drm/amdgpu/cik: move sdma tiling config setup into sdma code
[deliverable/linux.git] / mm / memory-failure.c
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11 * failure.
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
15 *
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
38 */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched.h>
44 #include <linux/ksm.h>
45 #include <linux/rmap.h>
46 #include <linux/export.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/backing-dev.h>
50 #include <linux/migrate.h>
51 #include <linux/page-isolation.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81
82 static int hwpoison_filter_dev(struct page *p)
83 {
84 struct address_space *mapping;
85 dev_t dev;
86
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
90
91 /*
92 * page_mapping() does not accept slab pages.
93 */
94 if (PageSlab(p))
95 return -EINVAL;
96
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
100
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
108
109 return 0;
110 }
111
112 static int hwpoison_filter_flags(struct page *p)
113 {
114 if (!hwpoison_filter_flags_mask)
115 return 0;
116
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
122 }
123
124 /*
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
133 */
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137 static int hwpoison_filter_task(struct page *p)
138 {
139 if (!hwpoison_filter_memcg)
140 return 0;
141
142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 return -EINVAL;
144
145 return 0;
146 }
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150
151 int hwpoison_filter(struct page *p)
152 {
153 if (!hwpoison_filter_enable)
154 return 0;
155
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
165 return 0;
166 }
167 #else
168 int hwpoison_filter(struct page *p)
169 {
170 return 0;
171 }
172 #endif
173
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
175
176 /*
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
180 */
181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 unsigned long pfn, struct page *page, int flags)
183 {
184 struct siginfo si;
185 int ret;
186
187 printk(KERN_ERR
188 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
189 pfn, t->comm, t->pid);
190 si.si_signo = SIGBUS;
191 si.si_errno = 0;
192 si.si_addr = (void *)addr;
193 #ifdef __ARCH_SI_TRAPNO
194 si.si_trapno = trapno;
195 #endif
196 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
197
198 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
199 si.si_code = BUS_MCEERR_AR;
200 ret = force_sig_info(SIGBUS, &si, current);
201 } else {
202 /*
203 * Don't use force here, it's convenient if the signal
204 * can be temporarily blocked.
205 * This could cause a loop when the user sets SIGBUS
206 * to SIG_IGN, but hopefully no one will do that?
207 */
208 si.si_code = BUS_MCEERR_AO;
209 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
210 }
211 if (ret < 0)
212 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
213 t->comm, t->pid, ret);
214 return ret;
215 }
216
217 /*
218 * When a unknown page type is encountered drain as many buffers as possible
219 * in the hope to turn the page into a LRU or free page, which we can handle.
220 */
221 void shake_page(struct page *p, int access)
222 {
223 if (!PageSlab(p)) {
224 lru_add_drain_all();
225 if (PageLRU(p))
226 return;
227 drain_all_pages(page_zone(p));
228 if (PageLRU(p) || is_free_buddy_page(p))
229 return;
230 }
231
232 /*
233 * Only call shrink_node_slabs here (which would also shrink
234 * other caches) if access is not potentially fatal.
235 */
236 if (access)
237 drop_slab_node(page_to_nid(p));
238 }
239 EXPORT_SYMBOL_GPL(shake_page);
240
241 /*
242 * Kill all processes that have a poisoned page mapped and then isolate
243 * the page.
244 *
245 * General strategy:
246 * Find all processes having the page mapped and kill them.
247 * But we keep a page reference around so that the page is not
248 * actually freed yet.
249 * Then stash the page away
250 *
251 * There's no convenient way to get back to mapped processes
252 * from the VMAs. So do a brute-force search over all
253 * running processes.
254 *
255 * Remember that machine checks are not common (or rather
256 * if they are common you have other problems), so this shouldn't
257 * be a performance issue.
258 *
259 * Also there are some races possible while we get from the
260 * error detection to actually handle it.
261 */
262
263 struct to_kill {
264 struct list_head nd;
265 struct task_struct *tsk;
266 unsigned long addr;
267 char addr_valid;
268 };
269
270 /*
271 * Failure handling: if we can't find or can't kill a process there's
272 * not much we can do. We just print a message and ignore otherwise.
273 */
274
275 /*
276 * Schedule a process for later kill.
277 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
278 * TBD would GFP_NOIO be enough?
279 */
280 static void add_to_kill(struct task_struct *tsk, struct page *p,
281 struct vm_area_struct *vma,
282 struct list_head *to_kill,
283 struct to_kill **tkc)
284 {
285 struct to_kill *tk;
286
287 if (*tkc) {
288 tk = *tkc;
289 *tkc = NULL;
290 } else {
291 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
292 if (!tk) {
293 printk(KERN_ERR
294 "MCE: Out of memory while machine check handling\n");
295 return;
296 }
297 }
298 tk->addr = page_address_in_vma(p, vma);
299 tk->addr_valid = 1;
300
301 /*
302 * In theory we don't have to kill when the page was
303 * munmaped. But it could be also a mremap. Since that's
304 * likely very rare kill anyways just out of paranoia, but use
305 * a SIGKILL because the error is not contained anymore.
306 */
307 if (tk->addr == -EFAULT) {
308 pr_info("MCE: Unable to find user space address %lx in %s\n",
309 page_to_pfn(p), tsk->comm);
310 tk->addr_valid = 0;
311 }
312 get_task_struct(tsk);
313 tk->tsk = tsk;
314 list_add_tail(&tk->nd, to_kill);
315 }
316
317 /*
318 * Kill the processes that have been collected earlier.
319 *
320 * Only do anything when DOIT is set, otherwise just free the list
321 * (this is used for clean pages which do not need killing)
322 * Also when FAIL is set do a force kill because something went
323 * wrong earlier.
324 */
325 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
326 int fail, struct page *page, unsigned long pfn,
327 int flags)
328 {
329 struct to_kill *tk, *next;
330
331 list_for_each_entry_safe (tk, next, to_kill, nd) {
332 if (forcekill) {
333 /*
334 * In case something went wrong with munmapping
335 * make sure the process doesn't catch the
336 * signal and then access the memory. Just kill it.
337 */
338 if (fail || tk->addr_valid == 0) {
339 printk(KERN_ERR
340 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
341 pfn, tk->tsk->comm, tk->tsk->pid);
342 force_sig(SIGKILL, tk->tsk);
343 }
344
345 /*
346 * In theory the process could have mapped
347 * something else on the address in-between. We could
348 * check for that, but we need to tell the
349 * process anyways.
350 */
351 else if (kill_proc(tk->tsk, tk->addr, trapno,
352 pfn, page, flags) < 0)
353 printk(KERN_ERR
354 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
355 pfn, tk->tsk->comm, tk->tsk->pid);
356 }
357 put_task_struct(tk->tsk);
358 kfree(tk);
359 }
360 }
361
362 /*
363 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
364 * on behalf of the thread group. Return task_struct of the (first found)
365 * dedicated thread if found, and return NULL otherwise.
366 *
367 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
368 * have to call rcu_read_lock/unlock() in this function.
369 */
370 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
371 {
372 struct task_struct *t;
373
374 for_each_thread(tsk, t)
375 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
376 return t;
377 return NULL;
378 }
379
380 /*
381 * Determine whether a given process is "early kill" process which expects
382 * to be signaled when some page under the process is hwpoisoned.
383 * Return task_struct of the dedicated thread (main thread unless explicitly
384 * specified) if the process is "early kill," and otherwise returns NULL.
385 */
386 static struct task_struct *task_early_kill(struct task_struct *tsk,
387 int force_early)
388 {
389 struct task_struct *t;
390 if (!tsk->mm)
391 return NULL;
392 if (force_early)
393 return tsk;
394 t = find_early_kill_thread(tsk);
395 if (t)
396 return t;
397 if (sysctl_memory_failure_early_kill)
398 return tsk;
399 return NULL;
400 }
401
402 /*
403 * Collect processes when the error hit an anonymous page.
404 */
405 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
406 struct to_kill **tkc, int force_early)
407 {
408 struct vm_area_struct *vma;
409 struct task_struct *tsk;
410 struct anon_vma *av;
411 pgoff_t pgoff;
412
413 av = page_lock_anon_vma_read(page);
414 if (av == NULL) /* Not actually mapped anymore */
415 return;
416
417 pgoff = page_to_pgoff(page);
418 read_lock(&tasklist_lock);
419 for_each_process (tsk) {
420 struct anon_vma_chain *vmac;
421 struct task_struct *t = task_early_kill(tsk, force_early);
422
423 if (!t)
424 continue;
425 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
426 pgoff, pgoff) {
427 vma = vmac->vma;
428 if (!page_mapped_in_vma(page, vma))
429 continue;
430 if (vma->vm_mm == t->mm)
431 add_to_kill(t, page, vma, to_kill, tkc);
432 }
433 }
434 read_unlock(&tasklist_lock);
435 page_unlock_anon_vma_read(av);
436 }
437
438 /*
439 * Collect processes when the error hit a file mapped page.
440 */
441 static void collect_procs_file(struct page *page, struct list_head *to_kill,
442 struct to_kill **tkc, int force_early)
443 {
444 struct vm_area_struct *vma;
445 struct task_struct *tsk;
446 struct address_space *mapping = page->mapping;
447
448 i_mmap_lock_read(mapping);
449 read_lock(&tasklist_lock);
450 for_each_process(tsk) {
451 pgoff_t pgoff = page_to_pgoff(page);
452 struct task_struct *t = task_early_kill(tsk, force_early);
453
454 if (!t)
455 continue;
456 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
457 pgoff) {
458 /*
459 * Send early kill signal to tasks where a vma covers
460 * the page but the corrupted page is not necessarily
461 * mapped it in its pte.
462 * Assume applications who requested early kill want
463 * to be informed of all such data corruptions.
464 */
465 if (vma->vm_mm == t->mm)
466 add_to_kill(t, page, vma, to_kill, tkc);
467 }
468 }
469 read_unlock(&tasklist_lock);
470 i_mmap_unlock_read(mapping);
471 }
472
473 /*
474 * Collect the processes who have the corrupted page mapped to kill.
475 * This is done in two steps for locking reasons.
476 * First preallocate one tokill structure outside the spin locks,
477 * so that we can kill at least one process reasonably reliable.
478 */
479 static void collect_procs(struct page *page, struct list_head *tokill,
480 int force_early)
481 {
482 struct to_kill *tk;
483
484 if (!page->mapping)
485 return;
486
487 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
488 if (!tk)
489 return;
490 if (PageAnon(page))
491 collect_procs_anon(page, tokill, &tk, force_early);
492 else
493 collect_procs_file(page, tokill, &tk, force_early);
494 kfree(tk);
495 }
496
497 static const char *action_name[] = {
498 [MF_IGNORED] = "Ignored",
499 [MF_FAILED] = "Failed",
500 [MF_DELAYED] = "Delayed",
501 [MF_RECOVERED] = "Recovered",
502 };
503
504 static const char * const action_page_types[] = {
505 [MF_MSG_KERNEL] = "reserved kernel page",
506 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
507 [MF_MSG_SLAB] = "kernel slab page",
508 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
509 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
510 [MF_MSG_HUGE] = "huge page",
511 [MF_MSG_FREE_HUGE] = "free huge page",
512 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
513 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
514 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
515 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
516 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
517 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
518 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
519 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
520 [MF_MSG_CLEAN_LRU] = "clean LRU page",
521 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
522 [MF_MSG_BUDDY] = "free buddy page",
523 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
524 [MF_MSG_UNKNOWN] = "unknown page",
525 };
526
527 /*
528 * XXX: It is possible that a page is isolated from LRU cache,
529 * and then kept in swap cache or failed to remove from page cache.
530 * The page count will stop it from being freed by unpoison.
531 * Stress tests should be aware of this memory leak problem.
532 */
533 static int delete_from_lru_cache(struct page *p)
534 {
535 if (!isolate_lru_page(p)) {
536 /*
537 * Clear sensible page flags, so that the buddy system won't
538 * complain when the page is unpoison-and-freed.
539 */
540 ClearPageActive(p);
541 ClearPageUnevictable(p);
542 /*
543 * drop the page count elevated by isolate_lru_page()
544 */
545 page_cache_release(p);
546 return 0;
547 }
548 return -EIO;
549 }
550
551 /*
552 * Error hit kernel page.
553 * Do nothing, try to be lucky and not touch this instead. For a few cases we
554 * could be more sophisticated.
555 */
556 static int me_kernel(struct page *p, unsigned long pfn)
557 {
558 return MF_IGNORED;
559 }
560
561 /*
562 * Page in unknown state. Do nothing.
563 */
564 static int me_unknown(struct page *p, unsigned long pfn)
565 {
566 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
567 return MF_FAILED;
568 }
569
570 /*
571 * Clean (or cleaned) page cache page.
572 */
573 static int me_pagecache_clean(struct page *p, unsigned long pfn)
574 {
575 int err;
576 int ret = MF_FAILED;
577 struct address_space *mapping;
578
579 delete_from_lru_cache(p);
580
581 /*
582 * For anonymous pages we're done the only reference left
583 * should be the one m_f() holds.
584 */
585 if (PageAnon(p))
586 return MF_RECOVERED;
587
588 /*
589 * Now truncate the page in the page cache. This is really
590 * more like a "temporary hole punch"
591 * Don't do this for block devices when someone else
592 * has a reference, because it could be file system metadata
593 * and that's not safe to truncate.
594 */
595 mapping = page_mapping(p);
596 if (!mapping) {
597 /*
598 * Page has been teared down in the meanwhile
599 */
600 return MF_FAILED;
601 }
602
603 /*
604 * Truncation is a bit tricky. Enable it per file system for now.
605 *
606 * Open: to take i_mutex or not for this? Right now we don't.
607 */
608 if (mapping->a_ops->error_remove_page) {
609 err = mapping->a_ops->error_remove_page(mapping, p);
610 if (err != 0) {
611 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
612 pfn, err);
613 } else if (page_has_private(p) &&
614 !try_to_release_page(p, GFP_NOIO)) {
615 pr_info("MCE %#lx: failed to release buffers\n", pfn);
616 } else {
617 ret = MF_RECOVERED;
618 }
619 } else {
620 /*
621 * If the file system doesn't support it just invalidate
622 * This fails on dirty or anything with private pages
623 */
624 if (invalidate_inode_page(p))
625 ret = MF_RECOVERED;
626 else
627 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
628 pfn);
629 }
630 return ret;
631 }
632
633 /*
634 * Dirty pagecache page
635 * Issues: when the error hit a hole page the error is not properly
636 * propagated.
637 */
638 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
639 {
640 struct address_space *mapping = page_mapping(p);
641
642 SetPageError(p);
643 /* TBD: print more information about the file. */
644 if (mapping) {
645 /*
646 * IO error will be reported by write(), fsync(), etc.
647 * who check the mapping.
648 * This way the application knows that something went
649 * wrong with its dirty file data.
650 *
651 * There's one open issue:
652 *
653 * The EIO will be only reported on the next IO
654 * operation and then cleared through the IO map.
655 * Normally Linux has two mechanisms to pass IO error
656 * first through the AS_EIO flag in the address space
657 * and then through the PageError flag in the page.
658 * Since we drop pages on memory failure handling the
659 * only mechanism open to use is through AS_AIO.
660 *
661 * This has the disadvantage that it gets cleared on
662 * the first operation that returns an error, while
663 * the PageError bit is more sticky and only cleared
664 * when the page is reread or dropped. If an
665 * application assumes it will always get error on
666 * fsync, but does other operations on the fd before
667 * and the page is dropped between then the error
668 * will not be properly reported.
669 *
670 * This can already happen even without hwpoisoned
671 * pages: first on metadata IO errors (which only
672 * report through AS_EIO) or when the page is dropped
673 * at the wrong time.
674 *
675 * So right now we assume that the application DTRT on
676 * the first EIO, but we're not worse than other parts
677 * of the kernel.
678 */
679 mapping_set_error(mapping, EIO);
680 }
681
682 return me_pagecache_clean(p, pfn);
683 }
684
685 /*
686 * Clean and dirty swap cache.
687 *
688 * Dirty swap cache page is tricky to handle. The page could live both in page
689 * cache and swap cache(ie. page is freshly swapped in). So it could be
690 * referenced concurrently by 2 types of PTEs:
691 * normal PTEs and swap PTEs. We try to handle them consistently by calling
692 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
693 * and then
694 * - clear dirty bit to prevent IO
695 * - remove from LRU
696 * - but keep in the swap cache, so that when we return to it on
697 * a later page fault, we know the application is accessing
698 * corrupted data and shall be killed (we installed simple
699 * interception code in do_swap_page to catch it).
700 *
701 * Clean swap cache pages can be directly isolated. A later page fault will
702 * bring in the known good data from disk.
703 */
704 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
705 {
706 ClearPageDirty(p);
707 /* Trigger EIO in shmem: */
708 ClearPageUptodate(p);
709
710 if (!delete_from_lru_cache(p))
711 return MF_DELAYED;
712 else
713 return MF_FAILED;
714 }
715
716 static int me_swapcache_clean(struct page *p, unsigned long pfn)
717 {
718 delete_from_swap_cache(p);
719
720 if (!delete_from_lru_cache(p))
721 return MF_RECOVERED;
722 else
723 return MF_FAILED;
724 }
725
726 /*
727 * Huge pages. Needs work.
728 * Issues:
729 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
730 * To narrow down kill region to one page, we need to break up pmd.
731 */
732 static int me_huge_page(struct page *p, unsigned long pfn)
733 {
734 int res = 0;
735 struct page *hpage = compound_head(p);
736
737 if (!PageHuge(hpage))
738 return MF_DELAYED;
739
740 /*
741 * We can safely recover from error on free or reserved (i.e.
742 * not in-use) hugepage by dequeuing it from freelist.
743 * To check whether a hugepage is in-use or not, we can't use
744 * page->lru because it can be used in other hugepage operations,
745 * such as __unmap_hugepage_range() and gather_surplus_pages().
746 * So instead we use page_mapping() and PageAnon().
747 * We assume that this function is called with page lock held,
748 * so there is no race between isolation and mapping/unmapping.
749 */
750 if (!(page_mapping(hpage) || PageAnon(hpage))) {
751 res = dequeue_hwpoisoned_huge_page(hpage);
752 if (!res)
753 return MF_RECOVERED;
754 }
755 return MF_DELAYED;
756 }
757
758 /*
759 * Various page states we can handle.
760 *
761 * A page state is defined by its current page->flags bits.
762 * The table matches them in order and calls the right handler.
763 *
764 * This is quite tricky because we can access page at any time
765 * in its live cycle, so all accesses have to be extremely careful.
766 *
767 * This is not complete. More states could be added.
768 * For any missing state don't attempt recovery.
769 */
770
771 #define dirty (1UL << PG_dirty)
772 #define sc (1UL << PG_swapcache)
773 #define unevict (1UL << PG_unevictable)
774 #define mlock (1UL << PG_mlocked)
775 #define writeback (1UL << PG_writeback)
776 #define lru (1UL << PG_lru)
777 #define swapbacked (1UL << PG_swapbacked)
778 #define head (1UL << PG_head)
779 #define slab (1UL << PG_slab)
780 #define reserved (1UL << PG_reserved)
781
782 static struct page_state {
783 unsigned long mask;
784 unsigned long res;
785 enum mf_action_page_type type;
786 int (*action)(struct page *p, unsigned long pfn);
787 } error_states[] = {
788 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
789 /*
790 * free pages are specially detected outside this table:
791 * PG_buddy pages only make a small fraction of all free pages.
792 */
793
794 /*
795 * Could in theory check if slab page is free or if we can drop
796 * currently unused objects without touching them. But just
797 * treat it as standard kernel for now.
798 */
799 { slab, slab, MF_MSG_SLAB, me_kernel },
800
801 { head, head, MF_MSG_HUGE, me_huge_page },
802
803 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
804 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
805
806 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
807 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
808
809 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
810 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
811
812 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
813 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
814
815 /*
816 * Catchall entry: must be at end.
817 */
818 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
819 };
820
821 #undef dirty
822 #undef sc
823 #undef unevict
824 #undef mlock
825 #undef writeback
826 #undef lru
827 #undef swapbacked
828 #undef head
829 #undef tail
830 #undef compound
831 #undef slab
832 #undef reserved
833
834 /*
835 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
836 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
837 */
838 static void action_result(unsigned long pfn, enum mf_action_page_type type,
839 enum mf_result result)
840 {
841 trace_memory_failure_event(pfn, type, result);
842
843 pr_err("MCE %#lx: recovery action for %s: %s\n",
844 pfn, action_page_types[type], action_name[result]);
845 }
846
847 static int page_action(struct page_state *ps, struct page *p,
848 unsigned long pfn)
849 {
850 int result;
851 int count;
852
853 result = ps->action(p, pfn);
854
855 count = page_count(p) - 1;
856 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
857 count--;
858 if (count != 0) {
859 printk(KERN_ERR
860 "MCE %#lx: %s still referenced by %d users\n",
861 pfn, action_page_types[ps->type], count);
862 result = MF_FAILED;
863 }
864 action_result(pfn, ps->type, result);
865
866 /* Could do more checks here if page looks ok */
867 /*
868 * Could adjust zone counters here to correct for the missing page.
869 */
870
871 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
872 }
873
874 /**
875 * get_hwpoison_page() - Get refcount for memory error handling:
876 * @page: raw error page (hit by memory error)
877 *
878 * Return: return 0 if failed to grab the refcount, otherwise true (some
879 * non-zero value.)
880 */
881 int get_hwpoison_page(struct page *page)
882 {
883 struct page *head = compound_head(page);
884
885 if (!PageHuge(head) && PageTransHuge(head)) {
886 /*
887 * Non anonymous thp exists only in allocation/free time. We
888 * can't handle such a case correctly, so let's give it up.
889 * This should be better than triggering BUG_ON when kernel
890 * tries to touch the "partially handled" page.
891 */
892 if (!PageAnon(head)) {
893 pr_err("MCE: %#lx: non anonymous thp\n",
894 page_to_pfn(page));
895 return 0;
896 }
897 }
898
899 return get_page_unless_zero(head);
900 }
901 EXPORT_SYMBOL_GPL(get_hwpoison_page);
902
903 /*
904 * Do all that is necessary to remove user space mappings. Unmap
905 * the pages and send SIGBUS to the processes if the data was dirty.
906 */
907 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
908 int trapno, int flags, struct page **hpagep)
909 {
910 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
911 struct address_space *mapping;
912 LIST_HEAD(tokill);
913 int ret;
914 int kill = 1, forcekill;
915 struct page *hpage = *hpagep;
916
917 /*
918 * Here we are interested only in user-mapped pages, so skip any
919 * other types of pages.
920 */
921 if (PageReserved(p) || PageSlab(p))
922 return SWAP_SUCCESS;
923 if (!(PageLRU(hpage) || PageHuge(p)))
924 return SWAP_SUCCESS;
925
926 /*
927 * This check implies we don't kill processes if their pages
928 * are in the swap cache early. Those are always late kills.
929 */
930 if (!page_mapped(hpage))
931 return SWAP_SUCCESS;
932
933 if (PageKsm(p)) {
934 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
935 return SWAP_FAIL;
936 }
937
938 if (PageSwapCache(p)) {
939 printk(KERN_ERR
940 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
941 ttu |= TTU_IGNORE_HWPOISON;
942 }
943
944 /*
945 * Propagate the dirty bit from PTEs to struct page first, because we
946 * need this to decide if we should kill or just drop the page.
947 * XXX: the dirty test could be racy: set_page_dirty() may not always
948 * be called inside page lock (it's recommended but not enforced).
949 */
950 mapping = page_mapping(hpage);
951 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
952 mapping_cap_writeback_dirty(mapping)) {
953 if (page_mkclean(hpage)) {
954 SetPageDirty(hpage);
955 } else {
956 kill = 0;
957 ttu |= TTU_IGNORE_HWPOISON;
958 printk(KERN_INFO
959 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
960 pfn);
961 }
962 }
963
964 /*
965 * First collect all the processes that have the page
966 * mapped in dirty form. This has to be done before try_to_unmap,
967 * because ttu takes the rmap data structures down.
968 *
969 * Error handling: We ignore errors here because
970 * there's nothing that can be done.
971 */
972 if (kill)
973 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
974
975 ret = try_to_unmap(hpage, ttu);
976 if (ret != SWAP_SUCCESS)
977 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
978 pfn, page_mapcount(hpage));
979
980 /*
981 * Now that the dirty bit has been propagated to the
982 * struct page and all unmaps done we can decide if
983 * killing is needed or not. Only kill when the page
984 * was dirty or the process is not restartable,
985 * otherwise the tokill list is merely
986 * freed. When there was a problem unmapping earlier
987 * use a more force-full uncatchable kill to prevent
988 * any accesses to the poisoned memory.
989 */
990 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
991 kill_procs(&tokill, forcekill, trapno,
992 ret != SWAP_SUCCESS, p, pfn, flags);
993
994 return ret;
995 }
996
997 static void set_page_hwpoison_huge_page(struct page *hpage)
998 {
999 int i;
1000 int nr_pages = 1 << compound_order(hpage);
1001 for (i = 0; i < nr_pages; i++)
1002 SetPageHWPoison(hpage + i);
1003 }
1004
1005 static void clear_page_hwpoison_huge_page(struct page *hpage)
1006 {
1007 int i;
1008 int nr_pages = 1 << compound_order(hpage);
1009 for (i = 0; i < nr_pages; i++)
1010 ClearPageHWPoison(hpage + i);
1011 }
1012
1013 /**
1014 * memory_failure - Handle memory failure of a page.
1015 * @pfn: Page Number of the corrupted page
1016 * @trapno: Trap number reported in the signal to user space.
1017 * @flags: fine tune action taken
1018 *
1019 * This function is called by the low level machine check code
1020 * of an architecture when it detects hardware memory corruption
1021 * of a page. It tries its best to recover, which includes
1022 * dropping pages, killing processes etc.
1023 *
1024 * The function is primarily of use for corruptions that
1025 * happen outside the current execution context (e.g. when
1026 * detected by a background scrubber)
1027 *
1028 * Must run in process context (e.g. a work queue) with interrupts
1029 * enabled and no spinlocks hold.
1030 */
1031 int memory_failure(unsigned long pfn, int trapno, int flags)
1032 {
1033 struct page_state *ps;
1034 struct page *p;
1035 struct page *hpage;
1036 struct page *orig_head;
1037 int res;
1038 unsigned int nr_pages;
1039 unsigned long page_flags;
1040
1041 if (!sysctl_memory_failure_recovery)
1042 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1043
1044 if (!pfn_valid(pfn)) {
1045 printk(KERN_ERR
1046 "MCE %#lx: memory outside kernel control\n",
1047 pfn);
1048 return -ENXIO;
1049 }
1050
1051 p = pfn_to_page(pfn);
1052 orig_head = hpage = compound_head(p);
1053 if (TestSetPageHWPoison(p)) {
1054 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1055 return 0;
1056 }
1057
1058 /*
1059 * Currently errors on hugetlbfs pages are measured in hugepage units,
1060 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1061 * transparent hugepages, they are supposed to be split and error
1062 * measurement is done in normal page units. So nr_pages should be one
1063 * in this case.
1064 */
1065 if (PageHuge(p))
1066 nr_pages = 1 << compound_order(hpage);
1067 else /* normal page or thp */
1068 nr_pages = 1;
1069 num_poisoned_pages_add(nr_pages);
1070
1071 /*
1072 * We need/can do nothing about count=0 pages.
1073 * 1) it's a free page, and therefore in safe hand:
1074 * prep_new_page() will be the gate keeper.
1075 * 2) it's a free hugepage, which is also safe:
1076 * an affected hugepage will be dequeued from hugepage freelist,
1077 * so there's no concern about reusing it ever after.
1078 * 3) it's part of a non-compound high order page.
1079 * Implies some kernel user: cannot stop them from
1080 * R/W the page; let's pray that the page has been
1081 * used and will be freed some time later.
1082 * In fact it's dangerous to directly bump up page count from 0,
1083 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1084 */
1085 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1086 if (is_free_buddy_page(p)) {
1087 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1088 return 0;
1089 } else if (PageHuge(hpage)) {
1090 /*
1091 * Check "filter hit" and "race with other subpage."
1092 */
1093 lock_page(hpage);
1094 if (PageHWPoison(hpage)) {
1095 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1096 || (p != hpage && TestSetPageHWPoison(hpage))) {
1097 num_poisoned_pages_sub(nr_pages);
1098 unlock_page(hpage);
1099 return 0;
1100 }
1101 }
1102 set_page_hwpoison_huge_page(hpage);
1103 res = dequeue_hwpoisoned_huge_page(hpage);
1104 action_result(pfn, MF_MSG_FREE_HUGE,
1105 res ? MF_IGNORED : MF_DELAYED);
1106 unlock_page(hpage);
1107 return res;
1108 } else {
1109 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1110 return -EBUSY;
1111 }
1112 }
1113
1114 if (!PageHuge(p) && PageTransHuge(hpage)) {
1115 lock_page(hpage);
1116 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1117 unlock_page(hpage);
1118 if (!PageAnon(hpage))
1119 pr_err("MCE: %#lx: non anonymous thp\n", pfn);
1120 else
1121 pr_err("MCE: %#lx: thp split failed\n", pfn);
1122 if (TestClearPageHWPoison(p))
1123 num_poisoned_pages_sub(nr_pages);
1124 put_hwpoison_page(p);
1125 return -EBUSY;
1126 }
1127 unlock_page(hpage);
1128 get_hwpoison_page(p);
1129 put_hwpoison_page(hpage);
1130 VM_BUG_ON_PAGE(!page_count(p), p);
1131 hpage = compound_head(p);
1132 }
1133
1134 /*
1135 * We ignore non-LRU pages for good reasons.
1136 * - PG_locked is only well defined for LRU pages and a few others
1137 * - to avoid races with __SetPageLocked()
1138 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1139 * The check (unnecessarily) ignores LRU pages being isolated and
1140 * walked by the page reclaim code, however that's not a big loss.
1141 */
1142 if (!PageHuge(p)) {
1143 if (!PageLRU(p))
1144 shake_page(p, 0);
1145 if (!PageLRU(p)) {
1146 /*
1147 * shake_page could have turned it free.
1148 */
1149 if (is_free_buddy_page(p)) {
1150 if (flags & MF_COUNT_INCREASED)
1151 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1152 else
1153 action_result(pfn, MF_MSG_BUDDY_2ND,
1154 MF_DELAYED);
1155 return 0;
1156 }
1157 }
1158 }
1159
1160 lock_page(hpage);
1161
1162 /*
1163 * The page could have changed compound pages during the locking.
1164 * If this happens just bail out.
1165 */
1166 if (PageCompound(p) && compound_head(p) != orig_head) {
1167 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1168 res = -EBUSY;
1169 goto out;
1170 }
1171
1172 /*
1173 * We use page flags to determine what action should be taken, but
1174 * the flags can be modified by the error containment action. One
1175 * example is an mlocked page, where PG_mlocked is cleared by
1176 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1177 * correctly, we save a copy of the page flags at this time.
1178 */
1179 page_flags = p->flags;
1180
1181 /*
1182 * unpoison always clear PG_hwpoison inside page lock
1183 */
1184 if (!PageHWPoison(p)) {
1185 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1186 num_poisoned_pages_sub(nr_pages);
1187 unlock_page(hpage);
1188 put_hwpoison_page(hpage);
1189 return 0;
1190 }
1191 if (hwpoison_filter(p)) {
1192 if (TestClearPageHWPoison(p))
1193 num_poisoned_pages_sub(nr_pages);
1194 unlock_page(hpage);
1195 put_hwpoison_page(hpage);
1196 return 0;
1197 }
1198
1199 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1200 goto identify_page_state;
1201
1202 /*
1203 * For error on the tail page, we should set PG_hwpoison
1204 * on the head page to show that the hugepage is hwpoisoned
1205 */
1206 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1207 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1208 unlock_page(hpage);
1209 put_hwpoison_page(hpage);
1210 return 0;
1211 }
1212 /*
1213 * Set PG_hwpoison on all pages in an error hugepage,
1214 * because containment is done in hugepage unit for now.
1215 * Since we have done TestSetPageHWPoison() for the head page with
1216 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1217 */
1218 if (PageHuge(p))
1219 set_page_hwpoison_huge_page(hpage);
1220
1221 /*
1222 * It's very difficult to mess with pages currently under IO
1223 * and in many cases impossible, so we just avoid it here.
1224 */
1225 wait_on_page_writeback(p);
1226
1227 /*
1228 * Now take care of user space mappings.
1229 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1230 *
1231 * When the raw error page is thp tail page, hpage points to the raw
1232 * page after thp split.
1233 */
1234 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1235 != SWAP_SUCCESS) {
1236 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1237 res = -EBUSY;
1238 goto out;
1239 }
1240
1241 /*
1242 * Torn down by someone else?
1243 */
1244 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1245 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1246 res = -EBUSY;
1247 goto out;
1248 }
1249
1250 identify_page_state:
1251 res = -EBUSY;
1252 /*
1253 * The first check uses the current page flags which may not have any
1254 * relevant information. The second check with the saved page flagss is
1255 * carried out only if the first check can't determine the page status.
1256 */
1257 for (ps = error_states;; ps++)
1258 if ((p->flags & ps->mask) == ps->res)
1259 break;
1260
1261 page_flags |= (p->flags & (1UL << PG_dirty));
1262
1263 if (!ps->mask)
1264 for (ps = error_states;; ps++)
1265 if ((page_flags & ps->mask) == ps->res)
1266 break;
1267 res = page_action(ps, p, pfn);
1268 out:
1269 unlock_page(hpage);
1270 return res;
1271 }
1272 EXPORT_SYMBOL_GPL(memory_failure);
1273
1274 #define MEMORY_FAILURE_FIFO_ORDER 4
1275 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1276
1277 struct memory_failure_entry {
1278 unsigned long pfn;
1279 int trapno;
1280 int flags;
1281 };
1282
1283 struct memory_failure_cpu {
1284 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1285 MEMORY_FAILURE_FIFO_SIZE);
1286 spinlock_t lock;
1287 struct work_struct work;
1288 };
1289
1290 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1291
1292 /**
1293 * memory_failure_queue - Schedule handling memory failure of a page.
1294 * @pfn: Page Number of the corrupted page
1295 * @trapno: Trap number reported in the signal to user space.
1296 * @flags: Flags for memory failure handling
1297 *
1298 * This function is called by the low level hardware error handler
1299 * when it detects hardware memory corruption of a page. It schedules
1300 * the recovering of error page, including dropping pages, killing
1301 * processes etc.
1302 *
1303 * The function is primarily of use for corruptions that
1304 * happen outside the current execution context (e.g. when
1305 * detected by a background scrubber)
1306 *
1307 * Can run in IRQ context.
1308 */
1309 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1310 {
1311 struct memory_failure_cpu *mf_cpu;
1312 unsigned long proc_flags;
1313 struct memory_failure_entry entry = {
1314 .pfn = pfn,
1315 .trapno = trapno,
1316 .flags = flags,
1317 };
1318
1319 mf_cpu = &get_cpu_var(memory_failure_cpu);
1320 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1321 if (kfifo_put(&mf_cpu->fifo, entry))
1322 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1323 else
1324 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1325 pfn);
1326 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1327 put_cpu_var(memory_failure_cpu);
1328 }
1329 EXPORT_SYMBOL_GPL(memory_failure_queue);
1330
1331 static void memory_failure_work_func(struct work_struct *work)
1332 {
1333 struct memory_failure_cpu *mf_cpu;
1334 struct memory_failure_entry entry = { 0, };
1335 unsigned long proc_flags;
1336 int gotten;
1337
1338 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1339 for (;;) {
1340 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1341 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1342 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1343 if (!gotten)
1344 break;
1345 if (entry.flags & MF_SOFT_OFFLINE)
1346 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1347 else
1348 memory_failure(entry.pfn, entry.trapno, entry.flags);
1349 }
1350 }
1351
1352 static int __init memory_failure_init(void)
1353 {
1354 struct memory_failure_cpu *mf_cpu;
1355 int cpu;
1356
1357 for_each_possible_cpu(cpu) {
1358 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1359 spin_lock_init(&mf_cpu->lock);
1360 INIT_KFIFO(mf_cpu->fifo);
1361 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1362 }
1363
1364 return 0;
1365 }
1366 core_initcall(memory_failure_init);
1367
1368 #define unpoison_pr_info(fmt, pfn, rs) \
1369 ({ \
1370 if (__ratelimit(rs)) \
1371 pr_info(fmt, pfn); \
1372 })
1373
1374 /**
1375 * unpoison_memory - Unpoison a previously poisoned page
1376 * @pfn: Page number of the to be unpoisoned page
1377 *
1378 * Software-unpoison a page that has been poisoned by
1379 * memory_failure() earlier.
1380 *
1381 * This is only done on the software-level, so it only works
1382 * for linux injected failures, not real hardware failures
1383 *
1384 * Returns 0 for success, otherwise -errno.
1385 */
1386 int unpoison_memory(unsigned long pfn)
1387 {
1388 struct page *page;
1389 struct page *p;
1390 int freeit = 0;
1391 unsigned int nr_pages;
1392 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1393 DEFAULT_RATELIMIT_BURST);
1394
1395 if (!pfn_valid(pfn))
1396 return -ENXIO;
1397
1398 p = pfn_to_page(pfn);
1399 page = compound_head(p);
1400
1401 if (!PageHWPoison(p)) {
1402 unpoison_pr_info("MCE: Page was already unpoisoned %#lx\n",
1403 pfn, &unpoison_rs);
1404 return 0;
1405 }
1406
1407 if (page_count(page) > 1) {
1408 unpoison_pr_info("MCE: Someone grabs the hwpoison page %#lx\n",
1409 pfn, &unpoison_rs);
1410 return 0;
1411 }
1412
1413 if (page_mapped(page)) {
1414 unpoison_pr_info("MCE: Someone maps the hwpoison page %#lx\n",
1415 pfn, &unpoison_rs);
1416 return 0;
1417 }
1418
1419 if (page_mapping(page)) {
1420 unpoison_pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n",
1421 pfn, &unpoison_rs);
1422 return 0;
1423 }
1424
1425 /*
1426 * unpoison_memory() can encounter thp only when the thp is being
1427 * worked by memory_failure() and the page lock is not held yet.
1428 * In such case, we yield to memory_failure() and make unpoison fail.
1429 */
1430 if (!PageHuge(page) && PageTransHuge(page)) {
1431 unpoison_pr_info("MCE: Memory failure is now running on %#lx\n",
1432 pfn, &unpoison_rs);
1433 return 0;
1434 }
1435
1436 nr_pages = 1 << compound_order(page);
1437
1438 if (!get_hwpoison_page(p)) {
1439 /*
1440 * Since HWPoisoned hugepage should have non-zero refcount,
1441 * race between memory failure and unpoison seems to happen.
1442 * In such case unpoison fails and memory failure runs
1443 * to the end.
1444 */
1445 if (PageHuge(page)) {
1446 unpoison_pr_info("MCE: Memory failure is now running on free hugepage %#lx\n",
1447 pfn, &unpoison_rs);
1448 return 0;
1449 }
1450 if (TestClearPageHWPoison(p))
1451 num_poisoned_pages_dec();
1452 unpoison_pr_info("MCE: Software-unpoisoned free page %#lx\n",
1453 pfn, &unpoison_rs);
1454 return 0;
1455 }
1456
1457 lock_page(page);
1458 /*
1459 * This test is racy because PG_hwpoison is set outside of page lock.
1460 * That's acceptable because that won't trigger kernel panic. Instead,
1461 * the PG_hwpoison page will be caught and isolated on the entrance to
1462 * the free buddy page pool.
1463 */
1464 if (TestClearPageHWPoison(page)) {
1465 unpoison_pr_info("MCE: Software-unpoisoned page %#lx\n",
1466 pfn, &unpoison_rs);
1467 num_poisoned_pages_sub(nr_pages);
1468 freeit = 1;
1469 if (PageHuge(page))
1470 clear_page_hwpoison_huge_page(page);
1471 }
1472 unlock_page(page);
1473
1474 put_hwpoison_page(page);
1475 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1476 put_hwpoison_page(page);
1477
1478 return 0;
1479 }
1480 EXPORT_SYMBOL(unpoison_memory);
1481
1482 static struct page *new_page(struct page *p, unsigned long private, int **x)
1483 {
1484 int nid = page_to_nid(p);
1485 if (PageHuge(p))
1486 return alloc_huge_page_node(page_hstate(compound_head(p)),
1487 nid);
1488 else
1489 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1490 }
1491
1492 /*
1493 * Safely get reference count of an arbitrary page.
1494 * Returns 0 for a free page, -EIO for a zero refcount page
1495 * that is not free, and 1 for any other page type.
1496 * For 1 the page is returned with increased page count, otherwise not.
1497 */
1498 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1499 {
1500 int ret;
1501
1502 if (flags & MF_COUNT_INCREASED)
1503 return 1;
1504
1505 /*
1506 * When the target page is a free hugepage, just remove it
1507 * from free hugepage list.
1508 */
1509 if (!get_hwpoison_page(p)) {
1510 if (PageHuge(p)) {
1511 pr_info("%s: %#lx free huge page\n", __func__, pfn);
1512 ret = 0;
1513 } else if (is_free_buddy_page(p)) {
1514 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1515 ret = 0;
1516 } else {
1517 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1518 __func__, pfn, p->flags);
1519 ret = -EIO;
1520 }
1521 } else {
1522 /* Not a free page */
1523 ret = 1;
1524 }
1525 return ret;
1526 }
1527
1528 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1529 {
1530 int ret = __get_any_page(page, pfn, flags);
1531
1532 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1533 /*
1534 * Try to free it.
1535 */
1536 put_hwpoison_page(page);
1537 shake_page(page, 1);
1538
1539 /*
1540 * Did it turn free?
1541 */
1542 ret = __get_any_page(page, pfn, 0);
1543 if (ret == 1 && !PageLRU(page)) {
1544 /* Drop page reference which is from __get_any_page() */
1545 put_hwpoison_page(page);
1546 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1547 pfn, page->flags);
1548 return -EIO;
1549 }
1550 }
1551 return ret;
1552 }
1553
1554 static int soft_offline_huge_page(struct page *page, int flags)
1555 {
1556 int ret;
1557 unsigned long pfn = page_to_pfn(page);
1558 struct page *hpage = compound_head(page);
1559 LIST_HEAD(pagelist);
1560
1561 /*
1562 * This double-check of PageHWPoison is to avoid the race with
1563 * memory_failure(). See also comment in __soft_offline_page().
1564 */
1565 lock_page(hpage);
1566 if (PageHWPoison(hpage)) {
1567 unlock_page(hpage);
1568 put_hwpoison_page(hpage);
1569 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1570 return -EBUSY;
1571 }
1572 unlock_page(hpage);
1573
1574 ret = isolate_huge_page(hpage, &pagelist);
1575 /*
1576 * get_any_page() and isolate_huge_page() takes a refcount each,
1577 * so need to drop one here.
1578 */
1579 put_hwpoison_page(hpage);
1580 if (!ret) {
1581 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1582 return -EBUSY;
1583 }
1584
1585 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1586 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1587 if (ret) {
1588 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1589 pfn, ret, page->flags);
1590 /*
1591 * We know that soft_offline_huge_page() tries to migrate
1592 * only one hugepage pointed to by hpage, so we need not
1593 * run through the pagelist here.
1594 */
1595 putback_active_hugepage(hpage);
1596 if (ret > 0)
1597 ret = -EIO;
1598 } else {
1599 /* overcommit hugetlb page will be freed to buddy */
1600 if (PageHuge(page)) {
1601 set_page_hwpoison_huge_page(hpage);
1602 dequeue_hwpoisoned_huge_page(hpage);
1603 num_poisoned_pages_add(1 << compound_order(hpage));
1604 } else {
1605 SetPageHWPoison(page);
1606 num_poisoned_pages_inc();
1607 }
1608 }
1609 return ret;
1610 }
1611
1612 static int __soft_offline_page(struct page *page, int flags)
1613 {
1614 int ret;
1615 unsigned long pfn = page_to_pfn(page);
1616
1617 /*
1618 * Check PageHWPoison again inside page lock because PageHWPoison
1619 * is set by memory_failure() outside page lock. Note that
1620 * memory_failure() also double-checks PageHWPoison inside page lock,
1621 * so there's no race between soft_offline_page() and memory_failure().
1622 */
1623 lock_page(page);
1624 wait_on_page_writeback(page);
1625 if (PageHWPoison(page)) {
1626 unlock_page(page);
1627 put_hwpoison_page(page);
1628 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1629 return -EBUSY;
1630 }
1631 /*
1632 * Try to invalidate first. This should work for
1633 * non dirty unmapped page cache pages.
1634 */
1635 ret = invalidate_inode_page(page);
1636 unlock_page(page);
1637 /*
1638 * RED-PEN would be better to keep it isolated here, but we
1639 * would need to fix isolation locking first.
1640 */
1641 if (ret == 1) {
1642 put_hwpoison_page(page);
1643 pr_info("soft_offline: %#lx: invalidated\n", pfn);
1644 SetPageHWPoison(page);
1645 num_poisoned_pages_inc();
1646 return 0;
1647 }
1648
1649 /*
1650 * Simple invalidation didn't work.
1651 * Try to migrate to a new page instead. migrate.c
1652 * handles a large number of cases for us.
1653 */
1654 ret = isolate_lru_page(page);
1655 /*
1656 * Drop page reference which is came from get_any_page()
1657 * successful isolate_lru_page() already took another one.
1658 */
1659 put_hwpoison_page(page);
1660 if (!ret) {
1661 LIST_HEAD(pagelist);
1662 inc_zone_page_state(page, NR_ISOLATED_ANON +
1663 page_is_file_cache(page));
1664 list_add(&page->lru, &pagelist);
1665 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1666 MIGRATE_SYNC, MR_MEMORY_FAILURE);
1667 if (ret) {
1668 if (!list_empty(&pagelist)) {
1669 list_del(&page->lru);
1670 dec_zone_page_state(page, NR_ISOLATED_ANON +
1671 page_is_file_cache(page));
1672 putback_lru_page(page);
1673 }
1674
1675 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1676 pfn, ret, page->flags);
1677 if (ret > 0)
1678 ret = -EIO;
1679 }
1680 } else {
1681 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1682 pfn, ret, page_count(page), page->flags);
1683 }
1684 return ret;
1685 }
1686
1687 static int soft_offline_in_use_page(struct page *page, int flags)
1688 {
1689 int ret;
1690 struct page *hpage = compound_head(page);
1691
1692 if (!PageHuge(page) && PageTransHuge(hpage)) {
1693 lock_page(hpage);
1694 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1695 unlock_page(hpage);
1696 if (!PageAnon(hpage))
1697 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1698 else
1699 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1700 put_hwpoison_page(hpage);
1701 return -EBUSY;
1702 }
1703 unlock_page(hpage);
1704 get_hwpoison_page(page);
1705 put_hwpoison_page(hpage);
1706 }
1707
1708 if (PageHuge(page))
1709 ret = soft_offline_huge_page(page, flags);
1710 else
1711 ret = __soft_offline_page(page, flags);
1712
1713 return ret;
1714 }
1715
1716 static void soft_offline_free_page(struct page *page)
1717 {
1718 if (PageHuge(page)) {
1719 struct page *hpage = compound_head(page);
1720
1721 set_page_hwpoison_huge_page(hpage);
1722 if (!dequeue_hwpoisoned_huge_page(hpage))
1723 num_poisoned_pages_add(1 << compound_order(hpage));
1724 } else {
1725 if (!TestSetPageHWPoison(page))
1726 num_poisoned_pages_inc();
1727 }
1728 }
1729
1730 /**
1731 * soft_offline_page - Soft offline a page.
1732 * @page: page to offline
1733 * @flags: flags. Same as memory_failure().
1734 *
1735 * Returns 0 on success, otherwise negated errno.
1736 *
1737 * Soft offline a page, by migration or invalidation,
1738 * without killing anything. This is for the case when
1739 * a page is not corrupted yet (so it's still valid to access),
1740 * but has had a number of corrected errors and is better taken
1741 * out.
1742 *
1743 * The actual policy on when to do that is maintained by
1744 * user space.
1745 *
1746 * This should never impact any application or cause data loss,
1747 * however it might take some time.
1748 *
1749 * This is not a 100% solution for all memory, but tries to be
1750 * ``good enough'' for the majority of memory.
1751 */
1752 int soft_offline_page(struct page *page, int flags)
1753 {
1754 int ret;
1755 unsigned long pfn = page_to_pfn(page);
1756
1757 if (PageHWPoison(page)) {
1758 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1759 if (flags & MF_COUNT_INCREASED)
1760 put_hwpoison_page(page);
1761 return -EBUSY;
1762 }
1763
1764 get_online_mems();
1765 ret = get_any_page(page, pfn, flags);
1766 put_online_mems();
1767
1768 if (ret > 0)
1769 ret = soft_offline_in_use_page(page, flags);
1770 else if (ret == 0)
1771 soft_offline_free_page(page);
1772
1773 return ret;
1774 }
This page took 0.066705 seconds and 5 git commands to generate.