gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
0fd88904 2
b811d2c2 3 Copyright (C) 1993-2020 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
d55e5aa6 21#include "frame.h"
4de283e4
TT
22#include "frame-unwind.h"
23#include "frame-base.h"
82ca8957 24#include "dwarf2/frame.h"
4de283e4
TT
25#include "inferior.h"
26#include "symtab.h"
27#include "value.h"
c906108c
SS
28#include "gdbcmd.h"
29#include "gdbcore.h"
4de283e4
TT
30#include "dis-asm.h"
31#include "symfile.h"
d55e5aa6 32#include "objfiles.h"
4de283e4 33#include "linespec.h"
4e052eda 34#include "regcache.h"
615967cb 35#include "reggroups.h"
4de283e4
TT
36#include "arch-utils.h"
37#include "osabi.h"
38#include "block.h"
39#include "infcall.h"
07ea644b 40#include "trad-frame.h"
4de283e4
TT
41
42#include "elf-bfd.h"
43
44#include "alpha-tdep.h"
45#include <algorithm>
dc129d82 46
3a48e6ff
JG
47/* Instruction decoding. The notations for registers, immediates and
48 opcodes are the same as the one used in Compaq's Alpha architecture
49 handbook. */
50
51#define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
52
53/* Memory instruction format */
54#define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
55#define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
56#define MEM_DISP(insn) \
57 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
58
59static const int lda_opcode = 0x08;
60static const int stq_opcode = 0x2d;
61
62/* Branch instruction format */
63#define BR_RA(insn) MEM_RA(insn)
64
46ad3598 65static const int br_opcode = 0x30;
3a48e6ff
JG
66static const int bne_opcode = 0x3d;
67
68/* Operate instruction format */
69#define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
70#define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
71#define OPR_RA(insn) MEM_RA(insn)
72#define OPR_RC(insn) ((insn & 0x1f))
73#define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
74
75static const int subq_opcode = 0x10;
76static const int subq_function = 0x29;
77
c906108c 78\f
515921d7
JB
79/* Return the name of the REGNO register.
80
81 An empty name corresponds to a register number that used to
0963b4bd 82 be used for a virtual register. That virtual register has
515921d7
JB
83 been removed, but the index is still reserved to maintain
84 compatibility with existing remote alpha targets. */
85
fa88f677 86static const char *
d93859e2 87alpha_register_name (struct gdbarch *gdbarch, int regno)
636a6dfc 88{
5ab84872 89 static const char * const register_names[] =
636a6dfc
JT
90 {
91 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
92 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
93 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
94 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
95 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
96 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
97 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
98 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 99 "pc", "", "unique"
636a6dfc
JT
100 };
101
102 if (regno < 0)
5ab84872 103 return NULL;
e8d2d628 104 if (regno >= ARRAY_SIZE(register_names))
5ab84872
RH
105 return NULL;
106 return register_names[regno];
636a6dfc 107}
d734c450 108
dc129d82 109static int
64a3914f 110alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
d734c450 111{
4a1be8d2 112 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
113}
114
dc129d82 115static int
64a3914f 116alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
d734c450 117{
515921d7 118 return (regno == ALPHA_ZERO_REGNUM
64a3914f 119 || strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
120}
121
dc129d82 122static struct type *
c483c494 123alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 124{
72667056 125 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
0dfff4cb 126 return builtin_type (gdbarch)->builtin_data_ptr;
72667056 127 if (regno == ALPHA_PC_REGNUM)
0dfff4cb 128 return builtin_type (gdbarch)->builtin_func_ptr;
72667056
RH
129
130 /* Don't need to worry about little vs big endian until
131 some jerk tries to port to alpha-unicosmk. */
b38b6be2 132 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
27067745 133 return builtin_type (gdbarch)->builtin_double;
72667056 134
df4df182 135 return builtin_type (gdbarch)->builtin_int64;
0d056799 136}
f8453e34 137
615967cb
RH
138/* Is REGNUM a member of REGGROUP? */
139
140static int
141alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
142 struct reggroup *group)
143{
144 /* Filter out any registers eliminated, but whose regnum is
145 reserved for backward compatibility, e.g. the vfp. */
ec7cc0e8
UW
146 if (gdbarch_register_name (gdbarch, regnum) == NULL
147 || *gdbarch_register_name (gdbarch, regnum) == '\0')
615967cb
RH
148 return 0;
149
df4a182b
RH
150 if (group == all_reggroup)
151 return 1;
152
153 /* Zero should not be saved or restored. Technically it is a general
154 register (just as $f31 would be a float if we represented it), but
155 there's no point displaying it during "info regs", so leave it out
156 of all groups except for "all". */
157 if (regnum == ALPHA_ZERO_REGNUM)
158 return 0;
159
160 /* All other registers are saved and restored. */
161 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
162 return 1;
163
164 /* All other groups are non-overlapping. */
165
166 /* Since this is really a PALcode memory slot... */
167 if (regnum == ALPHA_UNIQUE_REGNUM)
168 return group == system_reggroup;
169
170 /* Force the FPCR to be considered part of the floating point state. */
171 if (regnum == ALPHA_FPCR_REGNUM)
172 return group == float_reggroup;
173
174 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
175 return group == float_reggroup;
176 else
177 return group == general_reggroup;
178}
179
c483c494
RH
180/* The following represents exactly the conversion performed by
181 the LDS instruction. This applies to both single-precision
182 floating point and 32-bit integers. */
183
184static void
e17a4113 185alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 186{
e17a4113 187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9a3c8263
SM
188 ULONGEST mem
189 = extract_unsigned_integer ((const gdb_byte *) in, 4, byte_order);
c483c494
RH
190 ULONGEST frac = (mem >> 0) & 0x7fffff;
191 ULONGEST sign = (mem >> 31) & 1;
192 ULONGEST exp_msb = (mem >> 30) & 1;
193 ULONGEST exp_low = (mem >> 23) & 0x7f;
194 ULONGEST exp, reg;
195
196 exp = (exp_msb << 10) | exp_low;
197 if (exp_msb)
198 {
199 if (exp_low == 0x7f)
200 exp = 0x7ff;
201 }
202 else
203 {
204 if (exp_low != 0x00)
205 exp |= 0x380;
206 }
207
208 reg = (sign << 63) | (exp << 52) | (frac << 29);
9a3c8263 209 store_unsigned_integer ((gdb_byte *) out, 8, byte_order, reg);
c483c494
RH
210}
211
212/* Similarly, this represents exactly the conversion performed by
213 the STS instruction. */
214
39efb398 215static void
e17a4113 216alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 217{
e17a4113 218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c483c494
RH
219 ULONGEST reg, mem;
220
9a3c8263 221 reg = extract_unsigned_integer ((const gdb_byte *) in, 8, byte_order);
c483c494 222 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
9a3c8263 223 store_unsigned_integer ((gdb_byte *) out, 4, byte_order, mem);
c483c494
RH
224}
225
d2427a71
RH
226/* The alpha needs a conversion between register and memory format if the
227 register is a floating point register and memory format is float, as the
228 register format must be double or memory format is an integer with 4
68fce50f 229 bytes, as the representation of integers in floating point
0963b4bd 230 registers is different. */
d2427a71 231
c483c494 232static int
0963b4bd
MS
233alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
234 struct type *type)
14696584 235{
83acabca 236 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
68fce50f 237 && TYPE_LENGTH (type) == 4);
14696584
RH
238}
239
8dccd430 240static int
ff2e87ac 241alpha_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
242 struct type *valtype, gdb_byte *out,
243 int *optimizedp, int *unavailablep)
5868c862 244{
8dccd430 245 struct gdbarch *gdbarch = get_frame_arch (frame);
fbe654c8 246 struct value *value = get_frame_register_value (frame, regnum);
2a1ce6ec 247
fbe654c8
AH
248 gdb_assert (value != NULL);
249 *optimizedp = value_optimized_out (value);
250 *unavailablep = !value_entirely_available (value);
251
252 if (*optimizedp || *unavailablep)
253 {
254 release_value (value);
fbe654c8
AH
255 return 0;
256 }
257
258 /* Convert to VALTYPE. */
8dccd430 259
68fce50f 260 gdb_assert (TYPE_LENGTH (valtype) == 4);
fbe654c8
AH
261 alpha_sts (gdbarch, out, value_contents_all (value));
262
263 release_value (value);
68fce50f 264 return 1;
d2427a71 265}
5868c862 266
d2427a71 267static void
ff2e87ac 268alpha_value_to_register (struct frame_info *frame, int regnum,
5b819568 269 struct type *valtype, const gdb_byte *in)
d2427a71 270{
fbe654c8 271 gdb_byte out[ALPHA_REGISTER_SIZE];
2a1ce6ec 272
68fce50f 273 gdb_assert (TYPE_LENGTH (valtype) == 4);
fbe654c8
AH
274 gdb_assert (register_size (get_frame_arch (frame), regnum)
275 <= ALPHA_REGISTER_SIZE);
68fce50f
YQ
276 alpha_lds (get_frame_arch (frame), out, in);
277
ff2e87ac 278 put_frame_register (frame, regnum, out);
5868c862
JT
279}
280
d2427a71
RH
281\f
282/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
283 the stack. The register arguments are stored in ARG_REG_BUFFER, and
284 then moved into the register file; this simplifies the passing of a
285 large struct which extends from the registers to the stack, plus avoids
286 three ptrace invocations per word.
287
288 We don't bother tracking which register values should go in integer
289 regs or fp regs; we load the same values into both.
290
d2427a71
RH
291 If the called function is returning a structure, the address of the
292 structure to be returned is passed as a hidden first argument. */
c906108c 293
d2427a71 294static CORE_ADDR
7d9b040b 295alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
296 struct regcache *regcache, CORE_ADDR bp_addr,
297 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
298 function_call_return_method return_method,
299 CORE_ADDR struct_addr)
c906108c 300{
e17a4113 301 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 302 int i;
cf84fa6b 303 int accumulate_size = (return_method == return_method_struct) ? 8 : 0;
d2427a71 304 struct alpha_arg
c906108c 305 {
f42a0a33 306 const gdb_byte *contents;
d2427a71
RH
307 int len;
308 int offset;
309 };
8d749320 310 struct alpha_arg *alpha_args = XALLOCAVEC (struct alpha_arg, nargs);
52f0bd74 311 struct alpha_arg *m_arg;
2a1ce6ec 312 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 313 int required_arg_regs;
7d9b040b 314 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 315
c88e30c0
RH
316 /* The ABI places the address of the called function in T12. */
317 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
318
319 /* Set the return address register to point to the entry point
320 of the program, where a breakpoint lies in wait. */
321 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
322
323 /* Lay out the arguments in memory. */
d2427a71
RH
324 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
325 {
326 struct value *arg = args[i];
4991999e 327 struct type *arg_type = check_typedef (value_type (arg));
c88e30c0 328
d2427a71 329 /* Cast argument to long if necessary as the compiler does it too. */
78134374 330 switch (arg_type->code ())
c906108c 331 {
d2427a71
RH
332 case TYPE_CODE_INT:
333 case TYPE_CODE_BOOL:
334 case TYPE_CODE_CHAR:
335 case TYPE_CODE_RANGE:
336 case TYPE_CODE_ENUM:
0ede8eca 337 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 338 {
0ede8eca
RH
339 /* 32-bit values must be sign-extended to 64 bits
340 even if the base data type is unsigned. */
df4df182 341 arg_type = builtin_type (gdbarch)->builtin_int32;
0ede8eca
RH
342 arg = value_cast (arg_type, arg);
343 }
344 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
345 {
df4df182 346 arg_type = builtin_type (gdbarch)->builtin_int64;
d2427a71
RH
347 arg = value_cast (arg_type, arg);
348 }
349 break;
7b5e1cb3 350
c88e30c0
RH
351 case TYPE_CODE_FLT:
352 /* "float" arguments loaded in registers must be passed in
353 register format, aka "double". */
354 if (accumulate_size < sizeof (arg_reg_buffer)
355 && TYPE_LENGTH (arg_type) == 4)
356 {
27067745 357 arg_type = builtin_type (gdbarch)->builtin_double;
c88e30c0
RH
358 arg = value_cast (arg_type, arg);
359 }
360 /* Tru64 5.1 has a 128-bit long double, and passes this by
361 invisible reference. No one else uses this data type. */
362 else if (TYPE_LENGTH (arg_type) == 16)
363 {
364 /* Allocate aligned storage. */
365 sp = (sp & -16) - 16;
366
367 /* Write the real data into the stack. */
0fd88904 368 write_memory (sp, value_contents (arg), 16);
c88e30c0
RH
369
370 /* Construct the indirection. */
371 arg_type = lookup_pointer_type (arg_type);
372 arg = value_from_pointer (arg_type, sp);
373 }
374 break;
7b5e1cb3
RH
375
376 case TYPE_CODE_COMPLEX:
377 /* ??? The ABI says that complex values are passed as two
378 separate scalar values. This distinction only matters
379 for complex float. However, GCC does not implement this. */
380
381 /* Tru64 5.1 has a 128-bit long double, and passes this by
382 invisible reference. */
383 if (TYPE_LENGTH (arg_type) == 32)
384 {
385 /* Allocate aligned storage. */
386 sp = (sp & -16) - 16;
387
388 /* Write the real data into the stack. */
0fd88904 389 write_memory (sp, value_contents (arg), 32);
7b5e1cb3
RH
390
391 /* Construct the indirection. */
392 arg_type = lookup_pointer_type (arg_type);
393 arg = value_from_pointer (arg_type, sp);
394 }
395 break;
396
d2427a71
RH
397 default:
398 break;
c906108c 399 }
d2427a71
RH
400 m_arg->len = TYPE_LENGTH (arg_type);
401 m_arg->offset = accumulate_size;
402 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
f42a0a33 403 m_arg->contents = value_contents (arg);
c906108c
SS
404 }
405
d2427a71
RH
406 /* Determine required argument register loads, loading an argument register
407 is expensive as it uses three ptrace calls. */
408 required_arg_regs = accumulate_size / 8;
409 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
410 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 411
d2427a71 412 /* Make room for the arguments on the stack. */
c88e30c0
RH
413 if (accumulate_size < sizeof(arg_reg_buffer))
414 accumulate_size = 0;
415 else
416 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 417 sp -= accumulate_size;
c906108c 418
c88e30c0 419 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 420 sp &= ~15;
c906108c 421
d2427a71
RH
422 /* `Push' arguments on the stack. */
423 for (i = nargs; m_arg--, --i >= 0;)
c906108c 424 {
f42a0a33 425 const gdb_byte *contents = m_arg->contents;
c88e30c0
RH
426 int offset = m_arg->offset;
427 int len = m_arg->len;
428
429 /* Copy the bytes destined for registers into arg_reg_buffer. */
430 if (offset < sizeof(arg_reg_buffer))
431 {
432 if (offset + len <= sizeof(arg_reg_buffer))
433 {
434 memcpy (arg_reg_buffer + offset, contents, len);
435 continue;
436 }
437 else
438 {
439 int tlen = sizeof(arg_reg_buffer) - offset;
440 memcpy (arg_reg_buffer + offset, contents, tlen);
441 offset += tlen;
442 contents += tlen;
443 len -= tlen;
444 }
445 }
446
447 /* Everything else goes to the stack. */
448 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 449 }
cf84fa6b 450 if (return_method == return_method_struct)
e17a4113
UW
451 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
452 byte_order, struct_addr);
c906108c 453
d2427a71
RH
454 /* Load the argument registers. */
455 for (i = 0; i < required_arg_regs; i++)
456 {
b66f5587
SM
457 regcache->cooked_write (ALPHA_A0_REGNUM + i,
458 arg_reg_buffer + i * ALPHA_REGISTER_SIZE);
459 regcache->cooked_write (ALPHA_FPA0_REGNUM + i,
460 arg_reg_buffer + i * ALPHA_REGISTER_SIZE);
d2427a71 461 }
c906108c 462
09cc52fd
RH
463 /* Finally, update the stack pointer. */
464 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
465
c88e30c0 466 return sp;
c906108c
SS
467}
468
5ec2bb99
RH
469/* Extract from REGCACHE the value about to be returned from a function
470 and copy it into VALBUF. */
d2427a71 471
dc129d82 472static void
5ec2bb99 473alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
5b819568 474 gdb_byte *valbuf)
140f9984 475{
ac7936df 476 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2a1ce6ec 478 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99
RH
479 ULONGEST l;
480
78134374 481 switch (valtype->code ())
5ec2bb99
RH
482 {
483 case TYPE_CODE_FLT:
744a8059 484 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
485 {
486 case 4:
dca08e1f 487 regcache->cooked_read (ALPHA_FP0_REGNUM, raw_buffer);
e17a4113 488 alpha_sts (gdbarch, valbuf, raw_buffer);
5ec2bb99
RH
489 break;
490
491 case 8:
dca08e1f 492 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
5ec2bb99
RH
493 break;
494
24064b5c
RH
495 case 16:
496 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
497 read_memory (l, valbuf, 16);
498 break;
499
5ec2bb99 500 default:
0963b4bd
MS
501 internal_error (__FILE__, __LINE__,
502 _("unknown floating point width"));
5ec2bb99
RH
503 }
504 break;
505
7b5e1cb3 506 case TYPE_CODE_COMPLEX:
744a8059 507 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
508 {
509 case 8:
510 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
dca08e1f 511 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
7b5e1cb3
RH
512 break;
513
514 case 16:
dca08e1f
SM
515 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
516 regcache->cooked_read (ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
517 break;
518
519 case 32:
a9933661 520 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
7b5e1cb3
RH
521 read_memory (l, valbuf, 32);
522 break;
523
524 default:
0963b4bd
MS
525 internal_error (__FILE__, __LINE__,
526 _("unknown floating point width"));
7b5e1cb3
RH
527 }
528 break;
529
5ec2bb99
RH
530 default:
531 /* Assume everything else degenerates to an integer. */
532 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
744a8059 533 store_unsigned_integer (valbuf, TYPE_LENGTH (valtype), byte_order, l);
5ec2bb99
RH
534 break;
535 }
140f9984
JT
536}
537
5ec2bb99
RH
538/* Insert the given value into REGCACHE as if it was being
539 returned by a function. */
0d056799 540
d2427a71 541static void
5ec2bb99 542alpha_store_return_value (struct type *valtype, struct regcache *regcache,
5b819568 543 const gdb_byte *valbuf)
c906108c 544{
ac7936df 545 struct gdbarch *gdbarch = regcache->arch ();
2a1ce6ec 546 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99 547 ULONGEST l;
d2427a71 548
78134374 549 switch (valtype->code ())
c906108c 550 {
5ec2bb99 551 case TYPE_CODE_FLT:
744a8059 552 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
553 {
554 case 4:
e17a4113 555 alpha_lds (gdbarch, raw_buffer, valbuf);
b66f5587 556 regcache->cooked_write (ALPHA_FP0_REGNUM, raw_buffer);
f75d70cc 557 break;
5ec2bb99
RH
558
559 case 8:
b66f5587 560 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
5ec2bb99
RH
561 break;
562
24064b5c
RH
563 case 16:
564 /* FIXME: 128-bit long doubles are returned like structures:
565 by writing into indirect storage provided by the caller
566 as the first argument. */
323e0a4a 567 error (_("Cannot set a 128-bit long double return value."));
24064b5c 568
5ec2bb99 569 default:
0963b4bd
MS
570 internal_error (__FILE__, __LINE__,
571 _("unknown floating point width"));
5ec2bb99
RH
572 }
573 break;
d2427a71 574
7b5e1cb3 575 case TYPE_CODE_COMPLEX:
744a8059 576 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
577 {
578 case 8:
579 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
b66f5587 580 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
7b5e1cb3
RH
581 break;
582
583 case 16:
b66f5587
SM
584 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
585 regcache->cooked_write (ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
586 break;
587
588 case 32:
589 /* FIXME: 128-bit long doubles are returned like structures:
590 by writing into indirect storage provided by the caller
591 as the first argument. */
323e0a4a 592 error (_("Cannot set a 128-bit long double return value."));
7b5e1cb3
RH
593
594 default:
0963b4bd
MS
595 internal_error (__FILE__, __LINE__,
596 _("unknown floating point width"));
7b5e1cb3
RH
597 }
598 break;
599
5ec2bb99
RH
600 default:
601 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
602 /* 32-bit values must be sign-extended to 64 bits
603 even if the base data type is unsigned. */
744a8059 604 if (TYPE_LENGTH (valtype) == 4)
df4df182 605 valtype = builtin_type (gdbarch)->builtin_int32;
5ec2bb99
RH
606 l = unpack_long (valtype, valbuf);
607 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
608 break;
609 }
c906108c
SS
610}
611
9823e921 612static enum return_value_convention
6a3a010b 613alpha_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
614 struct type *type, struct regcache *regcache,
615 gdb_byte *readbuf, const gdb_byte *writebuf)
9823e921 616{
78134374 617 enum type_code code = type->code ();
9823e921
RH
618
619 if ((code == TYPE_CODE_STRUCT
620 || code == TYPE_CODE_UNION
621 || code == TYPE_CODE_ARRAY)
622 && gdbarch_tdep (gdbarch)->return_in_memory (type))
623 {
624 if (readbuf)
625 {
626 ULONGEST addr;
627 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
628 read_memory (addr, readbuf, TYPE_LENGTH (type));
629 }
630
631 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
632 }
633
634 if (readbuf)
635 alpha_extract_return_value (type, regcache, readbuf);
636 if (writebuf)
637 alpha_store_return_value (type, regcache, writebuf);
638
639 return RETURN_VALUE_REGISTER_CONVENTION;
640}
641
642static int
643alpha_return_in_memory_always (struct type *type)
644{
645 return 1;
646}
d2427a71 647\f
c906108c 648
04180708 649constexpr gdb_byte alpha_break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
598cc9dc 650
04180708 651typedef BP_MANIPULATION (alpha_break_insn) alpha_breakpoint;
c906108c 652
d2427a71
RH
653\f
654/* This returns the PC of the first insn after the prologue.
655 If we can't find the prologue, then return 0. */
c906108c 656
d2427a71
RH
657CORE_ADDR
658alpha_after_prologue (CORE_ADDR pc)
c906108c 659{
d2427a71
RH
660 struct symtab_and_line sal;
661 CORE_ADDR func_addr, func_end;
c906108c 662
d2427a71 663 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 664 return 0;
c906108c 665
d2427a71
RH
666 sal = find_pc_line (func_addr, 0);
667 if (sal.end < func_end)
668 return sal.end;
c5aa993b 669
d2427a71
RH
670 /* The line after the prologue is after the end of the function. In this
671 case, tell the caller to find the prologue the hard way. */
672 return 0;
c906108c
SS
673}
674
d2427a71
RH
675/* Read an instruction from memory at PC, looking through breakpoints. */
676
677unsigned int
e17a4113 678alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 679{
e17a4113 680 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e8d2d628 681 gdb_byte buf[ALPHA_INSN_SIZE];
d09f2c3f 682 int res;
c5aa993b 683
d09f2c3f
PA
684 res = target_read_memory (pc, buf, sizeof (buf));
685 if (res != 0)
686 memory_error (TARGET_XFER_E_IO, pc);
e17a4113 687 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
d2427a71 688}
c5aa993b 689
d2427a71
RH
690/* To skip prologues, I use this predicate. Returns either PC itself
691 if the code at PC does not look like a function prologue; otherwise
692 returns an address that (if we're lucky) follows the prologue. If
693 LENIENT, then we must skip everything which is involved in setting
694 up the frame (it's OK to skip more, just so long as we don't skip
695 anything which might clobber the registers which are being saved. */
c906108c 696
d2427a71 697static CORE_ADDR
6093d2eb 698alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71
RH
699{
700 unsigned long inst;
701 int offset;
702 CORE_ADDR post_prologue_pc;
e8d2d628 703 gdb_byte buf[ALPHA_INSN_SIZE];
c906108c 704
d2427a71
RH
705 /* Silently return the unaltered pc upon memory errors.
706 This could happen on OSF/1 if decode_line_1 tries to skip the
707 prologue for quickstarted shared library functions when the
708 shared library is not yet mapped in.
709 Reading target memory is slow over serial lines, so we perform
710 this check only if the target has shared libraries (which all
711 Alpha targets do). */
e8d2d628 712 if (target_read_memory (pc, buf, sizeof (buf)))
d2427a71 713 return pc;
c906108c 714
d2427a71
RH
715 /* See if we can determine the end of the prologue via the symbol table.
716 If so, then return either PC, or the PC after the prologue, whichever
717 is greater. */
c906108c 718
d2427a71
RH
719 post_prologue_pc = alpha_after_prologue (pc);
720 if (post_prologue_pc != 0)
325fac50 721 return std::max (pc, post_prologue_pc);
c906108c 722
d2427a71
RH
723 /* Can't determine prologue from the symbol table, need to examine
724 instructions. */
dc1b0db2 725
0963b4bd 726 /* Skip the typical prologue instructions. These are the stack adjustment
d2427a71
RH
727 instruction and the instructions that save registers on the stack
728 or in the gcc frame. */
e8d2d628 729 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
d2427a71 730 {
e17a4113 731 inst = alpha_read_insn (gdbarch, pc + offset);
c906108c 732
d2427a71
RH
733 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
734 continue;
735 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
736 continue;
737 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
738 continue;
739 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
740 continue;
c906108c 741
d2427a71
RH
742 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
743 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
744 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
745 continue;
c906108c 746
d2427a71
RH
747 if (inst == 0x47de040f) /* bis sp,sp,fp */
748 continue;
749 if (inst == 0x47fe040f) /* bis zero,sp,fp */
750 continue;
c906108c 751
d2427a71 752 break;
c906108c 753 }
d2427a71
RH
754 return pc + offset;
755}
c906108c 756
46ad3598
UW
757\f
758static const int ldl_l_opcode = 0x2a;
759static const int ldq_l_opcode = 0x2b;
760static const int stl_c_opcode = 0x2e;
761static const int stq_c_opcode = 0x2f;
762
763/* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
764 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
765 is found, attempt to step through it. A breakpoint is placed at the end of
766 the sequence. */
767
a0ff9e1a 768static std::vector<CORE_ADDR>
68f81d60 769alpha_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
46ad3598 770{
70ab8ccd 771 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
46ad3598
UW
772 CORE_ADDR loc = pc;
773 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
774 unsigned int insn = alpha_read_insn (gdbarch, loc);
775 int insn_count;
776 int index;
777 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
778 const int atomic_sequence_length = 16; /* Instruction sequence length. */
779 int bc_insn_count = 0; /* Conditional branch instruction count. */
780
781 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
782 if (INSN_OPCODE (insn) != ldl_l_opcode
783 && INSN_OPCODE (insn) != ldq_l_opcode)
a0ff9e1a 784 return {};
46ad3598
UW
785
786 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
787 instructions. */
788 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
789 {
790 loc += ALPHA_INSN_SIZE;
791 insn = alpha_read_insn (gdbarch, loc);
792
793 /* Assume that there is at most one branch in the atomic
794 sequence. If a branch is found, put a breakpoint in
795 its destination address. */
796 if (INSN_OPCODE (insn) >= br_opcode)
797 {
798 int immediate = (insn & 0x001fffff) << 2;
799
800 immediate = (immediate ^ 0x400000) - 0x400000;
801
802 if (bc_insn_count >= 1)
a0ff9e1a
SM
803 return {}; /* More than one branch found, fallback
804 to the standard single-step code. */
46ad3598
UW
805
806 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
807
808 bc_insn_count++;
809 last_breakpoint++;
810 }
811
812 if (INSN_OPCODE (insn) == stl_c_opcode
813 || INSN_OPCODE (insn) == stq_c_opcode)
814 break;
815 }
816
817 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
818 if (INSN_OPCODE (insn) != stl_c_opcode
819 && INSN_OPCODE (insn) != stq_c_opcode)
a0ff9e1a 820 return {};
46ad3598
UW
821
822 closing_insn = loc;
823 loc += ALPHA_INSN_SIZE;
824
825 /* Insert a breakpoint right after the end of the atomic sequence. */
826 breaks[0] = loc;
827
828 /* Check for duplicated breakpoints. Check also for a breakpoint
829 placed (branch instruction's destination) anywhere in sequence. */
830 if (last_breakpoint
831 && (breaks[1] == breaks[0]
832 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
833 last_breakpoint = 0;
834
a0ff9e1a
SM
835 std::vector<CORE_ADDR> next_pcs;
836
46ad3598 837 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 838 next_pcs.push_back (breaks[index]);
46ad3598 839
93f9a11f 840 return next_pcs;
46ad3598
UW
841}
842
d2427a71
RH
843\f
844/* Figure out where the longjmp will land.
845 We expect the first arg to be a pointer to the jmp_buf structure from
846 which we extract the PC (JB_PC) that we will land at. The PC is copied
847 into the "pc". This routine returns true on success. */
c906108c
SS
848
849static int
60ade65d 850alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 851{
e17a4113
UW
852 struct gdbarch *gdbarch = get_frame_arch (frame);
853 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
854 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 855 CORE_ADDR jb_addr;
2a1ce6ec 856 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 857
60ade65d 858 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
c906108c 859
d2427a71
RH
860 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
861 raw_buffer, tdep->jb_elt_size))
c906108c 862 return 0;
d2427a71 863
e17a4113 864 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
d2427a71 865 return 1;
c906108c
SS
866}
867
d2427a71
RH
868\f
869/* Frame unwinder for signal trampolines. We use alpha tdep bits that
870 describe the location and shape of the sigcontext structure. After
871 that, all registers are in memory, so it's easy. */
872/* ??? Shouldn't we be able to do this generically, rather than with
873 OSABI data specific to Alpha? */
874
875struct alpha_sigtramp_unwind_cache
c906108c 876{
d2427a71
RH
877 CORE_ADDR sigcontext_addr;
878};
c906108c 879
d2427a71 880static struct alpha_sigtramp_unwind_cache *
6834c9bb 881alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
882 void **this_prologue_cache)
883{
884 struct alpha_sigtramp_unwind_cache *info;
885 struct gdbarch_tdep *tdep;
c906108c 886
d2427a71 887 if (*this_prologue_cache)
9a3c8263 888 return (struct alpha_sigtramp_unwind_cache *) *this_prologue_cache;
c906108c 889
d2427a71
RH
890 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
891 *this_prologue_cache = info;
c906108c 892
6834c9bb
JB
893 tdep = gdbarch_tdep (get_frame_arch (this_frame));
894 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
c906108c 895
d2427a71 896 return info;
c906108c
SS
897}
898
138e7be5
MK
899/* Return the address of REGNUM in a sigtramp frame. Since this is
900 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 901
d2427a71 902static CORE_ADDR
be8626e0
MD
903alpha_sigtramp_register_address (struct gdbarch *gdbarch,
904 CORE_ADDR sigcontext_addr, int regnum)
d2427a71 905{
be8626e0 906 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138e7be5
MK
907
908 if (regnum >= 0 && regnum < 32)
909 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
910 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
911 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
912 else if (regnum == ALPHA_PC_REGNUM)
913 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 914
d2427a71 915 return 0;
c906108c
SS
916}
917
d2427a71
RH
918/* Given a GDB frame, determine the address of the calling function's
919 frame. This will be used to create a new GDB frame struct. */
140f9984 920
dc129d82 921static void
6834c9bb 922alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
d2427a71
RH
923 void **this_prologue_cache,
924 struct frame_id *this_id)
c906108c 925{
6834c9bb 926 struct gdbarch *gdbarch = get_frame_arch (this_frame);
be8626e0 927 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71 928 struct alpha_sigtramp_unwind_cache *info
6834c9bb 929 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71
RH
930 CORE_ADDR stack_addr, code_addr;
931
932 /* If the OSABI couldn't locate the sigcontext, give up. */
933 if (info->sigcontext_addr == 0)
934 return;
935
936 /* If we have dynamic signal trampolines, find their start.
937 If we do not, then we must assume there is a symbol record
938 that can provide the start address. */
d2427a71 939 if (tdep->dynamic_sigtramp_offset)
c906108c 940 {
d2427a71 941 int offset;
6834c9bb 942 code_addr = get_frame_pc (this_frame);
e17a4113 943 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
d2427a71
RH
944 if (offset >= 0)
945 code_addr -= offset;
c906108c 946 else
d2427a71 947 code_addr = 0;
c906108c 948 }
d2427a71 949 else
6834c9bb 950 code_addr = get_frame_func (this_frame);
c906108c 951
d2427a71 952 /* The stack address is trivially read from the sigcontext. */
be8626e0 953 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
d2427a71 954 ALPHA_SP_REGNUM);
6834c9bb 955 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
b21fd293 956 ALPHA_REGISTER_SIZE);
c906108c 957
d2427a71 958 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
959}
960
d2427a71 961/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 962
6834c9bb
JB
963static struct value *
964alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
965 void **this_prologue_cache, int regnum)
c906108c 966{
d2427a71 967 struct alpha_sigtramp_unwind_cache *info
6834c9bb 968 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71 969 CORE_ADDR addr;
c906108c 970
d2427a71 971 if (info->sigcontext_addr != 0)
c906108c 972 {
d2427a71 973 /* All integer and fp registers are stored in memory. */
6834c9bb 974 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
be8626e0 975 info->sigcontext_addr, regnum);
d2427a71 976 if (addr != 0)
6834c9bb 977 return frame_unwind_got_memory (this_frame, regnum, addr);
c906108c
SS
978 }
979
d2427a71
RH
980 /* This extra register may actually be in the sigcontext, but our
981 current description of it in alpha_sigtramp_frame_unwind_cache
982 doesn't include it. Too bad. Fall back on whatever's in the
983 outer frame. */
6834c9bb 984 return frame_unwind_got_register (this_frame, regnum, regnum);
d2427a71 985}
c906108c 986
6834c9bb
JB
987static int
988alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
989 struct frame_info *this_frame,
990 void **this_prologue_cache)
d2427a71 991{
6834c9bb
JB
992 struct gdbarch *gdbarch = get_frame_arch (this_frame);
993 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 994 const char *name;
c906108c 995
f2524b93 996 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
85102364 997 look at tramp-frame.h and other simpler per-architecture
f2524b93
AC
998 sigtramp unwinders. */
999
1000 /* We shouldn't even bother to try if the OSABI didn't register a
85102364 1001 sigcontext_addr handler or pc_in_sigtramp handler. */
ec7cc0e8 1002 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
6834c9bb 1003 return 0;
ec7cc0e8 1004 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
6834c9bb 1005 return 0;
c906108c 1006
d2427a71
RH
1007 /* Otherwise we should be in a signal frame. */
1008 find_pc_partial_function (pc, &name, NULL, NULL);
e17a4113 1009 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
6834c9bb 1010 return 1;
c906108c 1011
6834c9bb 1012 return 0;
c906108c 1013}
6834c9bb
JB
1014
1015static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1016 SIGTRAMP_FRAME,
8fbca658 1017 default_frame_unwind_stop_reason,
6834c9bb
JB
1018 alpha_sigtramp_frame_this_id,
1019 alpha_sigtramp_frame_prev_register,
1020 NULL,
1021 alpha_sigtramp_frame_sniffer
1022};
1023
d2427a71 1024\f
c906108c 1025
d2427a71
RH
1026/* Heuristic_proc_start may hunt through the text section for a long
1027 time across a 2400 baud serial line. Allows the user to limit this
1028 search. */
44096aee 1029static int heuristic_fence_post = 0;
c906108c 1030
d2427a71
RH
1031/* Attempt to locate the start of the function containing PC. We assume that
1032 the previous function ends with an about_to_return insn. Not foolproof by
1033 any means, since gcc is happy to put the epilogue in the middle of a
1034 function. But we're guessing anyway... */
c906108c 1035
d2427a71 1036static CORE_ADDR
be8626e0 1037alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71 1038{
be8626e0 1039 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71
RH
1040 CORE_ADDR last_non_nop = pc;
1041 CORE_ADDR fence = pc - heuristic_fence_post;
1042 CORE_ADDR orig_pc = pc;
fbe586ae 1043 CORE_ADDR func;
d6b48e9c 1044 struct inferior *inf;
9e0b60a8 1045
d2427a71
RH
1046 if (pc == 0)
1047 return 0;
9e0b60a8 1048
fbe586ae
RH
1049 /* First see if we can find the start of the function from minimal
1050 symbol information. This can succeed with a binary that doesn't
1051 have debug info, but hasn't been stripped. */
1052 func = get_pc_function_start (pc);
1053 if (func)
1054 return func;
1055
44096aee 1056 if (heuristic_fence_post == -1
d2427a71
RH
1057 || fence < tdep->vm_min_address)
1058 fence = tdep->vm_min_address;
c906108c 1059
d2427a71
RH
1060 /* Search back for previous return; also stop at a 0, which might be
1061 seen for instance before the start of a code section. Don't include
1062 nops, since this usually indicates padding between functions. */
e8d2d628 1063 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
c906108c 1064 {
e17a4113 1065 unsigned int insn = alpha_read_insn (gdbarch, pc);
d2427a71 1066 switch (insn)
c906108c 1067 {
d2427a71
RH
1068 case 0: /* invalid insn */
1069 case 0x6bfa8001: /* ret $31,($26),1 */
1070 return last_non_nop;
1071
1072 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1073 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1074 break;
1075
1076 default:
1077 last_non_nop = pc;
1078 break;
c906108c 1079 }
d2427a71 1080 }
c906108c 1081
d6b48e9c
PA
1082 inf = current_inferior ();
1083
d2427a71
RH
1084 /* It's not clear to me why we reach this point when stopping quietly,
1085 but with this test, at least we don't print out warnings for every
1086 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
16c381f0 1087 if (inf->control.stop_soon == NO_STOP_QUIETLY)
d2427a71
RH
1088 {
1089 static int blurb_printed = 0;
c906108c 1090
d2427a71 1091 if (fence == tdep->vm_min_address)
323e0a4a 1092 warning (_("Hit beginning of text section without finding \
5af949e3 1093enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1094 else
323e0a4a 1095 warning (_("Hit heuristic-fence-post without finding \
5af949e3 1096enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1097
d2427a71
RH
1098 if (!blurb_printed)
1099 {
323e0a4a 1100 printf_filtered (_("\
d2427a71
RH
1101This warning occurs if you are debugging a function without any symbols\n\
1102(for example, in a stripped executable). In that case, you may wish to\n\
1103increase the size of the search with the `set heuristic-fence-post' command.\n\
1104\n\
1105Otherwise, you told GDB there was a function where there isn't one, or\n\
323e0a4a 1106(more likely) you have encountered a bug in GDB.\n"));
d2427a71
RH
1107 blurb_printed = 1;
1108 }
1109 }
c906108c 1110
d2427a71
RH
1111 return 0;
1112}
c906108c 1113
07ea644b
MD
1114/* Fallback alpha frame unwinder. Uses instruction scanning and knows
1115 something about the traditional layout of alpha stack frames. */
1116
1117struct alpha_heuristic_unwind_cache
1118{
1119 CORE_ADDR vfp;
1120 CORE_ADDR start_pc;
1121 struct trad_frame_saved_reg *saved_regs;
1122 int return_reg;
1123};
1124
3a48e6ff
JG
1125/* If a probing loop sequence starts at PC, simulate it and compute
1126 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1127 FRAME_SIZE unchanged. */
1128
1129static void
1130alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1131 int *frame_size)
1132{
1133 CORE_ADDR cur_pc = *pc;
1134 int cur_frame_size = *frame_size;
1135 int nb_of_iterations, reg_index, reg_probe;
1136 unsigned int insn;
1137
1138 /* The following pattern is recognized as a probing loop:
1139
1140 lda REG_INDEX,NB_OF_ITERATIONS
1141 lda REG_PROBE,<immediate>(sp)
1142
1143 LOOP_START:
1144 stq zero,<immediate>(REG_PROBE)
1145 subq REG_INDEX,0x1,REG_INDEX
1146 lda REG_PROBE,<immediate>(REG_PROBE)
1147 bne REG_INDEX, LOOP_START
1148
1149 lda sp,<immediate>(REG_PROBE)
1150
1151 If anything different is found, the function returns without
1152 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
0963b4bd 1153 after this sequence, and FRAME_SIZE will be updated. */
3a48e6ff
JG
1154
1155 /* lda REG_INDEX,NB_OF_ITERATIONS */
1156
1157 insn = alpha_read_insn (gdbarch, cur_pc);
1158 if (INSN_OPCODE (insn) != lda_opcode)
1159 return;
1160 reg_index = MEM_RA (insn);
1161 nb_of_iterations = MEM_DISP (insn);
1162
1163 /* lda REG_PROBE,<immediate>(sp) */
1164
1165 cur_pc += ALPHA_INSN_SIZE;
1166 insn = alpha_read_insn (gdbarch, cur_pc);
1167 if (INSN_OPCODE (insn) != lda_opcode
1168 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1169 return;
1170 reg_probe = MEM_RA (insn);
1171 cur_frame_size -= MEM_DISP (insn);
1172
1173 /* stq zero,<immediate>(REG_PROBE) */
1174
1175 cur_pc += ALPHA_INSN_SIZE;
1176 insn = alpha_read_insn (gdbarch, cur_pc);
1177 if (INSN_OPCODE (insn) != stq_opcode
1178 || MEM_RA (insn) != 0x1f
1179 || MEM_RB (insn) != reg_probe)
1180 return;
1181
1182 /* subq REG_INDEX,0x1,REG_INDEX */
1183
1184 cur_pc += ALPHA_INSN_SIZE;
1185 insn = alpha_read_insn (gdbarch, cur_pc);
1186 if (INSN_OPCODE (insn) != subq_opcode
1187 || !OPR_HAS_IMMEDIATE (insn)
1188 || OPR_FUNCTION (insn) != subq_function
1189 || OPR_LIT(insn) != 1
1190 || OPR_RA (insn) != reg_index
1191 || OPR_RC (insn) != reg_index)
1192 return;
1193
1194 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1195
1196 cur_pc += ALPHA_INSN_SIZE;
1197 insn = alpha_read_insn (gdbarch, cur_pc);
1198 if (INSN_OPCODE (insn) != lda_opcode
1199 || MEM_RA (insn) != reg_probe
1200 || MEM_RB (insn) != reg_probe)
1201 return;
1202 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1203
1204 /* bne REG_INDEX, LOOP_START */
1205
1206 cur_pc += ALPHA_INSN_SIZE;
1207 insn = alpha_read_insn (gdbarch, cur_pc);
1208 if (INSN_OPCODE (insn) != bne_opcode
1209 || MEM_RA (insn) != reg_index)
1210 return;
1211
1212 /* lda sp,<immediate>(REG_PROBE) */
1213
1214 cur_pc += ALPHA_INSN_SIZE;
1215 insn = alpha_read_insn (gdbarch, cur_pc);
1216 if (INSN_OPCODE (insn) != lda_opcode
1217 || MEM_RA (insn) != ALPHA_SP_REGNUM
1218 || MEM_RB (insn) != reg_probe)
1219 return;
1220 cur_frame_size -= MEM_DISP (insn);
1221
1222 *pc = cur_pc;
1223 *frame_size = cur_frame_size;
1224}
1225
fbe586ae 1226static struct alpha_heuristic_unwind_cache *
6834c9bb 1227alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
1228 void **this_prologue_cache,
1229 CORE_ADDR start_pc)
1230{
6834c9bb 1231 struct gdbarch *gdbarch = get_frame_arch (this_frame);
d2427a71
RH
1232 struct alpha_heuristic_unwind_cache *info;
1233 ULONGEST val;
1234 CORE_ADDR limit_pc, cur_pc;
1235 int frame_reg, frame_size, return_reg, reg;
c906108c 1236
d2427a71 1237 if (*this_prologue_cache)
9a3c8263 1238 return (struct alpha_heuristic_unwind_cache *) *this_prologue_cache;
c906108c 1239
d2427a71
RH
1240 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1241 *this_prologue_cache = info;
6834c9bb 1242 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1243
6834c9bb 1244 limit_pc = get_frame_pc (this_frame);
d2427a71 1245 if (start_pc == 0)
be8626e0 1246 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
d2427a71 1247 info->start_pc = start_pc;
c906108c 1248
d2427a71
RH
1249 frame_reg = ALPHA_SP_REGNUM;
1250 frame_size = 0;
1251 return_reg = -1;
c906108c 1252
d2427a71
RH
1253 /* If we've identified a likely place to start, do code scanning. */
1254 if (start_pc != 0)
c5aa993b 1255 {
d2427a71
RH
1256 /* Limit the forward search to 50 instructions. */
1257 if (start_pc + 200 < limit_pc)
1258 limit_pc = start_pc + 200;
c5aa993b 1259
e8d2d628 1260 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
d2427a71 1261 {
e17a4113 1262 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1263
d2427a71
RH
1264 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1265 {
1266 if (word & 0x8000)
1267 {
1268 /* Consider only the first stack allocation instruction
0963b4bd 1269 to contain the static size of the frame. */
d2427a71
RH
1270 if (frame_size == 0)
1271 frame_size = (-word) & 0xffff;
1272 }
1273 else
1274 {
1275 /* Exit loop if a positive stack adjustment is found, which
1276 usually means that the stack cleanup code in the function
1277 epilogue is reached. */
1278 break;
1279 }
1280 }
1281 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1282 {
1283 reg = (word & 0x03e00000) >> 21;
1284
d15bfd3a
AC
1285 /* Ignore this instruction if we have already encountered
1286 an instruction saving the same register earlier in the
1287 function code. The current instruction does not tell
1288 us where the original value upon function entry is saved.
1289 All it says is that the function we are scanning reused
1290 that register for some computation of its own, and is now
1291 saving its result. */
07ea644b 1292 if (trad_frame_addr_p(info->saved_regs, reg))
d15bfd3a
AC
1293 continue;
1294
d2427a71
RH
1295 if (reg == 31)
1296 continue;
1297
1298 /* Do not compute the address where the register was saved yet,
1299 because we don't know yet if the offset will need to be
1300 relative to $sp or $fp (we can not compute the address
1301 relative to $sp if $sp is updated during the execution of
1302 the current subroutine, for instance when doing some alloca).
1303 So just store the offset for the moment, and compute the
1304 address later when we know whether this frame has a frame
1305 pointer or not. */
1306 /* Hack: temporarily add one, so that the offset is non-zero
1307 and we can tell which registers have save offsets below. */
07ea644b 1308 info->saved_regs[reg].addr = (word & 0xffff) + 1;
d2427a71
RH
1309
1310 /* Starting with OSF/1-3.2C, the system libraries are shipped
1311 without local symbols, but they still contain procedure
1312 descriptors without a symbol reference. GDB is currently
1313 unable to find these procedure descriptors and uses
1314 heuristic_proc_desc instead.
1315 As some low level compiler support routines (__div*, __add*)
1316 use a non-standard return address register, we have to
1317 add some heuristics to determine the return address register,
1318 or stepping over these routines will fail.
1319 Usually the return address register is the first register
1320 saved on the stack, but assembler optimization might
1321 rearrange the register saves.
1322 So we recognize only a few registers (t7, t9, ra) within
1323 the procedure prologue as valid return address registers.
1324 If we encounter a return instruction, we extract the
7a9dd1b2 1325 return address register from it.
d2427a71
RH
1326
1327 FIXME: Rewriting GDB to access the procedure descriptors,
0963b4bd
MS
1328 e.g. via the minimal symbol table, might obviate this
1329 hack. */
d2427a71
RH
1330 if (return_reg == -1
1331 && cur_pc < (start_pc + 80)
1332 && (reg == ALPHA_T7_REGNUM
1333 || reg == ALPHA_T9_REGNUM
1334 || reg == ALPHA_RA_REGNUM))
1335 return_reg = reg;
1336 }
1337 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1338 return_reg = (word >> 16) & 0x1f;
1339 else if (word == 0x47de040f) /* bis sp,sp,fp */
1340 frame_reg = ALPHA_GCC_FP_REGNUM;
1341 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1342 frame_reg = ALPHA_GCC_FP_REGNUM;
3a48e6ff
JG
1343
1344 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
d2427a71 1345 }
c5aa993b 1346
d2427a71
RH
1347 /* If we haven't found a valid return address register yet, keep
1348 searching in the procedure prologue. */
1349 if (return_reg == -1)
1350 {
1351 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1352 {
e17a4113 1353 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1354
d2427a71
RH
1355 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1356 {
1357 reg = (word & 0x03e00000) >> 21;
1358 if (reg == ALPHA_T7_REGNUM
1359 || reg == ALPHA_T9_REGNUM
1360 || reg == ALPHA_RA_REGNUM)
1361 {
1362 return_reg = reg;
1363 break;
1364 }
1365 }
1366 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1367 {
1368 return_reg = (word >> 16) & 0x1f;
1369 break;
1370 }
85b32d22 1371
e8d2d628 1372 cur_pc += ALPHA_INSN_SIZE;
d2427a71
RH
1373 }
1374 }
c906108c 1375 }
c906108c 1376
d2427a71
RH
1377 /* Failing that, do default to the customary RA. */
1378 if (return_reg == -1)
1379 return_reg = ALPHA_RA_REGNUM;
1380 info->return_reg = return_reg;
f8453e34 1381
6834c9bb 1382 val = get_frame_register_unsigned (this_frame, frame_reg);
d2427a71 1383 info->vfp = val + frame_size;
c906108c 1384
d2427a71
RH
1385 /* Convert offsets to absolute addresses. See above about adding
1386 one to the offsets to make all detected offsets non-zero. */
1387 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
07ea644b
MD
1388 if (trad_frame_addr_p(info->saved_regs, reg))
1389 info->saved_regs[reg].addr += val - 1;
d2427a71 1390
bfd66dd9
JB
1391 /* The stack pointer of the previous frame is computed by popping
1392 the current stack frame. */
1393 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1394 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1395
d2427a71 1396 return info;
c906108c 1397}
c906108c 1398
d2427a71
RH
1399/* Given a GDB frame, determine the address of the calling function's
1400 frame. This will be used to create a new GDB frame struct. */
1401
fbe586ae 1402static void
6834c9bb
JB
1403alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1404 void **this_prologue_cache,
1405 struct frame_id *this_id)
c906108c 1406{
d2427a71 1407 struct alpha_heuristic_unwind_cache *info
6834c9bb 1408 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1409
d2427a71 1410 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1411}
1412
d2427a71
RH
1413/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1414
6834c9bb
JB
1415static struct value *
1416alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1417 void **this_prologue_cache, int regnum)
c906108c 1418{
d2427a71 1419 struct alpha_heuristic_unwind_cache *info
6834c9bb 1420 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
d2427a71
RH
1421
1422 /* The PC of the previous frame is stored in the link register of
1423 the current frame. Frob regnum so that we pull the value from
1424 the correct place. */
1425 if (regnum == ALPHA_PC_REGNUM)
1426 regnum = info->return_reg;
1427
6834c9bb 1428 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
95b80706
JT
1429}
1430
d2427a71
RH
1431static const struct frame_unwind alpha_heuristic_frame_unwind = {
1432 NORMAL_FRAME,
8fbca658 1433 default_frame_unwind_stop_reason,
d2427a71 1434 alpha_heuristic_frame_this_id,
6834c9bb
JB
1435 alpha_heuristic_frame_prev_register,
1436 NULL,
1437 default_frame_sniffer
d2427a71 1438};
c906108c 1439
fbe586ae 1440static CORE_ADDR
6834c9bb 1441alpha_heuristic_frame_base_address (struct frame_info *this_frame,
d2427a71 1442 void **this_prologue_cache)
c906108c 1443{
d2427a71 1444 struct alpha_heuristic_unwind_cache *info
6834c9bb 1445 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1446
d2427a71 1447 return info->vfp;
c906108c
SS
1448}
1449
d2427a71
RH
1450static const struct frame_base alpha_heuristic_frame_base = {
1451 &alpha_heuristic_frame_unwind,
1452 alpha_heuristic_frame_base_address,
1453 alpha_heuristic_frame_base_address,
1454 alpha_heuristic_frame_base_address
1455};
1456
c906108c 1457/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1458 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1459
1460static void
eb4c3f4a
TT
1461reinit_frame_cache_sfunc (const char *args,
1462 int from_tty, struct cmd_list_element *c)
c906108c
SS
1463{
1464 reinit_frame_cache ();
1465}
98a8e1e5
RH
1466\f
1467/* Helper routines for alpha*-nat.c files to move register sets to and
1468 from core files. The UNIQUE pointer is allowed to be NULL, as most
1469 targets don't supply this value in their core files. */
1470
1471void
390c1522
UW
1472alpha_supply_int_regs (struct regcache *regcache, int regno,
1473 const void *r0_r30, const void *pc, const void *unique)
98a8e1e5 1474{
9a3c8263 1475 const gdb_byte *regs = (const gdb_byte *) r0_r30;
98a8e1e5
RH
1476 int i;
1477
1478 for (i = 0; i < 31; ++i)
1479 if (regno == i || regno == -1)
73e1c03f 1480 regcache->raw_supply (i, regs + i * 8);
98a8e1e5
RH
1481
1482 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
4a1be8d2
PA
1483 {
1484 const gdb_byte zero[8] = { 0 };
1485
73e1c03f 1486 regcache->raw_supply (ALPHA_ZERO_REGNUM, zero);
4a1be8d2 1487 }
98a8e1e5
RH
1488
1489 if (regno == ALPHA_PC_REGNUM || regno == -1)
73e1c03f 1490 regcache->raw_supply (ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1491
1492 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
73e1c03f 1493 regcache->raw_supply (ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1494}
1495
1496void
390c1522
UW
1497alpha_fill_int_regs (const struct regcache *regcache,
1498 int regno, void *r0_r30, void *pc, void *unique)
98a8e1e5 1499{
9a3c8263 1500 gdb_byte *regs = (gdb_byte *) r0_r30;
98a8e1e5
RH
1501 int i;
1502
1503 for (i = 0; i < 31; ++i)
1504 if (regno == i || regno == -1)
34a79281 1505 regcache->raw_collect (i, regs + i * 8);
98a8e1e5
RH
1506
1507 if (regno == ALPHA_PC_REGNUM || regno == -1)
34a79281 1508 regcache->raw_collect (ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1509
1510 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
34a79281 1511 regcache->raw_collect (ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1512}
1513
1514void
390c1522
UW
1515alpha_supply_fp_regs (struct regcache *regcache, int regno,
1516 const void *f0_f30, const void *fpcr)
98a8e1e5 1517{
9a3c8263 1518 const gdb_byte *regs = (const gdb_byte *) f0_f30;
98a8e1e5
RH
1519 int i;
1520
1521 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1522 if (regno == i || regno == -1)
73e1c03f 1523 regcache->raw_supply (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1524
1525 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
73e1c03f 1526 regcache->raw_supply (ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1527}
1528
1529void
390c1522
UW
1530alpha_fill_fp_regs (const struct regcache *regcache,
1531 int regno, void *f0_f30, void *fpcr)
98a8e1e5 1532{
9a3c8263 1533 gdb_byte *regs = (gdb_byte *) f0_f30;
98a8e1e5
RH
1534 int i;
1535
1536 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1537 if (regno == i || regno == -1)
34a79281 1538 regcache->raw_collect (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1539
1540 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
34a79281 1541 regcache->raw_collect (ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1542}
1543
d2427a71 1544\f
0de94d4b
JB
1545
1546/* Return nonzero if the G_floating register value in REG is equal to
1547 zero for FP control instructions. */
1548
1549static int
1550fp_register_zero_p (LONGEST reg)
1551{
1552 /* Check that all bits except the sign bit are zero. */
1553 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1554
1555 return ((reg & zero_mask) == 0);
1556}
1557
1558/* Return the value of the sign bit for the G_floating register
1559 value held in REG. */
1560
1561static int
1562fp_register_sign_bit (LONGEST reg)
1563{
1564 const LONGEST sign_mask = (LONGEST) 1 << 63;
1565
1566 return ((reg & sign_mask) != 0);
1567}
1568
ec32e4be
JT
1569/* alpha_software_single_step() is called just before we want to resume
1570 the inferior, if we want to single-step it but there is no hardware
1571 or kernel single-step support (NetBSD on Alpha, for example). We find
e0cd558a 1572 the target of the coming instruction and breakpoint it. */
ec32e4be
JT
1573
1574static CORE_ADDR
7ab2d087 1575alpha_next_pc (struct regcache *regcache, CORE_ADDR pc)
ec32e4be 1576{
ac7936df 1577 struct gdbarch *gdbarch = regcache->arch ();
ec32e4be
JT
1578 unsigned int insn;
1579 unsigned int op;
551e4f2e 1580 int regno;
ec32e4be
JT
1581 int offset;
1582 LONGEST rav;
1583
e17a4113 1584 insn = alpha_read_insn (gdbarch, pc);
ec32e4be 1585
0963b4bd 1586 /* Opcode is top 6 bits. */
ec32e4be
JT
1587 op = (insn >> 26) & 0x3f;
1588
1589 if (op == 0x1a)
1590 {
1591 /* Jump format: target PC is:
1592 RB & ~3 */
7ab2d087 1593 return (regcache_raw_get_unsigned (regcache, (insn >> 16) & 0x1f) & ~3);
ec32e4be
JT
1594 }
1595
1596 if ((op & 0x30) == 0x30)
1597 {
1598 /* Branch format: target PC is:
1599 (new PC) + (4 * sext(displacement)) */
f8bf5763
PM
1600 if (op == 0x30 /* BR */
1601 || op == 0x34) /* BSR */
ec32e4be
JT
1602 {
1603 branch_taken:
1604 offset = (insn & 0x001fffff);
1605 if (offset & 0x00100000)
1606 offset |= 0xffe00000;
e8d2d628
MK
1607 offset *= ALPHA_INSN_SIZE;
1608 return (pc + ALPHA_INSN_SIZE + offset);
ec32e4be
JT
1609 }
1610
1611 /* Need to determine if branch is taken; read RA. */
551e4f2e
JB
1612 regno = (insn >> 21) & 0x1f;
1613 switch (op)
1614 {
1615 case 0x31: /* FBEQ */
1616 case 0x36: /* FBGE */
1617 case 0x37: /* FBGT */
1618 case 0x33: /* FBLE */
1619 case 0x32: /* FBLT */
1620 case 0x35: /* FBNE */
e17a4113 1621 regno += gdbarch_fp0_regnum (gdbarch);
551e4f2e
JB
1622 }
1623
7ab2d087 1624 rav = regcache_raw_get_signed (regcache, regno);
0de94d4b 1625
ec32e4be
JT
1626 switch (op)
1627 {
1628 case 0x38: /* BLBC */
1629 if ((rav & 1) == 0)
1630 goto branch_taken;
1631 break;
1632 case 0x3c: /* BLBS */
1633 if (rav & 1)
1634 goto branch_taken;
1635 break;
1636 case 0x39: /* BEQ */
1637 if (rav == 0)
1638 goto branch_taken;
1639 break;
1640 case 0x3d: /* BNE */
1641 if (rav != 0)
1642 goto branch_taken;
1643 break;
1644 case 0x3a: /* BLT */
1645 if (rav < 0)
1646 goto branch_taken;
1647 break;
1648 case 0x3b: /* BLE */
1649 if (rav <= 0)
1650 goto branch_taken;
1651 break;
1652 case 0x3f: /* BGT */
1653 if (rav > 0)
1654 goto branch_taken;
1655 break;
1656 case 0x3e: /* BGE */
1657 if (rav >= 0)
1658 goto branch_taken;
1659 break;
d2427a71 1660
0de94d4b
JB
1661 /* Floating point branches. */
1662
1663 case 0x31: /* FBEQ */
1664 if (fp_register_zero_p (rav))
1665 goto branch_taken;
1666 break;
1667 case 0x36: /* FBGE */
1668 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1669 goto branch_taken;
1670 break;
1671 case 0x37: /* FBGT */
1672 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1673 goto branch_taken;
1674 break;
1675 case 0x33: /* FBLE */
1676 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1677 goto branch_taken;
1678 break;
1679 case 0x32: /* FBLT */
1680 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1681 goto branch_taken;
1682 break;
1683 case 0x35: /* FBNE */
1684 if (! fp_register_zero_p (rav))
1685 goto branch_taken;
1686 break;
ec32e4be
JT
1687 }
1688 }
1689
1690 /* Not a branch or branch not taken; target PC is:
1691 pc + 4 */
e8d2d628 1692 return (pc + ALPHA_INSN_SIZE);
ec32e4be
JT
1693}
1694
a0ff9e1a 1695std::vector<CORE_ADDR>
f5ea389a 1696alpha_software_single_step (struct regcache *regcache)
ec32e4be 1697{
68f81d60
RH
1698 struct gdbarch *gdbarch = regcache->arch ();
1699
1700 CORE_ADDR pc = regcache_read_pc (regcache);
1701
1702 std::vector<CORE_ADDR> next_pcs
1703 = alpha_deal_with_atomic_sequence (gdbarch, pc);
1704 if (!next_pcs.empty ())
1705 return next_pcs;
ec32e4be 1706
68f81d60
RH
1707 CORE_ADDR next_pc = alpha_next_pc (regcache, pc);
1708 return {next_pc};
c906108c
SS
1709}
1710
dc129d82 1711\f
dc129d82
JT
1712/* Initialize the current architecture based on INFO. If possible, re-use an
1713 architecture from ARCHES, which is a list of architectures already created
1714 during this debugging session.
1715
1716 Called e.g. at program startup, when reading a core file, and when reading
1717 a binary file. */
1718
1719static struct gdbarch *
1720alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1721{
1722 struct gdbarch_tdep *tdep;
1723 struct gdbarch *gdbarch;
dc129d82 1724
dc129d82 1725 /* Find a candidate among extant architectures. */
4be87837
DJ
1726 arches = gdbarch_list_lookup_by_info (arches, &info);
1727 if (arches != NULL)
1728 return arches->gdbarch;
dc129d82 1729
cdd238da 1730 tdep = XCNEW (struct gdbarch_tdep);
dc129d82
JT
1731 gdbarch = gdbarch_alloc (&info, tdep);
1732
d2427a71
RH
1733 /* Lowest text address. This is used by heuristic_proc_start()
1734 to decide when to stop looking. */
594706e6 1735 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1736
36a6271d 1737 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1738 tdep->sigcontext_addr = NULL;
138e7be5
MK
1739 tdep->sc_pc_offset = 2 * 8;
1740 tdep->sc_regs_offset = 4 * 8;
1741 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1742
0963b4bd 1743 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
accc6d1f 1744
9823e921
RH
1745 tdep->return_in_memory = alpha_return_in_memory_always;
1746
dc129d82
JT
1747 /* Type sizes */
1748 set_gdbarch_short_bit (gdbarch, 16);
1749 set_gdbarch_int_bit (gdbarch, 32);
1750 set_gdbarch_long_bit (gdbarch, 64);
1751 set_gdbarch_long_long_bit (gdbarch, 64);
53375380
PA
1752 set_gdbarch_wchar_bit (gdbarch, 64);
1753 set_gdbarch_wchar_signed (gdbarch, 0);
dc129d82
JT
1754 set_gdbarch_float_bit (gdbarch, 32);
1755 set_gdbarch_double_bit (gdbarch, 64);
1756 set_gdbarch_long_double_bit (gdbarch, 64);
1757 set_gdbarch_ptr_bit (gdbarch, 64);
1758
1759 /* Register info */
1760 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1761 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1762 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1763 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1764
1765 set_gdbarch_register_name (gdbarch, alpha_register_name);
c483c494 1766 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1767
1768 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1769 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1770
c483c494
RH
1771 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1772 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1773 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1774
615967cb
RH
1775 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1776
d2427a71 1777 /* Prologue heuristics. */
dc129d82
JT
1778 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1779
d2427a71 1780 /* Call info. */
dc129d82 1781
9823e921 1782 set_gdbarch_return_value (gdbarch, alpha_return_value);
dc129d82
JT
1783
1784 /* Settings for calling functions in the inferior. */
c88e30c0 1785 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71 1786
dc129d82 1787 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1788 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1789
04180708
YQ
1790 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1791 alpha_breakpoint::kind_from_pc);
1792 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1793 alpha_breakpoint::bp_from_kind);
e8d2d628 1794 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
9d519230 1795 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
95b80706 1796
46ad3598 1797 /* Handles single stepping of atomic sequences. */
68f81d60 1798 set_gdbarch_software_single_step (gdbarch, alpha_software_single_step);
46ad3598 1799
44dffaac 1800 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1801 gdbarch_init_osabi (info, gdbarch);
44dffaac 1802
accc6d1f
JT
1803 /* Now that we have tuned the configuration, set a few final things
1804 based on what the OS ABI has told us. */
1805
1806 if (tdep->jb_pc >= 0)
1807 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1808
6834c9bb
JB
1809 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1810 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
dc129d82 1811
d2427a71 1812 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1813
d2427a71 1814 return gdbarch;
dc129d82
JT
1815}
1816
baa490c4
RH
1817void
1818alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1819{
6834c9bb 1820 dwarf2_append_unwinders (gdbarch);
336d1bba 1821 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1822}
1823
6c265988 1824void _initialize_alpha_tdep ();
c906108c 1825void
6c265988 1826_initialize_alpha_tdep ()
c906108c 1827{
c906108c 1828
d2427a71 1829 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1830
1831 /* Let the user set the fence post for heuristic_proc_start. */
1832
1833 /* We really would like to have both "0" and "unlimited" work, but
1834 command.c doesn't deal with that. So make it a var_zinteger
1835 because the user can always use "999999" or some such for unlimited. */
edefbb7c
AC
1836 /* We need to throw away the frame cache when we set this, since it
1837 might change our ability to get backtraces. */
1838 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
1839 &heuristic_fence_post, _("\
1840Set the distance searched for the start of a function."), _("\
1841Show the distance searched for the start of a function."), _("\
c906108c
SS
1842If you are debugging a stripped executable, GDB needs to search through the\n\
1843program for the start of a function. This command sets the distance of the\n\
323e0a4a 1844search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 1845 reinit_frame_cache_sfunc,
0963b4bd
MS
1846 NULL, /* FIXME: i18n: The distance searched for
1847 the start of a function is \"%d\". */
edefbb7c 1848 &setlist, &showlist);
c906108c 1849}
This page took 1.379708 seconds and 4 git commands to generate.