Merge remote-tracking branch 'mmc-uh/next'
[deliverable/linux.git] / kernel / sched / rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10
11 int sched_rr_timeslice = RR_TIMESLICE;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19 struct rt_bandwidth *rt_b =
20 container_of(timer, struct rt_bandwidth, rt_period_timer);
21 int idle = 0;
22 int overrun;
23
24 raw_spin_lock(&rt_b->rt_runtime_lock);
25 for (;;) {
26 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27 if (!overrun)
28 break;
29
30 raw_spin_unlock(&rt_b->rt_runtime_lock);
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 raw_spin_lock(&rt_b->rt_runtime_lock);
33 }
34 if (idle)
35 rt_b->rt_period_active = 0;
36 raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43 rt_b->rt_period = ns_to_ktime(period);
44 rt_b->rt_runtime = runtime;
45
46 raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48 hrtimer_init(&rt_b->rt_period_timer,
49 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50 rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 return;
57
58 raw_spin_lock(&rt_b->rt_runtime_lock);
59 if (!rt_b->rt_period_active) {
60 rt_b->rt_period_active = 1;
61 /*
62 * SCHED_DEADLINE updates the bandwidth, as a run away
63 * RT task with a DL task could hog a CPU. But DL does
64 * not reset the period. If a deadline task was running
65 * without an RT task running, it can cause RT tasks to
66 * throttle when they start up. Kick the timer right away
67 * to update the period.
68 */
69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
71 }
72 raw_spin_unlock(&rt_b->rt_runtime_lock);
73 }
74
75 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
76 static void push_irq_work_func(struct irq_work *work);
77 #endif
78
79 void init_rt_rq(struct rt_rq *rt_rq)
80 {
81 struct rt_prio_array *array;
82 int i;
83
84 array = &rt_rq->active;
85 for (i = 0; i < MAX_RT_PRIO; i++) {
86 INIT_LIST_HEAD(array->queue + i);
87 __clear_bit(i, array->bitmap);
88 }
89 /* delimiter for bitsearch: */
90 __set_bit(MAX_RT_PRIO, array->bitmap);
91
92 #if defined CONFIG_SMP
93 rt_rq->highest_prio.curr = MAX_RT_PRIO;
94 rt_rq->highest_prio.next = MAX_RT_PRIO;
95 rt_rq->rt_nr_migratory = 0;
96 rt_rq->overloaded = 0;
97 plist_head_init(&rt_rq->pushable_tasks);
98
99 #ifdef HAVE_RT_PUSH_IPI
100 rt_rq->push_flags = 0;
101 rt_rq->push_cpu = nr_cpu_ids;
102 raw_spin_lock_init(&rt_rq->push_lock);
103 init_irq_work(&rt_rq->push_work, push_irq_work_func);
104 #endif
105 #endif /* CONFIG_SMP */
106 /* We start is dequeued state, because no RT tasks are queued */
107 rt_rq->rt_queued = 0;
108
109 rt_rq->rt_time = 0;
110 rt_rq->rt_throttled = 0;
111 rt_rq->rt_runtime = 0;
112 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
113 }
114
115 #ifdef CONFIG_RT_GROUP_SCHED
116 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
117 {
118 hrtimer_cancel(&rt_b->rt_period_timer);
119 }
120
121 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
122
123 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
124 {
125 #ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
127 #endif
128 return container_of(rt_se, struct task_struct, rt);
129 }
130
131 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
132 {
133 return rt_rq->rq;
134 }
135
136 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
137 {
138 return rt_se->rt_rq;
139 }
140
141 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
142 {
143 struct rt_rq *rt_rq = rt_se->rt_rq;
144
145 return rt_rq->rq;
146 }
147
148 void free_rt_sched_group(struct task_group *tg)
149 {
150 int i;
151
152 if (tg->rt_se)
153 destroy_rt_bandwidth(&tg->rt_bandwidth);
154
155 for_each_possible_cpu(i) {
156 if (tg->rt_rq)
157 kfree(tg->rt_rq[i]);
158 if (tg->rt_se)
159 kfree(tg->rt_se[i]);
160 }
161
162 kfree(tg->rt_rq);
163 kfree(tg->rt_se);
164 }
165
166 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
167 struct sched_rt_entity *rt_se, int cpu,
168 struct sched_rt_entity *parent)
169 {
170 struct rq *rq = cpu_rq(cpu);
171
172 rt_rq->highest_prio.curr = MAX_RT_PRIO;
173 rt_rq->rt_nr_boosted = 0;
174 rt_rq->rq = rq;
175 rt_rq->tg = tg;
176
177 tg->rt_rq[cpu] = rt_rq;
178 tg->rt_se[cpu] = rt_se;
179
180 if (!rt_se)
181 return;
182
183 if (!parent)
184 rt_se->rt_rq = &rq->rt;
185 else
186 rt_se->rt_rq = parent->my_q;
187
188 rt_se->my_q = rt_rq;
189 rt_se->parent = parent;
190 INIT_LIST_HEAD(&rt_se->run_list);
191 }
192
193 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
194 {
195 struct rt_rq *rt_rq;
196 struct sched_rt_entity *rt_se;
197 int i;
198
199 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
200 if (!tg->rt_rq)
201 goto err;
202 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
203 if (!tg->rt_se)
204 goto err;
205
206 init_rt_bandwidth(&tg->rt_bandwidth,
207 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
208
209 for_each_possible_cpu(i) {
210 rt_rq = kzalloc_node(sizeof(struct rt_rq),
211 GFP_KERNEL, cpu_to_node(i));
212 if (!rt_rq)
213 goto err;
214
215 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
216 GFP_KERNEL, cpu_to_node(i));
217 if (!rt_se)
218 goto err_free_rq;
219
220 init_rt_rq(rt_rq);
221 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
222 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
223 }
224
225 return 1;
226
227 err_free_rq:
228 kfree(rt_rq);
229 err:
230 return 0;
231 }
232
233 #else /* CONFIG_RT_GROUP_SCHED */
234
235 #define rt_entity_is_task(rt_se) (1)
236
237 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
238 {
239 return container_of(rt_se, struct task_struct, rt);
240 }
241
242 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
243 {
244 return container_of(rt_rq, struct rq, rt);
245 }
246
247 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
248 {
249 struct task_struct *p = rt_task_of(rt_se);
250
251 return task_rq(p);
252 }
253
254 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
255 {
256 struct rq *rq = rq_of_rt_se(rt_se);
257
258 return &rq->rt;
259 }
260
261 void free_rt_sched_group(struct task_group *tg) { }
262
263 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
264 {
265 return 1;
266 }
267 #endif /* CONFIG_RT_GROUP_SCHED */
268
269 #ifdef CONFIG_SMP
270
271 static void pull_rt_task(struct rq *this_rq);
272
273 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
274 {
275 /* Try to pull RT tasks here if we lower this rq's prio */
276 return rq->rt.highest_prio.curr > prev->prio;
277 }
278
279 static inline int rt_overloaded(struct rq *rq)
280 {
281 return atomic_read(&rq->rd->rto_count);
282 }
283
284 static inline void rt_set_overload(struct rq *rq)
285 {
286 if (!rq->online)
287 return;
288
289 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
290 /*
291 * Make sure the mask is visible before we set
292 * the overload count. That is checked to determine
293 * if we should look at the mask. It would be a shame
294 * if we looked at the mask, but the mask was not
295 * updated yet.
296 *
297 * Matched by the barrier in pull_rt_task().
298 */
299 smp_wmb();
300 atomic_inc(&rq->rd->rto_count);
301 }
302
303 static inline void rt_clear_overload(struct rq *rq)
304 {
305 if (!rq->online)
306 return;
307
308 /* the order here really doesn't matter */
309 atomic_dec(&rq->rd->rto_count);
310 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
311 }
312
313 static void update_rt_migration(struct rt_rq *rt_rq)
314 {
315 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
316 if (!rt_rq->overloaded) {
317 rt_set_overload(rq_of_rt_rq(rt_rq));
318 rt_rq->overloaded = 1;
319 }
320 } else if (rt_rq->overloaded) {
321 rt_clear_overload(rq_of_rt_rq(rt_rq));
322 rt_rq->overloaded = 0;
323 }
324 }
325
326 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
327 {
328 struct task_struct *p;
329
330 if (!rt_entity_is_task(rt_se))
331 return;
332
333 p = rt_task_of(rt_se);
334 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
335
336 rt_rq->rt_nr_total++;
337 if (tsk_nr_cpus_allowed(p) > 1)
338 rt_rq->rt_nr_migratory++;
339
340 update_rt_migration(rt_rq);
341 }
342
343 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
344 {
345 struct task_struct *p;
346
347 if (!rt_entity_is_task(rt_se))
348 return;
349
350 p = rt_task_of(rt_se);
351 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
352
353 rt_rq->rt_nr_total--;
354 if (tsk_nr_cpus_allowed(p) > 1)
355 rt_rq->rt_nr_migratory--;
356
357 update_rt_migration(rt_rq);
358 }
359
360 static inline int has_pushable_tasks(struct rq *rq)
361 {
362 return !plist_head_empty(&rq->rt.pushable_tasks);
363 }
364
365 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
366 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
367
368 static void push_rt_tasks(struct rq *);
369 static void pull_rt_task(struct rq *);
370
371 static inline void queue_push_tasks(struct rq *rq)
372 {
373 if (!has_pushable_tasks(rq))
374 return;
375
376 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
377 }
378
379 static inline void queue_pull_task(struct rq *rq)
380 {
381 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
382 }
383
384 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
385 {
386 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
387 plist_node_init(&p->pushable_tasks, p->prio);
388 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
389
390 /* Update the highest prio pushable task */
391 if (p->prio < rq->rt.highest_prio.next)
392 rq->rt.highest_prio.next = p->prio;
393 }
394
395 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
396 {
397 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
398
399 /* Update the new highest prio pushable task */
400 if (has_pushable_tasks(rq)) {
401 p = plist_first_entry(&rq->rt.pushable_tasks,
402 struct task_struct, pushable_tasks);
403 rq->rt.highest_prio.next = p->prio;
404 } else
405 rq->rt.highest_prio.next = MAX_RT_PRIO;
406 }
407
408 #else
409
410 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
411 {
412 }
413
414 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
415 {
416 }
417
418 static inline
419 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
420 {
421 }
422
423 static inline
424 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
425 {
426 }
427
428 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
429 {
430 return false;
431 }
432
433 static inline void pull_rt_task(struct rq *this_rq)
434 {
435 }
436
437 static inline void queue_push_tasks(struct rq *rq)
438 {
439 }
440 #endif /* CONFIG_SMP */
441
442 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
443 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
444
445 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
446 {
447 return rt_se->on_rq;
448 }
449
450 #ifdef CONFIG_RT_GROUP_SCHED
451
452 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
453 {
454 if (!rt_rq->tg)
455 return RUNTIME_INF;
456
457 return rt_rq->rt_runtime;
458 }
459
460 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
461 {
462 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
463 }
464
465 typedef struct task_group *rt_rq_iter_t;
466
467 static inline struct task_group *next_task_group(struct task_group *tg)
468 {
469 do {
470 tg = list_entry_rcu(tg->list.next,
471 typeof(struct task_group), list);
472 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
473
474 if (&tg->list == &task_groups)
475 tg = NULL;
476
477 return tg;
478 }
479
480 #define for_each_rt_rq(rt_rq, iter, rq) \
481 for (iter = container_of(&task_groups, typeof(*iter), list); \
482 (iter = next_task_group(iter)) && \
483 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
484
485 #define for_each_sched_rt_entity(rt_se) \
486 for (; rt_se; rt_se = rt_se->parent)
487
488 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
489 {
490 return rt_se->my_q;
491 }
492
493 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
494 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
495
496 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
497 {
498 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
499 struct rq *rq = rq_of_rt_rq(rt_rq);
500 struct sched_rt_entity *rt_se;
501
502 int cpu = cpu_of(rq);
503
504 rt_se = rt_rq->tg->rt_se[cpu];
505
506 if (rt_rq->rt_nr_running) {
507 if (!rt_se)
508 enqueue_top_rt_rq(rt_rq);
509 else if (!on_rt_rq(rt_se))
510 enqueue_rt_entity(rt_se, 0);
511
512 if (rt_rq->highest_prio.curr < curr->prio)
513 resched_curr(rq);
514 }
515 }
516
517 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
518 {
519 struct sched_rt_entity *rt_se;
520 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
521
522 rt_se = rt_rq->tg->rt_se[cpu];
523
524 if (!rt_se)
525 dequeue_top_rt_rq(rt_rq);
526 else if (on_rt_rq(rt_se))
527 dequeue_rt_entity(rt_se, 0);
528 }
529
530 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
531 {
532 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
533 }
534
535 static int rt_se_boosted(struct sched_rt_entity *rt_se)
536 {
537 struct rt_rq *rt_rq = group_rt_rq(rt_se);
538 struct task_struct *p;
539
540 if (rt_rq)
541 return !!rt_rq->rt_nr_boosted;
542
543 p = rt_task_of(rt_se);
544 return p->prio != p->normal_prio;
545 }
546
547 #ifdef CONFIG_SMP
548 static inline const struct cpumask *sched_rt_period_mask(void)
549 {
550 return this_rq()->rd->span;
551 }
552 #else
553 static inline const struct cpumask *sched_rt_period_mask(void)
554 {
555 return cpu_online_mask;
556 }
557 #endif
558
559 static inline
560 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
561 {
562 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
563 }
564
565 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
566 {
567 return &rt_rq->tg->rt_bandwidth;
568 }
569
570 #else /* !CONFIG_RT_GROUP_SCHED */
571
572 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
573 {
574 return rt_rq->rt_runtime;
575 }
576
577 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
578 {
579 return ktime_to_ns(def_rt_bandwidth.rt_period);
580 }
581
582 typedef struct rt_rq *rt_rq_iter_t;
583
584 #define for_each_rt_rq(rt_rq, iter, rq) \
585 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
586
587 #define for_each_sched_rt_entity(rt_se) \
588 for (; rt_se; rt_se = NULL)
589
590 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
591 {
592 return NULL;
593 }
594
595 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
596 {
597 struct rq *rq = rq_of_rt_rq(rt_rq);
598
599 if (!rt_rq->rt_nr_running)
600 return;
601
602 enqueue_top_rt_rq(rt_rq);
603 resched_curr(rq);
604 }
605
606 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
607 {
608 dequeue_top_rt_rq(rt_rq);
609 }
610
611 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
612 {
613 return rt_rq->rt_throttled;
614 }
615
616 static inline const struct cpumask *sched_rt_period_mask(void)
617 {
618 return cpu_online_mask;
619 }
620
621 static inline
622 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
623 {
624 return &cpu_rq(cpu)->rt;
625 }
626
627 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
628 {
629 return &def_rt_bandwidth;
630 }
631
632 #endif /* CONFIG_RT_GROUP_SCHED */
633
634 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
635 {
636 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
637
638 return (hrtimer_active(&rt_b->rt_period_timer) ||
639 rt_rq->rt_time < rt_b->rt_runtime);
640 }
641
642 #ifdef CONFIG_SMP
643 /*
644 * We ran out of runtime, see if we can borrow some from our neighbours.
645 */
646 static void do_balance_runtime(struct rt_rq *rt_rq)
647 {
648 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
649 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
650 int i, weight;
651 u64 rt_period;
652
653 weight = cpumask_weight(rd->span);
654
655 raw_spin_lock(&rt_b->rt_runtime_lock);
656 rt_period = ktime_to_ns(rt_b->rt_period);
657 for_each_cpu(i, rd->span) {
658 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
659 s64 diff;
660
661 if (iter == rt_rq)
662 continue;
663
664 raw_spin_lock(&iter->rt_runtime_lock);
665 /*
666 * Either all rqs have inf runtime and there's nothing to steal
667 * or __disable_runtime() below sets a specific rq to inf to
668 * indicate its been disabled and disalow stealing.
669 */
670 if (iter->rt_runtime == RUNTIME_INF)
671 goto next;
672
673 /*
674 * From runqueues with spare time, take 1/n part of their
675 * spare time, but no more than our period.
676 */
677 diff = iter->rt_runtime - iter->rt_time;
678 if (diff > 0) {
679 diff = div_u64((u64)diff, weight);
680 if (rt_rq->rt_runtime + diff > rt_period)
681 diff = rt_period - rt_rq->rt_runtime;
682 iter->rt_runtime -= diff;
683 rt_rq->rt_runtime += diff;
684 if (rt_rq->rt_runtime == rt_period) {
685 raw_spin_unlock(&iter->rt_runtime_lock);
686 break;
687 }
688 }
689 next:
690 raw_spin_unlock(&iter->rt_runtime_lock);
691 }
692 raw_spin_unlock(&rt_b->rt_runtime_lock);
693 }
694
695 /*
696 * Ensure this RQ takes back all the runtime it lend to its neighbours.
697 */
698 static void __disable_runtime(struct rq *rq)
699 {
700 struct root_domain *rd = rq->rd;
701 rt_rq_iter_t iter;
702 struct rt_rq *rt_rq;
703
704 if (unlikely(!scheduler_running))
705 return;
706
707 for_each_rt_rq(rt_rq, iter, rq) {
708 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
709 s64 want;
710 int i;
711
712 raw_spin_lock(&rt_b->rt_runtime_lock);
713 raw_spin_lock(&rt_rq->rt_runtime_lock);
714 /*
715 * Either we're all inf and nobody needs to borrow, or we're
716 * already disabled and thus have nothing to do, or we have
717 * exactly the right amount of runtime to take out.
718 */
719 if (rt_rq->rt_runtime == RUNTIME_INF ||
720 rt_rq->rt_runtime == rt_b->rt_runtime)
721 goto balanced;
722 raw_spin_unlock(&rt_rq->rt_runtime_lock);
723
724 /*
725 * Calculate the difference between what we started out with
726 * and what we current have, that's the amount of runtime
727 * we lend and now have to reclaim.
728 */
729 want = rt_b->rt_runtime - rt_rq->rt_runtime;
730
731 /*
732 * Greedy reclaim, take back as much as we can.
733 */
734 for_each_cpu(i, rd->span) {
735 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
736 s64 diff;
737
738 /*
739 * Can't reclaim from ourselves or disabled runqueues.
740 */
741 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
742 continue;
743
744 raw_spin_lock(&iter->rt_runtime_lock);
745 if (want > 0) {
746 diff = min_t(s64, iter->rt_runtime, want);
747 iter->rt_runtime -= diff;
748 want -= diff;
749 } else {
750 iter->rt_runtime -= want;
751 want -= want;
752 }
753 raw_spin_unlock(&iter->rt_runtime_lock);
754
755 if (!want)
756 break;
757 }
758
759 raw_spin_lock(&rt_rq->rt_runtime_lock);
760 /*
761 * We cannot be left wanting - that would mean some runtime
762 * leaked out of the system.
763 */
764 BUG_ON(want);
765 balanced:
766 /*
767 * Disable all the borrow logic by pretending we have inf
768 * runtime - in which case borrowing doesn't make sense.
769 */
770 rt_rq->rt_runtime = RUNTIME_INF;
771 rt_rq->rt_throttled = 0;
772 raw_spin_unlock(&rt_rq->rt_runtime_lock);
773 raw_spin_unlock(&rt_b->rt_runtime_lock);
774
775 /* Make rt_rq available for pick_next_task() */
776 sched_rt_rq_enqueue(rt_rq);
777 }
778 }
779
780 static void __enable_runtime(struct rq *rq)
781 {
782 rt_rq_iter_t iter;
783 struct rt_rq *rt_rq;
784
785 if (unlikely(!scheduler_running))
786 return;
787
788 /*
789 * Reset each runqueue's bandwidth settings
790 */
791 for_each_rt_rq(rt_rq, iter, rq) {
792 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
793
794 raw_spin_lock(&rt_b->rt_runtime_lock);
795 raw_spin_lock(&rt_rq->rt_runtime_lock);
796 rt_rq->rt_runtime = rt_b->rt_runtime;
797 rt_rq->rt_time = 0;
798 rt_rq->rt_throttled = 0;
799 raw_spin_unlock(&rt_rq->rt_runtime_lock);
800 raw_spin_unlock(&rt_b->rt_runtime_lock);
801 }
802 }
803
804 static void balance_runtime(struct rt_rq *rt_rq)
805 {
806 if (!sched_feat(RT_RUNTIME_SHARE))
807 return;
808
809 if (rt_rq->rt_time > rt_rq->rt_runtime) {
810 raw_spin_unlock(&rt_rq->rt_runtime_lock);
811 do_balance_runtime(rt_rq);
812 raw_spin_lock(&rt_rq->rt_runtime_lock);
813 }
814 }
815 #else /* !CONFIG_SMP */
816 static inline void balance_runtime(struct rt_rq *rt_rq) {}
817 #endif /* CONFIG_SMP */
818
819 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
820 {
821 int i, idle = 1, throttled = 0;
822 const struct cpumask *span;
823
824 span = sched_rt_period_mask();
825 #ifdef CONFIG_RT_GROUP_SCHED
826 /*
827 * FIXME: isolated CPUs should really leave the root task group,
828 * whether they are isolcpus or were isolated via cpusets, lest
829 * the timer run on a CPU which does not service all runqueues,
830 * potentially leaving other CPUs indefinitely throttled. If
831 * isolation is really required, the user will turn the throttle
832 * off to kill the perturbations it causes anyway. Meanwhile,
833 * this maintains functionality for boot and/or troubleshooting.
834 */
835 if (rt_b == &root_task_group.rt_bandwidth)
836 span = cpu_online_mask;
837 #endif
838 for_each_cpu(i, span) {
839 int enqueue = 0;
840 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
841 struct rq *rq = rq_of_rt_rq(rt_rq);
842
843 raw_spin_lock(&rq->lock);
844 if (rt_rq->rt_time) {
845 u64 runtime;
846
847 raw_spin_lock(&rt_rq->rt_runtime_lock);
848 if (rt_rq->rt_throttled)
849 balance_runtime(rt_rq);
850 runtime = rt_rq->rt_runtime;
851 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
852 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
853 rt_rq->rt_throttled = 0;
854 enqueue = 1;
855
856 /*
857 * When we're idle and a woken (rt) task is
858 * throttled check_preempt_curr() will set
859 * skip_update and the time between the wakeup
860 * and this unthrottle will get accounted as
861 * 'runtime'.
862 */
863 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
864 rq_clock_skip_update(rq, false);
865 }
866 if (rt_rq->rt_time || rt_rq->rt_nr_running)
867 idle = 0;
868 raw_spin_unlock(&rt_rq->rt_runtime_lock);
869 } else if (rt_rq->rt_nr_running) {
870 idle = 0;
871 if (!rt_rq_throttled(rt_rq))
872 enqueue = 1;
873 }
874 if (rt_rq->rt_throttled)
875 throttled = 1;
876
877 if (enqueue)
878 sched_rt_rq_enqueue(rt_rq);
879 raw_spin_unlock(&rq->lock);
880 }
881
882 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
883 return 1;
884
885 return idle;
886 }
887
888 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
889 {
890 #ifdef CONFIG_RT_GROUP_SCHED
891 struct rt_rq *rt_rq = group_rt_rq(rt_se);
892
893 if (rt_rq)
894 return rt_rq->highest_prio.curr;
895 #endif
896
897 return rt_task_of(rt_se)->prio;
898 }
899
900 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
901 {
902 u64 runtime = sched_rt_runtime(rt_rq);
903
904 if (rt_rq->rt_throttled)
905 return rt_rq_throttled(rt_rq);
906
907 if (runtime >= sched_rt_period(rt_rq))
908 return 0;
909
910 balance_runtime(rt_rq);
911 runtime = sched_rt_runtime(rt_rq);
912 if (runtime == RUNTIME_INF)
913 return 0;
914
915 if (rt_rq->rt_time > runtime) {
916 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
917
918 /*
919 * Don't actually throttle groups that have no runtime assigned
920 * but accrue some time due to boosting.
921 */
922 if (likely(rt_b->rt_runtime)) {
923 rt_rq->rt_throttled = 1;
924 printk_deferred_once("sched: RT throttling activated\n");
925 } else {
926 /*
927 * In case we did anyway, make it go away,
928 * replenishment is a joke, since it will replenish us
929 * with exactly 0 ns.
930 */
931 rt_rq->rt_time = 0;
932 }
933
934 if (rt_rq_throttled(rt_rq)) {
935 sched_rt_rq_dequeue(rt_rq);
936 return 1;
937 }
938 }
939
940 return 0;
941 }
942
943 /*
944 * Update the current task's runtime statistics. Skip current tasks that
945 * are not in our scheduling class.
946 */
947 static void update_curr_rt(struct rq *rq)
948 {
949 struct task_struct *curr = rq->curr;
950 struct sched_rt_entity *rt_se = &curr->rt;
951 u64 delta_exec;
952
953 if (curr->sched_class != &rt_sched_class)
954 return;
955
956 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
957 if (unlikely((s64)delta_exec <= 0))
958 return;
959
960 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
961 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_RT);
962
963 schedstat_set(curr->se.statistics.exec_max,
964 max(curr->se.statistics.exec_max, delta_exec));
965
966 curr->se.sum_exec_runtime += delta_exec;
967 account_group_exec_runtime(curr, delta_exec);
968
969 curr->se.exec_start = rq_clock_task(rq);
970 cpuacct_charge(curr, delta_exec);
971
972 sched_rt_avg_update(rq, delta_exec);
973
974 if (!rt_bandwidth_enabled())
975 return;
976
977 for_each_sched_rt_entity(rt_se) {
978 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
979
980 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
981 raw_spin_lock(&rt_rq->rt_runtime_lock);
982 rt_rq->rt_time += delta_exec;
983 if (sched_rt_runtime_exceeded(rt_rq))
984 resched_curr(rq);
985 raw_spin_unlock(&rt_rq->rt_runtime_lock);
986 }
987 }
988 }
989
990 static void
991 dequeue_top_rt_rq(struct rt_rq *rt_rq)
992 {
993 struct rq *rq = rq_of_rt_rq(rt_rq);
994
995 BUG_ON(&rq->rt != rt_rq);
996
997 if (!rt_rq->rt_queued)
998 return;
999
1000 BUG_ON(!rq->nr_running);
1001
1002 sub_nr_running(rq, rt_rq->rt_nr_running);
1003 rt_rq->rt_queued = 0;
1004 }
1005
1006 static void
1007 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1008 {
1009 struct rq *rq = rq_of_rt_rq(rt_rq);
1010
1011 BUG_ON(&rq->rt != rt_rq);
1012
1013 if (rt_rq->rt_queued)
1014 return;
1015 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1016 return;
1017
1018 add_nr_running(rq, rt_rq->rt_nr_running);
1019 rt_rq->rt_queued = 1;
1020 }
1021
1022 #if defined CONFIG_SMP
1023
1024 static void
1025 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1026 {
1027 struct rq *rq = rq_of_rt_rq(rt_rq);
1028
1029 #ifdef CONFIG_RT_GROUP_SCHED
1030 /*
1031 * Change rq's cpupri only if rt_rq is the top queue.
1032 */
1033 if (&rq->rt != rt_rq)
1034 return;
1035 #endif
1036 if (rq->online && prio < prev_prio)
1037 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1038 }
1039
1040 static void
1041 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1042 {
1043 struct rq *rq = rq_of_rt_rq(rt_rq);
1044
1045 #ifdef CONFIG_RT_GROUP_SCHED
1046 /*
1047 * Change rq's cpupri only if rt_rq is the top queue.
1048 */
1049 if (&rq->rt != rt_rq)
1050 return;
1051 #endif
1052 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1053 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1054 }
1055
1056 #else /* CONFIG_SMP */
1057
1058 static inline
1059 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1060 static inline
1061 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1062
1063 #endif /* CONFIG_SMP */
1064
1065 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1066 static void
1067 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1068 {
1069 int prev_prio = rt_rq->highest_prio.curr;
1070
1071 if (prio < prev_prio)
1072 rt_rq->highest_prio.curr = prio;
1073
1074 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1075 }
1076
1077 static void
1078 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1079 {
1080 int prev_prio = rt_rq->highest_prio.curr;
1081
1082 if (rt_rq->rt_nr_running) {
1083
1084 WARN_ON(prio < prev_prio);
1085
1086 /*
1087 * This may have been our highest task, and therefore
1088 * we may have some recomputation to do
1089 */
1090 if (prio == prev_prio) {
1091 struct rt_prio_array *array = &rt_rq->active;
1092
1093 rt_rq->highest_prio.curr =
1094 sched_find_first_bit(array->bitmap);
1095 }
1096
1097 } else
1098 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1099
1100 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1101 }
1102
1103 #else
1104
1105 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1106 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1107
1108 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1109
1110 #ifdef CONFIG_RT_GROUP_SCHED
1111
1112 static void
1113 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1114 {
1115 if (rt_se_boosted(rt_se))
1116 rt_rq->rt_nr_boosted++;
1117
1118 if (rt_rq->tg)
1119 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1120 }
1121
1122 static void
1123 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1124 {
1125 if (rt_se_boosted(rt_se))
1126 rt_rq->rt_nr_boosted--;
1127
1128 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1129 }
1130
1131 #else /* CONFIG_RT_GROUP_SCHED */
1132
1133 static void
1134 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1135 {
1136 start_rt_bandwidth(&def_rt_bandwidth);
1137 }
1138
1139 static inline
1140 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1141
1142 #endif /* CONFIG_RT_GROUP_SCHED */
1143
1144 static inline
1145 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1146 {
1147 struct rt_rq *group_rq = group_rt_rq(rt_se);
1148
1149 if (group_rq)
1150 return group_rq->rt_nr_running;
1151 else
1152 return 1;
1153 }
1154
1155 static inline
1156 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1157 {
1158 struct rt_rq *group_rq = group_rt_rq(rt_se);
1159 struct task_struct *tsk;
1160
1161 if (group_rq)
1162 return group_rq->rr_nr_running;
1163
1164 tsk = rt_task_of(rt_se);
1165
1166 return (tsk->policy == SCHED_RR) ? 1 : 0;
1167 }
1168
1169 static inline
1170 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1171 {
1172 int prio = rt_se_prio(rt_se);
1173
1174 WARN_ON(!rt_prio(prio));
1175 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1176 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1177
1178 inc_rt_prio(rt_rq, prio);
1179 inc_rt_migration(rt_se, rt_rq);
1180 inc_rt_group(rt_se, rt_rq);
1181 }
1182
1183 static inline
1184 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1185 {
1186 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1187 WARN_ON(!rt_rq->rt_nr_running);
1188 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1189 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1190
1191 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1192 dec_rt_migration(rt_se, rt_rq);
1193 dec_rt_group(rt_se, rt_rq);
1194 }
1195
1196 /*
1197 * Change rt_se->run_list location unless SAVE && !MOVE
1198 *
1199 * assumes ENQUEUE/DEQUEUE flags match
1200 */
1201 static inline bool move_entity(unsigned int flags)
1202 {
1203 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1204 return false;
1205
1206 return true;
1207 }
1208
1209 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1210 {
1211 list_del_init(&rt_se->run_list);
1212
1213 if (list_empty(array->queue + rt_se_prio(rt_se)))
1214 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1215
1216 rt_se->on_list = 0;
1217 }
1218
1219 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1220 {
1221 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1222 struct rt_prio_array *array = &rt_rq->active;
1223 struct rt_rq *group_rq = group_rt_rq(rt_se);
1224 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1225
1226 /*
1227 * Don't enqueue the group if its throttled, or when empty.
1228 * The latter is a consequence of the former when a child group
1229 * get throttled and the current group doesn't have any other
1230 * active members.
1231 */
1232 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1233 if (rt_se->on_list)
1234 __delist_rt_entity(rt_se, array);
1235 return;
1236 }
1237
1238 if (move_entity(flags)) {
1239 WARN_ON_ONCE(rt_se->on_list);
1240 if (flags & ENQUEUE_HEAD)
1241 list_add(&rt_se->run_list, queue);
1242 else
1243 list_add_tail(&rt_se->run_list, queue);
1244
1245 __set_bit(rt_se_prio(rt_se), array->bitmap);
1246 rt_se->on_list = 1;
1247 }
1248 rt_se->on_rq = 1;
1249
1250 inc_rt_tasks(rt_se, rt_rq);
1251 }
1252
1253 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1254 {
1255 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1256 struct rt_prio_array *array = &rt_rq->active;
1257
1258 if (move_entity(flags)) {
1259 WARN_ON_ONCE(!rt_se->on_list);
1260 __delist_rt_entity(rt_se, array);
1261 }
1262 rt_se->on_rq = 0;
1263
1264 dec_rt_tasks(rt_se, rt_rq);
1265 }
1266
1267 /*
1268 * Because the prio of an upper entry depends on the lower
1269 * entries, we must remove entries top - down.
1270 */
1271 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1272 {
1273 struct sched_rt_entity *back = NULL;
1274
1275 for_each_sched_rt_entity(rt_se) {
1276 rt_se->back = back;
1277 back = rt_se;
1278 }
1279
1280 dequeue_top_rt_rq(rt_rq_of_se(back));
1281
1282 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1283 if (on_rt_rq(rt_se))
1284 __dequeue_rt_entity(rt_se, flags);
1285 }
1286 }
1287
1288 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1289 {
1290 struct rq *rq = rq_of_rt_se(rt_se);
1291
1292 dequeue_rt_stack(rt_se, flags);
1293 for_each_sched_rt_entity(rt_se)
1294 __enqueue_rt_entity(rt_se, flags);
1295 enqueue_top_rt_rq(&rq->rt);
1296 }
1297
1298 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1299 {
1300 struct rq *rq = rq_of_rt_se(rt_se);
1301
1302 dequeue_rt_stack(rt_se, flags);
1303
1304 for_each_sched_rt_entity(rt_se) {
1305 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1306
1307 if (rt_rq && rt_rq->rt_nr_running)
1308 __enqueue_rt_entity(rt_se, flags);
1309 }
1310 enqueue_top_rt_rq(&rq->rt);
1311 }
1312
1313 /*
1314 * Adding/removing a task to/from a priority array:
1315 */
1316 static void
1317 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1318 {
1319 struct sched_rt_entity *rt_se = &p->rt;
1320
1321 if (flags & ENQUEUE_WAKEUP)
1322 rt_se->timeout = 0;
1323
1324 enqueue_rt_entity(rt_se, flags);
1325
1326 if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
1327 enqueue_pushable_task(rq, p);
1328 }
1329
1330 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1331 {
1332 struct sched_rt_entity *rt_se = &p->rt;
1333
1334 update_curr_rt(rq);
1335 dequeue_rt_entity(rt_se, flags);
1336
1337 dequeue_pushable_task(rq, p);
1338 }
1339
1340 /*
1341 * Put task to the head or the end of the run list without the overhead of
1342 * dequeue followed by enqueue.
1343 */
1344 static void
1345 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1346 {
1347 if (on_rt_rq(rt_se)) {
1348 struct rt_prio_array *array = &rt_rq->active;
1349 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1350
1351 if (head)
1352 list_move(&rt_se->run_list, queue);
1353 else
1354 list_move_tail(&rt_se->run_list, queue);
1355 }
1356 }
1357
1358 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1359 {
1360 struct sched_rt_entity *rt_se = &p->rt;
1361 struct rt_rq *rt_rq;
1362
1363 for_each_sched_rt_entity(rt_se) {
1364 rt_rq = rt_rq_of_se(rt_se);
1365 requeue_rt_entity(rt_rq, rt_se, head);
1366 }
1367 }
1368
1369 static void yield_task_rt(struct rq *rq)
1370 {
1371 requeue_task_rt(rq, rq->curr, 0);
1372 }
1373
1374 #ifdef CONFIG_SMP
1375 static int find_lowest_rq(struct task_struct *task);
1376
1377 static int
1378 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1379 {
1380 struct task_struct *curr;
1381 struct rq *rq;
1382
1383 /* For anything but wake ups, just return the task_cpu */
1384 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1385 goto out;
1386
1387 rq = cpu_rq(cpu);
1388
1389 rcu_read_lock();
1390 curr = READ_ONCE(rq->curr); /* unlocked access */
1391
1392 /*
1393 * If the current task on @p's runqueue is an RT task, then
1394 * try to see if we can wake this RT task up on another
1395 * runqueue. Otherwise simply start this RT task
1396 * on its current runqueue.
1397 *
1398 * We want to avoid overloading runqueues. If the woken
1399 * task is a higher priority, then it will stay on this CPU
1400 * and the lower prio task should be moved to another CPU.
1401 * Even though this will probably make the lower prio task
1402 * lose its cache, we do not want to bounce a higher task
1403 * around just because it gave up its CPU, perhaps for a
1404 * lock?
1405 *
1406 * For equal prio tasks, we just let the scheduler sort it out.
1407 *
1408 * Otherwise, just let it ride on the affined RQ and the
1409 * post-schedule router will push the preempted task away
1410 *
1411 * This test is optimistic, if we get it wrong the load-balancer
1412 * will have to sort it out.
1413 */
1414 if (curr && unlikely(rt_task(curr)) &&
1415 (tsk_nr_cpus_allowed(curr) < 2 ||
1416 curr->prio <= p->prio)) {
1417 int target = find_lowest_rq(p);
1418
1419 /*
1420 * Don't bother moving it if the destination CPU is
1421 * not running a lower priority task.
1422 */
1423 if (target != -1 &&
1424 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1425 cpu = target;
1426 }
1427 rcu_read_unlock();
1428
1429 out:
1430 return cpu;
1431 }
1432
1433 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1434 {
1435 /*
1436 * Current can't be migrated, useless to reschedule,
1437 * let's hope p can move out.
1438 */
1439 if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1440 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1441 return;
1442
1443 /*
1444 * p is migratable, so let's not schedule it and
1445 * see if it is pushed or pulled somewhere else.
1446 */
1447 if (tsk_nr_cpus_allowed(p) != 1
1448 && cpupri_find(&rq->rd->cpupri, p, NULL))
1449 return;
1450
1451 /*
1452 * There appears to be other cpus that can accept
1453 * current and none to run 'p', so lets reschedule
1454 * to try and push current away:
1455 */
1456 requeue_task_rt(rq, p, 1);
1457 resched_curr(rq);
1458 }
1459
1460 #endif /* CONFIG_SMP */
1461
1462 /*
1463 * Preempt the current task with a newly woken task if needed:
1464 */
1465 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1466 {
1467 if (p->prio < rq->curr->prio) {
1468 resched_curr(rq);
1469 return;
1470 }
1471
1472 #ifdef CONFIG_SMP
1473 /*
1474 * If:
1475 *
1476 * - the newly woken task is of equal priority to the current task
1477 * - the newly woken task is non-migratable while current is migratable
1478 * - current will be preempted on the next reschedule
1479 *
1480 * we should check to see if current can readily move to a different
1481 * cpu. If so, we will reschedule to allow the push logic to try
1482 * to move current somewhere else, making room for our non-migratable
1483 * task.
1484 */
1485 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1486 check_preempt_equal_prio(rq, p);
1487 #endif
1488 }
1489
1490 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1491 struct rt_rq *rt_rq)
1492 {
1493 struct rt_prio_array *array = &rt_rq->active;
1494 struct sched_rt_entity *next = NULL;
1495 struct list_head *queue;
1496 int idx;
1497
1498 idx = sched_find_first_bit(array->bitmap);
1499 BUG_ON(idx >= MAX_RT_PRIO);
1500
1501 queue = array->queue + idx;
1502 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1503
1504 return next;
1505 }
1506
1507 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1508 {
1509 struct sched_rt_entity *rt_se;
1510 struct task_struct *p;
1511 struct rt_rq *rt_rq = &rq->rt;
1512
1513 do {
1514 rt_se = pick_next_rt_entity(rq, rt_rq);
1515 BUG_ON(!rt_se);
1516 rt_rq = group_rt_rq(rt_se);
1517 } while (rt_rq);
1518
1519 p = rt_task_of(rt_se);
1520 p->se.exec_start = rq_clock_task(rq);
1521
1522 return p;
1523 }
1524
1525 static struct task_struct *
1526 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
1527 {
1528 struct task_struct *p;
1529 struct rt_rq *rt_rq = &rq->rt;
1530
1531 if (need_pull_rt_task(rq, prev)) {
1532 /*
1533 * This is OK, because current is on_cpu, which avoids it being
1534 * picked for load-balance and preemption/IRQs are still
1535 * disabled avoiding further scheduler activity on it and we're
1536 * being very careful to re-start the picking loop.
1537 */
1538 lockdep_unpin_lock(&rq->lock, cookie);
1539 pull_rt_task(rq);
1540 lockdep_repin_lock(&rq->lock, cookie);
1541 /*
1542 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1543 * means a dl or stop task can slip in, in which case we need
1544 * to re-start task selection.
1545 */
1546 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1547 rq->dl.dl_nr_running))
1548 return RETRY_TASK;
1549 }
1550
1551 /*
1552 * We may dequeue prev's rt_rq in put_prev_task().
1553 * So, we update time before rt_nr_running check.
1554 */
1555 if (prev->sched_class == &rt_sched_class)
1556 update_curr_rt(rq);
1557
1558 if (!rt_rq->rt_queued)
1559 return NULL;
1560
1561 put_prev_task(rq, prev);
1562
1563 p = _pick_next_task_rt(rq);
1564
1565 /* The running task is never eligible for pushing */
1566 dequeue_pushable_task(rq, p);
1567
1568 queue_push_tasks(rq);
1569
1570 return p;
1571 }
1572
1573 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1574 {
1575 update_curr_rt(rq);
1576
1577 /*
1578 * The previous task needs to be made eligible for pushing
1579 * if it is still active
1580 */
1581 if (on_rt_rq(&p->rt) && tsk_nr_cpus_allowed(p) > 1)
1582 enqueue_pushable_task(rq, p);
1583 }
1584
1585 #ifdef CONFIG_SMP
1586
1587 /* Only try algorithms three times */
1588 #define RT_MAX_TRIES 3
1589
1590 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1591 {
1592 if (!task_running(rq, p) &&
1593 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1594 return 1;
1595 return 0;
1596 }
1597
1598 /*
1599 * Return the highest pushable rq's task, which is suitable to be executed
1600 * on the cpu, NULL otherwise
1601 */
1602 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1603 {
1604 struct plist_head *head = &rq->rt.pushable_tasks;
1605 struct task_struct *p;
1606
1607 if (!has_pushable_tasks(rq))
1608 return NULL;
1609
1610 plist_for_each_entry(p, head, pushable_tasks) {
1611 if (pick_rt_task(rq, p, cpu))
1612 return p;
1613 }
1614
1615 return NULL;
1616 }
1617
1618 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1619
1620 static int find_lowest_rq(struct task_struct *task)
1621 {
1622 struct sched_domain *sd;
1623 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1624 int this_cpu = smp_processor_id();
1625 int cpu = task_cpu(task);
1626
1627 /* Make sure the mask is initialized first */
1628 if (unlikely(!lowest_mask))
1629 return -1;
1630
1631 if (tsk_nr_cpus_allowed(task) == 1)
1632 return -1; /* No other targets possible */
1633
1634 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1635 return -1; /* No targets found */
1636
1637 /*
1638 * At this point we have built a mask of cpus representing the
1639 * lowest priority tasks in the system. Now we want to elect
1640 * the best one based on our affinity and topology.
1641 *
1642 * We prioritize the last cpu that the task executed on since
1643 * it is most likely cache-hot in that location.
1644 */
1645 if (cpumask_test_cpu(cpu, lowest_mask))
1646 return cpu;
1647
1648 /*
1649 * Otherwise, we consult the sched_domains span maps to figure
1650 * out which cpu is logically closest to our hot cache data.
1651 */
1652 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1653 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1654
1655 rcu_read_lock();
1656 for_each_domain(cpu, sd) {
1657 if (sd->flags & SD_WAKE_AFFINE) {
1658 int best_cpu;
1659
1660 /*
1661 * "this_cpu" is cheaper to preempt than a
1662 * remote processor.
1663 */
1664 if (this_cpu != -1 &&
1665 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1666 rcu_read_unlock();
1667 return this_cpu;
1668 }
1669
1670 best_cpu = cpumask_first_and(lowest_mask,
1671 sched_domain_span(sd));
1672 if (best_cpu < nr_cpu_ids) {
1673 rcu_read_unlock();
1674 return best_cpu;
1675 }
1676 }
1677 }
1678 rcu_read_unlock();
1679
1680 /*
1681 * And finally, if there were no matches within the domains
1682 * just give the caller *something* to work with from the compatible
1683 * locations.
1684 */
1685 if (this_cpu != -1)
1686 return this_cpu;
1687
1688 cpu = cpumask_any(lowest_mask);
1689 if (cpu < nr_cpu_ids)
1690 return cpu;
1691 return -1;
1692 }
1693
1694 /* Will lock the rq it finds */
1695 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1696 {
1697 struct rq *lowest_rq = NULL;
1698 int tries;
1699 int cpu;
1700
1701 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1702 cpu = find_lowest_rq(task);
1703
1704 if ((cpu == -1) || (cpu == rq->cpu))
1705 break;
1706
1707 lowest_rq = cpu_rq(cpu);
1708
1709 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1710 /*
1711 * Target rq has tasks of equal or higher priority,
1712 * retrying does not release any lock and is unlikely
1713 * to yield a different result.
1714 */
1715 lowest_rq = NULL;
1716 break;
1717 }
1718
1719 /* if the prio of this runqueue changed, try again */
1720 if (double_lock_balance(rq, lowest_rq)) {
1721 /*
1722 * We had to unlock the run queue. In
1723 * the mean time, task could have
1724 * migrated already or had its affinity changed.
1725 * Also make sure that it wasn't scheduled on its rq.
1726 */
1727 if (unlikely(task_rq(task) != rq ||
1728 !cpumask_test_cpu(lowest_rq->cpu,
1729 tsk_cpus_allowed(task)) ||
1730 task_running(rq, task) ||
1731 !rt_task(task) ||
1732 !task_on_rq_queued(task))) {
1733
1734 double_unlock_balance(rq, lowest_rq);
1735 lowest_rq = NULL;
1736 break;
1737 }
1738 }
1739
1740 /* If this rq is still suitable use it. */
1741 if (lowest_rq->rt.highest_prio.curr > task->prio)
1742 break;
1743
1744 /* try again */
1745 double_unlock_balance(rq, lowest_rq);
1746 lowest_rq = NULL;
1747 }
1748
1749 return lowest_rq;
1750 }
1751
1752 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1753 {
1754 struct task_struct *p;
1755
1756 if (!has_pushable_tasks(rq))
1757 return NULL;
1758
1759 p = plist_first_entry(&rq->rt.pushable_tasks,
1760 struct task_struct, pushable_tasks);
1761
1762 BUG_ON(rq->cpu != task_cpu(p));
1763 BUG_ON(task_current(rq, p));
1764 BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1765
1766 BUG_ON(!task_on_rq_queued(p));
1767 BUG_ON(!rt_task(p));
1768
1769 return p;
1770 }
1771
1772 /*
1773 * If the current CPU has more than one RT task, see if the non
1774 * running task can migrate over to a CPU that is running a task
1775 * of lesser priority.
1776 */
1777 static int push_rt_task(struct rq *rq)
1778 {
1779 struct task_struct *next_task;
1780 struct rq *lowest_rq;
1781 int ret = 0;
1782
1783 if (!rq->rt.overloaded)
1784 return 0;
1785
1786 next_task = pick_next_pushable_task(rq);
1787 if (!next_task)
1788 return 0;
1789
1790 retry:
1791 if (unlikely(next_task == rq->curr)) {
1792 WARN_ON(1);
1793 return 0;
1794 }
1795
1796 /*
1797 * It's possible that the next_task slipped in of
1798 * higher priority than current. If that's the case
1799 * just reschedule current.
1800 */
1801 if (unlikely(next_task->prio < rq->curr->prio)) {
1802 resched_curr(rq);
1803 return 0;
1804 }
1805
1806 /* We might release rq lock */
1807 get_task_struct(next_task);
1808
1809 /* find_lock_lowest_rq locks the rq if found */
1810 lowest_rq = find_lock_lowest_rq(next_task, rq);
1811 if (!lowest_rq) {
1812 struct task_struct *task;
1813 /*
1814 * find_lock_lowest_rq releases rq->lock
1815 * so it is possible that next_task has migrated.
1816 *
1817 * We need to make sure that the task is still on the same
1818 * run-queue and is also still the next task eligible for
1819 * pushing.
1820 */
1821 task = pick_next_pushable_task(rq);
1822 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1823 /*
1824 * The task hasn't migrated, and is still the next
1825 * eligible task, but we failed to find a run-queue
1826 * to push it to. Do not retry in this case, since
1827 * other cpus will pull from us when ready.
1828 */
1829 goto out;
1830 }
1831
1832 if (!task)
1833 /* No more tasks, just exit */
1834 goto out;
1835
1836 /*
1837 * Something has shifted, try again.
1838 */
1839 put_task_struct(next_task);
1840 next_task = task;
1841 goto retry;
1842 }
1843
1844 deactivate_task(rq, next_task, 0);
1845 set_task_cpu(next_task, lowest_rq->cpu);
1846 activate_task(lowest_rq, next_task, 0);
1847 ret = 1;
1848
1849 resched_curr(lowest_rq);
1850
1851 double_unlock_balance(rq, lowest_rq);
1852
1853 out:
1854 put_task_struct(next_task);
1855
1856 return ret;
1857 }
1858
1859 static void push_rt_tasks(struct rq *rq)
1860 {
1861 /* push_rt_task will return true if it moved an RT */
1862 while (push_rt_task(rq))
1863 ;
1864 }
1865
1866 #ifdef HAVE_RT_PUSH_IPI
1867 /*
1868 * The search for the next cpu always starts at rq->cpu and ends
1869 * when we reach rq->cpu again. It will never return rq->cpu.
1870 * This returns the next cpu to check, or nr_cpu_ids if the loop
1871 * is complete.
1872 *
1873 * rq->rt.push_cpu holds the last cpu returned by this function,
1874 * or if this is the first instance, it must hold rq->cpu.
1875 */
1876 static int rto_next_cpu(struct rq *rq)
1877 {
1878 int prev_cpu = rq->rt.push_cpu;
1879 int cpu;
1880
1881 cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1882
1883 /*
1884 * If the previous cpu is less than the rq's CPU, then it already
1885 * passed the end of the mask, and has started from the beginning.
1886 * We end if the next CPU is greater or equal to rq's CPU.
1887 */
1888 if (prev_cpu < rq->cpu) {
1889 if (cpu >= rq->cpu)
1890 return nr_cpu_ids;
1891
1892 } else if (cpu >= nr_cpu_ids) {
1893 /*
1894 * We passed the end of the mask, start at the beginning.
1895 * If the result is greater or equal to the rq's CPU, then
1896 * the loop is finished.
1897 */
1898 cpu = cpumask_first(rq->rd->rto_mask);
1899 if (cpu >= rq->cpu)
1900 return nr_cpu_ids;
1901 }
1902 rq->rt.push_cpu = cpu;
1903
1904 /* Return cpu to let the caller know if the loop is finished or not */
1905 return cpu;
1906 }
1907
1908 static int find_next_push_cpu(struct rq *rq)
1909 {
1910 struct rq *next_rq;
1911 int cpu;
1912
1913 while (1) {
1914 cpu = rto_next_cpu(rq);
1915 if (cpu >= nr_cpu_ids)
1916 break;
1917 next_rq = cpu_rq(cpu);
1918
1919 /* Make sure the next rq can push to this rq */
1920 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1921 break;
1922 }
1923
1924 return cpu;
1925 }
1926
1927 #define RT_PUSH_IPI_EXECUTING 1
1928 #define RT_PUSH_IPI_RESTART 2
1929
1930 static void tell_cpu_to_push(struct rq *rq)
1931 {
1932 int cpu;
1933
1934 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1935 raw_spin_lock(&rq->rt.push_lock);
1936 /* Make sure it's still executing */
1937 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1938 /*
1939 * Tell the IPI to restart the loop as things have
1940 * changed since it started.
1941 */
1942 rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1943 raw_spin_unlock(&rq->rt.push_lock);
1944 return;
1945 }
1946 raw_spin_unlock(&rq->rt.push_lock);
1947 }
1948
1949 /* When here, there's no IPI going around */
1950
1951 rq->rt.push_cpu = rq->cpu;
1952 cpu = find_next_push_cpu(rq);
1953 if (cpu >= nr_cpu_ids)
1954 return;
1955
1956 rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1957
1958 irq_work_queue_on(&rq->rt.push_work, cpu);
1959 }
1960
1961 /* Called from hardirq context */
1962 static void try_to_push_tasks(void *arg)
1963 {
1964 struct rt_rq *rt_rq = arg;
1965 struct rq *rq, *src_rq;
1966 int this_cpu;
1967 int cpu;
1968
1969 this_cpu = rt_rq->push_cpu;
1970
1971 /* Paranoid check */
1972 BUG_ON(this_cpu != smp_processor_id());
1973
1974 rq = cpu_rq(this_cpu);
1975 src_rq = rq_of_rt_rq(rt_rq);
1976
1977 again:
1978 if (has_pushable_tasks(rq)) {
1979 raw_spin_lock(&rq->lock);
1980 push_rt_task(rq);
1981 raw_spin_unlock(&rq->lock);
1982 }
1983
1984 /* Pass the IPI to the next rt overloaded queue */
1985 raw_spin_lock(&rt_rq->push_lock);
1986 /*
1987 * If the source queue changed since the IPI went out,
1988 * we need to restart the search from that CPU again.
1989 */
1990 if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1991 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1992 rt_rq->push_cpu = src_rq->cpu;
1993 }
1994
1995 cpu = find_next_push_cpu(src_rq);
1996
1997 if (cpu >= nr_cpu_ids)
1998 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1999 raw_spin_unlock(&rt_rq->push_lock);
2000
2001 if (cpu >= nr_cpu_ids)
2002 return;
2003
2004 /*
2005 * It is possible that a restart caused this CPU to be
2006 * chosen again. Don't bother with an IPI, just see if we
2007 * have more to push.
2008 */
2009 if (unlikely(cpu == rq->cpu))
2010 goto again;
2011
2012 /* Try the next RT overloaded CPU */
2013 irq_work_queue_on(&rt_rq->push_work, cpu);
2014 }
2015
2016 static void push_irq_work_func(struct irq_work *work)
2017 {
2018 struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2019
2020 try_to_push_tasks(rt_rq);
2021 }
2022 #endif /* HAVE_RT_PUSH_IPI */
2023
2024 static void pull_rt_task(struct rq *this_rq)
2025 {
2026 int this_cpu = this_rq->cpu, cpu;
2027 bool resched = false;
2028 struct task_struct *p;
2029 struct rq *src_rq;
2030
2031 if (likely(!rt_overloaded(this_rq)))
2032 return;
2033
2034 /*
2035 * Match the barrier from rt_set_overloaded; this guarantees that if we
2036 * see overloaded we must also see the rto_mask bit.
2037 */
2038 smp_rmb();
2039
2040 #ifdef HAVE_RT_PUSH_IPI
2041 if (sched_feat(RT_PUSH_IPI)) {
2042 tell_cpu_to_push(this_rq);
2043 return;
2044 }
2045 #endif
2046
2047 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2048 if (this_cpu == cpu)
2049 continue;
2050
2051 src_rq = cpu_rq(cpu);
2052
2053 /*
2054 * Don't bother taking the src_rq->lock if the next highest
2055 * task is known to be lower-priority than our current task.
2056 * This may look racy, but if this value is about to go
2057 * logically higher, the src_rq will push this task away.
2058 * And if its going logically lower, we do not care
2059 */
2060 if (src_rq->rt.highest_prio.next >=
2061 this_rq->rt.highest_prio.curr)
2062 continue;
2063
2064 /*
2065 * We can potentially drop this_rq's lock in
2066 * double_lock_balance, and another CPU could
2067 * alter this_rq
2068 */
2069 double_lock_balance(this_rq, src_rq);
2070
2071 /*
2072 * We can pull only a task, which is pushable
2073 * on its rq, and no others.
2074 */
2075 p = pick_highest_pushable_task(src_rq, this_cpu);
2076
2077 /*
2078 * Do we have an RT task that preempts
2079 * the to-be-scheduled task?
2080 */
2081 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2082 WARN_ON(p == src_rq->curr);
2083 WARN_ON(!task_on_rq_queued(p));
2084
2085 /*
2086 * There's a chance that p is higher in priority
2087 * than what's currently running on its cpu.
2088 * This is just that p is wakeing up and hasn't
2089 * had a chance to schedule. We only pull
2090 * p if it is lower in priority than the
2091 * current task on the run queue
2092 */
2093 if (p->prio < src_rq->curr->prio)
2094 goto skip;
2095
2096 resched = true;
2097
2098 deactivate_task(src_rq, p, 0);
2099 set_task_cpu(p, this_cpu);
2100 activate_task(this_rq, p, 0);
2101 /*
2102 * We continue with the search, just in
2103 * case there's an even higher prio task
2104 * in another runqueue. (low likelihood
2105 * but possible)
2106 */
2107 }
2108 skip:
2109 double_unlock_balance(this_rq, src_rq);
2110 }
2111
2112 if (resched)
2113 resched_curr(this_rq);
2114 }
2115
2116 /*
2117 * If we are not running and we are not going to reschedule soon, we should
2118 * try to push tasks away now
2119 */
2120 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2121 {
2122 if (!task_running(rq, p) &&
2123 !test_tsk_need_resched(rq->curr) &&
2124 tsk_nr_cpus_allowed(p) > 1 &&
2125 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2126 (tsk_nr_cpus_allowed(rq->curr) < 2 ||
2127 rq->curr->prio <= p->prio))
2128 push_rt_tasks(rq);
2129 }
2130
2131 /* Assumes rq->lock is held */
2132 static void rq_online_rt(struct rq *rq)
2133 {
2134 if (rq->rt.overloaded)
2135 rt_set_overload(rq);
2136
2137 __enable_runtime(rq);
2138
2139 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2140 }
2141
2142 /* Assumes rq->lock is held */
2143 static void rq_offline_rt(struct rq *rq)
2144 {
2145 if (rq->rt.overloaded)
2146 rt_clear_overload(rq);
2147
2148 __disable_runtime(rq);
2149
2150 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2151 }
2152
2153 /*
2154 * When switch from the rt queue, we bring ourselves to a position
2155 * that we might want to pull RT tasks from other runqueues.
2156 */
2157 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2158 {
2159 /*
2160 * If there are other RT tasks then we will reschedule
2161 * and the scheduling of the other RT tasks will handle
2162 * the balancing. But if we are the last RT task
2163 * we may need to handle the pulling of RT tasks
2164 * now.
2165 */
2166 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2167 return;
2168
2169 queue_pull_task(rq);
2170 }
2171
2172 void __init init_sched_rt_class(void)
2173 {
2174 unsigned int i;
2175
2176 for_each_possible_cpu(i) {
2177 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2178 GFP_KERNEL, cpu_to_node(i));
2179 }
2180 }
2181 #endif /* CONFIG_SMP */
2182
2183 /*
2184 * When switching a task to RT, we may overload the runqueue
2185 * with RT tasks. In this case we try to push them off to
2186 * other runqueues.
2187 */
2188 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2189 {
2190 /*
2191 * If we are already running, then there's nothing
2192 * that needs to be done. But if we are not running
2193 * we may need to preempt the current running task.
2194 * If that current running task is also an RT task
2195 * then see if we can move to another run queue.
2196 */
2197 if (task_on_rq_queued(p) && rq->curr != p) {
2198 #ifdef CONFIG_SMP
2199 if (tsk_nr_cpus_allowed(p) > 1 && rq->rt.overloaded)
2200 queue_push_tasks(rq);
2201 #else
2202 if (p->prio < rq->curr->prio)
2203 resched_curr(rq);
2204 #endif /* CONFIG_SMP */
2205 }
2206 }
2207
2208 /*
2209 * Priority of the task has changed. This may cause
2210 * us to initiate a push or pull.
2211 */
2212 static void
2213 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2214 {
2215 if (!task_on_rq_queued(p))
2216 return;
2217
2218 if (rq->curr == p) {
2219 #ifdef CONFIG_SMP
2220 /*
2221 * If our priority decreases while running, we
2222 * may need to pull tasks to this runqueue.
2223 */
2224 if (oldprio < p->prio)
2225 queue_pull_task(rq);
2226
2227 /*
2228 * If there's a higher priority task waiting to run
2229 * then reschedule.
2230 */
2231 if (p->prio > rq->rt.highest_prio.curr)
2232 resched_curr(rq);
2233 #else
2234 /* For UP simply resched on drop of prio */
2235 if (oldprio < p->prio)
2236 resched_curr(rq);
2237 #endif /* CONFIG_SMP */
2238 } else {
2239 /*
2240 * This task is not running, but if it is
2241 * greater than the current running task
2242 * then reschedule.
2243 */
2244 if (p->prio < rq->curr->prio)
2245 resched_curr(rq);
2246 }
2247 }
2248
2249 static void watchdog(struct rq *rq, struct task_struct *p)
2250 {
2251 unsigned long soft, hard;
2252
2253 /* max may change after cur was read, this will be fixed next tick */
2254 soft = task_rlimit(p, RLIMIT_RTTIME);
2255 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2256
2257 if (soft != RLIM_INFINITY) {
2258 unsigned long next;
2259
2260 if (p->rt.watchdog_stamp != jiffies) {
2261 p->rt.timeout++;
2262 p->rt.watchdog_stamp = jiffies;
2263 }
2264
2265 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2266 if (p->rt.timeout > next)
2267 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2268 }
2269 }
2270
2271 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2272 {
2273 struct sched_rt_entity *rt_se = &p->rt;
2274
2275 update_curr_rt(rq);
2276
2277 watchdog(rq, p);
2278
2279 /*
2280 * RR tasks need a special form of timeslice management.
2281 * FIFO tasks have no timeslices.
2282 */
2283 if (p->policy != SCHED_RR)
2284 return;
2285
2286 if (--p->rt.time_slice)
2287 return;
2288
2289 p->rt.time_slice = sched_rr_timeslice;
2290
2291 /*
2292 * Requeue to the end of queue if we (and all of our ancestors) are not
2293 * the only element on the queue
2294 */
2295 for_each_sched_rt_entity(rt_se) {
2296 if (rt_se->run_list.prev != rt_se->run_list.next) {
2297 requeue_task_rt(rq, p, 0);
2298 resched_curr(rq);
2299 return;
2300 }
2301 }
2302 }
2303
2304 static void set_curr_task_rt(struct rq *rq)
2305 {
2306 struct task_struct *p = rq->curr;
2307
2308 p->se.exec_start = rq_clock_task(rq);
2309
2310 /* The running task is never eligible for pushing */
2311 dequeue_pushable_task(rq, p);
2312 }
2313
2314 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2315 {
2316 /*
2317 * Time slice is 0 for SCHED_FIFO tasks
2318 */
2319 if (task->policy == SCHED_RR)
2320 return sched_rr_timeslice;
2321 else
2322 return 0;
2323 }
2324
2325 const struct sched_class rt_sched_class = {
2326 .next = &fair_sched_class,
2327 .enqueue_task = enqueue_task_rt,
2328 .dequeue_task = dequeue_task_rt,
2329 .yield_task = yield_task_rt,
2330
2331 .check_preempt_curr = check_preempt_curr_rt,
2332
2333 .pick_next_task = pick_next_task_rt,
2334 .put_prev_task = put_prev_task_rt,
2335
2336 #ifdef CONFIG_SMP
2337 .select_task_rq = select_task_rq_rt,
2338
2339 .set_cpus_allowed = set_cpus_allowed_common,
2340 .rq_online = rq_online_rt,
2341 .rq_offline = rq_offline_rt,
2342 .task_woken = task_woken_rt,
2343 .switched_from = switched_from_rt,
2344 #endif
2345
2346 .set_curr_task = set_curr_task_rt,
2347 .task_tick = task_tick_rt,
2348
2349 .get_rr_interval = get_rr_interval_rt,
2350
2351 .prio_changed = prio_changed_rt,
2352 .switched_to = switched_to_rt,
2353
2354 .update_curr = update_curr_rt,
2355 };
2356
2357 #ifdef CONFIG_SCHED_DEBUG
2358 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2359
2360 void print_rt_stats(struct seq_file *m, int cpu)
2361 {
2362 rt_rq_iter_t iter;
2363 struct rt_rq *rt_rq;
2364
2365 rcu_read_lock();
2366 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2367 print_rt_rq(m, cpu, rt_rq);
2368 rcu_read_unlock();
2369 }
2370 #endif /* CONFIG_SCHED_DEBUG */
This page took 0.118953 seconds and 5 git commands to generate.