lib: add thread-safe error reporting API
[babeltrace.git] / CONTRIBUTING.adoc
1 // Render with Asciidoctor
2
3 = Babeltrace contributor's guide
4 Jérémie Galarneau, Philippe Proulx
5 v0.2, 19 June 2019
6 :toc:
7 :toclevels: 5
8
9
10 This is a partial contributor's guide for the
11 http://diamon.org/babeltrace[Babeltrace] project. If you have any
12 questions that are not answered by this guide, please post them on
13 https://lists.lttng.org/cgi-bin/mailman/listinfo/lttng-dev[Babeltrace's
14 mailing list].
15
16
17 == Babeltrace library
18
19 === Object reference counting and lifetime
20
21 This section covers the rationale behind the design of Babeltrace's
22 object lifetime management. This applies to the Babeltrace library, as
23 well as to the CTF writer library (although the public reference
24 counting functions are not named the same way).
25
26 Starting from Babeltrace 2.0, all publicly exposed objects inherit a
27 common base: `bt_object`. This base provides a number of facilities to
28 all objects, chief amongst which are lifetime management functions.
29
30 The lifetime of some public objects is managed by reference counting. In
31 this case, the API offers the `+bt_*_get_ref()+` and `+bt_*_put_ref()+`
32 functions which respectively increment and decrement an object's
33 reference count.
34
35 As far as lifetime management in concerned, Babeltrace makes a clear
36 distinction between regular objects, which have a single parent, and
37 root objects, which don't.
38
39
40 ==== The problem
41
42 Let us consider a problematic case to illustrate the need for this
43 distinction.
44
45 A user of the Babeltrace library creates a trace class, which _has_ a
46 stream class (the class of a stream) and that stream class, in turn,
47 _has_ an event class (the class of an event).
48
49 Nothing prevents this user from releasing his reference on any one of
50 these objects in any order. However, all objects in the
51 __trace--stream class--event class__ hierarchy can be retrieved
52 from any other.
53
54 For instance, the user could discard his reference on both the event
55 class and the stream class, only keeping a reference on the trace class.
56 From this trace class reference, stream classes can be enumerated,
57 providing the user with a new reference to the stream class he discarded
58 earlier. Event classes can also be enumerated from stream classes,
59 providing the user with references to the individual event classes.
60
61 Conversely, the user could also hold a reference to an event class and
62 retrieve its parent stream class. The trace class, in turn, can then be
63 retrieved from the stream class.
64
65 This example illustrates what could be interpreted as a circular
66 reference dependency existing between these objects. Of course, if the
67 objects in such a scenario were to hold references to each other (in
68 both directions), we would be in presence of a circular ownership
69 resulting in a leak of both objects as their reference counts would
70 never reach zero.
71
72 Nonetheless, the API must offer the guarantee that holding a node to any
73 node of the graph keeps all other reachable nodes alive.
74
75
76 ==== The solution
77
78 The scheme employed in Babeltrace to break this cycle consists in the
79 "children" holding _reverse component references_ to their parents. That
80 is, in the context of the trace IR, that event classes hold a reference
81 to their parent stream class and stream classes hold a reference to
82 their parent trace class.
83
84 On the other hand, parents hold _claiming aggregation references_ to
85 their children. A claiming aggregation reference means that the object
86 being referenced should not be deleted as long as the reference still
87 exists. In this respect, it can be said that parents truly hold the
88 ownership of their children, since they control their lifetime.
89 Conversely, the reference counting mechanism is leveraged by children to
90 notify parents that no other child indirectly exposes the parent.
91
92 When a parented object's reference count reaches zero, it invokes
93 `+bt_*_put_ref()+` on its parent and does _not_ free itself. However,
94 from that point, the object depends on its parent to signal the moment
95 when it can be safely reclaimed.
96
97 The invocation of `+bt_*_put_ref()+` by the last children holding a
98 reference to its parent might trigger a cascade of `+bt_*_put_ref()+`
99 from child to parent. Eventually, a **root** object is reached. At that
100 point, if this orphaned object's reference count reaches zero, the
101 object invokes the destructor method defined by everyone of its children
102 as part of their base `struct bt_object`. The key point here is that the
103 cascade of destructor will necessarily originate from the root and
104 propagate in preorder to the children. These children will propagate the
105 destruction to their own children before reclaiming their own memory.
106 This ensures that a node's pointer to its parent is _always_ valid since
107 the parent has the responsibility of tearing-down their children before
108 cleaning themselves up.
109
110 Assuming a reference to an object is _acquired_ by calling
111 `+bt_*_get_ref()+` while its reference count is zero, the object
112 acquires, in turn, a reference on its parent using `+bt_*_get_ref()+`.
113 At that point, the child can be thought of as having converted its weak
114 reference to its parent into a regular reference. That is why this
115 reference is referred to as a _claiming_ aggregation reference.
116
117
118 ==== Caveats
119
120 This scheme imposes a number of strict rules defining the relation
121 between objects:
122
123 * Objects may only have one parent.
124 * Objects, beside the root, are only retrievable from their direct
125 parent or children.
126
127
128 ==== Example
129
130 The initial situation is rather simple: **User{nbsp}A** is holding a
131 reference to a trace class, **TC1**. As per the rules previously
132 enounced, stream classes **SC1** and **SC2** don't hold a reference to
133 **TC1** since their own reference counts are zero. The same holds true
134 for **EC1**, **EC2** and **EC3** with respect to **SC1** and **SC2**.
135
136 image::doc/contributing-images/bt-ref01.png[]
137
138 In this second step, we can see that **User{nbsp}A** has acquired a
139 reference on **SC2** through the trace class, **TC1**.
140
141 The stream class's reference count transitions from zero to one,
142 triggering the acquisition of a strong reference on **TC1** from
143 **SC2**.
144
145 Hence, at this point, the trace class's ownership is shared by
146 **User{nbsp}A** and **SC2**.
147
148 image::doc/contributing-images/bt-ref02.png[]
149
150 Next, **User{nbsp}A** acquires a reference on the **EC3** event class
151 through its parent stream class, **SC2**. Again, the transition of an
152 object's reference count from 0 to 1 triggers the acquisition of a
153 reference on its parent.
154
155 Note that SC2's reference count was incremented to 2. The trace class's
156 reference count remains unchanged.
157
158 image::doc/contributing-images/bt-ref03.png[]
159
160 **User{nbsp}A** decides to drop its reference on **SC2**. **SC2**'s
161 reference count returns back to 1, everything else remaining unchanged.
162
163 image::doc/contributing-images/bt-ref04.png[]
164
165 **User{nbsp}A** can then decide to drop its reference on the trace
166 class. This results in a reversal of the initial situation:
167 **User{nbsp}A** now owns an event, **EC3**, which is keeping everything
168 else alive and reachable.
169
170 image::doc/contributing-images/bt-ref05.png[]
171
172 If another object, **User{nbsp}B**, enters the picture and acquires a
173 reference on the **SC1** stream class, we see that **SC1**'s reference
174 count transitioned from 0 to 1, triggering the acquisition of a
175 reference on **TC1**.
176
177 image::doc/contributing-images/bt-ref06.png[]
178
179 **User{nbsp}B** hands off a reference to **EC1**, acquired through
180 **SC1**, to another object, **User{nbsp}C**. The acquisition of a
181 reference on **EC1**, which transitions from 0 to 1, triggers the
182 acquisition of a reference on its parent, **SC1**.
183
184 image::doc/contributing-images/bt-ref07.png[]
185
186 At some point, **User{nbsp}A** releases its reference on **EC3**. Since
187 **EC3**'s reference count transitions to zero, it releases its reference
188 on **SC2**. **SC2**'s reference count, in turn, reaches zero and it
189 releases its reference to **TC1**.
190
191 **TC1**'s reference count is now 1 and no further action is taken.
192
193 image::doc/contributing-images/bt-ref08.png[]
194
195 **User{nbsp}B** releases its reference on **SC1**. **User{nbsp}C**
196 becomes the sole owner of the whole hierarchy through his ownership of
197 **EC1**.
198
199 image::doc/contributing-images/bt-ref09.png[]
200
201 Finally, **User{nbsp}C** releases his ownership of **EC1**, triggering
202 the release of the whole hierarchy. Let's walk through the reclamation
203 of the whole graph.
204
205 Mirroring what happened when **User{nbsp}A** released its last reference
206 on **EC3**, the release of **EC1** by **User{nbsp}C** causes its
207 reference count to fall to zero.
208
209 This transition to zero causes **EC1** to release its reference on
210 **SC1**. **SC1**'s reference count reaching zero causes it to release
211 its reference on **TC1**.
212
213 image::doc/contributing-images/bt-ref10.png[]
214
215 Since the reference count of **TC1**, a root object, has reached zero,
216 it invokes the destructor method on its children. This method is
217 recursive and causes the stream classes to call the destructor method on
218 their event classes.
219
220 The event classes are reached and, having no children of their own, are
221 reclaimed.
222
223 image::doc/contributing-images/bt-ref11.png[]
224
225 The stream classes having destroyed their children, are then reclaimed
226 by the trace class.
227
228 image::doc/contributing-images/bt-ref12.png[]
229
230 Finally, the stream classes having been reclaimed, **TC1** is reclaimed.
231
232 image::doc/contributing-images/bt-ref13.png[]
233
234
235 == Logging
236
237 Logging is a great instrument for a developer to be able to collect
238 information about a running software.
239
240 Babeltrace is a complex software with many layers. When a Babeltrace
241 graph fails to run, what caused the failure? It could be caused by any
242 component, any message iterator, and any deeply nested validation of a
243 CTF IR object (within the `ctf` plugin), for example. With the
244 appropriate logging statements manually placed in the source code, we
245 can find the cause of a bug faster.
246
247 While <<choose-a-log-level,care must be taken>> when placing _DEBUG_ to
248 _FATAL_ logging statements, you should liberally instrument your
249 Babeltrace module with _TRACE_ logging statements to help future you
250 and other developers understand what's happening at run time.
251
252
253 === Logging API
254
255 The Babeltrace logging API is internal: it is not exposed to the users
256 of the library; only to their developers. The only thing that a library
257 user can control is the current log level of the library itself with
258 `bt_logging_set_global_level()` and the initial library's log level with
259 the `LIBBABELTRACE2_INIT_LOG_LEVEL` environment variable.
260
261 This API is based on https://github.com/wonder-mice/zf_log[zf_log], a
262 lightweight, yet featureful, MIT-licensed core logging library for C and
263 pass:[C++]. The zf_log source files were modified to have the `BT_` and
264 `bt_` prefixes, and other small changes, like color support and using
265 the project's `BT_DEBUG_MODE` definition instead of the standard
266 `NDEBUG`.
267
268 The logging functions are implemented in the logging convenience
269 library (`src/logging` directory).
270
271
272 [[logging-headers]]
273 ==== Headers
274
275 The logging API headers are:
276
277 `<babeltrace2/logging.h>`::
278 Public header which a library user can use to set and get
279 libbabeltrace2's current log level.
280
281 `"logging/log.h"`::
282 Internal, generic logging API which you can use in any Babeltrace
283 module. This is the translation of `zf_log.h`.
284 +
285 This header offers the <<gen-logging-statements,generic logging
286 statement macros>>.
287
288 `"lib/logging.h"`::
289 Specific internal header to use within the library.
290 +
291 This header defines `BT_LOG_OUTPUT_LEVEL` to a custom, library-wide
292 hidden symbol which is the library's current log level before including
293 `"logging/log.h"`.
294 +
295 This header offers the <<lib-logging-statements,library-specific logging
296 statement macros>>.
297
298 `"plugins/comp-logging.h"`::
299 Specific internal header to use within a component class.
300 +
301 This header offers the <<comp-logging-statements,component-specific
302 logging statement macros>>.
303
304
305 [[log-levels]]
306 ==== Log levels
307
308 The internal logging API offers the following log levels, in ascending
309 order of severity:
310
311 [options="header,autowidth",cols="4"]
312 |===
313 |Log level name
314 |Log level short name
315 |Internal API enumerator
316 |Public API enumerator
317
318 |_TRACE_
319 |`T`
320 |`BT_LOG_TRACE`
321 |`BT_LOGGING_LEVEL_TRACE`
322
323 |_DEBUG_
324 |`D`
325 |`BT_LOG_DEBUG`
326 |`BT_LOGGING_LEVEL_DEBUG`
327
328 |_INFO_
329 |`I`
330 |`BT_LOG_INFO`
331 |`BT_LOGGING_LEVEL_INFO`
332
333 |_WARN_
334 |`W`
335 |`BT_LOG_WARN`
336 |`BT_LOGGING_LEVEL_WARN`
337
338 |_ERROR_
339 |`E`
340 |`BT_LOG_ERROR`
341 |`BT_LOGGING_LEVEL_ERROR`
342
343 |_FATAL_
344 |`F`
345 |`BT_LOG_FATAL`
346 |`BT_LOGGING_LEVEL_FATAL`
347
348 |_NONE_
349 |`N`
350 |`BT_LOG_NONE`
351 |`BT_LOGGING_LEVEL_NONE`
352 |===
353
354 The short name is accepted by the log level environment variables and by
355 the CLI's `--log-level` options.
356
357 See <<choose-a-log-level,how to decide which one to use>> below.
358
359 There are two important log level expressions:
360
361 [[build-time-log-level]]Build-time, minimal log level::
362 The minimal log level, or build-time log level, is set at build time
363 and determines the minimal log level of the logging statements which
364 can be executed. This applies to all the modules (CLI, library,
365 plugins, bindings, etc.).
366 +
367 All the logging statements with a level below this level are **not built
368 at all**. All the logging statements with a level equal to or greater
369 than this level _can_ be executed, depending on the
370 <<run-time-log-level,run-time log level>>.
371 +
372 You can set this level at configuration time with the
373 `BABELTRACE_MINIMAL_LOG_LEVEL` environment variable, for example:
374 +
375 --
376 ----
377 $ BABELTRACE_MINIMAL_LOG_LEVEL=WARN ./configure
378 ----
379 --
380 +
381 The default build-time log level is `DEBUG`. For optimal performance,
382 set it to `INFO`, which effectively disables all fast path logging in
383 all the Babeltrace modules. You can't set it to `WARN`, `ERROR`,
384 `FATAL`, or `NONE` because the impact on performance is minuscule
385 starting from the _INFO_ log level anyway and we want any Babeltrace
386 build to always be able to print _INFO_-level logs.
387 +
388 The library's public API provides `bt_logging_get_minimal_level()` to
389 get the configured minimal log level.
390
391 [[run-time-log-level]]Run-time, dynamic log level::
392 The dynamic log level is set at run time and determines the current,
393 _active_ log level. All the logging statements with a level below
394 this level are not executed, **but they still evaluate the
395 condition**. All the logging statements with a level equal to or
396 greater than this level are executed, provided that their level is
397 also <<build-time-log-level,enabled at build time>>.
398 +
399 `zf_log` has a concept of a global run-time log level which uses the
400 `_bt_log_global_output_lvl` symbol. In practice, we never use this
401 symbol, and always make sure that `BT_LOG_OUTPUT_LEVEL` is defined to a
402 module-wise expression before including `"logging/log.h"`.
403 +
404 In the library, `"lib/logging.h"` defines its own
405 `BT_LOG_OUTPUT_LEVEL` to the library's log level symbol before it
406 includes `"logging/log.h"` itself.
407 +
408 In libbabeltrace2, the user can set the current run-time log level with
409 the `bt_logging_set_global_level()` function, for example:
410 +
411 --
412 [source,c]
413 ----
414 bt_logging_set_global_level(BT_LOGGING_LEVEL_INFO);
415 ----
416 --
417 +
418 The library's initial run-time log level is defined by the
419 `LIBBABELTRACE2_INIT_LOG_LEVEL` environment variable, or set to _NONE_
420 if this environment variable is undefined.
421 +
422 Other modules have their own way of setting their run-time log level.
423 +
424 For example, the CLI uses the `BABELTRACE_CLI_LOG_LEVEL` environment
425 variable, as well as its global `--log-level` option:
426 +
427 ----
428 $ babeltrace2 --log-level=I ...
429 ----
430 +
431 The components use their own log level (as returned by
432 `bt_component_get_logging_level()`). With the CLI, you can set a
433 specific component's log level with its own, position-dependent
434 `--log-level` option:
435 +
436 ----
437 $ babeltrace2 /path/to/trace -c sink.ctf.fs --log-level=D
438 ----
439 +
440 Code which is common to the whole project, for example `src/common`
441 and `src/compat`, use function parameters to get its run-time log
442 level, for example:
443 +
444 [source,c]
445 ----
446 BT_HIDDEN
447 char *bt_common_get_home_plugin_path(int log_level);
448 ----
449 +
450 Typically, when a logging-enabled module calls such a function, it
451 passes its own log level expression directly (`BT_LOG_OUTPUT_LEVEL`):
452 +
453 [source,c]
454 ----
455 path = bt_common_get_home_plugin_path(BT_LOG_OUTPUT_LEVEL);
456 ----
457 +
458 Otherwise, just pass `BT_LOG_NONE`:
459 +
460 ----
461 path = bt_common_get_home_plugin_path(BT_LOG_NONE);
462 ----
463
464
465 [[gen-logging-statements]]
466 ==== Generic logging statement macros
467
468 The Babeltrace logging statement macros work just like `printf()`
469 (except the `+BT_LOG*_STR()+` ones) and contain their <<log-levels,log
470 level>> (short name) in their name.
471
472 Each of the following macros evaluate the
473 <<build-time-log-level,build-time log level>> definition and
474 <<run-time-log-level,run-time log level>> expression (as defined by
475 `BT_LOG_OUTPUT_LEVEL`) to log conditionally.
476
477 See <<logging-instrument-c-file-gen,Instrument a C source file
478 (generic)>> and <<logging-instrument-h-file-gen,Instrument a C header
479 file (generic)>> to learn how to be able to use the following macros.
480
481 `+BT_LOGT("format string", ...)+`::
482 Generic trace logging statement.
483
484 `+BT_LOGD("format string", ...)+`::
485 Generic debug logging statement.
486
487 `+BT_LOGI("format string", ...)+`::
488 Generic info logging statement.
489
490 `+BT_LOGW("format string", ...)+`::
491 Generic warning logging statement.
492
493 `+BT_LOGE("format string", ...)+`::
494 Generic error logging statement.
495
496 `+BT_LOGF("format string", ...)+`::
497 Generic fatal logging statement.
498
499 `+BT_LOGT_STR("preformatted string")+`::
500 Generic preformatted string trace logging statement.
501
502 `+BT_LOGD_STR("preformatted string")+`::
503 Generic preformatted string debug logging statement.
504
505 `+BT_LOGI_STR("preformatted string")+`::
506 Generic preformatted string info logging statement.
507
508 `+BT_LOGW_STR("preformatted string")+`::
509 Generic preformatted string warning logging statement.
510
511 `+BT_LOGE_STR("preformatted string")+`::
512 Generic preformatted string error logging statement.
513
514 `+BT_LOGF_STR("preformatted string")+`::
515 Generic preformatted string fatal logging statement.
516
517 `+BT_LOGT_MEM(data_ptr, data_size, "format string", ...)+`::
518 Generic memory trace logging statement.
519
520 `+BT_LOGD_MEM(data_ptr, data_size, "format string", ...)+`::
521 Generic memory debug logging statement.
522
523 `+BT_LOGI_MEM(data_ptr, data_size, "format string", ...)+`::
524 Generic memory info logging statement.
525
526 `+BT_LOGW_MEM(data_ptr, data_size, "format string", ...)+`::
527 Generic memory warning logging statement.
528
529 `+BT_LOGE_MEM(data_ptr, data_size, "format string", ...)+`::
530 Generic memory error logging statement.
531
532 `+BT_LOGF_MEM(data_ptr, data_size, "format string", ...)+`::
533 Generic memory fatal logging statement.
534
535 `+BT_LOGT_ERRNO("initial message", "format string", ...)+`::
536 Generic `errno` string trace logging statement.
537
538 `+BT_LOGD_ERRNO("initial message", "format string", ...)+`::
539 Generic `errno` string debug logging statement.
540
541 `+BT_LOGI_ERRNO("initial message", "format string", ...)+`::
542 Generic `errno` string info logging statement.
543
544 `+BT_LOGW_ERRNO("initial message", "format string", ...)+`::
545 Generic `errno` string warning logging statement.
546
547 `+BT_LOGE_ERRNO("initial message", "format string", ...)+`::
548 Generic `errno` string error logging statement.
549
550 `+BT_LOGF_ERRNO("initial message", "format string", ...)+`::
551 Generic `errno` string fatal logging statement.
552
553
554 [[lib-logging-statements]]
555 ==== Library-specific logging statement macros
556
557 The Babeltrace library contains an internal logging API based on the
558 generic logging framework. You can use it to log known Babeltrace
559 objects without having to manually log each member.
560
561 See <<logging-instrument-c-file-lib,Instrument a library C source file>>
562 and <<logging-instrument-h-file-lib,Instrument a library C header file>> to
563 learn how to be able to use the following macros.
564
565 The library logging statement macros are named `+BT_LIB_LOG*()+` instead
566 of `+BT_LOG*()+`:
567
568 `+BT_LIB_LOGT("format string", ...)+`::
569 Library trace logging statement.
570
571 `+BT_LIB_LOGD("format string", ...)+`::
572 Library debug logging statement.
573
574 `+BT_LIB_LOGI("format string", ...)+`::
575 Library info logging statement.
576
577 `+BT_LIB_LOGW("format string", ...)+`::
578 Library warning logging statement.
579
580 `+BT_LIB_LOGE("format string", ...)+`::
581 Library error logging statement.
582
583 `+BT_LIB_LOGF("format string", ...)+`::
584 Library fatal logging statement.
585
586 The macros above accept the typical `printf()` conversion specifiers
587 with the following limitations:
588
589 * The `+*+` width specifier is not accepted.
590 * The `+*+` precision specifier is not accepted.
591 * The `j` and `t` length modifiers are not accepted.
592 * The `n` format specifier is not accepted.
593 * The format specifiers defined in `<inttypes.h>` are not accepted,
594 except for `PRId64`, `PRIu64`, `PRIx64`, `PRIX64`, `PRIo64`, and
595 `PRIi64`.
596
597 The Babeltrace library custom conversion specifier is accepted. Its
598 syntax is either `%!u` to format a UUID (`bt_uuid` type), or:
599
600 . Introductory `%!` sequence.
601
602 . **Optional**: `[` followed by a custom prefix for the printed fields
603 of this specifier, followed by `]`. The standard form is to end this
604 prefix with `-` so that, for example, with the prefix `tc-`, the
605 complete field name becomes `tc-addr`.
606
607 . **Optional**: `pass:[+]` to print extended object members. This
608 depends on the provided format specifier.
609
610 . Format specifier (see below).
611
612 The available format specifiers are:
613
614 [options="header,autowidth",cols="3"]
615 |===
616 |Specifier
617 |Object
618 |Expected C type
619
620 |`F`
621 |Trace IR field class
622 |`+struct bt_field_class *+`
623
624 |`f`
625 |Trace IR field
626 |`+struct bt_field *+`
627
628 |`P`
629 |Trace IR field path
630 |`+struct bt_field_path *+`
631
632 |`E`
633 |Trace IR event class
634 |`+struct bt_event_class *+`
635
636 |`e`
637 |Trace IR event
638 |`+struct bt_event *+`
639
640 |`S`
641 |Trace IR stream class.
642 |`+struct bt_stream_class *+`
643
644 |`s`
645 |Trace IR stream
646 |`+struct bt_stream *+`
647
648 |`a`
649 |Trace IR packet
650 |`+struct bt_packet *+`
651
652 |`T`
653 |Trace IR trace class
654 |`+struct bt_trace_class *+`
655
656 |`t`
657 |Trace IR trace
658 |`+struct bt_trace *+`
659
660 |`K`
661 |Trace IR clock class
662 |`+struct bt_clock_class *+`
663
664 |`k`
665 |Trace IR clock snapshot
666 |`+struct bt_clock_snapshot *+`
667
668 |`v`
669 |Value object
670 |`+struct bt_value *+`
671
672 |`n`
673 |Message
674 |`+struct bt_message *+`
675
676 |`i`
677 |Message iterator
678 |`struct bt_message_iterator *`
679
680 |`C`
681 |Component class
682 |`struct bt_component_class *`
683
684 |`c`
685 |Component
686 |`+struct bt_component *+`
687
688 |`p`
689 |Port
690 |`+struct bt_port *+`
691
692 |`x`
693 |Connection
694 |`+struct bt_connection *+`
695
696 |`g`
697 |Graph
698 |`+struct bt_graph *+`
699
700 |`l`
701 |Plugin
702 |`const struct bt_plugin *`
703
704 |`r`
705 |Error cause
706 |`const struct bt_error_cause *`
707
708 |`o`
709 |Object pool
710 |`+struct bt_object_pool *+`
711
712 |`O`
713 |Object
714 |`+struct bt_object *+`
715 |===
716
717 Conversion specifier examples:
718
719 * `%!f`
720 * `%![my-event-]+e`
721 * `%!t`
722 * `%!+F`
723
724 The ``, `` string (comma and space) is printed between individual
725 fields, but **not after the last one**. Therefore, you must put this
726 separator in the format string between two conversion specifiers, for
727 example:
728
729 [source,c]
730 ----
731 BT_LIB_LOGW("Message: count=%u, %!E, %!+K", count, event_class, clock_class);
732 ----
733
734 Example with a custom prefix:
735
736 [source,c]
737 ----
738 BT_LIB_LOGI("Some message: %![ec-a-]e, %![ec-b-]+e", ec_a, ec_b);
739 ----
740
741 It is safe to pass `NULL` as any Babeltrace object parameter: the macros
742 only print its null address.
743
744 WARNING: Build-time `printf()` format checks are disabled for the
745 `+BT_LIB_LOG*()+` macros because there are custom conversion specifiers,
746 so make sure to test your logging statements.
747
748
749 [[comp-logging-statements]]
750 ==== Component-specific logging statement macros
751
752 There are available logging macros for components. They prepend a prefix
753 including the component's name to the logging message.
754
755 See <<logging-instrument-c-file-compcls,Instrument a component class C
756 source file>> and <<logging-instrument-h-file-compcls,Instrument a
757 component class C header file>> to learn how to be able to use the
758 following macros.
759
760 The component logging statement macros are named `+BT_COMP_LOG*()+`
761 instead of `+BT_LOG*()+`:
762
763 `+BT_COMP_LOGT("format string", ...)+`::
764 Component trace logging statement.
765
766 `+BT_COMP_LOGD("format string", ...)+`::
767 Component debug logging statement.
768
769 `+BT_COMP_LOGI("format string", ...)+`::
770 Component info logging statement.
771
772 `+BT_COMP_LOGW("format string", ...)+`::
773 Component warning logging statement.
774
775 `+BT_COMP_LOGE("format string", ...)+`::
776 Component error logging statement.
777
778 `+BT_COMP_LOGF("format string", ...)+`::
779 Component fatal logging statement.
780
781 `+BT_COMP_LOGT_STR("preformatted string")+`::
782 Component preformatted string trace logging statement.
783
784 `+BT_COMP_LOGD_STR("preformatted string")+`::
785 Component preformatted string debug logging statement.
786
787 `+BT_COMP_LOGI_STR("preformatted string")+`::
788 Component preformatted string info logging statement.
789
790 `+BT_COMP_LOGW_STR("preformatted string")+`::
791 Component preformatted string warning logging statement.
792
793 `+BT_COMP_LOGE_STR("preformatted string")+`::
794 Component preformatted string error logging statement.
795
796 `+BT_COMP_LOGF_STR("preformatted string")+`::
797 Component preformatted string fatal logging statement.
798
799 `+BT_COMP_LOGT_ERRNO("initial message", "format string", ...)+`::
800 Component `errno` string trace logging statement.
801
802 `+BT_COMP_LOGD_ERRNO("initial message", "format string", ...)+`::
803 Component `errno` string debug logging statement.
804
805 `+BT_COMP_LOGI_ERRNO("initial message", "format string", ...)+`::
806 Component `errno` string info logging statement.
807
808 `+BT_COMP_LOGW_ERRNO("initial message", "format string", ...)+`::
809 Component `errno` string warning logging statement.
810
811 `+BT_COMP_LOGE_ERRNO("initial message", "format string", ...)+`::
812 Component `errno` string error logging statement.
813
814 `+BT_COMP_LOGF_ERRNO("initial message", "format string", ...)+`::
815 Component `errno` string fatal logging statement.
816
817 `+BT_COMP_LOGT_MEM(data_ptr, data_size, "format string", ...)+`::
818 Component memory trace logging statement.
819
820 `+BT_COMP_LOGD_MEM(data_ptr, data_size, "format string", ...)+`::
821 Component memory debug logging statement.
822
823 `+BT_COMP_LOGI_MEM(data_ptr, data_size, "format string", ...)+`::
824 Component memory info logging statement.
825
826 `+BT_COMP_LOGW_MEM(data_ptr, data_size, "format string", ...)+`::
827 Component memory warning logging statement.
828
829 `+BT_COMP_LOGE_MEM(data_ptr, data_size, "format string", ...)+`::
830 Component memory error logging statement.
831
832 `+BT_COMP_LOGF_MEM(data_ptr, data_size, "format string", ...)+`::
833 Component memory fatal logging statement.
834
835
836 ==== Conditional logging
837
838 `+BT_LOG_IF(cond, statement)+`::
839 Execute `statement` only if `cond` is true.
840 +
841 Example:
842 +
843 --
844 [source,c]
845 ----
846 BT_LOG_IF(i < count / 2, BT_LOGD("Log this: i=%d", i));
847 ----
848 --
849
850 To check the <<build-time-log-level,build-time log level>>:
851
852 [source,c]
853 ----
854 #if BT_LOG_ENABLED_DEBUG
855 ...
856 #endif
857 ----
858
859 This tests if the _DEBUG_ level was enabled at build time. This means
860 that the current, <<run-time-log-level,run-time log level>> _could_ be
861 _DEBUG_, but it could also be higher. The rule of thumb is to use only
862 logging statements at the same level in a `BT_LOG_ENABLED_*` conditional
863 block.
864
865 The available definitions for build-time conditions are:
866
867 * `BT_LOG_ENABLED_TRACE`
868 * `BT_LOG_ENABLED_DEBUG`
869 * `BT_LOG_ENABLED_INFO`
870 * `BT_LOG_ENABLED_WARN`
871 * `BT_LOG_ENABLED_ERROR`
872 * `BT_LOG_ENABLED_FATAL`
873
874 To check the current, <<run-time-log-level,run-time log level>>:
875
876 [source,c]
877 ----
878 if (BT_LOG_ON_DEBUG) {
879 ...
880 }
881 ----
882
883 This tests if the _DEBUG_ log level is dynamically turned on
884 (implies that it's also enabled at build time). This check could have a
885 noticeable impact on performance.
886
887 The available definitions for run-time conditions are:
888
889 * `BT_LOG_ON_TRACE`
890 * `BT_LOG_ON_DEBUG`
891 * `BT_LOG_ON_INFO`
892 * `BT_LOG_ON_WARN`
893 * `BT_LOG_ON_ERROR`
894 * `BT_LOG_ON_FATAL`
895
896 Those macros check the module-specific log level symbol (defined by
897 `BT_LOG_OUTPUT_LEVEL`).
898
899 Never, ever write code which would be executed only to compute the
900 fields of a logging statement outside a conditional logging scope,
901 for example:
902
903 [source,c]
904 ----
905 int number = get_number_of_event_classes_with_property_x(...);
906 BT_LOGD("Bla bla: number=%d", number);
907 ----
908
909 Do this instead:
910
911 [source,c]
912 ----
913 if (BT_LOG_ON_DEBUG) {
914 int number = get_number_of_event_classes_with_property_x(...);
915 BT_LOGD("Bla bla: number=%d", number);
916 }
917 ----
918
919 Or even this:
920
921 [source,c]
922 ----
923 BT_LOGD("Bla bla: number=%d", get_number_of_event_classes_with_property_x(...));
924 ----
925
926
927 === Guides
928
929 [[logging-instrument-c-file-gen]]
930 ==== Instrument a C source file (generic)
931
932 To instrument a C source file (`.c`):
933
934 . At the top of the file, before the first `#include` line (if any),
935 define your file's <<choose-a-logging-tag,logging tag>> name:
936 +
937 --
938 [source,c]
939 ----
940 #define BT_LOG_TAG "SUBSYS/MY-MODULE/MY-FILE"
941 ----
942 --
943
944 . Below the line above, define the source file's log level expression,
945 `BT_LOG_OUTPUT_LEVEL`. This expression is evaluated for each
946 <<gen-logging-statements,logging statement>> to know the current
947 <<run-time-log-level,run-time log level>>.
948 +
949 Examples:
950 +
951 [source,c]
952 ----
953 /* Global log level variable */
954 #define BT_LOG_OUTPUT_LEVEL module_global_log_level
955 ----
956 +
957 [source,c]
958 ----
959 /* Local log level variable; must exist where you use BT_LOG*() */
960 #define BT_LOG_OUTPUT_LEVEL log_level
961 ----
962 +
963 [source,c]
964 ----
965 /* Object's log level; `obj` must exist where you use BT_LOG*() */
966 #define BT_LOG_OUTPUT_LEVEL (obj->log_level)
967 ----
968
969 . Include `"logging/log.h"`:
970 +
971 [source,c]
972 ----
973 #include "logging/log.h"
974 ----
975
976 . In the file, instrument your code with the
977 <<gen-logging-statements,generic logging statement macros>>.
978
979
980 [[logging-instrument-h-file-gen]]
981 ==== Instrument a C header file (generic)
982
983 To instrument a C header file (`.h`), if you have `static inline`
984 functions in it:
985
986 . Do not include `"logging/log.h"`!
987
988 . Do one of:
989
990 .. In the file, instrument your code with the
991 <<gen-logging-statements,generic logging statement macros>>, making
992 each of them conditional to the existence of the macro you're using:
993 +
994 [source,c]
995 ----
996 static inline
997 int some_function(int x)
998 {
999 /* ... */
1000
1001 #ifdef BT_LOGT
1002 BT_LOGT(...);
1003 #endif
1004
1005 /* ... */
1006
1007 #ifdef BT_LOGW_STR
1008 BT_LOGW_STR(...);
1009 #endif
1010
1011 /* ... */
1012 }
1013 ----
1014 +
1015 The C source files which include this header file determine if logging
1016 is enabled or not for them, and if so, what is their
1017 <<choose-a-logging-tag,logging tag>> and <<run-time-log-level,run-time
1018 log level>> expression.
1019
1020 .. Require that logging be enabled:
1021 +
1022 [source,c]
1023 ----
1024 /* Protection: this file uses BT_LOG*() macros directly */
1025 #ifndef BT_LOG_SUPPORTED
1026 # error Please include "logging/log.h" before including this file.
1027 #endif
1028 ----
1029 +
1030 Then, in the file, instrument your code with the
1031 <<gen-logging-statements,generic logging statement macros>>.
1032
1033
1034 [[logging-instrument-c-file-lib]]
1035 ==== Instrument a library C source file
1036
1037 To instrument a library C source file (`.c`):
1038
1039 . At the top of the file, before the first `#include` line (if any),
1040 define your file's <<choose-a-logging-tag,logging tag>> name (this
1041 tag must start with `LIB/`):
1042 +
1043 --
1044 [source,c]
1045 ----
1046 #define BT_LOG_TAG "LIB/THE-FILE"
1047 ----
1048 --
1049
1050 . Include `"lib/logging.h"`:
1051 +
1052 [source,c]
1053 ----
1054 #include "lib/logging.h"
1055 ----
1056
1057 . In the file, instrument your code with the
1058 <<lib-logging-statements,library logging statement macros>> or with
1059 the <<gen-logging-statements,generic logging statement macros>>.
1060
1061
1062 [[logging-instrument-h-file-lib]]
1063 ==== Instrument a library C header file
1064
1065 To instrument a library C header file (`.h`), if you have `static
1066 inline` functions in it:
1067
1068 . Do not include `"lib/logging.h"`!
1069
1070 . Require that library logging be enabled:
1071 +
1072 [source,c]
1073 ----
1074 /* Protection: this file uses BT_LIB_LOG*() macros directly */
1075 #ifndef BT_LIB_LOG_SUPPORTED
1076 # error Please include "lib/logging.h" before including this file.
1077 #endif
1078 ----
1079
1080 . In the file, instrument your code with the
1081 <<lib-logging-statements,library logging statement macros>> or with
1082 the <<gen-logging-statements,generic logging statement macros>>.
1083
1084
1085 [[logging-instrument-c-file-compcls]]
1086 ==== Instrument a component class C source file
1087
1088 To instrument a component class C source file (`.c`):
1089
1090 . At the top of the file, before the first `#include` line (if any),
1091 define your file's <<choose-a-logging-tag,logging tag>> name (this tag
1092 must start with `PLUGIN/` followed by the component class identifier):
1093 +
1094 --
1095 [source,c]
1096 ----
1097 #define BT_LOG_TAG "PLUGIN/SRC.MY-PLUGIN.MY-SRC"
1098 ----
1099 --
1100
1101 . Below the line above, define the source file's log level expression,
1102 `BT_LOG_OUTPUT_LEVEL`. This expression is evaluated for each
1103 <<comp-logging-statements,logging statement>> to know the current
1104 <<run-time-log-level,run-time log level>>.
1105 +
1106 For a component class file, it is usually a member of a local component
1107 private structure variable:
1108 +
1109 [source,c]
1110 ----
1111 #define BT_LOG_OUTPUT_LEVEL (my_comp->log_level)
1112 ----
1113
1114 . Below the line above, define `BT_COMP_LOG_SELF_COMP` to an expression
1115 which, evaluated in the context of the
1116 <<comp-logging-statements,logging statements>>, evaluates to the self
1117 component address (`+bt_self_component *+`) of the component.
1118 +
1119 This is usually a member of a local component private structure
1120 variable:
1121 +
1122 [source,c]
1123 ----
1124 #define BT_COMP_LOG_SELF_COMP (my_comp->self_comp)
1125 ----
1126
1127 . Include `"plugins/comp-logging.h"`:
1128 +
1129 [source,c]
1130 ----
1131 #include "plugins/comp-logging.h"
1132 ----
1133
1134 . In the component initialization method, make sure to set the
1135 component private structure's log level member to the initial
1136 component's log level:
1137 +
1138 [source,c]
1139 ----
1140 struct my_comp {
1141 bt_logging_level log_level;
1142 /* ... */
1143 };
1144
1145 BT_HIDDEN
1146 bt_self_component_status my_comp_init(
1147 bt_self_component_source *self_comp_src,
1148 bt_value *params, void *init_method_data)
1149 {
1150 struct my_comp *my_comp = g_new0(struct my_comp, 1);
1151 bt_self_component *self_comp =
1152 bt_self_component_source_as_self_component(self_comp_src);
1153 const bt_component *comp = bt_self_component_as_component(self_comp);
1154
1155 BT_ASSERT(my_comp);
1156 my_comp->log_level = bt_component_get_logging_level(comp);
1157
1158 /* ... */
1159 }
1160 ----
1161
1162 . In the file, instrument your code with the
1163 <<comp-logging-statements,component logging statement macros>>.
1164
1165
1166 [[logging-instrument-h-file-compcls]]
1167 ==== Instrument a component class C header file
1168
1169 To instrument a component class C header file (`.h`), if you have
1170 `static inline` functions in it:
1171
1172 . Do not include `"plugins/comp-logging.h"`!
1173
1174 . Require that component logging be enabled:
1175 +
1176 [source,c]
1177 ----
1178 /* Protection: this file uses BT_COMP_LOG*() macros directly */
1179 #ifndef BT_COMP_LOG_SUPPORTED
1180 # error Please include "plugins/comp-logging.h" before including this file.
1181 #endif
1182 ----
1183
1184 . In the file, instrument your code with the
1185 <<comp-logging-statements,component logging statement macros>>.
1186
1187
1188 [[choose-a-logging-tag]]
1189 ==== Choose a logging tag
1190
1191 Each logging-enabled C source file must define `BT_LOG_TAG` to a logging
1192 tag. A logging tag is a namespace to identify the logging messages of
1193 this specific source file.
1194
1195 In general, a logging tag name _must_ be only uppercase letters, digits,
1196 and the `-`, `.`, and `/` characters.
1197
1198 Use `/` to show the subsystem to source file hierarchy.
1199
1200 For the Babeltrace library, start with `LIB/`.
1201
1202 For the CTF writer library, start with `CTF-WRITER/`.
1203
1204 For component classes, use:
1205
1206 [verse]
1207 `PLUGIN/__CCTYPE__.__PNAME__.__CCNAME__[/__FILE__]`
1208
1209 With:
1210
1211 `__CCTYPE__`::
1212 Component class's type (`SRC`, `FLT`, or `SINK`).
1213
1214 `__PNAME__`::
1215 Plugin's name.
1216
1217 `__CCNAME__`::
1218 Component class's name.
1219
1220 `__FILE__`::
1221 Additional information to specify the source file name or module.
1222
1223 For plugins (files common to many component classes), use:
1224
1225 [verse]
1226 `PLUGIN/__PNAME__[/__FILE__]`
1227
1228 With:
1229
1230 `__PNAME__`::
1231 Plugin's name.
1232
1233 `__FILE__`::
1234 Additional information to specify the source file name or module.
1235
1236
1237 [[choose-a-log-level]]
1238 ==== Choose a log level
1239
1240 Choosing the appropriate level for your logging statement is very
1241 important.
1242
1243 [options="header,autowidth",cols="1,2,3a,4"]
1244 |===
1245 |Log level |Description |Use cases |Expected impact on performance
1246
1247 |_FATAL_
1248 |
1249 The program, library, or plugin cannot continue to work in this
1250 condition: it must be terminated immediately.
1251
1252 A _FATAL_-level logging statement should always be followed by
1253 `abort()`.
1254 |
1255 * Unexpected return values from system calls.
1256 * Logic error in internal code, for example an unexpected value in a
1257 `switch` statement.
1258 * Failed assertion (within `BT_ASSERT()`).
1259 * Unsatisfied library precondition (within `BT_ASSERT_PRE()`).
1260 * Unsatisfied library postcondition (within `BT_ASSERT_POST()`).
1261 |Almost none: always enabled.
1262
1263 |_ERROR_
1264 |
1265 An important error which is somewhat not fatal, that is, the program,
1266 library, or plugin can continue to work after this, but you judge that
1267 it should be reported to the user.
1268
1269 Usually, the program cannot recover from such an error, but it can at
1270 least exit cleanly.
1271 |
1272 * Memory allocation errors.
1273 * Wrong component initialization parameters.
1274 * Corrupted, unrecoverable trace data.
1275 * Failed to perform an operation which should work considering the
1276 implementation and the satisfied preconditions. For example, the
1277 failure to create an empty object (no parameters): most probably
1278 failed internally because of an allocation error.
1279 * Almost any error in terminal elements: CLI and plugins.
1280 |Almost none: always enabled.
1281
1282 |_WARN_
1283 |
1284 An error which still allows the execution to continue, but you judge
1285 that it should be reported to the user.
1286
1287 _WARN_-level logging statements are for any error or weird action that
1288 is directly or indirectly caused by the user, often through some bad
1289 input data. For example, not having enough memory is considered beyond
1290 the user's control, so we always log memory errors with an _ERROR_ level
1291 (not _FATAL_ because we usually don't abort in this condition).
1292 |
1293 * Missing data within something that is expected to have it, but there's
1294 an alternative.
1295 * Invalid file, but recoverable/fixable.
1296 |Almost none: always enabled.
1297
1298 |_INFO_
1299 |
1300 Any useful information which a non-developer user would possibly
1301 understand.
1302
1303 Anything logged with this level must _not_ happen repetitively on the
1304 fast path, that is, nothing related to each message, for example. This
1305 level is used for sporadic and one-shot events.
1306 |
1307 * CLI or component configuration report.
1308 * Successful plugin, component, or message iterator initialization.
1309 * In the library: anything related to plugins, graphs, component
1310 classes, components, message iterators, connections, and ports which
1311 is not on the fast path.
1312 * Successful connection to or disconnection from another system.
1313 * An _optional_ subsystem cannot be loaded.
1314 * An _optional_ field/datum cannot be found.
1315 |
1316 Very little: always enabled.
1317
1318 |_DEBUG_
1319 |
1320 Something that only Babeltrace developers would be interested into,
1321 which can occur on the fast path, but not more often than once per
1322 message.
1323
1324 The _DEBUG_ level is the default <<build-time-log-level,build-time log
1325 level>> as, since it's not _too_ verbose, the performance is similar to
1326 an _INFO_ build.
1327 |
1328 * Object construction and destruction.
1329 * Object recycling (except fields).
1330 * Object copying (except fields and values).
1331 * Object freezing (whatever the type, as freezing only occurs in
1332 developer mode).
1333 * Object cancellation.
1334 * Calling user methods and logging the result.
1335 * Setting object properties (except fields and values).
1336 |
1337 Noticeable, but not as much as the _TRACE_ level: could be executed
1338 in production if you're going to need a thorough log for support
1339 tickets without having to rebuild the project.
1340
1341 |_TRACE_
1342 |
1343 Low-level debugging context information (anything that does not fit the
1344 other log levels). More appropriate for tracing in general.
1345 |
1346 * Reference count change.
1347 * Fast path, low level state machine's state change.
1348 * Get or set an object's property.
1349 * Object comparison's intermediate results.
1350 |Huge: not executed in production.
1351 |===
1352
1353 [IMPORTANT]
1354 --
1355 Make sure not to use a _WARN_ (or higher) log level when the
1356 condition leading to the logging statement can occur under normal
1357 circumstances.
1358
1359 For example, a public function to get some object or
1360 property from an object by name or key that fails to find the value is
1361 not a warning scenario: the user could legitimately use this function to
1362 check if the name/key exists in the object. In this case, use the
1363 _TRACE_ level (or do not log at all).
1364 --
1365
1366
1367 [[message]]
1368 ==== Write an appropriate message
1369
1370 Follow those rules when you write a logging statement's message:
1371
1372 * Use an English sentence which starts with a capital letter.
1373
1374 * Start the sentence with the appropriate verb tense depending on the
1375 context. For example:
1376 +
1377 --
1378 ** Beginning of operation (present continuous): _Creating ..._,
1379 _Copying ..._, _Serializing ..._, _Freezing ..._, _Destroying ..._
1380 ** End of operation (simple past): _Created ..._, _Successfully created ..._,
1381 _Failed to create ..._, _Set ..._ (simple past of _to set_ which is
1382 also _set_)
1383 --
1384 +
1385 For warning and error messages, you can start the message with _Cannot_
1386 or _Failed to_ followed by a verb if it's appropriate.
1387
1388 * Do not include the log level in the message itself. For example,
1389 do not start the message with _Error while_ or _Warning:_.
1390
1391 * Do not put newlines, tabs, or other special characters in the message,
1392 unless you want to log a string with such characters. Note that
1393 multiline logging messages can be hard to parse, analyze, and filter,
1394 however, so prefer multiple logging statements over a single statement
1395 with newlines.
1396
1397 * **If there are fields that your logging statement must record**,
1398 follow the message with `:` followed by a space, then with the list of
1399 fields (more about this below). If there are no fields, end the
1400 sentence with a period.
1401
1402 The statement's fields _must_ be a comma-separated list of
1403 `__name__=__value__` tokens. Keep `__name__` as simple as possible; use
1404 kebab case if possible. If `__value__` is a non-alphanumeric string, put
1405 it between double quotes (`"%s"` specifier). Always use the `PRId64` and
1406 `PRIu64` specifiers to log an `int64_t` or an `uint64_t` value. Use `%d`
1407 to log a boolean value.
1408
1409 Example:
1410
1411 "Cannot read stream data for indexing: path=\"%s\", name=\"%s\", "
1412 "stream-id=%" PRIu64 ", stream-fd=%d, "
1413 "index=%" PRIu64 ", status=%s, is-mapped=%d"
1414
1415 By following a standard format for the statement fields, it is easier to
1416 use tools like https://www.elastic.co/products/logstash[Logstash] or
1417 even https://www.splunk.com/[Splunk] to split fields and analyze logs.
1418
1419 Prefer the following suffixes in field names:
1420
1421 [options="header,autowidth"]
1422 |===
1423 |Field name suffix |Description |Format specifier
1424
1425 |`-addr` |Memory address |`%p`
1426 |`-fd` |File descriptor |`%d`
1427 |`-fp` |File stream (`+FILE *+`) |`%p`
1428 |`-id` |Object's ID |`%" PRIu64 "`
1429 |`-index` |Index |`%" PRIu64 "`
1430 |`-name` |Object's name |`\"%s\"`
1431 |===
1432
1433
1434 === Output
1435
1436 The log is printed to the standard error stream. A log line contains the
1437 time, the process and thread IDs, the <<log-levels,log level>>, the
1438 <<choose-a-logging-tag,logging tag>>, the source's function name, file
1439 name and line number, and the <<message,message>>.
1440
1441 When Babeltrace supports terminal color codes (depends on the
1442 `BABELTRACE_TERM_COLOR` environment variable's value and what the
1443 standard output and error streams are plugged into), _INFO_-level lines
1444 are blue, _WARN_-level lines are yellow, and _ERROR_-level and
1445 _FATAL_-level lines are red.
1446
1447 Log line example:
1448
1449 ----
1450 05-11 00:58:03.691 23402 23402 D VALUES bt_value_destroy@values.c:498 Destroying value: addr=0xb9c3eb0
1451 ----
1452
1453 You can easily filter the log with `grep` or `ag`. For example, to keep
1454 only the _DEBUG_-level logging messages that the `FIELD-CLASS` module
1455 generates:
1456
1457 ----
1458 $ babeltrace2 --log-level=D /path/to/trace |& ag 'D FIELD-CLASS'
1459 ----
1460
1461
1462 == Valgrind
1463
1464 To use Valgrind on an application (for example, the CLI or a test) which
1465 loads libbabeltrace2, use:
1466
1467 ----
1468 $ G_SLICE=always-malloc G_DEBUG=gc-friendly PYTHONMALLOC=malloc \
1469 LIBBABELTRACE2_NO_DLCLOSE=1 valgrind --leak-check=full \
1470 --suppressions=/path/to/babeltrace/extras/valgrind/popt.supp app
1471 ----
1472
1473 `G_SLICE=always-malloc` and `G_DEBUG=gc-friendly` is for GLib and
1474 `PYTHONMALLOC=malloc` is for the Python interpreter, if it is used by
1475 the Python plugin provider (Valgrind will probably show a lot of errors
1476 which originate from the Python interpreter anyway).
1477
1478 `LIBBABELTRACE2_NO_DLCLOSE=1` makes libbabeltrace2 not close the shared
1479 libraries (plugins) which it loads. You need this to see the appropriate
1480 backtrace when Valgrind shows errors.
1481
1482 == Testing
1483
1484 === Python Bindings
1485
1486 To run all the `bt2` Python package tests use:
1487
1488 ----
1489 $ BT_TESTS_BUILDDIR=/path/to/build/babeltrace/tests \
1490 ./tests/bindings/python/bt2/test_python_bt2
1491 ----
1492
1493 To run all the tests in a test module (e.g. `test_event.py`) use:
1494
1495 ----
1496 $ BT_TESTS_BUILDDIR=/path/to/build/babeltrace/tests \
1497 ./tests/utils/run_python_bt2 python3 ./tests/utils/python/testrunner.py \
1498 -t test_event \
1499 ./tests/bindings/python/bt2/
1500 ----
1501
1502 To run a specific test (e.g. `EventTestCase.test_clock_value`) in a test module
1503 (e.g. `test_event.py`) use:
1504
1505 ----
1506 $ BT_TESTS_BUILDDIR=/path/to/build/babeltrace/tests \
1507 ./tests/utils/run_python_bt2 python3 ./tests/utils/python/testrunner.py \
1508 -t test_event.EventTestCase.test_clock_value \
1509 ./tests/bindings/python/bt2/
1510 ----
This page took 0.058782 seconds and 5 git commands to generate.