Change regcache list to be an hash map
[deliverable/binutils-gdb.git] / bfd / dwarf2.c
1 /* DWARF 2 support.
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3
4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions
5 (gavin@cygnus.com).
6
7 From the dwarf2read.c header:
8 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
9 Inc. with support from Florida State University (under contract
10 with the Ada Joint Program Office), and Silicon Graphics, Inc.
11 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
13 support in dwarfread.c
14
15 This file is part of BFD.
16
17 This program is free software; you can redistribute it and/or modify
18 it under the terms of the GNU General Public License as published by
19 the Free Software Foundation; either version 3 of the License, or (at
20 your option) any later version.
21
22 This program is distributed in the hope that it will be useful, but
23 WITHOUT ANY WARRANTY; without even the implied warranty of
24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 General Public License for more details.
26
27 You should have received a copy of the GNU General Public License
28 along with this program; if not, write to the Free Software
29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
30 MA 02110-1301, USA. */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libiberty.h"
35 #include "libbfd.h"
36 #include "elf-bfd.h"
37 #include "dwarf2.h"
38 #include "hashtab.h"
39
40 /* The data in the .debug_line statement prologue looks like this. */
41
42 struct line_head
43 {
44 bfd_vma total_length;
45 unsigned short version;
46 bfd_vma prologue_length;
47 unsigned char minimum_instruction_length;
48 unsigned char maximum_ops_per_insn;
49 unsigned char default_is_stmt;
50 int line_base;
51 unsigned char line_range;
52 unsigned char opcode_base;
53 unsigned char *standard_opcode_lengths;
54 };
55
56 /* Attributes have a name and a value. */
57
58 struct attribute
59 {
60 enum dwarf_attribute name;
61 enum dwarf_form form;
62 union
63 {
64 char *str;
65 struct dwarf_block *blk;
66 bfd_uint64_t val;
67 bfd_int64_t sval;
68 }
69 u;
70 };
71
72 /* Blocks are a bunch of untyped bytes. */
73 struct dwarf_block
74 {
75 unsigned int size;
76 bfd_byte *data;
77 };
78
79 struct adjusted_section
80 {
81 asection *section;
82 bfd_vma adj_vma;
83 };
84
85 struct dwarf2_debug_file
86 {
87 /* The actual bfd from which debug info was loaded. Might be
88 different to orig_bfd because of gnu_debuglink sections. */
89 bfd *bfd_ptr;
90
91 /* Pointer to the symbol table. */
92 asymbol **syms;
93
94 /* The current info pointer for the .debug_info section being parsed. */
95 bfd_byte *info_ptr;
96
97 /* A pointer to the memory block allocated for .debug_info sections. */
98 bfd_byte *dwarf_info_buffer;
99
100 /* Length of the loaded .debug_info sections. */
101 bfd_size_type dwarf_info_size;
102
103 /* Pointer to the .debug_abbrev section loaded into memory. */
104 bfd_byte *dwarf_abbrev_buffer;
105
106 /* Length of the loaded .debug_abbrev section. */
107 bfd_size_type dwarf_abbrev_size;
108
109 /* Buffer for decode_line_info. */
110 bfd_byte *dwarf_line_buffer;
111
112 /* Length of the loaded .debug_line section. */
113 bfd_size_type dwarf_line_size;
114
115 /* Pointer to the .debug_str section loaded into memory. */
116 bfd_byte *dwarf_str_buffer;
117
118 /* Length of the loaded .debug_str section. */
119 bfd_size_type dwarf_str_size;
120
121 /* Pointer to the .debug_line_str section loaded into memory. */
122 bfd_byte *dwarf_line_str_buffer;
123
124 /* Length of the loaded .debug_line_str section. */
125 bfd_size_type dwarf_line_str_size;
126
127 /* Pointer to the .debug_ranges section loaded into memory. */
128 bfd_byte *dwarf_ranges_buffer;
129
130 /* Length of the loaded .debug_ranges section. */
131 bfd_size_type dwarf_ranges_size;
132
133 /* A list of all previously read comp_units. */
134 struct comp_unit *all_comp_units;
135
136 /* Last comp unit in list above. */
137 struct comp_unit *last_comp_unit;
138
139 /* Line table at line_offset zero. */
140 struct line_info_table *line_table;
141
142 /* Hash table to map offsets to decoded abbrevs. */
143 htab_t abbrev_offsets;
144 };
145
146 struct dwarf2_debug
147 {
148 /* Names of the debug sections. */
149 const struct dwarf_debug_section *debug_sections;
150
151 /* Per-file stuff. */
152 struct dwarf2_debug_file f, alt;
153
154 /* Pointer to the original bfd for which debug was loaded. This is what
155 we use to compare and so check that the cached debug data is still
156 valid - it saves having to possibly dereference the gnu_debuglink each
157 time. */
158 bfd *orig_bfd;
159
160 /* If the most recent call to bfd_find_nearest_line was given an
161 address in an inlined function, preserve a pointer into the
162 calling chain for subsequent calls to bfd_find_inliner_info to
163 use. */
164 struct funcinfo *inliner_chain;
165
166 /* Section VMAs at the time the stash was built. */
167 bfd_vma *sec_vma;
168 /* Number of sections in the SEC_VMA table. */
169 unsigned int sec_vma_count;
170
171 /* Number of sections whose VMA we must adjust. */
172 int adjusted_section_count;
173
174 /* Array of sections with adjusted VMA. */
175 struct adjusted_section *adjusted_sections;
176
177 /* Number of times find_line is called. This is used in
178 the heuristic for enabling the info hash tables. */
179 int info_hash_count;
180
181 #define STASH_INFO_HASH_TRIGGER 100
182
183 /* Hash table mapping symbol names to function infos. */
184 struct info_hash_table *funcinfo_hash_table;
185
186 /* Hash table mapping symbol names to variable infos. */
187 struct info_hash_table *varinfo_hash_table;
188
189 /* Head of comp_unit list in the last hash table update. */
190 struct comp_unit *hash_units_head;
191
192 /* Status of info hash. */
193 int info_hash_status;
194 #define STASH_INFO_HASH_OFF 0
195 #define STASH_INFO_HASH_ON 1
196 #define STASH_INFO_HASH_DISABLED 2
197
198 /* True if we opened bfd_ptr. */
199 bfd_boolean close_on_cleanup;
200 };
201
202 struct arange
203 {
204 struct arange *next;
205 bfd_vma low;
206 bfd_vma high;
207 };
208
209 /* A minimal decoding of DWARF2 compilation units. We only decode
210 what's needed to get to the line number information. */
211
212 struct comp_unit
213 {
214 /* Chain the previously read compilation units. */
215 struct comp_unit *next_unit;
216
217 /* Likewise, chain the compilation unit read after this one.
218 The comp units are stored in reversed reading order. */
219 struct comp_unit *prev_unit;
220
221 /* Keep the bfd convenient (for memory allocation). */
222 bfd *abfd;
223
224 /* The lowest and highest addresses contained in this compilation
225 unit as specified in the compilation unit header. */
226 struct arange arange;
227
228 /* The DW_AT_name attribute (for error messages). */
229 char *name;
230
231 /* The abbrev hash table. */
232 struct abbrev_info **abbrevs;
233
234 /* DW_AT_language. */
235 int lang;
236
237 /* Note that an error was found by comp_unit_find_nearest_line. */
238 int error;
239
240 /* The DW_AT_comp_dir attribute. */
241 char *comp_dir;
242
243 /* TRUE if there is a line number table associated with this comp. unit. */
244 int stmtlist;
245
246 /* Pointer to the current comp_unit so that we can find a given entry
247 by its reference. */
248 bfd_byte *info_ptr_unit;
249
250 /* The offset into .debug_line of the line number table. */
251 unsigned long line_offset;
252
253 /* Pointer to the first child die for the comp unit. */
254 bfd_byte *first_child_die_ptr;
255
256 /* The end of the comp unit. */
257 bfd_byte *end_ptr;
258
259 /* The decoded line number, NULL if not yet decoded. */
260 struct line_info_table *line_table;
261
262 /* A list of the functions found in this comp. unit. */
263 struct funcinfo *function_table;
264
265 /* A table of function information references searchable by address. */
266 struct lookup_funcinfo *lookup_funcinfo_table;
267
268 /* Number of functions in the function_table and sorted_function_table. */
269 bfd_size_type number_of_functions;
270
271 /* A list of the variables found in this comp. unit. */
272 struct varinfo *variable_table;
273
274 /* Pointers to dwarf2_debug structures. */
275 struct dwarf2_debug *stash;
276 struct dwarf2_debug_file *file;
277
278 /* DWARF format version for this unit - from unit header. */
279 int version;
280
281 /* Address size for this unit - from unit header. */
282 unsigned char addr_size;
283
284 /* Offset size for this unit - from unit header. */
285 unsigned char offset_size;
286
287 /* Base address for this unit - from DW_AT_low_pc attribute of
288 DW_TAG_compile_unit DIE */
289 bfd_vma base_address;
290
291 /* TRUE if symbols are cached in hash table for faster lookup by name. */
292 bfd_boolean cached;
293 };
294
295 /* This data structure holds the information of an abbrev. */
296 struct abbrev_info
297 {
298 unsigned int number; /* Number identifying abbrev. */
299 enum dwarf_tag tag; /* DWARF tag. */
300 int has_children; /* Boolean. */
301 unsigned int num_attrs; /* Number of attributes. */
302 struct attr_abbrev *attrs; /* An array of attribute descriptions. */
303 struct abbrev_info *next; /* Next in chain. */
304 };
305
306 struct attr_abbrev
307 {
308 enum dwarf_attribute name;
309 enum dwarf_form form;
310 bfd_vma implicit_const;
311 };
312
313 /* Map of uncompressed DWARF debug section name to compressed one. It
314 is terminated by NULL uncompressed_name. */
315
316 const struct dwarf_debug_section dwarf_debug_sections[] =
317 {
318 { ".debug_abbrev", ".zdebug_abbrev" },
319 { ".debug_aranges", ".zdebug_aranges" },
320 { ".debug_frame", ".zdebug_frame" },
321 { ".debug_info", ".zdebug_info" },
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_line", ".zdebug_line" },
324 { ".debug_loc", ".zdebug_loc" },
325 { ".debug_macinfo", ".zdebug_macinfo" },
326 { ".debug_macro", ".zdebug_macro" },
327 { ".debug_pubnames", ".zdebug_pubnames" },
328 { ".debug_pubtypes", ".zdebug_pubtypes" },
329 { ".debug_ranges", ".zdebug_ranges" },
330 { ".debug_static_func", ".zdebug_static_func" },
331 { ".debug_static_vars", ".zdebug_static_vars" },
332 { ".debug_str", ".zdebug_str", },
333 { ".debug_str", ".zdebug_str", },
334 { ".debug_line_str", ".zdebug_line_str", },
335 { ".debug_types", ".zdebug_types" },
336 /* GNU DWARF 1 extensions */
337 { ".debug_sfnames", ".zdebug_sfnames" },
338 { ".debug_srcinfo", ".zebug_srcinfo" },
339 /* SGI/MIPS DWARF 2 extensions */
340 { ".debug_funcnames", ".zdebug_funcnames" },
341 { ".debug_typenames", ".zdebug_typenames" },
342 { ".debug_varnames", ".zdebug_varnames" },
343 { ".debug_weaknames", ".zdebug_weaknames" },
344 { NULL, NULL },
345 };
346
347 /* NB/ Numbers in this enum must match up with indices
348 into the dwarf_debug_sections[] array above. */
349 enum dwarf_debug_section_enum
350 {
351 debug_abbrev = 0,
352 debug_aranges,
353 debug_frame,
354 debug_info,
355 debug_info_alt,
356 debug_line,
357 debug_loc,
358 debug_macinfo,
359 debug_macro,
360 debug_pubnames,
361 debug_pubtypes,
362 debug_ranges,
363 debug_static_func,
364 debug_static_vars,
365 debug_str,
366 debug_str_alt,
367 debug_line_str,
368 debug_types,
369 debug_sfnames,
370 debug_srcinfo,
371 debug_funcnames,
372 debug_typenames,
373 debug_varnames,
374 debug_weaknames,
375 debug_max
376 };
377
378 /* A static assertion. */
379 extern int dwarf_debug_section_assert[ARRAY_SIZE (dwarf_debug_sections)
380 == debug_max + 1 ? 1 : -1];
381
382 #ifndef ABBREV_HASH_SIZE
383 #define ABBREV_HASH_SIZE 121
384 #endif
385 #ifndef ATTR_ALLOC_CHUNK
386 #define ATTR_ALLOC_CHUNK 4
387 #endif
388
389 /* Variable and function hash tables. This is used to speed up look-up
390 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table().
391 In order to share code between variable and function infos, we use
392 a list of untyped pointer for all variable/function info associated with
393 a symbol. We waste a bit of memory for list with one node but that
394 simplifies the code. */
395
396 struct info_list_node
397 {
398 struct info_list_node *next;
399 void *info;
400 };
401
402 /* Info hash entry. */
403 struct info_hash_entry
404 {
405 struct bfd_hash_entry root;
406 struct info_list_node *head;
407 };
408
409 struct info_hash_table
410 {
411 struct bfd_hash_table base;
412 };
413
414 /* Function to create a new entry in info hash table. */
415
416 static struct bfd_hash_entry *
417 info_hash_table_newfunc (struct bfd_hash_entry *entry,
418 struct bfd_hash_table *table,
419 const char *string)
420 {
421 struct info_hash_entry *ret = (struct info_hash_entry *) entry;
422
423 /* Allocate the structure if it has not already been allocated by a
424 derived class. */
425 if (ret == NULL)
426 {
427 ret = (struct info_hash_entry *) bfd_hash_allocate (table,
428 sizeof (* ret));
429 if (ret == NULL)
430 return NULL;
431 }
432
433 /* Call the allocation method of the base class. */
434 ret = ((struct info_hash_entry *)
435 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
436
437 /* Initialize the local fields here. */
438 if (ret)
439 ret->head = NULL;
440
441 return (struct bfd_hash_entry *) ret;
442 }
443
444 /* Function to create a new info hash table. It returns a pointer to the
445 newly created table or NULL if there is any error. We need abfd
446 solely for memory allocation. */
447
448 static struct info_hash_table *
449 create_info_hash_table (bfd *abfd)
450 {
451 struct info_hash_table *hash_table;
452
453 hash_table = ((struct info_hash_table *)
454 bfd_alloc (abfd, sizeof (struct info_hash_table)));
455 if (!hash_table)
456 return hash_table;
457
458 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc,
459 sizeof (struct info_hash_entry)))
460 {
461 bfd_release (abfd, hash_table);
462 return NULL;
463 }
464
465 return hash_table;
466 }
467
468 /* Insert an info entry into an info hash table. We do not check of
469 duplicate entries. Also, the caller need to guarantee that the
470 right type of info in inserted as info is passed as a void* pointer.
471 This function returns true if there is no error. */
472
473 static bfd_boolean
474 insert_info_hash_table (struct info_hash_table *hash_table,
475 const char *key,
476 void *info,
477 bfd_boolean copy_p)
478 {
479 struct info_hash_entry *entry;
480 struct info_list_node *node;
481
482 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base,
483 key, TRUE, copy_p);
484 if (!entry)
485 return FALSE;
486
487 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base,
488 sizeof (*node));
489 if (!node)
490 return FALSE;
491
492 node->info = info;
493 node->next = entry->head;
494 entry->head = node;
495
496 return TRUE;
497 }
498
499 /* Look up an info entry list from an info hash table. Return NULL
500 if there is none. */
501
502 static struct info_list_node *
503 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key)
504 {
505 struct info_hash_entry *entry;
506
507 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key,
508 FALSE, FALSE);
509 return entry ? entry->head : NULL;
510 }
511
512 /* Read a section into its appropriate place in the dwarf2_debug
513 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is
514 not NULL, use bfd_simple_get_relocated_section_contents to read the
515 section contents, otherwise use bfd_get_section_contents. Fail if
516 the located section does not contain at least OFFSET bytes. */
517
518 static bfd_boolean
519 read_section (bfd * abfd,
520 const struct dwarf_debug_section *sec,
521 asymbol ** syms,
522 bfd_uint64_t offset,
523 bfd_byte ** section_buffer,
524 bfd_size_type * section_size)
525 {
526 asection *msec;
527 const char *section_name = sec->uncompressed_name;
528 bfd_byte *contents = *section_buffer;
529 bfd_size_type amt;
530
531 /* The section may have already been read. */
532 if (contents == NULL)
533 {
534 msec = bfd_get_section_by_name (abfd, section_name);
535 if (! msec)
536 {
537 section_name = sec->compressed_name;
538 if (section_name != NULL)
539 msec = bfd_get_section_by_name (abfd, section_name);
540 }
541 if (! msec)
542 {
543 _bfd_error_handler (_("DWARF error: can't find %s section."),
544 sec->uncompressed_name);
545 bfd_set_error (bfd_error_bad_value);
546 return FALSE;
547 }
548
549 *section_size = msec->rawsize ? msec->rawsize : msec->size;
550 /* Paranoia - alloc one extra so that we can make sure a string
551 section is NUL terminated. */
552 amt = *section_size + 1;
553 if (amt == 0)
554 {
555 bfd_set_error (bfd_error_no_memory);
556 return FALSE;
557 }
558 contents = (bfd_byte *) bfd_malloc (amt);
559 if (contents == NULL)
560 return FALSE;
561 if (syms
562 ? !bfd_simple_get_relocated_section_contents (abfd, msec, contents,
563 syms)
564 : !bfd_get_section_contents (abfd, msec, contents, 0, *section_size))
565 {
566 free (contents);
567 return FALSE;
568 }
569 contents[*section_size] = 0;
570 *section_buffer = contents;
571 }
572
573 /* It is possible to get a bad value for the offset into the section
574 that the client wants. Validate it here to avoid trouble later. */
575 if (offset != 0 && offset >= *section_size)
576 {
577 /* xgettext: c-format */
578 _bfd_error_handler (_("DWARF error: offset (%" PRIu64 ")"
579 " greater than or equal to %s size (%" PRIu64 ")"),
580 (uint64_t) offset, section_name,
581 (uint64_t) *section_size);
582 bfd_set_error (bfd_error_bad_value);
583 return FALSE;
584 }
585
586 return TRUE;
587 }
588
589 /* Read dwarf information from a buffer. */
590
591 static unsigned int
592 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
593 {
594 if (buf + 1 > end)
595 return 0;
596 return bfd_get_8 (abfd, buf);
597 }
598
599 static int
600 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end)
601 {
602 if (buf + 1 > end)
603 return 0;
604 return bfd_get_signed_8 (abfd, buf);
605 }
606
607 static unsigned int
608 read_2_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
609 {
610 if (buf + 2 > end)
611 return 0;
612 return bfd_get_16 (abfd, buf);
613 }
614
615 static unsigned int
616 read_4_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
617 {
618 if (buf + 4 > end)
619 return 0;
620 return bfd_get_32 (abfd, buf);
621 }
622
623 static bfd_uint64_t
624 read_8_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end)
625 {
626 if (buf + 8 > end)
627 return 0;
628 return bfd_get_64 (abfd, buf);
629 }
630
631 static bfd_byte *
632 read_n_bytes (bfd_byte * buf,
633 bfd_byte * end,
634 struct dwarf_block * block)
635 {
636 unsigned int size = block->size;
637 bfd_byte * block_end = buf + size;
638
639 if (block_end > end || block_end < buf)
640 {
641 block->data = NULL;
642 block->size = 0;
643 return end;
644 }
645 else
646 {
647 block->data = buf;
648 return block_end;
649 }
650 }
651
652 /* Scans a NUL terminated string starting at BUF, returning a pointer to it.
653 Returns the number of characters in the string, *including* the NUL byte,
654 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
655 at or beyond BUF_END will not be read. Returns NULL if there was a
656 problem, or if the string is empty. */
657
658 static char *
659 read_string (bfd * abfd ATTRIBUTE_UNUSED,
660 bfd_byte * buf,
661 bfd_byte * buf_end,
662 unsigned int * bytes_read_ptr)
663 {
664 bfd_byte *str = buf;
665
666 if (buf >= buf_end)
667 {
668 * bytes_read_ptr = 0;
669 return NULL;
670 }
671
672 if (*str == '\0')
673 {
674 * bytes_read_ptr = 1;
675 return NULL;
676 }
677
678 while (buf < buf_end)
679 if (* buf ++ == 0)
680 {
681 * bytes_read_ptr = buf - str;
682 return (char *) str;
683 }
684
685 * bytes_read_ptr = buf - str;
686 return NULL;
687 }
688
689 /* Reads an offset from BUF and then locates the string at this offset
690 inside the debug string section. Returns a pointer to the string.
691 Returns the number of bytes read from BUF, *not* the length of the string,
692 in BYTES_READ_PTR. This value is set even if the function fails. Bytes
693 at or beyond BUF_END will not be read from BUF. Returns NULL if there was
694 a problem, or if the string is empty. Does not check for NUL termination
695 of the string. */
696
697 static char *
698 read_indirect_string (struct comp_unit * unit,
699 bfd_byte * buf,
700 bfd_byte * buf_end,
701 unsigned int * bytes_read_ptr)
702 {
703 bfd_uint64_t offset;
704 struct dwarf2_debug *stash = unit->stash;
705 struct dwarf2_debug_file *file = unit->file;
706 char *str;
707
708 if (buf + unit->offset_size > buf_end)
709 {
710 * bytes_read_ptr = 0;
711 return NULL;
712 }
713
714 if (unit->offset_size == 4)
715 offset = read_4_bytes (unit->abfd, buf, buf_end);
716 else
717 offset = read_8_bytes (unit->abfd, buf, buf_end);
718
719 *bytes_read_ptr = unit->offset_size;
720
721 if (! read_section (unit->abfd, &stash->debug_sections[debug_str],
722 file->syms, offset,
723 &file->dwarf_str_buffer, &file->dwarf_str_size))
724 return NULL;
725
726 str = (char *) file->dwarf_str_buffer + offset;
727 if (*str == '\0')
728 return NULL;
729 return str;
730 }
731
732 /* Like read_indirect_string but from .debug_line_str section. */
733
734 static char *
735 read_indirect_line_string (struct comp_unit * unit,
736 bfd_byte * buf,
737 bfd_byte * buf_end,
738 unsigned int * bytes_read_ptr)
739 {
740 bfd_uint64_t offset;
741 struct dwarf2_debug *stash = unit->stash;
742 struct dwarf2_debug_file *file = unit->file;
743 char *str;
744
745 if (buf + unit->offset_size > buf_end)
746 {
747 * bytes_read_ptr = 0;
748 return NULL;
749 }
750
751 if (unit->offset_size == 4)
752 offset = read_4_bytes (unit->abfd, buf, buf_end);
753 else
754 offset = read_8_bytes (unit->abfd, buf, buf_end);
755
756 *bytes_read_ptr = unit->offset_size;
757
758 if (! read_section (unit->abfd, &stash->debug_sections[debug_line_str],
759 file->syms, offset,
760 &file->dwarf_line_str_buffer,
761 &file->dwarf_line_str_size))
762 return NULL;
763
764 str = (char *) file->dwarf_line_str_buffer + offset;
765 if (*str == '\0')
766 return NULL;
767 return str;
768 }
769
770 /* Like read_indirect_string but uses a .debug_str located in
771 an alternate file pointed to by the .gnu_debugaltlink section.
772 Used to impement DW_FORM_GNU_strp_alt. */
773
774 static char *
775 read_alt_indirect_string (struct comp_unit * unit,
776 bfd_byte * buf,
777 bfd_byte * buf_end,
778 unsigned int * bytes_read_ptr)
779 {
780 bfd_uint64_t offset;
781 struct dwarf2_debug *stash = unit->stash;
782 char *str;
783
784 if (buf + unit->offset_size > buf_end)
785 {
786 * bytes_read_ptr = 0;
787 return NULL;
788 }
789
790 if (unit->offset_size == 4)
791 offset = read_4_bytes (unit->abfd, buf, buf_end);
792 else
793 offset = read_8_bytes (unit->abfd, buf, buf_end);
794
795 *bytes_read_ptr = unit->offset_size;
796
797 if (stash->alt.bfd_ptr == NULL)
798 {
799 bfd *debug_bfd;
800 char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
801
802 if (debug_filename == NULL)
803 return NULL;
804
805 debug_bfd = bfd_openr (debug_filename, NULL);
806 free (debug_filename);
807 if (debug_bfd == NULL)
808 /* FIXME: Should we report our failure to follow the debuglink ? */
809 return NULL;
810
811 if (!bfd_check_format (debug_bfd, bfd_object))
812 {
813 bfd_close (debug_bfd);
814 return NULL;
815 }
816 stash->alt.bfd_ptr = debug_bfd;
817 }
818
819 if (! read_section (unit->stash->alt.bfd_ptr,
820 stash->debug_sections + debug_str_alt,
821 stash->alt.syms, offset,
822 &stash->alt.dwarf_str_buffer,
823 &stash->alt.dwarf_str_size))
824 return NULL;
825
826 str = (char *) stash->alt.dwarf_str_buffer + offset;
827 if (*str == '\0')
828 return NULL;
829
830 return str;
831 }
832
833 /* Resolve an alternate reference from UNIT at OFFSET.
834 Returns a pointer into the loaded alternate CU upon success
835 or NULL upon failure. */
836
837 static bfd_byte *
838 read_alt_indirect_ref (struct comp_unit * unit,
839 bfd_uint64_t offset)
840 {
841 struct dwarf2_debug *stash = unit->stash;
842
843 if (stash->alt.bfd_ptr == NULL)
844 {
845 bfd *debug_bfd;
846 char *debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR);
847
848 if (debug_filename == NULL)
849 return NULL;
850
851 debug_bfd = bfd_openr (debug_filename, NULL);
852 free (debug_filename);
853 if (debug_bfd == NULL)
854 /* FIXME: Should we report our failure to follow the debuglink ? */
855 return NULL;
856
857 if (!bfd_check_format (debug_bfd, bfd_object))
858 {
859 bfd_close (debug_bfd);
860 return NULL;
861 }
862 stash->alt.bfd_ptr = debug_bfd;
863 }
864
865 if (! read_section (unit->stash->alt.bfd_ptr,
866 stash->debug_sections + debug_info_alt,
867 stash->alt.syms, offset,
868 &stash->alt.dwarf_info_buffer,
869 &stash->alt.dwarf_info_size))
870 return NULL;
871
872 return stash->alt.dwarf_info_buffer + offset;
873 }
874
875 static bfd_uint64_t
876 read_address (struct comp_unit *unit, bfd_byte *buf, bfd_byte * buf_end)
877 {
878 int signed_vma = 0;
879
880 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour)
881 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma;
882
883 if (buf + unit->addr_size > buf_end)
884 return 0;
885
886 if (signed_vma)
887 {
888 switch (unit->addr_size)
889 {
890 case 8:
891 return bfd_get_signed_64 (unit->abfd, buf);
892 case 4:
893 return bfd_get_signed_32 (unit->abfd, buf);
894 case 2:
895 return bfd_get_signed_16 (unit->abfd, buf);
896 default:
897 abort ();
898 }
899 }
900 else
901 {
902 switch (unit->addr_size)
903 {
904 case 8:
905 return bfd_get_64 (unit->abfd, buf);
906 case 4:
907 return bfd_get_32 (unit->abfd, buf);
908 case 2:
909 return bfd_get_16 (unit->abfd, buf);
910 default:
911 abort ();
912 }
913 }
914 }
915
916 /* Lookup an abbrev_info structure in the abbrev hash table. */
917
918 static struct abbrev_info *
919 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs)
920 {
921 unsigned int hash_number;
922 struct abbrev_info *abbrev;
923
924 hash_number = number % ABBREV_HASH_SIZE;
925 abbrev = abbrevs[hash_number];
926
927 while (abbrev)
928 {
929 if (abbrev->number == number)
930 return abbrev;
931 else
932 abbrev = abbrev->next;
933 }
934
935 return NULL;
936 }
937
938 /* We keep a hash table to map .debug_abbrev section offsets to the
939 array of abbrevs, so that compilation units using the same set of
940 abbrevs do not waste memory. */
941
942 struct abbrev_offset_entry
943 {
944 size_t offset;
945 struct abbrev_info **abbrevs;
946 };
947
948 static hashval_t
949 hash_abbrev (const void *p)
950 {
951 const struct abbrev_offset_entry *ent = p;
952 return htab_hash_pointer ((void *) ent->offset);
953 }
954
955 static int
956 eq_abbrev (const void *pa, const void *pb)
957 {
958 const struct abbrev_offset_entry *a = pa;
959 const struct abbrev_offset_entry *b = pb;
960 return a->offset == b->offset;
961 }
962
963 static void
964 del_abbrev (void *p)
965 {
966 struct abbrev_offset_entry *ent = p;
967 struct abbrev_info **abbrevs = ent->abbrevs;
968 size_t i;
969
970 for (i = 0; i < ABBREV_HASH_SIZE; i++)
971 {
972 struct abbrev_info *abbrev = abbrevs[i];
973
974 while (abbrev)
975 {
976 free (abbrev->attrs);
977 abbrev = abbrev->next;
978 }
979 }
980 free (ent);
981 }
982
983 /* In DWARF version 2, the description of the debugging information is
984 stored in a separate .debug_abbrev section. Before we read any
985 dies from a section we read in all abbreviations and install them
986 in a hash table. */
987
988 static struct abbrev_info**
989 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash,
990 struct dwarf2_debug_file *file)
991 {
992 struct abbrev_info **abbrevs;
993 bfd_byte *abbrev_ptr;
994 bfd_byte *abbrev_end;
995 struct abbrev_info *cur_abbrev;
996 unsigned int abbrev_number, bytes_read, abbrev_name;
997 unsigned int abbrev_form, hash_number;
998 bfd_size_type amt;
999 void **slot;
1000 struct abbrev_offset_entry ent = { offset, NULL };
1001
1002 if (ent.offset != offset)
1003 return NULL;
1004
1005 slot = htab_find_slot (file->abbrev_offsets, &ent, INSERT);
1006 if (slot == NULL)
1007 return NULL;
1008 if (*slot != NULL)
1009 return ((struct abbrev_offset_entry *) (*slot))->abbrevs;
1010
1011 if (! read_section (abfd, &stash->debug_sections[debug_abbrev],
1012 file->syms, offset,
1013 &file->dwarf_abbrev_buffer,
1014 &file->dwarf_abbrev_size))
1015 return NULL;
1016
1017 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE;
1018 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt);
1019 if (abbrevs == NULL)
1020 return NULL;
1021
1022 abbrev_ptr = file->dwarf_abbrev_buffer + offset;
1023 abbrev_end = file->dwarf_abbrev_buffer + file->dwarf_abbrev_size;
1024 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1025 FALSE, abbrev_end);
1026 abbrev_ptr += bytes_read;
1027
1028 /* Loop until we reach an abbrev number of 0. */
1029 while (abbrev_number)
1030 {
1031 amt = sizeof (struct abbrev_info);
1032 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt);
1033 if (cur_abbrev == NULL)
1034 goto fail;
1035
1036 /* Read in abbrev header. */
1037 cur_abbrev->number = abbrev_number;
1038 cur_abbrev->tag = (enum dwarf_tag)
1039 _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1040 FALSE, abbrev_end);
1041 abbrev_ptr += bytes_read;
1042 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr, abbrev_end);
1043 abbrev_ptr += 1;
1044
1045 /* Now read in declarations. */
1046 for (;;)
1047 {
1048 /* Initialize it just to avoid a GCC false warning. */
1049 bfd_vma implicit_const = -1;
1050
1051 abbrev_name = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1052 FALSE, abbrev_end);
1053 abbrev_ptr += bytes_read;
1054 abbrev_form = _bfd_safe_read_leb128 (abfd, abbrev_ptr, &bytes_read,
1055 FALSE, abbrev_end);
1056 abbrev_ptr += bytes_read;
1057 if (abbrev_form == DW_FORM_implicit_const)
1058 {
1059 implicit_const = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1060 &bytes_read, TRUE,
1061 abbrev_end);
1062 abbrev_ptr += bytes_read;
1063 }
1064
1065 if (abbrev_name == 0)
1066 break;
1067
1068 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0)
1069 {
1070 struct attr_abbrev *tmp;
1071
1072 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK;
1073 amt *= sizeof (struct attr_abbrev);
1074 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt);
1075 if (tmp == NULL)
1076 goto fail;
1077 cur_abbrev->attrs = tmp;
1078 }
1079
1080 cur_abbrev->attrs[cur_abbrev->num_attrs].name
1081 = (enum dwarf_attribute) abbrev_name;
1082 cur_abbrev->attrs[cur_abbrev->num_attrs].form
1083 = (enum dwarf_form) abbrev_form;
1084 cur_abbrev->attrs[cur_abbrev->num_attrs].implicit_const
1085 = implicit_const;
1086 ++cur_abbrev->num_attrs;
1087 }
1088
1089 hash_number = abbrev_number % ABBREV_HASH_SIZE;
1090 cur_abbrev->next = abbrevs[hash_number];
1091 abbrevs[hash_number] = cur_abbrev;
1092
1093 /* Get next abbreviation.
1094 Under Irix6 the abbreviations for a compilation unit are not
1095 always properly terminated with an abbrev number of 0.
1096 Exit loop if we encounter an abbreviation which we have
1097 already read (which means we are about to read the abbreviations
1098 for the next compile unit) or if the end of the abbreviation
1099 table is reached. */
1100 if ((size_t) (abbrev_ptr - file->dwarf_abbrev_buffer)
1101 >= file->dwarf_abbrev_size)
1102 break;
1103 abbrev_number = _bfd_safe_read_leb128 (abfd, abbrev_ptr,
1104 &bytes_read, FALSE, abbrev_end);
1105 abbrev_ptr += bytes_read;
1106 if (lookup_abbrev (abbrev_number, abbrevs) != NULL)
1107 break;
1108 }
1109
1110 *slot = bfd_malloc (sizeof ent);
1111 if (!*slot)
1112 goto fail;
1113 ent.abbrevs = abbrevs;
1114 memcpy (*slot, &ent, sizeof ent);
1115 return abbrevs;
1116
1117 fail:
1118 if (abbrevs != NULL)
1119 {
1120 size_t i;
1121
1122 for (i = 0; i < ABBREV_HASH_SIZE; i++)
1123 {
1124 struct abbrev_info *abbrev = abbrevs[i];
1125
1126 while (abbrev)
1127 {
1128 free (abbrev->attrs);
1129 abbrev = abbrev->next;
1130 }
1131 }
1132 free (abbrevs);
1133 }
1134 return NULL;
1135 }
1136
1137 /* Returns true if the form is one which has a string value. */
1138
1139 static inline bfd_boolean
1140 is_str_attr (enum dwarf_form form)
1141 {
1142 return (form == DW_FORM_string || form == DW_FORM_strp
1143 || form == DW_FORM_line_strp || form == DW_FORM_GNU_strp_alt);
1144 }
1145
1146 /* Read and fill in the value of attribute ATTR as described by FORM.
1147 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END.
1148 Returns an updated INFO_PTR taking into account the amount of data read. */
1149
1150 static bfd_byte *
1151 read_attribute_value (struct attribute * attr,
1152 unsigned form,
1153 bfd_vma implicit_const,
1154 struct comp_unit * unit,
1155 bfd_byte * info_ptr,
1156 bfd_byte * info_ptr_end)
1157 {
1158 bfd *abfd = unit->abfd;
1159 unsigned int bytes_read;
1160 struct dwarf_block *blk;
1161 bfd_size_type amt;
1162
1163 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present)
1164 {
1165 _bfd_error_handler (_("DWARF error: info pointer extends beyond end of attributes"));
1166 bfd_set_error (bfd_error_bad_value);
1167 return info_ptr;
1168 }
1169
1170 attr->form = (enum dwarf_form) form;
1171
1172 switch (form)
1173 {
1174 case DW_FORM_ref_addr:
1175 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in
1176 DWARF3. */
1177 if (unit->version == 3 || unit->version == 4)
1178 {
1179 if (unit->offset_size == 4)
1180 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1181 else
1182 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1183 info_ptr += unit->offset_size;
1184 break;
1185 }
1186 /* FALLTHROUGH */
1187 case DW_FORM_addr:
1188 attr->u.val = read_address (unit, info_ptr, info_ptr_end);
1189 info_ptr += unit->addr_size;
1190 break;
1191 case DW_FORM_GNU_ref_alt:
1192 case DW_FORM_sec_offset:
1193 if (unit->offset_size == 4)
1194 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end);
1195 else
1196 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end);
1197 info_ptr += unit->offset_size;
1198 break;
1199 case DW_FORM_block2:
1200 amt = sizeof (struct dwarf_block);
1201 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1202 if (blk == NULL)
1203 return NULL;
1204 blk->size = read_2_bytes (abfd, info_ptr, info_ptr_end);
1205 info_ptr += 2;
1206 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1207 attr->u.blk = blk;
1208 break;
1209 case DW_FORM_block4:
1210 amt = sizeof (struct dwarf_block);
1211 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1212 if (blk == NULL)
1213 return NULL;
1214 blk->size = read_4_bytes (abfd, info_ptr, info_ptr_end);
1215 info_ptr += 4;
1216 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1217 attr->u.blk = blk;
1218 break;
1219 case DW_FORM_data2:
1220 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1221 info_ptr += 2;
1222 break;
1223 case DW_FORM_data4:
1224 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1225 info_ptr += 4;
1226 break;
1227 case DW_FORM_data8:
1228 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1229 info_ptr += 8;
1230 break;
1231 case DW_FORM_string:
1232 attr->u.str = read_string (abfd, info_ptr, info_ptr_end, &bytes_read);
1233 info_ptr += bytes_read;
1234 break;
1235 case DW_FORM_strp:
1236 attr->u.str = read_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1237 info_ptr += bytes_read;
1238 break;
1239 case DW_FORM_line_strp:
1240 attr->u.str = read_indirect_line_string (unit, info_ptr, info_ptr_end, &bytes_read);
1241 info_ptr += bytes_read;
1242 break;
1243 case DW_FORM_GNU_strp_alt:
1244 attr->u.str = read_alt_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read);
1245 info_ptr += bytes_read;
1246 break;
1247 case DW_FORM_exprloc:
1248 case DW_FORM_block:
1249 amt = sizeof (struct dwarf_block);
1250 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1251 if (blk == NULL)
1252 return NULL;
1253 blk->size = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1254 FALSE, info_ptr_end);
1255 info_ptr += bytes_read;
1256 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1257 attr->u.blk = blk;
1258 break;
1259 case DW_FORM_block1:
1260 amt = sizeof (struct dwarf_block);
1261 blk = (struct dwarf_block *) bfd_alloc (abfd, amt);
1262 if (blk == NULL)
1263 return NULL;
1264 blk->size = read_1_byte (abfd, info_ptr, info_ptr_end);
1265 info_ptr += 1;
1266 info_ptr = read_n_bytes (info_ptr, info_ptr_end, blk);
1267 attr->u.blk = blk;
1268 break;
1269 case DW_FORM_data1:
1270 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1271 info_ptr += 1;
1272 break;
1273 case DW_FORM_flag:
1274 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1275 info_ptr += 1;
1276 break;
1277 case DW_FORM_flag_present:
1278 attr->u.val = 1;
1279 break;
1280 case DW_FORM_sdata:
1281 attr->u.sval = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1282 TRUE, info_ptr_end);
1283 info_ptr += bytes_read;
1284 break;
1285 case DW_FORM_udata:
1286 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1287 FALSE, info_ptr_end);
1288 info_ptr += bytes_read;
1289 break;
1290 case DW_FORM_ref1:
1291 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end);
1292 info_ptr += 1;
1293 break;
1294 case DW_FORM_ref2:
1295 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end);
1296 info_ptr += 2;
1297 break;
1298 case DW_FORM_ref4:
1299 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end);
1300 info_ptr += 4;
1301 break;
1302 case DW_FORM_ref8:
1303 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1304 info_ptr += 8;
1305 break;
1306 case DW_FORM_ref_sig8:
1307 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end);
1308 info_ptr += 8;
1309 break;
1310 case DW_FORM_ref_udata:
1311 attr->u.val = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1312 FALSE, info_ptr_end);
1313 info_ptr += bytes_read;
1314 break;
1315 case DW_FORM_indirect:
1316 form = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1317 FALSE, info_ptr_end);
1318 info_ptr += bytes_read;
1319 if (form == DW_FORM_implicit_const)
1320 {
1321 implicit_const = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
1322 TRUE, info_ptr_end);
1323 info_ptr += bytes_read;
1324 }
1325 info_ptr = read_attribute_value (attr, form, implicit_const, unit,
1326 info_ptr, info_ptr_end);
1327 break;
1328 case DW_FORM_implicit_const:
1329 attr->form = DW_FORM_sdata;
1330 attr->u.sval = implicit_const;
1331 break;
1332 default:
1333 _bfd_error_handler (_("DWARF error: invalid or unhandled FORM value: %#x"),
1334 form);
1335 bfd_set_error (bfd_error_bad_value);
1336 return NULL;
1337 }
1338 return info_ptr;
1339 }
1340
1341 /* Read an attribute described by an abbreviated attribute. */
1342
1343 static bfd_byte *
1344 read_attribute (struct attribute * attr,
1345 struct attr_abbrev * abbrev,
1346 struct comp_unit * unit,
1347 bfd_byte * info_ptr,
1348 bfd_byte * info_ptr_end)
1349 {
1350 attr->name = abbrev->name;
1351 info_ptr = read_attribute_value (attr, abbrev->form, abbrev->implicit_const,
1352 unit, info_ptr, info_ptr_end);
1353 return info_ptr;
1354 }
1355
1356 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name
1357 for a function. */
1358
1359 static bfd_boolean
1360 non_mangled (int lang)
1361 {
1362 switch (lang)
1363 {
1364 default:
1365 return FALSE;
1366
1367 case DW_LANG_C89:
1368 case DW_LANG_C:
1369 case DW_LANG_Ada83:
1370 case DW_LANG_Cobol74:
1371 case DW_LANG_Cobol85:
1372 case DW_LANG_Fortran77:
1373 case DW_LANG_Pascal83:
1374 case DW_LANG_C99:
1375 case DW_LANG_Ada95:
1376 case DW_LANG_PLI:
1377 case DW_LANG_UPC:
1378 case DW_LANG_C11:
1379 return TRUE;
1380 }
1381 }
1382
1383 /* Source line information table routines. */
1384
1385 #define FILE_ALLOC_CHUNK 5
1386 #define DIR_ALLOC_CHUNK 5
1387
1388 struct line_info
1389 {
1390 struct line_info * prev_line;
1391 bfd_vma address;
1392 char * filename;
1393 unsigned int line;
1394 unsigned int column;
1395 unsigned int discriminator;
1396 unsigned char op_index;
1397 unsigned char end_sequence; /* End of (sequential) code sequence. */
1398 };
1399
1400 struct fileinfo
1401 {
1402 char * name;
1403 unsigned int dir;
1404 unsigned int time;
1405 unsigned int size;
1406 };
1407
1408 struct line_sequence
1409 {
1410 bfd_vma low_pc;
1411 struct line_sequence* prev_sequence;
1412 struct line_info* last_line; /* Largest VMA. */
1413 struct line_info** line_info_lookup;
1414 bfd_size_type num_lines;
1415 };
1416
1417 struct line_info_table
1418 {
1419 bfd * abfd;
1420 unsigned int num_files;
1421 unsigned int num_dirs;
1422 unsigned int num_sequences;
1423 char * comp_dir;
1424 char ** dirs;
1425 struct fileinfo* files;
1426 struct line_sequence* sequences;
1427 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */
1428 };
1429
1430 /* Remember some information about each function. If the function is
1431 inlined (DW_TAG_inlined_subroutine) it may have two additional
1432 attributes, DW_AT_call_file and DW_AT_call_line, which specify the
1433 source code location where this function was inlined. */
1434
1435 struct funcinfo
1436 {
1437 /* Pointer to previous function in list of all functions. */
1438 struct funcinfo * prev_func;
1439 /* Pointer to function one scope higher. */
1440 struct funcinfo * caller_func;
1441 /* Source location file name where caller_func inlines this func. */
1442 char * caller_file;
1443 /* Source location file name. */
1444 char * file;
1445 /* Source location line number where caller_func inlines this func. */
1446 int caller_line;
1447 /* Source location line number. */
1448 int line;
1449 int tag;
1450 bfd_boolean is_linkage;
1451 const char * name;
1452 struct arange arange;
1453 /* Where the symbol is defined. */
1454 asection * sec;
1455 };
1456
1457 struct lookup_funcinfo
1458 {
1459 /* Function information corresponding to this lookup table entry. */
1460 struct funcinfo * funcinfo;
1461
1462 /* The lowest address for this specific function. */
1463 bfd_vma low_addr;
1464
1465 /* The highest address of this function before the lookup table is sorted.
1466 The highest address of all prior functions after the lookup table is
1467 sorted, which is used for binary search. */
1468 bfd_vma high_addr;
1469 /* Index of this function, used to ensure qsort is stable. */
1470 unsigned int idx;
1471 };
1472
1473 struct varinfo
1474 {
1475 /* Pointer to previous variable in list of all variables */
1476 struct varinfo *prev_var;
1477 /* Source location file name */
1478 char *file;
1479 /* Source location line number */
1480 int line;
1481 int tag;
1482 char *name;
1483 bfd_vma addr;
1484 /* Where the symbol is defined */
1485 asection *sec;
1486 /* Is this a stack variable? */
1487 unsigned int stack: 1;
1488 };
1489
1490 /* Return TRUE if NEW_LINE should sort after LINE. */
1491
1492 static inline bfd_boolean
1493 new_line_sorts_after (struct line_info *new_line, struct line_info *line)
1494 {
1495 return (new_line->address > line->address
1496 || (new_line->address == line->address
1497 && new_line->op_index > line->op_index));
1498 }
1499
1500
1501 /* Adds a new entry to the line_info list in the line_info_table, ensuring
1502 that the list is sorted. Note that the line_info list is sorted from
1503 highest to lowest VMA (with possible duplicates); that is,
1504 line_info->prev_line always accesses an equal or smaller VMA. */
1505
1506 static bfd_boolean
1507 add_line_info (struct line_info_table *table,
1508 bfd_vma address,
1509 unsigned char op_index,
1510 char *filename,
1511 unsigned int line,
1512 unsigned int column,
1513 unsigned int discriminator,
1514 int end_sequence)
1515 {
1516 bfd_size_type amt = sizeof (struct line_info);
1517 struct line_sequence* seq = table->sequences;
1518 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt);
1519
1520 if (info == NULL)
1521 return FALSE;
1522
1523 /* Set member data of 'info'. */
1524 info->prev_line = NULL;
1525 info->address = address;
1526 info->op_index = op_index;
1527 info->line = line;
1528 info->column = column;
1529 info->discriminator = discriminator;
1530 info->end_sequence = end_sequence;
1531
1532 if (filename && filename[0])
1533 {
1534 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1);
1535 if (info->filename == NULL)
1536 return FALSE;
1537 strcpy (info->filename, filename);
1538 }
1539 else
1540 info->filename = NULL;
1541
1542 /* Find the correct location for 'info'. Normally we will receive
1543 new line_info data 1) in order and 2) with increasing VMAs.
1544 However some compilers break the rules (cf. decode_line_info) and
1545 so we include some heuristics for quickly finding the correct
1546 location for 'info'. In particular, these heuristics optimize for
1547 the common case in which the VMA sequence that we receive is a
1548 list of locally sorted VMAs such as
1549 p...z a...j (where a < j < p < z)
1550
1551 Note: table->lcl_head is used to head an *actual* or *possible*
1552 sub-sequence within the list (such as a...j) that is not directly
1553 headed by table->last_line
1554
1555 Note: we may receive duplicate entries from 'decode_line_info'. */
1556
1557 if (seq
1558 && seq->last_line->address == address
1559 && seq->last_line->op_index == op_index
1560 && seq->last_line->end_sequence == end_sequence)
1561 {
1562 /* We only keep the last entry with the same address and end
1563 sequence. See PR ld/4986. */
1564 if (table->lcl_head == seq->last_line)
1565 table->lcl_head = info;
1566 info->prev_line = seq->last_line->prev_line;
1567 seq->last_line = info;
1568 }
1569 else if (!seq || seq->last_line->end_sequence)
1570 {
1571 /* Start a new line sequence. */
1572 amt = sizeof (struct line_sequence);
1573 seq = (struct line_sequence *) bfd_malloc (amt);
1574 if (seq == NULL)
1575 return FALSE;
1576 seq->low_pc = address;
1577 seq->prev_sequence = table->sequences;
1578 seq->last_line = info;
1579 table->lcl_head = info;
1580 table->sequences = seq;
1581 table->num_sequences++;
1582 }
1583 else if (info->end_sequence
1584 || new_line_sorts_after (info, seq->last_line))
1585 {
1586 /* Normal case: add 'info' to the beginning of the current sequence. */
1587 info->prev_line = seq->last_line;
1588 seq->last_line = info;
1589
1590 /* lcl_head: initialize to head a *possible* sequence at the end. */
1591 if (!table->lcl_head)
1592 table->lcl_head = info;
1593 }
1594 else if (!new_line_sorts_after (info, table->lcl_head)
1595 && (!table->lcl_head->prev_line
1596 || new_line_sorts_after (info, table->lcl_head->prev_line)))
1597 {
1598 /* Abnormal but easy: lcl_head is the head of 'info'. */
1599 info->prev_line = table->lcl_head->prev_line;
1600 table->lcl_head->prev_line = info;
1601 }
1602 else
1603 {
1604 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head'
1605 are valid heads for 'info'. Reset 'lcl_head'. */
1606 struct line_info* li2 = seq->last_line; /* Always non-NULL. */
1607 struct line_info* li1 = li2->prev_line;
1608
1609 while (li1)
1610 {
1611 if (!new_line_sorts_after (info, li2)
1612 && new_line_sorts_after (info, li1))
1613 break;
1614
1615 li2 = li1; /* always non-NULL */
1616 li1 = li1->prev_line;
1617 }
1618 table->lcl_head = li2;
1619 info->prev_line = table->lcl_head->prev_line;
1620 table->lcl_head->prev_line = info;
1621 if (address < seq->low_pc)
1622 seq->low_pc = address;
1623 }
1624 return TRUE;
1625 }
1626
1627 /* Extract a fully qualified filename from a line info table.
1628 The returned string has been malloc'ed and it is the caller's
1629 responsibility to free it. */
1630
1631 static char *
1632 concat_filename (struct line_info_table *table, unsigned int file)
1633 {
1634 char *filename;
1635
1636 if (table == NULL || file - 1 >= table->num_files)
1637 {
1638 /* FILE == 0 means unknown. */
1639 if (file)
1640 _bfd_error_handler
1641 (_("DWARF error: mangled line number section (bad file number)"));
1642 return strdup ("<unknown>");
1643 }
1644
1645 filename = table->files[file - 1].name;
1646 if (filename == NULL)
1647 return strdup ("<unknown>");
1648
1649 if (!IS_ABSOLUTE_PATH (filename))
1650 {
1651 char *dir_name = NULL;
1652 char *subdir_name = NULL;
1653 char *name;
1654 size_t len;
1655
1656 if (table->files[file - 1].dir
1657 /* PR 17512: file: 0317e960. */
1658 && table->files[file - 1].dir <= table->num_dirs
1659 /* PR 17512: file: 7f3d2e4b. */
1660 && table->dirs != NULL)
1661 subdir_name = table->dirs[table->files[file - 1].dir - 1];
1662
1663 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name))
1664 dir_name = table->comp_dir;
1665
1666 if (!dir_name)
1667 {
1668 dir_name = subdir_name;
1669 subdir_name = NULL;
1670 }
1671
1672 if (!dir_name)
1673 return strdup (filename);
1674
1675 len = strlen (dir_name) + strlen (filename) + 2;
1676
1677 if (subdir_name)
1678 {
1679 len += strlen (subdir_name) + 1;
1680 name = (char *) bfd_malloc (len);
1681 if (name)
1682 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename);
1683 }
1684 else
1685 {
1686 name = (char *) bfd_malloc (len);
1687 if (name)
1688 sprintf (name, "%s/%s", dir_name, filename);
1689 }
1690
1691 return name;
1692 }
1693
1694 return strdup (filename);
1695 }
1696
1697 static bfd_boolean
1698 arange_add (const struct comp_unit *unit, struct arange *first_arange,
1699 bfd_vma low_pc, bfd_vma high_pc)
1700 {
1701 struct arange *arange;
1702
1703 /* Ignore empty ranges. */
1704 if (low_pc == high_pc)
1705 return TRUE;
1706
1707 /* If the first arange is empty, use it. */
1708 if (first_arange->high == 0)
1709 {
1710 first_arange->low = low_pc;
1711 first_arange->high = high_pc;
1712 return TRUE;
1713 }
1714
1715 /* Next see if we can cheaply extend an existing range. */
1716 arange = first_arange;
1717 do
1718 {
1719 if (low_pc == arange->high)
1720 {
1721 arange->high = high_pc;
1722 return TRUE;
1723 }
1724 if (high_pc == arange->low)
1725 {
1726 arange->low = low_pc;
1727 return TRUE;
1728 }
1729 arange = arange->next;
1730 }
1731 while (arange);
1732
1733 /* Need to allocate a new arange and insert it into the arange list.
1734 Order isn't significant, so just insert after the first arange. */
1735 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange));
1736 if (arange == NULL)
1737 return FALSE;
1738 arange->low = low_pc;
1739 arange->high = high_pc;
1740 arange->next = first_arange->next;
1741 first_arange->next = arange;
1742 return TRUE;
1743 }
1744
1745 /* Compare function for line sequences. */
1746
1747 static int
1748 compare_sequences (const void* a, const void* b)
1749 {
1750 const struct line_sequence* seq1 = a;
1751 const struct line_sequence* seq2 = b;
1752
1753 /* Sort by low_pc as the primary key. */
1754 if (seq1->low_pc < seq2->low_pc)
1755 return -1;
1756 if (seq1->low_pc > seq2->low_pc)
1757 return 1;
1758
1759 /* If low_pc values are equal, sort in reverse order of
1760 high_pc, so that the largest region comes first. */
1761 if (seq1->last_line->address < seq2->last_line->address)
1762 return 1;
1763 if (seq1->last_line->address > seq2->last_line->address)
1764 return -1;
1765
1766 if (seq1->last_line->op_index < seq2->last_line->op_index)
1767 return 1;
1768 if (seq1->last_line->op_index > seq2->last_line->op_index)
1769 return -1;
1770
1771 /* num_lines is initially an index, to make the sort stable. */
1772 if (seq1->num_lines < seq2->num_lines)
1773 return -1;
1774 if (seq1->num_lines > seq2->num_lines)
1775 return 1;
1776 return 0;
1777 }
1778
1779 /* Construct the line information table for quick lookup. */
1780
1781 static bfd_boolean
1782 build_line_info_table (struct line_info_table * table,
1783 struct line_sequence * seq)
1784 {
1785 bfd_size_type amt;
1786 struct line_info** line_info_lookup;
1787 struct line_info* each_line;
1788 unsigned int num_lines;
1789 unsigned int line_index;
1790
1791 if (seq->line_info_lookup != NULL)
1792 return TRUE;
1793
1794 /* Count the number of line information entries. We could do this while
1795 scanning the debug information, but some entries may be added via
1796 lcl_head without having a sequence handy to increment the number of
1797 lines. */
1798 num_lines = 0;
1799 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1800 num_lines++;
1801
1802 seq->num_lines = num_lines;
1803 if (num_lines == 0)
1804 return TRUE;
1805
1806 /* Allocate space for the line information lookup table. */
1807 amt = sizeof (struct line_info*) * num_lines;
1808 line_info_lookup = (struct line_info**) bfd_alloc (table->abfd, amt);
1809 seq->line_info_lookup = line_info_lookup;
1810 if (line_info_lookup == NULL)
1811 return FALSE;
1812
1813 /* Create the line information lookup table. */
1814 line_index = num_lines;
1815 for (each_line = seq->last_line; each_line; each_line = each_line->prev_line)
1816 line_info_lookup[--line_index] = each_line;
1817
1818 BFD_ASSERT (line_index == 0);
1819 return TRUE;
1820 }
1821
1822 /* Sort the line sequences for quick lookup. */
1823
1824 static bfd_boolean
1825 sort_line_sequences (struct line_info_table* table)
1826 {
1827 bfd_size_type amt;
1828 struct line_sequence* sequences;
1829 struct line_sequence* seq;
1830 unsigned int n = 0;
1831 unsigned int num_sequences = table->num_sequences;
1832 bfd_vma last_high_pc;
1833
1834 if (num_sequences == 0)
1835 return TRUE;
1836
1837 /* Allocate space for an array of sequences. */
1838 amt = sizeof (struct line_sequence) * num_sequences;
1839 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt);
1840 if (sequences == NULL)
1841 return FALSE;
1842
1843 /* Copy the linked list into the array, freeing the original nodes. */
1844 seq = table->sequences;
1845 for (n = 0; n < num_sequences; n++)
1846 {
1847 struct line_sequence* last_seq = seq;
1848
1849 BFD_ASSERT (seq);
1850 sequences[n].low_pc = seq->low_pc;
1851 sequences[n].prev_sequence = NULL;
1852 sequences[n].last_line = seq->last_line;
1853 sequences[n].line_info_lookup = NULL;
1854 sequences[n].num_lines = n;
1855 seq = seq->prev_sequence;
1856 free (last_seq);
1857 }
1858 BFD_ASSERT (seq == NULL);
1859
1860 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences);
1861
1862 /* Make the list binary-searchable by trimming overlapping entries
1863 and removing nested entries. */
1864 num_sequences = 1;
1865 last_high_pc = sequences[0].last_line->address;
1866 for (n = 1; n < table->num_sequences; n++)
1867 {
1868 if (sequences[n].low_pc < last_high_pc)
1869 {
1870 if (sequences[n].last_line->address <= last_high_pc)
1871 /* Skip nested entries. */
1872 continue;
1873
1874 /* Trim overlapping entries. */
1875 sequences[n].low_pc = last_high_pc;
1876 }
1877 last_high_pc = sequences[n].last_line->address;
1878 if (n > num_sequences)
1879 {
1880 /* Close up the gap. */
1881 sequences[num_sequences].low_pc = sequences[n].low_pc;
1882 sequences[num_sequences].last_line = sequences[n].last_line;
1883 }
1884 num_sequences++;
1885 }
1886
1887 table->sequences = sequences;
1888 table->num_sequences = num_sequences;
1889 return TRUE;
1890 }
1891
1892 /* Add directory to TABLE. CUR_DIR memory ownership is taken by TABLE. */
1893
1894 static bfd_boolean
1895 line_info_add_include_dir (struct line_info_table *table, char *cur_dir)
1896 {
1897 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0)
1898 {
1899 char **tmp;
1900 bfd_size_type amt;
1901
1902 amt = table->num_dirs + DIR_ALLOC_CHUNK;
1903 amt *= sizeof (char *);
1904
1905 tmp = (char **) bfd_realloc (table->dirs, amt);
1906 if (tmp == NULL)
1907 return FALSE;
1908 table->dirs = tmp;
1909 }
1910
1911 table->dirs[table->num_dirs++] = cur_dir;
1912 return TRUE;
1913 }
1914
1915 static bfd_boolean
1916 line_info_add_include_dir_stub (struct line_info_table *table, char *cur_dir,
1917 unsigned int dir ATTRIBUTE_UNUSED,
1918 unsigned int xtime ATTRIBUTE_UNUSED,
1919 unsigned int size ATTRIBUTE_UNUSED)
1920 {
1921 return line_info_add_include_dir (table, cur_dir);
1922 }
1923
1924 /* Add file to TABLE. CUR_FILE memory ownership is taken by TABLE. */
1925
1926 static bfd_boolean
1927 line_info_add_file_name (struct line_info_table *table, char *cur_file,
1928 unsigned int dir, unsigned int xtime,
1929 unsigned int size)
1930 {
1931 if ((table->num_files % FILE_ALLOC_CHUNK) == 0)
1932 {
1933 struct fileinfo *tmp;
1934 bfd_size_type amt;
1935
1936 amt = table->num_files + FILE_ALLOC_CHUNK;
1937 amt *= sizeof (struct fileinfo);
1938
1939 tmp = (struct fileinfo *) bfd_realloc (table->files, amt);
1940 if (tmp == NULL)
1941 return FALSE;
1942 table->files = tmp;
1943 }
1944
1945 table->files[table->num_files].name = cur_file;
1946 table->files[table->num_files].dir = dir;
1947 table->files[table->num_files].time = xtime;
1948 table->files[table->num_files].size = size;
1949 table->num_files++;
1950 return TRUE;
1951 }
1952
1953 /* Read directory or file name entry format, starting with byte of
1954 format count entries, ULEB128 pairs of entry formats, ULEB128 of
1955 entries count and the entries themselves in the described entry
1956 format. */
1957
1958 static bfd_boolean
1959 read_formatted_entries (struct comp_unit *unit, bfd_byte **bufp,
1960 bfd_byte *buf_end, struct line_info_table *table,
1961 bfd_boolean (*callback) (struct line_info_table *table,
1962 char *cur_file,
1963 unsigned int dir,
1964 unsigned int time,
1965 unsigned int size))
1966 {
1967 bfd *abfd = unit->abfd;
1968 bfd_byte format_count, formati;
1969 bfd_vma data_count, datai;
1970 bfd_byte *buf = *bufp;
1971 bfd_byte *format_header_data;
1972 unsigned int bytes_read;
1973
1974 format_count = read_1_byte (abfd, buf, buf_end);
1975 buf += 1;
1976 format_header_data = buf;
1977 for (formati = 0; formati < format_count; formati++)
1978 {
1979 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1980 buf += bytes_read;
1981 _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1982 buf += bytes_read;
1983 }
1984
1985 data_count = _bfd_safe_read_leb128 (abfd, buf, &bytes_read, FALSE, buf_end);
1986 buf += bytes_read;
1987 if (format_count == 0 && data_count != 0)
1988 {
1989 _bfd_error_handler (_("DWARF error: zero format count"));
1990 bfd_set_error (bfd_error_bad_value);
1991 return FALSE;
1992 }
1993
1994 /* PR 22210. Paranoia check. Don't bother running the loop
1995 if we know that we are going to run out of buffer. */
1996 if (data_count > (bfd_vma) (buf_end - buf))
1997 {
1998 _bfd_error_handler
1999 (_("DWARF error: data count (%" PRIx64 ") larger than buffer size"),
2000 (uint64_t) data_count);
2001 bfd_set_error (bfd_error_bad_value);
2002 return FALSE;
2003 }
2004
2005 for (datai = 0; datai < data_count; datai++)
2006 {
2007 bfd_byte *format = format_header_data;
2008 struct fileinfo fe;
2009
2010 memset (&fe, 0, sizeof fe);
2011 for (formati = 0; formati < format_count; formati++)
2012 {
2013 bfd_vma content_type, form;
2014 char *string_trash;
2015 char **stringp = &string_trash;
2016 unsigned int uint_trash, *uintp = &uint_trash;
2017 struct attribute attr;
2018
2019 content_type = _bfd_safe_read_leb128 (abfd, format, &bytes_read,
2020 FALSE, buf_end);
2021 format += bytes_read;
2022 switch (content_type)
2023 {
2024 case DW_LNCT_path:
2025 stringp = &fe.name;
2026 break;
2027 case DW_LNCT_directory_index:
2028 uintp = &fe.dir;
2029 break;
2030 case DW_LNCT_timestamp:
2031 uintp = &fe.time;
2032 break;
2033 case DW_LNCT_size:
2034 uintp = &fe.size;
2035 break;
2036 case DW_LNCT_MD5:
2037 break;
2038 default:
2039 _bfd_error_handler
2040 (_("DWARF error: unknown format content type %" PRIu64),
2041 (uint64_t) content_type);
2042 bfd_set_error (bfd_error_bad_value);
2043 return FALSE;
2044 }
2045
2046 form = _bfd_safe_read_leb128 (abfd, format, &bytes_read, FALSE,
2047 buf_end);
2048 format += bytes_read;
2049
2050 buf = read_attribute_value (&attr, form, 0, unit, buf, buf_end);
2051 if (buf == NULL)
2052 return FALSE;
2053 switch (form)
2054 {
2055 case DW_FORM_string:
2056 case DW_FORM_line_strp:
2057 *stringp = attr.u.str;
2058 break;
2059
2060 case DW_FORM_data1:
2061 case DW_FORM_data2:
2062 case DW_FORM_data4:
2063 case DW_FORM_data8:
2064 case DW_FORM_udata:
2065 *uintp = attr.u.val;
2066 break;
2067 }
2068 }
2069
2070 if (!callback (table, fe.name, fe.dir, fe.time, fe.size))
2071 return FALSE;
2072 }
2073
2074 *bufp = buf;
2075 return TRUE;
2076 }
2077
2078 /* Decode the line number information for UNIT. */
2079
2080 static struct line_info_table*
2081 decode_line_info (struct comp_unit *unit)
2082 {
2083 bfd *abfd = unit->abfd;
2084 struct dwarf2_debug *stash = unit->stash;
2085 struct dwarf2_debug_file *file = unit->file;
2086 struct line_info_table* table;
2087 bfd_byte *line_ptr;
2088 bfd_byte *line_end;
2089 struct line_head lh;
2090 unsigned int i, bytes_read, offset_size;
2091 char *cur_file, *cur_dir;
2092 unsigned char op_code, extended_op, adj_opcode;
2093 unsigned int exop_len;
2094 bfd_size_type amt;
2095
2096 if (unit->line_offset == 0 && file->line_table)
2097 return file->line_table;
2098
2099 if (! read_section (abfd, &stash->debug_sections[debug_line],
2100 file->syms, unit->line_offset,
2101 &file->dwarf_line_buffer, &file->dwarf_line_size))
2102 return NULL;
2103
2104 if (file->dwarf_line_size < 16)
2105 {
2106 _bfd_error_handler
2107 (_("DWARF error: line info section is too small (%" PRId64 ")"),
2108 (int64_t) file->dwarf_line_size);
2109 bfd_set_error (bfd_error_bad_value);
2110 return NULL;
2111 }
2112 line_ptr = file->dwarf_line_buffer + unit->line_offset;
2113 line_end = file->dwarf_line_buffer + file->dwarf_line_size;
2114
2115 /* Read in the prologue. */
2116 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2117 line_ptr += 4;
2118 offset_size = 4;
2119 if (lh.total_length == 0xffffffff)
2120 {
2121 lh.total_length = read_8_bytes (abfd, line_ptr, line_end);
2122 line_ptr += 8;
2123 offset_size = 8;
2124 }
2125 else if (lh.total_length == 0 && unit->addr_size == 8)
2126 {
2127 /* Handle (non-standard) 64-bit DWARF2 formats. */
2128 lh.total_length = read_4_bytes (abfd, line_ptr, line_end);
2129 line_ptr += 4;
2130 offset_size = 8;
2131 }
2132
2133 if (lh.total_length > (size_t) (line_end - line_ptr))
2134 {
2135 _bfd_error_handler
2136 /* xgettext: c-format */
2137 (_("DWARF error: line info data is bigger (%#" PRIx64 ")"
2138 " than the space remaining in the section (%#lx)"),
2139 (uint64_t) lh.total_length, (unsigned long) (line_end - line_ptr));
2140 bfd_set_error (bfd_error_bad_value);
2141 return NULL;
2142 }
2143
2144 line_end = line_ptr + lh.total_length;
2145
2146 lh.version = read_2_bytes (abfd, line_ptr, line_end);
2147 if (lh.version < 2 || lh.version > 5)
2148 {
2149 _bfd_error_handler
2150 (_("DWARF error: unhandled .debug_line version %d"), lh.version);
2151 bfd_set_error (bfd_error_bad_value);
2152 return NULL;
2153 }
2154 line_ptr += 2;
2155
2156 if (line_ptr + offset_size + (lh.version >= 5 ? 8 : (lh.version >= 4 ? 6 : 5))
2157 >= line_end)
2158 {
2159 _bfd_error_handler
2160 (_("DWARF error: ran out of room reading prologue"));
2161 bfd_set_error (bfd_error_bad_value);
2162 return NULL;
2163 }
2164
2165 if (lh.version >= 5)
2166 {
2167 unsigned int segment_selector_size;
2168
2169 /* Skip address size. */
2170 read_1_byte (abfd, line_ptr, line_end);
2171 line_ptr += 1;
2172
2173 segment_selector_size = read_1_byte (abfd, line_ptr, line_end);
2174 line_ptr += 1;
2175 if (segment_selector_size != 0)
2176 {
2177 _bfd_error_handler
2178 (_("DWARF error: line info unsupported segment selector size %u"),
2179 segment_selector_size);
2180 bfd_set_error (bfd_error_bad_value);
2181 return NULL;
2182 }
2183 }
2184
2185 if (offset_size == 4)
2186 lh.prologue_length = read_4_bytes (abfd, line_ptr, line_end);
2187 else
2188 lh.prologue_length = read_8_bytes (abfd, line_ptr, line_end);
2189 line_ptr += offset_size;
2190
2191 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr, line_end);
2192 line_ptr += 1;
2193
2194 if (lh.version >= 4)
2195 {
2196 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr, line_end);
2197 line_ptr += 1;
2198 }
2199 else
2200 lh.maximum_ops_per_insn = 1;
2201
2202 if (lh.maximum_ops_per_insn == 0)
2203 {
2204 _bfd_error_handler
2205 (_("DWARF error: invalid maximum operations per instruction"));
2206 bfd_set_error (bfd_error_bad_value);
2207 return NULL;
2208 }
2209
2210 lh.default_is_stmt = read_1_byte (abfd, line_ptr, line_end);
2211 line_ptr += 1;
2212
2213 lh.line_base = read_1_signed_byte (abfd, line_ptr, line_end);
2214 line_ptr += 1;
2215
2216 lh.line_range = read_1_byte (abfd, line_ptr, line_end);
2217 line_ptr += 1;
2218
2219 lh.opcode_base = read_1_byte (abfd, line_ptr, line_end);
2220 line_ptr += 1;
2221
2222 if (line_ptr + (lh.opcode_base - 1) >= line_end)
2223 {
2224 _bfd_error_handler (_("DWARF error: ran out of room reading opcodes"));
2225 bfd_set_error (bfd_error_bad_value);
2226 return NULL;
2227 }
2228
2229 amt = lh.opcode_base * sizeof (unsigned char);
2230 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt);
2231
2232 lh.standard_opcode_lengths[0] = 1;
2233
2234 for (i = 1; i < lh.opcode_base; ++i)
2235 {
2236 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr, line_end);
2237 line_ptr += 1;
2238 }
2239
2240 amt = sizeof (struct line_info_table);
2241 table = (struct line_info_table *) bfd_alloc (abfd, amt);
2242 if (table == NULL)
2243 return NULL;
2244 table->abfd = abfd;
2245 table->comp_dir = unit->comp_dir;
2246
2247 table->num_files = 0;
2248 table->files = NULL;
2249
2250 table->num_dirs = 0;
2251 table->dirs = NULL;
2252
2253 table->num_sequences = 0;
2254 table->sequences = NULL;
2255
2256 table->lcl_head = NULL;
2257
2258 if (lh.version >= 5)
2259 {
2260 /* Read directory table. */
2261 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2262 line_info_add_include_dir_stub))
2263 goto fail;
2264
2265 /* Read file name table. */
2266 if (!read_formatted_entries (unit, &line_ptr, line_end, table,
2267 line_info_add_file_name))
2268 goto fail;
2269 }
2270 else
2271 {
2272 /* Read directory table. */
2273 while ((cur_dir = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2274 {
2275 line_ptr += bytes_read;
2276
2277 if (!line_info_add_include_dir (table, cur_dir))
2278 goto fail;
2279 }
2280
2281 line_ptr += bytes_read;
2282
2283 /* Read file name table. */
2284 while ((cur_file = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL)
2285 {
2286 unsigned int dir, xtime, size;
2287
2288 line_ptr += bytes_read;
2289
2290 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2291 line_ptr += bytes_read;
2292 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2293 line_ptr += bytes_read;
2294 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end);
2295 line_ptr += bytes_read;
2296
2297 if (!line_info_add_file_name (table, cur_file, dir, xtime, size))
2298 goto fail;
2299 }
2300
2301 line_ptr += bytes_read;
2302 }
2303
2304 /* Read the statement sequences until there's nothing left. */
2305 while (line_ptr < line_end)
2306 {
2307 /* State machine registers. */
2308 bfd_vma address = 0;
2309 unsigned char op_index = 0;
2310 char * filename = table->num_files ? concat_filename (table, 1) : NULL;
2311 unsigned int line = 1;
2312 unsigned int column = 0;
2313 unsigned int discriminator = 0;
2314 int is_stmt = lh.default_is_stmt;
2315 int end_sequence = 0;
2316 unsigned int dir, xtime, size;
2317 /* eraxxon@alumni.rice.edu: Against the DWARF2 specs, some
2318 compilers generate address sequences that are wildly out of
2319 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler
2320 for ia64-Linux). Thus, to determine the low and high
2321 address, we must compare on every DW_LNS_copy, etc. */
2322 bfd_vma low_pc = (bfd_vma) -1;
2323 bfd_vma high_pc = 0;
2324
2325 /* Decode the table. */
2326 while (!end_sequence && line_ptr < line_end)
2327 {
2328 op_code = read_1_byte (abfd, line_ptr, line_end);
2329 line_ptr += 1;
2330
2331 if (op_code >= lh.opcode_base)
2332 {
2333 /* Special operand. */
2334 adj_opcode = op_code - lh.opcode_base;
2335 if (lh.line_range == 0)
2336 goto line_fail;
2337 if (lh.maximum_ops_per_insn == 1)
2338 address += (adj_opcode / lh.line_range
2339 * lh.minimum_instruction_length);
2340 else
2341 {
2342 address += ((op_index + adj_opcode / lh.line_range)
2343 / lh.maximum_ops_per_insn
2344 * lh.minimum_instruction_length);
2345 op_index = ((op_index + adj_opcode / lh.line_range)
2346 % lh.maximum_ops_per_insn);
2347 }
2348 line += lh.line_base + (adj_opcode % lh.line_range);
2349 /* Append row to matrix using current values. */
2350 if (!add_line_info (table, address, op_index, filename,
2351 line, column, discriminator, 0))
2352 goto line_fail;
2353 discriminator = 0;
2354 if (address < low_pc)
2355 low_pc = address;
2356 if (address > high_pc)
2357 high_pc = address;
2358 }
2359 else switch (op_code)
2360 {
2361 case DW_LNS_extended_op:
2362 exop_len = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2363 FALSE, line_end);
2364 line_ptr += bytes_read;
2365 extended_op = read_1_byte (abfd, line_ptr, line_end);
2366 line_ptr += 1;
2367
2368 switch (extended_op)
2369 {
2370 case DW_LNE_end_sequence:
2371 end_sequence = 1;
2372 if (!add_line_info (table, address, op_index, filename, line,
2373 column, discriminator, end_sequence))
2374 goto line_fail;
2375 discriminator = 0;
2376 if (address < low_pc)
2377 low_pc = address;
2378 if (address > high_pc)
2379 high_pc = address;
2380 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
2381 goto line_fail;
2382 break;
2383 case DW_LNE_set_address:
2384 address = read_address (unit, line_ptr, line_end);
2385 op_index = 0;
2386 line_ptr += unit->addr_size;
2387 break;
2388 case DW_LNE_define_file:
2389 cur_file = read_string (abfd, line_ptr, line_end, &bytes_read);
2390 line_ptr += bytes_read;
2391 dir = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2392 FALSE, line_end);
2393 line_ptr += bytes_read;
2394 xtime = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2395 FALSE, line_end);
2396 line_ptr += bytes_read;
2397 size = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2398 FALSE, line_end);
2399 line_ptr += bytes_read;
2400 if (!line_info_add_file_name (table, cur_file, dir,
2401 xtime, size))
2402 goto line_fail;
2403 break;
2404 case DW_LNE_set_discriminator:
2405 discriminator =
2406 _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2407 FALSE, line_end);
2408 line_ptr += bytes_read;
2409 break;
2410 case DW_LNE_HP_source_file_correlation:
2411 line_ptr += exop_len - 1;
2412 break;
2413 default:
2414 _bfd_error_handler
2415 (_("DWARF error: mangled line number section"));
2416 bfd_set_error (bfd_error_bad_value);
2417 line_fail:
2418 if (filename != NULL)
2419 free (filename);
2420 goto fail;
2421 }
2422 break;
2423 case DW_LNS_copy:
2424 if (!add_line_info (table, address, op_index,
2425 filename, line, column, discriminator, 0))
2426 goto line_fail;
2427 discriminator = 0;
2428 if (address < low_pc)
2429 low_pc = address;
2430 if (address > high_pc)
2431 high_pc = address;
2432 break;
2433 case DW_LNS_advance_pc:
2434 if (lh.maximum_ops_per_insn == 1)
2435 address += (lh.minimum_instruction_length
2436 * _bfd_safe_read_leb128 (abfd, line_ptr,
2437 &bytes_read,
2438 FALSE, line_end));
2439 else
2440 {
2441 bfd_vma adjust = _bfd_safe_read_leb128 (abfd, line_ptr,
2442 &bytes_read,
2443 FALSE, line_end);
2444 address = ((op_index + adjust) / lh.maximum_ops_per_insn
2445 * lh.minimum_instruction_length);
2446 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2447 }
2448 line_ptr += bytes_read;
2449 break;
2450 case DW_LNS_advance_line:
2451 line += _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2452 TRUE, line_end);
2453 line_ptr += bytes_read;
2454 break;
2455 case DW_LNS_set_file:
2456 {
2457 unsigned int filenum;
2458
2459 /* The file and directory tables are 0
2460 based, the references are 1 based. */
2461 filenum = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2462 FALSE, line_end);
2463 line_ptr += bytes_read;
2464 if (filename)
2465 free (filename);
2466 filename = concat_filename (table, filenum);
2467 break;
2468 }
2469 case DW_LNS_set_column:
2470 column = _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2471 FALSE, line_end);
2472 line_ptr += bytes_read;
2473 break;
2474 case DW_LNS_negate_stmt:
2475 is_stmt = (!is_stmt);
2476 break;
2477 case DW_LNS_set_basic_block:
2478 break;
2479 case DW_LNS_const_add_pc:
2480 if (lh.line_range == 0)
2481 goto line_fail;
2482 if (lh.maximum_ops_per_insn == 1)
2483 address += (lh.minimum_instruction_length
2484 * ((255 - lh.opcode_base) / lh.line_range));
2485 else
2486 {
2487 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range);
2488 address += (lh.minimum_instruction_length
2489 * ((op_index + adjust)
2490 / lh.maximum_ops_per_insn));
2491 op_index = (op_index + adjust) % lh.maximum_ops_per_insn;
2492 }
2493 break;
2494 case DW_LNS_fixed_advance_pc:
2495 address += read_2_bytes (abfd, line_ptr, line_end);
2496 op_index = 0;
2497 line_ptr += 2;
2498 break;
2499 default:
2500 /* Unknown standard opcode, ignore it. */
2501 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++)
2502 {
2503 (void) _bfd_safe_read_leb128 (abfd, line_ptr, &bytes_read,
2504 FALSE, line_end);
2505 line_ptr += bytes_read;
2506 }
2507 break;
2508 }
2509 }
2510
2511 if (filename)
2512 free (filename);
2513 }
2514
2515 if (unit->line_offset == 0)
2516 file->line_table = table;
2517 if (sort_line_sequences (table))
2518 return table;
2519
2520 fail:
2521 while (table->sequences != NULL)
2522 {
2523 struct line_sequence* seq = table->sequences;
2524 table->sequences = table->sequences->prev_sequence;
2525 free (seq);
2526 }
2527 if (table->files != NULL)
2528 free (table->files);
2529 if (table->dirs != NULL)
2530 free (table->dirs);
2531 return NULL;
2532 }
2533
2534 /* If ADDR is within TABLE set the output parameters and return the
2535 range of addresses covered by the entry used to fill them out.
2536 Otherwise set * FILENAME_PTR to NULL and return 0.
2537 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR
2538 are pointers to the objects to be filled in. */
2539
2540 static bfd_vma
2541 lookup_address_in_line_info_table (struct line_info_table *table,
2542 bfd_vma addr,
2543 const char **filename_ptr,
2544 unsigned int *linenumber_ptr,
2545 unsigned int *discriminator_ptr)
2546 {
2547 struct line_sequence *seq = NULL;
2548 struct line_info *info;
2549 int low, high, mid;
2550
2551 /* Binary search the array of sequences. */
2552 low = 0;
2553 high = table->num_sequences;
2554 while (low < high)
2555 {
2556 mid = (low + high) / 2;
2557 seq = &table->sequences[mid];
2558 if (addr < seq->low_pc)
2559 high = mid;
2560 else if (addr >= seq->last_line->address)
2561 low = mid + 1;
2562 else
2563 break;
2564 }
2565
2566 /* Check for a valid sequence. */
2567 if (!seq || addr < seq->low_pc || addr >= seq->last_line->address)
2568 goto fail;
2569
2570 if (!build_line_info_table (table, seq))
2571 goto fail;
2572
2573 /* Binary search the array of line information. */
2574 low = 0;
2575 high = seq->num_lines;
2576 info = NULL;
2577 while (low < high)
2578 {
2579 mid = (low + high) / 2;
2580 info = seq->line_info_lookup[mid];
2581 if (addr < info->address)
2582 high = mid;
2583 else if (addr >= seq->line_info_lookup[mid + 1]->address)
2584 low = mid + 1;
2585 else
2586 break;
2587 }
2588
2589 /* Check for a valid line information entry. */
2590 if (info
2591 && addr >= info->address
2592 && addr < seq->line_info_lookup[mid + 1]->address
2593 && !(info->end_sequence || info == seq->last_line))
2594 {
2595 *filename_ptr = info->filename;
2596 *linenumber_ptr = info->line;
2597 if (discriminator_ptr)
2598 *discriminator_ptr = info->discriminator;
2599 return seq->last_line->address - seq->low_pc;
2600 }
2601
2602 fail:
2603 *filename_ptr = NULL;
2604 return 0;
2605 }
2606
2607 /* Read in the .debug_ranges section for future reference. */
2608
2609 static bfd_boolean
2610 read_debug_ranges (struct comp_unit * unit)
2611 {
2612 struct dwarf2_debug *stash = unit->stash;
2613 struct dwarf2_debug_file *file = unit->file;
2614
2615 return read_section (unit->abfd, &stash->debug_sections[debug_ranges],
2616 file->syms, 0,
2617 &file->dwarf_ranges_buffer, &file->dwarf_ranges_size);
2618 }
2619
2620 /* Function table functions. */
2621
2622 static int
2623 compare_lookup_funcinfos (const void * a, const void * b)
2624 {
2625 const struct lookup_funcinfo * lookup1 = a;
2626 const struct lookup_funcinfo * lookup2 = b;
2627
2628 if (lookup1->low_addr < lookup2->low_addr)
2629 return -1;
2630 if (lookup1->low_addr > lookup2->low_addr)
2631 return 1;
2632 if (lookup1->high_addr < lookup2->high_addr)
2633 return -1;
2634 if (lookup1->high_addr > lookup2->high_addr)
2635 return 1;
2636
2637 if (lookup1->idx < lookup2->idx)
2638 return -1;
2639 if (lookup1->idx > lookup2->idx)
2640 return 1;
2641 return 0;
2642 }
2643
2644 static bfd_boolean
2645 build_lookup_funcinfo_table (struct comp_unit * unit)
2646 {
2647 struct lookup_funcinfo *lookup_funcinfo_table = unit->lookup_funcinfo_table;
2648 unsigned int number_of_functions = unit->number_of_functions;
2649 struct funcinfo *each;
2650 struct lookup_funcinfo *entry;
2651 size_t func_index;
2652 struct arange *range;
2653 bfd_vma low_addr, high_addr;
2654
2655 if (lookup_funcinfo_table || number_of_functions == 0)
2656 return TRUE;
2657
2658 /* Create the function info lookup table. */
2659 lookup_funcinfo_table = (struct lookup_funcinfo *)
2660 bfd_malloc (number_of_functions * sizeof (struct lookup_funcinfo));
2661 if (lookup_funcinfo_table == NULL)
2662 return FALSE;
2663
2664 /* Populate the function info lookup table. */
2665 func_index = number_of_functions;
2666 for (each = unit->function_table; each; each = each->prev_func)
2667 {
2668 entry = &lookup_funcinfo_table[--func_index];
2669 entry->funcinfo = each;
2670 entry->idx = func_index;
2671
2672 /* Calculate the lowest and highest address for this function entry. */
2673 low_addr = entry->funcinfo->arange.low;
2674 high_addr = entry->funcinfo->arange.high;
2675
2676 for (range = entry->funcinfo->arange.next; range; range = range->next)
2677 {
2678 if (range->low < low_addr)
2679 low_addr = range->low;
2680 if (range->high > high_addr)
2681 high_addr = range->high;
2682 }
2683
2684 entry->low_addr = low_addr;
2685 entry->high_addr = high_addr;
2686 }
2687
2688 BFD_ASSERT (func_index == 0);
2689
2690 /* Sort the function by address. */
2691 qsort (lookup_funcinfo_table,
2692 number_of_functions,
2693 sizeof (struct lookup_funcinfo),
2694 compare_lookup_funcinfos);
2695
2696 /* Calculate the high watermark for each function in the lookup table. */
2697 high_addr = lookup_funcinfo_table[0].high_addr;
2698 for (func_index = 1; func_index < number_of_functions; func_index++)
2699 {
2700 entry = &lookup_funcinfo_table[func_index];
2701 if (entry->high_addr > high_addr)
2702 high_addr = entry->high_addr;
2703 else
2704 entry->high_addr = high_addr;
2705 }
2706
2707 unit->lookup_funcinfo_table = lookup_funcinfo_table;
2708 return TRUE;
2709 }
2710
2711 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return
2712 TRUE. Note that we need to find the function that has the smallest range
2713 that contains ADDR, to handle inlined functions without depending upon
2714 them being ordered in TABLE by increasing range. */
2715
2716 static bfd_boolean
2717 lookup_address_in_function_table (struct comp_unit *unit,
2718 bfd_vma addr,
2719 struct funcinfo **function_ptr)
2720 {
2721 unsigned int number_of_functions = unit->number_of_functions;
2722 struct lookup_funcinfo* lookup_funcinfo = NULL;
2723 struct funcinfo* funcinfo = NULL;
2724 struct funcinfo* best_fit = NULL;
2725 bfd_vma best_fit_len = 0;
2726 bfd_size_type low, high, mid, first;
2727 struct arange *arange;
2728
2729 if (number_of_functions == 0)
2730 return FALSE;
2731
2732 if (!build_lookup_funcinfo_table (unit))
2733 return FALSE;
2734
2735 if (unit->lookup_funcinfo_table[number_of_functions - 1].high_addr < addr)
2736 return FALSE;
2737
2738 /* Find the first function in the lookup table which may contain the
2739 specified address. */
2740 low = 0;
2741 high = number_of_functions;
2742 first = high;
2743 while (low < high)
2744 {
2745 mid = (low + high) / 2;
2746 lookup_funcinfo = &unit->lookup_funcinfo_table[mid];
2747 if (addr < lookup_funcinfo->low_addr)
2748 high = mid;
2749 else if (addr >= lookup_funcinfo->high_addr)
2750 low = mid + 1;
2751 else
2752 high = first = mid;
2753 }
2754
2755 /* Find the 'best' match for the address. The prior algorithm defined the
2756 best match as the function with the smallest address range containing
2757 the specified address. This definition should probably be changed to the
2758 innermost inline routine containing the address, but right now we want
2759 to get the same results we did before. */
2760 while (first < number_of_functions)
2761 {
2762 if (addr < unit->lookup_funcinfo_table[first].low_addr)
2763 break;
2764 funcinfo = unit->lookup_funcinfo_table[first].funcinfo;
2765
2766 for (arange = &funcinfo->arange; arange; arange = arange->next)
2767 {
2768 if (addr < arange->low || addr >= arange->high)
2769 continue;
2770
2771 if (!best_fit
2772 || arange->high - arange->low < best_fit_len
2773 /* The following comparison is designed to return the same
2774 match as the previous algorithm for routines which have the
2775 same best fit length. */
2776 || (arange->high - arange->low == best_fit_len
2777 && funcinfo > best_fit))
2778 {
2779 best_fit = funcinfo;
2780 best_fit_len = arange->high - arange->low;
2781 }
2782 }
2783
2784 first++;
2785 }
2786
2787 if (!best_fit)
2788 return FALSE;
2789
2790 *function_ptr = best_fit;
2791 return TRUE;
2792 }
2793
2794 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR
2795 and LINENUMBER_PTR, and return TRUE. */
2796
2797 static bfd_boolean
2798 lookup_symbol_in_function_table (struct comp_unit *unit,
2799 asymbol *sym,
2800 bfd_vma addr,
2801 const char **filename_ptr,
2802 unsigned int *linenumber_ptr)
2803 {
2804 struct funcinfo* each_func;
2805 struct funcinfo* best_fit = NULL;
2806 bfd_vma best_fit_len = 0;
2807 struct arange *arange;
2808 const char *name = bfd_asymbol_name (sym);
2809 asection *sec = bfd_asymbol_section (sym);
2810
2811 for (each_func = unit->function_table;
2812 each_func;
2813 each_func = each_func->prev_func)
2814 {
2815 for (arange = &each_func->arange;
2816 arange;
2817 arange = arange->next)
2818 {
2819 if ((!each_func->sec || each_func->sec == sec)
2820 && addr >= arange->low
2821 && addr < arange->high
2822 && each_func->name
2823 && strcmp (name, each_func->name) == 0
2824 && (!best_fit
2825 || arange->high - arange->low < best_fit_len))
2826 {
2827 best_fit = each_func;
2828 best_fit_len = arange->high - arange->low;
2829 }
2830 }
2831 }
2832
2833 if (best_fit)
2834 {
2835 best_fit->sec = sec;
2836 *filename_ptr = best_fit->file;
2837 *linenumber_ptr = best_fit->line;
2838 return TRUE;
2839 }
2840 else
2841 return FALSE;
2842 }
2843
2844 /* Variable table functions. */
2845
2846 /* If SYM is within variable table of UNIT, set FILENAME_PTR and
2847 LINENUMBER_PTR, and return TRUE. */
2848
2849 static bfd_boolean
2850 lookup_symbol_in_variable_table (struct comp_unit *unit,
2851 asymbol *sym,
2852 bfd_vma addr,
2853 const char **filename_ptr,
2854 unsigned int *linenumber_ptr)
2855 {
2856 const char *name = bfd_asymbol_name (sym);
2857 asection *sec = bfd_asymbol_section (sym);
2858 struct varinfo* each;
2859
2860 for (each = unit->variable_table; each; each = each->prev_var)
2861 if (each->stack == 0
2862 && each->file != NULL
2863 && each->name != NULL
2864 && each->addr == addr
2865 && (!each->sec || each->sec == sec)
2866 && strcmp (name, each->name) == 0)
2867 break;
2868
2869 if (each)
2870 {
2871 each->sec = sec;
2872 *filename_ptr = each->file;
2873 *linenumber_ptr = each->line;
2874 return TRUE;
2875 }
2876
2877 return FALSE;
2878 }
2879
2880 static struct comp_unit *stash_comp_unit (struct dwarf2_debug *,
2881 struct dwarf2_debug_file *);
2882 static bfd_boolean comp_unit_maybe_decode_line_info (struct comp_unit *);
2883
2884 static bfd_boolean
2885 find_abstract_instance (struct comp_unit *unit,
2886 struct attribute *attr_ptr,
2887 unsigned int recur_count,
2888 const char **pname,
2889 bfd_boolean *is_linkage,
2890 char **filename_ptr,
2891 int *linenumber_ptr)
2892 {
2893 bfd *abfd = unit->abfd;
2894 bfd_byte *info_ptr = NULL;
2895 bfd_byte *info_ptr_end;
2896 unsigned int abbrev_number, bytes_read, i;
2897 struct abbrev_info *abbrev;
2898 bfd_uint64_t die_ref = attr_ptr->u.val;
2899 struct attribute attr;
2900 const char *name = NULL;
2901
2902 if (recur_count == 100)
2903 {
2904 _bfd_error_handler
2905 (_("DWARF error: abstract instance recursion detected"));
2906 bfd_set_error (bfd_error_bad_value);
2907 return FALSE;
2908 }
2909
2910 /* DW_FORM_ref_addr can reference an entry in a different CU. It
2911 is an offset from the .debug_info section, not the current CU. */
2912 if (attr_ptr->form == DW_FORM_ref_addr)
2913 {
2914 /* We only support DW_FORM_ref_addr within the same file, so
2915 any relocations should be resolved already. Check this by
2916 testing for a zero die_ref; There can't be a valid reference
2917 to the header of a .debug_info section.
2918 DW_FORM_ref_addr is an offset relative to .debug_info.
2919 Normally when using the GNU linker this is accomplished by
2920 emitting a symbolic reference to a label, because .debug_info
2921 sections are linked at zero. When there are multiple section
2922 groups containing .debug_info, as there might be in a
2923 relocatable object file, it would be reasonable to assume that
2924 a symbolic reference to a label in any .debug_info section
2925 might be used. Since we lay out multiple .debug_info
2926 sections at non-zero VMAs (see place_sections), and read
2927 them contiguously into dwarf_info_buffer, that means the
2928 reference is relative to dwarf_info_buffer. */
2929 size_t total;
2930
2931 info_ptr = unit->file->dwarf_info_buffer;
2932 info_ptr_end = info_ptr + unit->file->dwarf_info_size;
2933 total = info_ptr_end - info_ptr;
2934 if (!die_ref)
2935 return TRUE;
2936 else if (die_ref >= total)
2937 {
2938 _bfd_error_handler
2939 (_("DWARF error: invalid abstract instance DIE ref"));
2940 bfd_set_error (bfd_error_bad_value);
2941 return FALSE;
2942 }
2943 info_ptr += die_ref;
2944 }
2945 else if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2946 {
2947 bfd_boolean first_time = unit->stash->alt.dwarf_info_buffer == NULL;
2948
2949 info_ptr = read_alt_indirect_ref (unit, die_ref);
2950 if (first_time)
2951 unit->stash->alt.info_ptr = unit->stash->alt.dwarf_info_buffer;
2952 if (info_ptr == NULL)
2953 {
2954 _bfd_error_handler
2955 (_("DWARF error: unable to read alt ref %" PRIu64),
2956 (uint64_t) die_ref);
2957 bfd_set_error (bfd_error_bad_value);
2958 return FALSE;
2959 }
2960 info_ptr_end = (unit->stash->alt.dwarf_info_buffer
2961 + unit->stash->alt.dwarf_info_size);
2962 if (unit->stash->alt.all_comp_units)
2963 unit = unit->stash->alt.all_comp_units;
2964 }
2965
2966 if (attr_ptr->form == DW_FORM_ref_addr
2967 || attr_ptr->form == DW_FORM_GNU_ref_alt)
2968 {
2969 /* Now find the CU containing this pointer. */
2970 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr)
2971 info_ptr_end = unit->end_ptr;
2972 else
2973 {
2974 /* Check other CUs to see if they contain the abbrev. */
2975 struct comp_unit *u;
2976
2977 for (u = unit->prev_unit; u != NULL; u = u->prev_unit)
2978 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2979 break;
2980
2981 if (u == NULL)
2982 for (u = unit->next_unit; u != NULL; u = u->next_unit)
2983 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2984 break;
2985
2986 if (attr_ptr->form == DW_FORM_ref_addr)
2987 while (u == NULL)
2988 {
2989 u = stash_comp_unit (unit->stash, &unit->stash->f);
2990 if (u == NULL)
2991 break;
2992 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
2993 break;
2994 u = NULL;
2995 }
2996
2997 if (attr_ptr->form == DW_FORM_GNU_ref_alt)
2998 while (u == NULL)
2999 {
3000 u = stash_comp_unit (unit->stash, &unit->stash->alt);
3001 if (u == NULL)
3002 break;
3003 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr)
3004 break;
3005 u = NULL;
3006 }
3007
3008 if (u == NULL)
3009 {
3010 _bfd_error_handler
3011 (_("DWARF error: unable to locate abstract instance DIE ref %"
3012 PRIu64), (uint64_t) die_ref);
3013 bfd_set_error (bfd_error_bad_value);
3014 return FALSE;
3015 }
3016 unit = u;
3017 info_ptr_end = unit->end_ptr;
3018 }
3019 }
3020 else
3021 {
3022 /* DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8 or
3023 DW_FORM_ref_udata. These are all references relative to the
3024 start of the current CU. */
3025 size_t total;
3026
3027 info_ptr = unit->info_ptr_unit;
3028 info_ptr_end = unit->end_ptr;
3029 total = info_ptr_end - info_ptr;
3030 if (!die_ref || die_ref >= total)
3031 {
3032 _bfd_error_handler
3033 (_("DWARF error: invalid abstract instance DIE ref"));
3034 bfd_set_error (bfd_error_bad_value);
3035 return FALSE;
3036 }
3037 info_ptr += die_ref;
3038 }
3039
3040 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3041 FALSE, info_ptr_end);
3042 info_ptr += bytes_read;
3043
3044 if (abbrev_number)
3045 {
3046 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3047 if (! abbrev)
3048 {
3049 _bfd_error_handler
3050 (_("DWARF error: could not find abbrev number %u"), abbrev_number);
3051 bfd_set_error (bfd_error_bad_value);
3052 return FALSE;
3053 }
3054 else
3055 {
3056 for (i = 0; i < abbrev->num_attrs; ++i)
3057 {
3058 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit,
3059 info_ptr, info_ptr_end);
3060 if (info_ptr == NULL)
3061 break;
3062 switch (attr.name)
3063 {
3064 case DW_AT_name:
3065 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3066 over DW_AT_name. */
3067 if (name == NULL && is_str_attr (attr.form))
3068 {
3069 name = attr.u.str;
3070 if (non_mangled (unit->lang))
3071 *is_linkage = TRUE;
3072 }
3073 break;
3074 case DW_AT_specification:
3075 if (!find_abstract_instance (unit, &attr, recur_count + 1,
3076 &name, is_linkage,
3077 filename_ptr, linenumber_ptr))
3078 return FALSE;
3079 break;
3080 case DW_AT_linkage_name:
3081 case DW_AT_MIPS_linkage_name:
3082 /* PR 16949: Corrupt debug info can place
3083 non-string forms into these attributes. */
3084 if (is_str_attr (attr.form))
3085 {
3086 name = attr.u.str;
3087 *is_linkage = TRUE;
3088 }
3089 break;
3090 case DW_AT_decl_file:
3091 if (!comp_unit_maybe_decode_line_info (unit))
3092 return FALSE;
3093 *filename_ptr = concat_filename (unit->line_table,
3094 attr.u.val);
3095 break;
3096 case DW_AT_decl_line:
3097 *linenumber_ptr = attr.u.val;
3098 break;
3099 default:
3100 break;
3101 }
3102 }
3103 }
3104 }
3105 *pname = name;
3106 return TRUE;
3107 }
3108
3109 static bfd_boolean
3110 read_rangelist (struct comp_unit *unit, struct arange *arange,
3111 bfd_uint64_t offset)
3112 {
3113 bfd_byte *ranges_ptr;
3114 bfd_byte *ranges_end;
3115 bfd_vma base_address = unit->base_address;
3116
3117 if (! unit->file->dwarf_ranges_buffer)
3118 {
3119 if (! read_debug_ranges (unit))
3120 return FALSE;
3121 }
3122
3123 ranges_ptr = unit->file->dwarf_ranges_buffer + offset;
3124 if (ranges_ptr < unit->file->dwarf_ranges_buffer)
3125 return FALSE;
3126 ranges_end = unit->file->dwarf_ranges_buffer + unit->file->dwarf_ranges_size;
3127
3128 for (;;)
3129 {
3130 bfd_vma low_pc;
3131 bfd_vma high_pc;
3132
3133 /* PR 17512: file: 62cada7d. */
3134 if (ranges_ptr + 2 * unit->addr_size > ranges_end)
3135 return FALSE;
3136
3137 low_pc = read_address (unit, ranges_ptr, ranges_end);
3138 ranges_ptr += unit->addr_size;
3139 high_pc = read_address (unit, ranges_ptr, ranges_end);
3140 ranges_ptr += unit->addr_size;
3141
3142 if (low_pc == 0 && high_pc == 0)
3143 break;
3144 if (low_pc == -1UL && high_pc != -1UL)
3145 base_address = high_pc;
3146 else
3147 {
3148 if (!arange_add (unit, arange,
3149 base_address + low_pc, base_address + high_pc))
3150 return FALSE;
3151 }
3152 }
3153 return TRUE;
3154 }
3155
3156 /* DWARF2 Compilation unit functions. */
3157
3158 /* Scan over each die in a comp. unit looking for functions to add
3159 to the function table and variables to the variable table. */
3160
3161 static bfd_boolean
3162 scan_unit_for_symbols (struct comp_unit *unit)
3163 {
3164 bfd *abfd = unit->abfd;
3165 bfd_byte *info_ptr = unit->first_child_die_ptr;
3166 bfd_byte *info_ptr_end = unit->end_ptr;
3167 int nesting_level = 0;
3168 struct nest_funcinfo {
3169 struct funcinfo *func;
3170 } *nested_funcs;
3171 int nested_funcs_size;
3172
3173 /* Maintain a stack of in-scope functions and inlined functions, which we
3174 can use to set the caller_func field. */
3175 nested_funcs_size = 32;
3176 nested_funcs = (struct nest_funcinfo *)
3177 bfd_malloc (nested_funcs_size * sizeof (*nested_funcs));
3178 if (nested_funcs == NULL)
3179 return FALSE;
3180 nested_funcs[nesting_level].func = 0;
3181
3182 while (nesting_level >= 0)
3183 {
3184 unsigned int abbrev_number, bytes_read, i;
3185 struct abbrev_info *abbrev;
3186 struct attribute attr;
3187 struct funcinfo *func;
3188 struct varinfo *var;
3189 bfd_vma low_pc = 0;
3190 bfd_vma high_pc = 0;
3191 bfd_boolean high_pc_relative = FALSE;
3192
3193 /* PR 17512: file: 9f405d9d. */
3194 if (info_ptr >= info_ptr_end)
3195 goto fail;
3196
3197 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3198 FALSE, info_ptr_end);
3199 info_ptr += bytes_read;
3200
3201 if (! abbrev_number)
3202 {
3203 nesting_level--;
3204 continue;
3205 }
3206
3207 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs);
3208 if (! abbrev)
3209 {
3210 static unsigned int previous_failed_abbrev = -1U;
3211
3212 /* Avoid multiple reports of the same missing abbrev. */
3213 if (abbrev_number != previous_failed_abbrev)
3214 {
3215 _bfd_error_handler
3216 (_("DWARF error: could not find abbrev number %u"),
3217 abbrev_number);
3218 previous_failed_abbrev = abbrev_number;
3219 }
3220 bfd_set_error (bfd_error_bad_value);
3221 goto fail;
3222 }
3223
3224 var = NULL;
3225 if (abbrev->tag == DW_TAG_subprogram
3226 || abbrev->tag == DW_TAG_entry_point
3227 || abbrev->tag == DW_TAG_inlined_subroutine)
3228 {
3229 bfd_size_type amt = sizeof (struct funcinfo);
3230 func = (struct funcinfo *) bfd_zalloc (abfd, amt);
3231 if (func == NULL)
3232 goto fail;
3233 func->tag = abbrev->tag;
3234 func->prev_func = unit->function_table;
3235 unit->function_table = func;
3236 unit->number_of_functions++;
3237 BFD_ASSERT (!unit->cached);
3238
3239 if (func->tag == DW_TAG_inlined_subroutine)
3240 for (i = nesting_level; i-- != 0; )
3241 if (nested_funcs[i].func)
3242 {
3243 func->caller_func = nested_funcs[i].func;
3244 break;
3245 }
3246 nested_funcs[nesting_level].func = func;
3247 }
3248 else
3249 {
3250 func = NULL;
3251 if (abbrev->tag == DW_TAG_variable)
3252 {
3253 bfd_size_type amt = sizeof (struct varinfo);
3254 var = (struct varinfo *) bfd_zalloc (abfd, amt);
3255 if (var == NULL)
3256 goto fail;
3257 var->tag = abbrev->tag;
3258 var->stack = 1;
3259 var->prev_var = unit->variable_table;
3260 unit->variable_table = var;
3261 /* PR 18205: Missing debug information can cause this
3262 var to be attached to an already cached unit. */
3263 }
3264
3265 /* No inline function in scope at this nesting level. */
3266 nested_funcs[nesting_level].func = 0;
3267 }
3268
3269 for (i = 0; i < abbrev->num_attrs; ++i)
3270 {
3271 info_ptr = read_attribute (&attr, &abbrev->attrs[i],
3272 unit, info_ptr, info_ptr_end);
3273 if (info_ptr == NULL)
3274 goto fail;
3275
3276 if (func)
3277 {
3278 switch (attr.name)
3279 {
3280 case DW_AT_call_file:
3281 func->caller_file = concat_filename (unit->line_table,
3282 attr.u.val);
3283 break;
3284
3285 case DW_AT_call_line:
3286 func->caller_line = attr.u.val;
3287 break;
3288
3289 case DW_AT_abstract_origin:
3290 case DW_AT_specification:
3291 if (!find_abstract_instance (unit, &attr, 0,
3292 &func->name,
3293 &func->is_linkage,
3294 &func->file,
3295 &func->line))
3296 goto fail;
3297 break;
3298
3299 case DW_AT_name:
3300 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name
3301 over DW_AT_name. */
3302 if (func->name == NULL && is_str_attr (attr.form))
3303 {
3304 func->name = attr.u.str;
3305 if (non_mangled (unit->lang))
3306 func->is_linkage = TRUE;
3307 }
3308 break;
3309
3310 case DW_AT_linkage_name:
3311 case DW_AT_MIPS_linkage_name:
3312 /* PR 16949: Corrupt debug info can place
3313 non-string forms into these attributes. */
3314 if (is_str_attr (attr.form))
3315 {
3316 func->name = attr.u.str;
3317 func->is_linkage = TRUE;
3318 }
3319 break;
3320
3321 case DW_AT_low_pc:
3322 low_pc = attr.u.val;
3323 break;
3324
3325 case DW_AT_high_pc:
3326 high_pc = attr.u.val;
3327 high_pc_relative = attr.form != DW_FORM_addr;
3328 break;
3329
3330 case DW_AT_ranges:
3331 if (!read_rangelist (unit, &func->arange, attr.u.val))
3332 goto fail;
3333 break;
3334
3335 case DW_AT_decl_file:
3336 func->file = concat_filename (unit->line_table,
3337 attr.u.val);
3338 break;
3339
3340 case DW_AT_decl_line:
3341 func->line = attr.u.val;
3342 break;
3343
3344 default:
3345 break;
3346 }
3347 }
3348 else if (var)
3349 {
3350 switch (attr.name)
3351 {
3352 case DW_AT_name:
3353 if (is_str_attr (attr.form))
3354 var->name = attr.u.str;
3355 break;
3356
3357 case DW_AT_decl_file:
3358 var->file = concat_filename (unit->line_table,
3359 attr.u.val);
3360 break;
3361
3362 case DW_AT_decl_line:
3363 var->line = attr.u.val;
3364 break;
3365
3366 case DW_AT_external:
3367 if (attr.u.val != 0)
3368 var->stack = 0;
3369 break;
3370
3371 case DW_AT_location:
3372 switch (attr.form)
3373 {
3374 case DW_FORM_block:
3375 case DW_FORM_block1:
3376 case DW_FORM_block2:
3377 case DW_FORM_block4:
3378 case DW_FORM_exprloc:
3379 if (attr.u.blk->data != NULL
3380 && *attr.u.blk->data == DW_OP_addr)
3381 {
3382 var->stack = 0;
3383
3384 /* Verify that DW_OP_addr is the only opcode in the
3385 location, in which case the block size will be 1
3386 plus the address size. */
3387 /* ??? For TLS variables, gcc can emit
3388 DW_OP_addr <addr> DW_OP_GNU_push_tls_address
3389 which we don't handle here yet. */
3390 if (attr.u.blk->size == unit->addr_size + 1U)
3391 var->addr = bfd_get (unit->addr_size * 8,
3392 unit->abfd,
3393 attr.u.blk->data + 1);
3394 }
3395 break;
3396
3397 default:
3398 break;
3399 }
3400 break;
3401
3402 default:
3403 break;
3404 }
3405 }
3406 }
3407
3408 if (high_pc_relative)
3409 high_pc += low_pc;
3410
3411 if (func && high_pc != 0)
3412 {
3413 if (!arange_add (unit, &func->arange, low_pc, high_pc))
3414 goto fail;
3415 }
3416
3417 if (abbrev->has_children)
3418 {
3419 nesting_level++;
3420
3421 if (nesting_level >= nested_funcs_size)
3422 {
3423 struct nest_funcinfo *tmp;
3424
3425 nested_funcs_size *= 2;
3426 tmp = (struct nest_funcinfo *)
3427 bfd_realloc (nested_funcs,
3428 nested_funcs_size * sizeof (*nested_funcs));
3429 if (tmp == NULL)
3430 goto fail;
3431 nested_funcs = tmp;
3432 }
3433 nested_funcs[nesting_level].func = 0;
3434 }
3435 }
3436
3437 free (nested_funcs);
3438 return TRUE;
3439
3440 fail:
3441 free (nested_funcs);
3442 return FALSE;
3443 }
3444
3445 /* Parse a DWARF2 compilation unit starting at INFO_PTR. UNIT_LENGTH
3446 includes the compilation unit header that proceeds the DIE's, but
3447 does not include the length field that precedes each compilation
3448 unit header. END_PTR points one past the end of this comp unit.
3449 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes).
3450
3451 This routine does not read the whole compilation unit; only enough
3452 to get to the line number information for the compilation unit. */
3453
3454 static struct comp_unit *
3455 parse_comp_unit (struct dwarf2_debug *stash,
3456 struct dwarf2_debug_file *file,
3457 bfd_byte *info_ptr,
3458 bfd_vma unit_length,
3459 bfd_byte *info_ptr_unit,
3460 unsigned int offset_size)
3461 {
3462 struct comp_unit* unit;
3463 unsigned int version;
3464 bfd_uint64_t abbrev_offset = 0;
3465 /* Initialize it just to avoid a GCC false warning. */
3466 unsigned int addr_size = -1;
3467 struct abbrev_info** abbrevs;
3468 unsigned int abbrev_number, bytes_read, i;
3469 struct abbrev_info *abbrev;
3470 struct attribute attr;
3471 bfd_byte *end_ptr = info_ptr + unit_length;
3472 bfd_size_type amt;
3473 bfd_vma low_pc = 0;
3474 bfd_vma high_pc = 0;
3475 bfd *abfd = file->bfd_ptr;
3476 bfd_boolean high_pc_relative = FALSE;
3477 enum dwarf_unit_type unit_type;
3478
3479 version = read_2_bytes (abfd, info_ptr, end_ptr);
3480 info_ptr += 2;
3481 if (version < 2 || version > 5)
3482 {
3483 /* PR 19872: A version number of 0 probably means that there is padding
3484 at the end of the .debug_info section. Gold puts it there when
3485 performing an incremental link, for example. So do not generate
3486 an error, just return a NULL. */
3487 if (version)
3488 {
3489 _bfd_error_handler
3490 (_("DWARF error: found dwarf version '%u', this reader"
3491 " only handles version 2, 3, 4 and 5 information"), version);
3492 bfd_set_error (bfd_error_bad_value);
3493 }
3494 return NULL;
3495 }
3496
3497 if (version < 5)
3498 unit_type = DW_UT_compile;
3499 else
3500 {
3501 unit_type = read_1_byte (abfd, info_ptr, end_ptr);
3502 info_ptr += 1;
3503
3504 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3505 info_ptr += 1;
3506 }
3507
3508 BFD_ASSERT (offset_size == 4 || offset_size == 8);
3509 if (offset_size == 4)
3510 abbrev_offset = read_4_bytes (abfd, info_ptr, end_ptr);
3511 else
3512 abbrev_offset = read_8_bytes (abfd, info_ptr, end_ptr);
3513 info_ptr += offset_size;
3514
3515 if (version < 5)
3516 {
3517 addr_size = read_1_byte (abfd, info_ptr, end_ptr);
3518 info_ptr += 1;
3519 }
3520
3521 if (unit_type == DW_UT_type)
3522 {
3523 /* Skip type signature. */
3524 info_ptr += 8;
3525
3526 /* Skip type offset. */
3527 info_ptr += offset_size;
3528 }
3529
3530 if (addr_size > sizeof (bfd_vma))
3531 {
3532 _bfd_error_handler
3533 /* xgettext: c-format */
3534 (_("DWARF error: found address size '%u', this reader"
3535 " can not handle sizes greater than '%u'"),
3536 addr_size,
3537 (unsigned int) sizeof (bfd_vma));
3538 bfd_set_error (bfd_error_bad_value);
3539 return NULL;
3540 }
3541
3542 if (addr_size != 2 && addr_size != 4 && addr_size != 8)
3543 {
3544 _bfd_error_handler
3545 ("DWARF error: found address size '%u', this reader"
3546 " can only handle address sizes '2', '4' and '8'", addr_size);
3547 bfd_set_error (bfd_error_bad_value);
3548 return NULL;
3549 }
3550
3551 /* Read the abbrevs for this compilation unit into a table. */
3552 abbrevs = read_abbrevs (abfd, abbrev_offset, stash, file);
3553 if (! abbrevs)
3554 return NULL;
3555
3556 abbrev_number = _bfd_safe_read_leb128 (abfd, info_ptr, &bytes_read,
3557 FALSE, end_ptr);
3558 info_ptr += bytes_read;
3559 if (! abbrev_number)
3560 {
3561 /* PR 19872: An abbrev number of 0 probably means that there is padding
3562 at the end of the .debug_abbrev section. Gold puts it there when
3563 performing an incremental link, for example. So do not generate
3564 an error, just return a NULL. */
3565 return NULL;
3566 }
3567
3568 abbrev = lookup_abbrev (abbrev_number, abbrevs);
3569 if (! abbrev)
3570 {
3571 _bfd_error_handler (_("DWARF error: could not find abbrev number %u"),
3572 abbrev_number);
3573 bfd_set_error (bfd_error_bad_value);
3574 return NULL;
3575 }
3576
3577 amt = sizeof (struct comp_unit);
3578 unit = (struct comp_unit *) bfd_zalloc (abfd, amt);
3579 if (unit == NULL)
3580 return NULL;
3581 unit->abfd = abfd;
3582 unit->version = version;
3583 unit->addr_size = addr_size;
3584 unit->offset_size = offset_size;
3585 unit->abbrevs = abbrevs;
3586 unit->end_ptr = end_ptr;
3587 unit->stash = stash;
3588 unit->file = file;
3589 unit->info_ptr_unit = info_ptr_unit;
3590
3591 for (i = 0; i < abbrev->num_attrs; ++i)
3592 {
3593 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr);
3594 if (info_ptr == NULL)
3595 return NULL;
3596
3597 /* Store the data if it is of an attribute we want to keep in a
3598 partial symbol table. */
3599 switch (attr.name)
3600 {
3601 case DW_AT_stmt_list:
3602 unit->stmtlist = 1;
3603 unit->line_offset = attr.u.val;
3604 break;
3605
3606 case DW_AT_name:
3607 if (is_str_attr (attr.form))
3608 unit->name = attr.u.str;
3609 break;
3610
3611 case DW_AT_low_pc:
3612 low_pc = attr.u.val;
3613 /* If the compilation unit DIE has a DW_AT_low_pc attribute,
3614 this is the base address to use when reading location
3615 lists or range lists. */
3616 if (abbrev->tag == DW_TAG_compile_unit)
3617 unit->base_address = low_pc;
3618 break;
3619
3620 case DW_AT_high_pc:
3621 high_pc = attr.u.val;
3622 high_pc_relative = attr.form != DW_FORM_addr;
3623 break;
3624
3625 case DW_AT_ranges:
3626 if (!read_rangelist (unit, &unit->arange, attr.u.val))
3627 return NULL;
3628 break;
3629
3630 case DW_AT_comp_dir:
3631 {
3632 char *comp_dir = attr.u.str;
3633
3634 /* PR 17512: file: 1fe726be. */
3635 if (! is_str_attr (attr.form))
3636 {
3637 _bfd_error_handler
3638 (_("DWARF error: DW_AT_comp_dir attribute encountered with a non-string form"));
3639 comp_dir = NULL;
3640 }
3641
3642 if (comp_dir)
3643 {
3644 /* Irix 6.2 native cc prepends <machine>.: to the compilation
3645 directory, get rid of it. */
3646 char *cp = strchr (comp_dir, ':');
3647
3648 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
3649 comp_dir = cp + 1;
3650 }
3651 unit->comp_dir = comp_dir;
3652 break;
3653 }
3654
3655 case DW_AT_language:
3656 unit->lang = attr.u.val;
3657 break;
3658
3659 default:
3660 break;
3661 }
3662 }
3663 if (high_pc_relative)
3664 high_pc += low_pc;
3665 if (high_pc != 0)
3666 {
3667 if (!arange_add (unit, &unit->arange, low_pc, high_pc))
3668 return NULL;
3669 }
3670
3671 unit->first_child_die_ptr = info_ptr;
3672 return unit;
3673 }
3674
3675 /* Return TRUE if UNIT may contain the address given by ADDR. When
3676 there are functions written entirely with inline asm statements, the
3677 range info in the compilation unit header may not be correct. We
3678 need to consult the line info table to see if a compilation unit
3679 really contains the given address. */
3680
3681 static bfd_boolean
3682 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr)
3683 {
3684 struct arange *arange;
3685
3686 if (unit->error)
3687 return FALSE;
3688
3689 arange = &unit->arange;
3690 do
3691 {
3692 if (addr >= arange->low && addr < arange->high)
3693 return TRUE;
3694 arange = arange->next;
3695 }
3696 while (arange);
3697
3698 return FALSE;
3699 }
3700
3701 /* If UNIT contains ADDR, set the output parameters to the values for
3702 the line containing ADDR. The output parameters, FILENAME_PTR,
3703 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects
3704 to be filled in.
3705
3706 Returns the range of addresses covered by the entry that was used
3707 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */
3708
3709 static bfd_vma
3710 comp_unit_find_nearest_line (struct comp_unit *unit,
3711 bfd_vma addr,
3712 const char **filename_ptr,
3713 struct funcinfo **function_ptr,
3714 unsigned int *linenumber_ptr,
3715 unsigned int *discriminator_ptr)
3716 {
3717 bfd_boolean func_p;
3718
3719 if (!comp_unit_maybe_decode_line_info (unit))
3720 return FALSE;
3721
3722 *function_ptr = NULL;
3723 func_p = lookup_address_in_function_table (unit, addr, function_ptr);
3724 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine)
3725 unit->stash->inliner_chain = *function_ptr;
3726
3727 return lookup_address_in_line_info_table (unit->line_table, addr,
3728 filename_ptr,
3729 linenumber_ptr,
3730 discriminator_ptr);
3731 }
3732
3733 /* Check to see if line info is already decoded in a comp_unit.
3734 If not, decode it. Returns TRUE if no errors were encountered;
3735 FALSE otherwise. */
3736
3737 static bfd_boolean
3738 comp_unit_maybe_decode_line_info (struct comp_unit *unit)
3739 {
3740 if (unit->error)
3741 return FALSE;
3742
3743 if (! unit->line_table)
3744 {
3745 if (! unit->stmtlist)
3746 {
3747 unit->error = 1;
3748 return FALSE;
3749 }
3750
3751 unit->line_table = decode_line_info (unit);
3752
3753 if (! unit->line_table)
3754 {
3755 unit->error = 1;
3756 return FALSE;
3757 }
3758
3759 if (unit->first_child_die_ptr < unit->end_ptr
3760 && ! scan_unit_for_symbols (unit))
3761 {
3762 unit->error = 1;
3763 return FALSE;
3764 }
3765 }
3766
3767 return TRUE;
3768 }
3769
3770 /* If UNIT contains SYM at ADDR, set the output parameters to the
3771 values for the line containing SYM. The output parameters,
3772 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be
3773 filled in.
3774
3775 Return TRUE if UNIT contains SYM, and no errors were encountered;
3776 FALSE otherwise. */
3777
3778 static bfd_boolean
3779 comp_unit_find_line (struct comp_unit *unit,
3780 asymbol *sym,
3781 bfd_vma addr,
3782 const char **filename_ptr,
3783 unsigned int *linenumber_ptr)
3784 {
3785 if (!comp_unit_maybe_decode_line_info (unit))
3786 return FALSE;
3787
3788 if (sym->flags & BSF_FUNCTION)
3789 return lookup_symbol_in_function_table (unit, sym, addr,
3790 filename_ptr,
3791 linenumber_ptr);
3792
3793 return lookup_symbol_in_variable_table (unit, sym, addr,
3794 filename_ptr,
3795 linenumber_ptr);
3796 }
3797
3798 static struct funcinfo *
3799 reverse_funcinfo_list (struct funcinfo *head)
3800 {
3801 struct funcinfo *rhead;
3802 struct funcinfo *temp;
3803
3804 for (rhead = NULL; head; head = temp)
3805 {
3806 temp = head->prev_func;
3807 head->prev_func = rhead;
3808 rhead = head;
3809 }
3810 return rhead;
3811 }
3812
3813 static struct varinfo *
3814 reverse_varinfo_list (struct varinfo *head)
3815 {
3816 struct varinfo *rhead;
3817 struct varinfo *temp;
3818
3819 for (rhead = NULL; head; head = temp)
3820 {
3821 temp = head->prev_var;
3822 head->prev_var = rhead;
3823 rhead = head;
3824 }
3825 return rhead;
3826 }
3827
3828 /* Extract all interesting funcinfos and varinfos of a compilation
3829 unit into hash tables for faster lookup. Returns TRUE if no
3830 errors were enountered; FALSE otherwise. */
3831
3832 static bfd_boolean
3833 comp_unit_hash_info (struct dwarf2_debug *stash,
3834 struct comp_unit *unit,
3835 struct info_hash_table *funcinfo_hash_table,
3836 struct info_hash_table *varinfo_hash_table)
3837 {
3838 struct funcinfo* each_func;
3839 struct varinfo* each_var;
3840 bfd_boolean okay = TRUE;
3841
3842 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED);
3843
3844 if (!comp_unit_maybe_decode_line_info (unit))
3845 return FALSE;
3846
3847 BFD_ASSERT (!unit->cached);
3848
3849 /* To preserve the original search order, we went to visit the function
3850 infos in the reversed order of the list. However, making the list
3851 bi-directional use quite a bit of extra memory. So we reverse
3852 the list first, traverse the list in the now reversed order and
3853 finally reverse the list again to get back the original order. */
3854 unit->function_table = reverse_funcinfo_list (unit->function_table);
3855 for (each_func = unit->function_table;
3856 each_func && okay;
3857 each_func = each_func->prev_func)
3858 {
3859 /* Skip nameless functions. */
3860 if (each_func->name)
3861 /* There is no need to copy name string into hash table as
3862 name string is either in the dwarf string buffer or
3863 info in the stash. */
3864 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name,
3865 (void*) each_func, FALSE);
3866 }
3867 unit->function_table = reverse_funcinfo_list (unit->function_table);
3868 if (!okay)
3869 return FALSE;
3870
3871 /* We do the same for variable infos. */
3872 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3873 for (each_var = unit->variable_table;
3874 each_var && okay;
3875 each_var = each_var->prev_var)
3876 {
3877 /* Skip stack vars and vars with no files or names. */
3878 if (each_var->stack == 0
3879 && each_var->file != NULL
3880 && each_var->name != NULL)
3881 /* There is no need to copy name string into hash table as
3882 name string is either in the dwarf string buffer or
3883 info in the stash. */
3884 okay = insert_info_hash_table (varinfo_hash_table, each_var->name,
3885 (void*) each_var, FALSE);
3886 }
3887
3888 unit->variable_table = reverse_varinfo_list (unit->variable_table);
3889 unit->cached = TRUE;
3890 return okay;
3891 }
3892
3893 /* Locate a section in a BFD containing debugging info. The search starts
3894 from the section after AFTER_SEC, or from the first section in the BFD if
3895 AFTER_SEC is NULL. The search works by examining the names of the
3896 sections. There are three permissiable names. The first two are given
3897 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info
3898 and .zdebug_info). The third is a prefix .gnu.linkonce.wi.
3899 This is a variation on the .debug_info section which has a checksum
3900 describing the contents appended onto the name. This allows the linker to
3901 identify and discard duplicate debugging sections for different
3902 compilation units. */
3903 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi."
3904
3905 static asection *
3906 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections,
3907 asection *after_sec)
3908 {
3909 asection *msec;
3910 const char *look;
3911
3912 if (after_sec == NULL)
3913 {
3914 look = debug_sections[debug_info].uncompressed_name;
3915 msec = bfd_get_section_by_name (abfd, look);
3916 if (msec != NULL)
3917 return msec;
3918
3919 look = debug_sections[debug_info].compressed_name;
3920 if (look != NULL)
3921 {
3922 msec = bfd_get_section_by_name (abfd, look);
3923 if (msec != NULL)
3924 return msec;
3925 }
3926
3927 for (msec = abfd->sections; msec != NULL; msec = msec->next)
3928 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3929 return msec;
3930
3931 return NULL;
3932 }
3933
3934 for (msec = after_sec->next; msec != NULL; msec = msec->next)
3935 {
3936 look = debug_sections[debug_info].uncompressed_name;
3937 if (strcmp (msec->name, look) == 0)
3938 return msec;
3939
3940 look = debug_sections[debug_info].compressed_name;
3941 if (look != NULL && strcmp (msec->name, look) == 0)
3942 return msec;
3943
3944 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO))
3945 return msec;
3946 }
3947
3948 return NULL;
3949 }
3950
3951 /* Transfer VMAs from object file to separate debug file. */
3952
3953 static void
3954 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd)
3955 {
3956 asection *s, *d;
3957
3958 for (s = orig_bfd->sections, d = debug_bfd->sections;
3959 s != NULL && d != NULL;
3960 s = s->next, d = d->next)
3961 {
3962 if ((d->flags & SEC_DEBUGGING) != 0)
3963 break;
3964 /* ??? Assumes 1-1 correspondence between sections in the
3965 two files. */
3966 if (strcmp (s->name, d->name) == 0)
3967 {
3968 d->output_section = s->output_section;
3969 d->output_offset = s->output_offset;
3970 d->vma = s->vma;
3971 }
3972 }
3973 }
3974
3975 /* If the dwarf2 info was found in a separate debug file, return the
3976 debug file section corresponding to the section in the original file
3977 and the debug file symbols. */
3978
3979 static void
3980 _bfd_dwarf2_stash_syms (struct dwarf2_debug *stash, bfd *abfd,
3981 asection **sec, asymbol ***syms)
3982 {
3983 if (stash->f.bfd_ptr != abfd)
3984 {
3985 asection *s, *d;
3986
3987 if (*sec == NULL)
3988 {
3989 *syms = stash->f.syms;
3990 return;
3991 }
3992
3993 for (s = abfd->sections, d = stash->f.bfd_ptr->sections;
3994 s != NULL && d != NULL;
3995 s = s->next, d = d->next)
3996 {
3997 if ((d->flags & SEC_DEBUGGING) != 0)
3998 break;
3999 if (s == *sec
4000 && strcmp (s->name, d->name) == 0)
4001 {
4002 *sec = d;
4003 *syms = stash->f.syms;
4004 break;
4005 }
4006 }
4007 }
4008 }
4009
4010 /* Unset vmas for adjusted sections in STASH. */
4011
4012 static void
4013 unset_sections (struct dwarf2_debug *stash)
4014 {
4015 int i;
4016 struct adjusted_section *p;
4017
4018 i = stash->adjusted_section_count;
4019 p = stash->adjusted_sections;
4020 for (; i > 0; i--, p++)
4021 p->section->vma = 0;
4022 }
4023
4024 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a
4025 relocatable object file. VMAs are normally all zero in relocatable
4026 object files, so if we want to distinguish locations in sections by
4027 address we need to set VMAs so the sections do not overlap. We
4028 also set VMA on .debug_info so that when we have multiple
4029 .debug_info sections (or the linkonce variant) they also do not
4030 overlap. The multiple .debug_info sections make up a single
4031 logical section. ??? We should probably do the same for other
4032 debug sections. */
4033
4034 static bfd_boolean
4035 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash)
4036 {
4037 bfd *abfd;
4038 struct adjusted_section *p;
4039 int i;
4040 const char *debug_info_name;
4041
4042 if (stash->adjusted_section_count != 0)
4043 {
4044 i = stash->adjusted_section_count;
4045 p = stash->adjusted_sections;
4046 for (; i > 0; i--, p++)
4047 p->section->vma = p->adj_vma;
4048 return TRUE;
4049 }
4050
4051 debug_info_name = stash->debug_sections[debug_info].uncompressed_name;
4052 i = 0;
4053 abfd = orig_bfd;
4054 while (1)
4055 {
4056 asection *sect;
4057
4058 for (sect = abfd->sections; sect != NULL; sect = sect->next)
4059 {
4060 int is_debug_info;
4061
4062 if ((sect->output_section != NULL
4063 && sect->output_section != sect
4064 && (sect->flags & SEC_DEBUGGING) == 0)
4065 || sect->vma != 0)
4066 continue;
4067
4068 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
4069 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
4070
4071 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
4072 && !is_debug_info)
4073 continue;
4074
4075 i++;
4076 }
4077 if (abfd == stash->f.bfd_ptr)
4078 break;
4079 abfd = stash->f.bfd_ptr;
4080 }
4081
4082 if (i <= 1)
4083 stash->adjusted_section_count = -1;
4084 else
4085 {
4086 bfd_vma last_vma = 0, last_dwarf = 0;
4087 bfd_size_type amt = i * sizeof (struct adjusted_section);
4088
4089 p = (struct adjusted_section *) bfd_malloc (amt);
4090 if (p == NULL)
4091 return FALSE;
4092
4093 stash->adjusted_sections = p;
4094 stash->adjusted_section_count = i;
4095
4096 abfd = orig_bfd;
4097 while (1)
4098 {
4099 asection *sect;
4100
4101 for (sect = abfd->sections; sect != NULL; sect = sect->next)
4102 {
4103 bfd_size_type sz;
4104 int is_debug_info;
4105
4106 if ((sect->output_section != NULL
4107 && sect->output_section != sect
4108 && (sect->flags & SEC_DEBUGGING) == 0)
4109 || sect->vma != 0)
4110 continue;
4111
4112 is_debug_info = (strcmp (sect->name, debug_info_name) == 0
4113 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO));
4114
4115 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd)
4116 && !is_debug_info)
4117 continue;
4118
4119 sz = sect->rawsize ? sect->rawsize : sect->size;
4120
4121 if (is_debug_info)
4122 {
4123 BFD_ASSERT (sect->alignment_power == 0);
4124 sect->vma = last_dwarf;
4125 last_dwarf += sz;
4126 }
4127 else
4128 {
4129 /* Align the new address to the current section
4130 alignment. */
4131 last_vma = ((last_vma
4132 + ~(-((bfd_vma) 1 << sect->alignment_power)))
4133 & (-((bfd_vma) 1 << sect->alignment_power)));
4134 sect->vma = last_vma;
4135 last_vma += sz;
4136 }
4137
4138 p->section = sect;
4139 p->adj_vma = sect->vma;
4140 p++;
4141 }
4142 if (abfd == stash->f.bfd_ptr)
4143 break;
4144 abfd = stash->f.bfd_ptr;
4145 }
4146 }
4147
4148 if (orig_bfd != stash->f.bfd_ptr)
4149 set_debug_vma (orig_bfd, stash->f.bfd_ptr);
4150
4151 return TRUE;
4152 }
4153
4154 /* Look up a funcinfo by name using the given info hash table. If found,
4155 also update the locations pointed to by filename_ptr and linenumber_ptr.
4156
4157 This function returns TRUE if a funcinfo that matches the given symbol
4158 and address is found with any error; otherwise it returns FALSE. */
4159
4160 static bfd_boolean
4161 info_hash_lookup_funcinfo (struct info_hash_table *hash_table,
4162 asymbol *sym,
4163 bfd_vma addr,
4164 const char **filename_ptr,
4165 unsigned int *linenumber_ptr)
4166 {
4167 struct funcinfo* each_func;
4168 struct funcinfo* best_fit = NULL;
4169 bfd_vma best_fit_len = 0;
4170 struct info_list_node *node;
4171 struct arange *arange;
4172 const char *name = bfd_asymbol_name (sym);
4173 asection *sec = bfd_asymbol_section (sym);
4174
4175 for (node = lookup_info_hash_table (hash_table, name);
4176 node;
4177 node = node->next)
4178 {
4179 each_func = (struct funcinfo *) node->info;
4180 for (arange = &each_func->arange;
4181 arange;
4182 arange = arange->next)
4183 {
4184 if ((!each_func->sec || each_func->sec == sec)
4185 && addr >= arange->low
4186 && addr < arange->high
4187 && (!best_fit
4188 || arange->high - arange->low < best_fit_len))
4189 {
4190 best_fit = each_func;
4191 best_fit_len = arange->high - arange->low;
4192 }
4193 }
4194 }
4195
4196 if (best_fit)
4197 {
4198 best_fit->sec = sec;
4199 *filename_ptr = best_fit->file;
4200 *linenumber_ptr = best_fit->line;
4201 return TRUE;
4202 }
4203
4204 return FALSE;
4205 }
4206
4207 /* Look up a varinfo by name using the given info hash table. If found,
4208 also update the locations pointed to by filename_ptr and linenumber_ptr.
4209
4210 This function returns TRUE if a varinfo that matches the given symbol
4211 and address is found with any error; otherwise it returns FALSE. */
4212
4213 static bfd_boolean
4214 info_hash_lookup_varinfo (struct info_hash_table *hash_table,
4215 asymbol *sym,
4216 bfd_vma addr,
4217 const char **filename_ptr,
4218 unsigned int *linenumber_ptr)
4219 {
4220 const char *name = bfd_asymbol_name (sym);
4221 asection *sec = bfd_asymbol_section (sym);
4222 struct varinfo* each;
4223 struct info_list_node *node;
4224
4225 for (node = lookup_info_hash_table (hash_table, name);
4226 node;
4227 node = node->next)
4228 {
4229 each = (struct varinfo *) node->info;
4230 if (each->addr == addr
4231 && (!each->sec || each->sec == sec))
4232 {
4233 each->sec = sec;
4234 *filename_ptr = each->file;
4235 *linenumber_ptr = each->line;
4236 return TRUE;
4237 }
4238 }
4239
4240 return FALSE;
4241 }
4242
4243 /* Update the funcinfo and varinfo info hash tables if they are
4244 not up to date. Returns TRUE if there is no error; otherwise
4245 returns FALSE and disable the info hash tables. */
4246
4247 static bfd_boolean
4248 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash)
4249 {
4250 struct comp_unit *each;
4251
4252 /* Exit if hash tables are up-to-date. */
4253 if (stash->f.all_comp_units == stash->hash_units_head)
4254 return TRUE;
4255
4256 if (stash->hash_units_head)
4257 each = stash->hash_units_head->prev_unit;
4258 else
4259 each = stash->f.last_comp_unit;
4260
4261 while (each)
4262 {
4263 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table,
4264 stash->varinfo_hash_table))
4265 {
4266 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4267 return FALSE;
4268 }
4269 each = each->prev_unit;
4270 }
4271
4272 stash->hash_units_head = stash->f.all_comp_units;
4273 return TRUE;
4274 }
4275
4276 /* Check consistency of info hash tables. This is for debugging only. */
4277
4278 static void ATTRIBUTE_UNUSED
4279 stash_verify_info_hash_table (struct dwarf2_debug *stash)
4280 {
4281 struct comp_unit *each_unit;
4282 struct funcinfo *each_func;
4283 struct varinfo *each_var;
4284 struct info_list_node *node;
4285 bfd_boolean found;
4286
4287 for (each_unit = stash->f.all_comp_units;
4288 each_unit;
4289 each_unit = each_unit->next_unit)
4290 {
4291 for (each_func = each_unit->function_table;
4292 each_func;
4293 each_func = each_func->prev_func)
4294 {
4295 if (!each_func->name)
4296 continue;
4297 node = lookup_info_hash_table (stash->funcinfo_hash_table,
4298 each_func->name);
4299 BFD_ASSERT (node);
4300 found = FALSE;
4301 while (node && !found)
4302 {
4303 found = node->info == each_func;
4304 node = node->next;
4305 }
4306 BFD_ASSERT (found);
4307 }
4308
4309 for (each_var = each_unit->variable_table;
4310 each_var;
4311 each_var = each_var->prev_var)
4312 {
4313 if (!each_var->name || !each_var->file || each_var->stack)
4314 continue;
4315 node = lookup_info_hash_table (stash->varinfo_hash_table,
4316 each_var->name);
4317 BFD_ASSERT (node);
4318 found = FALSE;
4319 while (node && !found)
4320 {
4321 found = node->info == each_var;
4322 node = node->next;
4323 }
4324 BFD_ASSERT (found);
4325 }
4326 }
4327 }
4328
4329 /* Check to see if we want to enable the info hash tables, which consume
4330 quite a bit of memory. Currently we only check the number times
4331 bfd_dwarf2_find_line is called. In the future, we may also want to
4332 take the number of symbols into account. */
4333
4334 static void
4335 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash)
4336 {
4337 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF);
4338
4339 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER)
4340 return;
4341
4342 /* FIXME: Maybe we should check the reduce_memory_overheads
4343 and optimize fields in the bfd_link_info structure ? */
4344
4345 /* Create hash tables. */
4346 stash->funcinfo_hash_table = create_info_hash_table (abfd);
4347 stash->varinfo_hash_table = create_info_hash_table (abfd);
4348 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table)
4349 {
4350 /* Turn off info hashes if any allocation above fails. */
4351 stash->info_hash_status = STASH_INFO_HASH_DISABLED;
4352 return;
4353 }
4354 /* We need a forced update so that the info hash tables will
4355 be created even though there is no compilation unit. That
4356 happens if STASH_INFO_HASH_TRIGGER is 0. */
4357 if (stash_maybe_update_info_hash_tables (stash))
4358 stash->info_hash_status = STASH_INFO_HASH_ON;
4359 }
4360
4361 /* Find the file and line associated with a symbol and address using the
4362 info hash tables of a stash. If there is a match, the function returns
4363 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr;
4364 otherwise it returns FALSE. */
4365
4366 static bfd_boolean
4367 stash_find_line_fast (struct dwarf2_debug *stash,
4368 asymbol *sym,
4369 bfd_vma addr,
4370 const char **filename_ptr,
4371 unsigned int *linenumber_ptr)
4372 {
4373 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON);
4374
4375 if (sym->flags & BSF_FUNCTION)
4376 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr,
4377 filename_ptr, linenumber_ptr);
4378 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr,
4379 filename_ptr, linenumber_ptr);
4380 }
4381
4382 /* Save current section VMAs. */
4383
4384 static bfd_boolean
4385 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash)
4386 {
4387 asection *s;
4388 unsigned int i;
4389
4390 if (abfd->section_count == 0)
4391 return TRUE;
4392 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count);
4393 if (stash->sec_vma == NULL)
4394 return FALSE;
4395 stash->sec_vma_count = abfd->section_count;
4396 for (i = 0, s = abfd->sections;
4397 s != NULL && i < abfd->section_count;
4398 i++, s = s->next)
4399 {
4400 if (s->output_section != NULL)
4401 stash->sec_vma[i] = s->output_section->vma + s->output_offset;
4402 else
4403 stash->sec_vma[i] = s->vma;
4404 }
4405 return TRUE;
4406 }
4407
4408 /* Compare current section VMAs against those at the time the stash
4409 was created. If find_nearest_line is used in linker warnings or
4410 errors early in the link process, the debug info stash will be
4411 invalid for later calls. This is because we relocate debug info
4412 sections, so the stashed section contents depend on symbol values,
4413 which in turn depend on section VMAs. */
4414
4415 static bfd_boolean
4416 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash)
4417 {
4418 asection *s;
4419 unsigned int i;
4420
4421 /* PR 24334: If the number of sections in ABFD has changed between
4422 when the stash was created and now, then we cannot trust the
4423 stashed vma information. */
4424 if (abfd->section_count != stash->sec_vma_count)
4425 return FALSE;
4426
4427 for (i = 0, s = abfd->sections;
4428 s != NULL && i < abfd->section_count;
4429 i++, s = s->next)
4430 {
4431 bfd_vma vma;
4432
4433 if (s->output_section != NULL)
4434 vma = s->output_section->vma + s->output_offset;
4435 else
4436 vma = s->vma;
4437 if (vma != stash->sec_vma[i])
4438 return FALSE;
4439 }
4440 return TRUE;
4441 }
4442
4443 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified.
4444 If DEBUG_BFD is not specified, we read debug information from ABFD
4445 or its gnu_debuglink. The results will be stored in PINFO.
4446 The function returns TRUE iff debug information is ready. */
4447
4448 bfd_boolean
4449 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd,
4450 const struct dwarf_debug_section *debug_sections,
4451 asymbol **symbols,
4452 void **pinfo,
4453 bfd_boolean do_place)
4454 {
4455 bfd_size_type amt = sizeof (struct dwarf2_debug);
4456 bfd_size_type total_size;
4457 asection *msec;
4458 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
4459
4460 if (stash != NULL)
4461 {
4462 if (stash->orig_bfd == abfd
4463 && section_vma_same (abfd, stash))
4464 {
4465 /* Check that we did previously find some debug information
4466 before attempting to make use of it. */
4467 if (stash->f.bfd_ptr != NULL)
4468 {
4469 if (do_place && !place_sections (abfd, stash))
4470 return FALSE;
4471 return TRUE;
4472 }
4473
4474 return FALSE;
4475 }
4476 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo);
4477 memset (stash, 0, amt);
4478 }
4479 else
4480 {
4481 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt);
4482 if (! stash)
4483 return FALSE;
4484 }
4485 stash->orig_bfd = abfd;
4486 stash->debug_sections = debug_sections;
4487 stash->f.syms = symbols;
4488 if (!save_section_vma (abfd, stash))
4489 return FALSE;
4490
4491 stash->f.abbrev_offsets = htab_create_alloc (10, hash_abbrev, eq_abbrev,
4492 del_abbrev, calloc, free);
4493 if (!stash->f.abbrev_offsets)
4494 return FALSE;
4495
4496 stash->alt.abbrev_offsets = htab_create_alloc (10, hash_abbrev, eq_abbrev,
4497 del_abbrev, calloc, free);
4498 if (!stash->alt.abbrev_offsets)
4499 return FALSE;
4500
4501 *pinfo = stash;
4502
4503 if (debug_bfd == NULL)
4504 debug_bfd = abfd;
4505
4506 msec = find_debug_info (debug_bfd, debug_sections, NULL);
4507 if (msec == NULL && abfd == debug_bfd)
4508 {
4509 char * debug_filename;
4510
4511 debug_filename = bfd_follow_build_id_debuglink (abfd, DEBUGDIR);
4512 if (debug_filename == NULL)
4513 debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR);
4514
4515 if (debug_filename == NULL)
4516 /* No dwarf2 info, and no gnu_debuglink to follow.
4517 Note that at this point the stash has been allocated, but
4518 contains zeros. This lets future calls to this function
4519 fail more quickly. */
4520 return FALSE;
4521
4522 debug_bfd = bfd_openr (debug_filename, NULL);
4523 free (debug_filename);
4524 if (debug_bfd == NULL)
4525 /* FIXME: Should we report our failure to follow the debuglink ? */
4526 return FALSE;
4527
4528 /* Set BFD_DECOMPRESS to decompress debug sections. */
4529 debug_bfd->flags |= BFD_DECOMPRESS;
4530 if (!bfd_check_format (debug_bfd, bfd_object)
4531 || (msec = find_debug_info (debug_bfd,
4532 debug_sections, NULL)) == NULL
4533 || !bfd_generic_link_read_symbols (debug_bfd))
4534 {
4535 bfd_close (debug_bfd);
4536 return FALSE;
4537 }
4538
4539 symbols = bfd_get_outsymbols (debug_bfd);
4540 stash->f.syms = symbols;
4541 stash->close_on_cleanup = TRUE;
4542 }
4543 stash->f.bfd_ptr = debug_bfd;
4544
4545 if (do_place
4546 && !place_sections (abfd, stash))
4547 return FALSE;
4548
4549 /* There can be more than one DWARF2 info section in a BFD these
4550 days. First handle the easy case when there's only one. If
4551 there's more than one, try case two: none of the sections is
4552 compressed. In that case, read them all in and produce one
4553 large stash. We do this in two passes - in the first pass we
4554 just accumulate the section sizes, and in the second pass we
4555 read in the section's contents. (The allows us to avoid
4556 reallocing the data as we add sections to the stash.) If
4557 some or all sections are compressed, then do things the slow
4558 way, with a bunch of reallocs. */
4559
4560 if (! find_debug_info (debug_bfd, debug_sections, msec))
4561 {
4562 /* Case 1: only one info section. */
4563 total_size = msec->size;
4564 if (! read_section (debug_bfd, &stash->debug_sections[debug_info],
4565 symbols, 0,
4566 &stash->f.dwarf_info_buffer, &total_size))
4567 return FALSE;
4568 }
4569 else
4570 {
4571 /* Case 2: multiple sections. */
4572 for (total_size = 0;
4573 msec;
4574 msec = find_debug_info (debug_bfd, debug_sections, msec))
4575 {
4576 /* Catch PR25070 testcase overflowing size calculation here. */
4577 if (total_size + msec->size < total_size
4578 || total_size + msec->size < msec->size)
4579 {
4580 bfd_set_error (bfd_error_no_memory);
4581 return FALSE;
4582 }
4583 total_size += msec->size;
4584 }
4585
4586 stash->f.dwarf_info_buffer = (bfd_byte *) bfd_malloc (total_size);
4587 if (stash->f.dwarf_info_buffer == NULL)
4588 return FALSE;
4589
4590 total_size = 0;
4591 for (msec = find_debug_info (debug_bfd, debug_sections, NULL);
4592 msec;
4593 msec = find_debug_info (debug_bfd, debug_sections, msec))
4594 {
4595 bfd_size_type size;
4596
4597 size = msec->size;
4598 if (size == 0)
4599 continue;
4600
4601 if (!(bfd_simple_get_relocated_section_contents
4602 (debug_bfd, msec, stash->f.dwarf_info_buffer + total_size,
4603 symbols)))
4604 return FALSE;
4605
4606 total_size += size;
4607 }
4608 }
4609
4610 stash->f.info_ptr = stash->f.dwarf_info_buffer;
4611 stash->f.dwarf_info_size = total_size;
4612 return TRUE;
4613 }
4614
4615 /* Parse the next DWARF2 compilation unit at FILE->INFO_PTR. */
4616
4617 static struct comp_unit *
4618 stash_comp_unit (struct dwarf2_debug *stash, struct dwarf2_debug_file *file)
4619 {
4620 bfd_size_type length;
4621 unsigned int offset_size;
4622 bfd_byte *info_ptr_unit = file->info_ptr;
4623 bfd_byte *info_ptr_end = file->dwarf_info_buffer + file->dwarf_info_size;
4624
4625 if (file->info_ptr >= info_ptr_end)
4626 return NULL;
4627
4628 length = read_4_bytes (file->bfd_ptr, file->info_ptr, info_ptr_end);
4629 /* A 0xffffff length is the DWARF3 way of indicating
4630 we use 64-bit offsets, instead of 32-bit offsets. */
4631 if (length == 0xffffffff)
4632 {
4633 offset_size = 8;
4634 length = read_8_bytes (file->bfd_ptr, file->info_ptr + 4,
4635 info_ptr_end);
4636 file->info_ptr += 12;
4637 }
4638 /* A zero length is the IRIX way of indicating 64-bit offsets,
4639 mostly because the 64-bit length will generally fit in 32
4640 bits, and the endianness helps. */
4641 else if (length == 0)
4642 {
4643 offset_size = 8;
4644 length = read_4_bytes (file->bfd_ptr, file->info_ptr + 4,
4645 info_ptr_end);
4646 file->info_ptr += 8;
4647 }
4648 /* In the absence of the hints above, we assume 32-bit DWARF2
4649 offsets even for targets with 64-bit addresses, because:
4650 a) most of the time these targets will not have generated
4651 more than 2Gb of debug info and so will not need 64-bit
4652 offsets,
4653 and
4654 b) if they do use 64-bit offsets but they are not using
4655 the size hints that are tested for above then they are
4656 not conforming to the DWARF3 standard anyway. */
4657 else
4658 {
4659 offset_size = 4;
4660 file->info_ptr += 4;
4661 }
4662
4663 if (length != 0
4664 && file->info_ptr + length <= info_ptr_end
4665 && file->info_ptr + length > file->info_ptr)
4666 {
4667 struct comp_unit *each = parse_comp_unit (stash, file,
4668 file->info_ptr, length,
4669 info_ptr_unit, offset_size);
4670 if (each)
4671 {
4672 if (file->all_comp_units)
4673 file->all_comp_units->prev_unit = each;
4674 else
4675 file->last_comp_unit = each;
4676
4677 each->next_unit = file->all_comp_units;
4678 file->all_comp_units = each;
4679
4680 file->info_ptr += length;
4681 return each;
4682 }
4683 }
4684
4685 /* Don't trust any of the DWARF info after a corrupted length or
4686 parse error. */
4687 file->info_ptr = info_ptr_end;
4688 return NULL;
4689 }
4690
4691 /* Hash function for an asymbol. */
4692
4693 static hashval_t
4694 hash_asymbol (const void *sym)
4695 {
4696 const asymbol *asym = sym;
4697 return htab_hash_string (asym->name);
4698 }
4699
4700 /* Equality function for asymbols. */
4701
4702 static int
4703 eq_asymbol (const void *a, const void *b)
4704 {
4705 const asymbol *sa = a;
4706 const asymbol *sb = b;
4707 return strcmp (sa->name, sb->name) == 0;
4708 }
4709
4710 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram
4711 abbrev with a DW_AT_low_pc attached to it. Then lookup that same
4712 symbol in SYMBOLS and return the difference between the low_pc and
4713 the symbol's address. Returns 0 if no suitable symbol could be found. */
4714
4715 bfd_signed_vma
4716 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo)
4717 {
4718 struct dwarf2_debug *stash;
4719 struct comp_unit * unit;
4720 htab_t sym_hash;
4721 bfd_signed_vma result = 0;
4722 asymbol ** psym;
4723
4724 stash = (struct dwarf2_debug *) *pinfo;
4725
4726 if (stash == NULL || symbols == NULL)
4727 return 0;
4728
4729 sym_hash = htab_create_alloc (10, hash_asymbol, eq_asymbol,
4730 NULL, xcalloc, free);
4731 for (psym = symbols; * psym != NULL; psym++)
4732 {
4733 asymbol * sym = * psym;
4734
4735 if (sym->flags & BSF_FUNCTION && sym->section != NULL)
4736 {
4737 void **slot = htab_find_slot (sym_hash, sym, INSERT);
4738 *slot = sym;
4739 }
4740 }
4741
4742 for (unit = stash->f.all_comp_units; unit; unit = unit->next_unit)
4743 {
4744 struct funcinfo * func;
4745
4746 comp_unit_maybe_decode_line_info (unit);
4747
4748 for (func = unit->function_table; func != NULL; func = func->prev_func)
4749 if (func->name && func->arange.low)
4750 {
4751 asymbol search, *sym;
4752
4753 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */
4754
4755 search.name = func->name;
4756 sym = htab_find (sym_hash, &search);
4757 if (sym != NULL)
4758 {
4759 result = ((bfd_signed_vma) func->arange.low) -
4760 ((bfd_signed_vma) (sym->value + sym->section->vma));
4761 goto done;
4762 }
4763 }
4764 }
4765
4766 done:
4767 htab_delete (sym_hash);
4768 return result;
4769 }
4770
4771 /* Find the source code location of SYMBOL. If SYMBOL is NULL
4772 then find the nearest source code location corresponding to
4773 the address SECTION + OFFSET.
4774 Returns 1 if the line is found without error and fills in
4775 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was
4776 NULL the FUNCTIONNAME_PTR is also filled in.
4777 Returns 2 if partial information from _bfd_elf_find_function is
4778 returned (function and maybe file) by looking at symbols. DWARF2
4779 info is present but not regarding the requested code location.
4780 Returns 0 otherwise.
4781 SYMBOLS contains the symbol table for ABFD.
4782 DEBUG_SECTIONS contains the name of the dwarf debug sections. */
4783
4784 int
4785 _bfd_dwarf2_find_nearest_line (bfd *abfd,
4786 asymbol **symbols,
4787 asymbol *symbol,
4788 asection *section,
4789 bfd_vma offset,
4790 const char **filename_ptr,
4791 const char **functionname_ptr,
4792 unsigned int *linenumber_ptr,
4793 unsigned int *discriminator_ptr,
4794 const struct dwarf_debug_section *debug_sections,
4795 void **pinfo)
4796 {
4797 /* Read each compilation unit from the section .debug_info, and check
4798 to see if it contains the address we are searching for. If yes,
4799 lookup the address, and return the line number info. If no, go
4800 on to the next compilation unit.
4801
4802 We keep a list of all the previously read compilation units, and
4803 a pointer to the next un-read compilation unit. Check the
4804 previously read units before reading more. */
4805 struct dwarf2_debug *stash;
4806 /* What address are we looking for? */
4807 bfd_vma addr;
4808 struct comp_unit* each;
4809 struct funcinfo *function = NULL;
4810 int found = FALSE;
4811 bfd_boolean do_line;
4812
4813 *filename_ptr = NULL;
4814 if (functionname_ptr != NULL)
4815 *functionname_ptr = NULL;
4816 *linenumber_ptr = 0;
4817 if (discriminator_ptr)
4818 *discriminator_ptr = 0;
4819
4820 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections,
4821 symbols, pinfo,
4822 (abfd->flags & (EXEC_P | DYNAMIC)) == 0))
4823 return FALSE;
4824
4825 stash = (struct dwarf2_debug *) *pinfo;
4826
4827 do_line = symbol != NULL;
4828 if (do_line)
4829 {
4830 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL);
4831 section = bfd_asymbol_section (symbol);
4832 addr = symbol->value;
4833 }
4834 else
4835 {
4836 BFD_ASSERT (section != NULL && functionname_ptr != NULL);
4837 addr = offset;
4838
4839 /* If we have no SYMBOL but the section we're looking at is not a
4840 code section, then take a look through the list of symbols to see
4841 if we have a symbol at the address we're looking for. If we do
4842 then use this to look up line information. This will allow us to
4843 give file and line results for data symbols. We exclude code
4844 symbols here, if we look up a function symbol and then look up the
4845 line information we'll actually return the line number for the
4846 opening '{' rather than the function definition line. This is
4847 because looking up by symbol uses the line table, in which the
4848 first line for a function is usually the opening '{', while
4849 looking up the function by section + offset uses the
4850 DW_AT_decl_line from the function DW_TAG_subprogram for the line,
4851 which will be the line of the function name. */
4852 if (symbols != NULL && (section->flags & SEC_CODE) == 0)
4853 {
4854 asymbol **tmp;
4855
4856 for (tmp = symbols; (*tmp) != NULL; ++tmp)
4857 if ((*tmp)->the_bfd == abfd
4858 && (*tmp)->section == section
4859 && (*tmp)->value == offset
4860 && ((*tmp)->flags & BSF_SECTION_SYM) == 0)
4861 {
4862 symbol = *tmp;
4863 do_line = TRUE;
4864 /* For local symbols, keep going in the hope we find a
4865 global. */
4866 if ((symbol->flags & BSF_GLOBAL) != 0)
4867 break;
4868 }
4869 }
4870 }
4871
4872 if (section->output_section)
4873 addr += section->output_section->vma + section->output_offset;
4874 else
4875 addr += section->vma;
4876
4877 /* A null info_ptr indicates that there is no dwarf2 info
4878 (or that an error occured while setting up the stash). */
4879 if (! stash->f.info_ptr)
4880 return FALSE;
4881
4882 stash->inliner_chain = NULL;
4883
4884 /* Check the previously read comp. units first. */
4885 if (do_line)
4886 {
4887 /* The info hash tables use quite a bit of memory. We may not want to
4888 always use them. We use some heuristics to decide if and when to
4889 turn it on. */
4890 if (stash->info_hash_status == STASH_INFO_HASH_OFF)
4891 stash_maybe_enable_info_hash_tables (abfd, stash);
4892
4893 /* Keep info hash table up to date if they are available. Note that we
4894 may disable the hash tables if there is any error duing update. */
4895 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4896 stash_maybe_update_info_hash_tables (stash);
4897
4898 if (stash->info_hash_status == STASH_INFO_HASH_ON)
4899 {
4900 found = stash_find_line_fast (stash, symbol, addr, filename_ptr,
4901 linenumber_ptr);
4902 if (found)
4903 goto done;
4904 }
4905 else
4906 {
4907 /* Check the previously read comp. units first. */
4908 for (each = stash->f.all_comp_units; each; each = each->next_unit)
4909 if ((symbol->flags & BSF_FUNCTION) == 0
4910 || each->arange.high == 0
4911 || comp_unit_contains_address (each, addr))
4912 {
4913 found = comp_unit_find_line (each, symbol, addr, filename_ptr,
4914 linenumber_ptr);
4915 if (found)
4916 goto done;
4917 }
4918 }
4919 }
4920 else
4921 {
4922 bfd_vma min_range = (bfd_vma) -1;
4923 const char * local_filename = NULL;
4924 struct funcinfo *local_function = NULL;
4925 unsigned int local_linenumber = 0;
4926 unsigned int local_discriminator = 0;
4927
4928 for (each = stash->f.all_comp_units; each; each = each->next_unit)
4929 {
4930 bfd_vma range = (bfd_vma) -1;
4931
4932 found = ((each->arange.high == 0
4933 || comp_unit_contains_address (each, addr))
4934 && (range = (comp_unit_find_nearest_line
4935 (each, addr, &local_filename,
4936 &local_function, &local_linenumber,
4937 &local_discriminator))) != 0);
4938 if (found)
4939 {
4940 /* PRs 15935 15994: Bogus debug information may have provided us
4941 with an erroneous match. We attempt to counter this by
4942 selecting the match that has the smallest address range
4943 associated with it. (We are assuming that corrupt debug info
4944 will tend to result in extra large address ranges rather than
4945 extra small ranges).
4946
4947 This does mean that we scan through all of the CUs associated
4948 with the bfd each time this function is called. But this does
4949 have the benefit of producing consistent results every time the
4950 function is called. */
4951 if (range <= min_range)
4952 {
4953 if (filename_ptr && local_filename)
4954 * filename_ptr = local_filename;
4955 if (local_function)
4956 function = local_function;
4957 if (discriminator_ptr && local_discriminator)
4958 * discriminator_ptr = local_discriminator;
4959 if (local_linenumber)
4960 * linenumber_ptr = local_linenumber;
4961 min_range = range;
4962 }
4963 }
4964 }
4965
4966 if (* linenumber_ptr)
4967 {
4968 found = TRUE;
4969 goto done;
4970 }
4971 }
4972
4973 /* Read each remaining comp. units checking each as they are read. */
4974 while ((each = stash_comp_unit (stash, &stash->f)) != NULL)
4975 {
4976 /* DW_AT_low_pc and DW_AT_high_pc are optional for
4977 compilation units. If we don't have them (i.e.,
4978 unit->high == 0), we need to consult the line info table
4979 to see if a compilation unit contains the given
4980 address. */
4981 if (do_line)
4982 found = (((symbol->flags & BSF_FUNCTION) == 0
4983 || each->arange.high == 0
4984 || comp_unit_contains_address (each, addr))
4985 && comp_unit_find_line (each, symbol, addr,
4986 filename_ptr, linenumber_ptr));
4987 else
4988 found = ((each->arange.high == 0
4989 || comp_unit_contains_address (each, addr))
4990 && comp_unit_find_nearest_line (each, addr,
4991 filename_ptr,
4992 &function,
4993 linenumber_ptr,
4994 discriminator_ptr) != 0);
4995
4996 if (found)
4997 break;
4998 }
4999
5000 done:
5001 if (functionname_ptr && function && function->is_linkage)
5002 *functionname_ptr = function->name;
5003 else if (functionname_ptr
5004 && (!*functionname_ptr
5005 || (function && !function->is_linkage)))
5006 {
5007 asymbol *fun;
5008 asymbol **syms = symbols;
5009 asection *sec = section;
5010
5011 _bfd_dwarf2_stash_syms (stash, abfd, &sec, &syms);
5012 fun = _bfd_elf_find_function (abfd, syms, sec, offset,
5013 *filename_ptr ? NULL : filename_ptr,
5014 functionname_ptr);
5015
5016 if (!found && fun != NULL)
5017 found = 2;
5018
5019 if (function && !function->is_linkage)
5020 {
5021 bfd_vma sec_vma;
5022
5023 sec_vma = section->vma;
5024 if (section->output_section != NULL)
5025 sec_vma = section->output_section->vma + section->output_offset;
5026 if (fun != NULL
5027 && fun->value + sec_vma == function->arange.low)
5028 function->name = *functionname_ptr;
5029 /* Even if we didn't find a linkage name, say that we have
5030 to stop a repeated search of symbols. */
5031 function->is_linkage = TRUE;
5032 }
5033 }
5034
5035 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
5036 unset_sections (stash);
5037
5038 return found;
5039 }
5040
5041 bfd_boolean
5042 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED,
5043 const char **filename_ptr,
5044 const char **functionname_ptr,
5045 unsigned int *linenumber_ptr,
5046 void **pinfo)
5047 {
5048 struct dwarf2_debug *stash;
5049
5050 stash = (struct dwarf2_debug *) *pinfo;
5051 if (stash)
5052 {
5053 struct funcinfo *func = stash->inliner_chain;
5054
5055 if (func && func->caller_func)
5056 {
5057 *filename_ptr = func->caller_file;
5058 *functionname_ptr = func->caller_func->name;
5059 *linenumber_ptr = func->caller_line;
5060 stash->inliner_chain = func->caller_func;
5061 return TRUE;
5062 }
5063 }
5064
5065 return FALSE;
5066 }
5067
5068 void
5069 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo)
5070 {
5071 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo;
5072 struct comp_unit *each;
5073 struct dwarf2_debug_file *file;
5074
5075 if (abfd == NULL || stash == NULL)
5076 return;
5077
5078 if (stash->varinfo_hash_table)
5079 bfd_hash_table_free (&stash->varinfo_hash_table->base);
5080 if (stash->funcinfo_hash_table)
5081 bfd_hash_table_free (&stash->funcinfo_hash_table->base);
5082
5083 file = &stash->f;
5084 while (1)
5085 {
5086 for (each = file->all_comp_units; each; each = each->next_unit)
5087 {
5088 struct funcinfo *function_table = each->function_table;
5089 struct varinfo *variable_table = each->variable_table;
5090
5091 if (each->line_table && each->line_table != file->line_table)
5092 {
5093 free (each->line_table->files);
5094 free (each->line_table->dirs);
5095 }
5096
5097 if (each->lookup_funcinfo_table)
5098 {
5099 free (each->lookup_funcinfo_table);
5100 each->lookup_funcinfo_table = NULL;
5101 }
5102
5103 while (function_table)
5104 {
5105 if (function_table->file)
5106 {
5107 free (function_table->file);
5108 function_table->file = NULL;
5109 }
5110 if (function_table->caller_file)
5111 {
5112 free (function_table->caller_file);
5113 function_table->caller_file = NULL;
5114 }
5115 function_table = function_table->prev_func;
5116 }
5117
5118 while (variable_table)
5119 {
5120 if (variable_table->file)
5121 {
5122 free (variable_table->file);
5123 variable_table->file = NULL;
5124 }
5125 variable_table = variable_table->prev_var;
5126 }
5127 }
5128
5129 if (file->line_table)
5130 {
5131 free (file->line_table->files);
5132 free (file->line_table->dirs);
5133 }
5134 htab_delete (file->abbrev_offsets);
5135
5136 free (file->dwarf_line_str_buffer);
5137 free (file->dwarf_str_buffer);
5138 free (file->dwarf_ranges_buffer);
5139 free (file->dwarf_line_buffer);
5140 free (file->dwarf_abbrev_buffer);
5141 free (file->dwarf_info_buffer);
5142 if (file == &stash->alt)
5143 break;
5144 file = &stash->alt;
5145 }
5146 free (stash->sec_vma);
5147 free (stash->adjusted_sections);
5148 if (stash->close_on_cleanup)
5149 bfd_close (stash->f.bfd_ptr);
5150 if (stash->alt.bfd_ptr)
5151 bfd_close (stash->alt.bfd_ptr);
5152 }
5153
5154 /* Find the function to a particular section and offset,
5155 for error reporting. */
5156
5157 asymbol *
5158 _bfd_elf_find_function (bfd *abfd,
5159 asymbol **symbols,
5160 asection *section,
5161 bfd_vma offset,
5162 const char **filename_ptr,
5163 const char **functionname_ptr)
5164 {
5165 struct elf_find_function_cache
5166 {
5167 asection *last_section;
5168 asymbol *func;
5169 const char *filename;
5170 bfd_size_type func_size;
5171 } *cache;
5172
5173 if (symbols == NULL)
5174 return NULL;
5175
5176 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
5177 return NULL;
5178
5179 cache = elf_tdata (abfd)->elf_find_function_cache;
5180 if (cache == NULL)
5181 {
5182 cache = bfd_zalloc (abfd, sizeof (*cache));
5183 elf_tdata (abfd)->elf_find_function_cache = cache;
5184 if (cache == NULL)
5185 return NULL;
5186 }
5187 if (cache->last_section != section
5188 || cache->func == NULL
5189 || offset < cache->func->value
5190 || offset >= cache->func->value + cache->func_size)
5191 {
5192 asymbol *file;
5193 bfd_vma low_func;
5194 asymbol **p;
5195 /* ??? Given multiple file symbols, it is impossible to reliably
5196 choose the right file name for global symbols. File symbols are
5197 local symbols, and thus all file symbols must sort before any
5198 global symbols. The ELF spec may be interpreted to say that a
5199 file symbol must sort before other local symbols, but currently
5200 ld -r doesn't do this. So, for ld -r output, it is possible to
5201 make a better choice of file name for local symbols by ignoring
5202 file symbols appearing after a given local symbol. */
5203 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
5204 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5205
5206 file = NULL;
5207 low_func = 0;
5208 state = nothing_seen;
5209 cache->filename = NULL;
5210 cache->func = NULL;
5211 cache->func_size = 0;
5212 cache->last_section = section;
5213
5214 for (p = symbols; *p != NULL; p++)
5215 {
5216 asymbol *sym = *p;
5217 bfd_vma code_off;
5218 bfd_size_type size;
5219
5220 if ((sym->flags & BSF_FILE) != 0)
5221 {
5222 file = sym;
5223 if (state == symbol_seen)
5224 state = file_after_symbol_seen;
5225 continue;
5226 }
5227
5228 size = bed->maybe_function_sym (sym, section, &code_off);
5229 if (size != 0
5230 && code_off <= offset
5231 && (code_off > low_func
5232 || (code_off == low_func
5233 && size > cache->func_size)))
5234 {
5235 cache->func = sym;
5236 cache->func_size = size;
5237 cache->filename = NULL;
5238 low_func = code_off;
5239 if (file != NULL
5240 && ((sym->flags & BSF_LOCAL) != 0
5241 || state != file_after_symbol_seen))
5242 cache->filename = bfd_asymbol_name (file);
5243 }
5244 if (state == nothing_seen)
5245 state = symbol_seen;
5246 }
5247 }
5248
5249 if (cache->func == NULL)
5250 return NULL;
5251
5252 if (filename_ptr)
5253 *filename_ptr = cache->filename;
5254 if (functionname_ptr)
5255 *functionname_ptr = bfd_asymbol_name (cache->func);
5256
5257 return cache->func;
5258 }
This page took 0.134727 seconds and 4 git commands to generate.