gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / elfread.c
CommitLineData
c906108c 1/* Read ELF (Executable and Linking Format) object files for GDB.
1bac305b 2
b811d2c2 3 Copyright (C) 1991-2020 Free Software Foundation, Inc.
1bac305b 4
c906108c
SS
5 Written by Fred Fish at Cygnus Support.
6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "bfd.h"
c906108c 24#include "elf-bfd.h"
31d99776
DJ
25#include "elf/common.h"
26#include "elf/internal.h"
c906108c 27#include "elf/mips.h"
4de283e4
TT
28#include "symtab.h"
29#include "symfile.h"
30#include "objfiles.h"
31#include "stabsread.h"
4de283e4
TT
32#include "complaints.h"
33#include "demangle.h"
34#include "psympriv.h"
35#include "filenames.h"
36#include "probe.h"
37#include "arch-utils.h"
07be84bf 38#include "gdbtypes.h"
4de283e4 39#include "value.h"
07be84bf 40#include "infcall.h"
4de283e4 41#include "gdbthread.h"
00431a78 42#include "inferior.h"
4de283e4
TT
43#include "regcache.h"
44#include "bcache.h"
45#include "gdb_bfd.h"
46#include "build-id.h"
f00aae0f 47#include "location.h"
4de283e4 48#include "auxv.h"
0e8f53ba 49#include "mdebugread.h"
30d1f018 50#include "ctfread.h"
31edb802 51#include "gdbsupport/gdb_string_view.h"
0d79cdc4
AM
52#include "gdbsupport/scoped_fd.h"
53#include "debuginfod-support.h"
c906108c 54
3c0aa29a
PA
55/* Forward declarations. */
56extern const struct sym_fns elf_sym_fns_gdb_index;
57extern const struct sym_fns elf_sym_fns_debug_names;
58extern const struct sym_fns elf_sym_fns_lazy_psyms;
59
c906108c 60/* The struct elfinfo is available only during ELF symbol table and
6426a772 61 psymtab reading. It is destroyed at the completion of psymtab-reading.
c906108c
SS
62 It's local to elf_symfile_read. */
63
c5aa993b
JM
64struct elfinfo
65 {
c5aa993b 66 asection *stabsect; /* Section pointer for .stab section */
c5aa993b 67 asection *mdebugsect; /* Section pointer for .mdebug section */
30d1f018 68 asection *ctfsect; /* Section pointer for .ctf section */
c5aa993b 69 };
c906108c 70
814cf43a
TT
71/* Type for per-BFD data. */
72
73typedef std::vector<std::unique_ptr<probe>> elfread_data;
74
5d9cf8a4 75/* Per-BFD data for probe info. */
55aa24fb 76
814cf43a 77static const struct bfd_key<elfread_data> probe_key;
55aa24fb 78
07be84bf
JK
79/* Minimal symbols located at the GOT entries for .plt - that is the real
80 pointer where the given entry will jump to. It gets updated by the real
81 function address during lazy ld.so resolving in the inferior. These
82 minimal symbols are indexed for <tab>-completion. */
83
84#define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
85
31d99776
DJ
86/* Locate the segments in ABFD. */
87
62982abd 88static symfile_segment_data_up
31d99776
DJ
89elf_symfile_segments (bfd *abfd)
90{
91 Elf_Internal_Phdr *phdrs, **segments;
92 long phdrs_size;
93 int num_phdrs, num_segments, num_sections, i;
94 asection *sect;
31d99776
DJ
95
96 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
97 if (phdrs_size == -1)
98 return NULL;
99
224c3ddb 100 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
31d99776
DJ
101 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
102 if (num_phdrs == -1)
103 return NULL;
104
105 num_segments = 0;
8d749320 106 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
31d99776
DJ
107 for (i = 0; i < num_phdrs; i++)
108 if (phdrs[i].p_type == PT_LOAD)
109 segments[num_segments++] = &phdrs[i];
110
111 if (num_segments == 0)
112 return NULL;
113
62982abd 114 symfile_segment_data_up data (new symfile_segment_data);
68b888ff 115 data->segments.reserve (num_segments);
31d99776
DJ
116
117 for (i = 0; i < num_segments; i++)
68b888ff 118 data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz);
31d99776
DJ
119
120 num_sections = bfd_count_sections (abfd);
9005fbbb
SM
121
122 /* All elements are initialized to 0 (map to no segment). */
123 data->segment_info.resize (num_sections);
31d99776
DJ
124
125 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
126 {
127 int j;
31d99776 128
fd361982 129 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
31d99776
DJ
130 continue;
131
62b74cb8 132 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
31d99776
DJ
133
134 for (j = 0; j < num_segments; j++)
62b74cb8 135 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
31d99776
DJ
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
ad09a548
DJ
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
fd361982
AM
150 if (bfd_section_size (sect) > 0 && j == num_segments
151 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
28ee876a 152 warning (_("Loadable section \"%s\" outside of ELF segments"),
fd361982 153 bfd_section_name (sect));
31d99776
DJ
154 }
155
156 return data;
157}
158
c906108c
SS
159/* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
0963b4bd 175 section flags to specify what kind of debug section it is.
c906108c
SS
176 -kingdon). */
177
178static void
12b9c64f 179elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
c906108c 180{
52f0bd74 181 struct elfinfo *ei;
c906108c
SS
182
183 ei = (struct elfinfo *) eip;
7ce59000 184 if (strcmp (sectp->name, ".stab") == 0)
c906108c 185 {
c5aa993b 186 ei->stabsect = sectp;
c906108c 187 }
6314a349 188 else if (strcmp (sectp->name, ".mdebug") == 0)
c906108c 189 {
c5aa993b 190 ei->mdebugsect = sectp;
c906108c 191 }
30d1f018
WP
192 else if (strcmp (sectp->name, ".ctf") == 0)
193 {
194 ei->ctfsect = sectp;
195 }
c906108c
SS
196}
197
c906108c 198static struct minimal_symbol *
8dddcb8f 199record_minimal_symbol (minimal_symbol_reader &reader,
31edb802 200 gdb::string_view name, bool copy_name,
04a679b8 201 CORE_ADDR address,
f594e5e9
MC
202 enum minimal_symbol_type ms_type,
203 asection *bfd_section, struct objfile *objfile)
c906108c 204{
08feed99 205 struct gdbarch *gdbarch = objfile->arch ();
5e2b427d 206
0875794a
JK
207 if (ms_type == mst_text || ms_type == mst_file_text
208 || ms_type == mst_text_gnu_ifunc)
85ddcc70 209 address = gdbarch_addr_bits_remove (gdbarch, address);
c906108c 210
44e4c775
AB
211 /* We only setup section information for allocatable sections. Usually
212 we'd only expect to find msymbols for allocatable sections, but if the
213 ELF is malformed then this might not be the case. In that case don't
214 create an msymbol that references an uninitialised section object. */
215 int section_index = 0;
216 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
217 section_index = gdb_bfd_section_index (objfile->obfd, bfd_section);
218
4b610737 219 struct minimal_symbol *result
44e4c775 220 = reader.record_full (name, copy_name, address, ms_type, section_index);
4b610737
TT
221 if ((objfile->flags & OBJF_MAINLINE) == 0
222 && (ms_type == mst_data || ms_type == mst_bss))
223 result->maybe_copied = 1;
224
225 return result;
c906108c
SS
226}
227
7f86f058 228/* Read the symbol table of an ELF file.
c906108c 229
62553543 230 Given an objfile, a symbol table, and a flag indicating whether the
6f610d07
UW
231 symbol table contains regular, dynamic, or synthetic symbols, add all
232 the global function and data symbols to the minimal symbol table.
c906108c 233
c5aa993b
JM
234 In stabs-in-ELF, as implemented by Sun, there are some local symbols
235 defined in the ELF symbol table, which can be used to locate
236 the beginnings of sections from each ".o" file that was linked to
237 form the executable objfile. We gather any such info and record it
7f86f058 238 in data structures hung off the objfile's private data. */
c906108c 239
6f610d07
UW
240#define ST_REGULAR 0
241#define ST_DYNAMIC 1
242#define ST_SYNTHETIC 2
243
c906108c 244static void
8dddcb8f
TT
245elf_symtab_read (minimal_symbol_reader &reader,
246 struct objfile *objfile, int type,
04a679b8 247 long number_of_symbols, asymbol **symbol_table,
ce6c454e 248 bool copy_names)
c906108c 249{
08feed99 250 struct gdbarch *gdbarch = objfile->arch ();
c906108c 251 asymbol *sym;
c906108c 252 long i;
c906108c
SS
253 CORE_ADDR symaddr;
254 enum minimal_symbol_type ms_type;
18a94d75
DE
255 /* Name of the last file symbol. This is either a constant string or is
256 saved on the objfile's filename cache. */
0af1e9a5 257 const char *filesymname = "";
d4f3574e 258 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
3e29f34a
MR
259 int elf_make_msymbol_special_p
260 = gdbarch_elf_make_msymbol_special_p (gdbarch);
c5aa993b 261
0cc7b392 262 for (i = 0; i < number_of_symbols; i++)
c906108c 263 {
0cc7b392
DJ
264 sym = symbol_table[i];
265 if (sym->name == NULL || *sym->name == '\0')
c906108c 266 {
0cc7b392 267 /* Skip names that don't exist (shouldn't happen), or names
0963b4bd 268 that are null strings (may happen). */
0cc7b392
DJ
269 continue;
270 }
c906108c 271
74763737
DJ
272 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
273 symbols which do not correspond to objects in the symbol table,
274 but have some other target-specific meaning. */
275 if (bfd_is_target_special_symbol (objfile->obfd, sym))
60c5725c
DJ
276 {
277 if (gdbarch_record_special_symbol_p (gdbarch))
278 gdbarch_record_special_symbol (gdbarch, objfile, sym);
279 continue;
280 }
74763737 281
6f610d07 282 if (type == ST_DYNAMIC
45dfa85a 283 && sym->section == bfd_und_section_ptr
0cc7b392
DJ
284 && (sym->flags & BSF_FUNCTION))
285 {
286 struct minimal_symbol *msym;
02c75f72 287 bfd *abfd = objfile->obfd;
dea91a5c 288 asection *sect;
0cc7b392
DJ
289
290 /* Symbol is a reference to a function defined in
291 a shared library.
292 If its value is non zero then it is usually the address
293 of the corresponding entry in the procedure linkage table,
294 plus the desired section offset.
295 If its value is zero then the dynamic linker has to resolve
0963b4bd 296 the symbol. We are unable to find any meaningful address
0cc7b392
DJ
297 for this symbol in the executable file, so we skip it. */
298 symaddr = sym->value;
299 if (symaddr == 0)
300 continue;
02c75f72
UW
301
302 /* sym->section is the undefined section. However, we want to
303 record the section where the PLT stub resides with the
304 minimal symbol. Search the section table for the one that
305 covers the stub's address. */
306 for (sect = abfd->sections; sect != NULL; sect = sect->next)
307 {
fd361982 308 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
02c75f72
UW
309 continue;
310
fd361982
AM
311 if (symaddr >= bfd_section_vma (sect)
312 && symaddr < bfd_section_vma (sect)
313 + bfd_section_size (sect))
02c75f72
UW
314 break;
315 }
316 if (!sect)
317 continue;
318
828cfa8d
JB
319 /* On ia64-hpux, we have discovered that the system linker
320 adds undefined symbols with nonzero addresses that cannot
321 be right (their address points inside the code of another
322 function in the .text section). This creates problems
323 when trying to determine which symbol corresponds to
324 a given address.
325
326 We try to detect those buggy symbols by checking which
327 section we think they correspond to. Normally, PLT symbols
328 are stored inside their own section, and the typical name
329 for that section is ".plt". So, if there is a ".plt"
330 section, and yet the section name of our symbol does not
331 start with ".plt", we ignore that symbol. */
61012eef 332 if (!startswith (sect->name, ".plt")
828cfa8d
JB
333 && bfd_get_section_by_name (abfd, ".plt") != NULL)
334 continue;
335
0cc7b392 336 msym = record_minimal_symbol
31edb802 337 (reader, sym->name, copy_names,
04a679b8 338 symaddr, mst_solib_trampoline, sect, objfile);
0cc7b392 339 if (msym != NULL)
9b807e7b
MR
340 {
341 msym->filename = filesymname;
3e29f34a
MR
342 if (elf_make_msymbol_special_p)
343 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
9b807e7b 344 }
0cc7b392
DJ
345 continue;
346 }
c906108c 347
0cc7b392
DJ
348 /* If it is a nonstripped executable, do not enter dynamic
349 symbols, as the dynamic symbol table is usually a subset
350 of the main symbol table. */
6f610d07 351 if (type == ST_DYNAMIC && !stripped)
0cc7b392
DJ
352 continue;
353 if (sym->flags & BSF_FILE)
be1e3d3e 354 filesymname = objfile->intern (sym->name);
0cc7b392
DJ
355 else if (sym->flags & BSF_SECTION_SYM)
356 continue;
bb869963
SDJ
357 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
358 | BSF_GNU_UNIQUE))
0cc7b392
DJ
359 {
360 struct minimal_symbol *msym;
361
362 /* Select global/local/weak symbols. Note that bfd puts abs
363 symbols in their own section, so all symbols we are
0963b4bd
MS
364 interested in will have a section. */
365 /* Bfd symbols are section relative. */
0cc7b392 366 symaddr = sym->value + sym->section->vma;
0cc7b392
DJ
367 /* For non-absolute symbols, use the type of the section
368 they are relative to, to intuit text/data. Bfd provides
0963b4bd 369 no way of figuring this out for absolute symbols. */
45dfa85a 370 if (sym->section == bfd_abs_section_ptr)
c906108c 371 {
0cc7b392
DJ
372 /* This is a hack to get the minimal symbol type
373 right for Irix 5, which has absolute addresses
6f610d07
UW
374 with special section indices for dynamic symbols.
375
376 NOTE: uweigand-20071112: Synthetic symbols do not
377 have an ELF-private part, so do not touch those. */
dea91a5c 378 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
0cc7b392
DJ
379 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
380
381 switch (shndx)
c906108c 382 {
0cc7b392
DJ
383 case SHN_MIPS_TEXT:
384 ms_type = mst_text;
385 break;
386 case SHN_MIPS_DATA:
387 ms_type = mst_data;
388 break;
389 case SHN_MIPS_ACOMMON:
390 ms_type = mst_bss;
391 break;
392 default:
393 ms_type = mst_abs;
394 }
395
396 /* If it is an Irix dynamic symbol, skip section name
0963b4bd 397 symbols, relocate all others by section offset. */
0cc7b392
DJ
398 if (ms_type != mst_abs)
399 {
400 if (sym->name[0] == '.')
401 continue;
c906108c 402 }
0cc7b392
DJ
403 }
404 else if (sym->section->flags & SEC_CODE)
405 {
bb869963 406 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 407 {
0875794a
JK
408 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
409 ms_type = mst_text_gnu_ifunc;
410 else
411 ms_type = mst_text;
0cc7b392 412 }
90359a16
JK
413 /* The BSF_SYNTHETIC check is there to omit ppc64 function
414 descriptors mistaken for static functions starting with 'L'.
415 */
416 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
417 && (sym->flags & BSF_SYNTHETIC) == 0)
0cc7b392
DJ
418 || ((sym->flags & BSF_LOCAL)
419 && sym->name[0] == '$'
420 && sym->name[1] == 'L'))
421 /* Looks like a compiler-generated label. Skip
422 it. The assembler should be skipping these (to
423 keep executables small), but apparently with
424 gcc on the (deleted) delta m88k SVR4, it loses.
425 So to have us check too should be harmless (but
426 I encourage people to fix this in the assembler
427 instead of adding checks here). */
428 continue;
429 else
430 {
431 ms_type = mst_file_text;
c906108c 432 }
0cc7b392
DJ
433 }
434 else if (sym->section->flags & SEC_ALLOC)
435 {
bb869963 436 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
c906108c 437 {
f50776aa
PA
438 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
439 {
440 ms_type = mst_data_gnu_ifunc;
441 }
442 else if (sym->section->flags & SEC_LOAD)
c906108c 443 {
0cc7b392 444 ms_type = mst_data;
c906108c 445 }
c906108c
SS
446 else
447 {
0cc7b392 448 ms_type = mst_bss;
c906108c
SS
449 }
450 }
0cc7b392 451 else if (sym->flags & BSF_LOCAL)
c906108c 452 {
0cc7b392
DJ
453 if (sym->section->flags & SEC_LOAD)
454 {
455 ms_type = mst_file_data;
c906108c
SS
456 }
457 else
458 {
0cc7b392 459 ms_type = mst_file_bss;
c906108c
SS
460 }
461 }
462 else
463 {
0cc7b392 464 ms_type = mst_unknown;
c906108c 465 }
0cc7b392
DJ
466 }
467 else
468 {
469 /* FIXME: Solaris2 shared libraries include lots of
dea91a5c 470 odd "absolute" and "undefined" symbols, that play
0cc7b392
DJ
471 hob with actions like finding what function the PC
472 is in. Ignore them if they aren't text, data, or bss. */
473 /* ms_type = mst_unknown; */
0963b4bd 474 continue; /* Skip this symbol. */
0cc7b392
DJ
475 }
476 msym = record_minimal_symbol
31edb802 477 (reader, sym->name, copy_names, symaddr,
0cc7b392 478 ms_type, sym->section, objfile);
6f610d07 479
0cc7b392
DJ
480 if (msym)
481 {
6f610d07 482 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
24c274a1 483 ELF-private part. */
6f610d07 484 if (type != ST_SYNTHETIC)
24c274a1
AM
485 {
486 /* Pass symbol size field in via BFD. FIXME!!! */
487 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
488 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
489 }
dea91a5c 490
a103a963 491 msym->filename = filesymname;
3e29f34a
MR
492 if (elf_make_msymbol_special_p)
493 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
0cc7b392 494 }
2eaf8d2a 495
715c6909
TT
496 /* If we see a default versioned symbol, install it under
497 its version-less name. */
498 if (msym != NULL)
499 {
500 const char *atsign = strchr (sym->name, '@');
501
502 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
503 {
504 int len = atsign - sym->name;
505
31edb802
CB
506 record_minimal_symbol (reader,
507 gdb::string_view (sym->name, len),
508 true, symaddr, ms_type, sym->section,
509 objfile);
715c6909
TT
510 }
511 }
512
2eaf8d2a
DJ
513 /* For @plt symbols, also record a trampoline to the
514 destination symbol. The @plt symbol will be used in
515 disassembly, and the trampoline will be used when we are
516 trying to find the target. */
517 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
518 {
519 int len = strlen (sym->name);
520
521 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
522 {
2eaf8d2a
DJ
523 struct minimal_symbol *mtramp;
524
31edb802
CB
525 mtramp = record_minimal_symbol
526 (reader, gdb::string_view (sym->name, len - 4), true,
527 symaddr, mst_solib_trampoline, sym->section, objfile);
2eaf8d2a
DJ
528 if (mtramp)
529 {
d9eaeb59 530 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
422d65e7 531 mtramp->created_by_gdb = 1;
2eaf8d2a 532 mtramp->filename = filesymname;
3e29f34a
MR
533 if (elf_make_msymbol_special_p)
534 gdbarch_elf_make_msymbol_special (gdbarch,
535 sym, mtramp);
2eaf8d2a
DJ
536 }
537 }
538 }
c906108c 539 }
c906108c
SS
540 }
541}
542
07be84bf
JK
543/* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
544 for later look ups of which function to call when user requests
545 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
546 library defining `function' we cannot yet know while reading OBJFILE which
547 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
548 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
549
550static void
8dddcb8f
TT
551elf_rel_plt_read (minimal_symbol_reader &reader,
552 struct objfile *objfile, asymbol **dyn_symbol_table)
07be84bf
JK
553{
554 bfd *obfd = objfile->obfd;
555 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
02e169e2 556 asection *relplt, *got_plt;
07be84bf 557 bfd_size_type reloc_count, reloc;
08feed99 558 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
559 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
560 size_t ptr_size = TYPE_LENGTH (ptr_type);
561
562 if (objfile->separate_debug_objfile_backlink)
563 return;
564
07be84bf
JK
565 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
566 if (got_plt == NULL)
4b7d1f7f
WN
567 {
568 /* For platforms where there is no separate .got.plt. */
569 got_plt = bfd_get_section_by_name (obfd, ".got");
570 if (got_plt == NULL)
571 return;
572 }
07be84bf 573
02e169e2
PA
574 /* Depending on system, we may find jump slots in a relocation
575 section for either .got.plt or .plt. */
576 asection *plt = bfd_get_section_by_name (obfd, ".plt");
577 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
578
579 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
580
07be84bf
JK
581 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
582 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
02e169e2
PA
583 {
584 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
585
586 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
587 {
588 if (this_hdr.sh_info == plt_elf_idx
589 || this_hdr.sh_info == got_plt_elf_idx)
590 break;
591 }
592 }
07be84bf
JK
593 if (relplt == NULL)
594 return;
595
596 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
597 return;
598
26fcd5d7 599 std::string string_buffer;
07be84bf 600
02e169e2
PA
601 /* Does ADDRESS reside in SECTION of OBFD? */
602 auto within_section = [obfd] (asection *section, CORE_ADDR address)
603 {
604 if (section == NULL)
605 return false;
606
fd361982
AM
607 return (bfd_section_vma (section) <= address
608 && (address < bfd_section_vma (section)
609 + bfd_section_size (section)));
02e169e2
PA
610 };
611
07be84bf
JK
612 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
613 for (reloc = 0; reloc < reloc_count; reloc++)
614 {
22e048c9 615 const char *name;
07be84bf
JK
616 struct minimal_symbol *msym;
617 CORE_ADDR address;
26fcd5d7 618 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
07be84bf 619 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
07be84bf
JK
620
621 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
07be84bf
JK
622 address = relplt->relocation[reloc].address;
623
02e169e2
PA
624 asection *msym_section;
625
626 /* Does the pointer reside in either the .got.plt or .plt
627 sections? */
628 if (within_section (got_plt, address))
629 msym_section = got_plt;
630 else if (within_section (plt, address))
631 msym_section = plt;
632 else
07be84bf
JK
633 continue;
634
f50776aa
PA
635 /* We cannot check if NAME is a reference to
636 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
637 symbol is undefined and the objfile having NAME defined may
638 not yet have been loaded. */
07be84bf 639
26fcd5d7
TT
640 string_buffer.assign (name);
641 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
07be84bf 642
31edb802 643 msym = record_minimal_symbol (reader, string_buffer,
02e169e2
PA
644 true, address, mst_slot_got_plt,
645 msym_section, objfile);
07be84bf 646 if (msym)
d9eaeb59 647 SET_MSYMBOL_SIZE (msym, ptr_size);
07be84bf 648 }
07be84bf
JK
649}
650
651/* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
652
8127a2fa
TT
653static const struct objfile_key<htab, htab_deleter>
654 elf_objfile_gnu_ifunc_cache_data;
07be84bf
JK
655
656/* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
657
658struct elf_gnu_ifunc_cache
659{
660 /* This is always a function entry address, not a function descriptor. */
661 CORE_ADDR addr;
662
663 char name[1];
664};
665
666/* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
667
668static hashval_t
669elf_gnu_ifunc_cache_hash (const void *a_voidp)
670{
9a3c8263
SM
671 const struct elf_gnu_ifunc_cache *a
672 = (const struct elf_gnu_ifunc_cache *) a_voidp;
07be84bf
JK
673
674 return htab_hash_string (a->name);
675}
676
677/* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
678
679static int
680elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
681{
9a3c8263
SM
682 const struct elf_gnu_ifunc_cache *a
683 = (const struct elf_gnu_ifunc_cache *) a_voidp;
684 const struct elf_gnu_ifunc_cache *b
685 = (const struct elf_gnu_ifunc_cache *) b_voidp;
07be84bf
JK
686
687 return strcmp (a->name, b->name) == 0;
688}
689
690/* Record the target function address of a STT_GNU_IFUNC function NAME is the
691 function entry address ADDR. Return 1 if NAME and ADDR are considered as
692 valid and therefore they were successfully recorded, return 0 otherwise.
693
694 Function does not expect a duplicate entry. Use
695 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
696 exists. */
697
698static int
699elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
700{
7cbd4a93 701 struct bound_minimal_symbol msym;
07be84bf
JK
702 struct objfile *objfile;
703 htab_t htab;
704 struct elf_gnu_ifunc_cache entry_local, *entry_p;
705 void **slot;
706
707 msym = lookup_minimal_symbol_by_pc (addr);
7cbd4a93 708 if (msym.minsym == NULL)
07be84bf 709 return 0;
77e371c0 710 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
07be84bf 711 return 0;
e27d198c 712 objfile = msym.objfile;
07be84bf
JK
713
714 /* If .plt jumps back to .plt the symbol is still deferred for later
1adeb822 715 resolution and it has no use for GDB. */
c9d95fa3 716 const char *target_name = msym.minsym->linkage_name ();
1adeb822
PA
717 size_t len = strlen (target_name);
718
719 /* Note we check the symbol's name instead of checking whether the
720 symbol is in the .plt section because some systems have @plt
721 symbols in the .text section. */
722 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
07be84bf
JK
723 return 0;
724
8127a2fa 725 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
726 if (htab == NULL)
727 {
8127a2fa
TT
728 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
729 elf_gnu_ifunc_cache_eq,
730 NULL, xcalloc, xfree);
731 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
07be84bf
JK
732 }
733
734 entry_local.addr = addr;
735 obstack_grow (&objfile->objfile_obstack, &entry_local,
736 offsetof (struct elf_gnu_ifunc_cache, name));
737 obstack_grow_str0 (&objfile->objfile_obstack, name);
224c3ddb
SM
738 entry_p
739 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
07be84bf
JK
740
741 slot = htab_find_slot (htab, entry_p, INSERT);
742 if (*slot != NULL)
743 {
9a3c8263
SM
744 struct elf_gnu_ifunc_cache *entry_found_p
745 = (struct elf_gnu_ifunc_cache *) *slot;
08feed99 746 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
747
748 if (entry_found_p->addr != addr)
749 {
750 /* This case indicates buggy inferior program, the resolved address
751 should never change. */
752
753 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
754 "function_address from %s to %s"),
755 name, paddress (gdbarch, entry_found_p->addr),
756 paddress (gdbarch, addr));
757 }
758
759 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
760 }
761 *slot = entry_p;
762
763 return 1;
764}
765
766/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
767 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
768 is not NULL) and the function returns 1. It returns 0 otherwise.
769
770 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
771 function. */
772
773static int
774elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
775{
2030c079 776 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
777 {
778 htab_t htab;
779 struct elf_gnu_ifunc_cache *entry_p;
780 void **slot;
781
8127a2fa 782 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
07be84bf
JK
783 if (htab == NULL)
784 continue;
785
224c3ddb
SM
786 entry_p = ((struct elf_gnu_ifunc_cache *)
787 alloca (sizeof (*entry_p) + strlen (name)));
07be84bf
JK
788 strcpy (entry_p->name, name);
789
790 slot = htab_find_slot (htab, entry_p, NO_INSERT);
791 if (slot == NULL)
792 continue;
9a3c8263 793 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
07be84bf
JK
794 gdb_assert (entry_p != NULL);
795
796 if (addr_p)
797 *addr_p = entry_p->addr;
798 return 1;
799 }
800
801 return 0;
802}
803
804/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
805 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
806 is not NULL) and the function returns 1. It returns 0 otherwise.
807
808 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
809 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
810 prevent cache entries duplicates. */
811
812static int
813elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
814{
815 char *name_got_plt;
07be84bf
JK
816 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
817
224c3ddb 818 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
07be84bf
JK
819 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
820
2030c079 821 for (objfile *objfile : current_program_space->objfiles ())
07be84bf
JK
822 {
823 bfd *obfd = objfile->obfd;
08feed99 824 struct gdbarch *gdbarch = objfile->arch ();
07be84bf
JK
825 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
826 size_t ptr_size = TYPE_LENGTH (ptr_type);
827 CORE_ADDR pointer_address, addr;
828 asection *plt;
224c3ddb 829 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
3b7344d5 830 struct bound_minimal_symbol msym;
07be84bf
JK
831
832 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
3b7344d5 833 if (msym.minsym == NULL)
07be84bf 834 continue;
3b7344d5 835 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
07be84bf 836 continue;
77e371c0 837 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
07be84bf
JK
838
839 plt = bfd_get_section_by_name (obfd, ".plt");
840 if (plt == NULL)
841 continue;
842
3b7344d5 843 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
07be84bf
JK
844 continue;
845 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
846 continue;
847 addr = extract_typed_address (buf, ptr_type);
8b88a78e
PA
848 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
849 current_top_target ());
4b7d1f7f 850 addr = gdbarch_addr_bits_remove (gdbarch, addr);
07be84bf 851
07be84bf 852 if (elf_gnu_ifunc_record_cache (name, addr))
28f4fa4d
PA
853 {
854 if (addr_p != NULL)
855 *addr_p = addr;
856 return 1;
857 }
07be84bf
JK
858 }
859
860 return 0;
861}
862
863/* Try to find the target resolved function entry address of a STT_GNU_IFUNC
864 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
ececd218 865 is not NULL) and the function returns true. It returns false otherwise.
07be84bf
JK
866
867 Both the elf_objfile_gnu_ifunc_cache_data hash table and
868 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
869
ececd218 870static bool
07be84bf
JK
871elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
872{
873 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
ececd218 874 return true;
dea91a5c 875
07be84bf 876 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
ececd218 877 return true;
07be84bf 878
ececd218 879 return false;
07be84bf
JK
880}
881
882/* Call STT_GNU_IFUNC - a function returning addresss of a real function to
883 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
884 is the entry point of the resolved STT_GNU_IFUNC target function to call.
885 */
886
887static CORE_ADDR
888elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
889{
2c02bd72 890 const char *name_at_pc;
07be84bf
JK
891 CORE_ADDR start_at_pc, address;
892 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
893 struct value *function, *address_val;
e1b2624a
AA
894 CORE_ADDR hwcap = 0;
895 struct value *hwcap_val;
07be84bf
JK
896
897 /* Try first any non-intrusive methods without an inferior call. */
898
899 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
900 && start_at_pc == pc)
901 {
902 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
903 return address;
904 }
905 else
906 name_at_pc = NULL;
907
908 function = allocate_value (func_func_type);
1a088441 909 VALUE_LVAL (function) = lval_memory;
07be84bf
JK
910 set_value_address (function, pc);
911
e1b2624a
AA
912 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
913 parameter. FUNCTION is the function entry address. ADDRESS may be a
914 function descriptor. */
07be84bf 915
8b88a78e 916 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
e1b2624a
AA
917 hwcap_val = value_from_longest (builtin_type (gdbarch)
918 ->builtin_unsigned_long, hwcap);
e71585ff 919 address_val = call_function_by_hand (function, NULL, hwcap_val);
07be84bf 920 address = value_as_address (address_val);
8b88a78e 921 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
4b7d1f7f 922 address = gdbarch_addr_bits_remove (gdbarch, address);
07be84bf
JK
923
924 if (name_at_pc)
925 elf_gnu_ifunc_record_cache (name_at_pc, address);
926
927 return address;
928}
929
0e30163f
JK
930/* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
931
932static void
933elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
934{
935 struct breakpoint *b_return;
936 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
937 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
938 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
00431a78 939 int thread_id = inferior_thread ()->global_num;
0e30163f
JK
940
941 gdb_assert (b->type == bp_gnu_ifunc_resolver);
942
943 for (b_return = b->related_breakpoint; b_return != b;
944 b_return = b_return->related_breakpoint)
945 {
946 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
947 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
948 gdb_assert (frame_id_p (b_return->frame_id));
949
950 if (b_return->thread == thread_id
951 && b_return->loc->requested_address == prev_pc
952 && frame_id_eq (b_return->frame_id, prev_frame_id))
953 break;
954 }
955
956 if (b_return == b)
957 {
0e30163f
JK
958 /* No need to call find_pc_line for symbols resolving as this is only
959 a helper breakpointer never shown to the user. */
960
51abb421 961 symtab_and_line sal;
0e30163f
JK
962 sal.pspace = current_inferior ()->pspace;
963 sal.pc = prev_pc;
964 sal.section = find_pc_overlay (sal.pc);
965 sal.explicit_pc = 1;
454dafbd
TT
966 b_return
967 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
968 prev_frame_id,
969 bp_gnu_ifunc_resolver_return).release ();
0e30163f 970
c70a6932
JK
971 /* set_momentary_breakpoint invalidates PREV_FRAME. */
972 prev_frame = NULL;
973
0e30163f
JK
974 /* Add new b_return to the ring list b->related_breakpoint. */
975 gdb_assert (b_return->related_breakpoint == b_return);
976 b_return->related_breakpoint = b->related_breakpoint;
977 b->related_breakpoint = b_return;
978 }
979}
980
981/* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
982
983static void
984elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
985{
00431a78 986 thread_info *thread = inferior_thread ();
0e30163f
JK
987 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
988 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
989 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
00431a78 990 struct regcache *regcache = get_thread_regcache (thread);
6a3a010b 991 struct value *func_func;
0e30163f
JK
992 struct value *value;
993 CORE_ADDR resolved_address, resolved_pc;
0e30163f
JK
994
995 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
996
0e30163f
JK
997 while (b->related_breakpoint != b)
998 {
999 struct breakpoint *b_next = b->related_breakpoint;
1000
1001 switch (b->type)
1002 {
1003 case bp_gnu_ifunc_resolver:
1004 break;
1005 case bp_gnu_ifunc_resolver_return:
1006 delete_breakpoint (b);
1007 break;
1008 default:
1009 internal_error (__FILE__, __LINE__,
1010 _("handle_inferior_event: Invalid "
1011 "gnu-indirect-function breakpoint type %d"),
1012 (int) b->type);
1013 }
1014 b = b_next;
1015 }
1016 gdb_assert (b->type == bp_gnu_ifunc_resolver);
6a3a010b
MR
1017 gdb_assert (b->loc->next == NULL);
1018
1019 func_func = allocate_value (func_func_type);
1a088441 1020 VALUE_LVAL (func_func) = lval_memory;
6a3a010b
MR
1021 set_value_address (func_func, b->loc->related_address);
1022
1023 value = allocate_value (value_type);
1024 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1025 value_contents_raw (value), NULL);
1026 resolved_address = value_as_address (value);
1027 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1028 resolved_address,
8b88a78e 1029 current_top_target ());
4b7d1f7f 1030 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
0e30163f 1031
f8eba3c6 1032 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
d28cd78a 1033 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
f00aae0f 1034 resolved_pc);
0e30163f 1035
0e30163f 1036 b->type = bp_breakpoint;
6c5b2ebe 1037 update_breakpoint_locations (b, current_program_space,
79188d8d
PA
1038 find_function_start_sal (resolved_pc, NULL, true),
1039 {});
0e30163f
JK
1040}
1041
2750ef27
TT
1042/* A helper function for elf_symfile_read that reads the minimal
1043 symbols. */
c906108c
SS
1044
1045static void
5f6cac40
TT
1046elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1047 const struct elfinfo *ei)
c906108c 1048{
63524580 1049 bfd *synth_abfd, *abfd = objfile->obfd;
62553543
EZ
1050 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1051 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1052 asymbol *synthsyms;
c906108c 1053
45cfd468
DE
1054 if (symtab_create_debug)
1055 {
1056 fprintf_unfiltered (gdb_stdlog,
1057 "Reading minimal symbols of objfile %s ...\n",
4262abfb 1058 objfile_name (objfile));
45cfd468
DE
1059 }
1060
5f6cac40
TT
1061 /* If we already have minsyms, then we can skip some work here.
1062 However, if there were stabs or mdebug sections, we go ahead and
1063 redo all the work anyway, because the psym readers for those
1064 kinds of debuginfo need extra information found here. This can
1065 go away once all types of symbols are in the per-BFD object. */
1066 if (objfile->per_bfd->minsyms_read
1067 && ei->stabsect == NULL
30d1f018
WP
1068 && ei->mdebugsect == NULL
1069 && ei->ctfsect == NULL)
5f6cac40
TT
1070 {
1071 if (symtab_create_debug)
1072 fprintf_unfiltered (gdb_stdlog,
1073 "... minimal symbols previously read\n");
1074 return;
1075 }
1076
d25e8719 1077 minimal_symbol_reader reader (objfile);
c906108c 1078
18a94d75 1079 /* Process the normal ELF symbol table first. */
c906108c 1080
62553543
EZ
1081 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1082 if (storage_needed < 0)
3e43a32a
MS
1083 error (_("Can't read symbols from %s: %s"),
1084 bfd_get_filename (objfile->obfd),
62553543
EZ
1085 bfd_errmsg (bfd_get_error ()));
1086
1087 if (storage_needed > 0)
1088 {
80c57053
JK
1089 /* Memory gets permanently referenced from ABFD after
1090 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1091
224c3ddb 1092 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1093 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1094
1095 if (symcount < 0)
3e43a32a
MS
1096 error (_("Can't read symbols from %s: %s"),
1097 bfd_get_filename (objfile->obfd),
62553543
EZ
1098 bfd_errmsg (bfd_get_error ()));
1099
ce6c454e
TT
1100 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1101 false);
62553543 1102 }
c906108c
SS
1103
1104 /* Add the dynamic symbols. */
1105
62553543
EZ
1106 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1107
1108 if (storage_needed > 0)
1109 {
3f1eff0a
JK
1110 /* Memory gets permanently referenced from ABFD after
1111 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1112 It happens only in the case when elf_slurp_reloc_table sees
1113 asection->relocation NULL. Determining which section is asection is
1114 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1115 implementation detail, though. */
1116
224c3ddb 1117 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
62553543
EZ
1118 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1119 dyn_symbol_table);
1120
1121 if (dynsymcount < 0)
3e43a32a
MS
1122 error (_("Can't read symbols from %s: %s"),
1123 bfd_get_filename (objfile->obfd),
62553543
EZ
1124 bfd_errmsg (bfd_get_error ()));
1125
8dddcb8f 1126 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
ce6c454e 1127 dyn_symbol_table, false);
07be84bf 1128
8dddcb8f 1129 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
62553543
EZ
1130 }
1131
63524580
JK
1132 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1133 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1134
1135 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1136 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1137 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1138 read the code address from .opd while it reads the .symtab section from
1139 a separate debug info file as the .opd section is SHT_NOBITS there.
1140
1141 With SYNTH_ABFD the .opd section will be read from the original
1142 backlinked binary where it is valid. */
1143
1144 if (objfile->separate_debug_objfile_backlink)
1145 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1146 else
1147 synth_abfd = abfd;
1148
62553543
EZ
1149 /* Add synthetic symbols - for instance, names for any PLT entries. */
1150
63524580 1151 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
62553543
EZ
1152 dynsymcount, dyn_symbol_table,
1153 &synthsyms);
1154 if (synthcount > 0)
1155 {
62553543
EZ
1156 long i;
1157
b22e99fd 1158 std::unique_ptr<asymbol *[]>
d1e4a624 1159 synth_symbol_table (new asymbol *[synthcount]);
62553543 1160 for (i = 0; i < synthcount; i++)
9f20e3da 1161 synth_symbol_table[i] = synthsyms + i;
8dddcb8f 1162 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
ce6c454e 1163 synth_symbol_table.get (), true);
ba713918
AL
1164
1165 xfree (synthsyms);
1166 synthsyms = NULL;
62553543 1167 }
c906108c 1168
7134143f
DJ
1169 /* Install any minimal symbols that have been collected as the current
1170 minimal symbols for this objfile. The debug readers below this point
1171 should not generate new minimal symbols; if they do it's their
1172 responsibility to install them. "mdebug" appears to be the only one
1173 which will do this. */
1174
d25e8719 1175 reader.install ();
7134143f 1176
4f00dda3
DE
1177 if (symtab_create_debug)
1178 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
2750ef27
TT
1179}
1180
1181/* Scan and build partial symbols for a symbol file.
1182 We have been initialized by a call to elf_symfile_init, which
1183 currently does nothing.
1184
2750ef27
TT
1185 This function only does the minimum work necessary for letting the
1186 user "name" things symbolically; it does not read the entire symtab.
1187 Instead, it reads the external and static symbols and puts them in partial
1188 symbol tables. When more extensive information is requested of a
1189 file, the corresponding partial symbol table is mutated into a full
1190 fledged symbol table by going back and reading the symbols
1191 for real.
1192
1193 We look for sections with specific names, to tell us what debug
1194 format to look for: FIXME!!!
1195
1196 elfstab_build_psymtabs() handles STABS symbols;
1197 mdebug_build_psymtabs() handles ECOFF debugging information.
1198
1199 Note that ELF files have a "minimal" symbol table, which looks a lot
1200 like a COFF symbol table, but has only the minimal information necessary
1201 for linking. We process this also, and use the information to
1202 build gdb's minimal symbol table. This gives us some minimal debugging
1203 capability even for files compiled without -g. */
1204
1205static void
b15cc25c 1206elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
2750ef27
TT
1207{
1208 bfd *abfd = objfile->obfd;
1209 struct elfinfo ei;
30d1f018 1210 bool has_dwarf2 = true;
2750ef27 1211
2750ef27 1212 memset ((char *) &ei, 0, sizeof (ei));
97cbe998
SDJ
1213 if (!(objfile->flags & OBJF_READNEVER))
1214 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
c906108c 1215
5f6cac40
TT
1216 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1217
c906108c
SS
1218 /* ELF debugging information is inserted into the psymtab in the
1219 order of least informative first - most informative last. Since
1220 the psymtab table is searched `most recent insertion first' this
1221 increases the probability that more detailed debug information
1222 for a section is found.
1223
1224 For instance, an object file might contain both .mdebug (XCOFF)
1225 and .debug_info (DWARF2) sections then .mdebug is inserted first
1226 (searched last) and DWARF2 is inserted last (searched first). If
1227 we don't do this then the XCOFF info is found first - for code in
0963b4bd 1228 an included file XCOFF info is useless. */
c906108c
SS
1229
1230 if (ei.mdebugsect)
1231 {
1232 const struct ecoff_debug_swap *swap;
1233
1234 /* .mdebug section, presumably holding ECOFF debugging
c5aa993b 1235 information. */
c906108c
SS
1236 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1237 if (swap)
d4f3574e 1238 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
c906108c
SS
1239 }
1240 if (ei.stabsect)
1241 {
1242 asection *str_sect;
1243
1244 /* Stab sections have an associated string table that looks like
c5aa993b 1245 a separate section. */
c906108c
SS
1246 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1247
1248 /* FIXME should probably warn about a stab section without a stabstr. */
1249 if (str_sect)
1250 elfstab_build_psymtabs (objfile,
086df311 1251 ei.stabsect,
c906108c 1252 str_sect->filepos,
fd361982 1253 bfd_section_size (str_sect));
c906108c 1254 }
9291a0cd 1255
4b610737 1256 if (dwarf2_has_info (objfile, NULL, true))
b11896a5 1257 {
3c0aa29a 1258 dw_index_kind index_kind;
3e03848b 1259
3c0aa29a
PA
1260 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1261 debug information present in OBJFILE. If there is such debug
1262 info present never use an index. */
1263 if (!objfile_has_partial_symbols (objfile)
1264 && dwarf2_initialize_objfile (objfile, &index_kind))
1265 {
1266 switch (index_kind)
1267 {
1268 case dw_index_kind::GDB_INDEX:
1269 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1270 break;
1271 case dw_index_kind::DEBUG_NAMES:
1272 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1273 break;
1274 }
1275 }
1276 else
b11896a5
TT
1277 {
1278 /* It is ok to do this even if the stabs reader made some
1279 partial symbols, because OBJF_PSYMTABS_READ has not been
1280 set, and so our lazy reader function will still be called
1281 when needed. */
8fb8eb5c 1282 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
b11896a5
TT
1283 }
1284 }
3e43a32a
MS
1285 /* If the file has its own symbol tables it has no separate debug
1286 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1287 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
8a92335b
JK
1288 `.note.gnu.build-id'.
1289
1290 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1291 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1292 an objfile via find_separate_debug_file_in_section there was no separate
1293 debug info available. Therefore do not attempt to search for another one,
1294 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1295 be NULL and we would possibly violate it. */
1296
1297 else if (!objfile_has_partial_symbols (objfile)
1298 && objfile->separate_debug_objfile == NULL
1299 && objfile->separate_debug_objfile_backlink == NULL)
9cce227f 1300 {
a8dbfd58 1301 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
9cce227f 1302
a8dbfd58
SM
1303 if (debugfile.empty ())
1304 debugfile = find_separate_debug_file_by_debuglink (objfile);
9cce227f 1305
a8dbfd58 1306 if (!debugfile.empty ())
9cce227f 1307 {
b926417a 1308 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
d7f9d729 1309
b926417a 1310 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
192b62ce 1311 symfile_flags, objfile);
9cce227f 1312 }
0d79cdc4
AM
1313 else
1314 {
30d1f018 1315 has_dwarf2 = false;
0d79cdc4
AM
1316 const struct bfd_build_id *build_id = build_id_bfd_get (objfile->obfd);
1317
1318 if (build_id != nullptr)
1319 {
1320 gdb::unique_xmalloc_ptr<char> symfile_path;
1321 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1322 build_id->size,
1323 objfile->original_name,
1324 &symfile_path));
1325
1326 if (fd.get () >= 0)
1327 {
1328 /* File successfully retrieved from server. */
1329 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1330
1331 if (debug_bfd == nullptr)
1332 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1333 objfile->original_name);
1334 else if (build_id_verify (debug_bfd.get (), build_id->size, build_id->data))
1335 {
1336 symbol_file_add_separate (debug_bfd.get (), symfile_path.get (),
1337 symfile_flags, objfile);
1338 has_dwarf2 = true;
1339 }
1340 }
1341 }
1342 }
30d1f018
WP
1343 }
1344
1345 /* Read the CTF section only if there is no DWARF info. */
1346 if (!has_dwarf2 && ei.ctfsect)
1347 {
1348 elfctf_build_psymtabs (objfile);
9cce227f 1349 }
c906108c
SS
1350}
1351
b11896a5
TT
1352/* Callback to lazily read psymtabs. */
1353
1354static void
1355read_psyms (struct objfile *objfile)
1356{
251d32d9 1357 if (dwarf2_has_info (objfile, NULL))
b11896a5
TT
1358 dwarf2_build_psymtabs (objfile);
1359}
1360
c906108c
SS
1361/* Initialize anything that needs initializing when a completely new symbol
1362 file is specified (not just adding some symbols from another file, e.g. a
caa429d8 1363 shared library). */
c906108c
SS
1364
1365static void
fba45db2 1366elf_new_init (struct objfile *ignore)
c906108c 1367{
c906108c
SS
1368}
1369
1370/* Perform any local cleanups required when we are done with a particular
1371 objfile. I.E, we are in the process of discarding all symbol information
1372 for an objfile, freeing up all memory held for it, and unlinking the
0963b4bd 1373 objfile struct from the global list of known objfiles. */
c906108c
SS
1374
1375static void
fba45db2 1376elf_symfile_finish (struct objfile *objfile)
c906108c 1377{
c906108c
SS
1378}
1379
db7a9bcd 1380/* ELF specific initialization routine for reading symbols. */
c906108c
SS
1381
1382static void
fba45db2 1383elf_symfile_init (struct objfile *objfile)
c906108c
SS
1384{
1385 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1386 find this causes a significant slowdown in gdb then we could
1387 set it in the debug symbol readers only when necessary. */
1388 objfile->flags |= OBJF_REORDERED;
1389}
1390
55aa24fb
SDJ
1391/* Implementation of `sym_get_probes', as documented in symfile.h. */
1392
814cf43a 1393static const elfread_data &
55aa24fb
SDJ
1394elf_get_probes (struct objfile *objfile)
1395{
814cf43a 1396 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
55aa24fb 1397
aaa63a31 1398 if (probes_per_bfd == NULL)
55aa24fb 1399 {
814cf43a 1400 probes_per_bfd = probe_key.emplace (objfile->obfd);
55aa24fb
SDJ
1401
1402 /* Here we try to gather information about all types of probes from the
1403 objfile. */
935676c9 1404 for (const static_probe_ops *ops : all_static_probe_ops)
0782db84 1405 ops->get_probes (probes_per_bfd, objfile);
55aa24fb
SDJ
1406 }
1407
aaa63a31 1408 return *probes_per_bfd;
55aa24fb
SDJ
1409}
1410
c906108c 1411\f
55aa24fb
SDJ
1412
1413/* Implementation `sym_probe_fns', as documented in symfile.h. */
1414
1415static const struct sym_probe_fns elf_probe_fns =
1416{
25f9533e 1417 elf_get_probes, /* sym_get_probes */
55aa24fb
SDJ
1418};
1419
c906108c
SS
1420/* Register that we are able to handle ELF object file formats. */
1421
00b5771c 1422static const struct sym_fns elf_sym_fns =
c906108c 1423{
3e43a32a
MS
1424 elf_new_init, /* init anything gbl to entire symtab */
1425 elf_symfile_init, /* read initial info, setup for sym_read() */
1426 elf_symfile_read, /* read a symbol file into symtab */
b11896a5
TT
1427 NULL, /* sym_read_psymbols */
1428 elf_symfile_finish, /* finished with file, cleanup */
1429 default_symfile_offsets, /* Translate ext. to int. relocation */
1430 elf_symfile_segments, /* Get segment information from a file. */
1431 NULL,
1432 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1433 &elf_probe_fns, /* sym_probe_fns */
b11896a5
TT
1434 &psym_functions
1435};
1436
1437/* The same as elf_sym_fns, but not registered and lazily reads
1438 psymbols. */
1439
e36122e9 1440const struct sym_fns elf_sym_fns_lazy_psyms =
b11896a5 1441{
b11896a5
TT
1442 elf_new_init, /* init anything gbl to entire symtab */
1443 elf_symfile_init, /* read initial info, setup for sym_read() */
1444 elf_symfile_read, /* read a symbol file into symtab */
1445 read_psyms, /* sym_read_psymbols */
3e43a32a
MS
1446 elf_symfile_finish, /* finished with file, cleanup */
1447 default_symfile_offsets, /* Translate ext. to int. relocation */
1448 elf_symfile_segments, /* Get segment information from a file. */
1449 NULL,
1450 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1451 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1452 &psym_functions
c906108c
SS
1453};
1454
9291a0cd
TT
1455/* The same as elf_sym_fns, but not registered and uses the
1456 DWARF-specific GNU index rather than psymtab. */
e36122e9 1457const struct sym_fns elf_sym_fns_gdb_index =
9291a0cd 1458{
3e43a32a
MS
1459 elf_new_init, /* init anything gbl to entire symab */
1460 elf_symfile_init, /* read initial info, setup for sym_red() */
1461 elf_symfile_read, /* read a symbol file into symtab */
b11896a5 1462 NULL, /* sym_read_psymbols */
3e43a32a 1463 elf_symfile_finish, /* finished with file, cleanup */
405feb71 1464 default_symfile_offsets, /* Translate ext. to int. relocation */
3e43a32a
MS
1465 elf_symfile_segments, /* Get segment information from a file. */
1466 NULL,
1467 default_symfile_relocate, /* Relocate a debug section. */
55aa24fb 1468 &elf_probe_fns, /* sym_probe_fns */
00b5771c 1469 &dwarf2_gdb_index_functions
9291a0cd
TT
1470};
1471
927aa2e7
JK
1472/* The same as elf_sym_fns, but not registered and uses the
1473 DWARF-specific .debug_names index rather than psymtab. */
1474const struct sym_fns elf_sym_fns_debug_names =
1475{
1476 elf_new_init, /* init anything gbl to entire symab */
1477 elf_symfile_init, /* read initial info, setup for sym_red() */
1478 elf_symfile_read, /* read a symbol file into symtab */
1479 NULL, /* sym_read_psymbols */
1480 elf_symfile_finish, /* finished with file, cleanup */
405feb71 1481 default_symfile_offsets, /* Translate ext. to int. relocation */
927aa2e7
JK
1482 elf_symfile_segments, /* Get segment information from a file. */
1483 NULL,
1484 default_symfile_relocate, /* Relocate a debug section. */
1485 &elf_probe_fns, /* sym_probe_fns */
1486 &dwarf2_debug_names_functions
1487};
1488
07be84bf
JK
1489/* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1490
1491static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1492{
1493 elf_gnu_ifunc_resolve_addr,
1494 elf_gnu_ifunc_resolve_name,
0e30163f
JK
1495 elf_gnu_ifunc_resolver_stop,
1496 elf_gnu_ifunc_resolver_return_stop
07be84bf
JK
1497};
1498
6c265988 1499void _initialize_elfread ();
c906108c 1500void
6c265988 1501_initialize_elfread ()
c906108c 1502{
c256e171 1503 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
07be84bf 1504
07be84bf 1505 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
c906108c 1506}
This page took 1.553448 seconds and 4 git commands to generate.