x86-64: Check relocations with -z nocopyreloc
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
61baf725 3 Copyright (C) 1994-2017 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270 55#include "typeprint.h"
ccefe4c4 56#include "psympriv.h"
53ce3c39 57#include <sys/stat.h>
96d19272 58#include "completer.h"
34eaf542 59#include "vec.h"
98bfdba5 60#include "c-lang.h"
a766d390 61#include "go-lang.h"
98bfdba5 62#include "valprint.h"
3019eac3 63#include "gdbcore.h" /* for gnutarget */
156942c7 64#include "gdb/gdb-index.h"
60d5a603 65#include <ctype.h>
cbb099e8 66#include "gdb_bfd.h"
4357ac6c 67#include "f-lang.h"
05cba821 68#include "source.h"
614c279d 69#include "filestuff.h"
dc294be5 70#include "build-id.h"
22cee43f 71#include "namespace.h"
bef155c3 72#include "common/gdb_unlinker.h"
14bc53a8 73#include "common/function-view.h"
ecfb656c
PA
74#include "common/gdb_optional.h"
75#include "common/underlying.h"
d5722aa2 76#include "common/byte-vector.h"
bbf2f4df 77#include "filename-seen-cache.h"
c906108c 78#include <fcntl.h>
c906108c 79#include <sys/types.h>
325fac50 80#include <algorithm>
bc8f2430
JK
81#include <unordered_set>
82#include <unordered_map>
d8151005 83
34eaf542
TT
84typedef struct symbol *symbolp;
85DEF_VEC_P (symbolp);
86
73be47f5
DE
87/* When == 1, print basic high level tracing messages.
88 When > 1, be more verbose.
b4f54984
DE
89 This is in contrast to the low level DIE reading of dwarf_die_debug. */
90static unsigned int dwarf_read_debug = 0;
45cfd468 91
d97bc12b 92/* When non-zero, dump DIEs after they are read in. */
b4f54984 93static unsigned int dwarf_die_debug = 0;
d97bc12b 94
27e0867f
DE
95/* When non-zero, dump line number entries as they are read in. */
96static unsigned int dwarf_line_debug = 0;
97
900e11f9
JK
98/* When non-zero, cross-check physname against demangler. */
99static int check_physname = 0;
100
481860b3 101/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 102static int use_deprecated_index_sections = 0;
481860b3 103
6502dd73
DJ
104static const struct objfile_data *dwarf2_objfile_data_key;
105
f1e6e072
TT
106/* The "aclass" indices for various kinds of computed DWARF symbols. */
107
108static int dwarf2_locexpr_index;
109static int dwarf2_loclist_index;
110static int dwarf2_locexpr_block_index;
111static int dwarf2_loclist_block_index;
112
73869dc2
DE
113/* A descriptor for dwarf sections.
114
115 S.ASECTION, SIZE are typically initialized when the objfile is first
116 scanned. BUFFER, READIN are filled in later when the section is read.
117 If the section contained compressed data then SIZE is updated to record
118 the uncompressed size of the section.
119
120 DWP file format V2 introduces a wrinkle that is easiest to handle by
121 creating the concept of virtual sections contained within a real section.
122 In DWP V2 the sections of the input DWO files are concatenated together
123 into one section, but section offsets are kept relative to the original
124 input section.
125 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
126 the real section this "virtual" section is contained in, and BUFFER,SIZE
127 describe the virtual section. */
128
dce234bc
PP
129struct dwarf2_section_info
130{
73869dc2
DE
131 union
132 {
e5aa3347 133 /* If this is a real section, the bfd section. */
049412e3 134 asection *section;
73869dc2 135 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 136 section. */
73869dc2
DE
137 struct dwarf2_section_info *containing_section;
138 } s;
19ac8c2e 139 /* Pointer to section data, only valid if readin. */
d521ce57 140 const gdb_byte *buffer;
73869dc2 141 /* The size of the section, real or virtual. */
dce234bc 142 bfd_size_type size;
73869dc2
DE
143 /* If this is a virtual section, the offset in the real section.
144 Only valid if is_virtual. */
145 bfd_size_type virtual_offset;
be391dca 146 /* True if we have tried to read this section. */
73869dc2
DE
147 char readin;
148 /* True if this is a virtual section, False otherwise.
049412e3 149 This specifies which of s.section and s.containing_section to use. */
73869dc2 150 char is_virtual;
dce234bc
PP
151};
152
8b70b953
TT
153typedef struct dwarf2_section_info dwarf2_section_info_def;
154DEF_VEC_O (dwarf2_section_info_def);
155
9291a0cd
TT
156/* All offsets in the index are of this type. It must be
157 architecture-independent. */
158typedef uint32_t offset_type;
159
160DEF_VEC_I (offset_type);
161
156942c7
DE
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((unsigned int) (value) <= 1); \
166 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169/* Ensure only legit values are used. */
170#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
173 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
174 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
177/* Ensure we don't use more than the alloted nuber of bits for the CU. */
178#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
179 do { \
180 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
181 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
182 } while (0)
183
9291a0cd
TT
184/* A description of the mapped index. The file format is described in
185 a comment by the code that writes the index. */
186struct mapped_index
187{
559a7a62
JK
188 /* Index data format version. */
189 int version;
190
9291a0cd
TT
191 /* The total length of the buffer. */
192 off_t total_size;
b11b1f88 193
9291a0cd
TT
194 /* A pointer to the address table data. */
195 const gdb_byte *address_table;
b11b1f88 196
9291a0cd
TT
197 /* Size of the address table data in bytes. */
198 offset_type address_table_size;
b11b1f88 199
3876f04e
DE
200 /* The symbol table, implemented as a hash table. */
201 const offset_type *symbol_table;
b11b1f88 202
9291a0cd 203 /* Size in slots, each slot is 2 offset_types. */
3876f04e 204 offset_type symbol_table_slots;
b11b1f88 205
9291a0cd
TT
206 /* A pointer to the constant pool. */
207 const char *constant_pool;
208};
209
95554aad
TT
210typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
211DEF_VEC_P (dwarf2_per_cu_ptr);
212
52059ffd
TT
213struct tu_stats
214{
215 int nr_uniq_abbrev_tables;
216 int nr_symtabs;
217 int nr_symtab_sharers;
218 int nr_stmt_less_type_units;
219 int nr_all_type_units_reallocs;
220};
221
9cdd5dbd
DE
222/* Collection of data recorded per objfile.
223 This hangs off of dwarf2_objfile_data_key. */
224
6502dd73
DJ
225struct dwarf2_per_objfile
226{
330cdd98
PA
227 /* Construct a dwarf2_per_objfile for OBJFILE. NAMES points to the
228 dwarf2 section names, or is NULL if the standard ELF names are
229 used. */
230 dwarf2_per_objfile (struct objfile *objfile,
231 const dwarf2_debug_sections *names);
ae038cb0 232
330cdd98
PA
233 ~dwarf2_per_objfile ();
234
235 /* Disable copy. */
236 dwarf2_per_objfile (const dwarf2_per_objfile &) = delete;
237 void operator= (const dwarf2_per_objfile &) = delete;
238
239 /* Free all cached compilation units. */
240 void free_cached_comp_units ();
241private:
242 /* This function is mapped across the sections and remembers the
243 offset and size of each of the debugging sections we are
244 interested in. */
245 void locate_sections (bfd *abfd, asection *sectp,
246 const dwarf2_debug_sections &names);
247
248public:
249 dwarf2_section_info info {};
250 dwarf2_section_info abbrev {};
251 dwarf2_section_info line {};
252 dwarf2_section_info loc {};
253 dwarf2_section_info loclists {};
254 dwarf2_section_info macinfo {};
255 dwarf2_section_info macro {};
256 dwarf2_section_info str {};
257 dwarf2_section_info line_str {};
258 dwarf2_section_info ranges {};
259 dwarf2_section_info rnglists {};
260 dwarf2_section_info addr {};
261 dwarf2_section_info frame {};
262 dwarf2_section_info eh_frame {};
263 dwarf2_section_info gdb_index {};
264
265 VEC (dwarf2_section_info_def) *types = NULL;
8b70b953 266
be391dca 267 /* Back link. */
330cdd98 268 struct objfile *objfile = NULL;
be391dca 269
d467dd73 270 /* Table of all the compilation units. This is used to locate
10b3939b 271 the target compilation unit of a particular reference. */
330cdd98 272 struct dwarf2_per_cu_data **all_comp_units = NULL;
ae038cb0
DJ
273
274 /* The number of compilation units in ALL_COMP_UNITS. */
330cdd98 275 int n_comp_units = 0;
ae038cb0 276
1fd400ff 277 /* The number of .debug_types-related CUs. */
330cdd98 278 int n_type_units = 0;
1fd400ff 279
6aa5f3a6
DE
280 /* The number of elements allocated in all_type_units.
281 If there are skeleton-less TUs, we add them to all_type_units lazily. */
330cdd98 282 int n_allocated_type_units = 0;
6aa5f3a6 283
a2ce51a0
DE
284 /* The .debug_types-related CUs (TUs).
285 This is stored in malloc space because we may realloc it. */
330cdd98 286 struct signatured_type **all_type_units = NULL;
1fd400ff 287
f4dc4d17
DE
288 /* Table of struct type_unit_group objects.
289 The hash key is the DW_AT_stmt_list value. */
330cdd98 290 htab_t type_unit_groups {};
72dca2f5 291
348e048f
DE
292 /* A table mapping .debug_types signatures to its signatured_type entry.
293 This is NULL if the .debug_types section hasn't been read in yet. */
330cdd98 294 htab_t signatured_types {};
348e048f 295
f4dc4d17
DE
296 /* Type unit statistics, to see how well the scaling improvements
297 are doing. */
330cdd98 298 struct tu_stats tu_stats {};
f4dc4d17
DE
299
300 /* A chain of compilation units that are currently read in, so that
301 they can be freed later. */
330cdd98 302 dwarf2_per_cu_data *read_in_chain = NULL;
f4dc4d17 303
3019eac3
DE
304 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
305 This is NULL if the table hasn't been allocated yet. */
330cdd98 306 htab_t dwo_files {};
3019eac3 307
330cdd98
PA
308 /* True if we've checked for whether there is a DWP file. */
309 bool dwp_checked = false;
80626a55
DE
310
311 /* The DWP file if there is one, or NULL. */
330cdd98 312 struct dwp_file *dwp_file = NULL;
80626a55 313
36586728
TT
314 /* The shared '.dwz' file, if one exists. This is used when the
315 original data was compressed using 'dwz -m'. */
330cdd98 316 struct dwz_file *dwz_file = NULL;
36586728 317
330cdd98 318 /* A flag indicating whether this objfile has a section loaded at a
72dca2f5 319 VMA of 0. */
330cdd98 320 bool has_section_at_zero = false;
9291a0cd 321
ae2de4f8
DE
322 /* True if we are using the mapped index,
323 or we are faking it for OBJF_READNOW's sake. */
330cdd98 324 bool using_index = false;
9291a0cd 325
ae2de4f8 326 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
330cdd98 327 mapped_index *index_table = NULL;
98bfdba5 328
7b9f3c50 329 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
330 TUs typically share line table entries with a CU, so we maintain a
331 separate table of all line table entries to support the sharing.
332 Note that while there can be way more TUs than CUs, we've already
333 sorted all the TUs into "type unit groups", grouped by their
334 DW_AT_stmt_list value. Therefore the only sharing done here is with a
335 CU and its associated TU group if there is one. */
330cdd98 336 htab_t quick_file_names_table {};
7b9f3c50 337
98bfdba5
PA
338 /* Set during partial symbol reading, to prevent queueing of full
339 symbols. */
330cdd98 340 bool reading_partial_symbols = false;
673bfd45 341
dee91e82 342 /* Table mapping type DIEs to their struct type *.
673bfd45 343 This is NULL if not allocated yet.
02142a6c 344 The mapping is done via (CU/TU + DIE offset) -> type. */
330cdd98 345 htab_t die_type_hash {};
95554aad
TT
346
347 /* The CUs we recently read. */
330cdd98 348 VEC (dwarf2_per_cu_ptr) *just_read_cus = NULL;
527f3840
JK
349
350 /* Table containing line_header indexed by offset and offset_in_dwz. */
330cdd98 351 htab_t line_header_hash {};
bbf2f4df
PA
352
353 /* Table containing all filenames. This is an optional because the
354 table is lazily constructed on first access. */
355 gdb::optional<filename_seen_cache> filenames_cache;
6502dd73
DJ
356};
357
358static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 359
251d32d9 360/* Default names of the debugging sections. */
c906108c 361
233a11ab
CS
362/* Note that if the debugging section has been compressed, it might
363 have a name like .zdebug_info. */
364
9cdd5dbd
DE
365static const struct dwarf2_debug_sections dwarf2_elf_names =
366{
251d32d9
TG
367 { ".debug_info", ".zdebug_info" },
368 { ".debug_abbrev", ".zdebug_abbrev" },
369 { ".debug_line", ".zdebug_line" },
370 { ".debug_loc", ".zdebug_loc" },
43988095 371 { ".debug_loclists", ".zdebug_loclists" },
251d32d9 372 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 373 { ".debug_macro", ".zdebug_macro" },
251d32d9 374 { ".debug_str", ".zdebug_str" },
43988095 375 { ".debug_line_str", ".zdebug_line_str" },
251d32d9 376 { ".debug_ranges", ".zdebug_ranges" },
43988095 377 { ".debug_rnglists", ".zdebug_rnglists" },
251d32d9 378 { ".debug_types", ".zdebug_types" },
3019eac3 379 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
380 { ".debug_frame", ".zdebug_frame" },
381 { ".eh_frame", NULL },
24d3216f
TT
382 { ".gdb_index", ".zgdb_index" },
383 23
251d32d9 384};
c906108c 385
80626a55 386/* List of DWO/DWP sections. */
3019eac3 387
80626a55 388static const struct dwop_section_names
3019eac3
DE
389{
390 struct dwarf2_section_names abbrev_dwo;
391 struct dwarf2_section_names info_dwo;
392 struct dwarf2_section_names line_dwo;
393 struct dwarf2_section_names loc_dwo;
43988095 394 struct dwarf2_section_names loclists_dwo;
09262596
DE
395 struct dwarf2_section_names macinfo_dwo;
396 struct dwarf2_section_names macro_dwo;
3019eac3
DE
397 struct dwarf2_section_names str_dwo;
398 struct dwarf2_section_names str_offsets_dwo;
399 struct dwarf2_section_names types_dwo;
80626a55
DE
400 struct dwarf2_section_names cu_index;
401 struct dwarf2_section_names tu_index;
3019eac3 402}
80626a55 403dwop_section_names =
3019eac3
DE
404{
405 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
406 { ".debug_info.dwo", ".zdebug_info.dwo" },
407 { ".debug_line.dwo", ".zdebug_line.dwo" },
408 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
43988095 409 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
09262596
DE
410 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
411 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
412 { ".debug_str.dwo", ".zdebug_str.dwo" },
413 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
414 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
415 { ".debug_cu_index", ".zdebug_cu_index" },
416 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
417};
418
c906108c
SS
419/* local data types */
420
107d2387
AC
421/* The data in a compilation unit header, after target2host
422 translation, looks like this. */
c906108c 423struct comp_unit_head
a738430d 424{
c764a876 425 unsigned int length;
a738430d 426 short version;
a738430d
MK
427 unsigned char addr_size;
428 unsigned char signed_addr_p;
9c541725 429 sect_offset abbrev_sect_off;
57349743 430
a738430d
MK
431 /* Size of file offsets; either 4 or 8. */
432 unsigned int offset_size;
57349743 433
a738430d
MK
434 /* Size of the length field; either 4 or 12. */
435 unsigned int initial_length_size;
57349743 436
43988095
JK
437 enum dwarf_unit_type unit_type;
438
a738430d
MK
439 /* Offset to the first byte of this compilation unit header in the
440 .debug_info section, for resolving relative reference dies. */
9c541725 441 sect_offset sect_off;
57349743 442
d00adf39
DE
443 /* Offset to first die in this cu from the start of the cu.
444 This will be the first byte following the compilation unit header. */
9c541725 445 cu_offset first_die_cu_offset;
43988095
JK
446
447 /* 64-bit signature of this type unit - it is valid only for
448 UNIT_TYPE DW_UT_type. */
449 ULONGEST signature;
450
451 /* For types, offset in the type's DIE of the type defined by this TU. */
9c541725 452 cu_offset type_cu_offset_in_tu;
a738430d 453};
c906108c 454
3da10d80
KS
455/* Type used for delaying computation of method physnames.
456 See comments for compute_delayed_physnames. */
457struct delayed_method_info
458{
459 /* The type to which the method is attached, i.e., its parent class. */
460 struct type *type;
461
462 /* The index of the method in the type's function fieldlists. */
463 int fnfield_index;
464
465 /* The index of the method in the fieldlist. */
466 int index;
467
468 /* The name of the DIE. */
469 const char *name;
470
471 /* The DIE associated with this method. */
472 struct die_info *die;
473};
474
475typedef struct delayed_method_info delayed_method_info;
476DEF_VEC_O (delayed_method_info);
477
e7c27a73
DJ
478/* Internal state when decoding a particular compilation unit. */
479struct dwarf2_cu
480{
481 /* The objfile containing this compilation unit. */
482 struct objfile *objfile;
483
d00adf39 484 /* The header of the compilation unit. */
e7c27a73 485 struct comp_unit_head header;
e142c38c 486
d00adf39
DE
487 /* Base address of this compilation unit. */
488 CORE_ADDR base_address;
489
490 /* Non-zero if base_address has been set. */
491 int base_known;
492
e142c38c
DJ
493 /* The language we are debugging. */
494 enum language language;
495 const struct language_defn *language_defn;
496
b0f35d58
DL
497 const char *producer;
498
e142c38c
DJ
499 /* The generic symbol table building routines have separate lists for
500 file scope symbols and all all other scopes (local scopes). So
501 we need to select the right one to pass to add_symbol_to_list().
502 We do it by keeping a pointer to the correct list in list_in_scope.
503
504 FIXME: The original dwarf code just treated the file scope as the
505 first local scope, and all other local scopes as nested local
506 scopes, and worked fine. Check to see if we really need to
507 distinguish these in buildsym.c. */
508 struct pending **list_in_scope;
509
433df2d4
DE
510 /* The abbrev table for this CU.
511 Normally this points to the abbrev table in the objfile.
512 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
513 struct abbrev_table *abbrev_table;
72bf9492 514
b64f50a1
JK
515 /* Hash table holding all the loaded partial DIEs
516 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
517 htab_t partial_dies;
518
519 /* Storage for things with the same lifetime as this read-in compilation
520 unit, including partial DIEs. */
521 struct obstack comp_unit_obstack;
522
ae038cb0
DJ
523 /* When multiple dwarf2_cu structures are living in memory, this field
524 chains them all together, so that they can be released efficiently.
525 We will probably also want a generation counter so that most-recently-used
526 compilation units are cached... */
527 struct dwarf2_per_cu_data *read_in_chain;
528
69d751e3 529 /* Backlink to our per_cu entry. */
ae038cb0
DJ
530 struct dwarf2_per_cu_data *per_cu;
531
532 /* How many compilation units ago was this CU last referenced? */
533 int last_used;
534
b64f50a1
JK
535 /* A hash table of DIE cu_offset for following references with
536 die_info->offset.sect_off as hash. */
51545339 537 htab_t die_hash;
10b3939b
DJ
538
539 /* Full DIEs if read in. */
540 struct die_info *dies;
541
542 /* A set of pointers to dwarf2_per_cu_data objects for compilation
543 units referenced by this one. Only set during full symbol processing;
544 partial symbol tables do not have dependencies. */
545 htab_t dependencies;
546
cb1df416
DJ
547 /* Header data from the line table, during full symbol processing. */
548 struct line_header *line_header;
4c8aa72d
PA
549 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
550 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
551 this is the DW_TAG_compile_unit die for this CU. We'll hold on
552 to the line header as long as this DIE is being processed. See
553 process_die_scope. */
554 die_info *line_header_die_owner;
cb1df416 555
3da10d80
KS
556 /* A list of methods which need to have physnames computed
557 after all type information has been read. */
558 VEC (delayed_method_info) *method_list;
559
96408a79
SA
560 /* To be copied to symtab->call_site_htab. */
561 htab_t call_site_htab;
562
034e5797
DE
563 /* Non-NULL if this CU came from a DWO file.
564 There is an invariant here that is important to remember:
565 Except for attributes copied from the top level DIE in the "main"
566 (or "stub") file in preparation for reading the DWO file
567 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
568 Either there isn't a DWO file (in which case this is NULL and the point
569 is moot), or there is and either we're not going to read it (in which
570 case this is NULL) or there is and we are reading it (in which case this
571 is non-NULL). */
3019eac3
DE
572 struct dwo_unit *dwo_unit;
573
574 /* The DW_AT_addr_base attribute if present, zero otherwise
575 (zero is a valid value though).
1dbab08b 576 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
577 ULONGEST addr_base;
578
2e3cf129
DE
579 /* The DW_AT_ranges_base attribute if present, zero otherwise
580 (zero is a valid value though).
1dbab08b 581 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 582 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
583 be used without needing to know whether DWO files are in use or not.
584 N.B. This does not apply to DW_AT_ranges appearing in
585 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
586 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
587 DW_AT_ranges_base *would* have to be applied, and we'd have to care
588 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
589 ULONGEST ranges_base;
590
ae038cb0
DJ
591 /* Mark used when releasing cached dies. */
592 unsigned int mark : 1;
593
8be455d7
JK
594 /* This CU references .debug_loc. See the symtab->locations_valid field.
595 This test is imperfect as there may exist optimized debug code not using
596 any location list and still facing inlining issues if handled as
597 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 598 unsigned int has_loclist : 1;
ba919b58 599
1b80a9fa
JK
600 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
601 if all the producer_is_* fields are valid. This information is cached
602 because profiling CU expansion showed excessive time spent in
603 producer_is_gxx_lt_4_6. */
ba919b58
TT
604 unsigned int checked_producer : 1;
605 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 606 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 607 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
608
609 /* When set, the file that we're processing is known to have
610 debugging info for C++ namespaces. GCC 3.3.x did not produce
611 this information, but later versions do. */
612
613 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
614};
615
10b3939b
DJ
616/* Persistent data held for a compilation unit, even when not
617 processing it. We put a pointer to this structure in the
28dee7f5 618 read_symtab_private field of the psymtab. */
10b3939b 619
ae038cb0
DJ
620struct dwarf2_per_cu_data
621{
36586728 622 /* The start offset and length of this compilation unit.
45452591 623 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
624 initial_length_size.
625 If the DIE refers to a DWO file, this is always of the original die,
626 not the DWO file. */
9c541725 627 sect_offset sect_off;
36586728 628 unsigned int length;
ae038cb0 629
43988095
JK
630 /* DWARF standard version this data has been read from (such as 4 or 5). */
631 short dwarf_version;
632
ae038cb0
DJ
633 /* Flag indicating this compilation unit will be read in before
634 any of the current compilation units are processed. */
c764a876 635 unsigned int queued : 1;
ae038cb0 636
0d99eb77
DE
637 /* This flag will be set when reading partial DIEs if we need to load
638 absolutely all DIEs for this compilation unit, instead of just the ones
639 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
640 hash table and don't find it. */
641 unsigned int load_all_dies : 1;
642
0186c6a7
DE
643 /* Non-zero if this CU is from .debug_types.
644 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
645 this is non-zero. */
3019eac3
DE
646 unsigned int is_debug_types : 1;
647
36586728
TT
648 /* Non-zero if this CU is from the .dwz file. */
649 unsigned int is_dwz : 1;
650
a2ce51a0
DE
651 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
652 This flag is only valid if is_debug_types is true.
653 We can't read a CU directly from a DWO file: There are required
654 attributes in the stub. */
655 unsigned int reading_dwo_directly : 1;
656
7ee85ab1
DE
657 /* Non-zero if the TU has been read.
658 This is used to assist the "Stay in DWO Optimization" for Fission:
659 When reading a DWO, it's faster to read TUs from the DWO instead of
660 fetching them from random other DWOs (due to comdat folding).
661 If the TU has already been read, the optimization is unnecessary
662 (and unwise - we don't want to change where gdb thinks the TU lives
663 "midflight").
664 This flag is only valid if is_debug_types is true. */
665 unsigned int tu_read : 1;
666
3019eac3
DE
667 /* The section this CU/TU lives in.
668 If the DIE refers to a DWO file, this is always the original die,
669 not the DWO file. */
8a0459fd 670 struct dwarf2_section_info *section;
348e048f 671
17ea53c3 672 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
673 of the CU cache it gets reset to NULL again. This is left as NULL for
674 dummy CUs (a CU header, but nothing else). */
ae038cb0 675 struct dwarf2_cu *cu;
1c379e20 676
9cdd5dbd
DE
677 /* The corresponding objfile.
678 Normally we can get the objfile from dwarf2_per_objfile.
679 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
680 struct objfile *objfile;
681
fffbe6a8
YQ
682 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
683 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
684 union
685 {
686 /* The partial symbol table associated with this compilation unit,
95554aad 687 or NULL for unread partial units. */
9291a0cd
TT
688 struct partial_symtab *psymtab;
689
690 /* Data needed by the "quick" functions. */
691 struct dwarf2_per_cu_quick_data *quick;
692 } v;
95554aad 693
796a7ff8
DE
694 /* The CUs we import using DW_TAG_imported_unit. This is filled in
695 while reading psymtabs, used to compute the psymtab dependencies,
696 and then cleared. Then it is filled in again while reading full
697 symbols, and only deleted when the objfile is destroyed.
698
699 This is also used to work around a difference between the way gold
700 generates .gdb_index version <=7 and the way gdb does. Arguably this
701 is a gold bug. For symbols coming from TUs, gold records in the index
702 the CU that includes the TU instead of the TU itself. This breaks
703 dw2_lookup_symbol: It assumes that if the index says symbol X lives
704 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
705 will find X. Alas TUs live in their own symtab, so after expanding CU Y
706 we need to look in TU Z to find X. Fortunately, this is akin to
707 DW_TAG_imported_unit, so we just use the same mechanism: For
708 .gdb_index version <=7 this also records the TUs that the CU referred
709 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
710 indices so we only pay a price for gold generated indices.
711 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 712 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
713};
714
348e048f
DE
715/* Entry in the signatured_types hash table. */
716
717struct signatured_type
718{
42e7ad6c 719 /* The "per_cu" object of this type.
ac9ec31b 720 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
721 N.B.: This is the first member so that it's easy to convert pointers
722 between them. */
723 struct dwarf2_per_cu_data per_cu;
724
3019eac3 725 /* The type's signature. */
348e048f
DE
726 ULONGEST signature;
727
3019eac3 728 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
729 If this TU is a DWO stub and the definition lives in a DWO file
730 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
731 cu_offset type_offset_in_tu;
732
733 /* Offset in the section of the type's DIE.
734 If the definition lives in a DWO file, this is the offset in the
735 .debug_types.dwo section.
736 The value is zero until the actual value is known.
737 Zero is otherwise not a valid section offset. */
738 sect_offset type_offset_in_section;
0186c6a7
DE
739
740 /* Type units are grouped by their DW_AT_stmt_list entry so that they
741 can share them. This points to the containing symtab. */
742 struct type_unit_group *type_unit_group;
ac9ec31b
DE
743
744 /* The type.
745 The first time we encounter this type we fully read it in and install it
746 in the symbol tables. Subsequent times we only need the type. */
747 struct type *type;
a2ce51a0
DE
748
749 /* Containing DWO unit.
750 This field is valid iff per_cu.reading_dwo_directly. */
751 struct dwo_unit *dwo_unit;
348e048f
DE
752};
753
0186c6a7
DE
754typedef struct signatured_type *sig_type_ptr;
755DEF_VEC_P (sig_type_ptr);
756
094b34ac
DE
757/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
758 This includes type_unit_group and quick_file_names. */
759
760struct stmt_list_hash
761{
762 /* The DWO unit this table is from or NULL if there is none. */
763 struct dwo_unit *dwo_unit;
764
765 /* Offset in .debug_line or .debug_line.dwo. */
9c541725 766 sect_offset line_sect_off;
094b34ac
DE
767};
768
f4dc4d17
DE
769/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
770 an object of this type. */
771
772struct type_unit_group
773{
0186c6a7 774 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
775 To simplify things we create an artificial CU that "includes" all the
776 type units using this stmt_list so that the rest of the code still has
777 a "per_cu" handle on the symtab.
778 This PER_CU is recognized by having no section. */
8a0459fd 779#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
780 struct dwarf2_per_cu_data per_cu;
781
0186c6a7
DE
782 /* The TUs that share this DW_AT_stmt_list entry.
783 This is added to while parsing type units to build partial symtabs,
784 and is deleted afterwards and not used again. */
785 VEC (sig_type_ptr) *tus;
f4dc4d17 786
43f3e411 787 /* The compunit symtab.
094b34ac 788 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
789 so we create an essentially anonymous symtab as the compunit symtab. */
790 struct compunit_symtab *compunit_symtab;
f4dc4d17 791
094b34ac
DE
792 /* The data used to construct the hash key. */
793 struct stmt_list_hash hash;
f4dc4d17
DE
794
795 /* The number of symtabs from the line header.
796 The value here must match line_header.num_file_names. */
797 unsigned int num_symtabs;
798
799 /* The symbol tables for this TU (obtained from the files listed in
800 DW_AT_stmt_list).
801 WARNING: The order of entries here must match the order of entries
802 in the line header. After the first TU using this type_unit_group, the
803 line header for the subsequent TUs is recreated from this. This is done
804 because we need to use the same symtabs for each TU using the same
805 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
806 there's no guarantee the line header doesn't have duplicate entries. */
807 struct symtab **symtabs;
808};
809
73869dc2 810/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
811
812struct dwo_sections
813{
814 struct dwarf2_section_info abbrev;
3019eac3
DE
815 struct dwarf2_section_info line;
816 struct dwarf2_section_info loc;
43988095 817 struct dwarf2_section_info loclists;
09262596
DE
818 struct dwarf2_section_info macinfo;
819 struct dwarf2_section_info macro;
3019eac3
DE
820 struct dwarf2_section_info str;
821 struct dwarf2_section_info str_offsets;
80626a55
DE
822 /* In the case of a virtual DWO file, these two are unused. */
823 struct dwarf2_section_info info;
3019eac3
DE
824 VEC (dwarf2_section_info_def) *types;
825};
826
c88ee1f0 827/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
828
829struct dwo_unit
830{
831 /* Backlink to the containing struct dwo_file. */
832 struct dwo_file *dwo_file;
833
834 /* The "id" that distinguishes this CU/TU.
835 .debug_info calls this "dwo_id", .debug_types calls this "signature".
836 Since signatures came first, we stick with it for consistency. */
837 ULONGEST signature;
838
839 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 840 struct dwarf2_section_info *section;
3019eac3 841
9c541725
PA
842 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
843 sect_offset sect_off;
3019eac3
DE
844 unsigned int length;
845
846 /* For types, offset in the type's DIE of the type defined by this TU. */
847 cu_offset type_offset_in_tu;
848};
849
73869dc2
DE
850/* include/dwarf2.h defines the DWP section codes.
851 It defines a max value but it doesn't define a min value, which we
852 use for error checking, so provide one. */
853
854enum dwp_v2_section_ids
855{
856 DW_SECT_MIN = 1
857};
858
80626a55 859/* Data for one DWO file.
57d63ce2
DE
860
861 This includes virtual DWO files (a virtual DWO file is a DWO file as it
862 appears in a DWP file). DWP files don't really have DWO files per se -
863 comdat folding of types "loses" the DWO file they came from, and from
864 a high level view DWP files appear to contain a mass of random types.
865 However, to maintain consistency with the non-DWP case we pretend DWP
866 files contain virtual DWO files, and we assign each TU with one virtual
867 DWO file (generally based on the line and abbrev section offsets -
868 a heuristic that seems to work in practice). */
3019eac3
DE
869
870struct dwo_file
871{
0ac5b59e 872 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
873 For virtual DWO files the name is constructed from the section offsets
874 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
875 from related CU+TUs. */
0ac5b59e
DE
876 const char *dwo_name;
877
878 /* The DW_AT_comp_dir attribute. */
879 const char *comp_dir;
3019eac3 880
80626a55
DE
881 /* The bfd, when the file is open. Otherwise this is NULL.
882 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
883 bfd *dbfd;
3019eac3 884
73869dc2
DE
885 /* The sections that make up this DWO file.
886 Remember that for virtual DWO files in DWP V2, these are virtual
887 sections (for lack of a better name). */
3019eac3
DE
888 struct dwo_sections sections;
889
33c5cd75
DB
890 /* The CUs in the file.
891 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
892 an extension to handle LLVM's Link Time Optimization output (where
893 multiple source files may be compiled into a single object/dwo pair). */
894 htab_t cus;
3019eac3
DE
895
896 /* Table of TUs in the file.
897 Each element is a struct dwo_unit. */
898 htab_t tus;
899};
900
80626a55
DE
901/* These sections are what may appear in a DWP file. */
902
903struct dwp_sections
904{
73869dc2 905 /* These are used by both DWP version 1 and 2. */
80626a55
DE
906 struct dwarf2_section_info str;
907 struct dwarf2_section_info cu_index;
908 struct dwarf2_section_info tu_index;
73869dc2
DE
909
910 /* These are only used by DWP version 2 files.
911 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
912 sections are referenced by section number, and are not recorded here.
913 In DWP version 2 there is at most one copy of all these sections, each
914 section being (effectively) comprised of the concatenation of all of the
915 individual sections that exist in the version 1 format.
916 To keep the code simple we treat each of these concatenated pieces as a
917 section itself (a virtual section?). */
918 struct dwarf2_section_info abbrev;
919 struct dwarf2_section_info info;
920 struct dwarf2_section_info line;
921 struct dwarf2_section_info loc;
922 struct dwarf2_section_info macinfo;
923 struct dwarf2_section_info macro;
924 struct dwarf2_section_info str_offsets;
925 struct dwarf2_section_info types;
80626a55
DE
926};
927
73869dc2
DE
928/* These sections are what may appear in a virtual DWO file in DWP version 1.
929 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 930
73869dc2 931struct virtual_v1_dwo_sections
80626a55
DE
932{
933 struct dwarf2_section_info abbrev;
934 struct dwarf2_section_info line;
935 struct dwarf2_section_info loc;
936 struct dwarf2_section_info macinfo;
937 struct dwarf2_section_info macro;
938 struct dwarf2_section_info str_offsets;
939 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 940 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
941 struct dwarf2_section_info info_or_types;
942};
943
73869dc2
DE
944/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
945 In version 2, the sections of the DWO files are concatenated together
946 and stored in one section of that name. Thus each ELF section contains
947 several "virtual" sections. */
948
949struct virtual_v2_dwo_sections
950{
951 bfd_size_type abbrev_offset;
952 bfd_size_type abbrev_size;
953
954 bfd_size_type line_offset;
955 bfd_size_type line_size;
956
957 bfd_size_type loc_offset;
958 bfd_size_type loc_size;
959
960 bfd_size_type macinfo_offset;
961 bfd_size_type macinfo_size;
962
963 bfd_size_type macro_offset;
964 bfd_size_type macro_size;
965
966 bfd_size_type str_offsets_offset;
967 bfd_size_type str_offsets_size;
968
969 /* Each DWP hash table entry records one CU or one TU.
970 That is recorded here, and copied to dwo_unit.section. */
971 bfd_size_type info_or_types_offset;
972 bfd_size_type info_or_types_size;
973};
974
80626a55
DE
975/* Contents of DWP hash tables. */
976
977struct dwp_hash_table
978{
73869dc2 979 uint32_t version, nr_columns;
80626a55 980 uint32_t nr_units, nr_slots;
73869dc2
DE
981 const gdb_byte *hash_table, *unit_table;
982 union
983 {
984 struct
985 {
986 const gdb_byte *indices;
987 } v1;
988 struct
989 {
990 /* This is indexed by column number and gives the id of the section
991 in that column. */
992#define MAX_NR_V2_DWO_SECTIONS \
993 (1 /* .debug_info or .debug_types */ \
994 + 1 /* .debug_abbrev */ \
995 + 1 /* .debug_line */ \
996 + 1 /* .debug_loc */ \
997 + 1 /* .debug_str_offsets */ \
998 + 1 /* .debug_macro or .debug_macinfo */)
999 int section_ids[MAX_NR_V2_DWO_SECTIONS];
1000 const gdb_byte *offsets;
1001 const gdb_byte *sizes;
1002 } v2;
1003 } section_pool;
80626a55
DE
1004};
1005
1006/* Data for one DWP file. */
1007
1008struct dwp_file
1009{
1010 /* Name of the file. */
1011 const char *name;
1012
73869dc2
DE
1013 /* File format version. */
1014 int version;
1015
93417882 1016 /* The bfd. */
80626a55
DE
1017 bfd *dbfd;
1018
1019 /* Section info for this file. */
1020 struct dwp_sections sections;
1021
57d63ce2 1022 /* Table of CUs in the file. */
80626a55
DE
1023 const struct dwp_hash_table *cus;
1024
1025 /* Table of TUs in the file. */
1026 const struct dwp_hash_table *tus;
1027
19ac8c2e
DE
1028 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
1029 htab_t loaded_cus;
1030 htab_t loaded_tus;
80626a55 1031
73869dc2
DE
1032 /* Table to map ELF section numbers to their sections.
1033 This is only needed for the DWP V1 file format. */
80626a55
DE
1034 unsigned int num_sections;
1035 asection **elf_sections;
1036};
1037
36586728
TT
1038/* This represents a '.dwz' file. */
1039
1040struct dwz_file
1041{
1042 /* A dwz file can only contain a few sections. */
1043 struct dwarf2_section_info abbrev;
1044 struct dwarf2_section_info info;
1045 struct dwarf2_section_info str;
1046 struct dwarf2_section_info line;
1047 struct dwarf2_section_info macro;
2ec9a5e0 1048 struct dwarf2_section_info gdb_index;
36586728
TT
1049
1050 /* The dwz's BFD. */
1051 bfd *dwz_bfd;
1052};
1053
0963b4bd
MS
1054/* Struct used to pass misc. parameters to read_die_and_children, et
1055 al. which are used for both .debug_info and .debug_types dies.
1056 All parameters here are unchanging for the life of the call. This
dee91e82 1057 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
1058
1059struct die_reader_specs
1060{
a32a8923 1061 /* The bfd of die_section. */
93311388
DE
1062 bfd* abfd;
1063
1064 /* The CU of the DIE we are parsing. */
1065 struct dwarf2_cu *cu;
1066
80626a55 1067 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1068 struct dwo_file *dwo_file;
1069
dee91e82 1070 /* The section the die comes from.
3019eac3 1071 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1072 struct dwarf2_section_info *die_section;
1073
1074 /* die_section->buffer. */
d521ce57 1075 const gdb_byte *buffer;
f664829e
DE
1076
1077 /* The end of the buffer. */
1078 const gdb_byte *buffer_end;
a2ce51a0
DE
1079
1080 /* The value of the DW_AT_comp_dir attribute. */
1081 const char *comp_dir;
93311388
DE
1082};
1083
fd820528 1084/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1085typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1086 const gdb_byte *info_ptr,
dee91e82
DE
1087 struct die_info *comp_unit_die,
1088 int has_children,
1089 void *data);
1090
ecfb656c
PA
1091/* A 1-based directory index. This is a strong typedef to prevent
1092 accidentally using a directory index as a 0-based index into an
1093 array/vector. */
1094enum class dir_index : unsigned int {};
1095
1096/* Likewise, a 1-based file name index. */
1097enum class file_name_index : unsigned int {};
1098
52059ffd
TT
1099struct file_entry
1100{
fff8551c
PA
1101 file_entry () = default;
1102
ecfb656c 1103 file_entry (const char *name_, dir_index d_index_,
fff8551c
PA
1104 unsigned int mod_time_, unsigned int length_)
1105 : name (name_),
ecfb656c 1106 d_index (d_index_),
fff8551c
PA
1107 mod_time (mod_time_),
1108 length (length_)
1109 {}
1110
ecfb656c
PA
1111 /* Return the include directory at D_INDEX stored in LH. Returns
1112 NULL if D_INDEX is out of bounds. */
8c43009f
PA
1113 const char *include_dir (const line_header *lh) const;
1114
fff8551c
PA
1115 /* The file name. Note this is an observing pointer. The memory is
1116 owned by debug_line_buffer. */
1117 const char *name {};
1118
8c43009f 1119 /* The directory index (1-based). */
ecfb656c 1120 dir_index d_index {};
fff8551c
PA
1121
1122 unsigned int mod_time {};
1123
1124 unsigned int length {};
1125
1126 /* True if referenced by the Line Number Program. */
1127 bool included_p {};
1128
83769d0b 1129 /* The associated symbol table, if any. */
fff8551c 1130 struct symtab *symtab {};
52059ffd
TT
1131};
1132
debd256d
JB
1133/* The line number information for a compilation unit (found in the
1134 .debug_line section) begins with a "statement program header",
1135 which contains the following information. */
1136struct line_header
1137{
fff8551c
PA
1138 line_header ()
1139 : offset_in_dwz {}
1140 {}
1141
1142 /* Add an entry to the include directory table. */
1143 void add_include_dir (const char *include_dir);
1144
1145 /* Add an entry to the file name table. */
ecfb656c 1146 void add_file_name (const char *name, dir_index d_index,
fff8551c
PA
1147 unsigned int mod_time, unsigned int length);
1148
ecfb656c 1149 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
8c43009f 1150 is out of bounds. */
ecfb656c 1151 const char *include_dir_at (dir_index index) const
8c43009f 1152 {
ecfb656c
PA
1153 /* Convert directory index number (1-based) to vector index
1154 (0-based). */
1155 size_t vec_index = to_underlying (index) - 1;
1156
1157 if (vec_index >= include_dirs.size ())
8c43009f 1158 return NULL;
ecfb656c 1159 return include_dirs[vec_index];
8c43009f
PA
1160 }
1161
ecfb656c 1162 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
8c43009f 1163 is out of bounds. */
ecfb656c 1164 file_entry *file_name_at (file_name_index index)
8c43009f 1165 {
ecfb656c
PA
1166 /* Convert file name index number (1-based) to vector index
1167 (0-based). */
1168 size_t vec_index = to_underlying (index) - 1;
1169
1170 if (vec_index >= file_names.size ())
fff8551c 1171 return NULL;
ecfb656c 1172 return &file_names[vec_index];
fff8551c
PA
1173 }
1174
1175 /* Const version of the above. */
1176 const file_entry *file_name_at (unsigned int index) const
1177 {
1178 if (index >= file_names.size ())
8c43009f
PA
1179 return NULL;
1180 return &file_names[index];
1181 }
1182
527f3840 1183 /* Offset of line number information in .debug_line section. */
9c541725 1184 sect_offset sect_off {};
527f3840
JK
1185
1186 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
fff8551c
PA
1187 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1188
1189 unsigned int total_length {};
1190 unsigned short version {};
1191 unsigned int header_length {};
1192 unsigned char minimum_instruction_length {};
1193 unsigned char maximum_ops_per_instruction {};
1194 unsigned char default_is_stmt {};
1195 int line_base {};
1196 unsigned char line_range {};
1197 unsigned char opcode_base {};
debd256d
JB
1198
1199 /* standard_opcode_lengths[i] is the number of operands for the
1200 standard opcode whose value is i. This means that
1201 standard_opcode_lengths[0] is unused, and the last meaningful
1202 element is standard_opcode_lengths[opcode_base - 1]. */
fff8551c 1203 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
debd256d 1204
fff8551c
PA
1205 /* The include_directories table. Note these are observing
1206 pointers. The memory is owned by debug_line_buffer. */
1207 std::vector<const char *> include_dirs;
debd256d 1208
fff8551c
PA
1209 /* The file_names table. */
1210 std::vector<file_entry> file_names;
debd256d
JB
1211
1212 /* The start and end of the statement program following this
6502dd73 1213 header. These point into dwarf2_per_objfile->line_buffer. */
fff8551c 1214 const gdb_byte *statement_program_start {}, *statement_program_end {};
debd256d 1215};
c906108c 1216
fff8551c
PA
1217typedef std::unique_ptr<line_header> line_header_up;
1218
8c43009f
PA
1219const char *
1220file_entry::include_dir (const line_header *lh) const
1221{
ecfb656c 1222 return lh->include_dir_at (d_index);
8c43009f
PA
1223}
1224
c906108c 1225/* When we construct a partial symbol table entry we only
0963b4bd 1226 need this much information. */
c906108c
SS
1227struct partial_die_info
1228 {
72bf9492 1229 /* Offset of this DIE. */
9c541725 1230 sect_offset sect_off;
72bf9492
DJ
1231
1232 /* DWARF-2 tag for this DIE. */
1233 ENUM_BITFIELD(dwarf_tag) tag : 16;
1234
72bf9492
DJ
1235 /* Assorted flags describing the data found in this DIE. */
1236 unsigned int has_children : 1;
1237 unsigned int is_external : 1;
1238 unsigned int is_declaration : 1;
1239 unsigned int has_type : 1;
1240 unsigned int has_specification : 1;
1241 unsigned int has_pc_info : 1;
481860b3 1242 unsigned int may_be_inlined : 1;
72bf9492 1243
0c1b455e
TT
1244 /* This DIE has been marked DW_AT_main_subprogram. */
1245 unsigned int main_subprogram : 1;
1246
72bf9492
DJ
1247 /* Flag set if the SCOPE field of this structure has been
1248 computed. */
1249 unsigned int scope_set : 1;
1250
fa4028e9
JB
1251 /* Flag set if the DIE has a byte_size attribute. */
1252 unsigned int has_byte_size : 1;
1253
ff908ebf
AW
1254 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1255 unsigned int has_const_value : 1;
1256
98bfdba5
PA
1257 /* Flag set if any of the DIE's children are template arguments. */
1258 unsigned int has_template_arguments : 1;
1259
abc72ce4
DE
1260 /* Flag set if fixup_partial_die has been called on this die. */
1261 unsigned int fixup_called : 1;
1262
36586728
TT
1263 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1264 unsigned int is_dwz : 1;
1265
1266 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1267 unsigned int spec_is_dwz : 1;
1268
72bf9492 1269 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1270 sometimes a default name for unnamed DIEs. */
15d034d0 1271 const char *name;
72bf9492 1272
abc72ce4
DE
1273 /* The linkage name, if present. */
1274 const char *linkage_name;
1275
72bf9492
DJ
1276 /* The scope to prepend to our children. This is generally
1277 allocated on the comp_unit_obstack, so will disappear
1278 when this compilation unit leaves the cache. */
15d034d0 1279 const char *scope;
72bf9492 1280
95554aad
TT
1281 /* Some data associated with the partial DIE. The tag determines
1282 which field is live. */
1283 union
1284 {
1285 /* The location description associated with this DIE, if any. */
1286 struct dwarf_block *locdesc;
1287 /* The offset of an import, for DW_TAG_imported_unit. */
9c541725 1288 sect_offset sect_off;
95554aad 1289 } d;
72bf9492
DJ
1290
1291 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1292 CORE_ADDR lowpc;
1293 CORE_ADDR highpc;
72bf9492 1294
93311388 1295 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1296 DW_AT_sibling, if any. */
abc72ce4
DE
1297 /* NOTE: This member isn't strictly necessary, read_partial_die could
1298 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1299 const gdb_byte *sibling;
72bf9492
DJ
1300
1301 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1302 DW_AT_specification (or DW_AT_abstract_origin or
1303 DW_AT_extension). */
b64f50a1 1304 sect_offset spec_offset;
72bf9492
DJ
1305
1306 /* Pointers to this DIE's parent, first child, and next sibling,
1307 if any. */
1308 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1309 };
1310
0963b4bd 1311/* This data structure holds the information of an abbrev. */
c906108c
SS
1312struct abbrev_info
1313 {
1314 unsigned int number; /* number identifying abbrev */
1315 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1316 unsigned short has_children; /* boolean */
1317 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1318 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1319 struct abbrev_info *next; /* next in chain */
1320 };
1321
1322struct attr_abbrev
1323 {
9d25dd43
DE
1324 ENUM_BITFIELD(dwarf_attribute) name : 16;
1325 ENUM_BITFIELD(dwarf_form) form : 16;
43988095
JK
1326
1327 /* It is valid only if FORM is DW_FORM_implicit_const. */
1328 LONGEST implicit_const;
c906108c
SS
1329 };
1330
433df2d4
DE
1331/* Size of abbrev_table.abbrev_hash_table. */
1332#define ABBREV_HASH_SIZE 121
1333
1334/* Top level data structure to contain an abbreviation table. */
1335
1336struct abbrev_table
1337{
f4dc4d17
DE
1338 /* Where the abbrev table came from.
1339 This is used as a sanity check when the table is used. */
9c541725 1340 sect_offset sect_off;
433df2d4
DE
1341
1342 /* Storage for the abbrev table. */
1343 struct obstack abbrev_obstack;
1344
1345 /* Hash table of abbrevs.
1346 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1347 It could be statically allocated, but the previous code didn't so we
1348 don't either. */
1349 struct abbrev_info **abbrevs;
1350};
1351
0963b4bd 1352/* Attributes have a name and a value. */
b60c80d6
DJ
1353struct attribute
1354 {
9d25dd43 1355 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1356 ENUM_BITFIELD(dwarf_form) form : 15;
1357
1358 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1359 field should be in u.str (existing only for DW_STRING) but it is kept
1360 here for better struct attribute alignment. */
1361 unsigned int string_is_canonical : 1;
1362
b60c80d6
DJ
1363 union
1364 {
15d034d0 1365 const char *str;
b60c80d6 1366 struct dwarf_block *blk;
43bbcdc2
PH
1367 ULONGEST unsnd;
1368 LONGEST snd;
b60c80d6 1369 CORE_ADDR addr;
ac9ec31b 1370 ULONGEST signature;
b60c80d6
DJ
1371 }
1372 u;
1373 };
1374
0963b4bd 1375/* This data structure holds a complete die structure. */
c906108c
SS
1376struct die_info
1377 {
76815b17
DE
1378 /* DWARF-2 tag for this DIE. */
1379 ENUM_BITFIELD(dwarf_tag) tag : 16;
1380
1381 /* Number of attributes */
98bfdba5
PA
1382 unsigned char num_attrs;
1383
1384 /* True if we're presently building the full type name for the
1385 type derived from this DIE. */
1386 unsigned char building_fullname : 1;
76815b17 1387
adde2bff
DE
1388 /* True if this die is in process. PR 16581. */
1389 unsigned char in_process : 1;
1390
76815b17
DE
1391 /* Abbrev number */
1392 unsigned int abbrev;
1393
93311388 1394 /* Offset in .debug_info or .debug_types section. */
9c541725 1395 sect_offset sect_off;
78ba4af6
JB
1396
1397 /* The dies in a compilation unit form an n-ary tree. PARENT
1398 points to this die's parent; CHILD points to the first child of
1399 this node; and all the children of a given node are chained
4950bc1c 1400 together via their SIBLING fields. */
639d11d3
DC
1401 struct die_info *child; /* Its first child, if any. */
1402 struct die_info *sibling; /* Its next sibling, if any. */
1403 struct die_info *parent; /* Its parent, if any. */
c906108c 1404
b60c80d6
DJ
1405 /* An array of attributes, with NUM_ATTRS elements. There may be
1406 zero, but it's not common and zero-sized arrays are not
1407 sufficiently portable C. */
1408 struct attribute attrs[1];
c906108c
SS
1409 };
1410
0963b4bd 1411/* Get at parts of an attribute structure. */
c906108c
SS
1412
1413#define DW_STRING(attr) ((attr)->u.str)
8285870a 1414#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1415#define DW_UNSND(attr) ((attr)->u.unsnd)
1416#define DW_BLOCK(attr) ((attr)->u.blk)
1417#define DW_SND(attr) ((attr)->u.snd)
1418#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1419#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1420
0963b4bd 1421/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1422struct dwarf_block
1423 {
56eb65bd 1424 size_t size;
1d6edc3c
JK
1425
1426 /* Valid only if SIZE is not zero. */
d521ce57 1427 const gdb_byte *data;
c906108c
SS
1428 };
1429
c906108c
SS
1430#ifndef ATTR_ALLOC_CHUNK
1431#define ATTR_ALLOC_CHUNK 4
1432#endif
1433
c906108c
SS
1434/* Allocate fields for structs, unions and enums in this size. */
1435#ifndef DW_FIELD_ALLOC_CHUNK
1436#define DW_FIELD_ALLOC_CHUNK 4
1437#endif
1438
c906108c
SS
1439/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1440 but this would require a corresponding change in unpack_field_as_long
1441 and friends. */
1442static int bits_per_byte = 8;
1443
52059ffd
TT
1444struct nextfield
1445{
1446 struct nextfield *next;
1447 int accessibility;
1448 int virtuality;
1449 struct field field;
1450};
1451
1452struct nextfnfield
1453{
1454 struct nextfnfield *next;
1455 struct fn_field fnfield;
1456};
1457
1458struct fnfieldlist
1459{
1460 const char *name;
1461 int length;
1462 struct nextfnfield *head;
1463};
1464
1465struct typedef_field_list
1466{
1467 struct typedef_field field;
1468 struct typedef_field_list *next;
1469};
1470
c906108c
SS
1471/* The routines that read and process dies for a C struct or C++ class
1472 pass lists of data member fields and lists of member function fields
1473 in an instance of a field_info structure, as defined below. */
1474struct field_info
c5aa993b 1475 {
0963b4bd 1476 /* List of data member and baseclasses fields. */
52059ffd 1477 struct nextfield *fields, *baseclasses;
c906108c 1478
7d0ccb61 1479 /* Number of fields (including baseclasses). */
c5aa993b 1480 int nfields;
c906108c 1481
c5aa993b
JM
1482 /* Number of baseclasses. */
1483 int nbaseclasses;
c906108c 1484
c5aa993b
JM
1485 /* Set if the accesibility of one of the fields is not public. */
1486 int non_public_fields;
c906108c 1487
c5aa993b
JM
1488 /* Member function fields array, entries are allocated in the order they
1489 are encountered in the object file. */
52059ffd 1490 struct nextfnfield *fnfields;
c906108c 1491
c5aa993b
JM
1492 /* Member function fieldlist array, contains name of possibly overloaded
1493 member function, number of overloaded member functions and a pointer
1494 to the head of the member function field chain. */
52059ffd 1495 struct fnfieldlist *fnfieldlists;
c906108c 1496
c5aa993b
JM
1497 /* Number of entries in the fnfieldlists array. */
1498 int nfnfields;
98751a41
JK
1499
1500 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1501 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1502 struct typedef_field_list *typedef_field_list;
98751a41 1503 unsigned typedef_field_list_count;
c5aa993b 1504 };
c906108c 1505
10b3939b
DJ
1506/* One item on the queue of compilation units to read in full symbols
1507 for. */
1508struct dwarf2_queue_item
1509{
1510 struct dwarf2_per_cu_data *per_cu;
95554aad 1511 enum language pretend_language;
10b3939b
DJ
1512 struct dwarf2_queue_item *next;
1513};
1514
1515/* The current queue. */
1516static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1517
ae038cb0
DJ
1518/* Loaded secondary compilation units are kept in memory until they
1519 have not been referenced for the processing of this many
1520 compilation units. Set this to zero to disable caching. Cache
1521 sizes of up to at least twenty will improve startup time for
1522 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1523static int dwarf_max_cache_age = 5;
920d2a44 1524static void
b4f54984
DE
1525show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1526 struct cmd_list_element *c, const char *value)
920d2a44 1527{
3e43a32a 1528 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1529 "DWARF compilation units is %s.\n"),
920d2a44
AC
1530 value);
1531}
4390d890 1532\f
c906108c
SS
1533/* local function prototypes */
1534
a32a8923
DE
1535static const char *get_section_name (const struct dwarf2_section_info *);
1536
1537static const char *get_section_file_name (const struct dwarf2_section_info *);
1538
918dd910
JK
1539static void dwarf2_find_base_address (struct die_info *die,
1540 struct dwarf2_cu *cu);
1541
0018ea6f
DE
1542static struct partial_symtab *create_partial_symtab
1543 (struct dwarf2_per_cu_data *per_cu, const char *name);
1544
f1902523
JK
1545static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1546 const gdb_byte *info_ptr,
1547 struct die_info *type_unit_die,
1548 int has_children, void *data);
1549
c67a9c90 1550static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1551
72bf9492
DJ
1552static void scan_partial_symbols (struct partial_die_info *,
1553 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1554 int, struct dwarf2_cu *);
c906108c 1555
72bf9492
DJ
1556static void add_partial_symbol (struct partial_die_info *,
1557 struct dwarf2_cu *);
63d06c5c 1558
72bf9492
DJ
1559static void add_partial_namespace (struct partial_die_info *pdi,
1560 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1561 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1562
5d7cb8df 1563static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1564 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1565 struct dwarf2_cu *cu);
1566
72bf9492
DJ
1567static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1568 struct dwarf2_cu *cu);
91c24f0a 1569
bc30ff58
JB
1570static void add_partial_subprogram (struct partial_die_info *pdi,
1571 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1572 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1573
257e7a09
YQ
1574static void dwarf2_read_symtab (struct partial_symtab *,
1575 struct objfile *);
c906108c 1576
a14ed312 1577static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1578
433df2d4
DE
1579static struct abbrev_info *abbrev_table_lookup_abbrev
1580 (const struct abbrev_table *, unsigned int);
1581
1582static struct abbrev_table *abbrev_table_read_table
1583 (struct dwarf2_section_info *, sect_offset);
1584
1585static void abbrev_table_free (struct abbrev_table *);
1586
f4dc4d17
DE
1587static void abbrev_table_free_cleanup (void *);
1588
dee91e82
DE
1589static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1590 struct dwarf2_section_info *);
c906108c 1591
f3dd6933 1592static void dwarf2_free_abbrev_table (void *);
c906108c 1593
d521ce57 1594static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1595
dee91e82 1596static struct partial_die_info *load_partial_dies
d521ce57 1597 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1598
d521ce57
TT
1599static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1600 struct partial_die_info *,
1601 struct abbrev_info *,
1602 unsigned int,
1603 const gdb_byte *);
c906108c 1604
36586728 1605static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1606 struct dwarf2_cu *);
72bf9492
DJ
1607
1608static void fixup_partial_die (struct partial_die_info *,
1609 struct dwarf2_cu *);
1610
d521ce57
TT
1611static const gdb_byte *read_attribute (const struct die_reader_specs *,
1612 struct attribute *, struct attr_abbrev *,
1613 const gdb_byte *);
a8329558 1614
a1855c1d 1615static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1616
a1855c1d 1617static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1618
a1855c1d 1619static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1620
a1855c1d 1621static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1622
a1855c1d 1623static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1624
d521ce57 1625static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1626 unsigned int *);
c906108c 1627
d521ce57 1628static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1629
1630static LONGEST read_checked_initial_length_and_offset
d521ce57 1631 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1632 unsigned int *, unsigned int *);
613e1657 1633
d521ce57
TT
1634static LONGEST read_offset (bfd *, const gdb_byte *,
1635 const struct comp_unit_head *,
c764a876
DE
1636 unsigned int *);
1637
d521ce57 1638static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1639
f4dc4d17
DE
1640static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1641 sect_offset);
1642
d521ce57 1643static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1644
d521ce57 1645static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1646
d521ce57
TT
1647static const char *read_indirect_string (bfd *, const gdb_byte *,
1648 const struct comp_unit_head *,
1649 unsigned int *);
4bdf3d34 1650
43988095
JK
1651static const char *read_indirect_line_string (bfd *, const gdb_byte *,
1652 const struct comp_unit_head *,
1653 unsigned int *);
36586728 1654
43988095 1655static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
c906108c 1656
d521ce57 1657static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1658
d521ce57
TT
1659static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1660 const gdb_byte *,
3019eac3
DE
1661 unsigned int *);
1662
d521ce57 1663static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1664 ULONGEST str_index);
3019eac3 1665
e142c38c 1666static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1667
e142c38c
DJ
1668static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1669 struct dwarf2_cu *);
c906108c 1670
348e048f 1671static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1672 unsigned int);
348e048f 1673
7d45c7c3
KB
1674static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1675 struct dwarf2_cu *cu);
1676
05cf31d1
JB
1677static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1678 struct dwarf2_cu *cu);
1679
e142c38c 1680static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1681
e142c38c 1682static struct die_info *die_specification (struct die_info *die,
f2f0e013 1683 struct dwarf2_cu **);
63d06c5c 1684
9c541725 1685static line_header_up dwarf_decode_line_header (sect_offset sect_off,
fff8551c 1686 struct dwarf2_cu *cu);
debd256d 1687
f3f5162e 1688static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1689 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1690 CORE_ADDR, int decode_mapping);
c906108c 1691
4d663531 1692static void dwarf2_start_subfile (const char *, const char *);
c906108c 1693
43f3e411
DE
1694static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1695 const char *, const char *,
1696 CORE_ADDR);
f4dc4d17 1697
a14ed312 1698static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1699 struct dwarf2_cu *);
c906108c 1700
34eaf542
TT
1701static struct symbol *new_symbol_full (struct die_info *, struct type *,
1702 struct dwarf2_cu *, struct symbol *);
1703
ff39bb5e 1704static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1705 struct dwarf2_cu *);
c906108c 1706
ff39bb5e 1707static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1708 struct type *type,
1709 const char *name,
1710 struct obstack *obstack,
12df843f 1711 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1712 const gdb_byte **bytes,
98bfdba5 1713 struct dwarf2_locexpr_baton **baton);
2df3850c 1714
e7c27a73 1715static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1716
b4ba55a1
JB
1717static int need_gnat_info (struct dwarf2_cu *);
1718
3e43a32a
MS
1719static struct type *die_descriptive_type (struct die_info *,
1720 struct dwarf2_cu *);
b4ba55a1
JB
1721
1722static void set_descriptive_type (struct type *, struct die_info *,
1723 struct dwarf2_cu *);
1724
e7c27a73
DJ
1725static struct type *die_containing_type (struct die_info *,
1726 struct dwarf2_cu *);
c906108c 1727
ff39bb5e 1728static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1729 struct dwarf2_cu *);
c906108c 1730
f792889a 1731static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1732
673bfd45
DE
1733static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1734
0d5cff50 1735static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1736
6e70227d 1737static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1738 const char *suffix, int physname,
1739 struct dwarf2_cu *cu);
63d06c5c 1740
e7c27a73 1741static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1742
348e048f
DE
1743static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1744
e7c27a73 1745static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1746
e7c27a73 1747static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1748
96408a79
SA
1749static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1750
ff013f42
JK
1751static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1752 struct dwarf2_cu *, struct partial_symtab *);
1753
3a2b436a 1754/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1755 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1756enum pc_bounds_kind
1757{
e385593e 1758 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1759 PC_BOUNDS_NOT_PRESENT,
1760
e385593e
JK
1761 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1762 were present but they do not form a valid range of PC addresses. */
1763 PC_BOUNDS_INVALID,
1764
3a2b436a
JK
1765 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1766 PC_BOUNDS_RANGES,
1767
1768 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1769 PC_BOUNDS_HIGH_LOW,
1770};
1771
1772static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1773 CORE_ADDR *, CORE_ADDR *,
1774 struct dwarf2_cu *,
1775 struct partial_symtab *);
c906108c 1776
fae299cd
DC
1777static void get_scope_pc_bounds (struct die_info *,
1778 CORE_ADDR *, CORE_ADDR *,
1779 struct dwarf2_cu *);
1780
801e3a5b
JB
1781static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1782 CORE_ADDR, struct dwarf2_cu *);
1783
a14ed312 1784static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1785 struct dwarf2_cu *);
c906108c 1786
a14ed312 1787static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1788 struct type *, struct dwarf2_cu *);
c906108c 1789
a14ed312 1790static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1791 struct die_info *, struct type *,
e7c27a73 1792 struct dwarf2_cu *);
c906108c 1793
a14ed312 1794static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1795 struct type *,
1796 struct dwarf2_cu *);
c906108c 1797
134d01f1 1798static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1799
e7c27a73 1800static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1801
e7c27a73 1802static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1803
5d7cb8df
JK
1804static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1805
22cee43f
PMR
1806static struct using_direct **using_directives (enum language);
1807
27aa8d6a
SW
1808static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1809
74921315
KS
1810static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1811
f55ee35c
JK
1812static struct type *read_module_type (struct die_info *die,
1813 struct dwarf2_cu *cu);
1814
38d518c9 1815static const char *namespace_name (struct die_info *die,
e142c38c 1816 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1817
134d01f1 1818static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1819
e7c27a73 1820static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1821
6e70227d 1822static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1823 struct dwarf2_cu *);
1824
bf6af496 1825static struct die_info *read_die_and_siblings_1
d521ce57 1826 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1827 struct die_info *);
639d11d3 1828
dee91e82 1829static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1830 const gdb_byte *info_ptr,
1831 const gdb_byte **new_info_ptr,
639d11d3
DC
1832 struct die_info *parent);
1833
d521ce57
TT
1834static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1835 struct die_info **, const gdb_byte *,
1836 int *, int);
3019eac3 1837
d521ce57
TT
1838static const gdb_byte *read_full_die (const struct die_reader_specs *,
1839 struct die_info **, const gdb_byte *,
1840 int *);
93311388 1841
e7c27a73 1842static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1843
15d034d0
TT
1844static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1845 struct obstack *);
71c25dea 1846
15d034d0 1847static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1848
15d034d0 1849static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1850 struct die_info *die,
1851 struct dwarf2_cu *cu);
1852
ca69b9e6
DE
1853static const char *dwarf2_physname (const char *name, struct die_info *die,
1854 struct dwarf2_cu *cu);
1855
e142c38c 1856static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1857 struct dwarf2_cu **);
9219021c 1858
f39c6ffd 1859static const char *dwarf_tag_name (unsigned int);
c906108c 1860
f39c6ffd 1861static const char *dwarf_attr_name (unsigned int);
c906108c 1862
f39c6ffd 1863static const char *dwarf_form_name (unsigned int);
c906108c 1864
a121b7c1 1865static const char *dwarf_bool_name (unsigned int);
c906108c 1866
f39c6ffd 1867static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1868
f9aca02d 1869static struct die_info *sibling_die (struct die_info *);
c906108c 1870
d97bc12b
DE
1871static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1872
1873static void dump_die_for_error (struct die_info *);
1874
1875static void dump_die_1 (struct ui_file *, int level, int max_level,
1876 struct die_info *);
c906108c 1877
d97bc12b 1878/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1879
51545339 1880static void store_in_ref_table (struct die_info *,
10b3939b 1881 struct dwarf2_cu *);
c906108c 1882
ff39bb5e 1883static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1884
ff39bb5e 1885static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1886
348e048f 1887static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1888 const struct attribute *,
348e048f
DE
1889 struct dwarf2_cu **);
1890
10b3939b 1891static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1892 const struct attribute *,
f2f0e013 1893 struct dwarf2_cu **);
c906108c 1894
348e048f 1895static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1896 const struct attribute *,
348e048f
DE
1897 struct dwarf2_cu **);
1898
ac9ec31b
DE
1899static struct type *get_signatured_type (struct die_info *, ULONGEST,
1900 struct dwarf2_cu *);
1901
1902static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1903 const struct attribute *,
ac9ec31b
DE
1904 struct dwarf2_cu *);
1905
e5fe5e75 1906static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1907
52dc124a 1908static void read_signatured_type (struct signatured_type *);
348e048f 1909
63e43d3a
PMR
1910static int attr_to_dynamic_prop (const struct attribute *attr,
1911 struct die_info *die, struct dwarf2_cu *cu,
1912 struct dynamic_prop *prop);
1913
c906108c
SS
1914/* memory allocation interface */
1915
7b5a2f43 1916static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1917
b60c80d6 1918static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1919
43f3e411 1920static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1921
6e5a29e1 1922static int attr_form_is_block (const struct attribute *);
8e19ed76 1923
6e5a29e1 1924static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1925
6e5a29e1 1926static int attr_form_is_constant (const struct attribute *);
3690dd37 1927
6e5a29e1 1928static int attr_form_is_ref (const struct attribute *);
7771576e 1929
8cf6f0b1
TT
1930static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1931 struct dwarf2_loclist_baton *baton,
ff39bb5e 1932 const struct attribute *attr);
8cf6f0b1 1933
ff39bb5e 1934static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1935 struct symbol *sym,
f1e6e072
TT
1936 struct dwarf2_cu *cu,
1937 int is_block);
4c2df51b 1938
d521ce57
TT
1939static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1940 const gdb_byte *info_ptr,
1941 struct abbrev_info *abbrev);
4bb7a0a7 1942
72bf9492
DJ
1943static void free_stack_comp_unit (void *);
1944
72bf9492
DJ
1945static hashval_t partial_die_hash (const void *item);
1946
1947static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1948
ae038cb0 1949static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
9c541725 1950 (sect_offset sect_off, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1951
9816fde3 1952static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1953 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1954
1955static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1956 struct die_info *comp_unit_die,
1957 enum language pretend_language);
93311388 1958
68dc6402 1959static void free_heap_comp_unit (void *);
ae038cb0
DJ
1960
1961static void free_cached_comp_units (void *);
1962
1963static void age_cached_comp_units (void);
1964
dee91e82 1965static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1966
f792889a
DJ
1967static struct type *set_die_type (struct die_info *, struct type *,
1968 struct dwarf2_cu *);
1c379e20 1969
ae038cb0
DJ
1970static void create_all_comp_units (struct objfile *);
1971
0e50663e 1972static int create_all_type_units (struct objfile *);
1fd400ff 1973
95554aad
TT
1974static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1975 enum language);
10b3939b 1976
95554aad
TT
1977static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1978 enum language);
10b3939b 1979
f4dc4d17
DE
1980static void process_full_type_unit (struct dwarf2_per_cu_data *,
1981 enum language);
1982
10b3939b
DJ
1983static void dwarf2_add_dependence (struct dwarf2_cu *,
1984 struct dwarf2_per_cu_data *);
1985
ae038cb0
DJ
1986static void dwarf2_mark (struct dwarf2_cu *);
1987
1988static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1989
b64f50a1 1990static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1991 struct dwarf2_per_cu_data *);
673bfd45 1992
f792889a 1993static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1994
9291a0cd
TT
1995static void dwarf2_release_queue (void *dummy);
1996
95554aad
TT
1997static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1998 enum language pretend_language);
1999
a0f42c21 2000static void process_queue (void);
9291a0cd 2001
d721ba37
PA
2002/* The return type of find_file_and_directory. Note, the enclosed
2003 string pointers are only valid while this object is valid. */
2004
2005struct file_and_directory
2006{
2007 /* The filename. This is never NULL. */
2008 const char *name;
2009
2010 /* The compilation directory. NULL if not known. If we needed to
2011 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
2012 points directly to the DW_AT_comp_dir string attribute owned by
2013 the obstack that owns the DIE. */
2014 const char *comp_dir;
2015
2016 /* If we needed to build a new string for comp_dir, this is what
2017 owns the storage. */
2018 std::string comp_dir_storage;
2019};
2020
2021static file_and_directory find_file_and_directory (struct die_info *die,
2022 struct dwarf2_cu *cu);
9291a0cd
TT
2023
2024static char *file_full_name (int file, struct line_header *lh,
2025 const char *comp_dir);
2026
43988095
JK
2027/* Expected enum dwarf_unit_type for read_comp_unit_head. */
2028enum class rcuh_kind { COMPILE, TYPE };
2029
d521ce57 2030static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
2031 (struct comp_unit_head *header,
2032 struct dwarf2_section_info *section,
d521ce57 2033 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
43988095 2034 rcuh_kind section_kind);
36586728 2035
fd820528 2036static void init_cutu_and_read_dies
f4dc4d17
DE
2037 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
2038 int use_existing_cu, int keep,
3019eac3
DE
2039 die_reader_func_ftype *die_reader_func, void *data);
2040
dee91e82
DE
2041static void init_cutu_and_read_dies_simple
2042 (struct dwarf2_per_cu_data *this_cu,
2043 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 2044
673bfd45 2045static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 2046
3019eac3
DE
2047static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2048
57d63ce2
DE
2049static struct dwo_unit *lookup_dwo_unit_in_dwp
2050 (struct dwp_file *dwp_file, const char *comp_dir,
2051 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
2052
2053static struct dwp_file *get_dwp_file (void);
2054
3019eac3 2055static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 2056 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
2057
2058static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 2059 (struct signatured_type *, const char *, const char *);
3019eac3 2060
89e63ee4
DE
2061static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2062
3019eac3
DE
2063static void free_dwo_file_cleanup (void *);
2064
95554aad
TT
2065static void process_cu_includes (void);
2066
1b80a9fa 2067static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
2068
2069static void free_line_header_voidp (void *arg);
4390d890
DE
2070\f
2071/* Various complaints about symbol reading that don't abort the process. */
2072
2073static void
2074dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2075{
2076 complaint (&symfile_complaints,
2077 _("statement list doesn't fit in .debug_line section"));
2078}
2079
2080static void
2081dwarf2_debug_line_missing_file_complaint (void)
2082{
2083 complaint (&symfile_complaints,
2084 _(".debug_line section has line data without a file"));
2085}
2086
2087static void
2088dwarf2_debug_line_missing_end_sequence_complaint (void)
2089{
2090 complaint (&symfile_complaints,
2091 _(".debug_line section has line "
2092 "program sequence without an end"));
2093}
2094
2095static void
2096dwarf2_complex_location_expr_complaint (void)
2097{
2098 complaint (&symfile_complaints, _("location expression too complex"));
2099}
2100
2101static void
2102dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2103 int arg3)
2104{
2105 complaint (&symfile_complaints,
2106 _("const value length mismatch for '%s', got %d, expected %d"),
2107 arg1, arg2, arg3);
2108}
2109
2110static void
2111dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2112{
2113 complaint (&symfile_complaints,
2114 _("debug info runs off end of %s section"
2115 " [in module %s]"),
a32a8923
DE
2116 get_section_name (section),
2117 get_section_file_name (section));
4390d890 2118}
1b80a9fa 2119
4390d890
DE
2120static void
2121dwarf2_macro_malformed_definition_complaint (const char *arg1)
2122{
2123 complaint (&symfile_complaints,
2124 _("macro debug info contains a "
2125 "malformed macro definition:\n`%s'"),
2126 arg1);
2127}
2128
2129static void
2130dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2131{
2132 complaint (&symfile_complaints,
2133 _("invalid attribute class or form for '%s' in '%s'"),
2134 arg1, arg2);
2135}
527f3840
JK
2136
2137/* Hash function for line_header_hash. */
2138
2139static hashval_t
2140line_header_hash (const struct line_header *ofs)
2141{
9c541725 2142 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
527f3840
JK
2143}
2144
2145/* Hash function for htab_create_alloc_ex for line_header_hash. */
2146
2147static hashval_t
2148line_header_hash_voidp (const void *item)
2149{
9a3c8263 2150 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
2151
2152 return line_header_hash (ofs);
2153}
2154
2155/* Equality function for line_header_hash. */
2156
2157static int
2158line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2159{
9a3c8263
SM
2160 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2161 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840 2162
9c541725 2163 return (ofs_lhs->sect_off == ofs_rhs->sect_off
527f3840
JK
2164 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2165}
2166
4390d890 2167\f
9291a0cd
TT
2168#if WORDS_BIGENDIAN
2169
2170/* Convert VALUE between big- and little-endian. */
2171static offset_type
2172byte_swap (offset_type value)
2173{
2174 offset_type result;
2175
2176 result = (value & 0xff) << 24;
2177 result |= (value & 0xff00) << 8;
2178 result |= (value & 0xff0000) >> 8;
2179 result |= (value & 0xff000000) >> 24;
2180 return result;
2181}
2182
2183#define MAYBE_SWAP(V) byte_swap (V)
2184
2185#else
bc8f2430 2186#define MAYBE_SWAP(V) static_cast<offset_type> (V)
9291a0cd
TT
2187#endif /* WORDS_BIGENDIAN */
2188
31aa7e4e
JB
2189/* Read the given attribute value as an address, taking the attribute's
2190 form into account. */
2191
2192static CORE_ADDR
2193attr_value_as_address (struct attribute *attr)
2194{
2195 CORE_ADDR addr;
2196
2197 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2198 {
2199 /* Aside from a few clearly defined exceptions, attributes that
2200 contain an address must always be in DW_FORM_addr form.
2201 Unfortunately, some compilers happen to be violating this
2202 requirement by encoding addresses using other forms, such
2203 as DW_FORM_data4 for example. For those broken compilers,
2204 we try to do our best, without any guarantee of success,
2205 to interpret the address correctly. It would also be nice
2206 to generate a complaint, but that would require us to maintain
2207 a list of legitimate cases where a non-address form is allowed,
2208 as well as update callers to pass in at least the CU's DWARF
2209 version. This is more overhead than what we're willing to
2210 expand for a pretty rare case. */
2211 addr = DW_UNSND (attr);
2212 }
2213 else
2214 addr = DW_ADDR (attr);
2215
2216 return addr;
2217}
2218
9291a0cd
TT
2219/* The suffix for an index file. */
2220#define INDEX_SUFFIX ".gdb-index"
2221
330cdd98
PA
2222/* See declaration. */
2223
2224dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2225 const dwarf2_debug_sections *names)
2226 : objfile (objfile_)
2227{
2228 if (names == NULL)
2229 names = &dwarf2_elf_names;
2230
2231 bfd *obfd = objfile->obfd;
2232
2233 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2234 locate_sections (obfd, sec, *names);
2235}
2236
2237dwarf2_per_objfile::~dwarf2_per_objfile ()
2238{
2239 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2240 free_cached_comp_units ();
2241
2242 if (quick_file_names_table)
2243 htab_delete (quick_file_names_table);
2244
2245 if (line_header_hash)
2246 htab_delete (line_header_hash);
2247
2248 /* Everything else should be on the objfile obstack. */
2249}
2250
2251/* See declaration. */
2252
2253void
2254dwarf2_per_objfile::free_cached_comp_units ()
2255{
2256 dwarf2_per_cu_data *per_cu = read_in_chain;
2257 dwarf2_per_cu_data **last_chain = &read_in_chain;
2258 while (per_cu != NULL)
2259 {
2260 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2261
2262 free_heap_comp_unit (per_cu->cu);
2263 *last_chain = next_cu;
2264 per_cu = next_cu;
2265 }
2266}
2267
c906108c 2268/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2269 information and return true if we have enough to do something.
2270 NAMES points to the dwarf2 section names, or is NULL if the standard
2271 ELF names are used. */
c906108c
SS
2272
2273int
251d32d9
TG
2274dwarf2_has_info (struct objfile *objfile,
2275 const struct dwarf2_debug_sections *names)
c906108c 2276{
9a3c8263
SM
2277 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2278 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2279 if (!dwarf2_per_objfile)
2280 {
2281 /* Initialize per-objfile state. */
2282 struct dwarf2_per_objfile *data
8d749320 2283 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2284
330cdd98
PA
2285 dwarf2_per_objfile = new (data) struct dwarf2_per_objfile (objfile, names);
2286 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
be391dca 2287 }
73869dc2 2288 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2289 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2290 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2291 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2292}
2293
2294/* Return the containing section of virtual section SECTION. */
2295
2296static struct dwarf2_section_info *
2297get_containing_section (const struct dwarf2_section_info *section)
2298{
2299 gdb_assert (section->is_virtual);
2300 return section->s.containing_section;
c906108c
SS
2301}
2302
a32a8923
DE
2303/* Return the bfd owner of SECTION. */
2304
2305static struct bfd *
2306get_section_bfd_owner (const struct dwarf2_section_info *section)
2307{
73869dc2
DE
2308 if (section->is_virtual)
2309 {
2310 section = get_containing_section (section);
2311 gdb_assert (!section->is_virtual);
2312 }
049412e3 2313 return section->s.section->owner;
a32a8923
DE
2314}
2315
2316/* Return the bfd section of SECTION.
2317 Returns NULL if the section is not present. */
2318
2319static asection *
2320get_section_bfd_section (const struct dwarf2_section_info *section)
2321{
73869dc2
DE
2322 if (section->is_virtual)
2323 {
2324 section = get_containing_section (section);
2325 gdb_assert (!section->is_virtual);
2326 }
049412e3 2327 return section->s.section;
a32a8923
DE
2328}
2329
2330/* Return the name of SECTION. */
2331
2332static const char *
2333get_section_name (const struct dwarf2_section_info *section)
2334{
2335 asection *sectp = get_section_bfd_section (section);
2336
2337 gdb_assert (sectp != NULL);
2338 return bfd_section_name (get_section_bfd_owner (section), sectp);
2339}
2340
2341/* Return the name of the file SECTION is in. */
2342
2343static const char *
2344get_section_file_name (const struct dwarf2_section_info *section)
2345{
2346 bfd *abfd = get_section_bfd_owner (section);
2347
2348 return bfd_get_filename (abfd);
2349}
2350
2351/* Return the id of SECTION.
2352 Returns 0 if SECTION doesn't exist. */
2353
2354static int
2355get_section_id (const struct dwarf2_section_info *section)
2356{
2357 asection *sectp = get_section_bfd_section (section);
2358
2359 if (sectp == NULL)
2360 return 0;
2361 return sectp->id;
2362}
2363
2364/* Return the flags of SECTION.
73869dc2 2365 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2366
2367static int
2368get_section_flags (const struct dwarf2_section_info *section)
2369{
2370 asection *sectp = get_section_bfd_section (section);
2371
2372 gdb_assert (sectp != NULL);
2373 return bfd_get_section_flags (sectp->owner, sectp);
2374}
2375
251d32d9
TG
2376/* When loading sections, we look either for uncompressed section or for
2377 compressed section names. */
233a11ab
CS
2378
2379static int
251d32d9
TG
2380section_is_p (const char *section_name,
2381 const struct dwarf2_section_names *names)
233a11ab 2382{
251d32d9
TG
2383 if (names->normal != NULL
2384 && strcmp (section_name, names->normal) == 0)
2385 return 1;
2386 if (names->compressed != NULL
2387 && strcmp (section_name, names->compressed) == 0)
2388 return 1;
2389 return 0;
233a11ab
CS
2390}
2391
330cdd98 2392/* See declaration. */
c906108c 2393
330cdd98
PA
2394void
2395dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2396 const dwarf2_debug_sections &names)
c906108c 2397{
dc7650b8 2398 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9 2399
dc7650b8
JK
2400 if ((aflag & SEC_HAS_CONTENTS) == 0)
2401 {
2402 }
330cdd98 2403 else if (section_is_p (sectp->name, &names.info))
c906108c 2404 {
330cdd98
PA
2405 this->info.s.section = sectp;
2406 this->info.size = bfd_get_section_size (sectp);
c906108c 2407 }
330cdd98 2408 else if (section_is_p (sectp->name, &names.abbrev))
c906108c 2409 {
330cdd98
PA
2410 this->abbrev.s.section = sectp;
2411 this->abbrev.size = bfd_get_section_size (sectp);
c906108c 2412 }
330cdd98 2413 else if (section_is_p (sectp->name, &names.line))
c906108c 2414 {
330cdd98
PA
2415 this->line.s.section = sectp;
2416 this->line.size = bfd_get_section_size (sectp);
c906108c 2417 }
330cdd98 2418 else if (section_is_p (sectp->name, &names.loc))
c906108c 2419 {
330cdd98
PA
2420 this->loc.s.section = sectp;
2421 this->loc.size = bfd_get_section_size (sectp);
c906108c 2422 }
330cdd98 2423 else if (section_is_p (sectp->name, &names.loclists))
43988095 2424 {
330cdd98
PA
2425 this->loclists.s.section = sectp;
2426 this->loclists.size = bfd_get_section_size (sectp);
43988095 2427 }
330cdd98 2428 else if (section_is_p (sectp->name, &names.macinfo))
c906108c 2429 {
330cdd98
PA
2430 this->macinfo.s.section = sectp;
2431 this->macinfo.size = bfd_get_section_size (sectp);
c906108c 2432 }
330cdd98 2433 else if (section_is_p (sectp->name, &names.macro))
cf2c3c16 2434 {
330cdd98
PA
2435 this->macro.s.section = sectp;
2436 this->macro.size = bfd_get_section_size (sectp);
cf2c3c16 2437 }
330cdd98 2438 else if (section_is_p (sectp->name, &names.str))
c906108c 2439 {
330cdd98
PA
2440 this->str.s.section = sectp;
2441 this->str.size = bfd_get_section_size (sectp);
c906108c 2442 }
330cdd98 2443 else if (section_is_p (sectp->name, &names.line_str))
43988095 2444 {
330cdd98
PA
2445 this->line_str.s.section = sectp;
2446 this->line_str.size = bfd_get_section_size (sectp);
43988095 2447 }
330cdd98 2448 else if (section_is_p (sectp->name, &names.addr))
3019eac3 2449 {
330cdd98
PA
2450 this->addr.s.section = sectp;
2451 this->addr.size = bfd_get_section_size (sectp);
3019eac3 2452 }
330cdd98 2453 else if (section_is_p (sectp->name, &names.frame))
b6af0555 2454 {
330cdd98
PA
2455 this->frame.s.section = sectp;
2456 this->frame.size = bfd_get_section_size (sectp);
b6af0555 2457 }
330cdd98 2458 else if (section_is_p (sectp->name, &names.eh_frame))
b6af0555 2459 {
330cdd98
PA
2460 this->eh_frame.s.section = sectp;
2461 this->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2462 }
330cdd98 2463 else if (section_is_p (sectp->name, &names.ranges))
af34e669 2464 {
330cdd98
PA
2465 this->ranges.s.section = sectp;
2466 this->ranges.size = bfd_get_section_size (sectp);
af34e669 2467 }
330cdd98 2468 else if (section_is_p (sectp->name, &names.rnglists))
43988095 2469 {
330cdd98
PA
2470 this->rnglists.s.section = sectp;
2471 this->rnglists.size = bfd_get_section_size (sectp);
43988095 2472 }
330cdd98 2473 else if (section_is_p (sectp->name, &names.types))
348e048f 2474 {
8b70b953
TT
2475 struct dwarf2_section_info type_section;
2476
2477 memset (&type_section, 0, sizeof (type_section));
049412e3 2478 type_section.s.section = sectp;
8b70b953
TT
2479 type_section.size = bfd_get_section_size (sectp);
2480
330cdd98 2481 VEC_safe_push (dwarf2_section_info_def, this->types,
8b70b953 2482 &type_section);
348e048f 2483 }
330cdd98 2484 else if (section_is_p (sectp->name, &names.gdb_index))
9291a0cd 2485 {
330cdd98
PA
2486 this->gdb_index.s.section = sectp;
2487 this->gdb_index.size = bfd_get_section_size (sectp);
9291a0cd 2488 }
dce234bc 2489
b4e1fd61 2490 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5 2491 && bfd_section_vma (abfd, sectp) == 0)
330cdd98 2492 this->has_section_at_zero = true;
c906108c
SS
2493}
2494
fceca515
DE
2495/* A helper function that decides whether a section is empty,
2496 or not present. */
9e0ac564
TT
2497
2498static int
19ac8c2e 2499dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2500{
73869dc2
DE
2501 if (section->is_virtual)
2502 return section->size == 0;
049412e3 2503 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2504}
2505
3019eac3
DE
2506/* Read the contents of the section INFO.
2507 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2508 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2509 of the DWO file.
dce234bc 2510 If the section is compressed, uncompress it before returning. */
c906108c 2511
dce234bc
PP
2512static void
2513dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2514{
a32a8923 2515 asection *sectp;
3019eac3 2516 bfd *abfd;
dce234bc 2517 gdb_byte *buf, *retbuf;
c906108c 2518
be391dca
TT
2519 if (info->readin)
2520 return;
dce234bc 2521 info->buffer = NULL;
be391dca 2522 info->readin = 1;
188dd5d6 2523
9e0ac564 2524 if (dwarf2_section_empty_p (info))
dce234bc 2525 return;
c906108c 2526
a32a8923 2527 sectp = get_section_bfd_section (info);
3019eac3 2528
73869dc2
DE
2529 /* If this is a virtual section we need to read in the real one first. */
2530 if (info->is_virtual)
2531 {
2532 struct dwarf2_section_info *containing_section =
2533 get_containing_section (info);
2534
2535 gdb_assert (sectp != NULL);
2536 if ((sectp->flags & SEC_RELOC) != 0)
2537 {
2538 error (_("Dwarf Error: DWP format V2 with relocations is not"
2539 " supported in section %s [in module %s]"),
2540 get_section_name (info), get_section_file_name (info));
2541 }
2542 dwarf2_read_section (objfile, containing_section);
2543 /* Other code should have already caught virtual sections that don't
2544 fit. */
2545 gdb_assert (info->virtual_offset + info->size
2546 <= containing_section->size);
2547 /* If the real section is empty or there was a problem reading the
2548 section we shouldn't get here. */
2549 gdb_assert (containing_section->buffer != NULL);
2550 info->buffer = containing_section->buffer + info->virtual_offset;
2551 return;
2552 }
2553
4bf44c1c
TT
2554 /* If the section has relocations, we must read it ourselves.
2555 Otherwise we attach it to the BFD. */
2556 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2557 {
d521ce57 2558 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2559 return;
dce234bc 2560 }
dce234bc 2561
224c3ddb 2562 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2563 info->buffer = buf;
dce234bc
PP
2564
2565 /* When debugging .o files, we may need to apply relocations; see
2566 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2567 We never compress sections in .o files, so we only need to
2568 try this when the section is not compressed. */
ac8035ab 2569 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2570 if (retbuf != NULL)
2571 {
2572 info->buffer = retbuf;
2573 return;
2574 }
2575
a32a8923
DE
2576 abfd = get_section_bfd_owner (info);
2577 gdb_assert (abfd != NULL);
2578
dce234bc
PP
2579 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2580 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2581 {
2582 error (_("Dwarf Error: Can't read DWARF data"
2583 " in section %s [in module %s]"),
2584 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2585 }
dce234bc
PP
2586}
2587
9e0ac564
TT
2588/* A helper function that returns the size of a section in a safe way.
2589 If you are positive that the section has been read before using the
2590 size, then it is safe to refer to the dwarf2_section_info object's
2591 "size" field directly. In other cases, you must call this
2592 function, because for compressed sections the size field is not set
2593 correctly until the section has been read. */
2594
2595static bfd_size_type
2596dwarf2_section_size (struct objfile *objfile,
2597 struct dwarf2_section_info *info)
2598{
2599 if (!info->readin)
2600 dwarf2_read_section (objfile, info);
2601 return info->size;
2602}
2603
dce234bc 2604/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2605 SECTION_NAME. */
af34e669 2606
dce234bc 2607void
3017a003
TG
2608dwarf2_get_section_info (struct objfile *objfile,
2609 enum dwarf2_section_enum sect,
d521ce57 2610 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2611 bfd_size_type *sizep)
2612{
2613 struct dwarf2_per_objfile *data
9a3c8263
SM
2614 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2615 dwarf2_objfile_data_key);
dce234bc 2616 struct dwarf2_section_info *info;
a3b2a86b
TT
2617
2618 /* We may see an objfile without any DWARF, in which case we just
2619 return nothing. */
2620 if (data == NULL)
2621 {
2622 *sectp = NULL;
2623 *bufp = NULL;
2624 *sizep = 0;
2625 return;
2626 }
3017a003
TG
2627 switch (sect)
2628 {
2629 case DWARF2_DEBUG_FRAME:
2630 info = &data->frame;
2631 break;
2632 case DWARF2_EH_FRAME:
2633 info = &data->eh_frame;
2634 break;
2635 default:
2636 gdb_assert_not_reached ("unexpected section");
2637 }
dce234bc 2638
9e0ac564 2639 dwarf2_read_section (objfile, info);
dce234bc 2640
a32a8923 2641 *sectp = get_section_bfd_section (info);
dce234bc
PP
2642 *bufp = info->buffer;
2643 *sizep = info->size;
2644}
2645
36586728
TT
2646/* A helper function to find the sections for a .dwz file. */
2647
2648static void
2649locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2650{
9a3c8263 2651 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2652
2653 /* Note that we only support the standard ELF names, because .dwz
2654 is ELF-only (at the time of writing). */
2655 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2656 {
049412e3 2657 dwz_file->abbrev.s.section = sectp;
36586728
TT
2658 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2659 }
2660 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2661 {
049412e3 2662 dwz_file->info.s.section = sectp;
36586728
TT
2663 dwz_file->info.size = bfd_get_section_size (sectp);
2664 }
2665 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2666 {
049412e3 2667 dwz_file->str.s.section = sectp;
36586728
TT
2668 dwz_file->str.size = bfd_get_section_size (sectp);
2669 }
2670 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2671 {
049412e3 2672 dwz_file->line.s.section = sectp;
36586728
TT
2673 dwz_file->line.size = bfd_get_section_size (sectp);
2674 }
2675 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2676 {
049412e3 2677 dwz_file->macro.s.section = sectp;
36586728
TT
2678 dwz_file->macro.size = bfd_get_section_size (sectp);
2679 }
2ec9a5e0
TT
2680 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2681 {
049412e3 2682 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2683 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2684 }
36586728
TT
2685}
2686
4db1a1dc
TT
2687/* Open the separate '.dwz' debug file, if needed. Return NULL if
2688 there is no .gnu_debugaltlink section in the file. Error if there
2689 is such a section but the file cannot be found. */
36586728
TT
2690
2691static struct dwz_file *
2692dwarf2_get_dwz_file (void)
2693{
4db1a1dc 2694 char *data;
36586728
TT
2695 struct cleanup *cleanup;
2696 const char *filename;
2697 struct dwz_file *result;
acd13123 2698 bfd_size_type buildid_len_arg;
dc294be5
TT
2699 size_t buildid_len;
2700 bfd_byte *buildid;
36586728
TT
2701
2702 if (dwarf2_per_objfile->dwz_file != NULL)
2703 return dwarf2_per_objfile->dwz_file;
2704
4db1a1dc
TT
2705 bfd_set_error (bfd_error_no_error);
2706 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2707 &buildid_len_arg, &buildid);
4db1a1dc
TT
2708 if (data == NULL)
2709 {
2710 if (bfd_get_error () == bfd_error_no_error)
2711 return NULL;
2712 error (_("could not read '.gnu_debugaltlink' section: %s"),
2713 bfd_errmsg (bfd_get_error ()));
2714 }
36586728 2715 cleanup = make_cleanup (xfree, data);
dc294be5 2716 make_cleanup (xfree, buildid);
36586728 2717
acd13123
TT
2718 buildid_len = (size_t) buildid_len_arg;
2719
f9d83a0b 2720 filename = (const char *) data;
d721ba37
PA
2721
2722 std::string abs_storage;
36586728
TT
2723 if (!IS_ABSOLUTE_PATH (filename))
2724 {
14278e1f
TT
2725 gdb::unique_xmalloc_ptr<char> abs
2726 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728 2727
14278e1f 2728 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
d721ba37 2729 filename = abs_storage.c_str ();
36586728
TT
2730 }
2731
dc294be5
TT
2732 /* First try the file name given in the section. If that doesn't
2733 work, try to use the build-id instead. */
192b62ce 2734 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
dc294be5 2735 if (dwz_bfd != NULL)
36586728 2736 {
192b62ce
TT
2737 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2738 dwz_bfd.release ();
36586728
TT
2739 }
2740
dc294be5
TT
2741 if (dwz_bfd == NULL)
2742 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2743
2744 if (dwz_bfd == NULL)
2745 error (_("could not find '.gnu_debugaltlink' file for %s"),
2746 objfile_name (dwarf2_per_objfile->objfile));
2747
36586728
TT
2748 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2749 struct dwz_file);
192b62ce 2750 result->dwz_bfd = dwz_bfd.release ();
36586728 2751
192b62ce 2752 bfd_map_over_sections (result->dwz_bfd, locate_dwz_sections, result);
36586728
TT
2753
2754 do_cleanups (cleanup);
2755
192b62ce 2756 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, result->dwz_bfd);
8d2cc612 2757 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2758 return result;
2759}
9291a0cd 2760\f
7b9f3c50
DE
2761/* DWARF quick_symbols_functions support. */
2762
2763/* TUs can share .debug_line entries, and there can be a lot more TUs than
2764 unique line tables, so we maintain a separate table of all .debug_line
2765 derived entries to support the sharing.
2766 All the quick functions need is the list of file names. We discard the
2767 line_header when we're done and don't need to record it here. */
2768struct quick_file_names
2769{
094b34ac
DE
2770 /* The data used to construct the hash key. */
2771 struct stmt_list_hash hash;
7b9f3c50
DE
2772
2773 /* The number of entries in file_names, real_names. */
2774 unsigned int num_file_names;
2775
2776 /* The file names from the line table, after being run through
2777 file_full_name. */
2778 const char **file_names;
2779
2780 /* The file names from the line table after being run through
2781 gdb_realpath. These are computed lazily. */
2782 const char **real_names;
2783};
2784
2785/* When using the index (and thus not using psymtabs), each CU has an
2786 object of this type. This is used to hold information needed by
2787 the various "quick" methods. */
2788struct dwarf2_per_cu_quick_data
2789{
2790 /* The file table. This can be NULL if there was no file table
2791 or it's currently not read in.
2792 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2793 struct quick_file_names *file_names;
2794
2795 /* The corresponding symbol table. This is NULL if symbols for this
2796 CU have not yet been read. */
43f3e411 2797 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2798
2799 /* A temporary mark bit used when iterating over all CUs in
2800 expand_symtabs_matching. */
2801 unsigned int mark : 1;
2802
2803 /* True if we've tried to read the file table and found there isn't one.
2804 There will be no point in trying to read it again next time. */
2805 unsigned int no_file_data : 1;
2806};
2807
094b34ac
DE
2808/* Utility hash function for a stmt_list_hash. */
2809
2810static hashval_t
2811hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2812{
2813 hashval_t v = 0;
2814
2815 if (stmt_list_hash->dwo_unit != NULL)
2816 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
9c541725 2817 v += to_underlying (stmt_list_hash->line_sect_off);
094b34ac
DE
2818 return v;
2819}
2820
2821/* Utility equality function for a stmt_list_hash. */
2822
2823static int
2824eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2825 const struct stmt_list_hash *rhs)
2826{
2827 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2828 return 0;
2829 if (lhs->dwo_unit != NULL
2830 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2831 return 0;
2832
9c541725 2833 return lhs->line_sect_off == rhs->line_sect_off;
094b34ac
DE
2834}
2835
7b9f3c50
DE
2836/* Hash function for a quick_file_names. */
2837
2838static hashval_t
2839hash_file_name_entry (const void *e)
2840{
9a3c8263
SM
2841 const struct quick_file_names *file_data
2842 = (const struct quick_file_names *) e;
7b9f3c50 2843
094b34ac 2844 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2845}
2846
2847/* Equality function for a quick_file_names. */
2848
2849static int
2850eq_file_name_entry (const void *a, const void *b)
2851{
9a3c8263
SM
2852 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2853 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2854
094b34ac 2855 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2856}
2857
2858/* Delete function for a quick_file_names. */
2859
2860static void
2861delete_file_name_entry (void *e)
2862{
9a3c8263 2863 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2864 int i;
2865
2866 for (i = 0; i < file_data->num_file_names; ++i)
2867 {
2868 xfree ((void*) file_data->file_names[i]);
2869 if (file_data->real_names)
2870 xfree ((void*) file_data->real_names[i]);
2871 }
2872
2873 /* The space for the struct itself lives on objfile_obstack,
2874 so we don't free it here. */
2875}
2876
2877/* Create a quick_file_names hash table. */
2878
2879static htab_t
2880create_quick_file_names_table (unsigned int nr_initial_entries)
2881{
2882 return htab_create_alloc (nr_initial_entries,
2883 hash_file_name_entry, eq_file_name_entry,
2884 delete_file_name_entry, xcalloc, xfree);
2885}
9291a0cd 2886
918dd910
JK
2887/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2888 have to be created afterwards. You should call age_cached_comp_units after
2889 processing PER_CU->CU. dw2_setup must have been already called. */
2890
2891static void
2892load_cu (struct dwarf2_per_cu_data *per_cu)
2893{
3019eac3 2894 if (per_cu->is_debug_types)
e5fe5e75 2895 load_full_type_unit (per_cu);
918dd910 2896 else
95554aad 2897 load_full_comp_unit (per_cu, language_minimal);
918dd910 2898
cc12ce38
DE
2899 if (per_cu->cu == NULL)
2900 return; /* Dummy CU. */
2dc860c0
DE
2901
2902 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2903}
2904
a0f42c21 2905/* Read in the symbols for PER_CU. */
2fdf6df6 2906
9291a0cd 2907static void
a0f42c21 2908dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2909{
2910 struct cleanup *back_to;
2911
f4dc4d17
DE
2912 /* Skip type_unit_groups, reading the type units they contain
2913 is handled elsewhere. */
2914 if (IS_TYPE_UNIT_GROUP (per_cu))
2915 return;
2916
9291a0cd
TT
2917 back_to = make_cleanup (dwarf2_release_queue, NULL);
2918
95554aad 2919 if (dwarf2_per_objfile->using_index
43f3e411 2920 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2921 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2922 {
2923 queue_comp_unit (per_cu, language_minimal);
2924 load_cu (per_cu);
89e63ee4
DE
2925
2926 /* If we just loaded a CU from a DWO, and we're working with an index
2927 that may badly handle TUs, load all the TUs in that DWO as well.
2928 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2929 if (!per_cu->is_debug_types
cc12ce38 2930 && per_cu->cu != NULL
89e63ee4
DE
2931 && per_cu->cu->dwo_unit != NULL
2932 && dwarf2_per_objfile->index_table != NULL
2933 && dwarf2_per_objfile->index_table->version <= 7
2934 /* DWP files aren't supported yet. */
2935 && get_dwp_file () == NULL)
2936 queue_and_load_all_dwo_tus (per_cu);
95554aad 2937 }
9291a0cd 2938
a0f42c21 2939 process_queue ();
9291a0cd
TT
2940
2941 /* Age the cache, releasing compilation units that have not
2942 been used recently. */
2943 age_cached_comp_units ();
2944
2945 do_cleanups (back_to);
2946}
2947
2948/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2949 the objfile from which this CU came. Returns the resulting symbol
2950 table. */
2fdf6df6 2951
43f3e411 2952static struct compunit_symtab *
a0f42c21 2953dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2954{
95554aad 2955 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2956 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2957 {
2958 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
c83dd867 2959 scoped_restore decrementer = increment_reading_symtab ();
a0f42c21 2960 dw2_do_instantiate_symtab (per_cu);
95554aad 2961 process_cu_includes ();
9291a0cd
TT
2962 do_cleanups (back_to);
2963 }
f194fefb 2964
43f3e411 2965 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2966}
2967
8832e7e3 2968/* Return the CU/TU given its index.
f4dc4d17
DE
2969
2970 This is intended for loops like:
2971
2972 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2973 + dwarf2_per_objfile->n_type_units); ++i)
2974 {
8832e7e3 2975 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2976
2977 ...;
2978 }
2979*/
2fdf6df6 2980
1fd400ff 2981static struct dwarf2_per_cu_data *
8832e7e3 2982dw2_get_cutu (int index)
1fd400ff
TT
2983{
2984 if (index >= dwarf2_per_objfile->n_comp_units)
2985 {
f4dc4d17 2986 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2987 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2988 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2989 }
2990
2991 return dwarf2_per_objfile->all_comp_units[index];
2992}
2993
8832e7e3
DE
2994/* Return the CU given its index.
2995 This differs from dw2_get_cutu in that it's for when you know INDEX
2996 refers to a CU. */
f4dc4d17
DE
2997
2998static struct dwarf2_per_cu_data *
8832e7e3 2999dw2_get_cu (int index)
f4dc4d17 3000{
8832e7e3 3001 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 3002
1fd400ff
TT
3003 return dwarf2_per_objfile->all_comp_units[index];
3004}
3005
2ec9a5e0
TT
3006/* A helper for create_cus_from_index that handles a given list of
3007 CUs. */
2fdf6df6 3008
74a0d9f6 3009static void
2ec9a5e0
TT
3010create_cus_from_index_list (struct objfile *objfile,
3011 const gdb_byte *cu_list, offset_type n_elements,
3012 struct dwarf2_section_info *section,
3013 int is_dwz,
3014 int base_offset)
9291a0cd
TT
3015{
3016 offset_type i;
9291a0cd 3017
2ec9a5e0 3018 for (i = 0; i < n_elements; i += 2)
9291a0cd 3019 {
74a0d9f6 3020 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3021
3022 sect_offset sect_off
3023 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3024 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
3025 cu_list += 2 * 8;
3026
9c541725
PA
3027 dwarf2_per_cu_data *the_cu
3028 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3029 struct dwarf2_per_cu_data);
3030 the_cu->sect_off = sect_off;
9291a0cd
TT
3031 the_cu->length = length;
3032 the_cu->objfile = objfile;
8a0459fd 3033 the_cu->section = section;
9291a0cd
TT
3034 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3035 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
3036 the_cu->is_dwz = is_dwz;
3037 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 3038 }
9291a0cd
TT
3039}
3040
2ec9a5e0 3041/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 3042 the CU objects for this objfile. */
2ec9a5e0 3043
74a0d9f6 3044static void
2ec9a5e0
TT
3045create_cus_from_index (struct objfile *objfile,
3046 const gdb_byte *cu_list, offset_type cu_list_elements,
3047 const gdb_byte *dwz_list, offset_type dwz_elements)
3048{
3049 struct dwz_file *dwz;
3050
3051 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
3052 dwarf2_per_objfile->all_comp_units =
3053 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
3054 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 3055
74a0d9f6
JK
3056 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
3057 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
3058
3059 if (dwz_elements == 0)
74a0d9f6 3060 return;
2ec9a5e0
TT
3061
3062 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
3063 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
3064 cu_list_elements / 2);
2ec9a5e0
TT
3065}
3066
1fd400ff 3067/* Create the signatured type hash table from the index. */
673bfd45 3068
74a0d9f6 3069static void
673bfd45 3070create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 3071 struct dwarf2_section_info *section,
673bfd45
DE
3072 const gdb_byte *bytes,
3073 offset_type elements)
1fd400ff
TT
3074{
3075 offset_type i;
673bfd45 3076 htab_t sig_types_hash;
1fd400ff 3077
6aa5f3a6
DE
3078 dwarf2_per_objfile->n_type_units
3079 = dwarf2_per_objfile->n_allocated_type_units
3080 = elements / 3;
8d749320
SM
3081 dwarf2_per_objfile->all_type_units =
3082 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 3083
673bfd45 3084 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
3085
3086 for (i = 0; i < elements; i += 3)
3087 {
52dc124a 3088 struct signatured_type *sig_type;
9c541725 3089 ULONGEST signature;
1fd400ff 3090 void **slot;
9c541725 3091 cu_offset type_offset_in_tu;
1fd400ff 3092
74a0d9f6 3093 gdb_static_assert (sizeof (ULONGEST) >= 8);
9c541725
PA
3094 sect_offset sect_off
3095 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3096 type_offset_in_tu
3097 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3098 BFD_ENDIAN_LITTLE);
1fd400ff
TT
3099 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3100 bytes += 3 * 8;
3101
52dc124a 3102 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 3103 struct signatured_type);
52dc124a 3104 sig_type->signature = signature;
9c541725 3105 sig_type->type_offset_in_tu = type_offset_in_tu;
3019eac3 3106 sig_type->per_cu.is_debug_types = 1;
8a0459fd 3107 sig_type->per_cu.section = section;
9c541725 3108 sig_type->per_cu.sect_off = sect_off;
52dc124a
DE
3109 sig_type->per_cu.objfile = objfile;
3110 sig_type->per_cu.v.quick
1fd400ff
TT
3111 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3112 struct dwarf2_per_cu_quick_data);
3113
52dc124a
DE
3114 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3115 *slot = sig_type;
1fd400ff 3116
b4dd5633 3117 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
3118 }
3119
673bfd45 3120 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
3121}
3122
9291a0cd
TT
3123/* Read the address map data from the mapped index, and use it to
3124 populate the objfile's psymtabs_addrmap. */
2fdf6df6 3125
9291a0cd
TT
3126static void
3127create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
3128{
3e29f34a 3129 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd 3130 const gdb_byte *iter, *end;
9291a0cd 3131 struct addrmap *mutable_map;
9291a0cd
TT
3132 CORE_ADDR baseaddr;
3133
8268c778
PA
3134 auto_obstack temp_obstack;
3135
9291a0cd
TT
3136 mutable_map = addrmap_create_mutable (&temp_obstack);
3137
3138 iter = index->address_table;
3139 end = iter + index->address_table_size;
3140
3141 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3142
3143 while (iter < end)
3144 {
3145 ULONGEST hi, lo, cu_index;
3146 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3147 iter += 8;
3148 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3149 iter += 8;
3150 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3151 iter += 4;
f652bce2 3152
24a55014 3153 if (lo > hi)
f652bce2 3154 {
24a55014
DE
3155 complaint (&symfile_complaints,
3156 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 3157 hex_string (lo), hex_string (hi));
24a55014 3158 continue;
f652bce2 3159 }
24a55014
DE
3160
3161 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
3162 {
3163 complaint (&symfile_complaints,
3164 _(".gdb_index address table has invalid CU number %u"),
3165 (unsigned) cu_index);
24a55014 3166 continue;
f652bce2 3167 }
24a55014 3168
3e29f34a
MR
3169 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
3170 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
3171 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
3172 }
3173
3174 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
3175 &objfile->objfile_obstack);
9291a0cd
TT
3176}
3177
59d7bcaf
JK
3178/* The hash function for strings in the mapped index. This is the same as
3179 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
3180 implementation. This is necessary because the hash function is tied to the
3181 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
3182 SYMBOL_HASH_NEXT.
3183
3184 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 3185
9291a0cd 3186static hashval_t
559a7a62 3187mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
3188{
3189 const unsigned char *str = (const unsigned char *) p;
3190 hashval_t r = 0;
3191 unsigned char c;
3192
3193 while ((c = *str++) != 0)
559a7a62
JK
3194 {
3195 if (index_version >= 5)
3196 c = tolower (c);
3197 r = r * 67 + c - 113;
3198 }
9291a0cd
TT
3199
3200 return r;
3201}
3202
3203/* Find a slot in the mapped index INDEX for the object named NAME.
3204 If NAME is found, set *VEC_OUT to point to the CU vector in the
3205 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 3206
9291a0cd
TT
3207static int
3208find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3209 offset_type **vec_out)
3210{
0cf03b49
JK
3211 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3212 offset_type hash;
9291a0cd 3213 offset_type slot, step;
559a7a62 3214 int (*cmp) (const char *, const char *);
9291a0cd 3215
0cf03b49 3216 if (current_language->la_language == language_cplus
45280282
IB
3217 || current_language->la_language == language_fortran
3218 || current_language->la_language == language_d)
0cf03b49
JK
3219 {
3220 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3221 not contain any. */
a8719064 3222
72998fb3 3223 if (strchr (name, '(') != NULL)
0cf03b49 3224 {
72998fb3 3225 char *without_params = cp_remove_params (name);
0cf03b49 3226
72998fb3
DE
3227 if (without_params != NULL)
3228 {
3229 make_cleanup (xfree, without_params);
3230 name = without_params;
3231 }
0cf03b49
JK
3232 }
3233 }
3234
559a7a62 3235 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3236 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3237 simulate our NAME being searched is also lowercased. */
3238 hash = mapped_index_string_hash ((index->version == 4
3239 && case_sensitivity == case_sensitive_off
3240 ? 5 : index->version),
3241 name);
3242
3876f04e
DE
3243 slot = hash & (index->symbol_table_slots - 1);
3244 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3245 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3246
3247 for (;;)
3248 {
3249 /* Convert a slot number to an offset into the table. */
3250 offset_type i = 2 * slot;
3251 const char *str;
3876f04e 3252 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3253 {
3254 do_cleanups (back_to);
3255 return 0;
3256 }
9291a0cd 3257
3876f04e 3258 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3259 if (!cmp (name, str))
9291a0cd
TT
3260 {
3261 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3262 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3263 do_cleanups (back_to);
9291a0cd
TT
3264 return 1;
3265 }
3266
3876f04e 3267 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3268 }
3269}
3270
2ec9a5e0
TT
3271/* A helper function that reads the .gdb_index from SECTION and fills
3272 in MAP. FILENAME is the name of the file containing the section;
3273 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3274 ok to use deprecated sections.
3275
3276 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3277 out parameters that are filled in with information about the CU and
3278 TU lists in the section.
3279
3280 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3281
9291a0cd 3282static int
2ec9a5e0
TT
3283read_index_from_section (struct objfile *objfile,
3284 const char *filename,
3285 int deprecated_ok,
3286 struct dwarf2_section_info *section,
3287 struct mapped_index *map,
3288 const gdb_byte **cu_list,
3289 offset_type *cu_list_elements,
3290 const gdb_byte **types_list,
3291 offset_type *types_list_elements)
9291a0cd 3292{
948f8e3d 3293 const gdb_byte *addr;
2ec9a5e0 3294 offset_type version;
b3b272e1 3295 offset_type *metadata;
1fd400ff 3296 int i;
9291a0cd 3297
2ec9a5e0 3298 if (dwarf2_section_empty_p (section))
9291a0cd 3299 return 0;
82430852
JK
3300
3301 /* Older elfutils strip versions could keep the section in the main
3302 executable while splitting it for the separate debug info file. */
a32a8923 3303 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3304 return 0;
3305
2ec9a5e0 3306 dwarf2_read_section (objfile, section);
9291a0cd 3307
2ec9a5e0 3308 addr = section->buffer;
9291a0cd 3309 /* Version check. */
1fd400ff 3310 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3311 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3312 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3313 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3314 indices. */
831adc1f 3315 if (version < 4)
481860b3
GB
3316 {
3317 static int warning_printed = 0;
3318 if (!warning_printed)
3319 {
3320 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3321 filename);
481860b3
GB
3322 warning_printed = 1;
3323 }
3324 return 0;
3325 }
3326 /* Index version 4 uses a different hash function than index version
3327 5 and later.
3328
3329 Versions earlier than 6 did not emit psymbols for inlined
3330 functions. Using these files will cause GDB not to be able to
3331 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3332 indices unless the user has done
3333 "set use-deprecated-index-sections on". */
2ec9a5e0 3334 if (version < 6 && !deprecated_ok)
481860b3
GB
3335 {
3336 static int warning_printed = 0;
3337 if (!warning_printed)
3338 {
e615022a
DE
3339 warning (_("\
3340Skipping deprecated .gdb_index section in %s.\n\
3341Do \"set use-deprecated-index-sections on\" before the file is read\n\
3342to use the section anyway."),
2ec9a5e0 3343 filename);
481860b3
GB
3344 warning_printed = 1;
3345 }
3346 return 0;
3347 }
796a7ff8 3348 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3349 of the TU (for symbols coming from TUs),
3350 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3351 Plus gold-generated indices can have duplicate entries for global symbols,
3352 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3353 These are just performance bugs, and we can't distinguish gdb-generated
3354 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3355
481860b3 3356 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3357 longer backward compatible. */
796a7ff8 3358 if (version > 8)
594e8718 3359 return 0;
9291a0cd 3360
559a7a62 3361 map->version = version;
2ec9a5e0 3362 map->total_size = section->size;
9291a0cd
TT
3363
3364 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3365
3366 i = 0;
2ec9a5e0
TT
3367 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3368 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3369 / 8);
1fd400ff
TT
3370 ++i;
3371
2ec9a5e0
TT
3372 *types_list = addr + MAYBE_SWAP (metadata[i]);
3373 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3374 - MAYBE_SWAP (metadata[i]))
3375 / 8);
987d643c 3376 ++i;
1fd400ff
TT
3377
3378 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3379 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3380 - MAYBE_SWAP (metadata[i]));
3381 ++i;
3382
3876f04e
DE
3383 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3384 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3385 - MAYBE_SWAP (metadata[i]))
3386 / (2 * sizeof (offset_type)));
1fd400ff 3387 ++i;
9291a0cd 3388
f9d83a0b 3389 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3390
2ec9a5e0
TT
3391 return 1;
3392}
3393
3394
3395/* Read the index file. If everything went ok, initialize the "quick"
3396 elements of all the CUs and return 1. Otherwise, return 0. */
3397
3398static int
3399dwarf2_read_index (struct objfile *objfile)
3400{
3401 struct mapped_index local_map, *map;
3402 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3403 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3404 struct dwz_file *dwz;
2ec9a5e0 3405
4262abfb 3406 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3407 use_deprecated_index_sections,
3408 &dwarf2_per_objfile->gdb_index, &local_map,
3409 &cu_list, &cu_list_elements,
3410 &types_list, &types_list_elements))
3411 return 0;
3412
0fefef59 3413 /* Don't use the index if it's empty. */
2ec9a5e0 3414 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3415 return 0;
3416
2ec9a5e0
TT
3417 /* If there is a .dwz file, read it so we can get its CU list as
3418 well. */
4db1a1dc
TT
3419 dwz = dwarf2_get_dwz_file ();
3420 if (dwz != NULL)
2ec9a5e0 3421 {
2ec9a5e0
TT
3422 struct mapped_index dwz_map;
3423 const gdb_byte *dwz_types_ignore;
3424 offset_type dwz_types_elements_ignore;
3425
3426 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3427 1,
3428 &dwz->gdb_index, &dwz_map,
3429 &dwz_list, &dwz_list_elements,
3430 &dwz_types_ignore,
3431 &dwz_types_elements_ignore))
3432 {
3433 warning (_("could not read '.gdb_index' section from %s; skipping"),
3434 bfd_get_filename (dwz->dwz_bfd));
3435 return 0;
3436 }
3437 }
3438
74a0d9f6
JK
3439 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3440 dwz_list_elements);
1fd400ff 3441
8b70b953
TT
3442 if (types_list_elements)
3443 {
3444 struct dwarf2_section_info *section;
3445
3446 /* We can only handle a single .debug_types when we have an
3447 index. */
3448 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3449 return 0;
3450
3451 section = VEC_index (dwarf2_section_info_def,
3452 dwarf2_per_objfile->types, 0);
3453
74a0d9f6
JK
3454 create_signatured_type_table_from_index (objfile, section, types_list,
3455 types_list_elements);
8b70b953 3456 }
9291a0cd 3457
2ec9a5e0
TT
3458 create_addrmap_from_index (objfile, &local_map);
3459
8d749320 3460 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3461 *map = local_map;
9291a0cd
TT
3462
3463 dwarf2_per_objfile->index_table = map;
3464 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3465 dwarf2_per_objfile->quick_file_names_table =
3466 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3467
3468 return 1;
3469}
3470
3471/* A helper for the "quick" functions which sets the global
3472 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3473
9291a0cd
TT
3474static void
3475dw2_setup (struct objfile *objfile)
3476{
9a3c8263
SM
3477 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3478 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3479 gdb_assert (dwarf2_per_objfile);
3480}
3481
dee91e82 3482/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3483
dee91e82
DE
3484static void
3485dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3486 const gdb_byte *info_ptr,
dee91e82
DE
3487 struct die_info *comp_unit_die,
3488 int has_children,
3489 void *data)
9291a0cd 3490{
dee91e82
DE
3491 struct dwarf2_cu *cu = reader->cu;
3492 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3493 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3494 struct dwarf2_per_cu_data *lh_cu;
9291a0cd 3495 struct attribute *attr;
dee91e82 3496 int i;
7b9f3c50
DE
3497 void **slot;
3498 struct quick_file_names *qfn;
9291a0cd 3499
0186c6a7
DE
3500 gdb_assert (! this_cu->is_debug_types);
3501
07261596
TT
3502 /* Our callers never want to match partial units -- instead they
3503 will match the enclosing full CU. */
3504 if (comp_unit_die->tag == DW_TAG_partial_unit)
3505 {
3506 this_cu->v.quick->no_file_data = 1;
3507 return;
3508 }
3509
0186c6a7 3510 lh_cu = this_cu;
7b9f3c50 3511 slot = NULL;
dee91e82 3512
fff8551c 3513 line_header_up lh;
9c541725 3514 sect_offset line_offset {};
fff8551c 3515
dee91e82 3516 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3517 if (attr)
3518 {
7b9f3c50
DE
3519 struct quick_file_names find_entry;
3520
9c541725 3521 line_offset = (sect_offset) DW_UNSND (attr);
7b9f3c50
DE
3522
3523 /* We may have already read in this line header (TU line header sharing).
3524 If we have we're done. */
094b34ac 3525 find_entry.hash.dwo_unit = cu->dwo_unit;
9c541725 3526 find_entry.hash.line_sect_off = line_offset;
7b9f3c50
DE
3527 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3528 &find_entry, INSERT);
3529 if (*slot != NULL)
3530 {
9a3c8263 3531 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3532 return;
7b9f3c50
DE
3533 }
3534
3019eac3 3535 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3536 }
3537 if (lh == NULL)
3538 {
094b34ac 3539 lh_cu->v.quick->no_file_data = 1;
dee91e82 3540 return;
9291a0cd
TT
3541 }
3542
8d749320 3543 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac 3544 qfn->hash.dwo_unit = cu->dwo_unit;
9c541725 3545 qfn->hash.line_sect_off = line_offset;
7b9f3c50
DE
3546 gdb_assert (slot != NULL);
3547 *slot = qfn;
9291a0cd 3548
d721ba37 3549 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
9291a0cd 3550
fff8551c 3551 qfn->num_file_names = lh->file_names.size ();
8d749320 3552 qfn->file_names =
fff8551c
PA
3553 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3554 for (i = 0; i < lh->file_names.size (); ++i)
3555 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
7b9f3c50 3556 qfn->real_names = NULL;
9291a0cd 3557
094b34ac 3558 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3559}
3560
3561/* A helper for the "quick" functions which attempts to read the line
3562 table for THIS_CU. */
3563
3564static struct quick_file_names *
e4a48d9d 3565dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3566{
0186c6a7
DE
3567 /* This should never be called for TUs. */
3568 gdb_assert (! this_cu->is_debug_types);
3569 /* Nor type unit groups. */
3570 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3571
dee91e82
DE
3572 if (this_cu->v.quick->file_names != NULL)
3573 return this_cu->v.quick->file_names;
3574 /* If we know there is no line data, no point in looking again. */
3575 if (this_cu->v.quick->no_file_data)
3576 return NULL;
3577
0186c6a7 3578 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3579
3580 if (this_cu->v.quick->no_file_data)
3581 return NULL;
3582 return this_cu->v.quick->file_names;
9291a0cd
TT
3583}
3584
3585/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3586 real path for a given file name from the line table. */
2fdf6df6 3587
9291a0cd 3588static const char *
7b9f3c50
DE
3589dw2_get_real_path (struct objfile *objfile,
3590 struct quick_file_names *qfn, int index)
9291a0cd 3591{
7b9f3c50
DE
3592 if (qfn->real_names == NULL)
3593 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3594 qfn->num_file_names, const char *);
9291a0cd 3595
7b9f3c50 3596 if (qfn->real_names[index] == NULL)
14278e1f 3597 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
9291a0cd 3598
7b9f3c50 3599 return qfn->real_names[index];
9291a0cd
TT
3600}
3601
3602static struct symtab *
3603dw2_find_last_source_symtab (struct objfile *objfile)
3604{
43f3e411 3605 struct compunit_symtab *cust;
9291a0cd 3606 int index;
ae2de4f8 3607
9291a0cd
TT
3608 dw2_setup (objfile);
3609 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3610 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3611 if (cust == NULL)
3612 return NULL;
3613 return compunit_primary_filetab (cust);
9291a0cd
TT
3614}
3615
7b9f3c50
DE
3616/* Traversal function for dw2_forget_cached_source_info. */
3617
3618static int
3619dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3620{
7b9f3c50 3621 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3622
7b9f3c50 3623 if (file_data->real_names)
9291a0cd 3624 {
7b9f3c50 3625 int i;
9291a0cd 3626
7b9f3c50 3627 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3628 {
7b9f3c50
DE
3629 xfree ((void*) file_data->real_names[i]);
3630 file_data->real_names[i] = NULL;
9291a0cd
TT
3631 }
3632 }
7b9f3c50
DE
3633
3634 return 1;
3635}
3636
3637static void
3638dw2_forget_cached_source_info (struct objfile *objfile)
3639{
3640 dw2_setup (objfile);
3641
3642 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3643 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3644}
3645
f8eba3c6
TT
3646/* Helper function for dw2_map_symtabs_matching_filename that expands
3647 the symtabs and calls the iterator. */
3648
3649static int
3650dw2_map_expand_apply (struct objfile *objfile,
3651 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3652 const char *name, const char *real_path,
14bc53a8 3653 gdb::function_view<bool (symtab *)> callback)
f8eba3c6 3654{
43f3e411 3655 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3656
3657 /* Don't visit already-expanded CUs. */
43f3e411 3658 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3659 return 0;
3660
3661 /* This may expand more than one symtab, and we want to iterate over
3662 all of them. */
a0f42c21 3663 dw2_instantiate_symtab (per_cu);
f8eba3c6 3664
14bc53a8
PA
3665 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3666 last_made, callback);
f8eba3c6
TT
3667}
3668
3669/* Implementation of the map_symtabs_matching_filename method. */
3670
14bc53a8
PA
3671static bool
3672dw2_map_symtabs_matching_filename
3673 (struct objfile *objfile, const char *name, const char *real_path,
3674 gdb::function_view<bool (symtab *)> callback)
9291a0cd
TT
3675{
3676 int i;
c011a4f4 3677 const char *name_basename = lbasename (name);
9291a0cd
TT
3678
3679 dw2_setup (objfile);
ae2de4f8 3680
848e3e78
DE
3681 /* The rule is CUs specify all the files, including those used by
3682 any TU, so there's no need to scan TUs here. */
f4dc4d17 3683
848e3e78 3684 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3685 {
3686 int j;
8832e7e3 3687 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3688 struct quick_file_names *file_data;
9291a0cd 3689
3d7bb9d9 3690 /* We only need to look at symtabs not already expanded. */
43f3e411 3691 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3692 continue;
3693
e4a48d9d 3694 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3695 if (file_data == NULL)
9291a0cd
TT
3696 continue;
3697
7b9f3c50 3698 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3699 {
7b9f3c50 3700 const char *this_name = file_data->file_names[j];
da235a7c 3701 const char *this_real_name;
9291a0cd 3702
af529f8f 3703 if (compare_filenames_for_search (this_name, name))
9291a0cd 3704 {
f5b95b50 3705 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3706 callback))
3707 return true;
288e77a7 3708 continue;
4aac40c8 3709 }
9291a0cd 3710
c011a4f4
DE
3711 /* Before we invoke realpath, which can get expensive when many
3712 files are involved, do a quick comparison of the basenames. */
3713 if (! basenames_may_differ
3714 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3715 continue;
3716
da235a7c
JK
3717 this_real_name = dw2_get_real_path (objfile, file_data, j);
3718 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3719 {
da235a7c 3720 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3721 callback))
3722 return true;
288e77a7 3723 continue;
da235a7c 3724 }
9291a0cd 3725
da235a7c
JK
3726 if (real_path != NULL)
3727 {
af529f8f
JK
3728 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3729 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3730 if (this_real_name != NULL
af529f8f 3731 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3732 {
f5b95b50 3733 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
14bc53a8
PA
3734 callback))
3735 return true;
288e77a7 3736 continue;
9291a0cd
TT
3737 }
3738 }
3739 }
3740 }
3741
14bc53a8 3742 return false;
9291a0cd
TT
3743}
3744
da51c347
DE
3745/* Struct used to manage iterating over all CUs looking for a symbol. */
3746
3747struct dw2_symtab_iterator
9291a0cd 3748{
da51c347
DE
3749 /* The internalized form of .gdb_index. */
3750 struct mapped_index *index;
3751 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3752 int want_specific_block;
3753 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3754 Unused if !WANT_SPECIFIC_BLOCK. */
3755 int block_index;
3756 /* The kind of symbol we're looking for. */
3757 domain_enum domain;
3758 /* The list of CUs from the index entry of the symbol,
3759 or NULL if not found. */
3760 offset_type *vec;
3761 /* The next element in VEC to look at. */
3762 int next;
3763 /* The number of elements in VEC, or zero if there is no match. */
3764 int length;
8943b874
DE
3765 /* Have we seen a global version of the symbol?
3766 If so we can ignore all further global instances.
3767 This is to work around gold/15646, inefficient gold-generated
3768 indices. */
3769 int global_seen;
da51c347 3770};
9291a0cd 3771
da51c347
DE
3772/* Initialize the index symtab iterator ITER.
3773 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3774 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3775
9291a0cd 3776static void
da51c347
DE
3777dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3778 struct mapped_index *index,
3779 int want_specific_block,
3780 int block_index,
3781 domain_enum domain,
3782 const char *name)
3783{
3784 iter->index = index;
3785 iter->want_specific_block = want_specific_block;
3786 iter->block_index = block_index;
3787 iter->domain = domain;
3788 iter->next = 0;
8943b874 3789 iter->global_seen = 0;
da51c347
DE
3790
3791 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3792 iter->length = MAYBE_SWAP (*iter->vec);
3793 else
3794 {
3795 iter->vec = NULL;
3796 iter->length = 0;
3797 }
3798}
3799
3800/* Return the next matching CU or NULL if there are no more. */
3801
3802static struct dwarf2_per_cu_data *
3803dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3804{
3805 for ( ; iter->next < iter->length; ++iter->next)
3806 {
3807 offset_type cu_index_and_attrs =
3808 MAYBE_SWAP (iter->vec[iter->next + 1]);
3809 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3810 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3811 int want_static = iter->block_index != GLOBAL_BLOCK;
3812 /* This value is only valid for index versions >= 7. */
3813 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3814 gdb_index_symbol_kind symbol_kind =
3815 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3816 /* Only check the symbol attributes if they're present.
3817 Indices prior to version 7 don't record them,
3818 and indices >= 7 may elide them for certain symbols
3819 (gold does this). */
3820 int attrs_valid =
3821 (iter->index->version >= 7
3822 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3823
3190f0c6
DE
3824 /* Don't crash on bad data. */
3825 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3826 + dwarf2_per_objfile->n_type_units))
3827 {
3828 complaint (&symfile_complaints,
3829 _(".gdb_index entry has bad CU index"
4262abfb
JK
3830 " [in module %s]"),
3831 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3832 continue;
3833 }
3834
8832e7e3 3835 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3836
da51c347 3837 /* Skip if already read in. */
43f3e411 3838 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3839 continue;
3840
8943b874
DE
3841 /* Check static vs global. */
3842 if (attrs_valid)
3843 {
3844 if (iter->want_specific_block
3845 && want_static != is_static)
3846 continue;
3847 /* Work around gold/15646. */
3848 if (!is_static && iter->global_seen)
3849 continue;
3850 if (!is_static)
3851 iter->global_seen = 1;
3852 }
da51c347
DE
3853
3854 /* Only check the symbol's kind if it has one. */
3855 if (attrs_valid)
3856 {
3857 switch (iter->domain)
3858 {
3859 case VAR_DOMAIN:
3860 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3861 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3862 /* Some types are also in VAR_DOMAIN. */
3863 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3864 continue;
3865 break;
3866 case STRUCT_DOMAIN:
3867 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3868 continue;
3869 break;
3870 case LABEL_DOMAIN:
3871 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3872 continue;
3873 break;
3874 default:
3875 break;
3876 }
3877 }
3878
3879 ++iter->next;
3880 return per_cu;
3881 }
3882
3883 return NULL;
3884}
3885
43f3e411 3886static struct compunit_symtab *
da51c347
DE
3887dw2_lookup_symbol (struct objfile *objfile, int block_index,
3888 const char *name, domain_enum domain)
9291a0cd 3889{
43f3e411 3890 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3891 struct mapped_index *index;
3892
9291a0cd
TT
3893 dw2_setup (objfile);
3894
156942c7
DE
3895 index = dwarf2_per_objfile->index_table;
3896
da51c347 3897 /* index is NULL if OBJF_READNOW. */
156942c7 3898 if (index)
9291a0cd 3899 {
da51c347
DE
3900 struct dw2_symtab_iterator iter;
3901 struct dwarf2_per_cu_data *per_cu;
3902
3903 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3904
da51c347 3905 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3906 {
b2e2f908 3907 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3908 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3909 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3910 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3911
b2e2f908
DE
3912 sym = block_find_symbol (block, name, domain,
3913 block_find_non_opaque_type_preferred,
3914 &with_opaque);
3915
da51c347
DE
3916 /* Some caution must be observed with overloaded functions
3917 and methods, since the index will not contain any overload
3918 information (but NAME might contain it). */
da51c347 3919
b2e2f908 3920 if (sym != NULL
a778f165 3921 && SYMBOL_MATCHES_SEARCH_NAME (sym, name))
b2e2f908
DE
3922 return stab;
3923 if (with_opaque != NULL
a778f165 3924 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, name))
b2e2f908 3925 stab_best = stab;
da51c347
DE
3926
3927 /* Keep looking through other CUs. */
9291a0cd
TT
3928 }
3929 }
9291a0cd 3930
da51c347 3931 return stab_best;
9291a0cd
TT
3932}
3933
3934static void
3935dw2_print_stats (struct objfile *objfile)
3936{
e4a48d9d 3937 int i, total, count;
9291a0cd
TT
3938
3939 dw2_setup (objfile);
e4a48d9d 3940 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3941 count = 0;
e4a48d9d 3942 for (i = 0; i < total; ++i)
9291a0cd 3943 {
8832e7e3 3944 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3945
43f3e411 3946 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3947 ++count;
3948 }
e4a48d9d 3949 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3950 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3951}
3952
779bd270
DE
3953/* This dumps minimal information about the index.
3954 It is called via "mt print objfiles".
3955 One use is to verify .gdb_index has been loaded by the
3956 gdb.dwarf2/gdb-index.exp testcase. */
3957
9291a0cd
TT
3958static void
3959dw2_dump (struct objfile *objfile)
3960{
779bd270
DE
3961 dw2_setup (objfile);
3962 gdb_assert (dwarf2_per_objfile->using_index);
3963 printf_filtered (".gdb_index:");
3964 if (dwarf2_per_objfile->index_table != NULL)
3965 {
3966 printf_filtered (" version %d\n",
3967 dwarf2_per_objfile->index_table->version);
3968 }
3969 else
3970 printf_filtered (" faked for \"readnow\"\n");
3971 printf_filtered ("\n");
9291a0cd
TT
3972}
3973
3974static void
3189cb12
DE
3975dw2_relocate (struct objfile *objfile,
3976 const struct section_offsets *new_offsets,
3977 const struct section_offsets *delta)
9291a0cd
TT
3978{
3979 /* There's nothing to relocate here. */
3980}
3981
3982static void
3983dw2_expand_symtabs_for_function (struct objfile *objfile,
3984 const char *func_name)
3985{
da51c347
DE
3986 struct mapped_index *index;
3987
3988 dw2_setup (objfile);
3989
3990 index = dwarf2_per_objfile->index_table;
3991
3992 /* index is NULL if OBJF_READNOW. */
3993 if (index)
3994 {
3995 struct dw2_symtab_iterator iter;
3996 struct dwarf2_per_cu_data *per_cu;
3997
3998 /* Note: It doesn't matter what we pass for block_index here. */
3999 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4000 func_name);
4001
4002 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4003 dw2_instantiate_symtab (per_cu);
4004 }
9291a0cd
TT
4005}
4006
4007static void
4008dw2_expand_all_symtabs (struct objfile *objfile)
4009{
4010 int i;
4011
4012 dw2_setup (objfile);
1fd400ff
TT
4013
4014 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4015 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4016 {
8832e7e3 4017 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4018
a0f42c21 4019 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
4020 }
4021}
4022
4023static void
652a8996
JK
4024dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4025 const char *fullname)
9291a0cd
TT
4026{
4027 int i;
4028
4029 dw2_setup (objfile);
d4637a04
DE
4030
4031 /* We don't need to consider type units here.
4032 This is only called for examining code, e.g. expand_line_sal.
4033 There can be an order of magnitude (or more) more type units
4034 than comp units, and we avoid them if we can. */
4035
4036 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4037 {
4038 int j;
8832e7e3 4039 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 4040 struct quick_file_names *file_data;
9291a0cd 4041
3d7bb9d9 4042 /* We only need to look at symtabs not already expanded. */
43f3e411 4043 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4044 continue;
4045
e4a48d9d 4046 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4047 if (file_data == NULL)
9291a0cd
TT
4048 continue;
4049
7b9f3c50 4050 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4051 {
652a8996
JK
4052 const char *this_fullname = file_data->file_names[j];
4053
4054 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 4055 {
a0f42c21 4056 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
4057 break;
4058 }
4059 }
4060 }
4061}
4062
9291a0cd 4063static void
ade7ed9e 4064dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 4065 const char * name, domain_enum domain,
ade7ed9e 4066 int global,
40658b94
PH
4067 int (*callback) (struct block *,
4068 struct symbol *, void *),
2edb89d3
JK
4069 void *data, symbol_compare_ftype *match,
4070 symbol_compare_ftype *ordered_compare)
9291a0cd 4071{
40658b94 4072 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
4073 current language is Ada for a non-Ada objfile using GNU index. As Ada
4074 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
4075}
4076
4077static void
f8eba3c6
TT
4078dw2_expand_symtabs_matching
4079 (struct objfile *objfile,
14bc53a8
PA
4080 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4081 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4082 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4083 enum search_domain kind)
9291a0cd
TT
4084{
4085 int i;
4086 offset_type iter;
4b5246aa 4087 struct mapped_index *index;
9291a0cd
TT
4088
4089 dw2_setup (objfile);
ae2de4f8
DE
4090
4091 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
4092 if (!dwarf2_per_objfile->index_table)
4093 return;
4b5246aa 4094 index = dwarf2_per_objfile->index_table;
9291a0cd 4095
7b08b9eb 4096 if (file_matcher != NULL)
24c79950 4097 {
fc4007c9
TT
4098 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4099 htab_eq_pointer,
4100 NULL, xcalloc, xfree));
4101 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4102 htab_eq_pointer,
4103 NULL, xcalloc, xfree));
24c79950 4104
848e3e78
DE
4105 /* The rule is CUs specify all the files, including those used by
4106 any TU, so there's no need to scan TUs here. */
4107
4108 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
4109 {
4110 int j;
8832e7e3 4111 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
4112 struct quick_file_names *file_data;
4113 void **slot;
7b08b9eb 4114
61d96d7e
DE
4115 QUIT;
4116
24c79950 4117 per_cu->v.quick->mark = 0;
3d7bb9d9 4118
24c79950 4119 /* We only need to look at symtabs not already expanded. */
43f3e411 4120 if (per_cu->v.quick->compunit_symtab)
24c79950 4121 continue;
7b08b9eb 4122
e4a48d9d 4123 file_data = dw2_get_file_names (per_cu);
24c79950
TT
4124 if (file_data == NULL)
4125 continue;
7b08b9eb 4126
fc4007c9 4127 if (htab_find (visited_not_found.get (), file_data) != NULL)
24c79950 4128 continue;
fc4007c9 4129 else if (htab_find (visited_found.get (), file_data) != NULL)
24c79950
TT
4130 {
4131 per_cu->v.quick->mark = 1;
4132 continue;
4133 }
4134
4135 for (j = 0; j < file_data->num_file_names; ++j)
4136 {
da235a7c
JK
4137 const char *this_real_name;
4138
14bc53a8 4139 if (file_matcher (file_data->file_names[j], false))
24c79950
TT
4140 {
4141 per_cu->v.quick->mark = 1;
4142 break;
4143 }
da235a7c
JK
4144
4145 /* Before we invoke realpath, which can get expensive when many
4146 files are involved, do a quick comparison of the basenames. */
4147 if (!basenames_may_differ
4148 && !file_matcher (lbasename (file_data->file_names[j]),
14bc53a8 4149 true))
da235a7c
JK
4150 continue;
4151
4152 this_real_name = dw2_get_real_path (objfile, file_data, j);
14bc53a8 4153 if (file_matcher (this_real_name, false))
da235a7c
JK
4154 {
4155 per_cu->v.quick->mark = 1;
4156 break;
4157 }
24c79950
TT
4158 }
4159
4160 slot = htab_find_slot (per_cu->v.quick->mark
fc4007c9
TT
4161 ? visited_found.get ()
4162 : visited_not_found.get (),
24c79950
TT
4163 file_data, INSERT);
4164 *slot = file_data;
4165 }
24c79950 4166 }
9291a0cd 4167
3876f04e 4168 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
4169 {
4170 offset_type idx = 2 * iter;
4171 const char *name;
4172 offset_type *vec, vec_len, vec_idx;
8943b874 4173 int global_seen = 0;
9291a0cd 4174
61d96d7e
DE
4175 QUIT;
4176
3876f04e 4177 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
4178 continue;
4179
3876f04e 4180 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 4181
14bc53a8 4182 if (!symbol_matcher (name))
9291a0cd
TT
4183 continue;
4184
4185 /* The name was matched, now expand corresponding CUs that were
4186 marked. */
4b5246aa 4187 vec = (offset_type *) (index->constant_pool
3876f04e 4188 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
4189 vec_len = MAYBE_SWAP (vec[0]);
4190 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4191 {
e254ef6a 4192 struct dwarf2_per_cu_data *per_cu;
156942c7 4193 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
4194 /* This value is only valid for index versions >= 7. */
4195 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
4196 gdb_index_symbol_kind symbol_kind =
4197 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4198 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
4199 /* Only check the symbol attributes if they're present.
4200 Indices prior to version 7 don't record them,
4201 and indices >= 7 may elide them for certain symbols
4202 (gold does this). */
4203 int attrs_valid =
4204 (index->version >= 7
4205 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4206
8943b874
DE
4207 /* Work around gold/15646. */
4208 if (attrs_valid)
4209 {
4210 if (!is_static && global_seen)
4211 continue;
4212 if (!is_static)
4213 global_seen = 1;
4214 }
4215
3190f0c6
DE
4216 /* Only check the symbol's kind if it has one. */
4217 if (attrs_valid)
156942c7
DE
4218 {
4219 switch (kind)
4220 {
4221 case VARIABLES_DOMAIN:
4222 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4223 continue;
4224 break;
4225 case FUNCTIONS_DOMAIN:
4226 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4227 continue;
4228 break;
4229 case TYPES_DOMAIN:
4230 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4231 continue;
4232 break;
4233 default:
4234 break;
4235 }
4236 }
4237
3190f0c6
DE
4238 /* Don't crash on bad data. */
4239 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4240 + dwarf2_per_objfile->n_type_units))
4241 {
4242 complaint (&symfile_complaints,
4243 _(".gdb_index entry has bad CU index"
4262abfb 4244 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4245 continue;
4246 }
4247
8832e7e3 4248 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4249 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4250 {
4251 int symtab_was_null =
4252 (per_cu->v.quick->compunit_symtab == NULL);
4253
4254 dw2_instantiate_symtab (per_cu);
4255
4256 if (expansion_notify != NULL
4257 && symtab_was_null
4258 && per_cu->v.quick->compunit_symtab != NULL)
4259 {
14bc53a8 4260 expansion_notify (per_cu->v.quick->compunit_symtab);
276d885b
GB
4261 }
4262 }
9291a0cd
TT
4263 }
4264 }
4265}
4266
43f3e411 4267/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4268 symtab. */
4269
43f3e411
DE
4270static struct compunit_symtab *
4271recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4272 CORE_ADDR pc)
9703b513
TT
4273{
4274 int i;
4275
43f3e411
DE
4276 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4277 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4278 return cust;
9703b513 4279
43f3e411 4280 if (cust->includes == NULL)
a3ec0bb1
DE
4281 return NULL;
4282
43f3e411 4283 for (i = 0; cust->includes[i]; ++i)
9703b513 4284 {
43f3e411 4285 struct compunit_symtab *s = cust->includes[i];
9703b513 4286
43f3e411 4287 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4288 if (s != NULL)
4289 return s;
4290 }
4291
4292 return NULL;
4293}
4294
43f3e411
DE
4295static struct compunit_symtab *
4296dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4297 struct bound_minimal_symbol msymbol,
4298 CORE_ADDR pc,
4299 struct obj_section *section,
4300 int warn_if_readin)
9291a0cd
TT
4301{
4302 struct dwarf2_per_cu_data *data;
43f3e411 4303 struct compunit_symtab *result;
9291a0cd
TT
4304
4305 dw2_setup (objfile);
4306
4307 if (!objfile->psymtabs_addrmap)
4308 return NULL;
4309
9a3c8263
SM
4310 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4311 pc);
9291a0cd
TT
4312 if (!data)
4313 return NULL;
4314
43f3e411 4315 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4316 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4317 paddress (get_objfile_arch (objfile), pc));
4318
43f3e411
DE
4319 result
4320 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4321 pc);
9703b513
TT
4322 gdb_assert (result != NULL);
4323 return result;
9291a0cd
TT
4324}
4325
9291a0cd 4326static void
44b13c5a 4327dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4328 void *data, int need_fullname)
9291a0cd 4329{
9291a0cd 4330 dw2_setup (objfile);
ae2de4f8 4331
bbf2f4df 4332 if (!dwarf2_per_objfile->filenames_cache)
24c79950 4333 {
bbf2f4df 4334 dwarf2_per_objfile->filenames_cache.emplace ();
24c79950 4335
bbf2f4df
PA
4336 htab_up visited (htab_create_alloc (10,
4337 htab_hash_pointer, htab_eq_pointer,
4338 NULL, xcalloc, xfree));
24c79950 4339
bbf2f4df
PA
4340 /* The rule is CUs specify all the files, including those used
4341 by any TU, so there's no need to scan TUs here. We can
4342 ignore file names coming from already-expanded CUs. */
24c79950 4343
bbf2f4df
PA
4344 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4345 {
4346 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4347
bbf2f4df
PA
4348 if (per_cu->v.quick->compunit_symtab)
4349 {
4350 void **slot = htab_find_slot (visited.get (),
4351 per_cu->v.quick->file_names,
4352 INSERT);
9291a0cd 4353
bbf2f4df
PA
4354 *slot = per_cu->v.quick->file_names;
4355 }
24c79950 4356 }
24c79950 4357
bbf2f4df 4358 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd 4359 {
bbf2f4df
PA
4360 int j;
4361 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4362 struct quick_file_names *file_data;
4363 void **slot;
4364
4365 /* We only need to look at symtabs not already expanded. */
4366 if (per_cu->v.quick->compunit_symtab)
4367 continue;
74e2f255 4368
bbf2f4df
PA
4369 file_data = dw2_get_file_names (per_cu);
4370 if (file_data == NULL)
4371 continue;
4372
4373 slot = htab_find_slot (visited.get (), file_data, INSERT);
4374 if (*slot)
4375 {
4376 /* Already visited. */
4377 continue;
4378 }
4379 *slot = file_data;
4380
4381 for (int j = 0; j < file_data->num_file_names; ++j)
4382 {
4383 const char *filename = file_data->file_names[j];
4384 dwarf2_per_objfile->filenames_cache->seen (filename);
4385 }
9291a0cd
TT
4386 }
4387 }
bbf2f4df
PA
4388
4389 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4390 {
14278e1f 4391 gdb::unique_xmalloc_ptr<char> this_real_name;
bbf2f4df
PA
4392
4393 if (need_fullname)
4394 this_real_name = gdb_realpath (filename);
14278e1f 4395 (*fun) (filename, this_real_name.get (), data);
bbf2f4df 4396 });
9291a0cd
TT
4397}
4398
4399static int
4400dw2_has_symbols (struct objfile *objfile)
4401{
4402 return 1;
4403}
4404
4405const struct quick_symbol_functions dwarf2_gdb_index_functions =
4406{
4407 dw2_has_symbols,
4408 dw2_find_last_source_symtab,
4409 dw2_forget_cached_source_info,
f8eba3c6 4410 dw2_map_symtabs_matching_filename,
9291a0cd 4411 dw2_lookup_symbol,
9291a0cd
TT
4412 dw2_print_stats,
4413 dw2_dump,
4414 dw2_relocate,
4415 dw2_expand_symtabs_for_function,
4416 dw2_expand_all_symtabs,
652a8996 4417 dw2_expand_symtabs_with_fullname,
40658b94 4418 dw2_map_matching_symbols,
9291a0cd 4419 dw2_expand_symtabs_matching,
43f3e411 4420 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4421 dw2_map_symbol_filenames
4422};
4423
4424/* Initialize for reading DWARF for this objfile. Return 0 if this
4425 file will use psymtabs, or 1 if using the GNU index. */
4426
4427int
4428dwarf2_initialize_objfile (struct objfile *objfile)
4429{
4430 /* If we're about to read full symbols, don't bother with the
4431 indices. In this case we also don't care if some other debug
4432 format is making psymtabs, because they are all about to be
4433 expanded anyway. */
4434 if ((objfile->flags & OBJF_READNOW))
4435 {
4436 int i;
4437
4438 dwarf2_per_objfile->using_index = 1;
4439 create_all_comp_units (objfile);
0e50663e 4440 create_all_type_units (objfile);
7b9f3c50
DE
4441 dwarf2_per_objfile->quick_file_names_table =
4442 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4443
1fd400ff 4444 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4445 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4446 {
8832e7e3 4447 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4448
e254ef6a
DE
4449 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4450 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4451 }
4452
4453 /* Return 1 so that gdb sees the "quick" functions. However,
4454 these functions will be no-ops because we will have expanded
4455 all symtabs. */
4456 return 1;
4457 }
4458
4459 if (dwarf2_read_index (objfile))
4460 return 1;
4461
9291a0cd
TT
4462 return 0;
4463}
4464
4465\f
4466
dce234bc
PP
4467/* Build a partial symbol table. */
4468
4469void
f29dff0a 4470dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4471{
c9bf0622 4472
f29dff0a 4473 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4474 {
4475 init_psymbol_list (objfile, 1024);
4476 }
4477
492d29ea 4478 TRY
c9bf0622
TT
4479 {
4480 /* This isn't really ideal: all the data we allocate on the
4481 objfile's obstack is still uselessly kept around. However,
4482 freeing it seems unsafe. */
906768f9 4483 psymtab_discarder psymtabs (objfile);
c9bf0622 4484 dwarf2_build_psymtabs_hard (objfile);
906768f9 4485 psymtabs.keep ();
c9bf0622 4486 }
492d29ea
PA
4487 CATCH (except, RETURN_MASK_ERROR)
4488 {
4489 exception_print (gdb_stderr, except);
4490 }
4491 END_CATCH
c906108c 4492}
c906108c 4493
1ce1cefd
DE
4494/* Return the total length of the CU described by HEADER. */
4495
4496static unsigned int
4497get_cu_length (const struct comp_unit_head *header)
4498{
4499 return header->initial_length_size + header->length;
4500}
4501
9c541725 4502/* Return TRUE if SECT_OFF is within CU_HEADER. */
45452591 4503
9c541725
PA
4504static inline bool
4505offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
45452591 4506{
9c541725
PA
4507 sect_offset bottom = cu_header->sect_off;
4508 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
9a619af0 4509
9c541725 4510 return sect_off >= bottom && sect_off < top;
45452591
DE
4511}
4512
3b80fe9b
DE
4513/* Find the base address of the compilation unit for range lists and
4514 location lists. It will normally be specified by DW_AT_low_pc.
4515 In DWARF-3 draft 4, the base address could be overridden by
4516 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4517 compilation units with discontinuous ranges. */
4518
4519static void
4520dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4521{
4522 struct attribute *attr;
4523
4524 cu->base_known = 0;
4525 cu->base_address = 0;
4526
4527 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4528 if (attr)
4529 {
31aa7e4e 4530 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4531 cu->base_known = 1;
4532 }
4533 else
4534 {
4535 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4536 if (attr)
4537 {
31aa7e4e 4538 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4539 cu->base_known = 1;
4540 }
4541 }
4542}
4543
93311388 4544/* Read in the comp unit header information from the debug_info at info_ptr.
43988095 4545 Use rcuh_kind::COMPILE as the default type if not known by the caller.
93311388
DE
4546 NOTE: This leaves members offset, first_die_offset to be filled in
4547 by the caller. */
107d2387 4548
d521ce57 4549static const gdb_byte *
107d2387 4550read_comp_unit_head (struct comp_unit_head *cu_header,
43988095
JK
4551 const gdb_byte *info_ptr,
4552 struct dwarf2_section_info *section,
4553 rcuh_kind section_kind)
107d2387
AC
4554{
4555 int signed_addr;
891d2f0b 4556 unsigned int bytes_read;
43988095
JK
4557 const char *filename = get_section_file_name (section);
4558 bfd *abfd = get_section_bfd_owner (section);
c764a876
DE
4559
4560 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4561 cu_header->initial_length_size = bytes_read;
4562 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4563 info_ptr += bytes_read;
107d2387
AC
4564 cu_header->version = read_2_bytes (abfd, info_ptr);
4565 info_ptr += 2;
43988095
JK
4566 if (cu_header->version < 5)
4567 switch (section_kind)
4568 {
4569 case rcuh_kind::COMPILE:
4570 cu_header->unit_type = DW_UT_compile;
4571 break;
4572 case rcuh_kind::TYPE:
4573 cu_header->unit_type = DW_UT_type;
4574 break;
4575 default:
4576 internal_error (__FILE__, __LINE__,
4577 _("read_comp_unit_head: invalid section_kind"));
4578 }
4579 else
4580 {
4581 cu_header->unit_type = static_cast<enum dwarf_unit_type>
4582 (read_1_byte (abfd, info_ptr));
4583 info_ptr += 1;
4584 switch (cu_header->unit_type)
4585 {
4586 case DW_UT_compile:
4587 if (section_kind != rcuh_kind::COMPILE)
4588 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4589 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
4590 filename);
4591 break;
4592 case DW_UT_type:
4593 section_kind = rcuh_kind::TYPE;
4594 break;
4595 default:
4596 error (_("Dwarf Error: wrong unit_type in compilation unit header "
4597 "(is %d, should be %d or %d) [in module %s]"),
4598 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
4599 }
4600
4601 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4602 info_ptr += 1;
4603 }
9c541725
PA
4604 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
4605 cu_header,
4606 &bytes_read);
613e1657 4607 info_ptr += bytes_read;
43988095
JK
4608 if (cu_header->version < 5)
4609 {
4610 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4611 info_ptr += 1;
4612 }
107d2387
AC
4613 signed_addr = bfd_get_sign_extend_vma (abfd);
4614 if (signed_addr < 0)
8e65ff28 4615 internal_error (__FILE__, __LINE__,
e2e0b3e5 4616 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4617 cu_header->signed_addr_p = signed_addr;
c764a876 4618
43988095
JK
4619 if (section_kind == rcuh_kind::TYPE)
4620 {
4621 LONGEST type_offset;
4622
4623 cu_header->signature = read_8_bytes (abfd, info_ptr);
4624 info_ptr += 8;
4625
4626 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
4627 info_ptr += bytes_read;
9c541725
PA
4628 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
4629 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
43988095
JK
4630 error (_("Dwarf Error: Too big type_offset in compilation unit "
4631 "header (is %s) [in module %s]"), plongest (type_offset),
4632 filename);
4633 }
4634
107d2387
AC
4635 return info_ptr;
4636}
4637
36586728
TT
4638/* Helper function that returns the proper abbrev section for
4639 THIS_CU. */
4640
4641static struct dwarf2_section_info *
4642get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4643{
4644 struct dwarf2_section_info *abbrev;
4645
4646 if (this_cu->is_dwz)
4647 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4648 else
4649 abbrev = &dwarf2_per_objfile->abbrev;
4650
4651 return abbrev;
4652}
4653
9ff913ba
DE
4654/* Subroutine of read_and_check_comp_unit_head and
4655 read_and_check_type_unit_head to simplify them.
4656 Perform various error checking on the header. */
4657
4658static void
4659error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4660 struct dwarf2_section_info *section,
4661 struct dwarf2_section_info *abbrev_section)
9ff913ba 4662{
a32a8923 4663 const char *filename = get_section_file_name (section);
9ff913ba 4664
43988095 4665 if (header->version < 2 || header->version > 5)
9ff913ba 4666 error (_("Dwarf Error: wrong version in compilation unit header "
43988095 4667 "(is %d, should be 2, 3, 4 or 5) [in module %s]"), header->version,
9ff913ba
DE
4668 filename);
4669
9c541725 4670 if (to_underlying (header->abbrev_sect_off)
36586728 4671 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9c541725
PA
4672 error (_("Dwarf Error: bad offset (0x%x) in compilation unit header "
4673 "(offset 0x%x + 6) [in module %s]"),
4674 to_underlying (header->abbrev_sect_off),
4675 to_underlying (header->sect_off),
9ff913ba
DE
4676 filename);
4677
9c541725 4678 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
9ff913ba 4679 avoid potential 32-bit overflow. */
9c541725 4680 if (((ULONGEST) header->sect_off + get_cu_length (header))
9ff913ba 4681 > section->size)
9c541725
PA
4682 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
4683 "(offset 0x%x + 0) [in module %s]"),
4684 header->length, to_underlying (header->sect_off),
9ff913ba
DE
4685 filename);
4686}
4687
4688/* Read in a CU/TU header and perform some basic error checking.
4689 The contents of the header are stored in HEADER.
4690 The result is a pointer to the start of the first DIE. */
adabb602 4691
d521ce57 4692static const gdb_byte *
9ff913ba
DE
4693read_and_check_comp_unit_head (struct comp_unit_head *header,
4694 struct dwarf2_section_info *section,
4bdcc0c1 4695 struct dwarf2_section_info *abbrev_section,
d521ce57 4696 const gdb_byte *info_ptr,
43988095 4697 rcuh_kind section_kind)
72bf9492 4698{
d521ce57 4699 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4700 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4701
9c541725 4702 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
adabb602 4703
43988095 4704 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
9ff913ba 4705
9c541725 4706 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
348e048f 4707
4bdcc0c1 4708 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4709
4710 return info_ptr;
348e048f
DE
4711}
4712
f4dc4d17
DE
4713/* Fetch the abbreviation table offset from a comp or type unit header. */
4714
4715static sect_offset
4716read_abbrev_offset (struct dwarf2_section_info *section,
9c541725 4717 sect_offset sect_off)
f4dc4d17 4718{
a32a8923 4719 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4720 const gdb_byte *info_ptr;
ac298888 4721 unsigned int initial_length_size, offset_size;
43988095 4722 uint16_t version;
f4dc4d17
DE
4723
4724 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
9c541725 4725 info_ptr = section->buffer + to_underlying (sect_off);
ac298888 4726 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17 4727 offset_size = initial_length_size == 4 ? 4 : 8;
43988095
JK
4728 info_ptr += initial_length_size;
4729
4730 version = read_2_bytes (abfd, info_ptr);
4731 info_ptr += 2;
4732 if (version >= 5)
4733 {
4734 /* Skip unit type and address size. */
4735 info_ptr += 2;
4736 }
4737
9c541725 4738 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
f4dc4d17
DE
4739}
4740
aaa75496
JB
4741/* Allocate a new partial symtab for file named NAME and mark this new
4742 partial symtab as being an include of PST. */
4743
4744static void
d521ce57 4745dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4746 struct objfile *objfile)
4747{
4748 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4749
fbd9ab74
JK
4750 if (!IS_ABSOLUTE_PATH (subpst->filename))
4751 {
4752 /* It shares objfile->objfile_obstack. */
4753 subpst->dirname = pst->dirname;
4754 }
4755
aaa75496
JB
4756 subpst->textlow = 0;
4757 subpst->texthigh = 0;
4758
8d749320
SM
4759 subpst->dependencies
4760 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4761 subpst->dependencies[0] = pst;
4762 subpst->number_of_dependencies = 1;
4763
4764 subpst->globals_offset = 0;
4765 subpst->n_global_syms = 0;
4766 subpst->statics_offset = 0;
4767 subpst->n_static_syms = 0;
43f3e411 4768 subpst->compunit_symtab = NULL;
aaa75496
JB
4769 subpst->read_symtab = pst->read_symtab;
4770 subpst->readin = 0;
4771
4772 /* No private part is necessary for include psymtabs. This property
4773 can be used to differentiate between such include psymtabs and
10b3939b 4774 the regular ones. */
58a9656e 4775 subpst->read_symtab_private = NULL;
aaa75496
JB
4776}
4777
4778/* Read the Line Number Program data and extract the list of files
4779 included by the source file represented by PST. Build an include
d85a05f0 4780 partial symtab for each of these included files. */
aaa75496
JB
4781
4782static void
4783dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4784 struct die_info *die,
4785 struct partial_symtab *pst)
aaa75496 4786{
fff8551c 4787 line_header_up lh;
d85a05f0 4788 struct attribute *attr;
aaa75496 4789
d85a05f0
DJ
4790 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4791 if (attr)
9c541725 4792 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
aaa75496
JB
4793 if (lh == NULL)
4794 return; /* No linetable, so no includes. */
4795
c6da4cef 4796 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
fff8551c 4797 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4798}
4799
348e048f 4800static hashval_t
52dc124a 4801hash_signatured_type (const void *item)
348e048f 4802{
9a3c8263
SM
4803 const struct signatured_type *sig_type
4804 = (const struct signatured_type *) item;
9a619af0 4805
348e048f 4806 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4807 return sig_type->signature;
348e048f
DE
4808}
4809
4810static int
52dc124a 4811eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4812{
9a3c8263
SM
4813 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4814 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4815
348e048f
DE
4816 return lhs->signature == rhs->signature;
4817}
4818
1fd400ff
TT
4819/* Allocate a hash table for signatured types. */
4820
4821static htab_t
673bfd45 4822allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4823{
4824 return htab_create_alloc_ex (41,
52dc124a
DE
4825 hash_signatured_type,
4826 eq_signatured_type,
1fd400ff
TT
4827 NULL,
4828 &objfile->objfile_obstack,
4829 hashtab_obstack_allocate,
4830 dummy_obstack_deallocate);
4831}
4832
d467dd73 4833/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4834
4835static int
d467dd73 4836add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4837{
9a3c8263
SM
4838 struct signatured_type *sigt = (struct signatured_type *) *slot;
4839 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4840
b4dd5633 4841 **datap = sigt;
1fd400ff
TT
4842 ++*datap;
4843
4844 return 1;
4845}
4846
78d4d2c5 4847/* A helper for create_debug_types_hash_table. Read types from SECTION
43988095
JK
4848 and fill them into TYPES_HTAB. It will process only type units,
4849 therefore DW_UT_type. */
c88ee1f0 4850
78d4d2c5
JK
4851static void
4852create_debug_type_hash_table (struct dwo_file *dwo_file,
43988095
JK
4853 dwarf2_section_info *section, htab_t &types_htab,
4854 rcuh_kind section_kind)
348e048f 4855{
3019eac3 4856 struct objfile *objfile = dwarf2_per_objfile->objfile;
4bdcc0c1 4857 struct dwarf2_section_info *abbrev_section;
78d4d2c5
JK
4858 bfd *abfd;
4859 const gdb_byte *info_ptr, *end_ptr;
348e048f 4860
4bdcc0c1
DE
4861 abbrev_section = (dwo_file != NULL
4862 ? &dwo_file->sections.abbrev
4863 : &dwarf2_per_objfile->abbrev);
4864
b4f54984 4865 if (dwarf_read_debug)
43988095
JK
4866 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
4867 get_section_name (section),
a32a8923 4868 get_section_file_name (abbrev_section));
09406207 4869
78d4d2c5
JK
4870 dwarf2_read_section (objfile, section);
4871 info_ptr = section->buffer;
348e048f 4872
78d4d2c5
JK
4873 if (info_ptr == NULL)
4874 return;
348e048f 4875
78d4d2c5
JK
4876 /* We can't set abfd until now because the section may be empty or
4877 not present, in which case the bfd is unknown. */
4878 abfd = get_section_bfd_owner (section);
348e048f 4879
78d4d2c5
JK
4880 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4881 because we don't need to read any dies: the signature is in the
4882 header. */
3019eac3 4883
78d4d2c5
JK
4884 end_ptr = info_ptr + section->size;
4885 while (info_ptr < end_ptr)
4886 {
78d4d2c5
JK
4887 struct signatured_type *sig_type;
4888 struct dwo_unit *dwo_tu;
4889 void **slot;
4890 const gdb_byte *ptr = info_ptr;
4891 struct comp_unit_head header;
4892 unsigned int length;
8b70b953 4893
9c541725 4894 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
348e048f 4895
a49dd8dd
JK
4896 /* Initialize it due to a false compiler warning. */
4897 header.signature = -1;
9c541725 4898 header.type_cu_offset_in_tu = (cu_offset) -1;
a49dd8dd 4899
78d4d2c5
JK
4900 /* We need to read the type's signature in order to build the hash
4901 table, but we don't need anything else just yet. */
348e048f 4902
43988095
JK
4903 ptr = read_and_check_comp_unit_head (&header, section,
4904 abbrev_section, ptr, section_kind);
348e048f 4905
78d4d2c5 4906 length = get_cu_length (&header);
6caca83c 4907
78d4d2c5
JK
4908 /* Skip dummy type units. */
4909 if (ptr >= info_ptr + length
43988095
JK
4910 || peek_abbrev_code (abfd, ptr) == 0
4911 || header.unit_type != DW_UT_type)
78d4d2c5
JK
4912 {
4913 info_ptr += length;
4914 continue;
4915 }
dee91e82 4916
78d4d2c5
JK
4917 if (types_htab == NULL)
4918 {
4919 if (dwo_file)
4920 types_htab = allocate_dwo_unit_table (objfile);
4921 else
4922 types_htab = allocate_signatured_type_table (objfile);
4923 }
8b70b953 4924
78d4d2c5
JK
4925 if (dwo_file)
4926 {
4927 sig_type = NULL;
4928 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4929 struct dwo_unit);
4930 dwo_tu->dwo_file = dwo_file;
43988095 4931 dwo_tu->signature = header.signature;
9c541725 4932 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5 4933 dwo_tu->section = section;
9c541725 4934 dwo_tu->sect_off = sect_off;
78d4d2c5
JK
4935 dwo_tu->length = length;
4936 }
4937 else
4938 {
4939 /* N.B.: type_offset is not usable if this type uses a DWO file.
4940 The real type_offset is in the DWO file. */
4941 dwo_tu = NULL;
4942 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4943 struct signatured_type);
43988095 4944 sig_type->signature = header.signature;
9c541725 4945 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
78d4d2c5
JK
4946 sig_type->per_cu.objfile = objfile;
4947 sig_type->per_cu.is_debug_types = 1;
4948 sig_type->per_cu.section = section;
9c541725 4949 sig_type->per_cu.sect_off = sect_off;
78d4d2c5
JK
4950 sig_type->per_cu.length = length;
4951 }
4952
4953 slot = htab_find_slot (types_htab,
4954 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4955 INSERT);
4956 gdb_assert (slot != NULL);
4957 if (*slot != NULL)
4958 {
9c541725 4959 sect_offset dup_sect_off;
0349ea22 4960
3019eac3
DE
4961 if (dwo_file)
4962 {
78d4d2c5
JK
4963 const struct dwo_unit *dup_tu
4964 = (const struct dwo_unit *) *slot;
4965
9c541725 4966 dup_sect_off = dup_tu->sect_off;
3019eac3
DE
4967 }
4968 else
4969 {
78d4d2c5
JK
4970 const struct signatured_type *dup_tu
4971 = (const struct signatured_type *) *slot;
4972
9c541725 4973 dup_sect_off = dup_tu->per_cu.sect_off;
3019eac3 4974 }
8b70b953 4975
78d4d2c5
JK
4976 complaint (&symfile_complaints,
4977 _("debug type entry at offset 0x%x is duplicate to"
4978 " the entry at offset 0x%x, signature %s"),
9c541725 4979 to_underlying (sect_off), to_underlying (dup_sect_off),
43988095 4980 hex_string (header.signature));
78d4d2c5
JK
4981 }
4982 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
3019eac3 4983
78d4d2c5
JK
4984 if (dwarf_read_debug > 1)
4985 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
9c541725 4986 to_underlying (sect_off),
43988095 4987 hex_string (header.signature));
3019eac3 4988
78d4d2c5
JK
4989 info_ptr += length;
4990 }
4991}
3019eac3 4992
78d4d2c5
JK
4993/* Create the hash table of all entries in the .debug_types
4994 (or .debug_types.dwo) section(s).
4995 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4996 otherwise it is NULL.
b3c8eb43 4997
78d4d2c5 4998 The result is a pointer to the hash table or NULL if there are no types.
348e048f 4999
78d4d2c5 5000 Note: This function processes DWO files only, not DWP files. */
348e048f 5001
78d4d2c5
JK
5002static void
5003create_debug_types_hash_table (struct dwo_file *dwo_file,
5004 VEC (dwarf2_section_info_def) *types,
5005 htab_t &types_htab)
5006{
5007 int ix;
5008 struct dwarf2_section_info *section;
5009
5010 if (VEC_empty (dwarf2_section_info_def, types))
5011 return;
348e048f 5012
78d4d2c5
JK
5013 for (ix = 0;
5014 VEC_iterate (dwarf2_section_info_def, types, ix, section);
5015 ++ix)
43988095
JK
5016 create_debug_type_hash_table (dwo_file, section, types_htab,
5017 rcuh_kind::TYPE);
3019eac3
DE
5018}
5019
5020/* Create the hash table of all entries in the .debug_types section,
5021 and initialize all_type_units.
5022 The result is zero if there is an error (e.g. missing .debug_types section),
5023 otherwise non-zero. */
5024
5025static int
5026create_all_type_units (struct objfile *objfile)
5027{
78d4d2c5 5028 htab_t types_htab = NULL;
b4dd5633 5029 struct signatured_type **iter;
3019eac3 5030
43988095
JK
5031 create_debug_type_hash_table (NULL, &dwarf2_per_objfile->info, types_htab,
5032 rcuh_kind::COMPILE);
78d4d2c5 5033 create_debug_types_hash_table (NULL, dwarf2_per_objfile->types, types_htab);
3019eac3
DE
5034 if (types_htab == NULL)
5035 {
5036 dwarf2_per_objfile->signatured_types = NULL;
5037 return 0;
5038 }
5039
348e048f
DE
5040 dwarf2_per_objfile->signatured_types = types_htab;
5041
6aa5f3a6
DE
5042 dwarf2_per_objfile->n_type_units
5043 = dwarf2_per_objfile->n_allocated_type_units
5044 = htab_elements (types_htab);
8d749320
SM
5045 dwarf2_per_objfile->all_type_units =
5046 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
5047 iter = &dwarf2_per_objfile->all_type_units[0];
5048 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
5049 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
5050 == dwarf2_per_objfile->n_type_units);
1fd400ff 5051
348e048f
DE
5052 return 1;
5053}
5054
6aa5f3a6
DE
5055/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
5056 If SLOT is non-NULL, it is the entry to use in the hash table.
5057 Otherwise we find one. */
5058
5059static struct signatured_type *
5060add_type_unit (ULONGEST sig, void **slot)
5061{
5062 struct objfile *objfile = dwarf2_per_objfile->objfile;
5063 int n_type_units = dwarf2_per_objfile->n_type_units;
5064 struct signatured_type *sig_type;
5065
5066 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
5067 ++n_type_units;
5068 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
5069 {
5070 if (dwarf2_per_objfile->n_allocated_type_units == 0)
5071 dwarf2_per_objfile->n_allocated_type_units = 1;
5072 dwarf2_per_objfile->n_allocated_type_units *= 2;
5073 dwarf2_per_objfile->all_type_units
224c3ddb
SM
5074 = XRESIZEVEC (struct signatured_type *,
5075 dwarf2_per_objfile->all_type_units,
5076 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
5077 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
5078 }
5079 dwarf2_per_objfile->n_type_units = n_type_units;
5080
5081 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5082 struct signatured_type);
5083 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
5084 sig_type->signature = sig;
5085 sig_type->per_cu.is_debug_types = 1;
5086 if (dwarf2_per_objfile->using_index)
5087 {
5088 sig_type->per_cu.v.quick =
5089 OBSTACK_ZALLOC (&objfile->objfile_obstack,
5090 struct dwarf2_per_cu_quick_data);
5091 }
5092
5093 if (slot == NULL)
5094 {
5095 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5096 sig_type, INSERT);
5097 }
5098 gdb_assert (*slot == NULL);
5099 *slot = sig_type;
5100 /* The rest of sig_type must be filled in by the caller. */
5101 return sig_type;
5102}
5103
a2ce51a0
DE
5104/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
5105 Fill in SIG_ENTRY with DWO_ENTRY. */
5106
5107static void
5108fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
5109 struct signatured_type *sig_entry,
5110 struct dwo_unit *dwo_entry)
5111{
7ee85ab1 5112 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
5113 gdb_assert (! sig_entry->per_cu.queued);
5114 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
5115 if (dwarf2_per_objfile->using_index)
5116 {
5117 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 5118 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
5119 }
5120 else
5121 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0 5122 gdb_assert (sig_entry->signature == dwo_entry->signature);
9c541725 5123 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
a2ce51a0 5124 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
5125 gdb_assert (sig_entry->dwo_unit == NULL);
5126
5127 sig_entry->per_cu.section = dwo_entry->section;
9c541725 5128 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7ee85ab1
DE
5129 sig_entry->per_cu.length = dwo_entry->length;
5130 sig_entry->per_cu.reading_dwo_directly = 1;
5131 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
5132 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
5133 sig_entry->dwo_unit = dwo_entry;
5134}
5135
5136/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
5137 If we haven't read the TU yet, create the signatured_type data structure
5138 for a TU to be read in directly from a DWO file, bypassing the stub.
5139 This is the "Stay in DWO Optimization": When there is no DWP file and we're
5140 using .gdb_index, then when reading a CU we want to stay in the DWO file
5141 containing that CU. Otherwise we could end up reading several other DWO
5142 files (due to comdat folding) to process the transitive closure of all the
5143 mentioned TUs, and that can be slow. The current DWO file will have every
5144 type signature that it needs.
a2ce51a0
DE
5145 We only do this for .gdb_index because in the psymtab case we already have
5146 to read all the DWOs to build the type unit groups. */
5147
5148static struct signatured_type *
5149lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5150{
5151 struct objfile *objfile = dwarf2_per_objfile->objfile;
5152 struct dwo_file *dwo_file;
5153 struct dwo_unit find_dwo_entry, *dwo_entry;
5154 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 5155 void **slot;
a2ce51a0
DE
5156
5157 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5158
6aa5f3a6
DE
5159 /* If TU skeletons have been removed then we may not have read in any
5160 TUs yet. */
5161 if (dwarf2_per_objfile->signatured_types == NULL)
5162 {
5163 dwarf2_per_objfile->signatured_types
5164 = allocate_signatured_type_table (objfile);
5165 }
a2ce51a0
DE
5166
5167 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
5168 Use the global signatured_types array to do our own comdat-folding
5169 of types. If this is the first time we're reading this TU, and
5170 the TU has an entry in .gdb_index, replace the recorded data from
5171 .gdb_index with this TU. */
a2ce51a0 5172
a2ce51a0 5173 find_sig_entry.signature = sig;
6aa5f3a6
DE
5174 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5175 &find_sig_entry, INSERT);
9a3c8263 5176 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
5177
5178 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
5179 read. Don't reassign the global entry to point to this DWO if that's
5180 the case. Also note that if the TU is already being read, it may not
5181 have come from a DWO, the program may be a mix of Fission-compiled
5182 code and non-Fission-compiled code. */
5183
5184 /* Have we already tried to read this TU?
5185 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5186 needn't exist in the global table yet). */
5187 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
5188 return sig_entry;
5189
6aa5f3a6
DE
5190 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
5191 dwo_unit of the TU itself. */
5192 dwo_file = cu->dwo_unit->dwo_file;
5193
a2ce51a0
DE
5194 /* Ok, this is the first time we're reading this TU. */
5195 if (dwo_file->tus == NULL)
5196 return NULL;
5197 find_dwo_entry.signature = sig;
9a3c8263 5198 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
5199 if (dwo_entry == NULL)
5200 return NULL;
5201
6aa5f3a6
DE
5202 /* If the global table doesn't have an entry for this TU, add one. */
5203 if (sig_entry == NULL)
5204 sig_entry = add_type_unit (sig, slot);
5205
a2ce51a0 5206 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 5207 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
5208 return sig_entry;
5209}
5210
a2ce51a0
DE
5211/* Subroutine of lookup_signatured_type.
5212 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
5213 then try the DWP file. If the TU stub (skeleton) has been removed then
5214 it won't be in .gdb_index. */
a2ce51a0
DE
5215
5216static struct signatured_type *
5217lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
5218{
5219 struct objfile *objfile = dwarf2_per_objfile->objfile;
5220 struct dwp_file *dwp_file = get_dwp_file ();
5221 struct dwo_unit *dwo_entry;
5222 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 5223 void **slot;
a2ce51a0
DE
5224
5225 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
5226 gdb_assert (dwp_file != NULL);
5227
6aa5f3a6
DE
5228 /* If TU skeletons have been removed then we may not have read in any
5229 TUs yet. */
5230 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 5231 {
6aa5f3a6
DE
5232 dwarf2_per_objfile->signatured_types
5233 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
5234 }
5235
6aa5f3a6
DE
5236 find_sig_entry.signature = sig;
5237 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
5238 &find_sig_entry, INSERT);
9a3c8263 5239 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
5240
5241 /* Have we already tried to read this TU?
5242 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5243 needn't exist in the global table yet). */
5244 if (sig_entry != NULL)
5245 return sig_entry;
5246
a2ce51a0
DE
5247 if (dwp_file->tus == NULL)
5248 return NULL;
57d63ce2
DE
5249 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5250 sig, 1 /* is_debug_types */);
a2ce51a0
DE
5251 if (dwo_entry == NULL)
5252 return NULL;
5253
6aa5f3a6 5254 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
5255 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5256
a2ce51a0
DE
5257 return sig_entry;
5258}
5259
380bca97 5260/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5261 Returns NULL if signature SIG is not present in the table.
5262 It is up to the caller to complain about this. */
348e048f
DE
5263
5264static struct signatured_type *
a2ce51a0 5265lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5266{
a2ce51a0
DE
5267 if (cu->dwo_unit
5268 && dwarf2_per_objfile->using_index)
5269 {
5270 /* We're in a DWO/DWP file, and we're using .gdb_index.
5271 These cases require special processing. */
5272 if (get_dwp_file () == NULL)
5273 return lookup_dwo_signatured_type (cu, sig);
5274 else
5275 return lookup_dwp_signatured_type (cu, sig);
5276 }
5277 else
5278 {
5279 struct signatured_type find_entry, *entry;
348e048f 5280
a2ce51a0
DE
5281 if (dwarf2_per_objfile->signatured_types == NULL)
5282 return NULL;
5283 find_entry.signature = sig;
9a3c8263
SM
5284 entry = ((struct signatured_type *)
5285 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5286 return entry;
5287 }
348e048f 5288}
42e7ad6c
DE
5289\f
5290/* Low level DIE reading support. */
348e048f 5291
d85a05f0
DJ
5292/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5293
5294static void
5295init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5296 struct dwarf2_cu *cu,
3019eac3
DE
5297 struct dwarf2_section_info *section,
5298 struct dwo_file *dwo_file)
d85a05f0 5299{
fceca515 5300 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5301 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5302 reader->cu = cu;
3019eac3 5303 reader->dwo_file = dwo_file;
dee91e82
DE
5304 reader->die_section = section;
5305 reader->buffer = section->buffer;
f664829e 5306 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5307 reader->comp_dir = NULL;
d85a05f0
DJ
5308}
5309
b0c7bfa9
DE
5310/* Subroutine of init_cutu_and_read_dies to simplify it.
5311 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5312 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5313 already.
5314
5315 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5316 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5317 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5318 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5319 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5320 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5321 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5322 are filled in with the info of the DIE from the DWO file.
5323 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5324 provided an abbrev table to use.
5325 The result is non-zero if a valid (non-dummy) DIE was found. */
5326
5327static int
5328read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5329 struct dwo_unit *dwo_unit,
5330 int abbrev_table_provided,
5331 struct die_info *stub_comp_unit_die,
a2ce51a0 5332 const char *stub_comp_dir,
b0c7bfa9 5333 struct die_reader_specs *result_reader,
d521ce57 5334 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5335 struct die_info **result_comp_unit_die,
5336 int *result_has_children)
5337{
5338 struct objfile *objfile = dwarf2_per_objfile->objfile;
5339 struct dwarf2_cu *cu = this_cu->cu;
5340 struct dwarf2_section_info *section;
5341 bfd *abfd;
d521ce57 5342 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5343 ULONGEST signature; /* Or dwo_id. */
5344 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5345 int i,num_extra_attrs;
5346 struct dwarf2_section_info *dwo_abbrev_section;
5347 struct attribute *attr;
5348 struct die_info *comp_unit_die;
5349
b0aeadb3
DE
5350 /* At most one of these may be provided. */
5351 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5352
b0c7bfa9
DE
5353 /* These attributes aren't processed until later:
5354 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5355 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5356 referenced later. However, these attributes are found in the stub
5357 which we won't have later. In order to not impose this complication
5358 on the rest of the code, we read them here and copy them to the
5359 DWO CU/TU die. */
b0c7bfa9
DE
5360
5361 stmt_list = NULL;
5362 low_pc = NULL;
5363 high_pc = NULL;
5364 ranges = NULL;
5365 comp_dir = NULL;
5366
5367 if (stub_comp_unit_die != NULL)
5368 {
5369 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5370 DWO file. */
5371 if (! this_cu->is_debug_types)
5372 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5373 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5374 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5375 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5376 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5377
5378 /* There should be a DW_AT_addr_base attribute here (if needed).
5379 We need the value before we can process DW_FORM_GNU_addr_index. */
5380 cu->addr_base = 0;
5381 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5382 if (attr)
5383 cu->addr_base = DW_UNSND (attr);
5384
5385 /* There should be a DW_AT_ranges_base attribute here (if needed).
5386 We need the value before we can process DW_AT_ranges. */
5387 cu->ranges_base = 0;
5388 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5389 if (attr)
5390 cu->ranges_base = DW_UNSND (attr);
5391 }
a2ce51a0
DE
5392 else if (stub_comp_dir != NULL)
5393 {
5394 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5395 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5396 comp_dir->name = DW_AT_comp_dir;
5397 comp_dir->form = DW_FORM_string;
5398 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5399 DW_STRING (comp_dir) = stub_comp_dir;
5400 }
b0c7bfa9
DE
5401
5402 /* Set up for reading the DWO CU/TU. */
5403 cu->dwo_unit = dwo_unit;
5404 section = dwo_unit->section;
5405 dwarf2_read_section (objfile, section);
a32a8923 5406 abfd = get_section_bfd_owner (section);
9c541725
PA
5407 begin_info_ptr = info_ptr = (section->buffer
5408 + to_underlying (dwo_unit->sect_off));
b0c7bfa9
DE
5409 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5410 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5411
5412 if (this_cu->is_debug_types)
5413 {
b0c7bfa9
DE
5414 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5415
43988095 5416 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
b0c7bfa9 5417 dwo_abbrev_section,
43988095 5418 info_ptr, rcuh_kind::TYPE);
a2ce51a0 5419 /* This is not an assert because it can be caused by bad debug info. */
43988095 5420 if (sig_type->signature != cu->header.signature)
a2ce51a0
DE
5421 {
5422 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5423 " TU at offset 0x%x [in module %s]"),
5424 hex_string (sig_type->signature),
43988095 5425 hex_string (cu->header.signature),
9c541725 5426 to_underlying (dwo_unit->sect_off),
a2ce51a0
DE
5427 bfd_get_filename (abfd));
5428 }
9c541725 5429 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
5430 /* For DWOs coming from DWP files, we don't know the CU length
5431 nor the type's offset in the TU until now. */
5432 dwo_unit->length = get_cu_length (&cu->header);
9c541725 5433 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
b0c7bfa9
DE
5434
5435 /* Establish the type offset that can be used to lookup the type.
5436 For DWO files, we don't know it until now. */
9c541725
PA
5437 sig_type->type_offset_in_section
5438 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
b0c7bfa9
DE
5439 }
5440 else
5441 {
5442 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5443 dwo_abbrev_section,
43988095 5444 info_ptr, rcuh_kind::COMPILE);
9c541725 5445 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
b0c7bfa9
DE
5446 /* For DWOs coming from DWP files, we don't know the CU length
5447 until now. */
5448 dwo_unit->length = get_cu_length (&cu->header);
5449 }
5450
02142a6c
DE
5451 /* Replace the CU's original abbrev table with the DWO's.
5452 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5453 if (abbrev_table_provided)
5454 {
5455 /* Don't free the provided abbrev table, the caller of
5456 init_cutu_and_read_dies owns it. */
5457 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5458 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5459 make_cleanup (dwarf2_free_abbrev_table, cu);
5460 }
5461 else
5462 {
5463 dwarf2_free_abbrev_table (cu);
5464 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5465 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5466 }
5467
5468 /* Read in the die, but leave space to copy over the attributes
5469 from the stub. This has the benefit of simplifying the rest of
5470 the code - all the work to maintain the illusion of a single
5471 DW_TAG_{compile,type}_unit DIE is done here. */
5472 num_extra_attrs = ((stmt_list != NULL)
5473 + (low_pc != NULL)
5474 + (high_pc != NULL)
5475 + (ranges != NULL)
5476 + (comp_dir != NULL));
5477 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5478 result_has_children, num_extra_attrs);
5479
5480 /* Copy over the attributes from the stub to the DIE we just read in. */
5481 comp_unit_die = *result_comp_unit_die;
5482 i = comp_unit_die->num_attrs;
5483 if (stmt_list != NULL)
5484 comp_unit_die->attrs[i++] = *stmt_list;
5485 if (low_pc != NULL)
5486 comp_unit_die->attrs[i++] = *low_pc;
5487 if (high_pc != NULL)
5488 comp_unit_die->attrs[i++] = *high_pc;
5489 if (ranges != NULL)
5490 comp_unit_die->attrs[i++] = *ranges;
5491 if (comp_dir != NULL)
5492 comp_unit_die->attrs[i++] = *comp_dir;
5493 comp_unit_die->num_attrs += num_extra_attrs;
5494
b4f54984 5495 if (dwarf_die_debug)
bf6af496
DE
5496 {
5497 fprintf_unfiltered (gdb_stdlog,
5498 "Read die from %s@0x%x of %s:\n",
a32a8923 5499 get_section_name (section),
bf6af496
DE
5500 (unsigned) (begin_info_ptr - section->buffer),
5501 bfd_get_filename (abfd));
b4f54984 5502 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5503 }
5504
a2ce51a0
DE
5505 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5506 TUs by skipping the stub and going directly to the entry in the DWO file.
5507 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5508 to get it via circuitous means. Blech. */
5509 if (comp_dir != NULL)
5510 result_reader->comp_dir = DW_STRING (comp_dir);
5511
b0c7bfa9
DE
5512 /* Skip dummy compilation units. */
5513 if (info_ptr >= begin_info_ptr + dwo_unit->length
5514 || peek_abbrev_code (abfd, info_ptr) == 0)
5515 return 0;
5516
5517 *result_info_ptr = info_ptr;
5518 return 1;
5519}
5520
5521/* Subroutine of init_cutu_and_read_dies to simplify it.
5522 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5523 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5524
5525static struct dwo_unit *
5526lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5527 struct die_info *comp_unit_die)
5528{
5529 struct dwarf2_cu *cu = this_cu->cu;
5530 struct attribute *attr;
5531 ULONGEST signature;
5532 struct dwo_unit *dwo_unit;
5533 const char *comp_dir, *dwo_name;
5534
a2ce51a0
DE
5535 gdb_assert (cu != NULL);
5536
b0c7bfa9 5537 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5538 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5539 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5540
5541 if (this_cu->is_debug_types)
5542 {
5543 struct signatured_type *sig_type;
5544
5545 /* Since this_cu is the first member of struct signatured_type,
5546 we can go from a pointer to one to a pointer to the other. */
5547 sig_type = (struct signatured_type *) this_cu;
5548 signature = sig_type->signature;
5549 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5550 }
5551 else
5552 {
5553 struct attribute *attr;
5554
5555 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5556 if (! attr)
5557 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5558 " [in module %s]"),
4262abfb 5559 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5560 signature = DW_UNSND (attr);
5561 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5562 signature);
5563 }
5564
b0c7bfa9
DE
5565 return dwo_unit;
5566}
5567
a2ce51a0 5568/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5569 See it for a description of the parameters.
5570 Read a TU directly from a DWO file, bypassing the stub.
5571
5572 Note: This function could be a little bit simpler if we shared cleanups
5573 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5574 to do, so we keep this function self-contained. Or we could move this
5575 into our caller, but it's complex enough already. */
a2ce51a0
DE
5576
5577static void
6aa5f3a6
DE
5578init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5579 int use_existing_cu, int keep,
a2ce51a0
DE
5580 die_reader_func_ftype *die_reader_func,
5581 void *data)
5582{
5583 struct dwarf2_cu *cu;
5584 struct signatured_type *sig_type;
6aa5f3a6 5585 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5586 struct die_reader_specs reader;
5587 const gdb_byte *info_ptr;
5588 struct die_info *comp_unit_die;
5589 int has_children;
5590
5591 /* Verify we can do the following downcast, and that we have the
5592 data we need. */
5593 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5594 sig_type = (struct signatured_type *) this_cu;
5595 gdb_assert (sig_type->dwo_unit != NULL);
5596
5597 cleanups = make_cleanup (null_cleanup, NULL);
5598
6aa5f3a6
DE
5599 if (use_existing_cu && this_cu->cu != NULL)
5600 {
5601 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5602 cu = this_cu->cu;
5603 /* There's no need to do the rereading_dwo_cu handling that
5604 init_cutu_and_read_dies does since we don't read the stub. */
5605 }
5606 else
5607 {
5608 /* If !use_existing_cu, this_cu->cu must be NULL. */
5609 gdb_assert (this_cu->cu == NULL);
8d749320 5610 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5611 init_one_comp_unit (cu, this_cu);
5612 /* If an error occurs while loading, release our storage. */
5613 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5614 }
5615
5616 /* A future optimization, if needed, would be to use an existing
5617 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5618 could share abbrev tables. */
a2ce51a0
DE
5619
5620 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5621 0 /* abbrev_table_provided */,
5622 NULL /* stub_comp_unit_die */,
5623 sig_type->dwo_unit->dwo_file->comp_dir,
5624 &reader, &info_ptr,
5625 &comp_unit_die, &has_children) == 0)
5626 {
5627 /* Dummy die. */
5628 do_cleanups (cleanups);
5629 return;
5630 }
5631
5632 /* All the "real" work is done here. */
5633 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5634
6aa5f3a6 5635 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5636 but the alternative is making the latter more complex.
5637 This function is only for the special case of using DWO files directly:
5638 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5639 if (free_cu_cleanup != NULL)
a2ce51a0 5640 {
6aa5f3a6
DE
5641 if (keep)
5642 {
5643 /* We've successfully allocated this compilation unit. Let our
5644 caller clean it up when finished with it. */
5645 discard_cleanups (free_cu_cleanup);
a2ce51a0 5646
6aa5f3a6
DE
5647 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5648 So we have to manually free the abbrev table. */
5649 dwarf2_free_abbrev_table (cu);
a2ce51a0 5650
6aa5f3a6
DE
5651 /* Link this CU into read_in_chain. */
5652 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5653 dwarf2_per_objfile->read_in_chain = this_cu;
5654 }
5655 else
5656 do_cleanups (free_cu_cleanup);
a2ce51a0 5657 }
a2ce51a0
DE
5658
5659 do_cleanups (cleanups);
5660}
5661
fd820528 5662/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5663 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5664
f4dc4d17
DE
5665 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5666 Otherwise the table specified in the comp unit header is read in and used.
5667 This is an optimization for when we already have the abbrev table.
5668
dee91e82
DE
5669 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5670 Otherwise, a new CU is allocated with xmalloc.
5671
5672 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5673 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5674
5675 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5676 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5677
70221824 5678static void
fd820528 5679init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5680 struct abbrev_table *abbrev_table,
fd820528
DE
5681 int use_existing_cu, int keep,
5682 die_reader_func_ftype *die_reader_func,
5683 void *data)
c906108c 5684{
dee91e82 5685 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5686 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5687 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5688 struct dwarf2_cu *cu;
d521ce57 5689 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5690 struct die_reader_specs reader;
d85a05f0 5691 struct die_info *comp_unit_die;
dee91e82 5692 int has_children;
d85a05f0 5693 struct attribute *attr;
365156ad 5694 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5695 struct signatured_type *sig_type = NULL;
4bdcc0c1 5696 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5697 /* Non-zero if CU currently points to a DWO file and we need to
5698 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5699 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5700 int rereading_dwo_cu = 0;
c906108c 5701
b4f54984 5702 if (dwarf_die_debug)
09406207
DE
5703 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5704 this_cu->is_debug_types ? "type" : "comp",
9c541725 5705 to_underlying (this_cu->sect_off));
09406207 5706
dee91e82
DE
5707 if (use_existing_cu)
5708 gdb_assert (keep);
23745b47 5709
a2ce51a0
DE
5710 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5711 file (instead of going through the stub), short-circuit all of this. */
5712 if (this_cu->reading_dwo_directly)
5713 {
5714 /* Narrow down the scope of possibilities to have to understand. */
5715 gdb_assert (this_cu->is_debug_types);
5716 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5717 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5718 die_reader_func, data);
a2ce51a0
DE
5719 return;
5720 }
5721
dee91e82
DE
5722 cleanups = make_cleanup (null_cleanup, NULL);
5723
5724 /* This is cheap if the section is already read in. */
5725 dwarf2_read_section (objfile, section);
5726
9c541725 5727 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
36586728
TT
5728
5729 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5730
5731 if (use_existing_cu && this_cu->cu != NULL)
5732 {
5733 cu = this_cu->cu;
42e7ad6c
DE
5734 /* If this CU is from a DWO file we need to start over, we need to
5735 refetch the attributes from the skeleton CU.
5736 This could be optimized by retrieving those attributes from when we
5737 were here the first time: the previous comp_unit_die was stored in
5738 comp_unit_obstack. But there's no data yet that we need this
5739 optimization. */
5740 if (cu->dwo_unit != NULL)
5741 rereading_dwo_cu = 1;
dee91e82
DE
5742 }
5743 else
5744 {
5745 /* If !use_existing_cu, this_cu->cu must be NULL. */
5746 gdb_assert (this_cu->cu == NULL);
8d749320 5747 cu = XNEW (struct dwarf2_cu);
dee91e82 5748 init_one_comp_unit (cu, this_cu);
dee91e82 5749 /* If an error occurs while loading, release our storage. */
365156ad 5750 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5751 }
dee91e82 5752
b0c7bfa9 5753 /* Get the header. */
9c541725 5754 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
42e7ad6c
DE
5755 {
5756 /* We already have the header, there's no need to read it in again. */
9c541725 5757 info_ptr += to_underlying (cu->header.first_die_cu_offset);
42e7ad6c
DE
5758 }
5759 else
5760 {
3019eac3 5761 if (this_cu->is_debug_types)
dee91e82 5762 {
43988095 5763 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4bdcc0c1 5764 abbrev_section, info_ptr,
43988095 5765 rcuh_kind::TYPE);
dee91e82 5766
42e7ad6c
DE
5767 /* Since per_cu is the first member of struct signatured_type,
5768 we can go from a pointer to one to a pointer to the other. */
5769 sig_type = (struct signatured_type *) this_cu;
43988095 5770 gdb_assert (sig_type->signature == cu->header.signature);
9c541725
PA
5771 gdb_assert (sig_type->type_offset_in_tu
5772 == cu->header.type_cu_offset_in_tu);
5773 gdb_assert (this_cu->sect_off == cu->header.sect_off);
dee91e82 5774
42e7ad6c
DE
5775 /* LENGTH has not been set yet for type units if we're
5776 using .gdb_index. */
1ce1cefd 5777 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5778
5779 /* Establish the type offset that can be used to lookup the type. */
9c541725
PA
5780 sig_type->type_offset_in_section =
5781 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
43988095
JK
5782
5783 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5784 }
5785 else
5786 {
4bdcc0c1
DE
5787 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5788 abbrev_section,
43988095
JK
5789 info_ptr,
5790 rcuh_kind::COMPILE);
dee91e82 5791
9c541725 5792 gdb_assert (this_cu->sect_off == cu->header.sect_off);
1ce1cefd 5793 gdb_assert (this_cu->length == get_cu_length (&cu->header));
43988095 5794 this_cu->dwarf_version = cu->header.version;
dee91e82
DE
5795 }
5796 }
10b3939b 5797
6caca83c 5798 /* Skip dummy compilation units. */
dee91e82 5799 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5800 || peek_abbrev_code (abfd, info_ptr) == 0)
5801 {
dee91e82 5802 do_cleanups (cleanups);
21b2bd31 5803 return;
6caca83c
CC
5804 }
5805
433df2d4
DE
5806 /* If we don't have them yet, read the abbrevs for this compilation unit.
5807 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5808 done. Note that it's important that if the CU had an abbrev table
5809 on entry we don't free it when we're done: Somewhere up the call stack
5810 it may be in use. */
f4dc4d17
DE
5811 if (abbrev_table != NULL)
5812 {
5813 gdb_assert (cu->abbrev_table == NULL);
9c541725 5814 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
f4dc4d17
DE
5815 cu->abbrev_table = abbrev_table;
5816 }
5817 else if (cu->abbrev_table == NULL)
dee91e82 5818 {
4bdcc0c1 5819 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5820 make_cleanup (dwarf2_free_abbrev_table, cu);
5821 }
42e7ad6c
DE
5822 else if (rereading_dwo_cu)
5823 {
5824 dwarf2_free_abbrev_table (cu);
5825 dwarf2_read_abbrevs (cu, abbrev_section);
5826 }
af703f96 5827
dee91e82 5828 /* Read the top level CU/TU die. */
3019eac3 5829 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5830 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5831
b0c7bfa9
DE
5832 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5833 from the DWO file.
5834 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5835 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5836 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5837 if (attr)
5838 {
3019eac3 5839 struct dwo_unit *dwo_unit;
b0c7bfa9 5840 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5841
5842 if (has_children)
6a506a2d
DE
5843 {
5844 complaint (&symfile_complaints,
5845 _("compilation unit with DW_AT_GNU_dwo_name"
5846 " has children (offset 0x%x) [in module %s]"),
9c541725 5847 to_underlying (this_cu->sect_off), bfd_get_filename (abfd));
6a506a2d 5848 }
b0c7bfa9 5849 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5850 if (dwo_unit != NULL)
3019eac3 5851 {
6a506a2d
DE
5852 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5853 abbrev_table != NULL,
a2ce51a0 5854 comp_unit_die, NULL,
6a506a2d
DE
5855 &reader, &info_ptr,
5856 &dwo_comp_unit_die, &has_children) == 0)
5857 {
5858 /* Dummy die. */
5859 do_cleanups (cleanups);
5860 return;
5861 }
5862 comp_unit_die = dwo_comp_unit_die;
5863 }
5864 else
5865 {
5866 /* Yikes, we couldn't find the rest of the DIE, we only have
5867 the stub. A complaint has already been logged. There's
5868 not much more we can do except pass on the stub DIE to
5869 die_reader_func. We don't want to throw an error on bad
5870 debug info. */
3019eac3
DE
5871 }
5872 }
5873
b0c7bfa9 5874 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5875 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5876
b0c7bfa9 5877 /* Done, clean up. */
365156ad 5878 if (free_cu_cleanup != NULL)
348e048f 5879 {
365156ad
TT
5880 if (keep)
5881 {
5882 /* We've successfully allocated this compilation unit. Let our
5883 caller clean it up when finished with it. */
5884 discard_cleanups (free_cu_cleanup);
dee91e82 5885
365156ad
TT
5886 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5887 So we have to manually free the abbrev table. */
5888 dwarf2_free_abbrev_table (cu);
dee91e82 5889
365156ad
TT
5890 /* Link this CU into read_in_chain. */
5891 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5892 dwarf2_per_objfile->read_in_chain = this_cu;
5893 }
5894 else
5895 do_cleanups (free_cu_cleanup);
348e048f 5896 }
365156ad
TT
5897
5898 do_cleanups (cleanups);
dee91e82
DE
5899}
5900
33e80786
DE
5901/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5902 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5903 to have already done the lookup to find the DWO file).
dee91e82
DE
5904
5905 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5906 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5907
5908 We fill in THIS_CU->length.
5909
5910 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5911 linker) then DIE_READER_FUNC will not get called.
5912
5913 THIS_CU->cu is always freed when done.
3019eac3
DE
5914 This is done in order to not leave THIS_CU->cu in a state where we have
5915 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5916
5917static void
5918init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5919 struct dwo_file *dwo_file,
dee91e82
DE
5920 die_reader_func_ftype *die_reader_func,
5921 void *data)
5922{
5923 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5924 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5925 bfd *abfd = get_section_bfd_owner (section);
33e80786 5926 struct dwarf2_section_info *abbrev_section;
dee91e82 5927 struct dwarf2_cu cu;
d521ce57 5928 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5929 struct die_reader_specs reader;
5930 struct cleanup *cleanups;
5931 struct die_info *comp_unit_die;
5932 int has_children;
5933
b4f54984 5934 if (dwarf_die_debug)
09406207
DE
5935 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5936 this_cu->is_debug_types ? "type" : "comp",
9c541725 5937 to_underlying (this_cu->sect_off));
09406207 5938
dee91e82
DE
5939 gdb_assert (this_cu->cu == NULL);
5940
33e80786
DE
5941 abbrev_section = (dwo_file != NULL
5942 ? &dwo_file->sections.abbrev
5943 : get_abbrev_section_for_cu (this_cu));
5944
dee91e82
DE
5945 /* This is cheap if the section is already read in. */
5946 dwarf2_read_section (objfile, section);
5947
5948 init_one_comp_unit (&cu, this_cu);
5949
5950 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5951
9c541725 5952 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
4bdcc0c1
DE
5953 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5954 abbrev_section, info_ptr,
43988095
JK
5955 (this_cu->is_debug_types
5956 ? rcuh_kind::TYPE
5957 : rcuh_kind::COMPILE));
dee91e82 5958
1ce1cefd 5959 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5960
5961 /* Skip dummy compilation units. */
5962 if (info_ptr >= begin_info_ptr + this_cu->length
5963 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5964 {
dee91e82 5965 do_cleanups (cleanups);
21b2bd31 5966 return;
93311388 5967 }
72bf9492 5968
dee91e82
DE
5969 dwarf2_read_abbrevs (&cu, abbrev_section);
5970 make_cleanup (dwarf2_free_abbrev_table, &cu);
5971
3019eac3 5972 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5973 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5974
5975 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5976
5977 do_cleanups (cleanups);
5978}
5979
3019eac3
DE
5980/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5981 does not lookup the specified DWO file.
5982 This cannot be used to read DWO files.
dee91e82
DE
5983
5984 THIS_CU->cu is always freed when done.
3019eac3
DE
5985 This is done in order to not leave THIS_CU->cu in a state where we have
5986 to care whether it refers to the "main" CU or the DWO CU.
5987 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5988
5989static void
5990init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5991 die_reader_func_ftype *die_reader_func,
5992 void *data)
5993{
33e80786 5994 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5995}
0018ea6f
DE
5996\f
5997/* Type Unit Groups.
dee91e82 5998
0018ea6f
DE
5999 Type Unit Groups are a way to collapse the set of all TUs (type units) into
6000 a more manageable set. The grouping is done by DW_AT_stmt_list entry
6001 so that all types coming from the same compilation (.o file) are grouped
6002 together. A future step could be to put the types in the same symtab as
6003 the CU the types ultimately came from. */
ff013f42 6004
f4dc4d17
DE
6005static hashval_t
6006hash_type_unit_group (const void *item)
6007{
9a3c8263
SM
6008 const struct type_unit_group *tu_group
6009 = (const struct type_unit_group *) item;
f4dc4d17 6010
094b34ac 6011 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 6012}
348e048f
DE
6013
6014static int
f4dc4d17 6015eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 6016{
9a3c8263
SM
6017 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6018 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 6019
094b34ac 6020 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 6021}
348e048f 6022
f4dc4d17
DE
6023/* Allocate a hash table for type unit groups. */
6024
6025static htab_t
6026allocate_type_unit_groups_table (void)
6027{
6028 return htab_create_alloc_ex (3,
6029 hash_type_unit_group,
6030 eq_type_unit_group,
6031 NULL,
6032 &dwarf2_per_objfile->objfile->objfile_obstack,
6033 hashtab_obstack_allocate,
6034 dummy_obstack_deallocate);
6035}
dee91e82 6036
f4dc4d17
DE
6037/* Type units that don't have DW_AT_stmt_list are grouped into their own
6038 partial symtabs. We combine several TUs per psymtab to not let the size
6039 of any one psymtab grow too big. */
6040#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6041#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 6042
094b34ac 6043/* Helper routine for get_type_unit_group.
f4dc4d17
DE
6044 Create the type_unit_group object used to hold one or more TUs. */
6045
6046static struct type_unit_group *
094b34ac 6047create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
6048{
6049 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 6050 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 6051 struct type_unit_group *tu_group;
f4dc4d17
DE
6052
6053 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6054 struct type_unit_group);
094b34ac 6055 per_cu = &tu_group->per_cu;
f4dc4d17 6056 per_cu->objfile = objfile;
f4dc4d17 6057
094b34ac
DE
6058 if (dwarf2_per_objfile->using_index)
6059 {
6060 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6061 struct dwarf2_per_cu_quick_data);
094b34ac
DE
6062 }
6063 else
6064 {
9c541725 6065 unsigned int line_offset = to_underlying (line_offset_struct);
094b34ac
DE
6066 struct partial_symtab *pst;
6067 char *name;
6068
6069 /* Give the symtab a useful name for debug purposes. */
6070 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6071 name = xstrprintf ("<type_units_%d>",
6072 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6073 else
6074 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
6075
6076 pst = create_partial_symtab (per_cu, name);
6077 pst->anonymous = 1;
f4dc4d17 6078
094b34ac
DE
6079 xfree (name);
6080 }
f4dc4d17 6081
094b34ac 6082 tu_group->hash.dwo_unit = cu->dwo_unit;
9c541725 6083 tu_group->hash.line_sect_off = line_offset_struct;
f4dc4d17
DE
6084
6085 return tu_group;
6086}
6087
094b34ac
DE
6088/* Look up the type_unit_group for type unit CU, and create it if necessary.
6089 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
6090
6091static struct type_unit_group *
ff39bb5e 6092get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
6093{
6094 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6095 struct type_unit_group *tu_group;
6096 void **slot;
6097 unsigned int line_offset;
6098 struct type_unit_group type_unit_group_for_lookup;
6099
6100 if (dwarf2_per_objfile->type_unit_groups == NULL)
6101 {
6102 dwarf2_per_objfile->type_unit_groups =
6103 allocate_type_unit_groups_table ();
6104 }
6105
6106 /* Do we need to create a new group, or can we use an existing one? */
6107
6108 if (stmt_list)
6109 {
6110 line_offset = DW_UNSND (stmt_list);
6111 ++tu_stats->nr_symtab_sharers;
6112 }
6113 else
6114 {
6115 /* Ugh, no stmt_list. Rare, but we have to handle it.
6116 We can do various things here like create one group per TU or
6117 spread them over multiple groups to split up the expansion work.
6118 To avoid worst case scenarios (too many groups or too large groups)
6119 we, umm, group them in bunches. */
6120 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6121 | (tu_stats->nr_stmt_less_type_units
6122 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6123 ++tu_stats->nr_stmt_less_type_units;
6124 }
6125
094b34ac 6126 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
9c541725 6127 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
f4dc4d17
DE
6128 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
6129 &type_unit_group_for_lookup, INSERT);
6130 if (*slot != NULL)
6131 {
9a3c8263 6132 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
6133 gdb_assert (tu_group != NULL);
6134 }
6135 else
6136 {
9c541725 6137 sect_offset line_offset_struct = (sect_offset) line_offset;
094b34ac 6138 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
6139 *slot = tu_group;
6140 ++tu_stats->nr_symtabs;
6141 }
6142
6143 return tu_group;
6144}
0018ea6f
DE
6145\f
6146/* Partial symbol tables. */
6147
6148/* Create a psymtab named NAME and assign it to PER_CU.
6149
6150 The caller must fill in the following details:
6151 dirname, textlow, texthigh. */
6152
6153static struct partial_symtab *
6154create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
6155{
6156 struct objfile *objfile = per_cu->objfile;
6157 struct partial_symtab *pst;
6158
18a94d75 6159 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
6160 objfile->global_psymbols.next,
6161 objfile->static_psymbols.next);
6162
6163 pst->psymtabs_addrmap_supported = 1;
6164
6165 /* This is the glue that links PST into GDB's symbol API. */
6166 pst->read_symtab_private = per_cu;
6167 pst->read_symtab = dwarf2_read_symtab;
6168 per_cu->v.psymtab = pst;
6169
6170 return pst;
6171}
6172
b93601f3
TT
6173/* The DATA object passed to process_psymtab_comp_unit_reader has this
6174 type. */
6175
6176struct process_psymtab_comp_unit_data
6177{
6178 /* True if we are reading a DW_TAG_partial_unit. */
6179
6180 int want_partial_unit;
6181
6182 /* The "pretend" language that is used if the CU doesn't declare a
6183 language. */
6184
6185 enum language pretend_language;
6186};
6187
0018ea6f
DE
6188/* die_reader_func for process_psymtab_comp_unit. */
6189
6190static void
6191process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6192 const gdb_byte *info_ptr,
0018ea6f
DE
6193 struct die_info *comp_unit_die,
6194 int has_children,
6195 void *data)
6196{
6197 struct dwarf2_cu *cu = reader->cu;
6198 struct objfile *objfile = cu->objfile;
3e29f34a 6199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 6200 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
6201 CORE_ADDR baseaddr;
6202 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6203 struct partial_symtab *pst;
3a2b436a 6204 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 6205 const char *filename;
9a3c8263
SM
6206 struct process_psymtab_comp_unit_data *info
6207 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 6208
b93601f3 6209 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
6210 return;
6211
6212 gdb_assert (! per_cu->is_debug_types);
6213
b93601f3 6214 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
6215
6216 cu->list_in_scope = &file_symbols;
6217
6218 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
6219 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
6220 if (filename == NULL)
0018ea6f 6221 filename = "";
0018ea6f
DE
6222
6223 pst = create_partial_symtab (per_cu, filename);
6224
6225 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 6226 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
6227
6228 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6229
6230 dwarf2_find_base_address (comp_unit_die, cu);
6231
6232 /* Possibly set the default values of LOWPC and HIGHPC from
6233 `DW_AT_ranges'. */
3a2b436a
JK
6234 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6235 &best_highpc, cu, pst);
6236 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
6237 /* Store the contiguous range if it is not empty; it can be empty for
6238 CUs with no code. */
6239 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
6240 gdbarch_adjust_dwarf2_addr (gdbarch,
6241 best_lowpc + baseaddr),
6242 gdbarch_adjust_dwarf2_addr (gdbarch,
6243 best_highpc + baseaddr) - 1,
6244 pst);
0018ea6f
DE
6245
6246 /* Check if comp unit has_children.
6247 If so, read the rest of the partial symbols from this comp unit.
6248 If not, there's no more debug_info for this comp unit. */
6249 if (has_children)
6250 {
6251 struct partial_die_info *first_die;
6252 CORE_ADDR lowpc, highpc;
6253
6254 lowpc = ((CORE_ADDR) -1);
6255 highpc = ((CORE_ADDR) 0);
6256
6257 first_die = load_partial_dies (reader, info_ptr, 1);
6258
6259 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 6260 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
6261
6262 /* If we didn't find a lowpc, set it to highpc to avoid
6263 complaints from `maint check'. */
6264 if (lowpc == ((CORE_ADDR) -1))
6265 lowpc = highpc;
6266
6267 /* If the compilation unit didn't have an explicit address range,
6268 then use the information extracted from its child dies. */
e385593e 6269 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
6270 {
6271 best_lowpc = lowpc;
6272 best_highpc = highpc;
6273 }
6274 }
3e29f34a
MR
6275 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6276 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6277
8763cede 6278 end_psymtab_common (objfile, pst);
0018ea6f
DE
6279
6280 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6281 {
6282 int i;
6283 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6284 struct dwarf2_per_cu_data *iter;
6285
6286 /* Fill in 'dependencies' here; we fill in 'users' in a
6287 post-pass. */
6288 pst->number_of_dependencies = len;
8d749320
SM
6289 pst->dependencies =
6290 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6291 for (i = 0;
6292 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6293 i, iter);
6294 ++i)
6295 pst->dependencies[i] = iter->v.psymtab;
6296
6297 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6298 }
6299
6300 /* Get the list of files included in the current compilation unit,
6301 and build a psymtab for each of them. */
6302 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6303
b4f54984 6304 if (dwarf_read_debug)
0018ea6f
DE
6305 {
6306 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6307
6308 fprintf_unfiltered (gdb_stdlog,
6309 "Psymtab for %s unit @0x%x: %s - %s"
6310 ", %d global, %d static syms\n",
6311 per_cu->is_debug_types ? "type" : "comp",
9c541725 6312 to_underlying (per_cu->sect_off),
0018ea6f
DE
6313 paddress (gdbarch, pst->textlow),
6314 paddress (gdbarch, pst->texthigh),
6315 pst->n_global_syms, pst->n_static_syms);
6316 }
6317}
6318
6319/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6320 Process compilation unit THIS_CU for a psymtab. */
6321
6322static void
6323process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6324 int want_partial_unit,
6325 enum language pretend_language)
0018ea6f
DE
6326{
6327 /* If this compilation unit was already read in, free the
6328 cached copy in order to read it in again. This is
6329 necessary because we skipped some symbols when we first
6330 read in the compilation unit (see load_partial_dies).
6331 This problem could be avoided, but the benefit is unclear. */
6332 if (this_cu->cu != NULL)
6333 free_one_cached_comp_unit (this_cu);
6334
f1902523
JK
6335 if (this_cu->is_debug_types)
6336 init_cutu_and_read_dies (this_cu, NULL, 0, 0, build_type_psymtabs_reader,
6337 NULL);
6338 else
6339 {
6340 process_psymtab_comp_unit_data info;
6341 info.want_partial_unit = want_partial_unit;
6342 info.pretend_language = pretend_language;
6343 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6344 process_psymtab_comp_unit_reader, &info);
6345 }
0018ea6f
DE
6346
6347 /* Age out any secondary CUs. */
6348 age_cached_comp_units ();
6349}
f4dc4d17
DE
6350
6351/* Reader function for build_type_psymtabs. */
6352
6353static void
6354build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6355 const gdb_byte *info_ptr,
f4dc4d17
DE
6356 struct die_info *type_unit_die,
6357 int has_children,
6358 void *data)
6359{
6360 struct objfile *objfile = dwarf2_per_objfile->objfile;
6361 struct dwarf2_cu *cu = reader->cu;
6362 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6363 struct signatured_type *sig_type;
f4dc4d17
DE
6364 struct type_unit_group *tu_group;
6365 struct attribute *attr;
6366 struct partial_die_info *first_die;
6367 CORE_ADDR lowpc, highpc;
6368 struct partial_symtab *pst;
6369
6370 gdb_assert (data == NULL);
0186c6a7
DE
6371 gdb_assert (per_cu->is_debug_types);
6372 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6373
6374 if (! has_children)
6375 return;
6376
6377 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6378 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6379
0186c6a7 6380 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6381
6382 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6383 cu->list_in_scope = &file_symbols;
6384 pst = create_partial_symtab (per_cu, "");
6385 pst->anonymous = 1;
6386
6387 first_die = load_partial_dies (reader, info_ptr, 1);
6388
6389 lowpc = (CORE_ADDR) -1;
6390 highpc = (CORE_ADDR) 0;
6391 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6392
8763cede 6393 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6394}
6395
73051182
DE
6396/* Struct used to sort TUs by their abbreviation table offset. */
6397
6398struct tu_abbrev_offset
6399{
6400 struct signatured_type *sig_type;
6401 sect_offset abbrev_offset;
6402};
6403
6404/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6405
6406static int
6407sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6408{
9a3c8263
SM
6409 const struct tu_abbrev_offset * const *a
6410 = (const struct tu_abbrev_offset * const*) ap;
6411 const struct tu_abbrev_offset * const *b
6412 = (const struct tu_abbrev_offset * const*) bp;
9c541725
PA
6413 sect_offset aoff = (*a)->abbrev_offset;
6414 sect_offset boff = (*b)->abbrev_offset;
73051182
DE
6415
6416 return (aoff > boff) - (aoff < boff);
6417}
6418
6419/* Efficiently read all the type units.
6420 This does the bulk of the work for build_type_psymtabs.
6421
6422 The efficiency is because we sort TUs by the abbrev table they use and
6423 only read each abbrev table once. In one program there are 200K TUs
6424 sharing 8K abbrev tables.
6425
6426 The main purpose of this function is to support building the
6427 dwarf2_per_objfile->type_unit_groups table.
6428 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6429 can collapse the search space by grouping them by stmt_list.
6430 The savings can be significant, in the same program from above the 200K TUs
6431 share 8K stmt_list tables.
6432
6433 FUNC is expected to call get_type_unit_group, which will create the
6434 struct type_unit_group if necessary and add it to
6435 dwarf2_per_objfile->type_unit_groups. */
6436
6437static void
6438build_type_psymtabs_1 (void)
6439{
73051182
DE
6440 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6441 struct cleanup *cleanups;
6442 struct abbrev_table *abbrev_table;
6443 sect_offset abbrev_offset;
6444 struct tu_abbrev_offset *sorted_by_abbrev;
73051182
DE
6445 int i;
6446
6447 /* It's up to the caller to not call us multiple times. */
6448 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6449
6450 if (dwarf2_per_objfile->n_type_units == 0)
6451 return;
6452
6453 /* TUs typically share abbrev tables, and there can be way more TUs than
6454 abbrev tables. Sort by abbrev table to reduce the number of times we
6455 read each abbrev table in.
6456 Alternatives are to punt or to maintain a cache of abbrev tables.
6457 This is simpler and efficient enough for now.
6458
6459 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6460 symtab to use). Typically TUs with the same abbrev offset have the same
6461 stmt_list value too so in practice this should work well.
6462
6463 The basic algorithm here is:
6464
6465 sort TUs by abbrev table
6466 for each TU with same abbrev table:
6467 read abbrev table if first user
6468 read TU top level DIE
6469 [IWBN if DWO skeletons had DW_AT_stmt_list]
6470 call FUNC */
6471
b4f54984 6472 if (dwarf_read_debug)
73051182
DE
6473 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6474
6475 /* Sort in a separate table to maintain the order of all_type_units
6476 for .gdb_index: TU indices directly index all_type_units. */
6477 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6478 dwarf2_per_objfile->n_type_units);
6479 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6480 {
6481 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6482
6483 sorted_by_abbrev[i].sig_type = sig_type;
6484 sorted_by_abbrev[i].abbrev_offset =
6485 read_abbrev_offset (sig_type->per_cu.section,
9c541725 6486 sig_type->per_cu.sect_off);
73051182
DE
6487 }
6488 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6489 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6490 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6491
9c541725 6492 abbrev_offset = (sect_offset) ~(unsigned) 0;
73051182
DE
6493 abbrev_table = NULL;
6494 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6495
6496 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6497 {
6498 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6499
6500 /* Switch to the next abbrev table if necessary. */
6501 if (abbrev_table == NULL
9c541725 6502 || tu->abbrev_offset != abbrev_offset)
73051182
DE
6503 {
6504 if (abbrev_table != NULL)
6505 {
6506 abbrev_table_free (abbrev_table);
6507 /* Reset to NULL in case abbrev_table_read_table throws
6508 an error: abbrev_table_free_cleanup will get called. */
6509 abbrev_table = NULL;
6510 }
6511 abbrev_offset = tu->abbrev_offset;
6512 abbrev_table =
6513 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6514 abbrev_offset);
6515 ++tu_stats->nr_uniq_abbrev_tables;
6516 }
6517
6518 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6519 build_type_psymtabs_reader, NULL);
6520 }
6521
73051182 6522 do_cleanups (cleanups);
6aa5f3a6 6523}
73051182 6524
6aa5f3a6
DE
6525/* Print collected type unit statistics. */
6526
6527static void
6528print_tu_stats (void)
6529{
6530 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6531
6532 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6533 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6534 dwarf2_per_objfile->n_type_units);
6535 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6536 tu_stats->nr_uniq_abbrev_tables);
6537 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6538 tu_stats->nr_symtabs);
6539 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6540 tu_stats->nr_symtab_sharers);
6541 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6542 tu_stats->nr_stmt_less_type_units);
6543 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6544 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6545}
6546
f4dc4d17
DE
6547/* Traversal function for build_type_psymtabs. */
6548
6549static int
6550build_type_psymtab_dependencies (void **slot, void *info)
6551{
6552 struct objfile *objfile = dwarf2_per_objfile->objfile;
6553 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6554 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6555 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6556 int len = VEC_length (sig_type_ptr, tu_group->tus);
6557 struct signatured_type *iter;
f4dc4d17
DE
6558 int i;
6559
6560 gdb_assert (len > 0);
0186c6a7 6561 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6562
6563 pst->number_of_dependencies = len;
8d749320
SM
6564 pst->dependencies =
6565 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6566 for (i = 0;
0186c6a7 6567 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6568 ++i)
6569 {
0186c6a7
DE
6570 gdb_assert (iter->per_cu.is_debug_types);
6571 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6572 iter->type_unit_group = tu_group;
f4dc4d17
DE
6573 }
6574
0186c6a7 6575 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6576
6577 return 1;
6578}
6579
6580/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6581 Build partial symbol tables for the .debug_types comp-units. */
6582
6583static void
6584build_type_psymtabs (struct objfile *objfile)
6585{
0e50663e 6586 if (! create_all_type_units (objfile))
348e048f
DE
6587 return;
6588
73051182 6589 build_type_psymtabs_1 ();
6aa5f3a6 6590}
f4dc4d17 6591
6aa5f3a6
DE
6592/* Traversal function for process_skeletonless_type_unit.
6593 Read a TU in a DWO file and build partial symbols for it. */
6594
6595static int
6596process_skeletonless_type_unit (void **slot, void *info)
6597{
6598 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6599 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6600 struct signatured_type find_entry, *entry;
6601
6602 /* If this TU doesn't exist in the global table, add it and read it in. */
6603
6604 if (dwarf2_per_objfile->signatured_types == NULL)
6605 {
6606 dwarf2_per_objfile->signatured_types
6607 = allocate_signatured_type_table (objfile);
6608 }
6609
6610 find_entry.signature = dwo_unit->signature;
6611 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6612 INSERT);
6613 /* If we've already seen this type there's nothing to do. What's happening
6614 is we're doing our own version of comdat-folding here. */
6615 if (*slot != NULL)
6616 return 1;
6617
6618 /* This does the job that create_all_type_units would have done for
6619 this TU. */
6620 entry = add_type_unit (dwo_unit->signature, slot);
6621 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6622 *slot = entry;
6623
6624 /* This does the job that build_type_psymtabs_1 would have done. */
6625 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6626 build_type_psymtabs_reader, NULL);
6627
6628 return 1;
6629}
6630
6631/* Traversal function for process_skeletonless_type_units. */
6632
6633static int
6634process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6635{
6636 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6637
6638 if (dwo_file->tus != NULL)
6639 {
6640 htab_traverse_noresize (dwo_file->tus,
6641 process_skeletonless_type_unit, info);
6642 }
6643
6644 return 1;
6645}
6646
6647/* Scan all TUs of DWO files, verifying we've processed them.
6648 This is needed in case a TU was emitted without its skeleton.
6649 Note: This can't be done until we know what all the DWO files are. */
6650
6651static void
6652process_skeletonless_type_units (struct objfile *objfile)
6653{
6654 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6655 if (get_dwp_file () == NULL
6656 && dwarf2_per_objfile->dwo_files != NULL)
6657 {
6658 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6659 process_dwo_file_for_skeletonless_type_units,
6660 objfile);
6661 }
348e048f
DE
6662}
6663
60606b2c
TT
6664/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6665
6666static void
6667psymtabs_addrmap_cleanup (void *o)
6668{
9a3c8263 6669 struct objfile *objfile = (struct objfile *) o;
ec61707d 6670
60606b2c
TT
6671 objfile->psymtabs_addrmap = NULL;
6672}
6673
95554aad
TT
6674/* Compute the 'user' field for each psymtab in OBJFILE. */
6675
6676static void
6677set_partial_user (struct objfile *objfile)
6678{
6679 int i;
6680
6681 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6682 {
8832e7e3 6683 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6684 struct partial_symtab *pst = per_cu->v.psymtab;
6685 int j;
6686
36586728
TT
6687 if (pst == NULL)
6688 continue;
6689
95554aad
TT
6690 for (j = 0; j < pst->number_of_dependencies; ++j)
6691 {
6692 /* Set the 'user' field only if it is not already set. */
6693 if (pst->dependencies[j]->user == NULL)
6694 pst->dependencies[j]->user = pst;
6695 }
6696 }
6697}
6698
93311388
DE
6699/* Build the partial symbol table by doing a quick pass through the
6700 .debug_info and .debug_abbrev sections. */
72bf9492 6701
93311388 6702static void
c67a9c90 6703dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6704{
60606b2c 6705 struct cleanup *back_to, *addrmap_cleanup;
21b2bd31 6706 int i;
93311388 6707
b4f54984 6708 if (dwarf_read_debug)
45cfd468
DE
6709 {
6710 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6711 objfile_name (objfile));
45cfd468
DE
6712 }
6713
98bfdba5
PA
6714 dwarf2_per_objfile->reading_partial_symbols = 1;
6715
be391dca 6716 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6717
93311388
DE
6718 /* Any cached compilation units will be linked by the per-objfile
6719 read_in_chain. Make sure to free them when we're done. */
6720 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6721
348e048f
DE
6722 build_type_psymtabs (objfile);
6723
93311388 6724 create_all_comp_units (objfile);
c906108c 6725
60606b2c
TT
6726 /* Create a temporary address map on a temporary obstack. We later
6727 copy this to the final obstack. */
8268c778 6728 auto_obstack temp_obstack;
60606b2c
TT
6729 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6730 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6731
21b2bd31 6732 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6733 {
8832e7e3 6734 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6735
b93601f3 6736 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6737 }
ff013f42 6738
6aa5f3a6
DE
6739 /* This has to wait until we read the CUs, we need the list of DWOs. */
6740 process_skeletonless_type_units (objfile);
6741
6742 /* Now that all TUs have been processed we can fill in the dependencies. */
6743 if (dwarf2_per_objfile->type_unit_groups != NULL)
6744 {
6745 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6746 build_type_psymtab_dependencies, NULL);
6747 }
6748
b4f54984 6749 if (dwarf_read_debug)
6aa5f3a6
DE
6750 print_tu_stats ();
6751
95554aad
TT
6752 set_partial_user (objfile);
6753
ff013f42
JK
6754 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6755 &objfile->objfile_obstack);
60606b2c 6756 discard_cleanups (addrmap_cleanup);
ff013f42 6757
ae038cb0 6758 do_cleanups (back_to);
45cfd468 6759
b4f54984 6760 if (dwarf_read_debug)
45cfd468 6761 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6762 objfile_name (objfile));
ae038cb0
DJ
6763}
6764
3019eac3 6765/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6766
6767static void
dee91e82 6768load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6769 const gdb_byte *info_ptr,
dee91e82
DE
6770 struct die_info *comp_unit_die,
6771 int has_children,
6772 void *data)
ae038cb0 6773{
dee91e82 6774 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6775
95554aad 6776 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6777
ae038cb0
DJ
6778 /* Check if comp unit has_children.
6779 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6780 If not, there's no more debug_info for this comp unit. */
d85a05f0 6781 if (has_children)
dee91e82
DE
6782 load_partial_dies (reader, info_ptr, 0);
6783}
98bfdba5 6784
dee91e82
DE
6785/* Load the partial DIEs for a secondary CU into memory.
6786 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6787
dee91e82
DE
6788static void
6789load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6790{
f4dc4d17
DE
6791 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6792 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6793}
6794
ae038cb0 6795static void
36586728
TT
6796read_comp_units_from_section (struct objfile *objfile,
6797 struct dwarf2_section_info *section,
f1902523 6798 struct dwarf2_section_info *abbrev_section,
36586728
TT
6799 unsigned int is_dwz,
6800 int *n_allocated,
6801 int *n_comp_units,
6802 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6803{
d521ce57 6804 const gdb_byte *info_ptr;
a32a8923 6805 bfd *abfd = get_section_bfd_owner (section);
be391dca 6806
b4f54984 6807 if (dwarf_read_debug)
bf6af496 6808 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6809 get_section_name (section),
6810 get_section_file_name (section));
bf6af496 6811
36586728 6812 dwarf2_read_section (objfile, section);
ae038cb0 6813
36586728 6814 info_ptr = section->buffer;
6e70227d 6815
36586728 6816 while (info_ptr < section->buffer + section->size)
ae038cb0 6817 {
ae038cb0 6818 struct dwarf2_per_cu_data *this_cu;
ae038cb0 6819
9c541725 6820 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
ae038cb0 6821
f1902523
JK
6822 comp_unit_head cu_header;
6823 read_and_check_comp_unit_head (&cu_header, section, abbrev_section,
6824 info_ptr, rcuh_kind::COMPILE);
ae038cb0
DJ
6825
6826 /* Save the compilation unit for later lookup. */
f1902523
JK
6827 if (cu_header.unit_type != DW_UT_type)
6828 {
6829 this_cu = XOBNEW (&objfile->objfile_obstack,
6830 struct dwarf2_per_cu_data);
6831 memset (this_cu, 0, sizeof (*this_cu));
6832 }
6833 else
6834 {
6835 auto sig_type = XOBNEW (&objfile->objfile_obstack,
6836 struct signatured_type);
6837 memset (sig_type, 0, sizeof (*sig_type));
6838 sig_type->signature = cu_header.signature;
6839 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
6840 this_cu = &sig_type->per_cu;
6841 }
6842 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
9c541725 6843 this_cu->sect_off = sect_off;
f1902523 6844 this_cu->length = cu_header.length + cu_header.initial_length_size;
36586728 6845 this_cu->is_dwz = is_dwz;
9291a0cd 6846 this_cu->objfile = objfile;
8a0459fd 6847 this_cu->section = section;
ae038cb0 6848
36586728 6849 if (*n_comp_units == *n_allocated)
ae038cb0 6850 {
36586728 6851 *n_allocated *= 2;
224c3ddb
SM
6852 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6853 *all_comp_units, *n_allocated);
ae038cb0 6854 }
36586728
TT
6855 (*all_comp_units)[*n_comp_units] = this_cu;
6856 ++*n_comp_units;
ae038cb0
DJ
6857
6858 info_ptr = info_ptr + this_cu->length;
6859 }
36586728
TT
6860}
6861
6862/* Create a list of all compilation units in OBJFILE.
6863 This is only done for -readnow and building partial symtabs. */
6864
6865static void
6866create_all_comp_units (struct objfile *objfile)
6867{
6868 int n_allocated;
6869 int n_comp_units;
6870 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6871 struct dwz_file *dwz;
36586728
TT
6872
6873 n_comp_units = 0;
6874 n_allocated = 10;
8d749320 6875 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728 6876
f1902523
JK
6877 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info,
6878 &dwarf2_per_objfile->abbrev, 0,
36586728
TT
6879 &n_allocated, &n_comp_units, &all_comp_units);
6880
4db1a1dc
TT
6881 dwz = dwarf2_get_dwz_file ();
6882 if (dwz != NULL)
f1902523 6883 read_comp_units_from_section (objfile, &dwz->info, &dwz->abbrev, 1,
4db1a1dc
TT
6884 &n_allocated, &n_comp_units,
6885 &all_comp_units);
ae038cb0 6886
8d749320
SM
6887 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6888 struct dwarf2_per_cu_data *,
6889 n_comp_units);
ae038cb0
DJ
6890 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6891 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6892 xfree (all_comp_units);
6893 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6894}
6895
5734ee8b 6896/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6897 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6898 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6899 DW_AT_ranges). See the comments of add_partial_subprogram on how
6900 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6901
72bf9492
DJ
6902static void
6903scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6904 CORE_ADDR *highpc, int set_addrmap,
6905 struct dwarf2_cu *cu)
c906108c 6906{
72bf9492 6907 struct partial_die_info *pdi;
c906108c 6908
91c24f0a
DC
6909 /* Now, march along the PDI's, descending into ones which have
6910 interesting children but skipping the children of the other ones,
6911 until we reach the end of the compilation unit. */
c906108c 6912
72bf9492 6913 pdi = first_die;
91c24f0a 6914
72bf9492
DJ
6915 while (pdi != NULL)
6916 {
6917 fixup_partial_die (pdi, cu);
c906108c 6918
f55ee35c 6919 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6920 children, so we need to look at them. Ditto for anonymous
6921 enums. */
933c6fe4 6922
72bf9492 6923 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6924 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6925 || pdi->tag == DW_TAG_imported_unit)
c906108c 6926 {
72bf9492 6927 switch (pdi->tag)
c906108c
SS
6928 {
6929 case DW_TAG_subprogram:
cdc07690 6930 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6931 break;
72929c62 6932 case DW_TAG_constant:
c906108c
SS
6933 case DW_TAG_variable:
6934 case DW_TAG_typedef:
91c24f0a 6935 case DW_TAG_union_type:
72bf9492 6936 if (!pdi->is_declaration)
63d06c5c 6937 {
72bf9492 6938 add_partial_symbol (pdi, cu);
63d06c5c
DC
6939 }
6940 break;
c906108c 6941 case DW_TAG_class_type:
680b30c7 6942 case DW_TAG_interface_type:
c906108c 6943 case DW_TAG_structure_type:
72bf9492 6944 if (!pdi->is_declaration)
c906108c 6945 {
72bf9492 6946 add_partial_symbol (pdi, cu);
c906108c 6947 }
e98c9e7c
TT
6948 if (cu->language == language_rust && pdi->has_children)
6949 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6950 set_addrmap, cu);
c906108c 6951 break;
91c24f0a 6952 case DW_TAG_enumeration_type:
72bf9492
DJ
6953 if (!pdi->is_declaration)
6954 add_partial_enumeration (pdi, cu);
c906108c
SS
6955 break;
6956 case DW_TAG_base_type:
a02abb62 6957 case DW_TAG_subrange_type:
c906108c 6958 /* File scope base type definitions are added to the partial
c5aa993b 6959 symbol table. */
72bf9492 6960 add_partial_symbol (pdi, cu);
c906108c 6961 break;
d9fa45fe 6962 case DW_TAG_namespace:
cdc07690 6963 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6964 break;
5d7cb8df 6965 case DW_TAG_module:
cdc07690 6966 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6967 break;
95554aad
TT
6968 case DW_TAG_imported_unit:
6969 {
6970 struct dwarf2_per_cu_data *per_cu;
6971
f4dc4d17
DE
6972 /* For now we don't handle imported units in type units. */
6973 if (cu->per_cu->is_debug_types)
6974 {
6975 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6976 " supported in type units [in module %s]"),
4262abfb 6977 objfile_name (cu->objfile));
f4dc4d17
DE
6978 }
6979
9c541725 6980 per_cu = dwarf2_find_containing_comp_unit (pdi->d.sect_off,
36586728 6981 pdi->is_dwz,
95554aad
TT
6982 cu->objfile);
6983
6984 /* Go read the partial unit, if needed. */
6985 if (per_cu->v.psymtab == NULL)
b93601f3 6986 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6987
f4dc4d17 6988 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6989 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6990 }
6991 break;
74921315
KS
6992 case DW_TAG_imported_declaration:
6993 add_partial_symbol (pdi, cu);
6994 break;
c906108c
SS
6995 default:
6996 break;
6997 }
6998 }
6999
72bf9492
DJ
7000 /* If the die has a sibling, skip to the sibling. */
7001
7002 pdi = pdi->die_sibling;
7003 }
7004}
7005
7006/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 7007
72bf9492 7008 Normally, this is simple. For C++, the parent DIE's fully scoped
9c37b5ae 7009 name is concatenated with "::" and the partial DIE's name.
72bf9492
DJ
7010 Enumerators are an exception; they use the scope of their parent
7011 enumeration type, i.e. the name of the enumeration type is not
7012 prepended to the enumerator.
91c24f0a 7013
72bf9492
DJ
7014 There are two complexities. One is DW_AT_specification; in this
7015 case "parent" means the parent of the target of the specification,
7016 instead of the direct parent of the DIE. The other is compilers
7017 which do not emit DW_TAG_namespace; in this case we try to guess
7018 the fully qualified name of structure types from their members'
7019 linkage names. This must be done using the DIE's children rather
7020 than the children of any DW_AT_specification target. We only need
7021 to do this for structures at the top level, i.e. if the target of
7022 any DW_AT_specification (if any; otherwise the DIE itself) does not
7023 have a parent. */
7024
7025/* Compute the scope prefix associated with PDI's parent, in
7026 compilation unit CU. The result will be allocated on CU's
7027 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7028 field. NULL is returned if no prefix is necessary. */
15d034d0 7029static const char *
72bf9492
DJ
7030partial_die_parent_scope (struct partial_die_info *pdi,
7031 struct dwarf2_cu *cu)
7032{
15d034d0 7033 const char *grandparent_scope;
72bf9492 7034 struct partial_die_info *parent, *real_pdi;
91c24f0a 7035
72bf9492
DJ
7036 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7037 then this means the parent of the specification DIE. */
7038
7039 real_pdi = pdi;
72bf9492 7040 while (real_pdi->has_specification)
36586728
TT
7041 real_pdi = find_partial_die (real_pdi->spec_offset,
7042 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
7043
7044 parent = real_pdi->die_parent;
7045 if (parent == NULL)
7046 return NULL;
7047
7048 if (parent->scope_set)
7049 return parent->scope;
7050
7051 fixup_partial_die (parent, cu);
7052
10b3939b 7053 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 7054
acebe513
UW
7055 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7056 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7057 Work around this problem here. */
7058 if (cu->language == language_cplus
6e70227d 7059 && parent->tag == DW_TAG_namespace
acebe513
UW
7060 && strcmp (parent->name, "::") == 0
7061 && grandparent_scope == NULL)
7062 {
7063 parent->scope = NULL;
7064 parent->scope_set = 1;
7065 return NULL;
7066 }
7067
9c6c53f7
SA
7068 if (pdi->tag == DW_TAG_enumerator)
7069 /* Enumerators should not get the name of the enumeration as a prefix. */
7070 parent->scope = grandparent_scope;
7071 else if (parent->tag == DW_TAG_namespace
f55ee35c 7072 || parent->tag == DW_TAG_module
72bf9492
DJ
7073 || parent->tag == DW_TAG_structure_type
7074 || parent->tag == DW_TAG_class_type
680b30c7 7075 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
7076 || parent->tag == DW_TAG_union_type
7077 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
7078 {
7079 if (grandparent_scope == NULL)
7080 parent->scope = parent->name;
7081 else
3e43a32a
MS
7082 parent->scope = typename_concat (&cu->comp_unit_obstack,
7083 grandparent_scope,
f55ee35c 7084 parent->name, 0, cu);
72bf9492 7085 }
72bf9492
DJ
7086 else
7087 {
7088 /* FIXME drow/2004-04-01: What should we be doing with
7089 function-local names? For partial symbols, we should probably be
7090 ignoring them. */
7091 complaint (&symfile_complaints,
e2e0b3e5 7092 _("unhandled containing DIE tag %d for DIE at %d"),
9c541725 7093 parent->tag, to_underlying (pdi->sect_off));
72bf9492 7094 parent->scope = grandparent_scope;
c906108c
SS
7095 }
7096
72bf9492
DJ
7097 parent->scope_set = 1;
7098 return parent->scope;
7099}
7100
7101/* Return the fully scoped name associated with PDI, from compilation unit
7102 CU. The result will be allocated with malloc. */
4568ecf9 7103
72bf9492
DJ
7104static char *
7105partial_die_full_name (struct partial_die_info *pdi,
7106 struct dwarf2_cu *cu)
7107{
15d034d0 7108 const char *parent_scope;
72bf9492 7109
98bfdba5
PA
7110 /* If this is a template instantiation, we can not work out the
7111 template arguments from partial DIEs. So, unfortunately, we have
7112 to go through the full DIEs. At least any work we do building
7113 types here will be reused if full symbols are loaded later. */
7114 if (pdi->has_template_arguments)
7115 {
7116 fixup_partial_die (pdi, cu);
7117
7118 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
7119 {
7120 struct die_info *die;
7121 struct attribute attr;
7122 struct dwarf2_cu *ref_cu = cu;
7123
b64f50a1 7124 /* DW_FORM_ref_addr is using section offset. */
b4069958 7125 attr.name = (enum dwarf_attribute) 0;
98bfdba5 7126 attr.form = DW_FORM_ref_addr;
9c541725 7127 attr.u.unsnd = to_underlying (pdi->sect_off);
98bfdba5
PA
7128 die = follow_die_ref (NULL, &attr, &ref_cu);
7129
7130 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7131 }
7132 }
7133
72bf9492
DJ
7134 parent_scope = partial_die_parent_scope (pdi, cu);
7135 if (parent_scope == NULL)
7136 return NULL;
7137 else
f55ee35c 7138 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
7139}
7140
7141static void
72bf9492 7142add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 7143{
e7c27a73 7144 struct objfile *objfile = cu->objfile;
3e29f34a 7145 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 7146 CORE_ADDR addr = 0;
15d034d0 7147 const char *actual_name = NULL;
e142c38c 7148 CORE_ADDR baseaddr;
15d034d0 7149 char *built_actual_name;
e142c38c
DJ
7150
7151 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7152
15d034d0
TT
7153 built_actual_name = partial_die_full_name (pdi, cu);
7154 if (built_actual_name != NULL)
7155 actual_name = built_actual_name;
63d06c5c 7156
72bf9492
DJ
7157 if (actual_name == NULL)
7158 actual_name = pdi->name;
7159
c906108c
SS
7160 switch (pdi->tag)
7161 {
7162 case DW_TAG_subprogram:
3e29f34a 7163 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 7164 if (pdi->is_external || cu->language == language_ada)
c906108c 7165 {
2cfa0c8d
JB
7166 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
7167 of the global scope. But in Ada, we want to be able to access
7168 nested procedures globally. So all Ada subprograms are stored
7169 in the global scope. */
f47fb265 7170 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7171 built_actual_name != NULL,
f47fb265
MS
7172 VAR_DOMAIN, LOC_BLOCK,
7173 &objfile->global_psymbols,
1762568f 7174 addr, cu->language, objfile);
c906108c
SS
7175 }
7176 else
7177 {
f47fb265 7178 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7179 built_actual_name != NULL,
f47fb265
MS
7180 VAR_DOMAIN, LOC_BLOCK,
7181 &objfile->static_psymbols,
1762568f 7182 addr, cu->language, objfile);
c906108c 7183 }
0c1b455e
TT
7184
7185 if (pdi->main_subprogram && actual_name != NULL)
7186 set_objfile_main_name (objfile, actual_name, cu->language);
c906108c 7187 break;
72929c62
JB
7188 case DW_TAG_constant:
7189 {
7190 struct psymbol_allocation_list *list;
7191
7192 if (pdi->is_external)
7193 list = &objfile->global_psymbols;
7194 else
7195 list = &objfile->static_psymbols;
f47fb265 7196 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7197 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 7198 list, 0, cu->language, objfile);
72929c62
JB
7199 }
7200 break;
c906108c 7201 case DW_TAG_variable:
95554aad
TT
7202 if (pdi->d.locdesc)
7203 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 7204
95554aad 7205 if (pdi->d.locdesc
caac4577
JG
7206 && addr == 0
7207 && !dwarf2_per_objfile->has_section_at_zero)
7208 {
7209 /* A global or static variable may also have been stripped
7210 out by the linker if unused, in which case its address
7211 will be nullified; do not add such variables into partial
7212 symbol table then. */
7213 }
7214 else if (pdi->is_external)
c906108c
SS
7215 {
7216 /* Global Variable.
7217 Don't enter into the minimal symbol tables as there is
7218 a minimal symbol table entry from the ELF symbols already.
7219 Enter into partial symbol table if it has a location
7220 descriptor or a type.
7221 If the location descriptor is missing, new_symbol will create
7222 a LOC_UNRESOLVED symbol, the address of the variable will then
7223 be determined from the minimal symbol table whenever the variable
7224 is referenced.
7225 The address for the partial symbol table entry is not
7226 used by GDB, but it comes in handy for debugging partial symbol
7227 table building. */
7228
95554aad 7229 if (pdi->d.locdesc || pdi->has_type)
f47fb265 7230 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7231 built_actual_name != NULL,
f47fb265
MS
7232 VAR_DOMAIN, LOC_STATIC,
7233 &objfile->global_psymbols,
1762568f 7234 addr + baseaddr,
f47fb265 7235 cu->language, objfile);
c906108c
SS
7236 }
7237 else
7238 {
ff908ebf
AW
7239 int has_loc = pdi->d.locdesc != NULL;
7240
7241 /* Static Variable. Skip symbols whose value we cannot know (those
7242 without location descriptors or constant values). */
7243 if (!has_loc && !pdi->has_const_value)
decbce07 7244 {
15d034d0 7245 xfree (built_actual_name);
decbce07
MS
7246 return;
7247 }
ff908ebf 7248
f47fb265 7249 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7250 built_actual_name != NULL,
f47fb265
MS
7251 VAR_DOMAIN, LOC_STATIC,
7252 &objfile->static_psymbols,
ff908ebf 7253 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 7254 cu->language, objfile);
c906108c
SS
7255 }
7256 break;
7257 case DW_TAG_typedef:
7258 case DW_TAG_base_type:
a02abb62 7259 case DW_TAG_subrange_type:
38d518c9 7260 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7261 built_actual_name != NULL,
176620f1 7262 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7263 &objfile->static_psymbols,
1762568f 7264 0, cu->language, objfile);
c906108c 7265 break;
74921315 7266 case DW_TAG_imported_declaration:
72bf9492
DJ
7267 case DW_TAG_namespace:
7268 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7269 built_actual_name != NULL,
72bf9492
DJ
7270 VAR_DOMAIN, LOC_TYPEDEF,
7271 &objfile->global_psymbols,
1762568f 7272 0, cu->language, objfile);
72bf9492 7273 break;
530e8392
KB
7274 case DW_TAG_module:
7275 add_psymbol_to_list (actual_name, strlen (actual_name),
7276 built_actual_name != NULL,
7277 MODULE_DOMAIN, LOC_TYPEDEF,
7278 &objfile->global_psymbols,
1762568f 7279 0, cu->language, objfile);
530e8392 7280 break;
c906108c 7281 case DW_TAG_class_type:
680b30c7 7282 case DW_TAG_interface_type:
c906108c
SS
7283 case DW_TAG_structure_type:
7284 case DW_TAG_union_type:
7285 case DW_TAG_enumeration_type:
fa4028e9
JB
7286 /* Skip external references. The DWARF standard says in the section
7287 about "Structure, Union, and Class Type Entries": "An incomplete
7288 structure, union or class type is represented by a structure,
7289 union or class entry that does not have a byte size attribute
7290 and that has a DW_AT_declaration attribute." */
7291 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7292 {
15d034d0 7293 xfree (built_actual_name);
decbce07
MS
7294 return;
7295 }
fa4028e9 7296
63d06c5c
DC
7297 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7298 static vs. global. */
38d518c9 7299 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7300 built_actual_name != NULL,
176620f1 7301 STRUCT_DOMAIN, LOC_TYPEDEF,
9c37b5ae 7302 cu->language == language_cplus
63d06c5c
DC
7303 ? &objfile->global_psymbols
7304 : &objfile->static_psymbols,
1762568f 7305 0, cu->language, objfile);
c906108c 7306
c906108c
SS
7307 break;
7308 case DW_TAG_enumerator:
38d518c9 7309 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7310 built_actual_name != NULL,
176620f1 7311 VAR_DOMAIN, LOC_CONST,
9c37b5ae 7312 cu->language == language_cplus
f6fe98ef
DJ
7313 ? &objfile->global_psymbols
7314 : &objfile->static_psymbols,
1762568f 7315 0, cu->language, objfile);
c906108c
SS
7316 break;
7317 default:
7318 break;
7319 }
5c4e30ca 7320
15d034d0 7321 xfree (built_actual_name);
c906108c
SS
7322}
7323
5c4e30ca
DC
7324/* Read a partial die corresponding to a namespace; also, add a symbol
7325 corresponding to that namespace to the symbol table. NAMESPACE is
7326 the name of the enclosing namespace. */
91c24f0a 7327
72bf9492
DJ
7328static void
7329add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7330 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7331 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7332{
72bf9492 7333 /* Add a symbol for the namespace. */
e7c27a73 7334
72bf9492 7335 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7336
7337 /* Now scan partial symbols in that namespace. */
7338
91c24f0a 7339 if (pdi->has_children)
cdc07690 7340 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7341}
7342
5d7cb8df
JK
7343/* Read a partial die corresponding to a Fortran module. */
7344
7345static void
7346add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7347 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7348{
530e8392
KB
7349 /* Add a symbol for the namespace. */
7350
7351 add_partial_symbol (pdi, cu);
7352
f55ee35c 7353 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7354
7355 if (pdi->has_children)
cdc07690 7356 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7357}
7358
bc30ff58
JB
7359/* Read a partial die corresponding to a subprogram and create a partial
7360 symbol for that subprogram. When the CU language allows it, this
7361 routine also defines a partial symbol for each nested subprogram
cdc07690 7362 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7363 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7364 and highest PC values found in PDI.
6e70227d 7365
cdc07690
YQ
7366 PDI may also be a lexical block, in which case we simply search
7367 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7368 Again, this is only performed when the CU language allows this
7369 type of definitions. */
7370
7371static void
7372add_partial_subprogram (struct partial_die_info *pdi,
7373 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7374 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7375{
7376 if (pdi->tag == DW_TAG_subprogram)
7377 {
7378 if (pdi->has_pc_info)
7379 {
7380 if (pdi->lowpc < *lowpc)
7381 *lowpc = pdi->lowpc;
7382 if (pdi->highpc > *highpc)
7383 *highpc = pdi->highpc;
cdc07690 7384 if (set_addrmap)
5734ee8b 7385 {
5734ee8b 7386 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7387 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7388 CORE_ADDR baseaddr;
7389 CORE_ADDR highpc;
7390 CORE_ADDR lowpc;
5734ee8b
DJ
7391
7392 baseaddr = ANOFFSET (objfile->section_offsets,
7393 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7394 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7395 pdi->lowpc + baseaddr);
7396 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7397 pdi->highpc + baseaddr);
7398 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7399 cu->per_cu->v.psymtab);
5734ee8b 7400 }
481860b3
GB
7401 }
7402
7403 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7404 {
bc30ff58 7405 if (!pdi->is_declaration)
e8d05480
JB
7406 /* Ignore subprogram DIEs that do not have a name, they are
7407 illegal. Do not emit a complaint at this point, we will
7408 do so when we convert this psymtab into a symtab. */
7409 if (pdi->name)
7410 add_partial_symbol (pdi, cu);
bc30ff58
JB
7411 }
7412 }
6e70227d 7413
bc30ff58
JB
7414 if (! pdi->has_children)
7415 return;
7416
7417 if (cu->language == language_ada)
7418 {
7419 pdi = pdi->die_child;
7420 while (pdi != NULL)
7421 {
7422 fixup_partial_die (pdi, cu);
7423 if (pdi->tag == DW_TAG_subprogram
7424 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7425 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7426 pdi = pdi->die_sibling;
7427 }
7428 }
7429}
7430
91c24f0a
DC
7431/* Read a partial die corresponding to an enumeration type. */
7432
72bf9492
DJ
7433static void
7434add_partial_enumeration (struct partial_die_info *enum_pdi,
7435 struct dwarf2_cu *cu)
91c24f0a 7436{
72bf9492 7437 struct partial_die_info *pdi;
91c24f0a
DC
7438
7439 if (enum_pdi->name != NULL)
72bf9492
DJ
7440 add_partial_symbol (enum_pdi, cu);
7441
7442 pdi = enum_pdi->die_child;
7443 while (pdi)
91c24f0a 7444 {
72bf9492 7445 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7446 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7447 else
72bf9492
DJ
7448 add_partial_symbol (pdi, cu);
7449 pdi = pdi->die_sibling;
91c24f0a 7450 }
91c24f0a
DC
7451}
7452
6caca83c
CC
7453/* Return the initial uleb128 in the die at INFO_PTR. */
7454
7455static unsigned int
d521ce57 7456peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7457{
7458 unsigned int bytes_read;
7459
7460 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7461}
7462
4bb7a0a7
DJ
7463/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7464 Return the corresponding abbrev, or NULL if the number is zero (indicating
7465 an empty DIE). In either case *BYTES_READ will be set to the length of
7466 the initial number. */
7467
7468static struct abbrev_info *
d521ce57 7469peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7470 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7471{
7472 bfd *abfd = cu->objfile->obfd;
7473 unsigned int abbrev_number;
7474 struct abbrev_info *abbrev;
7475
7476 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7477
7478 if (abbrev_number == 0)
7479 return NULL;
7480
433df2d4 7481 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7482 if (!abbrev)
7483 {
422b9917
DE
7484 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7485 " at offset 0x%x [in module %s]"),
7486 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9c541725 7487 to_underlying (cu->header.sect_off), bfd_get_filename (abfd));
4bb7a0a7
DJ
7488 }
7489
7490 return abbrev;
7491}
7492
93311388
DE
7493/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7494 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7495 DIE. Any children of the skipped DIEs will also be skipped. */
7496
d521ce57
TT
7497static const gdb_byte *
7498skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7499{
dee91e82 7500 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7501 struct abbrev_info *abbrev;
7502 unsigned int bytes_read;
7503
7504 while (1)
7505 {
7506 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7507 if (abbrev == NULL)
7508 return info_ptr + bytes_read;
7509 else
dee91e82 7510 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7511 }
7512}
7513
93311388
DE
7514/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7515 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7516 abbrev corresponding to that skipped uleb128 should be passed in
7517 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7518 children. */
7519
d521ce57
TT
7520static const gdb_byte *
7521skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7522 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7523{
7524 unsigned int bytes_read;
7525 struct attribute attr;
dee91e82
DE
7526 bfd *abfd = reader->abfd;
7527 struct dwarf2_cu *cu = reader->cu;
d521ce57 7528 const gdb_byte *buffer = reader->buffer;
f664829e 7529 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
7530 unsigned int form, i;
7531
7532 for (i = 0; i < abbrev->num_attrs; i++)
7533 {
7534 /* The only abbrev we care about is DW_AT_sibling. */
7535 if (abbrev->attrs[i].name == DW_AT_sibling)
7536 {
dee91e82 7537 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7538 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7539 complaint (&symfile_complaints,
7540 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7541 else
b9502d3f 7542 {
9c541725
PA
7543 sect_offset off = dwarf2_get_ref_die_offset (&attr);
7544 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
7545
7546 if (sibling_ptr < info_ptr)
7547 complaint (&symfile_complaints,
7548 _("DW_AT_sibling points backwards"));
22869d73
KS
7549 else if (sibling_ptr > reader->buffer_end)
7550 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7551 else
7552 return sibling_ptr;
7553 }
4bb7a0a7
DJ
7554 }
7555
7556 /* If it isn't DW_AT_sibling, skip this attribute. */
7557 form = abbrev->attrs[i].form;
7558 skip_attribute:
7559 switch (form)
7560 {
4bb7a0a7 7561 case DW_FORM_ref_addr:
ae411497
TT
7562 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7563 and later it is offset sized. */
7564 if (cu->header.version == 2)
7565 info_ptr += cu->header.addr_size;
7566 else
7567 info_ptr += cu->header.offset_size;
7568 break;
36586728
TT
7569 case DW_FORM_GNU_ref_alt:
7570 info_ptr += cu->header.offset_size;
7571 break;
ae411497 7572 case DW_FORM_addr:
4bb7a0a7
DJ
7573 info_ptr += cu->header.addr_size;
7574 break;
7575 case DW_FORM_data1:
7576 case DW_FORM_ref1:
7577 case DW_FORM_flag:
7578 info_ptr += 1;
7579 break;
2dc7f7b3 7580 case DW_FORM_flag_present:
43988095 7581 case DW_FORM_implicit_const:
2dc7f7b3 7582 break;
4bb7a0a7
DJ
7583 case DW_FORM_data2:
7584 case DW_FORM_ref2:
7585 info_ptr += 2;
7586 break;
7587 case DW_FORM_data4:
7588 case DW_FORM_ref4:
7589 info_ptr += 4;
7590 break;
7591 case DW_FORM_data8:
7592 case DW_FORM_ref8:
55f1336d 7593 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7594 info_ptr += 8;
7595 break;
0224619f
JK
7596 case DW_FORM_data16:
7597 info_ptr += 16;
7598 break;
4bb7a0a7 7599 case DW_FORM_string:
9b1c24c8 7600 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7601 info_ptr += bytes_read;
7602 break;
2dc7f7b3 7603 case DW_FORM_sec_offset:
4bb7a0a7 7604 case DW_FORM_strp:
36586728 7605 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7606 info_ptr += cu->header.offset_size;
7607 break;
2dc7f7b3 7608 case DW_FORM_exprloc:
4bb7a0a7
DJ
7609 case DW_FORM_block:
7610 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7611 info_ptr += bytes_read;
7612 break;
7613 case DW_FORM_block1:
7614 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7615 break;
7616 case DW_FORM_block2:
7617 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7618 break;
7619 case DW_FORM_block4:
7620 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7621 break;
7622 case DW_FORM_sdata:
7623 case DW_FORM_udata:
7624 case DW_FORM_ref_udata:
3019eac3
DE
7625 case DW_FORM_GNU_addr_index:
7626 case DW_FORM_GNU_str_index:
d521ce57 7627 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7628 break;
7629 case DW_FORM_indirect:
7630 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7631 info_ptr += bytes_read;
7632 /* We need to continue parsing from here, so just go back to
7633 the top. */
7634 goto skip_attribute;
7635
7636 default:
3e43a32a
MS
7637 error (_("Dwarf Error: Cannot handle %s "
7638 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7639 dwarf_form_name (form),
7640 bfd_get_filename (abfd));
7641 }
7642 }
7643
7644 if (abbrev->has_children)
dee91e82 7645 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7646 else
7647 return info_ptr;
7648}
7649
93311388 7650/* Locate ORIG_PDI's sibling.
dee91e82 7651 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7652
d521ce57 7653static const gdb_byte *
dee91e82
DE
7654locate_pdi_sibling (const struct die_reader_specs *reader,
7655 struct partial_die_info *orig_pdi,
d521ce57 7656 const gdb_byte *info_ptr)
91c24f0a
DC
7657{
7658 /* Do we know the sibling already? */
72bf9492 7659
91c24f0a
DC
7660 if (orig_pdi->sibling)
7661 return orig_pdi->sibling;
7662
7663 /* Are there any children to deal with? */
7664
7665 if (!orig_pdi->has_children)
7666 return info_ptr;
7667
4bb7a0a7 7668 /* Skip the children the long way. */
91c24f0a 7669
dee91e82 7670 return skip_children (reader, info_ptr);
91c24f0a
DC
7671}
7672
257e7a09 7673/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7674 not NULL. */
c906108c
SS
7675
7676static void
257e7a09
YQ
7677dwarf2_read_symtab (struct partial_symtab *self,
7678 struct objfile *objfile)
c906108c 7679{
257e7a09 7680 if (self->readin)
c906108c 7681 {
442e4d9c 7682 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7683 self->filename);
442e4d9c
YQ
7684 }
7685 else
7686 {
7687 if (info_verbose)
c906108c 7688 {
442e4d9c 7689 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7690 self->filename);
442e4d9c 7691 gdb_flush (gdb_stdout);
c906108c 7692 }
c906108c 7693
442e4d9c 7694 /* Restore our global data. */
9a3c8263
SM
7695 dwarf2_per_objfile
7696 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7697 dwarf2_objfile_data_key);
10b3939b 7698
442e4d9c
YQ
7699 /* If this psymtab is constructed from a debug-only objfile, the
7700 has_section_at_zero flag will not necessarily be correct. We
7701 can get the correct value for this flag by looking at the data
7702 associated with the (presumably stripped) associated objfile. */
7703 if (objfile->separate_debug_objfile_backlink)
7704 {
7705 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7706 = ((struct dwarf2_per_objfile *)
7707 objfile_data (objfile->separate_debug_objfile_backlink,
7708 dwarf2_objfile_data_key));
9a619af0 7709
442e4d9c
YQ
7710 dwarf2_per_objfile->has_section_at_zero
7711 = dpo_backlink->has_section_at_zero;
7712 }
b2ab525c 7713
442e4d9c 7714 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7715
257e7a09 7716 psymtab_to_symtab_1 (self);
c906108c 7717
442e4d9c
YQ
7718 /* Finish up the debug error message. */
7719 if (info_verbose)
7720 printf_filtered (_("done.\n"));
c906108c 7721 }
95554aad
TT
7722
7723 process_cu_includes ();
c906108c 7724}
9cdd5dbd
DE
7725\f
7726/* Reading in full CUs. */
c906108c 7727
10b3939b
DJ
7728/* Add PER_CU to the queue. */
7729
7730static void
95554aad
TT
7731queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7732 enum language pretend_language)
10b3939b
DJ
7733{
7734 struct dwarf2_queue_item *item;
7735
7736 per_cu->queued = 1;
8d749320 7737 item = XNEW (struct dwarf2_queue_item);
10b3939b 7738 item->per_cu = per_cu;
95554aad 7739 item->pretend_language = pretend_language;
10b3939b
DJ
7740 item->next = NULL;
7741
7742 if (dwarf2_queue == NULL)
7743 dwarf2_queue = item;
7744 else
7745 dwarf2_queue_tail->next = item;
7746
7747 dwarf2_queue_tail = item;
7748}
7749
89e63ee4
DE
7750/* If PER_CU is not yet queued, add it to the queue.
7751 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7752 dependency.
0907af0c 7753 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7754 meaning either PER_CU is already queued or it is already loaded.
7755
7756 N.B. There is an invariant here that if a CU is queued then it is loaded.
7757 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7758
7759static int
89e63ee4 7760maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7761 struct dwarf2_per_cu_data *per_cu,
7762 enum language pretend_language)
7763{
7764 /* We may arrive here during partial symbol reading, if we need full
7765 DIEs to process an unusual case (e.g. template arguments). Do
7766 not queue PER_CU, just tell our caller to load its DIEs. */
7767 if (dwarf2_per_objfile->reading_partial_symbols)
7768 {
7769 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7770 return 1;
7771 return 0;
7772 }
7773
7774 /* Mark the dependence relation so that we don't flush PER_CU
7775 too early. */
89e63ee4
DE
7776 if (dependent_cu != NULL)
7777 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7778
7779 /* If it's already on the queue, we have nothing to do. */
7780 if (per_cu->queued)
7781 return 0;
7782
7783 /* If the compilation unit is already loaded, just mark it as
7784 used. */
7785 if (per_cu->cu != NULL)
7786 {
7787 per_cu->cu->last_used = 0;
7788 return 0;
7789 }
7790
7791 /* Add it to the queue. */
7792 queue_comp_unit (per_cu, pretend_language);
7793
7794 return 1;
7795}
7796
10b3939b
DJ
7797/* Process the queue. */
7798
7799static void
a0f42c21 7800process_queue (void)
10b3939b
DJ
7801{
7802 struct dwarf2_queue_item *item, *next_item;
7803
b4f54984 7804 if (dwarf_read_debug)
45cfd468
DE
7805 {
7806 fprintf_unfiltered (gdb_stdlog,
7807 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7808 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7809 }
7810
03dd20cc
DJ
7811 /* The queue starts out with one item, but following a DIE reference
7812 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7813 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7814 {
cc12ce38
DE
7815 if ((dwarf2_per_objfile->using_index
7816 ? !item->per_cu->v.quick->compunit_symtab
7817 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7818 /* Skip dummy CUs. */
7819 && item->per_cu->cu != NULL)
f4dc4d17
DE
7820 {
7821 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7822 unsigned int debug_print_threshold;
247f5c4f 7823 char buf[100];
f4dc4d17 7824
247f5c4f 7825 if (per_cu->is_debug_types)
f4dc4d17 7826 {
247f5c4f
DE
7827 struct signatured_type *sig_type =
7828 (struct signatured_type *) per_cu;
7829
7830 sprintf (buf, "TU %s at offset 0x%x",
73be47f5 7831 hex_string (sig_type->signature),
9c541725 7832 to_underlying (per_cu->sect_off));
73be47f5
DE
7833 /* There can be 100s of TUs.
7834 Only print them in verbose mode. */
7835 debug_print_threshold = 2;
f4dc4d17 7836 }
247f5c4f 7837 else
73be47f5 7838 {
9c541725
PA
7839 sprintf (buf, "CU at offset 0x%x",
7840 to_underlying (per_cu->sect_off));
73be47f5
DE
7841 debug_print_threshold = 1;
7842 }
247f5c4f 7843
b4f54984 7844 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7845 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7846
7847 if (per_cu->is_debug_types)
7848 process_full_type_unit (per_cu, item->pretend_language);
7849 else
7850 process_full_comp_unit (per_cu, item->pretend_language);
7851
b4f54984 7852 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7853 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7854 }
10b3939b
DJ
7855
7856 item->per_cu->queued = 0;
7857 next_item = item->next;
7858 xfree (item);
7859 }
7860
7861 dwarf2_queue_tail = NULL;
45cfd468 7862
b4f54984 7863 if (dwarf_read_debug)
45cfd468
DE
7864 {
7865 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7866 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7867 }
10b3939b
DJ
7868}
7869
7870/* Free all allocated queue entries. This function only releases anything if
7871 an error was thrown; if the queue was processed then it would have been
7872 freed as we went along. */
7873
7874static void
7875dwarf2_release_queue (void *dummy)
7876{
7877 struct dwarf2_queue_item *item, *last;
7878
7879 item = dwarf2_queue;
7880 while (item)
7881 {
7882 /* Anything still marked queued is likely to be in an
7883 inconsistent state, so discard it. */
7884 if (item->per_cu->queued)
7885 {
7886 if (item->per_cu->cu != NULL)
dee91e82 7887 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7888 item->per_cu->queued = 0;
7889 }
7890
7891 last = item;
7892 item = item->next;
7893 xfree (last);
7894 }
7895
7896 dwarf2_queue = dwarf2_queue_tail = NULL;
7897}
7898
7899/* Read in full symbols for PST, and anything it depends on. */
7900
c906108c 7901static void
fba45db2 7902psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7903{
10b3939b 7904 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7905 int i;
7906
95554aad
TT
7907 if (pst->readin)
7908 return;
7909
aaa75496 7910 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7911 if (!pst->dependencies[i]->readin
7912 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7913 {
7914 /* Inform about additional files that need to be read in. */
7915 if (info_verbose)
7916 {
a3f17187 7917 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7918 fputs_filtered (" ", gdb_stdout);
7919 wrap_here ("");
7920 fputs_filtered ("and ", gdb_stdout);
7921 wrap_here ("");
7922 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7923 wrap_here (""); /* Flush output. */
aaa75496
JB
7924 gdb_flush (gdb_stdout);
7925 }
7926 psymtab_to_symtab_1 (pst->dependencies[i]);
7927 }
7928
9a3c8263 7929 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7930
7931 if (per_cu == NULL)
aaa75496
JB
7932 {
7933 /* It's an include file, no symbols to read for it.
7934 Everything is in the parent symtab. */
7935 pst->readin = 1;
7936 return;
7937 }
c906108c 7938
a0f42c21 7939 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7940}
7941
dee91e82
DE
7942/* Trivial hash function for die_info: the hash value of a DIE
7943 is its offset in .debug_info for this objfile. */
10b3939b 7944
dee91e82
DE
7945static hashval_t
7946die_hash (const void *item)
10b3939b 7947{
9a3c8263 7948 const struct die_info *die = (const struct die_info *) item;
6502dd73 7949
9c541725 7950 return to_underlying (die->sect_off);
dee91e82 7951}
63d06c5c 7952
dee91e82
DE
7953/* Trivial comparison function for die_info structures: two DIEs
7954 are equal if they have the same offset. */
98bfdba5 7955
dee91e82
DE
7956static int
7957die_eq (const void *item_lhs, const void *item_rhs)
7958{
9a3c8263
SM
7959 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7960 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7961
9c541725 7962 return die_lhs->sect_off == die_rhs->sect_off;
dee91e82 7963}
c906108c 7964
dee91e82
DE
7965/* die_reader_func for load_full_comp_unit.
7966 This is identical to read_signatured_type_reader,
7967 but is kept separate for now. */
c906108c 7968
dee91e82
DE
7969static void
7970load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7971 const gdb_byte *info_ptr,
dee91e82
DE
7972 struct die_info *comp_unit_die,
7973 int has_children,
7974 void *data)
7975{
7976 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7977 enum language *language_ptr = (enum language *) data;
6caca83c 7978
dee91e82
DE
7979 gdb_assert (cu->die_hash == NULL);
7980 cu->die_hash =
7981 htab_create_alloc_ex (cu->header.length / 12,
7982 die_hash,
7983 die_eq,
7984 NULL,
7985 &cu->comp_unit_obstack,
7986 hashtab_obstack_allocate,
7987 dummy_obstack_deallocate);
e142c38c 7988
dee91e82
DE
7989 if (has_children)
7990 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7991 &info_ptr, comp_unit_die);
7992 cu->dies = comp_unit_die;
7993 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7994
7995 /* We try not to read any attributes in this function, because not
9cdd5dbd 7996 all CUs needed for references have been loaded yet, and symbol
10b3939b 7997 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7998 or we won't be able to build types correctly.
7999 Similarly, if we do not read the producer, we can not apply
8000 producer-specific interpretation. */
95554aad 8001 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 8002}
10b3939b 8003
dee91e82 8004/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 8005
dee91e82 8006static void
95554aad
TT
8007load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8008 enum language pretend_language)
dee91e82 8009{
3019eac3 8010 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 8011
f4dc4d17
DE
8012 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
8013 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
8014}
8015
3da10d80
KS
8016/* Add a DIE to the delayed physname list. */
8017
8018static void
8019add_to_method_list (struct type *type, int fnfield_index, int index,
8020 const char *name, struct die_info *die,
8021 struct dwarf2_cu *cu)
8022{
8023 struct delayed_method_info mi;
8024 mi.type = type;
8025 mi.fnfield_index = fnfield_index;
8026 mi.index = index;
8027 mi.name = name;
8028 mi.die = die;
8029 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
8030}
8031
8032/* A cleanup for freeing the delayed method list. */
8033
8034static void
8035free_delayed_list (void *ptr)
8036{
8037 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
8038 if (cu->method_list != NULL)
8039 {
8040 VEC_free (delayed_method_info, cu->method_list);
8041 cu->method_list = NULL;
8042 }
8043}
8044
8045/* Compute the physnames of any methods on the CU's method list.
8046
8047 The computation of method physnames is delayed in order to avoid the
8048 (bad) condition that one of the method's formal parameters is of an as yet
8049 incomplete type. */
8050
8051static void
8052compute_delayed_physnames (struct dwarf2_cu *cu)
8053{
8054 int i;
8055 struct delayed_method_info *mi;
8056 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
8057 {
1d06ead6 8058 const char *physname;
3da10d80
KS
8059 struct fn_fieldlist *fn_flp
8060 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 8061 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
8062 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
8063 = physname ? physname : "";
3da10d80
KS
8064 }
8065}
8066
a766d390
DE
8067/* Go objects should be embedded in a DW_TAG_module DIE,
8068 and it's not clear if/how imported objects will appear.
8069 To keep Go support simple until that's worked out,
8070 go back through what we've read and create something usable.
8071 We could do this while processing each DIE, and feels kinda cleaner,
8072 but that way is more invasive.
8073 This is to, for example, allow the user to type "p var" or "b main"
8074 without having to specify the package name, and allow lookups
8075 of module.object to work in contexts that use the expression
8076 parser. */
8077
8078static void
8079fixup_go_packaging (struct dwarf2_cu *cu)
8080{
8081 char *package_name = NULL;
8082 struct pending *list;
8083 int i;
8084
8085 for (list = global_symbols; list != NULL; list = list->next)
8086 {
8087 for (i = 0; i < list->nsyms; ++i)
8088 {
8089 struct symbol *sym = list->symbol[i];
8090
8091 if (SYMBOL_LANGUAGE (sym) == language_go
8092 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8093 {
8094 char *this_package_name = go_symbol_package_name (sym);
8095
8096 if (this_package_name == NULL)
8097 continue;
8098 if (package_name == NULL)
8099 package_name = this_package_name;
8100 else
8101 {
8102 if (strcmp (package_name, this_package_name) != 0)
8103 complaint (&symfile_complaints,
8104 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
8105 (symbol_symtab (sym) != NULL
8106 ? symtab_to_filename_for_display
8107 (symbol_symtab (sym))
4262abfb 8108 : objfile_name (cu->objfile)),
a766d390
DE
8109 this_package_name, package_name);
8110 xfree (this_package_name);
8111 }
8112 }
8113 }
8114 }
8115
8116 if (package_name != NULL)
8117 {
8118 struct objfile *objfile = cu->objfile;
34a68019 8119 const char *saved_package_name
224c3ddb
SM
8120 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
8121 package_name,
8122 strlen (package_name));
19f392bc
UW
8123 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8124 saved_package_name);
a766d390
DE
8125 struct symbol *sym;
8126
8127 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8128
e623cf5d 8129 sym = allocate_symbol (objfile);
f85f34ed 8130 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
8131 SYMBOL_SET_NAMES (sym, saved_package_name,
8132 strlen (saved_package_name), 0, objfile);
a766d390
DE
8133 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8134 e.g., "main" finds the "main" module and not C's main(). */
8135 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 8136 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
8137 SYMBOL_TYPE (sym) = type;
8138
8139 add_symbol_to_list (sym, &global_symbols);
8140
8141 xfree (package_name);
8142 }
8143}
8144
95554aad
TT
8145/* Return the symtab for PER_CU. This works properly regardless of
8146 whether we're using the index or psymtabs. */
8147
43f3e411
DE
8148static struct compunit_symtab *
8149get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
8150{
8151 return (dwarf2_per_objfile->using_index
43f3e411
DE
8152 ? per_cu->v.quick->compunit_symtab
8153 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
8154}
8155
8156/* A helper function for computing the list of all symbol tables
8157 included by PER_CU. */
8158
8159static void
43f3e411 8160recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 8161 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 8162 struct dwarf2_per_cu_data *per_cu,
43f3e411 8163 struct compunit_symtab *immediate_parent)
95554aad
TT
8164{
8165 void **slot;
8166 int ix;
43f3e411 8167 struct compunit_symtab *cust;
95554aad
TT
8168 struct dwarf2_per_cu_data *iter;
8169
8170 slot = htab_find_slot (all_children, per_cu, INSERT);
8171 if (*slot != NULL)
8172 {
8173 /* This inclusion and its children have been processed. */
8174 return;
8175 }
8176
8177 *slot = per_cu;
8178 /* Only add a CU if it has a symbol table. */
43f3e411
DE
8179 cust = get_compunit_symtab (per_cu);
8180 if (cust != NULL)
ec94af83
DE
8181 {
8182 /* If this is a type unit only add its symbol table if we haven't
8183 seen it yet (type unit per_cu's can share symtabs). */
8184 if (per_cu->is_debug_types)
8185 {
43f3e411 8186 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
8187 if (*slot == NULL)
8188 {
43f3e411
DE
8189 *slot = cust;
8190 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8191 if (cust->user == NULL)
8192 cust->user = immediate_parent;
ec94af83
DE
8193 }
8194 }
8195 else
f9125b6c 8196 {
43f3e411
DE
8197 VEC_safe_push (compunit_symtab_ptr, *result, cust);
8198 if (cust->user == NULL)
8199 cust->user = immediate_parent;
f9125b6c 8200 }
ec94af83 8201 }
95554aad
TT
8202
8203 for (ix = 0;
796a7ff8 8204 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 8205 ++ix)
ec94af83
DE
8206 {
8207 recursively_compute_inclusions (result, all_children,
43f3e411 8208 all_type_symtabs, iter, cust);
ec94af83 8209 }
95554aad
TT
8210}
8211
43f3e411 8212/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
8213 PER_CU. */
8214
8215static void
43f3e411 8216compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 8217{
f4dc4d17
DE
8218 gdb_assert (! per_cu->is_debug_types);
8219
796a7ff8 8220 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
8221 {
8222 int ix, len;
ec94af83 8223 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
8224 struct compunit_symtab *compunit_symtab_iter;
8225 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 8226 htab_t all_children, all_type_symtabs;
43f3e411 8227 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
8228
8229 /* If we don't have a symtab, we can just skip this case. */
43f3e411 8230 if (cust == NULL)
95554aad
TT
8231 return;
8232
8233 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8234 NULL, xcalloc, xfree);
ec94af83
DE
8235 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
8236 NULL, xcalloc, xfree);
95554aad
TT
8237
8238 for (ix = 0;
796a7ff8 8239 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 8240 ix, per_cu_iter);
95554aad 8241 ++ix)
ec94af83
DE
8242 {
8243 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 8244 all_type_symtabs, per_cu_iter,
43f3e411 8245 cust);
ec94af83 8246 }
95554aad 8247
ec94af83 8248 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
8249 len = VEC_length (compunit_symtab_ptr, result_symtabs);
8250 cust->includes
8d749320
SM
8251 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
8252 struct compunit_symtab *, len + 1);
95554aad 8253 for (ix = 0;
43f3e411
DE
8254 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8255 compunit_symtab_iter);
95554aad 8256 ++ix)
43f3e411
DE
8257 cust->includes[ix] = compunit_symtab_iter;
8258 cust->includes[len] = NULL;
95554aad 8259
43f3e411 8260 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 8261 htab_delete (all_children);
ec94af83 8262 htab_delete (all_type_symtabs);
95554aad
TT
8263 }
8264}
8265
8266/* Compute the 'includes' field for the symtabs of all the CUs we just
8267 read. */
8268
8269static void
8270process_cu_includes (void)
8271{
8272 int ix;
8273 struct dwarf2_per_cu_data *iter;
8274
8275 for (ix = 0;
8276 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8277 ix, iter);
8278 ++ix)
f4dc4d17
DE
8279 {
8280 if (! iter->is_debug_types)
43f3e411 8281 compute_compunit_symtab_includes (iter);
f4dc4d17 8282 }
95554aad
TT
8283
8284 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8285}
8286
9cdd5dbd 8287/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8288 already been loaded into memory. */
8289
8290static void
95554aad
TT
8291process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8292 enum language pretend_language)
10b3939b 8293{
10b3939b 8294 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8295 struct objfile *objfile = per_cu->objfile;
3e29f34a 8296 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8297 CORE_ADDR lowpc, highpc;
43f3e411 8298 struct compunit_symtab *cust;
3da10d80 8299 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8300 CORE_ADDR baseaddr;
4359dff1 8301 struct block *static_block;
3e29f34a 8302 CORE_ADDR addr;
10b3939b
DJ
8303
8304 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8305
10b3939b
DJ
8306 buildsym_init ();
8307 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8308 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8309
8310 cu->list_in_scope = &file_symbols;
c906108c 8311
95554aad
TT
8312 cu->language = pretend_language;
8313 cu->language_defn = language_def (cu->language);
8314
c906108c 8315 /* Do line number decoding in read_file_scope () */
10b3939b 8316 process_die (cu->dies, cu);
c906108c 8317
a766d390
DE
8318 /* For now fudge the Go package. */
8319 if (cu->language == language_go)
8320 fixup_go_packaging (cu);
8321
3da10d80
KS
8322 /* Now that we have processed all the DIEs in the CU, all the types
8323 should be complete, and it should now be safe to compute all of the
8324 physnames. */
8325 compute_delayed_physnames (cu);
8326 do_cleanups (delayed_list_cleanup);
8327
fae299cd
DC
8328 /* Some compilers don't define a DW_AT_high_pc attribute for the
8329 compilation unit. If the DW_AT_high_pc is missing, synthesize
8330 it, by scanning the DIE's below the compilation unit. */
10b3939b 8331 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8332
3e29f34a
MR
8333 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8334 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8335
8336 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8337 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8338 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8339 addrmap to help ensure it has an accurate map of pc values belonging to
8340 this comp unit. */
8341 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8342
43f3e411
DE
8343 cust = end_symtab_from_static_block (static_block,
8344 SECT_OFF_TEXT (objfile), 0);
c906108c 8345
43f3e411 8346 if (cust != NULL)
c906108c 8347 {
df15bd07 8348 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8349
8be455d7
JK
8350 /* Set symtab language to language from DW_AT_language. If the
8351 compilation is from a C file generated by language preprocessors, do
8352 not set the language if it was already deduced by start_subfile. */
43f3e411 8353 if (!(cu->language == language_c
40e3ad0e 8354 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8355 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8356
8357 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8358 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8359 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8360 there were bugs in prologue debug info, fixed later in GCC-4.5
8361 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8362
8363 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8364 needed, it would be wrong due to missing DW_AT_producer there.
8365
8366 Still one can confuse GDB by using non-standard GCC compilation
8367 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8368 */
ab260dad 8369 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8370 cust->locations_valid = 1;
e0d00bc7
JK
8371
8372 if (gcc_4_minor >= 5)
43f3e411 8373 cust->epilogue_unwind_valid = 1;
96408a79 8374
43f3e411 8375 cust->call_site_htab = cu->call_site_htab;
c906108c 8376 }
9291a0cd
TT
8377
8378 if (dwarf2_per_objfile->using_index)
43f3e411 8379 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8380 else
8381 {
8382 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8383 pst->compunit_symtab = cust;
9291a0cd
TT
8384 pst->readin = 1;
8385 }
c906108c 8386
95554aad
TT
8387 /* Push it for inclusion processing later. */
8388 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8389
c906108c 8390 do_cleanups (back_to);
f4dc4d17 8391}
45cfd468 8392
f4dc4d17
DE
8393/* Generate full symbol information for type unit PER_CU, whose DIEs have
8394 already been loaded into memory. */
8395
8396static void
8397process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8398 enum language pretend_language)
8399{
8400 struct dwarf2_cu *cu = per_cu->cu;
8401 struct objfile *objfile = per_cu->objfile;
43f3e411 8402 struct compunit_symtab *cust;
f4dc4d17 8403 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8404 struct signatured_type *sig_type;
8405
8406 gdb_assert (per_cu->is_debug_types);
8407 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8408
8409 buildsym_init ();
8410 back_to = make_cleanup (really_free_pendings, NULL);
8411 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8412
8413 cu->list_in_scope = &file_symbols;
8414
8415 cu->language = pretend_language;
8416 cu->language_defn = language_def (cu->language);
8417
8418 /* The symbol tables are set up in read_type_unit_scope. */
8419 process_die (cu->dies, cu);
8420
8421 /* For now fudge the Go package. */
8422 if (cu->language == language_go)
8423 fixup_go_packaging (cu);
8424
8425 /* Now that we have processed all the DIEs in the CU, all the types
8426 should be complete, and it should now be safe to compute all of the
8427 physnames. */
8428 compute_delayed_physnames (cu);
8429 do_cleanups (delayed_list_cleanup);
8430
8431 /* TUs share symbol tables.
8432 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8433 of it with end_expandable_symtab. Otherwise, complete the addition of
8434 this TU's symbols to the existing symtab. */
43f3e411 8435 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8436 {
43f3e411
DE
8437 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8438 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8439
43f3e411 8440 if (cust != NULL)
f4dc4d17
DE
8441 {
8442 /* Set symtab language to language from DW_AT_language. If the
8443 compilation is from a C file generated by language preprocessors,
8444 do not set the language if it was already deduced by
8445 start_subfile. */
43f3e411
DE
8446 if (!(cu->language == language_c
8447 && COMPUNIT_FILETABS (cust)->language != language_c))
8448 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8449 }
8450 }
8451 else
8452 {
0ab9ce85 8453 augment_type_symtab ();
43f3e411 8454 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8455 }
8456
8457 if (dwarf2_per_objfile->using_index)
43f3e411 8458 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8459 else
8460 {
8461 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8462 pst->compunit_symtab = cust;
f4dc4d17 8463 pst->readin = 1;
45cfd468 8464 }
f4dc4d17
DE
8465
8466 do_cleanups (back_to);
c906108c
SS
8467}
8468
95554aad
TT
8469/* Process an imported unit DIE. */
8470
8471static void
8472process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8473{
8474 struct attribute *attr;
8475
f4dc4d17
DE
8476 /* For now we don't handle imported units in type units. */
8477 if (cu->per_cu->is_debug_types)
8478 {
8479 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8480 " supported in type units [in module %s]"),
4262abfb 8481 objfile_name (cu->objfile));
f4dc4d17
DE
8482 }
8483
95554aad
TT
8484 attr = dwarf2_attr (die, DW_AT_import, cu);
8485 if (attr != NULL)
8486 {
9c541725
PA
8487 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
8488 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8489 dwarf2_per_cu_data *per_cu
8490 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, cu->objfile);
95554aad 8491
69d751e3 8492 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8493 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8494 load_full_comp_unit (per_cu, cu->language);
8495
796a7ff8 8496 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8497 per_cu);
8498 }
8499}
8500
4c8aa72d
PA
8501/* RAII object that represents a process_die scope: i.e.,
8502 starts/finishes processing a DIE. */
8503class process_die_scope
adde2bff 8504{
4c8aa72d
PA
8505public:
8506 process_die_scope (die_info *die, dwarf2_cu *cu)
8507 : m_die (die), m_cu (cu)
8508 {
8509 /* We should only be processing DIEs not already in process. */
8510 gdb_assert (!m_die->in_process);
8511 m_die->in_process = true;
8512 }
8c3cb9fa 8513
4c8aa72d
PA
8514 ~process_die_scope ()
8515 {
8516 m_die->in_process = false;
8517
8518 /* If we're done processing the DIE for the CU that owns the line
8519 header, we don't need the line header anymore. */
8520 if (m_cu->line_header_die_owner == m_die)
8521 {
8522 delete m_cu->line_header;
8523 m_cu->line_header = NULL;
8524 m_cu->line_header_die_owner = NULL;
8525 }
8526 }
8527
8528private:
8529 die_info *m_die;
8530 dwarf2_cu *m_cu;
8531};
adde2bff 8532
c906108c
SS
8533/* Process a die and its children. */
8534
8535static void
e7c27a73 8536process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8537{
4c8aa72d 8538 process_die_scope scope (die, cu);
adde2bff 8539
c906108c
SS
8540 switch (die->tag)
8541 {
8542 case DW_TAG_padding:
8543 break;
8544 case DW_TAG_compile_unit:
95554aad 8545 case DW_TAG_partial_unit:
e7c27a73 8546 read_file_scope (die, cu);
c906108c 8547 break;
348e048f
DE
8548 case DW_TAG_type_unit:
8549 read_type_unit_scope (die, cu);
8550 break;
c906108c 8551 case DW_TAG_subprogram:
c906108c 8552 case DW_TAG_inlined_subroutine:
edb3359d 8553 read_func_scope (die, cu);
c906108c
SS
8554 break;
8555 case DW_TAG_lexical_block:
14898363
L
8556 case DW_TAG_try_block:
8557 case DW_TAG_catch_block:
e7c27a73 8558 read_lexical_block_scope (die, cu);
c906108c 8559 break;
216f72a1 8560 case DW_TAG_call_site:
96408a79
SA
8561 case DW_TAG_GNU_call_site:
8562 read_call_site_scope (die, cu);
8563 break;
c906108c 8564 case DW_TAG_class_type:
680b30c7 8565 case DW_TAG_interface_type:
c906108c
SS
8566 case DW_TAG_structure_type:
8567 case DW_TAG_union_type:
134d01f1 8568 process_structure_scope (die, cu);
c906108c
SS
8569 break;
8570 case DW_TAG_enumeration_type:
134d01f1 8571 process_enumeration_scope (die, cu);
c906108c 8572 break;
134d01f1 8573
f792889a
DJ
8574 /* These dies have a type, but processing them does not create
8575 a symbol or recurse to process the children. Therefore we can
8576 read them on-demand through read_type_die. */
c906108c 8577 case DW_TAG_subroutine_type:
72019c9c 8578 case DW_TAG_set_type:
c906108c 8579 case DW_TAG_array_type:
c906108c 8580 case DW_TAG_pointer_type:
c906108c 8581 case DW_TAG_ptr_to_member_type:
c906108c 8582 case DW_TAG_reference_type:
4297a3f0 8583 case DW_TAG_rvalue_reference_type:
c906108c 8584 case DW_TAG_string_type:
c906108c 8585 break;
134d01f1 8586
c906108c 8587 case DW_TAG_base_type:
a02abb62 8588 case DW_TAG_subrange_type:
cb249c71 8589 case DW_TAG_typedef:
134d01f1
DJ
8590 /* Add a typedef symbol for the type definition, if it has a
8591 DW_AT_name. */
f792889a 8592 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8593 break;
c906108c 8594 case DW_TAG_common_block:
e7c27a73 8595 read_common_block (die, cu);
c906108c
SS
8596 break;
8597 case DW_TAG_common_inclusion:
8598 break;
d9fa45fe 8599 case DW_TAG_namespace:
4d4ec4e5 8600 cu->processing_has_namespace_info = 1;
e7c27a73 8601 read_namespace (die, cu);
d9fa45fe 8602 break;
5d7cb8df 8603 case DW_TAG_module:
4d4ec4e5 8604 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8605 read_module (die, cu);
8606 break;
d9fa45fe 8607 case DW_TAG_imported_declaration:
74921315
KS
8608 cu->processing_has_namespace_info = 1;
8609 if (read_namespace_alias (die, cu))
8610 break;
8611 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8612 case DW_TAG_imported_module:
4d4ec4e5 8613 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8614 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8615 || cu->language != language_fortran))
8616 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8617 dwarf_tag_name (die->tag));
8618 read_import_statement (die, cu);
d9fa45fe 8619 break;
95554aad
TT
8620
8621 case DW_TAG_imported_unit:
8622 process_imported_unit_die (die, cu);
8623 break;
8624
c906108c 8625 default:
e7c27a73 8626 new_symbol (die, NULL, cu);
c906108c
SS
8627 break;
8628 }
8629}
ca69b9e6
DE
8630\f
8631/* DWARF name computation. */
c906108c 8632
94af9270
KS
8633/* A helper function for dwarf2_compute_name which determines whether DIE
8634 needs to have the name of the scope prepended to the name listed in the
8635 die. */
8636
8637static int
8638die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8639{
1c809c68
TT
8640 struct attribute *attr;
8641
94af9270
KS
8642 switch (die->tag)
8643 {
8644 case DW_TAG_namespace:
8645 case DW_TAG_typedef:
8646 case DW_TAG_class_type:
8647 case DW_TAG_interface_type:
8648 case DW_TAG_structure_type:
8649 case DW_TAG_union_type:
8650 case DW_TAG_enumeration_type:
8651 case DW_TAG_enumerator:
8652 case DW_TAG_subprogram:
08a76f8a 8653 case DW_TAG_inlined_subroutine:
94af9270 8654 case DW_TAG_member:
74921315 8655 case DW_TAG_imported_declaration:
94af9270
KS
8656 return 1;
8657
8658 case DW_TAG_variable:
c2b0a229 8659 case DW_TAG_constant:
94af9270
KS
8660 /* We only need to prefix "globally" visible variables. These include
8661 any variable marked with DW_AT_external or any variable that
8662 lives in a namespace. [Variables in anonymous namespaces
8663 require prefixing, but they are not DW_AT_external.] */
8664
8665 if (dwarf2_attr (die, DW_AT_specification, cu))
8666 {
8667 struct dwarf2_cu *spec_cu = cu;
9a619af0 8668
94af9270
KS
8669 return die_needs_namespace (die_specification (die, &spec_cu),
8670 spec_cu);
8671 }
8672
1c809c68 8673 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8674 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8675 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8676 return 0;
8677 /* A variable in a lexical block of some kind does not need a
8678 namespace, even though in C++ such variables may be external
8679 and have a mangled name. */
8680 if (die->parent->tag == DW_TAG_lexical_block
8681 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8682 || die->parent->tag == DW_TAG_catch_block
8683 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8684 return 0;
8685 return 1;
94af9270
KS
8686
8687 default:
8688 return 0;
8689 }
8690}
8691
8692/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390 8693 compute the physname for the object, which include a method's:
9c37b5ae 8694 - formal parameters (C++),
a766d390 8695 - receiver type (Go),
a766d390
DE
8696
8697 The term "physname" is a bit confusing.
8698 For C++, for example, it is the demangled name.
8699 For Go, for example, it's the mangled name.
94af9270 8700
af6b7be1
JB
8701 For Ada, return the DIE's linkage name rather than the fully qualified
8702 name. PHYSNAME is ignored..
8703
94af9270
KS
8704 The result is allocated on the objfile_obstack and canonicalized. */
8705
8706static const char *
15d034d0
TT
8707dwarf2_compute_name (const char *name,
8708 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8709 int physname)
8710{
bb5ed363
DE
8711 struct objfile *objfile = cu->objfile;
8712
94af9270
KS
8713 if (name == NULL)
8714 name = dwarf2_name (die, cu);
8715
2ee7123e
DE
8716 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8717 but otherwise compute it by typename_concat inside GDB.
8718 FIXME: Actually this is not really true, or at least not always true.
8719 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8720 Fortran names because there is no mangling standard. So new_symbol_full
8721 will set the demangled name to the result of dwarf2_full_name, and it is
8722 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8723 if (cu->language == language_ada
8724 || (cu->language == language_fortran && physname))
8725 {
8726 /* For Ada unit, we prefer the linkage name over the name, as
8727 the former contains the exported name, which the user expects
8728 to be able to reference. Ideally, we want the user to be able
8729 to reference this entity using either natural or linkage name,
8730 but we haven't started looking at this enhancement yet. */
2ee7123e 8731 const char *linkage_name;
f55ee35c 8732
2ee7123e
DE
8733 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8734 if (linkage_name == NULL)
8735 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8736 if (linkage_name != NULL)
8737 return linkage_name;
f55ee35c
JK
8738 }
8739
94af9270
KS
8740 /* These are the only languages we know how to qualify names in. */
8741 if (name != NULL
9c37b5ae 8742 && (cu->language == language_cplus
c44af4eb
TT
8743 || cu->language == language_fortran || cu->language == language_d
8744 || cu->language == language_rust))
94af9270
KS
8745 {
8746 if (die_needs_namespace (die, cu))
8747 {
8748 long length;
0d5cff50 8749 const char *prefix;
34a68019 8750 const char *canonical_name = NULL;
94af9270 8751
d7e74731
PA
8752 string_file buf;
8753
94af9270 8754 prefix = determine_prefix (die, cu);
94af9270
KS
8755 if (*prefix != '\0')
8756 {
f55ee35c
JK
8757 char *prefixed_name = typename_concat (NULL, prefix, name,
8758 physname, cu);
9a619af0 8759
d7e74731 8760 buf.puts (prefixed_name);
94af9270
KS
8761 xfree (prefixed_name);
8762 }
8763 else
d7e74731 8764 buf.puts (name);
94af9270 8765
98bfdba5
PA
8766 /* Template parameters may be specified in the DIE's DW_AT_name, or
8767 as children with DW_TAG_template_type_param or
8768 DW_TAG_value_type_param. If the latter, add them to the name
8769 here. If the name already has template parameters, then
8770 skip this step; some versions of GCC emit both, and
8771 it is more efficient to use the pre-computed name.
8772
8773 Something to keep in mind about this process: it is very
8774 unlikely, or in some cases downright impossible, to produce
8775 something that will match the mangled name of a function.
8776 If the definition of the function has the same debug info,
8777 we should be able to match up with it anyway. But fallbacks
8778 using the minimal symbol, for instance to find a method
8779 implemented in a stripped copy of libstdc++, will not work.
8780 If we do not have debug info for the definition, we will have to
8781 match them up some other way.
8782
8783 When we do name matching there is a related problem with function
8784 templates; two instantiated function templates are allowed to
8785 differ only by their return types, which we do not add here. */
8786
8787 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8788 {
8789 struct attribute *attr;
8790 struct die_info *child;
8791 int first = 1;
8792
8793 die->building_fullname = 1;
8794
8795 for (child = die->child; child != NULL; child = child->sibling)
8796 {
8797 struct type *type;
12df843f 8798 LONGEST value;
d521ce57 8799 const gdb_byte *bytes;
98bfdba5
PA
8800 struct dwarf2_locexpr_baton *baton;
8801 struct value *v;
8802
8803 if (child->tag != DW_TAG_template_type_param
8804 && child->tag != DW_TAG_template_value_param)
8805 continue;
8806
8807 if (first)
8808 {
d7e74731 8809 buf.puts ("<");
98bfdba5
PA
8810 first = 0;
8811 }
8812 else
d7e74731 8813 buf.puts (", ");
98bfdba5
PA
8814
8815 attr = dwarf2_attr (child, DW_AT_type, cu);
8816 if (attr == NULL)
8817 {
8818 complaint (&symfile_complaints,
8819 _("template parameter missing DW_AT_type"));
d7e74731 8820 buf.puts ("UNKNOWN_TYPE");
98bfdba5
PA
8821 continue;
8822 }
8823 type = die_type (child, cu);
8824
8825 if (child->tag == DW_TAG_template_type_param)
8826 {
d7e74731 8827 c_print_type (type, "", &buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8828 continue;
8829 }
8830
8831 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8832 if (attr == NULL)
8833 {
8834 complaint (&symfile_complaints,
3e43a32a
MS
8835 _("template parameter missing "
8836 "DW_AT_const_value"));
d7e74731 8837 buf.puts ("UNKNOWN_VALUE");
98bfdba5
PA
8838 continue;
8839 }
8840
8841 dwarf2_const_value_attr (attr, type, name,
8842 &cu->comp_unit_obstack, cu,
8843 &value, &bytes, &baton);
8844
8845 if (TYPE_NOSIGN (type))
8846 /* GDB prints characters as NUMBER 'CHAR'. If that's
8847 changed, this can use value_print instead. */
d7e74731 8848 c_printchar (value, type, &buf);
98bfdba5
PA
8849 else
8850 {
8851 struct value_print_options opts;
8852
8853 if (baton != NULL)
8854 v = dwarf2_evaluate_loc_desc (type, NULL,
8855 baton->data,
8856 baton->size,
8857 baton->per_cu);
8858 else if (bytes != NULL)
8859 {
8860 v = allocate_value (type);
8861 memcpy (value_contents_writeable (v), bytes,
8862 TYPE_LENGTH (type));
8863 }
8864 else
8865 v = value_from_longest (type, value);
8866
3e43a32a
MS
8867 /* Specify decimal so that we do not depend on
8868 the radix. */
98bfdba5
PA
8869 get_formatted_print_options (&opts, 'd');
8870 opts.raw = 1;
d7e74731 8871 value_print (v, &buf, &opts);
98bfdba5
PA
8872 release_value (v);
8873 value_free (v);
8874 }
8875 }
8876
8877 die->building_fullname = 0;
8878
8879 if (!first)
8880 {
8881 /* Close the argument list, with a space if necessary
8882 (nested templates). */
d7e74731
PA
8883 if (!buf.empty () && buf.string ().back () == '>')
8884 buf.puts (" >");
98bfdba5 8885 else
d7e74731 8886 buf.puts (">");
98bfdba5
PA
8887 }
8888 }
8889
9c37b5ae 8890 /* For C++ methods, append formal parameter type
94af9270 8891 information, if PHYSNAME. */
6e70227d 8892
94af9270 8893 if (physname && die->tag == DW_TAG_subprogram
9c37b5ae 8894 && cu->language == language_cplus)
94af9270
KS
8895 {
8896 struct type *type = read_type_die (die, cu);
8897
d7e74731 8898 c_type_print_args (type, &buf, 1, cu->language,
79d43c61 8899 &type_print_raw_options);
94af9270 8900
9c37b5ae 8901 if (cu->language == language_cplus)
94af9270 8902 {
60430eff
DJ
8903 /* Assume that an artificial first parameter is
8904 "this", but do not crash if it is not. RealView
8905 marks unnamed (and thus unused) parameters as
8906 artificial; there is no way to differentiate
8907 the two cases. */
94af9270
KS
8908 if (TYPE_NFIELDS (type) > 0
8909 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8910 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8911 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8912 0))))
d7e74731 8913 buf.puts (" const");
94af9270
KS
8914 }
8915 }
8916
d7e74731 8917 const std::string &intermediate_name = buf.string ();
94af9270
KS
8918
8919 if (cu->language == language_cplus)
34a68019 8920 canonical_name
322a8516 8921 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
34a68019
TT
8922 &objfile->per_bfd->storage_obstack);
8923
8924 /* If we only computed INTERMEDIATE_NAME, or if
8925 INTERMEDIATE_NAME is already canonical, then we need to
8926 copy it to the appropriate obstack. */
322a8516 8927 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
224c3ddb
SM
8928 name = ((const char *)
8929 obstack_copy0 (&objfile->per_bfd->storage_obstack,
322a8516
PA
8930 intermediate_name.c_str (),
8931 intermediate_name.length ()));
34a68019
TT
8932 else
8933 name = canonical_name;
94af9270
KS
8934 }
8935 }
8936
8937 return name;
8938}
8939
0114d602
DJ
8940/* Return the fully qualified name of DIE, based on its DW_AT_name.
8941 If scope qualifiers are appropriate they will be added. The result
34a68019 8942 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8943 not have a name. NAME may either be from a previous call to
8944 dwarf2_name or NULL.
8945
9c37b5ae 8946 The output string will be canonicalized (if C++). */
0114d602
DJ
8947
8948static const char *
15d034d0 8949dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8950{
94af9270
KS
8951 return dwarf2_compute_name (name, die, cu, 0);
8952}
0114d602 8953
94af9270
KS
8954/* Construct a physname for the given DIE in CU. NAME may either be
8955 from a previous call to dwarf2_name or NULL. The result will be
8956 allocated on the objfile_objstack or NULL if the DIE does not have a
8957 name.
0114d602 8958
9c37b5ae 8959 The output string will be canonicalized (if C++). */
0114d602 8960
94af9270 8961static const char *
15d034d0 8962dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8963{
bb5ed363 8964 struct objfile *objfile = cu->objfile;
900e11f9
JK
8965 const char *retval, *mangled = NULL, *canon = NULL;
8966 struct cleanup *back_to;
8967 int need_copy = 1;
8968
8969 /* In this case dwarf2_compute_name is just a shortcut not building anything
8970 on its own. */
8971 if (!die_needs_namespace (die, cu))
8972 return dwarf2_compute_name (name, die, cu, 1);
8973
8974 back_to = make_cleanup (null_cleanup, NULL);
8975
7d45c7c3
KB
8976 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8977 if (mangled == NULL)
8978 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9 8979
e98c9e7c
TT
8980 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8981 See https://github.com/rust-lang/rust/issues/32925. */
8982 if (cu->language == language_rust && mangled != NULL
8983 && strchr (mangled, '{') != NULL)
8984 mangled = NULL;
8985
900e11f9
JK
8986 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8987 has computed. */
7d45c7c3 8988 if (mangled != NULL)
900e11f9
JK
8989 {
8990 char *demangled;
8991
900e11f9
JK
8992 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8993 type. It is easier for GDB users to search for such functions as
8994 `name(params)' than `long name(params)'. In such case the minimal
8995 symbol names do not match the full symbol names but for template
8996 functions there is never a need to look up their definition from their
8997 declaration so the only disadvantage remains the minimal symbol
8998 variant `long name(params)' does not have the proper inferior type.
8999 */
9000
a766d390
DE
9001 if (cu->language == language_go)
9002 {
9003 /* This is a lie, but we already lie to the caller new_symbol_full.
9004 new_symbol_full assumes we return the mangled name.
9005 This just undoes that lie until things are cleaned up. */
9006 demangled = NULL;
9007 }
9008 else
9009 {
8de20a37 9010 demangled = gdb_demangle (mangled,
9c37b5ae 9011 (DMGL_PARAMS | DMGL_ANSI | DMGL_RET_DROP));
a766d390 9012 }
900e11f9
JK
9013 if (demangled)
9014 {
9015 make_cleanup (xfree, demangled);
9016 canon = demangled;
9017 }
9018 else
9019 {
9020 canon = mangled;
9021 need_copy = 0;
9022 }
9023 }
9024
9025 if (canon == NULL || check_physname)
9026 {
9027 const char *physname = dwarf2_compute_name (name, die, cu, 1);
9028
9029 if (canon != NULL && strcmp (physname, canon) != 0)
9030 {
9031 /* It may not mean a bug in GDB. The compiler could also
9032 compute DW_AT_linkage_name incorrectly. But in such case
9033 GDB would need to be bug-to-bug compatible. */
9034
9035 complaint (&symfile_complaints,
9036 _("Computed physname <%s> does not match demangled <%s> "
9037 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
9c541725 9038 physname, canon, mangled, to_underlying (die->sect_off),
4262abfb 9039 objfile_name (objfile));
900e11f9
JK
9040
9041 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
9042 is available here - over computed PHYSNAME. It is safer
9043 against both buggy GDB and buggy compilers. */
9044
9045 retval = canon;
9046 }
9047 else
9048 {
9049 retval = physname;
9050 need_copy = 0;
9051 }
9052 }
9053 else
9054 retval = canon;
9055
9056 if (need_copy)
224c3ddb
SM
9057 retval = ((const char *)
9058 obstack_copy0 (&objfile->per_bfd->storage_obstack,
9059 retval, strlen (retval)));
900e11f9
JK
9060
9061 do_cleanups (back_to);
9062 return retval;
0114d602
DJ
9063}
9064
74921315
KS
9065/* Inspect DIE in CU for a namespace alias. If one exists, record
9066 a new symbol for it.
9067
9068 Returns 1 if a namespace alias was recorded, 0 otherwise. */
9069
9070static int
9071read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
9072{
9073 struct attribute *attr;
9074
9075 /* If the die does not have a name, this is not a namespace
9076 alias. */
9077 attr = dwarf2_attr (die, DW_AT_name, cu);
9078 if (attr != NULL)
9079 {
9080 int num;
9081 struct die_info *d = die;
9082 struct dwarf2_cu *imported_cu = cu;
9083
9084 /* If the compiler has nested DW_AT_imported_declaration DIEs,
9085 keep inspecting DIEs until we hit the underlying import. */
9086#define MAX_NESTED_IMPORTED_DECLARATIONS 100
9087 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
9088 {
9089 attr = dwarf2_attr (d, DW_AT_import, cu);
9090 if (attr == NULL)
9091 break;
9092
9093 d = follow_die_ref (d, attr, &imported_cu);
9094 if (d->tag != DW_TAG_imported_declaration)
9095 break;
9096 }
9097
9098 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
9099 {
9100 complaint (&symfile_complaints,
9101 _("DIE at 0x%x has too many recursively imported "
9c541725 9102 "declarations"), to_underlying (d->sect_off));
74921315
KS
9103 return 0;
9104 }
9105
9106 if (attr != NULL)
9107 {
9108 struct type *type;
9c541725 9109 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
74921315 9110
9c541725 9111 type = get_die_type_at_offset (sect_off, cu->per_cu);
74921315
KS
9112 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
9113 {
9114 /* This declaration is a global namespace alias. Add
9115 a symbol for it whose type is the aliased namespace. */
9116 new_symbol (die, type, cu);
9117 return 1;
9118 }
9119 }
9120 }
9121
9122 return 0;
9123}
9124
22cee43f
PMR
9125/* Return the using directives repository (global or local?) to use in the
9126 current context for LANGUAGE.
9127
9128 For Ada, imported declarations can materialize renamings, which *may* be
9129 global. However it is impossible (for now?) in DWARF to distinguish
9130 "external" imported declarations and "static" ones. As all imported
9131 declarations seem to be static in all other languages, make them all CU-wide
9132 global only in Ada. */
9133
9134static struct using_direct **
9135using_directives (enum language language)
9136{
9137 if (language == language_ada && context_stack_depth == 0)
9138 return &global_using_directives;
9139 else
9140 return &local_using_directives;
9141}
9142
27aa8d6a
SW
9143/* Read the import statement specified by the given die and record it. */
9144
9145static void
9146read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
9147{
bb5ed363 9148 struct objfile *objfile = cu->objfile;
27aa8d6a 9149 struct attribute *import_attr;
32019081 9150 struct die_info *imported_die, *child_die;
de4affc9 9151 struct dwarf2_cu *imported_cu;
27aa8d6a 9152 const char *imported_name;
794684b6 9153 const char *imported_name_prefix;
13387711
SW
9154 const char *canonical_name;
9155 const char *import_alias;
9156 const char *imported_declaration = NULL;
794684b6 9157 const char *import_prefix;
32019081
JK
9158 VEC (const_char_ptr) *excludes = NULL;
9159 struct cleanup *cleanups;
13387711 9160
27aa8d6a
SW
9161 import_attr = dwarf2_attr (die, DW_AT_import, cu);
9162 if (import_attr == NULL)
9163 {
9164 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9165 dwarf_tag_name (die->tag));
9166 return;
9167 }
9168
de4affc9
CC
9169 imported_cu = cu;
9170 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
9171 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
9172 if (imported_name == NULL)
9173 {
9174 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
9175
9176 The import in the following code:
9177 namespace A
9178 {
9179 typedef int B;
9180 }
9181
9182 int main ()
9183 {
9184 using A::B;
9185 B b;
9186 return b;
9187 }
9188
9189 ...
9190 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
9191 <52> DW_AT_decl_file : 1
9192 <53> DW_AT_decl_line : 6
9193 <54> DW_AT_import : <0x75>
9194 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
9195 <59> DW_AT_name : B
9196 <5b> DW_AT_decl_file : 1
9197 <5c> DW_AT_decl_line : 2
9198 <5d> DW_AT_type : <0x6e>
9199 ...
9200 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
9201 <76> DW_AT_byte_size : 4
9202 <77> DW_AT_encoding : 5 (signed)
9203
9204 imports the wrong die ( 0x75 instead of 0x58 ).
9205 This case will be ignored until the gcc bug is fixed. */
9206 return;
9207 }
9208
82856980
SW
9209 /* Figure out the local name after import. */
9210 import_alias = dwarf2_name (die, cu);
27aa8d6a 9211
794684b6
SW
9212 /* Figure out where the statement is being imported to. */
9213 import_prefix = determine_prefix (die, cu);
9214
9215 /* Figure out what the scope of the imported die is and prepend it
9216 to the name of the imported die. */
de4affc9 9217 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 9218
f55ee35c
JK
9219 if (imported_die->tag != DW_TAG_namespace
9220 && imported_die->tag != DW_TAG_module)
794684b6 9221 {
13387711
SW
9222 imported_declaration = imported_name;
9223 canonical_name = imported_name_prefix;
794684b6 9224 }
13387711 9225 else if (strlen (imported_name_prefix) > 0)
12aaed36 9226 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
9227 imported_name_prefix,
9228 (cu->language == language_d ? "." : "::"),
9229 imported_name, (char *) NULL);
13387711
SW
9230 else
9231 canonical_name = imported_name;
794684b6 9232
32019081
JK
9233 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
9234
9235 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
9236 for (child_die = die->child; child_die && child_die->tag;
9237 child_die = sibling_die (child_die))
9238 {
9239 /* DWARF-4: A Fortran use statement with a “rename list” may be
9240 represented by an imported module entry with an import attribute
9241 referring to the module and owned entries corresponding to those
9242 entities that are renamed as part of being imported. */
9243
9244 if (child_die->tag != DW_TAG_imported_declaration)
9245 {
9246 complaint (&symfile_complaints,
9247 _("child DW_TAG_imported_declaration expected "
9248 "- DIE at 0x%x [in module %s]"),
9c541725 9249 to_underlying (child_die->sect_off), objfile_name (objfile));
32019081
JK
9250 continue;
9251 }
9252
9253 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9254 if (import_attr == NULL)
9255 {
9256 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9257 dwarf_tag_name (child_die->tag));
9258 continue;
9259 }
9260
9261 imported_cu = cu;
9262 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9263 &imported_cu);
9264 imported_name = dwarf2_name (imported_die, imported_cu);
9265 if (imported_name == NULL)
9266 {
9267 complaint (&symfile_complaints,
9268 _("child DW_TAG_imported_declaration has unknown "
9269 "imported name - DIE at 0x%x [in module %s]"),
9c541725 9270 to_underlying (child_die->sect_off), objfile_name (objfile));
32019081
JK
9271 continue;
9272 }
9273
9274 VEC_safe_push (const_char_ptr, excludes, imported_name);
9275
9276 process_die (child_die, cu);
9277 }
9278
22cee43f
PMR
9279 add_using_directive (using_directives (cu->language),
9280 import_prefix,
9281 canonical_name,
9282 import_alias,
9283 imported_declaration,
9284 excludes,
9285 0,
9286 &objfile->objfile_obstack);
32019081
JK
9287
9288 do_cleanups (cleanups);
27aa8d6a
SW
9289}
9290
1b80a9fa
JK
9291/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9292 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9293 this, it was first present in GCC release 4.3.0. */
9294
9295static int
9296producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9297{
9298 if (!cu->checked_producer)
9299 check_producer (cu);
9300
9301 return cu->producer_is_gcc_lt_4_3;
9302}
9303
d721ba37
PA
9304static file_and_directory
9305find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
9291a0cd 9306{
d721ba37
PA
9307 file_and_directory res;
9308
9291a0cd
TT
9309 /* Find the filename. Do not use dwarf2_name here, since the filename
9310 is not a source language identifier. */
d721ba37
PA
9311 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
9312 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9313
d721ba37
PA
9314 if (res.comp_dir == NULL
9315 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
9316 && IS_ABSOLUTE_PATH (res.name))
9291a0cd 9317 {
d721ba37
PA
9318 res.comp_dir_storage = ldirname (res.name);
9319 if (!res.comp_dir_storage.empty ())
9320 res.comp_dir = res.comp_dir_storage.c_str ();
9291a0cd 9321 }
d721ba37 9322 if (res.comp_dir != NULL)
9291a0cd
TT
9323 {
9324 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9325 directory, get rid of it. */
d721ba37 9326 const char *cp = strchr (res.comp_dir, ':');
9291a0cd 9327
d721ba37
PA
9328 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
9329 res.comp_dir = cp + 1;
9291a0cd
TT
9330 }
9331
d721ba37
PA
9332 if (res.name == NULL)
9333 res.name = "<unknown>";
9334
9335 return res;
9291a0cd
TT
9336}
9337
f4dc4d17
DE
9338/* Handle DW_AT_stmt_list for a compilation unit.
9339 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9340 COMP_DIR is the compilation directory. LOWPC is passed to
9341 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9342
9343static void
9344handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9345 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9346{
527f3840 9347 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9348 struct attribute *attr;
527f3840
JK
9349 struct line_header line_header_local;
9350 hashval_t line_header_local_hash;
9351 unsigned u;
9352 void **slot;
9353 int decode_mapping;
2ab95328 9354
f4dc4d17
DE
9355 gdb_assert (! cu->per_cu->is_debug_types);
9356
2ab95328 9357 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9358 if (attr == NULL)
9359 return;
9360
9c541725 9361 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
527f3840
JK
9362
9363 /* The line header hash table is only created if needed (it exists to
9364 prevent redundant reading of the line table for partial_units).
9365 If we're given a partial_unit, we'll need it. If we're given a
9366 compile_unit, then use the line header hash table if it's already
9367 created, but don't create one just yet. */
9368
9369 if (dwarf2_per_objfile->line_header_hash == NULL
9370 && die->tag == DW_TAG_partial_unit)
2ab95328 9371 {
527f3840
JK
9372 dwarf2_per_objfile->line_header_hash
9373 = htab_create_alloc_ex (127, line_header_hash_voidp,
9374 line_header_eq_voidp,
9375 free_line_header_voidp,
9376 &objfile->objfile_obstack,
9377 hashtab_obstack_allocate,
9378 dummy_obstack_deallocate);
9379 }
2ab95328 9380
9c541725 9381 line_header_local.sect_off = line_offset;
527f3840
JK
9382 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9383 line_header_local_hash = line_header_hash (&line_header_local);
9384 if (dwarf2_per_objfile->line_header_hash != NULL)
9385 {
9386 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9387 &line_header_local,
9388 line_header_local_hash, NO_INSERT);
9389
9390 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9391 is not present in *SLOT (since if there is something in *SLOT then
9392 it will be for a partial_unit). */
9393 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9394 {
527f3840 9395 gdb_assert (*slot != NULL);
9a3c8263 9396 cu->line_header = (struct line_header *) *slot;
527f3840 9397 return;
dee91e82 9398 }
2ab95328 9399 }
527f3840
JK
9400
9401 /* dwarf_decode_line_header does not yet provide sufficient information.
9402 We always have to call also dwarf_decode_lines for it. */
fff8551c
PA
9403 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
9404 if (lh == NULL)
527f3840 9405 return;
4c8aa72d
PA
9406
9407 cu->line_header = lh.release ();
9408 cu->line_header_die_owner = die;
527f3840
JK
9409
9410 if (dwarf2_per_objfile->line_header_hash == NULL)
9411 slot = NULL;
9412 else
9413 {
9414 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9415 &line_header_local,
9416 line_header_local_hash, INSERT);
9417 gdb_assert (slot != NULL);
9418 }
9419 if (slot != NULL && *slot == NULL)
9420 {
9421 /* This newly decoded line number information unit will be owned
9422 by line_header_hash hash table. */
9423 *slot = cu->line_header;
4c8aa72d 9424 cu->line_header_die_owner = NULL;
527f3840
JK
9425 }
9426 else
9427 {
9428 /* We cannot free any current entry in (*slot) as that struct line_header
9429 may be already used by multiple CUs. Create only temporary decoded
9430 line_header for this CU - it may happen at most once for each line
9431 number information unit. And if we're not using line_header_hash
9432 then this is what we want as well. */
9433 gdb_assert (die->tag != DW_TAG_partial_unit);
527f3840
JK
9434 }
9435 decode_mapping = (die->tag != DW_TAG_partial_unit);
9436 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9437 decode_mapping);
fff8551c 9438
2ab95328
TT
9439}
9440
95554aad 9441/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9442
c906108c 9443static void
e7c27a73 9444read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9445{
dee91e82 9446 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9447 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2acceee2 9448 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9449 CORE_ADDR highpc = ((CORE_ADDR) 0);
9450 struct attribute *attr;
c906108c 9451 struct die_info *child_die;
e142c38c 9452 CORE_ADDR baseaddr;
6e70227d 9453
e142c38c 9454 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9455
fae299cd 9456 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9457
9458 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9459 from finish_block. */
2acceee2 9460 if (lowpc == ((CORE_ADDR) -1))
c906108c 9461 lowpc = highpc;
3e29f34a 9462 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9463
d721ba37 9464 file_and_directory fnd = find_file_and_directory (die, cu);
e1024ff1 9465
95554aad 9466 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9467
f4b8a18d
KW
9468 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9469 standardised yet. As a workaround for the language detection we fall
9470 back to the DW_AT_producer string. */
9471 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9472 cu->language = language_opencl;
9473
3019eac3
DE
9474 /* Similar hack for Go. */
9475 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9476 set_cu_language (DW_LANG_Go, cu);
9477
d721ba37 9478 dwarf2_start_symtab (cu, fnd.name, fnd.comp_dir, lowpc);
3019eac3
DE
9479
9480 /* Decode line number information if present. We do this before
9481 processing child DIEs, so that the line header table is available
9482 for DW_AT_decl_file. */
d721ba37 9483 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
3019eac3
DE
9484
9485 /* Process all dies in compilation unit. */
9486 if (die->child != NULL)
9487 {
9488 child_die = die->child;
9489 while (child_die && child_die->tag)
9490 {
9491 process_die (child_die, cu);
9492 child_die = sibling_die (child_die);
9493 }
9494 }
9495
9496 /* Decode macro information, if present. Dwarf 2 macro information
9497 refers to information in the line number info statement program
9498 header, so we can only read it if we've read the header
9499 successfully. */
0af92d60
JK
9500 attr = dwarf2_attr (die, DW_AT_macros, cu);
9501 if (attr == NULL)
9502 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
3019eac3
DE
9503 if (attr && cu->line_header)
9504 {
9505 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9506 complaint (&symfile_complaints,
0af92d60 9507 _("CU refers to both DW_AT_macros and DW_AT_macro_info"));
3019eac3 9508
43f3e411 9509 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9510 }
9511 else
9512 {
9513 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9514 if (attr && cu->line_header)
9515 {
9516 unsigned int macro_offset = DW_UNSND (attr);
9517
43f3e411 9518 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9519 }
9520 }
3019eac3
DE
9521}
9522
f4dc4d17
DE
9523/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9524 Create the set of symtabs used by this TU, or if this TU is sharing
9525 symtabs with another TU and the symtabs have already been created
9526 then restore those symtabs in the line header.
9527 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9528
9529static void
f4dc4d17 9530setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9531{
f4dc4d17
DE
9532 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9533 struct type_unit_group *tu_group;
9534 int first_time;
3019eac3 9535 struct attribute *attr;
9c541725 9536 unsigned int i;
0186c6a7 9537 struct signatured_type *sig_type;
3019eac3 9538
f4dc4d17 9539 gdb_assert (per_cu->is_debug_types);
0186c6a7 9540 sig_type = (struct signatured_type *) per_cu;
3019eac3 9541
f4dc4d17 9542 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9543
f4dc4d17 9544 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9545 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9546 if (sig_type->type_unit_group == NULL)
9547 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9548 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9549
9550 /* If we've already processed this stmt_list there's no real need to
9551 do it again, we could fake it and just recreate the part we need
9552 (file name,index -> symtab mapping). If data shows this optimization
9553 is useful we can do it then. */
43f3e411 9554 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9555
9556 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9557 debug info. */
fff8551c 9558 line_header_up lh;
f4dc4d17 9559 if (attr != NULL)
3019eac3 9560 {
9c541725 9561 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
f4dc4d17
DE
9562 lh = dwarf_decode_line_header (line_offset, cu);
9563 }
9564 if (lh == NULL)
9565 {
9566 if (first_time)
9567 dwarf2_start_symtab (cu, "", NULL, 0);
9568 else
9569 {
9570 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9571 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9572 }
f4dc4d17 9573 return;
3019eac3
DE
9574 }
9575
4c8aa72d
PA
9576 cu->line_header = lh.release ();
9577 cu->line_header_die_owner = die;
3019eac3 9578
f4dc4d17
DE
9579 if (first_time)
9580 {
43f3e411 9581 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9582
1fd60fc0
DE
9583 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9584 still initializing it, and our caller (a few levels up)
9585 process_full_type_unit still needs to know if this is the first
9586 time. */
9587
4c8aa72d
PA
9588 tu_group->num_symtabs = cu->line_header->file_names.size ();
9589 tu_group->symtabs = XNEWVEC (struct symtab *,
9590 cu->line_header->file_names.size ());
3019eac3 9591
4c8aa72d 9592 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 9593 {
4c8aa72d 9594 file_entry &fe = cu->line_header->file_names[i];
3019eac3 9595
4c8aa72d 9596 dwarf2_start_subfile (fe.name, fe.include_dir (cu->line_header));
3019eac3 9597
f4dc4d17
DE
9598 if (current_subfile->symtab == NULL)
9599 {
4c8aa72d
PA
9600 /* NOTE: start_subfile will recognize when it's been
9601 passed a file it has already seen. So we can't
9602 assume there's a simple mapping from
9603 cu->line_header->file_names to subfiles, plus
9604 cu->line_header->file_names may contain dups. */
43f3e411
DE
9605 current_subfile->symtab
9606 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9607 }
9608
8c43009f
PA
9609 fe.symtab = current_subfile->symtab;
9610 tu_group->symtabs[i] = fe.symtab;
f4dc4d17
DE
9611 }
9612 }
9613 else
3019eac3 9614 {
0ab9ce85 9615 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9616
4c8aa72d 9617 for (i = 0; i < cu->line_header->file_names.size (); ++i)
f4dc4d17 9618 {
4c8aa72d 9619 file_entry &fe = cu->line_header->file_names[i];
f4dc4d17 9620
4c8aa72d 9621 fe.symtab = tu_group->symtabs[i];
f4dc4d17 9622 }
3019eac3
DE
9623 }
9624
f4dc4d17
DE
9625 /* The main symtab is allocated last. Type units don't have DW_AT_name
9626 so they don't have a "real" (so to speak) symtab anyway.
9627 There is later code that will assign the main symtab to all symbols
9628 that don't have one. We need to handle the case of a symbol with a
9629 missing symtab (DW_AT_decl_file) anyway. */
9630}
3019eac3 9631
f4dc4d17
DE
9632/* Process DW_TAG_type_unit.
9633 For TUs we want to skip the first top level sibling if it's not the
9634 actual type being defined by this TU. In this case the first top
9635 level sibling is there to provide context only. */
3019eac3 9636
f4dc4d17
DE
9637static void
9638read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9639{
9640 struct die_info *child_die;
3019eac3 9641
f4dc4d17
DE
9642 prepare_one_comp_unit (cu, die, language_minimal);
9643
9644 /* Initialize (or reinitialize) the machinery for building symtabs.
9645 We do this before processing child DIEs, so that the line header table
9646 is available for DW_AT_decl_file. */
9647 setup_type_unit_groups (die, cu);
9648
9649 if (die->child != NULL)
9650 {
9651 child_die = die->child;
9652 while (child_die && child_die->tag)
9653 {
9654 process_die (child_die, cu);
9655 child_die = sibling_die (child_die);
9656 }
9657 }
3019eac3
DE
9658}
9659\f
80626a55
DE
9660/* DWO/DWP files.
9661
9662 http://gcc.gnu.org/wiki/DebugFission
9663 http://gcc.gnu.org/wiki/DebugFissionDWP
9664
9665 To simplify handling of both DWO files ("object" files with the DWARF info)
9666 and DWP files (a file with the DWOs packaged up into one file), we treat
9667 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9668
9669static hashval_t
9670hash_dwo_file (const void *item)
9671{
9a3c8263 9672 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9673 hashval_t hash;
3019eac3 9674
a2ce51a0
DE
9675 hash = htab_hash_string (dwo_file->dwo_name);
9676 if (dwo_file->comp_dir != NULL)
9677 hash += htab_hash_string (dwo_file->comp_dir);
9678 return hash;
3019eac3
DE
9679}
9680
9681static int
9682eq_dwo_file (const void *item_lhs, const void *item_rhs)
9683{
9a3c8263
SM
9684 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9685 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9686
a2ce51a0
DE
9687 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9688 return 0;
9689 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9690 return lhs->comp_dir == rhs->comp_dir;
9691 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9692}
9693
9694/* Allocate a hash table for DWO files. */
9695
9696static htab_t
9697allocate_dwo_file_hash_table (void)
9698{
9699 struct objfile *objfile = dwarf2_per_objfile->objfile;
9700
9701 return htab_create_alloc_ex (41,
9702 hash_dwo_file,
9703 eq_dwo_file,
9704 NULL,
9705 &objfile->objfile_obstack,
9706 hashtab_obstack_allocate,
9707 dummy_obstack_deallocate);
9708}
9709
80626a55
DE
9710/* Lookup DWO file DWO_NAME. */
9711
9712static void **
0ac5b59e 9713lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9714{
9715 struct dwo_file find_entry;
9716 void **slot;
9717
9718 if (dwarf2_per_objfile->dwo_files == NULL)
9719 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9720
9721 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9722 find_entry.dwo_name = dwo_name;
9723 find_entry.comp_dir = comp_dir;
80626a55
DE
9724 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9725
9726 return slot;
9727}
9728
3019eac3
DE
9729static hashval_t
9730hash_dwo_unit (const void *item)
9731{
9a3c8263 9732 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9733
9734 /* This drops the top 32 bits of the id, but is ok for a hash. */
9735 return dwo_unit->signature;
9736}
9737
9738static int
9739eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9740{
9a3c8263
SM
9741 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9742 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9743
9744 /* The signature is assumed to be unique within the DWO file.
9745 So while object file CU dwo_id's always have the value zero,
9746 that's OK, assuming each object file DWO file has only one CU,
9747 and that's the rule for now. */
9748 return lhs->signature == rhs->signature;
9749}
9750
9751/* Allocate a hash table for DWO CUs,TUs.
9752 There is one of these tables for each of CUs,TUs for each DWO file. */
9753
9754static htab_t
9755allocate_dwo_unit_table (struct objfile *objfile)
9756{
9757 /* Start out with a pretty small number.
9758 Generally DWO files contain only one CU and maybe some TUs. */
9759 return htab_create_alloc_ex (3,
9760 hash_dwo_unit,
9761 eq_dwo_unit,
9762 NULL,
9763 &objfile->objfile_obstack,
9764 hashtab_obstack_allocate,
9765 dummy_obstack_deallocate);
9766}
9767
80626a55 9768/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9769
19c3d4c9 9770struct create_dwo_cu_data
3019eac3
DE
9771{
9772 struct dwo_file *dwo_file;
19c3d4c9 9773 struct dwo_unit dwo_unit;
3019eac3
DE
9774};
9775
19c3d4c9 9776/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9777
9778static void
19c3d4c9
DE
9779create_dwo_cu_reader (const struct die_reader_specs *reader,
9780 const gdb_byte *info_ptr,
9781 struct die_info *comp_unit_die,
9782 int has_children,
9783 void *datap)
3019eac3
DE
9784{
9785 struct dwarf2_cu *cu = reader->cu;
9c541725 9786 sect_offset sect_off = cu->per_cu->sect_off;
8a0459fd 9787 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9788 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9789 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9790 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9791 struct attribute *attr;
3019eac3
DE
9792
9793 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9794 if (attr == NULL)
9795 {
19c3d4c9
DE
9796 complaint (&symfile_complaints,
9797 _("Dwarf Error: debug entry at offset 0x%x is missing"
9798 " its dwo_id [in module %s]"),
9c541725 9799 to_underlying (sect_off), dwo_file->dwo_name);
3019eac3
DE
9800 return;
9801 }
9802
3019eac3
DE
9803 dwo_unit->dwo_file = dwo_file;
9804 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9805 dwo_unit->section = section;
9c541725 9806 dwo_unit->sect_off = sect_off;
3019eac3
DE
9807 dwo_unit->length = cu->per_cu->length;
9808
b4f54984 9809 if (dwarf_read_debug)
4031ecc5 9810 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9c541725
PA
9811 to_underlying (sect_off),
9812 hex_string (dwo_unit->signature));
3019eac3
DE
9813}
9814
33c5cd75 9815/* Create the dwo_units for the CUs in a DWO_FILE.
19c3d4c9 9816 Note: This function processes DWO files only, not DWP files. */
3019eac3 9817
33c5cd75
DB
9818static void
9819create_cus_hash_table (struct dwo_file &dwo_file, dwarf2_section_info &section,
9820 htab_t &cus_htab)
3019eac3
DE
9821{
9822 struct objfile *objfile = dwarf2_per_objfile->objfile;
33c5cd75 9823 const struct dwarf2_section_info *abbrev_section = &dwo_file.sections.abbrev;
d521ce57 9824 const gdb_byte *info_ptr, *end_ptr;
3019eac3 9825
33c5cd75
DB
9826 dwarf2_read_section (objfile, &section);
9827 info_ptr = section.buffer;
3019eac3
DE
9828
9829 if (info_ptr == NULL)
33c5cd75 9830 return;
3019eac3 9831
b4f54984 9832 if (dwarf_read_debug)
19c3d4c9
DE
9833 {
9834 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
33c5cd75
DB
9835 get_section_name (&section),
9836 get_section_file_name (&section));
19c3d4c9 9837 }
3019eac3 9838
33c5cd75 9839 end_ptr = info_ptr + section.size;
3019eac3
DE
9840 while (info_ptr < end_ptr)
9841 {
9842 struct dwarf2_per_cu_data per_cu;
33c5cd75
DB
9843 struct create_dwo_cu_data create_dwo_cu_data;
9844 struct dwo_unit *dwo_unit;
9845 void **slot;
9846 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
3019eac3 9847
19c3d4c9
DE
9848 memset (&create_dwo_cu_data.dwo_unit, 0,
9849 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9850 memset (&per_cu, 0, sizeof (per_cu));
9851 per_cu.objfile = objfile;
9852 per_cu.is_debug_types = 0;
33c5cd75
DB
9853 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
9854 per_cu.section = &section;
c5ed0576 9855 create_dwo_cu_data.dwo_file = &dwo_file;
33c5cd75
DB
9856
9857 init_cutu_and_read_dies_no_follow (
9858 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
9859 info_ptr += per_cu.length;
9860
9861 // If the unit could not be parsed, skip it.
9862 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
9863 continue;
3019eac3 9864
33c5cd75
DB
9865 if (cus_htab == NULL)
9866 cus_htab = allocate_dwo_unit_table (objfile);
19c3d4c9 9867
33c5cd75
DB
9868 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9869 *dwo_unit = create_dwo_cu_data.dwo_unit;
9870 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
9871 gdb_assert (slot != NULL);
9872 if (*slot != NULL)
19c3d4c9 9873 {
33c5cd75
DB
9874 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
9875 sect_offset dup_sect_off = dup_cu->sect_off;
19c3d4c9 9876
33c5cd75
DB
9877 complaint (&symfile_complaints,
9878 _("debug cu entry at offset 0x%x is duplicate to"
9879 " the entry at offset 0x%x, signature %s"),
9880 to_underlying (sect_off), to_underlying (dup_sect_off),
9881 hex_string (dwo_unit->signature));
19c3d4c9 9882 }
33c5cd75 9883 *slot = (void *)dwo_unit;
3019eac3 9884 }
3019eac3
DE
9885}
9886
80626a55
DE
9887/* DWP file .debug_{cu,tu}_index section format:
9888 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9889
d2415c6c
DE
9890 DWP Version 1:
9891
80626a55
DE
9892 Both index sections have the same format, and serve to map a 64-bit
9893 signature to a set of section numbers. Each section begins with a header,
9894 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9895 indexes, and a pool of 32-bit section numbers. The index sections will be
9896 aligned at 8-byte boundaries in the file.
9897
d2415c6c
DE
9898 The index section header consists of:
9899
9900 V, 32 bit version number
9901 -, 32 bits unused
9902 N, 32 bit number of compilation units or type units in the index
9903 M, 32 bit number of slots in the hash table
80626a55 9904
d2415c6c 9905 Numbers are recorded using the byte order of the application binary.
80626a55 9906
d2415c6c
DE
9907 The hash table begins at offset 16 in the section, and consists of an array
9908 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9909 order of the application binary). Unused slots in the hash table are 0.
9910 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9911
d2415c6c
DE
9912 The parallel table begins immediately after the hash table
9913 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9914 array of 32-bit indexes (using the byte order of the application binary),
9915 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9916 table contains a 32-bit index into the pool of section numbers. For unused
9917 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9918
73869dc2
DE
9919 The pool of section numbers begins immediately following the hash table
9920 (at offset 16 + 12 * M from the beginning of the section). The pool of
9921 section numbers consists of an array of 32-bit words (using the byte order
9922 of the application binary). Each item in the array is indexed starting
9923 from 0. The hash table entry provides the index of the first section
9924 number in the set. Additional section numbers in the set follow, and the
9925 set is terminated by a 0 entry (section number 0 is not used in ELF).
9926
9927 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9928 section must be the first entry in the set, and the .debug_abbrev.dwo must
9929 be the second entry. Other members of the set may follow in any order.
9930
9931 ---
9932
9933 DWP Version 2:
9934
9935 DWP Version 2 combines all the .debug_info, etc. sections into one,
9936 and the entries in the index tables are now offsets into these sections.
9937 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9938 section.
9939
9940 Index Section Contents:
9941 Header
9942 Hash Table of Signatures dwp_hash_table.hash_table
9943 Parallel Table of Indices dwp_hash_table.unit_table
9944 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9945 Table of Section Sizes dwp_hash_table.v2.sizes
9946
9947 The index section header consists of:
9948
9949 V, 32 bit version number
9950 L, 32 bit number of columns in the table of section offsets
9951 N, 32 bit number of compilation units or type units in the index
9952 M, 32 bit number of slots in the hash table
9953
9954 Numbers are recorded using the byte order of the application binary.
9955
9956 The hash table has the same format as version 1.
9957 The parallel table of indices has the same format as version 1,
9958 except that the entries are origin-1 indices into the table of sections
9959 offsets and the table of section sizes.
9960
9961 The table of offsets begins immediately following the parallel table
9962 (at offset 16 + 12 * M from the beginning of the section). The table is
9963 a two-dimensional array of 32-bit words (using the byte order of the
9964 application binary), with L columns and N+1 rows, in row-major order.
9965 Each row in the array is indexed starting from 0. The first row provides
9966 a key to the remaining rows: each column in this row provides an identifier
9967 for a debug section, and the offsets in the same column of subsequent rows
9968 refer to that section. The section identifiers are:
9969
9970 DW_SECT_INFO 1 .debug_info.dwo
9971 DW_SECT_TYPES 2 .debug_types.dwo
9972 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9973 DW_SECT_LINE 4 .debug_line.dwo
9974 DW_SECT_LOC 5 .debug_loc.dwo
9975 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9976 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9977 DW_SECT_MACRO 8 .debug_macro.dwo
9978
9979 The offsets provided by the CU and TU index sections are the base offsets
9980 for the contributions made by each CU or TU to the corresponding section
9981 in the package file. Each CU and TU header contains an abbrev_offset
9982 field, used to find the abbreviations table for that CU or TU within the
9983 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9984 be interpreted as relative to the base offset given in the index section.
9985 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9986 should be interpreted as relative to the base offset for .debug_line.dwo,
9987 and offsets into other debug sections obtained from DWARF attributes should
9988 also be interpreted as relative to the corresponding base offset.
9989
9990 The table of sizes begins immediately following the table of offsets.
9991 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9992 with L columns and N rows, in row-major order. Each row in the array is
9993 indexed starting from 1 (row 0 is shared by the two tables).
9994
9995 ---
9996
9997 Hash table lookup is handled the same in version 1 and 2:
9998
9999 We assume that N and M will not exceed 2^32 - 1.
10000 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
10001
d2415c6c
DE
10002 Given a 64-bit compilation unit signature or a type signature S, an entry
10003 in the hash table is located as follows:
80626a55 10004
d2415c6c
DE
10005 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
10006 the low-order k bits all set to 1.
80626a55 10007
d2415c6c 10008 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 10009
d2415c6c
DE
10010 3) If the hash table entry at index H matches the signature, use that
10011 entry. If the hash table entry at index H is unused (all zeroes),
10012 terminate the search: the signature is not present in the table.
80626a55 10013
d2415c6c 10014 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 10015
d2415c6c 10016 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 10017 to stop at an unused slot or find the match. */
80626a55
DE
10018
10019/* Create a hash table to map DWO IDs to their CU/TU entry in
10020 .debug_{info,types}.dwo in DWP_FILE.
10021 Returns NULL if there isn't one.
10022 Note: This function processes DWP files only, not DWO files. */
10023
10024static struct dwp_hash_table *
10025create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
10026{
10027 struct objfile *objfile = dwarf2_per_objfile->objfile;
10028 bfd *dbfd = dwp_file->dbfd;
948f8e3d 10029 const gdb_byte *index_ptr, *index_end;
80626a55 10030 struct dwarf2_section_info *index;
73869dc2 10031 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
10032 struct dwp_hash_table *htab;
10033
10034 if (is_debug_types)
10035 index = &dwp_file->sections.tu_index;
10036 else
10037 index = &dwp_file->sections.cu_index;
10038
10039 if (dwarf2_section_empty_p (index))
10040 return NULL;
10041 dwarf2_read_section (objfile, index);
10042
10043 index_ptr = index->buffer;
10044 index_end = index_ptr + index->size;
10045
10046 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
10047 index_ptr += 4;
10048 if (version == 2)
10049 nr_columns = read_4_bytes (dbfd, index_ptr);
10050 else
10051 nr_columns = 0;
10052 index_ptr += 4;
80626a55
DE
10053 nr_units = read_4_bytes (dbfd, index_ptr);
10054 index_ptr += 4;
10055 nr_slots = read_4_bytes (dbfd, index_ptr);
10056 index_ptr += 4;
10057
73869dc2 10058 if (version != 1 && version != 2)
80626a55 10059 {
21aa081e 10060 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 10061 " [in module %s]"),
21aa081e 10062 pulongest (version), dwp_file->name);
80626a55
DE
10063 }
10064 if (nr_slots != (nr_slots & -nr_slots))
10065 {
21aa081e 10066 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 10067 " is not power of 2 [in module %s]"),
21aa081e 10068 pulongest (nr_slots), dwp_file->name);
80626a55
DE
10069 }
10070
10071 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
10072 htab->version = version;
10073 htab->nr_columns = nr_columns;
80626a55
DE
10074 htab->nr_units = nr_units;
10075 htab->nr_slots = nr_slots;
10076 htab->hash_table = index_ptr;
10077 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
10078
10079 /* Exit early if the table is empty. */
10080 if (nr_slots == 0 || nr_units == 0
10081 || (version == 2 && nr_columns == 0))
10082 {
10083 /* All must be zero. */
10084 if (nr_slots != 0 || nr_units != 0
10085 || (version == 2 && nr_columns != 0))
10086 {
10087 complaint (&symfile_complaints,
10088 _("Empty DWP but nr_slots,nr_units,nr_columns not"
10089 " all zero [in modules %s]"),
10090 dwp_file->name);
10091 }
10092 return htab;
10093 }
10094
10095 if (version == 1)
10096 {
10097 htab->section_pool.v1.indices =
10098 htab->unit_table + sizeof (uint32_t) * nr_slots;
10099 /* It's harder to decide whether the section is too small in v1.
10100 V1 is deprecated anyway so we punt. */
10101 }
10102 else
10103 {
10104 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
10105 int *ids = htab->section_pool.v2.section_ids;
10106 /* Reverse map for error checking. */
10107 int ids_seen[DW_SECT_MAX + 1];
10108 int i;
10109
10110 if (nr_columns < 2)
10111 {
10112 error (_("Dwarf Error: bad DWP hash table, too few columns"
10113 " in section table [in module %s]"),
10114 dwp_file->name);
10115 }
10116 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
10117 {
10118 error (_("Dwarf Error: bad DWP hash table, too many columns"
10119 " in section table [in module %s]"),
10120 dwp_file->name);
10121 }
10122 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10123 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
10124 for (i = 0; i < nr_columns; ++i)
10125 {
10126 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
10127
10128 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
10129 {
10130 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
10131 " in section table [in module %s]"),
10132 id, dwp_file->name);
10133 }
10134 if (ids_seen[id] != -1)
10135 {
10136 error (_("Dwarf Error: bad DWP hash table, duplicate section"
10137 " id %d in section table [in module %s]"),
10138 id, dwp_file->name);
10139 }
10140 ids_seen[id] = i;
10141 ids[i] = id;
10142 }
10143 /* Must have exactly one info or types section. */
10144 if (((ids_seen[DW_SECT_INFO] != -1)
10145 + (ids_seen[DW_SECT_TYPES] != -1))
10146 != 1)
10147 {
10148 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
10149 " DWO info/types section [in module %s]"),
10150 dwp_file->name);
10151 }
10152 /* Must have an abbrev section. */
10153 if (ids_seen[DW_SECT_ABBREV] == -1)
10154 {
10155 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
10156 " section [in module %s]"),
10157 dwp_file->name);
10158 }
10159 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
10160 htab->section_pool.v2.sizes =
10161 htab->section_pool.v2.offsets + (sizeof (uint32_t)
10162 * nr_units * nr_columns);
10163 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
10164 * nr_units * nr_columns))
10165 > index_end)
10166 {
10167 error (_("Dwarf Error: DWP index section is corrupt (too small)"
10168 " [in module %s]"),
10169 dwp_file->name);
10170 }
10171 }
80626a55
DE
10172
10173 return htab;
10174}
10175
10176/* Update SECTIONS with the data from SECTP.
10177
10178 This function is like the other "locate" section routines that are
10179 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 10180 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
10181
10182 The result is non-zero for success, or zero if an error was found. */
10183
10184static int
73869dc2
DE
10185locate_v1_virtual_dwo_sections (asection *sectp,
10186 struct virtual_v1_dwo_sections *sections)
80626a55
DE
10187{
10188 const struct dwop_section_names *names = &dwop_section_names;
10189
10190 if (section_is_p (sectp->name, &names->abbrev_dwo))
10191 {
10192 /* There can be only one. */
049412e3 10193 if (sections->abbrev.s.section != NULL)
80626a55 10194 return 0;
049412e3 10195 sections->abbrev.s.section = sectp;
80626a55
DE
10196 sections->abbrev.size = bfd_get_section_size (sectp);
10197 }
10198 else if (section_is_p (sectp->name, &names->info_dwo)
10199 || section_is_p (sectp->name, &names->types_dwo))
10200 {
10201 /* There can be only one. */
049412e3 10202 if (sections->info_or_types.s.section != NULL)
80626a55 10203 return 0;
049412e3 10204 sections->info_or_types.s.section = sectp;
80626a55
DE
10205 sections->info_or_types.size = bfd_get_section_size (sectp);
10206 }
10207 else if (section_is_p (sectp->name, &names->line_dwo))
10208 {
10209 /* There can be only one. */
049412e3 10210 if (sections->line.s.section != NULL)
80626a55 10211 return 0;
049412e3 10212 sections->line.s.section = sectp;
80626a55
DE
10213 sections->line.size = bfd_get_section_size (sectp);
10214 }
10215 else if (section_is_p (sectp->name, &names->loc_dwo))
10216 {
10217 /* There can be only one. */
049412e3 10218 if (sections->loc.s.section != NULL)
80626a55 10219 return 0;
049412e3 10220 sections->loc.s.section = sectp;
80626a55
DE
10221 sections->loc.size = bfd_get_section_size (sectp);
10222 }
10223 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10224 {
10225 /* There can be only one. */
049412e3 10226 if (sections->macinfo.s.section != NULL)
80626a55 10227 return 0;
049412e3 10228 sections->macinfo.s.section = sectp;
80626a55
DE
10229 sections->macinfo.size = bfd_get_section_size (sectp);
10230 }
10231 else if (section_is_p (sectp->name, &names->macro_dwo))
10232 {
10233 /* There can be only one. */
049412e3 10234 if (sections->macro.s.section != NULL)
80626a55 10235 return 0;
049412e3 10236 sections->macro.s.section = sectp;
80626a55
DE
10237 sections->macro.size = bfd_get_section_size (sectp);
10238 }
10239 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10240 {
10241 /* There can be only one. */
049412e3 10242 if (sections->str_offsets.s.section != NULL)
80626a55 10243 return 0;
049412e3 10244 sections->str_offsets.s.section = sectp;
80626a55
DE
10245 sections->str_offsets.size = bfd_get_section_size (sectp);
10246 }
10247 else
10248 {
10249 /* No other kind of section is valid. */
10250 return 0;
10251 }
10252
10253 return 1;
10254}
10255
73869dc2
DE
10256/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10257 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10258 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10259 This is for DWP version 1 files. */
80626a55
DE
10260
10261static struct dwo_unit *
73869dc2
DE
10262create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10263 uint32_t unit_index,
10264 const char *comp_dir,
10265 ULONGEST signature, int is_debug_types)
80626a55
DE
10266{
10267 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10268 const struct dwp_hash_table *dwp_htab =
10269 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10270 bfd *dbfd = dwp_file->dbfd;
10271 const char *kind = is_debug_types ? "TU" : "CU";
10272 struct dwo_file *dwo_file;
10273 struct dwo_unit *dwo_unit;
73869dc2 10274 struct virtual_v1_dwo_sections sections;
80626a55
DE
10275 void **dwo_file_slot;
10276 char *virtual_dwo_name;
80626a55
DE
10277 struct cleanup *cleanups;
10278 int i;
10279
73869dc2
DE
10280 gdb_assert (dwp_file->version == 1);
10281
b4f54984 10282 if (dwarf_read_debug)
80626a55 10283 {
73869dc2 10284 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10285 kind,
73869dc2 10286 pulongest (unit_index), hex_string (signature),
80626a55
DE
10287 dwp_file->name);
10288 }
10289
19ac8c2e 10290 /* Fetch the sections of this DWO unit.
80626a55
DE
10291 Put a limit on the number of sections we look for so that bad data
10292 doesn't cause us to loop forever. */
10293
73869dc2 10294#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10295 (1 /* .debug_info or .debug_types */ \
10296 + 1 /* .debug_abbrev */ \
10297 + 1 /* .debug_line */ \
10298 + 1 /* .debug_loc */ \
10299 + 1 /* .debug_str_offsets */ \
19ac8c2e 10300 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10301 + 1 /* trailing zero */)
10302
10303 memset (&sections, 0, sizeof (sections));
10304 cleanups = make_cleanup (null_cleanup, 0);
10305
73869dc2 10306 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10307 {
10308 asection *sectp;
10309 uint32_t section_nr =
10310 read_4_bytes (dbfd,
73869dc2
DE
10311 dwp_htab->section_pool.v1.indices
10312 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10313
10314 if (section_nr == 0)
10315 break;
10316 if (section_nr >= dwp_file->num_sections)
10317 {
10318 error (_("Dwarf Error: bad DWP hash table, section number too large"
10319 " [in module %s]"),
10320 dwp_file->name);
10321 }
10322
10323 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10324 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10325 {
10326 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10327 " [in module %s]"),
10328 dwp_file->name);
10329 }
10330 }
10331
10332 if (i < 2
a32a8923
DE
10333 || dwarf2_section_empty_p (&sections.info_or_types)
10334 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10335 {
10336 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10337 " [in module %s]"),
10338 dwp_file->name);
10339 }
73869dc2 10340 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10341 {
10342 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10343 " [in module %s]"),
10344 dwp_file->name);
10345 }
10346
10347 /* It's easier for the rest of the code if we fake a struct dwo_file and
10348 have dwo_unit "live" in that. At least for now.
10349
10350 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10351 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10352 file, we can combine them back into a virtual DWO file to save space
10353 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10354 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10355
2792b94d
PM
10356 virtual_dwo_name =
10357 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10358 get_section_id (&sections.abbrev),
10359 get_section_id (&sections.line),
10360 get_section_id (&sections.loc),
10361 get_section_id (&sections.str_offsets));
80626a55
DE
10362 make_cleanup (xfree, virtual_dwo_name);
10363 /* Can we use an existing virtual DWO file? */
0ac5b59e 10364 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10365 /* Create one if necessary. */
10366 if (*dwo_file_slot == NULL)
10367 {
b4f54984 10368 if (dwarf_read_debug)
80626a55
DE
10369 {
10370 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10371 virtual_dwo_name);
10372 }
10373 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10374 dwo_file->dwo_name
10375 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10376 virtual_dwo_name,
10377 strlen (virtual_dwo_name));
0ac5b59e 10378 dwo_file->comp_dir = comp_dir;
80626a55
DE
10379 dwo_file->sections.abbrev = sections.abbrev;
10380 dwo_file->sections.line = sections.line;
10381 dwo_file->sections.loc = sections.loc;
10382 dwo_file->sections.macinfo = sections.macinfo;
10383 dwo_file->sections.macro = sections.macro;
10384 dwo_file->sections.str_offsets = sections.str_offsets;
10385 /* The "str" section is global to the entire DWP file. */
10386 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10387 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10388 there's no need to record it in dwo_file.
10389 Also, we can't simply record type sections in dwo_file because
10390 we record a pointer into the vector in dwo_unit. As we collect more
10391 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10392 for it, invalidating all copies of pointers into the previous
10393 contents. */
80626a55
DE
10394 *dwo_file_slot = dwo_file;
10395 }
10396 else
10397 {
b4f54984 10398 if (dwarf_read_debug)
80626a55
DE
10399 {
10400 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10401 virtual_dwo_name);
10402 }
9a3c8263 10403 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10404 }
10405 do_cleanups (cleanups);
10406
10407 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10408 dwo_unit->dwo_file = dwo_file;
10409 dwo_unit->signature = signature;
8d749320
SM
10410 dwo_unit->section =
10411 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10412 *dwo_unit->section = sections.info_or_types;
57d63ce2 10413 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10414
10415 return dwo_unit;
10416}
10417
73869dc2
DE
10418/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10419 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10420 piece within that section used by a TU/CU, return a virtual section
10421 of just that piece. */
10422
10423static struct dwarf2_section_info
10424create_dwp_v2_section (struct dwarf2_section_info *section,
10425 bfd_size_type offset, bfd_size_type size)
10426{
10427 struct dwarf2_section_info result;
10428 asection *sectp;
10429
10430 gdb_assert (section != NULL);
10431 gdb_assert (!section->is_virtual);
10432
10433 memset (&result, 0, sizeof (result));
10434 result.s.containing_section = section;
10435 result.is_virtual = 1;
10436
10437 if (size == 0)
10438 return result;
10439
10440 sectp = get_section_bfd_section (section);
10441
10442 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10443 bounds of the real section. This is a pretty-rare event, so just
10444 flag an error (easier) instead of a warning and trying to cope. */
10445 if (sectp == NULL
10446 || offset + size > bfd_get_section_size (sectp))
10447 {
10448 bfd *abfd = sectp->owner;
10449
10450 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10451 " in section %s [in module %s]"),
10452 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10453 objfile_name (dwarf2_per_objfile->objfile));
10454 }
10455
10456 result.virtual_offset = offset;
10457 result.size = size;
10458 return result;
10459}
10460
10461/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10462 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10463 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10464 This is for DWP version 2 files. */
10465
10466static struct dwo_unit *
10467create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10468 uint32_t unit_index,
10469 const char *comp_dir,
10470 ULONGEST signature, int is_debug_types)
10471{
10472 struct objfile *objfile = dwarf2_per_objfile->objfile;
10473 const struct dwp_hash_table *dwp_htab =
10474 is_debug_types ? dwp_file->tus : dwp_file->cus;
10475 bfd *dbfd = dwp_file->dbfd;
10476 const char *kind = is_debug_types ? "TU" : "CU";
10477 struct dwo_file *dwo_file;
10478 struct dwo_unit *dwo_unit;
10479 struct virtual_v2_dwo_sections sections;
10480 void **dwo_file_slot;
10481 char *virtual_dwo_name;
73869dc2
DE
10482 struct cleanup *cleanups;
10483 int i;
10484
10485 gdb_assert (dwp_file->version == 2);
10486
b4f54984 10487 if (dwarf_read_debug)
73869dc2
DE
10488 {
10489 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10490 kind,
10491 pulongest (unit_index), hex_string (signature),
10492 dwp_file->name);
10493 }
10494
10495 /* Fetch the section offsets of this DWO unit. */
10496
10497 memset (&sections, 0, sizeof (sections));
10498 cleanups = make_cleanup (null_cleanup, 0);
10499
10500 for (i = 0; i < dwp_htab->nr_columns; ++i)
10501 {
10502 uint32_t offset = read_4_bytes (dbfd,
10503 dwp_htab->section_pool.v2.offsets
10504 + (((unit_index - 1) * dwp_htab->nr_columns
10505 + i)
10506 * sizeof (uint32_t)));
10507 uint32_t size = read_4_bytes (dbfd,
10508 dwp_htab->section_pool.v2.sizes
10509 + (((unit_index - 1) * dwp_htab->nr_columns
10510 + i)
10511 * sizeof (uint32_t)));
10512
10513 switch (dwp_htab->section_pool.v2.section_ids[i])
10514 {
10515 case DW_SECT_INFO:
10516 case DW_SECT_TYPES:
10517 sections.info_or_types_offset = offset;
10518 sections.info_or_types_size = size;
10519 break;
10520 case DW_SECT_ABBREV:
10521 sections.abbrev_offset = offset;
10522 sections.abbrev_size = size;
10523 break;
10524 case DW_SECT_LINE:
10525 sections.line_offset = offset;
10526 sections.line_size = size;
10527 break;
10528 case DW_SECT_LOC:
10529 sections.loc_offset = offset;
10530 sections.loc_size = size;
10531 break;
10532 case DW_SECT_STR_OFFSETS:
10533 sections.str_offsets_offset = offset;
10534 sections.str_offsets_size = size;
10535 break;
10536 case DW_SECT_MACINFO:
10537 sections.macinfo_offset = offset;
10538 sections.macinfo_size = size;
10539 break;
10540 case DW_SECT_MACRO:
10541 sections.macro_offset = offset;
10542 sections.macro_size = size;
10543 break;
10544 }
10545 }
10546
10547 /* It's easier for the rest of the code if we fake a struct dwo_file and
10548 have dwo_unit "live" in that. At least for now.
10549
10550 The DWP file can be made up of a random collection of CUs and TUs.
10551 However, for each CU + set of TUs that came from the same original DWO
10552 file, we can combine them back into a virtual DWO file to save space
10553 (fewer struct dwo_file objects to allocate). Remember that for really
10554 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10555
10556 virtual_dwo_name =
10557 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10558 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10559 (long) (sections.line_size ? sections.line_offset : 0),
10560 (long) (sections.loc_size ? sections.loc_offset : 0),
10561 (long) (sections.str_offsets_size
10562 ? sections.str_offsets_offset : 0));
10563 make_cleanup (xfree, virtual_dwo_name);
10564 /* Can we use an existing virtual DWO file? */
10565 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10566 /* Create one if necessary. */
10567 if (*dwo_file_slot == NULL)
10568 {
b4f54984 10569 if (dwarf_read_debug)
73869dc2
DE
10570 {
10571 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10572 virtual_dwo_name);
10573 }
10574 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10575 dwo_file->dwo_name
10576 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10577 virtual_dwo_name,
10578 strlen (virtual_dwo_name));
73869dc2
DE
10579 dwo_file->comp_dir = comp_dir;
10580 dwo_file->sections.abbrev =
10581 create_dwp_v2_section (&dwp_file->sections.abbrev,
10582 sections.abbrev_offset, sections.abbrev_size);
10583 dwo_file->sections.line =
10584 create_dwp_v2_section (&dwp_file->sections.line,
10585 sections.line_offset, sections.line_size);
10586 dwo_file->sections.loc =
10587 create_dwp_v2_section (&dwp_file->sections.loc,
10588 sections.loc_offset, sections.loc_size);
10589 dwo_file->sections.macinfo =
10590 create_dwp_v2_section (&dwp_file->sections.macinfo,
10591 sections.macinfo_offset, sections.macinfo_size);
10592 dwo_file->sections.macro =
10593 create_dwp_v2_section (&dwp_file->sections.macro,
10594 sections.macro_offset, sections.macro_size);
10595 dwo_file->sections.str_offsets =
10596 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10597 sections.str_offsets_offset,
10598 sections.str_offsets_size);
10599 /* The "str" section is global to the entire DWP file. */
10600 dwo_file->sections.str = dwp_file->sections.str;
10601 /* The info or types section is assigned below to dwo_unit,
10602 there's no need to record it in dwo_file.
10603 Also, we can't simply record type sections in dwo_file because
10604 we record a pointer into the vector in dwo_unit. As we collect more
10605 types we'll grow the vector and eventually have to reallocate space
10606 for it, invalidating all copies of pointers into the previous
10607 contents. */
10608 *dwo_file_slot = dwo_file;
10609 }
10610 else
10611 {
b4f54984 10612 if (dwarf_read_debug)
73869dc2
DE
10613 {
10614 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10615 virtual_dwo_name);
10616 }
9a3c8263 10617 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10618 }
10619 do_cleanups (cleanups);
10620
10621 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10622 dwo_unit->dwo_file = dwo_file;
10623 dwo_unit->signature = signature;
8d749320
SM
10624 dwo_unit->section =
10625 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10626 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10627 ? &dwp_file->sections.types
10628 : &dwp_file->sections.info,
10629 sections.info_or_types_offset,
10630 sections.info_or_types_size);
10631 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10632
10633 return dwo_unit;
10634}
10635
57d63ce2
DE
10636/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10637 Returns NULL if the signature isn't found. */
80626a55
DE
10638
10639static struct dwo_unit *
57d63ce2
DE
10640lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10641 ULONGEST signature, int is_debug_types)
80626a55 10642{
57d63ce2
DE
10643 const struct dwp_hash_table *dwp_htab =
10644 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10645 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10646 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10647 uint32_t hash = signature & mask;
10648 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10649 unsigned int i;
10650 void **slot;
870f88f7 10651 struct dwo_unit find_dwo_cu;
80626a55
DE
10652
10653 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10654 find_dwo_cu.signature = signature;
19ac8c2e
DE
10655 slot = htab_find_slot (is_debug_types
10656 ? dwp_file->loaded_tus
10657 : dwp_file->loaded_cus,
10658 &find_dwo_cu, INSERT);
80626a55
DE
10659
10660 if (*slot != NULL)
9a3c8263 10661 return (struct dwo_unit *) *slot;
80626a55
DE
10662
10663 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10664 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10665 {
10666 ULONGEST signature_in_table;
10667
10668 signature_in_table =
57d63ce2 10669 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10670 if (signature_in_table == signature)
10671 {
57d63ce2
DE
10672 uint32_t unit_index =
10673 read_4_bytes (dbfd,
10674 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10675
73869dc2
DE
10676 if (dwp_file->version == 1)
10677 {
10678 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10679 comp_dir, signature,
10680 is_debug_types);
10681 }
10682 else
10683 {
10684 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10685 comp_dir, signature,
10686 is_debug_types);
10687 }
9a3c8263 10688 return (struct dwo_unit *) *slot;
80626a55
DE
10689 }
10690 if (signature_in_table == 0)
10691 return NULL;
10692 hash = (hash + hash2) & mask;
10693 }
10694
10695 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10696 " [in module %s]"),
10697 dwp_file->name);
10698}
10699
ab5088bf 10700/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10701 Open the file specified by FILE_NAME and hand it off to BFD for
10702 preliminary analysis. Return a newly initialized bfd *, which
10703 includes a canonicalized copy of FILE_NAME.
80626a55 10704 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10705 SEARCH_CWD is true if the current directory is to be searched.
10706 It will be searched before debug-file-directory.
13aaf454
DE
10707 If successful, the file is added to the bfd include table of the
10708 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10709 If unable to find/open the file, return NULL.
3019eac3
DE
10710 NOTE: This function is derived from symfile_bfd_open. */
10711
192b62ce 10712static gdb_bfd_ref_ptr
6ac97d4c 10713try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3 10714{
80626a55 10715 int desc, flags;
3019eac3 10716 char *absolute_name;
9c02c129
DE
10717 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10718 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10719 to debug_file_directory. */
10720 char *search_path;
10721 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10722
6ac97d4c
DE
10723 if (search_cwd)
10724 {
10725 if (*debug_file_directory != '\0')
10726 search_path = concat (".", dirname_separator_string,
b36cec19 10727 debug_file_directory, (char *) NULL);
6ac97d4c
DE
10728 else
10729 search_path = xstrdup (".");
10730 }
9c02c129 10731 else
6ac97d4c 10732 search_path = xstrdup (debug_file_directory);
3019eac3 10733
492c0ab7 10734 flags = OPF_RETURN_REALPATH;
80626a55
DE
10735 if (is_dwp)
10736 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10737 desc = openp (search_path, flags, file_name,
3019eac3 10738 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10739 xfree (search_path);
3019eac3
DE
10740 if (desc < 0)
10741 return NULL;
10742
192b62ce 10743 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name, gnutarget, desc));
a4453b7e 10744 xfree (absolute_name);
9c02c129
DE
10745 if (sym_bfd == NULL)
10746 return NULL;
192b62ce 10747 bfd_set_cacheable (sym_bfd.get (), 1);
3019eac3 10748
192b62ce
TT
10749 if (!bfd_check_format (sym_bfd.get (), bfd_object))
10750 return NULL;
3019eac3 10751
13aaf454
DE
10752 /* Success. Record the bfd as having been included by the objfile's bfd.
10753 This is important because things like demangled_names_hash lives in the
10754 objfile's per_bfd space and may have references to things like symbol
10755 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
192b62ce 10756 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
13aaf454 10757
3019eac3
DE
10758 return sym_bfd;
10759}
10760
ab5088bf 10761/* Try to open DWO file FILE_NAME.
3019eac3
DE
10762 COMP_DIR is the DW_AT_comp_dir attribute.
10763 The result is the bfd handle of the file.
10764 If there is a problem finding or opening the file, return NULL.
10765 Upon success, the canonicalized path of the file is stored in the bfd,
10766 same as symfile_bfd_open. */
10767
192b62ce 10768static gdb_bfd_ref_ptr
ab5088bf 10769open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3 10770{
80626a55 10771 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10772 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10773
10774 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10775
10776 if (comp_dir != NULL)
10777 {
b36cec19
PA
10778 char *path_to_try = concat (comp_dir, SLASH_STRING,
10779 file_name, (char *) NULL);
3019eac3
DE
10780
10781 /* NOTE: If comp_dir is a relative path, this will also try the
10782 search path, which seems useful. */
192b62ce
TT
10783 gdb_bfd_ref_ptr abfd (try_open_dwop_file (path_to_try, 0 /*is_dwp*/,
10784 1 /*search_cwd*/));
3019eac3
DE
10785 xfree (path_to_try);
10786 if (abfd != NULL)
10787 return abfd;
10788 }
10789
10790 /* That didn't work, try debug-file-directory, which, despite its name,
10791 is a list of paths. */
10792
10793 if (*debug_file_directory == '\0')
10794 return NULL;
10795
6ac97d4c 10796 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10797}
10798
80626a55
DE
10799/* This function is mapped across the sections and remembers the offset and
10800 size of each of the DWO debugging sections we are interested in. */
10801
10802static void
10803dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10804{
9a3c8263 10805 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10806 const struct dwop_section_names *names = &dwop_section_names;
10807
10808 if (section_is_p (sectp->name, &names->abbrev_dwo))
10809 {
049412e3 10810 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10811 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10812 }
10813 else if (section_is_p (sectp->name, &names->info_dwo))
10814 {
049412e3 10815 dwo_sections->info.s.section = sectp;
80626a55
DE
10816 dwo_sections->info.size = bfd_get_section_size (sectp);
10817 }
10818 else if (section_is_p (sectp->name, &names->line_dwo))
10819 {
049412e3 10820 dwo_sections->line.s.section = sectp;
80626a55
DE
10821 dwo_sections->line.size = bfd_get_section_size (sectp);
10822 }
10823 else if (section_is_p (sectp->name, &names->loc_dwo))
10824 {
049412e3 10825 dwo_sections->loc.s.section = sectp;
80626a55
DE
10826 dwo_sections->loc.size = bfd_get_section_size (sectp);
10827 }
10828 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10829 {
049412e3 10830 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10831 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10832 }
10833 else if (section_is_p (sectp->name, &names->macro_dwo))
10834 {
049412e3 10835 dwo_sections->macro.s.section = sectp;
80626a55
DE
10836 dwo_sections->macro.size = bfd_get_section_size (sectp);
10837 }
10838 else if (section_is_p (sectp->name, &names->str_dwo))
10839 {
049412e3 10840 dwo_sections->str.s.section = sectp;
80626a55
DE
10841 dwo_sections->str.size = bfd_get_section_size (sectp);
10842 }
10843 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10844 {
049412e3 10845 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10846 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10847 }
10848 else if (section_is_p (sectp->name, &names->types_dwo))
10849 {
10850 struct dwarf2_section_info type_section;
10851
10852 memset (&type_section, 0, sizeof (type_section));
049412e3 10853 type_section.s.section = sectp;
80626a55
DE
10854 type_section.size = bfd_get_section_size (sectp);
10855 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10856 &type_section);
10857 }
10858}
10859
ab5088bf 10860/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10861 by PER_CU. This is for the non-DWP case.
80626a55 10862 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10863
10864static struct dwo_file *
0ac5b59e
DE
10865open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10866 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10867{
10868 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55 10869 struct dwo_file *dwo_file;
3019eac3
DE
10870 struct cleanup *cleanups;
10871
192b62ce 10872 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwo_name, comp_dir));
80626a55
DE
10873 if (dbfd == NULL)
10874 {
b4f54984 10875 if (dwarf_read_debug)
80626a55
DE
10876 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10877 return NULL;
10878 }
10879 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10880 dwo_file->dwo_name = dwo_name;
10881 dwo_file->comp_dir = comp_dir;
192b62ce 10882 dwo_file->dbfd = dbfd.release ();
3019eac3
DE
10883
10884 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10885
192b62ce
TT
10886 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
10887 &dwo_file->sections);
3019eac3 10888
33c5cd75 10889 create_cus_hash_table (*dwo_file, dwo_file->sections.info, dwo_file->cus);
3019eac3 10890
78d4d2c5
JK
10891 create_debug_types_hash_table (dwo_file, dwo_file->sections.types,
10892 dwo_file->tus);
3019eac3
DE
10893
10894 discard_cleanups (cleanups);
10895
b4f54984 10896 if (dwarf_read_debug)
80626a55
DE
10897 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10898
3019eac3
DE
10899 return dwo_file;
10900}
10901
80626a55 10902/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10903 size of each of the DWP debugging sections common to version 1 and 2 that
10904 we are interested in. */
3019eac3 10905
80626a55 10906static void
73869dc2
DE
10907dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10908 void *dwp_file_ptr)
3019eac3 10909{
9a3c8263 10910 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10911 const struct dwop_section_names *names = &dwop_section_names;
10912 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10913
80626a55 10914 /* Record the ELF section number for later lookup: this is what the
73869dc2 10915 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10916 gdb_assert (elf_section_nr < dwp_file->num_sections);
10917 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10918
80626a55
DE
10919 /* Look for specific sections that we need. */
10920 if (section_is_p (sectp->name, &names->str_dwo))
10921 {
049412e3 10922 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10923 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10924 }
10925 else if (section_is_p (sectp->name, &names->cu_index))
10926 {
049412e3 10927 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10928 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10929 }
10930 else if (section_is_p (sectp->name, &names->tu_index))
10931 {
049412e3 10932 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10933 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10934 }
10935}
3019eac3 10936
73869dc2
DE
10937/* This function is mapped across the sections and remembers the offset and
10938 size of each of the DWP version 2 debugging sections that we are interested
10939 in. This is split into a separate function because we don't know if we
10940 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10941
10942static void
10943dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10944{
9a3c8263 10945 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10946 const struct dwop_section_names *names = &dwop_section_names;
10947 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10948
10949 /* Record the ELF section number for later lookup: this is what the
10950 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10951 gdb_assert (elf_section_nr < dwp_file->num_sections);
10952 dwp_file->elf_sections[elf_section_nr] = sectp;
10953
10954 /* Look for specific sections that we need. */
10955 if (section_is_p (sectp->name, &names->abbrev_dwo))
10956 {
049412e3 10957 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10958 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10959 }
10960 else if (section_is_p (sectp->name, &names->info_dwo))
10961 {
049412e3 10962 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10963 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10964 }
10965 else if (section_is_p (sectp->name, &names->line_dwo))
10966 {
049412e3 10967 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10968 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10969 }
10970 else if (section_is_p (sectp->name, &names->loc_dwo))
10971 {
049412e3 10972 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10973 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10974 }
10975 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10976 {
049412e3 10977 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10978 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10979 }
10980 else if (section_is_p (sectp->name, &names->macro_dwo))
10981 {
049412e3 10982 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10983 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10984 }
10985 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10986 {
049412e3 10987 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10988 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10989 }
10990 else if (section_is_p (sectp->name, &names->types_dwo))
10991 {
049412e3 10992 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10993 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10994 }
10995}
10996
80626a55 10997/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10998
80626a55
DE
10999static hashval_t
11000hash_dwp_loaded_cutus (const void *item)
11001{
9a3c8263 11002 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 11003
80626a55
DE
11004 /* This drops the top 32 bits of the signature, but is ok for a hash. */
11005 return dwo_unit->signature;
3019eac3
DE
11006}
11007
80626a55 11008/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 11009
80626a55
DE
11010static int
11011eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 11012{
9a3c8263
SM
11013 const struct dwo_unit *dua = (const struct dwo_unit *) a;
11014 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 11015
80626a55
DE
11016 return dua->signature == dub->signature;
11017}
3019eac3 11018
80626a55 11019/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 11020
80626a55
DE
11021static htab_t
11022allocate_dwp_loaded_cutus_table (struct objfile *objfile)
11023{
11024 return htab_create_alloc_ex (3,
11025 hash_dwp_loaded_cutus,
11026 eq_dwp_loaded_cutus,
11027 NULL,
11028 &objfile->objfile_obstack,
11029 hashtab_obstack_allocate,
11030 dummy_obstack_deallocate);
11031}
3019eac3 11032
ab5088bf
DE
11033/* Try to open DWP file FILE_NAME.
11034 The result is the bfd handle of the file.
11035 If there is a problem finding or opening the file, return NULL.
11036 Upon success, the canonicalized path of the file is stored in the bfd,
11037 same as symfile_bfd_open. */
11038
192b62ce 11039static gdb_bfd_ref_ptr
ab5088bf
DE
11040open_dwp_file (const char *file_name)
11041{
192b62ce
TT
11042 gdb_bfd_ref_ptr abfd (try_open_dwop_file (file_name, 1 /*is_dwp*/,
11043 1 /*search_cwd*/));
6ac97d4c
DE
11044 if (abfd != NULL)
11045 return abfd;
11046
11047 /* Work around upstream bug 15652.
11048 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
11049 [Whether that's a "bug" is debatable, but it is getting in our way.]
11050 We have no real idea where the dwp file is, because gdb's realpath-ing
11051 of the executable's path may have discarded the needed info.
11052 [IWBN if the dwp file name was recorded in the executable, akin to
11053 .gnu_debuglink, but that doesn't exist yet.]
11054 Strip the directory from FILE_NAME and search again. */
11055 if (*debug_file_directory != '\0')
11056 {
11057 /* Don't implicitly search the current directory here.
11058 If the user wants to search "." to handle this case,
11059 it must be added to debug-file-directory. */
11060 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
11061 0 /*search_cwd*/);
11062 }
11063
11064 return NULL;
ab5088bf
DE
11065}
11066
80626a55
DE
11067/* Initialize the use of the DWP file for the current objfile.
11068 By convention the name of the DWP file is ${objfile}.dwp.
11069 The result is NULL if it can't be found. */
a766d390 11070
80626a55 11071static struct dwp_file *
ab5088bf 11072open_and_init_dwp_file (void)
80626a55
DE
11073{
11074 struct objfile *objfile = dwarf2_per_objfile->objfile;
11075 struct dwp_file *dwp_file;
80626a55 11076
82bf32bc
JK
11077 /* Try to find first .dwp for the binary file before any symbolic links
11078 resolving. */
6c447423
DE
11079
11080 /* If the objfile is a debug file, find the name of the real binary
11081 file and get the name of dwp file from there. */
d721ba37 11082 std::string dwp_name;
6c447423
DE
11083 if (objfile->separate_debug_objfile_backlink != NULL)
11084 {
11085 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
11086 const char *backlink_basename = lbasename (backlink->original_name);
6c447423 11087
d721ba37 11088 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
6c447423
DE
11089 }
11090 else
d721ba37
PA
11091 dwp_name = objfile->original_name;
11092
11093 dwp_name += ".dwp";
80626a55 11094
d721ba37 11095 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwp_name.c_str ()));
82bf32bc
JK
11096 if (dbfd == NULL
11097 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
11098 {
11099 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
d721ba37
PA
11100 dwp_name = objfile_name (objfile);
11101 dwp_name += ".dwp";
11102 dbfd = open_dwp_file (dwp_name.c_str ());
82bf32bc
JK
11103 }
11104
80626a55
DE
11105 if (dbfd == NULL)
11106 {
b4f54984 11107 if (dwarf_read_debug)
d721ba37 11108 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
80626a55 11109 return NULL;
3019eac3 11110 }
80626a55 11111 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
192b62ce
TT
11112 dwp_file->name = bfd_get_filename (dbfd.get ());
11113 dwp_file->dbfd = dbfd.release ();
c906108c 11114
80626a55 11115 /* +1: section 0 is unused */
192b62ce 11116 dwp_file->num_sections = bfd_count_sections (dwp_file->dbfd) + 1;
80626a55
DE
11117 dwp_file->elf_sections =
11118 OBSTACK_CALLOC (&objfile->objfile_obstack,
11119 dwp_file->num_sections, asection *);
11120
192b62ce
TT
11121 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_common_dwp_sections,
11122 dwp_file);
80626a55
DE
11123
11124 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
11125
11126 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
11127
73869dc2
DE
11128 /* The DWP file version is stored in the hash table. Oh well. */
11129 if (dwp_file->cus->version != dwp_file->tus->version)
11130 {
11131 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 11132 pretty bizarre. We use pulongest here because that's the established
4d65956b 11133 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
11134 error (_("Dwarf Error: DWP file CU version %s doesn't match"
11135 " TU version %s [in DWP file %s]"),
11136 pulongest (dwp_file->cus->version),
d721ba37 11137 pulongest (dwp_file->tus->version), dwp_name.c_str ());
73869dc2
DE
11138 }
11139 dwp_file->version = dwp_file->cus->version;
11140
11141 if (dwp_file->version == 2)
192b62ce
TT
11142 bfd_map_over_sections (dwp_file->dbfd, dwarf2_locate_v2_dwp_sections,
11143 dwp_file);
73869dc2 11144
19ac8c2e
DE
11145 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
11146 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 11147
b4f54984 11148 if (dwarf_read_debug)
80626a55
DE
11149 {
11150 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
11151 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
11152 " %s CUs, %s TUs\n",
11153 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
11154 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
11155 }
11156
11157 return dwp_file;
3019eac3 11158}
c906108c 11159
ab5088bf
DE
11160/* Wrapper around open_and_init_dwp_file, only open it once. */
11161
11162static struct dwp_file *
11163get_dwp_file (void)
11164{
11165 if (! dwarf2_per_objfile->dwp_checked)
11166 {
11167 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
11168 dwarf2_per_objfile->dwp_checked = 1;
11169 }
11170 return dwarf2_per_objfile->dwp_file;
11171}
11172
80626a55
DE
11173/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
11174 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
11175 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 11176 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
11177 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
11178
11179 This is called, for example, when wanting to read a variable with a
11180 complex location. Therefore we don't want to do file i/o for every call.
11181 Therefore we don't want to look for a DWO file on every call.
11182 Therefore we first see if we've already seen SIGNATURE in a DWP file,
11183 then we check if we've already seen DWO_NAME, and only THEN do we check
11184 for a DWO file.
11185
1c658ad5 11186 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 11187 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 11188
3019eac3 11189static struct dwo_unit *
80626a55
DE
11190lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
11191 const char *dwo_name, const char *comp_dir,
11192 ULONGEST signature, int is_debug_types)
3019eac3
DE
11193{
11194 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
11195 const char *kind = is_debug_types ? "TU" : "CU";
11196 void **dwo_file_slot;
3019eac3 11197 struct dwo_file *dwo_file;
80626a55 11198 struct dwp_file *dwp_file;
cb1df416 11199
6a506a2d
DE
11200 /* First see if there's a DWP file.
11201 If we have a DWP file but didn't find the DWO inside it, don't
11202 look for the original DWO file. It makes gdb behave differently
11203 depending on whether one is debugging in the build tree. */
cf2c3c16 11204
ab5088bf 11205 dwp_file = get_dwp_file ();
80626a55 11206 if (dwp_file != NULL)
cf2c3c16 11207 {
80626a55
DE
11208 const struct dwp_hash_table *dwp_htab =
11209 is_debug_types ? dwp_file->tus : dwp_file->cus;
11210
11211 if (dwp_htab != NULL)
11212 {
11213 struct dwo_unit *dwo_cutu =
57d63ce2
DE
11214 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
11215 signature, is_debug_types);
80626a55
DE
11216
11217 if (dwo_cutu != NULL)
11218 {
b4f54984 11219 if (dwarf_read_debug)
80626a55
DE
11220 {
11221 fprintf_unfiltered (gdb_stdlog,
11222 "Virtual DWO %s %s found: @%s\n",
11223 kind, hex_string (signature),
11224 host_address_to_string (dwo_cutu));
11225 }
11226 return dwo_cutu;
11227 }
11228 }
11229 }
6a506a2d 11230 else
80626a55 11231 {
6a506a2d 11232 /* No DWP file, look for the DWO file. */
80626a55 11233
6a506a2d
DE
11234 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11235 if (*dwo_file_slot == NULL)
80626a55 11236 {
6a506a2d
DE
11237 /* Read in the file and build a table of the CUs/TUs it contains. */
11238 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 11239 }
6a506a2d 11240 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 11241 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 11242
6a506a2d 11243 if (dwo_file != NULL)
19c3d4c9 11244 {
6a506a2d
DE
11245 struct dwo_unit *dwo_cutu = NULL;
11246
11247 if (is_debug_types && dwo_file->tus)
11248 {
11249 struct dwo_unit find_dwo_cutu;
11250
11251 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11252 find_dwo_cutu.signature = signature;
9a3c8263
SM
11253 dwo_cutu
11254 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d 11255 }
33c5cd75 11256 else if (!is_debug_types && dwo_file->cus)
80626a55 11257 {
33c5cd75
DB
11258 struct dwo_unit find_dwo_cutu;
11259
11260 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11261 find_dwo_cutu.signature = signature;
11262 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
11263 &find_dwo_cutu);
6a506a2d
DE
11264 }
11265
11266 if (dwo_cutu != NULL)
11267 {
b4f54984 11268 if (dwarf_read_debug)
6a506a2d
DE
11269 {
11270 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11271 kind, dwo_name, hex_string (signature),
11272 host_address_to_string (dwo_cutu));
11273 }
11274 return dwo_cutu;
80626a55
DE
11275 }
11276 }
2e276125 11277 }
9cdd5dbd 11278
80626a55
DE
11279 /* We didn't find it. This could mean a dwo_id mismatch, or
11280 someone deleted the DWO/DWP file, or the search path isn't set up
11281 correctly to find the file. */
11282
b4f54984 11283 if (dwarf_read_debug)
80626a55
DE
11284 {
11285 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11286 kind, dwo_name, hex_string (signature));
11287 }
3019eac3 11288
6656a72d
DE
11289 /* This is a warning and not a complaint because it can be caused by
11290 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11291 {
11292 /* Print the name of the DWP file if we looked there, helps the user
11293 better diagnose the problem. */
11294 char *dwp_text = NULL;
11295 struct cleanup *cleanups;
11296
11297 if (dwp_file != NULL)
11298 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11299 cleanups = make_cleanup (xfree, dwp_text);
11300
11301 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11302 " [in module %s]"),
11303 kind, dwo_name, hex_string (signature),
11304 dwp_text != NULL ? dwp_text : "",
11305 this_unit->is_debug_types ? "TU" : "CU",
9c541725 11306 to_underlying (this_unit->sect_off), objfile_name (objfile));
43942612
DE
11307
11308 do_cleanups (cleanups);
11309 }
3019eac3 11310 return NULL;
5fb290d7
DJ
11311}
11312
80626a55
DE
11313/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11314 See lookup_dwo_cutu_unit for details. */
11315
11316static struct dwo_unit *
11317lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11318 const char *dwo_name, const char *comp_dir,
11319 ULONGEST signature)
11320{
11321 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11322}
11323
11324/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11325 See lookup_dwo_cutu_unit for details. */
11326
11327static struct dwo_unit *
11328lookup_dwo_type_unit (struct signatured_type *this_tu,
11329 const char *dwo_name, const char *comp_dir)
11330{
11331 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11332}
11333
89e63ee4
DE
11334/* Traversal function for queue_and_load_all_dwo_tus. */
11335
11336static int
11337queue_and_load_dwo_tu (void **slot, void *info)
11338{
11339 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11340 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11341 ULONGEST signature = dwo_unit->signature;
11342 struct signatured_type *sig_type =
11343 lookup_dwo_signatured_type (per_cu->cu, signature);
11344
11345 if (sig_type != NULL)
11346 {
11347 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11348
11349 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11350 a real dependency of PER_CU on SIG_TYPE. That is detected later
11351 while processing PER_CU. */
11352 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11353 load_full_type_unit (sig_cu);
11354 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11355 }
11356
11357 return 1;
11358}
11359
11360/* Queue all TUs contained in the DWO of PER_CU to be read in.
11361 The DWO may have the only definition of the type, though it may not be
11362 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11363 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11364
11365static void
11366queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11367{
11368 struct dwo_unit *dwo_unit;
11369 struct dwo_file *dwo_file;
11370
11371 gdb_assert (!per_cu->is_debug_types);
11372 gdb_assert (get_dwp_file () == NULL);
11373 gdb_assert (per_cu->cu != NULL);
11374
11375 dwo_unit = per_cu->cu->dwo_unit;
11376 gdb_assert (dwo_unit != NULL);
11377
11378 dwo_file = dwo_unit->dwo_file;
11379 if (dwo_file->tus != NULL)
11380 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11381}
11382
3019eac3
DE
11383/* Free all resources associated with DWO_FILE.
11384 Close the DWO file and munmap the sections.
11385 All memory should be on the objfile obstack. */
348e048f
DE
11386
11387static void
3019eac3 11388free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11389{
348e048f 11390
5c6fa7ab 11391 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11392 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11393
3019eac3
DE
11394 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11395}
348e048f 11396
3019eac3 11397/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11398
3019eac3
DE
11399static void
11400free_dwo_file_cleanup (void *arg)
11401{
11402 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11403 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11404
3019eac3
DE
11405 free_dwo_file (dwo_file, objfile);
11406}
348e048f 11407
3019eac3 11408/* Traversal function for free_dwo_files. */
2ab95328 11409
3019eac3
DE
11410static int
11411free_dwo_file_from_slot (void **slot, void *info)
11412{
11413 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11414 struct objfile *objfile = (struct objfile *) info;
348e048f 11415
3019eac3 11416 free_dwo_file (dwo_file, objfile);
348e048f 11417
3019eac3
DE
11418 return 1;
11419}
348e048f 11420
3019eac3 11421/* Free all resources associated with DWO_FILES. */
348e048f 11422
3019eac3
DE
11423static void
11424free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11425{
11426 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11427}
3019eac3
DE
11428\f
11429/* Read in various DIEs. */
348e048f 11430
d389af10
JK
11431/* qsort helper for inherit_abstract_dies. */
11432
11433static int
11434unsigned_int_compar (const void *ap, const void *bp)
11435{
11436 unsigned int a = *(unsigned int *) ap;
11437 unsigned int b = *(unsigned int *) bp;
11438
11439 return (a > b) - (b > a);
11440}
11441
11442/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11443 Inherit only the children of the DW_AT_abstract_origin DIE not being
11444 already referenced by DW_AT_abstract_origin from the children of the
11445 current DIE. */
d389af10
JK
11446
11447static void
11448inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11449{
11450 struct die_info *child_die;
11451 unsigned die_children_count;
11452 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11453 sect_offset *offsets;
11454 sect_offset *offsets_end, *offsetp;
d389af10
JK
11455 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11456 struct die_info *origin_die;
11457 /* Iterator of the ORIGIN_DIE children. */
11458 struct die_info *origin_child_die;
11459 struct cleanup *cleanups;
11460 struct attribute *attr;
cd02d79d
PA
11461 struct dwarf2_cu *origin_cu;
11462 struct pending **origin_previous_list_in_scope;
d389af10
JK
11463
11464 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11465 if (!attr)
11466 return;
11467
cd02d79d
PA
11468 /* Note that following die references may follow to a die in a
11469 different cu. */
11470
11471 origin_cu = cu;
11472 origin_die = follow_die_ref (die, attr, &origin_cu);
11473
11474 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11475 symbols in. */
11476 origin_previous_list_in_scope = origin_cu->list_in_scope;
11477 origin_cu->list_in_scope = cu->list_in_scope;
11478
edb3359d
DJ
11479 if (die->tag != origin_die->tag
11480 && !(die->tag == DW_TAG_inlined_subroutine
11481 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11482 complaint (&symfile_complaints,
11483 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
9c541725
PA
11484 to_underlying (die->sect_off),
11485 to_underlying (origin_die->sect_off));
d389af10
JK
11486
11487 child_die = die->child;
11488 die_children_count = 0;
11489 while (child_die && child_die->tag)
11490 {
11491 child_die = sibling_die (child_die);
11492 die_children_count++;
11493 }
8d749320 11494 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11495 cleanups = make_cleanup (xfree, offsets);
11496
11497 offsets_end = offsets;
3ea89b92
PMR
11498 for (child_die = die->child;
11499 child_die && child_die->tag;
11500 child_die = sibling_die (child_die))
11501 {
11502 struct die_info *child_origin_die;
11503 struct dwarf2_cu *child_origin_cu;
11504
11505 /* We are trying to process concrete instance entries:
216f72a1 11506 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
3ea89b92
PMR
11507 it's not relevant to our analysis here. i.e. detecting DIEs that are
11508 present in the abstract instance but not referenced in the concrete
11509 one. */
216f72a1
JK
11510 if (child_die->tag == DW_TAG_call_site
11511 || child_die->tag == DW_TAG_GNU_call_site)
3ea89b92
PMR
11512 continue;
11513
c38f313d
DJ
11514 /* For each CHILD_DIE, find the corresponding child of
11515 ORIGIN_DIE. If there is more than one layer of
11516 DW_AT_abstract_origin, follow them all; there shouldn't be,
11517 but GCC versions at least through 4.4 generate this (GCC PR
11518 40573). */
3ea89b92
PMR
11519 child_origin_die = child_die;
11520 child_origin_cu = cu;
c38f313d
DJ
11521 while (1)
11522 {
cd02d79d
PA
11523 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11524 child_origin_cu);
c38f313d
DJ
11525 if (attr == NULL)
11526 break;
cd02d79d
PA
11527 child_origin_die = follow_die_ref (child_origin_die, attr,
11528 &child_origin_cu);
c38f313d
DJ
11529 }
11530
d389af10
JK
11531 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11532 counterpart may exist. */
c38f313d 11533 if (child_origin_die != child_die)
d389af10 11534 {
edb3359d
DJ
11535 if (child_die->tag != child_origin_die->tag
11536 && !(child_die->tag == DW_TAG_inlined_subroutine
11537 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11538 complaint (&symfile_complaints,
11539 _("Child DIE 0x%x and its abstract origin 0x%x have "
9c541725
PA
11540 "different tags"),
11541 to_underlying (child_die->sect_off),
11542 to_underlying (child_origin_die->sect_off));
c38f313d
DJ
11543 if (child_origin_die->parent != origin_die)
11544 complaint (&symfile_complaints,
11545 _("Child DIE 0x%x and its abstract origin 0x%x have "
9c541725
PA
11546 "different parents"),
11547 to_underlying (child_die->sect_off),
11548 to_underlying (child_origin_die->sect_off));
c38f313d 11549 else
9c541725 11550 *offsets_end++ = child_origin_die->sect_off;
d389af10 11551 }
d389af10
JK
11552 }
11553 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11554 unsigned_int_compar);
11555 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
9c541725 11556 if (offsetp[-1] == *offsetp)
3e43a32a
MS
11557 complaint (&symfile_complaints,
11558 _("Multiple children of DIE 0x%x refer "
11559 "to DIE 0x%x as their abstract origin"),
9c541725 11560 to_underlying (die->sect_off), to_underlying (*offsetp));
d389af10
JK
11561
11562 offsetp = offsets;
11563 origin_child_die = origin_die->child;
11564 while (origin_child_die && origin_child_die->tag)
11565 {
11566 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1 11567 while (offsetp < offsets_end
9c541725 11568 && *offsetp < origin_child_die->sect_off)
d389af10 11569 offsetp++;
b64f50a1 11570 if (offsetp >= offsets_end
9c541725 11571 || *offsetp > origin_child_die->sect_off)
d389af10 11572 {
adde2bff
DE
11573 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11574 Check whether we're already processing ORIGIN_CHILD_DIE.
11575 This can happen with mutually referenced abstract_origins.
11576 PR 16581. */
11577 if (!origin_child_die->in_process)
11578 process_die (origin_child_die, origin_cu);
d389af10
JK
11579 }
11580 origin_child_die = sibling_die (origin_child_die);
11581 }
cd02d79d 11582 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11583
11584 do_cleanups (cleanups);
11585}
11586
c906108c 11587static void
e7c27a73 11588read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11589{
e7c27a73 11590 struct objfile *objfile = cu->objfile;
3e29f34a 11591 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11592 struct context_stack *newobj;
c906108c
SS
11593 CORE_ADDR lowpc;
11594 CORE_ADDR highpc;
11595 struct die_info *child_die;
edb3359d 11596 struct attribute *attr, *call_line, *call_file;
15d034d0 11597 const char *name;
e142c38c 11598 CORE_ADDR baseaddr;
801e3a5b 11599 struct block *block;
edb3359d 11600 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11601 VEC (symbolp) *template_args = NULL;
11602 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11603
11604 if (inlined_func)
11605 {
11606 /* If we do not have call site information, we can't show the
11607 caller of this inlined function. That's too confusing, so
11608 only use the scope for local variables. */
11609 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11610 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11611 if (call_line == NULL || call_file == NULL)
11612 {
11613 read_lexical_block_scope (die, cu);
11614 return;
11615 }
11616 }
c906108c 11617
e142c38c
DJ
11618 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11619
94af9270 11620 name = dwarf2_name (die, cu);
c906108c 11621
e8d05480
JB
11622 /* Ignore functions with missing or empty names. These are actually
11623 illegal according to the DWARF standard. */
11624 if (name == NULL)
11625 {
11626 complaint (&symfile_complaints,
b64f50a1 11627 _("missing name for subprogram DIE at %d"),
9c541725 11628 to_underlying (die->sect_off));
e8d05480
JB
11629 return;
11630 }
11631
11632 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 11633 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 11634 <= PC_BOUNDS_INVALID)
e8d05480 11635 {
ae4d0c03
PM
11636 attr = dwarf2_attr (die, DW_AT_external, cu);
11637 if (!attr || !DW_UNSND (attr))
11638 complaint (&symfile_complaints,
3e43a32a
MS
11639 _("cannot get low and high bounds "
11640 "for subprogram DIE at %d"),
9c541725 11641 to_underlying (die->sect_off));
e8d05480
JB
11642 return;
11643 }
c906108c 11644
3e29f34a
MR
11645 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11646 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11647
34eaf542
TT
11648 /* If we have any template arguments, then we must allocate a
11649 different sort of symbol. */
11650 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11651 {
11652 if (child_die->tag == DW_TAG_template_type_param
11653 || child_die->tag == DW_TAG_template_value_param)
11654 {
e623cf5d 11655 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11656 templ_func->base.is_cplus_template_function = 1;
11657 break;
11658 }
11659 }
11660
fe978cb0
PA
11661 newobj = push_context (0, lowpc);
11662 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11663 (struct symbol *) templ_func);
4c2df51b 11664
4cecd739
DJ
11665 /* If there is a location expression for DW_AT_frame_base, record
11666 it. */
e142c38c 11667 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11668 if (attr)
fe978cb0 11669 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11670
63e43d3a
PMR
11671 /* If there is a location for the static link, record it. */
11672 newobj->static_link = NULL;
11673 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11674 if (attr)
11675 {
224c3ddb
SM
11676 newobj->static_link
11677 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11678 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11679 }
11680
e142c38c 11681 cu->list_in_scope = &local_symbols;
c906108c 11682
639d11d3 11683 if (die->child != NULL)
c906108c 11684 {
639d11d3 11685 child_die = die->child;
c906108c
SS
11686 while (child_die && child_die->tag)
11687 {
34eaf542
TT
11688 if (child_die->tag == DW_TAG_template_type_param
11689 || child_die->tag == DW_TAG_template_value_param)
11690 {
11691 struct symbol *arg = new_symbol (child_die, NULL, cu);
11692
f1078f66
DJ
11693 if (arg != NULL)
11694 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11695 }
11696 else
11697 process_die (child_die, cu);
c906108c
SS
11698 child_die = sibling_die (child_die);
11699 }
11700 }
11701
d389af10
JK
11702 inherit_abstract_dies (die, cu);
11703
4a811a97
UW
11704 /* If we have a DW_AT_specification, we might need to import using
11705 directives from the context of the specification DIE. See the
11706 comment in determine_prefix. */
11707 if (cu->language == language_cplus
11708 && dwarf2_attr (die, DW_AT_specification, cu))
11709 {
11710 struct dwarf2_cu *spec_cu = cu;
11711 struct die_info *spec_die = die_specification (die, &spec_cu);
11712
11713 while (spec_die)
11714 {
11715 child_die = spec_die->child;
11716 while (child_die && child_die->tag)
11717 {
11718 if (child_die->tag == DW_TAG_imported_module)
11719 process_die (child_die, spec_cu);
11720 child_die = sibling_die (child_die);
11721 }
11722
11723 /* In some cases, GCC generates specification DIEs that
11724 themselves contain DW_AT_specification attributes. */
11725 spec_die = die_specification (spec_die, &spec_cu);
11726 }
11727 }
11728
fe978cb0 11729 newobj = pop_context ();
c906108c 11730 /* Make a block for the local symbols within. */
fe978cb0 11731 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11732 newobj->static_link, lowpc, highpc);
801e3a5b 11733
df8a16a1 11734 /* For C++, set the block's scope. */
45280282
IB
11735 if ((cu->language == language_cplus
11736 || cu->language == language_fortran
c44af4eb
TT
11737 || cu->language == language_d
11738 || cu->language == language_rust)
4d4ec4e5 11739 && cu->processing_has_namespace_info)
195a3f6c
TT
11740 block_set_scope (block, determine_prefix (die, cu),
11741 &objfile->objfile_obstack);
df8a16a1 11742
801e3a5b
JB
11743 /* If we have address ranges, record them. */
11744 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11745
fe978cb0 11746 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11747
34eaf542
TT
11748 /* Attach template arguments to function. */
11749 if (! VEC_empty (symbolp, template_args))
11750 {
11751 gdb_assert (templ_func != NULL);
11752
11753 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11754 templ_func->template_arguments
8d749320
SM
11755 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11756 templ_func->n_template_arguments);
34eaf542
TT
11757 memcpy (templ_func->template_arguments,
11758 VEC_address (symbolp, template_args),
11759 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11760 VEC_free (symbolp, template_args);
11761 }
11762
208d8187
JB
11763 /* In C++, we can have functions nested inside functions (e.g., when
11764 a function declares a class that has methods). This means that
11765 when we finish processing a function scope, we may need to go
11766 back to building a containing block's symbol lists. */
fe978cb0 11767 local_symbols = newobj->locals;
22cee43f 11768 local_using_directives = newobj->local_using_directives;
208d8187 11769
921e78cf
JB
11770 /* If we've finished processing a top-level function, subsequent
11771 symbols go in the file symbol list. */
11772 if (outermost_context_p ())
e142c38c 11773 cu->list_in_scope = &file_symbols;
c906108c
SS
11774}
11775
11776/* Process all the DIES contained within a lexical block scope. Start
11777 a new scope, process the dies, and then close the scope. */
11778
11779static void
e7c27a73 11780read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11781{
e7c27a73 11782 struct objfile *objfile = cu->objfile;
3e29f34a 11783 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11784 struct context_stack *newobj;
c906108c
SS
11785 CORE_ADDR lowpc, highpc;
11786 struct die_info *child_die;
e142c38c
DJ
11787 CORE_ADDR baseaddr;
11788
11789 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11790
11791 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11792 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11793 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11794 be nasty. Might be easier to properly extend generic blocks to
af34e669 11795 describe ranges. */
e385593e
JK
11796 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11797 {
11798 case PC_BOUNDS_NOT_PRESENT:
11799 /* DW_TAG_lexical_block has no attributes, process its children as if
11800 there was no wrapping by that DW_TAG_lexical_block.
11801 GCC does no longer produces such DWARF since GCC r224161. */
11802 for (child_die = die->child;
11803 child_die != NULL && child_die->tag;
11804 child_die = sibling_die (child_die))
11805 process_die (child_die, cu);
11806 return;
11807 case PC_BOUNDS_INVALID:
11808 return;
11809 }
3e29f34a
MR
11810 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11811 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11812
11813 push_context (0, lowpc);
639d11d3 11814 if (die->child != NULL)
c906108c 11815 {
639d11d3 11816 child_die = die->child;
c906108c
SS
11817 while (child_die && child_die->tag)
11818 {
e7c27a73 11819 process_die (child_die, cu);
c906108c
SS
11820 child_die = sibling_die (child_die);
11821 }
11822 }
3ea89b92 11823 inherit_abstract_dies (die, cu);
fe978cb0 11824 newobj = pop_context ();
c906108c 11825
22cee43f 11826 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11827 {
801e3a5b 11828 struct block *block
63e43d3a 11829 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11830 newobj->start_addr, highpc);
801e3a5b
JB
11831
11832 /* Note that recording ranges after traversing children, as we
11833 do here, means that recording a parent's ranges entails
11834 walking across all its children's ranges as they appear in
11835 the address map, which is quadratic behavior.
11836
11837 It would be nicer to record the parent's ranges before
11838 traversing its children, simply overriding whatever you find
11839 there. But since we don't even decide whether to create a
11840 block until after we've traversed its children, that's hard
11841 to do. */
11842 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11843 }
fe978cb0 11844 local_symbols = newobj->locals;
22cee43f 11845 local_using_directives = newobj->local_using_directives;
c906108c
SS
11846}
11847
216f72a1 11848/* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
96408a79
SA
11849
11850static void
11851read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11852{
11853 struct objfile *objfile = cu->objfile;
11854 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11855 CORE_ADDR pc, baseaddr;
11856 struct attribute *attr;
11857 struct call_site *call_site, call_site_local;
11858 void **slot;
11859 int nparams;
11860 struct die_info *child_die;
11861
11862 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11863
216f72a1
JK
11864 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
11865 if (attr == NULL)
11866 {
11867 /* This was a pre-DWARF-5 GNU extension alias
11868 for DW_AT_call_return_pc. */
11869 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11870 }
96408a79
SA
11871 if (!attr)
11872 {
11873 complaint (&symfile_complaints,
216f72a1 11874 _("missing DW_AT_call_return_pc for DW_TAG_call_site "
96408a79 11875 "DIE 0x%x [in module %s]"),
9c541725 11876 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
11877 return;
11878 }
31aa7e4e 11879 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11880 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11881
11882 if (cu->call_site_htab == NULL)
11883 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11884 NULL, &objfile->objfile_obstack,
11885 hashtab_obstack_allocate, NULL);
11886 call_site_local.pc = pc;
11887 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11888 if (*slot != NULL)
11889 {
11890 complaint (&symfile_complaints,
216f72a1 11891 _("Duplicate PC %s for DW_TAG_call_site "
96408a79 11892 "DIE 0x%x [in module %s]"),
9c541725 11893 paddress (gdbarch, pc), to_underlying (die->sect_off),
4262abfb 11894 objfile_name (objfile));
96408a79
SA
11895 return;
11896 }
11897
11898 /* Count parameters at the caller. */
11899
11900 nparams = 0;
11901 for (child_die = die->child; child_die && child_die->tag;
11902 child_die = sibling_die (child_die))
11903 {
216f72a1
JK
11904 if (child_die->tag != DW_TAG_call_site_parameter
11905 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
11906 {
11907 complaint (&symfile_complaints,
216f72a1
JK
11908 _("Tag %d is not DW_TAG_call_site_parameter in "
11909 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725 11910 child_die->tag, to_underlying (child_die->sect_off),
4262abfb 11911 objfile_name (objfile));
96408a79
SA
11912 continue;
11913 }
11914
11915 nparams++;
11916 }
11917
224c3ddb
SM
11918 call_site
11919 = ((struct call_site *)
11920 obstack_alloc (&objfile->objfile_obstack,
11921 sizeof (*call_site)
11922 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11923 *slot = call_site;
11924 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11925 call_site->pc = pc;
11926
216f72a1
JK
11927 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
11928 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
96408a79
SA
11929 {
11930 struct die_info *func_die;
11931
11932 /* Skip also over DW_TAG_inlined_subroutine. */
11933 for (func_die = die->parent;
11934 func_die && func_die->tag != DW_TAG_subprogram
11935 && func_die->tag != DW_TAG_subroutine_type;
11936 func_die = func_die->parent);
11937
216f72a1
JK
11938 /* DW_AT_call_all_calls is a superset
11939 of DW_AT_call_all_tail_calls. */
96408a79 11940 if (func_die
216f72a1 11941 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
96408a79 11942 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
216f72a1 11943 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
96408a79
SA
11944 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11945 {
11946 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11947 not complete. But keep CALL_SITE for look ups via call_site_htab,
11948 both the initial caller containing the real return address PC and
11949 the final callee containing the current PC of a chain of tail
11950 calls do not need to have the tail call list complete. But any
11951 function candidate for a virtual tail call frame searched via
11952 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11953 determined unambiguously. */
11954 }
11955 else
11956 {
11957 struct type *func_type = NULL;
11958
11959 if (func_die)
11960 func_type = get_die_type (func_die, cu);
11961 if (func_type != NULL)
11962 {
11963 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11964
11965 /* Enlist this call site to the function. */
11966 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11967 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11968 }
11969 else
11970 complaint (&symfile_complaints,
216f72a1 11971 _("Cannot find function owning DW_TAG_call_site "
96408a79 11972 "DIE 0x%x [in module %s]"),
9c541725 11973 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
11974 }
11975 }
11976
216f72a1
JK
11977 attr = dwarf2_attr (die, DW_AT_call_target, cu);
11978 if (attr == NULL)
11979 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11980 if (attr == NULL)
11981 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
96408a79 11982 if (attr == NULL)
216f72a1
JK
11983 {
11984 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
11985 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11986 }
96408a79
SA
11987 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11988 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11989 /* Keep NULL DWARF_BLOCK. */;
11990 else if (attr_form_is_block (attr))
11991 {
11992 struct dwarf2_locexpr_baton *dlbaton;
11993
8d749320 11994 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11995 dlbaton->data = DW_BLOCK (attr)->data;
11996 dlbaton->size = DW_BLOCK (attr)->size;
11997 dlbaton->per_cu = cu->per_cu;
11998
11999 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
12000 }
7771576e 12001 else if (attr_form_is_ref (attr))
96408a79 12002 {
96408a79
SA
12003 struct dwarf2_cu *target_cu = cu;
12004 struct die_info *target_die;
12005
ac9ec31b 12006 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
12007 gdb_assert (target_cu->objfile == objfile);
12008 if (die_is_declaration (target_die, target_cu))
12009 {
7d45c7c3 12010 const char *target_physname;
9112db09
JK
12011
12012 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
12013 target_physname = dwarf2_string_attr (target_die,
12014 DW_AT_linkage_name,
12015 target_cu);
12016 if (target_physname == NULL)
12017 target_physname = dwarf2_string_attr (target_die,
12018 DW_AT_MIPS_linkage_name,
12019 target_cu);
12020 if (target_physname == NULL)
9112db09 12021 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
12022 if (target_physname == NULL)
12023 complaint (&symfile_complaints,
216f72a1 12024 _("DW_AT_call_target target DIE has invalid "
96408a79 12025 "physname, for referencing DIE 0x%x [in module %s]"),
9c541725 12026 to_underlying (die->sect_off), objfile_name (objfile));
96408a79 12027 else
7d455152 12028 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
12029 }
12030 else
12031 {
12032 CORE_ADDR lowpc;
12033
12034 /* DW_AT_entry_pc should be preferred. */
3a2b436a 12035 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 12036 <= PC_BOUNDS_INVALID)
96408a79 12037 complaint (&symfile_complaints,
216f72a1 12038 _("DW_AT_call_target target DIE has invalid "
96408a79 12039 "low pc, for referencing DIE 0x%x [in module %s]"),
9c541725 12040 to_underlying (die->sect_off), objfile_name (objfile));
96408a79 12041 else
3e29f34a
MR
12042 {
12043 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12044 SET_FIELD_PHYSADDR (call_site->target, lowpc);
12045 }
96408a79
SA
12046 }
12047 }
12048 else
12049 complaint (&symfile_complaints,
216f72a1 12050 _("DW_TAG_call_site DW_AT_call_target is neither "
96408a79 12051 "block nor reference, for DIE 0x%x [in module %s]"),
9c541725 12052 to_underlying (die->sect_off), objfile_name (objfile));
96408a79
SA
12053
12054 call_site->per_cu = cu->per_cu;
12055
12056 for (child_die = die->child;
12057 child_die && child_die->tag;
12058 child_die = sibling_die (child_die))
12059 {
96408a79 12060 struct call_site_parameter *parameter;
1788b2d3 12061 struct attribute *loc, *origin;
96408a79 12062
216f72a1
JK
12063 if (child_die->tag != DW_TAG_call_site_parameter
12064 && child_die->tag != DW_TAG_GNU_call_site_parameter)
96408a79
SA
12065 {
12066 /* Already printed the complaint above. */
12067 continue;
12068 }
12069
12070 gdb_assert (call_site->parameter_count < nparams);
12071 parameter = &call_site->parameter[call_site->parameter_count];
12072
1788b2d3
JK
12073 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
12074 specifies DW_TAG_formal_parameter. Value of the data assumed for the
216f72a1 12075 register is contained in DW_AT_call_value. */
96408a79 12076
24c5c679 12077 loc = dwarf2_attr (child_die, DW_AT_location, cu);
216f72a1
JK
12078 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
12079 if (origin == NULL)
12080 {
12081 /* This was a pre-DWARF-5 GNU extension alias
12082 for DW_AT_call_parameter. */
12083 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
12084 }
7771576e 12085 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3 12086 {
1788b2d3 12087 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9c541725
PA
12088
12089 sect_offset sect_off
12090 = (sect_offset) dwarf2_get_ref_die_offset (origin);
12091 if (!offset_in_cu_p (&cu->header, sect_off))
d76b7dbc
JK
12092 {
12093 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
12094 binding can be done only inside one CU. Such referenced DIE
12095 therefore cannot be even moved to DW_TAG_partial_unit. */
12096 complaint (&symfile_complaints,
216f72a1
JK
12097 _("DW_AT_call_parameter offset is not in CU for "
12098 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12099 to_underlying (child_die->sect_off),
12100 objfile_name (objfile));
d76b7dbc
JK
12101 continue;
12102 }
9c541725
PA
12103 parameter->u.param_cu_off
12104 = (cu_offset) (sect_off - cu->header.sect_off);
1788b2d3
JK
12105 }
12106 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
12107 {
12108 complaint (&symfile_complaints,
12109 _("No DW_FORM_block* DW_AT_location for "
216f72a1 12110 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725 12111 to_underlying (child_die->sect_off), objfile_name (objfile));
96408a79
SA
12112 continue;
12113 }
24c5c679 12114 else
96408a79 12115 {
24c5c679
JK
12116 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
12117 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
12118 if (parameter->u.dwarf_reg != -1)
12119 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
12120 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
12121 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
12122 &parameter->u.fb_offset))
12123 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
12124 else
12125 {
12126 complaint (&symfile_complaints,
12127 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
12128 "for DW_FORM_block* DW_AT_location is supported for "
216f72a1 12129 "DW_TAG_call_site child DIE 0x%x "
24c5c679 12130 "[in module %s]"),
9c541725
PA
12131 to_underlying (child_die->sect_off),
12132 objfile_name (objfile));
24c5c679
JK
12133 continue;
12134 }
96408a79
SA
12135 }
12136
216f72a1
JK
12137 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
12138 if (attr == NULL)
12139 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
96408a79
SA
12140 if (!attr_form_is_block (attr))
12141 {
12142 complaint (&symfile_complaints,
216f72a1
JK
12143 _("No DW_FORM_block* DW_AT_call_value for "
12144 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12145 to_underlying (child_die->sect_off),
12146 objfile_name (objfile));
96408a79
SA
12147 continue;
12148 }
12149 parameter->value = DW_BLOCK (attr)->data;
12150 parameter->value_size = DW_BLOCK (attr)->size;
12151
12152 /* Parameters are not pre-cleared by memset above. */
12153 parameter->data_value = NULL;
12154 parameter->data_value_size = 0;
12155 call_site->parameter_count++;
12156
216f72a1
JK
12157 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
12158 if (attr == NULL)
12159 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
96408a79
SA
12160 if (attr)
12161 {
12162 if (!attr_form_is_block (attr))
12163 complaint (&symfile_complaints,
216f72a1
JK
12164 _("No DW_FORM_block* DW_AT_call_data_value for "
12165 "DW_TAG_call_site child DIE 0x%x [in module %s]"),
9c541725
PA
12166 to_underlying (child_die->sect_off),
12167 objfile_name (objfile));
96408a79
SA
12168 else
12169 {
12170 parameter->data_value = DW_BLOCK (attr)->data;
12171 parameter->data_value_size = DW_BLOCK (attr)->size;
12172 }
12173 }
12174 }
12175}
12176
43988095
JK
12177/* Call CALLBACK from DW_AT_ranges attribute value OFFSET
12178 reading .debug_rnglists.
12179 Callback's type should be:
12180 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
12181 Return true if the attributes are present and valid, otherwise,
12182 return false. */
12183
12184template <typename Callback>
12185static bool
12186dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
12187 Callback &&callback)
12188{
12189 struct objfile *objfile = cu->objfile;
12190 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12191 struct comp_unit_head *cu_header = &cu->header;
12192 bfd *obfd = objfile->obfd;
12193 unsigned int addr_size = cu_header->addr_size;
12194 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12195 /* Base address selection entry. */
12196 CORE_ADDR base;
12197 int found_base;
12198 unsigned int dummy;
12199 const gdb_byte *buffer;
12200 CORE_ADDR low = 0;
12201 CORE_ADDR high = 0;
12202 CORE_ADDR baseaddr;
12203 bool overflow = false;
12204
12205 found_base = cu->base_known;
12206 base = cu->base_address;
12207
12208 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
12209 if (offset >= dwarf2_per_objfile->rnglists.size)
12210 {
12211 complaint (&symfile_complaints,
12212 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12213 offset);
12214 return false;
12215 }
12216 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
12217
12218 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
12219
12220 while (1)
12221 {
7814882a
JK
12222 /* Initialize it due to a false compiler warning. */
12223 CORE_ADDR range_beginning = 0, range_end = 0;
43988095
JK
12224 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
12225 + dwarf2_per_objfile->rnglists.size);
12226 unsigned int bytes_read;
12227
12228 if (buffer == buf_end)
12229 {
12230 overflow = true;
12231 break;
12232 }
12233 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
12234 switch (rlet)
12235 {
12236 case DW_RLE_end_of_list:
12237 break;
12238 case DW_RLE_base_address:
12239 if (buffer + cu->header.addr_size > buf_end)
12240 {
12241 overflow = true;
12242 break;
12243 }
12244 base = read_address (obfd, buffer, cu, &bytes_read);
12245 found_base = 1;
12246 buffer += bytes_read;
12247 break;
12248 case DW_RLE_start_length:
12249 if (buffer + cu->header.addr_size > buf_end)
12250 {
12251 overflow = true;
12252 break;
12253 }
12254 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12255 buffer += bytes_read;
12256 range_end = (range_beginning
12257 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
12258 buffer += bytes_read;
12259 if (buffer > buf_end)
12260 {
12261 overflow = true;
12262 break;
12263 }
12264 break;
12265 case DW_RLE_offset_pair:
12266 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12267 buffer += bytes_read;
12268 if (buffer > buf_end)
12269 {
12270 overflow = true;
12271 break;
12272 }
12273 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
12274 buffer += bytes_read;
12275 if (buffer > buf_end)
12276 {
12277 overflow = true;
12278 break;
12279 }
12280 break;
12281 case DW_RLE_start_end:
12282 if (buffer + 2 * cu->header.addr_size > buf_end)
12283 {
12284 overflow = true;
12285 break;
12286 }
12287 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
12288 buffer += bytes_read;
12289 range_end = read_address (obfd, buffer, cu, &bytes_read);
12290 buffer += bytes_read;
12291 break;
12292 default:
12293 complaint (&symfile_complaints,
12294 _("Invalid .debug_rnglists data (no base address)"));
12295 return false;
12296 }
12297 if (rlet == DW_RLE_end_of_list || overflow)
12298 break;
12299 if (rlet == DW_RLE_base_address)
12300 continue;
12301
12302 if (!found_base)
12303 {
12304 /* We have no valid base address for the ranges
12305 data. */
12306 complaint (&symfile_complaints,
12307 _("Invalid .debug_rnglists data (no base address)"));
12308 return false;
12309 }
12310
12311 if (range_beginning > range_end)
12312 {
12313 /* Inverted range entries are invalid. */
12314 complaint (&symfile_complaints,
12315 _("Invalid .debug_rnglists data (inverted range)"));
12316 return false;
12317 }
12318
12319 /* Empty range entries have no effect. */
12320 if (range_beginning == range_end)
12321 continue;
12322
12323 range_beginning += base;
12324 range_end += base;
12325
12326 /* A not-uncommon case of bad debug info.
12327 Don't pollute the addrmap with bad data. */
12328 if (range_beginning + baseaddr == 0
12329 && !dwarf2_per_objfile->has_section_at_zero)
12330 {
12331 complaint (&symfile_complaints,
12332 _(".debug_rnglists entry has start address of zero"
12333 " [in module %s]"), objfile_name (objfile));
12334 continue;
12335 }
12336
12337 callback (range_beginning, range_end);
12338 }
12339
12340 if (overflow)
12341 {
12342 complaint (&symfile_complaints,
12343 _("Offset %d is not terminated "
12344 "for DW_AT_ranges attribute"),
12345 offset);
12346 return false;
12347 }
12348
12349 return true;
12350}
12351
12352/* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
12353 Callback's type should be:
12354 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
5f46c5a5 12355 Return 1 if the attributes are present and valid, otherwise, return 0. */
43039443 12356
43988095 12357template <typename Callback>
43039443 12358static int
5f46c5a5 12359dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
43988095 12360 Callback &&callback)
43039443
JK
12361{
12362 struct objfile *objfile = cu->objfile;
3e29f34a 12363 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
12364 struct comp_unit_head *cu_header = &cu->header;
12365 bfd *obfd = objfile->obfd;
12366 unsigned int addr_size = cu_header->addr_size;
12367 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12368 /* Base address selection entry. */
12369 CORE_ADDR base;
12370 int found_base;
12371 unsigned int dummy;
d521ce57 12372 const gdb_byte *buffer;
ff013f42 12373 CORE_ADDR baseaddr;
43039443 12374
43988095
JK
12375 if (cu_header->version >= 5)
12376 return dwarf2_rnglists_process (offset, cu, callback);
12377
d00adf39
DE
12378 found_base = cu->base_known;
12379 base = cu->base_address;
43039443 12380
be391dca 12381 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12382 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
12383 {
12384 complaint (&symfile_complaints,
12385 _("Offset %d out of bounds for DW_AT_ranges attribute"),
12386 offset);
12387 return 0;
12388 }
dce234bc 12389 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 12390
e7030f15 12391 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 12392
43039443
JK
12393 while (1)
12394 {
12395 CORE_ADDR range_beginning, range_end;
12396
12397 range_beginning = read_address (obfd, buffer, cu, &dummy);
12398 buffer += addr_size;
12399 range_end = read_address (obfd, buffer, cu, &dummy);
12400 buffer += addr_size;
12401 offset += 2 * addr_size;
12402
12403 /* An end of list marker is a pair of zero addresses. */
12404 if (range_beginning == 0 && range_end == 0)
12405 /* Found the end of list entry. */
12406 break;
12407
12408 /* Each base address selection entry is a pair of 2 values.
12409 The first is the largest possible address, the second is
12410 the base address. Check for a base address here. */
12411 if ((range_beginning & mask) == mask)
12412 {
28d2bfb9
AB
12413 /* If we found the largest possible address, then we already
12414 have the base address in range_end. */
12415 base = range_end;
43039443
JK
12416 found_base = 1;
12417 continue;
12418 }
12419
12420 if (!found_base)
12421 {
12422 /* We have no valid base address for the ranges
12423 data. */
12424 complaint (&symfile_complaints,
12425 _("Invalid .debug_ranges data (no base address)"));
12426 return 0;
12427 }
12428
9277c30c
UW
12429 if (range_beginning > range_end)
12430 {
12431 /* Inverted range entries are invalid. */
12432 complaint (&symfile_complaints,
12433 _("Invalid .debug_ranges data (inverted range)"));
12434 return 0;
12435 }
12436
12437 /* Empty range entries have no effect. */
12438 if (range_beginning == range_end)
12439 continue;
12440
43039443
JK
12441 range_beginning += base;
12442 range_end += base;
12443
01093045
DE
12444 /* A not-uncommon case of bad debug info.
12445 Don't pollute the addrmap with bad data. */
12446 if (range_beginning + baseaddr == 0
12447 && !dwarf2_per_objfile->has_section_at_zero)
12448 {
12449 complaint (&symfile_complaints,
12450 _(".debug_ranges entry has start address of zero"
4262abfb 12451 " [in module %s]"), objfile_name (objfile));
01093045
DE
12452 continue;
12453 }
12454
5f46c5a5
JK
12455 callback (range_beginning, range_end);
12456 }
12457
12458 return 1;
12459}
12460
12461/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
12462 Return 1 if the attributes are present and valid, otherwise, return 0.
12463 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
12464
12465static int
12466dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
12467 CORE_ADDR *high_return, struct dwarf2_cu *cu,
12468 struct partial_symtab *ranges_pst)
12469{
12470 struct objfile *objfile = cu->objfile;
12471 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12472 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
12473 SECT_OFF_TEXT (objfile));
12474 int low_set = 0;
12475 CORE_ADDR low = 0;
12476 CORE_ADDR high = 0;
12477 int retval;
12478
12479 retval = dwarf2_ranges_process (offset, cu,
12480 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
12481 {
9277c30c 12482 if (ranges_pst != NULL)
3e29f34a
MR
12483 {
12484 CORE_ADDR lowpc;
12485 CORE_ADDR highpc;
12486
12487 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12488 range_beginning + baseaddr);
12489 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12490 range_end + baseaddr);
12491 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12492 ranges_pst);
12493 }
ff013f42 12494
43039443
JK
12495 /* FIXME: This is recording everything as a low-high
12496 segment of consecutive addresses. We should have a
12497 data structure for discontiguous block ranges
12498 instead. */
12499 if (! low_set)
12500 {
12501 low = range_beginning;
12502 high = range_end;
12503 low_set = 1;
12504 }
12505 else
12506 {
12507 if (range_beginning < low)
12508 low = range_beginning;
12509 if (range_end > high)
12510 high = range_end;
12511 }
5f46c5a5
JK
12512 });
12513 if (!retval)
12514 return 0;
43039443
JK
12515
12516 if (! low_set)
12517 /* If the first entry is an end-of-list marker, the range
12518 describes an empty scope, i.e. no instructions. */
12519 return 0;
12520
12521 if (low_return)
12522 *low_return = low;
12523 if (high_return)
12524 *high_return = high;
12525 return 1;
12526}
12527
3a2b436a
JK
12528/* Get low and high pc attributes from a die. See enum pc_bounds_kind
12529 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 12530 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 12531
3a2b436a 12532static enum pc_bounds_kind
af34e669 12533dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12534 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12535 struct partial_symtab *pst)
c906108c
SS
12536{
12537 struct attribute *attr;
91da1414 12538 struct attribute *attr_high;
af34e669
DJ
12539 CORE_ADDR low = 0;
12540 CORE_ADDR high = 0;
e385593e 12541 enum pc_bounds_kind ret;
c906108c 12542
91da1414
MW
12543 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12544 if (attr_high)
af34e669 12545 {
e142c38c 12546 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12547 if (attr)
91da1414 12548 {
31aa7e4e
JB
12549 low = attr_value_as_address (attr);
12550 high = attr_value_as_address (attr_high);
12551 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12552 high += low;
91da1414 12553 }
af34e669
DJ
12554 else
12555 /* Found high w/o low attribute. */
e385593e 12556 return PC_BOUNDS_INVALID;
af34e669
DJ
12557
12558 /* Found consecutive range of addresses. */
3a2b436a 12559 ret = PC_BOUNDS_HIGH_LOW;
af34e669 12560 }
c906108c 12561 else
af34e669 12562 {
e142c38c 12563 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12564 if (attr != NULL)
12565 {
ab435259
DE
12566 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12567 We take advantage of the fact that DW_AT_ranges does not appear
12568 in DW_TAG_compile_unit of DWO files. */
12569 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12570 unsigned int ranges_offset = (DW_UNSND (attr)
12571 + (need_ranges_base
12572 ? cu->ranges_base
12573 : 0));
2e3cf129 12574
af34e669 12575 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12576 .debug_ranges section. */
2e3cf129 12577 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 12578 return PC_BOUNDS_INVALID;
43039443 12579 /* Found discontinuous range of addresses. */
3a2b436a 12580 ret = PC_BOUNDS_RANGES;
af34e669 12581 }
e385593e
JK
12582 else
12583 return PC_BOUNDS_NOT_PRESENT;
af34e669 12584 }
c906108c 12585
9373cf26
JK
12586 /* read_partial_die has also the strict LOW < HIGH requirement. */
12587 if (high <= low)
e385593e 12588 return PC_BOUNDS_INVALID;
c906108c
SS
12589
12590 /* When using the GNU linker, .gnu.linkonce. sections are used to
12591 eliminate duplicate copies of functions and vtables and such.
12592 The linker will arbitrarily choose one and discard the others.
12593 The AT_*_pc values for such functions refer to local labels in
12594 these sections. If the section from that file was discarded, the
12595 labels are not in the output, so the relocs get a value of 0.
12596 If this is a discarded function, mark the pc bounds as invalid,
12597 so that GDB will ignore it. */
72dca2f5 12598 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 12599 return PC_BOUNDS_INVALID;
c906108c
SS
12600
12601 *lowpc = low;
96408a79
SA
12602 if (highpc)
12603 *highpc = high;
af34e669 12604 return ret;
c906108c
SS
12605}
12606
b084d499
JB
12607/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12608 its low and high PC addresses. Do nothing if these addresses could not
12609 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12610 and HIGHPC to the high address if greater than HIGHPC. */
12611
12612static void
12613dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12614 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12615 struct dwarf2_cu *cu)
12616{
12617 CORE_ADDR low, high;
12618 struct die_info *child = die->child;
12619
e385593e 12620 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499 12621 {
325fac50
PA
12622 *lowpc = std::min (*lowpc, low);
12623 *highpc = std::max (*highpc, high);
b084d499
JB
12624 }
12625
12626 /* If the language does not allow nested subprograms (either inside
12627 subprograms or lexical blocks), we're done. */
12628 if (cu->language != language_ada)
12629 return;
6e70227d 12630
b084d499
JB
12631 /* Check all the children of the given DIE. If it contains nested
12632 subprograms, then check their pc bounds. Likewise, we need to
12633 check lexical blocks as well, as they may also contain subprogram
12634 definitions. */
12635 while (child && child->tag)
12636 {
12637 if (child->tag == DW_TAG_subprogram
12638 || child->tag == DW_TAG_lexical_block)
12639 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12640 child = sibling_die (child);
12641 }
12642}
12643
fae299cd
DC
12644/* Get the low and high pc's represented by the scope DIE, and store
12645 them in *LOWPC and *HIGHPC. If the correct values can't be
12646 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12647
12648static void
12649get_scope_pc_bounds (struct die_info *die,
12650 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12651 struct dwarf2_cu *cu)
12652{
12653 CORE_ADDR best_low = (CORE_ADDR) -1;
12654 CORE_ADDR best_high = (CORE_ADDR) 0;
12655 CORE_ADDR current_low, current_high;
12656
3a2b436a 12657 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 12658 >= PC_BOUNDS_RANGES)
fae299cd
DC
12659 {
12660 best_low = current_low;
12661 best_high = current_high;
12662 }
12663 else
12664 {
12665 struct die_info *child = die->child;
12666
12667 while (child && child->tag)
12668 {
12669 switch (child->tag) {
12670 case DW_TAG_subprogram:
b084d499 12671 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12672 break;
12673 case DW_TAG_namespace:
f55ee35c 12674 case DW_TAG_module:
fae299cd
DC
12675 /* FIXME: carlton/2004-01-16: Should we do this for
12676 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12677 that current GCC's always emit the DIEs corresponding
12678 to definitions of methods of classes as children of a
12679 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12680 the DIEs giving the declarations, which could be
12681 anywhere). But I don't see any reason why the
12682 standards says that they have to be there. */
12683 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12684
12685 if (current_low != ((CORE_ADDR) -1))
12686 {
325fac50
PA
12687 best_low = std::min (best_low, current_low);
12688 best_high = std::max (best_high, current_high);
fae299cd
DC
12689 }
12690 break;
12691 default:
0963b4bd 12692 /* Ignore. */
fae299cd
DC
12693 break;
12694 }
12695
12696 child = sibling_die (child);
12697 }
12698 }
12699
12700 *lowpc = best_low;
12701 *highpc = best_high;
12702}
12703
801e3a5b
JB
12704/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12705 in DIE. */
380bca97 12706
801e3a5b
JB
12707static void
12708dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12709 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12710{
bb5ed363 12711 struct objfile *objfile = cu->objfile;
3e29f34a 12712 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12713 struct attribute *attr;
91da1414 12714 struct attribute *attr_high;
801e3a5b 12715
91da1414
MW
12716 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12717 if (attr_high)
801e3a5b 12718 {
801e3a5b
JB
12719 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12720 if (attr)
12721 {
31aa7e4e
JB
12722 CORE_ADDR low = attr_value_as_address (attr);
12723 CORE_ADDR high = attr_value_as_address (attr_high);
12724
12725 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12726 high += low;
9a619af0 12727
3e29f34a
MR
12728 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12729 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12730 record_block_range (block, low, high - 1);
801e3a5b
JB
12731 }
12732 }
12733
12734 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12735 if (attr)
12736 {
bb5ed363 12737 bfd *obfd = objfile->obfd;
ab435259
DE
12738 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12739 We take advantage of the fact that DW_AT_ranges does not appear
12740 in DW_TAG_compile_unit of DWO files. */
12741 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12742
12743 /* The value of the DW_AT_ranges attribute is the offset of the
12744 address range list in the .debug_ranges section. */
ab435259
DE
12745 unsigned long offset = (DW_UNSND (attr)
12746 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12747 const gdb_byte *buffer;
801e3a5b
JB
12748
12749 /* For some target architectures, but not others, the
12750 read_address function sign-extends the addresses it returns.
12751 To recognize base address selection entries, we need a
12752 mask. */
12753 unsigned int addr_size = cu->header.addr_size;
12754 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12755
12756 /* The base address, to which the next pair is relative. Note
12757 that this 'base' is a DWARF concept: most entries in a range
12758 list are relative, to reduce the number of relocs against the
12759 debugging information. This is separate from this function's
12760 'baseaddr' argument, which GDB uses to relocate debugging
12761 information from a shared library based on the address at
12762 which the library was loaded. */
d00adf39
DE
12763 CORE_ADDR base = cu->base_address;
12764 int base_known = cu->base_known;
801e3a5b 12765
5f46c5a5
JK
12766 dwarf2_ranges_process (offset, cu,
12767 [&] (CORE_ADDR start, CORE_ADDR end)
12768 {
58fdfd2c
JK
12769 start += baseaddr;
12770 end += baseaddr;
5f46c5a5
JK
12771 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12772 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12773 record_block_range (block, start, end - 1);
12774 });
801e3a5b
JB
12775 }
12776}
12777
685b1105
JK
12778/* Check whether the producer field indicates either of GCC < 4.6, or the
12779 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12780
685b1105
JK
12781static void
12782check_producer (struct dwarf2_cu *cu)
60d5a603 12783{
38360086 12784 int major, minor;
60d5a603
JK
12785
12786 if (cu->producer == NULL)
12787 {
12788 /* For unknown compilers expect their behavior is DWARF version
12789 compliant.
12790
12791 GCC started to support .debug_types sections by -gdwarf-4 since
12792 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12793 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12794 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12795 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12796 }
b1ffba5a 12797 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12798 {
38360086
MW
12799 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12800 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12801 }
61012eef 12802 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12803 cu->producer_is_icc = 1;
12804 else
12805 {
12806 /* For other non-GCC compilers, expect their behavior is DWARF version
12807 compliant. */
60d5a603
JK
12808 }
12809
ba919b58 12810 cu->checked_producer = 1;
685b1105 12811}
ba919b58 12812
685b1105
JK
12813/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12814 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12815 during 4.6.0 experimental. */
12816
12817static int
12818producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12819{
12820 if (!cu->checked_producer)
12821 check_producer (cu);
12822
12823 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12824}
12825
12826/* Return the default accessibility type if it is not overriden by
12827 DW_AT_accessibility. */
12828
12829static enum dwarf_access_attribute
12830dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12831{
12832 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12833 {
12834 /* The default DWARF 2 accessibility for members is public, the default
12835 accessibility for inheritance is private. */
12836
12837 if (die->tag != DW_TAG_inheritance)
12838 return DW_ACCESS_public;
12839 else
12840 return DW_ACCESS_private;
12841 }
12842 else
12843 {
12844 /* DWARF 3+ defines the default accessibility a different way. The same
12845 rules apply now for DW_TAG_inheritance as for the members and it only
12846 depends on the container kind. */
12847
12848 if (die->parent->tag == DW_TAG_class_type)
12849 return DW_ACCESS_private;
12850 else
12851 return DW_ACCESS_public;
12852 }
12853}
12854
74ac6d43
TT
12855/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12856 offset. If the attribute was not found return 0, otherwise return
12857 1. If it was found but could not properly be handled, set *OFFSET
12858 to 0. */
12859
12860static int
12861handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12862 LONGEST *offset)
12863{
12864 struct attribute *attr;
12865
12866 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12867 if (attr != NULL)
12868 {
12869 *offset = 0;
12870
12871 /* Note that we do not check for a section offset first here.
12872 This is because DW_AT_data_member_location is new in DWARF 4,
12873 so if we see it, we can assume that a constant form is really
12874 a constant and not a section offset. */
12875 if (attr_form_is_constant (attr))
12876 *offset = dwarf2_get_attr_constant_value (attr, 0);
12877 else if (attr_form_is_section_offset (attr))
12878 dwarf2_complex_location_expr_complaint ();
12879 else if (attr_form_is_block (attr))
12880 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12881 else
12882 dwarf2_complex_location_expr_complaint ();
12883
12884 return 1;
12885 }
12886
12887 return 0;
12888}
12889
c906108c
SS
12890/* Add an aggregate field to the field list. */
12891
12892static void
107d2387 12893dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12894 struct dwarf2_cu *cu)
6e70227d 12895{
e7c27a73 12896 struct objfile *objfile = cu->objfile;
5e2b427d 12897 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12898 struct nextfield *new_field;
12899 struct attribute *attr;
12900 struct field *fp;
15d034d0 12901 const char *fieldname = "";
c906108c
SS
12902
12903 /* Allocate a new field list entry and link it in. */
8d749320 12904 new_field = XNEW (struct nextfield);
b8c9b27d 12905 make_cleanup (xfree, new_field);
c906108c 12906 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12907
12908 if (die->tag == DW_TAG_inheritance)
12909 {
12910 new_field->next = fip->baseclasses;
12911 fip->baseclasses = new_field;
12912 }
12913 else
12914 {
12915 new_field->next = fip->fields;
12916 fip->fields = new_field;
12917 }
c906108c
SS
12918 fip->nfields++;
12919
e142c38c 12920 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12921 if (attr)
12922 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12923 else
12924 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12925 if (new_field->accessibility != DW_ACCESS_public)
12926 fip->non_public_fields = 1;
60d5a603 12927
e142c38c 12928 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12929 if (attr)
12930 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12931 else
12932 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12933
12934 fp = &new_field->field;
a9a9bd0f 12935
e142c38c 12936 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12937 {
74ac6d43
TT
12938 LONGEST offset;
12939
a9a9bd0f 12940 /* Data member other than a C++ static data member. */
6e70227d 12941
c906108c 12942 /* Get type of field. */
e7c27a73 12943 fp->type = die_type (die, cu);
c906108c 12944
d6a843b5 12945 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12946
c906108c 12947 /* Get bit size of field (zero if none). */
e142c38c 12948 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12949 if (attr)
12950 {
12951 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12952 }
12953 else
12954 {
12955 FIELD_BITSIZE (*fp) = 0;
12956 }
12957
12958 /* Get bit offset of field. */
74ac6d43
TT
12959 if (handle_data_member_location (die, cu, &offset))
12960 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12961 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12962 if (attr)
12963 {
5e2b427d 12964 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12965 {
12966 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12967 additional bit offset from the MSB of the containing
12968 anonymous object to the MSB of the field. We don't
12969 have to do anything special since we don't need to
12970 know the size of the anonymous object. */
f41f5e61 12971 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12972 }
12973 else
12974 {
12975 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12976 MSB of the anonymous object, subtract off the number of
12977 bits from the MSB of the field to the MSB of the
12978 object, and then subtract off the number of bits of
12979 the field itself. The result is the bit offset of
12980 the LSB of the field. */
c906108c
SS
12981 int anonymous_size;
12982 int bit_offset = DW_UNSND (attr);
12983
e142c38c 12984 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12985 if (attr)
12986 {
12987 /* The size of the anonymous object containing
12988 the bit field is explicit, so use the
12989 indicated size (in bytes). */
12990 anonymous_size = DW_UNSND (attr);
12991 }
12992 else
12993 {
12994 /* The size of the anonymous object containing
12995 the bit field must be inferred from the type
12996 attribute of the data member containing the
12997 bit field. */
12998 anonymous_size = TYPE_LENGTH (fp->type);
12999 }
f41f5e61
PA
13000 SET_FIELD_BITPOS (*fp,
13001 (FIELD_BITPOS (*fp)
13002 + anonymous_size * bits_per_byte
13003 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
13004 }
13005 }
da5b30da
AA
13006 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
13007 if (attr != NULL)
13008 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
13009 + dwarf2_get_attr_constant_value (attr, 0)));
c906108c
SS
13010
13011 /* Get name of field. */
39cbfefa
DJ
13012 fieldname = dwarf2_name (die, cu);
13013 if (fieldname == NULL)
13014 fieldname = "";
d8151005
DJ
13015
13016 /* The name is already allocated along with this objfile, so we don't
13017 need to duplicate it for the type. */
13018 fp->name = fieldname;
c906108c
SS
13019
13020 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 13021 pointer or virtual base class pointer) to private. */
e142c38c 13022 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 13023 {
d48cc9dd 13024 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
13025 new_field->accessibility = DW_ACCESS_private;
13026 fip->non_public_fields = 1;
13027 }
13028 }
a9a9bd0f 13029 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 13030 {
a9a9bd0f
DC
13031 /* C++ static member. */
13032
13033 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
13034 is a declaration, but all versions of G++ as of this writing
13035 (so through at least 3.2.1) incorrectly generate
13036 DW_TAG_variable tags. */
6e70227d 13037
ff355380 13038 const char *physname;
c906108c 13039
a9a9bd0f 13040 /* Get name of field. */
39cbfefa
DJ
13041 fieldname = dwarf2_name (die, cu);
13042 if (fieldname == NULL)
c906108c
SS
13043 return;
13044
254e6b9e 13045 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
13046 if (attr
13047 /* Only create a symbol if this is an external value.
13048 new_symbol checks this and puts the value in the global symbol
13049 table, which we want. If it is not external, new_symbol
13050 will try to put the value in cu->list_in_scope which is wrong. */
13051 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
13052 {
13053 /* A static const member, not much different than an enum as far as
13054 we're concerned, except that we can support more types. */
13055 new_symbol (die, NULL, cu);
13056 }
13057
2df3850c 13058 /* Get physical name. */
ff355380 13059 physname = dwarf2_physname (fieldname, die, cu);
c906108c 13060
d8151005
DJ
13061 /* The name is already allocated along with this objfile, so we don't
13062 need to duplicate it for the type. */
13063 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 13064 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 13065 FIELD_NAME (*fp) = fieldname;
c906108c
SS
13066 }
13067 else if (die->tag == DW_TAG_inheritance)
13068 {
74ac6d43 13069 LONGEST offset;
d4b96c9a 13070
74ac6d43
TT
13071 /* C++ base class field. */
13072 if (handle_data_member_location (die, cu, &offset))
13073 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 13074 FIELD_BITSIZE (*fp) = 0;
e7c27a73 13075 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
13076 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
13077 fip->nbaseclasses++;
13078 }
13079}
13080
98751a41
JK
13081/* Add a typedef defined in the scope of the FIP's class. */
13082
13083static void
13084dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
13085 struct dwarf2_cu *cu)
6e70227d 13086{
98751a41 13087 struct typedef_field_list *new_field;
98751a41 13088 struct typedef_field *fp;
98751a41
JK
13089
13090 /* Allocate a new field list entry and link it in. */
8d749320 13091 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
13092 make_cleanup (xfree, new_field);
13093
13094 gdb_assert (die->tag == DW_TAG_typedef);
13095
13096 fp = &new_field->field;
13097
13098 /* Get name of field. */
13099 fp->name = dwarf2_name (die, cu);
13100 if (fp->name == NULL)
13101 return;
13102
13103 fp->type = read_type_die (die, cu);
13104
13105 new_field->next = fip->typedef_field_list;
13106 fip->typedef_field_list = new_field;
13107 fip->typedef_field_list_count++;
13108}
13109
c906108c
SS
13110/* Create the vector of fields, and attach it to the type. */
13111
13112static void
fba45db2 13113dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13114 struct dwarf2_cu *cu)
c906108c
SS
13115{
13116 int nfields = fip->nfields;
13117
13118 /* Record the field count, allocate space for the array of fields,
13119 and create blank accessibility bitfields if necessary. */
13120 TYPE_NFIELDS (type) = nfields;
13121 TYPE_FIELDS (type) = (struct field *)
13122 TYPE_ALLOC (type, sizeof (struct field) * nfields);
13123 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
13124
b4ba55a1 13125 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
13126 {
13127 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13128
13129 TYPE_FIELD_PRIVATE_BITS (type) =
13130 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13131 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
13132
13133 TYPE_FIELD_PROTECTED_BITS (type) =
13134 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13135 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
13136
774b6a14
TT
13137 TYPE_FIELD_IGNORE_BITS (type) =
13138 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
13139 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
13140 }
13141
13142 /* If the type has baseclasses, allocate and clear a bit vector for
13143 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 13144 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
13145 {
13146 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 13147 unsigned char *pointer;
c906108c
SS
13148
13149 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 13150 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 13151 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
13152 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
13153 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
13154 }
13155
3e43a32a
MS
13156 /* Copy the saved-up fields into the field vector. Start from the head of
13157 the list, adding to the tail of the field array, so that they end up in
13158 the same order in the array in which they were added to the list. */
c906108c
SS
13159 while (nfields-- > 0)
13160 {
7d0ccb61
DJ
13161 struct nextfield *fieldp;
13162
13163 if (fip->fields)
13164 {
13165 fieldp = fip->fields;
13166 fip->fields = fieldp->next;
13167 }
13168 else
13169 {
13170 fieldp = fip->baseclasses;
13171 fip->baseclasses = fieldp->next;
13172 }
13173
13174 TYPE_FIELD (type, nfields) = fieldp->field;
13175 switch (fieldp->accessibility)
c906108c 13176 {
c5aa993b 13177 case DW_ACCESS_private:
b4ba55a1
JB
13178 if (cu->language != language_ada)
13179 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 13180 break;
c906108c 13181
c5aa993b 13182 case DW_ACCESS_protected:
b4ba55a1
JB
13183 if (cu->language != language_ada)
13184 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 13185 break;
c906108c 13186
c5aa993b
JM
13187 case DW_ACCESS_public:
13188 break;
c906108c 13189
c5aa993b
JM
13190 default:
13191 /* Unknown accessibility. Complain and treat it as public. */
13192 {
e2e0b3e5 13193 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 13194 fieldp->accessibility);
c5aa993b
JM
13195 }
13196 break;
c906108c
SS
13197 }
13198 if (nfields < fip->nbaseclasses)
13199 {
7d0ccb61 13200 switch (fieldp->virtuality)
c906108c 13201 {
c5aa993b
JM
13202 case DW_VIRTUALITY_virtual:
13203 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 13204 if (cu->language == language_ada)
a73c6dcd 13205 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
13206 SET_TYPE_FIELD_VIRTUAL (type, nfields);
13207 break;
c906108c
SS
13208 }
13209 }
c906108c
SS
13210 }
13211}
13212
7d27a96d
TT
13213/* Return true if this member function is a constructor, false
13214 otherwise. */
13215
13216static int
13217dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
13218{
13219 const char *fieldname;
fe978cb0 13220 const char *type_name;
7d27a96d
TT
13221 int len;
13222
13223 if (die->parent == NULL)
13224 return 0;
13225
13226 if (die->parent->tag != DW_TAG_structure_type
13227 && die->parent->tag != DW_TAG_union_type
13228 && die->parent->tag != DW_TAG_class_type)
13229 return 0;
13230
13231 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
13232 type_name = dwarf2_name (die->parent, cu);
13233 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
13234 return 0;
13235
13236 len = strlen (fieldname);
fe978cb0
PA
13237 return (strncmp (fieldname, type_name, len) == 0
13238 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
13239}
13240
c906108c
SS
13241/* Add a member function to the proper fieldlist. */
13242
13243static void
107d2387 13244dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 13245 struct type *type, struct dwarf2_cu *cu)
c906108c 13246{
e7c27a73 13247 struct objfile *objfile = cu->objfile;
c906108c
SS
13248 struct attribute *attr;
13249 struct fnfieldlist *flp;
13250 int i;
13251 struct fn_field *fnp;
15d034d0 13252 const char *fieldname;
c906108c 13253 struct nextfnfield *new_fnfield;
f792889a 13254 struct type *this_type;
60d5a603 13255 enum dwarf_access_attribute accessibility;
c906108c 13256
b4ba55a1 13257 if (cu->language == language_ada)
a73c6dcd 13258 error (_("unexpected member function in Ada type"));
b4ba55a1 13259
2df3850c 13260 /* Get name of member function. */
39cbfefa
DJ
13261 fieldname = dwarf2_name (die, cu);
13262 if (fieldname == NULL)
2df3850c 13263 return;
c906108c 13264
c906108c
SS
13265 /* Look up member function name in fieldlist. */
13266 for (i = 0; i < fip->nfnfields; i++)
13267 {
27bfe10e 13268 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
13269 break;
13270 }
13271
13272 /* Create new list element if necessary. */
13273 if (i < fip->nfnfields)
13274 flp = &fip->fnfieldlists[i];
13275 else
13276 {
13277 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
13278 {
13279 fip->fnfieldlists = (struct fnfieldlist *)
13280 xrealloc (fip->fnfieldlists,
13281 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13282 * sizeof (struct fnfieldlist));
c906108c 13283 if (fip->nfnfields == 0)
c13c43fd 13284 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
13285 }
13286 flp = &fip->fnfieldlists[fip->nfnfields];
13287 flp->name = fieldname;
13288 flp->length = 0;
13289 flp->head = NULL;
3da10d80 13290 i = fip->nfnfields++;
c906108c
SS
13291 }
13292
13293 /* Create a new member function field and chain it to the field list
0963b4bd 13294 entry. */
8d749320 13295 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 13296 make_cleanup (xfree, new_fnfield);
c906108c
SS
13297 memset (new_fnfield, 0, sizeof (struct nextfnfield));
13298 new_fnfield->next = flp->head;
13299 flp->head = new_fnfield;
13300 flp->length++;
13301
13302 /* Fill in the member function field info. */
13303 fnp = &new_fnfield->fnfield;
3da10d80
KS
13304
13305 /* Delay processing of the physname until later. */
9c37b5ae 13306 if (cu->language == language_cplus)
3da10d80
KS
13307 {
13308 add_to_method_list (type, i, flp->length - 1, fieldname,
13309 die, cu);
13310 }
13311 else
13312 {
1d06ead6 13313 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
13314 fnp->physname = physname ? physname : "";
13315 }
13316
c906108c 13317 fnp->type = alloc_type (objfile);
f792889a
DJ
13318 this_type = read_type_die (die, cu);
13319 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 13320 {
f792889a 13321 int nparams = TYPE_NFIELDS (this_type);
c906108c 13322
f792889a 13323 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
13324 of the method itself (TYPE_CODE_METHOD). */
13325 smash_to_method_type (fnp->type, type,
f792889a
DJ
13326 TYPE_TARGET_TYPE (this_type),
13327 TYPE_FIELDS (this_type),
13328 TYPE_NFIELDS (this_type),
13329 TYPE_VARARGS (this_type));
c906108c
SS
13330
13331 /* Handle static member functions.
c5aa993b 13332 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
13333 member functions. G++ helps GDB by marking the first
13334 parameter for non-static member functions (which is the this
13335 pointer) as artificial. We obtain this information from
13336 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 13337 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
13338 fnp->voffset = VOFFSET_STATIC;
13339 }
13340 else
e2e0b3e5 13341 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 13342 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
13343
13344 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 13345 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 13346 fnp->fcontext = die_containing_type (die, cu);
c906108c 13347
3e43a32a
MS
13348 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
13349 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
13350
13351 /* Get accessibility. */
e142c38c 13352 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 13353 if (attr)
aead7601 13354 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
13355 else
13356 accessibility = dwarf2_default_access_attribute (die, cu);
13357 switch (accessibility)
c906108c 13358 {
60d5a603
JK
13359 case DW_ACCESS_private:
13360 fnp->is_private = 1;
13361 break;
13362 case DW_ACCESS_protected:
13363 fnp->is_protected = 1;
13364 break;
c906108c
SS
13365 }
13366
b02dede2 13367 /* Check for artificial methods. */
e142c38c 13368 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
13369 if (attr && DW_UNSND (attr) != 0)
13370 fnp->is_artificial = 1;
13371
7d27a96d
TT
13372 fnp->is_constructor = dwarf2_is_constructor (die, cu);
13373
0d564a31 13374 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
13375 function. For older versions of GCC, this is an offset in the
13376 appropriate virtual table, as specified by DW_AT_containing_type.
13377 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
13378 to the object address. */
13379
e142c38c 13380 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 13381 if (attr)
8e19ed76 13382 {
aec5aa8b 13383 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 13384 {
aec5aa8b
TT
13385 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
13386 {
13387 /* Old-style GCC. */
13388 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
13389 }
13390 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
13391 || (DW_BLOCK (attr)->size > 1
13392 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
13393 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
13394 {
aec5aa8b
TT
13395 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
13396 if ((fnp->voffset % cu->header.addr_size) != 0)
13397 dwarf2_complex_location_expr_complaint ();
13398 else
13399 fnp->voffset /= cu->header.addr_size;
13400 fnp->voffset += 2;
13401 }
13402 else
13403 dwarf2_complex_location_expr_complaint ();
13404
13405 if (!fnp->fcontext)
7e993ebf
KS
13406 {
13407 /* If there is no `this' field and no DW_AT_containing_type,
13408 we cannot actually find a base class context for the
13409 vtable! */
13410 if (TYPE_NFIELDS (this_type) == 0
13411 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13412 {
13413 complaint (&symfile_complaints,
13414 _("cannot determine context for virtual member "
13415 "function \"%s\" (offset %d)"),
9c541725 13416 fieldname, to_underlying (die->sect_off));
7e993ebf
KS
13417 }
13418 else
13419 {
13420 fnp->fcontext
13421 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13422 }
13423 }
aec5aa8b 13424 }
3690dd37 13425 else if (attr_form_is_section_offset (attr))
8e19ed76 13426 {
4d3c2250 13427 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13428 }
13429 else
13430 {
4d3c2250
KB
13431 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13432 fieldname);
8e19ed76 13433 }
0d564a31 13434 }
d48cc9dd
DJ
13435 else
13436 {
13437 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13438 if (attr && DW_UNSND (attr))
13439 {
13440 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13441 complaint (&symfile_complaints,
3e43a32a
MS
13442 _("Member function \"%s\" (offset %d) is virtual "
13443 "but the vtable offset is not specified"),
9c541725 13444 fieldname, to_underlying (die->sect_off));
9655fd1a 13445 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13446 TYPE_CPLUS_DYNAMIC (type) = 1;
13447 }
13448 }
c906108c
SS
13449}
13450
13451/* Create the vector of member function fields, and attach it to the type. */
13452
13453static void
fba45db2 13454dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13455 struct dwarf2_cu *cu)
c906108c
SS
13456{
13457 struct fnfieldlist *flp;
c906108c
SS
13458 int i;
13459
b4ba55a1 13460 if (cu->language == language_ada)
a73c6dcd 13461 error (_("unexpected member functions in Ada type"));
b4ba55a1 13462
c906108c
SS
13463 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13464 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13465 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13466
13467 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13468 {
13469 struct nextfnfield *nfp = flp->head;
13470 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13471 int k;
13472
13473 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13474 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13475 fn_flp->fn_fields = (struct fn_field *)
13476 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13477 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13478 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13479 }
13480
13481 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13482}
13483
1168df01
JB
13484/* Returns non-zero if NAME is the name of a vtable member in CU's
13485 language, zero otherwise. */
13486static int
13487is_vtable_name (const char *name, struct dwarf2_cu *cu)
13488{
13489 static const char vptr[] = "_vptr";
987504bb 13490 static const char vtable[] = "vtable";
1168df01 13491
9c37b5ae
TT
13492 /* Look for the C++ form of the vtable. */
13493 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
1168df01
JB
13494 return 1;
13495
13496 return 0;
13497}
13498
c0dd20ea 13499/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13500 functions, with the ABI-specified layout. If TYPE describes
13501 such a structure, smash it into a member function type.
61049d3b
DJ
13502
13503 GCC shouldn't do this; it should just output pointer to member DIEs.
13504 This is GCC PR debug/28767. */
c0dd20ea 13505
0b92b5bb
TT
13506static void
13507quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13508{
09e2d7c7 13509 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13510
13511 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13512 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13513 return;
c0dd20ea
DJ
13514
13515 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13516 if (TYPE_FIELD_NAME (type, 0) == NULL
13517 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13518 || TYPE_FIELD_NAME (type, 1) == NULL
13519 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13520 return;
c0dd20ea
DJ
13521
13522 /* Find the type of the method. */
0b92b5bb 13523 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13524 if (pfn_type == NULL
13525 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13526 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13527 return;
c0dd20ea
DJ
13528
13529 /* Look for the "this" argument. */
13530 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13531 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13532 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13533 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13534 return;
c0dd20ea 13535
09e2d7c7 13536 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13537 new_type = alloc_type (objfile);
09e2d7c7 13538 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13539 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13540 TYPE_VARARGS (pfn_type));
0b92b5bb 13541 smash_to_methodptr_type (type, new_type);
c0dd20ea 13542}
1168df01 13543
685b1105
JK
13544/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13545 (icc). */
13546
13547static int
13548producer_is_icc (struct dwarf2_cu *cu)
13549{
13550 if (!cu->checked_producer)
13551 check_producer (cu);
13552
13553 return cu->producer_is_icc;
13554}
13555
c906108c 13556/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13557 (definition) to create a type for the structure or union. Fill in
13558 the type's name and general properties; the members will not be
83655187
DE
13559 processed until process_structure_scope. A symbol table entry for
13560 the type will also not be done until process_structure_scope (assuming
13561 the type has a name).
c906108c 13562
c767944b
DJ
13563 NOTE: we need to call these functions regardless of whether or not the
13564 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13565 structure or union. This gets the type entered into our set of
83655187 13566 user defined types. */
c906108c 13567
f792889a 13568static struct type *
134d01f1 13569read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13570{
e7c27a73 13571 struct objfile *objfile = cu->objfile;
c906108c
SS
13572 struct type *type;
13573 struct attribute *attr;
15d034d0 13574 const char *name;
c906108c 13575
348e048f
DE
13576 /* If the definition of this type lives in .debug_types, read that type.
13577 Don't follow DW_AT_specification though, that will take us back up
13578 the chain and we want to go down. */
45e58e77 13579 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13580 if (attr)
13581 {
ac9ec31b 13582 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13583
ac9ec31b 13584 /* The type's CU may not be the same as CU.
02142a6c 13585 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13586 return set_die_type (die, type, cu);
13587 }
13588
c0dd20ea 13589 type = alloc_type (objfile);
c906108c 13590 INIT_CPLUS_SPECIFIC (type);
93311388 13591
39cbfefa
DJ
13592 name = dwarf2_name (die, cu);
13593 if (name != NULL)
c906108c 13594 {
987504bb 13595 if (cu->language == language_cplus
c44af4eb
TT
13596 || cu->language == language_d
13597 || cu->language == language_rust)
63d06c5c 13598 {
15d034d0 13599 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13600
13601 /* dwarf2_full_name might have already finished building the DIE's
13602 type. If so, there is no need to continue. */
13603 if (get_die_type (die, cu) != NULL)
13604 return get_die_type (die, cu);
13605
13606 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13607 if (die->tag == DW_TAG_structure_type
13608 || die->tag == DW_TAG_class_type)
13609 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13610 }
13611 else
13612 {
d8151005
DJ
13613 /* The name is already allocated along with this objfile, so
13614 we don't need to duplicate it for the type. */
7d455152 13615 TYPE_TAG_NAME (type) = name;
94af9270
KS
13616 if (die->tag == DW_TAG_class_type)
13617 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13618 }
c906108c
SS
13619 }
13620
13621 if (die->tag == DW_TAG_structure_type)
13622 {
13623 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13624 }
13625 else if (die->tag == DW_TAG_union_type)
13626 {
13627 TYPE_CODE (type) = TYPE_CODE_UNION;
13628 }
13629 else
13630 {
4753d33b 13631 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13632 }
13633
0cc2414c
TT
13634 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13635 TYPE_DECLARED_CLASS (type) = 1;
13636
e142c38c 13637 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13638 if (attr)
13639 {
155bfbd3
JB
13640 if (attr_form_is_constant (attr))
13641 TYPE_LENGTH (type) = DW_UNSND (attr);
13642 else
13643 {
13644 /* For the moment, dynamic type sizes are not supported
13645 by GDB's struct type. The actual size is determined
13646 on-demand when resolving the type of a given object,
13647 so set the type's length to zero for now. Otherwise,
13648 we record an expression as the length, and that expression
13649 could lead to a very large value, which could eventually
13650 lead to us trying to allocate that much memory when creating
13651 a value of that type. */
13652 TYPE_LENGTH (type) = 0;
13653 }
c906108c
SS
13654 }
13655 else
13656 {
13657 TYPE_LENGTH (type) = 0;
13658 }
13659
422b1cb0 13660 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13661 {
13662 /* ICC does not output the required DW_AT_declaration
13663 on incomplete types, but gives them a size of zero. */
422b1cb0 13664 TYPE_STUB (type) = 1;
685b1105
JK
13665 }
13666 else
13667 TYPE_STUB_SUPPORTED (type) = 1;
13668
dc718098 13669 if (die_is_declaration (die, cu))
876cecd0 13670 TYPE_STUB (type) = 1;
a6c727b2
DJ
13671 else if (attr == NULL && die->child == NULL
13672 && producer_is_realview (cu->producer))
13673 /* RealView does not output the required DW_AT_declaration
13674 on incomplete types. */
13675 TYPE_STUB (type) = 1;
dc718098 13676
c906108c
SS
13677 /* We need to add the type field to the die immediately so we don't
13678 infinitely recurse when dealing with pointers to the structure
0963b4bd 13679 type within the structure itself. */
1c379e20 13680 set_die_type (die, type, cu);
c906108c 13681
7e314c57
JK
13682 /* set_die_type should be already done. */
13683 set_descriptive_type (type, die, cu);
13684
c767944b
DJ
13685 return type;
13686}
13687
13688/* Finish creating a structure or union type, including filling in
13689 its members and creating a symbol for it. */
13690
13691static void
13692process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13693{
13694 struct objfile *objfile = cu->objfile;
ca040673 13695 struct die_info *child_die;
c767944b
DJ
13696 struct type *type;
13697
13698 type = get_die_type (die, cu);
13699 if (type == NULL)
13700 type = read_structure_type (die, cu);
13701
e142c38c 13702 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13703 {
13704 struct field_info fi;
34eaf542 13705 VEC (symbolp) *template_args = NULL;
c767944b 13706 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13707
13708 memset (&fi, 0, sizeof (struct field_info));
13709
639d11d3 13710 child_die = die->child;
c906108c
SS
13711
13712 while (child_die && child_die->tag)
13713 {
a9a9bd0f
DC
13714 if (child_die->tag == DW_TAG_member
13715 || child_die->tag == DW_TAG_variable)
c906108c 13716 {
a9a9bd0f
DC
13717 /* NOTE: carlton/2002-11-05: A C++ static data member
13718 should be a DW_TAG_member that is a declaration, but
13719 all versions of G++ as of this writing (so through at
13720 least 3.2.1) incorrectly generate DW_TAG_variable
13721 tags for them instead. */
e7c27a73 13722 dwarf2_add_field (&fi, child_die, cu);
c906108c 13723 }
8713b1b1 13724 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13725 {
e98c9e7c
TT
13726 /* Rust doesn't have member functions in the C++ sense.
13727 However, it does emit ordinary functions as children
13728 of a struct DIE. */
13729 if (cu->language == language_rust)
13730 read_func_scope (child_die, cu);
13731 else
13732 {
13733 /* C++ member function. */
13734 dwarf2_add_member_fn (&fi, child_die, type, cu);
13735 }
c906108c
SS
13736 }
13737 else if (child_die->tag == DW_TAG_inheritance)
13738 {
13739 /* C++ base class field. */
e7c27a73 13740 dwarf2_add_field (&fi, child_die, cu);
c906108c 13741 }
98751a41
JK
13742 else if (child_die->tag == DW_TAG_typedef)
13743 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13744 else if (child_die->tag == DW_TAG_template_type_param
13745 || child_die->tag == DW_TAG_template_value_param)
13746 {
13747 struct symbol *arg = new_symbol (child_die, NULL, cu);
13748
f1078f66
DJ
13749 if (arg != NULL)
13750 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13751 }
13752
c906108c
SS
13753 child_die = sibling_die (child_die);
13754 }
13755
34eaf542
TT
13756 /* Attach template arguments to type. */
13757 if (! VEC_empty (symbolp, template_args))
13758 {
13759 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13760 TYPE_N_TEMPLATE_ARGUMENTS (type)
13761 = VEC_length (symbolp, template_args);
13762 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13763 = XOBNEWVEC (&objfile->objfile_obstack,
13764 struct symbol *,
13765 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13766 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13767 VEC_address (symbolp, template_args),
13768 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13769 * sizeof (struct symbol *)));
13770 VEC_free (symbolp, template_args);
13771 }
13772
c906108c
SS
13773 /* Attach fields and member functions to the type. */
13774 if (fi.nfields)
e7c27a73 13775 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13776 if (fi.nfnfields)
13777 {
e7c27a73 13778 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13779
c5aa993b 13780 /* Get the type which refers to the base class (possibly this
c906108c 13781 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13782 class from the DW_AT_containing_type attribute. This use of
13783 DW_AT_containing_type is a GNU extension. */
c906108c 13784
e142c38c 13785 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13786 {
e7c27a73 13787 struct type *t = die_containing_type (die, cu);
c906108c 13788
ae6ae975 13789 set_type_vptr_basetype (type, t);
c906108c
SS
13790 if (type == t)
13791 {
c906108c
SS
13792 int i;
13793
13794 /* Our own class provides vtbl ptr. */
13795 for (i = TYPE_NFIELDS (t) - 1;
13796 i >= TYPE_N_BASECLASSES (t);
13797 --i)
13798 {
0d5cff50 13799 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13800
1168df01 13801 if (is_vtable_name (fieldname, cu))
c906108c 13802 {
ae6ae975 13803 set_type_vptr_fieldno (type, i);
c906108c
SS
13804 break;
13805 }
13806 }
13807
13808 /* Complain if virtual function table field not found. */
13809 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13810 complaint (&symfile_complaints,
3e43a32a
MS
13811 _("virtual function table pointer "
13812 "not found when defining class '%s'"),
4d3c2250
KB
13813 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13814 "");
c906108c
SS
13815 }
13816 else
13817 {
ae6ae975 13818 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13819 }
13820 }
f6235d4c 13821 else if (cu->producer
61012eef 13822 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13823 {
13824 /* The IBM XLC compiler does not provide direct indication
13825 of the containing type, but the vtable pointer is
13826 always named __vfp. */
13827
13828 int i;
13829
13830 for (i = TYPE_NFIELDS (type) - 1;
13831 i >= TYPE_N_BASECLASSES (type);
13832 --i)
13833 {
13834 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13835 {
ae6ae975
DE
13836 set_type_vptr_fieldno (type, i);
13837 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13838 break;
13839 }
13840 }
13841 }
c906108c 13842 }
98751a41
JK
13843
13844 /* Copy fi.typedef_field_list linked list elements content into the
13845 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13846 if (fi.typedef_field_list)
13847 {
13848 int i = fi.typedef_field_list_count;
13849
a0d7a4ff 13850 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13851 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13852 = ((struct typedef_field *)
13853 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13854 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13855
13856 /* Reverse the list order to keep the debug info elements order. */
13857 while (--i >= 0)
13858 {
13859 struct typedef_field *dest, *src;
6e70227d 13860
98751a41
JK
13861 dest = &TYPE_TYPEDEF_FIELD (type, i);
13862 src = &fi.typedef_field_list->field;
13863 fi.typedef_field_list = fi.typedef_field_list->next;
13864 *dest = *src;
13865 }
13866 }
c767944b
DJ
13867
13868 do_cleanups (back_to);
c906108c 13869 }
63d06c5c 13870
bb5ed363 13871 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13872
90aeadfc
DC
13873 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13874 snapshots) has been known to create a die giving a declaration
13875 for a class that has, as a child, a die giving a definition for a
13876 nested class. So we have to process our children even if the
13877 current die is a declaration. Normally, of course, a declaration
13878 won't have any children at all. */
134d01f1 13879
ca040673
DE
13880 child_die = die->child;
13881
90aeadfc
DC
13882 while (child_die != NULL && child_die->tag)
13883 {
13884 if (child_die->tag == DW_TAG_member
13885 || child_die->tag == DW_TAG_variable
34eaf542
TT
13886 || child_die->tag == DW_TAG_inheritance
13887 || child_die->tag == DW_TAG_template_value_param
13888 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13889 {
90aeadfc 13890 /* Do nothing. */
134d01f1 13891 }
90aeadfc
DC
13892 else
13893 process_die (child_die, cu);
134d01f1 13894
90aeadfc 13895 child_die = sibling_die (child_die);
134d01f1
DJ
13896 }
13897
fa4028e9
JB
13898 /* Do not consider external references. According to the DWARF standard,
13899 these DIEs are identified by the fact that they have no byte_size
13900 attribute, and a declaration attribute. */
13901 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13902 || !die_is_declaration (die, cu))
c767944b 13903 new_symbol (die, type, cu);
134d01f1
DJ
13904}
13905
55426c9d
JB
13906/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13907 update TYPE using some information only available in DIE's children. */
13908
13909static void
13910update_enumeration_type_from_children (struct die_info *die,
13911 struct type *type,
13912 struct dwarf2_cu *cu)
13913{
60f7655a 13914 struct die_info *child_die;
55426c9d
JB
13915 int unsigned_enum = 1;
13916 int flag_enum = 1;
13917 ULONGEST mask = 0;
55426c9d 13918
8268c778 13919 auto_obstack obstack;
55426c9d 13920
60f7655a
DE
13921 for (child_die = die->child;
13922 child_die != NULL && child_die->tag;
13923 child_die = sibling_die (child_die))
55426c9d
JB
13924 {
13925 struct attribute *attr;
13926 LONGEST value;
13927 const gdb_byte *bytes;
13928 struct dwarf2_locexpr_baton *baton;
13929 const char *name;
60f7655a 13930
55426c9d
JB
13931 if (child_die->tag != DW_TAG_enumerator)
13932 continue;
13933
13934 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13935 if (attr == NULL)
13936 continue;
13937
13938 name = dwarf2_name (child_die, cu);
13939 if (name == NULL)
13940 name = "<anonymous enumerator>";
13941
13942 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13943 &value, &bytes, &baton);
13944 if (value < 0)
13945 {
13946 unsigned_enum = 0;
13947 flag_enum = 0;
13948 }
13949 else if ((mask & value) != 0)
13950 flag_enum = 0;
13951 else
13952 mask |= value;
13953
13954 /* If we already know that the enum type is neither unsigned, nor
13955 a flag type, no need to look at the rest of the enumerates. */
13956 if (!unsigned_enum && !flag_enum)
13957 break;
55426c9d
JB
13958 }
13959
13960 if (unsigned_enum)
13961 TYPE_UNSIGNED (type) = 1;
13962 if (flag_enum)
13963 TYPE_FLAG_ENUM (type) = 1;
55426c9d
JB
13964}
13965
134d01f1
DJ
13966/* Given a DW_AT_enumeration_type die, set its type. We do not
13967 complete the type's fields yet, or create any symbols. */
c906108c 13968
f792889a 13969static struct type *
134d01f1 13970read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13971{
e7c27a73 13972 struct objfile *objfile = cu->objfile;
c906108c 13973 struct type *type;
c906108c 13974 struct attribute *attr;
0114d602 13975 const char *name;
134d01f1 13976
348e048f
DE
13977 /* If the definition of this type lives in .debug_types, read that type.
13978 Don't follow DW_AT_specification though, that will take us back up
13979 the chain and we want to go down. */
45e58e77 13980 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13981 if (attr)
13982 {
ac9ec31b 13983 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13984
ac9ec31b 13985 /* The type's CU may not be the same as CU.
02142a6c 13986 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13987 return set_die_type (die, type, cu);
13988 }
13989
c906108c
SS
13990 type = alloc_type (objfile);
13991
13992 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13993 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13994 if (name != NULL)
7d455152 13995 TYPE_TAG_NAME (type) = name;
c906108c 13996
0626fc76
TT
13997 attr = dwarf2_attr (die, DW_AT_type, cu);
13998 if (attr != NULL)
13999 {
14000 struct type *underlying_type = die_type (die, cu);
14001
14002 TYPE_TARGET_TYPE (type) = underlying_type;
14003 }
14004
e142c38c 14005 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14006 if (attr)
14007 {
14008 TYPE_LENGTH (type) = DW_UNSND (attr);
14009 }
14010 else
14011 {
14012 TYPE_LENGTH (type) = 0;
14013 }
14014
137033e9
JB
14015 /* The enumeration DIE can be incomplete. In Ada, any type can be
14016 declared as private in the package spec, and then defined only
14017 inside the package body. Such types are known as Taft Amendment
14018 Types. When another package uses such a type, an incomplete DIE
14019 may be generated by the compiler. */
02eb380e 14020 if (die_is_declaration (die, cu))
876cecd0 14021 TYPE_STUB (type) = 1;
02eb380e 14022
0626fc76
TT
14023 /* Finish the creation of this type by using the enum's children.
14024 We must call this even when the underlying type has been provided
14025 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
14026 update_enumeration_type_from_children (die, type, cu);
14027
0626fc76
TT
14028 /* If this type has an underlying type that is not a stub, then we
14029 may use its attributes. We always use the "unsigned" attribute
14030 in this situation, because ordinarily we guess whether the type
14031 is unsigned -- but the guess can be wrong and the underlying type
14032 can tell us the reality. However, we defer to a local size
14033 attribute if one exists, because this lets the compiler override
14034 the underlying type if needed. */
14035 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
14036 {
14037 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
14038 if (TYPE_LENGTH (type) == 0)
14039 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
14040 }
14041
3d567982
TT
14042 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
14043
f792889a 14044 return set_die_type (die, type, cu);
134d01f1
DJ
14045}
14046
14047/* Given a pointer to a die which begins an enumeration, process all
14048 the dies that define the members of the enumeration, and create the
14049 symbol for the enumeration type.
14050
14051 NOTE: We reverse the order of the element list. */
14052
14053static void
14054process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
14055{
f792889a 14056 struct type *this_type;
134d01f1 14057
f792889a
DJ
14058 this_type = get_die_type (die, cu);
14059 if (this_type == NULL)
14060 this_type = read_enumeration_type (die, cu);
9dc481d3 14061
639d11d3 14062 if (die->child != NULL)
c906108c 14063 {
9dc481d3
DE
14064 struct die_info *child_die;
14065 struct symbol *sym;
14066 struct field *fields = NULL;
14067 int num_fields = 0;
15d034d0 14068 const char *name;
9dc481d3 14069
639d11d3 14070 child_die = die->child;
c906108c
SS
14071 while (child_die && child_die->tag)
14072 {
14073 if (child_die->tag != DW_TAG_enumerator)
14074 {
e7c27a73 14075 process_die (child_die, cu);
c906108c
SS
14076 }
14077 else
14078 {
39cbfefa
DJ
14079 name = dwarf2_name (child_die, cu);
14080 if (name)
c906108c 14081 {
f792889a 14082 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
14083
14084 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
14085 {
14086 fields = (struct field *)
14087 xrealloc (fields,
14088 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 14089 * sizeof (struct field));
c906108c
SS
14090 }
14091
3567439c 14092 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 14093 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 14094 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
14095 FIELD_BITSIZE (fields[num_fields]) = 0;
14096
14097 num_fields++;
14098 }
14099 }
14100
14101 child_die = sibling_die (child_die);
14102 }
14103
14104 if (num_fields)
14105 {
f792889a
DJ
14106 TYPE_NFIELDS (this_type) = num_fields;
14107 TYPE_FIELDS (this_type) = (struct field *)
14108 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
14109 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 14110 sizeof (struct field) * num_fields);
b8c9b27d 14111 xfree (fields);
c906108c 14112 }
c906108c 14113 }
134d01f1 14114
6c83ed52
TT
14115 /* If we are reading an enum from a .debug_types unit, and the enum
14116 is a declaration, and the enum is not the signatured type in the
14117 unit, then we do not want to add a symbol for it. Adding a
14118 symbol would in some cases obscure the true definition of the
14119 enum, giving users an incomplete type when the definition is
14120 actually available. Note that we do not want to do this for all
14121 enums which are just declarations, because C++0x allows forward
14122 enum declarations. */
3019eac3 14123 if (cu->per_cu->is_debug_types
6c83ed52
TT
14124 && die_is_declaration (die, cu))
14125 {
52dc124a 14126 struct signatured_type *sig_type;
6c83ed52 14127
c0f78cd4 14128 sig_type = (struct signatured_type *) cu->per_cu;
9c541725
PA
14129 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
14130 if (sig_type->type_offset_in_section != die->sect_off)
6c83ed52
TT
14131 return;
14132 }
14133
f792889a 14134 new_symbol (die, this_type, cu);
c906108c
SS
14135}
14136
14137/* Extract all information from a DW_TAG_array_type DIE and put it in
14138 the DIE's type field. For now, this only handles one dimensional
14139 arrays. */
14140
f792889a 14141static struct type *
e7c27a73 14142read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14143{
e7c27a73 14144 struct objfile *objfile = cu->objfile;
c906108c 14145 struct die_info *child_die;
7e314c57 14146 struct type *type;
c906108c
SS
14147 struct type *element_type, *range_type, *index_type;
14148 struct type **range_types = NULL;
14149 struct attribute *attr;
14150 int ndim = 0;
14151 struct cleanup *back_to;
15d034d0 14152 const char *name;
dc53a7ad 14153 unsigned int bit_stride = 0;
c906108c 14154
e7c27a73 14155 element_type = die_type (die, cu);
c906108c 14156
7e314c57
JK
14157 /* The die_type call above may have already set the type for this DIE. */
14158 type = get_die_type (die, cu);
14159 if (type)
14160 return type;
14161
dc53a7ad
JB
14162 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
14163 if (attr != NULL)
14164 bit_stride = DW_UNSND (attr) * 8;
14165
14166 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
14167 if (attr != NULL)
14168 bit_stride = DW_UNSND (attr);
14169
c906108c
SS
14170 /* Irix 6.2 native cc creates array types without children for
14171 arrays with unspecified length. */
639d11d3 14172 if (die->child == NULL)
c906108c 14173 {
46bf5051 14174 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14175 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
14176 type = create_array_type_with_stride (NULL, element_type, range_type,
14177 bit_stride);
f792889a 14178 return set_die_type (die, type, cu);
c906108c
SS
14179 }
14180
14181 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 14182 child_die = die->child;
c906108c
SS
14183 while (child_die && child_die->tag)
14184 {
14185 if (child_die->tag == DW_TAG_subrange_type)
14186 {
f792889a 14187 struct type *child_type = read_type_die (child_die, cu);
9a619af0 14188
f792889a 14189 if (child_type != NULL)
a02abb62 14190 {
0963b4bd
MS
14191 /* The range type was succesfully read. Save it for the
14192 array type creation. */
a02abb62
JB
14193 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
14194 {
14195 range_types = (struct type **)
14196 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
14197 * sizeof (struct type *));
14198 if (ndim == 0)
14199 make_cleanup (free_current_contents, &range_types);
14200 }
f792889a 14201 range_types[ndim++] = child_type;
a02abb62 14202 }
c906108c
SS
14203 }
14204 child_die = sibling_die (child_die);
14205 }
14206
14207 /* Dwarf2 dimensions are output from left to right, create the
14208 necessary array types in backwards order. */
7ca2d3a3 14209
c906108c 14210 type = element_type;
7ca2d3a3
DL
14211
14212 if (read_array_order (die, cu) == DW_ORD_col_major)
14213 {
14214 int i = 0;
9a619af0 14215
7ca2d3a3 14216 while (i < ndim)
dc53a7ad
JB
14217 type = create_array_type_with_stride (NULL, type, range_types[i++],
14218 bit_stride);
7ca2d3a3
DL
14219 }
14220 else
14221 {
14222 while (ndim-- > 0)
dc53a7ad
JB
14223 type = create_array_type_with_stride (NULL, type, range_types[ndim],
14224 bit_stride);
7ca2d3a3 14225 }
c906108c 14226
f5f8a009
EZ
14227 /* Understand Dwarf2 support for vector types (like they occur on
14228 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
14229 array type. This is not part of the Dwarf2/3 standard yet, but a
14230 custom vendor extension. The main difference between a regular
14231 array and the vector variant is that vectors are passed by value
14232 to functions. */
e142c38c 14233 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 14234 if (attr)
ea37ba09 14235 make_vector_type (type);
f5f8a009 14236
dbc98a8b
KW
14237 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
14238 implementation may choose to implement triple vectors using this
14239 attribute. */
14240 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14241 if (attr)
14242 {
14243 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
14244 TYPE_LENGTH (type) = DW_UNSND (attr);
14245 else
3e43a32a
MS
14246 complaint (&symfile_complaints,
14247 _("DW_AT_byte_size for array type smaller "
14248 "than the total size of elements"));
dbc98a8b
KW
14249 }
14250
39cbfefa
DJ
14251 name = dwarf2_name (die, cu);
14252 if (name)
14253 TYPE_NAME (type) = name;
6e70227d 14254
0963b4bd 14255 /* Install the type in the die. */
7e314c57
JK
14256 set_die_type (die, type, cu);
14257
14258 /* set_die_type should be already done. */
b4ba55a1
JB
14259 set_descriptive_type (type, die, cu);
14260
c906108c
SS
14261 do_cleanups (back_to);
14262
7e314c57 14263 return type;
c906108c
SS
14264}
14265
7ca2d3a3 14266static enum dwarf_array_dim_ordering
6e70227d 14267read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
14268{
14269 struct attribute *attr;
14270
14271 attr = dwarf2_attr (die, DW_AT_ordering, cu);
14272
aead7601
SM
14273 if (attr)
14274 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 14275
0963b4bd
MS
14276 /* GNU F77 is a special case, as at 08/2004 array type info is the
14277 opposite order to the dwarf2 specification, but data is still
14278 laid out as per normal fortran.
7ca2d3a3 14279
0963b4bd
MS
14280 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
14281 version checking. */
7ca2d3a3 14282
905e0470
PM
14283 if (cu->language == language_fortran
14284 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
14285 {
14286 return DW_ORD_row_major;
14287 }
14288
6e70227d 14289 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
14290 {
14291 case array_column_major:
14292 return DW_ORD_col_major;
14293 case array_row_major:
14294 default:
14295 return DW_ORD_row_major;
14296 };
14297}
14298
72019c9c 14299/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 14300 the DIE's type field. */
72019c9c 14301
f792889a 14302static struct type *
72019c9c
GM
14303read_set_type (struct die_info *die, struct dwarf2_cu *cu)
14304{
7e314c57
JK
14305 struct type *domain_type, *set_type;
14306 struct attribute *attr;
f792889a 14307
7e314c57
JK
14308 domain_type = die_type (die, cu);
14309
14310 /* The die_type call above may have already set the type for this DIE. */
14311 set_type = get_die_type (die, cu);
14312 if (set_type)
14313 return set_type;
14314
14315 set_type = create_set_type (NULL, domain_type);
14316
14317 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
14318 if (attr)
14319 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 14320
f792889a 14321 return set_die_type (die, set_type, cu);
72019c9c 14322}
7ca2d3a3 14323
0971de02
TT
14324/* A helper for read_common_block that creates a locexpr baton.
14325 SYM is the symbol which we are marking as computed.
14326 COMMON_DIE is the DIE for the common block.
14327 COMMON_LOC is the location expression attribute for the common
14328 block itself.
14329 MEMBER_LOC is the location expression attribute for the particular
14330 member of the common block that we are processing.
14331 CU is the CU from which the above come. */
14332
14333static void
14334mark_common_block_symbol_computed (struct symbol *sym,
14335 struct die_info *common_die,
14336 struct attribute *common_loc,
14337 struct attribute *member_loc,
14338 struct dwarf2_cu *cu)
14339{
14340 struct objfile *objfile = dwarf2_per_objfile->objfile;
14341 struct dwarf2_locexpr_baton *baton;
14342 gdb_byte *ptr;
14343 unsigned int cu_off;
14344 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
14345 LONGEST offset = 0;
14346
14347 gdb_assert (common_loc && member_loc);
14348 gdb_assert (attr_form_is_block (common_loc));
14349 gdb_assert (attr_form_is_block (member_loc)
14350 || attr_form_is_constant (member_loc));
14351
8d749320 14352 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
14353 baton->per_cu = cu->per_cu;
14354 gdb_assert (baton->per_cu);
14355
14356 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
14357
14358 if (attr_form_is_constant (member_loc))
14359 {
14360 offset = dwarf2_get_attr_constant_value (member_loc, 0);
14361 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
14362 }
14363 else
14364 baton->size += DW_BLOCK (member_loc)->size;
14365
224c3ddb 14366 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
14367 baton->data = ptr;
14368
14369 *ptr++ = DW_OP_call4;
9c541725 14370 cu_off = common_die->sect_off - cu->per_cu->sect_off;
0971de02
TT
14371 store_unsigned_integer (ptr, 4, byte_order, cu_off);
14372 ptr += 4;
14373
14374 if (attr_form_is_constant (member_loc))
14375 {
14376 *ptr++ = DW_OP_addr;
14377 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
14378 ptr += cu->header.addr_size;
14379 }
14380 else
14381 {
14382 /* We have to copy the data here, because DW_OP_call4 will only
14383 use a DW_AT_location attribute. */
14384 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
14385 ptr += DW_BLOCK (member_loc)->size;
14386 }
14387
14388 *ptr++ = DW_OP_plus;
14389 gdb_assert (ptr - baton->data == baton->size);
14390
0971de02 14391 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 14392 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
14393}
14394
4357ac6c
TT
14395/* Create appropriate locally-scoped variables for all the
14396 DW_TAG_common_block entries. Also create a struct common_block
14397 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14398 is used to sepate the common blocks name namespace from regular
14399 variable names. */
c906108c
SS
14400
14401static void
e7c27a73 14402read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14403{
0971de02
TT
14404 struct attribute *attr;
14405
14406 attr = dwarf2_attr (die, DW_AT_location, cu);
14407 if (attr)
14408 {
14409 /* Support the .debug_loc offsets. */
14410 if (attr_form_is_block (attr))
14411 {
14412 /* Ok. */
14413 }
14414 else if (attr_form_is_section_offset (attr))
14415 {
14416 dwarf2_complex_location_expr_complaint ();
14417 attr = NULL;
14418 }
14419 else
14420 {
14421 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14422 "common block member");
14423 attr = NULL;
14424 }
14425 }
14426
639d11d3 14427 if (die->child != NULL)
c906108c 14428 {
4357ac6c
TT
14429 struct objfile *objfile = cu->objfile;
14430 struct die_info *child_die;
14431 size_t n_entries = 0, size;
14432 struct common_block *common_block;
14433 struct symbol *sym;
74ac6d43 14434
4357ac6c
TT
14435 for (child_die = die->child;
14436 child_die && child_die->tag;
14437 child_die = sibling_die (child_die))
14438 ++n_entries;
14439
14440 size = (sizeof (struct common_block)
14441 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14442 common_block
14443 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14444 size);
4357ac6c
TT
14445 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14446 common_block->n_entries = 0;
14447
14448 for (child_die = die->child;
14449 child_die && child_die->tag;
14450 child_die = sibling_die (child_die))
14451 {
14452 /* Create the symbol in the DW_TAG_common_block block in the current
14453 symbol scope. */
e7c27a73 14454 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14455 if (sym != NULL)
14456 {
14457 struct attribute *member_loc;
14458
14459 common_block->contents[common_block->n_entries++] = sym;
14460
14461 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14462 cu);
14463 if (member_loc)
14464 {
14465 /* GDB has handled this for a long time, but it is
14466 not specified by DWARF. It seems to have been
14467 emitted by gfortran at least as recently as:
14468 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14469 complaint (&symfile_complaints,
14470 _("Variable in common block has "
14471 "DW_AT_data_member_location "
14472 "- DIE at 0x%x [in module %s]"),
9c541725 14473 to_underlying (child_die->sect_off),
4262abfb 14474 objfile_name (cu->objfile));
0971de02
TT
14475
14476 if (attr_form_is_section_offset (member_loc))
14477 dwarf2_complex_location_expr_complaint ();
14478 else if (attr_form_is_constant (member_loc)
14479 || attr_form_is_block (member_loc))
14480 {
14481 if (attr)
14482 mark_common_block_symbol_computed (sym, die, attr,
14483 member_loc, cu);
14484 }
14485 else
14486 dwarf2_complex_location_expr_complaint ();
14487 }
14488 }
c906108c 14489 }
4357ac6c
TT
14490
14491 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14492 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14493 }
14494}
14495
0114d602 14496/* Create a type for a C++ namespace. */
d9fa45fe 14497
0114d602
DJ
14498static struct type *
14499read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14500{
e7c27a73 14501 struct objfile *objfile = cu->objfile;
0114d602 14502 const char *previous_prefix, *name;
9219021c 14503 int is_anonymous;
0114d602
DJ
14504 struct type *type;
14505
14506 /* For extensions, reuse the type of the original namespace. */
14507 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14508 {
14509 struct die_info *ext_die;
14510 struct dwarf2_cu *ext_cu = cu;
9a619af0 14511
0114d602
DJ
14512 ext_die = dwarf2_extension (die, &ext_cu);
14513 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14514
14515 /* EXT_CU may not be the same as CU.
02142a6c 14516 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14517 return set_die_type (die, type, cu);
14518 }
9219021c 14519
e142c38c 14520 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14521
14522 /* Now build the name of the current namespace. */
14523
0114d602
DJ
14524 previous_prefix = determine_prefix (die, cu);
14525 if (previous_prefix[0] != '\0')
14526 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14527 previous_prefix, name, 0, cu);
0114d602
DJ
14528
14529 /* Create the type. */
19f392bc 14530 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602
DJ
14531 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14532
60531b24 14533 return set_die_type (die, type, cu);
0114d602
DJ
14534}
14535
22cee43f 14536/* Read a namespace scope. */
0114d602
DJ
14537
14538static void
14539read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14540{
14541 struct objfile *objfile = cu->objfile;
0114d602 14542 int is_anonymous;
9219021c 14543
5c4e30ca
DC
14544 /* Add a symbol associated to this if we haven't seen the namespace
14545 before. Also, add a using directive if it's an anonymous
14546 namespace. */
9219021c 14547
f2f0e013 14548 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14549 {
14550 struct type *type;
14551
0114d602 14552 type = read_type_die (die, cu);
e7c27a73 14553 new_symbol (die, type, cu);
5c4e30ca 14554
e8e80198 14555 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14556 if (is_anonymous)
0114d602
DJ
14557 {
14558 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14559
22cee43f
PMR
14560 add_using_directive (using_directives (cu->language),
14561 previous_prefix, TYPE_NAME (type), NULL,
14562 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14563 }
5c4e30ca 14564 }
9219021c 14565
639d11d3 14566 if (die->child != NULL)
d9fa45fe 14567 {
639d11d3 14568 struct die_info *child_die = die->child;
6e70227d 14569
d9fa45fe
DC
14570 while (child_die && child_die->tag)
14571 {
e7c27a73 14572 process_die (child_die, cu);
d9fa45fe
DC
14573 child_die = sibling_die (child_die);
14574 }
14575 }
38d518c9
EZ
14576}
14577
f55ee35c
JK
14578/* Read a Fortran module as type. This DIE can be only a declaration used for
14579 imported module. Still we need that type as local Fortran "use ... only"
14580 declaration imports depend on the created type in determine_prefix. */
14581
14582static struct type *
14583read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14584{
14585 struct objfile *objfile = cu->objfile;
15d034d0 14586 const char *module_name;
f55ee35c
JK
14587 struct type *type;
14588
14589 module_name = dwarf2_name (die, cu);
14590 if (!module_name)
3e43a32a
MS
14591 complaint (&symfile_complaints,
14592 _("DW_TAG_module has no name, offset 0x%x"),
9c541725 14593 to_underlying (die->sect_off));
19f392bc 14594 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c
JK
14595
14596 /* determine_prefix uses TYPE_TAG_NAME. */
14597 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14598
14599 return set_die_type (die, type, cu);
14600}
14601
5d7cb8df
JK
14602/* Read a Fortran module. */
14603
14604static void
14605read_module (struct die_info *die, struct dwarf2_cu *cu)
14606{
14607 struct die_info *child_die = die->child;
530e8392
KB
14608 struct type *type;
14609
14610 type = read_type_die (die, cu);
14611 new_symbol (die, type, cu);
5d7cb8df 14612
5d7cb8df
JK
14613 while (child_die && child_die->tag)
14614 {
14615 process_die (child_die, cu);
14616 child_die = sibling_die (child_die);
14617 }
14618}
14619
38d518c9
EZ
14620/* Return the name of the namespace represented by DIE. Set
14621 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14622 namespace. */
14623
14624static const char *
e142c38c 14625namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14626{
14627 struct die_info *current_die;
14628 const char *name = NULL;
14629
14630 /* Loop through the extensions until we find a name. */
14631
14632 for (current_die = die;
14633 current_die != NULL;
f2f0e013 14634 current_die = dwarf2_extension (die, &cu))
38d518c9 14635 {
96553a0c
DE
14636 /* We don't use dwarf2_name here so that we can detect the absence
14637 of a name -> anonymous namespace. */
7d45c7c3 14638 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14639
38d518c9
EZ
14640 if (name != NULL)
14641 break;
14642 }
14643
14644 /* Is it an anonymous namespace? */
14645
14646 *is_anonymous = (name == NULL);
14647 if (*is_anonymous)
2b1dbab0 14648 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14649
14650 return name;
d9fa45fe
DC
14651}
14652
c906108c
SS
14653/* Extract all information from a DW_TAG_pointer_type DIE and add to
14654 the user defined type vector. */
14655
f792889a 14656static struct type *
e7c27a73 14657read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14658{
5e2b427d 14659 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14660 struct comp_unit_head *cu_header = &cu->header;
c906108c 14661 struct type *type;
8b2dbe47
KB
14662 struct attribute *attr_byte_size;
14663 struct attribute *attr_address_class;
14664 int byte_size, addr_class;
7e314c57
JK
14665 struct type *target_type;
14666
14667 target_type = die_type (die, cu);
c906108c 14668
7e314c57
JK
14669 /* The die_type call above may have already set the type for this DIE. */
14670 type = get_die_type (die, cu);
14671 if (type)
14672 return type;
14673
14674 type = lookup_pointer_type (target_type);
8b2dbe47 14675
e142c38c 14676 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14677 if (attr_byte_size)
14678 byte_size = DW_UNSND (attr_byte_size);
c906108c 14679 else
8b2dbe47
KB
14680 byte_size = cu_header->addr_size;
14681
e142c38c 14682 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14683 if (attr_address_class)
14684 addr_class = DW_UNSND (attr_address_class);
14685 else
14686 addr_class = DW_ADDR_none;
14687
14688 /* If the pointer size or address class is different than the
14689 default, create a type variant marked as such and set the
14690 length accordingly. */
14691 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14692 {
5e2b427d 14693 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14694 {
14695 int type_flags;
14696
849957d9 14697 type_flags = gdbarch_address_class_type_flags
5e2b427d 14698 (gdbarch, byte_size, addr_class);
876cecd0
TT
14699 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14700 == 0);
8b2dbe47
KB
14701 type = make_type_with_address_space (type, type_flags);
14702 }
14703 else if (TYPE_LENGTH (type) != byte_size)
14704 {
3e43a32a
MS
14705 complaint (&symfile_complaints,
14706 _("invalid pointer size %d"), byte_size);
8b2dbe47 14707 }
6e70227d 14708 else
9a619af0
MS
14709 {
14710 /* Should we also complain about unhandled address classes? */
14711 }
c906108c 14712 }
8b2dbe47
KB
14713
14714 TYPE_LENGTH (type) = byte_size;
f792889a 14715 return set_die_type (die, type, cu);
c906108c
SS
14716}
14717
14718/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14719 the user defined type vector. */
14720
f792889a 14721static struct type *
e7c27a73 14722read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14723{
14724 struct type *type;
14725 struct type *to_type;
14726 struct type *domain;
14727
e7c27a73
DJ
14728 to_type = die_type (die, cu);
14729 domain = die_containing_type (die, cu);
0d5de010 14730
7e314c57
JK
14731 /* The calls above may have already set the type for this DIE. */
14732 type = get_die_type (die, cu);
14733 if (type)
14734 return type;
14735
0d5de010
DJ
14736 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14737 type = lookup_methodptr_type (to_type);
7078baeb
TT
14738 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14739 {
14740 struct type *new_type = alloc_type (cu->objfile);
14741
14742 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14743 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14744 TYPE_VARARGS (to_type));
14745 type = lookup_methodptr_type (new_type);
14746 }
0d5de010
DJ
14747 else
14748 type = lookup_memberptr_type (to_type, domain);
c906108c 14749
f792889a 14750 return set_die_type (die, type, cu);
c906108c
SS
14751}
14752
4297a3f0 14753/* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
c906108c
SS
14754 the user defined type vector. */
14755
f792889a 14756static struct type *
4297a3f0
AV
14757read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
14758 enum type_code refcode)
c906108c 14759{
e7c27a73 14760 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14761 struct type *type, *target_type;
c906108c
SS
14762 struct attribute *attr;
14763
4297a3f0
AV
14764 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
14765
7e314c57
JK
14766 target_type = die_type (die, cu);
14767
14768 /* The die_type call above may have already set the type for this DIE. */
14769 type = get_die_type (die, cu);
14770 if (type)
14771 return type;
14772
4297a3f0 14773 type = lookup_reference_type (target_type, refcode);
e142c38c 14774 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14775 if (attr)
14776 {
14777 TYPE_LENGTH (type) = DW_UNSND (attr);
14778 }
14779 else
14780 {
107d2387 14781 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14782 }
f792889a 14783 return set_die_type (die, type, cu);
c906108c
SS
14784}
14785
cf363f18
MW
14786/* Add the given cv-qualifiers to the element type of the array. GCC
14787 outputs DWARF type qualifiers that apply to an array, not the
14788 element type. But GDB relies on the array element type to carry
14789 the cv-qualifiers. This mimics section 6.7.3 of the C99
14790 specification. */
14791
14792static struct type *
14793add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14794 struct type *base_type, int cnst, int voltl)
14795{
14796 struct type *el_type, *inner_array;
14797
14798 base_type = copy_type (base_type);
14799 inner_array = base_type;
14800
14801 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14802 {
14803 TYPE_TARGET_TYPE (inner_array) =
14804 copy_type (TYPE_TARGET_TYPE (inner_array));
14805 inner_array = TYPE_TARGET_TYPE (inner_array);
14806 }
14807
14808 el_type = TYPE_TARGET_TYPE (inner_array);
14809 cnst |= TYPE_CONST (el_type);
14810 voltl |= TYPE_VOLATILE (el_type);
14811 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14812
14813 return set_die_type (die, base_type, cu);
14814}
14815
f792889a 14816static struct type *
e7c27a73 14817read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14818{
f792889a 14819 struct type *base_type, *cv_type;
c906108c 14820
e7c27a73 14821 base_type = die_type (die, cu);
7e314c57
JK
14822
14823 /* The die_type call above may have already set the type for this DIE. */
14824 cv_type = get_die_type (die, cu);
14825 if (cv_type)
14826 return cv_type;
14827
2f608a3a
KW
14828 /* In case the const qualifier is applied to an array type, the element type
14829 is so qualified, not the array type (section 6.7.3 of C99). */
14830 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14831 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14832
f792889a
DJ
14833 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14834 return set_die_type (die, cv_type, cu);
c906108c
SS
14835}
14836
f792889a 14837static struct type *
e7c27a73 14838read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14839{
f792889a 14840 struct type *base_type, *cv_type;
c906108c 14841
e7c27a73 14842 base_type = die_type (die, cu);
7e314c57
JK
14843
14844 /* The die_type call above may have already set the type for this DIE. */
14845 cv_type = get_die_type (die, cu);
14846 if (cv_type)
14847 return cv_type;
14848
cf363f18
MW
14849 /* In case the volatile qualifier is applied to an array type, the
14850 element type is so qualified, not the array type (section 6.7.3
14851 of C99). */
14852 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14853 return add_array_cv_type (die, cu, base_type, 0, 1);
14854
f792889a
DJ
14855 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14856 return set_die_type (die, cv_type, cu);
c906108c
SS
14857}
14858
06d66ee9
TT
14859/* Handle DW_TAG_restrict_type. */
14860
14861static struct type *
14862read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14863{
14864 struct type *base_type, *cv_type;
14865
14866 base_type = die_type (die, cu);
14867
14868 /* The die_type call above may have already set the type for this DIE. */
14869 cv_type = get_die_type (die, cu);
14870 if (cv_type)
14871 return cv_type;
14872
14873 cv_type = make_restrict_type (base_type);
14874 return set_die_type (die, cv_type, cu);
14875}
14876
a2c2acaf
MW
14877/* Handle DW_TAG_atomic_type. */
14878
14879static struct type *
14880read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14881{
14882 struct type *base_type, *cv_type;
14883
14884 base_type = die_type (die, cu);
14885
14886 /* The die_type call above may have already set the type for this DIE. */
14887 cv_type = get_die_type (die, cu);
14888 if (cv_type)
14889 return cv_type;
14890
14891 cv_type = make_atomic_type (base_type);
14892 return set_die_type (die, cv_type, cu);
14893}
14894
c906108c
SS
14895/* Extract all information from a DW_TAG_string_type DIE and add to
14896 the user defined type vector. It isn't really a user defined type,
14897 but it behaves like one, with other DIE's using an AT_user_def_type
14898 attribute to reference it. */
14899
f792889a 14900static struct type *
e7c27a73 14901read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14902{
e7c27a73 14903 struct objfile *objfile = cu->objfile;
3b7538c0 14904 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14905 struct type *type, *range_type, *index_type, *char_type;
14906 struct attribute *attr;
14907 unsigned int length;
14908
e142c38c 14909 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14910 if (attr)
14911 {
14912 length = DW_UNSND (attr);
14913 }
14914 else
14915 {
0963b4bd 14916 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14917 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14918 if (attr)
14919 {
14920 length = DW_UNSND (attr);
14921 }
14922 else
14923 {
14924 length = 1;
14925 }
c906108c 14926 }
6ccb9162 14927
46bf5051 14928 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14929 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14930 char_type = language_string_char_type (cu->language_defn, gdbarch);
14931 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14932
f792889a 14933 return set_die_type (die, type, cu);
c906108c
SS
14934}
14935
4d804846
JB
14936/* Assuming that DIE corresponds to a function, returns nonzero
14937 if the function is prototyped. */
14938
14939static int
14940prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14941{
14942 struct attribute *attr;
14943
14944 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14945 if (attr && (DW_UNSND (attr) != 0))
14946 return 1;
14947
14948 /* The DWARF standard implies that the DW_AT_prototyped attribute
14949 is only meaninful for C, but the concept also extends to other
14950 languages that allow unprototyped functions (Eg: Objective C).
14951 For all other languages, assume that functions are always
14952 prototyped. */
14953 if (cu->language != language_c
14954 && cu->language != language_objc
14955 && cu->language != language_opencl)
14956 return 1;
14957
14958 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14959 prototyped and unprototyped functions; default to prototyped,
14960 since that is more common in modern code (and RealView warns
14961 about unprototyped functions). */
14962 if (producer_is_realview (cu->producer))
14963 return 1;
14964
14965 return 0;
14966}
14967
c906108c
SS
14968/* Handle DIES due to C code like:
14969
14970 struct foo
c5aa993b
JM
14971 {
14972 int (*funcp)(int a, long l);
14973 int b;
14974 };
c906108c 14975
0963b4bd 14976 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14977
f792889a 14978static struct type *
e7c27a73 14979read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14980{
bb5ed363 14981 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14982 struct type *type; /* Type that this function returns. */
14983 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14984 struct attribute *attr;
14985
e7c27a73 14986 type = die_type (die, cu);
7e314c57
JK
14987
14988 /* The die_type call above may have already set the type for this DIE. */
14989 ftype = get_die_type (die, cu);
14990 if (ftype)
14991 return ftype;
14992
0c8b41f1 14993 ftype = lookup_function_type (type);
c906108c 14994
4d804846 14995 if (prototyped_function_p (die, cu))
a6c727b2 14996 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14997
c055b101
CV
14998 /* Store the calling convention in the type if it's available in
14999 the subroutine die. Otherwise set the calling convention to
15000 the default value DW_CC_normal. */
15001 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
15002 if (attr)
15003 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
15004 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
15005 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
15006 else
15007 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 15008
743649fd
MW
15009 /* Record whether the function returns normally to its caller or not
15010 if the DWARF producer set that information. */
15011 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
15012 if (attr && (DW_UNSND (attr) != 0))
15013 TYPE_NO_RETURN (ftype) = 1;
15014
76c10ea2
GM
15015 /* We need to add the subroutine type to the die immediately so
15016 we don't infinitely recurse when dealing with parameters
0963b4bd 15017 declared as the same subroutine type. */
76c10ea2 15018 set_die_type (die, ftype, cu);
6e70227d 15019
639d11d3 15020 if (die->child != NULL)
c906108c 15021 {
bb5ed363 15022 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 15023 struct die_info *child_die;
8072405b 15024 int nparams, iparams;
c906108c
SS
15025
15026 /* Count the number of parameters.
15027 FIXME: GDB currently ignores vararg functions, but knows about
15028 vararg member functions. */
8072405b 15029 nparams = 0;
639d11d3 15030 child_die = die->child;
c906108c
SS
15031 while (child_die && child_die->tag)
15032 {
15033 if (child_die->tag == DW_TAG_formal_parameter)
15034 nparams++;
15035 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 15036 TYPE_VARARGS (ftype) = 1;
c906108c
SS
15037 child_die = sibling_die (child_die);
15038 }
15039
15040 /* Allocate storage for parameters and fill them in. */
15041 TYPE_NFIELDS (ftype) = nparams;
15042 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 15043 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 15044
8072405b
JK
15045 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
15046 even if we error out during the parameters reading below. */
15047 for (iparams = 0; iparams < nparams; iparams++)
15048 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
15049
15050 iparams = 0;
639d11d3 15051 child_die = die->child;
c906108c
SS
15052 while (child_die && child_die->tag)
15053 {
15054 if (child_die->tag == DW_TAG_formal_parameter)
15055 {
3ce3b1ba
PA
15056 struct type *arg_type;
15057
15058 /* DWARF version 2 has no clean way to discern C++
15059 static and non-static member functions. G++ helps
15060 GDB by marking the first parameter for non-static
15061 member functions (which is the this pointer) as
15062 artificial. We pass this information to
15063 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
15064
15065 DWARF version 3 added DW_AT_object_pointer, which GCC
15066 4.5 does not yet generate. */
e142c38c 15067 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
15068 if (attr)
15069 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
15070 else
9c37b5ae 15071 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
3ce3b1ba
PA
15072 arg_type = die_type (child_die, cu);
15073
15074 /* RealView does not mark THIS as const, which the testsuite
15075 expects. GCC marks THIS as const in method definitions,
15076 but not in the class specifications (GCC PR 43053). */
15077 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
15078 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
15079 {
15080 int is_this = 0;
15081 struct dwarf2_cu *arg_cu = cu;
15082 const char *name = dwarf2_name (child_die, cu);
15083
15084 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
15085 if (attr)
15086 {
15087 /* If the compiler emits this, use it. */
15088 if (follow_die_ref (die, attr, &arg_cu) == child_die)
15089 is_this = 1;
15090 }
15091 else if (name && strcmp (name, "this") == 0)
15092 /* Function definitions will have the argument names. */
15093 is_this = 1;
15094 else if (name == NULL && iparams == 0)
15095 /* Declarations may not have the names, so like
15096 elsewhere in GDB, assume an artificial first
15097 argument is "this". */
15098 is_this = 1;
15099
15100 if (is_this)
15101 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
15102 arg_type, 0);
15103 }
15104
15105 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
15106 iparams++;
15107 }
15108 child_die = sibling_die (child_die);
15109 }
15110 }
15111
76c10ea2 15112 return ftype;
c906108c
SS
15113}
15114
f792889a 15115static struct type *
e7c27a73 15116read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15117{
e7c27a73 15118 struct objfile *objfile = cu->objfile;
0114d602 15119 const char *name = NULL;
3c8e0968 15120 struct type *this_type, *target_type;
c906108c 15121
94af9270 15122 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
15123 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
15124 TYPE_TARGET_STUB (this_type) = 1;
f792889a 15125 set_die_type (die, this_type, cu);
3c8e0968
DE
15126 target_type = die_type (die, cu);
15127 if (target_type != this_type)
15128 TYPE_TARGET_TYPE (this_type) = target_type;
15129 else
15130 {
15131 /* Self-referential typedefs are, it seems, not allowed by the DWARF
15132 spec and cause infinite loops in GDB. */
15133 complaint (&symfile_complaints,
15134 _("Self-referential DW_TAG_typedef "
15135 "- DIE at 0x%x [in module %s]"),
9c541725 15136 to_underlying (die->sect_off), objfile_name (objfile));
3c8e0968
DE
15137 TYPE_TARGET_TYPE (this_type) = NULL;
15138 }
f792889a 15139 return this_type;
c906108c
SS
15140}
15141
9b790ce7
UW
15142/* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
15143 (which may be different from NAME) to the architecture back-end to allow
15144 it to guess the correct format if necessary. */
15145
15146static struct type *
15147dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
15148 const char *name_hint)
15149{
15150 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15151 const struct floatformat **format;
15152 struct type *type;
15153
15154 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
15155 if (format)
15156 type = init_float_type (objfile, bits, name, format);
15157 else
15158 type = init_type (objfile, TYPE_CODE_ERROR, bits / TARGET_CHAR_BIT, name);
15159
15160 return type;
15161}
15162
c906108c
SS
15163/* Find a representation of a given base type and install
15164 it in the TYPE field of the die. */
15165
f792889a 15166static struct type *
e7c27a73 15167read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 15168{
e7c27a73 15169 struct objfile *objfile = cu->objfile;
c906108c
SS
15170 struct type *type;
15171 struct attribute *attr;
19f392bc 15172 int encoding = 0, bits = 0;
15d034d0 15173 const char *name;
c906108c 15174
e142c38c 15175 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
15176 if (attr)
15177 {
15178 encoding = DW_UNSND (attr);
15179 }
e142c38c 15180 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
15181 if (attr)
15182 {
19f392bc 15183 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 15184 }
39cbfefa 15185 name = dwarf2_name (die, cu);
6ccb9162 15186 if (!name)
c906108c 15187 {
6ccb9162
UW
15188 complaint (&symfile_complaints,
15189 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 15190 }
6ccb9162
UW
15191
15192 switch (encoding)
c906108c 15193 {
6ccb9162
UW
15194 case DW_ATE_address:
15195 /* Turn DW_ATE_address into a void * pointer. */
19f392bc
UW
15196 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
15197 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
15198 break;
15199 case DW_ATE_boolean:
19f392bc 15200 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
15201 break;
15202 case DW_ATE_complex_float:
9b790ce7 15203 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
19f392bc 15204 type = init_complex_type (objfile, name, type);
6ccb9162
UW
15205 break;
15206 case DW_ATE_decimal_float:
19f392bc 15207 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
15208 break;
15209 case DW_ATE_float:
9b790ce7 15210 type = dwarf2_init_float_type (objfile, bits, name, name);
6ccb9162
UW
15211 break;
15212 case DW_ATE_signed:
19f392bc 15213 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15214 break;
15215 case DW_ATE_unsigned:
3b2b8fea
TT
15216 if (cu->language == language_fortran
15217 && name
61012eef 15218 && startswith (name, "character("))
19f392bc
UW
15219 type = init_character_type (objfile, bits, 1, name);
15220 else
15221 type = init_integer_type (objfile, bits, 1, name);
6ccb9162
UW
15222 break;
15223 case DW_ATE_signed_char:
6e70227d 15224 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
15225 || cu->language == language_pascal
15226 || cu->language == language_fortran)
19f392bc
UW
15227 type = init_character_type (objfile, bits, 0, name);
15228 else
15229 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
15230 break;
15231 case DW_ATE_unsigned_char:
868a0084 15232 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 15233 || cu->language == language_pascal
c44af4eb
TT
15234 || cu->language == language_fortran
15235 || cu->language == language_rust)
19f392bc
UW
15236 type = init_character_type (objfile, bits, 1, name);
15237 else
15238 type = init_integer_type (objfile, bits, 1, name);
6ccb9162 15239 break;
75079b2b 15240 case DW_ATE_UTF:
53e710ac
PA
15241 {
15242 gdbarch *arch = get_objfile_arch (objfile);
15243
15244 if (bits == 16)
15245 type = builtin_type (arch)->builtin_char16;
15246 else if (bits == 32)
15247 type = builtin_type (arch)->builtin_char32;
15248 else
15249 {
15250 complaint (&symfile_complaints,
15251 _("unsupported DW_ATE_UTF bit size: '%d'"),
15252 bits);
15253 type = init_integer_type (objfile, bits, 1, name);
15254 }
15255 return set_die_type (die, type, cu);
15256 }
75079b2b
TT
15257 break;
15258
6ccb9162
UW
15259 default:
15260 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
15261 dwarf_type_encoding_name (encoding));
19f392bc
UW
15262 type = init_type (objfile, TYPE_CODE_ERROR,
15263 bits / TARGET_CHAR_BIT, name);
6ccb9162 15264 break;
c906108c 15265 }
6ccb9162 15266
0114d602 15267 if (name && strcmp (name, "char") == 0)
876cecd0 15268 TYPE_NOSIGN (type) = 1;
0114d602 15269
f792889a 15270 return set_die_type (die, type, cu);
c906108c
SS
15271}
15272
80180f79
SA
15273/* Parse dwarf attribute if it's a block, reference or constant and put the
15274 resulting value of the attribute into struct bound_prop.
15275 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
15276
15277static int
15278attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
15279 struct dwarf2_cu *cu, struct dynamic_prop *prop)
15280{
15281 struct dwarf2_property_baton *baton;
15282 struct obstack *obstack = &cu->objfile->objfile_obstack;
15283
15284 if (attr == NULL || prop == NULL)
15285 return 0;
15286
15287 if (attr_form_is_block (attr))
15288 {
8d749320 15289 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
15290 baton->referenced_type = NULL;
15291 baton->locexpr.per_cu = cu->per_cu;
15292 baton->locexpr.size = DW_BLOCK (attr)->size;
15293 baton->locexpr.data = DW_BLOCK (attr)->data;
15294 prop->data.baton = baton;
15295 prop->kind = PROP_LOCEXPR;
15296 gdb_assert (prop->data.baton != NULL);
15297 }
15298 else if (attr_form_is_ref (attr))
15299 {
15300 struct dwarf2_cu *target_cu = cu;
15301 struct die_info *target_die;
15302 struct attribute *target_attr;
15303
15304 target_die = follow_die_ref (die, attr, &target_cu);
15305 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
15306 if (target_attr == NULL)
15307 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
15308 target_cu);
80180f79
SA
15309 if (target_attr == NULL)
15310 return 0;
15311
df25ebbd 15312 switch (target_attr->name)
80180f79 15313 {
df25ebbd
JB
15314 case DW_AT_location:
15315 if (attr_form_is_section_offset (target_attr))
15316 {
8d749320 15317 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15318 baton->referenced_type = die_type (target_die, target_cu);
15319 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
15320 prop->data.baton = baton;
15321 prop->kind = PROP_LOCLIST;
15322 gdb_assert (prop->data.baton != NULL);
15323 }
15324 else if (attr_form_is_block (target_attr))
15325 {
8d749320 15326 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
15327 baton->referenced_type = die_type (target_die, target_cu);
15328 baton->locexpr.per_cu = cu->per_cu;
15329 baton->locexpr.size = DW_BLOCK (target_attr)->size;
15330 baton->locexpr.data = DW_BLOCK (target_attr)->data;
15331 prop->data.baton = baton;
15332 prop->kind = PROP_LOCEXPR;
15333 gdb_assert (prop->data.baton != NULL);
15334 }
15335 else
15336 {
15337 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15338 "dynamic property");
15339 return 0;
15340 }
15341 break;
15342 case DW_AT_data_member_location:
15343 {
15344 LONGEST offset;
15345
15346 if (!handle_data_member_location (target_die, target_cu,
15347 &offset))
15348 return 0;
15349
8d749320 15350 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
15351 baton->referenced_type = read_type_die (target_die->parent,
15352 target_cu);
df25ebbd
JB
15353 baton->offset_info.offset = offset;
15354 baton->offset_info.type = die_type (target_die, target_cu);
15355 prop->data.baton = baton;
15356 prop->kind = PROP_ADDR_OFFSET;
15357 break;
15358 }
80180f79
SA
15359 }
15360 }
15361 else if (attr_form_is_constant (attr))
15362 {
15363 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
15364 prop->kind = PROP_CONST;
15365 }
15366 else
15367 {
15368 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
15369 dwarf2_name (die, cu));
15370 return 0;
15371 }
15372
15373 return 1;
15374}
15375
a02abb62
JB
15376/* Read the given DW_AT_subrange DIE. */
15377
f792889a 15378static struct type *
a02abb62
JB
15379read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
15380{
4c9ad8c2 15381 struct type *base_type, *orig_base_type;
a02abb62
JB
15382 struct type *range_type;
15383 struct attribute *attr;
729efb13 15384 struct dynamic_prop low, high;
4fae6e18 15385 int low_default_is_valid;
c451ebe5 15386 int high_bound_is_count = 0;
15d034d0 15387 const char *name;
43bbcdc2 15388 LONGEST negative_mask;
e77813c8 15389
4c9ad8c2
TT
15390 orig_base_type = die_type (die, cu);
15391 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
15392 whereas the real type might be. So, we use ORIG_BASE_TYPE when
15393 creating the range type, but we use the result of check_typedef
15394 when examining properties of the type. */
15395 base_type = check_typedef (orig_base_type);
a02abb62 15396
7e314c57
JK
15397 /* The die_type call above may have already set the type for this DIE. */
15398 range_type = get_die_type (die, cu);
15399 if (range_type)
15400 return range_type;
15401
729efb13
SA
15402 low.kind = PROP_CONST;
15403 high.kind = PROP_CONST;
15404 high.data.const_val = 0;
15405
4fae6e18
JK
15406 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
15407 omitting DW_AT_lower_bound. */
15408 switch (cu->language)
6e70227d 15409 {
4fae6e18
JK
15410 case language_c:
15411 case language_cplus:
729efb13 15412 low.data.const_val = 0;
4fae6e18
JK
15413 low_default_is_valid = 1;
15414 break;
15415 case language_fortran:
729efb13 15416 low.data.const_val = 1;
4fae6e18
JK
15417 low_default_is_valid = 1;
15418 break;
15419 case language_d:
4fae6e18 15420 case language_objc:
c44af4eb 15421 case language_rust:
729efb13 15422 low.data.const_val = 0;
4fae6e18
JK
15423 low_default_is_valid = (cu->header.version >= 4);
15424 break;
15425 case language_ada:
15426 case language_m2:
15427 case language_pascal:
729efb13 15428 low.data.const_val = 1;
4fae6e18
JK
15429 low_default_is_valid = (cu->header.version >= 4);
15430 break;
15431 default:
729efb13 15432 low.data.const_val = 0;
4fae6e18
JK
15433 low_default_is_valid = 0;
15434 break;
a02abb62
JB
15435 }
15436
e142c38c 15437 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 15438 if (attr)
11c1ba78 15439 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
15440 else if (!low_default_is_valid)
15441 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15442 "- DIE at 0x%x [in module %s]"),
9c541725 15443 to_underlying (die->sect_off), objfile_name (cu->objfile));
a02abb62 15444
e142c38c 15445 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 15446 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
15447 {
15448 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 15449 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 15450 {
c451ebe5
SA
15451 /* If bounds are constant do the final calculation here. */
15452 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15453 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15454 else
15455 high_bound_is_count = 1;
c2ff108b 15456 }
e77813c8
PM
15457 }
15458
15459 /* Dwarf-2 specifications explicitly allows to create subrange types
15460 without specifying a base type.
15461 In that case, the base type must be set to the type of
15462 the lower bound, upper bound or count, in that order, if any of these
15463 three attributes references an object that has a type.
15464 If no base type is found, the Dwarf-2 specifications say that
15465 a signed integer type of size equal to the size of an address should
15466 be used.
15467 For the following C code: `extern char gdb_int [];'
15468 GCC produces an empty range DIE.
15469 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15470 high bound or count are not yet handled by this code. */
e77813c8
PM
15471 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15472 {
15473 struct objfile *objfile = cu->objfile;
15474 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15475 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15476 struct type *int_type = objfile_type (objfile)->builtin_int;
15477
15478 /* Test "int", "long int", and "long long int" objfile types,
15479 and select the first one having a size above or equal to the
15480 architecture address size. */
15481 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15482 base_type = int_type;
15483 else
15484 {
15485 int_type = objfile_type (objfile)->builtin_long;
15486 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15487 base_type = int_type;
15488 else
15489 {
15490 int_type = objfile_type (objfile)->builtin_long_long;
15491 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15492 base_type = int_type;
15493 }
15494 }
15495 }
a02abb62 15496
dbb9c2b1
JB
15497 /* Normally, the DWARF producers are expected to use a signed
15498 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15499 But this is unfortunately not always the case, as witnessed
15500 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15501 is used instead. To work around that ambiguity, we treat
15502 the bounds as signed, and thus sign-extend their values, when
15503 the base type is signed. */
6e70227d 15504 negative_mask =
66c6502d 15505 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15506 if (low.kind == PROP_CONST
15507 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15508 low.data.const_val |= negative_mask;
15509 if (high.kind == PROP_CONST
15510 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15511 high.data.const_val |= negative_mask;
43bbcdc2 15512
729efb13 15513 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15514
c451ebe5
SA
15515 if (high_bound_is_count)
15516 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15517
c2ff108b
JK
15518 /* Ada expects an empty array on no boundary attributes. */
15519 if (attr == NULL && cu->language != language_ada)
729efb13 15520 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15521
39cbfefa
DJ
15522 name = dwarf2_name (die, cu);
15523 if (name)
15524 TYPE_NAME (range_type) = name;
6e70227d 15525
e142c38c 15526 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15527 if (attr)
15528 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15529
7e314c57
JK
15530 set_die_type (die, range_type, cu);
15531
15532 /* set_die_type should be already done. */
b4ba55a1
JB
15533 set_descriptive_type (range_type, die, cu);
15534
7e314c57 15535 return range_type;
a02abb62 15536}
6e70227d 15537
f792889a 15538static struct type *
81a17f79
JB
15539read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15540{
15541 struct type *type;
81a17f79 15542
81a17f79
JB
15543 /* For now, we only support the C meaning of an unspecified type: void. */
15544
19f392bc 15545 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
0114d602 15546 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15547
f792889a 15548 return set_die_type (die, type, cu);
81a17f79 15549}
a02abb62 15550
639d11d3
DC
15551/* Read a single die and all its descendents. Set the die's sibling
15552 field to NULL; set other fields in the die correctly, and set all
15553 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15554 location of the info_ptr after reading all of those dies. PARENT
15555 is the parent of the die in question. */
15556
15557static struct die_info *
dee91e82 15558read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15559 const gdb_byte *info_ptr,
15560 const gdb_byte **new_info_ptr,
dee91e82 15561 struct die_info *parent)
639d11d3
DC
15562{
15563 struct die_info *die;
d521ce57 15564 const gdb_byte *cur_ptr;
639d11d3
DC
15565 int has_children;
15566
bf6af496 15567 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15568 if (die == NULL)
15569 {
15570 *new_info_ptr = cur_ptr;
15571 return NULL;
15572 }
93311388 15573 store_in_ref_table (die, reader->cu);
639d11d3
DC
15574
15575 if (has_children)
bf6af496 15576 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15577 else
15578 {
15579 die->child = NULL;
15580 *new_info_ptr = cur_ptr;
15581 }
15582
15583 die->sibling = NULL;
15584 die->parent = parent;
15585 return die;
15586}
15587
15588/* Read a die, all of its descendents, and all of its siblings; set
15589 all of the fields of all of the dies correctly. Arguments are as
15590 in read_die_and_children. */
15591
15592static struct die_info *
bf6af496 15593read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15594 const gdb_byte *info_ptr,
15595 const gdb_byte **new_info_ptr,
bf6af496 15596 struct die_info *parent)
639d11d3
DC
15597{
15598 struct die_info *first_die, *last_sibling;
d521ce57 15599 const gdb_byte *cur_ptr;
639d11d3 15600
c906108c 15601 cur_ptr = info_ptr;
639d11d3
DC
15602 first_die = last_sibling = NULL;
15603
15604 while (1)
c906108c 15605 {
639d11d3 15606 struct die_info *die
dee91e82 15607 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15608
1d325ec1 15609 if (die == NULL)
c906108c 15610 {
639d11d3
DC
15611 *new_info_ptr = cur_ptr;
15612 return first_die;
c906108c 15613 }
1d325ec1
DJ
15614
15615 if (!first_die)
15616 first_die = die;
c906108c 15617 else
1d325ec1
DJ
15618 last_sibling->sibling = die;
15619
15620 last_sibling = die;
c906108c 15621 }
c906108c
SS
15622}
15623
bf6af496
DE
15624/* Read a die, all of its descendents, and all of its siblings; set
15625 all of the fields of all of the dies correctly. Arguments are as
15626 in read_die_and_children.
15627 This the main entry point for reading a DIE and all its children. */
15628
15629static struct die_info *
15630read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15631 const gdb_byte *info_ptr,
15632 const gdb_byte **new_info_ptr,
bf6af496
DE
15633 struct die_info *parent)
15634{
15635 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15636 new_info_ptr, parent);
15637
b4f54984 15638 if (dwarf_die_debug)
bf6af496
DE
15639 {
15640 fprintf_unfiltered (gdb_stdlog,
15641 "Read die from %s@0x%x of %s:\n",
a32a8923 15642 get_section_name (reader->die_section),
bf6af496
DE
15643 (unsigned) (info_ptr - reader->die_section->buffer),
15644 bfd_get_filename (reader->abfd));
b4f54984 15645 dump_die (die, dwarf_die_debug);
bf6af496
DE
15646 }
15647
15648 return die;
15649}
15650
3019eac3
DE
15651/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15652 attributes.
15653 The caller is responsible for filling in the extra attributes
15654 and updating (*DIEP)->num_attrs.
15655 Set DIEP to point to a newly allocated die with its information,
15656 except for its child, sibling, and parent fields.
15657 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15658
d521ce57 15659static const gdb_byte *
3019eac3 15660read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15661 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15662 int *has_children, int num_extra_attrs)
93311388 15663{
b64f50a1 15664 unsigned int abbrev_number, bytes_read, i;
93311388
DE
15665 struct abbrev_info *abbrev;
15666 struct die_info *die;
15667 struct dwarf2_cu *cu = reader->cu;
15668 bfd *abfd = reader->abfd;
15669
9c541725 15670 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
93311388
DE
15671 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15672 info_ptr += bytes_read;
15673 if (!abbrev_number)
15674 {
15675 *diep = NULL;
15676 *has_children = 0;
15677 return info_ptr;
15678 }
15679
433df2d4 15680 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15681 if (!abbrev)
348e048f
DE
15682 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15683 abbrev_number,
15684 bfd_get_filename (abfd));
15685
3019eac3 15686 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
9c541725 15687 die->sect_off = sect_off;
93311388
DE
15688 die->tag = abbrev->tag;
15689 die->abbrev = abbrev_number;
15690
3019eac3
DE
15691 /* Make the result usable.
15692 The caller needs to update num_attrs after adding the extra
15693 attributes. */
93311388
DE
15694 die->num_attrs = abbrev->num_attrs;
15695
15696 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15697 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15698 info_ptr);
93311388
DE
15699
15700 *diep = die;
15701 *has_children = abbrev->has_children;
15702 return info_ptr;
15703}
15704
3019eac3
DE
15705/* Read a die and all its attributes.
15706 Set DIEP to point to a newly allocated die with its information,
15707 except for its child, sibling, and parent fields.
15708 Set HAS_CHILDREN to tell whether the die has children or not. */
15709
d521ce57 15710static const gdb_byte *
3019eac3 15711read_full_die (const struct die_reader_specs *reader,
d521ce57 15712 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15713 int *has_children)
15714{
d521ce57 15715 const gdb_byte *result;
bf6af496
DE
15716
15717 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15718
b4f54984 15719 if (dwarf_die_debug)
bf6af496
DE
15720 {
15721 fprintf_unfiltered (gdb_stdlog,
15722 "Read die from %s@0x%x of %s:\n",
a32a8923 15723 get_section_name (reader->die_section),
bf6af496
DE
15724 (unsigned) (info_ptr - reader->die_section->buffer),
15725 bfd_get_filename (reader->abfd));
b4f54984 15726 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15727 }
15728
15729 return result;
3019eac3 15730}
433df2d4
DE
15731\f
15732/* Abbreviation tables.
3019eac3 15733
433df2d4 15734 In DWARF version 2, the description of the debugging information is
c906108c
SS
15735 stored in a separate .debug_abbrev section. Before we read any
15736 dies from a section we read in all abbreviations and install them
433df2d4
DE
15737 in a hash table. */
15738
15739/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15740
15741static struct abbrev_info *
15742abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15743{
15744 struct abbrev_info *abbrev;
15745
8d749320 15746 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15747 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15748
433df2d4
DE
15749 return abbrev;
15750}
15751
15752/* Add an abbreviation to the table. */
c906108c
SS
15753
15754static void
433df2d4
DE
15755abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15756 unsigned int abbrev_number,
15757 struct abbrev_info *abbrev)
15758{
15759 unsigned int hash_number;
15760
15761 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15762 abbrev->next = abbrev_table->abbrevs[hash_number];
15763 abbrev_table->abbrevs[hash_number] = abbrev;
15764}
dee91e82 15765
433df2d4
DE
15766/* Look up an abbrev in the table.
15767 Returns NULL if the abbrev is not found. */
15768
15769static struct abbrev_info *
15770abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15771 unsigned int abbrev_number)
c906108c 15772{
433df2d4
DE
15773 unsigned int hash_number;
15774 struct abbrev_info *abbrev;
15775
15776 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15777 abbrev = abbrev_table->abbrevs[hash_number];
15778
15779 while (abbrev)
15780 {
15781 if (abbrev->number == abbrev_number)
15782 return abbrev;
15783 abbrev = abbrev->next;
15784 }
15785 return NULL;
15786}
15787
15788/* Read in an abbrev table. */
15789
15790static struct abbrev_table *
15791abbrev_table_read_table (struct dwarf2_section_info *section,
9c541725 15792 sect_offset sect_off)
433df2d4
DE
15793{
15794 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15795 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15796 struct abbrev_table *abbrev_table;
d521ce57 15797 const gdb_byte *abbrev_ptr;
c906108c
SS
15798 struct abbrev_info *cur_abbrev;
15799 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15800 unsigned int abbrev_form;
f3dd6933
DJ
15801 struct attr_abbrev *cur_attrs;
15802 unsigned int allocated_attrs;
c906108c 15803
70ba0933 15804 abbrev_table = XNEW (struct abbrev_table);
9c541725 15805 abbrev_table->sect_off = sect_off;
433df2d4 15806 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15807 abbrev_table->abbrevs =
15808 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15809 ABBREV_HASH_SIZE);
433df2d4
DE
15810 memset (abbrev_table->abbrevs, 0,
15811 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15812
433df2d4 15813 dwarf2_read_section (objfile, section);
9c541725 15814 abbrev_ptr = section->buffer + to_underlying (sect_off);
c906108c
SS
15815 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15816 abbrev_ptr += bytes_read;
15817
f3dd6933 15818 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15819 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15820
0963b4bd 15821 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15822 while (abbrev_number)
15823 {
433df2d4 15824 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15825
15826 /* read in abbrev header */
15827 cur_abbrev->number = abbrev_number;
aead7601
SM
15828 cur_abbrev->tag
15829 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15830 abbrev_ptr += bytes_read;
15831 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15832 abbrev_ptr += 1;
15833
15834 /* now read in declarations */
22d2f3ab 15835 for (;;)
c906108c 15836 {
43988095
JK
15837 LONGEST implicit_const;
15838
22d2f3ab
JK
15839 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15840 abbrev_ptr += bytes_read;
15841 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15842 abbrev_ptr += bytes_read;
43988095
JK
15843 if (abbrev_form == DW_FORM_implicit_const)
15844 {
15845 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
15846 &bytes_read);
15847 abbrev_ptr += bytes_read;
15848 }
15849 else
15850 {
15851 /* Initialize it due to a false compiler warning. */
15852 implicit_const = -1;
15853 }
22d2f3ab
JK
15854
15855 if (abbrev_name == 0)
15856 break;
15857
f3dd6933 15858 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15859 {
f3dd6933
DJ
15860 allocated_attrs += ATTR_ALLOC_CHUNK;
15861 cur_attrs
224c3ddb 15862 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15863 }
ae038cb0 15864
aead7601
SM
15865 cur_attrs[cur_abbrev->num_attrs].name
15866 = (enum dwarf_attribute) abbrev_name;
22d2f3ab 15867 cur_attrs[cur_abbrev->num_attrs].form
aead7601 15868 = (enum dwarf_form) abbrev_form;
43988095 15869 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
22d2f3ab 15870 ++cur_abbrev->num_attrs;
c906108c
SS
15871 }
15872
8d749320
SM
15873 cur_abbrev->attrs =
15874 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15875 cur_abbrev->num_attrs);
f3dd6933
DJ
15876 memcpy (cur_abbrev->attrs, cur_attrs,
15877 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15878
433df2d4 15879 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15880
15881 /* Get next abbreviation.
15882 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15883 always properly terminated with an abbrev number of 0.
15884 Exit loop if we encounter an abbreviation which we have
15885 already read (which means we are about to read the abbreviations
15886 for the next compile unit) or if the end of the abbreviation
15887 table is reached. */
433df2d4 15888 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15889 break;
15890 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15891 abbrev_ptr += bytes_read;
433df2d4 15892 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15893 break;
15894 }
f3dd6933
DJ
15895
15896 xfree (cur_attrs);
433df2d4 15897 return abbrev_table;
c906108c
SS
15898}
15899
433df2d4 15900/* Free the resources held by ABBREV_TABLE. */
c906108c 15901
c906108c 15902static void
433df2d4 15903abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15904{
433df2d4
DE
15905 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15906 xfree (abbrev_table);
c906108c
SS
15907}
15908
f4dc4d17
DE
15909/* Same as abbrev_table_free but as a cleanup.
15910 We pass in a pointer to the pointer to the table so that we can
15911 set the pointer to NULL when we're done. It also simplifies
73051182 15912 build_type_psymtabs_1. */
f4dc4d17
DE
15913
15914static void
15915abbrev_table_free_cleanup (void *table_ptr)
15916{
9a3c8263 15917 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15918
15919 if (*abbrev_table_ptr != NULL)
15920 abbrev_table_free (*abbrev_table_ptr);
15921 *abbrev_table_ptr = NULL;
15922}
15923
433df2d4
DE
15924/* Read the abbrev table for CU from ABBREV_SECTION. */
15925
15926static void
15927dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15928 struct dwarf2_section_info *abbrev_section)
c906108c 15929{
433df2d4 15930 cu->abbrev_table =
9c541725 15931 abbrev_table_read_table (abbrev_section, cu->header.abbrev_sect_off);
433df2d4 15932}
c906108c 15933
433df2d4 15934/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15935
433df2d4
DE
15936static void
15937dwarf2_free_abbrev_table (void *ptr_to_cu)
15938{
9a3c8263 15939 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15940
a2ce51a0
DE
15941 if (cu->abbrev_table != NULL)
15942 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15943 /* Set this to NULL so that we SEGV if we try to read it later,
15944 and also because free_comp_unit verifies this is NULL. */
15945 cu->abbrev_table = NULL;
15946}
15947\f
72bf9492
DJ
15948/* Returns nonzero if TAG represents a type that we might generate a partial
15949 symbol for. */
15950
15951static int
15952is_type_tag_for_partial (int tag)
15953{
15954 switch (tag)
15955 {
15956#if 0
15957 /* Some types that would be reasonable to generate partial symbols for,
15958 that we don't at present. */
15959 case DW_TAG_array_type:
15960 case DW_TAG_file_type:
15961 case DW_TAG_ptr_to_member_type:
15962 case DW_TAG_set_type:
15963 case DW_TAG_string_type:
15964 case DW_TAG_subroutine_type:
15965#endif
15966 case DW_TAG_base_type:
15967 case DW_TAG_class_type:
680b30c7 15968 case DW_TAG_interface_type:
72bf9492
DJ
15969 case DW_TAG_enumeration_type:
15970 case DW_TAG_structure_type:
15971 case DW_TAG_subrange_type:
15972 case DW_TAG_typedef:
15973 case DW_TAG_union_type:
15974 return 1;
15975 default:
15976 return 0;
15977 }
15978}
15979
15980/* Load all DIEs that are interesting for partial symbols into memory. */
15981
15982static struct partial_die_info *
dee91e82 15983load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15984 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15985{
dee91e82 15986 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15987 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15988 struct partial_die_info *part_die;
15989 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15990 struct abbrev_info *abbrev;
15991 unsigned int bytes_read;
5afb4e99 15992 unsigned int load_all = 0;
72bf9492
DJ
15993 int nesting_level = 1;
15994
15995 parent_die = NULL;
15996 last_die = NULL;
15997
7adf1e79
DE
15998 gdb_assert (cu->per_cu != NULL);
15999 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
16000 load_all = 1;
16001
72bf9492
DJ
16002 cu->partial_dies
16003 = htab_create_alloc_ex (cu->header.length / 12,
16004 partial_die_hash,
16005 partial_die_eq,
16006 NULL,
16007 &cu->comp_unit_obstack,
16008 hashtab_obstack_allocate,
16009 dummy_obstack_deallocate);
16010
8d749320 16011 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
16012
16013 while (1)
16014 {
16015 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
16016
16017 /* A NULL abbrev means the end of a series of children. */
16018 if (abbrev == NULL)
16019 {
16020 if (--nesting_level == 0)
16021 {
16022 /* PART_DIE was probably the last thing allocated on the
16023 comp_unit_obstack, so we could call obstack_free
16024 here. We don't do that because the waste is small,
16025 and will be cleaned up when we're done with this
16026 compilation unit. This way, we're also more robust
16027 against other users of the comp_unit_obstack. */
16028 return first_die;
16029 }
16030 info_ptr += bytes_read;
16031 last_die = parent_die;
16032 parent_die = parent_die->die_parent;
16033 continue;
16034 }
16035
98bfdba5
PA
16036 /* Check for template arguments. We never save these; if
16037 they're seen, we just mark the parent, and go on our way. */
16038 if (parent_die != NULL
16039 && cu->language == language_cplus
16040 && (abbrev->tag == DW_TAG_template_type_param
16041 || abbrev->tag == DW_TAG_template_value_param))
16042 {
16043 parent_die->has_template_arguments = 1;
16044
16045 if (!load_all)
16046 {
16047 /* We don't need a partial DIE for the template argument. */
dee91e82 16048 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
16049 continue;
16050 }
16051 }
16052
0d99eb77 16053 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
16054 Skip their other children. */
16055 if (!load_all
16056 && cu->language == language_cplus
16057 && parent_die != NULL
16058 && parent_die->tag == DW_TAG_subprogram)
16059 {
dee91e82 16060 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
16061 continue;
16062 }
16063
5afb4e99
DJ
16064 /* Check whether this DIE is interesting enough to save. Normally
16065 we would not be interested in members here, but there may be
16066 later variables referencing them via DW_AT_specification (for
16067 static members). */
16068 if (!load_all
16069 && !is_type_tag_for_partial (abbrev->tag)
72929c62 16070 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
16071 && abbrev->tag != DW_TAG_enumerator
16072 && abbrev->tag != DW_TAG_subprogram
bc30ff58 16073 && abbrev->tag != DW_TAG_lexical_block
72bf9492 16074 && abbrev->tag != DW_TAG_variable
5afb4e99 16075 && abbrev->tag != DW_TAG_namespace
f55ee35c 16076 && abbrev->tag != DW_TAG_module
95554aad 16077 && abbrev->tag != DW_TAG_member
74921315
KS
16078 && abbrev->tag != DW_TAG_imported_unit
16079 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
16080 {
16081 /* Otherwise we skip to the next sibling, if any. */
dee91e82 16082 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
16083 continue;
16084 }
16085
dee91e82
DE
16086 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
16087 info_ptr);
72bf9492
DJ
16088
16089 /* This two-pass algorithm for processing partial symbols has a
16090 high cost in cache pressure. Thus, handle some simple cases
16091 here which cover the majority of C partial symbols. DIEs
16092 which neither have specification tags in them, nor could have
16093 specification tags elsewhere pointing at them, can simply be
16094 processed and discarded.
16095
16096 This segment is also optional; scan_partial_symbols and
16097 add_partial_symbol will handle these DIEs if we chain
16098 them in normally. When compilers which do not emit large
16099 quantities of duplicate debug information are more common,
16100 this code can probably be removed. */
16101
16102 /* Any complete simple types at the top level (pretty much all
16103 of them, for a language without namespaces), can be processed
16104 directly. */
16105 if (parent_die == NULL
16106 && part_die->has_specification == 0
16107 && part_die->is_declaration == 0
d8228535 16108 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
16109 || part_die->tag == DW_TAG_base_type
16110 || part_die->tag == DW_TAG_subrange_type))
16111 {
16112 if (building_psymtab && part_die->name != NULL)
04a679b8 16113 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 16114 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 16115 &objfile->static_psymbols,
1762568f 16116 0, cu->language, objfile);
dee91e82 16117 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
16118 continue;
16119 }
16120
d8228535
JK
16121 /* The exception for DW_TAG_typedef with has_children above is
16122 a workaround of GCC PR debug/47510. In the case of this complaint
16123 type_name_no_tag_or_error will error on such types later.
16124
16125 GDB skipped children of DW_TAG_typedef by the shortcut above and then
16126 it could not find the child DIEs referenced later, this is checked
16127 above. In correct DWARF DW_TAG_typedef should have no children. */
16128
16129 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
16130 complaint (&symfile_complaints,
16131 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
16132 "- DIE at 0x%x [in module %s]"),
9c541725 16133 to_underlying (part_die->sect_off), objfile_name (objfile));
d8228535 16134
72bf9492
DJ
16135 /* If we're at the second level, and we're an enumerator, and
16136 our parent has no specification (meaning possibly lives in a
16137 namespace elsewhere), then we can add the partial symbol now
16138 instead of queueing it. */
16139 if (part_die->tag == DW_TAG_enumerator
16140 && parent_die != NULL
16141 && parent_die->die_parent == NULL
16142 && parent_die->tag == DW_TAG_enumeration_type
16143 && parent_die->has_specification == 0)
16144 {
16145 if (part_die->name == NULL)
3e43a32a
MS
16146 complaint (&symfile_complaints,
16147 _("malformed enumerator DIE ignored"));
72bf9492 16148 else if (building_psymtab)
04a679b8 16149 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 16150 VAR_DOMAIN, LOC_CONST,
9c37b5ae 16151 cu->language == language_cplus
bb5ed363
DE
16152 ? &objfile->global_psymbols
16153 : &objfile->static_psymbols,
1762568f 16154 0, cu->language, objfile);
72bf9492 16155
dee91e82 16156 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
16157 continue;
16158 }
16159
16160 /* We'll save this DIE so link it in. */
16161 part_die->die_parent = parent_die;
16162 part_die->die_sibling = NULL;
16163 part_die->die_child = NULL;
16164
16165 if (last_die && last_die == parent_die)
16166 last_die->die_child = part_die;
16167 else if (last_die)
16168 last_die->die_sibling = part_die;
16169
16170 last_die = part_die;
16171
16172 if (first_die == NULL)
16173 first_die = part_die;
16174
16175 /* Maybe add the DIE to the hash table. Not all DIEs that we
16176 find interesting need to be in the hash table, because we
16177 also have the parent/sibling/child chains; only those that we
16178 might refer to by offset later during partial symbol reading.
16179
16180 For now this means things that might have be the target of a
16181 DW_AT_specification, DW_AT_abstract_origin, or
16182 DW_AT_extension. DW_AT_extension will refer only to
16183 namespaces; DW_AT_abstract_origin refers to functions (and
16184 many things under the function DIE, but we do not recurse
16185 into function DIEs during partial symbol reading) and
16186 possibly variables as well; DW_AT_specification refers to
16187 declarations. Declarations ought to have the DW_AT_declaration
16188 flag. It happens that GCC forgets to put it in sometimes, but
16189 only for functions, not for types.
16190
16191 Adding more things than necessary to the hash table is harmless
16192 except for the performance cost. Adding too few will result in
5afb4e99
DJ
16193 wasted time in find_partial_die, when we reread the compilation
16194 unit with load_all_dies set. */
72bf9492 16195
5afb4e99 16196 if (load_all
72929c62 16197 || abbrev->tag == DW_TAG_constant
5afb4e99 16198 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
16199 || abbrev->tag == DW_TAG_variable
16200 || abbrev->tag == DW_TAG_namespace
16201 || part_die->is_declaration)
16202 {
16203 void **slot;
16204
16205 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9c541725
PA
16206 to_underlying (part_die->sect_off),
16207 INSERT);
72bf9492
DJ
16208 *slot = part_die;
16209 }
16210
8d749320 16211 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
16212
16213 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 16214 we have no reason to follow the children of structures; for other
98bfdba5
PA
16215 languages we have to, so that we can get at method physnames
16216 to infer fully qualified class names, for DW_AT_specification,
16217 and for C++ template arguments. For C++, we also look one level
16218 inside functions to find template arguments (if the name of the
16219 function does not already contain the template arguments).
bc30ff58
JB
16220
16221 For Ada, we need to scan the children of subprograms and lexical
16222 blocks as well because Ada allows the definition of nested
16223 entities that could be interesting for the debugger, such as
16224 nested subprograms for instance. */
72bf9492 16225 if (last_die->has_children
5afb4e99
DJ
16226 && (load_all
16227 || last_die->tag == DW_TAG_namespace
f55ee35c 16228 || last_die->tag == DW_TAG_module
72bf9492 16229 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
16230 || (cu->language == language_cplus
16231 && last_die->tag == DW_TAG_subprogram
16232 && (last_die->name == NULL
16233 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
16234 || (cu->language != language_c
16235 && (last_die->tag == DW_TAG_class_type
680b30c7 16236 || last_die->tag == DW_TAG_interface_type
72bf9492 16237 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
16238 || last_die->tag == DW_TAG_union_type))
16239 || (cu->language == language_ada
16240 && (last_die->tag == DW_TAG_subprogram
16241 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
16242 {
16243 nesting_level++;
16244 parent_die = last_die;
16245 continue;
16246 }
16247
16248 /* Otherwise we skip to the next sibling, if any. */
dee91e82 16249 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
16250
16251 /* Back to the top, do it again. */
16252 }
16253}
16254
c906108c
SS
16255/* Read a minimal amount of information into the minimal die structure. */
16256
d521ce57 16257static const gdb_byte *
dee91e82
DE
16258read_partial_die (const struct die_reader_specs *reader,
16259 struct partial_die_info *part_die,
16260 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 16261 const gdb_byte *info_ptr)
c906108c 16262{
dee91e82 16263 struct dwarf2_cu *cu = reader->cu;
bb5ed363 16264 struct objfile *objfile = cu->objfile;
d521ce57 16265 const gdb_byte *buffer = reader->buffer;
fa238c03 16266 unsigned int i;
c906108c 16267 struct attribute attr;
c5aa993b 16268 int has_low_pc_attr = 0;
c906108c 16269 int has_high_pc_attr = 0;
91da1414 16270 int high_pc_relative = 0;
c906108c 16271
72bf9492 16272 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 16273
9c541725 16274 part_die->sect_off = (sect_offset) (info_ptr - buffer);
72bf9492
DJ
16275
16276 info_ptr += abbrev_len;
16277
16278 if (abbrev == NULL)
16279 return info_ptr;
16280
c906108c
SS
16281 part_die->tag = abbrev->tag;
16282 part_die->has_children = abbrev->has_children;
c906108c
SS
16283
16284 for (i = 0; i < abbrev->num_attrs; ++i)
16285 {
dee91e82 16286 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
16287
16288 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 16289 partial symbol table. */
c906108c
SS
16290 switch (attr.name)
16291 {
16292 case DW_AT_name:
71c25dea
TT
16293 switch (part_die->tag)
16294 {
16295 case DW_TAG_compile_unit:
95554aad 16296 case DW_TAG_partial_unit:
348e048f 16297 case DW_TAG_type_unit:
71c25dea
TT
16298 /* Compilation units have a DW_AT_name that is a filename, not
16299 a source language identifier. */
16300 case DW_TAG_enumeration_type:
16301 case DW_TAG_enumerator:
16302 /* These tags always have simple identifiers already; no need
16303 to canonicalize them. */
16304 part_die->name = DW_STRING (&attr);
16305 break;
16306 default:
16307 part_die->name
16308 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 16309 &objfile->per_bfd->storage_obstack);
71c25dea
TT
16310 break;
16311 }
c906108c 16312 break;
31ef98ae 16313 case DW_AT_linkage_name:
c906108c 16314 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
16315 /* Note that both forms of linkage name might appear. We
16316 assume they will be the same, and we only store the last
16317 one we see. */
94af9270
KS
16318 if (cu->language == language_ada)
16319 part_die->name = DW_STRING (&attr);
abc72ce4 16320 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
16321 break;
16322 case DW_AT_low_pc:
16323 has_low_pc_attr = 1;
31aa7e4e 16324 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
16325 break;
16326 case DW_AT_high_pc:
16327 has_high_pc_attr = 1;
31aa7e4e
JB
16328 part_die->highpc = attr_value_as_address (&attr);
16329 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
16330 high_pc_relative = 1;
c906108c
SS
16331 break;
16332 case DW_AT_location:
0963b4bd 16333 /* Support the .debug_loc offsets. */
8e19ed76
PS
16334 if (attr_form_is_block (&attr))
16335 {
95554aad 16336 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 16337 }
3690dd37 16338 else if (attr_form_is_section_offset (&attr))
8e19ed76 16339 {
4d3c2250 16340 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
16341 }
16342 else
16343 {
4d3c2250
KB
16344 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16345 "partial symbol information");
8e19ed76 16346 }
c906108c 16347 break;
c906108c
SS
16348 case DW_AT_external:
16349 part_die->is_external = DW_UNSND (&attr);
16350 break;
16351 case DW_AT_declaration:
16352 part_die->is_declaration = DW_UNSND (&attr);
16353 break;
16354 case DW_AT_type:
16355 part_die->has_type = 1;
16356 break;
16357 case DW_AT_abstract_origin:
16358 case DW_AT_specification:
72bf9492
DJ
16359 case DW_AT_extension:
16360 part_die->has_specification = 1;
c764a876 16361 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
16362 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16363 || cu->per_cu->is_dwz);
c906108c
SS
16364 break;
16365 case DW_AT_sibling:
16366 /* Ignore absolute siblings, they might point outside of
16367 the current compile unit. */
16368 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
16369 complaint (&symfile_complaints,
16370 _("ignoring absolute DW_AT_sibling"));
c906108c 16371 else
b9502d3f 16372 {
9c541725
PA
16373 sect_offset off = dwarf2_get_ref_die_offset (&attr);
16374 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
b9502d3f
WN
16375
16376 if (sibling_ptr < info_ptr)
16377 complaint (&symfile_complaints,
16378 _("DW_AT_sibling points backwards"));
22869d73
KS
16379 else if (sibling_ptr > reader->buffer_end)
16380 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
16381 else
16382 part_die->sibling = sibling_ptr;
16383 }
c906108c 16384 break;
fa4028e9
JB
16385 case DW_AT_byte_size:
16386 part_die->has_byte_size = 1;
16387 break;
ff908ebf
AW
16388 case DW_AT_const_value:
16389 part_die->has_const_value = 1;
16390 break;
68511cec
CES
16391 case DW_AT_calling_convention:
16392 /* DWARF doesn't provide a way to identify a program's source-level
16393 entry point. DW_AT_calling_convention attributes are only meant
16394 to describe functions' calling conventions.
16395
16396 However, because it's a necessary piece of information in
0c1b455e
TT
16397 Fortran, and before DWARF 4 DW_CC_program was the only
16398 piece of debugging information whose definition refers to
16399 a 'main program' at all, several compilers marked Fortran
16400 main programs with DW_CC_program --- even when those
16401 functions use the standard calling conventions.
16402
16403 Although DWARF now specifies a way to provide this
16404 information, we support this practice for backward
16405 compatibility. */
68511cec 16406 if (DW_UNSND (&attr) == DW_CC_program
0c1b455e
TT
16407 && cu->language == language_fortran)
16408 part_die->main_subprogram = 1;
68511cec 16409 break;
481860b3
GB
16410 case DW_AT_inline:
16411 if (DW_UNSND (&attr) == DW_INL_inlined
16412 || DW_UNSND (&attr) == DW_INL_declared_inlined)
16413 part_die->may_be_inlined = 1;
16414 break;
95554aad
TT
16415
16416 case DW_AT_import:
16417 if (part_die->tag == DW_TAG_imported_unit)
36586728 16418 {
9c541725 16419 part_die->d.sect_off = dwarf2_get_ref_die_offset (&attr);
36586728
TT
16420 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
16421 || cu->per_cu->is_dwz);
16422 }
95554aad
TT
16423 break;
16424
0c1b455e
TT
16425 case DW_AT_main_subprogram:
16426 part_die->main_subprogram = DW_UNSND (&attr);
16427 break;
16428
c906108c
SS
16429 default:
16430 break;
16431 }
16432 }
16433
91da1414
MW
16434 if (high_pc_relative)
16435 part_die->highpc += part_die->lowpc;
16436
9373cf26
JK
16437 if (has_low_pc_attr && has_high_pc_attr)
16438 {
16439 /* When using the GNU linker, .gnu.linkonce. sections are used to
16440 eliminate duplicate copies of functions and vtables and such.
16441 The linker will arbitrarily choose one and discard the others.
16442 The AT_*_pc values for such functions refer to local labels in
16443 these sections. If the section from that file was discarded, the
16444 labels are not in the output, so the relocs get a value of 0.
16445 If this is a discarded function, mark the pc bounds as invalid,
16446 so that GDB will ignore it. */
16447 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16448 {
bb5ed363 16449 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16450
16451 complaint (&symfile_complaints,
16452 _("DW_AT_low_pc %s is zero "
16453 "for DIE at 0x%x [in module %s]"),
16454 paddress (gdbarch, part_die->lowpc),
9c541725 16455 to_underlying (part_die->sect_off), objfile_name (objfile));
9373cf26
JK
16456 }
16457 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16458 else if (part_die->lowpc >= part_die->highpc)
16459 {
bb5ed363 16460 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16461
16462 complaint (&symfile_complaints,
16463 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16464 "for DIE at 0x%x [in module %s]"),
16465 paddress (gdbarch, part_die->lowpc),
16466 paddress (gdbarch, part_die->highpc),
9c541725
PA
16467 to_underlying (part_die->sect_off),
16468 objfile_name (objfile));
9373cf26
JK
16469 }
16470 else
16471 part_die->has_pc_info = 1;
16472 }
85cbf3d3 16473
c906108c
SS
16474 return info_ptr;
16475}
16476
72bf9492
DJ
16477/* Find a cached partial DIE at OFFSET in CU. */
16478
16479static struct partial_die_info *
9c541725 16480find_partial_die_in_comp_unit (sect_offset sect_off, struct dwarf2_cu *cu)
72bf9492
DJ
16481{
16482 struct partial_die_info *lookup_die = NULL;
16483 struct partial_die_info part_die;
16484
9c541725 16485 part_die.sect_off = sect_off;
9a3c8263
SM
16486 lookup_die = ((struct partial_die_info *)
16487 htab_find_with_hash (cu->partial_dies, &part_die,
9c541725 16488 to_underlying (sect_off)));
72bf9492 16489
72bf9492
DJ
16490 return lookup_die;
16491}
16492
348e048f
DE
16493/* Find a partial DIE at OFFSET, which may or may not be in CU,
16494 except in the case of .debug_types DIEs which do not reference
16495 outside their CU (they do however referencing other types via
55f1336d 16496 DW_FORM_ref_sig8). */
72bf9492
DJ
16497
16498static struct partial_die_info *
9c541725 16499find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16500{
bb5ed363 16501 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16502 struct dwarf2_per_cu_data *per_cu = NULL;
16503 struct partial_die_info *pd = NULL;
72bf9492 16504
36586728 16505 if (offset_in_dwz == cu->per_cu->is_dwz
9c541725 16506 && offset_in_cu_p (&cu->header, sect_off))
5afb4e99 16507 {
9c541725 16508 pd = find_partial_die_in_comp_unit (sect_off, cu);
5afb4e99
DJ
16509 if (pd != NULL)
16510 return pd;
0d99eb77
DE
16511 /* We missed recording what we needed.
16512 Load all dies and try again. */
16513 per_cu = cu->per_cu;
5afb4e99 16514 }
0d99eb77
DE
16515 else
16516 {
16517 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16518 if (cu->per_cu->is_debug_types)
0d99eb77 16519 {
9c541725
PA
16520 error (_("Dwarf Error: Type Unit at offset 0x%x contains"
16521 " external reference to offset 0x%x [in module %s].\n"),
16522 to_underlying (cu->header.sect_off), to_underlying (sect_off),
0d99eb77
DE
16523 bfd_get_filename (objfile->obfd));
16524 }
9c541725 16525 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
36586728 16526 objfile);
72bf9492 16527
0d99eb77
DE
16528 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16529 load_partial_comp_unit (per_cu);
ae038cb0 16530
0d99eb77 16531 per_cu->cu->last_used = 0;
9c541725 16532 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
0d99eb77 16533 }
5afb4e99 16534
dee91e82
DE
16535 /* If we didn't find it, and not all dies have been loaded,
16536 load them all and try again. */
16537
5afb4e99
DJ
16538 if (pd == NULL && per_cu->load_all_dies == 0)
16539 {
5afb4e99 16540 per_cu->load_all_dies = 1;
fd820528
DE
16541
16542 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16543 THIS_CU->cu may already be in use. So we can't just free it and
16544 replace its DIEs with the ones we read in. Instead, we leave those
16545 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16546 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16547 set. */
dee91e82 16548 load_partial_comp_unit (per_cu);
5afb4e99 16549
9c541725 16550 pd = find_partial_die_in_comp_unit (sect_off, per_cu->cu);
5afb4e99
DJ
16551 }
16552
16553 if (pd == NULL)
16554 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16555 _("could not find partial DIE 0x%x "
16556 "in cache [from module %s]\n"),
9c541725 16557 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
5afb4e99 16558 return pd;
72bf9492
DJ
16559}
16560
abc72ce4
DE
16561/* See if we can figure out if the class lives in a namespace. We do
16562 this by looking for a member function; its demangled name will
16563 contain namespace info, if there is any. */
16564
16565static void
16566guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16567 struct dwarf2_cu *cu)
16568{
16569 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16570 what template types look like, because the demangler
16571 frequently doesn't give the same name as the debug info. We
16572 could fix this by only using the demangled name to get the
16573 prefix (but see comment in read_structure_type). */
16574
16575 struct partial_die_info *real_pdi;
16576 struct partial_die_info *child_pdi;
16577
16578 /* If this DIE (this DIE's specification, if any) has a parent, then
16579 we should not do this. We'll prepend the parent's fully qualified
16580 name when we create the partial symbol. */
16581
16582 real_pdi = struct_pdi;
16583 while (real_pdi->has_specification)
36586728
TT
16584 real_pdi = find_partial_die (real_pdi->spec_offset,
16585 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16586
16587 if (real_pdi->die_parent != NULL)
16588 return;
16589
16590 for (child_pdi = struct_pdi->die_child;
16591 child_pdi != NULL;
16592 child_pdi = child_pdi->die_sibling)
16593 {
16594 if (child_pdi->tag == DW_TAG_subprogram
16595 && child_pdi->linkage_name != NULL)
16596 {
16597 char *actual_class_name
16598 = language_class_name_from_physname (cu->language_defn,
16599 child_pdi->linkage_name);
16600 if (actual_class_name != NULL)
16601 {
16602 struct_pdi->name
224c3ddb
SM
16603 = ((const char *)
16604 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16605 actual_class_name,
16606 strlen (actual_class_name)));
abc72ce4
DE
16607 xfree (actual_class_name);
16608 }
16609 break;
16610 }
16611 }
16612}
16613
72bf9492
DJ
16614/* Adjust PART_DIE before generating a symbol for it. This function
16615 may set the is_external flag or change the DIE's name. */
16616
16617static void
16618fixup_partial_die (struct partial_die_info *part_die,
16619 struct dwarf2_cu *cu)
16620{
abc72ce4
DE
16621 /* Once we've fixed up a die, there's no point in doing so again.
16622 This also avoids a memory leak if we were to call
16623 guess_partial_die_structure_name multiple times. */
16624 if (part_die->fixup_called)
16625 return;
16626
72bf9492
DJ
16627 /* If we found a reference attribute and the DIE has no name, try
16628 to find a name in the referred to DIE. */
16629
16630 if (part_die->name == NULL && part_die->has_specification)
16631 {
16632 struct partial_die_info *spec_die;
72bf9492 16633
36586728
TT
16634 spec_die = find_partial_die (part_die->spec_offset,
16635 part_die->spec_is_dwz, cu);
72bf9492 16636
10b3939b 16637 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16638
16639 if (spec_die->name)
16640 {
16641 part_die->name = spec_die->name;
16642
16643 /* Copy DW_AT_external attribute if it is set. */
16644 if (spec_die->is_external)
16645 part_die->is_external = spec_die->is_external;
16646 }
16647 }
16648
16649 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16650
16651 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16652 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16653
abc72ce4
DE
16654 /* If there is no parent die to provide a namespace, and there are
16655 children, see if we can determine the namespace from their linkage
122d1940 16656 name. */
abc72ce4 16657 if (cu->language == language_cplus
8b70b953 16658 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16659 && part_die->die_parent == NULL
16660 && part_die->has_children
16661 && (part_die->tag == DW_TAG_class_type
16662 || part_die->tag == DW_TAG_structure_type
16663 || part_die->tag == DW_TAG_union_type))
16664 guess_partial_die_structure_name (part_die, cu);
16665
53832f31
TT
16666 /* GCC might emit a nameless struct or union that has a linkage
16667 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16668 if (part_die->name == NULL
96408a79
SA
16669 && (part_die->tag == DW_TAG_class_type
16670 || part_die->tag == DW_TAG_interface_type
16671 || part_die->tag == DW_TAG_structure_type
16672 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16673 && part_die->linkage_name != NULL)
16674 {
16675 char *demangled;
16676
8de20a37 16677 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16678 if (demangled)
16679 {
96408a79
SA
16680 const char *base;
16681
16682 /* Strip any leading namespaces/classes, keep only the base name.
16683 DW_AT_name for named DIEs does not contain the prefixes. */
16684 base = strrchr (demangled, ':');
16685 if (base && base > demangled && base[-1] == ':')
16686 base++;
16687 else
16688 base = demangled;
16689
34a68019 16690 part_die->name
224c3ddb
SM
16691 = ((const char *)
16692 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16693 base, strlen (base)));
53832f31
TT
16694 xfree (demangled);
16695 }
16696 }
16697
abc72ce4 16698 part_die->fixup_called = 1;
72bf9492
DJ
16699}
16700
a8329558 16701/* Read an attribute value described by an attribute form. */
c906108c 16702
d521ce57 16703static const gdb_byte *
dee91e82
DE
16704read_attribute_value (const struct die_reader_specs *reader,
16705 struct attribute *attr, unsigned form,
43988095 16706 LONGEST implicit_const, const gdb_byte *info_ptr)
c906108c 16707{
dee91e82 16708 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16709 struct objfile *objfile = cu->objfile;
16710 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16711 bfd *abfd = reader->abfd;
e7c27a73 16712 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16713 unsigned int bytes_read;
16714 struct dwarf_block *blk;
16715
aead7601 16716 attr->form = (enum dwarf_form) form;
a8329558 16717 switch (form)
c906108c 16718 {
c906108c 16719 case DW_FORM_ref_addr:
ae411497 16720 if (cu->header.version == 2)
4568ecf9 16721 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16722 else
4568ecf9
DE
16723 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16724 &cu->header, &bytes_read);
ae411497
TT
16725 info_ptr += bytes_read;
16726 break;
36586728
TT
16727 case DW_FORM_GNU_ref_alt:
16728 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16729 info_ptr += bytes_read;
16730 break;
ae411497 16731 case DW_FORM_addr:
e7c27a73 16732 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16733 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16734 info_ptr += bytes_read;
c906108c
SS
16735 break;
16736 case DW_FORM_block2:
7b5a2f43 16737 blk = dwarf_alloc_block (cu);
c906108c
SS
16738 blk->size = read_2_bytes (abfd, info_ptr);
16739 info_ptr += 2;
16740 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16741 info_ptr += blk->size;
16742 DW_BLOCK (attr) = blk;
16743 break;
16744 case DW_FORM_block4:
7b5a2f43 16745 blk = dwarf_alloc_block (cu);
c906108c
SS
16746 blk->size = read_4_bytes (abfd, info_ptr);
16747 info_ptr += 4;
16748 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16749 info_ptr += blk->size;
16750 DW_BLOCK (attr) = blk;
16751 break;
16752 case DW_FORM_data2:
16753 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16754 info_ptr += 2;
16755 break;
16756 case DW_FORM_data4:
16757 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16758 info_ptr += 4;
16759 break;
16760 case DW_FORM_data8:
16761 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16762 info_ptr += 8;
16763 break;
0224619f
JK
16764 case DW_FORM_data16:
16765 blk = dwarf_alloc_block (cu);
16766 blk->size = 16;
16767 blk->data = read_n_bytes (abfd, info_ptr, 16);
16768 info_ptr += 16;
16769 DW_BLOCK (attr) = blk;
16770 break;
2dc7f7b3
TT
16771 case DW_FORM_sec_offset:
16772 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16773 info_ptr += bytes_read;
16774 break;
c906108c 16775 case DW_FORM_string:
9b1c24c8 16776 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16777 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16778 info_ptr += bytes_read;
16779 break;
4bdf3d34 16780 case DW_FORM_strp:
36586728
TT
16781 if (!cu->per_cu->is_dwz)
16782 {
16783 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16784 &bytes_read);
16785 DW_STRING_IS_CANONICAL (attr) = 0;
16786 info_ptr += bytes_read;
16787 break;
16788 }
16789 /* FALLTHROUGH */
43988095
JK
16790 case DW_FORM_line_strp:
16791 if (!cu->per_cu->is_dwz)
16792 {
16793 DW_STRING (attr) = read_indirect_line_string (abfd, info_ptr,
16794 cu_header, &bytes_read);
16795 DW_STRING_IS_CANONICAL (attr) = 0;
16796 info_ptr += bytes_read;
16797 break;
16798 }
16799 /* FALLTHROUGH */
36586728
TT
16800 case DW_FORM_GNU_strp_alt:
16801 {
16802 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16803 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16804 &bytes_read);
16805
16806 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16807 DW_STRING_IS_CANONICAL (attr) = 0;
16808 info_ptr += bytes_read;
16809 }
4bdf3d34 16810 break;
2dc7f7b3 16811 case DW_FORM_exprloc:
c906108c 16812 case DW_FORM_block:
7b5a2f43 16813 blk = dwarf_alloc_block (cu);
c906108c
SS
16814 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16815 info_ptr += bytes_read;
16816 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16817 info_ptr += blk->size;
16818 DW_BLOCK (attr) = blk;
16819 break;
16820 case DW_FORM_block1:
7b5a2f43 16821 blk = dwarf_alloc_block (cu);
c906108c
SS
16822 blk->size = read_1_byte (abfd, info_ptr);
16823 info_ptr += 1;
16824 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16825 info_ptr += blk->size;
16826 DW_BLOCK (attr) = blk;
16827 break;
16828 case DW_FORM_data1:
16829 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16830 info_ptr += 1;
16831 break;
16832 case DW_FORM_flag:
16833 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16834 info_ptr += 1;
16835 break;
2dc7f7b3
TT
16836 case DW_FORM_flag_present:
16837 DW_UNSND (attr) = 1;
16838 break;
c906108c
SS
16839 case DW_FORM_sdata:
16840 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16841 info_ptr += bytes_read;
16842 break;
16843 case DW_FORM_udata:
16844 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16845 info_ptr += bytes_read;
16846 break;
16847 case DW_FORM_ref1:
9c541725 16848 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16849 + read_1_byte (abfd, info_ptr));
c906108c
SS
16850 info_ptr += 1;
16851 break;
16852 case DW_FORM_ref2:
9c541725 16853 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16854 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16855 info_ptr += 2;
16856 break;
16857 case DW_FORM_ref4:
9c541725 16858 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16859 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16860 info_ptr += 4;
16861 break;
613e1657 16862 case DW_FORM_ref8:
9c541725 16863 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16864 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16865 info_ptr += 8;
16866 break;
55f1336d 16867 case DW_FORM_ref_sig8:
ac9ec31b 16868 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16869 info_ptr += 8;
16870 break;
c906108c 16871 case DW_FORM_ref_udata:
9c541725 16872 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
4568ecf9 16873 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16874 info_ptr += bytes_read;
16875 break;
c906108c 16876 case DW_FORM_indirect:
a8329558
KW
16877 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16878 info_ptr += bytes_read;
43988095
JK
16879 if (form == DW_FORM_implicit_const)
16880 {
16881 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16882 info_ptr += bytes_read;
16883 }
16884 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
16885 info_ptr);
16886 break;
16887 case DW_FORM_implicit_const:
16888 DW_SND (attr) = implicit_const;
a8329558 16889 break;
3019eac3
DE
16890 case DW_FORM_GNU_addr_index:
16891 if (reader->dwo_file == NULL)
16892 {
16893 /* For now flag a hard error.
16894 Later we can turn this into a complaint. */
16895 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16896 dwarf_form_name (form),
16897 bfd_get_filename (abfd));
16898 }
16899 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16900 info_ptr += bytes_read;
16901 break;
16902 case DW_FORM_GNU_str_index:
16903 if (reader->dwo_file == NULL)
16904 {
16905 /* For now flag a hard error.
16906 Later we can turn this into a complaint if warranted. */
16907 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16908 dwarf_form_name (form),
16909 bfd_get_filename (abfd));
16910 }
16911 {
16912 ULONGEST str_index =
16913 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16914
342587c4 16915 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16916 DW_STRING_IS_CANONICAL (attr) = 0;
16917 info_ptr += bytes_read;
16918 }
16919 break;
c906108c 16920 default:
8a3fe4f8 16921 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16922 dwarf_form_name (form),
16923 bfd_get_filename (abfd));
c906108c 16924 }
28e94949 16925
36586728 16926 /* Super hack. */
7771576e 16927 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16928 attr->form = DW_FORM_GNU_ref_alt;
16929
28e94949
JB
16930 /* We have seen instances where the compiler tried to emit a byte
16931 size attribute of -1 which ended up being encoded as an unsigned
16932 0xffffffff. Although 0xffffffff is technically a valid size value,
16933 an object of this size seems pretty unlikely so we can relatively
16934 safely treat these cases as if the size attribute was invalid and
16935 treat them as zero by default. */
16936 if (attr->name == DW_AT_byte_size
16937 && form == DW_FORM_data4
16938 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16939 {
16940 complaint
16941 (&symfile_complaints,
43bbcdc2
PH
16942 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16943 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16944 DW_UNSND (attr) = 0;
16945 }
28e94949 16946
c906108c
SS
16947 return info_ptr;
16948}
16949
a8329558
KW
16950/* Read an attribute described by an abbreviated attribute. */
16951
d521ce57 16952static const gdb_byte *
dee91e82
DE
16953read_attribute (const struct die_reader_specs *reader,
16954 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16955 const gdb_byte *info_ptr)
a8329558
KW
16956{
16957 attr->name = abbrev->name;
43988095
JK
16958 return read_attribute_value (reader, attr, abbrev->form,
16959 abbrev->implicit_const, info_ptr);
a8329558
KW
16960}
16961
0963b4bd 16962/* Read dwarf information from a buffer. */
c906108c
SS
16963
16964static unsigned int
a1855c1d 16965read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16966{
fe1b8b76 16967 return bfd_get_8 (abfd, buf);
c906108c
SS
16968}
16969
16970static int
a1855c1d 16971read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16972{
fe1b8b76 16973 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16974}
16975
16976static unsigned int
a1855c1d 16977read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16978{
fe1b8b76 16979 return bfd_get_16 (abfd, buf);
c906108c
SS
16980}
16981
21ae7a4d 16982static int
a1855c1d 16983read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16984{
16985 return bfd_get_signed_16 (abfd, buf);
16986}
16987
c906108c 16988static unsigned int
a1855c1d 16989read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16990{
fe1b8b76 16991 return bfd_get_32 (abfd, buf);
c906108c
SS
16992}
16993
21ae7a4d 16994static int
a1855c1d 16995read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16996{
16997 return bfd_get_signed_32 (abfd, buf);
16998}
16999
93311388 17000static ULONGEST
a1855c1d 17001read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 17002{
fe1b8b76 17003 return bfd_get_64 (abfd, buf);
c906108c
SS
17004}
17005
17006static CORE_ADDR
d521ce57 17007read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 17008 unsigned int *bytes_read)
c906108c 17009{
e7c27a73 17010 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
17011 CORE_ADDR retval = 0;
17012
107d2387 17013 if (cu_header->signed_addr_p)
c906108c 17014 {
107d2387
AC
17015 switch (cu_header->addr_size)
17016 {
17017 case 2:
fe1b8b76 17018 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
17019 break;
17020 case 4:
fe1b8b76 17021 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
17022 break;
17023 case 8:
fe1b8b76 17024 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
17025 break;
17026 default:
8e65ff28 17027 internal_error (__FILE__, __LINE__,
e2e0b3e5 17028 _("read_address: bad switch, signed [in module %s]"),
659b0389 17029 bfd_get_filename (abfd));
107d2387
AC
17030 }
17031 }
17032 else
17033 {
17034 switch (cu_header->addr_size)
17035 {
17036 case 2:
fe1b8b76 17037 retval = bfd_get_16 (abfd, buf);
107d2387
AC
17038 break;
17039 case 4:
fe1b8b76 17040 retval = bfd_get_32 (abfd, buf);
107d2387
AC
17041 break;
17042 case 8:
fe1b8b76 17043 retval = bfd_get_64 (abfd, buf);
107d2387
AC
17044 break;
17045 default:
8e65ff28 17046 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
17047 _("read_address: bad switch, "
17048 "unsigned [in module %s]"),
659b0389 17049 bfd_get_filename (abfd));
107d2387 17050 }
c906108c 17051 }
64367e0a 17052
107d2387
AC
17053 *bytes_read = cu_header->addr_size;
17054 return retval;
c906108c
SS
17055}
17056
f7ef9339 17057/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
17058 specification allows the initial length to take up either 4 bytes
17059 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
17060 bytes describe the length and all offsets will be 8 bytes in length
17061 instead of 4.
17062
f7ef9339
KB
17063 An older, non-standard 64-bit format is also handled by this
17064 function. The older format in question stores the initial length
17065 as an 8-byte quantity without an escape value. Lengths greater
17066 than 2^32 aren't very common which means that the initial 4 bytes
17067 is almost always zero. Since a length value of zero doesn't make
17068 sense for the 32-bit format, this initial zero can be considered to
17069 be an escape value which indicates the presence of the older 64-bit
17070 format. As written, the code can't detect (old format) lengths
917c78fc
MK
17071 greater than 4GB. If it becomes necessary to handle lengths
17072 somewhat larger than 4GB, we could allow other small values (such
17073 as the non-sensical values of 1, 2, and 3) to also be used as
17074 escape values indicating the presence of the old format.
f7ef9339 17075
917c78fc
MK
17076 The value returned via bytes_read should be used to increment the
17077 relevant pointer after calling read_initial_length().
c764a876 17078
613e1657
KB
17079 [ Note: read_initial_length() and read_offset() are based on the
17080 document entitled "DWARF Debugging Information Format", revision
f7ef9339 17081 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
17082 from:
17083
f7ef9339 17084 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 17085
613e1657
KB
17086 This document is only a draft and is subject to change. (So beware.)
17087
f7ef9339 17088 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
17089 determined empirically by examining 64-bit ELF files produced by
17090 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
17091
17092 - Kevin, July 16, 2002
613e1657
KB
17093 ] */
17094
17095static LONGEST
d521ce57 17096read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 17097{
fe1b8b76 17098 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 17099
dd373385 17100 if (length == 0xffffffff)
613e1657 17101 {
fe1b8b76 17102 length = bfd_get_64 (abfd, buf + 4);
613e1657 17103 *bytes_read = 12;
613e1657 17104 }
dd373385 17105 else if (length == 0)
f7ef9339 17106 {
dd373385 17107 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 17108 length = bfd_get_64 (abfd, buf);
f7ef9339 17109 *bytes_read = 8;
f7ef9339 17110 }
613e1657
KB
17111 else
17112 {
17113 *bytes_read = 4;
613e1657
KB
17114 }
17115
c764a876
DE
17116 return length;
17117}
dd373385 17118
c764a876
DE
17119/* Cover function for read_initial_length.
17120 Returns the length of the object at BUF, and stores the size of the
17121 initial length in *BYTES_READ and stores the size that offsets will be in
17122 *OFFSET_SIZE.
17123 If the initial length size is not equivalent to that specified in
17124 CU_HEADER then issue a complaint.
17125 This is useful when reading non-comp-unit headers. */
dd373385 17126
c764a876 17127static LONGEST
d521ce57 17128read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
17129 const struct comp_unit_head *cu_header,
17130 unsigned int *bytes_read,
17131 unsigned int *offset_size)
17132{
17133 LONGEST length = read_initial_length (abfd, buf, bytes_read);
17134
17135 gdb_assert (cu_header->initial_length_size == 4
17136 || cu_header->initial_length_size == 8
17137 || cu_header->initial_length_size == 12);
17138
17139 if (cu_header->initial_length_size != *bytes_read)
17140 complaint (&symfile_complaints,
17141 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 17142
c764a876 17143 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 17144 return length;
613e1657
KB
17145}
17146
17147/* Read an offset from the data stream. The size of the offset is
917c78fc 17148 given by cu_header->offset_size. */
613e1657
KB
17149
17150static LONGEST
d521ce57
TT
17151read_offset (bfd *abfd, const gdb_byte *buf,
17152 const struct comp_unit_head *cu_header,
891d2f0b 17153 unsigned int *bytes_read)
c764a876
DE
17154{
17155 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 17156
c764a876
DE
17157 *bytes_read = cu_header->offset_size;
17158 return offset;
17159}
17160
17161/* Read an offset from the data stream. */
17162
17163static LONGEST
d521ce57 17164read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
17165{
17166 LONGEST retval = 0;
17167
c764a876 17168 switch (offset_size)
613e1657
KB
17169 {
17170 case 4:
fe1b8b76 17171 retval = bfd_get_32 (abfd, buf);
613e1657
KB
17172 break;
17173 case 8:
fe1b8b76 17174 retval = bfd_get_64 (abfd, buf);
613e1657
KB
17175 break;
17176 default:
8e65ff28 17177 internal_error (__FILE__, __LINE__,
c764a876 17178 _("read_offset_1: bad switch [in module %s]"),
659b0389 17179 bfd_get_filename (abfd));
613e1657
KB
17180 }
17181
917c78fc 17182 return retval;
613e1657
KB
17183}
17184
d521ce57
TT
17185static const gdb_byte *
17186read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
17187{
17188 /* If the size of a host char is 8 bits, we can return a pointer
17189 to the buffer, otherwise we have to copy the data to a buffer
17190 allocated on the temporary obstack. */
4bdf3d34 17191 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 17192 return buf;
c906108c
SS
17193}
17194
d521ce57
TT
17195static const char *
17196read_direct_string (bfd *abfd, const gdb_byte *buf,
17197 unsigned int *bytes_read_ptr)
c906108c
SS
17198{
17199 /* If the size of a host char is 8 bits, we can return a pointer
17200 to the string, otherwise we have to copy the string to a buffer
17201 allocated on the temporary obstack. */
4bdf3d34 17202 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
17203 if (*buf == '\0')
17204 {
17205 *bytes_read_ptr = 1;
17206 return NULL;
17207 }
d521ce57
TT
17208 *bytes_read_ptr = strlen ((const char *) buf) + 1;
17209 return (const char *) buf;
4bdf3d34
JJ
17210}
17211
43988095
JK
17212/* Return pointer to string at section SECT offset STR_OFFSET with error
17213 reporting strings FORM_NAME and SECT_NAME. */
17214
d521ce57 17215static const char *
43988095
JK
17216read_indirect_string_at_offset_from (bfd *abfd, LONGEST str_offset,
17217 struct dwarf2_section_info *sect,
17218 const char *form_name,
17219 const char *sect_name)
17220{
17221 dwarf2_read_section (dwarf2_per_objfile->objfile, sect);
17222 if (sect->buffer == NULL)
17223 error (_("%s used without %s section [in module %s]"),
17224 form_name, sect_name, bfd_get_filename (abfd));
17225 if (str_offset >= sect->size)
17226 error (_("%s pointing outside of %s section [in module %s]"),
17227 form_name, sect_name, bfd_get_filename (abfd));
4bdf3d34 17228 gdb_assert (HOST_CHAR_BIT == 8);
43988095 17229 if (sect->buffer[str_offset] == '\0')
4bdf3d34 17230 return NULL;
43988095
JK
17231 return (const char *) (sect->buffer + str_offset);
17232}
17233
17234/* Return pointer to string at .debug_str offset STR_OFFSET. */
17235
17236static const char *
17237read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
17238{
17239 return read_indirect_string_at_offset_from (abfd, str_offset,
17240 &dwarf2_per_objfile->str,
17241 "DW_FORM_strp", ".debug_str");
17242}
17243
17244/* Return pointer to string at .debug_line_str offset STR_OFFSET. */
17245
17246static const char *
17247read_indirect_line_string_at_offset (bfd *abfd, LONGEST str_offset)
17248{
17249 return read_indirect_string_at_offset_from (abfd, str_offset,
17250 &dwarf2_per_objfile->line_str,
17251 "DW_FORM_line_strp",
17252 ".debug_line_str");
c906108c
SS
17253}
17254
36586728
TT
17255/* Read a string at offset STR_OFFSET in the .debug_str section from
17256 the .dwz file DWZ. Throw an error if the offset is too large. If
17257 the string consists of a single NUL byte, return NULL; otherwise
17258 return a pointer to the string. */
17259
d521ce57 17260static const char *
36586728
TT
17261read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
17262{
17263 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
17264
17265 if (dwz->str.buffer == NULL)
17266 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
17267 "section [in module %s]"),
17268 bfd_get_filename (dwz->dwz_bfd));
17269 if (str_offset >= dwz->str.size)
17270 error (_("DW_FORM_GNU_strp_alt pointing outside of "
17271 ".debug_str section [in module %s]"),
17272 bfd_get_filename (dwz->dwz_bfd));
17273 gdb_assert (HOST_CHAR_BIT == 8);
17274 if (dwz->str.buffer[str_offset] == '\0')
17275 return NULL;
d521ce57 17276 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
17277}
17278
43988095
JK
17279/* Return pointer to string at .debug_str offset as read from BUF.
17280 BUF is assumed to be in a compilation unit described by CU_HEADER.
17281 Return *BYTES_READ_PTR count of bytes read from BUF. */
17282
d521ce57
TT
17283static const char *
17284read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
17285 const struct comp_unit_head *cu_header,
17286 unsigned int *bytes_read_ptr)
17287{
17288 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17289
17290 return read_indirect_string_at_offset (abfd, str_offset);
17291}
17292
43988095
JK
17293/* Return pointer to string at .debug_line_str offset as read from BUF.
17294 BUF is assumed to be in a compilation unit described by CU_HEADER.
17295 Return *BYTES_READ_PTR count of bytes read from BUF. */
17296
17297static const char *
17298read_indirect_line_string (bfd *abfd, const gdb_byte *buf,
17299 const struct comp_unit_head *cu_header,
17300 unsigned int *bytes_read_ptr)
17301{
17302 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
17303
17304 return read_indirect_line_string_at_offset (abfd, str_offset);
17305}
17306
17307ULONGEST
d521ce57 17308read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
43988095 17309 unsigned int *bytes_read_ptr)
c906108c 17310{
12df843f 17311 ULONGEST result;
ce5d95e1 17312 unsigned int num_read;
870f88f7 17313 int shift;
c906108c
SS
17314 unsigned char byte;
17315
17316 result = 0;
17317 shift = 0;
17318 num_read = 0;
c906108c
SS
17319 while (1)
17320 {
fe1b8b76 17321 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17322 buf++;
17323 num_read++;
12df843f 17324 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
17325 if ((byte & 128) == 0)
17326 {
17327 break;
17328 }
17329 shift += 7;
17330 }
17331 *bytes_read_ptr = num_read;
17332 return result;
17333}
17334
12df843f 17335static LONGEST
d521ce57
TT
17336read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
17337 unsigned int *bytes_read_ptr)
c906108c 17338{
12df843f 17339 LONGEST result;
870f88f7 17340 int shift, num_read;
c906108c
SS
17341 unsigned char byte;
17342
17343 result = 0;
17344 shift = 0;
c906108c 17345 num_read = 0;
c906108c
SS
17346 while (1)
17347 {
fe1b8b76 17348 byte = bfd_get_8 (abfd, buf);
c906108c
SS
17349 buf++;
17350 num_read++;
12df843f 17351 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
17352 shift += 7;
17353 if ((byte & 128) == 0)
17354 {
17355 break;
17356 }
17357 }
77e0b926 17358 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 17359 result |= -(((LONGEST) 1) << shift);
c906108c
SS
17360 *bytes_read_ptr = num_read;
17361 return result;
17362}
17363
3019eac3
DE
17364/* Given index ADDR_INDEX in .debug_addr, fetch the value.
17365 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
17366 ADDR_SIZE is the size of addresses from the CU header. */
17367
17368static CORE_ADDR
17369read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
17370{
17371 struct objfile *objfile = dwarf2_per_objfile->objfile;
17372 bfd *abfd = objfile->obfd;
17373 const gdb_byte *info_ptr;
17374
17375 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
17376 if (dwarf2_per_objfile->addr.buffer == NULL)
17377 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 17378 objfile_name (objfile));
3019eac3
DE
17379 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
17380 error (_("DW_FORM_addr_index pointing outside of "
17381 ".debug_addr section [in module %s]"),
4262abfb 17382 objfile_name (objfile));
3019eac3
DE
17383 info_ptr = (dwarf2_per_objfile->addr.buffer
17384 + addr_base + addr_index * addr_size);
17385 if (addr_size == 4)
17386 return bfd_get_32 (abfd, info_ptr);
17387 else
17388 return bfd_get_64 (abfd, info_ptr);
17389}
17390
17391/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
17392
17393static CORE_ADDR
17394read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
17395{
17396 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
17397}
17398
17399/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
17400
17401static CORE_ADDR
d521ce57 17402read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
17403 unsigned int *bytes_read)
17404{
17405 bfd *abfd = cu->objfile->obfd;
17406 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
17407
17408 return read_addr_index (cu, addr_index);
17409}
17410
17411/* Data structure to pass results from dwarf2_read_addr_index_reader
17412 back to dwarf2_read_addr_index. */
17413
17414struct dwarf2_read_addr_index_data
17415{
17416 ULONGEST addr_base;
17417 int addr_size;
17418};
17419
17420/* die_reader_func for dwarf2_read_addr_index. */
17421
17422static void
17423dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 17424 const gdb_byte *info_ptr,
3019eac3
DE
17425 struct die_info *comp_unit_die,
17426 int has_children,
17427 void *data)
17428{
17429 struct dwarf2_cu *cu = reader->cu;
17430 struct dwarf2_read_addr_index_data *aidata =
17431 (struct dwarf2_read_addr_index_data *) data;
17432
17433 aidata->addr_base = cu->addr_base;
17434 aidata->addr_size = cu->header.addr_size;
17435}
17436
17437/* Given an index in .debug_addr, fetch the value.
17438 NOTE: This can be called during dwarf expression evaluation,
17439 long after the debug information has been read, and thus per_cu->cu
17440 may no longer exist. */
17441
17442CORE_ADDR
17443dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
17444 unsigned int addr_index)
17445{
17446 struct objfile *objfile = per_cu->objfile;
17447 struct dwarf2_cu *cu = per_cu->cu;
17448 ULONGEST addr_base;
17449 int addr_size;
17450
17451 /* This is intended to be called from outside this file. */
17452 dw2_setup (objfile);
17453
17454 /* We need addr_base and addr_size.
17455 If we don't have PER_CU->cu, we have to get it.
17456 Nasty, but the alternative is storing the needed info in PER_CU,
17457 which at this point doesn't seem justified: it's not clear how frequently
17458 it would get used and it would increase the size of every PER_CU.
17459 Entry points like dwarf2_per_cu_addr_size do a similar thing
17460 so we're not in uncharted territory here.
17461 Alas we need to be a bit more complicated as addr_base is contained
17462 in the DIE.
17463
17464 We don't need to read the entire CU(/TU).
17465 We just need the header and top level die.
a1b64ce1 17466
3019eac3 17467 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 17468 For now we skip this optimization. */
3019eac3
DE
17469
17470 if (cu != NULL)
17471 {
17472 addr_base = cu->addr_base;
17473 addr_size = cu->header.addr_size;
17474 }
17475 else
17476 {
17477 struct dwarf2_read_addr_index_data aidata;
17478
a1b64ce1
DE
17479 /* Note: We can't use init_cutu_and_read_dies_simple here,
17480 we need addr_base. */
17481 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
17482 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
17483 addr_base = aidata.addr_base;
17484 addr_size = aidata.addr_size;
17485 }
17486
17487 return read_addr_index_1 (addr_index, addr_base, addr_size);
17488}
17489
57d63ce2
DE
17490/* Given a DW_FORM_GNU_str_index, fetch the string.
17491 This is only used by the Fission support. */
3019eac3 17492
d521ce57 17493static const char *
342587c4 17494read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
17495{
17496 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 17497 const char *objf_name = objfile_name (objfile);
3019eac3 17498 bfd *abfd = objfile->obfd;
342587c4 17499 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
17500 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
17501 struct dwarf2_section_info *str_offsets_section =
17502 &reader->dwo_file->sections.str_offsets;
d521ce57 17503 const gdb_byte *info_ptr;
3019eac3 17504 ULONGEST str_offset;
57d63ce2 17505 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 17506
73869dc2
DE
17507 dwarf2_read_section (objfile, str_section);
17508 dwarf2_read_section (objfile, str_offsets_section);
17509 if (str_section->buffer == NULL)
57d63ce2 17510 error (_("%s used without .debug_str.dwo section"
9c541725
PA
17511 " in CU at offset 0x%x [in module %s]"),
17512 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17513 if (str_offsets_section->buffer == NULL)
57d63ce2 17514 error (_("%s used without .debug_str_offsets.dwo section"
9c541725
PA
17515 " in CU at offset 0x%x [in module %s]"),
17516 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17517 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 17518 error (_("%s pointing outside of .debug_str_offsets.dwo"
9c541725
PA
17519 " section in CU at offset 0x%x [in module %s]"),
17520 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17521 info_ptr = (str_offsets_section->buffer
3019eac3
DE
17522 + str_index * cu->header.offset_size);
17523 if (cu->header.offset_size == 4)
17524 str_offset = bfd_get_32 (abfd, info_ptr);
17525 else
17526 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 17527 if (str_offset >= str_section->size)
57d63ce2 17528 error (_("Offset from %s pointing outside of"
9c541725
PA
17529 " .debug_str.dwo section in CU at offset 0x%x [in module %s]"),
17530 form_name, to_underlying (cu->header.sect_off), objf_name);
73869dc2 17531 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
17532}
17533
3019eac3
DE
17534/* Return the length of an LEB128 number in BUF. */
17535
17536static int
17537leb128_size (const gdb_byte *buf)
17538{
17539 const gdb_byte *begin = buf;
17540 gdb_byte byte;
17541
17542 while (1)
17543 {
17544 byte = *buf++;
17545 if ((byte & 128) == 0)
17546 return buf - begin;
17547 }
17548}
17549
c906108c 17550static void
e142c38c 17551set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17552{
17553 switch (lang)
17554 {
17555 case DW_LANG_C89:
76bee0cc 17556 case DW_LANG_C99:
0cfd832f 17557 case DW_LANG_C11:
c906108c 17558 case DW_LANG_C:
d1be3247 17559 case DW_LANG_UPC:
e142c38c 17560 cu->language = language_c;
c906108c 17561 break;
9c37b5ae 17562 case DW_LANG_Java:
c906108c 17563 case DW_LANG_C_plus_plus:
0cfd832f
MW
17564 case DW_LANG_C_plus_plus_11:
17565 case DW_LANG_C_plus_plus_14:
e142c38c 17566 cu->language = language_cplus;
c906108c 17567 break;
6aecb9c2
JB
17568 case DW_LANG_D:
17569 cu->language = language_d;
17570 break;
c906108c
SS
17571 case DW_LANG_Fortran77:
17572 case DW_LANG_Fortran90:
b21b22e0 17573 case DW_LANG_Fortran95:
f7de9aab
MW
17574 case DW_LANG_Fortran03:
17575 case DW_LANG_Fortran08:
e142c38c 17576 cu->language = language_fortran;
c906108c 17577 break;
a766d390
DE
17578 case DW_LANG_Go:
17579 cu->language = language_go;
17580 break;
c906108c 17581 case DW_LANG_Mips_Assembler:
e142c38c 17582 cu->language = language_asm;
c906108c
SS
17583 break;
17584 case DW_LANG_Ada83:
8aaf0b47 17585 case DW_LANG_Ada95:
bc5f45f8
JB
17586 cu->language = language_ada;
17587 break;
72019c9c
GM
17588 case DW_LANG_Modula2:
17589 cu->language = language_m2;
17590 break;
fe8e67fd
PM
17591 case DW_LANG_Pascal83:
17592 cu->language = language_pascal;
17593 break;
22566fbd
DJ
17594 case DW_LANG_ObjC:
17595 cu->language = language_objc;
17596 break;
c44af4eb
TT
17597 case DW_LANG_Rust:
17598 case DW_LANG_Rust_old:
17599 cu->language = language_rust;
17600 break;
c906108c
SS
17601 case DW_LANG_Cobol74:
17602 case DW_LANG_Cobol85:
c906108c 17603 default:
e142c38c 17604 cu->language = language_minimal;
c906108c
SS
17605 break;
17606 }
e142c38c 17607 cu->language_defn = language_def (cu->language);
c906108c
SS
17608}
17609
17610/* Return the named attribute or NULL if not there. */
17611
17612static struct attribute *
e142c38c 17613dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17614{
a48e046c 17615 for (;;)
c906108c 17616 {
a48e046c
TT
17617 unsigned int i;
17618 struct attribute *spec = NULL;
17619
17620 for (i = 0; i < die->num_attrs; ++i)
17621 {
17622 if (die->attrs[i].name == name)
17623 return &die->attrs[i];
17624 if (die->attrs[i].name == DW_AT_specification
17625 || die->attrs[i].name == DW_AT_abstract_origin)
17626 spec = &die->attrs[i];
17627 }
17628
17629 if (!spec)
17630 break;
c906108c 17631
f2f0e013 17632 die = follow_die_ref (die, spec, &cu);
f2f0e013 17633 }
c5aa993b 17634
c906108c
SS
17635 return NULL;
17636}
17637
348e048f
DE
17638/* Return the named attribute or NULL if not there,
17639 but do not follow DW_AT_specification, etc.
17640 This is for use in contexts where we're reading .debug_types dies.
17641 Following DW_AT_specification, DW_AT_abstract_origin will take us
17642 back up the chain, and we want to go down. */
17643
17644static struct attribute *
45e58e77 17645dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17646{
17647 unsigned int i;
17648
17649 for (i = 0; i < die->num_attrs; ++i)
17650 if (die->attrs[i].name == name)
17651 return &die->attrs[i];
17652
17653 return NULL;
17654}
17655
7d45c7c3
KB
17656/* Return the string associated with a string-typed attribute, or NULL if it
17657 is either not found or is of an incorrect type. */
17658
17659static const char *
17660dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17661{
17662 struct attribute *attr;
17663 const char *str = NULL;
17664
17665 attr = dwarf2_attr (die, name, cu);
17666
17667 if (attr != NULL)
17668 {
43988095 17669 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
b3340438
L
17670 || attr->form == DW_FORM_string
17671 || attr->form == DW_FORM_GNU_str_index
16eb6b2d 17672 || attr->form == DW_FORM_GNU_strp_alt)
7d45c7c3
KB
17673 str = DW_STRING (attr);
17674 else
17675 complaint (&symfile_complaints,
17676 _("string type expected for attribute %s for "
17677 "DIE at 0x%x in module %s"),
9c541725 17678 dwarf_attr_name (name), to_underlying (die->sect_off),
7d45c7c3
KB
17679 objfile_name (cu->objfile));
17680 }
17681
17682 return str;
17683}
17684
05cf31d1
JB
17685/* Return non-zero iff the attribute NAME is defined for the given DIE,
17686 and holds a non-zero value. This function should only be used for
2dc7f7b3 17687 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17688
17689static int
17690dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17691{
17692 struct attribute *attr = dwarf2_attr (die, name, cu);
17693
17694 return (attr && DW_UNSND (attr));
17695}
17696
3ca72b44 17697static int
e142c38c 17698die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17699{
05cf31d1
JB
17700 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17701 which value is non-zero. However, we have to be careful with
17702 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17703 (via dwarf2_flag_true_p) follows this attribute. So we may
17704 end up accidently finding a declaration attribute that belongs
17705 to a different DIE referenced by the specification attribute,
17706 even though the given DIE does not have a declaration attribute. */
17707 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17708 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17709}
17710
63d06c5c 17711/* Return the die giving the specification for DIE, if there is
f2f0e013 17712 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17713 containing the return value on output. If there is no
17714 specification, but there is an abstract origin, that is
17715 returned. */
63d06c5c
DC
17716
17717static struct die_info *
f2f0e013 17718die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17719{
f2f0e013
DJ
17720 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17721 *spec_cu);
63d06c5c 17722
edb3359d
DJ
17723 if (spec_attr == NULL)
17724 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17725
63d06c5c
DC
17726 if (spec_attr == NULL)
17727 return NULL;
17728 else
f2f0e013 17729 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17730}
c906108c 17731
527f3840
JK
17732/* Stub for free_line_header to match void * callback types. */
17733
17734static void
17735free_line_header_voidp (void *arg)
17736{
9a3c8263 17737 struct line_header *lh = (struct line_header *) arg;
527f3840 17738
fff8551c 17739 delete lh;
527f3840
JK
17740}
17741
fff8551c
PA
17742void
17743line_header::add_include_dir (const char *include_dir)
c906108c 17744{
27e0867f 17745 if (dwarf_line_debug >= 2)
fff8551c
PA
17746 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
17747 include_dirs.size () + 1, include_dir);
27e0867f 17748
fff8551c 17749 include_dirs.push_back (include_dir);
debd256d 17750}
6e70227d 17751
fff8551c
PA
17752void
17753line_header::add_file_name (const char *name,
ecfb656c 17754 dir_index d_index,
fff8551c
PA
17755 unsigned int mod_time,
17756 unsigned int length)
debd256d 17757{
27e0867f
DE
17758 if (dwarf_line_debug >= 2)
17759 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
fff8551c 17760 (unsigned) file_names.size () + 1, name);
27e0867f 17761
ecfb656c 17762 file_names.emplace_back (name, d_index, mod_time, length);
debd256d 17763}
6e70227d 17764
83769d0b 17765/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17766
17767static struct dwarf2_section_info *
17768get_debug_line_section (struct dwarf2_cu *cu)
17769{
17770 struct dwarf2_section_info *section;
17771
17772 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17773 DWO file. */
17774 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17775 section = &cu->dwo_unit->dwo_file->sections.line;
17776 else if (cu->per_cu->is_dwz)
17777 {
17778 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17779
17780 section = &dwz->line;
17781 }
17782 else
17783 section = &dwarf2_per_objfile->line;
17784
17785 return section;
17786}
17787
43988095
JK
17788/* Read directory or file name entry format, starting with byte of
17789 format count entries, ULEB128 pairs of entry formats, ULEB128 of
17790 entries count and the entries themselves in the described entry
17791 format. */
17792
17793static void
17794read_formatted_entries (bfd *abfd, const gdb_byte **bufp,
17795 struct line_header *lh,
17796 const struct comp_unit_head *cu_header,
17797 void (*callback) (struct line_header *lh,
17798 const char *name,
ecfb656c 17799 dir_index d_index,
43988095
JK
17800 unsigned int mod_time,
17801 unsigned int length))
17802{
17803 gdb_byte format_count, formati;
17804 ULONGEST data_count, datai;
17805 const gdb_byte *buf = *bufp;
17806 const gdb_byte *format_header_data;
17807 int i;
17808 unsigned int bytes_read;
17809
17810 format_count = read_1_byte (abfd, buf);
17811 buf += 1;
17812 format_header_data = buf;
17813 for (formati = 0; formati < format_count; formati++)
17814 {
17815 read_unsigned_leb128 (abfd, buf, &bytes_read);
17816 buf += bytes_read;
17817 read_unsigned_leb128 (abfd, buf, &bytes_read);
17818 buf += bytes_read;
17819 }
17820
17821 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
17822 buf += bytes_read;
17823 for (datai = 0; datai < data_count; datai++)
17824 {
17825 const gdb_byte *format = format_header_data;
17826 struct file_entry fe;
17827
43988095
JK
17828 for (formati = 0; formati < format_count; formati++)
17829 {
ecfb656c 17830 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 17831 format += bytes_read;
43988095 17832
ecfb656c 17833 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
43988095 17834 format += bytes_read;
ecfb656c
PA
17835
17836 gdb::optional<const char *> string;
17837 gdb::optional<unsigned int> uint;
17838
43988095
JK
17839 switch (form)
17840 {
17841 case DW_FORM_string:
ecfb656c 17842 string.emplace (read_direct_string (abfd, buf, &bytes_read));
43988095
JK
17843 buf += bytes_read;
17844 break;
17845
17846 case DW_FORM_line_strp:
ecfb656c
PA
17847 string.emplace (read_indirect_line_string (abfd, buf,
17848 cu_header,
17849 &bytes_read));
43988095
JK
17850 buf += bytes_read;
17851 break;
17852
17853 case DW_FORM_data1:
ecfb656c 17854 uint.emplace (read_1_byte (abfd, buf));
43988095
JK
17855 buf += 1;
17856 break;
17857
17858 case DW_FORM_data2:
ecfb656c 17859 uint.emplace (read_2_bytes (abfd, buf));
43988095
JK
17860 buf += 2;
17861 break;
17862
17863 case DW_FORM_data4:
ecfb656c 17864 uint.emplace (read_4_bytes (abfd, buf));
43988095
JK
17865 buf += 4;
17866 break;
17867
17868 case DW_FORM_data8:
ecfb656c 17869 uint.emplace (read_8_bytes (abfd, buf));
43988095
JK
17870 buf += 8;
17871 break;
17872
17873 case DW_FORM_udata:
ecfb656c 17874 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
43988095
JK
17875 buf += bytes_read;
17876 break;
17877
17878 case DW_FORM_block:
17879 /* It is valid only for DW_LNCT_timestamp which is ignored by
17880 current GDB. */
17881 break;
17882 }
ecfb656c
PA
17883
17884 switch (content_type)
17885 {
17886 case DW_LNCT_path:
17887 if (string.has_value ())
17888 fe.name = *string;
17889 break;
17890 case DW_LNCT_directory_index:
17891 if (uint.has_value ())
17892 fe.d_index = (dir_index) *uint;
17893 break;
17894 case DW_LNCT_timestamp:
17895 if (uint.has_value ())
17896 fe.mod_time = *uint;
17897 break;
17898 case DW_LNCT_size:
17899 if (uint.has_value ())
17900 fe.length = *uint;
17901 break;
17902 case DW_LNCT_MD5:
17903 break;
17904 default:
17905 complaint (&symfile_complaints,
17906 _("Unknown format content type %s"),
17907 pulongest (content_type));
17908 }
43988095
JK
17909 }
17910
ecfb656c 17911 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
43988095
JK
17912 }
17913
17914 *bufp = buf;
17915}
17916
debd256d 17917/* Read the statement program header starting at OFFSET in
3019eac3 17918 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17919 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17920 Returns NULL if there is a problem reading the header, e.g., if it
17921 has a version we don't understand.
debd256d
JB
17922
17923 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17924 the returned object point into the dwarf line section buffer,
17925 and must not be freed. */
ae2de4f8 17926
fff8551c 17927static line_header_up
9c541725 17928dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
debd256d 17929{
d521ce57 17930 const gdb_byte *line_ptr;
c764a876 17931 unsigned int bytes_read, offset_size;
debd256d 17932 int i;
d521ce57 17933 const char *cur_dir, *cur_file;
3019eac3
DE
17934 struct dwarf2_section_info *section;
17935 bfd *abfd;
17936
36586728 17937 section = get_debug_line_section (cu);
3019eac3
DE
17938 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17939 if (section->buffer == NULL)
debd256d 17940 {
3019eac3
DE
17941 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17942 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17943 else
17944 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17945 return 0;
17946 }
17947
fceca515
DE
17948 /* We can't do this until we know the section is non-empty.
17949 Only then do we know we have such a section. */
a32a8923 17950 abfd = get_section_bfd_owner (section);
fceca515 17951
a738430d
MK
17952 /* Make sure that at least there's room for the total_length field.
17953 That could be 12 bytes long, but we're just going to fudge that. */
9c541725 17954 if (to_underlying (sect_off) + 4 >= section->size)
debd256d 17955 {
4d3c2250 17956 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17957 return 0;
17958 }
17959
fff8551c 17960 line_header_up lh (new line_header ());
debd256d 17961
9c541725 17962 lh->sect_off = sect_off;
527f3840
JK
17963 lh->offset_in_dwz = cu->per_cu->is_dwz;
17964
9c541725 17965 line_ptr = section->buffer + to_underlying (sect_off);
debd256d 17966
a738430d 17967 /* Read in the header. */
6e70227d 17968 lh->total_length =
c764a876
DE
17969 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17970 &bytes_read, &offset_size);
debd256d 17971 line_ptr += bytes_read;
3019eac3 17972 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17973 {
4d3c2250 17974 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17975 return 0;
17976 }
17977 lh->statement_program_end = line_ptr + lh->total_length;
17978 lh->version = read_2_bytes (abfd, line_ptr);
17979 line_ptr += 2;
43988095 17980 if (lh->version > 5)
cd366ee8
DE
17981 {
17982 /* This is a version we don't understand. The format could have
17983 changed in ways we don't handle properly so just punt. */
17984 complaint (&symfile_complaints,
17985 _("unsupported version in .debug_line section"));
17986 return NULL;
17987 }
43988095
JK
17988 if (lh->version >= 5)
17989 {
17990 gdb_byte segment_selector_size;
17991
17992 /* Skip address size. */
17993 read_1_byte (abfd, line_ptr);
17994 line_ptr += 1;
17995
17996 segment_selector_size = read_1_byte (abfd, line_ptr);
17997 line_ptr += 1;
17998 if (segment_selector_size != 0)
17999 {
18000 complaint (&symfile_complaints,
18001 _("unsupported segment selector size %u "
18002 "in .debug_line section"),
18003 segment_selector_size);
18004 return NULL;
18005 }
18006 }
c764a876
DE
18007 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
18008 line_ptr += offset_size;
debd256d
JB
18009 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
18010 line_ptr += 1;
2dc7f7b3
TT
18011 if (lh->version >= 4)
18012 {
18013 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
18014 line_ptr += 1;
18015 }
18016 else
18017 lh->maximum_ops_per_instruction = 1;
18018
18019 if (lh->maximum_ops_per_instruction == 0)
18020 {
18021 lh->maximum_ops_per_instruction = 1;
18022 complaint (&symfile_complaints,
3e43a32a
MS
18023 _("invalid maximum_ops_per_instruction "
18024 "in `.debug_line' section"));
2dc7f7b3
TT
18025 }
18026
debd256d
JB
18027 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
18028 line_ptr += 1;
18029 lh->line_base = read_1_signed_byte (abfd, line_ptr);
18030 line_ptr += 1;
18031 lh->line_range = read_1_byte (abfd, line_ptr);
18032 line_ptr += 1;
18033 lh->opcode_base = read_1_byte (abfd, line_ptr);
18034 line_ptr += 1;
fff8551c 18035 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
debd256d
JB
18036
18037 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
18038 for (i = 1; i < lh->opcode_base; ++i)
18039 {
18040 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
18041 line_ptr += 1;
18042 }
18043
43988095 18044 if (lh->version >= 5)
debd256d 18045 {
43988095 18046 /* Read directory table. */
fff8551c
PA
18047 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18048 [] (struct line_header *lh, const char *name,
ecfb656c 18049 dir_index d_index, unsigned int mod_time,
fff8551c
PA
18050 unsigned int length)
18051 {
18052 lh->add_include_dir (name);
18053 });
debd256d 18054
43988095 18055 /* Read file name table. */
fff8551c
PA
18056 read_formatted_entries (abfd, &line_ptr, lh.get (), &cu->header,
18057 [] (struct line_header *lh, const char *name,
ecfb656c 18058 dir_index d_index, unsigned int mod_time,
fff8551c
PA
18059 unsigned int length)
18060 {
ecfb656c 18061 lh->add_file_name (name, d_index, mod_time, length);
fff8551c 18062 });
43988095
JK
18063 }
18064 else
debd256d 18065 {
43988095
JK
18066 /* Read directory table. */
18067 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18068 {
18069 line_ptr += bytes_read;
fff8551c 18070 lh->add_include_dir (cur_dir);
43988095 18071 }
debd256d
JB
18072 line_ptr += bytes_read;
18073
43988095
JK
18074 /* Read file name table. */
18075 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
18076 {
ecfb656c
PA
18077 unsigned int mod_time, length;
18078 dir_index d_index;
43988095
JK
18079
18080 line_ptr += bytes_read;
ecfb656c 18081 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
43988095
JK
18082 line_ptr += bytes_read;
18083 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18084 line_ptr += bytes_read;
18085 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18086 line_ptr += bytes_read;
18087
ecfb656c 18088 lh->add_file_name (cur_file, d_index, mod_time, length);
43988095
JK
18089 }
18090 line_ptr += bytes_read;
debd256d 18091 }
6e70227d 18092 lh->statement_program_start = line_ptr;
debd256d 18093
3019eac3 18094 if (line_ptr > (section->buffer + section->size))
4d3c2250 18095 complaint (&symfile_complaints,
3e43a32a
MS
18096 _("line number info header doesn't "
18097 "fit in `.debug_line' section"));
debd256d 18098
debd256d
JB
18099 return lh;
18100}
c906108c 18101
c6da4cef
DE
18102/* Subroutine of dwarf_decode_lines to simplify it.
18103 Return the file name of the psymtab for included file FILE_INDEX
18104 in line header LH of PST.
18105 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18106 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
18107 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
18108
18109 The function creates dangling cleanup registration. */
c6da4cef 18110
d521ce57 18111static const char *
c6da4cef
DE
18112psymtab_include_file_name (const struct line_header *lh, int file_index,
18113 const struct partial_symtab *pst,
18114 const char *comp_dir)
18115{
8c43009f 18116 const file_entry &fe = lh->file_names[file_index];
d521ce57
TT
18117 const char *include_name = fe.name;
18118 const char *include_name_to_compare = include_name;
72b9f47f
TT
18119 const char *pst_filename;
18120 char *copied_name = NULL;
c6da4cef
DE
18121 int file_is_pst;
18122
8c43009f 18123 const char *dir_name = fe.include_dir (lh);
c6da4cef
DE
18124
18125 if (!IS_ABSOLUTE_PATH (include_name)
18126 && (dir_name != NULL || comp_dir != NULL))
18127 {
18128 /* Avoid creating a duplicate psymtab for PST.
18129 We do this by comparing INCLUDE_NAME and PST_FILENAME.
18130 Before we do the comparison, however, we need to account
18131 for DIR_NAME and COMP_DIR.
18132 First prepend dir_name (if non-NULL). If we still don't
18133 have an absolute path prepend comp_dir (if non-NULL).
18134 However, the directory we record in the include-file's
18135 psymtab does not contain COMP_DIR (to match the
18136 corresponding symtab(s)).
18137
18138 Example:
18139
18140 bash$ cd /tmp
18141 bash$ gcc -g ./hello.c
18142 include_name = "hello.c"
18143 dir_name = "."
18144 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
18145 DW_AT_name = "./hello.c"
18146
18147 */
c6da4cef
DE
18148
18149 if (dir_name != NULL)
18150 {
d521ce57
TT
18151 char *tem = concat (dir_name, SLASH_STRING,
18152 include_name, (char *)NULL);
18153
18154 make_cleanup (xfree, tem);
18155 include_name = tem;
c6da4cef 18156 include_name_to_compare = include_name;
c6da4cef
DE
18157 }
18158 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
18159 {
d521ce57
TT
18160 char *tem = concat (comp_dir, SLASH_STRING,
18161 include_name, (char *)NULL);
18162
18163 make_cleanup (xfree, tem);
18164 include_name_to_compare = tem;
c6da4cef
DE
18165 }
18166 }
18167
18168 pst_filename = pst->filename;
18169 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
18170 {
72b9f47f
TT
18171 copied_name = concat (pst->dirname, SLASH_STRING,
18172 pst_filename, (char *)NULL);
18173 pst_filename = copied_name;
c6da4cef
DE
18174 }
18175
1e3fad37 18176 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 18177
72b9f47f
TT
18178 if (copied_name != NULL)
18179 xfree (copied_name);
c6da4cef
DE
18180
18181 if (file_is_pst)
18182 return NULL;
18183 return include_name;
18184}
18185
d9b3de22
DE
18186/* State machine to track the state of the line number program. */
18187
6f77053d 18188class lnp_state_machine
d9b3de22 18189{
6f77053d
PA
18190public:
18191 /* Initialize a machine state for the start of a line number
18192 program. */
18193 lnp_state_machine (gdbarch *arch, line_header *lh, bool record_lines_p);
18194
8c43009f
PA
18195 file_entry *current_file ()
18196 {
18197 /* lh->file_names is 0-based, but the file name numbers in the
18198 statement program are 1-based. */
6f77053d
PA
18199 return m_line_header->file_name_at (m_file);
18200 }
18201
18202 /* Record the line in the state machine. END_SEQUENCE is true if
18203 we're processing the end of a sequence. */
18204 void record_line (bool end_sequence);
18205
18206 /* Check address and if invalid nop-out the rest of the lines in this
18207 sequence. */
18208 void check_line_address (struct dwarf2_cu *cu,
18209 const gdb_byte *line_ptr,
18210 CORE_ADDR lowpc, CORE_ADDR address);
18211
18212 void handle_set_discriminator (unsigned int discriminator)
18213 {
18214 m_discriminator = discriminator;
18215 m_line_has_non_zero_discriminator |= discriminator != 0;
18216 }
18217
18218 /* Handle DW_LNE_set_address. */
18219 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
18220 {
18221 m_op_index = 0;
18222 address += baseaddr;
18223 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
18224 }
18225
18226 /* Handle DW_LNS_advance_pc. */
18227 void handle_advance_pc (CORE_ADDR adjust);
18228
18229 /* Handle a special opcode. */
18230 void handle_special_opcode (unsigned char op_code);
18231
18232 /* Handle DW_LNS_advance_line. */
18233 void handle_advance_line (int line_delta)
18234 {
18235 advance_line (line_delta);
18236 }
18237
18238 /* Handle DW_LNS_set_file. */
18239 void handle_set_file (file_name_index file);
18240
18241 /* Handle DW_LNS_negate_stmt. */
18242 void handle_negate_stmt ()
18243 {
18244 m_is_stmt = !m_is_stmt;
18245 }
18246
18247 /* Handle DW_LNS_const_add_pc. */
18248 void handle_const_add_pc ();
18249
18250 /* Handle DW_LNS_fixed_advance_pc. */
18251 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
18252 {
18253 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18254 m_op_index = 0;
18255 }
18256
18257 /* Handle DW_LNS_copy. */
18258 void handle_copy ()
18259 {
18260 record_line (false);
18261 m_discriminator = 0;
18262 }
18263
18264 /* Handle DW_LNE_end_sequence. */
18265 void handle_end_sequence ()
18266 {
18267 m_record_line_callback = ::record_line;
18268 }
18269
18270private:
18271 /* Advance the line by LINE_DELTA. */
18272 void advance_line (int line_delta)
18273 {
18274 m_line += line_delta;
18275
18276 if (line_delta != 0)
18277 m_line_has_non_zero_discriminator = m_discriminator != 0;
8c43009f
PA
18278 }
18279
6f77053d
PA
18280 gdbarch *m_gdbarch;
18281
18282 /* True if we're recording lines.
18283 Otherwise we're building partial symtabs and are just interested in
18284 finding include files mentioned by the line number program. */
18285 bool m_record_lines_p;
18286
8c43009f 18287 /* The line number header. */
6f77053d 18288 line_header *m_line_header;
8c43009f 18289
6f77053d
PA
18290 /* These are part of the standard DWARF line number state machine,
18291 and initialized according to the DWARF spec. */
d9b3de22 18292
6f77053d 18293 unsigned char m_op_index = 0;
8c43009f 18294 /* The line table index (1-based) of the current file. */
6f77053d
PA
18295 file_name_index m_file = (file_name_index) 1;
18296 unsigned int m_line = 1;
18297
18298 /* These are initialized in the constructor. */
18299
18300 CORE_ADDR m_address;
18301 bool m_is_stmt;
18302 unsigned int m_discriminator;
d9b3de22
DE
18303
18304 /* Additional bits of state we need to track. */
18305
18306 /* The last file that we called dwarf2_start_subfile for.
18307 This is only used for TLLs. */
6f77053d 18308 unsigned int m_last_file = 0;
d9b3de22 18309 /* The last file a line number was recorded for. */
6f77053d 18310 struct subfile *m_last_subfile = NULL;
d9b3de22
DE
18311
18312 /* The function to call to record a line. */
6f77053d 18313 record_line_ftype *m_record_line_callback = NULL;
d9b3de22
DE
18314
18315 /* The last line number that was recorded, used to coalesce
18316 consecutive entries for the same line. This can happen, for
18317 example, when discriminators are present. PR 17276. */
6f77053d
PA
18318 unsigned int m_last_line = 0;
18319 bool m_line_has_non_zero_discriminator = false;
8c43009f 18320};
d9b3de22 18321
6f77053d
PA
18322void
18323lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
18324{
18325 CORE_ADDR addr_adj = (((m_op_index + adjust)
18326 / m_line_header->maximum_ops_per_instruction)
18327 * m_line_header->minimum_instruction_length);
18328 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18329 m_op_index = ((m_op_index + adjust)
18330 % m_line_header->maximum_ops_per_instruction);
18331}
d9b3de22 18332
6f77053d
PA
18333void
18334lnp_state_machine::handle_special_opcode (unsigned char op_code)
d9b3de22 18335{
6f77053d
PA
18336 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
18337 CORE_ADDR addr_adj = (((m_op_index
18338 + (adj_opcode / m_line_header->line_range))
18339 / m_line_header->maximum_ops_per_instruction)
18340 * m_line_header->minimum_instruction_length);
18341 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18342 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
18343 % m_line_header->maximum_ops_per_instruction);
d9b3de22 18344
6f77053d
PA
18345 int line_delta = (m_line_header->line_base
18346 + (adj_opcode % m_line_header->line_range));
18347 advance_line (line_delta);
18348 record_line (false);
18349 m_discriminator = 0;
18350}
d9b3de22 18351
6f77053d
PA
18352void
18353lnp_state_machine::handle_set_file (file_name_index file)
18354{
18355 m_file = file;
18356
18357 const file_entry *fe = current_file ();
18358 if (fe == NULL)
18359 dwarf2_debug_line_missing_file_complaint ();
18360 else if (m_record_lines_p)
18361 {
18362 const char *dir = fe->include_dir (m_line_header);
18363
18364 m_last_subfile = current_subfile;
18365 m_line_has_non_zero_discriminator = m_discriminator != 0;
18366 dwarf2_start_subfile (fe->name, dir);
18367 }
18368}
18369
18370void
18371lnp_state_machine::handle_const_add_pc ()
18372{
18373 CORE_ADDR adjust
18374 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
18375
18376 CORE_ADDR addr_adj
18377 = (((m_op_index + adjust)
18378 / m_line_header->maximum_ops_per_instruction)
18379 * m_line_header->minimum_instruction_length);
18380
18381 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
18382 m_op_index = ((m_op_index + adjust)
18383 % m_line_header->maximum_ops_per_instruction);
18384}
d9b3de22 18385
c91513d8
PP
18386/* Ignore this record_line request. */
18387
18388static void
18389noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
18390{
18391 return;
18392}
18393
a05a36a5
DE
18394/* Return non-zero if we should add LINE to the line number table.
18395 LINE is the line to add, LAST_LINE is the last line that was added,
18396 LAST_SUBFILE is the subfile for LAST_LINE.
18397 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
18398 had a non-zero discriminator.
18399
18400 We have to be careful in the presence of discriminators.
18401 E.g., for this line:
18402
18403 for (i = 0; i < 100000; i++);
18404
18405 clang can emit four line number entries for that one line,
18406 each with a different discriminator.
18407 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
18408
18409 However, we want gdb to coalesce all four entries into one.
18410 Otherwise the user could stepi into the middle of the line and
18411 gdb would get confused about whether the pc really was in the
18412 middle of the line.
18413
18414 Things are further complicated by the fact that two consecutive
18415 line number entries for the same line is a heuristic used by gcc
18416 to denote the end of the prologue. So we can't just discard duplicate
18417 entries, we have to be selective about it. The heuristic we use is
18418 that we only collapse consecutive entries for the same line if at least
18419 one of those entries has a non-zero discriminator. PR 17276.
18420
18421 Note: Addresses in the line number state machine can never go backwards
18422 within one sequence, thus this coalescing is ok. */
18423
18424static int
18425dwarf_record_line_p (unsigned int line, unsigned int last_line,
18426 int line_has_non_zero_discriminator,
18427 struct subfile *last_subfile)
18428{
18429 if (current_subfile != last_subfile)
18430 return 1;
18431 if (line != last_line)
18432 return 1;
18433 /* Same line for the same file that we've seen already.
18434 As a last check, for pr 17276, only record the line if the line
18435 has never had a non-zero discriminator. */
18436 if (!line_has_non_zero_discriminator)
18437 return 1;
18438 return 0;
18439}
18440
252a6764
DE
18441/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
18442 in the line table of subfile SUBFILE. */
18443
18444static void
d9b3de22
DE
18445dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
18446 unsigned int line, CORE_ADDR address,
18447 record_line_ftype p_record_line)
252a6764
DE
18448{
18449 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
18450
27e0867f
DE
18451 if (dwarf_line_debug)
18452 {
18453 fprintf_unfiltered (gdb_stdlog,
18454 "Recording line %u, file %s, address %s\n",
18455 line, lbasename (subfile->name),
18456 paddress (gdbarch, address));
18457 }
18458
d5962de5 18459 (*p_record_line) (subfile, line, addr);
252a6764
DE
18460}
18461
18462/* Subroutine of dwarf_decode_lines_1 to simplify it.
18463 Mark the end of a set of line number records.
d9b3de22 18464 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
18465 If SUBFILE is NULL the request is ignored. */
18466
18467static void
18468dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
18469 CORE_ADDR address, record_line_ftype p_record_line)
18470{
27e0867f
DE
18471 if (subfile == NULL)
18472 return;
18473
18474 if (dwarf_line_debug)
18475 {
18476 fprintf_unfiltered (gdb_stdlog,
18477 "Finishing current line, file %s, address %s\n",
18478 lbasename (subfile->name),
18479 paddress (gdbarch, address));
18480 }
18481
d9b3de22
DE
18482 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
18483}
18484
6f77053d
PA
18485void
18486lnp_state_machine::record_line (bool end_sequence)
d9b3de22 18487{
d9b3de22
DE
18488 if (dwarf_line_debug)
18489 {
18490 fprintf_unfiltered (gdb_stdlog,
18491 "Processing actual line %u: file %u,"
18492 " address %s, is_stmt %u, discrim %u\n",
6f77053d
PA
18493 m_line, to_underlying (m_file),
18494 paddress (m_gdbarch, m_address),
18495 m_is_stmt, m_discriminator);
d9b3de22
DE
18496 }
18497
6f77053d 18498 file_entry *fe = current_file ();
8c43009f
PA
18499
18500 if (fe == NULL)
d9b3de22
DE
18501 dwarf2_debug_line_missing_file_complaint ();
18502 /* For now we ignore lines not starting on an instruction boundary.
18503 But not when processing end_sequence for compatibility with the
18504 previous version of the code. */
6f77053d 18505 else if (m_op_index == 0 || end_sequence)
d9b3de22 18506 {
8c43009f 18507 fe->included_p = 1;
6f77053d 18508 if (m_record_lines_p && m_is_stmt)
d9b3de22 18509 {
6f77053d 18510 if (m_last_subfile != current_subfile || end_sequence)
d9b3de22 18511 {
6f77053d
PA
18512 dwarf_finish_line (m_gdbarch, m_last_subfile,
18513 m_address, m_record_line_callback);
d9b3de22
DE
18514 }
18515
18516 if (!end_sequence)
18517 {
6f77053d
PA
18518 if (dwarf_record_line_p (m_line, m_last_line,
18519 m_line_has_non_zero_discriminator,
18520 m_last_subfile))
d9b3de22 18521 {
6f77053d
PA
18522 dwarf_record_line_1 (m_gdbarch, current_subfile,
18523 m_line, m_address,
18524 m_record_line_callback);
d9b3de22 18525 }
6f77053d
PA
18526 m_last_subfile = current_subfile;
18527 m_last_line = m_line;
d9b3de22
DE
18528 }
18529 }
18530 }
18531}
18532
6f77053d
PA
18533lnp_state_machine::lnp_state_machine (gdbarch *arch, line_header *lh,
18534 bool record_lines_p)
d9b3de22 18535{
6f77053d
PA
18536 m_gdbarch = arch;
18537 m_record_lines_p = record_lines_p;
18538 m_line_header = lh;
d9b3de22 18539
6f77053d 18540 m_record_line_callback = ::record_line;
d9b3de22 18541
d9b3de22
DE
18542 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
18543 was a line entry for it so that the backend has a chance to adjust it
18544 and also record it in case it needs it. This is currently used by MIPS
18545 code, cf. `mips_adjust_dwarf2_line'. */
6f77053d
PA
18546 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
18547 m_is_stmt = lh->default_is_stmt;
18548 m_discriminator = 0;
252a6764
DE
18549}
18550
6f77053d
PA
18551void
18552lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
18553 const gdb_byte *line_ptr,
18554 CORE_ADDR lowpc, CORE_ADDR address)
924c2928
DE
18555{
18556 /* If address < lowpc then it's not a usable value, it's outside the
18557 pc range of the CU. However, we restrict the test to only address
18558 values of zero to preserve GDB's previous behaviour which is to
18559 handle the specific case of a function being GC'd by the linker. */
18560
18561 if (address == 0 && address < lowpc)
18562 {
18563 /* This line table is for a function which has been
18564 GCd by the linker. Ignore it. PR gdb/12528 */
18565
18566 struct objfile *objfile = cu->objfile;
18567 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
18568
18569 complaint (&symfile_complaints,
18570 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
18571 line_offset, objfile_name (objfile));
6f77053d
PA
18572 m_record_line_callback = noop_record_line;
18573 /* Note: record_line_callback is left as noop_record_line until
18574 we see DW_LNE_end_sequence. */
924c2928
DE
18575 }
18576}
18577
f3f5162e 18578/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
18579 Process the line number information in LH.
18580 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
18581 program in order to set included_p for every referenced header. */
debd256d 18582
c906108c 18583static void
43f3e411
DE
18584dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
18585 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 18586{
d521ce57
TT
18587 const gdb_byte *line_ptr, *extended_end;
18588 const gdb_byte *line_end;
a8c50c1f 18589 unsigned int bytes_read, extended_len;
699ca60a 18590 unsigned char op_code, extended_op;
e142c38c
DJ
18591 CORE_ADDR baseaddr;
18592 struct objfile *objfile = cu->objfile;
f3f5162e 18593 bfd *abfd = objfile->obfd;
fbf65064 18594 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6f77053d
PA
18595 /* True if we're recording line info (as opposed to building partial
18596 symtabs and just interested in finding include files mentioned by
18597 the line number program). */
18598 bool record_lines_p = !decode_for_pst_p;
e142c38c
DJ
18599
18600 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18601
debd256d
JB
18602 line_ptr = lh->statement_program_start;
18603 line_end = lh->statement_program_end;
c906108c
SS
18604
18605 /* Read the statement sequences until there's nothing left. */
18606 while (line_ptr < line_end)
18607 {
6f77053d
PA
18608 /* The DWARF line number program state machine. Reset the state
18609 machine at the start of each sequence. */
18610 lnp_state_machine state_machine (gdbarch, lh, record_lines_p);
18611 bool end_sequence = false;
d9b3de22 18612
8c43009f 18613 if (record_lines_p)
c906108c 18614 {
8c43009f
PA
18615 /* Start a subfile for the current file of the state
18616 machine. */
18617 const file_entry *fe = state_machine.current_file ();
18618
18619 if (fe != NULL)
18620 dwarf2_start_subfile (fe->name, fe->include_dir (lh));
c906108c
SS
18621 }
18622
a738430d 18623 /* Decode the table. */
d9b3de22 18624 while (line_ptr < line_end && !end_sequence)
c906108c
SS
18625 {
18626 op_code = read_1_byte (abfd, line_ptr);
18627 line_ptr += 1;
9aa1fe7e 18628
debd256d 18629 if (op_code >= lh->opcode_base)
6e70227d 18630 {
8e07a239 18631 /* Special opcode. */
6f77053d 18632 state_machine.handle_special_opcode (op_code);
9aa1fe7e
GK
18633 }
18634 else switch (op_code)
c906108c
SS
18635 {
18636 case DW_LNS_extended_op:
3e43a32a
MS
18637 extended_len = read_unsigned_leb128 (abfd, line_ptr,
18638 &bytes_read);
473b7be6 18639 line_ptr += bytes_read;
a8c50c1f 18640 extended_end = line_ptr + extended_len;
c906108c
SS
18641 extended_op = read_1_byte (abfd, line_ptr);
18642 line_ptr += 1;
18643 switch (extended_op)
18644 {
18645 case DW_LNE_end_sequence:
6f77053d
PA
18646 state_machine.handle_end_sequence ();
18647 end_sequence = true;
c906108c
SS
18648 break;
18649 case DW_LNE_set_address:
d9b3de22
DE
18650 {
18651 CORE_ADDR address
18652 = read_address (abfd, line_ptr, cu, &bytes_read);
d9b3de22 18653 line_ptr += bytes_read;
6f77053d
PA
18654
18655 state_machine.check_line_address (cu, line_ptr,
18656 lowpc, address);
18657 state_machine.handle_set_address (baseaddr, address);
d9b3de22 18658 }
c906108c
SS
18659 break;
18660 case DW_LNE_define_file:
debd256d 18661 {
d521ce57 18662 const char *cur_file;
ecfb656c
PA
18663 unsigned int mod_time, length;
18664 dir_index dindex;
6e70227d 18665
3e43a32a
MS
18666 cur_file = read_direct_string (abfd, line_ptr,
18667 &bytes_read);
debd256d 18668 line_ptr += bytes_read;
ecfb656c 18669 dindex = (dir_index)
debd256d
JB
18670 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18671 line_ptr += bytes_read;
18672 mod_time =
18673 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18674 line_ptr += bytes_read;
18675 length =
18676 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18677 line_ptr += bytes_read;
ecfb656c 18678 lh->add_file_name (cur_file, dindex, mod_time, length);
debd256d 18679 }
c906108c 18680 break;
d0c6ba3d 18681 case DW_LNE_set_discriminator:
6f77053d
PA
18682 {
18683 /* The discriminator is not interesting to the
18684 debugger; just ignore it. We still need to
18685 check its value though:
18686 if there are consecutive entries for the same
18687 (non-prologue) line we want to coalesce them.
18688 PR 17276. */
18689 unsigned int discr
18690 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18691 line_ptr += bytes_read;
18692
18693 state_machine.handle_set_discriminator (discr);
18694 }
d0c6ba3d 18695 break;
c906108c 18696 default:
4d3c2250 18697 complaint (&symfile_complaints,
e2e0b3e5 18698 _("mangled .debug_line section"));
debd256d 18699 return;
c906108c 18700 }
a8c50c1f
DJ
18701 /* Make sure that we parsed the extended op correctly. If e.g.
18702 we expected a different address size than the producer used,
18703 we may have read the wrong number of bytes. */
18704 if (line_ptr != extended_end)
18705 {
18706 complaint (&symfile_complaints,
18707 _("mangled .debug_line section"));
18708 return;
18709 }
c906108c
SS
18710 break;
18711 case DW_LNS_copy:
6f77053d 18712 state_machine.handle_copy ();
c906108c
SS
18713 break;
18714 case DW_LNS_advance_pc:
2dc7f7b3
TT
18715 {
18716 CORE_ADDR adjust
18717 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
2dc7f7b3 18718 line_ptr += bytes_read;
6f77053d
PA
18719
18720 state_machine.handle_advance_pc (adjust);
2dc7f7b3 18721 }
c906108c
SS
18722 break;
18723 case DW_LNS_advance_line:
a05a36a5
DE
18724 {
18725 int line_delta
18726 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
a05a36a5 18727 line_ptr += bytes_read;
6f77053d
PA
18728
18729 state_machine.handle_advance_line (line_delta);
a05a36a5 18730 }
c906108c
SS
18731 break;
18732 case DW_LNS_set_file:
d9b3de22 18733 {
6f77053d 18734 file_name_index file
ecfb656c
PA
18735 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
18736 &bytes_read);
d9b3de22 18737 line_ptr += bytes_read;
8c43009f 18738
6f77053d 18739 state_machine.handle_set_file (file);
d9b3de22 18740 }
c906108c
SS
18741 break;
18742 case DW_LNS_set_column:
0ad93d4f 18743 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18744 line_ptr += bytes_read;
18745 break;
18746 case DW_LNS_negate_stmt:
6f77053d 18747 state_machine.handle_negate_stmt ();
c906108c
SS
18748 break;
18749 case DW_LNS_set_basic_block:
c906108c 18750 break;
c2c6d25f
JM
18751 /* Add to the address register of the state machine the
18752 address increment value corresponding to special opcode
a738430d
MK
18753 255. I.e., this value is scaled by the minimum
18754 instruction length since special opcode 255 would have
b021a221 18755 scaled the increment. */
c906108c 18756 case DW_LNS_const_add_pc:
6f77053d 18757 state_machine.handle_const_add_pc ();
c906108c
SS
18758 break;
18759 case DW_LNS_fixed_advance_pc:
3e29f34a 18760 {
6f77053d 18761 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
3e29f34a 18762 line_ptr += 2;
6f77053d
PA
18763
18764 state_machine.handle_fixed_advance_pc (addr_adj);
3e29f34a 18765 }
c906108c 18766 break;
9aa1fe7e 18767 default:
a738430d
MK
18768 {
18769 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18770 int i;
a738430d 18771
debd256d 18772 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18773 {
18774 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18775 line_ptr += bytes_read;
18776 }
18777 }
c906108c
SS
18778 }
18779 }
d9b3de22
DE
18780
18781 if (!end_sequence)
18782 dwarf2_debug_line_missing_end_sequence_complaint ();
18783
18784 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18785 in which case we still finish recording the last line). */
6f77053d 18786 state_machine.record_line (true);
c906108c 18787 }
f3f5162e
DE
18788}
18789
18790/* Decode the Line Number Program (LNP) for the given line_header
18791 structure and CU. The actual information extracted and the type
18792 of structures created from the LNP depends on the value of PST.
18793
18794 1. If PST is NULL, then this procedure uses the data from the program
18795 to create all necessary symbol tables, and their linetables.
18796
18797 2. If PST is not NULL, this procedure reads the program to determine
18798 the list of files included by the unit represented by PST, and
18799 builds all the associated partial symbol tables.
18800
18801 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18802 It is used for relative paths in the line table.
18803 NOTE: When processing partial symtabs (pst != NULL),
18804 comp_dir == pst->dirname.
18805
18806 NOTE: It is important that psymtabs have the same file name (via strcmp)
18807 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18808 symtab we don't use it in the name of the psymtabs we create.
18809 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18810 A good testcase for this is mb-inline.exp.
18811
527f3840
JK
18812 LOWPC is the lowest address in CU (or 0 if not known).
18813
18814 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18815 for its PC<->lines mapping information. Otherwise only the filename
18816 table is read in. */
f3f5162e
DE
18817
18818static void
18819dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18820 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18821 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18822{
18823 struct objfile *objfile = cu->objfile;
18824 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18825
527f3840
JK
18826 if (decode_mapping)
18827 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18828
18829 if (decode_for_pst_p)
18830 {
18831 int file_index;
18832
18833 /* Now that we're done scanning the Line Header Program, we can
18834 create the psymtab of each included file. */
fff8551c 18835 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
aaa75496
JB
18836 if (lh->file_names[file_index].included_p == 1)
18837 {
d521ce57 18838 const char *include_name =
c6da4cef
DE
18839 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18840 if (include_name != NULL)
aaa75496
JB
18841 dwarf2_create_include_psymtab (include_name, pst, objfile);
18842 }
18843 }
cb1df416
DJ
18844 else
18845 {
18846 /* Make sure a symtab is created for every file, even files
18847 which contain only variables (i.e. no code with associated
18848 line numbers). */
43f3e411 18849 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18850 int i;
cb1df416 18851
fff8551c 18852 for (i = 0; i < lh->file_names.size (); i++)
cb1df416 18853 {
8c43009f 18854 file_entry &fe = lh->file_names[i];
9a619af0 18855
8c43009f 18856 dwarf2_start_subfile (fe.name, fe.include_dir (lh));
cb1df416 18857
cb1df416 18858 if (current_subfile->symtab == NULL)
43f3e411
DE
18859 {
18860 current_subfile->symtab
18861 = allocate_symtab (cust, current_subfile->name);
18862 }
8c43009f 18863 fe.symtab = current_subfile->symtab;
cb1df416
DJ
18864 }
18865 }
c906108c
SS
18866}
18867
18868/* Start a subfile for DWARF. FILENAME is the name of the file and
18869 DIRNAME the name of the source directory which contains FILENAME
4d663531 18870 or NULL if not known.
c906108c
SS
18871 This routine tries to keep line numbers from identical absolute and
18872 relative file names in a common subfile.
18873
18874 Using the `list' example from the GDB testsuite, which resides in
18875 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18876 of /srcdir/list0.c yields the following debugging information for list0.c:
18877
c5aa993b 18878 DW_AT_name: /srcdir/list0.c
4d663531 18879 DW_AT_comp_dir: /compdir
357e46e7 18880 files.files[0].name: list0.h
c5aa993b 18881 files.files[0].dir: /srcdir
357e46e7 18882 files.files[1].name: list0.c
c5aa993b 18883 files.files[1].dir: /srcdir
c906108c
SS
18884
18885 The line number information for list0.c has to end up in a single
4f1520fb
FR
18886 subfile, so that `break /srcdir/list0.c:1' works as expected.
18887 start_subfile will ensure that this happens provided that we pass the
18888 concatenation of files.files[1].dir and files.files[1].name as the
18889 subfile's name. */
c906108c
SS
18890
18891static void
4d663531 18892dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18893{
d521ce57 18894 char *copy = NULL;
4f1520fb 18895
4d663531 18896 /* In order not to lose the line information directory,
4f1520fb
FR
18897 we concatenate it to the filename when it makes sense.
18898 Note that the Dwarf3 standard says (speaking of filenames in line
18899 information): ``The directory index is ignored for file names
18900 that represent full path names''. Thus ignoring dirname in the
18901 `else' branch below isn't an issue. */
c906108c 18902
d5166ae1 18903 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18904 {
18905 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18906 filename = copy;
18907 }
c906108c 18908
4d663531 18909 start_subfile (filename);
4f1520fb 18910
d521ce57
TT
18911 if (copy != NULL)
18912 xfree (copy);
c906108c
SS
18913}
18914
f4dc4d17
DE
18915/* Start a symtab for DWARF.
18916 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18917
43f3e411 18918static struct compunit_symtab *
f4dc4d17 18919dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18920 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18921{
43f3e411
DE
18922 struct compunit_symtab *cust
18923 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18924
f4dc4d17
DE
18925 record_debugformat ("DWARF 2");
18926 record_producer (cu->producer);
18927
18928 /* We assume that we're processing GCC output. */
18929 processing_gcc_compilation = 2;
18930
4d4ec4e5 18931 cu->processing_has_namespace_info = 0;
43f3e411
DE
18932
18933 return cust;
f4dc4d17
DE
18934}
18935
4c2df51b
DJ
18936static void
18937var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18938 struct dwarf2_cu *cu)
4c2df51b 18939{
e7c27a73
DJ
18940 struct objfile *objfile = cu->objfile;
18941 struct comp_unit_head *cu_header = &cu->header;
18942
4c2df51b
DJ
18943 /* NOTE drow/2003-01-30: There used to be a comment and some special
18944 code here to turn a symbol with DW_AT_external and a
18945 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18946 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18947 with some versions of binutils) where shared libraries could have
18948 relocations against symbols in their debug information - the
18949 minimal symbol would have the right address, but the debug info
18950 would not. It's no longer necessary, because we will explicitly
18951 apply relocations when we read in the debug information now. */
18952
18953 /* A DW_AT_location attribute with no contents indicates that a
18954 variable has been optimized away. */
18955 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18956 {
f1e6e072 18957 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18958 return;
18959 }
18960
18961 /* Handle one degenerate form of location expression specially, to
18962 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18963 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18964 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18965
18966 if (attr_form_is_block (attr)
3019eac3
DE
18967 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18968 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18969 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18970 && (DW_BLOCK (attr)->size
18971 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18972 {
891d2f0b 18973 unsigned int dummy;
4c2df51b 18974
3019eac3
DE
18975 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18976 SYMBOL_VALUE_ADDRESS (sym) =
18977 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18978 else
18979 SYMBOL_VALUE_ADDRESS (sym) =
18980 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18981 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18982 fixup_symbol_section (sym, objfile);
18983 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18984 SYMBOL_SECTION (sym));
4c2df51b
DJ
18985 return;
18986 }
18987
18988 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18989 expression evaluator, and use LOC_COMPUTED only when necessary
18990 (i.e. when the value of a register or memory location is
18991 referenced, or a thread-local block, etc.). Then again, it might
18992 not be worthwhile. I'm assuming that it isn't unless performance
18993 or memory numbers show me otherwise. */
18994
f1e6e072 18995 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18996
f1e6e072 18997 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18998 cu->has_loclist = 1;
4c2df51b
DJ
18999}
19000
c906108c
SS
19001/* Given a pointer to a DWARF information entry, figure out if we need
19002 to make a symbol table entry for it, and if so, create a new entry
19003 and return a pointer to it.
19004 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
19005 used the passed type.
19006 If SPACE is not NULL, use it to hold the new symbol. If it is
19007 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
19008
19009static struct symbol *
34eaf542
TT
19010new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
19011 struct symbol *space)
c906108c 19012{
e7c27a73 19013 struct objfile *objfile = cu->objfile;
3e29f34a 19014 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 19015 struct symbol *sym = NULL;
15d034d0 19016 const char *name;
c906108c
SS
19017 struct attribute *attr = NULL;
19018 struct attribute *attr2 = NULL;
e142c38c 19019 CORE_ADDR baseaddr;
e37fd15a
SW
19020 struct pending **list_to_add = NULL;
19021
edb3359d 19022 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
19023
19024 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 19025
94af9270 19026 name = dwarf2_name (die, cu);
c906108c
SS
19027 if (name)
19028 {
94af9270 19029 const char *linkagename;
34eaf542 19030 int suppress_add = 0;
94af9270 19031
34eaf542
TT
19032 if (space)
19033 sym = space;
19034 else
e623cf5d 19035 sym = allocate_symbol (objfile);
c906108c 19036 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
19037
19038 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 19039 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
19040 linkagename = dwarf2_physname (name, die, cu);
19041 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 19042
f55ee35c
JK
19043 /* Fortran does not have mangling standard and the mangling does differ
19044 between gfortran, iFort etc. */
19045 if (cu->language == language_fortran
b250c185 19046 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 19047 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 19048 dwarf2_full_name (name, die, cu),
29df156d 19049 NULL);
f55ee35c 19050
c906108c 19051 /* Default assumptions.
c5aa993b 19052 Use the passed type or decode it from the die. */
176620f1 19053 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 19054 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
19055 if (type != NULL)
19056 SYMBOL_TYPE (sym) = type;
19057 else
e7c27a73 19058 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
19059 attr = dwarf2_attr (die,
19060 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
19061 cu);
c906108c
SS
19062 if (attr)
19063 {
19064 SYMBOL_LINE (sym) = DW_UNSND (attr);
19065 }
cb1df416 19066
edb3359d
DJ
19067 attr = dwarf2_attr (die,
19068 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
19069 cu);
cb1df416
DJ
19070 if (attr)
19071 {
ecfb656c 19072 file_name_index file_index = (file_name_index) DW_UNSND (attr);
8c43009f 19073 struct file_entry *fe;
9a619af0 19074
ecfb656c
PA
19075 if (cu->line_header != NULL)
19076 fe = cu->line_header->file_name_at (file_index);
8c43009f
PA
19077 else
19078 fe = NULL;
19079
19080 if (fe == NULL)
cb1df416
DJ
19081 complaint (&symfile_complaints,
19082 _("file index out of range"));
8c43009f
PA
19083 else
19084 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
19085 }
19086
c906108c
SS
19087 switch (die->tag)
19088 {
19089 case DW_TAG_label:
e142c38c 19090 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 19091 if (attr)
3e29f34a
MR
19092 {
19093 CORE_ADDR addr;
19094
19095 addr = attr_value_as_address (attr);
19096 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
19097 SYMBOL_VALUE_ADDRESS (sym) = addr;
19098 }
0f5238ed
TT
19099 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
19100 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 19101 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 19102 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
19103 break;
19104 case DW_TAG_subprogram:
19105 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19106 finish_block. */
f1e6e072 19107 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 19108 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
19109 if ((attr2 && (DW_UNSND (attr2) != 0))
19110 || cu->language == language_ada)
c906108c 19111 {
2cfa0c8d
JB
19112 /* Subprograms marked external are stored as a global symbol.
19113 Ada subprograms, whether marked external or not, are always
19114 stored as a global symbol, because we want to be able to
19115 access them globally. For instance, we want to be able
19116 to break on a nested subprogram without having to
19117 specify the context. */
e37fd15a 19118 list_to_add = &global_symbols;
c906108c
SS
19119 }
19120 else
19121 {
e37fd15a 19122 list_to_add = cu->list_in_scope;
c906108c
SS
19123 }
19124 break;
edb3359d
DJ
19125 case DW_TAG_inlined_subroutine:
19126 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
19127 finish_block. */
f1e6e072 19128 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 19129 SYMBOL_INLINED (sym) = 1;
481860b3 19130 list_to_add = cu->list_in_scope;
edb3359d 19131 break;
34eaf542
TT
19132 case DW_TAG_template_value_param:
19133 suppress_add = 1;
19134 /* Fall through. */
72929c62 19135 case DW_TAG_constant:
c906108c 19136 case DW_TAG_variable:
254e6b9e 19137 case DW_TAG_member:
0963b4bd
MS
19138 /* Compilation with minimal debug info may result in
19139 variables with missing type entries. Change the
19140 misleading `void' type to something sensible. */
c906108c 19141 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 19142 SYMBOL_TYPE (sym)
46bf5051 19143 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 19144
e142c38c 19145 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
19146 /* In the case of DW_TAG_member, we should only be called for
19147 static const members. */
19148 if (die->tag == DW_TAG_member)
19149 {
3863f96c
DE
19150 /* dwarf2_add_field uses die_is_declaration,
19151 so we do the same. */
254e6b9e
DE
19152 gdb_assert (die_is_declaration (die, cu));
19153 gdb_assert (attr);
19154 }
c906108c
SS
19155 if (attr)
19156 {
e7c27a73 19157 dwarf2_const_value (attr, sym, cu);
e142c38c 19158 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 19159 if (!suppress_add)
34eaf542
TT
19160 {
19161 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 19162 list_to_add = &global_symbols;
34eaf542 19163 else
e37fd15a 19164 list_to_add = cu->list_in_scope;
34eaf542 19165 }
c906108c
SS
19166 break;
19167 }
e142c38c 19168 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
19169 if (attr)
19170 {
e7c27a73 19171 var_decode_location (attr, sym, cu);
e142c38c 19172 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
19173
19174 /* Fortran explicitly imports any global symbols to the local
19175 scope by DW_TAG_common_block. */
19176 if (cu->language == language_fortran && die->parent
19177 && die->parent->tag == DW_TAG_common_block)
19178 attr2 = NULL;
19179
caac4577
JG
19180 if (SYMBOL_CLASS (sym) == LOC_STATIC
19181 && SYMBOL_VALUE_ADDRESS (sym) == 0
19182 && !dwarf2_per_objfile->has_section_at_zero)
19183 {
19184 /* When a static variable is eliminated by the linker,
19185 the corresponding debug information is not stripped
19186 out, but the variable address is set to null;
19187 do not add such variables into symbol table. */
19188 }
19189 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 19190 {
f55ee35c
JK
19191 /* Workaround gfortran PR debug/40040 - it uses
19192 DW_AT_location for variables in -fPIC libraries which may
19193 get overriden by other libraries/executable and get
19194 a different address. Resolve it by the minimal symbol
19195 which may come from inferior's executable using copy
19196 relocation. Make this workaround only for gfortran as for
19197 other compilers GDB cannot guess the minimal symbol
19198 Fortran mangling kind. */
19199 if (cu->language == language_fortran && die->parent
19200 && die->parent->tag == DW_TAG_module
19201 && cu->producer
28586665 19202 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 19203 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 19204
1c809c68
TT
19205 /* A variable with DW_AT_external is never static,
19206 but it may be block-scoped. */
19207 list_to_add = (cu->list_in_scope == &file_symbols
19208 ? &global_symbols : cu->list_in_scope);
1c809c68 19209 }
c906108c 19210 else
e37fd15a 19211 list_to_add = cu->list_in_scope;
c906108c
SS
19212 }
19213 else
19214 {
19215 /* We do not know the address of this symbol.
c5aa993b
JM
19216 If it is an external symbol and we have type information
19217 for it, enter the symbol as a LOC_UNRESOLVED symbol.
19218 The address of the variable will then be determined from
19219 the minimal symbol table whenever the variable is
19220 referenced. */
e142c38c 19221 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
19222
19223 /* Fortran explicitly imports any global symbols to the local
19224 scope by DW_TAG_common_block. */
19225 if (cu->language == language_fortran && die->parent
19226 && die->parent->tag == DW_TAG_common_block)
19227 {
19228 /* SYMBOL_CLASS doesn't matter here because
19229 read_common_block is going to reset it. */
19230 if (!suppress_add)
19231 list_to_add = cu->list_in_scope;
19232 }
19233 else if (attr2 && (DW_UNSND (attr2) != 0)
19234 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 19235 {
0fe7935b
DJ
19236 /* A variable with DW_AT_external is never static, but it
19237 may be block-scoped. */
19238 list_to_add = (cu->list_in_scope == &file_symbols
19239 ? &global_symbols : cu->list_in_scope);
19240
f1e6e072 19241 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 19242 }
442ddf59
JK
19243 else if (!die_is_declaration (die, cu))
19244 {
19245 /* Use the default LOC_OPTIMIZED_OUT class. */
19246 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
19247 if (!suppress_add)
19248 list_to_add = cu->list_in_scope;
442ddf59 19249 }
c906108c
SS
19250 }
19251 break;
19252 case DW_TAG_formal_parameter:
edb3359d
DJ
19253 /* If we are inside a function, mark this as an argument. If
19254 not, we might be looking at an argument to an inlined function
19255 when we do not have enough information to show inlined frames;
19256 pretend it's a local variable in that case so that the user can
19257 still see it. */
19258 if (context_stack_depth > 0
19259 && context_stack[context_stack_depth - 1].name != NULL)
19260 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 19261 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
19262 if (attr)
19263 {
e7c27a73 19264 var_decode_location (attr, sym, cu);
c906108c 19265 }
e142c38c 19266 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19267 if (attr)
19268 {
e7c27a73 19269 dwarf2_const_value (attr, sym, cu);
c906108c 19270 }
f346a30d 19271
e37fd15a 19272 list_to_add = cu->list_in_scope;
c906108c
SS
19273 break;
19274 case DW_TAG_unspecified_parameters:
19275 /* From varargs functions; gdb doesn't seem to have any
19276 interest in this information, so just ignore it for now.
19277 (FIXME?) */
19278 break;
34eaf542
TT
19279 case DW_TAG_template_type_param:
19280 suppress_add = 1;
19281 /* Fall through. */
c906108c 19282 case DW_TAG_class_type:
680b30c7 19283 case DW_TAG_interface_type:
c906108c
SS
19284 case DW_TAG_structure_type:
19285 case DW_TAG_union_type:
72019c9c 19286 case DW_TAG_set_type:
c906108c 19287 case DW_TAG_enumeration_type:
f1e6e072 19288 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19289 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 19290
63d06c5c 19291 {
9c37b5ae 19292 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
63d06c5c
DC
19293 really ever be static objects: otherwise, if you try
19294 to, say, break of a class's method and you're in a file
19295 which doesn't mention that class, it won't work unless
19296 the check for all static symbols in lookup_symbol_aux
19297 saves you. See the OtherFileClass tests in
19298 gdb.c++/namespace.exp. */
19299
e37fd15a 19300 if (!suppress_add)
34eaf542 19301 {
34eaf542 19302 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19303 && cu->language == language_cplus
34eaf542 19304 ? &global_symbols : cu->list_in_scope);
63d06c5c 19305
64382290 19306 /* The semantics of C++ state that "struct foo {
9c37b5ae 19307 ... }" also defines a typedef for "foo". */
64382290 19308 if (cu->language == language_cplus
45280282 19309 || cu->language == language_ada
c44af4eb
TT
19310 || cu->language == language_d
19311 || cu->language == language_rust)
64382290
TT
19312 {
19313 /* The symbol's name is already allocated along
19314 with this objfile, so we don't need to
19315 duplicate it for the type. */
19316 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
19317 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
19318 }
63d06c5c
DC
19319 }
19320 }
c906108c
SS
19321 break;
19322 case DW_TAG_typedef:
f1e6e072 19323 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 19324 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19325 list_to_add = cu->list_in_scope;
63d06c5c 19326 break;
c906108c 19327 case DW_TAG_base_type:
a02abb62 19328 case DW_TAG_subrange_type:
f1e6e072 19329 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 19330 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 19331 list_to_add = cu->list_in_scope;
c906108c
SS
19332 break;
19333 case DW_TAG_enumerator:
e142c38c 19334 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
19335 if (attr)
19336 {
e7c27a73 19337 dwarf2_const_value (attr, sym, cu);
c906108c 19338 }
63d06c5c
DC
19339 {
19340 /* NOTE: carlton/2003-11-10: See comment above in the
19341 DW_TAG_class_type, etc. block. */
19342
e142c38c 19343 list_to_add = (cu->list_in_scope == &file_symbols
9c37b5ae 19344 && cu->language == language_cplus
e142c38c 19345 ? &global_symbols : cu->list_in_scope);
63d06c5c 19346 }
c906108c 19347 break;
74921315 19348 case DW_TAG_imported_declaration:
5c4e30ca 19349 case DW_TAG_namespace:
f1e6e072 19350 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 19351 list_to_add = &global_symbols;
5c4e30ca 19352 break;
530e8392
KB
19353 case DW_TAG_module:
19354 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
19355 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
19356 list_to_add = &global_symbols;
19357 break;
4357ac6c 19358 case DW_TAG_common_block:
f1e6e072 19359 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
19360 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
19361 add_symbol_to_list (sym, cu->list_in_scope);
19362 break;
c906108c
SS
19363 default:
19364 /* Not a tag we recognize. Hopefully we aren't processing
19365 trash data, but since we must specifically ignore things
19366 we don't recognize, there is nothing else we should do at
0963b4bd 19367 this point. */
e2e0b3e5 19368 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 19369 dwarf_tag_name (die->tag));
c906108c
SS
19370 break;
19371 }
df8a16a1 19372
e37fd15a
SW
19373 if (suppress_add)
19374 {
19375 sym->hash_next = objfile->template_symbols;
19376 objfile->template_symbols = sym;
19377 list_to_add = NULL;
19378 }
19379
19380 if (list_to_add != NULL)
19381 add_symbol_to_list (sym, list_to_add);
19382
df8a16a1
DJ
19383 /* For the benefit of old versions of GCC, check for anonymous
19384 namespaces based on the demangled name. */
4d4ec4e5 19385 if (!cu->processing_has_namespace_info
94af9270 19386 && cu->language == language_cplus)
a10964d1 19387 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
19388 }
19389 return (sym);
19390}
19391
34eaf542
TT
19392/* A wrapper for new_symbol_full that always allocates a new symbol. */
19393
19394static struct symbol *
19395new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19396{
19397 return new_symbol_full (die, type, cu, NULL);
19398}
19399
98bfdba5
PA
19400/* Given an attr with a DW_FORM_dataN value in host byte order,
19401 zero-extend it as appropriate for the symbol's type. The DWARF
19402 standard (v4) is not entirely clear about the meaning of using
19403 DW_FORM_dataN for a constant with a signed type, where the type is
19404 wider than the data. The conclusion of a discussion on the DWARF
19405 list was that this is unspecified. We choose to always zero-extend
19406 because that is the interpretation long in use by GCC. */
c906108c 19407
98bfdba5 19408static gdb_byte *
ff39bb5e 19409dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 19410 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 19411{
e7c27a73 19412 struct objfile *objfile = cu->objfile;
e17a4113
UW
19413 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
19414 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
19415 LONGEST l = DW_UNSND (attr);
19416
19417 if (bits < sizeof (*value) * 8)
19418 {
19419 l &= ((LONGEST) 1 << bits) - 1;
19420 *value = l;
19421 }
19422 else if (bits == sizeof (*value) * 8)
19423 *value = l;
19424 else
19425 {
224c3ddb 19426 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
19427 store_unsigned_integer (bytes, bits / 8, byte_order, l);
19428 return bytes;
19429 }
19430
19431 return NULL;
19432}
19433
19434/* Read a constant value from an attribute. Either set *VALUE, or if
19435 the value does not fit in *VALUE, set *BYTES - either already
19436 allocated on the objfile obstack, or newly allocated on OBSTACK,
19437 or, set *BATON, if we translated the constant to a location
19438 expression. */
19439
19440static void
ff39bb5e 19441dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
19442 const char *name, struct obstack *obstack,
19443 struct dwarf2_cu *cu,
d521ce57 19444 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
19445 struct dwarf2_locexpr_baton **baton)
19446{
19447 struct objfile *objfile = cu->objfile;
19448 struct comp_unit_head *cu_header = &cu->header;
c906108c 19449 struct dwarf_block *blk;
98bfdba5
PA
19450 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
19451 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19452
19453 *value = 0;
19454 *bytes = NULL;
19455 *baton = NULL;
c906108c
SS
19456
19457 switch (attr->form)
19458 {
19459 case DW_FORM_addr:
3019eac3 19460 case DW_FORM_GNU_addr_index:
ac56253d 19461 {
ac56253d
TT
19462 gdb_byte *data;
19463
98bfdba5
PA
19464 if (TYPE_LENGTH (type) != cu_header->addr_size)
19465 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 19466 cu_header->addr_size,
98bfdba5 19467 TYPE_LENGTH (type));
ac56253d
TT
19468 /* Symbols of this form are reasonably rare, so we just
19469 piggyback on the existing location code rather than writing
19470 a new implementation of symbol_computed_ops. */
8d749320 19471 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
19472 (*baton)->per_cu = cu->per_cu;
19473 gdb_assert ((*baton)->per_cu);
ac56253d 19474
98bfdba5 19475 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 19476 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 19477 (*baton)->data = data;
ac56253d
TT
19478
19479 data[0] = DW_OP_addr;
19480 store_unsigned_integer (&data[1], cu_header->addr_size,
19481 byte_order, DW_ADDR (attr));
19482 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 19483 }
c906108c 19484 break;
4ac36638 19485 case DW_FORM_string:
93b5768b 19486 case DW_FORM_strp:
3019eac3 19487 case DW_FORM_GNU_str_index:
36586728 19488 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
19489 /* DW_STRING is already allocated on the objfile obstack, point
19490 directly to it. */
d521ce57 19491 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 19492 break;
c906108c
SS
19493 case DW_FORM_block1:
19494 case DW_FORM_block2:
19495 case DW_FORM_block4:
19496 case DW_FORM_block:
2dc7f7b3 19497 case DW_FORM_exprloc:
0224619f 19498 case DW_FORM_data16:
c906108c 19499 blk = DW_BLOCK (attr);
98bfdba5
PA
19500 if (TYPE_LENGTH (type) != blk->size)
19501 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
19502 TYPE_LENGTH (type));
19503 *bytes = blk->data;
c906108c 19504 break;
2df3850c
JM
19505
19506 /* The DW_AT_const_value attributes are supposed to carry the
19507 symbol's value "represented as it would be on the target
19508 architecture." By the time we get here, it's already been
19509 converted to host endianness, so we just need to sign- or
19510 zero-extend it as appropriate. */
19511 case DW_FORM_data1:
3aef2284 19512 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 19513 break;
c906108c 19514 case DW_FORM_data2:
3aef2284 19515 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 19516 break;
c906108c 19517 case DW_FORM_data4:
3aef2284 19518 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 19519 break;
c906108c 19520 case DW_FORM_data8:
3aef2284 19521 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
19522 break;
19523
c906108c 19524 case DW_FORM_sdata:
98bfdba5 19525 *value = DW_SND (attr);
2df3850c
JM
19526 break;
19527
c906108c 19528 case DW_FORM_udata:
98bfdba5 19529 *value = DW_UNSND (attr);
c906108c 19530 break;
2df3850c 19531
c906108c 19532 default:
4d3c2250 19533 complaint (&symfile_complaints,
e2e0b3e5 19534 _("unsupported const value attribute form: '%s'"),
4d3c2250 19535 dwarf_form_name (attr->form));
98bfdba5 19536 *value = 0;
c906108c
SS
19537 break;
19538 }
19539}
19540
2df3850c 19541
98bfdba5
PA
19542/* Copy constant value from an attribute to a symbol. */
19543
2df3850c 19544static void
ff39bb5e 19545dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 19546 struct dwarf2_cu *cu)
2df3850c 19547{
98bfdba5 19548 struct objfile *objfile = cu->objfile;
12df843f 19549 LONGEST value;
d521ce57 19550 const gdb_byte *bytes;
98bfdba5 19551 struct dwarf2_locexpr_baton *baton;
2df3850c 19552
98bfdba5
PA
19553 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
19554 SYMBOL_PRINT_NAME (sym),
19555 &objfile->objfile_obstack, cu,
19556 &value, &bytes, &baton);
2df3850c 19557
98bfdba5
PA
19558 if (baton != NULL)
19559 {
98bfdba5 19560 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 19561 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
19562 }
19563 else if (bytes != NULL)
19564 {
19565 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 19566 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
19567 }
19568 else
19569 {
19570 SYMBOL_VALUE (sym) = value;
f1e6e072 19571 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 19572 }
2df3850c
JM
19573}
19574
c906108c
SS
19575/* Return the type of the die in question using its DW_AT_type attribute. */
19576
19577static struct type *
e7c27a73 19578die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19579{
c906108c 19580 struct attribute *type_attr;
c906108c 19581
e142c38c 19582 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
19583 if (!type_attr)
19584 {
19585 /* A missing DW_AT_type represents a void type. */
46bf5051 19586 return objfile_type (cu->objfile)->builtin_void;
c906108c 19587 }
348e048f 19588
673bfd45 19589 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19590}
19591
b4ba55a1
JB
19592/* True iff CU's producer generates GNAT Ada auxiliary information
19593 that allows to find parallel types through that information instead
19594 of having to do expensive parallel lookups by type name. */
19595
19596static int
19597need_gnat_info (struct dwarf2_cu *cu)
19598{
19599 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
19600 of GNAT produces this auxiliary information, without any indication
19601 that it is produced. Part of enhancing the FSF version of GNAT
19602 to produce that information will be to put in place an indicator
19603 that we can use in order to determine whether the descriptive type
19604 info is available or not. One suggestion that has been made is
19605 to use a new attribute, attached to the CU die. For now, assume
19606 that the descriptive type info is not available. */
19607 return 0;
19608}
19609
b4ba55a1
JB
19610/* Return the auxiliary type of the die in question using its
19611 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
19612 attribute is not present. */
19613
19614static struct type *
19615die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
19616{
b4ba55a1 19617 struct attribute *type_attr;
b4ba55a1
JB
19618
19619 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
19620 if (!type_attr)
19621 return NULL;
19622
673bfd45 19623 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
19624}
19625
19626/* If DIE has a descriptive_type attribute, then set the TYPE's
19627 descriptive type accordingly. */
19628
19629static void
19630set_descriptive_type (struct type *type, struct die_info *die,
19631 struct dwarf2_cu *cu)
19632{
19633 struct type *descriptive_type = die_descriptive_type (die, cu);
19634
19635 if (descriptive_type)
19636 {
19637 ALLOCATE_GNAT_AUX_TYPE (type);
19638 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
19639 }
19640}
19641
c906108c
SS
19642/* Return the containing type of the die in question using its
19643 DW_AT_containing_type attribute. */
19644
19645static struct type *
e7c27a73 19646die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19647{
c906108c 19648 struct attribute *type_attr;
c906108c 19649
e142c38c 19650 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
19651 if (!type_attr)
19652 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 19653 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 19654
673bfd45 19655 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19656}
19657
ac9ec31b
DE
19658/* Return an error marker type to use for the ill formed type in DIE/CU. */
19659
19660static struct type *
19661build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19662{
19663 struct objfile *objfile = dwarf2_per_objfile->objfile;
19664 char *message, *saved;
19665
19666 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 19667 objfile_name (objfile),
9c541725
PA
19668 to_underlying (cu->header.sect_off),
19669 to_underlying (die->sect_off));
224c3ddb
SM
19670 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19671 message, strlen (message));
ac9ec31b
DE
19672 xfree (message);
19673
19f392bc 19674 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
19675}
19676
673bfd45 19677/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
19678 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19679 DW_AT_containing_type.
673bfd45
DE
19680 If there is no type substitute an error marker. */
19681
c906108c 19682static struct type *
ff39bb5e 19683lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 19684 struct dwarf2_cu *cu)
c906108c 19685{
bb5ed363 19686 struct objfile *objfile = cu->objfile;
f792889a
DJ
19687 struct type *this_type;
19688
ac9ec31b
DE
19689 gdb_assert (attr->name == DW_AT_type
19690 || attr->name == DW_AT_GNAT_descriptive_type
19691 || attr->name == DW_AT_containing_type);
19692
673bfd45
DE
19693 /* First see if we have it cached. */
19694
36586728
TT
19695 if (attr->form == DW_FORM_GNU_ref_alt)
19696 {
19697 struct dwarf2_per_cu_data *per_cu;
9c541725 19698 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
36586728 19699
9c541725
PA
19700 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, cu->objfile);
19701 this_type = get_die_type_at_offset (sect_off, per_cu);
36586728 19702 }
7771576e 19703 else if (attr_form_is_ref (attr))
673bfd45 19704 {
9c541725 19705 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
673bfd45 19706
9c541725 19707 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
673bfd45 19708 }
55f1336d 19709 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19710 {
ac9ec31b 19711 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19712
ac9ec31b 19713 return get_signatured_type (die, signature, cu);
673bfd45
DE
19714 }
19715 else
19716 {
ac9ec31b
DE
19717 complaint (&symfile_complaints,
19718 _("Dwarf Error: Bad type attribute %s in DIE"
19719 " at 0x%x [in module %s]"),
9c541725 19720 dwarf_attr_name (attr->name), to_underlying (die->sect_off),
4262abfb 19721 objfile_name (objfile));
ac9ec31b 19722 return build_error_marker_type (cu, die);
673bfd45
DE
19723 }
19724
19725 /* If not cached we need to read it in. */
19726
19727 if (this_type == NULL)
19728 {
ac9ec31b 19729 struct die_info *type_die = NULL;
673bfd45
DE
19730 struct dwarf2_cu *type_cu = cu;
19731
7771576e 19732 if (attr_form_is_ref (attr))
ac9ec31b
DE
19733 type_die = follow_die_ref (die, attr, &type_cu);
19734 if (type_die == NULL)
19735 return build_error_marker_type (cu, die);
19736 /* If we find the type now, it's probably because the type came
3019eac3
DE
19737 from an inter-CU reference and the type's CU got expanded before
19738 ours. */
ac9ec31b 19739 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19740 }
19741
19742 /* If we still don't have a type use an error marker. */
19743
19744 if (this_type == NULL)
ac9ec31b 19745 return build_error_marker_type (cu, die);
673bfd45 19746
f792889a 19747 return this_type;
c906108c
SS
19748}
19749
673bfd45
DE
19750/* Return the type in DIE, CU.
19751 Returns NULL for invalid types.
19752
02142a6c 19753 This first does a lookup in die_type_hash,
673bfd45
DE
19754 and only reads the die in if necessary.
19755
19756 NOTE: This can be called when reading in partial or full symbols. */
19757
f792889a 19758static struct type *
e7c27a73 19759read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19760{
f792889a
DJ
19761 struct type *this_type;
19762
19763 this_type = get_die_type (die, cu);
19764 if (this_type)
19765 return this_type;
19766
673bfd45
DE
19767 return read_type_die_1 (die, cu);
19768}
19769
19770/* Read the type in DIE, CU.
19771 Returns NULL for invalid types. */
19772
19773static struct type *
19774read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19775{
19776 struct type *this_type = NULL;
19777
c906108c
SS
19778 switch (die->tag)
19779 {
19780 case DW_TAG_class_type:
680b30c7 19781 case DW_TAG_interface_type:
c906108c
SS
19782 case DW_TAG_structure_type:
19783 case DW_TAG_union_type:
f792889a 19784 this_type = read_structure_type (die, cu);
c906108c
SS
19785 break;
19786 case DW_TAG_enumeration_type:
f792889a 19787 this_type = read_enumeration_type (die, cu);
c906108c
SS
19788 break;
19789 case DW_TAG_subprogram:
19790 case DW_TAG_subroutine_type:
edb3359d 19791 case DW_TAG_inlined_subroutine:
f792889a 19792 this_type = read_subroutine_type (die, cu);
c906108c
SS
19793 break;
19794 case DW_TAG_array_type:
f792889a 19795 this_type = read_array_type (die, cu);
c906108c 19796 break;
72019c9c 19797 case DW_TAG_set_type:
f792889a 19798 this_type = read_set_type (die, cu);
72019c9c 19799 break;
c906108c 19800 case DW_TAG_pointer_type:
f792889a 19801 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19802 break;
19803 case DW_TAG_ptr_to_member_type:
f792889a 19804 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19805 break;
19806 case DW_TAG_reference_type:
4297a3f0
AV
19807 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
19808 break;
19809 case DW_TAG_rvalue_reference_type:
19810 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
c906108c
SS
19811 break;
19812 case DW_TAG_const_type:
f792889a 19813 this_type = read_tag_const_type (die, cu);
c906108c
SS
19814 break;
19815 case DW_TAG_volatile_type:
f792889a 19816 this_type = read_tag_volatile_type (die, cu);
c906108c 19817 break;
06d66ee9
TT
19818 case DW_TAG_restrict_type:
19819 this_type = read_tag_restrict_type (die, cu);
19820 break;
c906108c 19821 case DW_TAG_string_type:
f792889a 19822 this_type = read_tag_string_type (die, cu);
c906108c
SS
19823 break;
19824 case DW_TAG_typedef:
f792889a 19825 this_type = read_typedef (die, cu);
c906108c 19826 break;
a02abb62 19827 case DW_TAG_subrange_type:
f792889a 19828 this_type = read_subrange_type (die, cu);
a02abb62 19829 break;
c906108c 19830 case DW_TAG_base_type:
f792889a 19831 this_type = read_base_type (die, cu);
c906108c 19832 break;
81a17f79 19833 case DW_TAG_unspecified_type:
f792889a 19834 this_type = read_unspecified_type (die, cu);
81a17f79 19835 break;
0114d602
DJ
19836 case DW_TAG_namespace:
19837 this_type = read_namespace_type (die, cu);
19838 break;
f55ee35c
JK
19839 case DW_TAG_module:
19840 this_type = read_module_type (die, cu);
19841 break;
a2c2acaf
MW
19842 case DW_TAG_atomic_type:
19843 this_type = read_tag_atomic_type (die, cu);
19844 break;
c906108c 19845 default:
3e43a32a
MS
19846 complaint (&symfile_complaints,
19847 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19848 dwarf_tag_name (die->tag));
c906108c
SS
19849 break;
19850 }
63d06c5c 19851
f792889a 19852 return this_type;
63d06c5c
DC
19853}
19854
abc72ce4
DE
19855/* See if we can figure out if the class lives in a namespace. We do
19856 this by looking for a member function; its demangled name will
19857 contain namespace info, if there is any.
19858 Return the computed name or NULL.
19859 Space for the result is allocated on the objfile's obstack.
19860 This is the full-die version of guess_partial_die_structure_name.
19861 In this case we know DIE has no useful parent. */
19862
19863static char *
19864guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19865{
19866 struct die_info *spec_die;
19867 struct dwarf2_cu *spec_cu;
19868 struct die_info *child;
19869
19870 spec_cu = cu;
19871 spec_die = die_specification (die, &spec_cu);
19872 if (spec_die != NULL)
19873 {
19874 die = spec_die;
19875 cu = spec_cu;
19876 }
19877
19878 for (child = die->child;
19879 child != NULL;
19880 child = child->sibling)
19881 {
19882 if (child->tag == DW_TAG_subprogram)
19883 {
7d45c7c3 19884 const char *linkage_name;
abc72ce4 19885
7d45c7c3
KB
19886 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19887 if (linkage_name == NULL)
19888 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19889 cu);
19890 if (linkage_name != NULL)
abc72ce4
DE
19891 {
19892 char *actual_name
19893 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19894 linkage_name);
abc72ce4
DE
19895 char *name = NULL;
19896
19897 if (actual_name != NULL)
19898 {
15d034d0 19899 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19900
19901 if (die_name != NULL
19902 && strcmp (die_name, actual_name) != 0)
19903 {
19904 /* Strip off the class name from the full name.
19905 We want the prefix. */
19906 int die_name_len = strlen (die_name);
19907 int actual_name_len = strlen (actual_name);
19908
19909 /* Test for '::' as a sanity check. */
19910 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19911 && actual_name[actual_name_len
19912 - die_name_len - 1] == ':')
224c3ddb
SM
19913 name = (char *) obstack_copy0 (
19914 &cu->objfile->per_bfd->storage_obstack,
19915 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19916 }
19917 }
19918 xfree (actual_name);
19919 return name;
19920 }
19921 }
19922 }
19923
19924 return NULL;
19925}
19926
96408a79
SA
19927/* GCC might emit a nameless typedef that has a linkage name. Determine the
19928 prefix part in such case. See
19929 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19930
a121b7c1 19931static const char *
96408a79
SA
19932anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19933{
19934 struct attribute *attr;
e6a959d6 19935 const char *base;
96408a79
SA
19936
19937 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19938 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19939 return NULL;
19940
7d45c7c3 19941 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19942 return NULL;
19943
19944 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19945 if (attr == NULL)
19946 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19947 if (attr == NULL || DW_STRING (attr) == NULL)
19948 return NULL;
19949
19950 /* dwarf2_name had to be already called. */
19951 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19952
19953 /* Strip the base name, keep any leading namespaces/classes. */
19954 base = strrchr (DW_STRING (attr), ':');
19955 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19956 return "";
19957
224c3ddb
SM
19958 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19959 DW_STRING (attr),
19960 &base[-1] - DW_STRING (attr));
96408a79
SA
19961}
19962
fdde2d81 19963/* Return the name of the namespace/class that DIE is defined within,
0114d602 19964 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19965
0114d602
DJ
19966 For example, if we're within the method foo() in the following
19967 code:
19968
19969 namespace N {
19970 class C {
19971 void foo () {
19972 }
19973 };
19974 }
19975
19976 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19977
0d5cff50 19978static const char *
e142c38c 19979determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19980{
0114d602
DJ
19981 struct die_info *parent, *spec_die;
19982 struct dwarf2_cu *spec_cu;
19983 struct type *parent_type;
a121b7c1 19984 const char *retval;
63d06c5c 19985
9c37b5ae 19986 if (cu->language != language_cplus
c44af4eb
TT
19987 && cu->language != language_fortran && cu->language != language_d
19988 && cu->language != language_rust)
0114d602
DJ
19989 return "";
19990
96408a79
SA
19991 retval = anonymous_struct_prefix (die, cu);
19992 if (retval)
19993 return retval;
19994
0114d602
DJ
19995 /* We have to be careful in the presence of DW_AT_specification.
19996 For example, with GCC 3.4, given the code
19997
19998 namespace N {
19999 void foo() {
20000 // Definition of N::foo.
20001 }
20002 }
20003
20004 then we'll have a tree of DIEs like this:
20005
20006 1: DW_TAG_compile_unit
20007 2: DW_TAG_namespace // N
20008 3: DW_TAG_subprogram // declaration of N::foo
20009 4: DW_TAG_subprogram // definition of N::foo
20010 DW_AT_specification // refers to die #3
20011
20012 Thus, when processing die #4, we have to pretend that we're in
20013 the context of its DW_AT_specification, namely the contex of die
20014 #3. */
20015 spec_cu = cu;
20016 spec_die = die_specification (die, &spec_cu);
20017 if (spec_die == NULL)
20018 parent = die->parent;
20019 else
63d06c5c 20020 {
0114d602
DJ
20021 parent = spec_die->parent;
20022 cu = spec_cu;
63d06c5c 20023 }
0114d602
DJ
20024
20025 if (parent == NULL)
20026 return "";
98bfdba5
PA
20027 else if (parent->building_fullname)
20028 {
20029 const char *name;
20030 const char *parent_name;
20031
20032 /* It has been seen on RealView 2.2 built binaries,
20033 DW_TAG_template_type_param types actually _defined_ as
20034 children of the parent class:
20035
20036 enum E {};
20037 template class <class Enum> Class{};
20038 Class<enum E> class_e;
20039
20040 1: DW_TAG_class_type (Class)
20041 2: DW_TAG_enumeration_type (E)
20042 3: DW_TAG_enumerator (enum1:0)
20043 3: DW_TAG_enumerator (enum2:1)
20044 ...
20045 2: DW_TAG_template_type_param
20046 DW_AT_type DW_FORM_ref_udata (E)
20047
20048 Besides being broken debug info, it can put GDB into an
20049 infinite loop. Consider:
20050
20051 When we're building the full name for Class<E>, we'll start
20052 at Class, and go look over its template type parameters,
20053 finding E. We'll then try to build the full name of E, and
20054 reach here. We're now trying to build the full name of E,
20055 and look over the parent DIE for containing scope. In the
20056 broken case, if we followed the parent DIE of E, we'd again
20057 find Class, and once again go look at its template type
20058 arguments, etc., etc. Simply don't consider such parent die
20059 as source-level parent of this die (it can't be, the language
20060 doesn't allow it), and break the loop here. */
20061 name = dwarf2_name (die, cu);
20062 parent_name = dwarf2_name (parent, cu);
20063 complaint (&symfile_complaints,
20064 _("template param type '%s' defined within parent '%s'"),
20065 name ? name : "<unknown>",
20066 parent_name ? parent_name : "<unknown>");
20067 return "";
20068 }
63d06c5c 20069 else
0114d602
DJ
20070 switch (parent->tag)
20071 {
63d06c5c 20072 case DW_TAG_namespace:
0114d602 20073 parent_type = read_type_die (parent, cu);
acebe513
UW
20074 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
20075 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
20076 Work around this problem here. */
20077 if (cu->language == language_cplus
20078 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
20079 return "";
0114d602
DJ
20080 /* We give a name to even anonymous namespaces. */
20081 return TYPE_TAG_NAME (parent_type);
63d06c5c 20082 case DW_TAG_class_type:
680b30c7 20083 case DW_TAG_interface_type:
63d06c5c 20084 case DW_TAG_structure_type:
0114d602 20085 case DW_TAG_union_type:
f55ee35c 20086 case DW_TAG_module:
0114d602
DJ
20087 parent_type = read_type_die (parent, cu);
20088 if (TYPE_TAG_NAME (parent_type) != NULL)
20089 return TYPE_TAG_NAME (parent_type);
20090 else
20091 /* An anonymous structure is only allowed non-static data
20092 members; no typedefs, no member functions, et cetera.
20093 So it does not need a prefix. */
20094 return "";
abc72ce4 20095 case DW_TAG_compile_unit:
95554aad 20096 case DW_TAG_partial_unit:
abc72ce4
DE
20097 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
20098 if (cu->language == language_cplus
8b70b953 20099 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
20100 && die->child != NULL
20101 && (die->tag == DW_TAG_class_type
20102 || die->tag == DW_TAG_structure_type
20103 || die->tag == DW_TAG_union_type))
20104 {
20105 char *name = guess_full_die_structure_name (die, cu);
20106 if (name != NULL)
20107 return name;
20108 }
20109 return "";
3d567982
TT
20110 case DW_TAG_enumeration_type:
20111 parent_type = read_type_die (parent, cu);
20112 if (TYPE_DECLARED_CLASS (parent_type))
20113 {
20114 if (TYPE_TAG_NAME (parent_type) != NULL)
20115 return TYPE_TAG_NAME (parent_type);
20116 return "";
20117 }
20118 /* Fall through. */
63d06c5c 20119 default:
8176b9b8 20120 return determine_prefix (parent, cu);
63d06c5c 20121 }
63d06c5c
DC
20122}
20123
3e43a32a
MS
20124/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
20125 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
20126 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
20127 an obconcat, otherwise allocate storage for the result. The CU argument is
20128 used to determine the language and hence, the appropriate separator. */
987504bb 20129
f55ee35c 20130#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
20131
20132static char *
f55ee35c
JK
20133typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
20134 int physname, struct dwarf2_cu *cu)
63d06c5c 20135{
f55ee35c 20136 const char *lead = "";
5c315b68 20137 const char *sep;
63d06c5c 20138
3e43a32a
MS
20139 if (suffix == NULL || suffix[0] == '\0'
20140 || prefix == NULL || prefix[0] == '\0')
987504bb 20141 sep = "";
45280282
IB
20142 else if (cu->language == language_d)
20143 {
20144 /* For D, the 'main' function could be defined in any module, but it
20145 should never be prefixed. */
20146 if (strcmp (suffix, "D main") == 0)
20147 {
20148 prefix = "";
20149 sep = "";
20150 }
20151 else
20152 sep = ".";
20153 }
f55ee35c
JK
20154 else if (cu->language == language_fortran && physname)
20155 {
20156 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
20157 DW_AT_MIPS_linkage_name is preferred and used instead. */
20158
20159 lead = "__";
20160 sep = "_MOD_";
20161 }
987504bb
JJ
20162 else
20163 sep = "::";
63d06c5c 20164
6dd47d34
DE
20165 if (prefix == NULL)
20166 prefix = "";
20167 if (suffix == NULL)
20168 suffix = "";
20169
987504bb
JJ
20170 if (obs == NULL)
20171 {
3e43a32a 20172 char *retval
224c3ddb
SM
20173 = ((char *)
20174 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 20175
f55ee35c
JK
20176 strcpy (retval, lead);
20177 strcat (retval, prefix);
6dd47d34
DE
20178 strcat (retval, sep);
20179 strcat (retval, suffix);
63d06c5c
DC
20180 return retval;
20181 }
987504bb
JJ
20182 else
20183 {
20184 /* We have an obstack. */
f55ee35c 20185 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 20186 }
63d06c5c
DC
20187}
20188
c906108c
SS
20189/* Return sibling of die, NULL if no sibling. */
20190
f9aca02d 20191static struct die_info *
fba45db2 20192sibling_die (struct die_info *die)
c906108c 20193{
639d11d3 20194 return die->sibling;
c906108c
SS
20195}
20196
71c25dea
TT
20197/* Get name of a die, return NULL if not found. */
20198
15d034d0
TT
20199static const char *
20200dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
20201 struct obstack *obstack)
20202{
20203 if (name && cu->language == language_cplus)
20204 {
2f408ecb 20205 std::string canon_name = cp_canonicalize_string (name);
71c25dea 20206
2f408ecb 20207 if (!canon_name.empty ())
71c25dea 20208 {
2f408ecb
PA
20209 if (canon_name != name)
20210 name = (const char *) obstack_copy0 (obstack,
20211 canon_name.c_str (),
20212 canon_name.length ());
71c25dea
TT
20213 }
20214 }
20215
20216 return name;
c906108c
SS
20217}
20218
96553a0c
DE
20219/* Get name of a die, return NULL if not found.
20220 Anonymous namespaces are converted to their magic string. */
9219021c 20221
15d034d0 20222static const char *
e142c38c 20223dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
20224{
20225 struct attribute *attr;
20226
e142c38c 20227 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 20228 if ((!attr || !DW_STRING (attr))
96553a0c 20229 && die->tag != DW_TAG_namespace
53832f31
TT
20230 && die->tag != DW_TAG_class_type
20231 && die->tag != DW_TAG_interface_type
20232 && die->tag != DW_TAG_structure_type
20233 && die->tag != DW_TAG_union_type)
71c25dea
TT
20234 return NULL;
20235
20236 switch (die->tag)
20237 {
20238 case DW_TAG_compile_unit:
95554aad 20239 case DW_TAG_partial_unit:
71c25dea
TT
20240 /* Compilation units have a DW_AT_name that is a filename, not
20241 a source language identifier. */
20242 case DW_TAG_enumeration_type:
20243 case DW_TAG_enumerator:
20244 /* These tags always have simple identifiers already; no need
20245 to canonicalize them. */
20246 return DW_STRING (attr);
907af001 20247
96553a0c
DE
20248 case DW_TAG_namespace:
20249 if (attr != NULL && DW_STRING (attr) != NULL)
20250 return DW_STRING (attr);
20251 return CP_ANONYMOUS_NAMESPACE_STR;
20252
907af001
UW
20253 case DW_TAG_class_type:
20254 case DW_TAG_interface_type:
20255 case DW_TAG_structure_type:
20256 case DW_TAG_union_type:
20257 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
20258 structures or unions. These were of the form "._%d" in GCC 4.1,
20259 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
20260 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 20261 if (attr && DW_STRING (attr)
61012eef
GB
20262 && (startswith (DW_STRING (attr), "._")
20263 || startswith (DW_STRING (attr), "<anonymous")))
907af001 20264 return NULL;
53832f31
TT
20265
20266 /* GCC might emit a nameless typedef that has a linkage name. See
20267 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
20268 if (!attr || DW_STRING (attr) == NULL)
20269 {
df5c6c50 20270 char *demangled = NULL;
53832f31
TT
20271
20272 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
20273 if (attr == NULL)
20274 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
20275
20276 if (attr == NULL || DW_STRING (attr) == NULL)
20277 return NULL;
20278
df5c6c50
JK
20279 /* Avoid demangling DW_STRING (attr) the second time on a second
20280 call for the same DIE. */
20281 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 20282 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
20283
20284 if (demangled)
20285 {
e6a959d6 20286 const char *base;
96408a79 20287
53832f31 20288 /* FIXME: we already did this for the partial symbol... */
34a68019 20289 DW_STRING (attr)
224c3ddb
SM
20290 = ((const char *)
20291 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
20292 demangled, strlen (demangled)));
53832f31
TT
20293 DW_STRING_IS_CANONICAL (attr) = 1;
20294 xfree (demangled);
96408a79
SA
20295
20296 /* Strip any leading namespaces/classes, keep only the base name.
20297 DW_AT_name for named DIEs does not contain the prefixes. */
20298 base = strrchr (DW_STRING (attr), ':');
20299 if (base && base > DW_STRING (attr) && base[-1] == ':')
20300 return &base[1];
20301 else
20302 return DW_STRING (attr);
53832f31
TT
20303 }
20304 }
907af001
UW
20305 break;
20306
71c25dea 20307 default:
907af001
UW
20308 break;
20309 }
20310
20311 if (!DW_STRING_IS_CANONICAL (attr))
20312 {
20313 DW_STRING (attr)
20314 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 20315 &cu->objfile->per_bfd->storage_obstack);
907af001 20316 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 20317 }
907af001 20318 return DW_STRING (attr);
9219021c
DC
20319}
20320
20321/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
20322 is none. *EXT_CU is the CU containing DIE on input, and the CU
20323 containing the return value on output. */
9219021c
DC
20324
20325static struct die_info *
f2f0e013 20326dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
20327{
20328 struct attribute *attr;
9219021c 20329
f2f0e013 20330 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
20331 if (attr == NULL)
20332 return NULL;
20333
f2f0e013 20334 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
20335}
20336
c906108c
SS
20337/* Convert a DIE tag into its string name. */
20338
f39c6ffd 20339static const char *
aa1ee363 20340dwarf_tag_name (unsigned tag)
c906108c 20341{
f39c6ffd
TT
20342 const char *name = get_DW_TAG_name (tag);
20343
20344 if (name == NULL)
20345 return "DW_TAG_<unknown>";
20346
20347 return name;
c906108c
SS
20348}
20349
20350/* Convert a DWARF attribute code into its string name. */
20351
f39c6ffd 20352static const char *
aa1ee363 20353dwarf_attr_name (unsigned attr)
c906108c 20354{
f39c6ffd
TT
20355 const char *name;
20356
c764a876 20357#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
20358 if (attr == DW_AT_MIPS_fde)
20359 return "DW_AT_MIPS_fde";
20360#else
20361 if (attr == DW_AT_HP_block_index)
20362 return "DW_AT_HP_block_index";
c764a876 20363#endif
f39c6ffd
TT
20364
20365 name = get_DW_AT_name (attr);
20366
20367 if (name == NULL)
20368 return "DW_AT_<unknown>";
20369
20370 return name;
c906108c
SS
20371}
20372
20373/* Convert a DWARF value form code into its string name. */
20374
f39c6ffd 20375static const char *
aa1ee363 20376dwarf_form_name (unsigned form)
c906108c 20377{
f39c6ffd
TT
20378 const char *name = get_DW_FORM_name (form);
20379
20380 if (name == NULL)
20381 return "DW_FORM_<unknown>";
20382
20383 return name;
c906108c
SS
20384}
20385
a121b7c1 20386static const char *
fba45db2 20387dwarf_bool_name (unsigned mybool)
c906108c
SS
20388{
20389 if (mybool)
20390 return "TRUE";
20391 else
20392 return "FALSE";
20393}
20394
20395/* Convert a DWARF type code into its string name. */
20396
f39c6ffd 20397static const char *
aa1ee363 20398dwarf_type_encoding_name (unsigned enc)
c906108c 20399{
f39c6ffd 20400 const char *name = get_DW_ATE_name (enc);
c906108c 20401
f39c6ffd
TT
20402 if (name == NULL)
20403 return "DW_ATE_<unknown>";
c906108c 20404
f39c6ffd 20405 return name;
c906108c 20406}
c906108c 20407
f9aca02d 20408static void
d97bc12b 20409dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
20410{
20411 unsigned int i;
20412
d97bc12b
DE
20413 print_spaces (indent, f);
20414 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
9c541725
PA
20415 dwarf_tag_name (die->tag), die->abbrev,
20416 to_underlying (die->sect_off));
d97bc12b
DE
20417
20418 if (die->parent != NULL)
20419 {
20420 print_spaces (indent, f);
20421 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
9c541725 20422 to_underlying (die->parent->sect_off));
d97bc12b
DE
20423 }
20424
20425 print_spaces (indent, f);
20426 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 20427 dwarf_bool_name (die->child != NULL));
c906108c 20428
d97bc12b
DE
20429 print_spaces (indent, f);
20430 fprintf_unfiltered (f, " attributes:\n");
20431
c906108c
SS
20432 for (i = 0; i < die->num_attrs; ++i)
20433 {
d97bc12b
DE
20434 print_spaces (indent, f);
20435 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
20436 dwarf_attr_name (die->attrs[i].name),
20437 dwarf_form_name (die->attrs[i].form));
d97bc12b 20438
c906108c
SS
20439 switch (die->attrs[i].form)
20440 {
c906108c 20441 case DW_FORM_addr:
3019eac3 20442 case DW_FORM_GNU_addr_index:
d97bc12b 20443 fprintf_unfiltered (f, "address: ");
5af949e3 20444 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
20445 break;
20446 case DW_FORM_block2:
20447 case DW_FORM_block4:
20448 case DW_FORM_block:
20449 case DW_FORM_block1:
56eb65bd
SP
20450 fprintf_unfiltered (f, "block: size %s",
20451 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 20452 break;
2dc7f7b3 20453 case DW_FORM_exprloc:
56eb65bd
SP
20454 fprintf_unfiltered (f, "expression: size %s",
20455 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 20456 break;
0224619f
JK
20457 case DW_FORM_data16:
20458 fprintf_unfiltered (f, "constant of 16 bytes");
20459 break;
4568ecf9
DE
20460 case DW_FORM_ref_addr:
20461 fprintf_unfiltered (f, "ref address: ");
20462 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20463 break;
36586728
TT
20464 case DW_FORM_GNU_ref_alt:
20465 fprintf_unfiltered (f, "alt ref address: ");
20466 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
20467 break;
10b3939b
DJ
20468 case DW_FORM_ref1:
20469 case DW_FORM_ref2:
20470 case DW_FORM_ref4:
4568ecf9
DE
20471 case DW_FORM_ref8:
20472 case DW_FORM_ref_udata:
d97bc12b 20473 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 20474 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 20475 break;
c906108c
SS
20476 case DW_FORM_data1:
20477 case DW_FORM_data2:
20478 case DW_FORM_data4:
ce5d95e1 20479 case DW_FORM_data8:
c906108c
SS
20480 case DW_FORM_udata:
20481 case DW_FORM_sdata:
43bbcdc2
PH
20482 fprintf_unfiltered (f, "constant: %s",
20483 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 20484 break;
2dc7f7b3
TT
20485 case DW_FORM_sec_offset:
20486 fprintf_unfiltered (f, "section offset: %s",
20487 pulongest (DW_UNSND (&die->attrs[i])));
20488 break;
55f1336d 20489 case DW_FORM_ref_sig8:
ac9ec31b
DE
20490 fprintf_unfiltered (f, "signature: %s",
20491 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 20492 break;
c906108c 20493 case DW_FORM_string:
4bdf3d34 20494 case DW_FORM_strp:
43988095 20495 case DW_FORM_line_strp:
3019eac3 20496 case DW_FORM_GNU_str_index:
36586728 20497 case DW_FORM_GNU_strp_alt:
8285870a 20498 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 20499 DW_STRING (&die->attrs[i])
8285870a
JK
20500 ? DW_STRING (&die->attrs[i]) : "",
20501 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
20502 break;
20503 case DW_FORM_flag:
20504 if (DW_UNSND (&die->attrs[i]))
d97bc12b 20505 fprintf_unfiltered (f, "flag: TRUE");
c906108c 20506 else
d97bc12b 20507 fprintf_unfiltered (f, "flag: FALSE");
c906108c 20508 break;
2dc7f7b3
TT
20509 case DW_FORM_flag_present:
20510 fprintf_unfiltered (f, "flag: TRUE");
20511 break;
a8329558 20512 case DW_FORM_indirect:
0963b4bd
MS
20513 /* The reader will have reduced the indirect form to
20514 the "base form" so this form should not occur. */
3e43a32a
MS
20515 fprintf_unfiltered (f,
20516 "unexpected attribute form: DW_FORM_indirect");
a8329558 20517 break;
c906108c 20518 default:
d97bc12b 20519 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 20520 die->attrs[i].form);
d97bc12b 20521 break;
c906108c 20522 }
d97bc12b 20523 fprintf_unfiltered (f, "\n");
c906108c
SS
20524 }
20525}
20526
f9aca02d 20527static void
d97bc12b 20528dump_die_for_error (struct die_info *die)
c906108c 20529{
d97bc12b
DE
20530 dump_die_shallow (gdb_stderr, 0, die);
20531}
20532
20533static void
20534dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
20535{
20536 int indent = level * 4;
20537
20538 gdb_assert (die != NULL);
20539
20540 if (level >= max_level)
20541 return;
20542
20543 dump_die_shallow (f, indent, die);
20544
20545 if (die->child != NULL)
c906108c 20546 {
d97bc12b
DE
20547 print_spaces (indent, f);
20548 fprintf_unfiltered (f, " Children:");
20549 if (level + 1 < max_level)
20550 {
20551 fprintf_unfiltered (f, "\n");
20552 dump_die_1 (f, level + 1, max_level, die->child);
20553 }
20554 else
20555 {
3e43a32a
MS
20556 fprintf_unfiltered (f,
20557 " [not printed, max nesting level reached]\n");
d97bc12b
DE
20558 }
20559 }
20560
20561 if (die->sibling != NULL && level > 0)
20562 {
20563 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
20564 }
20565}
20566
d97bc12b
DE
20567/* This is called from the pdie macro in gdbinit.in.
20568 It's not static so gcc will keep a copy callable from gdb. */
20569
20570void
20571dump_die (struct die_info *die, int max_level)
20572{
20573 dump_die_1 (gdb_stdlog, 0, max_level, die);
20574}
20575
f9aca02d 20576static void
51545339 20577store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 20578{
51545339 20579 void **slot;
c906108c 20580
9c541725
PA
20581 slot = htab_find_slot_with_hash (cu->die_hash, die,
20582 to_underlying (die->sect_off),
b64f50a1 20583 INSERT);
51545339
DJ
20584
20585 *slot = die;
c906108c
SS
20586}
20587
b64f50a1
JK
20588/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
20589 required kind. */
20590
20591static sect_offset
ff39bb5e 20592dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 20593{
7771576e 20594 if (attr_form_is_ref (attr))
9c541725 20595 return (sect_offset) DW_UNSND (attr);
93311388
DE
20596
20597 complaint (&symfile_complaints,
20598 _("unsupported die ref attribute form: '%s'"),
20599 dwarf_form_name (attr->form));
9c541725 20600 return {};
c906108c
SS
20601}
20602
43bbcdc2
PH
20603/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
20604 * the value held by the attribute is not constant. */
a02abb62 20605
43bbcdc2 20606static LONGEST
ff39bb5e 20607dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
20608{
20609 if (attr->form == DW_FORM_sdata)
20610 return DW_SND (attr);
20611 else if (attr->form == DW_FORM_udata
20612 || attr->form == DW_FORM_data1
20613 || attr->form == DW_FORM_data2
20614 || attr->form == DW_FORM_data4
20615 || attr->form == DW_FORM_data8)
20616 return DW_UNSND (attr);
20617 else
20618 {
0224619f 20619 /* For DW_FORM_data16 see attr_form_is_constant. */
3e43a32a
MS
20620 complaint (&symfile_complaints,
20621 _("Attribute value is not a constant (%s)"),
a02abb62
JB
20622 dwarf_form_name (attr->form));
20623 return default_value;
20624 }
20625}
20626
348e048f
DE
20627/* Follow reference or signature attribute ATTR of SRC_DIE.
20628 On entry *REF_CU is the CU of SRC_DIE.
20629 On exit *REF_CU is the CU of the result. */
20630
20631static struct die_info *
ff39bb5e 20632follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
20633 struct dwarf2_cu **ref_cu)
20634{
20635 struct die_info *die;
20636
7771576e 20637 if (attr_form_is_ref (attr))
348e048f 20638 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 20639 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
20640 die = follow_die_sig (src_die, attr, ref_cu);
20641 else
20642 {
20643 dump_die_for_error (src_die);
20644 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 20645 objfile_name ((*ref_cu)->objfile));
348e048f
DE
20646 }
20647
20648 return die;
03dd20cc
DJ
20649}
20650
5c631832 20651/* Follow reference OFFSET.
673bfd45
DE
20652 On entry *REF_CU is the CU of the source die referencing OFFSET.
20653 On exit *REF_CU is the CU of the result.
20654 Returns NULL if OFFSET is invalid. */
f504f079 20655
f9aca02d 20656static struct die_info *
9c541725 20657follow_die_offset (sect_offset sect_off, int offset_in_dwz,
36586728 20658 struct dwarf2_cu **ref_cu)
c906108c 20659{
10b3939b 20660 struct die_info temp_die;
f2f0e013 20661 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 20662
348e048f
DE
20663 gdb_assert (cu->per_cu != NULL);
20664
98bfdba5
PA
20665 target_cu = cu;
20666
3019eac3 20667 if (cu->per_cu->is_debug_types)
348e048f
DE
20668 {
20669 /* .debug_types CUs cannot reference anything outside their CU.
20670 If they need to, they have to reference a signatured type via
55f1336d 20671 DW_FORM_ref_sig8. */
9c541725 20672 if (!offset_in_cu_p (&cu->header, sect_off))
5c631832 20673 return NULL;
348e048f 20674 }
36586728 20675 else if (offset_in_dwz != cu->per_cu->is_dwz
9c541725 20676 || !offset_in_cu_p (&cu->header, sect_off))
10b3939b
DJ
20677 {
20678 struct dwarf2_per_cu_data *per_cu;
9a619af0 20679
9c541725 20680 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
36586728 20681 cu->objfile);
03dd20cc
DJ
20682
20683 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20684 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20685 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20686
10b3939b
DJ
20687 target_cu = per_cu->cu;
20688 }
98bfdba5
PA
20689 else if (cu->dies == NULL)
20690 {
20691 /* We're loading full DIEs during partial symbol reading. */
20692 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20693 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20694 }
c906108c 20695
f2f0e013 20696 *ref_cu = target_cu;
9c541725 20697 temp_die.sect_off = sect_off;
9a3c8263 20698 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
9c541725
PA
20699 &temp_die,
20700 to_underlying (sect_off));
5c631832 20701}
10b3939b 20702
5c631832
JK
20703/* Follow reference attribute ATTR of SRC_DIE.
20704 On entry *REF_CU is the CU of SRC_DIE.
20705 On exit *REF_CU is the CU of the result. */
20706
20707static struct die_info *
ff39bb5e 20708follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20709 struct dwarf2_cu **ref_cu)
20710{
9c541725 20711 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20712 struct dwarf2_cu *cu = *ref_cu;
20713 struct die_info *die;
20714
9c541725 20715 die = follow_die_offset (sect_off,
36586728
TT
20716 (attr->form == DW_FORM_GNU_ref_alt
20717 || cu->per_cu->is_dwz),
20718 ref_cu);
5c631832
JK
20719 if (!die)
20720 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20721 "at 0x%x [in module %s]"),
9c541725 20722 to_underlying (sect_off), to_underlying (src_die->sect_off),
4262abfb 20723 objfile_name (cu->objfile));
348e048f 20724
5c631832
JK
20725 return die;
20726}
20727
9c541725 20728/* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
d83e736b
JK
20729 Returned value is intended for DW_OP_call*. Returned
20730 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20731
20732struct dwarf2_locexpr_baton
9c541725 20733dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
8b9737bf
TT
20734 struct dwarf2_per_cu_data *per_cu,
20735 CORE_ADDR (*get_frame_pc) (void *baton),
20736 void *baton)
5c631832 20737{
918dd910 20738 struct dwarf2_cu *cu;
5c631832
JK
20739 struct die_info *die;
20740 struct attribute *attr;
20741 struct dwarf2_locexpr_baton retval;
20742
8cf6f0b1
TT
20743 dw2_setup (per_cu->objfile);
20744
918dd910
JK
20745 if (per_cu->cu == NULL)
20746 load_cu (per_cu);
20747 cu = per_cu->cu;
cc12ce38
DE
20748 if (cu == NULL)
20749 {
20750 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20751 Instead just throw an error, not much else we can do. */
20752 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
9c541725 20753 to_underlying (sect_off), objfile_name (per_cu->objfile));
cc12ce38 20754 }
918dd910 20755
9c541725 20756 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
5c631832
JK
20757 if (!die)
20758 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
9c541725 20759 to_underlying (sect_off), objfile_name (per_cu->objfile));
5c631832
JK
20760
20761 attr = dwarf2_attr (die, DW_AT_location, cu);
20762 if (!attr)
20763 {
e103e986
JK
20764 /* DWARF: "If there is no such attribute, then there is no effect.".
20765 DATA is ignored if SIZE is 0. */
5c631832 20766
e103e986 20767 retval.data = NULL;
5c631832
JK
20768 retval.size = 0;
20769 }
8cf6f0b1
TT
20770 else if (attr_form_is_section_offset (attr))
20771 {
20772 struct dwarf2_loclist_baton loclist_baton;
20773 CORE_ADDR pc = (*get_frame_pc) (baton);
20774 size_t size;
20775
20776 fill_in_loclist_baton (cu, &loclist_baton, attr);
20777
20778 retval.data = dwarf2_find_location_expression (&loclist_baton,
20779 &size, pc);
20780 retval.size = size;
20781 }
5c631832
JK
20782 else
20783 {
20784 if (!attr_form_is_block (attr))
20785 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20786 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
9c541725 20787 to_underlying (sect_off), objfile_name (per_cu->objfile));
5c631832
JK
20788
20789 retval.data = DW_BLOCK (attr)->data;
20790 retval.size = DW_BLOCK (attr)->size;
20791 }
20792 retval.per_cu = cu->per_cu;
918dd910 20793
918dd910
JK
20794 age_cached_comp_units ();
20795
5c631832 20796 return retval;
348e048f
DE
20797}
20798
8b9737bf
TT
20799/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20800 offset. */
20801
20802struct dwarf2_locexpr_baton
20803dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20804 struct dwarf2_per_cu_data *per_cu,
20805 CORE_ADDR (*get_frame_pc) (void *baton),
20806 void *baton)
20807{
9c541725 20808 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
8b9737bf 20809
9c541725 20810 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
8b9737bf
TT
20811}
20812
b6807d98
TT
20813/* Write a constant of a given type as target-ordered bytes into
20814 OBSTACK. */
20815
20816static const gdb_byte *
20817write_constant_as_bytes (struct obstack *obstack,
20818 enum bfd_endian byte_order,
20819 struct type *type,
20820 ULONGEST value,
20821 LONGEST *len)
20822{
20823 gdb_byte *result;
20824
20825 *len = TYPE_LENGTH (type);
224c3ddb 20826 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20827 store_unsigned_integer (result, *len, byte_order, value);
20828
20829 return result;
20830}
20831
20832/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20833 pointer to the constant bytes and set LEN to the length of the
20834 data. If memory is needed, allocate it on OBSTACK. If the DIE
20835 does not have a DW_AT_const_value, return NULL. */
20836
20837const gdb_byte *
9c541725 20838dwarf2_fetch_constant_bytes (sect_offset sect_off,
b6807d98
TT
20839 struct dwarf2_per_cu_data *per_cu,
20840 struct obstack *obstack,
20841 LONGEST *len)
20842{
20843 struct dwarf2_cu *cu;
20844 struct die_info *die;
20845 struct attribute *attr;
20846 const gdb_byte *result = NULL;
20847 struct type *type;
20848 LONGEST value;
20849 enum bfd_endian byte_order;
20850
20851 dw2_setup (per_cu->objfile);
20852
20853 if (per_cu->cu == NULL)
20854 load_cu (per_cu);
20855 cu = per_cu->cu;
cc12ce38
DE
20856 if (cu == NULL)
20857 {
20858 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20859 Instead just throw an error, not much else we can do. */
20860 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
9c541725 20861 to_underlying (sect_off), objfile_name (per_cu->objfile));
cc12ce38 20862 }
b6807d98 20863
9c541725 20864 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
b6807d98
TT
20865 if (!die)
20866 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
9c541725 20867 to_underlying (sect_off), objfile_name (per_cu->objfile));
b6807d98
TT
20868
20869
20870 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20871 if (attr == NULL)
20872 return NULL;
20873
20874 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20875 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20876
20877 switch (attr->form)
20878 {
20879 case DW_FORM_addr:
20880 case DW_FORM_GNU_addr_index:
20881 {
20882 gdb_byte *tem;
20883
20884 *len = cu->header.addr_size;
224c3ddb 20885 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20886 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20887 result = tem;
20888 }
20889 break;
20890 case DW_FORM_string:
20891 case DW_FORM_strp:
20892 case DW_FORM_GNU_str_index:
20893 case DW_FORM_GNU_strp_alt:
20894 /* DW_STRING is already allocated on the objfile obstack, point
20895 directly to it. */
20896 result = (const gdb_byte *) DW_STRING (attr);
20897 *len = strlen (DW_STRING (attr));
20898 break;
20899 case DW_FORM_block1:
20900 case DW_FORM_block2:
20901 case DW_FORM_block4:
20902 case DW_FORM_block:
20903 case DW_FORM_exprloc:
0224619f 20904 case DW_FORM_data16:
b6807d98
TT
20905 result = DW_BLOCK (attr)->data;
20906 *len = DW_BLOCK (attr)->size;
20907 break;
20908
20909 /* The DW_AT_const_value attributes are supposed to carry the
20910 symbol's value "represented as it would be on the target
20911 architecture." By the time we get here, it's already been
20912 converted to host endianness, so we just need to sign- or
20913 zero-extend it as appropriate. */
20914 case DW_FORM_data1:
20915 type = die_type (die, cu);
20916 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20917 if (result == NULL)
20918 result = write_constant_as_bytes (obstack, byte_order,
20919 type, value, len);
20920 break;
20921 case DW_FORM_data2:
20922 type = die_type (die, cu);
20923 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20924 if (result == NULL)
20925 result = write_constant_as_bytes (obstack, byte_order,
20926 type, value, len);
20927 break;
20928 case DW_FORM_data4:
20929 type = die_type (die, cu);
20930 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20931 if (result == NULL)
20932 result = write_constant_as_bytes (obstack, byte_order,
20933 type, value, len);
20934 break;
20935 case DW_FORM_data8:
20936 type = die_type (die, cu);
20937 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20938 if (result == NULL)
20939 result = write_constant_as_bytes (obstack, byte_order,
20940 type, value, len);
20941 break;
20942
20943 case DW_FORM_sdata:
20944 type = die_type (die, cu);
20945 result = write_constant_as_bytes (obstack, byte_order,
20946 type, DW_SND (attr), len);
20947 break;
20948
20949 case DW_FORM_udata:
20950 type = die_type (die, cu);
20951 result = write_constant_as_bytes (obstack, byte_order,
20952 type, DW_UNSND (attr), len);
20953 break;
20954
20955 default:
20956 complaint (&symfile_complaints,
20957 _("unsupported const value attribute form: '%s'"),
20958 dwarf_form_name (attr->form));
20959 break;
20960 }
20961
20962 return result;
20963}
20964
7942e96e
AA
20965/* Return the type of the die at OFFSET in PER_CU. Return NULL if no
20966 valid type for this die is found. */
20967
20968struct type *
9c541725 20969dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
7942e96e
AA
20970 struct dwarf2_per_cu_data *per_cu)
20971{
20972 struct dwarf2_cu *cu;
20973 struct die_info *die;
20974
20975 dw2_setup (per_cu->objfile);
20976
20977 if (per_cu->cu == NULL)
20978 load_cu (per_cu);
20979 cu = per_cu->cu;
20980 if (!cu)
20981 return NULL;
20982
9c541725 20983 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
7942e96e
AA
20984 if (!die)
20985 return NULL;
20986
20987 return die_type (die, cu);
20988}
20989
8a9b8146
TT
20990/* Return the type of the DIE at DIE_OFFSET in the CU named by
20991 PER_CU. */
20992
20993struct type *
b64f50a1 20994dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20995 struct dwarf2_per_cu_data *per_cu)
20996{
8a9b8146 20997 dw2_setup (per_cu->objfile);
b64f50a1 20998
9c541725 20999 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
b64f50a1 21000 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
21001}
21002
ac9ec31b 21003/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 21004 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
21005 On exit *REF_CU is the CU of the result.
21006 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
21007
21008static struct die_info *
ac9ec31b
DE
21009follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
21010 struct dwarf2_cu **ref_cu)
348e048f 21011{
348e048f 21012 struct die_info temp_die;
348e048f
DE
21013 struct dwarf2_cu *sig_cu;
21014 struct die_info *die;
21015
ac9ec31b
DE
21016 /* While it might be nice to assert sig_type->type == NULL here,
21017 we can get here for DW_AT_imported_declaration where we need
21018 the DIE not the type. */
348e048f
DE
21019
21020 /* If necessary, add it to the queue and load its DIEs. */
21021
95554aad 21022 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 21023 read_signatured_type (sig_type);
348e048f 21024
348e048f 21025 sig_cu = sig_type->per_cu.cu;
69d751e3 21026 gdb_assert (sig_cu != NULL);
9c541725
PA
21027 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
21028 temp_die.sect_off = sig_type->type_offset_in_section;
9a3c8263 21029 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
9c541725 21030 to_underlying (temp_die.sect_off));
348e048f
DE
21031 if (die)
21032 {
796a7ff8
DE
21033 /* For .gdb_index version 7 keep track of included TUs.
21034 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
21035 if (dwarf2_per_objfile->index_table != NULL
21036 && dwarf2_per_objfile->index_table->version <= 7)
21037 {
21038 VEC_safe_push (dwarf2_per_cu_ptr,
21039 (*ref_cu)->per_cu->imported_symtabs,
21040 sig_cu->per_cu);
21041 }
21042
348e048f
DE
21043 *ref_cu = sig_cu;
21044 return die;
21045 }
21046
ac9ec31b
DE
21047 return NULL;
21048}
21049
21050/* Follow signatured type referenced by ATTR in SRC_DIE.
21051 On entry *REF_CU is the CU of SRC_DIE.
21052 On exit *REF_CU is the CU of the result.
21053 The result is the DIE of the type.
21054 If the referenced type cannot be found an error is thrown. */
21055
21056static struct die_info *
ff39bb5e 21057follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
21058 struct dwarf2_cu **ref_cu)
21059{
21060 ULONGEST signature = DW_SIGNATURE (attr);
21061 struct signatured_type *sig_type;
21062 struct die_info *die;
21063
21064 gdb_assert (attr->form == DW_FORM_ref_sig8);
21065
a2ce51a0 21066 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
21067 /* sig_type will be NULL if the signatured type is missing from
21068 the debug info. */
21069 if (sig_type == NULL)
21070 {
21071 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
21072 " from DIE at 0x%x [in module %s]"),
9c541725 21073 hex_string (signature), to_underlying (src_die->sect_off),
4262abfb 21074 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
21075 }
21076
21077 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
21078 if (die == NULL)
21079 {
21080 dump_die_for_error (src_die);
21081 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
21082 " from DIE at 0x%x [in module %s]"),
9c541725 21083 hex_string (signature), to_underlying (src_die->sect_off),
4262abfb 21084 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
21085 }
21086
21087 return die;
21088}
21089
21090/* Get the type specified by SIGNATURE referenced in DIE/CU,
21091 reading in and processing the type unit if necessary. */
21092
21093static struct type *
21094get_signatured_type (struct die_info *die, ULONGEST signature,
21095 struct dwarf2_cu *cu)
21096{
21097 struct signatured_type *sig_type;
21098 struct dwarf2_cu *type_cu;
21099 struct die_info *type_die;
21100 struct type *type;
21101
a2ce51a0 21102 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
21103 /* sig_type will be NULL if the signatured type is missing from
21104 the debug info. */
21105 if (sig_type == NULL)
21106 {
21107 complaint (&symfile_complaints,
21108 _("Dwarf Error: Cannot find signatured DIE %s referenced"
21109 " from DIE at 0x%x [in module %s]"),
9c541725 21110 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21111 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21112 return build_error_marker_type (cu, die);
21113 }
21114
21115 /* If we already know the type we're done. */
21116 if (sig_type->type != NULL)
21117 return sig_type->type;
21118
21119 type_cu = cu;
21120 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
21121 if (type_die != NULL)
21122 {
21123 /* N.B. We need to call get_die_type to ensure only one type for this DIE
21124 is created. This is important, for example, because for c++ classes
21125 we need TYPE_NAME set which is only done by new_symbol. Blech. */
21126 type = read_type_die (type_die, type_cu);
21127 if (type == NULL)
21128 {
21129 complaint (&symfile_complaints,
21130 _("Dwarf Error: Cannot build signatured type %s"
21131 " referenced from DIE at 0x%x [in module %s]"),
9c541725 21132 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21133 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21134 type = build_error_marker_type (cu, die);
21135 }
21136 }
21137 else
21138 {
21139 complaint (&symfile_complaints,
21140 _("Dwarf Error: Problem reading signatured DIE %s referenced"
21141 " from DIE at 0x%x [in module %s]"),
9c541725 21142 hex_string (signature), to_underlying (die->sect_off),
4262abfb 21143 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21144 type = build_error_marker_type (cu, die);
21145 }
21146 sig_type->type = type;
21147
21148 return type;
21149}
21150
21151/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
21152 reading in and processing the type unit if necessary. */
21153
21154static struct type *
ff39bb5e 21155get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 21156 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
21157{
21158 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 21159 if (attr_form_is_ref (attr))
ac9ec31b
DE
21160 {
21161 struct dwarf2_cu *type_cu = cu;
21162 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
21163
21164 return read_type_die (type_die, type_cu);
21165 }
21166 else if (attr->form == DW_FORM_ref_sig8)
21167 {
21168 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
21169 }
21170 else
21171 {
21172 complaint (&symfile_complaints,
21173 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
21174 " at 0x%x [in module %s]"),
9c541725 21175 dwarf_form_name (attr->form), to_underlying (die->sect_off),
4262abfb 21176 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
21177 return build_error_marker_type (cu, die);
21178 }
348e048f
DE
21179}
21180
e5fe5e75 21181/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
21182
21183static void
e5fe5e75 21184load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 21185{
52dc124a 21186 struct signatured_type *sig_type;
348e048f 21187
f4dc4d17
DE
21188 /* Caller is responsible for ensuring type_unit_groups don't get here. */
21189 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
21190
6721b2ec
DE
21191 /* We have the per_cu, but we need the signatured_type.
21192 Fortunately this is an easy translation. */
21193 gdb_assert (per_cu->is_debug_types);
21194 sig_type = (struct signatured_type *) per_cu;
348e048f 21195
6721b2ec 21196 gdb_assert (per_cu->cu == NULL);
348e048f 21197
52dc124a 21198 read_signatured_type (sig_type);
348e048f 21199
6721b2ec 21200 gdb_assert (per_cu->cu != NULL);
348e048f
DE
21201}
21202
dee91e82
DE
21203/* die_reader_func for read_signatured_type.
21204 This is identical to load_full_comp_unit_reader,
21205 but is kept separate for now. */
348e048f
DE
21206
21207static void
dee91e82 21208read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 21209 const gdb_byte *info_ptr,
dee91e82
DE
21210 struct die_info *comp_unit_die,
21211 int has_children,
21212 void *data)
348e048f 21213{
dee91e82 21214 struct dwarf2_cu *cu = reader->cu;
348e048f 21215
dee91e82
DE
21216 gdb_assert (cu->die_hash == NULL);
21217 cu->die_hash =
21218 htab_create_alloc_ex (cu->header.length / 12,
21219 die_hash,
21220 die_eq,
21221 NULL,
21222 &cu->comp_unit_obstack,
21223 hashtab_obstack_allocate,
21224 dummy_obstack_deallocate);
348e048f 21225
dee91e82
DE
21226 if (has_children)
21227 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
21228 &info_ptr, comp_unit_die);
21229 cu->dies = comp_unit_die;
21230 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
21231
21232 /* We try not to read any attributes in this function, because not
9cdd5dbd 21233 all CUs needed for references have been loaded yet, and symbol
348e048f 21234 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
21235 or we won't be able to build types correctly.
21236 Similarly, if we do not read the producer, we can not apply
21237 producer-specific interpretation. */
95554aad 21238 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 21239}
348e048f 21240
3019eac3
DE
21241/* Read in a signatured type and build its CU and DIEs.
21242 If the type is a stub for the real type in a DWO file,
21243 read in the real type from the DWO file as well. */
dee91e82
DE
21244
21245static void
21246read_signatured_type (struct signatured_type *sig_type)
21247{
21248 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 21249
3019eac3 21250 gdb_assert (per_cu->is_debug_types);
dee91e82 21251 gdb_assert (per_cu->cu == NULL);
348e048f 21252
f4dc4d17
DE
21253 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
21254 read_signatured_type_reader, NULL);
7ee85ab1 21255 sig_type->per_cu.tu_read = 1;
c906108c
SS
21256}
21257
c906108c
SS
21258/* Decode simple location descriptions.
21259 Given a pointer to a dwarf block that defines a location, compute
21260 the location and return the value.
21261
4cecd739
DJ
21262 NOTE drow/2003-11-18: This function is called in two situations
21263 now: for the address of static or global variables (partial symbols
21264 only) and for offsets into structures which are expected to be
21265 (more or less) constant. The partial symbol case should go away,
21266 and only the constant case should remain. That will let this
21267 function complain more accurately. A few special modes are allowed
21268 without complaint for global variables (for instance, global
21269 register values and thread-local values).
c906108c
SS
21270
21271 A location description containing no operations indicates that the
4cecd739 21272 object is optimized out. The return value is 0 for that case.
6b992462
DJ
21273 FIXME drow/2003-11-16: No callers check for this case any more; soon all
21274 callers will only want a very basic result and this can become a
21ae7a4d
JK
21275 complaint.
21276
21277 Note that stack[0] is unused except as a default error return. */
c906108c
SS
21278
21279static CORE_ADDR
e7c27a73 21280decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 21281{
e7c27a73 21282 struct objfile *objfile = cu->objfile;
56eb65bd
SP
21283 size_t i;
21284 size_t size = blk->size;
d521ce57 21285 const gdb_byte *data = blk->data;
21ae7a4d
JK
21286 CORE_ADDR stack[64];
21287 int stacki;
21288 unsigned int bytes_read, unsnd;
21289 gdb_byte op;
c906108c 21290
21ae7a4d
JK
21291 i = 0;
21292 stacki = 0;
21293 stack[stacki] = 0;
21294 stack[++stacki] = 0;
21295
21296 while (i < size)
21297 {
21298 op = data[i++];
21299 switch (op)
21300 {
21301 case DW_OP_lit0:
21302 case DW_OP_lit1:
21303 case DW_OP_lit2:
21304 case DW_OP_lit3:
21305 case DW_OP_lit4:
21306 case DW_OP_lit5:
21307 case DW_OP_lit6:
21308 case DW_OP_lit7:
21309 case DW_OP_lit8:
21310 case DW_OP_lit9:
21311 case DW_OP_lit10:
21312 case DW_OP_lit11:
21313 case DW_OP_lit12:
21314 case DW_OP_lit13:
21315 case DW_OP_lit14:
21316 case DW_OP_lit15:
21317 case DW_OP_lit16:
21318 case DW_OP_lit17:
21319 case DW_OP_lit18:
21320 case DW_OP_lit19:
21321 case DW_OP_lit20:
21322 case DW_OP_lit21:
21323 case DW_OP_lit22:
21324 case DW_OP_lit23:
21325 case DW_OP_lit24:
21326 case DW_OP_lit25:
21327 case DW_OP_lit26:
21328 case DW_OP_lit27:
21329 case DW_OP_lit28:
21330 case DW_OP_lit29:
21331 case DW_OP_lit30:
21332 case DW_OP_lit31:
21333 stack[++stacki] = op - DW_OP_lit0;
21334 break;
f1bea926 21335
21ae7a4d
JK
21336 case DW_OP_reg0:
21337 case DW_OP_reg1:
21338 case DW_OP_reg2:
21339 case DW_OP_reg3:
21340 case DW_OP_reg4:
21341 case DW_OP_reg5:
21342 case DW_OP_reg6:
21343 case DW_OP_reg7:
21344 case DW_OP_reg8:
21345 case DW_OP_reg9:
21346 case DW_OP_reg10:
21347 case DW_OP_reg11:
21348 case DW_OP_reg12:
21349 case DW_OP_reg13:
21350 case DW_OP_reg14:
21351 case DW_OP_reg15:
21352 case DW_OP_reg16:
21353 case DW_OP_reg17:
21354 case DW_OP_reg18:
21355 case DW_OP_reg19:
21356 case DW_OP_reg20:
21357 case DW_OP_reg21:
21358 case DW_OP_reg22:
21359 case DW_OP_reg23:
21360 case DW_OP_reg24:
21361 case DW_OP_reg25:
21362 case DW_OP_reg26:
21363 case DW_OP_reg27:
21364 case DW_OP_reg28:
21365 case DW_OP_reg29:
21366 case DW_OP_reg30:
21367 case DW_OP_reg31:
21368 stack[++stacki] = op - DW_OP_reg0;
21369 if (i < size)
21370 dwarf2_complex_location_expr_complaint ();
21371 break;
c906108c 21372
21ae7a4d
JK
21373 case DW_OP_regx:
21374 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
21375 i += bytes_read;
21376 stack[++stacki] = unsnd;
21377 if (i < size)
21378 dwarf2_complex_location_expr_complaint ();
21379 break;
c906108c 21380
21ae7a4d
JK
21381 case DW_OP_addr:
21382 stack[++stacki] = read_address (objfile->obfd, &data[i],
21383 cu, &bytes_read);
21384 i += bytes_read;
21385 break;
d53d4ac5 21386
21ae7a4d
JK
21387 case DW_OP_const1u:
21388 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
21389 i += 1;
21390 break;
21391
21392 case DW_OP_const1s:
21393 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
21394 i += 1;
21395 break;
21396
21397 case DW_OP_const2u:
21398 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
21399 i += 2;
21400 break;
21401
21402 case DW_OP_const2s:
21403 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
21404 i += 2;
21405 break;
d53d4ac5 21406
21ae7a4d
JK
21407 case DW_OP_const4u:
21408 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
21409 i += 4;
21410 break;
21411
21412 case DW_OP_const4s:
21413 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
21414 i += 4;
21415 break;
21416
585861ea
JK
21417 case DW_OP_const8u:
21418 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
21419 i += 8;
21420 break;
21421
21ae7a4d
JK
21422 case DW_OP_constu:
21423 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
21424 &bytes_read);
21425 i += bytes_read;
21426 break;
21427
21428 case DW_OP_consts:
21429 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
21430 i += bytes_read;
21431 break;
21432
21433 case DW_OP_dup:
21434 stack[stacki + 1] = stack[stacki];
21435 stacki++;
21436 break;
21437
21438 case DW_OP_plus:
21439 stack[stacki - 1] += stack[stacki];
21440 stacki--;
21441 break;
21442
21443 case DW_OP_plus_uconst:
21444 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
21445 &bytes_read);
21446 i += bytes_read;
21447 break;
21448
21449 case DW_OP_minus:
21450 stack[stacki - 1] -= stack[stacki];
21451 stacki--;
21452 break;
21453
21454 case DW_OP_deref:
21455 /* If we're not the last op, then we definitely can't encode
21456 this using GDB's address_class enum. This is valid for partial
21457 global symbols, although the variable's address will be bogus
21458 in the psymtab. */
21459 if (i < size)
21460 dwarf2_complex_location_expr_complaint ();
21461 break;
21462
21463 case DW_OP_GNU_push_tls_address:
4aa4e28b 21464 case DW_OP_form_tls_address:
21ae7a4d
JK
21465 /* The top of the stack has the offset from the beginning
21466 of the thread control block at which the variable is located. */
21467 /* Nothing should follow this operator, so the top of stack would
21468 be returned. */
21469 /* This is valid for partial global symbols, but the variable's
585861ea
JK
21470 address will be bogus in the psymtab. Make it always at least
21471 non-zero to not look as a variable garbage collected by linker
21472 which have DW_OP_addr 0. */
21ae7a4d
JK
21473 if (i < size)
21474 dwarf2_complex_location_expr_complaint ();
585861ea 21475 stack[stacki]++;
21ae7a4d
JK
21476 break;
21477
21478 case DW_OP_GNU_uninit:
21479 break;
21480
3019eac3 21481 case DW_OP_GNU_addr_index:
49f6c839 21482 case DW_OP_GNU_const_index:
3019eac3
DE
21483 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
21484 &bytes_read);
21485 i += bytes_read;
21486 break;
21487
21ae7a4d
JK
21488 default:
21489 {
f39c6ffd 21490 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
21491
21492 if (name)
21493 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
21494 name);
21495 else
21496 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
21497 op);
21498 }
21499
21500 return (stack[stacki]);
d53d4ac5 21501 }
3c6e0cb3 21502
21ae7a4d
JK
21503 /* Enforce maximum stack depth of SIZE-1 to avoid writing
21504 outside of the allocated space. Also enforce minimum>0. */
21505 if (stacki >= ARRAY_SIZE (stack) - 1)
21506 {
21507 complaint (&symfile_complaints,
21508 _("location description stack overflow"));
21509 return 0;
21510 }
21511
21512 if (stacki <= 0)
21513 {
21514 complaint (&symfile_complaints,
21515 _("location description stack underflow"));
21516 return 0;
21517 }
21518 }
21519 return (stack[stacki]);
c906108c
SS
21520}
21521
21522/* memory allocation interface */
21523
c906108c 21524static struct dwarf_block *
7b5a2f43 21525dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 21526{
8d749320 21527 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
21528}
21529
c906108c 21530static struct die_info *
b60c80d6 21531dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
21532{
21533 struct die_info *die;
b60c80d6
DJ
21534 size_t size = sizeof (struct die_info);
21535
21536 if (num_attrs > 1)
21537 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 21538
b60c80d6 21539 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
21540 memset (die, 0, sizeof (struct die_info));
21541 return (die);
21542}
2e276125
JB
21543
21544\f
21545/* Macro support. */
21546
233d95b5
JK
21547/* Return file name relative to the compilation directory of file number I in
21548 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 21549 responsible for freeing it. */
233d95b5 21550
2e276125 21551static char *
233d95b5 21552file_file_name (int file, struct line_header *lh)
2e276125 21553{
6a83a1e6
EZ
21554 /* Is the file number a valid index into the line header's file name
21555 table? Remember that file numbers start with one, not zero. */
fff8551c 21556 if (1 <= file && file <= lh->file_names.size ())
6a83a1e6 21557 {
8c43009f 21558 const file_entry &fe = lh->file_names[file - 1];
6e70227d 21559
8c43009f
PA
21560 if (!IS_ABSOLUTE_PATH (fe.name))
21561 {
21562 const char *dir = fe.include_dir (lh);
21563 if (dir != NULL)
21564 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
21565 }
21566 return xstrdup (fe.name);
6a83a1e6 21567 }
2e276125
JB
21568 else
21569 {
6a83a1e6
EZ
21570 /* The compiler produced a bogus file number. We can at least
21571 record the macro definitions made in the file, even if we
21572 won't be able to find the file by name. */
21573 char fake_name[80];
9a619af0 21574
8c042590
PM
21575 xsnprintf (fake_name, sizeof (fake_name),
21576 "<bad macro file number %d>", file);
2e276125 21577
6e70227d 21578 complaint (&symfile_complaints,
6a83a1e6
EZ
21579 _("bad file number in macro information (%d)"),
21580 file);
2e276125 21581
6a83a1e6 21582 return xstrdup (fake_name);
2e276125
JB
21583 }
21584}
21585
233d95b5
JK
21586/* Return the full name of file number I in *LH's file name table.
21587 Use COMP_DIR as the name of the current directory of the
21588 compilation. The result is allocated using xmalloc; the caller is
21589 responsible for freeing it. */
21590static char *
21591file_full_name (int file, struct line_header *lh, const char *comp_dir)
21592{
21593 /* Is the file number a valid index into the line header's file name
21594 table? Remember that file numbers start with one, not zero. */
fff8551c 21595 if (1 <= file && file <= lh->file_names.size ())
233d95b5
JK
21596 {
21597 char *relative = file_file_name (file, lh);
21598
21599 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
21600 return relative;
b36cec19
PA
21601 return reconcat (relative, comp_dir, SLASH_STRING,
21602 relative, (char *) NULL);
233d95b5
JK
21603 }
21604 else
21605 return file_file_name (file, lh);
21606}
21607
2e276125
JB
21608
21609static struct macro_source_file *
21610macro_start_file (int file, int line,
21611 struct macro_source_file *current_file,
43f3e411 21612 struct line_header *lh)
2e276125 21613{
233d95b5
JK
21614 /* File name relative to the compilation directory of this source file. */
21615 char *file_name = file_file_name (file, lh);
2e276125 21616
2e276125 21617 if (! current_file)
abc9d0dc 21618 {
fc474241
DE
21619 /* Note: We don't create a macro table for this compilation unit
21620 at all until we actually get a filename. */
43f3e411 21621 struct macro_table *macro_table = get_macro_table ();
fc474241 21622
abc9d0dc
TT
21623 /* If we have no current file, then this must be the start_file
21624 directive for the compilation unit's main source file. */
fc474241
DE
21625 current_file = macro_set_main (macro_table, file_name);
21626 macro_define_special (macro_table);
abc9d0dc 21627 }
2e276125 21628 else
233d95b5 21629 current_file = macro_include (current_file, line, file_name);
2e276125 21630
233d95b5 21631 xfree (file_name);
6e70227d 21632
2e276125
JB
21633 return current_file;
21634}
21635
21636
21637/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
21638 followed by a null byte. */
21639static char *
21640copy_string (const char *buf, int len)
21641{
224c3ddb 21642 char *s = (char *) xmalloc (len + 1);
9a619af0 21643
2e276125
JB
21644 memcpy (s, buf, len);
21645 s[len] = '\0';
2e276125
JB
21646 return s;
21647}
21648
21649
21650static const char *
21651consume_improper_spaces (const char *p, const char *body)
21652{
21653 if (*p == ' ')
21654 {
4d3c2250 21655 complaint (&symfile_complaints,
3e43a32a
MS
21656 _("macro definition contains spaces "
21657 "in formal argument list:\n`%s'"),
4d3c2250 21658 body);
2e276125
JB
21659
21660 while (*p == ' ')
21661 p++;
21662 }
21663
21664 return p;
21665}
21666
21667
21668static void
21669parse_macro_definition (struct macro_source_file *file, int line,
21670 const char *body)
21671{
21672 const char *p;
21673
21674 /* The body string takes one of two forms. For object-like macro
21675 definitions, it should be:
21676
21677 <macro name> " " <definition>
21678
21679 For function-like macro definitions, it should be:
21680
21681 <macro name> "() " <definition>
21682 or
21683 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21684
21685 Spaces may appear only where explicitly indicated, and in the
21686 <definition>.
21687
21688 The Dwarf 2 spec says that an object-like macro's name is always
21689 followed by a space, but versions of GCC around March 2002 omit
6e70227d 21690 the space when the macro's definition is the empty string.
2e276125
JB
21691
21692 The Dwarf 2 spec says that there should be no spaces between the
21693 formal arguments in a function-like macro's formal argument list,
21694 but versions of GCC around March 2002 include spaces after the
21695 commas. */
21696
21697
21698 /* Find the extent of the macro name. The macro name is terminated
21699 by either a space or null character (for an object-like macro) or
21700 an opening paren (for a function-like macro). */
21701 for (p = body; *p; p++)
21702 if (*p == ' ' || *p == '(')
21703 break;
21704
21705 if (*p == ' ' || *p == '\0')
21706 {
21707 /* It's an object-like macro. */
21708 int name_len = p - body;
21709 char *name = copy_string (body, name_len);
21710 const char *replacement;
21711
21712 if (*p == ' ')
21713 replacement = body + name_len + 1;
21714 else
21715 {
4d3c2250 21716 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21717 replacement = body + name_len;
21718 }
6e70227d 21719
2e276125
JB
21720 macro_define_object (file, line, name, replacement);
21721
21722 xfree (name);
21723 }
21724 else if (*p == '(')
21725 {
21726 /* It's a function-like macro. */
21727 char *name = copy_string (body, p - body);
21728 int argc = 0;
21729 int argv_size = 1;
8d749320 21730 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21731
21732 p++;
21733
21734 p = consume_improper_spaces (p, body);
21735
21736 /* Parse the formal argument list. */
21737 while (*p && *p != ')')
21738 {
21739 /* Find the extent of the current argument name. */
21740 const char *arg_start = p;
21741
21742 while (*p && *p != ',' && *p != ')' && *p != ' ')
21743 p++;
21744
21745 if (! *p || p == arg_start)
4d3c2250 21746 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21747 else
21748 {
21749 /* Make sure argv has room for the new argument. */
21750 if (argc >= argv_size)
21751 {
21752 argv_size *= 2;
224c3ddb 21753 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21754 }
21755
21756 argv[argc++] = copy_string (arg_start, p - arg_start);
21757 }
21758
21759 p = consume_improper_spaces (p, body);
21760
21761 /* Consume the comma, if present. */
21762 if (*p == ',')
21763 {
21764 p++;
21765
21766 p = consume_improper_spaces (p, body);
21767 }
21768 }
21769
21770 if (*p == ')')
21771 {
21772 p++;
21773
21774 if (*p == ' ')
21775 /* Perfectly formed definition, no complaints. */
21776 macro_define_function (file, line, name,
6e70227d 21777 argc, (const char **) argv,
2e276125
JB
21778 p + 1);
21779 else if (*p == '\0')
21780 {
21781 /* Complain, but do define it. */
4d3c2250 21782 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21783 macro_define_function (file, line, name,
6e70227d 21784 argc, (const char **) argv,
2e276125
JB
21785 p);
21786 }
21787 else
21788 /* Just complain. */
4d3c2250 21789 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21790 }
21791 else
21792 /* Just complain. */
4d3c2250 21793 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21794
21795 xfree (name);
21796 {
21797 int i;
21798
21799 for (i = 0; i < argc; i++)
21800 xfree (argv[i]);
21801 }
21802 xfree (argv);
21803 }
21804 else
4d3c2250 21805 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21806}
21807
cf2c3c16
TT
21808/* Skip some bytes from BYTES according to the form given in FORM.
21809 Returns the new pointer. */
2e276125 21810
d521ce57
TT
21811static const gdb_byte *
21812skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21813 enum dwarf_form form,
21814 unsigned int offset_size,
21815 struct dwarf2_section_info *section)
2e276125 21816{
cf2c3c16 21817 unsigned int bytes_read;
2e276125 21818
cf2c3c16 21819 switch (form)
2e276125 21820 {
cf2c3c16
TT
21821 case DW_FORM_data1:
21822 case DW_FORM_flag:
21823 ++bytes;
21824 break;
21825
21826 case DW_FORM_data2:
21827 bytes += 2;
21828 break;
21829
21830 case DW_FORM_data4:
21831 bytes += 4;
21832 break;
21833
21834 case DW_FORM_data8:
21835 bytes += 8;
21836 break;
21837
0224619f
JK
21838 case DW_FORM_data16:
21839 bytes += 16;
21840 break;
21841
cf2c3c16
TT
21842 case DW_FORM_string:
21843 read_direct_string (abfd, bytes, &bytes_read);
21844 bytes += bytes_read;
21845 break;
21846
21847 case DW_FORM_sec_offset:
21848 case DW_FORM_strp:
36586728 21849 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21850 bytes += offset_size;
21851 break;
21852
21853 case DW_FORM_block:
21854 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21855 bytes += bytes_read;
21856 break;
21857
21858 case DW_FORM_block1:
21859 bytes += 1 + read_1_byte (abfd, bytes);
21860 break;
21861 case DW_FORM_block2:
21862 bytes += 2 + read_2_bytes (abfd, bytes);
21863 break;
21864 case DW_FORM_block4:
21865 bytes += 4 + read_4_bytes (abfd, bytes);
21866 break;
21867
21868 case DW_FORM_sdata:
21869 case DW_FORM_udata:
3019eac3
DE
21870 case DW_FORM_GNU_addr_index:
21871 case DW_FORM_GNU_str_index:
d521ce57 21872 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21873 if (bytes == NULL)
21874 {
21875 dwarf2_section_buffer_overflow_complaint (section);
21876 return NULL;
21877 }
cf2c3c16
TT
21878 break;
21879
21880 default:
21881 {
21882 complain:
21883 complaint (&symfile_complaints,
21884 _("invalid form 0x%x in `%s'"),
a32a8923 21885 form, get_section_name (section));
cf2c3c16
TT
21886 return NULL;
21887 }
2e276125
JB
21888 }
21889
cf2c3c16
TT
21890 return bytes;
21891}
757a13d0 21892
cf2c3c16
TT
21893/* A helper for dwarf_decode_macros that handles skipping an unknown
21894 opcode. Returns an updated pointer to the macro data buffer; or,
21895 on error, issues a complaint and returns NULL. */
757a13d0 21896
d521ce57 21897static const gdb_byte *
cf2c3c16 21898skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21899 const gdb_byte **opcode_definitions,
21900 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21901 bfd *abfd,
21902 unsigned int offset_size,
21903 struct dwarf2_section_info *section)
21904{
21905 unsigned int bytes_read, i;
21906 unsigned long arg;
d521ce57 21907 const gdb_byte *defn;
2e276125 21908
cf2c3c16 21909 if (opcode_definitions[opcode] == NULL)
2e276125 21910 {
cf2c3c16
TT
21911 complaint (&symfile_complaints,
21912 _("unrecognized DW_MACFINO opcode 0x%x"),
21913 opcode);
21914 return NULL;
21915 }
2e276125 21916
cf2c3c16
TT
21917 defn = opcode_definitions[opcode];
21918 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21919 defn += bytes_read;
2e276125 21920
cf2c3c16
TT
21921 for (i = 0; i < arg; ++i)
21922 {
aead7601
SM
21923 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21924 (enum dwarf_form) defn[i], offset_size,
f664829e 21925 section);
cf2c3c16
TT
21926 if (mac_ptr == NULL)
21927 {
21928 /* skip_form_bytes already issued the complaint. */
21929 return NULL;
21930 }
21931 }
757a13d0 21932
cf2c3c16
TT
21933 return mac_ptr;
21934}
757a13d0 21935
cf2c3c16
TT
21936/* A helper function which parses the header of a macro section.
21937 If the macro section is the extended (for now called "GNU") type,
21938 then this updates *OFFSET_SIZE. Returns a pointer to just after
21939 the header, or issues a complaint and returns NULL on error. */
757a13d0 21940
d521ce57
TT
21941static const gdb_byte *
21942dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21943 bfd *abfd,
d521ce57 21944 const gdb_byte *mac_ptr,
cf2c3c16
TT
21945 unsigned int *offset_size,
21946 int section_is_gnu)
21947{
21948 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21949
cf2c3c16
TT
21950 if (section_is_gnu)
21951 {
21952 unsigned int version, flags;
757a13d0 21953
cf2c3c16 21954 version = read_2_bytes (abfd, mac_ptr);
0af92d60 21955 if (version != 4 && version != 5)
cf2c3c16
TT
21956 {
21957 complaint (&symfile_complaints,
21958 _("unrecognized version `%d' in .debug_macro section"),
21959 version);
21960 return NULL;
21961 }
21962 mac_ptr += 2;
757a13d0 21963
cf2c3c16
TT
21964 flags = read_1_byte (abfd, mac_ptr);
21965 ++mac_ptr;
21966 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21967
cf2c3c16
TT
21968 if ((flags & 2) != 0)
21969 /* We don't need the line table offset. */
21970 mac_ptr += *offset_size;
757a13d0 21971
cf2c3c16
TT
21972 /* Vendor opcode descriptions. */
21973 if ((flags & 4) != 0)
21974 {
21975 unsigned int i, count;
757a13d0 21976
cf2c3c16
TT
21977 count = read_1_byte (abfd, mac_ptr);
21978 ++mac_ptr;
21979 for (i = 0; i < count; ++i)
21980 {
21981 unsigned int opcode, bytes_read;
21982 unsigned long arg;
21983
21984 opcode = read_1_byte (abfd, mac_ptr);
21985 ++mac_ptr;
21986 opcode_definitions[opcode] = mac_ptr;
21987 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21988 mac_ptr += bytes_read;
21989 mac_ptr += arg;
21990 }
757a13d0 21991 }
cf2c3c16 21992 }
757a13d0 21993
cf2c3c16
TT
21994 return mac_ptr;
21995}
757a13d0 21996
cf2c3c16 21997/* A helper for dwarf_decode_macros that handles the GNU extensions,
0af92d60 21998 including DW_MACRO_import. */
cf2c3c16
TT
21999
22000static void
d521ce57
TT
22001dwarf_decode_macro_bytes (bfd *abfd,
22002 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 22003 struct macro_source_file *current_file,
43f3e411 22004 struct line_header *lh,
cf2c3c16 22005 struct dwarf2_section_info *section,
36586728 22006 int section_is_gnu, int section_is_dwz,
cf2c3c16 22007 unsigned int offset_size,
8fc3fc34 22008 htab_t include_hash)
cf2c3c16 22009{
4d663531 22010 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
22011 enum dwarf_macro_record_type macinfo_type;
22012 int at_commandline;
d521ce57 22013 const gdb_byte *opcode_definitions[256];
757a13d0 22014
cf2c3c16
TT
22015 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22016 &offset_size, section_is_gnu);
22017 if (mac_ptr == NULL)
22018 {
22019 /* We already issued a complaint. */
22020 return;
22021 }
757a13d0
JK
22022
22023 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
22024 GDB is still reading the definitions from command line. First
22025 DW_MACINFO_start_file will need to be ignored as it was already executed
22026 to create CURRENT_FILE for the main source holding also the command line
22027 definitions. On first met DW_MACINFO_start_file this flag is reset to
22028 normally execute all the remaining DW_MACINFO_start_file macinfos. */
22029
22030 at_commandline = 1;
22031
22032 do
22033 {
22034 /* Do we at least have room for a macinfo type byte? */
22035 if (mac_ptr >= mac_end)
22036 {
f664829e 22037 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
22038 break;
22039 }
22040
aead7601 22041 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
22042 mac_ptr++;
22043
cf2c3c16
TT
22044 /* Note that we rely on the fact that the corresponding GNU and
22045 DWARF constants are the same. */
757a13d0
JK
22046 switch (macinfo_type)
22047 {
22048 /* A zero macinfo type indicates the end of the macro
22049 information. */
22050 case 0:
22051 break;
2e276125 22052
0af92d60
JK
22053 case DW_MACRO_define:
22054 case DW_MACRO_undef:
22055 case DW_MACRO_define_strp:
22056 case DW_MACRO_undef_strp:
22057 case DW_MACRO_define_sup:
22058 case DW_MACRO_undef_sup:
2e276125 22059 {
891d2f0b 22060 unsigned int bytes_read;
2e276125 22061 int line;
d521ce57 22062 const char *body;
cf2c3c16 22063 int is_define;
2e276125 22064
cf2c3c16
TT
22065 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22066 mac_ptr += bytes_read;
22067
0af92d60
JK
22068 if (macinfo_type == DW_MACRO_define
22069 || macinfo_type == DW_MACRO_undef)
cf2c3c16
TT
22070 {
22071 body = read_direct_string (abfd, mac_ptr, &bytes_read);
22072 mac_ptr += bytes_read;
22073 }
22074 else
22075 {
22076 LONGEST str_offset;
22077
22078 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
22079 mac_ptr += offset_size;
2e276125 22080
0af92d60
JK
22081 if (macinfo_type == DW_MACRO_define_sup
22082 || macinfo_type == DW_MACRO_undef_sup
f7a35f02 22083 || section_is_dwz)
36586728
TT
22084 {
22085 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22086
22087 body = read_indirect_string_from_dwz (dwz, str_offset);
22088 }
22089 else
22090 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
22091 }
22092
0af92d60
JK
22093 is_define = (macinfo_type == DW_MACRO_define
22094 || macinfo_type == DW_MACRO_define_strp
22095 || macinfo_type == DW_MACRO_define_sup);
2e276125 22096 if (! current_file)
757a13d0
JK
22097 {
22098 /* DWARF violation as no main source is present. */
22099 complaint (&symfile_complaints,
22100 _("debug info with no main source gives macro %s "
22101 "on line %d: %s"),
cf2c3c16
TT
22102 is_define ? _("definition") : _("undefinition"),
22103 line, body);
757a13d0
JK
22104 break;
22105 }
3e43a32a
MS
22106 if ((line == 0 && !at_commandline)
22107 || (line != 0 && at_commandline))
4d3c2250 22108 complaint (&symfile_complaints,
757a13d0
JK
22109 _("debug info gives %s macro %s with %s line %d: %s"),
22110 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 22111 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
22112 line == 0 ? _("zero") : _("non-zero"), line, body);
22113
cf2c3c16 22114 if (is_define)
757a13d0 22115 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
22116 else
22117 {
0af92d60
JK
22118 gdb_assert (macinfo_type == DW_MACRO_undef
22119 || macinfo_type == DW_MACRO_undef_strp
22120 || macinfo_type == DW_MACRO_undef_sup);
cf2c3c16
TT
22121 macro_undef (current_file, line, body);
22122 }
2e276125
JB
22123 }
22124 break;
22125
0af92d60 22126 case DW_MACRO_start_file:
2e276125 22127 {
891d2f0b 22128 unsigned int bytes_read;
2e276125
JB
22129 int line, file;
22130
22131 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22132 mac_ptr += bytes_read;
22133 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22134 mac_ptr += bytes_read;
22135
3e43a32a
MS
22136 if ((line == 0 && !at_commandline)
22137 || (line != 0 && at_commandline))
757a13d0
JK
22138 complaint (&symfile_complaints,
22139 _("debug info gives source %d included "
22140 "from %s at %s line %d"),
22141 file, at_commandline ? _("command-line") : _("file"),
22142 line == 0 ? _("zero") : _("non-zero"), line);
22143
22144 if (at_commandline)
22145 {
0af92d60 22146 /* This DW_MACRO_start_file was executed in the
cf2c3c16 22147 pass one. */
757a13d0
JK
22148 at_commandline = 0;
22149 }
22150 else
43f3e411 22151 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
22152 }
22153 break;
22154
0af92d60 22155 case DW_MACRO_end_file:
2e276125 22156 if (! current_file)
4d3c2250 22157 complaint (&symfile_complaints,
3e43a32a
MS
22158 _("macro debug info has an unmatched "
22159 "`close_file' directive"));
2e276125
JB
22160 else
22161 {
22162 current_file = current_file->included_by;
22163 if (! current_file)
22164 {
cf2c3c16 22165 enum dwarf_macro_record_type next_type;
2e276125
JB
22166
22167 /* GCC circa March 2002 doesn't produce the zero
22168 type byte marking the end of the compilation
22169 unit. Complain if it's not there, but exit no
22170 matter what. */
22171
22172 /* Do we at least have room for a macinfo type byte? */
22173 if (mac_ptr >= mac_end)
22174 {
f664829e 22175 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
22176 return;
22177 }
22178
22179 /* We don't increment mac_ptr here, so this is just
22180 a look-ahead. */
aead7601
SM
22181 next_type
22182 = (enum dwarf_macro_record_type) read_1_byte (abfd,
22183 mac_ptr);
2e276125 22184 if (next_type != 0)
4d3c2250 22185 complaint (&symfile_complaints,
3e43a32a
MS
22186 _("no terminating 0-type entry for "
22187 "macros in `.debug_macinfo' section"));
2e276125
JB
22188
22189 return;
22190 }
22191 }
22192 break;
22193
0af92d60
JK
22194 case DW_MACRO_import:
22195 case DW_MACRO_import_sup:
cf2c3c16
TT
22196 {
22197 LONGEST offset;
8fc3fc34 22198 void **slot;
a036ba48
TT
22199 bfd *include_bfd = abfd;
22200 struct dwarf2_section_info *include_section = section;
d521ce57 22201 const gdb_byte *include_mac_end = mac_end;
a036ba48 22202 int is_dwz = section_is_dwz;
d521ce57 22203 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
22204
22205 offset = read_offset_1 (abfd, mac_ptr, offset_size);
22206 mac_ptr += offset_size;
22207
0af92d60 22208 if (macinfo_type == DW_MACRO_import_sup)
a036ba48
TT
22209 {
22210 struct dwz_file *dwz = dwarf2_get_dwz_file ();
22211
4d663531 22212 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 22213
a036ba48 22214 include_section = &dwz->macro;
a32a8923 22215 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
22216 include_mac_end = dwz->macro.buffer + dwz->macro.size;
22217 is_dwz = 1;
22218 }
22219
22220 new_mac_ptr = include_section->buffer + offset;
22221 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
22222
8fc3fc34
TT
22223 if (*slot != NULL)
22224 {
22225 /* This has actually happened; see
22226 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
22227 complaint (&symfile_complaints,
0af92d60 22228 _("recursive DW_MACRO_import in "
8fc3fc34
TT
22229 ".debug_macro section"));
22230 }
22231 else
22232 {
d521ce57 22233 *slot = (void *) new_mac_ptr;
36586728 22234
a036ba48 22235 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 22236 include_mac_end, current_file, lh,
36586728 22237 section, section_is_gnu, is_dwz,
4d663531 22238 offset_size, include_hash);
8fc3fc34 22239
d521ce57 22240 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 22241 }
cf2c3c16
TT
22242 }
22243 break;
22244
2e276125 22245 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
22246 if (!section_is_gnu)
22247 {
22248 unsigned int bytes_read;
2e276125 22249
ac298888
TT
22250 /* This reads the constant, but since we don't recognize
22251 any vendor extensions, we ignore it. */
22252 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
22253 mac_ptr += bytes_read;
22254 read_direct_string (abfd, mac_ptr, &bytes_read);
22255 mac_ptr += bytes_read;
2e276125 22256
cf2c3c16
TT
22257 /* We don't recognize any vendor extensions. */
22258 break;
22259 }
22260 /* FALLTHROUGH */
22261
22262 default:
22263 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22264 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22265 section);
22266 if (mac_ptr == NULL)
22267 return;
22268 break;
2e276125 22269 }
757a13d0 22270 } while (macinfo_type != 0);
2e276125 22271}
8e19ed76 22272
cf2c3c16 22273static void
09262596 22274dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 22275 int section_is_gnu)
cf2c3c16 22276{
bb5ed363 22277 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
22278 struct line_header *lh = cu->line_header;
22279 bfd *abfd;
d521ce57 22280 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
22281 struct macro_source_file *current_file = 0;
22282 enum dwarf_macro_record_type macinfo_type;
22283 unsigned int offset_size = cu->header.offset_size;
d521ce57 22284 const gdb_byte *opcode_definitions[256];
8fc3fc34 22285 struct cleanup *cleanup;
8fc3fc34 22286 void **slot;
09262596
DE
22287 struct dwarf2_section_info *section;
22288 const char *section_name;
22289
22290 if (cu->dwo_unit != NULL)
22291 {
22292 if (section_is_gnu)
22293 {
22294 section = &cu->dwo_unit->dwo_file->sections.macro;
22295 section_name = ".debug_macro.dwo";
22296 }
22297 else
22298 {
22299 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22300 section_name = ".debug_macinfo.dwo";
22301 }
22302 }
22303 else
22304 {
22305 if (section_is_gnu)
22306 {
22307 section = &dwarf2_per_objfile->macro;
22308 section_name = ".debug_macro";
22309 }
22310 else
22311 {
22312 section = &dwarf2_per_objfile->macinfo;
22313 section_name = ".debug_macinfo";
22314 }
22315 }
cf2c3c16 22316
bb5ed363 22317 dwarf2_read_section (objfile, section);
cf2c3c16
TT
22318 if (section->buffer == NULL)
22319 {
fceca515 22320 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
22321 return;
22322 }
a32a8923 22323 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
22324
22325 /* First pass: Find the name of the base filename.
22326 This filename is needed in order to process all macros whose definition
22327 (or undefinition) comes from the command line. These macros are defined
22328 before the first DW_MACINFO_start_file entry, and yet still need to be
22329 associated to the base file.
22330
22331 To determine the base file name, we scan the macro definitions until we
22332 reach the first DW_MACINFO_start_file entry. We then initialize
22333 CURRENT_FILE accordingly so that any macro definition found before the
22334 first DW_MACINFO_start_file can still be associated to the base file. */
22335
22336 mac_ptr = section->buffer + offset;
22337 mac_end = section->buffer + section->size;
22338
22339 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
22340 &offset_size, section_is_gnu);
22341 if (mac_ptr == NULL)
22342 {
22343 /* We already issued a complaint. */
22344 return;
22345 }
22346
22347 do
22348 {
22349 /* Do we at least have room for a macinfo type byte? */
22350 if (mac_ptr >= mac_end)
22351 {
22352 /* Complaint is printed during the second pass as GDB will probably
22353 stop the first pass earlier upon finding
22354 DW_MACINFO_start_file. */
22355 break;
22356 }
22357
aead7601 22358 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
22359 mac_ptr++;
22360
22361 /* Note that we rely on the fact that the corresponding GNU and
22362 DWARF constants are the same. */
22363 switch (macinfo_type)
22364 {
22365 /* A zero macinfo type indicates the end of the macro
22366 information. */
22367 case 0:
22368 break;
22369
0af92d60
JK
22370 case DW_MACRO_define:
22371 case DW_MACRO_undef:
cf2c3c16
TT
22372 /* Only skip the data by MAC_PTR. */
22373 {
22374 unsigned int bytes_read;
22375
22376 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22377 mac_ptr += bytes_read;
22378 read_direct_string (abfd, mac_ptr, &bytes_read);
22379 mac_ptr += bytes_read;
22380 }
22381 break;
22382
0af92d60 22383 case DW_MACRO_start_file:
cf2c3c16
TT
22384 {
22385 unsigned int bytes_read;
22386 int line, file;
22387
22388 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22389 mac_ptr += bytes_read;
22390 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22391 mac_ptr += bytes_read;
22392
43f3e411 22393 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
22394 }
22395 break;
22396
0af92d60 22397 case DW_MACRO_end_file:
cf2c3c16
TT
22398 /* No data to skip by MAC_PTR. */
22399 break;
22400
0af92d60
JK
22401 case DW_MACRO_define_strp:
22402 case DW_MACRO_undef_strp:
22403 case DW_MACRO_define_sup:
22404 case DW_MACRO_undef_sup:
cf2c3c16
TT
22405 {
22406 unsigned int bytes_read;
22407
22408 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22409 mac_ptr += bytes_read;
22410 mac_ptr += offset_size;
22411 }
22412 break;
22413
0af92d60
JK
22414 case DW_MACRO_import:
22415 case DW_MACRO_import_sup:
cf2c3c16 22416 /* Note that, according to the spec, a transparent include
0af92d60 22417 chain cannot call DW_MACRO_start_file. So, we can just
cf2c3c16
TT
22418 skip this opcode. */
22419 mac_ptr += offset_size;
22420 break;
22421
22422 case DW_MACINFO_vendor_ext:
22423 /* Only skip the data by MAC_PTR. */
22424 if (!section_is_gnu)
22425 {
22426 unsigned int bytes_read;
22427
22428 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
22429 mac_ptr += bytes_read;
22430 read_direct_string (abfd, mac_ptr, &bytes_read);
22431 mac_ptr += bytes_read;
22432 }
22433 /* FALLTHROUGH */
22434
22435 default:
22436 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 22437 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
22438 section);
22439 if (mac_ptr == NULL)
22440 return;
22441 break;
22442 }
22443 } while (macinfo_type != 0 && current_file == NULL);
22444
22445 /* Second pass: Process all entries.
22446
22447 Use the AT_COMMAND_LINE flag to determine whether we are still processing
22448 command-line macro definitions/undefinitions. This flag is unset when we
22449 reach the first DW_MACINFO_start_file entry. */
22450
fc4007c9
TT
22451 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
22452 htab_eq_pointer,
22453 NULL, xcalloc, xfree));
8fc3fc34 22454 mac_ptr = section->buffer + offset;
fc4007c9 22455 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
d521ce57 22456 *slot = (void *) mac_ptr;
8fc3fc34 22457 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 22458 current_file, lh, section,
fc4007c9
TT
22459 section_is_gnu, 0, offset_size,
22460 include_hash.get ());
cf2c3c16
TT
22461}
22462
8e19ed76 22463/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 22464 if so return true else false. */
380bca97 22465
8e19ed76 22466static int
6e5a29e1 22467attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
22468{
22469 return (attr == NULL ? 0 :
22470 attr->form == DW_FORM_block1
22471 || attr->form == DW_FORM_block2
22472 || attr->form == DW_FORM_block4
2dc7f7b3
TT
22473 || attr->form == DW_FORM_block
22474 || attr->form == DW_FORM_exprloc);
8e19ed76 22475}
4c2df51b 22476
c6a0999f
JB
22477/* Return non-zero if ATTR's value is a section offset --- classes
22478 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
22479 You may use DW_UNSND (attr) to retrieve such offsets.
22480
22481 Section 7.5.4, "Attribute Encodings", explains that no attribute
22482 may have a value that belongs to more than one of these classes; it
22483 would be ambiguous if we did, because we use the same forms for all
22484 of them. */
380bca97 22485
3690dd37 22486static int
6e5a29e1 22487attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
22488{
22489 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
22490 || attr->form == DW_FORM_data8
22491 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
22492}
22493
3690dd37
JB
22494/* Return non-zero if ATTR's value falls in the 'constant' class, or
22495 zero otherwise. When this function returns true, you can apply
22496 dwarf2_get_attr_constant_value to it.
22497
22498 However, note that for some attributes you must check
22499 attr_form_is_section_offset before using this test. DW_FORM_data4
22500 and DW_FORM_data8 are members of both the constant class, and of
22501 the classes that contain offsets into other debug sections
22502 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
22503 that, if an attribute's can be either a constant or one of the
22504 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
0224619f
JK
22505 taken as section offsets, not constants.
22506
22507 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
22508 cannot handle that. */
380bca97 22509
3690dd37 22510static int
6e5a29e1 22511attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
22512{
22513 switch (attr->form)
22514 {
22515 case DW_FORM_sdata:
22516 case DW_FORM_udata:
22517 case DW_FORM_data1:
22518 case DW_FORM_data2:
22519 case DW_FORM_data4:
22520 case DW_FORM_data8:
22521 return 1;
22522 default:
22523 return 0;
22524 }
22525}
22526
7771576e
SA
22527
22528/* DW_ADDR is always stored already as sect_offset; despite for the forms
22529 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
22530
22531static int
6e5a29e1 22532attr_form_is_ref (const struct attribute *attr)
7771576e
SA
22533{
22534 switch (attr->form)
22535 {
22536 case DW_FORM_ref_addr:
22537 case DW_FORM_ref1:
22538 case DW_FORM_ref2:
22539 case DW_FORM_ref4:
22540 case DW_FORM_ref8:
22541 case DW_FORM_ref_udata:
22542 case DW_FORM_GNU_ref_alt:
22543 return 1;
22544 default:
22545 return 0;
22546 }
22547}
22548
3019eac3
DE
22549/* Return the .debug_loc section to use for CU.
22550 For DWO files use .debug_loc.dwo. */
22551
22552static struct dwarf2_section_info *
22553cu_debug_loc_section (struct dwarf2_cu *cu)
22554{
22555 if (cu->dwo_unit)
43988095
JK
22556 {
22557 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22558
22559 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22560 }
22561 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22562 : &dwarf2_per_objfile->loc);
3019eac3
DE
22563}
22564
8cf6f0b1
TT
22565/* A helper function that fills in a dwarf2_loclist_baton. */
22566
22567static void
22568fill_in_loclist_baton (struct dwarf2_cu *cu,
22569 struct dwarf2_loclist_baton *baton,
ff39bb5e 22570 const struct attribute *attr)
8cf6f0b1 22571{
3019eac3
DE
22572 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22573
22574 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
22575
22576 baton->per_cu = cu->per_cu;
22577 gdb_assert (baton->per_cu);
22578 /* We don't know how long the location list is, but make sure we
22579 don't run off the edge of the section. */
3019eac3
DE
22580 baton->size = section->size - DW_UNSND (attr);
22581 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 22582 baton->base_address = cu->base_address;
f664829e 22583 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
22584}
22585
4c2df51b 22586static void
ff39bb5e 22587dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 22588 struct dwarf2_cu *cu, int is_block)
4c2df51b 22589{
bb5ed363 22590 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 22591 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 22592
3690dd37 22593 if (attr_form_is_section_offset (attr)
3019eac3 22594 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
22595 the section. If so, fall through to the complaint in the
22596 other branch. */
3019eac3 22597 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 22598 {
0d53c4c4 22599 struct dwarf2_loclist_baton *baton;
4c2df51b 22600
8d749320 22601 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 22602
8cf6f0b1 22603 fill_in_loclist_baton (cu, baton, attr);
be391dca 22604
d00adf39 22605 if (cu->base_known == 0)
0d53c4c4 22606 complaint (&symfile_complaints,
3e43a32a
MS
22607 _("Location list used without "
22608 "specifying the CU base address."));
4c2df51b 22609
f1e6e072
TT
22610 SYMBOL_ACLASS_INDEX (sym) = (is_block
22611 ? dwarf2_loclist_block_index
22612 : dwarf2_loclist_index);
0d53c4c4
DJ
22613 SYMBOL_LOCATION_BATON (sym) = baton;
22614 }
22615 else
22616 {
22617 struct dwarf2_locexpr_baton *baton;
22618
8d749320 22619 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
22620 baton->per_cu = cu->per_cu;
22621 gdb_assert (baton->per_cu);
0d53c4c4
DJ
22622
22623 if (attr_form_is_block (attr))
22624 {
22625 /* Note that we're just copying the block's data pointer
22626 here, not the actual data. We're still pointing into the
6502dd73
DJ
22627 info_buffer for SYM's objfile; right now we never release
22628 that buffer, but when we do clean up properly this may
22629 need to change. */
0d53c4c4
DJ
22630 baton->size = DW_BLOCK (attr)->size;
22631 baton->data = DW_BLOCK (attr)->data;
22632 }
22633 else
22634 {
22635 dwarf2_invalid_attrib_class_complaint ("location description",
22636 SYMBOL_NATURAL_NAME (sym));
22637 baton->size = 0;
0d53c4c4 22638 }
6e70227d 22639
f1e6e072
TT
22640 SYMBOL_ACLASS_INDEX (sym) = (is_block
22641 ? dwarf2_locexpr_block_index
22642 : dwarf2_locexpr_index);
0d53c4c4
DJ
22643 SYMBOL_LOCATION_BATON (sym) = baton;
22644 }
4c2df51b 22645}
6502dd73 22646
9aa1f1e3
TT
22647/* Return the OBJFILE associated with the compilation unit CU. If CU
22648 came from a separate debuginfo file, then the master objfile is
22649 returned. */
ae0d2f24
UW
22650
22651struct objfile *
22652dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
22653{
9291a0cd 22654 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
22655
22656 /* Return the master objfile, so that we can report and look up the
22657 correct file containing this variable. */
22658 if (objfile->separate_debug_objfile_backlink)
22659 objfile = objfile->separate_debug_objfile_backlink;
22660
22661 return objfile;
22662}
22663
96408a79
SA
22664/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22665 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22666 CU_HEADERP first. */
22667
22668static const struct comp_unit_head *
22669per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22670 struct dwarf2_per_cu_data *per_cu)
22671{
d521ce57 22672 const gdb_byte *info_ptr;
96408a79
SA
22673
22674 if (per_cu->cu)
22675 return &per_cu->cu->header;
22676
9c541725 22677 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
96408a79
SA
22678
22679 memset (cu_headerp, 0, sizeof (*cu_headerp));
43988095
JK
22680 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22681 rcuh_kind::COMPILE);
96408a79
SA
22682
22683 return cu_headerp;
22684}
22685
ae0d2f24
UW
22686/* Return the address size given in the compilation unit header for CU. */
22687
98714339 22688int
ae0d2f24
UW
22689dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22690{
96408a79
SA
22691 struct comp_unit_head cu_header_local;
22692 const struct comp_unit_head *cu_headerp;
c471e790 22693
96408a79
SA
22694 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22695
22696 return cu_headerp->addr_size;
ae0d2f24
UW
22697}
22698
9eae7c52
TT
22699/* Return the offset size given in the compilation unit header for CU. */
22700
22701int
22702dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22703{
96408a79
SA
22704 struct comp_unit_head cu_header_local;
22705 const struct comp_unit_head *cu_headerp;
9c6c53f7 22706
96408a79
SA
22707 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22708
22709 return cu_headerp->offset_size;
22710}
22711
22712/* See its dwarf2loc.h declaration. */
22713
22714int
22715dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22716{
22717 struct comp_unit_head cu_header_local;
22718 const struct comp_unit_head *cu_headerp;
22719
22720 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22721
22722 if (cu_headerp->version == 2)
22723 return cu_headerp->addr_size;
22724 else
22725 return cu_headerp->offset_size;
181cebd4
JK
22726}
22727
9aa1f1e3
TT
22728/* Return the text offset of the CU. The returned offset comes from
22729 this CU's objfile. If this objfile came from a separate debuginfo
22730 file, then the offset may be different from the corresponding
22731 offset in the parent objfile. */
22732
22733CORE_ADDR
22734dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22735{
bb3fa9d0 22736 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22737
22738 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22739}
22740
43988095
JK
22741/* Return DWARF version number of PER_CU. */
22742
22743short
22744dwarf2_version (struct dwarf2_per_cu_data *per_cu)
22745{
22746 return per_cu->dwarf_version;
22747}
22748
348e048f
DE
22749/* Locate the .debug_info compilation unit from CU's objfile which contains
22750 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22751
22752static struct dwarf2_per_cu_data *
9c541725 22753dwarf2_find_containing_comp_unit (sect_offset sect_off,
36586728 22754 unsigned int offset_in_dwz,
ae038cb0
DJ
22755 struct objfile *objfile)
22756{
22757 struct dwarf2_per_cu_data *this_cu;
22758 int low, high;
36586728 22759 const sect_offset *cu_off;
ae038cb0 22760
ae038cb0
DJ
22761 low = 0;
22762 high = dwarf2_per_objfile->n_comp_units - 1;
22763 while (high > low)
22764 {
36586728 22765 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22766 int mid = low + (high - low) / 2;
9a619af0 22767
36586728 22768 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
9c541725 22769 cu_off = &mid_cu->sect_off;
36586728 22770 if (mid_cu->is_dwz > offset_in_dwz
9c541725 22771 || (mid_cu->is_dwz == offset_in_dwz && *cu_off >= sect_off))
ae038cb0
DJ
22772 high = mid;
22773 else
22774 low = mid + 1;
22775 }
22776 gdb_assert (low == high);
36586728 22777 this_cu = dwarf2_per_objfile->all_comp_units[low];
9c541725
PA
22778 cu_off = &this_cu->sect_off;
22779 if (this_cu->is_dwz != offset_in_dwz || *cu_off > sect_off)
ae038cb0 22780 {
36586728 22781 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8 22782 error (_("Dwarf Error: could not find partial DIE containing "
9c541725
PA
22783 "offset 0x%x [in module %s]"),
22784 to_underlying (sect_off), bfd_get_filename (objfile->obfd));
10b3939b 22785
9c541725
PA
22786 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
22787 <= sect_off);
ae038cb0
DJ
22788 return dwarf2_per_objfile->all_comp_units[low-1];
22789 }
22790 else
22791 {
22792 this_cu = dwarf2_per_objfile->all_comp_units[low];
22793 if (low == dwarf2_per_objfile->n_comp_units - 1
9c541725
PA
22794 && sect_off >= this_cu->sect_off + this_cu->length)
22795 error (_("invalid dwarf2 offset %u"), to_underlying (sect_off));
22796 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
ae038cb0
DJ
22797 return this_cu;
22798 }
22799}
22800
23745b47 22801/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22802
9816fde3 22803static void
23745b47 22804init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22805{
9816fde3 22806 memset (cu, 0, sizeof (*cu));
23745b47
DE
22807 per_cu->cu = cu;
22808 cu->per_cu = per_cu;
22809 cu->objfile = per_cu->objfile;
93311388 22810 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22811}
22812
22813/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22814
22815static void
95554aad
TT
22816prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22817 enum language pretend_language)
9816fde3
JK
22818{
22819 struct attribute *attr;
22820
22821 /* Set the language we're debugging. */
22822 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22823 if (attr)
22824 set_cu_language (DW_UNSND (attr), cu);
22825 else
9cded63f 22826 {
95554aad 22827 cu->language = pretend_language;
9cded63f
TT
22828 cu->language_defn = language_def (cu->language);
22829 }
dee91e82 22830
7d45c7c3 22831 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22832}
22833
ae038cb0
DJ
22834/* Release one cached compilation unit, CU. We unlink it from the tree
22835 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22836 the caller is responsible for that.
22837 NOTE: DATA is a void * because this function is also used as a
22838 cleanup routine. */
ae038cb0
DJ
22839
22840static void
68dc6402 22841free_heap_comp_unit (void *data)
ae038cb0 22842{
9a3c8263 22843 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22844
23745b47
DE
22845 gdb_assert (cu->per_cu != NULL);
22846 cu->per_cu->cu = NULL;
ae038cb0
DJ
22847 cu->per_cu = NULL;
22848
22849 obstack_free (&cu->comp_unit_obstack, NULL);
22850
22851 xfree (cu);
22852}
22853
72bf9492 22854/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22855 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22856 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22857
22858static void
22859free_stack_comp_unit (void *data)
22860{
9a3c8263 22861 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22862
23745b47
DE
22863 gdb_assert (cu->per_cu != NULL);
22864 cu->per_cu->cu = NULL;
22865 cu->per_cu = NULL;
22866
72bf9492
DJ
22867 obstack_free (&cu->comp_unit_obstack, NULL);
22868 cu->partial_dies = NULL;
ae038cb0
DJ
22869}
22870
22871/* Free all cached compilation units. */
22872
22873static void
22874free_cached_comp_units (void *data)
22875{
330cdd98 22876 dwarf2_per_objfile->free_cached_comp_units ();
ae038cb0
DJ
22877}
22878
22879/* Increase the age counter on each cached compilation unit, and free
22880 any that are too old. */
22881
22882static void
22883age_cached_comp_units (void)
22884{
22885 struct dwarf2_per_cu_data *per_cu, **last_chain;
22886
22887 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22888 per_cu = dwarf2_per_objfile->read_in_chain;
22889 while (per_cu != NULL)
22890 {
22891 per_cu->cu->last_used ++;
b4f54984 22892 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22893 dwarf2_mark (per_cu->cu);
22894 per_cu = per_cu->cu->read_in_chain;
22895 }
22896
22897 per_cu = dwarf2_per_objfile->read_in_chain;
22898 last_chain = &dwarf2_per_objfile->read_in_chain;
22899 while (per_cu != NULL)
22900 {
22901 struct dwarf2_per_cu_data *next_cu;
22902
22903 next_cu = per_cu->cu->read_in_chain;
22904
22905 if (!per_cu->cu->mark)
22906 {
68dc6402 22907 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22908 *last_chain = next_cu;
22909 }
22910 else
22911 last_chain = &per_cu->cu->read_in_chain;
22912
22913 per_cu = next_cu;
22914 }
22915}
22916
22917/* Remove a single compilation unit from the cache. */
22918
22919static void
dee91e82 22920free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22921{
22922 struct dwarf2_per_cu_data *per_cu, **last_chain;
22923
22924 per_cu = dwarf2_per_objfile->read_in_chain;
22925 last_chain = &dwarf2_per_objfile->read_in_chain;
22926 while (per_cu != NULL)
22927 {
22928 struct dwarf2_per_cu_data *next_cu;
22929
22930 next_cu = per_cu->cu->read_in_chain;
22931
dee91e82 22932 if (per_cu == target_per_cu)
ae038cb0 22933 {
68dc6402 22934 free_heap_comp_unit (per_cu->cu);
dee91e82 22935 per_cu->cu = NULL;
ae038cb0
DJ
22936 *last_chain = next_cu;
22937 break;
22938 }
22939 else
22940 last_chain = &per_cu->cu->read_in_chain;
22941
22942 per_cu = next_cu;
22943 }
22944}
22945
fe3e1990
DJ
22946/* Release all extra memory associated with OBJFILE. */
22947
22948void
22949dwarf2_free_objfile (struct objfile *objfile)
22950{
9a3c8263
SM
22951 dwarf2_per_objfile
22952 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22953 dwarf2_objfile_data_key);
fe3e1990
DJ
22954
22955 if (dwarf2_per_objfile == NULL)
22956 return;
22957
330cdd98 22958 dwarf2_per_objfile->~dwarf2_per_objfile ();
fe3e1990
DJ
22959}
22960
dee91e82
DE
22961/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22962 We store these in a hash table separate from the DIEs, and preserve them
22963 when the DIEs are flushed out of cache.
22964
22965 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22966 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22967 or the type may come from a DWO file. Furthermore, while it's more logical
22968 to use per_cu->section+offset, with Fission the section with the data is in
22969 the DWO file but we don't know that section at the point we need it.
22970 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22971 because we can enter the lookup routine, get_die_type_at_offset, from
22972 outside this file, and thus won't necessarily have PER_CU->cu.
22973 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22974
dee91e82 22975struct dwarf2_per_cu_offset_and_type
1c379e20 22976{
dee91e82 22977 const struct dwarf2_per_cu_data *per_cu;
9c541725 22978 sect_offset sect_off;
1c379e20
DJ
22979 struct type *type;
22980};
22981
dee91e82 22982/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22983
22984static hashval_t
dee91e82 22985per_cu_offset_and_type_hash (const void *item)
1c379e20 22986{
9a3c8263
SM
22987 const struct dwarf2_per_cu_offset_and_type *ofs
22988 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22989
9c541725 22990 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
1c379e20
DJ
22991}
22992
dee91e82 22993/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22994
22995static int
dee91e82 22996per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22997{
9a3c8263
SM
22998 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22999 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23000 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23001 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 23002
dee91e82 23003 return (ofs_lhs->per_cu == ofs_rhs->per_cu
9c541725 23004 && ofs_lhs->sect_off == ofs_rhs->sect_off);
1c379e20
DJ
23005}
23006
23007/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
23008 table if necessary. For convenience, return TYPE.
23009
23010 The DIEs reading must have careful ordering to:
23011 * Not cause infite loops trying to read in DIEs as a prerequisite for
23012 reading current DIE.
23013 * Not trying to dereference contents of still incompletely read in types
23014 while reading in other DIEs.
23015 * Enable referencing still incompletely read in types just by a pointer to
23016 the type without accessing its fields.
23017
23018 Therefore caller should follow these rules:
23019 * Try to fetch any prerequisite types we may need to build this DIE type
23020 before building the type and calling set_die_type.
e71ec853 23021 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
23022 possible before fetching more types to complete the current type.
23023 * Make the type as complete as possible before fetching more types. */
1c379e20 23024
f792889a 23025static struct type *
1c379e20
DJ
23026set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23027{
dee91e82 23028 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 23029 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
23030 struct attribute *attr;
23031 struct dynamic_prop prop;
1c379e20 23032
b4ba55a1
JB
23033 /* For Ada types, make sure that the gnat-specific data is always
23034 initialized (if not already set). There are a few types where
23035 we should not be doing so, because the type-specific area is
23036 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23037 where the type-specific area is used to store the floatformat).
23038 But this is not a problem, because the gnat-specific information
23039 is actually not needed for these types. */
23040 if (need_gnat_info (cu)
23041 && TYPE_CODE (type) != TYPE_CODE_FUNC
23042 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
23043 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23044 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23045 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
23046 && !HAVE_GNAT_AUX_INFO (type))
23047 INIT_GNAT_SPECIFIC (type);
23048
3f2f83dd
KB
23049 /* Read DW_AT_allocated and set in type. */
23050 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23051 if (attr_form_is_block (attr))
23052 {
23053 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23054 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
23055 }
23056 else if (attr != NULL)
23057 {
23058 complaint (&symfile_complaints,
9c541725
PA
23059 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
23060 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23061 to_underlying (die->sect_off));
3f2f83dd
KB
23062 }
23063
23064 /* Read DW_AT_associated and set in type. */
23065 attr = dwarf2_attr (die, DW_AT_associated, cu);
23066 if (attr_form_is_block (attr))
23067 {
23068 if (attr_to_dynamic_prop (attr, die, cu, &prop))
23069 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
23070 }
23071 else if (attr != NULL)
23072 {
23073 complaint (&symfile_complaints,
9c541725
PA
23074 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
23075 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23076 to_underlying (die->sect_off));
3f2f83dd
KB
23077 }
23078
3cdcd0ce
JB
23079 /* Read DW_AT_data_location and set in type. */
23080 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23081 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 23082 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 23083
dee91e82 23084 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 23085 {
dee91e82
DE
23086 dwarf2_per_objfile->die_type_hash =
23087 htab_create_alloc_ex (127,
23088 per_cu_offset_and_type_hash,
23089 per_cu_offset_and_type_eq,
23090 NULL,
23091 &objfile->objfile_obstack,
23092 hashtab_obstack_allocate,
23093 dummy_obstack_deallocate);
f792889a 23094 }
1c379e20 23095
dee91e82 23096 ofs.per_cu = cu->per_cu;
9c541725 23097 ofs.sect_off = die->sect_off;
1c379e20 23098 ofs.type = type;
dee91e82
DE
23099 slot = (struct dwarf2_per_cu_offset_and_type **)
23100 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
23101 if (*slot)
23102 complaint (&symfile_complaints,
23103 _("A problem internal to GDB: DIE 0x%x has type already set"),
9c541725 23104 to_underlying (die->sect_off));
8d749320
SM
23105 *slot = XOBNEW (&objfile->objfile_obstack,
23106 struct dwarf2_per_cu_offset_and_type);
1c379e20 23107 **slot = ofs;
f792889a 23108 return type;
1c379e20
DJ
23109}
23110
9c541725 23111/* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
02142a6c 23112 or return NULL if the die does not have a saved type. */
1c379e20
DJ
23113
23114static struct type *
9c541725 23115get_die_type_at_offset (sect_offset sect_off,
673bfd45 23116 struct dwarf2_per_cu_data *per_cu)
1c379e20 23117{
dee91e82 23118 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 23119
dee91e82 23120 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 23121 return NULL;
1c379e20 23122
dee91e82 23123 ofs.per_cu = per_cu;
9c541725 23124 ofs.sect_off = sect_off;
9a3c8263
SM
23125 slot = ((struct dwarf2_per_cu_offset_and_type *)
23126 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
23127 if (slot)
23128 return slot->type;
23129 else
23130 return NULL;
23131}
23132
02142a6c 23133/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
23134 or return NULL if DIE does not have a saved type. */
23135
23136static struct type *
23137get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23138{
9c541725 23139 return get_die_type_at_offset (die->sect_off, cu->per_cu);
673bfd45
DE
23140}
23141
10b3939b
DJ
23142/* Add a dependence relationship from CU to REF_PER_CU. */
23143
23144static void
23145dwarf2_add_dependence (struct dwarf2_cu *cu,
23146 struct dwarf2_per_cu_data *ref_per_cu)
23147{
23148 void **slot;
23149
23150 if (cu->dependencies == NULL)
23151 cu->dependencies
23152 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23153 NULL, &cu->comp_unit_obstack,
23154 hashtab_obstack_allocate,
23155 dummy_obstack_deallocate);
23156
23157 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23158 if (*slot == NULL)
23159 *slot = ref_per_cu;
23160}
1c379e20 23161
f504f079
DE
23162/* Subroutine of dwarf2_mark to pass to htab_traverse.
23163 Set the mark field in every compilation unit in the
ae038cb0
DJ
23164 cache that we must keep because we are keeping CU. */
23165
10b3939b
DJ
23166static int
23167dwarf2_mark_helper (void **slot, void *data)
23168{
23169 struct dwarf2_per_cu_data *per_cu;
23170
23171 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
23172
23173 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23174 reading of the chain. As such dependencies remain valid it is not much
23175 useful to track and undo them during QUIT cleanups. */
23176 if (per_cu->cu == NULL)
23177 return 1;
23178
10b3939b
DJ
23179 if (per_cu->cu->mark)
23180 return 1;
23181 per_cu->cu->mark = 1;
23182
23183 if (per_cu->cu->dependencies != NULL)
23184 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23185
23186 return 1;
23187}
23188
f504f079
DE
23189/* Set the mark field in CU and in every other compilation unit in the
23190 cache that we must keep because we are keeping CU. */
23191
ae038cb0
DJ
23192static void
23193dwarf2_mark (struct dwarf2_cu *cu)
23194{
23195 if (cu->mark)
23196 return;
23197 cu->mark = 1;
10b3939b
DJ
23198 if (cu->dependencies != NULL)
23199 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
23200}
23201
23202static void
23203dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23204{
23205 while (per_cu)
23206 {
23207 per_cu->cu->mark = 0;
23208 per_cu = per_cu->cu->read_in_chain;
23209 }
72bf9492
DJ
23210}
23211
72bf9492
DJ
23212/* Trivial hash function for partial_die_info: the hash value of a DIE
23213 is its offset in .debug_info for this objfile. */
23214
23215static hashval_t
23216partial_die_hash (const void *item)
23217{
9a3c8263
SM
23218 const struct partial_die_info *part_die
23219 = (const struct partial_die_info *) item;
9a619af0 23220
9c541725 23221 return to_underlying (part_die->sect_off);
72bf9492
DJ
23222}
23223
23224/* Trivial comparison function for partial_die_info structures: two DIEs
23225 are equal if they have the same offset. */
23226
23227static int
23228partial_die_eq (const void *item_lhs, const void *item_rhs)
23229{
9a3c8263
SM
23230 const struct partial_die_info *part_die_lhs
23231 = (const struct partial_die_info *) item_lhs;
23232 const struct partial_die_info *part_die_rhs
23233 = (const struct partial_die_info *) item_rhs;
9a619af0 23234
9c541725 23235 return part_die_lhs->sect_off == part_die_rhs->sect_off;
72bf9492
DJ
23236}
23237
b4f54984
DE
23238static struct cmd_list_element *set_dwarf_cmdlist;
23239static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
23240
23241static void
b4f54984 23242set_dwarf_cmd (char *args, int from_tty)
ae038cb0 23243{
b4f54984 23244 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 23245 gdb_stdout);
ae038cb0
DJ
23246}
23247
23248static void
b4f54984 23249show_dwarf_cmd (char *args, int from_tty)
6e70227d 23250{
b4f54984 23251 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
23252}
23253
4bf44c1c 23254/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
23255
23256static void
c1bd65d0 23257dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 23258{
9a3c8263 23259 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 23260 int ix;
8b70b953 23261
626f2d1c
TT
23262 /* Make sure we don't accidentally use dwarf2_per_objfile while
23263 cleaning up. */
23264 dwarf2_per_objfile = NULL;
23265
59b0c7c1
JB
23266 for (ix = 0; ix < data->n_comp_units; ++ix)
23267 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 23268
59b0c7c1 23269 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 23270 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
23271 data->all_type_units[ix]->per_cu.imported_symtabs);
23272 xfree (data->all_type_units);
95554aad 23273
8b70b953 23274 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
23275
23276 if (data->dwo_files)
23277 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
23278 if (data->dwp_file)
23279 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
23280
23281 if (data->dwz_file && data->dwz_file->dwz_bfd)
23282 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
23283}
23284
23285\f
ae2de4f8 23286/* The "save gdb-index" command. */
9291a0cd 23287
bc8f2430
JK
23288/* In-memory buffer to prepare data to be written later to a file. */
23289class data_buf
9291a0cd 23290{
bc8f2430 23291public:
bc8f2430
JK
23292 /* Copy DATA to the end of the buffer. */
23293 template<typename T>
23294 void append_data (const T &data)
23295 {
23296 std::copy (reinterpret_cast<const gdb_byte *> (&data),
23297 reinterpret_cast<const gdb_byte *> (&data + 1),
c2f134ac 23298 grow (sizeof (data)));
bc8f2430 23299 }
b89be57b 23300
c2f134ac
PA
23301 /* Copy CSTR (a zero-terminated string) to the end of buffer. The
23302 terminating zero is appended too. */
bc8f2430
JK
23303 void append_cstr0 (const char *cstr)
23304 {
23305 const size_t size = strlen (cstr) + 1;
c2f134ac
PA
23306 std::copy (cstr, cstr + size, grow (size));
23307 }
23308
23309 /* Accept a host-format integer in VAL and append it to the buffer
23310 as a target-format integer which is LEN bytes long. */
23311 void append_uint (size_t len, bfd_endian byte_order, ULONGEST val)
23312 {
23313 ::store_unsigned_integer (grow (len), len, byte_order, val);
bc8f2430 23314 }
9291a0cd 23315
bc8f2430
JK
23316 /* Return the size of the buffer. */
23317 size_t size () const
23318 {
23319 return m_vec.size ();
23320 }
23321
23322 /* Write the buffer to FILE. */
23323 void file_write (FILE *file) const
23324 {
a81e6d4d
PA
23325 if (::fwrite (m_vec.data (), 1, m_vec.size (), file) != m_vec.size ())
23326 error (_("couldn't write data to file"));
bc8f2430
JK
23327 }
23328
23329private:
c2f134ac
PA
23330 /* Grow SIZE bytes at the end of the buffer. Returns a pointer to
23331 the start of the new block. */
23332 gdb_byte *grow (size_t size)
23333 {
23334 m_vec.resize (m_vec.size () + size);
23335 return &*m_vec.end () - size;
23336 }
23337
d5722aa2 23338 gdb::byte_vector m_vec;
bc8f2430 23339};
9291a0cd
TT
23340
23341/* An entry in the symbol table. */
23342struct symtab_index_entry
23343{
23344 /* The name of the symbol. */
23345 const char *name;
23346 /* The offset of the name in the constant pool. */
23347 offset_type index_offset;
23348 /* A sorted vector of the indices of all the CUs that hold an object
23349 of this name. */
bc8f2430 23350 std::vector<offset_type> cu_indices;
9291a0cd
TT
23351};
23352
23353/* The symbol table. This is a power-of-2-sized hash table. */
23354struct mapped_symtab
23355{
bc8f2430
JK
23356 mapped_symtab ()
23357 {
23358 data.resize (1024);
23359 }
b89be57b 23360
bc8f2430 23361 offset_type n_elements = 0;
4b76cda9 23362 std::vector<symtab_index_entry> data;
bc8f2430 23363};
9291a0cd 23364
bc8f2430 23365/* Find a slot in SYMTAB for the symbol NAME. Returns a reference to
559a7a62
JK
23366 the slot.
23367
23368 Function is used only during write_hash_table so no index format backward
23369 compatibility is needed. */
b89be57b 23370
4b76cda9 23371static symtab_index_entry &
9291a0cd
TT
23372find_slot (struct mapped_symtab *symtab, const char *name)
23373{
559a7a62 23374 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd 23375
bc8f2430
JK
23376 index = hash & (symtab->data.size () - 1);
23377 step = ((hash * 17) & (symtab->data.size () - 1)) | 1;
9291a0cd
TT
23378
23379 for (;;)
23380 {
4b76cda9
PA
23381 if (symtab->data[index].name == NULL
23382 || strcmp (name, symtab->data[index].name) == 0)
bc8f2430
JK
23383 return symtab->data[index];
23384 index = (index + step) & (symtab->data.size () - 1);
9291a0cd
TT
23385 }
23386}
23387
23388/* Expand SYMTAB's hash table. */
b89be57b 23389
9291a0cd
TT
23390static void
23391hash_expand (struct mapped_symtab *symtab)
23392{
bc8f2430 23393 auto old_entries = std::move (symtab->data);
9291a0cd 23394
bc8f2430
JK
23395 symtab->data.clear ();
23396 symtab->data.resize (old_entries.size () * 2);
9291a0cd 23397
bc8f2430 23398 for (auto &it : old_entries)
4b76cda9 23399 if (it.name != NULL)
bc8f2430 23400 {
4b76cda9 23401 auto &ref = find_slot (symtab, it.name);
bc8f2430
JK
23402 ref = std::move (it);
23403 }
9291a0cd
TT
23404}
23405
156942c7
DE
23406/* Add an entry to SYMTAB. NAME is the name of the symbol.
23407 CU_INDEX is the index of the CU in which the symbol appears.
23408 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 23409
9291a0cd
TT
23410static void
23411add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 23412 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
23413 offset_type cu_index)
23414{
156942c7 23415 offset_type cu_index_and_attrs;
9291a0cd
TT
23416
23417 ++symtab->n_elements;
bc8f2430 23418 if (4 * symtab->n_elements / 3 >= symtab->data.size ())
9291a0cd
TT
23419 hash_expand (symtab);
23420
4b76cda9
PA
23421 symtab_index_entry &slot = find_slot (symtab, name);
23422 if (slot.name == NULL)
9291a0cd 23423 {
4b76cda9 23424 slot.name = name;
156942c7 23425 /* index_offset is set later. */
9291a0cd 23426 }
156942c7
DE
23427
23428 cu_index_and_attrs = 0;
23429 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
23430 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
23431 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
23432
23433 /* We don't want to record an index value twice as we want to avoid the
23434 duplication.
23435 We process all global symbols and then all static symbols
23436 (which would allow us to avoid the duplication by only having to check
23437 the last entry pushed), but a symbol could have multiple kinds in one CU.
23438 To keep things simple we don't worry about the duplication here and
23439 sort and uniqufy the list after we've processed all symbols. */
4b76cda9 23440 slot.cu_indices.push_back (cu_index_and_attrs);
156942c7
DE
23441}
23442
23443/* Sort and remove duplicates of all symbols' cu_indices lists. */
23444
23445static void
23446uniquify_cu_indices (struct mapped_symtab *symtab)
23447{
4b76cda9 23448 for (auto &entry : symtab->data)
156942c7 23449 {
4b76cda9 23450 if (entry.name != NULL && !entry.cu_indices.empty ())
156942c7 23451 {
4b76cda9 23452 auto &cu_indices = entry.cu_indices;
6fd931f2
PA
23453 std::sort (cu_indices.begin (), cu_indices.end ());
23454 auto from = std::unique (cu_indices.begin (), cu_indices.end ());
23455 cu_indices.erase (from, cu_indices.end ());
156942c7
DE
23456 }
23457 }
9291a0cd
TT
23458}
23459
bc8f2430
JK
23460/* A form of 'const char *' suitable for container keys. Only the
23461 pointer is stored. The strings themselves are compared, not the
23462 pointers. */
23463class c_str_view
9291a0cd 23464{
bc8f2430
JK
23465public:
23466 c_str_view (const char *cstr)
23467 : m_cstr (cstr)
23468 {}
9291a0cd 23469
bc8f2430
JK
23470 bool operator== (const c_str_view &other) const
23471 {
23472 return strcmp (m_cstr, other.m_cstr) == 0;
23473 }
9291a0cd 23474
bc8f2430
JK
23475private:
23476 friend class c_str_view_hasher;
23477 const char *const m_cstr;
23478};
9291a0cd 23479
bc8f2430
JK
23480/* A std::unordered_map::hasher for c_str_view that uses the right
23481 hash function for strings in a mapped index. */
23482class c_str_view_hasher
23483{
23484public:
23485 size_t operator () (const c_str_view &x) const
23486 {
23487 return mapped_index_string_hash (INT_MAX, x.m_cstr);
23488 }
23489};
b89be57b 23490
bc8f2430
JK
23491/* A std::unordered_map::hasher for std::vector<>. */
23492template<typename T>
23493class vector_hasher
9291a0cd 23494{
bc8f2430
JK
23495public:
23496 size_t operator () (const std::vector<T> &key) const
23497 {
23498 return iterative_hash (key.data (),
23499 sizeof (key.front ()) * key.size (), 0);
23500 }
23501};
9291a0cd 23502
bc8f2430
JK
23503/* Write the mapped hash table SYMTAB to the data buffer OUTPUT, with
23504 constant pool entries going into the data buffer CPOOL. */
3876f04e 23505
bc8f2430
JK
23506static void
23507write_hash_table (mapped_symtab *symtab, data_buf &output, data_buf &cpool)
23508{
23509 {
23510 /* Elements are sorted vectors of the indices of all the CUs that
23511 hold an object of this name. */
23512 std::unordered_map<std::vector<offset_type>, offset_type,
23513 vector_hasher<offset_type>>
23514 symbol_hash_table;
23515
23516 /* We add all the index vectors to the constant pool first, to
23517 ensure alignment is ok. */
4b76cda9 23518 for (symtab_index_entry &entry : symtab->data)
bc8f2430 23519 {
4b76cda9 23520 if (entry.name == NULL)
bc8f2430 23521 continue;
4b76cda9 23522 gdb_assert (entry.index_offset == 0);
70a1152b
PA
23523
23524 /* Finding before inserting is faster than always trying to
23525 insert, because inserting always allocates a node, does the
23526 lookup, and then destroys the new node if another node
23527 already had the same key. C++17 try_emplace will avoid
23528 this. */
23529 const auto found
4b76cda9 23530 = symbol_hash_table.find (entry.cu_indices);
70a1152b
PA
23531 if (found != symbol_hash_table.end ())
23532 {
4b76cda9 23533 entry.index_offset = found->second;
70a1152b
PA
23534 continue;
23535 }
23536
4b76cda9
PA
23537 symbol_hash_table.emplace (entry.cu_indices, cpool.size ());
23538 entry.index_offset = cpool.size ();
23539 cpool.append_data (MAYBE_SWAP (entry.cu_indices.size ()));
23540 for (const auto index : entry.cu_indices)
23541 cpool.append_data (MAYBE_SWAP (index));
bc8f2430
JK
23542 }
23543 }
9291a0cd
TT
23544
23545 /* Now write out the hash table. */
bc8f2430 23546 std::unordered_map<c_str_view, offset_type, c_str_view_hasher> str_table;
4b76cda9 23547 for (const auto &entry : symtab->data)
9291a0cd
TT
23548 {
23549 offset_type str_off, vec_off;
23550
4b76cda9 23551 if (entry.name != NULL)
9291a0cd 23552 {
4b76cda9 23553 const auto insertpair = str_table.emplace (entry.name, cpool.size ());
bc8f2430 23554 if (insertpair.second)
4b76cda9 23555 cpool.append_cstr0 (entry.name);
bc8f2430 23556 str_off = insertpair.first->second;
4b76cda9 23557 vec_off = entry.index_offset;
9291a0cd
TT
23558 }
23559 else
23560 {
23561 /* While 0 is a valid constant pool index, it is not valid
23562 to have 0 for both offsets. */
23563 str_off = 0;
23564 vec_off = 0;
23565 }
23566
bc8f2430
JK
23567 output.append_data (MAYBE_SWAP (str_off));
23568 output.append_data (MAYBE_SWAP (vec_off));
9291a0cd 23569 }
9291a0cd
TT
23570}
23571
bc8f2430 23572typedef std::unordered_map<partial_symtab *, unsigned int> psym_index_map;
0a5429f6
DE
23573
23574/* Helper struct for building the address table. */
23575struct addrmap_index_data
23576{
bc8f2430
JK
23577 addrmap_index_data (data_buf &addr_vec_, psym_index_map &cu_index_htab_)
23578 : addr_vec (addr_vec_), cu_index_htab (cu_index_htab_)
23579 {}
23580
0a5429f6 23581 struct objfile *objfile;
bc8f2430
JK
23582 data_buf &addr_vec;
23583 psym_index_map &cu_index_htab;
0a5429f6
DE
23584
23585 /* Non-zero if the previous_* fields are valid.
23586 We can't write an entry until we see the next entry (since it is only then
23587 that we know the end of the entry). */
23588 int previous_valid;
23589 /* Index of the CU in the table of all CUs in the index file. */
23590 unsigned int previous_cu_index;
0963b4bd 23591 /* Start address of the CU. */
0a5429f6
DE
23592 CORE_ADDR previous_cu_start;
23593};
23594
bc8f2430 23595/* Write an address entry to ADDR_VEC. */
b89be57b 23596
9291a0cd 23597static void
bc8f2430 23598add_address_entry (struct objfile *objfile, data_buf &addr_vec,
0a5429f6 23599 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23600{
9291a0cd
TT
23601 CORE_ADDR baseaddr;
23602
23603 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23604
c2f134ac
PA
23605 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, start - baseaddr);
23606 addr_vec.append_uint (8, BFD_ENDIAN_LITTLE, end - baseaddr);
bc8f2430 23607 addr_vec.append_data (MAYBE_SWAP (cu_index));
0a5429f6
DE
23608}
23609
23610/* Worker function for traversing an addrmap to build the address table. */
23611
23612static int
23613add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23614{
9a3c8263
SM
23615 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23616 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23617
23618 if (data->previous_valid)
bc8f2430 23619 add_address_entry (data->objfile, data->addr_vec,
0a5429f6
DE
23620 data->previous_cu_start, start_addr,
23621 data->previous_cu_index);
23622
23623 data->previous_cu_start = start_addr;
23624 if (pst != NULL)
23625 {
bc8f2430
JK
23626 const auto it = data->cu_index_htab.find (pst);
23627 gdb_assert (it != data->cu_index_htab.cend ());
23628 data->previous_cu_index = it->second;
0a5429f6
DE
23629 data->previous_valid = 1;
23630 }
23631 else
bc8f2430 23632 data->previous_valid = 0;
0a5429f6
DE
23633
23634 return 0;
23635}
23636
bc8f2430 23637/* Write OBJFILE's address map to ADDR_VEC.
0a5429f6
DE
23638 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23639 in the index file. */
23640
23641static void
bc8f2430
JK
23642write_address_map (struct objfile *objfile, data_buf &addr_vec,
23643 psym_index_map &cu_index_htab)
0a5429f6 23644{
bc8f2430 23645 struct addrmap_index_data addrmap_index_data (addr_vec, cu_index_htab);
0a5429f6
DE
23646
23647 /* When writing the address table, we have to cope with the fact that
23648 the addrmap iterator only provides the start of a region; we have to
23649 wait until the next invocation to get the start of the next region. */
23650
23651 addrmap_index_data.objfile = objfile;
0a5429f6
DE
23652 addrmap_index_data.previous_valid = 0;
23653
23654 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23655 &addrmap_index_data);
23656
23657 /* It's highly unlikely the last entry (end address = 0xff...ff)
23658 is valid, but we should still handle it.
23659 The end address is recorded as the start of the next region, but that
23660 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23661 anyway. */
23662 if (addrmap_index_data.previous_valid)
bc8f2430 23663 add_address_entry (objfile, addr_vec,
0a5429f6
DE
23664 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23665 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23666}
23667
156942c7
DE
23668/* Return the symbol kind of PSYM. */
23669
23670static gdb_index_symbol_kind
23671symbol_kind (struct partial_symbol *psym)
23672{
23673 domain_enum domain = PSYMBOL_DOMAIN (psym);
23674 enum address_class aclass = PSYMBOL_CLASS (psym);
23675
23676 switch (domain)
23677 {
23678 case VAR_DOMAIN:
23679 switch (aclass)
23680 {
23681 case LOC_BLOCK:
23682 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23683 case LOC_TYPEDEF:
23684 return GDB_INDEX_SYMBOL_KIND_TYPE;
23685 case LOC_COMPUTED:
23686 case LOC_CONST_BYTES:
23687 case LOC_OPTIMIZED_OUT:
23688 case LOC_STATIC:
23689 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23690 case LOC_CONST:
23691 /* Note: It's currently impossible to recognize psyms as enum values
23692 short of reading the type info. For now punt. */
23693 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23694 default:
23695 /* There are other LOC_FOO values that one might want to classify
23696 as variables, but dwarf2read.c doesn't currently use them. */
23697 return GDB_INDEX_SYMBOL_KIND_OTHER;
23698 }
23699 case STRUCT_DOMAIN:
23700 return GDB_INDEX_SYMBOL_KIND_TYPE;
23701 default:
23702 return GDB_INDEX_SYMBOL_KIND_OTHER;
23703 }
23704}
23705
9291a0cd 23706/* Add a list of partial symbols to SYMTAB. */
b89be57b 23707
9291a0cd
TT
23708static void
23709write_psymbols (struct mapped_symtab *symtab,
bc8f2430 23710 std::unordered_set<partial_symbol *> &psyms_seen,
9291a0cd
TT
23711 struct partial_symbol **psymp,
23712 int count,
987d643c
TT
23713 offset_type cu_index,
23714 int is_static)
9291a0cd
TT
23715{
23716 for (; count-- > 0; ++psymp)
23717 {
156942c7 23718 struct partial_symbol *psym = *psymp;
987d643c 23719
156942c7 23720 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23721 error (_("Ada is not currently supported by the index"));
987d643c 23722
987d643c 23723 /* Only add a given psymbol once. */
bc8f2430 23724 if (psyms_seen.insert (psym).second)
987d643c 23725 {
156942c7
DE
23726 gdb_index_symbol_kind kind = symbol_kind (psym);
23727
156942c7
DE
23728 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23729 is_static, kind, cu_index);
987d643c 23730 }
9291a0cd
TT
23731 }
23732}
23733
1fd400ff
TT
23734/* A helper struct used when iterating over debug_types. */
23735struct signatured_type_index_data
23736{
bc8f2430
JK
23737 signatured_type_index_data (data_buf &types_list_,
23738 std::unordered_set<partial_symbol *> &psyms_seen_)
23739 : types_list (types_list_), psyms_seen (psyms_seen_)
23740 {}
23741
1fd400ff
TT
23742 struct objfile *objfile;
23743 struct mapped_symtab *symtab;
bc8f2430
JK
23744 data_buf &types_list;
23745 std::unordered_set<partial_symbol *> &psyms_seen;
1fd400ff
TT
23746 int cu_index;
23747};
23748
23749/* A helper function that writes a single signatured_type to an
23750 obstack. */
b89be57b 23751
1fd400ff
TT
23752static int
23753write_one_signatured_type (void **slot, void *d)
23754{
9a3c8263
SM
23755 struct signatured_type_index_data *info
23756 = (struct signatured_type_index_data *) d;
1fd400ff 23757 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23758 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23759
23760 write_psymbols (info->symtab,
987d643c 23761 info->psyms_seen,
3e43a32a
MS
23762 info->objfile->global_psymbols.list
23763 + psymtab->globals_offset,
987d643c
TT
23764 psymtab->n_global_syms, info->cu_index,
23765 0);
1fd400ff 23766 write_psymbols (info->symtab,
987d643c 23767 info->psyms_seen,
3e43a32a
MS
23768 info->objfile->static_psymbols.list
23769 + psymtab->statics_offset,
987d643c
TT
23770 psymtab->n_static_syms, info->cu_index,
23771 1);
1fd400ff 23772
c2f134ac
PA
23773 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23774 to_underlying (entry->per_cu.sect_off));
23775 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE,
23776 to_underlying (entry->type_offset_in_tu));
23777 info->types_list.append_uint (8, BFD_ENDIAN_LITTLE, entry->signature);
1fd400ff
TT
23778
23779 ++info->cu_index;
23780
23781 return 1;
23782}
23783
e8f8bcb3
PA
23784/* Recurse into all "included" dependencies and count their symbols as
23785 if they appeared in this psymtab. */
23786
23787static void
23788recursively_count_psymbols (struct partial_symtab *psymtab,
23789 size_t &psyms_seen)
23790{
23791 for (int i = 0; i < psymtab->number_of_dependencies; ++i)
23792 if (psymtab->dependencies[i]->user != NULL)
23793 recursively_count_psymbols (psymtab->dependencies[i],
23794 psyms_seen);
23795
23796 psyms_seen += psymtab->n_global_syms;
23797 psyms_seen += psymtab->n_static_syms;
23798}
23799
95554aad
TT
23800/* Recurse into all "included" dependencies and write their symbols as
23801 if they appeared in this psymtab. */
23802
23803static void
23804recursively_write_psymbols (struct objfile *objfile,
23805 struct partial_symtab *psymtab,
23806 struct mapped_symtab *symtab,
bc8f2430 23807 std::unordered_set<partial_symbol *> &psyms_seen,
95554aad
TT
23808 offset_type cu_index)
23809{
23810 int i;
23811
23812 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23813 if (psymtab->dependencies[i]->user != NULL)
23814 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23815 symtab, psyms_seen, cu_index);
23816
23817 write_psymbols (symtab,
23818 psyms_seen,
23819 objfile->global_psymbols.list + psymtab->globals_offset,
23820 psymtab->n_global_syms, cu_index,
23821 0);
23822 write_psymbols (symtab,
23823 psyms_seen,
23824 objfile->static_psymbols.list + psymtab->statics_offset,
23825 psymtab->n_static_syms, cu_index,
23826 1);
23827}
23828
9291a0cd 23829/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23830
9291a0cd
TT
23831static void
23832write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23833{
9291a0cd
TT
23834 if (dwarf2_per_objfile->using_index)
23835 error (_("Cannot use an index to create the index"));
23836
8b70b953
TT
23837 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23838 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23839
260b681b
DE
23840 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23841 return;
23842
bc8f2430 23843 struct stat st;
4262abfb
JK
23844 if (stat (objfile_name (objfile), &st) < 0)
23845 perror_with_name (objfile_name (objfile));
9291a0cd 23846
bc8f2430
JK
23847 std::string filename (std::string (dir) + SLASH_STRING
23848 + lbasename (objfile_name (objfile)) + INDEX_SUFFIX);
9291a0cd 23849
d419f42d 23850 FILE *out_file = gdb_fopen_cloexec (filename.c_str (), "wb").release ();
9291a0cd 23851 if (!out_file)
bc8f2430 23852 error (_("Can't open `%s' for writing"), filename.c_str ());
9291a0cd 23853
16b7a719
PA
23854 /* Order matters here; we want FILE to be closed before FILENAME is
23855 unlinked, because on MS-Windows one cannot delete a file that is
23856 still open. (Don't call anything here that might throw until
23857 file_closer is created.) */
bc8f2430 23858 gdb::unlinker unlink_file (filename.c_str ());
d419f42d 23859 gdb_file_up close_out_file (out_file);
9291a0cd 23860
bc8f2430
JK
23861 mapped_symtab symtab;
23862 data_buf cu_list;
987d643c 23863
0a5429f6
DE
23864 /* While we're scanning CU's create a table that maps a psymtab pointer
23865 (which is what addrmap records) to its index (which is what is recorded
23866 in the index file). This will later be needed to write the address
23867 table. */
bc8f2430
JK
23868 psym_index_map cu_index_htab;
23869 cu_index_htab.reserve (dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23870
23871 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23872 work here. Also, the debug_types entries do not appear in
23873 all_comp_units, but only in their own hash table. */
e8f8bcb3
PA
23874
23875 /* The psyms_seen set is potentially going to be largish (~40k
23876 elements when indexing a -g3 build of GDB itself). Estimate the
23877 number of elements in order to avoid too many rehashes, which
23878 require rebuilding buckets and thus many trips to
23879 malloc/free. */
23880 size_t psyms_count = 0;
23881 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23882 {
23883 struct dwarf2_per_cu_data *per_cu
23884 = dwarf2_per_objfile->all_comp_units[i];
23885 struct partial_symtab *psymtab = per_cu->v.psymtab;
23886
23887 if (psymtab != NULL && psymtab->user == NULL)
23888 recursively_count_psymbols (psymtab, psyms_count);
23889 }
23890 /* Generating an index for gdb itself shows a ratio of
23891 TOTAL_SEEN_SYMS/UNIQUE_SYMS or ~5. 4 seems like a good bet. */
23892 std::unordered_set<partial_symbol *> psyms_seen (psyms_count / 4);
bc8f2430 23893 for (int i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd 23894 {
3e43a32a
MS
23895 struct dwarf2_per_cu_data *per_cu
23896 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23897 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23898
92fac807
JK
23899 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23900 It may be referenced from a local scope but in such case it does not
23901 need to be present in .gdb_index. */
23902 if (psymtab == NULL)
23903 continue;
23904
95554aad 23905 if (psymtab->user == NULL)
bc8f2430
JK
23906 recursively_write_psymbols (objfile, psymtab, &symtab,
23907 psyms_seen, i);
9291a0cd 23908
bc8f2430
JK
23909 const auto insertpair = cu_index_htab.emplace (psymtab, i);
23910 gdb_assert (insertpair.second);
9291a0cd 23911
c2f134ac
PA
23912 cu_list.append_uint (8, BFD_ENDIAN_LITTLE,
23913 to_underlying (per_cu->sect_off));
23914 cu_list.append_uint (8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23915 }
23916
0a5429f6 23917 /* Dump the address map. */
bc8f2430
JK
23918 data_buf addr_vec;
23919 write_address_map (objfile, addr_vec, cu_index_htab);
0a5429f6 23920
1fd400ff 23921 /* Write out the .debug_type entries, if any. */
bc8f2430 23922 data_buf types_cu_list;
1fd400ff
TT
23923 if (dwarf2_per_objfile->signatured_types)
23924 {
bc8f2430
JK
23925 signatured_type_index_data sig_data (types_cu_list,
23926 psyms_seen);
1fd400ff
TT
23927
23928 sig_data.objfile = objfile;
bc8f2430 23929 sig_data.symtab = &symtab;
1fd400ff
TT
23930 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23931 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23932 write_one_signatured_type, &sig_data);
23933 }
23934
156942c7
DE
23935 /* Now that we've processed all symbols we can shrink their cu_indices
23936 lists. */
bc8f2430 23937 uniquify_cu_indices (&symtab);
156942c7 23938
bc8f2430
JK
23939 data_buf symtab_vec, constant_pool;
23940 write_hash_table (&symtab, symtab_vec, constant_pool);
9291a0cd 23941
bc8f2430
JK
23942 data_buf contents;
23943 const offset_type size_of_contents = 6 * sizeof (offset_type);
23944 offset_type total_len = size_of_contents;
9291a0cd
TT
23945
23946 /* The version number. */
bc8f2430 23947 contents.append_data (MAYBE_SWAP (8));
9291a0cd
TT
23948
23949 /* The offset of the CU list from the start of the file. */
bc8f2430
JK
23950 contents.append_data (MAYBE_SWAP (total_len));
23951 total_len += cu_list.size ();
9291a0cd 23952
1fd400ff 23953 /* The offset of the types CU list from the start of the file. */
bc8f2430
JK
23954 contents.append_data (MAYBE_SWAP (total_len));
23955 total_len += types_cu_list.size ();
1fd400ff 23956
9291a0cd 23957 /* The offset of the address table from the start of the file. */
bc8f2430
JK
23958 contents.append_data (MAYBE_SWAP (total_len));
23959 total_len += addr_vec.size ();
9291a0cd
TT
23960
23961 /* The offset of the symbol table from the start of the file. */
bc8f2430
JK
23962 contents.append_data (MAYBE_SWAP (total_len));
23963 total_len += symtab_vec.size ();
9291a0cd
TT
23964
23965 /* The offset of the constant pool from the start of the file. */
bc8f2430
JK
23966 contents.append_data (MAYBE_SWAP (total_len));
23967 total_len += constant_pool.size ();
9291a0cd 23968
bc8f2430 23969 gdb_assert (contents.size () == size_of_contents);
9291a0cd 23970
bc8f2430
JK
23971 contents.file_write (out_file);
23972 cu_list.file_write (out_file);
23973 types_cu_list.file_write (out_file);
23974 addr_vec.file_write (out_file);
23975 symtab_vec.file_write (out_file);
23976 constant_pool.file_write (out_file);
9291a0cd 23977
bef155c3
TT
23978 /* We want to keep the file. */
23979 unlink_file.keep ();
9291a0cd
TT
23980}
23981
90476074
TT
23982/* Implementation of the `save gdb-index' command.
23983
23984 Note that the file format used by this command is documented in the
23985 GDB manual. Any changes here must be documented there. */
11570e71 23986
9291a0cd
TT
23987static void
23988save_gdb_index_command (char *arg, int from_tty)
23989{
23990 struct objfile *objfile;
23991
23992 if (!arg || !*arg)
96d19272 23993 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23994
23995 ALL_OBJFILES (objfile)
23996 {
23997 struct stat st;
23998
23999 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 24000 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
24001 continue;
24002
9a3c8263
SM
24003 dwarf2_per_objfile
24004 = (struct dwarf2_per_objfile *) objfile_data (objfile,
24005 dwarf2_objfile_data_key);
9291a0cd
TT
24006 if (dwarf2_per_objfile)
24007 {
9291a0cd 24008
492d29ea 24009 TRY
9291a0cd
TT
24010 {
24011 write_psymtabs_to_index (objfile, arg);
24012 }
492d29ea
PA
24013 CATCH (except, RETURN_MASK_ERROR)
24014 {
24015 exception_fprintf (gdb_stderr, except,
24016 _("Error while writing index for `%s': "),
24017 objfile_name (objfile));
24018 }
24019 END_CATCH
9291a0cd
TT
24020 }
24021 }
dce234bc
PP
24022}
24023
9291a0cd
TT
24024\f
24025
b4f54984 24026int dwarf_always_disassemble;
9eae7c52
TT
24027
24028static void
b4f54984
DE
24029show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
24030 struct cmd_list_element *c, const char *value)
9eae7c52 24031{
3e43a32a
MS
24032 fprintf_filtered (file,
24033 _("Whether to always disassemble "
24034 "DWARF expressions is %s.\n"),
9eae7c52
TT
24035 value);
24036}
24037
900e11f9
JK
24038static void
24039show_check_physname (struct ui_file *file, int from_tty,
24040 struct cmd_list_element *c, const char *value)
24041{
24042 fprintf_filtered (file,
24043 _("Whether to check \"physname\" is %s.\n"),
24044 value);
24045}
24046
6502dd73
DJ
24047void _initialize_dwarf2_read (void);
24048
24049void
24050_initialize_dwarf2_read (void)
24051{
96d19272
JK
24052 struct cmd_list_element *c;
24053
dce234bc 24054 dwarf2_objfile_data_key
c1bd65d0 24055 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 24056
b4f54984
DE
24057 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
24058Set DWARF specific variables.\n\
24059Configure DWARF variables such as the cache size"),
24060 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
24061 0/*allow-unknown*/, &maintenance_set_cmdlist);
24062
b4f54984
DE
24063 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
24064Show DWARF specific variables\n\
24065Show DWARF variables such as the cache size"),
24066 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
24067 0/*allow-unknown*/, &maintenance_show_cmdlist);
24068
24069 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
24070 &dwarf_max_cache_age, _("\
24071Set the upper bound on the age of cached DWARF compilation units."), _("\
24072Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
24073A higher limit means that cached compilation units will be stored\n\
24074in memory longer, and more total memory will be used. Zero disables\n\
24075caching, which can slow down startup."),
2c5b56ce 24076 NULL,
b4f54984
DE
24077 show_dwarf_max_cache_age,
24078 &set_dwarf_cmdlist,
24079 &show_dwarf_cmdlist);
d97bc12b 24080
9eae7c52 24081 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 24082 &dwarf_always_disassemble, _("\
9eae7c52
TT
24083Set whether `info address' always disassembles DWARF expressions."), _("\
24084Show whether `info address' always disassembles DWARF expressions."), _("\
24085When enabled, DWARF expressions are always printed in an assembly-like\n\
24086syntax. When disabled, expressions will be printed in a more\n\
24087conversational style, when possible."),
24088 NULL,
b4f54984
DE
24089 show_dwarf_always_disassemble,
24090 &set_dwarf_cmdlist,
24091 &show_dwarf_cmdlist);
24092
24093 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24094Set debugging of the DWARF reader."), _("\
24095Show debugging of the DWARF reader."), _("\
24096When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
24097reading and symtab expansion. A value of 1 (one) provides basic\n\
24098information. A value greater than 1 provides more verbose information."),
45cfd468
DE
24099 NULL,
24100 NULL,
24101 &setdebuglist, &showdebuglist);
24102
b4f54984
DE
24103 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24104Set debugging of the DWARF DIE reader."), _("\
24105Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
24106When enabled (non-zero), DIEs are dumped after they are read in.\n\
24107The value is the maximum depth to print."),
ccce17b0
YQ
24108 NULL,
24109 NULL,
24110 &setdebuglist, &showdebuglist);
9291a0cd 24111
27e0867f
DE
24112 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24113Set debugging of the dwarf line reader."), _("\
24114Show debugging of the dwarf line reader."), _("\
24115When enabled (non-zero), line number entries are dumped as they are read in.\n\
24116A value of 1 (one) provides basic information.\n\
24117A value greater than 1 provides more verbose information."),
24118 NULL,
24119 NULL,
24120 &setdebuglist, &showdebuglist);
24121
900e11f9
JK
24122 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24123Set cross-checking of \"physname\" code against demangler."), _("\
24124Show cross-checking of \"physname\" code against demangler."), _("\
24125When enabled, GDB's internal \"physname\" code is checked against\n\
24126the demangler."),
24127 NULL, show_check_physname,
24128 &setdebuglist, &showdebuglist);
24129
e615022a
DE
24130 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24131 no_class, &use_deprecated_index_sections, _("\
24132Set whether to use deprecated gdb_index sections."), _("\
24133Show whether to use deprecated gdb_index sections."), _("\
24134When enabled, deprecated .gdb_index sections are used anyway.\n\
24135Normally they are ignored either because of a missing feature or\n\
24136performance issue.\n\
24137Warning: This option must be enabled before gdb reads the file."),
24138 NULL,
24139 NULL,
24140 &setlist, &showlist);
24141
96d19272 24142 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 24143 _("\
fc1a9d6e 24144Save a gdb-index file.\n\
11570e71 24145Usage: save gdb-index DIRECTORY"),
96d19272
JK
24146 &save_cmdlist);
24147 set_cmd_completer (c, filename_completer);
f1e6e072
TT
24148
24149 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24150 &dwarf2_locexpr_funcs);
24151 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24152 &dwarf2_loclist_funcs);
24153
24154 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24155 &dwarf2_block_frame_base_locexpr_funcs);
24156 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24157 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 24158}
This page took 3.867887 seconds and 4 git commands to generate.