gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2020 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "stabsread.h"
32 #include "complaints.h"
33 #include "demangle.h"
34 #include "psympriv.h"
35 #include "filenames.h"
36 #include "probe.h"
37 #include "arch-utils.h"
38 #include "gdbtypes.h"
39 #include "value.h"
40 #include "infcall.h"
41 #include "gdbthread.h"
42 #include "inferior.h"
43 #include "regcache.h"
44 #include "bcache.h"
45 #include "gdb_bfd.h"
46 #include "build-id.h"
47 #include "location.h"
48 #include "auxv.h"
49 #include "mdebugread.h"
50 #include "ctfread.h"
51 #include "gdbsupport/gdb_string_view.h"
52 #include "gdbsupport/scoped_fd.h"
53 #include "debuginfod-support.h"
54
55 /* Forward declarations. */
56 extern const struct sym_fns elf_sym_fns_gdb_index;
57 extern const struct sym_fns elf_sym_fns_debug_names;
58 extern const struct sym_fns elf_sym_fns_lazy_psyms;
59
60 /* The struct elfinfo is available only during ELF symbol table and
61 psymtab reading. It is destroyed at the completion of psymtab-reading.
62 It's local to elf_symfile_read. */
63
64 struct elfinfo
65 {
66 asection *stabsect; /* Section pointer for .stab section */
67 asection *mdebugsect; /* Section pointer for .mdebug section */
68 asection *ctfsect; /* Section pointer for .ctf section */
69 };
70
71 /* Type for per-BFD data. */
72
73 typedef std::vector<std::unique_ptr<probe>> elfread_data;
74
75 /* Per-BFD data for probe info. */
76
77 static const struct bfd_key<elfread_data> probe_key;
78
79 /* Minimal symbols located at the GOT entries for .plt - that is the real
80 pointer where the given entry will jump to. It gets updated by the real
81 function address during lazy ld.so resolving in the inferior. These
82 minimal symbols are indexed for <tab>-completion. */
83
84 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
85
86 /* Locate the segments in ABFD. */
87
88 static symfile_segment_data_up
89 elf_symfile_segments (bfd *abfd)
90 {
91 Elf_Internal_Phdr *phdrs, **segments;
92 long phdrs_size;
93 int num_phdrs, num_segments, num_sections, i;
94 asection *sect;
95
96 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
97 if (phdrs_size == -1)
98 return NULL;
99
100 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
101 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
102 if (num_phdrs == -1)
103 return NULL;
104
105 num_segments = 0;
106 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
107 for (i = 0; i < num_phdrs; i++)
108 if (phdrs[i].p_type == PT_LOAD)
109 segments[num_segments++] = &phdrs[i];
110
111 if (num_segments == 0)
112 return NULL;
113
114 symfile_segment_data_up data (new symfile_segment_data);
115 data->segments.reserve (num_segments);
116
117 for (i = 0; i < num_segments; i++)
118 data->segments.emplace_back (segments[i]->p_vaddr, segments[i]->p_memsz);
119
120 num_sections = bfd_count_sections (abfd);
121
122 /* All elements are initialized to 0 (map to no segment). */
123 data->segment_info.resize (num_sections);
124
125 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
126 {
127 int j;
128
129 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
130 continue;
131
132 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
133
134 for (j = 0; j < num_segments; j++)
135 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_section_size (sect) > 0 && j == num_segments
151 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
152 warning (_("Loadable section \"%s\" outside of ELF segments"),
153 bfd_section_name (sect));
154 }
155
156 return data;
157 }
158
159 /* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
175 section flags to specify what kind of debug section it is.
176 -kingdon). */
177
178 static void
179 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
180 {
181 struct elfinfo *ei;
182
183 ei = (struct elfinfo *) eip;
184 if (strcmp (sectp->name, ".stab") == 0)
185 {
186 ei->stabsect = sectp;
187 }
188 else if (strcmp (sectp->name, ".mdebug") == 0)
189 {
190 ei->mdebugsect = sectp;
191 }
192 else if (strcmp (sectp->name, ".ctf") == 0)
193 {
194 ei->ctfsect = sectp;
195 }
196 }
197
198 static struct minimal_symbol *
199 record_minimal_symbol (minimal_symbol_reader &reader,
200 gdb::string_view name, bool copy_name,
201 CORE_ADDR address,
202 enum minimal_symbol_type ms_type,
203 asection *bfd_section, struct objfile *objfile)
204 {
205 struct gdbarch *gdbarch = objfile->arch ();
206
207 if (ms_type == mst_text || ms_type == mst_file_text
208 || ms_type == mst_text_gnu_ifunc)
209 address = gdbarch_addr_bits_remove (gdbarch, address);
210
211 /* We only setup section information for allocatable sections. Usually
212 we'd only expect to find msymbols for allocatable sections, but if the
213 ELF is malformed then this might not be the case. In that case don't
214 create an msymbol that references an uninitialised section object. */
215 int section_index = 0;
216 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
217 section_index = gdb_bfd_section_index (objfile->obfd, bfd_section);
218
219 struct minimal_symbol *result
220 = reader.record_full (name, copy_name, address, ms_type, section_index);
221 if ((objfile->flags & OBJF_MAINLINE) == 0
222 && (ms_type == mst_data || ms_type == mst_bss))
223 result->maybe_copied = 1;
224
225 return result;
226 }
227
228 /* Read the symbol table of an ELF file.
229
230 Given an objfile, a symbol table, and a flag indicating whether the
231 symbol table contains regular, dynamic, or synthetic symbols, add all
232 the global function and data symbols to the minimal symbol table.
233
234 In stabs-in-ELF, as implemented by Sun, there are some local symbols
235 defined in the ELF symbol table, which can be used to locate
236 the beginnings of sections from each ".o" file that was linked to
237 form the executable objfile. We gather any such info and record it
238 in data structures hung off the objfile's private data. */
239
240 #define ST_REGULAR 0
241 #define ST_DYNAMIC 1
242 #define ST_SYNTHETIC 2
243
244 static void
245 elf_symtab_read (minimal_symbol_reader &reader,
246 struct objfile *objfile, int type,
247 long number_of_symbols, asymbol **symbol_table,
248 bool copy_names)
249 {
250 struct gdbarch *gdbarch = objfile->arch ();
251 asymbol *sym;
252 long i;
253 CORE_ADDR symaddr;
254 enum minimal_symbol_type ms_type;
255 /* Name of the last file symbol. This is either a constant string or is
256 saved on the objfile's filename cache. */
257 const char *filesymname = "";
258 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
259 int elf_make_msymbol_special_p
260 = gdbarch_elf_make_msymbol_special_p (gdbarch);
261
262 for (i = 0; i < number_of_symbols; i++)
263 {
264 sym = symbol_table[i];
265 if (sym->name == NULL || *sym->name == '\0')
266 {
267 /* Skip names that don't exist (shouldn't happen), or names
268 that are null strings (may happen). */
269 continue;
270 }
271
272 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
273 symbols which do not correspond to objects in the symbol table,
274 but have some other target-specific meaning. */
275 if (bfd_is_target_special_symbol (objfile->obfd, sym))
276 {
277 if (gdbarch_record_special_symbol_p (gdbarch))
278 gdbarch_record_special_symbol (gdbarch, objfile, sym);
279 continue;
280 }
281
282 if (type == ST_DYNAMIC
283 && sym->section == bfd_und_section_ptr
284 && (sym->flags & BSF_FUNCTION))
285 {
286 struct minimal_symbol *msym;
287 bfd *abfd = objfile->obfd;
288 asection *sect;
289
290 /* Symbol is a reference to a function defined in
291 a shared library.
292 If its value is non zero then it is usually the address
293 of the corresponding entry in the procedure linkage table,
294 plus the desired section offset.
295 If its value is zero then the dynamic linker has to resolve
296 the symbol. We are unable to find any meaningful address
297 for this symbol in the executable file, so we skip it. */
298 symaddr = sym->value;
299 if (symaddr == 0)
300 continue;
301
302 /* sym->section is the undefined section. However, we want to
303 record the section where the PLT stub resides with the
304 minimal symbol. Search the section table for the one that
305 covers the stub's address. */
306 for (sect = abfd->sections; sect != NULL; sect = sect->next)
307 {
308 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
309 continue;
310
311 if (symaddr >= bfd_section_vma (sect)
312 && symaddr < bfd_section_vma (sect)
313 + bfd_section_size (sect))
314 break;
315 }
316 if (!sect)
317 continue;
318
319 /* On ia64-hpux, we have discovered that the system linker
320 adds undefined symbols with nonzero addresses that cannot
321 be right (their address points inside the code of another
322 function in the .text section). This creates problems
323 when trying to determine which symbol corresponds to
324 a given address.
325
326 We try to detect those buggy symbols by checking which
327 section we think they correspond to. Normally, PLT symbols
328 are stored inside their own section, and the typical name
329 for that section is ".plt". So, if there is a ".plt"
330 section, and yet the section name of our symbol does not
331 start with ".plt", we ignore that symbol. */
332 if (!startswith (sect->name, ".plt")
333 && bfd_get_section_by_name (abfd, ".plt") != NULL)
334 continue;
335
336 msym = record_minimal_symbol
337 (reader, sym->name, copy_names,
338 symaddr, mst_solib_trampoline, sect, objfile);
339 if (msym != NULL)
340 {
341 msym->filename = filesymname;
342 if (elf_make_msymbol_special_p)
343 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
344 }
345 continue;
346 }
347
348 /* If it is a nonstripped executable, do not enter dynamic
349 symbols, as the dynamic symbol table is usually a subset
350 of the main symbol table. */
351 if (type == ST_DYNAMIC && !stripped)
352 continue;
353 if (sym->flags & BSF_FILE)
354 filesymname = objfile->intern (sym->name);
355 else if (sym->flags & BSF_SECTION_SYM)
356 continue;
357 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
358 | BSF_GNU_UNIQUE))
359 {
360 struct minimal_symbol *msym;
361
362 /* Select global/local/weak symbols. Note that bfd puts abs
363 symbols in their own section, so all symbols we are
364 interested in will have a section. */
365 /* Bfd symbols are section relative. */
366 symaddr = sym->value + sym->section->vma;
367 /* For non-absolute symbols, use the type of the section
368 they are relative to, to intuit text/data. Bfd provides
369 no way of figuring this out for absolute symbols. */
370 if (sym->section == bfd_abs_section_ptr)
371 {
372 /* This is a hack to get the minimal symbol type
373 right for Irix 5, which has absolute addresses
374 with special section indices for dynamic symbols.
375
376 NOTE: uweigand-20071112: Synthetic symbols do not
377 have an ELF-private part, so do not touch those. */
378 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
379 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
380
381 switch (shndx)
382 {
383 case SHN_MIPS_TEXT:
384 ms_type = mst_text;
385 break;
386 case SHN_MIPS_DATA:
387 ms_type = mst_data;
388 break;
389 case SHN_MIPS_ACOMMON:
390 ms_type = mst_bss;
391 break;
392 default:
393 ms_type = mst_abs;
394 }
395
396 /* If it is an Irix dynamic symbol, skip section name
397 symbols, relocate all others by section offset. */
398 if (ms_type != mst_abs)
399 {
400 if (sym->name[0] == '.')
401 continue;
402 }
403 }
404 else if (sym->section->flags & SEC_CODE)
405 {
406 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
407 {
408 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
409 ms_type = mst_text_gnu_ifunc;
410 else
411 ms_type = mst_text;
412 }
413 /* The BSF_SYNTHETIC check is there to omit ppc64 function
414 descriptors mistaken for static functions starting with 'L'.
415 */
416 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
417 && (sym->flags & BSF_SYNTHETIC) == 0)
418 || ((sym->flags & BSF_LOCAL)
419 && sym->name[0] == '$'
420 && sym->name[1] == 'L'))
421 /* Looks like a compiler-generated label. Skip
422 it. The assembler should be skipping these (to
423 keep executables small), but apparently with
424 gcc on the (deleted) delta m88k SVR4, it loses.
425 So to have us check too should be harmless (but
426 I encourage people to fix this in the assembler
427 instead of adding checks here). */
428 continue;
429 else
430 {
431 ms_type = mst_file_text;
432 }
433 }
434 else if (sym->section->flags & SEC_ALLOC)
435 {
436 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
437 {
438 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
439 {
440 ms_type = mst_data_gnu_ifunc;
441 }
442 else if (sym->section->flags & SEC_LOAD)
443 {
444 ms_type = mst_data;
445 }
446 else
447 {
448 ms_type = mst_bss;
449 }
450 }
451 else if (sym->flags & BSF_LOCAL)
452 {
453 if (sym->section->flags & SEC_LOAD)
454 {
455 ms_type = mst_file_data;
456 }
457 else
458 {
459 ms_type = mst_file_bss;
460 }
461 }
462 else
463 {
464 ms_type = mst_unknown;
465 }
466 }
467 else
468 {
469 /* FIXME: Solaris2 shared libraries include lots of
470 odd "absolute" and "undefined" symbols, that play
471 hob with actions like finding what function the PC
472 is in. Ignore them if they aren't text, data, or bss. */
473 /* ms_type = mst_unknown; */
474 continue; /* Skip this symbol. */
475 }
476 msym = record_minimal_symbol
477 (reader, sym->name, copy_names, symaddr,
478 ms_type, sym->section, objfile);
479
480 if (msym)
481 {
482 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
483 ELF-private part. */
484 if (type != ST_SYNTHETIC)
485 {
486 /* Pass symbol size field in via BFD. FIXME!!! */
487 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
488 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
489 }
490
491 msym->filename = filesymname;
492 if (elf_make_msymbol_special_p)
493 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
494 }
495
496 /* If we see a default versioned symbol, install it under
497 its version-less name. */
498 if (msym != NULL)
499 {
500 const char *atsign = strchr (sym->name, '@');
501
502 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
503 {
504 int len = atsign - sym->name;
505
506 record_minimal_symbol (reader,
507 gdb::string_view (sym->name, len),
508 true, symaddr, ms_type, sym->section,
509 objfile);
510 }
511 }
512
513 /* For @plt symbols, also record a trampoline to the
514 destination symbol. The @plt symbol will be used in
515 disassembly, and the trampoline will be used when we are
516 trying to find the target. */
517 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
518 {
519 int len = strlen (sym->name);
520
521 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
522 {
523 struct minimal_symbol *mtramp;
524
525 mtramp = record_minimal_symbol
526 (reader, gdb::string_view (sym->name, len - 4), true,
527 symaddr, mst_solib_trampoline, sym->section, objfile);
528 if (mtramp)
529 {
530 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
531 mtramp->created_by_gdb = 1;
532 mtramp->filename = filesymname;
533 if (elf_make_msymbol_special_p)
534 gdbarch_elf_make_msymbol_special (gdbarch,
535 sym, mtramp);
536 }
537 }
538 }
539 }
540 }
541 }
542
543 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
544 for later look ups of which function to call when user requests
545 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
546 library defining `function' we cannot yet know while reading OBJFILE which
547 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
548 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
549
550 static void
551 elf_rel_plt_read (minimal_symbol_reader &reader,
552 struct objfile *objfile, asymbol **dyn_symbol_table)
553 {
554 bfd *obfd = objfile->obfd;
555 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
556 asection *relplt, *got_plt;
557 bfd_size_type reloc_count, reloc;
558 struct gdbarch *gdbarch = objfile->arch ();
559 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
560 size_t ptr_size = TYPE_LENGTH (ptr_type);
561
562 if (objfile->separate_debug_objfile_backlink)
563 return;
564
565 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
566 if (got_plt == NULL)
567 {
568 /* For platforms where there is no separate .got.plt. */
569 got_plt = bfd_get_section_by_name (obfd, ".got");
570 if (got_plt == NULL)
571 return;
572 }
573
574 /* Depending on system, we may find jump slots in a relocation
575 section for either .got.plt or .plt. */
576 asection *plt = bfd_get_section_by_name (obfd, ".plt");
577 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
578
579 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
580
581 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
582 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
583 {
584 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
585
586 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
587 {
588 if (this_hdr.sh_info == plt_elf_idx
589 || this_hdr.sh_info == got_plt_elf_idx)
590 break;
591 }
592 }
593 if (relplt == NULL)
594 return;
595
596 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
597 return;
598
599 std::string string_buffer;
600
601 /* Does ADDRESS reside in SECTION of OBFD? */
602 auto within_section = [obfd] (asection *section, CORE_ADDR address)
603 {
604 if (section == NULL)
605 return false;
606
607 return (bfd_section_vma (section) <= address
608 && (address < bfd_section_vma (section)
609 + bfd_section_size (section)));
610 };
611
612 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
613 for (reloc = 0; reloc < reloc_count; reloc++)
614 {
615 const char *name;
616 struct minimal_symbol *msym;
617 CORE_ADDR address;
618 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
619 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
620
621 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
622 address = relplt->relocation[reloc].address;
623
624 asection *msym_section;
625
626 /* Does the pointer reside in either the .got.plt or .plt
627 sections? */
628 if (within_section (got_plt, address))
629 msym_section = got_plt;
630 else if (within_section (plt, address))
631 msym_section = plt;
632 else
633 continue;
634
635 /* We cannot check if NAME is a reference to
636 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
637 symbol is undefined and the objfile having NAME defined may
638 not yet have been loaded. */
639
640 string_buffer.assign (name);
641 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
642
643 msym = record_minimal_symbol (reader, string_buffer,
644 true, address, mst_slot_got_plt,
645 msym_section, objfile);
646 if (msym)
647 SET_MSYMBOL_SIZE (msym, ptr_size);
648 }
649 }
650
651 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
652
653 static const struct objfile_key<htab, htab_deleter>
654 elf_objfile_gnu_ifunc_cache_data;
655
656 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
657
658 struct elf_gnu_ifunc_cache
659 {
660 /* This is always a function entry address, not a function descriptor. */
661 CORE_ADDR addr;
662
663 char name[1];
664 };
665
666 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
667
668 static hashval_t
669 elf_gnu_ifunc_cache_hash (const void *a_voidp)
670 {
671 const struct elf_gnu_ifunc_cache *a
672 = (const struct elf_gnu_ifunc_cache *) a_voidp;
673
674 return htab_hash_string (a->name);
675 }
676
677 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
678
679 static int
680 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
681 {
682 const struct elf_gnu_ifunc_cache *a
683 = (const struct elf_gnu_ifunc_cache *) a_voidp;
684 const struct elf_gnu_ifunc_cache *b
685 = (const struct elf_gnu_ifunc_cache *) b_voidp;
686
687 return strcmp (a->name, b->name) == 0;
688 }
689
690 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
691 function entry address ADDR. Return 1 if NAME and ADDR are considered as
692 valid and therefore they were successfully recorded, return 0 otherwise.
693
694 Function does not expect a duplicate entry. Use
695 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
696 exists. */
697
698 static int
699 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
700 {
701 struct bound_minimal_symbol msym;
702 struct objfile *objfile;
703 htab_t htab;
704 struct elf_gnu_ifunc_cache entry_local, *entry_p;
705 void **slot;
706
707 msym = lookup_minimal_symbol_by_pc (addr);
708 if (msym.minsym == NULL)
709 return 0;
710 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
711 return 0;
712 objfile = msym.objfile;
713
714 /* If .plt jumps back to .plt the symbol is still deferred for later
715 resolution and it has no use for GDB. */
716 const char *target_name = msym.minsym->linkage_name ();
717 size_t len = strlen (target_name);
718
719 /* Note we check the symbol's name instead of checking whether the
720 symbol is in the .plt section because some systems have @plt
721 symbols in the .text section. */
722 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
723 return 0;
724
725 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
726 if (htab == NULL)
727 {
728 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
729 elf_gnu_ifunc_cache_eq,
730 NULL, xcalloc, xfree);
731 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
732 }
733
734 entry_local.addr = addr;
735 obstack_grow (&objfile->objfile_obstack, &entry_local,
736 offsetof (struct elf_gnu_ifunc_cache, name));
737 obstack_grow_str0 (&objfile->objfile_obstack, name);
738 entry_p
739 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
740
741 slot = htab_find_slot (htab, entry_p, INSERT);
742 if (*slot != NULL)
743 {
744 struct elf_gnu_ifunc_cache *entry_found_p
745 = (struct elf_gnu_ifunc_cache *) *slot;
746 struct gdbarch *gdbarch = objfile->arch ();
747
748 if (entry_found_p->addr != addr)
749 {
750 /* This case indicates buggy inferior program, the resolved address
751 should never change. */
752
753 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
754 "function_address from %s to %s"),
755 name, paddress (gdbarch, entry_found_p->addr),
756 paddress (gdbarch, addr));
757 }
758
759 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
760 }
761 *slot = entry_p;
762
763 return 1;
764 }
765
766 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
767 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
768 is not NULL) and the function returns 1. It returns 0 otherwise.
769
770 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
771 function. */
772
773 static int
774 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
775 {
776 for (objfile *objfile : current_program_space->objfiles ())
777 {
778 htab_t htab;
779 struct elf_gnu_ifunc_cache *entry_p;
780 void **slot;
781
782 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
783 if (htab == NULL)
784 continue;
785
786 entry_p = ((struct elf_gnu_ifunc_cache *)
787 alloca (sizeof (*entry_p) + strlen (name)));
788 strcpy (entry_p->name, name);
789
790 slot = htab_find_slot (htab, entry_p, NO_INSERT);
791 if (slot == NULL)
792 continue;
793 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
794 gdb_assert (entry_p != NULL);
795
796 if (addr_p)
797 *addr_p = entry_p->addr;
798 return 1;
799 }
800
801 return 0;
802 }
803
804 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
805 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
806 is not NULL) and the function returns 1. It returns 0 otherwise.
807
808 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
809 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
810 prevent cache entries duplicates. */
811
812 static int
813 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
814 {
815 char *name_got_plt;
816 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
817
818 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
819 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
820
821 for (objfile *objfile : current_program_space->objfiles ())
822 {
823 bfd *obfd = objfile->obfd;
824 struct gdbarch *gdbarch = objfile->arch ();
825 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
826 size_t ptr_size = TYPE_LENGTH (ptr_type);
827 CORE_ADDR pointer_address, addr;
828 asection *plt;
829 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
830 struct bound_minimal_symbol msym;
831
832 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
833 if (msym.minsym == NULL)
834 continue;
835 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
836 continue;
837 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
838
839 plt = bfd_get_section_by_name (obfd, ".plt");
840 if (plt == NULL)
841 continue;
842
843 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
844 continue;
845 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
846 continue;
847 addr = extract_typed_address (buf, ptr_type);
848 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
849 current_top_target ());
850 addr = gdbarch_addr_bits_remove (gdbarch, addr);
851
852 if (elf_gnu_ifunc_record_cache (name, addr))
853 {
854 if (addr_p != NULL)
855 *addr_p = addr;
856 return 1;
857 }
858 }
859
860 return 0;
861 }
862
863 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
864 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
865 is not NULL) and the function returns true. It returns false otherwise.
866
867 Both the elf_objfile_gnu_ifunc_cache_data hash table and
868 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
869
870 static bool
871 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
872 {
873 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
874 return true;
875
876 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
877 return true;
878
879 return false;
880 }
881
882 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
883 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
884 is the entry point of the resolved STT_GNU_IFUNC target function to call.
885 */
886
887 static CORE_ADDR
888 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
889 {
890 const char *name_at_pc;
891 CORE_ADDR start_at_pc, address;
892 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
893 struct value *function, *address_val;
894 CORE_ADDR hwcap = 0;
895 struct value *hwcap_val;
896
897 /* Try first any non-intrusive methods without an inferior call. */
898
899 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
900 && start_at_pc == pc)
901 {
902 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
903 return address;
904 }
905 else
906 name_at_pc = NULL;
907
908 function = allocate_value (func_func_type);
909 VALUE_LVAL (function) = lval_memory;
910 set_value_address (function, pc);
911
912 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
913 parameter. FUNCTION is the function entry address. ADDRESS may be a
914 function descriptor. */
915
916 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
917 hwcap_val = value_from_longest (builtin_type (gdbarch)
918 ->builtin_unsigned_long, hwcap);
919 address_val = call_function_by_hand (function, NULL, hwcap_val);
920 address = value_as_address (address_val);
921 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
922 address = gdbarch_addr_bits_remove (gdbarch, address);
923
924 if (name_at_pc)
925 elf_gnu_ifunc_record_cache (name_at_pc, address);
926
927 return address;
928 }
929
930 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
931
932 static void
933 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
934 {
935 struct breakpoint *b_return;
936 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
937 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
938 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
939 int thread_id = inferior_thread ()->global_num;
940
941 gdb_assert (b->type == bp_gnu_ifunc_resolver);
942
943 for (b_return = b->related_breakpoint; b_return != b;
944 b_return = b_return->related_breakpoint)
945 {
946 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
947 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
948 gdb_assert (frame_id_p (b_return->frame_id));
949
950 if (b_return->thread == thread_id
951 && b_return->loc->requested_address == prev_pc
952 && frame_id_eq (b_return->frame_id, prev_frame_id))
953 break;
954 }
955
956 if (b_return == b)
957 {
958 /* No need to call find_pc_line for symbols resolving as this is only
959 a helper breakpointer never shown to the user. */
960
961 symtab_and_line sal;
962 sal.pspace = current_inferior ()->pspace;
963 sal.pc = prev_pc;
964 sal.section = find_pc_overlay (sal.pc);
965 sal.explicit_pc = 1;
966 b_return
967 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
968 prev_frame_id,
969 bp_gnu_ifunc_resolver_return).release ();
970
971 /* set_momentary_breakpoint invalidates PREV_FRAME. */
972 prev_frame = NULL;
973
974 /* Add new b_return to the ring list b->related_breakpoint. */
975 gdb_assert (b_return->related_breakpoint == b_return);
976 b_return->related_breakpoint = b->related_breakpoint;
977 b->related_breakpoint = b_return;
978 }
979 }
980
981 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
982
983 static void
984 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
985 {
986 thread_info *thread = inferior_thread ();
987 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
988 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
989 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
990 struct regcache *regcache = get_thread_regcache (thread);
991 struct value *func_func;
992 struct value *value;
993 CORE_ADDR resolved_address, resolved_pc;
994
995 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
996
997 while (b->related_breakpoint != b)
998 {
999 struct breakpoint *b_next = b->related_breakpoint;
1000
1001 switch (b->type)
1002 {
1003 case bp_gnu_ifunc_resolver:
1004 break;
1005 case bp_gnu_ifunc_resolver_return:
1006 delete_breakpoint (b);
1007 break;
1008 default:
1009 internal_error (__FILE__, __LINE__,
1010 _("handle_inferior_event: Invalid "
1011 "gnu-indirect-function breakpoint type %d"),
1012 (int) b->type);
1013 }
1014 b = b_next;
1015 }
1016 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1017 gdb_assert (b->loc->next == NULL);
1018
1019 func_func = allocate_value (func_func_type);
1020 VALUE_LVAL (func_func) = lval_memory;
1021 set_value_address (func_func, b->loc->related_address);
1022
1023 value = allocate_value (value_type);
1024 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1025 value_contents_raw (value), NULL);
1026 resolved_address = value_as_address (value);
1027 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1028 resolved_address,
1029 current_top_target ());
1030 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1031
1032 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1033 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1034 resolved_pc);
1035
1036 b->type = bp_breakpoint;
1037 update_breakpoint_locations (b, current_program_space,
1038 find_function_start_sal (resolved_pc, NULL, true),
1039 {});
1040 }
1041
1042 /* A helper function for elf_symfile_read that reads the minimal
1043 symbols. */
1044
1045 static void
1046 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1047 const struct elfinfo *ei)
1048 {
1049 bfd *synth_abfd, *abfd = objfile->obfd;
1050 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1051 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1052 asymbol *synthsyms;
1053
1054 if (symtab_create_debug)
1055 {
1056 fprintf_unfiltered (gdb_stdlog,
1057 "Reading minimal symbols of objfile %s ...\n",
1058 objfile_name (objfile));
1059 }
1060
1061 /* If we already have minsyms, then we can skip some work here.
1062 However, if there were stabs or mdebug sections, we go ahead and
1063 redo all the work anyway, because the psym readers for those
1064 kinds of debuginfo need extra information found here. This can
1065 go away once all types of symbols are in the per-BFD object. */
1066 if (objfile->per_bfd->minsyms_read
1067 && ei->stabsect == NULL
1068 && ei->mdebugsect == NULL
1069 && ei->ctfsect == NULL)
1070 {
1071 if (symtab_create_debug)
1072 fprintf_unfiltered (gdb_stdlog,
1073 "... minimal symbols previously read\n");
1074 return;
1075 }
1076
1077 minimal_symbol_reader reader (objfile);
1078
1079 /* Process the normal ELF symbol table first. */
1080
1081 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1082 if (storage_needed < 0)
1083 error (_("Can't read symbols from %s: %s"),
1084 bfd_get_filename (objfile->obfd),
1085 bfd_errmsg (bfd_get_error ()));
1086
1087 if (storage_needed > 0)
1088 {
1089 /* Memory gets permanently referenced from ABFD after
1090 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1091
1092 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1093 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1094
1095 if (symcount < 0)
1096 error (_("Can't read symbols from %s: %s"),
1097 bfd_get_filename (objfile->obfd),
1098 bfd_errmsg (bfd_get_error ()));
1099
1100 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1101 false);
1102 }
1103
1104 /* Add the dynamic symbols. */
1105
1106 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1107
1108 if (storage_needed > 0)
1109 {
1110 /* Memory gets permanently referenced from ABFD after
1111 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1112 It happens only in the case when elf_slurp_reloc_table sees
1113 asection->relocation NULL. Determining which section is asection is
1114 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1115 implementation detail, though. */
1116
1117 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1118 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1119 dyn_symbol_table);
1120
1121 if (dynsymcount < 0)
1122 error (_("Can't read symbols from %s: %s"),
1123 bfd_get_filename (objfile->obfd),
1124 bfd_errmsg (bfd_get_error ()));
1125
1126 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1127 dyn_symbol_table, false);
1128
1129 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1130 }
1131
1132 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1133 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1134
1135 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1136 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1137 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1138 read the code address from .opd while it reads the .symtab section from
1139 a separate debug info file as the .opd section is SHT_NOBITS there.
1140
1141 With SYNTH_ABFD the .opd section will be read from the original
1142 backlinked binary where it is valid. */
1143
1144 if (objfile->separate_debug_objfile_backlink)
1145 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1146 else
1147 synth_abfd = abfd;
1148
1149 /* Add synthetic symbols - for instance, names for any PLT entries. */
1150
1151 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1152 dynsymcount, dyn_symbol_table,
1153 &synthsyms);
1154 if (synthcount > 0)
1155 {
1156 long i;
1157
1158 std::unique_ptr<asymbol *[]>
1159 synth_symbol_table (new asymbol *[synthcount]);
1160 for (i = 0; i < synthcount; i++)
1161 synth_symbol_table[i] = synthsyms + i;
1162 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1163 synth_symbol_table.get (), true);
1164
1165 xfree (synthsyms);
1166 synthsyms = NULL;
1167 }
1168
1169 /* Install any minimal symbols that have been collected as the current
1170 minimal symbols for this objfile. The debug readers below this point
1171 should not generate new minimal symbols; if they do it's their
1172 responsibility to install them. "mdebug" appears to be the only one
1173 which will do this. */
1174
1175 reader.install ();
1176
1177 if (symtab_create_debug)
1178 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1179 }
1180
1181 /* Scan and build partial symbols for a symbol file.
1182 We have been initialized by a call to elf_symfile_init, which
1183 currently does nothing.
1184
1185 This function only does the minimum work necessary for letting the
1186 user "name" things symbolically; it does not read the entire symtab.
1187 Instead, it reads the external and static symbols and puts them in partial
1188 symbol tables. When more extensive information is requested of a
1189 file, the corresponding partial symbol table is mutated into a full
1190 fledged symbol table by going back and reading the symbols
1191 for real.
1192
1193 We look for sections with specific names, to tell us what debug
1194 format to look for: FIXME!!!
1195
1196 elfstab_build_psymtabs() handles STABS symbols;
1197 mdebug_build_psymtabs() handles ECOFF debugging information.
1198
1199 Note that ELF files have a "minimal" symbol table, which looks a lot
1200 like a COFF symbol table, but has only the minimal information necessary
1201 for linking. We process this also, and use the information to
1202 build gdb's minimal symbol table. This gives us some minimal debugging
1203 capability even for files compiled without -g. */
1204
1205 static void
1206 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1207 {
1208 bfd *abfd = objfile->obfd;
1209 struct elfinfo ei;
1210 bool has_dwarf2 = true;
1211
1212 memset ((char *) &ei, 0, sizeof (ei));
1213 if (!(objfile->flags & OBJF_READNEVER))
1214 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1215
1216 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1217
1218 /* ELF debugging information is inserted into the psymtab in the
1219 order of least informative first - most informative last. Since
1220 the psymtab table is searched `most recent insertion first' this
1221 increases the probability that more detailed debug information
1222 for a section is found.
1223
1224 For instance, an object file might contain both .mdebug (XCOFF)
1225 and .debug_info (DWARF2) sections then .mdebug is inserted first
1226 (searched last) and DWARF2 is inserted last (searched first). If
1227 we don't do this then the XCOFF info is found first - for code in
1228 an included file XCOFF info is useless. */
1229
1230 if (ei.mdebugsect)
1231 {
1232 const struct ecoff_debug_swap *swap;
1233
1234 /* .mdebug section, presumably holding ECOFF debugging
1235 information. */
1236 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1237 if (swap)
1238 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1239 }
1240 if (ei.stabsect)
1241 {
1242 asection *str_sect;
1243
1244 /* Stab sections have an associated string table that looks like
1245 a separate section. */
1246 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1247
1248 /* FIXME should probably warn about a stab section without a stabstr. */
1249 if (str_sect)
1250 elfstab_build_psymtabs (objfile,
1251 ei.stabsect,
1252 str_sect->filepos,
1253 bfd_section_size (str_sect));
1254 }
1255
1256 if (dwarf2_has_info (objfile, NULL, true))
1257 {
1258 dw_index_kind index_kind;
1259
1260 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1261 debug information present in OBJFILE. If there is such debug
1262 info present never use an index. */
1263 if (!objfile_has_partial_symbols (objfile)
1264 && dwarf2_initialize_objfile (objfile, &index_kind))
1265 {
1266 switch (index_kind)
1267 {
1268 case dw_index_kind::GDB_INDEX:
1269 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1270 break;
1271 case dw_index_kind::DEBUG_NAMES:
1272 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1273 break;
1274 }
1275 }
1276 else
1277 {
1278 /* It is ok to do this even if the stabs reader made some
1279 partial symbols, because OBJF_PSYMTABS_READ has not been
1280 set, and so our lazy reader function will still be called
1281 when needed. */
1282 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1283 }
1284 }
1285 /* If the file has its own symbol tables it has no separate debug
1286 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1287 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1288 `.note.gnu.build-id'.
1289
1290 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1291 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1292 an objfile via find_separate_debug_file_in_section there was no separate
1293 debug info available. Therefore do not attempt to search for another one,
1294 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1295 be NULL and we would possibly violate it. */
1296
1297 else if (!objfile_has_partial_symbols (objfile)
1298 && objfile->separate_debug_objfile == NULL
1299 && objfile->separate_debug_objfile_backlink == NULL)
1300 {
1301 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1302
1303 if (debugfile.empty ())
1304 debugfile = find_separate_debug_file_by_debuglink (objfile);
1305
1306 if (!debugfile.empty ())
1307 {
1308 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1309
1310 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
1311 symfile_flags, objfile);
1312 }
1313 else
1314 {
1315 has_dwarf2 = false;
1316 const struct bfd_build_id *build_id = build_id_bfd_get (objfile->obfd);
1317
1318 if (build_id != nullptr)
1319 {
1320 gdb::unique_xmalloc_ptr<char> symfile_path;
1321 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1322 build_id->size,
1323 objfile->original_name,
1324 &symfile_path));
1325
1326 if (fd.get () >= 0)
1327 {
1328 /* File successfully retrieved from server. */
1329 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1330
1331 if (debug_bfd == nullptr)
1332 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1333 objfile->original_name);
1334 else if (build_id_verify (debug_bfd.get (), build_id->size, build_id->data))
1335 {
1336 symbol_file_add_separate (debug_bfd.get (), symfile_path.get (),
1337 symfile_flags, objfile);
1338 has_dwarf2 = true;
1339 }
1340 }
1341 }
1342 }
1343 }
1344
1345 /* Read the CTF section only if there is no DWARF info. */
1346 if (!has_dwarf2 && ei.ctfsect)
1347 {
1348 elfctf_build_psymtabs (objfile);
1349 }
1350 }
1351
1352 /* Callback to lazily read psymtabs. */
1353
1354 static void
1355 read_psyms (struct objfile *objfile)
1356 {
1357 if (dwarf2_has_info (objfile, NULL))
1358 dwarf2_build_psymtabs (objfile);
1359 }
1360
1361 /* Initialize anything that needs initializing when a completely new symbol
1362 file is specified (not just adding some symbols from another file, e.g. a
1363 shared library). */
1364
1365 static void
1366 elf_new_init (struct objfile *ignore)
1367 {
1368 }
1369
1370 /* Perform any local cleanups required when we are done with a particular
1371 objfile. I.E, we are in the process of discarding all symbol information
1372 for an objfile, freeing up all memory held for it, and unlinking the
1373 objfile struct from the global list of known objfiles. */
1374
1375 static void
1376 elf_symfile_finish (struct objfile *objfile)
1377 {
1378 }
1379
1380 /* ELF specific initialization routine for reading symbols. */
1381
1382 static void
1383 elf_symfile_init (struct objfile *objfile)
1384 {
1385 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1386 find this causes a significant slowdown in gdb then we could
1387 set it in the debug symbol readers only when necessary. */
1388 objfile->flags |= OBJF_REORDERED;
1389 }
1390
1391 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1392
1393 static const elfread_data &
1394 elf_get_probes (struct objfile *objfile)
1395 {
1396 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
1397
1398 if (probes_per_bfd == NULL)
1399 {
1400 probes_per_bfd = probe_key.emplace (objfile->obfd);
1401
1402 /* Here we try to gather information about all types of probes from the
1403 objfile. */
1404 for (const static_probe_ops *ops : all_static_probe_ops)
1405 ops->get_probes (probes_per_bfd, objfile);
1406 }
1407
1408 return *probes_per_bfd;
1409 }
1410
1411 \f
1412
1413 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1414
1415 static const struct sym_probe_fns elf_probe_fns =
1416 {
1417 elf_get_probes, /* sym_get_probes */
1418 };
1419
1420 /* Register that we are able to handle ELF object file formats. */
1421
1422 static const struct sym_fns elf_sym_fns =
1423 {
1424 elf_new_init, /* init anything gbl to entire symtab */
1425 elf_symfile_init, /* read initial info, setup for sym_read() */
1426 elf_symfile_read, /* read a symbol file into symtab */
1427 NULL, /* sym_read_psymbols */
1428 elf_symfile_finish, /* finished with file, cleanup */
1429 default_symfile_offsets, /* Translate ext. to int. relocation */
1430 elf_symfile_segments, /* Get segment information from a file. */
1431 NULL,
1432 default_symfile_relocate, /* Relocate a debug section. */
1433 &elf_probe_fns, /* sym_probe_fns */
1434 &psym_functions
1435 };
1436
1437 /* The same as elf_sym_fns, but not registered and lazily reads
1438 psymbols. */
1439
1440 const struct sym_fns elf_sym_fns_lazy_psyms =
1441 {
1442 elf_new_init, /* init anything gbl to entire symtab */
1443 elf_symfile_init, /* read initial info, setup for sym_read() */
1444 elf_symfile_read, /* read a symbol file into symtab */
1445 read_psyms, /* sym_read_psymbols */
1446 elf_symfile_finish, /* finished with file, cleanup */
1447 default_symfile_offsets, /* Translate ext. to int. relocation */
1448 elf_symfile_segments, /* Get segment information from a file. */
1449 NULL,
1450 default_symfile_relocate, /* Relocate a debug section. */
1451 &elf_probe_fns, /* sym_probe_fns */
1452 &psym_functions
1453 };
1454
1455 /* The same as elf_sym_fns, but not registered and uses the
1456 DWARF-specific GNU index rather than psymtab. */
1457 const struct sym_fns elf_sym_fns_gdb_index =
1458 {
1459 elf_new_init, /* init anything gbl to entire symab */
1460 elf_symfile_init, /* read initial info, setup for sym_red() */
1461 elf_symfile_read, /* read a symbol file into symtab */
1462 NULL, /* sym_read_psymbols */
1463 elf_symfile_finish, /* finished with file, cleanup */
1464 default_symfile_offsets, /* Translate ext. to int. relocation */
1465 elf_symfile_segments, /* Get segment information from a file. */
1466 NULL,
1467 default_symfile_relocate, /* Relocate a debug section. */
1468 &elf_probe_fns, /* sym_probe_fns */
1469 &dwarf2_gdb_index_functions
1470 };
1471
1472 /* The same as elf_sym_fns, but not registered and uses the
1473 DWARF-specific .debug_names index rather than psymtab. */
1474 const struct sym_fns elf_sym_fns_debug_names =
1475 {
1476 elf_new_init, /* init anything gbl to entire symab */
1477 elf_symfile_init, /* read initial info, setup for sym_red() */
1478 elf_symfile_read, /* read a symbol file into symtab */
1479 NULL, /* sym_read_psymbols */
1480 elf_symfile_finish, /* finished with file, cleanup */
1481 default_symfile_offsets, /* Translate ext. to int. relocation */
1482 elf_symfile_segments, /* Get segment information from a file. */
1483 NULL,
1484 default_symfile_relocate, /* Relocate a debug section. */
1485 &elf_probe_fns, /* sym_probe_fns */
1486 &dwarf2_debug_names_functions
1487 };
1488
1489 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1490
1491 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1492 {
1493 elf_gnu_ifunc_resolve_addr,
1494 elf_gnu_ifunc_resolve_name,
1495 elf_gnu_ifunc_resolver_stop,
1496 elf_gnu_ifunc_resolver_return_stop
1497 };
1498
1499 void _initialize_elfread ();
1500 void
1501 _initialize_elfread ()
1502 {
1503 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1504
1505 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1506 }
This page took 0.059675 seconds and 4 git commands to generate.