dde5a 3236
aab03e05
DF
3237 if (dl_policy(policy))
3238 __setparam_dl(p, attr);
39fd8fd2 3239 else if (fair_policy(policy))
d50dde5a
DF
3240 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3241
39fd8fd2
PZ
3242 /*
3243 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3244 * !rt_policy. Always setting this ensures that things like
3245 * getparam()/getattr() don't report silly values for !rt tasks.
3246 */
3247 p->rt_priority = attr->sched_priority;
383afd09 3248 p->normal_prio = normal_prio(p);
c365c292
TG
3249 set_load_weight(p);
3250}
39fd8fd2 3251
c365c292
TG
3252/* Actually do priority change: must hold pi & rq lock. */
3253static void __setscheduler(struct rq *rq, struct task_struct *p,
3254 const struct sched_attr *attr)
3255{
3256 __setscheduler_params(p, attr);
d50dde5a 3257
383afd09
SR
3258 /*
3259 * If we get here, there was no pi waiters boosting the
3260 * task. It is safe to use the normal prio.
3261 */
3262 p->prio = normal_prio(p);
3263
aab03e05
DF
3264 if (dl_prio(p->prio))
3265 p->sched_class = &dl_sched_class;
3266 else if (rt_prio(p->prio))
ffd44db5
PZ
3267 p->sched_class = &rt_sched_class;
3268 else
3269 p->sched_class = &fair_sched_class;
1da177e4 3270}
aab03e05
DF
3271
3272static void
3273__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3274{
3275 struct sched_dl_entity *dl_se = &p->dl;
3276
3277 attr->sched_priority = p->rt_priority;
3278 attr->sched_runtime = dl_se->dl_runtime;
3279 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3280 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3281 attr->sched_flags = dl_se->flags;
3282}
3283
3284/*
3285 * This function validates the new parameters of a -deadline task.
3286 * We ask for the deadline not being zero, and greater or equal
755378a4 3287 * than the runtime, as well as the period of being zero or
332ac17e 3288 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3289 * user parameters are above the internal resolution of 1us (we
3290 * check sched_runtime only since it is always the smaller one) and
3291 * below 2^63 ns (we have to check both sched_deadline and
3292 * sched_period, as the latter can be zero).
aab03e05
DF
3293 */
3294static bool
3295__checkparam_dl(const struct sched_attr *attr)
3296{
b0827819
JL
3297 /* deadline != 0 */
3298 if (attr->sched_deadline == 0)
3299 return false;
3300
3301 /*
3302 * Since we truncate DL_SCALE bits, make sure we're at least
3303 * that big.
3304 */
3305 if (attr->sched_runtime < (1ULL << DL_SCALE))
3306 return false;
3307
3308 /*
3309 * Since we use the MSB for wrap-around and sign issues, make
3310 * sure it's not set (mind that period can be equal to zero).
3311 */
3312 if (attr->sched_deadline & (1ULL << 63) ||
3313 attr->sched_period & (1ULL << 63))
3314 return false;
3315
3316 /* runtime <= deadline <= period (if period != 0) */
3317 if ((attr->sched_period != 0 &&
3318 attr->sched_period < attr->sched_deadline) ||
3319 attr->sched_deadline < attr->sched_runtime)
3320 return false;
3321
3322 return true;
aab03e05
DF
3323}
3324
c69e8d9c
DH
3325/*
3326 * check the target process has a UID that matches the current process's
3327 */
3328static bool check_same_owner(struct task_struct *p)
3329{
3330 const struct cred *cred = current_cred(), *pcred;
3331 bool match;
3332
3333 rcu_read_lock();
3334 pcred = __task_cred(p);
9c806aa0
EB
3335 match = (uid_eq(cred->euid, pcred->euid) ||
3336 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3337 rcu_read_unlock();
3338 return match;
3339}
3340
d50dde5a
DF
3341static int __sched_setscheduler(struct task_struct *p,
3342 const struct sched_attr *attr,
3343 bool user)
1da177e4 3344{
383afd09
SR
3345 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3346 MAX_RT_PRIO - 1 - attr->sched_priority;
83b699ed 3347 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3348 int policy = attr->sched_policy;
1da177e4 3349 unsigned long flags;
83ab0aa0 3350 const struct sched_class *prev_class;
70b97a7f 3351 struct rq *rq;
ca94c442 3352 int reset_on_fork;
1da177e4 3353
66e5393a
SR
3354 /* may grab non-irq protected spin_locks */
3355 BUG_ON(in_interrupt());
1da177e4
LT
3356recheck:
3357 /* double check policy once rq lock held */
ca94c442
LP
3358 if (policy < 0) {
3359 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3360 policy = oldpolicy = p->policy;
ca94c442 3361 } else {
7479f3c9 3362 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3363
aab03e05
DF
3364 if (policy != SCHED_DEADLINE &&
3365 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3366 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3367 policy != SCHED_IDLE)
3368 return -EINVAL;
3369 }
3370
7479f3c9
PZ
3371 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3372 return -EINVAL;
3373
1da177e4
LT
3374 /*
3375 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3376 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3377 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3378 */
0bb040a4 3379 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3380 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3381 return -EINVAL;
aab03e05
DF
3382 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3383 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3384 return -EINVAL;
3385
37e4ab3f
OC
3386 /*
3387 * Allow unprivileged RT tasks to decrease priority:
3388 */
961ccddd 3389 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3390 if (fair_policy(policy)) {
d0ea0268 3391 if (attr->sched_nice < task_nice(p) &&
eaad4513 3392 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3393 return -EPERM;
3394 }
3395
e05606d3 3396 if (rt_policy(policy)) {
a44702e8
ON
3397 unsigned long rlim_rtprio =
3398 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3399
3400 /* can't set/change the rt policy */
3401 if (policy != p->policy && !rlim_rtprio)
3402 return -EPERM;
3403
3404 /* can't increase priority */
d50dde5a
DF
3405 if (attr->sched_priority > p->rt_priority &&
3406 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3407 return -EPERM;
3408 }
c02aa73b 3409
d44753b8
JL
3410 /*
3411 * Can't set/change SCHED_DEADLINE policy at all for now
3412 * (safest behavior); in the future we would like to allow
3413 * unprivileged DL tasks to increase their relative deadline
3414 * or reduce their runtime (both ways reducing utilization)
3415 */
3416 if (dl_policy(policy))
3417 return -EPERM;
3418
dd41f596 3419 /*
c02aa73b
DH
3420 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3421 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3422 */
c02aa73b 3423 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3424 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3425 return -EPERM;
3426 }
5fe1d75f 3427
37e4ab3f 3428 /* can't change other user's priorities */
c69e8d9c 3429 if (!check_same_owner(p))
37e4ab3f 3430 return -EPERM;
ca94c442
LP
3431
3432 /* Normal users shall not reset the sched_reset_on_fork flag */
3433 if (p->sched_reset_on_fork && !reset_on_fork)
3434 return -EPERM;
37e4ab3f 3435 }
1da177e4 3436
725aad24 3437 if (user) {
b0ae1981 3438 retval = security_task_setscheduler(p);
725aad24
JF
3439 if (retval)
3440 return retval;
3441 }
3442
b29739f9
IM
3443 /*
3444 * make sure no PI-waiters arrive (or leave) while we are
3445 * changing the priority of the task:
0122ec5b 3446 *
25985edc 3447 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3448 * runqueue lock must be held.
3449 */
0122ec5b 3450 rq = task_rq_lock(p, &flags);
dc61b1d6 3451
34f971f6
PZ
3452 /*
3453 * Changing the policy of the stop threads its a very bad idea
3454 */
3455 if (p == rq->stop) {
0122ec5b 3456 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3457 return -EINVAL;
3458 }
3459
a51e9198 3460 /*
d6b1e911
TG
3461 * If not changing anything there's no need to proceed further,
3462 * but store a possible modification of reset_on_fork.
a51e9198 3463 */
d50dde5a 3464 if (unlikely(policy == p->policy)) {
d0ea0268 3465 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3466 goto change;
3467 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3468 goto change;
aab03e05
DF
3469 if (dl_policy(policy))
3470 goto change;
d50dde5a 3471
d6b1e911 3472 p->sched_reset_on_fork = reset_on_fork;
45afb173 3473 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3474 return 0;
3475 }
d50dde5a 3476change:
a51e9198 3477
dc61b1d6 3478 if (user) {
332ac17e 3479#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3480 /*
3481 * Do not allow realtime tasks into groups that have no runtime
3482 * assigned.
3483 */
3484 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3485 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3486 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3487 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3488 return -EPERM;
3489 }
dc61b1d6 3490#endif
332ac17e
DF
3491#ifdef CONFIG_SMP
3492 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3493 cpumask_t *span = rq->rd->span;
332ac17e
DF
3494
3495 /*
3496 * Don't allow tasks with an affinity mask smaller than
3497 * the entire root_domain to become SCHED_DEADLINE. We
3498 * will also fail if there's no bandwidth available.
3499 */
e4099a5e
PZ
3500 if (!cpumask_subset(span, &p->cpus_allowed) ||
3501 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3502 task_rq_unlock(rq, p, &flags);
3503 return -EPERM;
3504 }
3505 }
3506#endif
3507 }
dc61b1d6 3508
1da177e4
LT
3509 /* recheck policy now with rq lock held */
3510 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3511 policy = oldpolicy = -1;
0122ec5b 3512 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3513 goto recheck;
3514 }
332ac17e
DF
3515
3516 /*
3517 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3518 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3519 * is available.
3520 */
e4099a5e 3521 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3522 task_rq_unlock(rq, p, &flags);
3523 return -EBUSY;
3524 }
3525
c365c292
TG
3526 p->sched_reset_on_fork = reset_on_fork;
3527 oldprio = p->prio;
3528
3529 /*
3530 * Special case for priority boosted tasks.
3531 *
3532 * If the new priority is lower or equal (user space view)
3533 * than the current (boosted) priority, we just store the new
3534 * normal parameters and do not touch the scheduler class and
3535 * the runqueue. This will be done when the task deboost
3536 * itself.
3537 */
3538 if (rt_mutex_check_prio(p, newprio)) {
3539 __setscheduler_params(p, attr);
3540 task_rq_unlock(rq, p, &flags);
3541 return 0;
3542 }
3543
fd2f4419 3544 on_rq = p->on_rq;
051a1d1a 3545 running = task_current(rq, p);
0e1f3483 3546 if (on_rq)
4ca9b72b 3547 dequeue_task(rq, p, 0);
0e1f3483
HS
3548 if (running)
3549 p->sched_class->put_prev_task(rq, p);
f6b53205 3550
83ab0aa0 3551 prev_class = p->sched_class;
d50dde5a 3552 __setscheduler(rq, p, attr);
f6b53205 3553
0e1f3483
HS
3554 if (running)
3555 p->sched_class->set_curr_task(rq);
81a44c54
TG
3556 if (on_rq) {
3557 /*
3558 * We enqueue to tail when the priority of a task is
3559 * increased (user space view).
3560 */
3561 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3562 }
cb469845 3563
da7a735e 3564 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3565 task_rq_unlock(rq, p, &flags);
b29739f9 3566
95e02ca9
TG
3567 rt_mutex_adjust_pi(p);
3568
1da177e4
LT
3569 return 0;
3570}
961ccddd 3571
7479f3c9
PZ
3572static int _sched_setscheduler(struct task_struct *p, int policy,
3573 const struct sched_param *param, bool check)
3574{
3575 struct sched_attr attr = {
3576 .sched_policy = policy,
3577 .sched_priority = param->sched_priority,
3578 .sched_nice = PRIO_TO_NICE(p->static_prio),
3579 };
3580
c13db6b1
SR
3581 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3582 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3583 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3584 policy &= ~SCHED_RESET_ON_FORK;
3585 attr.sched_policy = policy;
3586 }
3587
3588 return __sched_setscheduler(p, &attr, check);
3589}
961ccddd
RR
3590/**
3591 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3592 * @p: the task in question.
3593 * @policy: new policy.
3594 * @param: structure containing the new RT priority.
3595 *
e69f6186
YB
3596 * Return: 0 on success. An error code otherwise.
3597 *
961ccddd
RR
3598 * NOTE that the task may be already dead.
3599 */
3600int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3601 const struct sched_param *param)
961ccddd 3602{
7479f3c9 3603 return _sched_setscheduler(p, policy, param, true);
961ccddd 3604}
1da177e4
LT
3605EXPORT_SYMBOL_GPL(sched_setscheduler);
3606
d50dde5a
DF
3607int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3608{
3609 return __sched_setscheduler(p, attr, true);
3610}
3611EXPORT_SYMBOL_GPL(sched_setattr);
3612
961ccddd
RR
3613/**
3614 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3615 * @p: the task in question.
3616 * @policy: new policy.
3617 * @param: structure containing the new RT priority.
3618 *
3619 * Just like sched_setscheduler, only don't bother checking if the
3620 * current context has permission. For example, this is needed in
3621 * stop_machine(): we create temporary high priority worker threads,
3622 * but our caller might not have that capability.
e69f6186
YB
3623 *
3624 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3625 */
3626int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3627 const struct sched_param *param)
961ccddd 3628{
7479f3c9 3629 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3630}
3631
95cdf3b7
IM
3632static int
3633do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3634{
1da177e4
LT
3635 struct sched_param lparam;
3636 struct task_struct *p;
36c8b586 3637 int retval;
1da177e4
LT
3638
3639 if (!param || pid < 0)
3640 return -EINVAL;
3641 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3642 return -EFAULT;
5fe1d75f
ON
3643
3644 rcu_read_lock();
3645 retval = -ESRCH;
1da177e4 3646 p = find_process_by_pid(pid);
5fe1d75f
ON
3647 if (p != NULL)
3648 retval = sched_setscheduler(p, policy, &lparam);
3649 rcu_read_unlock();
36c8b586 3650
1da177e4
LT
3651 return retval;
3652}
3653
d50dde5a
DF
3654/*
3655 * Mimics kernel/events/core.c perf_copy_attr().
3656 */
3657static int sched_copy_attr(struct sched_attr __user *uattr,
3658 struct sched_attr *attr)
3659{
3660 u32 size;
3661 int ret;
3662
3663 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3664 return -EFAULT;
3665
3666 /*
3667 * zero the full structure, so that a short copy will be nice.
3668 */
3669 memset(attr, 0, sizeof(*attr));
3670
3671 ret = get_user(size, &uattr->size);
3672 if (ret)
3673 return ret;
3674
3675 if (size > PAGE_SIZE) /* silly large */
3676 goto err_size;
3677
3678 if (!size) /* abi compat */
3679 size = SCHED_ATTR_SIZE_VER0;
3680
3681 if (size < SCHED_ATTR_SIZE_VER0)
3682 goto err_size;
3683
3684 /*
3685 * If we're handed a bigger struct than we know of,
3686 * ensure all the unknown bits are 0 - i.e. new
3687 * user-space does not rely on any kernel feature
3688 * extensions we dont know about yet.
3689 */
3690 if (size > sizeof(*attr)) {
3691 unsigned char __user *addr;
3692 unsigned char __user *end;
3693 unsigned char val;
3694
3695 addr = (void __user *)uattr + sizeof(*attr);
3696 end = (void __user *)uattr + size;
3697
3698 for (; addr < end; addr++) {
3699 ret = get_user(val, addr);
3700 if (ret)
3701 return ret;
3702 if (val)
3703 goto err_size;
3704 }
3705 size = sizeof(*attr);
3706 }
3707
3708 ret = copy_from_user(attr, uattr, size);
3709 if (ret)
3710 return -EFAULT;
3711
3712 /*
3713 * XXX: do we want to be lenient like existing syscalls; or do we want
3714 * to be strict and return an error on out-of-bounds values?
3715 */
75e45d51 3716 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3717
e78c7bca 3718 return 0;
d50dde5a
DF
3719
3720err_size:
3721 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3722 return -E2BIG;
d50dde5a
DF
3723}
3724
1da177e4
LT
3725/**
3726 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3727 * @pid: the pid in question.
3728 * @policy: new policy.
3729 * @param: structure containing the new RT priority.
e69f6186
YB
3730 *
3731 * Return: 0 on success. An error code otherwise.
1da177e4 3732 */
5add95d4
HC
3733SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3734 struct sched_param __user *, param)
1da177e4 3735{
c21761f1
JB
3736 /* negative values for policy are not valid */
3737 if (policy < 0)
3738 return -EINVAL;
3739
1da177e4
LT
3740 return do_sched_setscheduler(pid, policy, param);
3741}
3742
3743/**
3744 * sys_sched_setparam - set/change the RT priority of a thread
3745 * @pid: the pid in question.
3746 * @param: structure containing the new RT priority.
e69f6186
YB
3747 *
3748 * Return: 0 on success. An error code otherwise.
1da177e4 3749 */
5add95d4 3750SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3751{
c13db6b1 3752 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3753}
3754
d50dde5a
DF
3755/**
3756 * sys_sched_setattr - same as above, but with extended sched_attr
3757 * @pid: the pid in question.
5778fccf 3758 * @uattr: structure containing the extended parameters.
db66d756 3759 * @flags: for future extension.
d50dde5a 3760 */
6d35ab48
PZ
3761SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3762 unsigned int, flags)
d50dde5a
DF
3763{
3764 struct sched_attr attr;
3765 struct task_struct *p;
3766 int retval;
3767
6d35ab48 3768 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3769 return -EINVAL;
3770
143cf23d
MK
3771 retval = sched_copy_attr(uattr, &attr);
3772 if (retval)
3773 return retval;
d50dde5a 3774
b14ed2c2 3775 if ((int)attr.sched_policy < 0)
dbdb2275 3776 return -EINVAL;
d50dde5a
DF
3777
3778 rcu_read_lock();
3779 retval = -ESRCH;
3780 p = find_process_by_pid(pid);
3781 if (p != NULL)
3782 retval = sched_setattr(p, &attr);
3783 rcu_read_unlock();
3784
3785 return retval;
3786}
3787
1da177e4
LT
3788/**
3789 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3790 * @pid: the pid in question.
e69f6186
YB
3791 *
3792 * Return: On success, the policy of the thread. Otherwise, a negative error
3793 * code.
1da177e4 3794 */
5add95d4 3795SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3796{
36c8b586 3797 struct task_struct *p;
3a5c359a 3798 int retval;
1da177e4
LT
3799
3800 if (pid < 0)
3a5c359a 3801 return -EINVAL;
1da177e4
LT
3802
3803 retval = -ESRCH;
5fe85be0 3804 rcu_read_lock();
1da177e4
LT
3805 p = find_process_by_pid(pid);
3806 if (p) {
3807 retval = security_task_getscheduler(p);
3808 if (!retval)
ca94c442
LP
3809 retval = p->policy
3810 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3811 }
5fe85be0 3812 rcu_read_unlock();
1da177e4
LT
3813 return retval;
3814}
3815
3816/**
ca94c442 3817 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3818 * @pid: the pid in question.
3819 * @param: structure containing the RT priority.
e69f6186
YB
3820 *
3821 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3822 * code.
1da177e4 3823 */
5add95d4 3824SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3825{
ce5f7f82 3826 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3827 struct task_struct *p;
3a5c359a 3828 int retval;
1da177e4
LT
3829
3830 if (!param || pid < 0)
3a5c359a 3831 return -EINVAL;
1da177e4 3832
5fe85be0 3833 rcu_read_lock();
1da177e4
LT
3834 p = find_process_by_pid(pid);
3835 retval = -ESRCH;
3836 if (!p)
3837 goto out_unlock;
3838
3839 retval = security_task_getscheduler(p);
3840 if (retval)
3841 goto out_unlock;
3842
ce5f7f82
PZ
3843 if (task_has_rt_policy(p))
3844 lp.sched_priority = p->rt_priority;
5fe85be0 3845 rcu_read_unlock();
1da177e4
LT
3846
3847 /*
3848 * This one might sleep, we cannot do it with a spinlock held ...
3849 */
3850 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3851
1da177e4
LT
3852 return retval;
3853
3854out_unlock:
5fe85be0 3855 rcu_read_unlock();
1da177e4
LT
3856 return retval;
3857}
3858
d50dde5a
DF
3859static int sched_read_attr(struct sched_attr __user *uattr,
3860 struct sched_attr *attr,
3861 unsigned int usize)
3862{
3863 int ret;
3864
3865 if (!access_ok(VERIFY_WRITE, uattr, usize))
3866 return -EFAULT;
3867
3868 /*
3869 * If we're handed a smaller struct than we know of,
3870 * ensure all the unknown bits are 0 - i.e. old
3871 * user-space does not get uncomplete information.
3872 */
3873 if (usize < sizeof(*attr)) {
3874 unsigned char *addr;
3875 unsigned char *end;
3876
3877 addr = (void *)attr + usize;
3878 end = (void *)attr + sizeof(*attr);
3879
3880 for (; addr < end; addr++) {
3881 if (*addr)
22400674 3882 return -EFBIG;
d50dde5a
DF
3883 }
3884
3885 attr->size = usize;
3886 }
3887
4efbc454 3888 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3889 if (ret)
3890 return -EFAULT;
3891
22400674 3892 return 0;
d50dde5a
DF
3893}
3894
3895/**
aab03e05 3896 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3897 * @pid: the pid in question.
5778fccf 3898 * @uattr: structure containing the extended parameters.
d50dde5a 3899 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3900 * @flags: for future extension.
d50dde5a 3901 */
6d35ab48
PZ
3902SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3903 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3904{
3905 struct sched_attr attr = {
3906 .size = sizeof(struct sched_attr),
3907 };
3908 struct task_struct *p;
3909 int retval;
3910
3911 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3912 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3913 return -EINVAL;
3914
3915 rcu_read_lock();
3916 p = find_process_by_pid(pid);
3917 retval = -ESRCH;
3918 if (!p)
3919 goto out_unlock;
3920
3921 retval = security_task_getscheduler(p);
3922 if (retval)
3923 goto out_unlock;
3924
3925 attr.sched_policy = p->policy;
7479f3c9
PZ
3926 if (p->sched_reset_on_fork)
3927 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3928 if (task_has_dl_policy(p))
3929 __getparam_dl(p, &attr);
3930 else if (task_has_rt_policy(p))
d50dde5a
DF
3931 attr.sched_priority = p->rt_priority;
3932 else
d0ea0268 3933 attr.sched_nice = task_nice(p);
d50dde5a
DF
3934
3935 rcu_read_unlock();
3936
3937 retval = sched_read_attr(uattr, &attr, size);
3938 return retval;
3939
3940out_unlock:
3941 rcu_read_unlock();
3942 return retval;
3943}
3944
96f874e2 3945long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3946{
5a16f3d3 3947 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3948 struct task_struct *p;
3949 int retval;
1da177e4 3950
23f5d142 3951 rcu_read_lock();
1da177e4
LT
3952
3953 p = find_process_by_pid(pid);
3954 if (!p) {
23f5d142 3955 rcu_read_unlock();
1da177e4
LT
3956 return -ESRCH;
3957 }
3958
23f5d142 3959 /* Prevent p going away */
1da177e4 3960 get_task_struct(p);
23f5d142 3961 rcu_read_unlock();
1da177e4 3962
14a40ffc
TH
3963 if (p->flags & PF_NO_SETAFFINITY) {
3964 retval = -EINVAL;
3965 goto out_put_task;
3966 }
5a16f3d3
RR
3967 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3968 retval = -ENOMEM;
3969 goto out_put_task;
3970 }
3971 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3972 retval = -ENOMEM;
3973 goto out_free_cpus_allowed;
3974 }
1da177e4 3975 retval = -EPERM;
4c44aaaf
EB
3976 if (!check_same_owner(p)) {
3977 rcu_read_lock();
3978 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3979 rcu_read_unlock();
3980 goto out_unlock;
3981 }
3982 rcu_read_unlock();
3983 }
1da177e4 3984
b0ae1981 3985 retval = security_task_setscheduler(p);
e7834f8f
DQ
3986 if (retval)
3987 goto out_unlock;
3988
e4099a5e
PZ
3989
3990 cpuset_cpus_allowed(p, cpus_allowed);
3991 cpumask_and(new_mask, in_mask, cpus_allowed);
3992
332ac17e
DF
3993 /*
3994 * Since bandwidth control happens on root_domain basis,
3995 * if admission test is enabled, we only admit -deadline
3996 * tasks allowed to run on all the CPUs in the task's
3997 * root_domain.
3998 */
3999#ifdef CONFIG_SMP
4000 if (task_has_dl_policy(p)) {
4001 const struct cpumask *span = task_rq(p)->rd->span;
4002
e4099a5e 4003 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
4004 retval = -EBUSY;
4005 goto out_unlock;
4006 }
4007 }
4008#endif
49246274 4009again:
5a16f3d3 4010 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4011
8707d8b8 4012 if (!retval) {
5a16f3d3
RR
4013 cpuset_cpus_allowed(p, cpus_allowed);
4014 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4015 /*
4016 * We must have raced with a concurrent cpuset
4017 * update. Just reset the cpus_allowed to the
4018 * cpuset's cpus_allowed
4019 */
5a16f3d3 4020 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4021 goto again;
4022 }
4023 }
1da177e4 4024out_unlock:
5a16f3d3
RR
4025 free_cpumask_var(new_mask);
4026out_free_cpus_allowed:
4027 free_cpumask_var(cpus_allowed);
4028out_put_task:
1da177e4 4029 put_task_struct(p);
1da177e4
LT
4030 return retval;
4031}
4032
4033static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4034 struct cpumask *new_mask)
1da177e4 4035{
96f874e2
RR
4036 if (len < cpumask_size())
4037 cpumask_clear(new_mask);
4038 else if (len > cpumask_size())
4039 len = cpumask_size();
4040
1da177e4
LT
4041 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4042}
4043
4044/**
4045 * sys_sched_setaffinity - set the cpu affinity of a process
4046 * @pid: pid of the process
4047 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4048 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4049 *
4050 * Return: 0 on success. An error code otherwise.
1da177e4 4051 */
5add95d4
HC
4052SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4053 unsigned long __user *, user_mask_ptr)
1da177e4 4054{
5a16f3d3 4055 cpumask_var_t new_mask;
1da177e4
LT
4056 int retval;
4057
5a16f3d3
RR
4058 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4059 return -ENOMEM;
1da177e4 4060
5a16f3d3
RR
4061 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4062 if (retval == 0)
4063 retval = sched_setaffinity(pid, new_mask);
4064 free_cpumask_var(new_mask);
4065 return retval;
1da177e4
LT
4066}
4067
96f874e2 4068long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4069{
36c8b586 4070 struct task_struct *p;
31605683 4071 unsigned long flags;
1da177e4 4072 int retval;
1da177e4 4073
23f5d142 4074 rcu_read_lock();
1da177e4
LT
4075
4076 retval = -ESRCH;
4077 p = find_process_by_pid(pid);
4078 if (!p)
4079 goto out_unlock;
4080
e7834f8f
DQ
4081 retval = security_task_getscheduler(p);
4082 if (retval)
4083 goto out_unlock;
4084
013fdb80 4085 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4086 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4087 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4088
4089out_unlock:
23f5d142 4090 rcu_read_unlock();
1da177e4 4091
9531b62f 4092 return retval;
1da177e4
LT
4093}
4094
4095/**
4096 * sys_sched_getaffinity - get the cpu affinity of a process
4097 * @pid: pid of the process
4098 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4099 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4100 *
4101 * Return: 0 on success. An error code otherwise.
1da177e4 4102 */
5add95d4
HC
4103SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4104 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4105{
4106 int ret;
f17c8607 4107 cpumask_var_t mask;
1da177e4 4108
84fba5ec 4109 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4110 return -EINVAL;
4111 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4112 return -EINVAL;
4113
f17c8607
RR
4114 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4115 return -ENOMEM;
1da177e4 4116
f17c8607
RR
4117 ret = sched_getaffinity(pid, mask);
4118 if (ret == 0) {
8bc037fb 4119 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4120
4121 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4122 ret = -EFAULT;
4123 else
cd3d8031 4124 ret = retlen;
f17c8607
RR
4125 }
4126 free_cpumask_var(mask);
1da177e4 4127
f17c8607 4128 return ret;
1da177e4
LT
4129}
4130
4131/**
4132 * sys_sched_yield - yield the current processor to other threads.
4133 *
dd41f596
IM
4134 * This function yields the current CPU to other tasks. If there are no
4135 * other threads running on this CPU then this function will return.
e69f6186
YB
4136 *
4137 * Return: 0.
1da177e4 4138 */
5add95d4 4139SYSCALL_DEFINE0(sched_yield)
1da177e4 4140{
70b97a7f 4141 struct rq *rq = this_rq_lock();
1da177e4 4142
2d72376b 4143 schedstat_inc(rq, yld_count);
4530d7ab 4144 current->sched_class->yield_task(rq);
1da177e4
LT
4145
4146 /*
4147 * Since we are going to call schedule() anyway, there's
4148 * no need to preempt or enable interrupts:
4149 */
4150 __release(rq->lock);
8a25d5de 4151 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4152 do_raw_spin_unlock(&rq->lock);
ba74c144 4153 sched_preempt_enable_no_resched();
1da177e4
LT
4154
4155 schedule();
4156
4157 return 0;
4158}
4159
e7b38404 4160static void __cond_resched(void)
1da177e4 4161{
bdb43806 4162 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4163 __schedule();
bdb43806 4164 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4165}
4166
02b67cc3 4167int __sched _cond_resched(void)
1da177e4 4168{
d86ee480 4169 if (should_resched()) {
1da177e4
LT
4170 __cond_resched();
4171 return 1;
4172 }
4173 return 0;
4174}
02b67cc3 4175EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4176
4177/*
613afbf8 4178 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4179 * call schedule, and on return reacquire the lock.
4180 *
41a2d6cf 4181 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4182 * operations here to prevent schedule() from being called twice (once via
4183 * spin_unlock(), once by hand).
4184 */
613afbf8 4185int __cond_resched_lock(spinlock_t *lock)
1da177e4 4186{
d86ee480 4187 int resched = should_resched();
6df3cecb
JK
4188 int ret = 0;
4189
f607c668
PZ
4190 lockdep_assert_held(lock);
4191
4a81e832 4192 if (spin_needbreak(lock) || resched) {
1da177e4 4193 spin_unlock(lock);
d86ee480 4194 if (resched)
95c354fe
NP
4195 __cond_resched();
4196 else
4197 cpu_relax();
6df3cecb 4198 ret = 1;
1da177e4 4199 spin_lock(lock);
1da177e4 4200 }
6df3cecb 4201 return ret;
1da177e4 4202}
613afbf8 4203EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4204
613afbf8 4205int __sched __cond_resched_softirq(void)
1da177e4
LT
4206{
4207 BUG_ON(!in_softirq());
4208
d86ee480 4209 if (should_resched()) {
98d82567 4210 local_bh_enable();
1da177e4
LT
4211 __cond_resched();
4212 local_bh_disable();
4213 return 1;
4214 }
4215 return 0;
4216}
613afbf8 4217EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4218
1da177e4
LT
4219/**
4220 * yield - yield the current processor to other threads.
4221 *
8e3fabfd
PZ
4222 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4223 *
4224 * The scheduler is at all times free to pick the calling task as the most
4225 * eligible task to run, if removing the yield() call from your code breaks
4226 * it, its already broken.
4227 *
4228 * Typical broken usage is:
4229 *
4230 * while (!event)
4231 * yield();
4232 *
4233 * where one assumes that yield() will let 'the other' process run that will
4234 * make event true. If the current task is a SCHED_FIFO task that will never
4235 * happen. Never use yield() as a progress guarantee!!
4236 *
4237 * If you want to use yield() to wait for something, use wait_event().
4238 * If you want to use yield() to be 'nice' for others, use cond_resched().
4239 * If you still want to use yield(), do not!
1da177e4
LT
4240 */
4241void __sched yield(void)
4242{
4243 set_current_state(TASK_RUNNING);
4244 sys_sched_yield();
4245}
1da177e4
LT
4246EXPORT_SYMBOL(yield);
4247
d95f4122
MG
4248/**
4249 * yield_to - yield the current processor to another thread in
4250 * your thread group, or accelerate that thread toward the
4251 * processor it's on.
16addf95
RD
4252 * @p: target task
4253 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4254 *
4255 * It's the caller's job to ensure that the target task struct
4256 * can't go away on us before we can do any checks.
4257 *
e69f6186 4258 * Return:
7b270f60
PZ
4259 * true (>0) if we indeed boosted the target task.
4260 * false (0) if we failed to boost the target.
4261 * -ESRCH if there's no task to yield to.
d95f4122 4262 */
fa93384f 4263int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4264{
4265 struct task_struct *curr = current;
4266 struct rq *rq, *p_rq;
4267 unsigned long flags;
c3c18640 4268 int yielded = 0;
d95f4122
MG
4269
4270 local_irq_save(flags);
4271 rq = this_rq();
4272
4273again:
4274 p_rq = task_rq(p);
7b270f60
PZ
4275 /*
4276 * If we're the only runnable task on the rq and target rq also
4277 * has only one task, there's absolutely no point in yielding.
4278 */
4279 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4280 yielded = -ESRCH;
4281 goto out_irq;
4282 }
4283
d95f4122 4284 double_rq_lock(rq, p_rq);
39e24d8f 4285 if (task_rq(p) != p_rq) {
d95f4122
MG
4286 double_rq_unlock(rq, p_rq);
4287 goto again;
4288 }
4289
4290 if (!curr->sched_class->yield_to_task)
7b270f60 4291 goto out_unlock;
d95f4122
MG
4292
4293 if (curr->sched_class != p->sched_class)
7b270f60 4294 goto out_unlock;
d95f4122
MG
4295
4296 if (task_running(p_rq, p) || p->state)
7b270f60 4297 goto out_unlock;
d95f4122
MG
4298
4299 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4300 if (yielded) {
d95f4122 4301 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4302 /*
4303 * Make p's CPU reschedule; pick_next_entity takes care of
4304 * fairness.
4305 */
4306 if (preempt && rq != p_rq)
8875125e 4307 resched_curr(p_rq);
6d1cafd8 4308 }
d95f4122 4309
7b270f60 4310out_unlock:
d95f4122 4311 double_rq_unlock(rq, p_rq);
7b270f60 4312out_irq:
d95f4122
MG
4313 local_irq_restore(flags);
4314
7b270f60 4315 if (yielded > 0)
d95f4122
MG
4316 schedule();
4317
4318 return yielded;
4319}
4320EXPORT_SYMBOL_GPL(yield_to);
4321
1da177e4 4322/*
41a2d6cf 4323 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4324 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4325 */
4326void __sched io_schedule(void)
4327{
54d35f29 4328 struct rq *rq = raw_rq();
1da177e4 4329
0ff92245 4330 delayacct_blkio_start();
1da177e4 4331 atomic_inc(&rq->nr_iowait);
73c10101 4332 blk_flush_plug(current);
8f0dfc34 4333 current->in_iowait = 1;
1da177e4 4334 schedule();
8f0dfc34 4335 current->in_iowait = 0;
1da177e4 4336 atomic_dec(&rq->nr_iowait);
0ff92245 4337 delayacct_blkio_end();
1da177e4 4338}
1da177e4
LT
4339EXPORT_SYMBOL(io_schedule);
4340
4341long __sched io_schedule_timeout(long timeout)
4342{
54d35f29 4343 struct rq *rq = raw_rq();
1da177e4
LT
4344 long ret;
4345
0ff92245 4346 delayacct_blkio_start();
1da177e4 4347 atomic_inc(&rq->nr_iowait);
73c10101 4348 blk_flush_plug(current);
8f0dfc34 4349 current->in_iowait = 1;
1da177e4 4350 ret = schedule_timeout(timeout);
8f0dfc34 4351 current->in_iowait = 0;
1da177e4 4352 atomic_dec(&rq->nr_iowait);
0ff92245 4353 delayacct_blkio_end();
1da177e4
LT
4354 return ret;
4355}
4356
4357/**
4358 * sys_sched_get_priority_max - return maximum RT priority.
4359 * @policy: scheduling class.
4360 *
e69f6186
YB
4361 * Return: On success, this syscall returns the maximum
4362 * rt_priority that can be used by a given scheduling class.
4363 * On failure, a negative error code is returned.
1da177e4 4364 */
5add95d4 4365SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4366{
4367 int ret = -EINVAL;
4368
4369 switch (policy) {
4370 case SCHED_FIFO:
4371 case SCHED_RR:
4372 ret = MAX_USER_RT_PRIO-1;
4373 break;
aab03e05 4374 case SCHED_DEADLINE:
1da177e4 4375 case SCHED_NORMAL:
b0a9499c 4376 case SCHED_BATCH:
dd41f596 4377 case SCHED_IDLE:
1da177e4
LT
4378 ret = 0;
4379 break;
4380 }
4381 return ret;
4382}
4383
4384/**
4385 * sys_sched_get_priority_min - return minimum RT priority.
4386 * @policy: scheduling class.
4387 *
e69f6186
YB
4388 * Return: On success, this syscall returns the minimum
4389 * rt_priority that can be used by a given scheduling class.
4390 * On failure, a negative error code is returned.
1da177e4 4391 */
5add95d4 4392SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4393{
4394 int ret = -EINVAL;
4395
4396 switch (policy) {
4397 case SCHED_FIFO:
4398 case SCHED_RR:
4399 ret = 1;
4400 break;
aab03e05 4401 case SCHED_DEADLINE:
1da177e4 4402 case SCHED_NORMAL:
b0a9499c 4403 case SCHED_BATCH:
dd41f596 4404 case SCHED_IDLE:
1da177e4
LT
4405 ret = 0;
4406 }
4407 return ret;
4408}
4409
4410/**
4411 * sys_sched_rr_get_interval - return the default timeslice of a process.
4412 * @pid: pid of the process.
4413 * @interval: userspace pointer to the timeslice value.
4414 *
4415 * this syscall writes the default timeslice value of a given process
4416 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4417 *
4418 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4419 * an error code.
1da177e4 4420 */
17da2bd9 4421SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4422 struct timespec __user *, interval)
1da177e4 4423{
36c8b586 4424 struct task_struct *p;
a4ec24b4 4425 unsigned int time_slice;
dba091b9
TG
4426 unsigned long flags;
4427 struct rq *rq;
3a5c359a 4428 int retval;
1da177e4 4429 struct timespec t;
1da177e4
LT
4430
4431 if (pid < 0)
3a5c359a 4432 return -EINVAL;
1da177e4
LT
4433
4434 retval = -ESRCH;
1a551ae7 4435 rcu_read_lock();
1da177e4
LT
4436 p = find_process_by_pid(pid);
4437 if (!p)
4438 goto out_unlock;
4439
4440 retval = security_task_getscheduler(p);
4441 if (retval)
4442 goto out_unlock;
4443
dba091b9 4444 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4445 time_slice = 0;
4446 if (p->sched_class->get_rr_interval)
4447 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4448 task_rq_unlock(rq, p, &flags);
a4ec24b4 4449
1a551ae7 4450 rcu_read_unlock();
a4ec24b4 4451 jiffies_to_timespec(time_slice, &t);
1da177e4 4452 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4453 return retval;
3a5c359a 4454
1da177e4 4455out_unlock:
1a551ae7 4456 rcu_read_unlock();
1da177e4
LT
4457 return retval;
4458}
4459
7c731e0a 4460static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4461
82a1fcb9 4462void sched_show_task(struct task_struct *p)
1da177e4 4463{
1da177e4 4464 unsigned long free = 0;
4e79752c 4465 int ppid;
36c8b586 4466 unsigned state;
1da177e4 4467
1da177e4 4468 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4469 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4470 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4471#if BITS_PER_LONG == 32
1da177e4 4472 if (state == TASK_RUNNING)
3df0fc5b 4473 printk(KERN_CONT " running ");
1da177e4 4474 else
3df0fc5b 4475 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4476#else
4477 if (state == TASK_RUNNING)
3df0fc5b 4478 printk(KERN_CONT " running task ");
1da177e4 4479 else
3df0fc5b 4480 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4481#endif
4482#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4483 free = stack_not_used(p);
1da177e4 4484#endif
4e79752c
PM
4485 rcu_read_lock();
4486 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4487 rcu_read_unlock();
3df0fc5b 4488 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4489 task_pid_nr(p), ppid,
aa47b7e0 4490 (unsigned long)task_thread_info(p)->flags);
1da177e4 4491
3d1cb205 4492 print_worker_info(KERN_INFO, p);
5fb5e6de 4493 show_stack(p, NULL);
1da177e4
LT
4494}
4495
e59e2ae2 4496void show_state_filter(unsigned long state_filter)
1da177e4 4497{
36c8b586 4498 struct task_struct *g, *p;
1da177e4 4499
4bd77321 4500#if BITS_PER_LONG == 32
3df0fc5b
PZ
4501 printk(KERN_INFO
4502 " task PC stack pid father\n");
1da177e4 4503#else
3df0fc5b
PZ
4504 printk(KERN_INFO
4505 " task PC stack pid father\n");
1da177e4 4506#endif
510f5acc 4507 rcu_read_lock();
5d07f420 4508 for_each_process_thread(g, p) {
1da177e4
LT
4509 /*
4510 * reset the NMI-timeout, listing all files on a slow
25985edc 4511 * console might take a lot of time:
1da177e4
LT
4512 */
4513 touch_nmi_watchdog();
39bc89fd 4514 if (!state_filter || (p->state & state_filter))
82a1fcb9 4515 sched_show_task(p);
5d07f420 4516 }
1da177e4 4517
04c9167f
JF
4518 touch_all_softlockup_watchdogs();
4519
dd41f596
IM
4520#ifdef CONFIG_SCHED_DEBUG
4521 sysrq_sched_debug_show();
4522#endif
510f5acc 4523 rcu_read_unlock();
e59e2ae2
IM
4524 /*
4525 * Only show locks if all tasks are dumped:
4526 */
93335a21 4527 if (!state_filter)
e59e2ae2 4528 debug_show_all_locks();
1da177e4
LT
4529}
4530
0db0628d 4531void init_idle_bootup_task(struct task_struct *idle)
1df21055 4532{
dd41f596 4533 idle->sched_class = &idle_sched_class;
1df21055
IM
4534}
4535
f340c0d1
IM
4536/**
4537 * init_idle - set up an idle thread for a given CPU
4538 * @idle: task in question
4539 * @cpu: cpu the idle task belongs to
4540 *
4541 * NOTE: this function does not set the idle thread's NEED_RESCHED
4542 * flag, to make booting more robust.
4543 */
0db0628d 4544void init_idle(struct task_struct *idle, int cpu)
1da177e4 4545{
70b97a7f 4546 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4547 unsigned long flags;
4548
05fa785c 4549 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4550
5e1576ed 4551 __sched_fork(0, idle);
06b83b5f 4552 idle->state = TASK_RUNNING;
dd41f596
IM
4553 idle->se.exec_start = sched_clock();
4554
1e1b6c51 4555 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4556 /*
4557 * We're having a chicken and egg problem, even though we are
4558 * holding rq->lock, the cpu isn't yet set to this cpu so the
4559 * lockdep check in task_group() will fail.
4560 *
4561 * Similar case to sched_fork(). / Alternatively we could
4562 * use task_rq_lock() here and obtain the other rq->lock.
4563 *
4564 * Silence PROVE_RCU
4565 */
4566 rcu_read_lock();
dd41f596 4567 __set_task_cpu(idle, cpu);
6506cf6c 4568 rcu_read_unlock();
1da177e4 4569
1da177e4 4570 rq->curr = rq->idle = idle;
77177856 4571 idle->on_rq = 1;
3ca7a440
PZ
4572#if defined(CONFIG_SMP)
4573 idle->on_cpu = 1;
4866cde0 4574#endif
05fa785c 4575 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4576
4577 /* Set the preempt count _outside_ the spinlocks! */
01028747 4578 init_idle_preempt_count(idle, cpu);
55cd5340 4579
dd41f596
IM
4580 /*
4581 * The idle tasks have their own, simple scheduling class:
4582 */
4583 idle->sched_class = &idle_sched_class;
868baf07 4584 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4585 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4586#if defined(CONFIG_SMP)
4587 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4588#endif
19978ca6
IM
4589}
4590
1da177e4 4591#ifdef CONFIG_SMP
1e1b6c51
KM
4592void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4593{
4594 if (p->sched_class && p->sched_class->set_cpus_allowed)
4595 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4596
4597 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4598 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4599}
4600
1da177e4
LT
4601/*
4602 * This is how migration works:
4603 *
969c7921
TH
4604 * 1) we invoke migration_cpu_stop() on the target CPU using
4605 * stop_one_cpu().
4606 * 2) stopper starts to run (implicitly forcing the migrated thread
4607 * off the CPU)
4608 * 3) it checks whether the migrated task is still in the wrong runqueue.
4609 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4610 * it and puts it into the right queue.
969c7921
TH
4611 * 5) stopper completes and stop_one_cpu() returns and the migration
4612 * is done.
1da177e4
LT
4613 */
4614
4615/*
4616 * Change a given task's CPU affinity. Migrate the thread to a
4617 * proper CPU and schedule it away if the CPU it's executing on
4618 * is removed from the allowed bitmask.
4619 *
4620 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4621 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4622 * call is not atomic; no spinlocks may be held.
4623 */
96f874e2 4624int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4625{
4626 unsigned long flags;
70b97a7f 4627 struct rq *rq;
969c7921 4628 unsigned int dest_cpu;
48f24c4d 4629 int ret = 0;
1da177e4
LT
4630
4631 rq = task_rq_lock(p, &flags);
e2912009 4632
db44fc01
YZ
4633 if (cpumask_equal(&p->cpus_allowed, new_mask))
4634 goto out;
4635
6ad4c188 4636 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4637 ret = -EINVAL;
4638 goto out;
4639 }
4640
1e1b6c51 4641 do_set_cpus_allowed(p, new_mask);
73fe6aae 4642
1da177e4 4643 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4644 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4645 goto out;
4646
969c7921 4647 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4648 if (p->on_rq) {
969c7921 4649 struct migration_arg arg = { p, dest_cpu };
1da177e4 4650 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4651 task_rq_unlock(rq, p, &flags);
969c7921 4652 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4653 tlb_migrate_finish(p->mm);
4654 return 0;
4655 }
4656out:
0122ec5b 4657 task_rq_unlock(rq, p, &flags);
48f24c4d 4658
1da177e4
LT
4659 return ret;
4660}
cd8ba7cd 4661EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4662
4663/*
41a2d6cf 4664 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4665 * this because either it can't run here any more (set_cpus_allowed()
4666 * away from this CPU, or CPU going down), or because we're
4667 * attempting to rebalance this task on exec (sched_exec).
4668 *
4669 * So we race with normal scheduler movements, but that's OK, as long
4670 * as the task is no longer on this CPU.
efc30814
KK
4671 *
4672 * Returns non-zero if task was successfully migrated.
1da177e4 4673 */
efc30814 4674static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4675{
70b97a7f 4676 struct rq *rq_dest, *rq_src;
e2912009 4677 int ret = 0;
1da177e4 4678
e761b772 4679 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4680 return ret;
1da177e4
LT
4681
4682 rq_src = cpu_rq(src_cpu);
4683 rq_dest = cpu_rq(dest_cpu);
4684
0122ec5b 4685 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4686 double_rq_lock(rq_src, rq_dest);
4687 /* Already moved. */
4688 if (task_cpu(p) != src_cpu)
b1e38734 4689 goto done;
1da177e4 4690 /* Affinity changed (again). */
fa17b507 4691 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4692 goto fail;
1da177e4 4693
e2912009
PZ
4694 /*
4695 * If we're not on a rq, the next wake-up will ensure we're
4696 * placed properly.
4697 */
fd2f4419 4698 if (p->on_rq) {
4ca9b72b 4699 dequeue_task(rq_src, p, 0);
e2912009 4700 set_task_cpu(p, dest_cpu);
4ca9b72b 4701 enqueue_task(rq_dest, p, 0);
15afe09b 4702 check_preempt_curr(rq_dest, p, 0);
1da177e4 4703 }
b1e38734 4704done:
efc30814 4705 ret = 1;
b1e38734 4706fail:
1da177e4 4707 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4708 raw_spin_unlock(&p->pi_lock);
efc30814 4709 return ret;
1da177e4
LT
4710}
4711
e6628d5b
MG
4712#ifdef CONFIG_NUMA_BALANCING
4713/* Migrate current task p to target_cpu */
4714int migrate_task_to(struct task_struct *p, int target_cpu)
4715{
4716 struct migration_arg arg = { p, target_cpu };
4717 int curr_cpu = task_cpu(p);
4718
4719 if (curr_cpu == target_cpu)
4720 return 0;
4721
4722 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4723 return -EINVAL;
4724
4725 /* TODO: This is not properly updating schedstats */
4726
286549dc 4727 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4728 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4729}
0ec8aa00
PZ
4730
4731/*
4732 * Requeue a task on a given node and accurately track the number of NUMA
4733 * tasks on the runqueues
4734 */
4735void sched_setnuma(struct task_struct *p, int nid)
4736{
4737 struct rq *rq;
4738 unsigned long flags;
4739 bool on_rq, running;
4740
4741 rq = task_rq_lock(p, &flags);
4742 on_rq = p->on_rq;
4743 running = task_current(rq, p);
4744
4745 if (on_rq)
4746 dequeue_task(rq, p, 0);
4747 if (running)
4748 p->sched_class->put_prev_task(rq, p);
4749
4750 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4751
4752 if (running)
4753 p->sched_class->set_curr_task(rq);
4754 if (on_rq)
4755 enqueue_task(rq, p, 0);
4756 task_rq_unlock(rq, p, &flags);
4757}
e6628d5b
MG
4758#endif
4759
1da177e4 4760/*
969c7921
TH
4761 * migration_cpu_stop - this will be executed by a highprio stopper thread
4762 * and performs thread migration by bumping thread off CPU then
4763 * 'pushing' onto another runqueue.
1da177e4 4764 */
969c7921 4765static int migration_cpu_stop(void *data)
1da177e4 4766{
969c7921 4767 struct migration_arg *arg = data;
f7b4cddc 4768
969c7921
TH
4769 /*
4770 * The original target cpu might have gone down and we might
4771 * be on another cpu but it doesn't matter.
4772 */
f7b4cddc 4773 local_irq_disable();
969c7921 4774 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4775 local_irq_enable();
1da177e4 4776 return 0;
f7b4cddc
ON
4777}
4778
1da177e4 4779#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4780
054b9108 4781/*
48c5ccae
PZ
4782 * Ensures that the idle task is using init_mm right before its cpu goes
4783 * offline.
054b9108 4784 */
48c5ccae 4785void idle_task_exit(void)
1da177e4 4786{
48c5ccae 4787 struct mm_struct *mm = current->active_mm;
e76bd8d9 4788
48c5ccae 4789 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4790
a53efe5f 4791 if (mm != &init_mm) {
48c5ccae 4792 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4793 finish_arch_post_lock_switch();
4794 }
48c5ccae 4795 mmdrop(mm);
1da177e4
LT
4796}
4797
4798/*
5d180232
PZ
4799 * Since this CPU is going 'away' for a while, fold any nr_active delta
4800 * we might have. Assumes we're called after migrate_tasks() so that the
4801 * nr_active count is stable.
4802 *
4803 * Also see the comment "Global load-average calculations".
1da177e4 4804 */
5d180232 4805static void calc_load_migrate(struct rq *rq)
1da177e4 4806{
5d180232
PZ
4807 long delta = calc_load_fold_active(rq);
4808 if (delta)
4809 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4810}
4811
3f1d2a31
PZ
4812static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4813{
4814}
4815
4816static const struct sched_class fake_sched_class = {
4817 .put_prev_task = put_prev_task_fake,
4818};
4819
4820static struct task_struct fake_task = {
4821 /*
4822 * Avoid pull_{rt,dl}_task()
4823 */
4824 .prio = MAX_PRIO + 1,
4825 .sched_class = &fake_sched_class,
4826};
4827
48f24c4d 4828/*
48c5ccae
PZ
4829 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4830 * try_to_wake_up()->select_task_rq().
4831 *
4832 * Called with rq->lock held even though we'er in stop_machine() and
4833 * there's no concurrency possible, we hold the required locks anyway
4834 * because of lock validation efforts.
1da177e4 4835 */
48c5ccae 4836static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4837{
70b97a7f 4838 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4839 struct task_struct *next, *stop = rq->stop;
4840 int dest_cpu;
1da177e4
LT
4841
4842 /*
48c5ccae
PZ
4843 * Fudge the rq selection such that the below task selection loop
4844 * doesn't get stuck on the currently eligible stop task.
4845 *
4846 * We're currently inside stop_machine() and the rq is either stuck
4847 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4848 * either way we should never end up calling schedule() until we're
4849 * done here.
1da177e4 4850 */
48c5ccae 4851 rq->stop = NULL;
48f24c4d 4852
77bd3970
FW
4853 /*
4854 * put_prev_task() and pick_next_task() sched
4855 * class method both need to have an up-to-date
4856 * value of rq->clock[_task]
4857 */
4858 update_rq_clock(rq);
4859
dd41f596 4860 for ( ; ; ) {
48c5ccae
PZ
4861 /*
4862 * There's this thread running, bail when that's the only
4863 * remaining thread.
4864 */
4865 if (rq->nr_running == 1)
dd41f596 4866 break;
48c5ccae 4867
3f1d2a31 4868 next = pick_next_task(rq, &fake_task);
48c5ccae 4869 BUG_ON(!next);
79c53799 4870 next->sched_class->put_prev_task(rq, next);
e692ab53 4871
48c5ccae
PZ
4872 /* Find suitable destination for @next, with force if needed. */
4873 dest_cpu = select_fallback_rq(dead_cpu, next);
4874 raw_spin_unlock(&rq->lock);
4875
4876 __migrate_task(next, dead_cpu, dest_cpu);
4877
4878 raw_spin_lock(&rq->lock);
1da177e4 4879 }
dce48a84 4880
48c5ccae 4881 rq->stop = stop;
dce48a84 4882}
48c5ccae 4883
1da177e4
LT
4884#endif /* CONFIG_HOTPLUG_CPU */
4885
e692ab53
NP
4886#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4887
4888static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4889 {
4890 .procname = "sched_domain",
c57baf1e 4891 .mode = 0555,
e0361851 4892 },
56992309 4893 {}
e692ab53
NP
4894};
4895
4896static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4897 {
4898 .procname = "kernel",
c57baf1e 4899 .mode = 0555,
e0361851
AD
4900 .child = sd_ctl_dir,
4901 },
56992309 4902 {}
e692ab53
NP
4903};
4904
4905static struct ctl_table *sd_alloc_ctl_entry(int n)
4906{
4907 struct ctl_table *entry =
5cf9f062 4908 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4909
e692ab53
NP
4910 return entry;
4911}
4912
6382bc90
MM
4913static void sd_free_ctl_entry(struct ctl_table **tablep)
4914{
cd790076 4915 struct ctl_table *entry;
6382bc90 4916
cd790076
MM
4917 /*
4918 * In the intermediate directories, both the child directory and
4919 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4920 * will always be set. In the lowest directory the names are
cd790076
MM
4921 * static strings and all have proc handlers.
4922 */
4923 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4924 if (entry->child)
4925 sd_free_ctl_entry(&entry->child);
cd790076
MM
4926 if (entry->proc_handler == NULL)
4927 kfree(entry->procname);
4928 }
6382bc90
MM
4929
4930 kfree(*tablep);
4931 *tablep = NULL;
4932}
4933
201c373e 4934static int min_load_idx = 0;
fd9b86d3 4935static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4936
e692ab53 4937static void
e0361851 4938set_table_entry(struct ctl_table *entry,
e692ab53 4939 const char *procname, void *data, int maxlen,
201c373e
NK
4940 umode_t mode, proc_handler *proc_handler,
4941 bool load_idx)
e692ab53 4942{
e692ab53
NP
4943 entry->procname = procname;
4944 entry->data = data;
4945 entry->maxlen = maxlen;
4946 entry->mode = mode;
4947 entry->proc_handler = proc_handler;
201c373e
NK
4948
4949 if (load_idx) {
4950 entry->extra1 = &min_load_idx;
4951 entry->extra2 = &max_load_idx;
4952 }
e692ab53
NP
4953}
4954
4955static struct ctl_table *
4956sd_alloc_ctl_domain_table(struct sched_domain *sd)
4957{
37e6bae8 4958 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4959
ad1cdc1d
MM
4960 if (table == NULL)
4961 return NULL;
4962
e0361851 4963 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4964 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4965 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4966 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4967 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4968 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4969 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4970 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4971 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4972 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4973 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4974 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4975 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4976 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4977 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4978 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4979 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4980 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4981 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4982 &sd->cache_nice_tries,
201c373e 4983 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4984 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4985 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4986 set_table_entry(&table[11], "max_newidle_lb_cost",
4987 &sd->max_newidle_lb_cost,
4988 sizeof(long), 0644, proc_doulongvec_minmax, false);
4989 set_table_entry(&table[12], "name", sd->name,
201c373e 4990 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4991 /* &table[13] is terminator */
e692ab53
NP
4992
4993 return table;
4994}
4995
be7002e6 4996static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4997{
4998 struct ctl_table *entry, *table;
4999 struct sched_domain *sd;
5000 int domain_num = 0, i;
5001 char buf[32];
5002
5003 for_each_domain(cpu, sd)
5004 domain_num++;
5005 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5006 if (table == NULL)
5007 return NULL;
e692ab53
NP
5008
5009 i = 0;
5010 for_each_domain(cpu, sd) {
5011 snprintf(buf, 32, "domain%d", i);
e692ab53 5012 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5013 entry->mode = 0555;
e692ab53
NP
5014 entry->child = sd_alloc_ctl_domain_table(sd);
5015 entry++;
5016 i++;
5017 }
5018 return table;
5019}
5020
5021static struct ctl_table_header *sd_sysctl_header;
6382bc90 5022static void register_sched_domain_sysctl(void)
e692ab53 5023{
6ad4c188 5024 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5025 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5026 char buf[32];
5027
7378547f
MM
5028 WARN_ON(sd_ctl_dir[0].child);
5029 sd_ctl_dir[0].child = entry;
5030
ad1cdc1d
MM
5031 if (entry == NULL)
5032 return;
5033
6ad4c188 5034 for_each_possible_cpu(i) {
e692ab53 5035 snprintf(buf, 32, "cpu%d", i);
e692ab53 5036 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5037 entry->mode = 0555;
e692ab53 5038 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5039 entry++;
e692ab53 5040 }
7378547f
MM
5041
5042 WARN_ON(sd_sysctl_header);
e692ab53
NP
5043 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5044}
6382bc90 5045
7378547f 5046/* may be called multiple times per register */
6382bc90
MM
5047static void unregister_sched_domain_sysctl(void)
5048{
7378547f
MM
5049 if (sd_sysctl_header)
5050 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5051 sd_sysctl_header = NULL;
7378547f
MM
5052 if (sd_ctl_dir[0].child)
5053 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5054}
e692ab53 5055#else
6382bc90
MM
5056static void register_sched_domain_sysctl(void)
5057{
5058}
5059static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5060{
5061}
5062#endif
5063
1f11eb6a
GH
5064static void set_rq_online(struct rq *rq)
5065{
5066 if (!rq->online) {
5067 const struct sched_class *class;
5068
c6c4927b 5069 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5070 rq->online = 1;
5071
5072 for_each_class(class) {
5073 if (class->rq_online)
5074 class->rq_online(rq);
5075 }
5076 }
5077}
5078
5079static void set_rq_offline(struct rq *rq)
5080{
5081 if (rq->online) {
5082 const struct sched_class *class;
5083
5084 for_each_class(class) {
5085 if (class->rq_offline)
5086 class->rq_offline(rq);
5087 }
5088
c6c4927b 5089 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5090 rq->online = 0;
5091 }
5092}
5093
1da177e4
LT
5094/*
5095 * migration_call - callback that gets triggered when a CPU is added.
5096 * Here we can start up the necessary migration thread for the new CPU.
5097 */
0db0628d 5098static int
48f24c4d 5099migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5100{
48f24c4d 5101 int cpu = (long)hcpu;
1da177e4 5102 unsigned long flags;
969c7921 5103 struct rq *rq = cpu_rq(cpu);
1da177e4 5104
48c5ccae 5105 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5106
1da177e4 5107 case CPU_UP_PREPARE:
a468d389 5108 rq->calc_load_update = calc_load_update;
1da177e4 5109 break;
48f24c4d 5110
1da177e4 5111 case CPU_ONLINE:
1f94ef59 5112 /* Update our root-domain */
05fa785c 5113 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5114 if (rq->rd) {
c6c4927b 5115 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5116
5117 set_rq_online(rq);
1f94ef59 5118 }
05fa785c 5119 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5120 break;
48f24c4d 5121
1da177e4 5122#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5123 case CPU_DYING:
317f3941 5124 sched_ttwu_pending();
57d885fe 5125 /* Update our root-domain */
05fa785c 5126 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5127 if (rq->rd) {
c6c4927b 5128 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5129 set_rq_offline(rq);
57d885fe 5130 }
48c5ccae
PZ
5131 migrate_tasks(cpu);
5132 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5133 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5134 break;
48c5ccae 5135
5d180232 5136 case CPU_DEAD:
f319da0c 5137 calc_load_migrate(rq);
57d885fe 5138 break;
1da177e4
LT
5139#endif
5140 }
49c022e6
PZ
5141
5142 update_max_interval();
5143
1da177e4
LT
5144 return NOTIFY_OK;
5145}
5146
f38b0820
PM
5147/*
5148 * Register at high priority so that task migration (migrate_all_tasks)
5149 * happens before everything else. This has to be lower priority than
cdd6c482 5150 * the notifier in the perf_event subsystem, though.
1da177e4 5151 */
0db0628d 5152static struct notifier_block migration_notifier = {
1da177e4 5153 .notifier_call = migration_call,
50a323b7 5154 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5155};
5156
a803f026
CM
5157static void __cpuinit set_cpu_rq_start_time(void)
5158{
5159 int cpu = smp_processor_id();
5160 struct rq *rq = cpu_rq(cpu);
5161 rq->age_stamp = sched_clock_cpu(cpu);
5162}
5163
0db0628d 5164static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5165 unsigned long action, void *hcpu)
5166{
5167 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5168 case CPU_STARTING:
5169 set_cpu_rq_start_time();
5170 return NOTIFY_OK;
3a101d05
TH
5171 case CPU_DOWN_FAILED:
5172 set_cpu_active((long)hcpu, true);
5173 return NOTIFY_OK;
5174 default:
5175 return NOTIFY_DONE;
5176 }
5177}
5178
0db0628d 5179static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5180 unsigned long action, void *hcpu)
5181{
de212f18
PZ
5182 unsigned long flags;
5183 long cpu = (long)hcpu;
5184
3a101d05
TH
5185 switch (action & ~CPU_TASKS_FROZEN) {
5186 case CPU_DOWN_PREPARE:
de212f18
PZ
5187 set_cpu_active(cpu, false);
5188
5189 /* explicitly allow suspend */
5190 if (!(action & CPU_TASKS_FROZEN)) {
5191 struct dl_bw *dl_b = dl_bw_of(cpu);
5192 bool overflow;
5193 int cpus;
5194
5195 raw_spin_lock_irqsave(&dl_b->lock, flags);
5196 cpus = dl_bw_cpus(cpu);
5197 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5198 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5199
5200 if (overflow)
5201 return notifier_from_errno(-EBUSY);
5202 }
3a101d05 5203 return NOTIFY_OK;
3a101d05 5204 }
de212f18
PZ
5205
5206 return NOTIFY_DONE;
3a101d05
TH
5207}
5208
7babe8db 5209static int __init migration_init(void)
1da177e4
LT
5210{
5211 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5212 int err;
48f24c4d 5213
3a101d05 5214 /* Initialize migration for the boot CPU */
07dccf33
AM
5215 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5216 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5217 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5218 register_cpu_notifier(&migration_notifier);
7babe8db 5219
3a101d05
TH
5220 /* Register cpu active notifiers */
5221 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5222 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5223
a004cd42 5224 return 0;
1da177e4 5225}
7babe8db 5226early_initcall(migration_init);
1da177e4
LT
5227#endif
5228
5229#ifdef CONFIG_SMP
476f3534 5230
4cb98839
PZ
5231static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5232
3e9830dc 5233#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5234
d039ac60 5235static __read_mostly int sched_debug_enabled;
f6630114 5236
d039ac60 5237static int __init sched_debug_setup(char *str)
f6630114 5238{
d039ac60 5239 sched_debug_enabled = 1;
f6630114
MT
5240
5241 return 0;
5242}
d039ac60
PZ
5243early_param("sched_debug", sched_debug_setup);
5244
5245static inline bool sched_debug(void)
5246{
5247 return sched_debug_enabled;
5248}
f6630114 5249
7c16ec58 5250static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5251 struct cpumask *groupmask)
1da177e4 5252{
4dcf6aff 5253 struct sched_group *group = sd->groups;
434d53b0 5254 char str[256];
1da177e4 5255
968ea6d8 5256 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5257 cpumask_clear(groupmask);
4dcf6aff
IM
5258
5259 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5260
5261 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5262 printk("does not load-balance\n");
4dcf6aff 5263 if (sd->parent)
3df0fc5b
PZ
5264 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5265 " has parent");
4dcf6aff 5266 return -1;
41c7ce9a
NP
5267 }
5268
3df0fc5b 5269 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5270
758b2cdc 5271 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5272 printk(KERN_ERR "ERROR: domain->span does not contain "
5273 "CPU%d\n", cpu);
4dcf6aff 5274 }
758b2cdc 5275 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5276 printk(KERN_ERR "ERROR: domain->groups does not contain"
5277 " CPU%d\n", cpu);
4dcf6aff 5278 }
1da177e4 5279
4dcf6aff 5280 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5281 do {
4dcf6aff 5282 if (!group) {
3df0fc5b
PZ
5283 printk("\n");
5284 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5285 break;
5286 }
5287
c3decf0d 5288 /*
63b2ca30
NP
5289 * Even though we initialize ->capacity to something semi-sane,
5290 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5291 * domain iteration is still funny without causing /0 traps.
5292 */
63b2ca30 5293 if (!group->sgc->capacity_orig) {
3df0fc5b 5294 printk(KERN_CONT "\n");
63b2ca30 5295 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5296 break;
5297 }
1da177e4 5298
758b2cdc 5299 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5300 printk(KERN_CONT "\n");
5301 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5302 break;
5303 }
1da177e4 5304
cb83b629
PZ
5305 if (!(sd->flags & SD_OVERLAP) &&
5306 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5307 printk(KERN_CONT "\n");
5308 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5309 break;
5310 }
1da177e4 5311
758b2cdc 5312 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5313
968ea6d8 5314 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5315
3df0fc5b 5316 printk(KERN_CONT " %s", str);
ca8ce3d0 5317 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5318 printk(KERN_CONT " (cpu_capacity = %d)",
5319 group->sgc->capacity);
381512cf 5320 }
1da177e4 5321
4dcf6aff
IM
5322 group = group->next;
5323 } while (group != sd->groups);
3df0fc5b 5324 printk(KERN_CONT "\n");
1da177e4 5325
758b2cdc 5326 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5327 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5328
758b2cdc
RR
5329 if (sd->parent &&
5330 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5331 printk(KERN_ERR "ERROR: parent span is not a superset "
5332 "of domain->span\n");
4dcf6aff
IM
5333 return 0;
5334}
1da177e4 5335
4dcf6aff
IM
5336static void sched_domain_debug(struct sched_domain *sd, int cpu)
5337{
5338 int level = 0;
1da177e4 5339
d039ac60 5340 if (!sched_debug_enabled)
f6630114
MT
5341 return;
5342
4dcf6aff
IM
5343 if (!sd) {
5344 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5345 return;
5346 }
1da177e4 5347
4dcf6aff
IM
5348 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5349
5350 for (;;) {
4cb98839 5351 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5352 break;
1da177e4
LT
5353 level++;
5354 sd = sd->parent;
33859f7f 5355 if (!sd)
4dcf6aff
IM
5356 break;
5357 }
1da177e4 5358}
6d6bc0ad 5359#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5360# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5361static inline bool sched_debug(void)
5362{
5363 return false;
5364}
6d6bc0ad 5365#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5366
1a20ff27 5367static int sd_degenerate(struct sched_domain *sd)
245af2c7 5368{
758b2cdc 5369 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5370 return 1;
5371
5372 /* Following flags need at least 2 groups */
5373 if (sd->flags & (SD_LOAD_BALANCE |
5374 SD_BALANCE_NEWIDLE |
5375 SD_BALANCE_FORK |
89c4710e 5376 SD_BALANCE_EXEC |
5d4dfddd 5377 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5378 SD_SHARE_PKG_RESOURCES |
5379 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5380 if (sd->groups != sd->groups->next)
5381 return 0;
5382 }
5383
5384 /* Following flags don't use groups */
c88d5910 5385 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5386 return 0;
5387
5388 return 1;
5389}
5390
48f24c4d
IM
5391static int
5392sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5393{
5394 unsigned long cflags = sd->flags, pflags = parent->flags;
5395
5396 if (sd_degenerate(parent))
5397 return 1;
5398
758b2cdc 5399 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5400 return 0;
5401
245af2c7
SS
5402 /* Flags needing groups don't count if only 1 group in parent */
5403 if (parent->groups == parent->groups->next) {
5404 pflags &= ~(SD_LOAD_BALANCE |
5405 SD_BALANCE_NEWIDLE |
5406 SD_BALANCE_FORK |
89c4710e 5407 SD_BALANCE_EXEC |
5d4dfddd 5408 SD_SHARE_CPUCAPACITY |
10866e62 5409 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5410 SD_PREFER_SIBLING |
5411 SD_SHARE_POWERDOMAIN);
5436499e
KC
5412 if (nr_node_ids == 1)
5413 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5414 }
5415 if (~cflags & pflags)
5416 return 0;
5417
5418 return 1;
5419}
5420
dce840a0 5421static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5422{
dce840a0 5423 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5424
68e74568 5425 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5426 cpudl_cleanup(&rd->cpudl);
1baca4ce 5427 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5428 free_cpumask_var(rd->rto_mask);
5429 free_cpumask_var(rd->online);
5430 free_cpumask_var(rd->span);
5431 kfree(rd);
5432}
5433
57d885fe
GH
5434static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5435{
a0490fa3 5436 struct root_domain *old_rd = NULL;
57d885fe 5437 unsigned long flags;
57d885fe 5438
05fa785c 5439 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5440
5441 if (rq->rd) {
a0490fa3 5442 old_rd = rq->rd;
57d885fe 5443
c6c4927b 5444 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5445 set_rq_offline(rq);
57d885fe 5446
c6c4927b 5447 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5448
a0490fa3 5449 /*
0515973f 5450 * If we dont want to free the old_rd yet then
a0490fa3
IM
5451 * set old_rd to NULL to skip the freeing later
5452 * in this function:
5453 */
5454 if (!atomic_dec_and_test(&old_rd->refcount))
5455 old_rd = NULL;
57d885fe
GH
5456 }
5457
5458 atomic_inc(&rd->refcount);
5459 rq->rd = rd;
5460
c6c4927b 5461 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5462 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5463 set_rq_online(rq);
57d885fe 5464
05fa785c 5465 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5466
5467 if (old_rd)
dce840a0 5468 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5469}
5470
68c38fc3 5471static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5472{
5473 memset(rd, 0, sizeof(*rd));
5474
68c38fc3 5475 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5476 goto out;
68c38fc3 5477 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5478 goto free_span;
1baca4ce 5479 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5480 goto free_online;
1baca4ce
JL
5481 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5482 goto free_dlo_mask;
6e0534f2 5483
332ac17e 5484 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5485 if (cpudl_init(&rd->cpudl) != 0)
5486 goto free_dlo_mask;
332ac17e 5487
68c38fc3 5488 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5489 goto free_rto_mask;
c6c4927b 5490 return 0;
6e0534f2 5491
68e74568
RR
5492free_rto_mask:
5493 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5494free_dlo_mask:
5495 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5496free_online:
5497 free_cpumask_var(rd->online);
5498free_span:
5499 free_cpumask_var(rd->span);
0c910d28 5500out:
c6c4927b 5501 return -ENOMEM;
57d885fe
GH
5502}
5503
029632fb
PZ
5504/*
5505 * By default the system creates a single root-domain with all cpus as
5506 * members (mimicking the global state we have today).
5507 */
5508struct root_domain def_root_domain;
5509
57d885fe
GH
5510static void init_defrootdomain(void)
5511{
68c38fc3 5512 init_rootdomain(&def_root_domain);
c6c4927b 5513
57d885fe
GH
5514 atomic_set(&def_root_domain.refcount, 1);
5515}
5516
dc938520 5517static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5518{
5519 struct root_domain *rd;
5520
5521 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5522 if (!rd)
5523 return NULL;
5524
68c38fc3 5525 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5526 kfree(rd);
5527 return NULL;
5528 }
57d885fe
GH
5529
5530 return rd;
5531}
5532
63b2ca30 5533static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5534{
5535 struct sched_group *tmp, *first;
5536
5537 if (!sg)
5538 return;
5539
5540 first = sg;
5541 do {
5542 tmp = sg->next;
5543
63b2ca30
NP
5544 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5545 kfree(sg->sgc);
e3589f6c
PZ
5546
5547 kfree(sg);
5548 sg = tmp;
5549 } while (sg != first);
5550}
5551
dce840a0
PZ
5552static void free_sched_domain(struct rcu_head *rcu)
5553{
5554 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5555
5556 /*
5557 * If its an overlapping domain it has private groups, iterate and
5558 * nuke them all.
5559 */
5560 if (sd->flags & SD_OVERLAP) {
5561 free_sched_groups(sd->groups, 1);
5562 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5563 kfree(sd->groups->sgc);
dce840a0 5564 kfree(sd->groups);
9c3f75cb 5565 }
dce840a0
PZ
5566 kfree(sd);
5567}
5568
5569static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5570{
5571 call_rcu(&sd->rcu, free_sched_domain);
5572}
5573
5574static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5575{
5576 for (; sd; sd = sd->parent)
5577 destroy_sched_domain(sd, cpu);
5578}
5579
518cd623
PZ
5580/*
5581 * Keep a special pointer to the highest sched_domain that has
5582 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5583 * allows us to avoid some pointer chasing select_idle_sibling().
5584 *
5585 * Also keep a unique ID per domain (we use the first cpu number in
5586 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5587 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5588 */
5589DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5590DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5591DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5592DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5593DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5594DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5595
5596static void update_top_cache_domain(int cpu)
5597{
5598 struct sched_domain *sd;
5d4cf996 5599 struct sched_domain *busy_sd = NULL;
518cd623 5600 int id = cpu;
7d9ffa89 5601 int size = 1;
518cd623
PZ
5602
5603 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5604 if (sd) {
518cd623 5605 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5606 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5607 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5608 }
5d4cf996 5609 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5610
5611 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5612 per_cpu(sd_llc_size, cpu) = size;
518cd623 5613 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5614
5615 sd = lowest_flag_domain(cpu, SD_NUMA);
5616 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5617
5618 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5619 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5620}
5621
1da177e4 5622/*
0eab9146 5623 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5624 * hold the hotplug lock.
5625 */
0eab9146
IM
5626static void
5627cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5628{
70b97a7f 5629 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5630 struct sched_domain *tmp;
5631
5632 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5633 for (tmp = sd; tmp; ) {
245af2c7
SS
5634 struct sched_domain *parent = tmp->parent;
5635 if (!parent)
5636 break;
f29c9b1c 5637
1a848870 5638 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5639 tmp->parent = parent->parent;
1a848870
SS
5640 if (parent->parent)
5641 parent->parent->child = tmp;
10866e62
PZ
5642 /*
5643 * Transfer SD_PREFER_SIBLING down in case of a
5644 * degenerate parent; the spans match for this
5645 * so the property transfers.
5646 */
5647 if (parent->flags & SD_PREFER_SIBLING)
5648 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5649 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5650 } else
5651 tmp = tmp->parent;
245af2c7
SS
5652 }
5653
1a848870 5654 if (sd && sd_degenerate(sd)) {
dce840a0 5655 tmp = sd;
245af2c7 5656 sd = sd->parent;
dce840a0 5657 destroy_sched_domain(tmp, cpu);
1a848870
SS
5658 if (sd)
5659 sd->child = NULL;
5660 }
1da177e4 5661
4cb98839 5662 sched_domain_debug(sd, cpu);
1da177e4 5663
57d885fe 5664 rq_attach_root(rq, rd);
dce840a0 5665 tmp = rq->sd;
674311d5 5666 rcu_assign_pointer(rq->sd, sd);
dce840a0 5667 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5668
5669 update_top_cache_domain(cpu);
1da177e4
LT
5670}
5671
5672/* cpus with isolated domains */
dcc30a35 5673static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5674
5675/* Setup the mask of cpus configured for isolated domains */
5676static int __init isolated_cpu_setup(char *str)
5677{
bdddd296 5678 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5679 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5680 return 1;
5681}
5682
8927f494 5683__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5684
49a02c51 5685struct s_data {
21d42ccf 5686 struct sched_domain ** __percpu sd;
49a02c51
AH
5687 struct root_domain *rd;
5688};
5689
2109b99e 5690enum s_alloc {
2109b99e 5691 sa_rootdomain,
21d42ccf 5692 sa_sd,
dce840a0 5693 sa_sd_storage,
2109b99e
AH
5694 sa_none,
5695};
5696
c1174876
PZ
5697/*
5698 * Build an iteration mask that can exclude certain CPUs from the upwards
5699 * domain traversal.
5700 *
5701 * Asymmetric node setups can result in situations where the domain tree is of
5702 * unequal depth, make sure to skip domains that already cover the entire
5703 * range.
5704 *
5705 * In that case build_sched_domains() will have terminated the iteration early
5706 * and our sibling sd spans will be empty. Domains should always include the
5707 * cpu they're built on, so check that.
5708 *
5709 */
5710static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5711{
5712 const struct cpumask *span = sched_domain_span(sd);
5713 struct sd_data *sdd = sd->private;
5714 struct sched_domain *sibling;
5715 int i;
5716
5717 for_each_cpu(i, span) {
5718 sibling = *per_cpu_ptr(sdd->sd, i);
5719 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5720 continue;
5721
5722 cpumask_set_cpu(i, sched_group_mask(sg));
5723 }
5724}
5725
5726/*
5727 * Return the canonical balance cpu for this group, this is the first cpu
5728 * of this group that's also in the iteration mask.
5729 */
5730int group_balance_cpu(struct sched_group *sg)
5731{
5732 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5733}
5734
e3589f6c
PZ
5735static int
5736build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5737{
5738 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5739 const struct cpumask *span = sched_domain_span(sd);
5740 struct cpumask *covered = sched_domains_tmpmask;
5741 struct sd_data *sdd = sd->private;
aaecac4a 5742 struct sched_domain *sibling;
e3589f6c
PZ
5743 int i;
5744
5745 cpumask_clear(covered);
5746
5747 for_each_cpu(i, span) {
5748 struct cpumask *sg_span;
5749
5750 if (cpumask_test_cpu(i, covered))
5751 continue;
5752
aaecac4a 5753 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5754
5755 /* See the comment near build_group_mask(). */
aaecac4a 5756 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5757 continue;
5758
e3589f6c 5759 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5760 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5761
5762 if (!sg)
5763 goto fail;
5764
5765 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5766 if (sibling->child)
5767 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5768 else
e3589f6c
PZ
5769 cpumask_set_cpu(i, sg_span);
5770
5771 cpumask_or(covered, covered, sg_span);
5772
63b2ca30
NP
5773 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5774 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5775 build_group_mask(sd, sg);
5776
c3decf0d 5777 /*
63b2ca30 5778 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5779 * domains and no possible iteration will get us here, we won't
5780 * die on a /0 trap.
5781 */
ca8ce3d0 5782 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5783 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5784
c1174876
PZ
5785 /*
5786 * Make sure the first group of this domain contains the
5787 * canonical balance cpu. Otherwise the sched_domain iteration
5788 * breaks. See update_sg_lb_stats().
5789 */
74a5ce20 5790 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5791 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5792 groups = sg;
5793
5794 if (!first)
5795 first = sg;
5796 if (last)
5797 last->next = sg;
5798 last = sg;
5799 last->next = first;
5800 }
5801 sd->groups = groups;
5802
5803 return 0;
5804
5805fail:
5806 free_sched_groups(first, 0);
5807
5808 return -ENOMEM;
5809}
5810
dce840a0 5811static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5812{
dce840a0
PZ
5813 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5814 struct sched_domain *child = sd->child;
1da177e4 5815
dce840a0
PZ
5816 if (child)
5817 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5818
9c3f75cb 5819 if (sg) {
dce840a0 5820 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5821 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5822 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5823 }
dce840a0
PZ
5824
5825 return cpu;
1e9f28fa 5826}
1e9f28fa 5827
01a08546 5828/*
dce840a0
PZ
5829 * build_sched_groups will build a circular linked list of the groups
5830 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5831 * and ->cpu_capacity to 0.
e3589f6c
PZ
5832 *
5833 * Assumes the sched_domain tree is fully constructed
01a08546 5834 */
e3589f6c
PZ
5835static int
5836build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5837{
dce840a0
PZ
5838 struct sched_group *first = NULL, *last = NULL;
5839 struct sd_data *sdd = sd->private;
5840 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5841 struct cpumask *covered;
dce840a0 5842 int i;
9c1cfda2 5843
e3589f6c
PZ
5844 get_group(cpu, sdd, &sd->groups);
5845 atomic_inc(&sd->groups->ref);
5846
0936629f 5847 if (cpu != cpumask_first(span))
e3589f6c
PZ
5848 return 0;
5849
f96225fd
PZ
5850 lockdep_assert_held(&sched_domains_mutex);
5851 covered = sched_domains_tmpmask;
5852
dce840a0 5853 cpumask_clear(covered);
6711cab4 5854
dce840a0
PZ
5855 for_each_cpu(i, span) {
5856 struct sched_group *sg;
cd08e923 5857 int group, j;
6711cab4 5858
dce840a0
PZ
5859 if (cpumask_test_cpu(i, covered))
5860 continue;
6711cab4 5861
cd08e923 5862 group = get_group(i, sdd, &sg);
c1174876 5863 cpumask_setall(sched_group_mask(sg));
0601a88d 5864
dce840a0
PZ
5865 for_each_cpu(j, span) {
5866 if (get_group(j, sdd, NULL) != group)
5867 continue;
0601a88d 5868
dce840a0
PZ
5869 cpumask_set_cpu(j, covered);
5870 cpumask_set_cpu(j, sched_group_cpus(sg));
5871 }
0601a88d 5872
dce840a0
PZ
5873 if (!first)
5874 first = sg;
5875 if (last)
5876 last->next = sg;
5877 last = sg;
5878 }
5879 last->next = first;
e3589f6c
PZ
5880
5881 return 0;
0601a88d 5882}
51888ca2 5883
89c4710e 5884/*
63b2ca30 5885 * Initialize sched groups cpu_capacity.
89c4710e 5886 *
63b2ca30 5887 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 5888 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
5889 * Typically cpu_capacity for all the groups in a sched domain will be same
5890 * unless there are asymmetries in the topology. If there are asymmetries,
5891 * group having more cpu_capacity will pickup more load compared to the
5892 * group having less cpu_capacity.
89c4710e 5893 */
63b2ca30 5894static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 5895{
e3589f6c 5896 struct sched_group *sg = sd->groups;
89c4710e 5897
94c95ba6 5898 WARN_ON(!sg);
e3589f6c
PZ
5899
5900 do {
5901 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5902 sg = sg->next;
5903 } while (sg != sd->groups);
89c4710e 5904
c1174876 5905 if (cpu != group_balance_cpu(sg))
e3589f6c 5906 return;
aae6d3dd 5907
63b2ca30
NP
5908 update_group_capacity(sd, cpu);
5909 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5910}
5911
7c16ec58
MT
5912/*
5913 * Initializers for schedule domains
5914 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5915 */
5916
1d3504fc 5917static int default_relax_domain_level = -1;
60495e77 5918int sched_domain_level_max;
1d3504fc
HS
5919
5920static int __init setup_relax_domain_level(char *str)
5921{
a841f8ce
DS
5922 if (kstrtoint(str, 0, &default_relax_domain_level))
5923 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5924
1d3504fc
HS
5925 return 1;
5926}
5927__setup("relax_domain_level=", setup_relax_domain_level);
5928
5929static void set_domain_attribute(struct sched_domain *sd,
5930 struct sched_domain_attr *attr)
5931{
5932 int request;
5933
5934 if (!attr || attr->relax_domain_level < 0) {
5935 if (default_relax_domain_level < 0)
5936 return;
5937 else
5938 request = default_relax_domain_level;
5939 } else
5940 request = attr->relax_domain_level;
5941 if (request < sd->level) {
5942 /* turn off idle balance on this domain */
c88d5910 5943 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5944 } else {
5945 /* turn on idle balance on this domain */
c88d5910 5946 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5947 }
5948}
5949
54ab4ff4
PZ
5950static void __sdt_free(const struct cpumask *cpu_map);
5951static int __sdt_alloc(const struct cpumask *cpu_map);
5952
2109b99e
AH
5953static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5954 const struct cpumask *cpu_map)
5955{
5956 switch (what) {
2109b99e 5957 case sa_rootdomain:
822ff793
PZ
5958 if (!atomic_read(&d->rd->refcount))
5959 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5960 case sa_sd:
5961 free_percpu(d->sd); /* fall through */
dce840a0 5962 case sa_sd_storage:
54ab4ff4 5963 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5964 case sa_none:
5965 break;
5966 }
5967}
3404c8d9 5968
2109b99e
AH
5969static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5970 const struct cpumask *cpu_map)
5971{
dce840a0
PZ
5972 memset(d, 0, sizeof(*d));
5973
54ab4ff4
PZ
5974 if (__sdt_alloc(cpu_map))
5975 return sa_sd_storage;
dce840a0
PZ
5976 d->sd = alloc_percpu(struct sched_domain *);
5977 if (!d->sd)
5978 return sa_sd_storage;
2109b99e 5979 d->rd = alloc_rootdomain();
dce840a0 5980 if (!d->rd)
21d42ccf 5981 return sa_sd;
2109b99e
AH
5982 return sa_rootdomain;
5983}
57d885fe 5984
dce840a0
PZ
5985/*
5986 * NULL the sd_data elements we've used to build the sched_domain and
5987 * sched_group structure so that the subsequent __free_domain_allocs()
5988 * will not free the data we're using.
5989 */
5990static void claim_allocations(int cpu, struct sched_domain *sd)
5991{
5992 struct sd_data *sdd = sd->private;
dce840a0
PZ
5993
5994 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5995 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5996
e3589f6c 5997 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5998 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 5999
63b2ca30
NP
6000 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6001 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6002}
6003
cb83b629 6004#ifdef CONFIG_NUMA
cb83b629 6005static int sched_domains_numa_levels;
cb83b629
PZ
6006static int *sched_domains_numa_distance;
6007static struct cpumask ***sched_domains_numa_masks;
6008static int sched_domains_curr_level;
143e1e28 6009#endif
cb83b629 6010
143e1e28
VG
6011/*
6012 * SD_flags allowed in topology descriptions.
6013 *
5d4dfddd 6014 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6015 * SD_SHARE_PKG_RESOURCES - describes shared caches
6016 * SD_NUMA - describes NUMA topologies
d77b3ed5 6017 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6018 *
6019 * Odd one out:
6020 * SD_ASYM_PACKING - describes SMT quirks
6021 */
6022#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6023 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6024 SD_SHARE_PKG_RESOURCES | \
6025 SD_NUMA | \
d77b3ed5
VG
6026 SD_ASYM_PACKING | \
6027 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6028
6029static struct sched_domain *
143e1e28 6030sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6031{
6032 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6033 int sd_weight, sd_flags = 0;
6034
6035#ifdef CONFIG_NUMA
6036 /*
6037 * Ugly hack to pass state to sd_numa_mask()...
6038 */
6039 sched_domains_curr_level = tl->numa_level;
6040#endif
6041
6042 sd_weight = cpumask_weight(tl->mask(cpu));
6043
6044 if (tl->sd_flags)
6045 sd_flags = (*tl->sd_flags)();
6046 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6047 "wrong sd_flags in topology description\n"))
6048 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6049
6050 *sd = (struct sched_domain){
6051 .min_interval = sd_weight,
6052 .max_interval = 2*sd_weight,
6053 .busy_factor = 32,
870a0bb5 6054 .imbalance_pct = 125,
143e1e28
VG
6055
6056 .cache_nice_tries = 0,
6057 .busy_idx = 0,
6058 .idle_idx = 0,
cb83b629
PZ
6059 .newidle_idx = 0,
6060 .wake_idx = 0,
6061 .forkexec_idx = 0,
6062
6063 .flags = 1*SD_LOAD_BALANCE
6064 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6065 | 1*SD_BALANCE_EXEC
6066 | 1*SD_BALANCE_FORK
cb83b629 6067 | 0*SD_BALANCE_WAKE
143e1e28 6068 | 1*SD_WAKE_AFFINE
5d4dfddd 6069 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6070 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6071 | 0*SD_SERIALIZE
cb83b629 6072 | 0*SD_PREFER_SIBLING
143e1e28
VG
6073 | 0*SD_NUMA
6074 | sd_flags
cb83b629 6075 ,
143e1e28 6076
cb83b629
PZ
6077 .last_balance = jiffies,
6078 .balance_interval = sd_weight,
143e1e28 6079 .smt_gain = 0,
2b4cfe64
JL
6080 .max_newidle_lb_cost = 0,
6081 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6082#ifdef CONFIG_SCHED_DEBUG
6083 .name = tl->name,
6084#endif
cb83b629 6085 };
cb83b629
PZ
6086
6087 /*
143e1e28 6088 * Convert topological properties into behaviour.
cb83b629 6089 */
143e1e28 6090
5d4dfddd 6091 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6092 sd->imbalance_pct = 110;
6093 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6094
6095 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6096 sd->imbalance_pct = 117;
6097 sd->cache_nice_tries = 1;
6098 sd->busy_idx = 2;
6099
6100#ifdef CONFIG_NUMA
6101 } else if (sd->flags & SD_NUMA) {
6102 sd->cache_nice_tries = 2;
6103 sd->busy_idx = 3;
6104 sd->idle_idx = 2;
6105
6106 sd->flags |= SD_SERIALIZE;
6107 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6108 sd->flags &= ~(SD_BALANCE_EXEC |
6109 SD_BALANCE_FORK |
6110 SD_WAKE_AFFINE);
6111 }
6112
6113#endif
6114 } else {
6115 sd->flags |= SD_PREFER_SIBLING;
6116 sd->cache_nice_tries = 1;
6117 sd->busy_idx = 2;
6118 sd->idle_idx = 1;
6119 }
6120
6121 sd->private = &tl->data;
cb83b629
PZ
6122
6123 return sd;
6124}
6125
143e1e28
VG
6126/*
6127 * Topology list, bottom-up.
6128 */
6129static struct sched_domain_topology_level default_topology[] = {
6130#ifdef CONFIG_SCHED_SMT
6131 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6132#endif
6133#ifdef CONFIG_SCHED_MC
6134 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6135#endif
6136 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6137 { NULL, },
6138};
6139
6140struct sched_domain_topology_level *sched_domain_topology = default_topology;
6141
6142#define for_each_sd_topology(tl) \
6143 for (tl = sched_domain_topology; tl->mask; tl++)
6144
6145void set_sched_topology(struct sched_domain_topology_level *tl)
6146{
6147 sched_domain_topology = tl;
6148}
6149
6150#ifdef CONFIG_NUMA
6151
cb83b629
PZ
6152static const struct cpumask *sd_numa_mask(int cpu)
6153{
6154 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6155}
6156
d039ac60
PZ
6157static void sched_numa_warn(const char *str)
6158{
6159 static int done = false;
6160 int i,j;
6161
6162 if (done)
6163 return;
6164
6165 done = true;
6166
6167 printk(KERN_WARNING "ERROR: %s\n\n", str);
6168
6169 for (i = 0; i < nr_node_ids; i++) {
6170 printk(KERN_WARNING " ");
6171 for (j = 0; j < nr_node_ids; j++)
6172 printk(KERN_CONT "%02d ", node_distance(i,j));
6173 printk(KERN_CONT "\n");
6174 }
6175 printk(KERN_WARNING "\n");
6176}
6177
6178static bool find_numa_distance(int distance)
6179{
6180 int i;
6181
6182 if (distance == node_distance(0, 0))
6183 return true;
6184
6185 for (i = 0; i < sched_domains_numa_levels; i++) {
6186 if (sched_domains_numa_distance[i] == distance)
6187 return true;
6188 }
6189
6190 return false;
6191}
6192
cb83b629
PZ
6193static void sched_init_numa(void)
6194{
6195 int next_distance, curr_distance = node_distance(0, 0);
6196 struct sched_domain_topology_level *tl;
6197 int level = 0;
6198 int i, j, k;
6199
cb83b629
PZ
6200 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6201 if (!sched_domains_numa_distance)
6202 return;
6203
6204 /*
6205 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6206 * unique distances in the node_distance() table.
6207 *
6208 * Assumes node_distance(0,j) includes all distances in
6209 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6210 */
6211 next_distance = curr_distance;
6212 for (i = 0; i < nr_node_ids; i++) {
6213 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6214 for (k = 0; k < nr_node_ids; k++) {
6215 int distance = node_distance(i, k);
6216
6217 if (distance > curr_distance &&
6218 (distance < next_distance ||
6219 next_distance == curr_distance))
6220 next_distance = distance;
6221
6222 /*
6223 * While not a strong assumption it would be nice to know
6224 * about cases where if node A is connected to B, B is not
6225 * equally connected to A.
6226 */
6227 if (sched_debug() && node_distance(k, i) != distance)
6228 sched_numa_warn("Node-distance not symmetric");
6229
6230 if (sched_debug() && i && !find_numa_distance(distance))
6231 sched_numa_warn("Node-0 not representative");
6232 }
6233 if (next_distance != curr_distance) {
6234 sched_domains_numa_distance[level++] = next_distance;
6235 sched_domains_numa_levels = level;
6236 curr_distance = next_distance;
6237 } else break;
cb83b629 6238 }
d039ac60
PZ
6239
6240 /*
6241 * In case of sched_debug() we verify the above assumption.
6242 */
6243 if (!sched_debug())
6244 break;
cb83b629
PZ
6245 }
6246 /*
6247 * 'level' contains the number of unique distances, excluding the
6248 * identity distance node_distance(i,i).
6249 *
28b4a521 6250 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6251 * numbers.
6252 */
6253
5f7865f3
TC
6254 /*
6255 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6256 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6257 * the array will contain less then 'level' members. This could be
6258 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6259 * in other functions.
6260 *
6261 * We reset it to 'level' at the end of this function.
6262 */
6263 sched_domains_numa_levels = 0;
6264
cb83b629
PZ
6265 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6266 if (!sched_domains_numa_masks)
6267 return;
6268
6269 /*
6270 * Now for each level, construct a mask per node which contains all
6271 * cpus of nodes that are that many hops away from us.
6272 */
6273 for (i = 0; i < level; i++) {
6274 sched_domains_numa_masks[i] =
6275 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6276 if (!sched_domains_numa_masks[i])
6277 return;
6278
6279 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6280 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6281 if (!mask)
6282 return;
6283
6284 sched_domains_numa_masks[i][j] = mask;
6285
6286 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6287 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6288 continue;
6289
6290 cpumask_or(mask, mask, cpumask_of_node(k));
6291 }
6292 }
6293 }
6294
143e1e28
VG
6295 /* Compute default topology size */
6296 for (i = 0; sched_domain_topology[i].mask; i++);
6297
c515db8c 6298 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6299 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6300 if (!tl)
6301 return;
6302
6303 /*
6304 * Copy the default topology bits..
6305 */
143e1e28
VG
6306 for (i = 0; sched_domain_topology[i].mask; i++)
6307 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6308
6309 /*
6310 * .. and append 'j' levels of NUMA goodness.
6311 */
6312 for (j = 0; j < level; i++, j++) {
6313 tl[i] = (struct sched_domain_topology_level){
cb83b629 6314 .mask = sd_numa_mask,
143e1e28 6315 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6316 .flags = SDTL_OVERLAP,
6317 .numa_level = j,
143e1e28 6318 SD_INIT_NAME(NUMA)
cb83b629
PZ
6319 };
6320 }
6321
6322 sched_domain_topology = tl;
5f7865f3
TC
6323
6324 sched_domains_numa_levels = level;
cb83b629 6325}
301a5cba
TC
6326
6327static void sched_domains_numa_masks_set(int cpu)
6328{
6329 int i, j;
6330 int node = cpu_to_node(cpu);
6331
6332 for (i = 0; i < sched_domains_numa_levels; i++) {
6333 for (j = 0; j < nr_node_ids; j++) {
6334 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6335 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6336 }
6337 }
6338}
6339
6340static void sched_domains_numa_masks_clear(int cpu)
6341{
6342 int i, j;
6343 for (i = 0; i < sched_domains_numa_levels; i++) {
6344 for (j = 0; j < nr_node_ids; j++)
6345 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6346 }
6347}
6348
6349/*
6350 * Update sched_domains_numa_masks[level][node] array when new cpus
6351 * are onlined.
6352 */
6353static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6354 unsigned long action,
6355 void *hcpu)
6356{
6357 int cpu = (long)hcpu;
6358
6359 switch (action & ~CPU_TASKS_FROZEN) {
6360 case CPU_ONLINE:
6361 sched_domains_numa_masks_set(cpu);
6362 break;
6363
6364 case CPU_DEAD:
6365 sched_domains_numa_masks_clear(cpu);
6366 break;
6367
6368 default:
6369 return NOTIFY_DONE;
6370 }
6371
6372 return NOTIFY_OK;
cb83b629
PZ
6373}
6374#else
6375static inline void sched_init_numa(void)
6376{
6377}
301a5cba
TC
6378
6379static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6380 unsigned long action,
6381 void *hcpu)
6382{
6383 return 0;
6384}
cb83b629
PZ
6385#endif /* CONFIG_NUMA */
6386
54ab4ff4
PZ
6387static int __sdt_alloc(const struct cpumask *cpu_map)
6388{
6389 struct sched_domain_topology_level *tl;
6390 int j;
6391
27723a68 6392 for_each_sd_topology(tl) {
54ab4ff4
PZ
6393 struct sd_data *sdd = &tl->data;
6394
6395 sdd->sd = alloc_percpu(struct sched_domain *);
6396 if (!sdd->sd)
6397 return -ENOMEM;
6398
6399 sdd->sg = alloc_percpu(struct sched_group *);
6400 if (!sdd->sg)
6401 return -ENOMEM;
6402
63b2ca30
NP
6403 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6404 if (!sdd->sgc)
9c3f75cb
PZ
6405 return -ENOMEM;
6406
54ab4ff4
PZ
6407 for_each_cpu(j, cpu_map) {
6408 struct sched_domain *sd;
6409 struct sched_group *sg;
63b2ca30 6410 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6411
6412 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6413 GFP_KERNEL, cpu_to_node(j));
6414 if (!sd)
6415 return -ENOMEM;
6416
6417 *per_cpu_ptr(sdd->sd, j) = sd;
6418
6419 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6420 GFP_KERNEL, cpu_to_node(j));
6421 if (!sg)
6422 return -ENOMEM;
6423
30b4e9eb
IM
6424 sg->next = sg;
6425
54ab4ff4 6426 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6427
63b2ca30 6428 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6429 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6430 if (!sgc)
9c3f75cb
PZ
6431 return -ENOMEM;
6432
63b2ca30 6433 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6434 }
6435 }
6436
6437 return 0;
6438}
6439
6440static void __sdt_free(const struct cpumask *cpu_map)
6441{
6442 struct sched_domain_topology_level *tl;
6443 int j;
6444
27723a68 6445 for_each_sd_topology(tl) {
54ab4ff4
PZ
6446 struct sd_data *sdd = &tl->data;
6447
6448 for_each_cpu(j, cpu_map) {
fb2cf2c6 6449 struct sched_domain *sd;
6450
6451 if (sdd->sd) {
6452 sd = *per_cpu_ptr(sdd->sd, j);
6453 if (sd && (sd->flags & SD_OVERLAP))
6454 free_sched_groups(sd->groups, 0);
6455 kfree(*per_cpu_ptr(sdd->sd, j));
6456 }
6457
6458 if (sdd->sg)
6459 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6460 if (sdd->sgc)
6461 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6462 }
6463 free_percpu(sdd->sd);
fb2cf2c6 6464 sdd->sd = NULL;
54ab4ff4 6465 free_percpu(sdd->sg);
fb2cf2c6 6466 sdd->sg = NULL;
63b2ca30
NP
6467 free_percpu(sdd->sgc);
6468 sdd->sgc = NULL;
54ab4ff4
PZ
6469 }
6470}
6471
2c402dc3 6472struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6473 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6474 struct sched_domain *child, int cpu)
2c402dc3 6475{
143e1e28 6476 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6477 if (!sd)
d069b916 6478 return child;
2c402dc3 6479
2c402dc3 6480 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6481 if (child) {
6482 sd->level = child->level + 1;
6483 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6484 child->parent = sd;
c75e0128 6485 sd->child = child;
6ae72dff
PZ
6486
6487 if (!cpumask_subset(sched_domain_span(child),
6488 sched_domain_span(sd))) {
6489 pr_err("BUG: arch topology borken\n");
6490#ifdef CONFIG_SCHED_DEBUG
6491 pr_err(" the %s domain not a subset of the %s domain\n",
6492 child->name, sd->name);
6493#endif
6494 /* Fixup, ensure @sd has at least @child cpus. */
6495 cpumask_or(sched_domain_span(sd),
6496 sched_domain_span(sd),
6497 sched_domain_span(child));
6498 }
6499
60495e77 6500 }
a841f8ce 6501 set_domain_attribute(sd, attr);
2c402dc3
PZ
6502
6503 return sd;
6504}
6505
2109b99e
AH
6506/*
6507 * Build sched domains for a given set of cpus and attach the sched domains
6508 * to the individual cpus
6509 */
dce840a0
PZ
6510static int build_sched_domains(const struct cpumask *cpu_map,
6511 struct sched_domain_attr *attr)
2109b99e 6512{
1c632169 6513 enum s_alloc alloc_state;
dce840a0 6514 struct sched_domain *sd;
2109b99e 6515 struct s_data d;
822ff793 6516 int i, ret = -ENOMEM;
9c1cfda2 6517
2109b99e
AH
6518 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6519 if (alloc_state != sa_rootdomain)
6520 goto error;
9c1cfda2 6521
dce840a0 6522 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6523 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6524 struct sched_domain_topology_level *tl;
6525
3bd65a80 6526 sd = NULL;
27723a68 6527 for_each_sd_topology(tl) {
4a850cbe 6528 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6529 if (tl == sched_domain_topology)
6530 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6531 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6532 sd->flags |= SD_OVERLAP;
d110235d
PZ
6533 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6534 break;
e3589f6c 6535 }
dce840a0
PZ
6536 }
6537
6538 /* Build the groups for the domains */
6539 for_each_cpu(i, cpu_map) {
6540 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6541 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6542 if (sd->flags & SD_OVERLAP) {
6543 if (build_overlap_sched_groups(sd, i))
6544 goto error;
6545 } else {
6546 if (build_sched_groups(sd, i))
6547 goto error;
6548 }
1cf51902 6549 }
a06dadbe 6550 }
9c1cfda2 6551
ced549fa 6552 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6553 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6554 if (!cpumask_test_cpu(i, cpu_map))
6555 continue;
9c1cfda2 6556
dce840a0
PZ
6557 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6558 claim_allocations(i, sd);
63b2ca30 6559 init_sched_groups_capacity(i, sd);
dce840a0 6560 }
f712c0c7 6561 }
9c1cfda2 6562
1da177e4 6563 /* Attach the domains */
dce840a0 6564 rcu_read_lock();
abcd083a 6565 for_each_cpu(i, cpu_map) {
21d42ccf 6566 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6567 cpu_attach_domain(sd, d.rd, i);
1da177e4 6568 }
dce840a0 6569 rcu_read_unlock();
51888ca2 6570
822ff793 6571 ret = 0;
51888ca2 6572error:
2109b99e 6573 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6574 return ret;
1da177e4 6575}
029190c5 6576
acc3f5d7 6577static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6578static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6579static struct sched_domain_attr *dattr_cur;
6580 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6581
6582/*
6583 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6584 * cpumask) fails, then fallback to a single sched domain,
6585 * as determined by the single cpumask fallback_doms.
029190c5 6586 */
4212823f 6587static cpumask_var_t fallback_doms;
029190c5 6588
ee79d1bd
HC
6589/*
6590 * arch_update_cpu_topology lets virtualized architectures update the
6591 * cpu core maps. It is supposed to return 1 if the topology changed
6592 * or 0 if it stayed the same.
6593 */
52f5684c 6594int __weak arch_update_cpu_topology(void)
22e52b07 6595{
ee79d1bd 6596 return 0;
22e52b07
HC
6597}
6598
acc3f5d7
RR
6599cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6600{
6601 int i;
6602 cpumask_var_t *doms;
6603
6604 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6605 if (!doms)
6606 return NULL;
6607 for (i = 0; i < ndoms; i++) {
6608 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6609 free_sched_domains(doms, i);
6610 return NULL;
6611 }
6612 }
6613 return doms;
6614}
6615
6616void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6617{
6618 unsigned int i;
6619 for (i = 0; i < ndoms; i++)
6620 free_cpumask_var(doms[i]);
6621 kfree(doms);
6622}
6623
1a20ff27 6624/*
41a2d6cf 6625 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6626 * For now this just excludes isolated cpus, but could be used to
6627 * exclude other special cases in the future.
1a20ff27 6628 */
c4a8849a 6629static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6630{
7378547f
MM
6631 int err;
6632
22e52b07 6633 arch_update_cpu_topology();
029190c5 6634 ndoms_cur = 1;
acc3f5d7 6635 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6636 if (!doms_cur)
acc3f5d7
RR
6637 doms_cur = &fallback_doms;
6638 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6639 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6640 register_sched_domain_sysctl();
7378547f
MM
6641
6642 return err;
1a20ff27
DG
6643}
6644
1a20ff27
DG
6645/*
6646 * Detach sched domains from a group of cpus specified in cpu_map
6647 * These cpus will now be attached to the NULL domain
6648 */
96f874e2 6649static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6650{
6651 int i;
6652
dce840a0 6653 rcu_read_lock();
abcd083a 6654 for_each_cpu(i, cpu_map)
57d885fe 6655 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6656 rcu_read_unlock();
1a20ff27
DG
6657}
6658
1d3504fc
HS
6659/* handle null as "default" */
6660static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6661 struct sched_domain_attr *new, int idx_new)
6662{
6663 struct sched_domain_attr tmp;
6664
6665 /* fast path */
6666 if (!new && !cur)
6667 return 1;
6668
6669 tmp = SD_ATTR_INIT;
6670 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6671 new ? (new + idx_new) : &tmp,
6672 sizeof(struct sched_domain_attr));
6673}
6674
029190c5
PJ
6675/*
6676 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6677 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6678 * doms_new[] to the current sched domain partitioning, doms_cur[].
6679 * It destroys each deleted domain and builds each new domain.
6680 *
acc3f5d7 6681 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6682 * The masks don't intersect (don't overlap.) We should setup one
6683 * sched domain for each mask. CPUs not in any of the cpumasks will
6684 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6685 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6686 * it as it is.
6687 *
acc3f5d7
RR
6688 * The passed in 'doms_new' should be allocated using
6689 * alloc_sched_domains. This routine takes ownership of it and will
6690 * free_sched_domains it when done with it. If the caller failed the
6691 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6692 * and partition_sched_domains() will fallback to the single partition
6693 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6694 *
96f874e2 6695 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6696 * ndoms_new == 0 is a special case for destroying existing domains,
6697 * and it will not create the default domain.
dfb512ec 6698 *
029190c5
PJ
6699 * Call with hotplug lock held
6700 */
acc3f5d7 6701void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6702 struct sched_domain_attr *dattr_new)
029190c5 6703{
dfb512ec 6704 int i, j, n;
d65bd5ec 6705 int new_topology;
029190c5 6706
712555ee 6707 mutex_lock(&sched_domains_mutex);
a1835615 6708
7378547f
MM
6709 /* always unregister in case we don't destroy any domains */
6710 unregister_sched_domain_sysctl();
6711
d65bd5ec
HC
6712 /* Let architecture update cpu core mappings. */
6713 new_topology = arch_update_cpu_topology();
6714
dfb512ec 6715 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6716
6717 /* Destroy deleted domains */
6718 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6719 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6720 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6721 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6722 goto match1;
6723 }
6724 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6725 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6726match1:
6727 ;
6728 }
6729
c8d2d47a 6730 n = ndoms_cur;
e761b772 6731 if (doms_new == NULL) {
c8d2d47a 6732 n = 0;
acc3f5d7 6733 doms_new = &fallback_doms;
6ad4c188 6734 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6735 WARN_ON_ONCE(dattr_new);
e761b772
MK
6736 }
6737
029190c5
PJ
6738 /* Build new domains */
6739 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6740 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6741 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6742 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6743 goto match2;
6744 }
6745 /* no match - add a new doms_new */
dce840a0 6746 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6747match2:
6748 ;
6749 }
6750
6751 /* Remember the new sched domains */
acc3f5d7
RR
6752 if (doms_cur != &fallback_doms)
6753 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6754 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6755 doms_cur = doms_new;
1d3504fc 6756 dattr_cur = dattr_new;
029190c5 6757 ndoms_cur = ndoms_new;
7378547f
MM
6758
6759 register_sched_domain_sysctl();
a1835615 6760
712555ee 6761 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6762}
6763
d35be8ba
SB
6764static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6765
1da177e4 6766/*
3a101d05
TH
6767 * Update cpusets according to cpu_active mask. If cpusets are
6768 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6769 * around partition_sched_domains().
d35be8ba
SB
6770 *
6771 * If we come here as part of a suspend/resume, don't touch cpusets because we
6772 * want to restore it back to its original state upon resume anyway.
1da177e4 6773 */
0b2e918a
TH
6774static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6775 void *hcpu)
e761b772 6776{
d35be8ba
SB
6777 switch (action) {
6778 case CPU_ONLINE_FROZEN:
6779 case CPU_DOWN_FAILED_FROZEN:
6780
6781 /*
6782 * num_cpus_frozen tracks how many CPUs are involved in suspend
6783 * resume sequence. As long as this is not the last online
6784 * operation in the resume sequence, just build a single sched
6785 * domain, ignoring cpusets.
6786 */
6787 num_cpus_frozen--;
6788 if (likely(num_cpus_frozen)) {
6789 partition_sched_domains(1, NULL, NULL);
6790 break;
6791 }
6792
6793 /*
6794 * This is the last CPU online operation. So fall through and
6795 * restore the original sched domains by considering the
6796 * cpuset configurations.
6797 */
6798
e761b772 6799 case CPU_ONLINE:
6ad4c188 6800 case CPU_DOWN_FAILED:
7ddf96b0 6801 cpuset_update_active_cpus(true);
d35be8ba 6802 break;
3a101d05
TH
6803 default:
6804 return NOTIFY_DONE;
6805 }
d35be8ba 6806 return NOTIFY_OK;
3a101d05 6807}
e761b772 6808
0b2e918a
TH
6809static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6810 void *hcpu)
3a101d05 6811{
d35be8ba 6812 switch (action) {
3a101d05 6813 case CPU_DOWN_PREPARE:
7ddf96b0 6814 cpuset_update_active_cpus(false);
d35be8ba
SB
6815 break;
6816 case CPU_DOWN_PREPARE_FROZEN:
6817 num_cpus_frozen++;
6818 partition_sched_domains(1, NULL, NULL);
6819 break;
e761b772
MK
6820 default:
6821 return NOTIFY_DONE;
6822 }
d35be8ba 6823 return NOTIFY_OK;
e761b772 6824}
e761b772 6825
1da177e4
LT
6826void __init sched_init_smp(void)
6827{
dcc30a35
RR
6828 cpumask_var_t non_isolated_cpus;
6829
6830 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6831 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6832
cb83b629
PZ
6833 sched_init_numa();
6834
6acce3ef
PZ
6835 /*
6836 * There's no userspace yet to cause hotplug operations; hence all the
6837 * cpu masks are stable and all blatant races in the below code cannot
6838 * happen.
6839 */
712555ee 6840 mutex_lock(&sched_domains_mutex);
c4a8849a 6841 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6842 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6843 if (cpumask_empty(non_isolated_cpus))
6844 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6845 mutex_unlock(&sched_domains_mutex);
e761b772 6846
301a5cba 6847 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6848 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6849 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6850
b328ca18 6851 init_hrtick();
5c1e1767
NP
6852
6853 /* Move init over to a non-isolated CPU */
dcc30a35 6854 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6855 BUG();
19978ca6 6856 sched_init_granularity();
dcc30a35 6857 free_cpumask_var(non_isolated_cpus);
4212823f 6858
0e3900e6 6859 init_sched_rt_class();
1baca4ce 6860 init_sched_dl_class();
1da177e4
LT
6861}
6862#else
6863void __init sched_init_smp(void)
6864{
19978ca6 6865 sched_init_granularity();
1da177e4
LT
6866}
6867#endif /* CONFIG_SMP */
6868
cd1bb94b
AB
6869const_debug unsigned int sysctl_timer_migration = 1;
6870
1da177e4
LT
6871int in_sched_functions(unsigned long addr)
6872{
1da177e4
LT
6873 return in_lock_functions(addr) ||
6874 (addr >= (unsigned long)__sched_text_start
6875 && addr < (unsigned long)__sched_text_end);
6876}
6877
029632fb 6878#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6879/*
6880 * Default task group.
6881 * Every task in system belongs to this group at bootup.
6882 */
029632fb 6883struct task_group root_task_group;
35cf4e50 6884LIST_HEAD(task_groups);
052f1dc7 6885#endif
6f505b16 6886
e6252c3e 6887DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6888
1da177e4
LT
6889void __init sched_init(void)
6890{
dd41f596 6891 int i, j;
434d53b0
MT
6892 unsigned long alloc_size = 0, ptr;
6893
6894#ifdef CONFIG_FAIR_GROUP_SCHED
6895 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6896#endif
6897#ifdef CONFIG_RT_GROUP_SCHED
6898 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6899#endif
df7c8e84 6900#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6901 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6902#endif
434d53b0 6903 if (alloc_size) {
36b7b6d4 6904 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6905
6906#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6907 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6908 ptr += nr_cpu_ids * sizeof(void **);
6909
07e06b01 6910 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6911 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6912
6d6bc0ad 6913#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6914#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6915 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6916 ptr += nr_cpu_ids * sizeof(void **);
6917
07e06b01 6918 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6919 ptr += nr_cpu_ids * sizeof(void **);
6920
6d6bc0ad 6921#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6922#ifdef CONFIG_CPUMASK_OFFSTACK
6923 for_each_possible_cpu(i) {
e6252c3e 6924 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6925 ptr += cpumask_size();
6926 }
6927#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6928 }
dd41f596 6929
332ac17e
DF
6930 init_rt_bandwidth(&def_rt_bandwidth,
6931 global_rt_period(), global_rt_runtime());
6932 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6933 global_rt_period(), global_rt_runtime());
332ac17e 6934
57d885fe
GH
6935#ifdef CONFIG_SMP
6936 init_defrootdomain();
6937#endif
6938
d0b27fa7 6939#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6940 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6941 global_rt_period(), global_rt_runtime());
6d6bc0ad 6942#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6943
7c941438 6944#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6945 list_add(&root_task_group.list, &task_groups);
6946 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6947 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6948 autogroup_init(&init_task);
54c707e9 6949
7c941438 6950#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6951
0a945022 6952 for_each_possible_cpu(i) {
70b97a7f 6953 struct rq *rq;
1da177e4
LT
6954
6955 rq = cpu_rq(i);
05fa785c 6956 raw_spin_lock_init(&rq->lock);
7897986b 6957 rq->nr_running = 0;
dce48a84
TG
6958 rq->calc_load_active = 0;
6959 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6960 init_cfs_rq(&rq->cfs);
6f505b16 6961 init_rt_rq(&rq->rt, rq);
aab03e05 6962 init_dl_rq(&rq->dl, rq);
dd41f596 6963#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6964 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6965 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6966 /*
07e06b01 6967 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6968 *
6969 * In case of task-groups formed thr' the cgroup filesystem, it
6970 * gets 100% of the cpu resources in the system. This overall
6971 * system cpu resource is divided among the tasks of
07e06b01 6972 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6973 * based on each entity's (task or task-group's) weight
6974 * (se->load.weight).
6975 *
07e06b01 6976 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6977 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6978 * then A0's share of the cpu resource is:
6979 *
0d905bca 6980 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6981 *
07e06b01
YZ
6982 * We achieve this by letting root_task_group's tasks sit
6983 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6984 */
ab84d31e 6985 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6986 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6987#endif /* CONFIG_FAIR_GROUP_SCHED */
6988
6989 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6990#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6991 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6992#endif
1da177e4 6993
dd41f596
IM
6994 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6995 rq->cpu_load[j] = 0;
fdf3e95d
VP
6996
6997 rq->last_load_update_tick = jiffies;
6998
1da177e4 6999#ifdef CONFIG_SMP
41c7ce9a 7000 rq->sd = NULL;
57d885fe 7001 rq->rd = NULL;
ca8ce3d0 7002 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 7003 rq->post_schedule = 0;
1da177e4 7004 rq->active_balance = 0;
dd41f596 7005 rq->next_balance = jiffies;
1da177e4 7006 rq->push_cpu = 0;
0a2966b4 7007 rq->cpu = i;
1f11eb6a 7008 rq->online = 0;
eae0c9df
MG
7009 rq->idle_stamp = 0;
7010 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7011 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7012
7013 INIT_LIST_HEAD(&rq->cfs_tasks);
7014
dc938520 7015 rq_attach_root(rq, &def_root_domain);
3451d024 7016#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7017 rq->nohz_flags = 0;
83cd4fe2 7018#endif
265f22a9
FW
7019#ifdef CONFIG_NO_HZ_FULL
7020 rq->last_sched_tick = 0;
7021#endif
1da177e4 7022#endif
8f4d37ec 7023 init_rq_hrtick(rq);
1da177e4 7024 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7025 }
7026
2dd73a4f 7027 set_load_weight(&init_task);
b50f60ce 7028
e107be36
AK
7029#ifdef CONFIG_PREEMPT_NOTIFIERS
7030 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7031#endif
7032
1da177e4
LT
7033 /*
7034 * The boot idle thread does lazy MMU switching as well:
7035 */
7036 atomic_inc(&init_mm.mm_count);
7037 enter_lazy_tlb(&init_mm, current);
7038
7039 /*
7040 * Make us the idle thread. Technically, schedule() should not be
7041 * called from this thread, however somewhere below it might be,
7042 * but because we are the idle thread, we just pick up running again
7043 * when this runqueue becomes "idle".
7044 */
7045 init_idle(current, smp_processor_id());
dce48a84
TG
7046
7047 calc_load_update = jiffies + LOAD_FREQ;
7048
dd41f596
IM
7049 /*
7050 * During early bootup we pretend to be a normal task:
7051 */
7052 current->sched_class = &fair_sched_class;
6892b75e 7053
bf4d83f6 7054#ifdef CONFIG_SMP
4cb98839 7055 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7056 /* May be allocated at isolcpus cmdline parse time */
7057 if (cpu_isolated_map == NULL)
7058 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7059 idle_thread_set_boot_cpu();
a803f026 7060 set_cpu_rq_start_time();
029632fb
PZ
7061#endif
7062 init_sched_fair_class();
6a7b3dc3 7063
6892b75e 7064 scheduler_running = 1;
1da177e4
LT
7065}
7066
d902db1e 7067#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7068static inline int preempt_count_equals(int preempt_offset)
7069{
234da7bc 7070 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7071
4ba8216c 7072 return (nested == preempt_offset);
e4aafea2
FW
7073}
7074
d894837f 7075void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7076{
1da177e4
LT
7077 static unsigned long prev_jiffy; /* ratelimiting */
7078
b3fbab05 7079 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7080 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7081 !is_idle_task(current)) ||
e4aafea2 7082 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7083 return;
7084 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7085 return;
7086 prev_jiffy = jiffies;
7087
3df0fc5b
PZ
7088 printk(KERN_ERR
7089 "BUG: sleeping function called from invalid context at %s:%d\n",
7090 file, line);
7091 printk(KERN_ERR
7092 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7093 in_atomic(), irqs_disabled(),
7094 current->pid, current->comm);
aef745fc
IM
7095
7096 debug_show_held_locks(current);
7097 if (irqs_disabled())
7098 print_irqtrace_events(current);
8f47b187
TG
7099#ifdef CONFIG_DEBUG_PREEMPT
7100 if (!preempt_count_equals(preempt_offset)) {
7101 pr_err("Preemption disabled at:");
7102 print_ip_sym(current->preempt_disable_ip);
7103 pr_cont("\n");
7104 }
7105#endif
aef745fc 7106 dump_stack();
1da177e4
LT
7107}
7108EXPORT_SYMBOL(__might_sleep);
7109#endif
7110
7111#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7112static void normalize_task(struct rq *rq, struct task_struct *p)
7113{
da7a735e 7114 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7115 struct sched_attr attr = {
7116 .sched_policy = SCHED_NORMAL,
7117 };
da7a735e 7118 int old_prio = p->prio;
3a5e4dc1 7119 int on_rq;
3e51f33f 7120
fd2f4419 7121 on_rq = p->on_rq;
3a5e4dc1 7122 if (on_rq)
4ca9b72b 7123 dequeue_task(rq, p, 0);
d50dde5a 7124 __setscheduler(rq, p, &attr);
3a5e4dc1 7125 if (on_rq) {
4ca9b72b 7126 enqueue_task(rq, p, 0);
8875125e 7127 resched_curr(rq);
3a5e4dc1 7128 }
da7a735e
PZ
7129
7130 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7131}
7132
1da177e4
LT
7133void normalize_rt_tasks(void)
7134{
a0f98a1c 7135 struct task_struct *g, *p;
1da177e4 7136 unsigned long flags;
70b97a7f 7137 struct rq *rq;
1da177e4 7138
4cf5d77a 7139 read_lock_irqsave(&tasklist_lock, flags);
5d07f420 7140 for_each_process_thread(g, p) {
178be793
IM
7141 /*
7142 * Only normalize user tasks:
7143 */
7144 if (!p->mm)
7145 continue;
7146
6cfb0d5d 7147 p->se.exec_start = 0;
6cfb0d5d 7148#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7149 p->se.statistics.wait_start = 0;
7150 p->se.statistics.sleep_start = 0;
7151 p->se.statistics.block_start = 0;
6cfb0d5d 7152#endif
dd41f596 7153
aab03e05 7154 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7155 /*
7156 * Renice negative nice level userspace
7157 * tasks back to 0:
7158 */
d0ea0268 7159 if (task_nice(p) < 0 && p->mm)
dd41f596 7160 set_user_nice(p, 0);
1da177e4 7161 continue;
dd41f596 7162 }
1da177e4 7163
1d615482 7164 raw_spin_lock(&p->pi_lock);
b29739f9 7165 rq = __task_rq_lock(p);
1da177e4 7166
178be793 7167 normalize_task(rq, p);
3a5e4dc1 7168
b29739f9 7169 __task_rq_unlock(rq);
1d615482 7170 raw_spin_unlock(&p->pi_lock);
5d07f420 7171 }
4cf5d77a 7172 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7173}
7174
7175#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7176
67fc4e0c 7177#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7178/*
67fc4e0c 7179 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7180 *
7181 * They can only be called when the whole system has been
7182 * stopped - every CPU needs to be quiescent, and no scheduling
7183 * activity can take place. Using them for anything else would
7184 * be a serious bug, and as a result, they aren't even visible
7185 * under any other configuration.
7186 */
7187
7188/**
7189 * curr_task - return the current task for a given cpu.
7190 * @cpu: the processor in question.
7191 *
7192 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7193 *
7194 * Return: The current task for @cpu.
1df5c10a 7195 */
36c8b586 7196struct task_struct *curr_task(int cpu)
1df5c10a
LT
7197{
7198 return cpu_curr(cpu);
7199}
7200
67fc4e0c
JW
7201#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7202
7203#ifdef CONFIG_IA64
1df5c10a
LT
7204/**
7205 * set_curr_task - set the current task for a given cpu.
7206 * @cpu: the processor in question.
7207 * @p: the task pointer to set.
7208 *
7209 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7210 * are serviced on a separate stack. It allows the architecture to switch the
7211 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7212 * must be called with all CPU's synchronized, and interrupts disabled, the
7213 * and caller must save the original value of the current task (see
7214 * curr_task() above) and restore that value before reenabling interrupts and
7215 * re-starting the system.
7216 *
7217 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7218 */
36c8b586 7219void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7220{
7221 cpu_curr(cpu) = p;
7222}
7223
7224#endif
29f59db3 7225
7c941438 7226#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7227/* task_group_lock serializes the addition/removal of task groups */
7228static DEFINE_SPINLOCK(task_group_lock);
7229
bccbe08a
PZ
7230static void free_sched_group(struct task_group *tg)
7231{
7232 free_fair_sched_group(tg);
7233 free_rt_sched_group(tg);
e9aa1dd1 7234 autogroup_free(tg);
bccbe08a
PZ
7235 kfree(tg);
7236}
7237
7238/* allocate runqueue etc for a new task group */
ec7dc8ac 7239struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7240{
7241 struct task_group *tg;
bccbe08a
PZ
7242
7243 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7244 if (!tg)
7245 return ERR_PTR(-ENOMEM);
7246
ec7dc8ac 7247 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7248 goto err;
7249
ec7dc8ac 7250 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7251 goto err;
7252
ace783b9
LZ
7253 return tg;
7254
7255err:
7256 free_sched_group(tg);
7257 return ERR_PTR(-ENOMEM);
7258}
7259
7260void sched_online_group(struct task_group *tg, struct task_group *parent)
7261{
7262 unsigned long flags;
7263
8ed36996 7264 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7265 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7266
7267 WARN_ON(!parent); /* root should already exist */
7268
7269 tg->parent = parent;
f473aa5e 7270 INIT_LIST_HEAD(&tg->children);
09f2724a 7271 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7272 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7273}
7274
9b5b7751 7275/* rcu callback to free various structures associated with a task group */
6f505b16 7276static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7277{
29f59db3 7278 /* now it should be safe to free those cfs_rqs */
6f505b16 7279 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7280}
7281
9b5b7751 7282/* Destroy runqueue etc associated with a task group */
4cf86d77 7283void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7284{
7285 /* wait for possible concurrent references to cfs_rqs complete */
7286 call_rcu(&tg->rcu, free_sched_group_rcu);
7287}
7288
7289void sched_offline_group(struct task_group *tg)
29f59db3 7290{
8ed36996 7291 unsigned long flags;
9b5b7751 7292 int i;
29f59db3 7293
3d4b47b4
PZ
7294 /* end participation in shares distribution */
7295 for_each_possible_cpu(i)
bccbe08a 7296 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7297
7298 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7299 list_del_rcu(&tg->list);
f473aa5e 7300 list_del_rcu(&tg->siblings);
8ed36996 7301 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7302}
7303
9b5b7751 7304/* change task's runqueue when it moves between groups.
3a252015
IM
7305 * The caller of this function should have put the task in its new group
7306 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7307 * reflect its new group.
9b5b7751
SV
7308 */
7309void sched_move_task(struct task_struct *tsk)
29f59db3 7310{
8323f26c 7311 struct task_group *tg;
29f59db3
SV
7312 int on_rq, running;
7313 unsigned long flags;
7314 struct rq *rq;
7315
7316 rq = task_rq_lock(tsk, &flags);
7317
051a1d1a 7318 running = task_current(rq, tsk);
fd2f4419 7319 on_rq = tsk->on_rq;
29f59db3 7320
0e1f3483 7321 if (on_rq)
29f59db3 7322 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7323 if (unlikely(running))
7324 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7325
073219e9 7326 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7327 lockdep_is_held(&tsk->sighand->siglock)),
7328 struct task_group, css);
7329 tg = autogroup_task_group(tsk, tg);
7330 tsk->sched_task_group = tg;
7331
810b3817 7332#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7333 if (tsk->sched_class->task_move_group)
7334 tsk->sched_class->task_move_group(tsk, on_rq);
7335 else
810b3817 7336#endif
b2b5ce02 7337 set_task_rq(tsk, task_cpu(tsk));
810b3817 7338
0e1f3483
HS
7339 if (unlikely(running))
7340 tsk->sched_class->set_curr_task(rq);
7341 if (on_rq)
371fd7e7 7342 enqueue_task(rq, tsk, 0);
29f59db3 7343
0122ec5b 7344 task_rq_unlock(rq, tsk, &flags);
29f59db3 7345}
7c941438 7346#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7347
a790de99
PT
7348#ifdef CONFIG_RT_GROUP_SCHED
7349/*
7350 * Ensure that the real time constraints are schedulable.
7351 */
7352static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7353
9a7e0b18
PZ
7354/* Must be called with tasklist_lock held */
7355static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7356{
9a7e0b18 7357 struct task_struct *g, *p;
b40b2e8e 7358
5d07f420 7359 for_each_process_thread(g, p) {
029632fb 7360 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18 7361 return 1;
5d07f420 7362 }
b40b2e8e 7363
9a7e0b18
PZ
7364 return 0;
7365}
b40b2e8e 7366
9a7e0b18
PZ
7367struct rt_schedulable_data {
7368 struct task_group *tg;
7369 u64 rt_period;
7370 u64 rt_runtime;
7371};
b40b2e8e 7372
a790de99 7373static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7374{
7375 struct rt_schedulable_data *d = data;
7376 struct task_group *child;
7377 unsigned long total, sum = 0;
7378 u64 period, runtime;
b40b2e8e 7379
9a7e0b18
PZ
7380 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7381 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7382
9a7e0b18
PZ
7383 if (tg == d->tg) {
7384 period = d->rt_period;
7385 runtime = d->rt_runtime;
b40b2e8e 7386 }
b40b2e8e 7387
4653f803
PZ
7388 /*
7389 * Cannot have more runtime than the period.
7390 */
7391 if (runtime > period && runtime != RUNTIME_INF)
7392 return -EINVAL;
6f505b16 7393
4653f803
PZ
7394 /*
7395 * Ensure we don't starve existing RT tasks.
7396 */
9a7e0b18
PZ
7397 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7398 return -EBUSY;
6f505b16 7399
9a7e0b18 7400 total = to_ratio(period, runtime);
6f505b16 7401
4653f803
PZ
7402 /*
7403 * Nobody can have more than the global setting allows.
7404 */
7405 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7406 return -EINVAL;
6f505b16 7407
4653f803
PZ
7408 /*
7409 * The sum of our children's runtime should not exceed our own.
7410 */
9a7e0b18
PZ
7411 list_for_each_entry_rcu(child, &tg->children, siblings) {
7412 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7413 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7414
9a7e0b18
PZ
7415 if (child == d->tg) {
7416 period = d->rt_period;
7417 runtime = d->rt_runtime;
7418 }
6f505b16 7419
9a7e0b18 7420 sum += to_ratio(period, runtime);
9f0c1e56 7421 }
6f505b16 7422
9a7e0b18
PZ
7423 if (sum > total)
7424 return -EINVAL;
7425
7426 return 0;
6f505b16
PZ
7427}
7428
9a7e0b18 7429static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7430{
8277434e
PT
7431 int ret;
7432
9a7e0b18
PZ
7433 struct rt_schedulable_data data = {
7434 .tg = tg,
7435 .rt_period = period,
7436 .rt_runtime = runtime,
7437 };
7438
8277434e
PT
7439 rcu_read_lock();
7440 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7441 rcu_read_unlock();
7442
7443 return ret;
521f1a24
DG
7444}
7445
ab84d31e 7446static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7447 u64 rt_period, u64 rt_runtime)
6f505b16 7448{
ac086bc2 7449 int i, err = 0;
9f0c1e56 7450
9f0c1e56 7451 mutex_lock(&rt_constraints_mutex);
521f1a24 7452 read_lock(&tasklist_lock);
9a7e0b18
PZ
7453 err = __rt_schedulable(tg, rt_period, rt_runtime);
7454 if (err)
9f0c1e56 7455 goto unlock;
ac086bc2 7456
0986b11b 7457 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7458 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7459 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7460
7461 for_each_possible_cpu(i) {
7462 struct rt_rq *rt_rq = tg->rt_rq[i];
7463
0986b11b 7464 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7465 rt_rq->rt_runtime = rt_runtime;
0986b11b 7466 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7467 }
0986b11b 7468 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7469unlock:
521f1a24 7470 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7471 mutex_unlock(&rt_constraints_mutex);
7472
7473 return err;
6f505b16
PZ
7474}
7475
25cc7da7 7476static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7477{
7478 u64 rt_runtime, rt_period;
7479
7480 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7481 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7482 if (rt_runtime_us < 0)
7483 rt_runtime = RUNTIME_INF;
7484
ab84d31e 7485 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7486}
7487
25cc7da7 7488static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7489{
7490 u64 rt_runtime_us;
7491
d0b27fa7 7492 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7493 return -1;
7494
d0b27fa7 7495 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7496 do_div(rt_runtime_us, NSEC_PER_USEC);
7497 return rt_runtime_us;
7498}
d0b27fa7 7499
25cc7da7 7500static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7501{
7502 u64 rt_runtime, rt_period;
7503
7504 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7505 rt_runtime = tg->rt_bandwidth.rt_runtime;
7506
619b0488
R
7507 if (rt_period == 0)
7508 return -EINVAL;
7509
ab84d31e 7510 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7511}
7512
25cc7da7 7513static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7514{
7515 u64 rt_period_us;
7516
7517 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7518 do_div(rt_period_us, NSEC_PER_USEC);
7519 return rt_period_us;
7520}
332ac17e 7521#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7522
332ac17e 7523#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7524static int sched_rt_global_constraints(void)
7525{
7526 int ret = 0;
7527
7528 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7529 read_lock(&tasklist_lock);
4653f803 7530 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7531 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7532 mutex_unlock(&rt_constraints_mutex);
7533
7534 return ret;
7535}
54e99124 7536
25cc7da7 7537static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7538{
7539 /* Don't accept realtime tasks when there is no way for them to run */
7540 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7541 return 0;
7542
7543 return 1;
7544}
7545
6d6bc0ad 7546#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7547static int sched_rt_global_constraints(void)
7548{
ac086bc2 7549 unsigned long flags;
332ac17e 7550 int i, ret = 0;
ec5d4989 7551
0986b11b 7552 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7553 for_each_possible_cpu(i) {
7554 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7555
0986b11b 7556 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7557 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7558 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7559 }
0986b11b 7560 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7561
332ac17e 7562 return ret;
d0b27fa7 7563}
6d6bc0ad 7564#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7565
332ac17e
DF
7566static int sched_dl_global_constraints(void)
7567{
1724813d
PZ
7568 u64 runtime = global_rt_runtime();
7569 u64 period = global_rt_period();
332ac17e 7570 u64 new_bw = to_ratio(period, runtime);
1724813d 7571 int cpu, ret = 0;
49516342 7572 unsigned long flags;
332ac17e
DF
7573
7574 /*
7575 * Here we want to check the bandwidth not being set to some
7576 * value smaller than the currently allocated bandwidth in
7577 * any of the root_domains.
7578 *
7579 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7580 * cycling on root_domains... Discussion on different/better
7581 * solutions is welcome!
7582 */
1724813d
PZ
7583 for_each_possible_cpu(cpu) {
7584 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7585
49516342 7586 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7587 if (new_bw < dl_b->total_bw)
7588 ret = -EBUSY;
49516342 7589 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7590
7591 if (ret)
7592 break;
332ac17e
DF
7593 }
7594
1724813d 7595 return ret;
332ac17e
DF
7596}
7597
1724813d 7598static void sched_dl_do_global(void)
ce0dbbbb 7599{
1724813d
PZ
7600 u64 new_bw = -1;
7601 int cpu;
49516342 7602 unsigned long flags;
ce0dbbbb 7603
1724813d
PZ
7604 def_dl_bandwidth.dl_period = global_rt_period();
7605 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7606
7607 if (global_rt_runtime() != RUNTIME_INF)
7608 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7609
7610 /*
7611 * FIXME: As above...
7612 */
7613 for_each_possible_cpu(cpu) {
7614 struct dl_bw *dl_b = dl_bw_of(cpu);
7615
49516342 7616 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7617 dl_b->bw = new_bw;
49516342 7618 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7619 }
1724813d
PZ
7620}
7621
7622static int sched_rt_global_validate(void)
7623{
7624 if (sysctl_sched_rt_period <= 0)
7625 return -EINVAL;
7626
e9e7cb38
JL
7627 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7628 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7629 return -EINVAL;
7630
7631 return 0;
7632}
7633
7634static void sched_rt_do_global(void)
7635{
7636 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7637 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7638}
7639
d0b27fa7 7640int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7641 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7642 loff_t *ppos)
7643{
d0b27fa7
PZ
7644 int old_period, old_runtime;
7645 static DEFINE_MUTEX(mutex);
1724813d 7646 int ret;
d0b27fa7
PZ
7647
7648 mutex_lock(&mutex);
7649 old_period = sysctl_sched_rt_period;
7650 old_runtime = sysctl_sched_rt_runtime;
7651
8d65af78 7652 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7653
7654 if (!ret && write) {
1724813d
PZ
7655 ret = sched_rt_global_validate();
7656 if (ret)
7657 goto undo;
7658
d0b27fa7 7659 ret = sched_rt_global_constraints();
1724813d
PZ
7660 if (ret)
7661 goto undo;
7662
7663 ret = sched_dl_global_constraints();
7664 if (ret)
7665 goto undo;
7666
7667 sched_rt_do_global();
7668 sched_dl_do_global();
7669 }
7670 if (0) {
7671undo:
7672 sysctl_sched_rt_period = old_period;
7673 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7674 }
7675 mutex_unlock(&mutex);
7676
7677 return ret;
7678}
68318b8e 7679
1724813d 7680int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7681 void __user *buffer, size_t *lenp,
7682 loff_t *ppos)
7683{
7684 int ret;
332ac17e 7685 static DEFINE_MUTEX(mutex);
332ac17e
DF
7686
7687 mutex_lock(&mutex);
332ac17e 7688 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7689 /* make sure that internally we keep jiffies */
7690 /* also, writing zero resets timeslice to default */
332ac17e 7691 if (!ret && write) {
1724813d
PZ
7692 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7693 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7694 }
7695 mutex_unlock(&mutex);
332ac17e
DF
7696 return ret;
7697}
7698
052f1dc7 7699#ifdef CONFIG_CGROUP_SCHED
68318b8e 7700
a7c6d554 7701static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7702{
a7c6d554 7703 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7704}
7705
eb95419b
TH
7706static struct cgroup_subsys_state *
7707cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7708{
eb95419b
TH
7709 struct task_group *parent = css_tg(parent_css);
7710 struct task_group *tg;
68318b8e 7711
eb95419b 7712 if (!parent) {
68318b8e 7713 /* This is early initialization for the top cgroup */
07e06b01 7714 return &root_task_group.css;
68318b8e
SV
7715 }
7716
ec7dc8ac 7717 tg = sched_create_group(parent);
68318b8e
SV
7718 if (IS_ERR(tg))
7719 return ERR_PTR(-ENOMEM);
7720
68318b8e
SV
7721 return &tg->css;
7722}
7723
eb95419b 7724static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7725{
eb95419b 7726 struct task_group *tg = css_tg(css);
5c9d535b 7727 struct task_group *parent = css_tg(css->parent);
ace783b9 7728
63876986
TH
7729 if (parent)
7730 sched_online_group(tg, parent);
ace783b9
LZ
7731 return 0;
7732}
7733
eb95419b 7734static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7735{
eb95419b 7736 struct task_group *tg = css_tg(css);
68318b8e
SV
7737
7738 sched_destroy_group(tg);
7739}
7740
eb95419b 7741static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7742{
eb95419b 7743 struct task_group *tg = css_tg(css);
ace783b9
LZ
7744
7745 sched_offline_group(tg);
7746}
7747
eb95419b 7748static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7749 struct cgroup_taskset *tset)
68318b8e 7750{
bb9d97b6
TH
7751 struct task_struct *task;
7752
924f0d9a 7753 cgroup_taskset_for_each(task, tset) {
b68aa230 7754#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7755 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7756 return -EINVAL;
b68aa230 7757#else
bb9d97b6
TH
7758 /* We don't support RT-tasks being in separate groups */
7759 if (task->sched_class != &fair_sched_class)
7760 return -EINVAL;
b68aa230 7761#endif
bb9d97b6 7762 }
be367d09
BB
7763 return 0;
7764}
68318b8e 7765
eb95419b 7766static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7767 struct cgroup_taskset *tset)
68318b8e 7768{
bb9d97b6
TH
7769 struct task_struct *task;
7770
924f0d9a 7771 cgroup_taskset_for_each(task, tset)
bb9d97b6 7772 sched_move_task(task);
68318b8e
SV
7773}
7774
eb95419b
TH
7775static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7776 struct cgroup_subsys_state *old_css,
7777 struct task_struct *task)
068c5cc5
PZ
7778{
7779 /*
7780 * cgroup_exit() is called in the copy_process() failure path.
7781 * Ignore this case since the task hasn't ran yet, this avoids
7782 * trying to poke a half freed task state from generic code.
7783 */
7784 if (!(task->flags & PF_EXITING))
7785 return;
7786
7787 sched_move_task(task);
7788}
7789
052f1dc7 7790#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7791static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7792 struct cftype *cftype, u64 shareval)
68318b8e 7793{
182446d0 7794 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7795}
7796
182446d0
TH
7797static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7798 struct cftype *cft)
68318b8e 7799{
182446d0 7800 struct task_group *tg = css_tg(css);
68318b8e 7801
c8b28116 7802 return (u64) scale_load_down(tg->shares);
68318b8e 7803}
ab84d31e
PT
7804
7805#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7806static DEFINE_MUTEX(cfs_constraints_mutex);
7807
ab84d31e
PT
7808const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7809const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7810
a790de99
PT
7811static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7812
ab84d31e
PT
7813static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7814{
56f570e5 7815 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7816 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7817
7818 if (tg == &root_task_group)
7819 return -EINVAL;
7820
7821 /*
7822 * Ensure we have at some amount of bandwidth every period. This is
7823 * to prevent reaching a state of large arrears when throttled via
7824 * entity_tick() resulting in prolonged exit starvation.
7825 */
7826 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7827 return -EINVAL;
7828
7829 /*
7830 * Likewise, bound things on the otherside by preventing insane quota
7831 * periods. This also allows us to normalize in computing quota
7832 * feasibility.
7833 */
7834 if (period > max_cfs_quota_period)
7835 return -EINVAL;
7836
0e59bdae
KT
7837 /*
7838 * Prevent race between setting of cfs_rq->runtime_enabled and
7839 * unthrottle_offline_cfs_rqs().
7840 */
7841 get_online_cpus();
a790de99
PT
7842 mutex_lock(&cfs_constraints_mutex);
7843 ret = __cfs_schedulable(tg, period, quota);
7844 if (ret)
7845 goto out_unlock;
7846
58088ad0 7847 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7848 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7849 /*
7850 * If we need to toggle cfs_bandwidth_used, off->on must occur
7851 * before making related changes, and on->off must occur afterwards
7852 */
7853 if (runtime_enabled && !runtime_was_enabled)
7854 cfs_bandwidth_usage_inc();
ab84d31e
PT
7855 raw_spin_lock_irq(&cfs_b->lock);
7856 cfs_b->period = ns_to_ktime(period);
7857 cfs_b->quota = quota;
58088ad0 7858
a9cf55b2 7859 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7860 /* restart the period timer (if active) to handle new period expiry */
7861 if (runtime_enabled && cfs_b->timer_active) {
7862 /* force a reprogram */
09dc4ab0 7863 __start_cfs_bandwidth(cfs_b, true);
58088ad0 7864 }
ab84d31e
PT
7865 raw_spin_unlock_irq(&cfs_b->lock);
7866
0e59bdae 7867 for_each_online_cpu(i) {
ab84d31e 7868 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7869 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7870
7871 raw_spin_lock_irq(&rq->lock);
58088ad0 7872 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7873 cfs_rq->runtime_remaining = 0;
671fd9da 7874
029632fb 7875 if (cfs_rq->throttled)
671fd9da 7876 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7877 raw_spin_unlock_irq(&rq->lock);
7878 }
1ee14e6c
BS
7879 if (runtime_was_enabled && !runtime_enabled)
7880 cfs_bandwidth_usage_dec();
a790de99
PT
7881out_unlock:
7882 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7883 put_online_cpus();
ab84d31e 7884
a790de99 7885 return ret;
ab84d31e
PT
7886}
7887
7888int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7889{
7890 u64 quota, period;
7891
029632fb 7892 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7893 if (cfs_quota_us < 0)
7894 quota = RUNTIME_INF;
7895 else
7896 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7897
7898 return tg_set_cfs_bandwidth(tg, period, quota);
7899}
7900
7901long tg_get_cfs_quota(struct task_group *tg)
7902{
7903 u64 quota_us;
7904
029632fb 7905 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7906 return -1;
7907
029632fb 7908 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7909 do_div(quota_us, NSEC_PER_USEC);
7910
7911 return quota_us;
7912}
7913
7914int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7915{
7916 u64 quota, period;
7917
7918 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7919 quota = tg->cfs_bandwidth.quota;
ab84d31e 7920
ab84d31e
PT
7921 return tg_set_cfs_bandwidth(tg, period, quota);
7922}
7923
7924long tg_get_cfs_period(struct task_group *tg)
7925{
7926 u64 cfs_period_us;
7927
029632fb 7928 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7929 do_div(cfs_period_us, NSEC_PER_USEC);
7930
7931 return cfs_period_us;
7932}
7933
182446d0
TH
7934static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7935 struct cftype *cft)
ab84d31e 7936{
182446d0 7937 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7938}
7939
182446d0
TH
7940static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7941 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7942{
182446d0 7943 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7944}
7945
182446d0
TH
7946static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7947 struct cftype *cft)
ab84d31e 7948{
182446d0 7949 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7950}
7951
182446d0
TH
7952static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7953 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7954{
182446d0 7955 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7956}
7957
a790de99
PT
7958struct cfs_schedulable_data {
7959 struct task_group *tg;
7960 u64 period, quota;
7961};
7962
7963/*
7964 * normalize group quota/period to be quota/max_period
7965 * note: units are usecs
7966 */
7967static u64 normalize_cfs_quota(struct task_group *tg,
7968 struct cfs_schedulable_data *d)
7969{
7970 u64 quota, period;
7971
7972 if (tg == d->tg) {
7973 period = d->period;
7974 quota = d->quota;
7975 } else {
7976 period = tg_get_cfs_period(tg);
7977 quota = tg_get_cfs_quota(tg);
7978 }
7979
7980 /* note: these should typically be equivalent */
7981 if (quota == RUNTIME_INF || quota == -1)
7982 return RUNTIME_INF;
7983
7984 return to_ratio(period, quota);
7985}
7986
7987static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7988{
7989 struct cfs_schedulable_data *d = data;
029632fb 7990 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7991 s64 quota = 0, parent_quota = -1;
7992
7993 if (!tg->parent) {
7994 quota = RUNTIME_INF;
7995 } else {
029632fb 7996 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7997
7998 quota = normalize_cfs_quota(tg, d);
7999 parent_quota = parent_b->hierarchal_quota;
8000
8001 /*
8002 * ensure max(child_quota) <= parent_quota, inherit when no
8003 * limit is set
8004 */
8005 if (quota == RUNTIME_INF)
8006 quota = parent_quota;
8007 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8008 return -EINVAL;
8009 }
8010 cfs_b->hierarchal_quota = quota;
8011
8012 return 0;
8013}
8014
8015static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8016{
8277434e 8017 int ret;
a790de99
PT
8018 struct cfs_schedulable_data data = {
8019 .tg = tg,
8020 .period = period,
8021 .quota = quota,
8022 };
8023
8024 if (quota != RUNTIME_INF) {
8025 do_div(data.period, NSEC_PER_USEC);
8026 do_div(data.quota, NSEC_PER_USEC);
8027 }
8028
8277434e
PT
8029 rcu_read_lock();
8030 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8031 rcu_read_unlock();
8032
8033 return ret;
a790de99 8034}
e8da1b18 8035
2da8ca82 8036static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8037{
2da8ca82 8038 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8039 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8040
44ffc75b
TH
8041 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8042 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8043 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8044
8045 return 0;
8046}
ab84d31e 8047#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8048#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8049
052f1dc7 8050#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8051static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8052 struct cftype *cft, s64 val)
6f505b16 8053{
182446d0 8054 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8055}
8056
182446d0
TH
8057static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8058 struct cftype *cft)
6f505b16 8059{
182446d0 8060 return sched_group_rt_runtime(css_tg(css));
6f505b16 8061}
d0b27fa7 8062
182446d0
TH
8063static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8064 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8065{
182446d0 8066 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8067}
8068
182446d0
TH
8069static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8070 struct cftype *cft)
d0b27fa7 8071{
182446d0 8072 return sched_group_rt_period(css_tg(css));
d0b27fa7 8073}
6d6bc0ad 8074#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8075
fe5c7cc2 8076static struct cftype cpu_files[] = {
052f1dc7 8077#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8078 {
8079 .name = "shares",
f4c753b7
PM
8080 .read_u64 = cpu_shares_read_u64,
8081 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8082 },
052f1dc7 8083#endif
ab84d31e
PT
8084#ifdef CONFIG_CFS_BANDWIDTH
8085 {
8086 .name = "cfs_quota_us",
8087 .read_s64 = cpu_cfs_quota_read_s64,
8088 .write_s64 = cpu_cfs_quota_write_s64,
8089 },
8090 {
8091 .name = "cfs_period_us",
8092 .read_u64 = cpu_cfs_period_read_u64,
8093 .write_u64 = cpu_cfs_period_write_u64,
8094 },
e8da1b18
NR
8095 {
8096 .name = "stat",
2da8ca82 8097 .seq_show = cpu_stats_show,
e8da1b18 8098 },
ab84d31e 8099#endif
052f1dc7 8100#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8101 {
9f0c1e56 8102 .name = "rt_runtime_us",
06ecb27c
PM
8103 .read_s64 = cpu_rt_runtime_read,
8104 .write_s64 = cpu_rt_runtime_write,
6f505b16 8105 },
d0b27fa7
PZ
8106 {
8107 .name = "rt_period_us",
f4c753b7
PM
8108 .read_u64 = cpu_rt_period_read_uint,
8109 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8110 },
052f1dc7 8111#endif
4baf6e33 8112 { } /* terminate */
68318b8e
SV
8113};
8114
073219e9 8115struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8116 .css_alloc = cpu_cgroup_css_alloc,
8117 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8118 .css_online = cpu_cgroup_css_online,
8119 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8120 .can_attach = cpu_cgroup_can_attach,
8121 .attach = cpu_cgroup_attach,
068c5cc5 8122 .exit = cpu_cgroup_exit,
5577964e 8123 .legacy_cftypes = cpu_files,
68318b8e
SV
8124 .early_init = 1,
8125};
8126
052f1dc7 8127#endif /* CONFIG_CGROUP_SCHED */
d842de87 8128
b637a328
PM
8129void dump_cpu_task(int cpu)
8130{
8131 pr_info("Task dump for CPU %d:\n", cpu);
8132 sched_show_task(cpu_curr(cpu));
8133}
This page took 2.545794 seconds and 5 git commands to generate.