gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
24 #include "dwarf2/frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "dis-asm.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "linespec.h"
34 #include "regcache.h"
35 #include "reggroups.h"
36 #include "arch-utils.h"
37 #include "osabi.h"
38 #include "block.h"
39 #include "infcall.h"
40 #include "trad-frame.h"
41
42 #include "elf-bfd.h"
43
44 #include "alpha-tdep.h"
45 #include <algorithm>
46
47 /* Instruction decoding. The notations for registers, immediates and
48 opcodes are the same as the one used in Compaq's Alpha architecture
49 handbook. */
50
51 #define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
52
53 /* Memory instruction format */
54 #define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
55 #define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
56 #define MEM_DISP(insn) \
57 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
58
59 static const int lda_opcode = 0x08;
60 static const int stq_opcode = 0x2d;
61
62 /* Branch instruction format */
63 #define BR_RA(insn) MEM_RA(insn)
64
65 static const int br_opcode = 0x30;
66 static const int bne_opcode = 0x3d;
67
68 /* Operate instruction format */
69 #define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
70 #define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
71 #define OPR_RA(insn) MEM_RA(insn)
72 #define OPR_RC(insn) ((insn & 0x1f))
73 #define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
74
75 static const int subq_opcode = 0x10;
76 static const int subq_function = 0x29;
77
78 \f
79 /* Return the name of the REGNO register.
80
81 An empty name corresponds to a register number that used to
82 be used for a virtual register. That virtual register has
83 been removed, but the index is still reserved to maintain
84 compatibility with existing remote alpha targets. */
85
86 static const char *
87 alpha_register_name (struct gdbarch *gdbarch, int regno)
88 {
89 static const char * const register_names[] =
90 {
91 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
92 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
93 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
94 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
95 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
96 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
97 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
98 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
99 "pc", "", "unique"
100 };
101
102 if (regno < 0)
103 return NULL;
104 if (regno >= ARRAY_SIZE(register_names))
105 return NULL;
106 return register_names[regno];
107 }
108
109 static int
110 alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
111 {
112 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
113 }
114
115 static int
116 alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
117 {
118 return (regno == ALPHA_ZERO_REGNUM
119 || strlen (alpha_register_name (gdbarch, regno)) == 0);
120 }
121
122 static struct type *
123 alpha_register_type (struct gdbarch *gdbarch, int regno)
124 {
125 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
126 return builtin_type (gdbarch)->builtin_data_ptr;
127 if (regno == ALPHA_PC_REGNUM)
128 return builtin_type (gdbarch)->builtin_func_ptr;
129
130 /* Don't need to worry about little vs big endian until
131 some jerk tries to port to alpha-unicosmk. */
132 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
133 return builtin_type (gdbarch)->builtin_double;
134
135 return builtin_type (gdbarch)->builtin_int64;
136 }
137
138 /* Is REGNUM a member of REGGROUP? */
139
140 static int
141 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
142 struct reggroup *group)
143 {
144 /* Filter out any registers eliminated, but whose regnum is
145 reserved for backward compatibility, e.g. the vfp. */
146 if (gdbarch_register_name (gdbarch, regnum) == NULL
147 || *gdbarch_register_name (gdbarch, regnum) == '\0')
148 return 0;
149
150 if (group == all_reggroup)
151 return 1;
152
153 /* Zero should not be saved or restored. Technically it is a general
154 register (just as $f31 would be a float if we represented it), but
155 there's no point displaying it during "info regs", so leave it out
156 of all groups except for "all". */
157 if (regnum == ALPHA_ZERO_REGNUM)
158 return 0;
159
160 /* All other registers are saved and restored. */
161 if (group == save_reggroup || group == restore_reggroup)
162 return 1;
163
164 /* All other groups are non-overlapping. */
165
166 /* Since this is really a PALcode memory slot... */
167 if (regnum == ALPHA_UNIQUE_REGNUM)
168 return group == system_reggroup;
169
170 /* Force the FPCR to be considered part of the floating point state. */
171 if (regnum == ALPHA_FPCR_REGNUM)
172 return group == float_reggroup;
173
174 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
175 return group == float_reggroup;
176 else
177 return group == general_reggroup;
178 }
179
180 /* The following represents exactly the conversion performed by
181 the LDS instruction. This applies to both single-precision
182 floating point and 32-bit integers. */
183
184 static void
185 alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
186 {
187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
188 ULONGEST mem
189 = extract_unsigned_integer ((const gdb_byte *) in, 4, byte_order);
190 ULONGEST frac = (mem >> 0) & 0x7fffff;
191 ULONGEST sign = (mem >> 31) & 1;
192 ULONGEST exp_msb = (mem >> 30) & 1;
193 ULONGEST exp_low = (mem >> 23) & 0x7f;
194 ULONGEST exp, reg;
195
196 exp = (exp_msb << 10) | exp_low;
197 if (exp_msb)
198 {
199 if (exp_low == 0x7f)
200 exp = 0x7ff;
201 }
202 else
203 {
204 if (exp_low != 0x00)
205 exp |= 0x380;
206 }
207
208 reg = (sign << 63) | (exp << 52) | (frac << 29);
209 store_unsigned_integer ((gdb_byte *) out, 8, byte_order, reg);
210 }
211
212 /* Similarly, this represents exactly the conversion performed by
213 the STS instruction. */
214
215 static void
216 alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
217 {
218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
219 ULONGEST reg, mem;
220
221 reg = extract_unsigned_integer ((const gdb_byte *) in, 8, byte_order);
222 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
223 store_unsigned_integer ((gdb_byte *) out, 4, byte_order, mem);
224 }
225
226 /* The alpha needs a conversion between register and memory format if the
227 register is a floating point register and memory format is float, as the
228 register format must be double or memory format is an integer with 4
229 bytes, as the representation of integers in floating point
230 registers is different. */
231
232 static int
233 alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
234 struct type *type)
235 {
236 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
237 && TYPE_LENGTH (type) == 4);
238 }
239
240 static int
241 alpha_register_to_value (struct frame_info *frame, int regnum,
242 struct type *valtype, gdb_byte *out,
243 int *optimizedp, int *unavailablep)
244 {
245 struct gdbarch *gdbarch = get_frame_arch (frame);
246 struct value *value = get_frame_register_value (frame, regnum);
247
248 gdb_assert (value != NULL);
249 *optimizedp = value_optimized_out (value);
250 *unavailablep = !value_entirely_available (value);
251
252 if (*optimizedp || *unavailablep)
253 {
254 release_value (value);
255 return 0;
256 }
257
258 /* Convert to VALTYPE. */
259
260 gdb_assert (TYPE_LENGTH (valtype) == 4);
261 alpha_sts (gdbarch, out, value_contents_all (value));
262
263 release_value (value);
264 return 1;
265 }
266
267 static void
268 alpha_value_to_register (struct frame_info *frame, int regnum,
269 struct type *valtype, const gdb_byte *in)
270 {
271 gdb_byte out[ALPHA_REGISTER_SIZE];
272
273 gdb_assert (TYPE_LENGTH (valtype) == 4);
274 gdb_assert (register_size (get_frame_arch (frame), regnum)
275 <= ALPHA_REGISTER_SIZE);
276 alpha_lds (get_frame_arch (frame), out, in);
277
278 put_frame_register (frame, regnum, out);
279 }
280
281 \f
282 /* The alpha passes the first six arguments in the registers, the rest on
283 the stack. The register arguments are stored in ARG_REG_BUFFER, and
284 then moved into the register file; this simplifies the passing of a
285 large struct which extends from the registers to the stack, plus avoids
286 three ptrace invocations per word.
287
288 We don't bother tracking which register values should go in integer
289 regs or fp regs; we load the same values into both.
290
291 If the called function is returning a structure, the address of the
292 structure to be returned is passed as a hidden first argument. */
293
294 static CORE_ADDR
295 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
296 struct regcache *regcache, CORE_ADDR bp_addr,
297 int nargs, struct value **args, CORE_ADDR sp,
298 function_call_return_method return_method,
299 CORE_ADDR struct_addr)
300 {
301 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
302 int i;
303 int accumulate_size = (return_method == return_method_struct) ? 8 : 0;
304 struct alpha_arg
305 {
306 const gdb_byte *contents;
307 int len;
308 int offset;
309 };
310 struct alpha_arg *alpha_args = XALLOCAVEC (struct alpha_arg, nargs);
311 struct alpha_arg *m_arg;
312 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
313 int required_arg_regs;
314 CORE_ADDR func_addr = find_function_addr (function, NULL);
315
316 /* The ABI places the address of the called function in T12. */
317 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
318
319 /* Set the return address register to point to the entry point
320 of the program, where a breakpoint lies in wait. */
321 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
322
323 /* Lay out the arguments in memory. */
324 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
325 {
326 struct value *arg = args[i];
327 struct type *arg_type = check_typedef (value_type (arg));
328
329 /* Cast argument to long if necessary as the compiler does it too. */
330 switch (arg_type->code ())
331 {
332 case TYPE_CODE_INT:
333 case TYPE_CODE_BOOL:
334 case TYPE_CODE_CHAR:
335 case TYPE_CODE_RANGE:
336 case TYPE_CODE_ENUM:
337 if (TYPE_LENGTH (arg_type) == 4)
338 {
339 /* 32-bit values must be sign-extended to 64 bits
340 even if the base data type is unsigned. */
341 arg_type = builtin_type (gdbarch)->builtin_int32;
342 arg = value_cast (arg_type, arg);
343 }
344 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
345 {
346 arg_type = builtin_type (gdbarch)->builtin_int64;
347 arg = value_cast (arg_type, arg);
348 }
349 break;
350
351 case TYPE_CODE_FLT:
352 /* "float" arguments loaded in registers must be passed in
353 register format, aka "double". */
354 if (accumulate_size < sizeof (arg_reg_buffer)
355 && TYPE_LENGTH (arg_type) == 4)
356 {
357 arg_type = builtin_type (gdbarch)->builtin_double;
358 arg = value_cast (arg_type, arg);
359 }
360 /* Tru64 5.1 has a 128-bit long double, and passes this by
361 invisible reference. No one else uses this data type. */
362 else if (TYPE_LENGTH (arg_type) == 16)
363 {
364 /* Allocate aligned storage. */
365 sp = (sp & -16) - 16;
366
367 /* Write the real data into the stack. */
368 write_memory (sp, value_contents (arg), 16);
369
370 /* Construct the indirection. */
371 arg_type = lookup_pointer_type (arg_type);
372 arg = value_from_pointer (arg_type, sp);
373 }
374 break;
375
376 case TYPE_CODE_COMPLEX:
377 /* ??? The ABI says that complex values are passed as two
378 separate scalar values. This distinction only matters
379 for complex float. However, GCC does not implement this. */
380
381 /* Tru64 5.1 has a 128-bit long double, and passes this by
382 invisible reference. */
383 if (TYPE_LENGTH (arg_type) == 32)
384 {
385 /* Allocate aligned storage. */
386 sp = (sp & -16) - 16;
387
388 /* Write the real data into the stack. */
389 write_memory (sp, value_contents (arg), 32);
390
391 /* Construct the indirection. */
392 arg_type = lookup_pointer_type (arg_type);
393 arg = value_from_pointer (arg_type, sp);
394 }
395 break;
396
397 default:
398 break;
399 }
400 m_arg->len = TYPE_LENGTH (arg_type);
401 m_arg->offset = accumulate_size;
402 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
403 m_arg->contents = value_contents (arg);
404 }
405
406 /* Determine required argument register loads, loading an argument register
407 is expensive as it uses three ptrace calls. */
408 required_arg_regs = accumulate_size / 8;
409 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
410 required_arg_regs = ALPHA_NUM_ARG_REGS;
411
412 /* Make room for the arguments on the stack. */
413 if (accumulate_size < sizeof(arg_reg_buffer))
414 accumulate_size = 0;
415 else
416 accumulate_size -= sizeof(arg_reg_buffer);
417 sp -= accumulate_size;
418
419 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
420 sp &= ~15;
421
422 /* `Push' arguments on the stack. */
423 for (i = nargs; m_arg--, --i >= 0;)
424 {
425 const gdb_byte *contents = m_arg->contents;
426 int offset = m_arg->offset;
427 int len = m_arg->len;
428
429 /* Copy the bytes destined for registers into arg_reg_buffer. */
430 if (offset < sizeof(arg_reg_buffer))
431 {
432 if (offset + len <= sizeof(arg_reg_buffer))
433 {
434 memcpy (arg_reg_buffer + offset, contents, len);
435 continue;
436 }
437 else
438 {
439 int tlen = sizeof(arg_reg_buffer) - offset;
440 memcpy (arg_reg_buffer + offset, contents, tlen);
441 offset += tlen;
442 contents += tlen;
443 len -= tlen;
444 }
445 }
446
447 /* Everything else goes to the stack. */
448 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
449 }
450 if (return_method == return_method_struct)
451 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
452 byte_order, struct_addr);
453
454 /* Load the argument registers. */
455 for (i = 0; i < required_arg_regs; i++)
456 {
457 regcache->cooked_write (ALPHA_A0_REGNUM + i,
458 arg_reg_buffer + i * ALPHA_REGISTER_SIZE);
459 regcache->cooked_write (ALPHA_FPA0_REGNUM + i,
460 arg_reg_buffer + i * ALPHA_REGISTER_SIZE);
461 }
462
463 /* Finally, update the stack pointer. */
464 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
465
466 return sp;
467 }
468
469 /* Extract from REGCACHE the value about to be returned from a function
470 and copy it into VALBUF. */
471
472 static void
473 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
474 gdb_byte *valbuf)
475 {
476 struct gdbarch *gdbarch = regcache->arch ();
477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
478 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
479 ULONGEST l;
480
481 switch (valtype->code ())
482 {
483 case TYPE_CODE_FLT:
484 switch (TYPE_LENGTH (valtype))
485 {
486 case 4:
487 regcache->cooked_read (ALPHA_FP0_REGNUM, raw_buffer);
488 alpha_sts (gdbarch, valbuf, raw_buffer);
489 break;
490
491 case 8:
492 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
493 break;
494
495 case 16:
496 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
497 read_memory (l, valbuf, 16);
498 break;
499
500 default:
501 internal_error (__FILE__, __LINE__,
502 _("unknown floating point width"));
503 }
504 break;
505
506 case TYPE_CODE_COMPLEX:
507 switch (TYPE_LENGTH (valtype))
508 {
509 case 8:
510 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
511 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
512 break;
513
514 case 16:
515 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
516 regcache->cooked_read (ALPHA_FP0_REGNUM + 1, valbuf + 8);
517 break;
518
519 case 32:
520 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
521 read_memory (l, valbuf, 32);
522 break;
523
524 default:
525 internal_error (__FILE__, __LINE__,
526 _("unknown floating point width"));
527 }
528 break;
529
530 default:
531 /* Assume everything else degenerates to an integer. */
532 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
533 store_unsigned_integer (valbuf, TYPE_LENGTH (valtype), byte_order, l);
534 break;
535 }
536 }
537
538 /* Insert the given value into REGCACHE as if it was being
539 returned by a function. */
540
541 static void
542 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
543 const gdb_byte *valbuf)
544 {
545 struct gdbarch *gdbarch = regcache->arch ();
546 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
547 ULONGEST l;
548
549 switch (valtype->code ())
550 {
551 case TYPE_CODE_FLT:
552 switch (TYPE_LENGTH (valtype))
553 {
554 case 4:
555 alpha_lds (gdbarch, raw_buffer, valbuf);
556 regcache->cooked_write (ALPHA_FP0_REGNUM, raw_buffer);
557 break;
558
559 case 8:
560 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
561 break;
562
563 case 16:
564 /* FIXME: 128-bit long doubles are returned like structures:
565 by writing into indirect storage provided by the caller
566 as the first argument. */
567 error (_("Cannot set a 128-bit long double return value."));
568
569 default:
570 internal_error (__FILE__, __LINE__,
571 _("unknown floating point width"));
572 }
573 break;
574
575 case TYPE_CODE_COMPLEX:
576 switch (TYPE_LENGTH (valtype))
577 {
578 case 8:
579 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
580 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
581 break;
582
583 case 16:
584 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
585 regcache->cooked_write (ALPHA_FP0_REGNUM + 1, valbuf + 8);
586 break;
587
588 case 32:
589 /* FIXME: 128-bit long doubles are returned like structures:
590 by writing into indirect storage provided by the caller
591 as the first argument. */
592 error (_("Cannot set a 128-bit long double return value."));
593
594 default:
595 internal_error (__FILE__, __LINE__,
596 _("unknown floating point width"));
597 }
598 break;
599
600 default:
601 /* Assume everything else degenerates to an integer. */
602 /* 32-bit values must be sign-extended to 64 bits
603 even if the base data type is unsigned. */
604 if (TYPE_LENGTH (valtype) == 4)
605 valtype = builtin_type (gdbarch)->builtin_int32;
606 l = unpack_long (valtype, valbuf);
607 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
608 break;
609 }
610 }
611
612 static enum return_value_convention
613 alpha_return_value (struct gdbarch *gdbarch, struct value *function,
614 struct type *type, struct regcache *regcache,
615 gdb_byte *readbuf, const gdb_byte *writebuf)
616 {
617 enum type_code code = type->code ();
618
619 if ((code == TYPE_CODE_STRUCT
620 || code == TYPE_CODE_UNION
621 || code == TYPE_CODE_ARRAY)
622 && gdbarch_tdep (gdbarch)->return_in_memory (type))
623 {
624 if (readbuf)
625 {
626 ULONGEST addr;
627 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
628 read_memory (addr, readbuf, TYPE_LENGTH (type));
629 }
630
631 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
632 }
633
634 if (readbuf)
635 alpha_extract_return_value (type, regcache, readbuf);
636 if (writebuf)
637 alpha_store_return_value (type, regcache, writebuf);
638
639 return RETURN_VALUE_REGISTER_CONVENTION;
640 }
641
642 static int
643 alpha_return_in_memory_always (struct type *type)
644 {
645 return 1;
646 }
647 \f
648
649 constexpr gdb_byte alpha_break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
650
651 typedef BP_MANIPULATION (alpha_break_insn) alpha_breakpoint;
652
653 \f
654 /* This returns the PC of the first insn after the prologue.
655 If we can't find the prologue, then return 0. */
656
657 CORE_ADDR
658 alpha_after_prologue (CORE_ADDR pc)
659 {
660 struct symtab_and_line sal;
661 CORE_ADDR func_addr, func_end;
662
663 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
664 return 0;
665
666 sal = find_pc_line (func_addr, 0);
667 if (sal.end < func_end)
668 return sal.end;
669
670 /* The line after the prologue is after the end of the function. In this
671 case, tell the caller to find the prologue the hard way. */
672 return 0;
673 }
674
675 /* Read an instruction from memory at PC, looking through breakpoints. */
676
677 unsigned int
678 alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
679 {
680 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
681 gdb_byte buf[ALPHA_INSN_SIZE];
682 int res;
683
684 res = target_read_memory (pc, buf, sizeof (buf));
685 if (res != 0)
686 memory_error (TARGET_XFER_E_IO, pc);
687 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
688 }
689
690 /* To skip prologues, I use this predicate. Returns either PC itself
691 if the code at PC does not look like a function prologue; otherwise
692 returns an address that (if we're lucky) follows the prologue. If
693 LENIENT, then we must skip everything which is involved in setting
694 up the frame (it's OK to skip more, just so long as we don't skip
695 anything which might clobber the registers which are being saved. */
696
697 static CORE_ADDR
698 alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
699 {
700 unsigned long inst;
701 int offset;
702 CORE_ADDR post_prologue_pc;
703 gdb_byte buf[ALPHA_INSN_SIZE];
704
705 /* Silently return the unaltered pc upon memory errors.
706 This could happen on OSF/1 if decode_line_1 tries to skip the
707 prologue for quickstarted shared library functions when the
708 shared library is not yet mapped in.
709 Reading target memory is slow over serial lines, so we perform
710 this check only if the target has shared libraries (which all
711 Alpha targets do). */
712 if (target_read_memory (pc, buf, sizeof (buf)))
713 return pc;
714
715 /* See if we can determine the end of the prologue via the symbol table.
716 If so, then return either PC, or the PC after the prologue, whichever
717 is greater. */
718
719 post_prologue_pc = alpha_after_prologue (pc);
720 if (post_prologue_pc != 0)
721 return std::max (pc, post_prologue_pc);
722
723 /* Can't determine prologue from the symbol table, need to examine
724 instructions. */
725
726 /* Skip the typical prologue instructions. These are the stack adjustment
727 instruction and the instructions that save registers on the stack
728 or in the gcc frame. */
729 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
730 {
731 inst = alpha_read_insn (gdbarch, pc + offset);
732
733 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
734 continue;
735 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
736 continue;
737 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
738 continue;
739 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
740 continue;
741
742 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
743 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
744 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
745 continue;
746
747 if (inst == 0x47de040f) /* bis sp,sp,fp */
748 continue;
749 if (inst == 0x47fe040f) /* bis zero,sp,fp */
750 continue;
751
752 break;
753 }
754 return pc + offset;
755 }
756
757 \f
758 static const int ldl_l_opcode = 0x2a;
759 static const int ldq_l_opcode = 0x2b;
760 static const int stl_c_opcode = 0x2e;
761 static const int stq_c_opcode = 0x2f;
762
763 /* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
764 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
765 is found, attempt to step through it. A breakpoint is placed at the end of
766 the sequence. */
767
768 static std::vector<CORE_ADDR>
769 alpha_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
770 {
771 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
772 CORE_ADDR loc = pc;
773 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
774 unsigned int insn = alpha_read_insn (gdbarch, loc);
775 int insn_count;
776 int index;
777 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
778 const int atomic_sequence_length = 16; /* Instruction sequence length. */
779 int bc_insn_count = 0; /* Conditional branch instruction count. */
780
781 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
782 if (INSN_OPCODE (insn) != ldl_l_opcode
783 && INSN_OPCODE (insn) != ldq_l_opcode)
784 return {};
785
786 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
787 instructions. */
788 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
789 {
790 loc += ALPHA_INSN_SIZE;
791 insn = alpha_read_insn (gdbarch, loc);
792
793 /* Assume that there is at most one branch in the atomic
794 sequence. If a branch is found, put a breakpoint in
795 its destination address. */
796 if (INSN_OPCODE (insn) >= br_opcode)
797 {
798 int immediate = (insn & 0x001fffff) << 2;
799
800 immediate = (immediate ^ 0x400000) - 0x400000;
801
802 if (bc_insn_count >= 1)
803 return {}; /* More than one branch found, fallback
804 to the standard single-step code. */
805
806 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
807
808 bc_insn_count++;
809 last_breakpoint++;
810 }
811
812 if (INSN_OPCODE (insn) == stl_c_opcode
813 || INSN_OPCODE (insn) == stq_c_opcode)
814 break;
815 }
816
817 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
818 if (INSN_OPCODE (insn) != stl_c_opcode
819 && INSN_OPCODE (insn) != stq_c_opcode)
820 return {};
821
822 closing_insn = loc;
823 loc += ALPHA_INSN_SIZE;
824
825 /* Insert a breakpoint right after the end of the atomic sequence. */
826 breaks[0] = loc;
827
828 /* Check for duplicated breakpoints. Check also for a breakpoint
829 placed (branch instruction's destination) anywhere in sequence. */
830 if (last_breakpoint
831 && (breaks[1] == breaks[0]
832 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
833 last_breakpoint = 0;
834
835 std::vector<CORE_ADDR> next_pcs;
836
837 for (index = 0; index <= last_breakpoint; index++)
838 next_pcs.push_back (breaks[index]);
839
840 return next_pcs;
841 }
842
843 \f
844 /* Figure out where the longjmp will land.
845 We expect the first arg to be a pointer to the jmp_buf structure from
846 which we extract the PC (JB_PC) that we will land at. The PC is copied
847 into the "pc". This routine returns true on success. */
848
849 static int
850 alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
851 {
852 struct gdbarch *gdbarch = get_frame_arch (frame);
853 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
854 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
855 CORE_ADDR jb_addr;
856 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
857
858 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
859
860 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
861 raw_buffer, tdep->jb_elt_size))
862 return 0;
863
864 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
865 return 1;
866 }
867
868 \f
869 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
870 describe the location and shape of the sigcontext structure. After
871 that, all registers are in memory, so it's easy. */
872 /* ??? Shouldn't we be able to do this generically, rather than with
873 OSABI data specific to Alpha? */
874
875 struct alpha_sigtramp_unwind_cache
876 {
877 CORE_ADDR sigcontext_addr;
878 };
879
880 static struct alpha_sigtramp_unwind_cache *
881 alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
882 void **this_prologue_cache)
883 {
884 struct alpha_sigtramp_unwind_cache *info;
885 struct gdbarch_tdep *tdep;
886
887 if (*this_prologue_cache)
888 return (struct alpha_sigtramp_unwind_cache *) *this_prologue_cache;
889
890 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
891 *this_prologue_cache = info;
892
893 tdep = gdbarch_tdep (get_frame_arch (this_frame));
894 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
895
896 return info;
897 }
898
899 /* Return the address of REGNUM in a sigtramp frame. Since this is
900 all arithmetic, it doesn't seem worthwhile to cache it. */
901
902 static CORE_ADDR
903 alpha_sigtramp_register_address (struct gdbarch *gdbarch,
904 CORE_ADDR sigcontext_addr, int regnum)
905 {
906 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
907
908 if (regnum >= 0 && regnum < 32)
909 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
910 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
911 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
912 else if (regnum == ALPHA_PC_REGNUM)
913 return sigcontext_addr + tdep->sc_pc_offset;
914
915 return 0;
916 }
917
918 /* Given a GDB frame, determine the address of the calling function's
919 frame. This will be used to create a new GDB frame struct. */
920
921 static void
922 alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
923 void **this_prologue_cache,
924 struct frame_id *this_id)
925 {
926 struct gdbarch *gdbarch = get_frame_arch (this_frame);
927 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
928 struct alpha_sigtramp_unwind_cache *info
929 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
930 CORE_ADDR stack_addr, code_addr;
931
932 /* If the OSABI couldn't locate the sigcontext, give up. */
933 if (info->sigcontext_addr == 0)
934 return;
935
936 /* If we have dynamic signal trampolines, find their start.
937 If we do not, then we must assume there is a symbol record
938 that can provide the start address. */
939 if (tdep->dynamic_sigtramp_offset)
940 {
941 int offset;
942 code_addr = get_frame_pc (this_frame);
943 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
944 if (offset >= 0)
945 code_addr -= offset;
946 else
947 code_addr = 0;
948 }
949 else
950 code_addr = get_frame_func (this_frame);
951
952 /* The stack address is trivially read from the sigcontext. */
953 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
954 ALPHA_SP_REGNUM);
955 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
956 ALPHA_REGISTER_SIZE);
957
958 *this_id = frame_id_build (stack_addr, code_addr);
959 }
960
961 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
962
963 static struct value *
964 alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
965 void **this_prologue_cache, int regnum)
966 {
967 struct alpha_sigtramp_unwind_cache *info
968 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
969 CORE_ADDR addr;
970
971 if (info->sigcontext_addr != 0)
972 {
973 /* All integer and fp registers are stored in memory. */
974 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
975 info->sigcontext_addr, regnum);
976 if (addr != 0)
977 return frame_unwind_got_memory (this_frame, regnum, addr);
978 }
979
980 /* This extra register may actually be in the sigcontext, but our
981 current description of it in alpha_sigtramp_frame_unwind_cache
982 doesn't include it. Too bad. Fall back on whatever's in the
983 outer frame. */
984 return frame_unwind_got_register (this_frame, regnum, regnum);
985 }
986
987 static int
988 alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
989 struct frame_info *this_frame,
990 void **this_prologue_cache)
991 {
992 struct gdbarch *gdbarch = get_frame_arch (this_frame);
993 CORE_ADDR pc = get_frame_pc (this_frame);
994 const char *name;
995
996 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
997 look at tramp-frame.h and other simpler per-architecture
998 sigtramp unwinders. */
999
1000 /* We shouldn't even bother to try if the OSABI didn't register a
1001 sigcontext_addr handler or pc_in_sigtramp handler. */
1002 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
1003 return 0;
1004 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
1005 return 0;
1006
1007 /* Otherwise we should be in a signal frame. */
1008 find_pc_partial_function (pc, &name, NULL, NULL);
1009 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
1010 return 1;
1011
1012 return 0;
1013 }
1014
1015 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1016 SIGTRAMP_FRAME,
1017 default_frame_unwind_stop_reason,
1018 alpha_sigtramp_frame_this_id,
1019 alpha_sigtramp_frame_prev_register,
1020 NULL,
1021 alpha_sigtramp_frame_sniffer
1022 };
1023
1024 \f
1025
1026 /* Heuristic_proc_start may hunt through the text section for a long
1027 time across a 2400 baud serial line. Allows the user to limit this
1028 search. */
1029 static int heuristic_fence_post = 0;
1030
1031 /* Attempt to locate the start of the function containing PC. We assume that
1032 the previous function ends with an about_to_return insn. Not foolproof by
1033 any means, since gcc is happy to put the epilogue in the middle of a
1034 function. But we're guessing anyway... */
1035
1036 static CORE_ADDR
1037 alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
1038 {
1039 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1040 CORE_ADDR last_non_nop = pc;
1041 CORE_ADDR fence = pc - heuristic_fence_post;
1042 CORE_ADDR orig_pc = pc;
1043 CORE_ADDR func;
1044 struct inferior *inf;
1045
1046 if (pc == 0)
1047 return 0;
1048
1049 /* First see if we can find the start of the function from minimal
1050 symbol information. This can succeed with a binary that doesn't
1051 have debug info, but hasn't been stripped. */
1052 func = get_pc_function_start (pc);
1053 if (func)
1054 return func;
1055
1056 if (heuristic_fence_post == -1
1057 || fence < tdep->vm_min_address)
1058 fence = tdep->vm_min_address;
1059
1060 /* Search back for previous return; also stop at a 0, which might be
1061 seen for instance before the start of a code section. Don't include
1062 nops, since this usually indicates padding between functions. */
1063 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
1064 {
1065 unsigned int insn = alpha_read_insn (gdbarch, pc);
1066 switch (insn)
1067 {
1068 case 0: /* invalid insn */
1069 case 0x6bfa8001: /* ret $31,($26),1 */
1070 return last_non_nop;
1071
1072 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1073 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1074 break;
1075
1076 default:
1077 last_non_nop = pc;
1078 break;
1079 }
1080 }
1081
1082 inf = current_inferior ();
1083
1084 /* It's not clear to me why we reach this point when stopping quietly,
1085 but with this test, at least we don't print out warnings for every
1086 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
1087 if (inf->control.stop_soon == NO_STOP_QUIETLY)
1088 {
1089 static int blurb_printed = 0;
1090
1091 if (fence == tdep->vm_min_address)
1092 warning (_("Hit beginning of text section without finding \
1093 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1094 else
1095 warning (_("Hit heuristic-fence-post without finding \
1096 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1097
1098 if (!blurb_printed)
1099 {
1100 printf_filtered (_("\
1101 This warning occurs if you are debugging a function without any symbols\n\
1102 (for example, in a stripped executable). In that case, you may wish to\n\
1103 increase the size of the search with the `set heuristic-fence-post' command.\n\
1104 \n\
1105 Otherwise, you told GDB there was a function where there isn't one, or\n\
1106 (more likely) you have encountered a bug in GDB.\n"));
1107 blurb_printed = 1;
1108 }
1109 }
1110
1111 return 0;
1112 }
1113
1114 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
1115 something about the traditional layout of alpha stack frames. */
1116
1117 struct alpha_heuristic_unwind_cache
1118 {
1119 CORE_ADDR vfp;
1120 CORE_ADDR start_pc;
1121 struct trad_frame_saved_reg *saved_regs;
1122 int return_reg;
1123 };
1124
1125 /* If a probing loop sequence starts at PC, simulate it and compute
1126 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1127 FRAME_SIZE unchanged. */
1128
1129 static void
1130 alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1131 int *frame_size)
1132 {
1133 CORE_ADDR cur_pc = *pc;
1134 int cur_frame_size = *frame_size;
1135 int nb_of_iterations, reg_index, reg_probe;
1136 unsigned int insn;
1137
1138 /* The following pattern is recognized as a probing loop:
1139
1140 lda REG_INDEX,NB_OF_ITERATIONS
1141 lda REG_PROBE,<immediate>(sp)
1142
1143 LOOP_START:
1144 stq zero,<immediate>(REG_PROBE)
1145 subq REG_INDEX,0x1,REG_INDEX
1146 lda REG_PROBE,<immediate>(REG_PROBE)
1147 bne REG_INDEX, LOOP_START
1148
1149 lda sp,<immediate>(REG_PROBE)
1150
1151 If anything different is found, the function returns without
1152 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
1153 after this sequence, and FRAME_SIZE will be updated. */
1154
1155 /* lda REG_INDEX,NB_OF_ITERATIONS */
1156
1157 insn = alpha_read_insn (gdbarch, cur_pc);
1158 if (INSN_OPCODE (insn) != lda_opcode)
1159 return;
1160 reg_index = MEM_RA (insn);
1161 nb_of_iterations = MEM_DISP (insn);
1162
1163 /* lda REG_PROBE,<immediate>(sp) */
1164
1165 cur_pc += ALPHA_INSN_SIZE;
1166 insn = alpha_read_insn (gdbarch, cur_pc);
1167 if (INSN_OPCODE (insn) != lda_opcode
1168 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1169 return;
1170 reg_probe = MEM_RA (insn);
1171 cur_frame_size -= MEM_DISP (insn);
1172
1173 /* stq zero,<immediate>(REG_PROBE) */
1174
1175 cur_pc += ALPHA_INSN_SIZE;
1176 insn = alpha_read_insn (gdbarch, cur_pc);
1177 if (INSN_OPCODE (insn) != stq_opcode
1178 || MEM_RA (insn) != 0x1f
1179 || MEM_RB (insn) != reg_probe)
1180 return;
1181
1182 /* subq REG_INDEX,0x1,REG_INDEX */
1183
1184 cur_pc += ALPHA_INSN_SIZE;
1185 insn = alpha_read_insn (gdbarch, cur_pc);
1186 if (INSN_OPCODE (insn) != subq_opcode
1187 || !OPR_HAS_IMMEDIATE (insn)
1188 || OPR_FUNCTION (insn) != subq_function
1189 || OPR_LIT(insn) != 1
1190 || OPR_RA (insn) != reg_index
1191 || OPR_RC (insn) != reg_index)
1192 return;
1193
1194 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1195
1196 cur_pc += ALPHA_INSN_SIZE;
1197 insn = alpha_read_insn (gdbarch, cur_pc);
1198 if (INSN_OPCODE (insn) != lda_opcode
1199 || MEM_RA (insn) != reg_probe
1200 || MEM_RB (insn) != reg_probe)
1201 return;
1202 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1203
1204 /* bne REG_INDEX, LOOP_START */
1205
1206 cur_pc += ALPHA_INSN_SIZE;
1207 insn = alpha_read_insn (gdbarch, cur_pc);
1208 if (INSN_OPCODE (insn) != bne_opcode
1209 || MEM_RA (insn) != reg_index)
1210 return;
1211
1212 /* lda sp,<immediate>(REG_PROBE) */
1213
1214 cur_pc += ALPHA_INSN_SIZE;
1215 insn = alpha_read_insn (gdbarch, cur_pc);
1216 if (INSN_OPCODE (insn) != lda_opcode
1217 || MEM_RA (insn) != ALPHA_SP_REGNUM
1218 || MEM_RB (insn) != reg_probe)
1219 return;
1220 cur_frame_size -= MEM_DISP (insn);
1221
1222 *pc = cur_pc;
1223 *frame_size = cur_frame_size;
1224 }
1225
1226 static struct alpha_heuristic_unwind_cache *
1227 alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
1228 void **this_prologue_cache,
1229 CORE_ADDR start_pc)
1230 {
1231 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1232 struct alpha_heuristic_unwind_cache *info;
1233 ULONGEST val;
1234 CORE_ADDR limit_pc, cur_pc;
1235 int frame_reg, frame_size, return_reg, reg;
1236
1237 if (*this_prologue_cache)
1238 return (struct alpha_heuristic_unwind_cache *) *this_prologue_cache;
1239
1240 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1241 *this_prologue_cache = info;
1242 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1243
1244 limit_pc = get_frame_pc (this_frame);
1245 if (start_pc == 0)
1246 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
1247 info->start_pc = start_pc;
1248
1249 frame_reg = ALPHA_SP_REGNUM;
1250 frame_size = 0;
1251 return_reg = -1;
1252
1253 /* If we've identified a likely place to start, do code scanning. */
1254 if (start_pc != 0)
1255 {
1256 /* Limit the forward search to 50 instructions. */
1257 if (start_pc + 200 < limit_pc)
1258 limit_pc = start_pc + 200;
1259
1260 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1261 {
1262 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1263
1264 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1265 {
1266 if (word & 0x8000)
1267 {
1268 /* Consider only the first stack allocation instruction
1269 to contain the static size of the frame. */
1270 if (frame_size == 0)
1271 frame_size = (-word) & 0xffff;
1272 }
1273 else
1274 {
1275 /* Exit loop if a positive stack adjustment is found, which
1276 usually means that the stack cleanup code in the function
1277 epilogue is reached. */
1278 break;
1279 }
1280 }
1281 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1282 {
1283 reg = (word & 0x03e00000) >> 21;
1284
1285 /* Ignore this instruction if we have already encountered
1286 an instruction saving the same register earlier in the
1287 function code. The current instruction does not tell
1288 us where the original value upon function entry is saved.
1289 All it says is that the function we are scanning reused
1290 that register for some computation of its own, and is now
1291 saving its result. */
1292 if (trad_frame_addr_p(info->saved_regs, reg))
1293 continue;
1294
1295 if (reg == 31)
1296 continue;
1297
1298 /* Do not compute the address where the register was saved yet,
1299 because we don't know yet if the offset will need to be
1300 relative to $sp or $fp (we can not compute the address
1301 relative to $sp if $sp is updated during the execution of
1302 the current subroutine, for instance when doing some alloca).
1303 So just store the offset for the moment, and compute the
1304 address later when we know whether this frame has a frame
1305 pointer or not. */
1306 /* Hack: temporarily add one, so that the offset is non-zero
1307 and we can tell which registers have save offsets below. */
1308 info->saved_regs[reg].addr = (word & 0xffff) + 1;
1309
1310 /* Starting with OSF/1-3.2C, the system libraries are shipped
1311 without local symbols, but they still contain procedure
1312 descriptors without a symbol reference. GDB is currently
1313 unable to find these procedure descriptors and uses
1314 heuristic_proc_desc instead.
1315 As some low level compiler support routines (__div*, __add*)
1316 use a non-standard return address register, we have to
1317 add some heuristics to determine the return address register,
1318 or stepping over these routines will fail.
1319 Usually the return address register is the first register
1320 saved on the stack, but assembler optimization might
1321 rearrange the register saves.
1322 So we recognize only a few registers (t7, t9, ra) within
1323 the procedure prologue as valid return address registers.
1324 If we encounter a return instruction, we extract the
1325 return address register from it.
1326
1327 FIXME: Rewriting GDB to access the procedure descriptors,
1328 e.g. via the minimal symbol table, might obviate this
1329 hack. */
1330 if (return_reg == -1
1331 && cur_pc < (start_pc + 80)
1332 && (reg == ALPHA_T7_REGNUM
1333 || reg == ALPHA_T9_REGNUM
1334 || reg == ALPHA_RA_REGNUM))
1335 return_reg = reg;
1336 }
1337 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1338 return_reg = (word >> 16) & 0x1f;
1339 else if (word == 0x47de040f) /* bis sp,sp,fp */
1340 frame_reg = ALPHA_GCC_FP_REGNUM;
1341 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1342 frame_reg = ALPHA_GCC_FP_REGNUM;
1343
1344 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
1345 }
1346
1347 /* If we haven't found a valid return address register yet, keep
1348 searching in the procedure prologue. */
1349 if (return_reg == -1)
1350 {
1351 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1352 {
1353 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1354
1355 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1356 {
1357 reg = (word & 0x03e00000) >> 21;
1358 if (reg == ALPHA_T7_REGNUM
1359 || reg == ALPHA_T9_REGNUM
1360 || reg == ALPHA_RA_REGNUM)
1361 {
1362 return_reg = reg;
1363 break;
1364 }
1365 }
1366 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1367 {
1368 return_reg = (word >> 16) & 0x1f;
1369 break;
1370 }
1371
1372 cur_pc += ALPHA_INSN_SIZE;
1373 }
1374 }
1375 }
1376
1377 /* Failing that, do default to the customary RA. */
1378 if (return_reg == -1)
1379 return_reg = ALPHA_RA_REGNUM;
1380 info->return_reg = return_reg;
1381
1382 val = get_frame_register_unsigned (this_frame, frame_reg);
1383 info->vfp = val + frame_size;
1384
1385 /* Convert offsets to absolute addresses. See above about adding
1386 one to the offsets to make all detected offsets non-zero. */
1387 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1388 if (trad_frame_addr_p(info->saved_regs, reg))
1389 info->saved_regs[reg].addr += val - 1;
1390
1391 /* The stack pointer of the previous frame is computed by popping
1392 the current stack frame. */
1393 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1394 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1395
1396 return info;
1397 }
1398
1399 /* Given a GDB frame, determine the address of the calling function's
1400 frame. This will be used to create a new GDB frame struct. */
1401
1402 static void
1403 alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1404 void **this_prologue_cache,
1405 struct frame_id *this_id)
1406 {
1407 struct alpha_heuristic_unwind_cache *info
1408 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1409
1410 *this_id = frame_id_build (info->vfp, info->start_pc);
1411 }
1412
1413 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1414
1415 static struct value *
1416 alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1417 void **this_prologue_cache, int regnum)
1418 {
1419 struct alpha_heuristic_unwind_cache *info
1420 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1421
1422 /* The PC of the previous frame is stored in the link register of
1423 the current frame. Frob regnum so that we pull the value from
1424 the correct place. */
1425 if (regnum == ALPHA_PC_REGNUM)
1426 regnum = info->return_reg;
1427
1428 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1429 }
1430
1431 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1432 NORMAL_FRAME,
1433 default_frame_unwind_stop_reason,
1434 alpha_heuristic_frame_this_id,
1435 alpha_heuristic_frame_prev_register,
1436 NULL,
1437 default_frame_sniffer
1438 };
1439
1440 static CORE_ADDR
1441 alpha_heuristic_frame_base_address (struct frame_info *this_frame,
1442 void **this_prologue_cache)
1443 {
1444 struct alpha_heuristic_unwind_cache *info
1445 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1446
1447 return info->vfp;
1448 }
1449
1450 static const struct frame_base alpha_heuristic_frame_base = {
1451 &alpha_heuristic_frame_unwind,
1452 alpha_heuristic_frame_base_address,
1453 alpha_heuristic_frame_base_address,
1454 alpha_heuristic_frame_base_address
1455 };
1456
1457 /* Just like reinit_frame_cache, but with the right arguments to be
1458 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1459
1460 static void
1461 reinit_frame_cache_sfunc (const char *args,
1462 int from_tty, struct cmd_list_element *c)
1463 {
1464 reinit_frame_cache ();
1465 }
1466 \f
1467 /* Helper routines for alpha*-nat.c files to move register sets to and
1468 from core files. The UNIQUE pointer is allowed to be NULL, as most
1469 targets don't supply this value in their core files. */
1470
1471 void
1472 alpha_supply_int_regs (struct regcache *regcache, int regno,
1473 const void *r0_r30, const void *pc, const void *unique)
1474 {
1475 const gdb_byte *regs = (const gdb_byte *) r0_r30;
1476 int i;
1477
1478 for (i = 0; i < 31; ++i)
1479 if (regno == i || regno == -1)
1480 regcache->raw_supply (i, regs + i * 8);
1481
1482 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1483 {
1484 const gdb_byte zero[8] = { 0 };
1485
1486 regcache->raw_supply (ALPHA_ZERO_REGNUM, zero);
1487 }
1488
1489 if (regno == ALPHA_PC_REGNUM || regno == -1)
1490 regcache->raw_supply (ALPHA_PC_REGNUM, pc);
1491
1492 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1493 regcache->raw_supply (ALPHA_UNIQUE_REGNUM, unique);
1494 }
1495
1496 void
1497 alpha_fill_int_regs (const struct regcache *regcache,
1498 int regno, void *r0_r30, void *pc, void *unique)
1499 {
1500 gdb_byte *regs = (gdb_byte *) r0_r30;
1501 int i;
1502
1503 for (i = 0; i < 31; ++i)
1504 if (regno == i || regno == -1)
1505 regcache->raw_collect (i, regs + i * 8);
1506
1507 if (regno == ALPHA_PC_REGNUM || regno == -1)
1508 regcache->raw_collect (ALPHA_PC_REGNUM, pc);
1509
1510 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1511 regcache->raw_collect (ALPHA_UNIQUE_REGNUM, unique);
1512 }
1513
1514 void
1515 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1516 const void *f0_f30, const void *fpcr)
1517 {
1518 const gdb_byte *regs = (const gdb_byte *) f0_f30;
1519 int i;
1520
1521 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1522 if (regno == i || regno == -1)
1523 regcache->raw_supply (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
1524
1525 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1526 regcache->raw_supply (ALPHA_FPCR_REGNUM, fpcr);
1527 }
1528
1529 void
1530 alpha_fill_fp_regs (const struct regcache *regcache,
1531 int regno, void *f0_f30, void *fpcr)
1532 {
1533 gdb_byte *regs = (gdb_byte *) f0_f30;
1534 int i;
1535
1536 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1537 if (regno == i || regno == -1)
1538 regcache->raw_collect (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
1539
1540 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1541 regcache->raw_collect (ALPHA_FPCR_REGNUM, fpcr);
1542 }
1543
1544 \f
1545
1546 /* Return nonzero if the G_floating register value in REG is equal to
1547 zero for FP control instructions. */
1548
1549 static int
1550 fp_register_zero_p (LONGEST reg)
1551 {
1552 /* Check that all bits except the sign bit are zero. */
1553 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1554
1555 return ((reg & zero_mask) == 0);
1556 }
1557
1558 /* Return the value of the sign bit for the G_floating register
1559 value held in REG. */
1560
1561 static int
1562 fp_register_sign_bit (LONGEST reg)
1563 {
1564 const LONGEST sign_mask = (LONGEST) 1 << 63;
1565
1566 return ((reg & sign_mask) != 0);
1567 }
1568
1569 /* alpha_software_single_step() is called just before we want to resume
1570 the inferior, if we want to single-step it but there is no hardware
1571 or kernel single-step support (NetBSD on Alpha, for example). We find
1572 the target of the coming instruction and breakpoint it. */
1573
1574 static CORE_ADDR
1575 alpha_next_pc (struct regcache *regcache, CORE_ADDR pc)
1576 {
1577 struct gdbarch *gdbarch = regcache->arch ();
1578 unsigned int insn;
1579 unsigned int op;
1580 int regno;
1581 int offset;
1582 LONGEST rav;
1583
1584 insn = alpha_read_insn (gdbarch, pc);
1585
1586 /* Opcode is top 6 bits. */
1587 op = (insn >> 26) & 0x3f;
1588
1589 if (op == 0x1a)
1590 {
1591 /* Jump format: target PC is:
1592 RB & ~3 */
1593 return (regcache_raw_get_unsigned (regcache, (insn >> 16) & 0x1f) & ~3);
1594 }
1595
1596 if ((op & 0x30) == 0x30)
1597 {
1598 /* Branch format: target PC is:
1599 (new PC) + (4 * sext(displacement)) */
1600 if (op == 0x30 /* BR */
1601 || op == 0x34) /* BSR */
1602 {
1603 branch_taken:
1604 offset = (insn & 0x001fffff);
1605 if (offset & 0x00100000)
1606 offset |= 0xffe00000;
1607 offset *= ALPHA_INSN_SIZE;
1608 return (pc + ALPHA_INSN_SIZE + offset);
1609 }
1610
1611 /* Need to determine if branch is taken; read RA. */
1612 regno = (insn >> 21) & 0x1f;
1613 switch (op)
1614 {
1615 case 0x31: /* FBEQ */
1616 case 0x36: /* FBGE */
1617 case 0x37: /* FBGT */
1618 case 0x33: /* FBLE */
1619 case 0x32: /* FBLT */
1620 case 0x35: /* FBNE */
1621 regno += gdbarch_fp0_regnum (gdbarch);
1622 }
1623
1624 rav = regcache_raw_get_signed (regcache, regno);
1625
1626 switch (op)
1627 {
1628 case 0x38: /* BLBC */
1629 if ((rav & 1) == 0)
1630 goto branch_taken;
1631 break;
1632 case 0x3c: /* BLBS */
1633 if (rav & 1)
1634 goto branch_taken;
1635 break;
1636 case 0x39: /* BEQ */
1637 if (rav == 0)
1638 goto branch_taken;
1639 break;
1640 case 0x3d: /* BNE */
1641 if (rav != 0)
1642 goto branch_taken;
1643 break;
1644 case 0x3a: /* BLT */
1645 if (rav < 0)
1646 goto branch_taken;
1647 break;
1648 case 0x3b: /* BLE */
1649 if (rav <= 0)
1650 goto branch_taken;
1651 break;
1652 case 0x3f: /* BGT */
1653 if (rav > 0)
1654 goto branch_taken;
1655 break;
1656 case 0x3e: /* BGE */
1657 if (rav >= 0)
1658 goto branch_taken;
1659 break;
1660
1661 /* Floating point branches. */
1662
1663 case 0x31: /* FBEQ */
1664 if (fp_register_zero_p (rav))
1665 goto branch_taken;
1666 break;
1667 case 0x36: /* FBGE */
1668 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1669 goto branch_taken;
1670 break;
1671 case 0x37: /* FBGT */
1672 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1673 goto branch_taken;
1674 break;
1675 case 0x33: /* FBLE */
1676 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1677 goto branch_taken;
1678 break;
1679 case 0x32: /* FBLT */
1680 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1681 goto branch_taken;
1682 break;
1683 case 0x35: /* FBNE */
1684 if (! fp_register_zero_p (rav))
1685 goto branch_taken;
1686 break;
1687 }
1688 }
1689
1690 /* Not a branch or branch not taken; target PC is:
1691 pc + 4 */
1692 return (pc + ALPHA_INSN_SIZE);
1693 }
1694
1695 std::vector<CORE_ADDR>
1696 alpha_software_single_step (struct regcache *regcache)
1697 {
1698 struct gdbarch *gdbarch = regcache->arch ();
1699
1700 CORE_ADDR pc = regcache_read_pc (regcache);
1701
1702 std::vector<CORE_ADDR> next_pcs
1703 = alpha_deal_with_atomic_sequence (gdbarch, pc);
1704 if (!next_pcs.empty ())
1705 return next_pcs;
1706
1707 CORE_ADDR next_pc = alpha_next_pc (regcache, pc);
1708 return {next_pc};
1709 }
1710
1711 \f
1712 /* Initialize the current architecture based on INFO. If possible, re-use an
1713 architecture from ARCHES, which is a list of architectures already created
1714 during this debugging session.
1715
1716 Called e.g. at program startup, when reading a core file, and when reading
1717 a binary file. */
1718
1719 static struct gdbarch *
1720 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1721 {
1722 struct gdbarch_tdep *tdep;
1723 struct gdbarch *gdbarch;
1724
1725 /* Find a candidate among extant architectures. */
1726 arches = gdbarch_list_lookup_by_info (arches, &info);
1727 if (arches != NULL)
1728 return arches->gdbarch;
1729
1730 tdep = XCNEW (struct gdbarch_tdep);
1731 gdbarch = gdbarch_alloc (&info, tdep);
1732
1733 /* Lowest text address. This is used by heuristic_proc_start()
1734 to decide when to stop looking. */
1735 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1736
1737 tdep->dynamic_sigtramp_offset = NULL;
1738 tdep->sigcontext_addr = NULL;
1739 tdep->sc_pc_offset = 2 * 8;
1740 tdep->sc_regs_offset = 4 * 8;
1741 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1742
1743 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
1744
1745 tdep->return_in_memory = alpha_return_in_memory_always;
1746
1747 /* Type sizes */
1748 set_gdbarch_short_bit (gdbarch, 16);
1749 set_gdbarch_int_bit (gdbarch, 32);
1750 set_gdbarch_long_bit (gdbarch, 64);
1751 set_gdbarch_long_long_bit (gdbarch, 64);
1752 set_gdbarch_wchar_bit (gdbarch, 64);
1753 set_gdbarch_wchar_signed (gdbarch, 0);
1754 set_gdbarch_float_bit (gdbarch, 32);
1755 set_gdbarch_double_bit (gdbarch, 64);
1756 set_gdbarch_long_double_bit (gdbarch, 64);
1757 set_gdbarch_ptr_bit (gdbarch, 64);
1758
1759 /* Register info */
1760 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1761 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1762 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1763 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1764
1765 set_gdbarch_register_name (gdbarch, alpha_register_name);
1766 set_gdbarch_register_type (gdbarch, alpha_register_type);
1767
1768 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1769 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1770
1771 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1772 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1773 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1774
1775 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1776
1777 /* Prologue heuristics. */
1778 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1779
1780 /* Call info. */
1781
1782 set_gdbarch_return_value (gdbarch, alpha_return_value);
1783
1784 /* Settings for calling functions in the inferior. */
1785 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1786
1787 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1788 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1789
1790 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1791 alpha_breakpoint::kind_from_pc);
1792 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1793 alpha_breakpoint::bp_from_kind);
1794 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1795 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1796
1797 /* Handles single stepping of atomic sequences. */
1798 set_gdbarch_software_single_step (gdbarch, alpha_software_single_step);
1799
1800 /* Hook in ABI-specific overrides, if they have been registered. */
1801 gdbarch_init_osabi (info, gdbarch);
1802
1803 /* Now that we have tuned the configuration, set a few final things
1804 based on what the OS ABI has told us. */
1805
1806 if (tdep->jb_pc >= 0)
1807 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1808
1809 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1810 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
1811
1812 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1813
1814 return gdbarch;
1815 }
1816
1817 void
1818 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1819 {
1820 dwarf2_append_unwinders (gdbarch);
1821 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1822 }
1823
1824 void _initialize_alpha_tdep ();
1825 void
1826 _initialize_alpha_tdep ()
1827 {
1828
1829 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1830
1831 /* Let the user set the fence post for heuristic_proc_start. */
1832
1833 /* We really would like to have both "0" and "unlimited" work, but
1834 command.c doesn't deal with that. So make it a var_zinteger
1835 because the user can always use "999999" or some such for unlimited. */
1836 /* We need to throw away the frame cache when we set this, since it
1837 might change our ability to get backtraces. */
1838 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1839 &heuristic_fence_post, _("\
1840 Set the distance searched for the start of a function."), _("\
1841 Show the distance searched for the start of a function."), _("\
1842 If you are debugging a stripped executable, GDB needs to search through the\n\
1843 program for the start of a function. This command sets the distance of the\n\
1844 search. The only need to set it is when debugging a stripped executable."),
1845 reinit_frame_cache_sfunc,
1846 NULL, /* FIXME: i18n: The distance searched for
1847 the start of a function is \"%d\". */
1848 &setlist, &showlist);
1849 }
This page took 0.06746 seconds and 4 git commands to generate.