gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / bfd / elf-m10300.c
1 /* Matsushita 10300 specific support for 32-bit ELF
2 Copyright (C) 1996-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/mn10300.h"
26 #include "libiberty.h"
27
28 /* The mn10300 linker needs to keep track of the number of relocs that
29 it decides to copy in check_relocs for each symbol. This is so
30 that it can discard PC relative relocs if it doesn't need them when
31 linking with -Bsymbolic. We store the information in a field
32 extending the regular ELF linker hash table. */
33
34 struct elf32_mn10300_link_hash_entry
35 {
36 /* The basic elf link hash table entry. */
37 struct elf_link_hash_entry root;
38
39 /* For function symbols, the number of times this function is
40 called directly (ie by name). */
41 unsigned int direct_calls;
42
43 /* For function symbols, the size of this function's stack
44 (if <= 255 bytes). We stuff this into "call" instructions
45 to this target when it's valid and profitable to do so.
46
47 This does not include stack allocated by movm! */
48 unsigned char stack_size;
49
50 /* For function symbols, arguments (if any) for movm instruction
51 in the prologue. We stuff this value into "call" instructions
52 to the target when it's valid and profitable to do so. */
53 unsigned char movm_args;
54
55 /* For function symbols, the amount of stack space that would be allocated
56 by the movm instruction. This is redundant with movm_args, but we
57 add it to the hash table to avoid computing it over and over. */
58 unsigned char movm_stack_size;
59
60 /* When set, convert all "call" instructions to this target into "calls"
61 instructions. */
62 #define MN10300_CONVERT_CALL_TO_CALLS 0x1
63
64 /* Used to mark functions which have had redundant parts of their
65 prologue deleted. */
66 #define MN10300_DELETED_PROLOGUE_BYTES 0x2
67 unsigned char flags;
68
69 /* Calculated value. */
70 bfd_vma value;
71
72 #define GOT_UNKNOWN 0
73 #define GOT_NORMAL 1
74 #define GOT_TLS_GD 2
75 #define GOT_TLS_LD 3
76 #define GOT_TLS_IE 4
77 /* Used to distinguish GOT entries for TLS types from normal GOT entries. */
78 unsigned char tls_type;
79 };
80
81 /* We derive a hash table from the main elf linker hash table so
82 we can store state variables and a secondary hash table without
83 resorting to global variables. */
84 struct elf32_mn10300_link_hash_table
85 {
86 /* The main hash table. */
87 struct elf_link_hash_table root;
88
89 /* A hash table for static functions. We could derive a new hash table
90 instead of using the full elf32_mn10300_link_hash_table if we wanted
91 to save some memory. */
92 struct elf32_mn10300_link_hash_table *static_hash_table;
93
94 /* Random linker state flags. */
95 #define MN10300_HASH_ENTRIES_INITIALIZED 0x1
96 char flags;
97 struct
98 {
99 bfd_signed_vma refcount;
100 bfd_vma offset;
101 char got_allocated;
102 char rel_emitted;
103 } tls_ldm_got;
104 };
105
106 #define elf_mn10300_hash_entry(ent) ((struct elf32_mn10300_link_hash_entry *)(ent))
107
108 struct elf_mn10300_obj_tdata
109 {
110 struct elf_obj_tdata root;
111
112 /* tls_type for each local got entry. */
113 char * local_got_tls_type;
114 };
115
116 #define elf_mn10300_tdata(abfd) \
117 ((struct elf_mn10300_obj_tdata *) (abfd)->tdata.any)
118
119 #define elf_mn10300_local_got_tls_type(abfd) \
120 (elf_mn10300_tdata (abfd)->local_got_tls_type)
121
122 #ifndef streq
123 #define streq(a, b) (strcmp ((a),(b)) == 0)
124 #endif
125
126 /* For MN10300 linker hash table. */
127
128 /* Get the MN10300 ELF linker hash table from a link_info structure. */
129
130 #define elf32_mn10300_hash_table(p) \
131 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
132 == MN10300_ELF_DATA ? ((struct elf32_mn10300_link_hash_table *) ((p)->hash)) : NULL)
133
134 #define elf32_mn10300_link_hash_traverse(table, func, info) \
135 (elf_link_hash_traverse \
136 (&(table)->root, \
137 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
138 (info)))
139
140 static reloc_howto_type elf_mn10300_howto_table[] =
141 {
142 /* Dummy relocation. Does nothing. */
143 HOWTO (R_MN10300_NONE,
144 0,
145 3,
146 0,
147 FALSE,
148 0,
149 complain_overflow_dont,
150 bfd_elf_generic_reloc,
151 "R_MN10300_NONE",
152 FALSE,
153 0,
154 0,
155 FALSE),
156 /* Standard 32 bit reloc. */
157 HOWTO (R_MN10300_32,
158 0,
159 2,
160 32,
161 FALSE,
162 0,
163 complain_overflow_bitfield,
164 bfd_elf_generic_reloc,
165 "R_MN10300_32",
166 FALSE,
167 0xffffffff,
168 0xffffffff,
169 FALSE),
170 /* Standard 16 bit reloc. */
171 HOWTO (R_MN10300_16,
172 0,
173 1,
174 16,
175 FALSE,
176 0,
177 complain_overflow_bitfield,
178 bfd_elf_generic_reloc,
179 "R_MN10300_16",
180 FALSE,
181 0xffff,
182 0xffff,
183 FALSE),
184 /* Standard 8 bit reloc. */
185 HOWTO (R_MN10300_8,
186 0,
187 0,
188 8,
189 FALSE,
190 0,
191 complain_overflow_bitfield,
192 bfd_elf_generic_reloc,
193 "R_MN10300_8",
194 FALSE,
195 0xff,
196 0xff,
197 FALSE),
198 /* Standard 32bit pc-relative reloc. */
199 HOWTO (R_MN10300_PCREL32,
200 0,
201 2,
202 32,
203 TRUE,
204 0,
205 complain_overflow_bitfield,
206 bfd_elf_generic_reloc,
207 "R_MN10300_PCREL32",
208 FALSE,
209 0xffffffff,
210 0xffffffff,
211 TRUE),
212 /* Standard 16bit pc-relative reloc. */
213 HOWTO (R_MN10300_PCREL16,
214 0,
215 1,
216 16,
217 TRUE,
218 0,
219 complain_overflow_bitfield,
220 bfd_elf_generic_reloc,
221 "R_MN10300_PCREL16",
222 FALSE,
223 0xffff,
224 0xffff,
225 TRUE),
226 /* Standard 8 pc-relative reloc. */
227 HOWTO (R_MN10300_PCREL8,
228 0,
229 0,
230 8,
231 TRUE,
232 0,
233 complain_overflow_bitfield,
234 bfd_elf_generic_reloc,
235 "R_MN10300_PCREL8",
236 FALSE,
237 0xff,
238 0xff,
239 TRUE),
240
241 /* GNU extension to record C++ vtable hierarchy. */
242 HOWTO (R_MN10300_GNU_VTINHERIT, /* type */
243 0, /* rightshift */
244 0, /* size (0 = byte, 1 = short, 2 = long) */
245 0, /* bitsize */
246 FALSE, /* pc_relative */
247 0, /* bitpos */
248 complain_overflow_dont, /* complain_on_overflow */
249 NULL, /* special_function */
250 "R_MN10300_GNU_VTINHERIT", /* name */
251 FALSE, /* partial_inplace */
252 0, /* src_mask */
253 0, /* dst_mask */
254 FALSE), /* pcrel_offset */
255
256 /* GNU extension to record C++ vtable member usage */
257 HOWTO (R_MN10300_GNU_VTENTRY, /* type */
258 0, /* rightshift */
259 0, /* size (0 = byte, 1 = short, 2 = long) */
260 0, /* bitsize */
261 FALSE, /* pc_relative */
262 0, /* bitpos */
263 complain_overflow_dont, /* complain_on_overflow */
264 NULL, /* special_function */
265 "R_MN10300_GNU_VTENTRY", /* name */
266 FALSE, /* partial_inplace */
267 0, /* src_mask */
268 0, /* dst_mask */
269 FALSE), /* pcrel_offset */
270
271 /* Standard 24 bit reloc. */
272 HOWTO (R_MN10300_24,
273 0,
274 2,
275 24,
276 FALSE,
277 0,
278 complain_overflow_bitfield,
279 bfd_elf_generic_reloc,
280 "R_MN10300_24",
281 FALSE,
282 0xffffff,
283 0xffffff,
284 FALSE),
285 HOWTO (R_MN10300_GOTPC32, /* type */
286 0, /* rightshift */
287 2, /* size (0 = byte, 1 = short, 2 = long) */
288 32, /* bitsize */
289 TRUE, /* pc_relative */
290 0, /* bitpos */
291 complain_overflow_bitfield, /* complain_on_overflow */
292 bfd_elf_generic_reloc, /* */
293 "R_MN10300_GOTPC32", /* name */
294 FALSE, /* partial_inplace */
295 0xffffffff, /* src_mask */
296 0xffffffff, /* dst_mask */
297 TRUE), /* pcrel_offset */
298
299 HOWTO (R_MN10300_GOTPC16, /* type */
300 0, /* rightshift */
301 1, /* size (0 = byte, 1 = short, 2 = long) */
302 16, /* bitsize */
303 TRUE, /* pc_relative */
304 0, /* bitpos */
305 complain_overflow_bitfield, /* complain_on_overflow */
306 bfd_elf_generic_reloc, /* */
307 "R_MN10300_GOTPC16", /* name */
308 FALSE, /* partial_inplace */
309 0xffff, /* src_mask */
310 0xffff, /* dst_mask */
311 TRUE), /* pcrel_offset */
312
313 HOWTO (R_MN10300_GOTOFF32, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 32, /* bitsize */
317 FALSE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 bfd_elf_generic_reloc, /* */
321 "R_MN10300_GOTOFF32", /* name */
322 FALSE, /* partial_inplace */
323 0xffffffff, /* src_mask */
324 0xffffffff, /* dst_mask */
325 FALSE), /* pcrel_offset */
326
327 HOWTO (R_MN10300_GOTOFF24, /* type */
328 0, /* rightshift */
329 2, /* size (0 = byte, 1 = short, 2 = long) */
330 24, /* bitsize */
331 FALSE, /* pc_relative */
332 0, /* bitpos */
333 complain_overflow_bitfield, /* complain_on_overflow */
334 bfd_elf_generic_reloc, /* */
335 "R_MN10300_GOTOFF24", /* name */
336 FALSE, /* partial_inplace */
337 0xffffff, /* src_mask */
338 0xffffff, /* dst_mask */
339 FALSE), /* pcrel_offset */
340
341 HOWTO (R_MN10300_GOTOFF16, /* type */
342 0, /* rightshift */
343 1, /* size (0 = byte, 1 = short, 2 = long) */
344 16, /* bitsize */
345 FALSE, /* pc_relative */
346 0, /* bitpos */
347 complain_overflow_bitfield, /* complain_on_overflow */
348 bfd_elf_generic_reloc, /* */
349 "R_MN10300_GOTOFF16", /* name */
350 FALSE, /* partial_inplace */
351 0xffff, /* src_mask */
352 0xffff, /* dst_mask */
353 FALSE), /* pcrel_offset */
354
355 HOWTO (R_MN10300_PLT32, /* type */
356 0, /* rightshift */
357 2, /* size (0 = byte, 1 = short, 2 = long) */
358 32, /* bitsize */
359 TRUE, /* pc_relative */
360 0, /* bitpos */
361 complain_overflow_bitfield, /* complain_on_overflow */
362 bfd_elf_generic_reloc, /* */
363 "R_MN10300_PLT32", /* name */
364 FALSE, /* partial_inplace */
365 0xffffffff, /* src_mask */
366 0xffffffff, /* dst_mask */
367 TRUE), /* pcrel_offset */
368
369 HOWTO (R_MN10300_PLT16, /* type */
370 0, /* rightshift */
371 1, /* size (0 = byte, 1 = short, 2 = long) */
372 16, /* bitsize */
373 TRUE, /* pc_relative */
374 0, /* bitpos */
375 complain_overflow_bitfield, /* complain_on_overflow */
376 bfd_elf_generic_reloc, /* */
377 "R_MN10300_PLT16", /* name */
378 FALSE, /* partial_inplace */
379 0xffff, /* src_mask */
380 0xffff, /* dst_mask */
381 TRUE), /* pcrel_offset */
382
383 HOWTO (R_MN10300_GOT32, /* type */
384 0, /* rightshift */
385 2, /* size (0 = byte, 1 = short, 2 = long) */
386 32, /* bitsize */
387 FALSE, /* pc_relative */
388 0, /* bitpos */
389 complain_overflow_bitfield, /* complain_on_overflow */
390 bfd_elf_generic_reloc, /* */
391 "R_MN10300_GOT32", /* name */
392 FALSE, /* partial_inplace */
393 0xffffffff, /* src_mask */
394 0xffffffff, /* dst_mask */
395 FALSE), /* pcrel_offset */
396
397 HOWTO (R_MN10300_GOT24, /* type */
398 0, /* rightshift */
399 2, /* size (0 = byte, 1 = short, 2 = long) */
400 24, /* bitsize */
401 FALSE, /* pc_relative */
402 0, /* bitpos */
403 complain_overflow_bitfield, /* complain_on_overflow */
404 bfd_elf_generic_reloc, /* */
405 "R_MN10300_GOT24", /* name */
406 FALSE, /* partial_inplace */
407 0xffffffff, /* src_mask */
408 0xffffffff, /* dst_mask */
409 FALSE), /* pcrel_offset */
410
411 HOWTO (R_MN10300_GOT16, /* type */
412 0, /* rightshift */
413 1, /* size (0 = byte, 1 = short, 2 = long) */
414 16, /* bitsize */
415 FALSE, /* pc_relative */
416 0, /* bitpos */
417 complain_overflow_bitfield, /* complain_on_overflow */
418 bfd_elf_generic_reloc, /* */
419 "R_MN10300_GOT16", /* name */
420 FALSE, /* partial_inplace */
421 0xffffffff, /* src_mask */
422 0xffffffff, /* dst_mask */
423 FALSE), /* pcrel_offset */
424
425 HOWTO (R_MN10300_COPY, /* type */
426 0, /* rightshift */
427 2, /* size (0 = byte, 1 = short, 2 = long) */
428 32, /* bitsize */
429 FALSE, /* pc_relative */
430 0, /* bitpos */
431 complain_overflow_bitfield, /* complain_on_overflow */
432 bfd_elf_generic_reloc, /* */
433 "R_MN10300_COPY", /* name */
434 FALSE, /* partial_inplace */
435 0xffffffff, /* src_mask */
436 0xffffffff, /* dst_mask */
437 FALSE), /* pcrel_offset */
438
439 HOWTO (R_MN10300_GLOB_DAT, /* type */
440 0, /* rightshift */
441 2, /* size (0 = byte, 1 = short, 2 = long) */
442 32, /* bitsize */
443 FALSE, /* pc_relative */
444 0, /* bitpos */
445 complain_overflow_bitfield, /* complain_on_overflow */
446 bfd_elf_generic_reloc, /* */
447 "R_MN10300_GLOB_DAT", /* name */
448 FALSE, /* partial_inplace */
449 0xffffffff, /* src_mask */
450 0xffffffff, /* dst_mask */
451 FALSE), /* pcrel_offset */
452
453 HOWTO (R_MN10300_JMP_SLOT, /* type */
454 0, /* rightshift */
455 2, /* size (0 = byte, 1 = short, 2 = long) */
456 32, /* bitsize */
457 FALSE, /* pc_relative */
458 0, /* bitpos */
459 complain_overflow_bitfield, /* complain_on_overflow */
460 bfd_elf_generic_reloc, /* */
461 "R_MN10300_JMP_SLOT", /* name */
462 FALSE, /* partial_inplace */
463 0xffffffff, /* src_mask */
464 0xffffffff, /* dst_mask */
465 FALSE), /* pcrel_offset */
466
467 HOWTO (R_MN10300_RELATIVE, /* type */
468 0, /* rightshift */
469 2, /* size (0 = byte, 1 = short, 2 = long) */
470 32, /* bitsize */
471 FALSE, /* pc_relative */
472 0, /* bitpos */
473 complain_overflow_bitfield, /* complain_on_overflow */
474 bfd_elf_generic_reloc, /* */
475 "R_MN10300_RELATIVE", /* name */
476 FALSE, /* partial_inplace */
477 0xffffffff, /* src_mask */
478 0xffffffff, /* dst_mask */
479 FALSE), /* pcrel_offset */
480
481 HOWTO (R_MN10300_TLS_GD, /* type */
482 0, /* rightshift */
483 2, /* size (0 = byte, 1 = short, 2 = long) */
484 32, /* bitsize */
485 FALSE, /* pc_relative */
486 0, /* bitpos */
487 complain_overflow_bitfield, /* complain_on_overflow */
488 bfd_elf_generic_reloc, /* */
489 "R_MN10300_TLS_GD", /* name */
490 FALSE, /* partial_inplace */
491 0xffffffff, /* src_mask */
492 0xffffffff, /* dst_mask */
493 FALSE), /* pcrel_offset */
494
495 HOWTO (R_MN10300_TLS_LD, /* type */
496 0, /* rightshift */
497 2, /* size (0 = byte, 1 = short, 2 = long) */
498 32, /* bitsize */
499 FALSE, /* pc_relative */
500 0, /* bitpos */
501 complain_overflow_bitfield, /* complain_on_overflow */
502 bfd_elf_generic_reloc, /* */
503 "R_MN10300_TLS_LD", /* name */
504 FALSE, /* partial_inplace */
505 0xffffffff, /* src_mask */
506 0xffffffff, /* dst_mask */
507 FALSE), /* pcrel_offset */
508
509 HOWTO (R_MN10300_TLS_LDO, /* type */
510 0, /* rightshift */
511 2, /* size (0 = byte, 1 = short, 2 = long) */
512 32, /* bitsize */
513 FALSE, /* pc_relative */
514 0, /* bitpos */
515 complain_overflow_bitfield, /* complain_on_overflow */
516 bfd_elf_generic_reloc, /* */
517 "R_MN10300_TLS_LDO", /* name */
518 FALSE, /* partial_inplace */
519 0xffffffff, /* src_mask */
520 0xffffffff, /* dst_mask */
521 FALSE), /* pcrel_offset */
522
523 HOWTO (R_MN10300_TLS_GOTIE, /* type */
524 0, /* rightshift */
525 2, /* size (0 = byte, 1 = short, 2 = long) */
526 32, /* bitsize */
527 FALSE, /* pc_relative */
528 0, /* bitpos */
529 complain_overflow_bitfield, /* complain_on_overflow */
530 bfd_elf_generic_reloc, /* */
531 "R_MN10300_TLS_GOTIE", /* name */
532 FALSE, /* partial_inplace */
533 0xffffffff, /* src_mask */
534 0xffffffff, /* dst_mask */
535 FALSE), /* pcrel_offset */
536
537 HOWTO (R_MN10300_TLS_IE, /* type */
538 0, /* rightshift */
539 2, /* size (0 = byte, 1 = short, 2 = long) */
540 32, /* bitsize */
541 FALSE, /* pc_relative */
542 0, /* bitpos */
543 complain_overflow_bitfield, /* complain_on_overflow */
544 bfd_elf_generic_reloc, /* */
545 "R_MN10300_TLS_IE", /* name */
546 FALSE, /* partial_inplace */
547 0xffffffff, /* src_mask */
548 0xffffffff, /* dst_mask */
549 FALSE), /* pcrel_offset */
550
551 HOWTO (R_MN10300_TLS_LE, /* type */
552 0, /* rightshift */
553 2, /* size (0 = byte, 1 = short, 2 = long) */
554 32, /* bitsize */
555 FALSE, /* pc_relative */
556 0, /* bitpos */
557 complain_overflow_bitfield, /* complain_on_overflow */
558 bfd_elf_generic_reloc, /* */
559 "R_MN10300_TLS_LE", /* name */
560 FALSE, /* partial_inplace */
561 0xffffffff, /* src_mask */
562 0xffffffff, /* dst_mask */
563 FALSE), /* pcrel_offset */
564
565 HOWTO (R_MN10300_TLS_DTPMOD, /* type */
566 0, /* rightshift */
567 2, /* size (0 = byte, 1 = short, 2 = long) */
568 32, /* bitsize */
569 FALSE, /* pc_relative */
570 0, /* bitpos */
571 complain_overflow_bitfield, /* complain_on_overflow */
572 bfd_elf_generic_reloc, /* */
573 "R_MN10300_TLS_DTPMOD", /* name */
574 FALSE, /* partial_inplace */
575 0xffffffff, /* src_mask */
576 0xffffffff, /* dst_mask */
577 FALSE), /* pcrel_offset */
578
579 HOWTO (R_MN10300_TLS_DTPOFF, /* type */
580 0, /* rightshift */
581 2, /* size (0 = byte, 1 = short, 2 = long) */
582 32, /* bitsize */
583 FALSE, /* pc_relative */
584 0, /* bitpos */
585 complain_overflow_bitfield, /* complain_on_overflow */
586 bfd_elf_generic_reloc, /* */
587 "R_MN10300_TLS_DTPOFF", /* name */
588 FALSE, /* partial_inplace */
589 0xffffffff, /* src_mask */
590 0xffffffff, /* dst_mask */
591 FALSE), /* pcrel_offset */
592
593 HOWTO (R_MN10300_TLS_TPOFF, /* type */
594 0, /* rightshift */
595 2, /* size (0 = byte, 1 = short, 2 = long) */
596 32, /* bitsize */
597 FALSE, /* pc_relative */
598 0, /* bitpos */
599 complain_overflow_bitfield, /* complain_on_overflow */
600 bfd_elf_generic_reloc, /* */
601 "R_MN10300_TLS_TPOFF", /* name */
602 FALSE, /* partial_inplace */
603 0xffffffff, /* src_mask */
604 0xffffffff, /* dst_mask */
605 FALSE), /* pcrel_offset */
606
607 HOWTO (R_MN10300_SYM_DIFF, /* type */
608 0, /* rightshift */
609 2, /* size (0 = byte, 1 = short, 2 = long) */
610 32, /* bitsize */
611 FALSE, /* pc_relative */
612 0, /* bitpos */
613 complain_overflow_dont,/* complain_on_overflow */
614 NULL, /* special handler. */
615 "R_MN10300_SYM_DIFF", /* name */
616 FALSE, /* partial_inplace */
617 0xffffffff, /* src_mask */
618 0xffffffff, /* dst_mask */
619 FALSE), /* pcrel_offset */
620
621 HOWTO (R_MN10300_ALIGN, /* type */
622 0, /* rightshift */
623 0, /* size (0 = byte, 1 = short, 2 = long) */
624 32, /* bitsize */
625 FALSE, /* pc_relative */
626 0, /* bitpos */
627 complain_overflow_dont,/* complain_on_overflow */
628 NULL, /* special handler. */
629 "R_MN10300_ALIGN", /* name */
630 FALSE, /* partial_inplace */
631 0, /* src_mask */
632 0, /* dst_mask */
633 FALSE) /* pcrel_offset */
634 };
635
636 struct mn10300_reloc_map
637 {
638 bfd_reloc_code_real_type bfd_reloc_val;
639 unsigned char elf_reloc_val;
640 };
641
642 static const struct mn10300_reloc_map mn10300_reloc_map[] =
643 {
644 { BFD_RELOC_NONE, R_MN10300_NONE, },
645 { BFD_RELOC_32, R_MN10300_32, },
646 { BFD_RELOC_16, R_MN10300_16, },
647 { BFD_RELOC_8, R_MN10300_8, },
648 { BFD_RELOC_32_PCREL, R_MN10300_PCREL32, },
649 { BFD_RELOC_16_PCREL, R_MN10300_PCREL16, },
650 { BFD_RELOC_8_PCREL, R_MN10300_PCREL8, },
651 { BFD_RELOC_24, R_MN10300_24, },
652 { BFD_RELOC_VTABLE_INHERIT, R_MN10300_GNU_VTINHERIT },
653 { BFD_RELOC_VTABLE_ENTRY, R_MN10300_GNU_VTENTRY },
654 { BFD_RELOC_32_GOT_PCREL, R_MN10300_GOTPC32 },
655 { BFD_RELOC_16_GOT_PCREL, R_MN10300_GOTPC16 },
656 { BFD_RELOC_32_GOTOFF, R_MN10300_GOTOFF32 },
657 { BFD_RELOC_MN10300_GOTOFF24, R_MN10300_GOTOFF24 },
658 { BFD_RELOC_16_GOTOFF, R_MN10300_GOTOFF16 },
659 { BFD_RELOC_32_PLT_PCREL, R_MN10300_PLT32 },
660 { BFD_RELOC_16_PLT_PCREL, R_MN10300_PLT16 },
661 { BFD_RELOC_MN10300_GOT32, R_MN10300_GOT32 },
662 { BFD_RELOC_MN10300_GOT24, R_MN10300_GOT24 },
663 { BFD_RELOC_MN10300_GOT16, R_MN10300_GOT16 },
664 { BFD_RELOC_MN10300_COPY, R_MN10300_COPY },
665 { BFD_RELOC_MN10300_GLOB_DAT, R_MN10300_GLOB_DAT },
666 { BFD_RELOC_MN10300_JMP_SLOT, R_MN10300_JMP_SLOT },
667 { BFD_RELOC_MN10300_RELATIVE, R_MN10300_RELATIVE },
668 { BFD_RELOC_MN10300_TLS_GD, R_MN10300_TLS_GD },
669 { BFD_RELOC_MN10300_TLS_LD, R_MN10300_TLS_LD },
670 { BFD_RELOC_MN10300_TLS_LDO, R_MN10300_TLS_LDO },
671 { BFD_RELOC_MN10300_TLS_GOTIE, R_MN10300_TLS_GOTIE },
672 { BFD_RELOC_MN10300_TLS_IE, R_MN10300_TLS_IE },
673 { BFD_RELOC_MN10300_TLS_LE, R_MN10300_TLS_LE },
674 { BFD_RELOC_MN10300_TLS_DTPMOD, R_MN10300_TLS_DTPMOD },
675 { BFD_RELOC_MN10300_TLS_DTPOFF, R_MN10300_TLS_DTPOFF },
676 { BFD_RELOC_MN10300_TLS_TPOFF, R_MN10300_TLS_TPOFF },
677 { BFD_RELOC_MN10300_SYM_DIFF, R_MN10300_SYM_DIFF },
678 { BFD_RELOC_MN10300_ALIGN, R_MN10300_ALIGN }
679 };
680
681 /* Create the GOT section. */
682
683 static bfd_boolean
684 _bfd_mn10300_elf_create_got_section (bfd * abfd,
685 struct bfd_link_info * info)
686 {
687 flagword flags;
688 flagword pltflags;
689 asection * s;
690 struct elf_link_hash_entry * h;
691 const struct elf_backend_data * bed = get_elf_backend_data (abfd);
692 struct elf_link_hash_table *htab;
693 int ptralign;
694
695 /* This function may be called more than once. */
696 htab = elf_hash_table (info);
697 if (htab->sgot != NULL)
698 return TRUE;
699
700 switch (bed->s->arch_size)
701 {
702 case 32:
703 ptralign = 2;
704 break;
705
706 case 64:
707 ptralign = 3;
708 break;
709
710 default:
711 bfd_set_error (bfd_error_bad_value);
712 return FALSE;
713 }
714
715 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
716 | SEC_LINKER_CREATED);
717
718 pltflags = flags;
719 pltflags |= SEC_CODE;
720 if (bed->plt_not_loaded)
721 pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS);
722 if (bed->plt_readonly)
723 pltflags |= SEC_READONLY;
724
725 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
726 htab->splt = s;
727 if (s == NULL
728 || !bfd_set_section_alignment (s, bed->plt_alignment))
729 return FALSE;
730
731 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
732 .plt section. */
733 if (bed->want_plt_sym)
734 {
735 h = _bfd_elf_define_linkage_sym (abfd, info, s,
736 "_PROCEDURE_LINKAGE_TABLE_");
737 htab->hplt = h;
738 if (h == NULL)
739 return FALSE;
740 }
741
742 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
743 htab->sgot = s;
744 if (s == NULL
745 || !bfd_set_section_alignment (s, ptralign))
746 return FALSE;
747
748 if (bed->want_got_plt)
749 {
750 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
751 htab->sgotplt = s;
752 if (s == NULL
753 || !bfd_set_section_alignment (s, ptralign))
754 return FALSE;
755 }
756
757 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
758 (or .got.plt) section. We don't do this in the linker script
759 because we don't want to define the symbol if we are not creating
760 a global offset table. */
761 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_GLOBAL_OFFSET_TABLE_");
762 htab->hgot = h;
763 if (h == NULL)
764 return FALSE;
765
766 /* The first bit of the global offset table is the header. */
767 s->size += bed->got_header_size;
768
769 return TRUE;
770 }
771
772 static reloc_howto_type *
773 bfd_elf32_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
774 bfd_reloc_code_real_type code)
775 {
776 unsigned int i;
777
778 for (i = ARRAY_SIZE (mn10300_reloc_map); i--;)
779 if (mn10300_reloc_map[i].bfd_reloc_val == code)
780 return &elf_mn10300_howto_table[mn10300_reloc_map[i].elf_reloc_val];
781
782 return NULL;
783 }
784
785 static reloc_howto_type *
786 bfd_elf32_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
787 const char *r_name)
788 {
789 unsigned int i;
790
791 for (i = ARRAY_SIZE (elf_mn10300_howto_table); i--;)
792 if (elf_mn10300_howto_table[i].name != NULL
793 && strcasecmp (elf_mn10300_howto_table[i].name, r_name) == 0)
794 return elf_mn10300_howto_table + i;
795
796 return NULL;
797 }
798
799 /* Set the howto pointer for an MN10300 ELF reloc. */
800
801 static bfd_boolean
802 mn10300_info_to_howto (bfd *abfd,
803 arelent *cache_ptr,
804 Elf_Internal_Rela *dst)
805 {
806 unsigned int r_type;
807
808 r_type = ELF32_R_TYPE (dst->r_info);
809 if (r_type >= R_MN10300_MAX)
810 {
811 /* xgettext:c-format */
812 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
813 abfd, r_type);
814 bfd_set_error (bfd_error_bad_value);
815 return FALSE;
816 }
817 cache_ptr->howto = elf_mn10300_howto_table + r_type;
818 return TRUE;
819 }
820
821 static int
822 elf_mn10300_tls_transition (struct bfd_link_info * info,
823 int r_type,
824 struct elf_link_hash_entry * h,
825 asection * sec,
826 bfd_boolean counting)
827 {
828 bfd_boolean is_local;
829
830 if (r_type == R_MN10300_TLS_GD
831 && h != NULL
832 && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE)
833 return R_MN10300_TLS_GOTIE;
834
835 if (bfd_link_pic (info))
836 return r_type;
837
838 if (! (sec->flags & SEC_CODE))
839 return r_type;
840
841 if (! counting && h != NULL && ! elf_hash_table (info)->dynamic_sections_created)
842 is_local = TRUE;
843 else
844 is_local = SYMBOL_CALLS_LOCAL (info, h);
845
846 /* For the main program, these are the transitions we do. */
847 switch (r_type)
848 {
849 case R_MN10300_TLS_GD: return is_local ? R_MN10300_TLS_LE : R_MN10300_TLS_GOTIE;
850 case R_MN10300_TLS_LD: return R_MN10300_NONE;
851 case R_MN10300_TLS_LDO: return R_MN10300_TLS_LE;
852 case R_MN10300_TLS_IE:
853 case R_MN10300_TLS_GOTIE: return is_local ? R_MN10300_TLS_LE : r_type;
854 }
855
856 return r_type;
857 }
858
859 /* Return the relocation value for @tpoff relocation
860 if STT_TLS virtual address is ADDRESS. */
861
862 static bfd_vma
863 dtpoff (struct bfd_link_info * info, bfd_vma address)
864 {
865 struct elf_link_hash_table *htab = elf_hash_table (info);
866
867 /* If tls_sec is NULL, we should have signalled an error already. */
868 if (htab->tls_sec == NULL)
869 return 0;
870 return address - htab->tls_sec->vma;
871 }
872
873 /* Return the relocation value for @tpoff relocation
874 if STT_TLS virtual address is ADDRESS. */
875
876 static bfd_vma
877 tpoff (struct bfd_link_info * info, bfd_vma address)
878 {
879 struct elf_link_hash_table *htab = elf_hash_table (info);
880
881 /* If tls_sec is NULL, we should have signalled an error already. */
882 if (htab->tls_sec == NULL)
883 return 0;
884 return address - (htab->tls_size + htab->tls_sec->vma);
885 }
886
887 /* Returns nonzero if there's a R_MN10300_PLT32 reloc that we now need
888 to skip, after this one. The actual value is the offset between
889 this reloc and the PLT reloc. */
890
891 static int
892 mn10300_do_tls_transition (bfd * input_bfd,
893 unsigned int r_type,
894 unsigned int tls_r_type,
895 bfd_byte * contents,
896 bfd_vma offset)
897 {
898 bfd_byte *op = contents + offset;
899 int gotreg = 0;
900
901 #define TLS_PAIR(r1,r2) ((r1) * R_MN10300_MAX + (r2))
902
903 /* This is common to all GD/LD transitions, so break it out. */
904 if (r_type == R_MN10300_TLS_GD
905 || r_type == R_MN10300_TLS_LD)
906 {
907 op -= 2;
908 /* mov imm,d0. */
909 BFD_ASSERT (bfd_get_8 (input_bfd, op) == 0xFC);
910 BFD_ASSERT (bfd_get_8 (input_bfd, op + 1) == 0xCC);
911 /* add aN,d0. */
912 BFD_ASSERT (bfd_get_8 (input_bfd, op + 6) == 0xF1);
913 gotreg = (bfd_get_8 (input_bfd, op + 7) & 0x0c) >> 2;
914 /* Call. */
915 BFD_ASSERT (bfd_get_8 (input_bfd, op + 8) == 0xDD);
916 }
917
918 switch (TLS_PAIR (r_type, tls_r_type))
919 {
920 case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_GOTIE):
921 {
922 /* Keep track of which register we put GOTptr in. */
923 /* mov (_x@indntpoff,a2),a0. */
924 memcpy (op, "\xFC\x20\x00\x00\x00\x00", 6);
925 op[1] |= gotreg;
926 /* add e2,a0. */
927 memcpy (op+6, "\xF9\x78\x28", 3);
928 /* or 0x00000000, d0 - six byte nop. */
929 memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6);
930 }
931 return 7;
932
933 case TLS_PAIR (R_MN10300_TLS_GD, R_MN10300_TLS_LE):
934 {
935 /* Register is *always* a0. */
936 /* mov _x@tpoff,a0. */
937 memcpy (op, "\xFC\xDC\x00\x00\x00\x00", 6);
938 /* add e2,a0. */
939 memcpy (op+6, "\xF9\x78\x28", 3);
940 /* or 0x00000000, d0 - six byte nop. */
941 memcpy (op+9, "\xFC\xE4\x00\x00\x00\x00", 6);
942 }
943 return 7;
944 case TLS_PAIR (R_MN10300_TLS_LD, R_MN10300_NONE):
945 {
946 /* Register is *always* a0. */
947 /* mov e2,a0. */
948 memcpy (op, "\xF5\x88", 2);
949 /* or 0x00000000, d0 - six byte nop. */
950 memcpy (op+2, "\xFC\xE4\x00\x00\x00\x00", 6);
951 /* or 0x00000000, e2 - seven byte nop. */
952 memcpy (op+8, "\xFE\x19\x22\x00\x00\x00\x00", 7);
953 }
954 return 7;
955
956 case TLS_PAIR (R_MN10300_TLS_LDO, R_MN10300_TLS_LE):
957 /* No changes needed, just the reloc change. */
958 return 0;
959
960 /* These are a little tricky, because we have to detect which
961 opcode is being used (they're different sizes, with the reloc
962 at different offsets within the opcode) and convert each
963 accordingly, copying the operands as needed. The conversions
964 we do are as follows (IE,GOTIE,LE):
965
966 1111 1100 1010 01Dn [-- abs32 --] MOV (x@indntpoff),Dn
967 1111 1100 0000 DnAm [-- abs32 --] MOV (x@gotntpoff,Am),Dn
968 1111 1100 1100 11Dn [-- abs32 --] MOV x@tpoff,Dn
969
970 1111 1100 1010 00An [-- abs32 --] MOV (x@indntpoff),An
971 1111 1100 0010 AnAm [-- abs32 --] MOV (x@gotntpoff,Am),An
972 1111 1100 1101 11An [-- abs32 --] MOV x@tpoff,An
973
974 1111 1110 0000 1110 Rnnn Xxxx [-- abs32 --] MOV (x@indntpoff),Rn
975 1111 1110 0000 1010 Rnnn Rmmm [-- abs32 --] MOV (x@indntpoff,Rm),Rn
976 1111 1110 0000 1000 Rnnn Xxxx [-- abs32 --] MOV x@tpoff,Rn
977
978 Since the GOT pointer is always $a2, we assume the last
979 normally won't happen, but let's be paranoid and plan for the
980 day that GCC optimizes it somewhow. */
981
982 case TLS_PAIR (R_MN10300_TLS_IE, R_MN10300_TLS_LE):
983 if (op[-2] == 0xFC)
984 {
985 op -= 2;
986 if ((op[1] & 0xFC) == 0xA4) /* Dn */
987 {
988 op[1] &= 0x03; /* Leaves Dn. */
989 op[1] |= 0xCC;
990 }
991 else /* An */
992 {
993 op[1] &= 0x03; /* Leaves An. */
994 op[1] |= 0xDC;
995 }
996 }
997 else if (op[-3] == 0xFE)
998 op[-2] = 0x08;
999 else
1000 abort ();
1001 break;
1002
1003 case TLS_PAIR (R_MN10300_TLS_GOTIE, R_MN10300_TLS_LE):
1004 if (op[-2] == 0xFC)
1005 {
1006 op -= 2;
1007 if ((op[1] & 0xF0) == 0x00) /* Dn */
1008 {
1009 op[1] &= 0x0C; /* Leaves Dn. */
1010 op[1] >>= 2;
1011 op[1] |= 0xCC;
1012 }
1013 else /* An */
1014 {
1015 op[1] &= 0x0C; /* Leaves An. */
1016 op[1] >>= 2;
1017 op[1] |= 0xDC;
1018 }
1019 }
1020 else if (op[-3] == 0xFE)
1021 op[-2] = 0x08;
1022 else
1023 abort ();
1024 break;
1025
1026 default:
1027 _bfd_error_handler
1028 /* xgettext:c-format */
1029 (_("%pB: unsupported transition from %s to %s"),
1030 input_bfd,
1031 elf_mn10300_howto_table[r_type].name,
1032 elf_mn10300_howto_table[tls_r_type].name);
1033 break;
1034 }
1035 #undef TLS_PAIR
1036 return 0;
1037 }
1038
1039 /* Look through the relocs for a section during the first phase.
1040 Since we don't do .gots or .plts, we just need to consider the
1041 virtual table relocs for gc. */
1042
1043 static bfd_boolean
1044 mn10300_elf_check_relocs (bfd *abfd,
1045 struct bfd_link_info *info,
1046 asection *sec,
1047 const Elf_Internal_Rela *relocs)
1048 {
1049 struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info);
1050 bfd_boolean sym_diff_reloc_seen;
1051 Elf_Internal_Shdr *symtab_hdr;
1052 Elf_Internal_Sym * isymbuf = NULL;
1053 struct elf_link_hash_entry **sym_hashes;
1054 const Elf_Internal_Rela *rel;
1055 const Elf_Internal_Rela *rel_end;
1056 bfd * dynobj;
1057 bfd_vma * local_got_offsets;
1058 asection * sgot;
1059 asection * srelgot;
1060 asection * sreloc;
1061 bfd_boolean result = FALSE;
1062
1063 sgot = NULL;
1064 srelgot = NULL;
1065 sreloc = NULL;
1066
1067 if (bfd_link_relocatable (info))
1068 return TRUE;
1069
1070 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1071 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
1072 sym_hashes = elf_sym_hashes (abfd);
1073
1074 dynobj = elf_hash_table (info)->dynobj;
1075 local_got_offsets = elf_local_got_offsets (abfd);
1076 rel_end = relocs + sec->reloc_count;
1077 sym_diff_reloc_seen = FALSE;
1078
1079 for (rel = relocs; rel < rel_end; rel++)
1080 {
1081 struct elf_link_hash_entry *h;
1082 unsigned long r_symndx;
1083 unsigned int r_type;
1084 int tls_type = GOT_NORMAL;
1085
1086 r_symndx = ELF32_R_SYM (rel->r_info);
1087 if (r_symndx < symtab_hdr->sh_info)
1088 h = NULL;
1089 else
1090 {
1091 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1092 while (h->root.type == bfd_link_hash_indirect
1093 || h->root.type == bfd_link_hash_warning)
1094 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1095 }
1096
1097 r_type = ELF32_R_TYPE (rel->r_info);
1098 r_type = elf_mn10300_tls_transition (info, r_type, h, sec, TRUE);
1099
1100 /* Some relocs require a global offset table. */
1101 if (dynobj == NULL)
1102 {
1103 switch (r_type)
1104 {
1105 case R_MN10300_GOT32:
1106 case R_MN10300_GOT24:
1107 case R_MN10300_GOT16:
1108 case R_MN10300_GOTOFF32:
1109 case R_MN10300_GOTOFF24:
1110 case R_MN10300_GOTOFF16:
1111 case R_MN10300_GOTPC32:
1112 case R_MN10300_GOTPC16:
1113 case R_MN10300_TLS_GD:
1114 case R_MN10300_TLS_LD:
1115 case R_MN10300_TLS_GOTIE:
1116 case R_MN10300_TLS_IE:
1117 elf_hash_table (info)->dynobj = dynobj = abfd;
1118 if (! _bfd_mn10300_elf_create_got_section (dynobj, info))
1119 goto fail;
1120 break;
1121
1122 default:
1123 break;
1124 }
1125 }
1126
1127 switch (r_type)
1128 {
1129 /* This relocation describes the C++ object vtable hierarchy.
1130 Reconstruct it for later use during GC. */
1131 case R_MN10300_GNU_VTINHERIT:
1132 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1133 goto fail;
1134 break;
1135
1136 /* This relocation describes which C++ vtable entries are actually
1137 used. Record for later use during GC. */
1138 case R_MN10300_GNU_VTENTRY:
1139 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1140 goto fail;
1141 break;
1142
1143 case R_MN10300_TLS_LD:
1144 htab->tls_ldm_got.refcount ++;
1145 tls_type = GOT_TLS_LD;
1146
1147 if (htab->tls_ldm_got.got_allocated)
1148 break;
1149 goto create_got;
1150
1151 case R_MN10300_TLS_IE:
1152 case R_MN10300_TLS_GOTIE:
1153 if (bfd_link_pic (info))
1154 info->flags |= DF_STATIC_TLS;
1155 /* Fall through */
1156
1157 case R_MN10300_TLS_GD:
1158 case R_MN10300_GOT32:
1159 case R_MN10300_GOT24:
1160 case R_MN10300_GOT16:
1161 create_got:
1162 /* This symbol requires a global offset table entry. */
1163
1164 switch (r_type)
1165 {
1166 case R_MN10300_TLS_IE:
1167 case R_MN10300_TLS_GOTIE: tls_type = GOT_TLS_IE; break;
1168 case R_MN10300_TLS_GD: tls_type = GOT_TLS_GD; break;
1169 default: tls_type = GOT_NORMAL; break;
1170 }
1171
1172 sgot = htab->root.sgot;
1173 srelgot = htab->root.srelgot;
1174 BFD_ASSERT (sgot != NULL && srelgot != NULL);
1175
1176 if (r_type == R_MN10300_TLS_LD)
1177 {
1178 htab->tls_ldm_got.offset = sgot->size;
1179 htab->tls_ldm_got.got_allocated ++;
1180 }
1181 else if (h != NULL)
1182 {
1183 if (elf_mn10300_hash_entry (h)->tls_type != tls_type
1184 && elf_mn10300_hash_entry (h)->tls_type != GOT_UNKNOWN)
1185 {
1186 if (tls_type == GOT_TLS_IE
1187 && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_GD)
1188 /* No change - this is ok. */;
1189 else if (tls_type == GOT_TLS_GD
1190 && elf_mn10300_hash_entry (h)->tls_type == GOT_TLS_IE)
1191 /* Transition GD->IE. */
1192 tls_type = GOT_TLS_IE;
1193 else
1194 _bfd_error_handler
1195 /* xgettext:c-format */
1196 (_("%pB: %s' accessed both as normal and thread local symbol"),
1197 abfd, h ? h->root.root.string : "<local>");
1198 }
1199
1200 elf_mn10300_hash_entry (h)->tls_type = tls_type;
1201
1202 if (h->got.offset != (bfd_vma) -1)
1203 /* We have already allocated space in the .got. */
1204 break;
1205
1206 h->got.offset = sgot->size;
1207
1208 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
1209 /* Make sure this symbol is output as a dynamic symbol. */
1210 && h->dynindx == -1)
1211 {
1212 if (! bfd_elf_link_record_dynamic_symbol (info, h))
1213 goto fail;
1214 }
1215
1216 srelgot->size += sizeof (Elf32_External_Rela);
1217 if (r_type == R_MN10300_TLS_GD)
1218 srelgot->size += sizeof (Elf32_External_Rela);
1219 }
1220 else
1221 {
1222 /* This is a global offset table entry for a local
1223 symbol. */
1224 if (local_got_offsets == NULL)
1225 {
1226 size_t size;
1227 unsigned int i;
1228
1229 size = symtab_hdr->sh_info * (sizeof (bfd_vma) + sizeof (char));
1230 local_got_offsets = bfd_alloc (abfd, size);
1231
1232 if (local_got_offsets == NULL)
1233 goto fail;
1234
1235 elf_local_got_offsets (abfd) = local_got_offsets;
1236 elf_mn10300_local_got_tls_type (abfd)
1237 = (char *) (local_got_offsets + symtab_hdr->sh_info);
1238
1239 for (i = 0; i < symtab_hdr->sh_info; i++)
1240 local_got_offsets[i] = (bfd_vma) -1;
1241 }
1242
1243 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1244 /* We have already allocated space in the .got. */
1245 break;
1246
1247 local_got_offsets[r_symndx] = sgot->size;
1248
1249 if (bfd_link_pic (info))
1250 {
1251 /* If we are generating a shared object, we need to
1252 output a R_MN10300_RELATIVE reloc so that the dynamic
1253 linker can adjust this GOT entry. */
1254 srelgot->size += sizeof (Elf32_External_Rela);
1255
1256 if (r_type == R_MN10300_TLS_GD)
1257 /* And a R_MN10300_TLS_DTPOFF reloc as well. */
1258 srelgot->size += sizeof (Elf32_External_Rela);
1259 }
1260
1261 elf_mn10300_local_got_tls_type (abfd) [r_symndx] = tls_type;
1262 }
1263
1264 sgot->size += 4;
1265 if (r_type == R_MN10300_TLS_GD
1266 || r_type == R_MN10300_TLS_LD)
1267 sgot->size += 4;
1268
1269 goto need_shared_relocs;
1270
1271 case R_MN10300_PLT32:
1272 case R_MN10300_PLT16:
1273 /* This symbol requires a procedure linkage table entry. We
1274 actually build the entry in adjust_dynamic_symbol,
1275 because this might be a case of linking PIC code which is
1276 never referenced by a dynamic object, in which case we
1277 don't need to generate a procedure linkage table entry
1278 after all. */
1279
1280 /* If this is a local symbol, we resolve it directly without
1281 creating a procedure linkage table entry. */
1282 if (h == NULL)
1283 continue;
1284
1285 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
1286 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
1287 break;
1288
1289 h->needs_plt = 1;
1290 break;
1291
1292 case R_MN10300_24:
1293 case R_MN10300_16:
1294 case R_MN10300_8:
1295 case R_MN10300_PCREL32:
1296 case R_MN10300_PCREL16:
1297 case R_MN10300_PCREL8:
1298 if (h != NULL)
1299 h->non_got_ref = 1;
1300 break;
1301
1302 case R_MN10300_SYM_DIFF:
1303 sym_diff_reloc_seen = TRUE;
1304 break;
1305
1306 case R_MN10300_32:
1307 if (h != NULL)
1308 h->non_got_ref = 1;
1309
1310 need_shared_relocs:
1311 /* If we are creating a shared library, then we
1312 need to copy the reloc into the shared library. */
1313 if (bfd_link_pic (info)
1314 && (sec->flags & SEC_ALLOC) != 0
1315 /* Do not generate a dynamic reloc for a
1316 reloc associated with a SYM_DIFF operation. */
1317 && ! sym_diff_reloc_seen)
1318 {
1319 asection * sym_section = NULL;
1320
1321 /* Find the section containing the
1322 symbol involved in the relocation. */
1323 if (h == NULL)
1324 {
1325 Elf_Internal_Sym * isym;
1326
1327 if (isymbuf == NULL)
1328 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
1329 symtab_hdr->sh_info, 0,
1330 NULL, NULL, NULL);
1331 if (isymbuf)
1332 {
1333 isym = isymbuf + r_symndx;
1334 /* All we care about is whether this local symbol is absolute. */
1335 if (isym->st_shndx == SHN_ABS)
1336 sym_section = bfd_abs_section_ptr;
1337 }
1338 }
1339 else
1340 {
1341 if (h->root.type == bfd_link_hash_defined
1342 || h->root.type == bfd_link_hash_defweak)
1343 sym_section = h->root.u.def.section;
1344 }
1345
1346 /* If the symbol is absolute then the relocation can
1347 be resolved during linking and there is no need for
1348 a dynamic reloc. */
1349 if (sym_section != bfd_abs_section_ptr)
1350 {
1351 /* When creating a shared object, we must copy these
1352 reloc types into the output file. We create a reloc
1353 section in dynobj and make room for this reloc. */
1354 if (sreloc == NULL)
1355 {
1356 sreloc = _bfd_elf_make_dynamic_reloc_section
1357 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
1358 if (sreloc == NULL)
1359 goto fail;
1360 }
1361
1362 sreloc->size += sizeof (Elf32_External_Rela);
1363 }
1364 }
1365
1366 break;
1367 }
1368
1369 if (ELF32_R_TYPE (rel->r_info) != R_MN10300_SYM_DIFF)
1370 sym_diff_reloc_seen = FALSE;
1371 }
1372
1373 result = TRUE;
1374 fail:
1375 if (symtab_hdr->contents != (unsigned char *) isymbuf)
1376 free (isymbuf);
1377
1378 return result;
1379 }
1380
1381 /* Return the section that should be marked against GC for a given
1382 relocation. */
1383
1384 static asection *
1385 mn10300_elf_gc_mark_hook (asection *sec,
1386 struct bfd_link_info *info,
1387 Elf_Internal_Rela *rel,
1388 struct elf_link_hash_entry *h,
1389 Elf_Internal_Sym *sym)
1390 {
1391 if (h != NULL)
1392 switch (ELF32_R_TYPE (rel->r_info))
1393 {
1394 case R_MN10300_GNU_VTINHERIT:
1395 case R_MN10300_GNU_VTENTRY:
1396 return NULL;
1397 }
1398
1399 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1400 }
1401
1402 /* Perform a relocation as part of a final link. */
1403
1404 static bfd_reloc_status_type
1405 mn10300_elf_final_link_relocate (reloc_howto_type *howto,
1406 bfd *input_bfd,
1407 bfd *output_bfd ATTRIBUTE_UNUSED,
1408 asection *input_section,
1409 bfd_byte *contents,
1410 bfd_vma offset,
1411 bfd_vma value,
1412 bfd_vma addend,
1413 struct elf_link_hash_entry * h,
1414 unsigned long symndx,
1415 struct bfd_link_info *info,
1416 asection *sym_sec ATTRIBUTE_UNUSED,
1417 int is_local ATTRIBUTE_UNUSED)
1418 {
1419 struct elf32_mn10300_link_hash_table * htab = elf32_mn10300_hash_table (info);
1420 static asection * sym_diff_section;
1421 static bfd_vma sym_diff_value;
1422 bfd_boolean is_sym_diff_reloc;
1423 unsigned long r_type = howto->type;
1424 bfd_byte * hit_data = contents + offset;
1425 bfd * dynobj;
1426 asection * sgot;
1427 asection * splt;
1428 asection * sreloc;
1429
1430 dynobj = elf_hash_table (info)->dynobj;
1431 sgot = NULL;
1432 splt = NULL;
1433 sreloc = NULL;
1434
1435 switch (r_type)
1436 {
1437 case R_MN10300_24:
1438 case R_MN10300_16:
1439 case R_MN10300_8:
1440 case R_MN10300_PCREL8:
1441 case R_MN10300_PCREL16:
1442 case R_MN10300_PCREL32:
1443 case R_MN10300_GOTOFF32:
1444 case R_MN10300_GOTOFF24:
1445 case R_MN10300_GOTOFF16:
1446 if (bfd_link_pic (info)
1447 && (input_section->flags & SEC_ALLOC) != 0
1448 && h != NULL
1449 && ! SYMBOL_REFERENCES_LOCAL (info, h))
1450 return bfd_reloc_dangerous;
1451 /* Fall through. */
1452 case R_MN10300_GOT32:
1453 /* Issue 2052223:
1454 Taking the address of a protected function in a shared library
1455 is illegal. Issue an error message here. */
1456 if (bfd_link_pic (info)
1457 && (input_section->flags & SEC_ALLOC) != 0
1458 && h != NULL
1459 && ELF_ST_VISIBILITY (h->other) == STV_PROTECTED
1460 && (h->type == STT_FUNC || h->type == STT_GNU_IFUNC)
1461 && ! SYMBOL_REFERENCES_LOCAL (info, h))
1462 return bfd_reloc_dangerous;
1463 }
1464
1465 is_sym_diff_reloc = FALSE;
1466 if (sym_diff_section != NULL)
1467 {
1468 BFD_ASSERT (sym_diff_section == input_section);
1469
1470 switch (r_type)
1471 {
1472 case R_MN10300_32:
1473 case R_MN10300_24:
1474 case R_MN10300_16:
1475 case R_MN10300_8:
1476 value -= sym_diff_value;
1477 /* If we are computing a 32-bit value for the location lists
1478 and the result is 0 then we add one to the value. A zero
1479 value can result because of linker relaxation deleteing
1480 prologue instructions and using a value of 1 (for the begin
1481 and end offsets in the location list entry) results in a
1482 nul entry which does not prevent the following entries from
1483 being parsed. */
1484 if (r_type == R_MN10300_32
1485 && value == 0
1486 && strcmp (input_section->name, ".debug_loc") == 0)
1487 value = 1;
1488 sym_diff_section = NULL;
1489 is_sym_diff_reloc = TRUE;
1490 break;
1491
1492 default:
1493 sym_diff_section = NULL;
1494 break;
1495 }
1496 }
1497
1498 switch (r_type)
1499 {
1500 case R_MN10300_SYM_DIFF:
1501 BFD_ASSERT (addend == 0);
1502 /* Cache the input section and value.
1503 The offset is unreliable, since relaxation may
1504 have reduced the following reloc's offset. */
1505 sym_diff_section = input_section;
1506 sym_diff_value = value;
1507 return bfd_reloc_ok;
1508
1509 case R_MN10300_ALIGN:
1510 case R_MN10300_NONE:
1511 return bfd_reloc_ok;
1512
1513 case R_MN10300_32:
1514 if (bfd_link_pic (info)
1515 /* Do not generate relocs when an R_MN10300_32 has been used
1516 with an R_MN10300_SYM_DIFF to compute a difference of two
1517 symbols. */
1518 && !is_sym_diff_reloc
1519 /* Also, do not generate a reloc when the symbol associated
1520 with the R_MN10300_32 reloc is absolute - there is no
1521 need for a run time computation in this case. */
1522 && sym_sec != bfd_abs_section_ptr
1523 /* If the section is not going to be allocated at load time
1524 then there is no need to generate relocs for it. */
1525 && (input_section->flags & SEC_ALLOC) != 0)
1526 {
1527 Elf_Internal_Rela outrel;
1528 bfd_boolean skip, relocate;
1529
1530 /* When generating a shared object, these relocations are
1531 copied into the output file to be resolved at run
1532 time. */
1533 if (sreloc == NULL)
1534 {
1535 sreloc = _bfd_elf_get_dynamic_reloc_section
1536 (input_bfd, input_section, /*rela?*/ TRUE);
1537 if (sreloc == NULL)
1538 return FALSE;
1539 }
1540
1541 skip = FALSE;
1542
1543 outrel.r_offset = _bfd_elf_section_offset (input_bfd, info,
1544 input_section, offset);
1545 if (outrel.r_offset == (bfd_vma) -1)
1546 skip = TRUE;
1547
1548 outrel.r_offset += (input_section->output_section->vma
1549 + input_section->output_offset);
1550
1551 if (skip)
1552 {
1553 memset (&outrel, 0, sizeof outrel);
1554 relocate = FALSE;
1555 }
1556 else
1557 {
1558 /* h->dynindx may be -1 if this symbol was marked to
1559 become local. */
1560 if (h == NULL
1561 || SYMBOL_REFERENCES_LOCAL (info, h))
1562 {
1563 relocate = TRUE;
1564 outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
1565 outrel.r_addend = value + addend;
1566 }
1567 else
1568 {
1569 BFD_ASSERT (h->dynindx != -1);
1570 relocate = FALSE;
1571 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_32);
1572 outrel.r_addend = value + addend;
1573 }
1574 }
1575
1576 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1577 (bfd_byte *) (((Elf32_External_Rela *) sreloc->contents)
1578 + sreloc->reloc_count));
1579 ++sreloc->reloc_count;
1580
1581 /* If this reloc is against an external symbol, we do
1582 not want to fiddle with the addend. Otherwise, we
1583 need to include the symbol value so that it becomes
1584 an addend for the dynamic reloc. */
1585 if (! relocate)
1586 return bfd_reloc_ok;
1587 }
1588 value += addend;
1589 bfd_put_32 (input_bfd, value, hit_data);
1590 return bfd_reloc_ok;
1591
1592 case R_MN10300_24:
1593 value += addend;
1594
1595 if ((long) value > 0x7fffff || (long) value < -0x800000)
1596 return bfd_reloc_overflow;
1597
1598 bfd_put_8 (input_bfd, value & 0xff, hit_data);
1599 bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
1600 bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
1601 return bfd_reloc_ok;
1602
1603 case R_MN10300_16:
1604 value += addend;
1605
1606 if ((long) value > 0x7fff || (long) value < -0x8000)
1607 return bfd_reloc_overflow;
1608
1609 bfd_put_16 (input_bfd, value, hit_data);
1610 return bfd_reloc_ok;
1611
1612 case R_MN10300_8:
1613 value += addend;
1614
1615 if ((long) value > 0x7f || (long) value < -0x80)
1616 return bfd_reloc_overflow;
1617
1618 bfd_put_8 (input_bfd, value, hit_data);
1619 return bfd_reloc_ok;
1620
1621 case R_MN10300_PCREL8:
1622 value -= (input_section->output_section->vma
1623 + input_section->output_offset);
1624 value -= offset;
1625 value += addend;
1626
1627 if ((long) value > 0x7f || (long) value < -0x80)
1628 return bfd_reloc_overflow;
1629
1630 bfd_put_8 (input_bfd, value, hit_data);
1631 return bfd_reloc_ok;
1632
1633 case R_MN10300_PCREL16:
1634 value -= (input_section->output_section->vma
1635 + input_section->output_offset);
1636 value -= offset;
1637 value += addend;
1638
1639 if ((long) value > 0x7fff || (long) value < -0x8000)
1640 return bfd_reloc_overflow;
1641
1642 bfd_put_16 (input_bfd, value, hit_data);
1643 return bfd_reloc_ok;
1644
1645 case R_MN10300_PCREL32:
1646 value -= (input_section->output_section->vma
1647 + input_section->output_offset);
1648 value -= offset;
1649 value += addend;
1650
1651 bfd_put_32 (input_bfd, value, hit_data);
1652 return bfd_reloc_ok;
1653
1654 case R_MN10300_GNU_VTINHERIT:
1655 case R_MN10300_GNU_VTENTRY:
1656 return bfd_reloc_ok;
1657
1658 case R_MN10300_GOTPC32:
1659 if (dynobj == NULL)
1660 return bfd_reloc_dangerous;
1661
1662 /* Use global offset table as symbol value. */
1663 value = htab->root.sgot->output_section->vma;
1664 value -= (input_section->output_section->vma
1665 + input_section->output_offset);
1666 value -= offset;
1667 value += addend;
1668
1669 bfd_put_32 (input_bfd, value, hit_data);
1670 return bfd_reloc_ok;
1671
1672 case R_MN10300_GOTPC16:
1673 if (dynobj == NULL)
1674 return bfd_reloc_dangerous;
1675
1676 /* Use global offset table as symbol value. */
1677 value = htab->root.sgot->output_section->vma;
1678 value -= (input_section->output_section->vma
1679 + input_section->output_offset);
1680 value -= offset;
1681 value += addend;
1682
1683 if ((long) value > 0x7fff || (long) value < -0x8000)
1684 return bfd_reloc_overflow;
1685
1686 bfd_put_16 (input_bfd, value, hit_data);
1687 return bfd_reloc_ok;
1688
1689 case R_MN10300_GOTOFF32:
1690 if (dynobj == NULL)
1691 return bfd_reloc_dangerous;
1692
1693 value -= htab->root.sgot->output_section->vma;
1694 value += addend;
1695
1696 bfd_put_32 (input_bfd, value, hit_data);
1697 return bfd_reloc_ok;
1698
1699 case R_MN10300_GOTOFF24:
1700 if (dynobj == NULL)
1701 return bfd_reloc_dangerous;
1702
1703 value -= htab->root.sgot->output_section->vma;
1704 value += addend;
1705
1706 if ((long) value > 0x7fffff || (long) value < -0x800000)
1707 return bfd_reloc_overflow;
1708
1709 bfd_put_8 (input_bfd, value, hit_data);
1710 bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
1711 bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
1712 return bfd_reloc_ok;
1713
1714 case R_MN10300_GOTOFF16:
1715 if (dynobj == NULL)
1716 return bfd_reloc_dangerous;
1717
1718 value -= htab->root.sgot->output_section->vma;
1719 value += addend;
1720
1721 if ((long) value > 0x7fff || (long) value < -0x8000)
1722 return bfd_reloc_overflow;
1723
1724 bfd_put_16 (input_bfd, value, hit_data);
1725 return bfd_reloc_ok;
1726
1727 case R_MN10300_PLT32:
1728 if (h != NULL
1729 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
1730 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
1731 && h->plt.offset != (bfd_vma) -1)
1732 {
1733 if (dynobj == NULL)
1734 return bfd_reloc_dangerous;
1735
1736 splt = htab->root.splt;
1737 value = (splt->output_section->vma
1738 + splt->output_offset
1739 + h->plt.offset) - value;
1740 }
1741
1742 value -= (input_section->output_section->vma
1743 + input_section->output_offset);
1744 value -= offset;
1745 value += addend;
1746
1747 bfd_put_32 (input_bfd, value, hit_data);
1748 return bfd_reloc_ok;
1749
1750 case R_MN10300_PLT16:
1751 if (h != NULL
1752 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
1753 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
1754 && h->plt.offset != (bfd_vma) -1)
1755 {
1756 if (dynobj == NULL)
1757 return bfd_reloc_dangerous;
1758
1759 splt = htab->root.splt;
1760 value = (splt->output_section->vma
1761 + splt->output_offset
1762 + h->plt.offset) - value;
1763 }
1764
1765 value -= (input_section->output_section->vma
1766 + input_section->output_offset);
1767 value -= offset;
1768 value += addend;
1769
1770 if ((long) value > 0x7fff || (long) value < -0x8000)
1771 return bfd_reloc_overflow;
1772
1773 bfd_put_16 (input_bfd, value, hit_data);
1774 return bfd_reloc_ok;
1775
1776 case R_MN10300_TLS_LDO:
1777 value = dtpoff (info, value);
1778 bfd_put_32 (input_bfd, value + addend, hit_data);
1779 return bfd_reloc_ok;
1780
1781 case R_MN10300_TLS_LE:
1782 value = tpoff (info, value);
1783 bfd_put_32 (input_bfd, value + addend, hit_data);
1784 return bfd_reloc_ok;
1785
1786 case R_MN10300_TLS_LD:
1787 if (dynobj == NULL)
1788 return bfd_reloc_dangerous;
1789
1790 sgot = htab->root.sgot;
1791 BFD_ASSERT (sgot != NULL);
1792 value = htab->tls_ldm_got.offset + sgot->output_offset;
1793 bfd_put_32 (input_bfd, value, hit_data);
1794
1795 if (!htab->tls_ldm_got.rel_emitted)
1796 {
1797 asection *srelgot = htab->root.srelgot;
1798 Elf_Internal_Rela rel;
1799
1800 BFD_ASSERT (srelgot != NULL);
1801 htab->tls_ldm_got.rel_emitted ++;
1802 rel.r_offset = (sgot->output_section->vma
1803 + sgot->output_offset
1804 + htab->tls_ldm_got.offset);
1805 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset);
1806 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + htab->tls_ldm_got.offset+4);
1807 rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD);
1808 rel.r_addend = 0;
1809 bfd_elf32_swap_reloca_out (output_bfd, & rel,
1810 (bfd_byte *) ((Elf32_External_Rela *) srelgot->contents
1811 + srelgot->reloc_count));
1812 ++ srelgot->reloc_count;
1813 }
1814
1815 return bfd_reloc_ok;
1816
1817 case R_MN10300_TLS_GOTIE:
1818 value = tpoff (info, value);
1819 /* Fall Through. */
1820
1821 case R_MN10300_TLS_GD:
1822 case R_MN10300_TLS_IE:
1823 case R_MN10300_GOT32:
1824 case R_MN10300_GOT24:
1825 case R_MN10300_GOT16:
1826 if (dynobj == NULL)
1827 return bfd_reloc_dangerous;
1828
1829 sgot = htab->root.sgot;
1830 if (r_type == R_MN10300_TLS_GD)
1831 value = dtpoff (info, value);
1832
1833 if (h != NULL)
1834 {
1835 bfd_vma off;
1836
1837 off = h->got.offset;
1838 /* Offsets in the GOT are allocated in check_relocs
1839 which is not called for shared libraries... */
1840 if (off == (bfd_vma) -1)
1841 off = 0;
1842
1843 if (sgot->contents != NULL
1844 && (! elf_hash_table (info)->dynamic_sections_created
1845 || SYMBOL_REFERENCES_LOCAL (info, h)))
1846 /* This is actually a static link, or it is a
1847 -Bsymbolic link and the symbol is defined
1848 locally, or the symbol was forced to be local
1849 because of a version file. We must initialize
1850 this entry in the global offset table.
1851
1852 When doing a dynamic link, we create a .rela.got
1853 relocation entry to initialize the value. This
1854 is done in the finish_dynamic_symbol routine. */
1855 bfd_put_32 (output_bfd, value,
1856 sgot->contents + off);
1857
1858 value = sgot->output_offset + off;
1859 }
1860 else
1861 {
1862 bfd_vma off;
1863
1864 off = elf_local_got_offsets (input_bfd)[symndx];
1865
1866 if (off & 1)
1867 bfd_put_32 (output_bfd, value, sgot->contents + (off & ~ 1));
1868 else
1869 {
1870 bfd_put_32 (output_bfd, value, sgot->contents + off);
1871
1872 if (bfd_link_pic (info))
1873 {
1874 asection *srelgot = htab->root.srelgot;;
1875 Elf_Internal_Rela outrel;
1876
1877 BFD_ASSERT (srelgot != NULL);
1878
1879 outrel.r_offset = (sgot->output_section->vma
1880 + sgot->output_offset
1881 + off);
1882 switch (r_type)
1883 {
1884 case R_MN10300_TLS_GD:
1885 outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPOFF);
1886 outrel.r_offset = (sgot->output_section->vma
1887 + sgot->output_offset
1888 + off + 4);
1889 bfd_elf32_swap_reloca_out (output_bfd, & outrel,
1890 (bfd_byte *) (((Elf32_External_Rela *)
1891 srelgot->contents)
1892 + srelgot->reloc_count));
1893 ++ srelgot->reloc_count;
1894 outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_DTPMOD);
1895 break;
1896 case R_MN10300_TLS_GOTIE:
1897 case R_MN10300_TLS_IE:
1898 outrel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF);
1899 break;
1900 default:
1901 outrel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
1902 break;
1903 }
1904
1905 outrel.r_addend = value;
1906 bfd_elf32_swap_reloca_out (output_bfd, &outrel,
1907 (bfd_byte *) (((Elf32_External_Rela *)
1908 srelgot->contents)
1909 + srelgot->reloc_count));
1910 ++ srelgot->reloc_count;
1911 elf_local_got_offsets (input_bfd)[symndx] |= 1;
1912 }
1913
1914 value = sgot->output_offset + (off & ~(bfd_vma) 1);
1915 }
1916 }
1917
1918 value += addend;
1919
1920 if (r_type == R_MN10300_TLS_IE)
1921 {
1922 value += sgot->output_section->vma;
1923 bfd_put_32 (input_bfd, value, hit_data);
1924 return bfd_reloc_ok;
1925 }
1926 else if (r_type == R_MN10300_TLS_GOTIE
1927 || r_type == R_MN10300_TLS_GD
1928 || r_type == R_MN10300_TLS_LD)
1929 {
1930 bfd_put_32 (input_bfd, value, hit_data);
1931 return bfd_reloc_ok;
1932 }
1933 else if (r_type == R_MN10300_GOT32)
1934 {
1935 bfd_put_32 (input_bfd, value, hit_data);
1936 return bfd_reloc_ok;
1937 }
1938 else if (r_type == R_MN10300_GOT24)
1939 {
1940 if ((long) value > 0x7fffff || (long) value < -0x800000)
1941 return bfd_reloc_overflow;
1942
1943 bfd_put_8 (input_bfd, value & 0xff, hit_data);
1944 bfd_put_8 (input_bfd, (value >> 8) & 0xff, hit_data + 1);
1945 bfd_put_8 (input_bfd, (value >> 16) & 0xff, hit_data + 2);
1946 return bfd_reloc_ok;
1947 }
1948 else if (r_type == R_MN10300_GOT16)
1949 {
1950 if ((long) value > 0x7fff || (long) value < -0x8000)
1951 return bfd_reloc_overflow;
1952
1953 bfd_put_16 (input_bfd, value, hit_data);
1954 return bfd_reloc_ok;
1955 }
1956 /* Fall through. */
1957
1958 default:
1959 return bfd_reloc_notsupported;
1960 }
1961 }
1962 \f
1963 /* Relocate an MN10300 ELF section. */
1964
1965 static bfd_boolean
1966 mn10300_elf_relocate_section (bfd *output_bfd,
1967 struct bfd_link_info *info,
1968 bfd *input_bfd,
1969 asection *input_section,
1970 bfd_byte *contents,
1971 Elf_Internal_Rela *relocs,
1972 Elf_Internal_Sym *local_syms,
1973 asection **local_sections)
1974 {
1975 Elf_Internal_Shdr *symtab_hdr;
1976 struct elf_link_hash_entry **sym_hashes;
1977 Elf_Internal_Rela *rel, *relend;
1978 Elf_Internal_Rela * trel;
1979
1980 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1981 sym_hashes = elf_sym_hashes (input_bfd);
1982
1983 rel = relocs;
1984 relend = relocs + input_section->reloc_count;
1985 for (; rel < relend; rel++)
1986 {
1987 int r_type;
1988 reloc_howto_type *howto;
1989 unsigned long r_symndx;
1990 Elf_Internal_Sym *sym;
1991 asection *sec;
1992 struct elf32_mn10300_link_hash_entry *h;
1993 bfd_vma relocation;
1994 bfd_reloc_status_type r;
1995 int tls_r_type;
1996 bfd_boolean unresolved_reloc = FALSE;
1997 bfd_boolean warned, ignored;
1998 struct elf_link_hash_entry * hh;
1999
2000 relocation = 0;
2001 r_symndx = ELF32_R_SYM (rel->r_info);
2002 r_type = ELF32_R_TYPE (rel->r_info);
2003 howto = elf_mn10300_howto_table + r_type;
2004
2005 /* Just skip the vtable gc relocs. */
2006 if (r_type == R_MN10300_GNU_VTINHERIT
2007 || r_type == R_MN10300_GNU_VTENTRY)
2008 continue;
2009
2010 h = NULL;
2011 sym = NULL;
2012 sec = NULL;
2013 if (r_symndx < symtab_hdr->sh_info)
2014 hh = NULL;
2015 else
2016 {
2017 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2018 r_symndx, symtab_hdr, sym_hashes,
2019 hh, sec, relocation,
2020 unresolved_reloc, warned, ignored);
2021 }
2022 h = elf_mn10300_hash_entry (hh);
2023
2024 tls_r_type = elf_mn10300_tls_transition (info, r_type, hh, input_section, 0);
2025 if (tls_r_type != r_type)
2026 {
2027 bfd_boolean had_plt;
2028
2029 had_plt = mn10300_do_tls_transition (input_bfd, r_type, tls_r_type,
2030 contents, rel->r_offset);
2031 r_type = tls_r_type;
2032 howto = elf_mn10300_howto_table + r_type;
2033
2034 if (had_plt)
2035 for (trel = rel+1; trel < relend; trel++)
2036 if ((ELF32_R_TYPE (trel->r_info) == R_MN10300_PLT32
2037 || ELF32_R_TYPE (trel->r_info) == R_MN10300_PCREL32)
2038 && rel->r_offset + had_plt == trel->r_offset)
2039 trel->r_info = ELF32_R_INFO (0, R_MN10300_NONE);
2040 }
2041
2042 if (r_symndx < symtab_hdr->sh_info)
2043 {
2044 sym = local_syms + r_symndx;
2045 sec = local_sections[r_symndx];
2046 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2047 }
2048 else
2049 {
2050 if ((h->root.root.type == bfd_link_hash_defined
2051 || h->root.root.type == bfd_link_hash_defweak)
2052 && ( r_type == R_MN10300_GOTPC32
2053 || r_type == R_MN10300_GOTPC16
2054 || (( r_type == R_MN10300_PLT32
2055 || r_type == R_MN10300_PLT16)
2056 && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL
2057 && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN
2058 && h->root.plt.offset != (bfd_vma) -1)
2059 || (( r_type == R_MN10300_GOT32
2060 || r_type == R_MN10300_GOT24
2061 || r_type == R_MN10300_TLS_GD
2062 || r_type == R_MN10300_TLS_LD
2063 || r_type == R_MN10300_TLS_GOTIE
2064 || r_type == R_MN10300_TLS_IE
2065 || r_type == R_MN10300_GOT16)
2066 && elf_hash_table (info)->dynamic_sections_created
2067 && !SYMBOL_REFERENCES_LOCAL (info, hh))
2068 || (r_type == R_MN10300_32
2069 /* _32 relocs in executables force _COPY relocs,
2070 such that the address of the symbol ends up
2071 being local. */
2072 && !bfd_link_executable (info)
2073 && !SYMBOL_REFERENCES_LOCAL (info, hh)
2074 && ((input_section->flags & SEC_ALLOC) != 0
2075 /* DWARF will emit R_MN10300_32 relocations
2076 in its sections against symbols defined
2077 externally in shared libraries. We can't
2078 do anything with them here. */
2079 || ((input_section->flags & SEC_DEBUGGING) != 0
2080 && h->root.def_dynamic)))))
2081 /* In these cases, we don't need the relocation
2082 value. We check specially because in some
2083 obscure cases sec->output_section will be NULL. */
2084 relocation = 0;
2085
2086 else if (!bfd_link_relocatable (info) && unresolved_reloc
2087 && _bfd_elf_section_offset (output_bfd, info, input_section,
2088 rel->r_offset) != (bfd_vma) -1)
2089
2090 _bfd_error_handler
2091 /* xgettext:c-format */
2092 (_("%pB(%pA+%#" PRIx64 "): "
2093 "unresolvable %s relocation against symbol `%s'"),
2094 input_bfd,
2095 input_section,
2096 (uint64_t) rel->r_offset,
2097 howto->name,
2098 h->root.root.root.string);
2099 }
2100
2101 if (sec != NULL && discarded_section (sec))
2102 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2103 rel, 1, relend, howto, 0, contents);
2104
2105 if (bfd_link_relocatable (info))
2106 continue;
2107
2108 r = mn10300_elf_final_link_relocate (howto, input_bfd, output_bfd,
2109 input_section,
2110 contents, rel->r_offset,
2111 relocation, rel->r_addend,
2112 (struct elf_link_hash_entry *) h,
2113 r_symndx,
2114 info, sec, h == NULL);
2115
2116 if (r != bfd_reloc_ok)
2117 {
2118 const char *name;
2119 const char *msg = NULL;
2120
2121 if (h != NULL)
2122 name = h->root.root.root.string;
2123 else
2124 {
2125 name = (bfd_elf_string_from_elf_section
2126 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2127 if (name == NULL || *name == '\0')
2128 name = bfd_section_name (sec);
2129 }
2130
2131 switch (r)
2132 {
2133 case bfd_reloc_overflow:
2134 (*info->callbacks->reloc_overflow)
2135 (info, (h ? &h->root.root : NULL), name, howto->name,
2136 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
2137 break;
2138
2139 case bfd_reloc_undefined:
2140 (*info->callbacks->undefined_symbol)
2141 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
2142 break;
2143
2144 case bfd_reloc_outofrange:
2145 msg = _("internal error: out of range error");
2146 goto common_error;
2147
2148 case bfd_reloc_notsupported:
2149 msg = _("internal error: unsupported relocation error");
2150 goto common_error;
2151
2152 case bfd_reloc_dangerous:
2153 if (r_type == R_MN10300_PCREL32)
2154 msg = _("error: inappropriate relocation type for shared"
2155 " library (did you forget -fpic?)");
2156 else if (r_type == R_MN10300_GOT32)
2157 /* xgettext:c-format */
2158 msg = _("%pB: taking the address of protected function"
2159 " '%s' cannot be done when making a shared library");
2160 else
2161 msg = _("internal error: suspicious relocation type used"
2162 " in shared library");
2163 goto common_error;
2164
2165 default:
2166 msg = _("internal error: unknown error");
2167 /* Fall through. */
2168
2169 common_error:
2170 _bfd_error_handler (msg, input_bfd, name);
2171 bfd_set_error (bfd_error_bad_value);
2172 return FALSE;
2173 }
2174 }
2175 }
2176
2177 return TRUE;
2178 }
2179
2180 /* Finish initializing one hash table entry. */
2181
2182 static bfd_boolean
2183 elf32_mn10300_finish_hash_table_entry (struct bfd_hash_entry *gen_entry,
2184 void * in_args)
2185 {
2186 struct elf32_mn10300_link_hash_entry *entry;
2187 struct bfd_link_info *link_info = (struct bfd_link_info *) in_args;
2188 unsigned int byte_count = 0;
2189
2190 entry = (struct elf32_mn10300_link_hash_entry *) gen_entry;
2191
2192 /* If we already know we want to convert "call" to "calls" for calls
2193 to this symbol, then return now. */
2194 if (entry->flags == MN10300_CONVERT_CALL_TO_CALLS)
2195 return TRUE;
2196
2197 /* If there are no named calls to this symbol, or there's nothing we
2198 can move from the function itself into the "call" instruction,
2199 then note that all "call" instructions should be converted into
2200 "calls" instructions and return. If a symbol is available for
2201 dynamic symbol resolution (overridable or overriding), avoid
2202 custom calling conventions. */
2203 if (entry->direct_calls == 0
2204 || (entry->stack_size == 0 && entry->movm_args == 0)
2205 || (elf_hash_table (link_info)->dynamic_sections_created
2206 && ELF_ST_VISIBILITY (entry->root.other) != STV_INTERNAL
2207 && ELF_ST_VISIBILITY (entry->root.other) != STV_HIDDEN))
2208 {
2209 /* Make a note that we should convert "call" instructions to "calls"
2210 instructions for calls to this symbol. */
2211 entry->flags |= MN10300_CONVERT_CALL_TO_CALLS;
2212 return TRUE;
2213 }
2214
2215 /* We may be able to move some instructions from the function itself into
2216 the "call" instruction. Count how many bytes we might be able to
2217 eliminate in the function itself. */
2218
2219 /* A movm instruction is two bytes. */
2220 if (entry->movm_args)
2221 byte_count += 2;
2222
2223 /* Count the insn to allocate stack space too. */
2224 if (entry->stack_size > 0)
2225 {
2226 if (entry->stack_size <= 128)
2227 byte_count += 3;
2228 else
2229 byte_count += 4;
2230 }
2231
2232 /* If using "call" will result in larger code, then turn all
2233 the associated "call" instructions into "calls" instructions. */
2234 if (byte_count < entry->direct_calls)
2235 entry->flags |= MN10300_CONVERT_CALL_TO_CALLS;
2236
2237 /* This routine never fails. */
2238 return TRUE;
2239 }
2240
2241 /* Used to count hash table entries. */
2242
2243 static bfd_boolean
2244 elf32_mn10300_count_hash_table_entries (struct bfd_hash_entry *gen_entry ATTRIBUTE_UNUSED,
2245 void * in_args)
2246 {
2247 int *count = (int *) in_args;
2248
2249 (*count) ++;
2250 return TRUE;
2251 }
2252
2253 /* Used to enumerate hash table entries into a linear array. */
2254
2255 static bfd_boolean
2256 elf32_mn10300_list_hash_table_entries (struct bfd_hash_entry *gen_entry,
2257 void * in_args)
2258 {
2259 struct bfd_hash_entry ***ptr = (struct bfd_hash_entry ***) in_args;
2260
2261 **ptr = gen_entry;
2262 (*ptr) ++;
2263 return TRUE;
2264 }
2265
2266 /* Used to sort the array created by the above. */
2267
2268 static int
2269 sort_by_value (const void *va, const void *vb)
2270 {
2271 struct elf32_mn10300_link_hash_entry *a
2272 = *(struct elf32_mn10300_link_hash_entry **) va;
2273 struct elf32_mn10300_link_hash_entry *b
2274 = *(struct elf32_mn10300_link_hash_entry **) vb;
2275
2276 return a->value - b->value;
2277 }
2278
2279 /* Compute the stack size and movm arguments for the function
2280 referred to by HASH at address ADDR in section with
2281 contents CONTENTS, store the information in the hash table. */
2282
2283 static void
2284 compute_function_info (bfd *abfd,
2285 struct elf32_mn10300_link_hash_entry *hash,
2286 bfd_vma addr,
2287 unsigned char *contents)
2288 {
2289 unsigned char byte1, byte2;
2290 /* We only care about a very small subset of the possible prologue
2291 sequences here. Basically we look for:
2292
2293 movm [d2,d3,a2,a3],sp (optional)
2294 add <size>,sp (optional, and only for sizes which fit in an unsigned
2295 8 bit number)
2296
2297 If we find anything else, we quit. */
2298
2299 /* Look for movm [regs],sp. */
2300 byte1 = bfd_get_8 (abfd, contents + addr);
2301 byte2 = bfd_get_8 (abfd, contents + addr + 1);
2302
2303 if (byte1 == 0xcf)
2304 {
2305 hash->movm_args = byte2;
2306 addr += 2;
2307 byte1 = bfd_get_8 (abfd, contents + addr);
2308 byte2 = bfd_get_8 (abfd, contents + addr + 1);
2309 }
2310
2311 /* Now figure out how much stack space will be allocated by the movm
2312 instruction. We need this kept separate from the function's normal
2313 stack space. */
2314 if (hash->movm_args)
2315 {
2316 /* Space for d2. */
2317 if (hash->movm_args & 0x80)
2318 hash->movm_stack_size += 4;
2319
2320 /* Space for d3. */
2321 if (hash->movm_args & 0x40)
2322 hash->movm_stack_size += 4;
2323
2324 /* Space for a2. */
2325 if (hash->movm_args & 0x20)
2326 hash->movm_stack_size += 4;
2327
2328 /* Space for a3. */
2329 if (hash->movm_args & 0x10)
2330 hash->movm_stack_size += 4;
2331
2332 /* "other" space. d0, d1, a0, a1, mdr, lir, lar, 4 byte pad. */
2333 if (hash->movm_args & 0x08)
2334 hash->movm_stack_size += 8 * 4;
2335
2336 if (bfd_get_mach (abfd) == bfd_mach_am33
2337 || bfd_get_mach (abfd) == bfd_mach_am33_2)
2338 {
2339 /* "exother" space. e0, e1, mdrq, mcrh, mcrl, mcvf */
2340 if (hash->movm_args & 0x1)
2341 hash->movm_stack_size += 6 * 4;
2342
2343 /* exreg1 space. e4, e5, e6, e7 */
2344 if (hash->movm_args & 0x2)
2345 hash->movm_stack_size += 4 * 4;
2346
2347 /* exreg0 space. e2, e3 */
2348 if (hash->movm_args & 0x4)
2349 hash->movm_stack_size += 2 * 4;
2350 }
2351 }
2352
2353 /* Now look for the two stack adjustment variants. */
2354 if (byte1 == 0xf8 && byte2 == 0xfe)
2355 {
2356 int temp = bfd_get_8 (abfd, contents + addr + 2);
2357 temp = ((temp & 0xff) ^ (~0x7f)) + 0x80;
2358
2359 hash->stack_size = -temp;
2360 }
2361 else if (byte1 == 0xfa && byte2 == 0xfe)
2362 {
2363 int temp = bfd_get_16 (abfd, contents + addr + 2);
2364 temp = ((temp & 0xffff) ^ (~0x7fff)) + 0x8000;
2365 temp = -temp;
2366
2367 if (temp < 255)
2368 hash->stack_size = temp;
2369 }
2370
2371 /* If the total stack to be allocated by the call instruction is more
2372 than 255 bytes, then we can't remove the stack adjustment by using
2373 "call" (we might still be able to remove the "movm" instruction. */
2374 if (hash->stack_size + hash->movm_stack_size > 255)
2375 hash->stack_size = 0;
2376 }
2377
2378 /* Delete some bytes from a section while relaxing. */
2379
2380 static bfd_boolean
2381 mn10300_elf_relax_delete_bytes (bfd *abfd,
2382 asection *sec,
2383 bfd_vma addr,
2384 int count)
2385 {
2386 Elf_Internal_Shdr *symtab_hdr;
2387 unsigned int sec_shndx;
2388 bfd_byte *contents;
2389 Elf_Internal_Rela *irel, *irelend;
2390 Elf_Internal_Rela *irelalign;
2391 bfd_vma toaddr;
2392 Elf_Internal_Sym *isym, *isymend;
2393 struct elf_link_hash_entry **sym_hashes;
2394 struct elf_link_hash_entry **end_hashes;
2395 unsigned int symcount;
2396
2397 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2398
2399 contents = elf_section_data (sec)->this_hdr.contents;
2400
2401 irelalign = NULL;
2402 toaddr = sec->size;
2403
2404 irel = elf_section_data (sec)->relocs;
2405 irelend = irel + sec->reloc_count;
2406
2407 if (sec->reloc_count > 0)
2408 {
2409 /* If there is an align reloc at the end of the section ignore it.
2410 GAS creates these relocs for reasons of its own, and they just
2411 serve to keep the section artifically inflated. */
2412 if (ELF32_R_TYPE ((irelend - 1)->r_info) == (int) R_MN10300_ALIGN)
2413 --irelend;
2414
2415 /* The deletion must stop at the next ALIGN reloc for an alignment
2416 power larger than, or not a multiple of, the number of bytes we
2417 are deleting. */
2418 for (; irel < irelend; irel++)
2419 {
2420 int alignment = 1 << irel->r_addend;
2421
2422 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN
2423 && irel->r_offset > addr
2424 && irel->r_offset < toaddr
2425 && (count < alignment
2426 || alignment % count != 0))
2427 {
2428 irelalign = irel;
2429 toaddr = irel->r_offset;
2430 break;
2431 }
2432 }
2433 }
2434
2435 /* Actually delete the bytes. */
2436 memmove (contents + addr, contents + addr + count,
2437 (size_t) (toaddr - addr - count));
2438
2439 /* Adjust the section's size if we are shrinking it, or else
2440 pad the bytes between the end of the shrunken region and
2441 the start of the next region with NOP codes. */
2442 if (irelalign == NULL)
2443 {
2444 sec->size -= count;
2445 /* Include symbols at the end of the section, but
2446 not at the end of a sub-region of the section. */
2447 toaddr ++;
2448 }
2449 else
2450 {
2451 int i;
2452
2453 #define NOP_OPCODE 0xcb
2454
2455 for (i = 0; i < count; i ++)
2456 bfd_put_8 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
2457 }
2458
2459 /* Adjust all the relocs. */
2460 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
2461 {
2462 /* Get the new reloc address. */
2463 if ((irel->r_offset > addr
2464 && irel->r_offset < toaddr)
2465 || (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN
2466 && irel->r_offset == toaddr))
2467 irel->r_offset -= count;
2468 }
2469
2470 /* Adjust the local symbols in the section, reducing their value
2471 by the number of bytes deleted. Note - symbols within the deleted
2472 region are moved to the address of the start of the region, which
2473 actually means that they will address the byte beyond the end of
2474 the region once the deletion has been completed. */
2475 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2476 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
2477 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2478 {
2479 if (isym->st_shndx == sec_shndx
2480 && isym->st_value > addr
2481 && isym->st_value < toaddr)
2482 {
2483 if (isym->st_value < addr + count)
2484 isym->st_value = addr;
2485 else
2486 isym->st_value -= count;
2487 }
2488 /* Adjust the function symbol's size as well. */
2489 else if (isym->st_shndx == sec_shndx
2490 && ELF_ST_TYPE (isym->st_info) == STT_FUNC
2491 && isym->st_value + isym->st_size > addr
2492 && isym->st_value + isym->st_size < toaddr)
2493 isym->st_size -= count;
2494 }
2495
2496 /* Now adjust the global symbols defined in this section. */
2497 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2498 - symtab_hdr->sh_info);
2499 sym_hashes = elf_sym_hashes (abfd);
2500 end_hashes = sym_hashes + symcount;
2501 for (; sym_hashes < end_hashes; sym_hashes++)
2502 {
2503 struct elf_link_hash_entry *sym_hash = *sym_hashes;
2504
2505 if ((sym_hash->root.type == bfd_link_hash_defined
2506 || sym_hash->root.type == bfd_link_hash_defweak)
2507 && sym_hash->root.u.def.section == sec
2508 && sym_hash->root.u.def.value > addr
2509 && sym_hash->root.u.def.value < toaddr)
2510 {
2511 if (sym_hash->root.u.def.value < addr + count)
2512 sym_hash->root.u.def.value = addr;
2513 else
2514 sym_hash->root.u.def.value -= count;
2515 }
2516 /* Adjust the function symbol's size as well. */
2517 else if (sym_hash->root.type == bfd_link_hash_defined
2518 && sym_hash->root.u.def.section == sec
2519 && sym_hash->type == STT_FUNC
2520 && sym_hash->root.u.def.value + sym_hash->size > addr
2521 && sym_hash->root.u.def.value + sym_hash->size < toaddr)
2522 sym_hash->size -= count;
2523 }
2524
2525 /* See if we can move the ALIGN reloc forward.
2526 We have adjusted r_offset for it already. */
2527 if (irelalign != NULL)
2528 {
2529 bfd_vma alignto, alignaddr;
2530
2531 if ((int) irelalign->r_addend > 0)
2532 {
2533 /* This is the old address. */
2534 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend);
2535 /* This is where the align points to now. */
2536 alignaddr = BFD_ALIGN (irelalign->r_offset,
2537 1 << irelalign->r_addend);
2538 if (alignaddr < alignto)
2539 /* Tail recursion. */
2540 return mn10300_elf_relax_delete_bytes (abfd, sec, alignaddr,
2541 (int) (alignto - alignaddr));
2542 }
2543 }
2544
2545 return TRUE;
2546 }
2547
2548 /* Return TRUE if a symbol exists at the given address, else return
2549 FALSE. */
2550
2551 static bfd_boolean
2552 mn10300_elf_symbol_address_p (bfd *abfd,
2553 asection *sec,
2554 Elf_Internal_Sym *isym,
2555 bfd_vma addr)
2556 {
2557 Elf_Internal_Shdr *symtab_hdr;
2558 unsigned int sec_shndx;
2559 Elf_Internal_Sym *isymend;
2560 struct elf_link_hash_entry **sym_hashes;
2561 struct elf_link_hash_entry **end_hashes;
2562 unsigned int symcount;
2563
2564 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
2565
2566 /* Examine all the symbols. */
2567 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2568 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
2569 if (isym->st_shndx == sec_shndx
2570 && isym->st_value == addr)
2571 return TRUE;
2572
2573 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2574 - symtab_hdr->sh_info);
2575 sym_hashes = elf_sym_hashes (abfd);
2576 end_hashes = sym_hashes + symcount;
2577 for (; sym_hashes < end_hashes; sym_hashes++)
2578 {
2579 struct elf_link_hash_entry *sym_hash = *sym_hashes;
2580
2581 if ((sym_hash->root.type == bfd_link_hash_defined
2582 || sym_hash->root.type == bfd_link_hash_defweak)
2583 && sym_hash->root.u.def.section == sec
2584 && sym_hash->root.u.def.value == addr)
2585 return TRUE;
2586 }
2587
2588 return FALSE;
2589 }
2590
2591 /* This function handles relaxing for the mn10300.
2592
2593 There are quite a few relaxing opportunities available on the mn10300:
2594
2595 * calls:32 -> calls:16 2 bytes
2596 * call:32 -> call:16 2 bytes
2597
2598 * call:32 -> calls:32 1 byte
2599 * call:16 -> calls:16 1 byte
2600 * These are done anytime using "calls" would result
2601 in smaller code, or when necessary to preserve the
2602 meaning of the program.
2603
2604 * call:32 varies
2605 * call:16
2606 * In some circumstances we can move instructions
2607 from a function prologue into a "call" instruction.
2608 This is only done if the resulting code is no larger
2609 than the original code.
2610
2611 * jmp:32 -> jmp:16 2 bytes
2612 * jmp:16 -> bra:8 1 byte
2613
2614 * If the previous instruction is a conditional branch
2615 around the jump/bra, we may be able to reverse its condition
2616 and change its target to the jump's target. The jump/bra
2617 can then be deleted. 2 bytes
2618
2619 * mov abs32 -> mov abs16 1 or 2 bytes
2620
2621 * Most instructions which accept imm32 can relax to imm16 1 or 2 bytes
2622 - Most instructions which accept imm16 can relax to imm8 1 or 2 bytes
2623
2624 * Most instructions which accept d32 can relax to d16 1 or 2 bytes
2625 - Most instructions which accept d16 can relax to d8 1 or 2 bytes
2626
2627 We don't handle imm16->imm8 or d16->d8 as they're very rare
2628 and somewhat more difficult to support. */
2629
2630 static bfd_boolean
2631 mn10300_elf_relax_section (bfd *abfd,
2632 asection *sec,
2633 struct bfd_link_info *link_info,
2634 bfd_boolean *again)
2635 {
2636 Elf_Internal_Shdr *symtab_hdr;
2637 Elf_Internal_Rela *internal_relocs = NULL;
2638 Elf_Internal_Rela *irel, *irelend;
2639 bfd_byte *contents = NULL;
2640 Elf_Internal_Sym *isymbuf = NULL;
2641 struct elf32_mn10300_link_hash_table *hash_table;
2642 asection *section = sec;
2643 bfd_vma align_gap_adjustment;
2644
2645 if (bfd_link_relocatable (link_info))
2646 (*link_info->callbacks->einfo)
2647 (_("%P%F: --relax and -r may not be used together\n"));
2648
2649 /* Assume nothing changes. */
2650 *again = FALSE;
2651
2652 /* We need a pointer to the mn10300 specific hash table. */
2653 hash_table = elf32_mn10300_hash_table (link_info);
2654 if (hash_table == NULL)
2655 return FALSE;
2656
2657 /* Initialize fields in each hash table entry the first time through. */
2658 if ((hash_table->flags & MN10300_HASH_ENTRIES_INITIALIZED) == 0)
2659 {
2660 bfd *input_bfd;
2661
2662 /* Iterate over all the input bfds. */
2663 for (input_bfd = link_info->input_bfds;
2664 input_bfd != NULL;
2665 input_bfd = input_bfd->link.next)
2666 {
2667 /* We're going to need all the symbols for each bfd. */
2668 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2669 if (symtab_hdr->sh_info != 0)
2670 {
2671 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2672 if (isymbuf == NULL)
2673 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2674 symtab_hdr->sh_info, 0,
2675 NULL, NULL, NULL);
2676 if (isymbuf == NULL)
2677 goto error_return;
2678 }
2679
2680 /* Iterate over each section in this bfd. */
2681 for (section = input_bfd->sections;
2682 section != NULL;
2683 section = section->next)
2684 {
2685 struct elf32_mn10300_link_hash_entry *hash;
2686 asection *sym_sec = NULL;
2687 const char *sym_name;
2688 char *new_name;
2689
2690 /* If there's nothing to do in this section, skip it. */
2691 if (! ((section->flags & SEC_RELOC) != 0
2692 && section->reloc_count != 0))
2693 continue;
2694 if ((section->flags & SEC_ALLOC) == 0)
2695 continue;
2696
2697 /* Get cached copy of section contents if it exists. */
2698 if (elf_section_data (section)->this_hdr.contents != NULL)
2699 contents = elf_section_data (section)->this_hdr.contents;
2700 else if (section->size != 0)
2701 {
2702 /* Go get them off disk. */
2703 if (!bfd_malloc_and_get_section (input_bfd, section,
2704 &contents))
2705 goto error_return;
2706 }
2707 else
2708 contents = NULL;
2709
2710 /* If there aren't any relocs, then there's nothing to do. */
2711 if ((section->flags & SEC_RELOC) != 0
2712 && section->reloc_count != 0)
2713 {
2714 /* Get a copy of the native relocations. */
2715 internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section,
2716 NULL, NULL,
2717 link_info->keep_memory);
2718 if (internal_relocs == NULL)
2719 goto error_return;
2720
2721 /* Now examine each relocation. */
2722 irel = internal_relocs;
2723 irelend = irel + section->reloc_count;
2724 for (; irel < irelend; irel++)
2725 {
2726 long r_type;
2727 unsigned long r_index;
2728 unsigned char code;
2729
2730 r_type = ELF32_R_TYPE (irel->r_info);
2731 r_index = ELF32_R_SYM (irel->r_info);
2732
2733 if (r_type < 0 || r_type >= (int) R_MN10300_MAX)
2734 goto error_return;
2735
2736 /* We need the name and hash table entry of the target
2737 symbol! */
2738 hash = NULL;
2739 sym_sec = NULL;
2740
2741 if (r_index < symtab_hdr->sh_info)
2742 {
2743 /* A local symbol. */
2744 Elf_Internal_Sym *isym;
2745 struct elf_link_hash_table *elftab;
2746 size_t amt;
2747
2748 isym = isymbuf + r_index;
2749 if (isym->st_shndx == SHN_UNDEF)
2750 sym_sec = bfd_und_section_ptr;
2751 else if (isym->st_shndx == SHN_ABS)
2752 sym_sec = bfd_abs_section_ptr;
2753 else if (isym->st_shndx == SHN_COMMON)
2754 sym_sec = bfd_com_section_ptr;
2755 else
2756 sym_sec
2757 = bfd_section_from_elf_index (input_bfd,
2758 isym->st_shndx);
2759
2760 sym_name
2761 = bfd_elf_string_from_elf_section (input_bfd,
2762 (symtab_hdr
2763 ->sh_link),
2764 isym->st_name);
2765
2766 /* If it isn't a function, then we don't care
2767 about it. */
2768 if (ELF_ST_TYPE (isym->st_info) != STT_FUNC)
2769 continue;
2770
2771 /* Tack on an ID so we can uniquely identify this
2772 local symbol in the global hash table. */
2773 amt = strlen (sym_name) + 10;
2774 new_name = bfd_malloc (amt);
2775 if (new_name == NULL)
2776 goto error_return;
2777
2778 sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
2779 sym_name = new_name;
2780
2781 elftab = &hash_table->static_hash_table->root;
2782 hash = ((struct elf32_mn10300_link_hash_entry *)
2783 elf_link_hash_lookup (elftab, sym_name,
2784 TRUE, TRUE, FALSE));
2785 free (new_name);
2786 }
2787 else
2788 {
2789 r_index -= symtab_hdr->sh_info;
2790 hash = (struct elf32_mn10300_link_hash_entry *)
2791 elf_sym_hashes (input_bfd)[r_index];
2792 }
2793
2794 sym_name = hash->root.root.root.string;
2795 if ((section->flags & SEC_CODE) != 0)
2796 {
2797 /* If this is not a "call" instruction, then we
2798 should convert "call" instructions to "calls"
2799 instructions. */
2800 code = bfd_get_8 (input_bfd,
2801 contents + irel->r_offset - 1);
2802 if (code != 0xdd && code != 0xcd)
2803 hash->flags |= MN10300_CONVERT_CALL_TO_CALLS;
2804 }
2805
2806 /* If this is a jump/call, then bump the
2807 direct_calls counter. Else force "call" to
2808 "calls" conversions. */
2809 if (r_type == R_MN10300_PCREL32
2810 || r_type == R_MN10300_PLT32
2811 || r_type == R_MN10300_PLT16
2812 || r_type == R_MN10300_PCREL16)
2813 hash->direct_calls++;
2814 else
2815 hash->flags |= MN10300_CONVERT_CALL_TO_CALLS;
2816 }
2817 }
2818
2819 /* Now look at the actual contents to get the stack size,
2820 and a list of what registers were saved in the prologue
2821 (ie movm_args). */
2822 if ((section->flags & SEC_CODE) != 0)
2823 {
2824 Elf_Internal_Sym *isym, *isymend;
2825 unsigned int sec_shndx;
2826 struct elf_link_hash_entry **hashes;
2827 struct elf_link_hash_entry **end_hashes;
2828 unsigned int symcount;
2829
2830 sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd,
2831 section);
2832
2833 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2834 - symtab_hdr->sh_info);
2835 hashes = elf_sym_hashes (input_bfd);
2836 end_hashes = hashes + symcount;
2837
2838 /* Look at each function defined in this section and
2839 update info for that function. */
2840 isymend = isymbuf + symtab_hdr->sh_info;
2841 for (isym = isymbuf; isym < isymend; isym++)
2842 {
2843 if (isym->st_shndx == sec_shndx
2844 && ELF_ST_TYPE (isym->st_info) == STT_FUNC)
2845 {
2846 struct elf_link_hash_table *elftab;
2847 size_t amt;
2848 struct elf_link_hash_entry **lhashes = hashes;
2849
2850 /* Skip a local symbol if it aliases a
2851 global one. */
2852 for (; lhashes < end_hashes; lhashes++)
2853 {
2854 hash = (struct elf32_mn10300_link_hash_entry *) *lhashes;
2855 if ((hash->root.root.type == bfd_link_hash_defined
2856 || hash->root.root.type == bfd_link_hash_defweak)
2857 && hash->root.root.u.def.section == section
2858 && hash->root.type == STT_FUNC
2859 && hash->root.root.u.def.value == isym->st_value)
2860 break;
2861 }
2862 if (lhashes != end_hashes)
2863 continue;
2864
2865 if (isym->st_shndx == SHN_UNDEF)
2866 sym_sec = bfd_und_section_ptr;
2867 else if (isym->st_shndx == SHN_ABS)
2868 sym_sec = bfd_abs_section_ptr;
2869 else if (isym->st_shndx == SHN_COMMON)
2870 sym_sec = bfd_com_section_ptr;
2871 else
2872 sym_sec
2873 = bfd_section_from_elf_index (input_bfd,
2874 isym->st_shndx);
2875
2876 sym_name = (bfd_elf_string_from_elf_section
2877 (input_bfd, symtab_hdr->sh_link,
2878 isym->st_name));
2879
2880 /* Tack on an ID so we can uniquely identify this
2881 local symbol in the global hash table. */
2882 amt = strlen (sym_name) + 10;
2883 new_name = bfd_malloc (amt);
2884 if (new_name == NULL)
2885 goto error_return;
2886
2887 sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
2888 sym_name = new_name;
2889
2890 elftab = &hash_table->static_hash_table->root;
2891 hash = ((struct elf32_mn10300_link_hash_entry *)
2892 elf_link_hash_lookup (elftab, sym_name,
2893 TRUE, TRUE, FALSE));
2894 free (new_name);
2895 compute_function_info (input_bfd, hash,
2896 isym->st_value, contents);
2897 hash->value = isym->st_value;
2898 }
2899 }
2900
2901 for (; hashes < end_hashes; hashes++)
2902 {
2903 hash = (struct elf32_mn10300_link_hash_entry *) *hashes;
2904 if ((hash->root.root.type == bfd_link_hash_defined
2905 || hash->root.root.type == bfd_link_hash_defweak)
2906 && hash->root.root.u.def.section == section
2907 && hash->root.type == STT_FUNC)
2908 compute_function_info (input_bfd, hash,
2909 (hash)->root.root.u.def.value,
2910 contents);
2911 }
2912 }
2913
2914 /* Cache or free any memory we allocated for the relocs. */
2915 if (elf_section_data (section)->relocs != internal_relocs)
2916 free (internal_relocs);
2917 internal_relocs = NULL;
2918
2919 /* Cache or free any memory we allocated for the contents. */
2920 if (contents != NULL
2921 && elf_section_data (section)->this_hdr.contents != contents)
2922 {
2923 if (! link_info->keep_memory)
2924 free (contents);
2925 else
2926 {
2927 /* Cache the section contents for elf_link_input_bfd. */
2928 elf_section_data (section)->this_hdr.contents = contents;
2929 }
2930 }
2931 contents = NULL;
2932 }
2933
2934 /* Cache or free any memory we allocated for the symbols. */
2935 if (isymbuf != NULL
2936 && symtab_hdr->contents != (unsigned char *) isymbuf)
2937 {
2938 if (! link_info->keep_memory)
2939 free (isymbuf);
2940 else
2941 {
2942 /* Cache the symbols for elf_link_input_bfd. */
2943 symtab_hdr->contents = (unsigned char *) isymbuf;
2944 }
2945 }
2946 isymbuf = NULL;
2947 }
2948
2949 /* Now iterate on each symbol in the hash table and perform
2950 the final initialization steps on each. */
2951 elf32_mn10300_link_hash_traverse (hash_table,
2952 elf32_mn10300_finish_hash_table_entry,
2953 link_info);
2954 elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
2955 elf32_mn10300_finish_hash_table_entry,
2956 link_info);
2957
2958 {
2959 /* This section of code collects all our local symbols, sorts
2960 them by value, and looks for multiple symbols referring to
2961 the same address. For those symbols, the flags are merged.
2962 At this point, the only flag that can be set is
2963 MN10300_CONVERT_CALL_TO_CALLS, so we simply OR the flags
2964 together. */
2965 int static_count = 0, i;
2966 struct elf32_mn10300_link_hash_entry **entries;
2967 struct elf32_mn10300_link_hash_entry **ptr;
2968
2969 elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
2970 elf32_mn10300_count_hash_table_entries,
2971 &static_count);
2972
2973 entries = bfd_malloc (static_count * sizeof (* ptr));
2974
2975 ptr = entries;
2976 elf32_mn10300_link_hash_traverse (hash_table->static_hash_table,
2977 elf32_mn10300_list_hash_table_entries,
2978 & ptr);
2979
2980 qsort (entries, static_count, sizeof (entries[0]), sort_by_value);
2981
2982 for (i = 0; i < static_count - 1; i++)
2983 if (entries[i]->value && entries[i]->value == entries[i+1]->value)
2984 {
2985 int v = entries[i]->flags;
2986 int j;
2987
2988 for (j = i + 1; j < static_count && entries[j]->value == entries[i]->value; j++)
2989 v |= entries[j]->flags;
2990
2991 for (j = i; j < static_count && entries[j]->value == entries[i]->value; j++)
2992 entries[j]->flags = v;
2993
2994 i = j - 1;
2995 }
2996 }
2997
2998 /* All entries in the hash table are fully initialized. */
2999 hash_table->flags |= MN10300_HASH_ENTRIES_INITIALIZED;
3000
3001 /* Now that everything has been initialized, go through each
3002 code section and delete any prologue insns which will be
3003 redundant because their operations will be performed by
3004 a "call" instruction. */
3005 for (input_bfd = link_info->input_bfds;
3006 input_bfd != NULL;
3007 input_bfd = input_bfd->link.next)
3008 {
3009 /* We're going to need all the local symbols for each bfd. */
3010 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3011 if (symtab_hdr->sh_info != 0)
3012 {
3013 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3014 if (isymbuf == NULL)
3015 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3016 symtab_hdr->sh_info, 0,
3017 NULL, NULL, NULL);
3018 if (isymbuf == NULL)
3019 goto error_return;
3020 }
3021
3022 /* Walk over each section in this bfd. */
3023 for (section = input_bfd->sections;
3024 section != NULL;
3025 section = section->next)
3026 {
3027 unsigned int sec_shndx;
3028 Elf_Internal_Sym *isym, *isymend;
3029 struct elf_link_hash_entry **hashes;
3030 struct elf_link_hash_entry **end_hashes;
3031 unsigned int symcount;
3032
3033 /* Skip non-code sections and empty sections. */
3034 if ((section->flags & SEC_CODE) == 0 || section->size == 0)
3035 continue;
3036
3037 if (section->reloc_count != 0)
3038 {
3039 /* Get a copy of the native relocations. */
3040 internal_relocs = _bfd_elf_link_read_relocs (input_bfd, section,
3041 NULL, NULL,
3042 link_info->keep_memory);
3043 if (internal_relocs == NULL)
3044 goto error_return;
3045 }
3046
3047 /* Get cached copy of section contents if it exists. */
3048 if (elf_section_data (section)->this_hdr.contents != NULL)
3049 contents = elf_section_data (section)->this_hdr.contents;
3050 else
3051 {
3052 /* Go get them off disk. */
3053 if (!bfd_malloc_and_get_section (input_bfd, section,
3054 &contents))
3055 goto error_return;
3056 }
3057
3058 sec_shndx = _bfd_elf_section_from_bfd_section (input_bfd,
3059 section);
3060
3061 /* Now look for any function in this section which needs
3062 insns deleted from its prologue. */
3063 isymend = isymbuf + symtab_hdr->sh_info;
3064 for (isym = isymbuf; isym < isymend; isym++)
3065 {
3066 struct elf32_mn10300_link_hash_entry *sym_hash;
3067 asection *sym_sec = NULL;
3068 const char *sym_name;
3069 char *new_name;
3070 struct elf_link_hash_table *elftab;
3071 size_t amt;
3072
3073 if (isym->st_shndx != sec_shndx)
3074 continue;
3075
3076 if (isym->st_shndx == SHN_UNDEF)
3077 sym_sec = bfd_und_section_ptr;
3078 else if (isym->st_shndx == SHN_ABS)
3079 sym_sec = bfd_abs_section_ptr;
3080 else if (isym->st_shndx == SHN_COMMON)
3081 sym_sec = bfd_com_section_ptr;
3082 else
3083 sym_sec
3084 = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
3085
3086 sym_name
3087 = bfd_elf_string_from_elf_section (input_bfd,
3088 symtab_hdr->sh_link,
3089 isym->st_name);
3090
3091 /* Tack on an ID so we can uniquely identify this
3092 local symbol in the global hash table. */
3093 amt = strlen (sym_name) + 10;
3094 new_name = bfd_malloc (amt);
3095 if (new_name == NULL)
3096 goto error_return;
3097 sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
3098 sym_name = new_name;
3099
3100 elftab = & hash_table->static_hash_table->root;
3101 sym_hash = (struct elf32_mn10300_link_hash_entry *)
3102 elf_link_hash_lookup (elftab, sym_name,
3103 FALSE, FALSE, FALSE);
3104
3105 free (new_name);
3106 if (sym_hash == NULL)
3107 continue;
3108
3109 if (! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS)
3110 && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES))
3111 {
3112 int bytes = 0;
3113
3114 /* Note that we've changed things. */
3115 elf_section_data (section)->relocs = internal_relocs;
3116 elf_section_data (section)->this_hdr.contents = contents;
3117 symtab_hdr->contents = (unsigned char *) isymbuf;
3118
3119 /* Count how many bytes we're going to delete. */
3120 if (sym_hash->movm_args)
3121 bytes += 2;
3122
3123 if (sym_hash->stack_size > 0)
3124 {
3125 if (sym_hash->stack_size <= 128)
3126 bytes += 3;
3127 else
3128 bytes += 4;
3129 }
3130
3131 /* Note that we've deleted prologue bytes for this
3132 function. */
3133 sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES;
3134
3135 /* Actually delete the bytes. */
3136 if (!mn10300_elf_relax_delete_bytes (input_bfd,
3137 section,
3138 isym->st_value,
3139 bytes))
3140 goto error_return;
3141
3142 /* Something changed. Not strictly necessary, but
3143 may lead to more relaxing opportunities. */
3144 *again = TRUE;
3145 }
3146 }
3147
3148 /* Look for any global functions in this section which
3149 need insns deleted from their prologues. */
3150 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
3151 - symtab_hdr->sh_info);
3152 hashes = elf_sym_hashes (input_bfd);
3153 end_hashes = hashes + symcount;
3154 for (; hashes < end_hashes; hashes++)
3155 {
3156 struct elf32_mn10300_link_hash_entry *sym_hash;
3157
3158 sym_hash = (struct elf32_mn10300_link_hash_entry *) *hashes;
3159 if ((sym_hash->root.root.type == bfd_link_hash_defined
3160 || sym_hash->root.root.type == bfd_link_hash_defweak)
3161 && sym_hash->root.root.u.def.section == section
3162 && ! (sym_hash->flags & MN10300_CONVERT_CALL_TO_CALLS)
3163 && ! (sym_hash->flags & MN10300_DELETED_PROLOGUE_BYTES))
3164 {
3165 int bytes = 0;
3166 bfd_vma symval;
3167 struct elf_link_hash_entry **hh;
3168
3169 /* Note that we've changed things. */
3170 elf_section_data (section)->relocs = internal_relocs;
3171 elf_section_data (section)->this_hdr.contents = contents;
3172 symtab_hdr->contents = (unsigned char *) isymbuf;
3173
3174 /* Count how many bytes we're going to delete. */
3175 if (sym_hash->movm_args)
3176 bytes += 2;
3177
3178 if (sym_hash->stack_size > 0)
3179 {
3180 if (sym_hash->stack_size <= 128)
3181 bytes += 3;
3182 else
3183 bytes += 4;
3184 }
3185
3186 /* Note that we've deleted prologue bytes for this
3187 function. */
3188 sym_hash->flags |= MN10300_DELETED_PROLOGUE_BYTES;
3189
3190 /* Actually delete the bytes. */
3191 symval = sym_hash->root.root.u.def.value;
3192 if (!mn10300_elf_relax_delete_bytes (input_bfd,
3193 section,
3194 symval,
3195 bytes))
3196 goto error_return;
3197
3198 /* There may be other C++ functions symbols with the same
3199 address. If so then mark these as having had their
3200 prologue bytes deleted as well. */
3201 for (hh = elf_sym_hashes (input_bfd); hh < end_hashes; hh++)
3202 {
3203 struct elf32_mn10300_link_hash_entry *h;
3204
3205 h = (struct elf32_mn10300_link_hash_entry *) * hh;
3206
3207 if (h != sym_hash
3208 && (h->root.root.type == bfd_link_hash_defined
3209 || h->root.root.type == bfd_link_hash_defweak)
3210 && h->root.root.u.def.section == section
3211 && ! (h->flags & MN10300_CONVERT_CALL_TO_CALLS)
3212 && h->root.root.u.def.value == symval
3213 && h->root.type == STT_FUNC)
3214 h->flags |= MN10300_DELETED_PROLOGUE_BYTES;
3215 }
3216
3217 /* Something changed. Not strictly necessary, but
3218 may lead to more relaxing opportunities. */
3219 *again = TRUE;
3220 }
3221 }
3222
3223 /* Cache or free any memory we allocated for the relocs. */
3224 if (elf_section_data (section)->relocs != internal_relocs)
3225 free (internal_relocs);
3226 internal_relocs = NULL;
3227
3228 /* Cache or free any memory we allocated for the contents. */
3229 if (contents != NULL
3230 && elf_section_data (section)->this_hdr.contents != contents)
3231 {
3232 if (! link_info->keep_memory)
3233 free (contents);
3234 else
3235 /* Cache the section contents for elf_link_input_bfd. */
3236 elf_section_data (section)->this_hdr.contents = contents;
3237 }
3238 contents = NULL;
3239 }
3240
3241 /* Cache or free any memory we allocated for the symbols. */
3242 if (isymbuf != NULL
3243 && symtab_hdr->contents != (unsigned char *) isymbuf)
3244 {
3245 if (! link_info->keep_memory)
3246 free (isymbuf);
3247 else
3248 /* Cache the symbols for elf_link_input_bfd. */
3249 symtab_hdr->contents = (unsigned char *) isymbuf;
3250 }
3251 isymbuf = NULL;
3252 }
3253 }
3254
3255 /* (Re)initialize for the basic instruction shortening/relaxing pass. */
3256 contents = NULL;
3257 internal_relocs = NULL;
3258 isymbuf = NULL;
3259 /* For error_return. */
3260 section = sec;
3261
3262 /* We don't have to do anything for a relocatable link, if
3263 this section does not have relocs, or if this is not a
3264 code section. */
3265 if (bfd_link_relocatable (link_info)
3266 || (sec->flags & SEC_RELOC) == 0
3267 || sec->reloc_count == 0
3268 || (sec->flags & SEC_CODE) == 0)
3269 return TRUE;
3270
3271 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3272
3273 /* Get a copy of the native relocations. */
3274 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
3275 link_info->keep_memory);
3276 if (internal_relocs == NULL)
3277 goto error_return;
3278
3279 /* Scan for worst case alignment gap changes. Note that this logic
3280 is not ideal; what we should do is run this scan for every
3281 opcode/address range and adjust accordingly, but that's
3282 expensive. Worst case is that for an alignment of N bytes, we
3283 move by 2*N-N-1 bytes, assuming we have aligns of 1, 2, 4, 8, etc
3284 all before it. Plus, this still doesn't cover cross-section
3285 jumps with section alignment. */
3286 irelend = internal_relocs + sec->reloc_count;
3287 align_gap_adjustment = 0;
3288 for (irel = internal_relocs; irel < irelend; irel++)
3289 {
3290 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_ALIGN)
3291 {
3292 bfd_vma adj = 1 << irel->r_addend;
3293 bfd_vma aend = irel->r_offset;
3294
3295 aend = BFD_ALIGN (aend, 1 << irel->r_addend);
3296 adj = 2 * adj - adj - 1;
3297
3298 /* Record the biggest adjustmnet. Skip any alignment at the
3299 end of our section. */
3300 if (align_gap_adjustment < adj
3301 && aend < sec->output_section->vma + sec->output_offset + sec->size)
3302 align_gap_adjustment = adj;
3303 }
3304 }
3305
3306 /* Walk through them looking for relaxing opportunities. */
3307 irelend = internal_relocs + sec->reloc_count;
3308 for (irel = internal_relocs; irel < irelend; irel++)
3309 {
3310 bfd_vma symval;
3311 bfd_signed_vma jump_offset;
3312 asection *sym_sec = NULL;
3313 struct elf32_mn10300_link_hash_entry *h = NULL;
3314
3315 /* If this isn't something that can be relaxed, then ignore
3316 this reloc. */
3317 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_NONE
3318 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_8
3319 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_MAX)
3320 continue;
3321
3322 /* Get the section contents if we haven't done so already. */
3323 if (contents == NULL)
3324 {
3325 /* Get cached copy if it exists. */
3326 if (elf_section_data (sec)->this_hdr.contents != NULL)
3327 contents = elf_section_data (sec)->this_hdr.contents;
3328 else
3329 {
3330 /* Go get them off disk. */
3331 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
3332 goto error_return;
3333 }
3334 }
3335
3336 /* Read this BFD's symbols if we haven't done so already. */
3337 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
3338 {
3339 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3340 if (isymbuf == NULL)
3341 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
3342 symtab_hdr->sh_info, 0,
3343 NULL, NULL, NULL);
3344 if (isymbuf == NULL)
3345 goto error_return;
3346 }
3347
3348 /* Get the value of the symbol referred to by the reloc. */
3349 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
3350 {
3351 Elf_Internal_Sym *isym;
3352 const char *sym_name;
3353 char *new_name;
3354
3355 /* A local symbol. */
3356 isym = isymbuf + ELF32_R_SYM (irel->r_info);
3357 if (isym->st_shndx == SHN_UNDEF)
3358 sym_sec = bfd_und_section_ptr;
3359 else if (isym->st_shndx == SHN_ABS)
3360 sym_sec = bfd_abs_section_ptr;
3361 else if (isym->st_shndx == SHN_COMMON)
3362 sym_sec = bfd_com_section_ptr;
3363 else
3364 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3365
3366 sym_name = bfd_elf_string_from_elf_section (abfd,
3367 symtab_hdr->sh_link,
3368 isym->st_name);
3369
3370 if ((sym_sec->flags & SEC_MERGE)
3371 && sym_sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3372 {
3373 symval = isym->st_value;
3374
3375 /* GAS may reduce relocations against symbols in SEC_MERGE
3376 sections to a relocation against the section symbol when
3377 the original addend was zero. When the reloc is against
3378 a section symbol we should include the addend in the
3379 offset passed to _bfd_merged_section_offset, since the
3380 location of interest is the original symbol. On the
3381 other hand, an access to "sym+addend" where "sym" is not
3382 a section symbol should not include the addend; Such an
3383 access is presumed to be an offset from "sym"; The
3384 location of interest is just "sym". */
3385 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
3386 symval += irel->r_addend;
3387
3388 symval = _bfd_merged_section_offset (abfd, & sym_sec,
3389 elf_section_data (sym_sec)->sec_info,
3390 symval);
3391
3392 if (ELF_ST_TYPE (isym->st_info) != STT_SECTION)
3393 symval += irel->r_addend;
3394
3395 symval += sym_sec->output_section->vma
3396 + sym_sec->output_offset - irel->r_addend;
3397 }
3398 else
3399 symval = (isym->st_value
3400 + sym_sec->output_section->vma
3401 + sym_sec->output_offset);
3402
3403 /* Tack on an ID so we can uniquely identify this
3404 local symbol in the global hash table. */
3405 new_name = bfd_malloc ((bfd_size_type) strlen (sym_name) + 10);
3406 if (new_name == NULL)
3407 goto error_return;
3408 sprintf (new_name, "%s_%08x", sym_name, sym_sec->id);
3409 sym_name = new_name;
3410
3411 h = (struct elf32_mn10300_link_hash_entry *)
3412 elf_link_hash_lookup (&hash_table->static_hash_table->root,
3413 sym_name, FALSE, FALSE, FALSE);
3414 free (new_name);
3415 }
3416 else
3417 {
3418 unsigned long indx;
3419
3420 /* An external symbol. */
3421 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
3422 h = (struct elf32_mn10300_link_hash_entry *)
3423 (elf_sym_hashes (abfd)[indx]);
3424 BFD_ASSERT (h != NULL);
3425 if (h->root.root.type != bfd_link_hash_defined
3426 && h->root.root.type != bfd_link_hash_defweak)
3427 /* This appears to be a reference to an undefined
3428 symbol. Just ignore it--it will be caught by the
3429 regular reloc processing. */
3430 continue;
3431
3432 /* Check for a reference to a discarded symbol and ignore it. */
3433 if (h->root.root.u.def.section->output_section == NULL)
3434 continue;
3435
3436 sym_sec = h->root.root.u.def.section->output_section;
3437
3438 symval = (h->root.root.u.def.value
3439 + h->root.root.u.def.section->output_section->vma
3440 + h->root.root.u.def.section->output_offset);
3441 }
3442
3443 /* For simplicity of coding, we are going to modify the section
3444 contents, the section relocs, and the BFD symbol table. We
3445 must tell the rest of the code not to free up this
3446 information. It would be possible to instead create a table
3447 of changes which have to be made, as is done in coff-mips.c;
3448 that would be more work, but would require less memory when
3449 the linker is run. */
3450
3451 /* Try to turn a 32bit pc-relative branch/call into a 16bit pc-relative
3452 branch/call, also deal with "call" -> "calls" conversions and
3453 insertion of prologue data into "call" instructions. */
3454 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL32
3455 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32)
3456 {
3457 bfd_vma value = symval;
3458
3459 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PLT32
3460 && h != NULL
3461 && ELF_ST_VISIBILITY (h->root.other) != STV_INTERNAL
3462 && ELF_ST_VISIBILITY (h->root.other) != STV_HIDDEN
3463 && h->root.plt.offset != (bfd_vma) -1)
3464 {
3465 asection * splt;
3466
3467 splt = hash_table->root.splt;
3468 value = ((splt->output_section->vma
3469 + splt->output_offset
3470 + h->root.plt.offset)
3471 - (sec->output_section->vma
3472 + sec->output_offset
3473 + irel->r_offset));
3474 }
3475
3476 /* If we've got a "call" instruction that needs to be turned
3477 into a "calls" instruction, do so now. It saves a byte. */
3478 if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS))
3479 {
3480 unsigned char code;
3481
3482 /* Get the opcode. */
3483 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3484
3485 /* Make sure we're working with a "call" instruction! */
3486 if (code == 0xdd)
3487 {
3488 /* Note that we've changed the relocs, section contents,
3489 etc. */
3490 elf_section_data (sec)->relocs = internal_relocs;
3491 elf_section_data (sec)->this_hdr.contents = contents;
3492 symtab_hdr->contents = (unsigned char *) isymbuf;
3493
3494 /* Fix the opcode. */
3495 bfd_put_8 (abfd, 0xfc, contents + irel->r_offset - 1);
3496 bfd_put_8 (abfd, 0xff, contents + irel->r_offset);
3497
3498 /* Fix irel->r_offset and irel->r_addend. */
3499 irel->r_offset += 1;
3500 irel->r_addend += 1;
3501
3502 /* Delete one byte of data. */
3503 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3504 irel->r_offset + 3, 1))
3505 goto error_return;
3506
3507 /* That will change things, so, we should relax again.
3508 Note that this is not required, and it may be slow. */
3509 *again = TRUE;
3510 }
3511 }
3512 else if (h)
3513 {
3514 /* We've got a "call" instruction which needs some data
3515 from target function filled in. */
3516 unsigned char code;
3517
3518 /* Get the opcode. */
3519 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3520
3521 /* Insert data from the target function into the "call"
3522 instruction if needed. */
3523 if (code == 0xdd)
3524 {
3525 bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 4);
3526 bfd_put_8 (abfd, h->stack_size + h->movm_stack_size,
3527 contents + irel->r_offset + 5);
3528 }
3529 }
3530
3531 /* Deal with pc-relative gunk. */
3532 value -= (sec->output_section->vma + sec->output_offset);
3533 value -= irel->r_offset;
3534 value += irel->r_addend;
3535
3536 /* See if the value will fit in 16 bits, note the high value is
3537 0x7fff + 2 as the target will be two bytes closer if we are
3538 able to relax, if it's in the same section. */
3539 if (sec->output_section == sym_sec->output_section)
3540 jump_offset = 0x8001;
3541 else
3542 jump_offset = 0x7fff;
3543
3544 /* Account for jumps across alignment boundaries using
3545 align_gap_adjustment. */
3546 if ((bfd_signed_vma) value < jump_offset - (bfd_signed_vma) align_gap_adjustment
3547 && ((bfd_signed_vma) value > -0x8000 + (bfd_signed_vma) align_gap_adjustment))
3548 {
3549 unsigned char code;
3550
3551 /* Get the opcode. */
3552 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3553
3554 if (code != 0xdc && code != 0xdd && code != 0xff)
3555 continue;
3556
3557 /* Note that we've changed the relocs, section contents, etc. */
3558 elf_section_data (sec)->relocs = internal_relocs;
3559 elf_section_data (sec)->this_hdr.contents = contents;
3560 symtab_hdr->contents = (unsigned char *) isymbuf;
3561
3562 /* Fix the opcode. */
3563 if (code == 0xdc)
3564 bfd_put_8 (abfd, 0xcc, contents + irel->r_offset - 1);
3565 else if (code == 0xdd)
3566 bfd_put_8 (abfd, 0xcd, contents + irel->r_offset - 1);
3567 else if (code == 0xff)
3568 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
3569
3570 /* Fix the relocation's type. */
3571 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
3572 (ELF32_R_TYPE (irel->r_info)
3573 == (int) R_MN10300_PLT32)
3574 ? R_MN10300_PLT16 :
3575 R_MN10300_PCREL16);
3576
3577 /* Delete two bytes of data. */
3578 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3579 irel->r_offset + 1, 2))
3580 goto error_return;
3581
3582 /* That will change things, so, we should relax again.
3583 Note that this is not required, and it may be slow. */
3584 *again = TRUE;
3585 }
3586 }
3587
3588 /* Try to turn a 16bit pc-relative branch into a 8bit pc-relative
3589 branch. */
3590 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL16)
3591 {
3592 bfd_vma value = symval;
3593
3594 /* If we've got a "call" instruction that needs to be turned
3595 into a "calls" instruction, do so now. It saves a byte. */
3596 if (h && (h->flags & MN10300_CONVERT_CALL_TO_CALLS))
3597 {
3598 unsigned char code;
3599
3600 /* Get the opcode. */
3601 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3602
3603 /* Make sure we're working with a "call" instruction! */
3604 if (code == 0xcd)
3605 {
3606 /* Note that we've changed the relocs, section contents,
3607 etc. */
3608 elf_section_data (sec)->relocs = internal_relocs;
3609 elf_section_data (sec)->this_hdr.contents = contents;
3610 symtab_hdr->contents = (unsigned char *) isymbuf;
3611
3612 /* Fix the opcode. */
3613 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 1);
3614 bfd_put_8 (abfd, 0xff, contents + irel->r_offset);
3615
3616 /* Fix irel->r_offset and irel->r_addend. */
3617 irel->r_offset += 1;
3618 irel->r_addend += 1;
3619
3620 /* Delete one byte of data. */
3621 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3622 irel->r_offset + 1, 1))
3623 goto error_return;
3624
3625 /* That will change things, so, we should relax again.
3626 Note that this is not required, and it may be slow. */
3627 *again = TRUE;
3628 }
3629 }
3630 else if (h)
3631 {
3632 unsigned char code;
3633
3634 /* Get the opcode. */
3635 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3636
3637 /* Insert data from the target function into the "call"
3638 instruction if needed. */
3639 if (code == 0xcd)
3640 {
3641 bfd_put_8 (abfd, h->movm_args, contents + irel->r_offset + 2);
3642 bfd_put_8 (abfd, h->stack_size + h->movm_stack_size,
3643 contents + irel->r_offset + 3);
3644 }
3645 }
3646
3647 /* Deal with pc-relative gunk. */
3648 value -= (sec->output_section->vma + sec->output_offset);
3649 value -= irel->r_offset;
3650 value += irel->r_addend;
3651
3652 /* See if the value will fit in 8 bits, note the high value is
3653 0x7f + 1 as the target will be one bytes closer if we are
3654 able to relax. */
3655 if ((long) value < 0x80 && (long) value > -0x80)
3656 {
3657 unsigned char code;
3658
3659 /* Get the opcode. */
3660 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3661
3662 if (code != 0xcc)
3663 continue;
3664
3665 /* Note that we've changed the relocs, section contents, etc. */
3666 elf_section_data (sec)->relocs = internal_relocs;
3667 elf_section_data (sec)->this_hdr.contents = contents;
3668 symtab_hdr->contents = (unsigned char *) isymbuf;
3669
3670 /* Fix the opcode. */
3671 bfd_put_8 (abfd, 0xca, contents + irel->r_offset - 1);
3672
3673 /* Fix the relocation's type. */
3674 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
3675 R_MN10300_PCREL8);
3676
3677 /* Delete one byte of data. */
3678 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3679 irel->r_offset + 1, 1))
3680 goto error_return;
3681
3682 /* That will change things, so, we should relax again.
3683 Note that this is not required, and it may be slow. */
3684 *again = TRUE;
3685 }
3686 }
3687
3688 /* Try to eliminate an unconditional 8 bit pc-relative branch
3689 which immediately follows a conditional 8 bit pc-relative
3690 branch around the unconditional branch.
3691
3692 original: new:
3693 bCC lab1 bCC' lab2
3694 bra lab2
3695 lab1: lab1:
3696
3697 This happens when the bCC can't reach lab2 at assembly time,
3698 but due to other relaxations it can reach at link time. */
3699 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_PCREL8)
3700 {
3701 Elf_Internal_Rela *nrel;
3702 bfd_vma value = symval;
3703 unsigned char code;
3704
3705 /* Deal with pc-relative gunk. */
3706 value -= (sec->output_section->vma + sec->output_offset);
3707 value -= irel->r_offset;
3708 value += irel->r_addend;
3709
3710 /* Do nothing if this reloc is the last byte in the section. */
3711 if (irel->r_offset == sec->size)
3712 continue;
3713
3714 /* See if the next instruction is an unconditional pc-relative
3715 branch, more often than not this test will fail, so we
3716 test it first to speed things up. */
3717 code = bfd_get_8 (abfd, contents + irel->r_offset + 1);
3718 if (code != 0xca)
3719 continue;
3720
3721 /* Also make sure the next relocation applies to the next
3722 instruction and that it's a pc-relative 8 bit branch. */
3723 nrel = irel + 1;
3724 if (nrel == irelend
3725 || irel->r_offset + 2 != nrel->r_offset
3726 || ELF32_R_TYPE (nrel->r_info) != (int) R_MN10300_PCREL8)
3727 continue;
3728
3729 /* Make sure our destination immediately follows the
3730 unconditional branch. */
3731 if (symval != (sec->output_section->vma + sec->output_offset
3732 + irel->r_offset + 3))
3733 continue;
3734
3735 /* Now make sure we are a conditional branch. This may not
3736 be necessary, but why take the chance.
3737
3738 Note these checks assume that R_MN10300_PCREL8 relocs
3739 only occur on bCC and bCCx insns. If they occured
3740 elsewhere, we'd need to know the start of this insn
3741 for this check to be accurate. */
3742 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
3743 if (code != 0xc0 && code != 0xc1 && code != 0xc2
3744 && code != 0xc3 && code != 0xc4 && code != 0xc5
3745 && code != 0xc6 && code != 0xc7 && code != 0xc8
3746 && code != 0xc9 && code != 0xe8 && code != 0xe9
3747 && code != 0xea && code != 0xeb)
3748 continue;
3749
3750 /* We also have to be sure there is no symbol/label
3751 at the unconditional branch. */
3752 if (mn10300_elf_symbol_address_p (abfd, sec, isymbuf,
3753 irel->r_offset + 1))
3754 continue;
3755
3756 /* Note that we've changed the relocs, section contents, etc. */
3757 elf_section_data (sec)->relocs = internal_relocs;
3758 elf_section_data (sec)->this_hdr.contents = contents;
3759 symtab_hdr->contents = (unsigned char *) isymbuf;
3760
3761 /* Reverse the condition of the first branch. */
3762 switch (code)
3763 {
3764 case 0xc8:
3765 code = 0xc9;
3766 break;
3767 case 0xc9:
3768 code = 0xc8;
3769 break;
3770 case 0xc0:
3771 code = 0xc2;
3772 break;
3773 case 0xc2:
3774 code = 0xc0;
3775 break;
3776 case 0xc3:
3777 code = 0xc1;
3778 break;
3779 case 0xc1:
3780 code = 0xc3;
3781 break;
3782 case 0xc4:
3783 code = 0xc6;
3784 break;
3785 case 0xc6:
3786 code = 0xc4;
3787 break;
3788 case 0xc7:
3789 code = 0xc5;
3790 break;
3791 case 0xc5:
3792 code = 0xc7;
3793 break;
3794 case 0xe8:
3795 code = 0xe9;
3796 break;
3797 case 0x9d:
3798 code = 0xe8;
3799 break;
3800 case 0xea:
3801 code = 0xeb;
3802 break;
3803 case 0xeb:
3804 code = 0xea;
3805 break;
3806 }
3807 bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
3808
3809 /* Set the reloc type and symbol for the first branch
3810 from the second branch. */
3811 irel->r_info = nrel->r_info;
3812
3813 /* Make the reloc for the second branch a null reloc. */
3814 nrel->r_info = ELF32_R_INFO (ELF32_R_SYM (nrel->r_info),
3815 R_MN10300_NONE);
3816
3817 /* Delete two bytes of data. */
3818 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3819 irel->r_offset + 1, 2))
3820 goto error_return;
3821
3822 /* That will change things, so, we should relax again.
3823 Note that this is not required, and it may be slow. */
3824 *again = TRUE;
3825 }
3826
3827 /* Try to turn a 24 immediate, displacement or absolute address
3828 into a 8 immediate, displacement or absolute address. */
3829 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_24)
3830 {
3831 bfd_vma value = symval;
3832 value += irel->r_addend;
3833
3834 /* See if the value will fit in 8 bits. */
3835 if ((long) value < 0x7f && (long) value > -0x80)
3836 {
3837 unsigned char code;
3838
3839 /* AM33 insns which have 24 operands are 6 bytes long and
3840 will have 0xfd as the first byte. */
3841
3842 /* Get the first opcode. */
3843 code = bfd_get_8 (abfd, contents + irel->r_offset - 3);
3844
3845 if (code == 0xfd)
3846 {
3847 /* Get the second opcode. */
3848 code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
3849
3850 /* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit
3851 equivalent instructions exists. */
3852 if (code != 0x6b && code != 0x7b
3853 && code != 0x8b && code != 0x9b
3854 && ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08
3855 || (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b
3856 || (code & 0x0f) == 0x0e))
3857 {
3858 /* Not safe if the high bit is on as relaxing may
3859 move the value out of high mem and thus not fit
3860 in a signed 8bit value. This is currently over
3861 conservative. */
3862 if ((value & 0x80) == 0)
3863 {
3864 /* Note that we've changed the relocation contents,
3865 etc. */
3866 elf_section_data (sec)->relocs = internal_relocs;
3867 elf_section_data (sec)->this_hdr.contents = contents;
3868 symtab_hdr->contents = (unsigned char *) isymbuf;
3869
3870 /* Fix the opcode. */
3871 bfd_put_8 (abfd, 0xfb, contents + irel->r_offset - 3);
3872 bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
3873
3874 /* Fix the relocation's type. */
3875 irel->r_info =
3876 ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
3877 R_MN10300_8);
3878
3879 /* Delete two bytes of data. */
3880 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3881 irel->r_offset + 1, 2))
3882 goto error_return;
3883
3884 /* That will change things, so, we should relax
3885 again. Note that this is not required, and it
3886 may be slow. */
3887 *again = TRUE;
3888 break;
3889 }
3890 }
3891 }
3892 }
3893 }
3894
3895 /* Try to turn a 32bit immediate, displacement or absolute address
3896 into a 16bit immediate, displacement or absolute address. */
3897 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_32
3898 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32
3899 || ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32)
3900 {
3901 bfd_vma value = symval;
3902
3903 if (ELF32_R_TYPE (irel->r_info) != (int) R_MN10300_32)
3904 {
3905 asection * sgot;
3906
3907 sgot = hash_table->root.sgot;
3908 if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOT32)
3909 {
3910 value = sgot->output_offset;
3911
3912 if (h)
3913 value += h->root.got.offset;
3914 else
3915 value += (elf_local_got_offsets
3916 (abfd)[ELF32_R_SYM (irel->r_info)]);
3917 }
3918 else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTOFF32)
3919 value -= sgot->output_section->vma;
3920 else if (ELF32_R_TYPE (irel->r_info) == (int) R_MN10300_GOTPC32)
3921 value = (sgot->output_section->vma
3922 - (sec->output_section->vma
3923 + sec->output_offset
3924 + irel->r_offset));
3925 else
3926 abort ();
3927 }
3928
3929 value += irel->r_addend;
3930
3931 /* See if the value will fit in 24 bits.
3932 We allow any 16bit match here. We prune those we can't
3933 handle below. */
3934 if ((long) value < 0x7fffff && (long) value > -0x800000)
3935 {
3936 unsigned char code;
3937
3938 /* AM33 insns which have 32bit operands are 7 bytes long and
3939 will have 0xfe as the first byte. */
3940
3941 /* Get the first opcode. */
3942 code = bfd_get_8 (abfd, contents + irel->r_offset - 3);
3943
3944 if (code == 0xfe)
3945 {
3946 /* Get the second opcode. */
3947 code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
3948
3949 /* All the am33 32 -> 24 relaxing possibilities. */
3950 /* We can not relax 0x6b, 0x7b, 0x8b, 0x9b as no 24bit
3951 equivalent instructions exists. */
3952 if (code != 0x6b && code != 0x7b
3953 && code != 0x8b && code != 0x9b
3954 && (ELF32_R_TYPE (irel->r_info)
3955 != (int) R_MN10300_GOTPC32)
3956 && ((code & 0x0f) == 0x09 || (code & 0x0f) == 0x08
3957 || (code & 0x0f) == 0x0a || (code & 0x0f) == 0x0b
3958 || (code & 0x0f) == 0x0e))
3959 {
3960 /* Not safe if the high bit is on as relaxing may
3961 move the value out of high mem and thus not fit
3962 in a signed 16bit value. This is currently over
3963 conservative. */
3964 if ((value & 0x8000) == 0)
3965 {
3966 /* Note that we've changed the relocation contents,
3967 etc. */
3968 elf_section_data (sec)->relocs = internal_relocs;
3969 elf_section_data (sec)->this_hdr.contents = contents;
3970 symtab_hdr->contents = (unsigned char *) isymbuf;
3971
3972 /* Fix the opcode. */
3973 bfd_put_8 (abfd, 0xfd, contents + irel->r_offset - 3);
3974 bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
3975
3976 /* Fix the relocation's type. */
3977 irel->r_info =
3978 ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
3979 (ELF32_R_TYPE (irel->r_info)
3980 == (int) R_MN10300_GOTOFF32)
3981 ? R_MN10300_GOTOFF24
3982 : (ELF32_R_TYPE (irel->r_info)
3983 == (int) R_MN10300_GOT32)
3984 ? R_MN10300_GOT24 :
3985 R_MN10300_24);
3986
3987 /* Delete one byte of data. */
3988 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
3989 irel->r_offset + 3, 1))
3990 goto error_return;
3991
3992 /* That will change things, so, we should relax
3993 again. Note that this is not required, and it
3994 may be slow. */
3995 *again = TRUE;
3996 break;
3997 }
3998 }
3999 }
4000 }
4001
4002 /* See if the value will fit in 16 bits.
4003 We allow any 16bit match here. We prune those we can't
4004 handle below. */
4005 if ((long) value < 0x7fff && (long) value > -0x8000)
4006 {
4007 unsigned char code;
4008
4009 /* Most insns which have 32bit operands are 6 bytes long;
4010 exceptions are pcrel insns and bit insns.
4011
4012 We handle pcrel insns above. We don't bother trying
4013 to handle the bit insns here.
4014
4015 The first byte of the remaining insns will be 0xfc. */
4016
4017 /* Get the first opcode. */
4018 code = bfd_get_8 (abfd, contents + irel->r_offset - 2);
4019
4020 if (code != 0xfc)
4021 continue;
4022
4023 /* Get the second opcode. */
4024 code = bfd_get_8 (abfd, contents + irel->r_offset - 1);
4025
4026 if ((code & 0xf0) < 0x80)
4027 switch (code & 0xf0)
4028 {
4029 /* mov (d32,am),dn -> mov (d32,am),dn
4030 mov dm,(d32,am) -> mov dn,(d32,am)
4031 mov (d32,am),an -> mov (d32,am),an
4032 mov dm,(d32,am) -> mov dn,(d32,am)
4033 movbu (d32,am),dn -> movbu (d32,am),dn
4034 movbu dm,(d32,am) -> movbu dn,(d32,am)
4035 movhu (d32,am),dn -> movhu (d32,am),dn
4036 movhu dm,(d32,am) -> movhu dn,(d32,am) */
4037 case 0x00:
4038 case 0x10:
4039 case 0x20:
4040 case 0x30:
4041 case 0x40:
4042 case 0x50:
4043 case 0x60:
4044 case 0x70:
4045 /* Not safe if the high bit is on as relaxing may
4046 move the value out of high mem and thus not fit
4047 in a signed 16bit value. */
4048 if (code == 0xcc
4049 && (value & 0x8000))
4050 continue;
4051
4052 /* Note that we've changed the relocation contents, etc. */
4053 elf_section_data (sec)->relocs = internal_relocs;
4054 elf_section_data (sec)->this_hdr.contents = contents;
4055 symtab_hdr->contents = (unsigned char *) isymbuf;
4056
4057 /* Fix the opcode. */
4058 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
4059 bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
4060
4061 /* Fix the relocation's type. */
4062 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4063 (ELF32_R_TYPE (irel->r_info)
4064 == (int) R_MN10300_GOTOFF32)
4065 ? R_MN10300_GOTOFF16
4066 : (ELF32_R_TYPE (irel->r_info)
4067 == (int) R_MN10300_GOT32)
4068 ? R_MN10300_GOT16
4069 : (ELF32_R_TYPE (irel->r_info)
4070 == (int) R_MN10300_GOTPC32)
4071 ? R_MN10300_GOTPC16 :
4072 R_MN10300_16);
4073
4074 /* Delete two bytes of data. */
4075 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4076 irel->r_offset + 2, 2))
4077 goto error_return;
4078
4079 /* That will change things, so, we should relax again.
4080 Note that this is not required, and it may be slow. */
4081 *again = TRUE;
4082 break;
4083 }
4084 else if ((code & 0xf0) == 0x80
4085 || (code & 0xf0) == 0x90)
4086 switch (code & 0xf3)
4087 {
4088 /* mov dn,(abs32) -> mov dn,(abs16)
4089 movbu dn,(abs32) -> movbu dn,(abs16)
4090 movhu dn,(abs32) -> movhu dn,(abs16) */
4091 case 0x81:
4092 case 0x82:
4093 case 0x83:
4094 /* Note that we've changed the relocation contents, etc. */
4095 elf_section_data (sec)->relocs = internal_relocs;
4096 elf_section_data (sec)->this_hdr.contents = contents;
4097 symtab_hdr->contents = (unsigned char *) isymbuf;
4098
4099 if ((code & 0xf3) == 0x81)
4100 code = 0x01 + (code & 0x0c);
4101 else if ((code & 0xf3) == 0x82)
4102 code = 0x02 + (code & 0x0c);
4103 else if ((code & 0xf3) == 0x83)
4104 code = 0x03 + (code & 0x0c);
4105 else
4106 abort ();
4107
4108 /* Fix the opcode. */
4109 bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
4110
4111 /* Fix the relocation's type. */
4112 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4113 (ELF32_R_TYPE (irel->r_info)
4114 == (int) R_MN10300_GOTOFF32)
4115 ? R_MN10300_GOTOFF16
4116 : (ELF32_R_TYPE (irel->r_info)
4117 == (int) R_MN10300_GOT32)
4118 ? R_MN10300_GOT16
4119 : (ELF32_R_TYPE (irel->r_info)
4120 == (int) R_MN10300_GOTPC32)
4121 ? R_MN10300_GOTPC16 :
4122 R_MN10300_16);
4123
4124 /* The opcode got shorter too, so we have to fix the
4125 addend and offset too! */
4126 irel->r_offset -= 1;
4127
4128 /* Delete three bytes of data. */
4129 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4130 irel->r_offset + 1, 3))
4131 goto error_return;
4132
4133 /* That will change things, so, we should relax again.
4134 Note that this is not required, and it may be slow. */
4135 *again = TRUE;
4136 break;
4137
4138 /* mov am,(abs32) -> mov am,(abs16)
4139 mov am,(d32,sp) -> mov am,(d16,sp)
4140 mov dm,(d32,sp) -> mov dm,(d32,sp)
4141 movbu dm,(d32,sp) -> movbu dm,(d32,sp)
4142 movhu dm,(d32,sp) -> movhu dm,(d32,sp) */
4143 case 0x80:
4144 case 0x90:
4145 case 0x91:
4146 case 0x92:
4147 case 0x93:
4148 /* sp-based offsets are zero-extended. */
4149 if (code >= 0x90 && code <= 0x93
4150 && (long) value < 0)
4151 continue;
4152
4153 /* Note that we've changed the relocation contents, etc. */
4154 elf_section_data (sec)->relocs = internal_relocs;
4155 elf_section_data (sec)->this_hdr.contents = contents;
4156 symtab_hdr->contents = (unsigned char *) isymbuf;
4157
4158 /* Fix the opcode. */
4159 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
4160 bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
4161
4162 /* Fix the relocation's type. */
4163 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4164 (ELF32_R_TYPE (irel->r_info)
4165 == (int) R_MN10300_GOTOFF32)
4166 ? R_MN10300_GOTOFF16
4167 : (ELF32_R_TYPE (irel->r_info)
4168 == (int) R_MN10300_GOT32)
4169 ? R_MN10300_GOT16
4170 : (ELF32_R_TYPE (irel->r_info)
4171 == (int) R_MN10300_GOTPC32)
4172 ? R_MN10300_GOTPC16 :
4173 R_MN10300_16);
4174
4175 /* Delete two bytes of data. */
4176 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4177 irel->r_offset + 2, 2))
4178 goto error_return;
4179
4180 /* That will change things, so, we should relax again.
4181 Note that this is not required, and it may be slow. */
4182 *again = TRUE;
4183 break;
4184 }
4185 else if ((code & 0xf0) < 0xf0)
4186 switch (code & 0xfc)
4187 {
4188 /* mov imm32,dn -> mov imm16,dn
4189 mov imm32,an -> mov imm16,an
4190 mov (abs32),dn -> mov (abs16),dn
4191 movbu (abs32),dn -> movbu (abs16),dn
4192 movhu (abs32),dn -> movhu (abs16),dn */
4193 case 0xcc:
4194 case 0xdc:
4195 case 0xa4:
4196 case 0xa8:
4197 case 0xac:
4198 /* Not safe if the high bit is on as relaxing may
4199 move the value out of high mem and thus not fit
4200 in a signed 16bit value. */
4201 if (code == 0xcc
4202 && (value & 0x8000))
4203 continue;
4204
4205 /* "mov imm16, an" zero-extends the immediate. */
4206 if ((code & 0xfc) == 0xdc
4207 && (long) value < 0)
4208 continue;
4209
4210 /* Note that we've changed the relocation contents, etc. */
4211 elf_section_data (sec)->relocs = internal_relocs;
4212 elf_section_data (sec)->this_hdr.contents = contents;
4213 symtab_hdr->contents = (unsigned char *) isymbuf;
4214
4215 if ((code & 0xfc) == 0xcc)
4216 code = 0x2c + (code & 0x03);
4217 else if ((code & 0xfc) == 0xdc)
4218 code = 0x24 + (code & 0x03);
4219 else if ((code & 0xfc) == 0xa4)
4220 code = 0x30 + (code & 0x03);
4221 else if ((code & 0xfc) == 0xa8)
4222 code = 0x34 + (code & 0x03);
4223 else if ((code & 0xfc) == 0xac)
4224 code = 0x38 + (code & 0x03);
4225 else
4226 abort ();
4227
4228 /* Fix the opcode. */
4229 bfd_put_8 (abfd, code, contents + irel->r_offset - 2);
4230
4231 /* Fix the relocation's type. */
4232 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4233 (ELF32_R_TYPE (irel->r_info)
4234 == (int) R_MN10300_GOTOFF32)
4235 ? R_MN10300_GOTOFF16
4236 : (ELF32_R_TYPE (irel->r_info)
4237 == (int) R_MN10300_GOT32)
4238 ? R_MN10300_GOT16
4239 : (ELF32_R_TYPE (irel->r_info)
4240 == (int) R_MN10300_GOTPC32)
4241 ? R_MN10300_GOTPC16 :
4242 R_MN10300_16);
4243
4244 /* The opcode got shorter too, so we have to fix the
4245 addend and offset too! */
4246 irel->r_offset -= 1;
4247
4248 /* Delete three bytes of data. */
4249 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4250 irel->r_offset + 1, 3))
4251 goto error_return;
4252
4253 /* That will change things, so, we should relax again.
4254 Note that this is not required, and it may be slow. */
4255 *again = TRUE;
4256 break;
4257
4258 /* mov (abs32),an -> mov (abs16),an
4259 mov (d32,sp),an -> mov (d16,sp),an
4260 mov (d32,sp),dn -> mov (d16,sp),dn
4261 movbu (d32,sp),dn -> movbu (d16,sp),dn
4262 movhu (d32,sp),dn -> movhu (d16,sp),dn
4263 add imm32,dn -> add imm16,dn
4264 cmp imm32,dn -> cmp imm16,dn
4265 add imm32,an -> add imm16,an
4266 cmp imm32,an -> cmp imm16,an
4267 and imm32,dn -> and imm16,dn
4268 or imm32,dn -> or imm16,dn
4269 xor imm32,dn -> xor imm16,dn
4270 btst imm32,dn -> btst imm16,dn */
4271
4272 case 0xa0:
4273 case 0xb0:
4274 case 0xb1:
4275 case 0xb2:
4276 case 0xb3:
4277 case 0xc0:
4278 case 0xc8:
4279
4280 case 0xd0:
4281 case 0xd8:
4282 case 0xe0:
4283 case 0xe1:
4284 case 0xe2:
4285 case 0xe3:
4286 /* cmp imm16, an zero-extends the immediate. */
4287 if (code == 0xdc
4288 && (long) value < 0)
4289 continue;
4290
4291 /* So do sp-based offsets. */
4292 if (code >= 0xb0 && code <= 0xb3
4293 && (long) value < 0)
4294 continue;
4295
4296 /* Note that we've changed the relocation contents, etc. */
4297 elf_section_data (sec)->relocs = internal_relocs;
4298 elf_section_data (sec)->this_hdr.contents = contents;
4299 symtab_hdr->contents = (unsigned char *) isymbuf;
4300
4301 /* Fix the opcode. */
4302 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
4303 bfd_put_8 (abfd, code, contents + irel->r_offset - 1);
4304
4305 /* Fix the relocation's type. */
4306 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4307 (ELF32_R_TYPE (irel->r_info)
4308 == (int) R_MN10300_GOTOFF32)
4309 ? R_MN10300_GOTOFF16
4310 : (ELF32_R_TYPE (irel->r_info)
4311 == (int) R_MN10300_GOT32)
4312 ? R_MN10300_GOT16
4313 : (ELF32_R_TYPE (irel->r_info)
4314 == (int) R_MN10300_GOTPC32)
4315 ? R_MN10300_GOTPC16 :
4316 R_MN10300_16);
4317
4318 /* Delete two bytes of data. */
4319 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4320 irel->r_offset + 2, 2))
4321 goto error_return;
4322
4323 /* That will change things, so, we should relax again.
4324 Note that this is not required, and it may be slow. */
4325 *again = TRUE;
4326 break;
4327 }
4328 else if (code == 0xfe)
4329 {
4330 /* add imm32,sp -> add imm16,sp */
4331
4332 /* Note that we've changed the relocation contents, etc. */
4333 elf_section_data (sec)->relocs = internal_relocs;
4334 elf_section_data (sec)->this_hdr.contents = contents;
4335 symtab_hdr->contents = (unsigned char *) isymbuf;
4336
4337 /* Fix the opcode. */
4338 bfd_put_8 (abfd, 0xfa, contents + irel->r_offset - 2);
4339 bfd_put_8 (abfd, 0xfe, contents + irel->r_offset - 1);
4340
4341 /* Fix the relocation's type. */
4342 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
4343 (ELF32_R_TYPE (irel->r_info)
4344 == (int) R_MN10300_GOT32)
4345 ? R_MN10300_GOT16
4346 : (ELF32_R_TYPE (irel->r_info)
4347 == (int) R_MN10300_GOTOFF32)
4348 ? R_MN10300_GOTOFF16
4349 : (ELF32_R_TYPE (irel->r_info)
4350 == (int) R_MN10300_GOTPC32)
4351 ? R_MN10300_GOTPC16 :
4352 R_MN10300_16);
4353
4354 /* Delete two bytes of data. */
4355 if (!mn10300_elf_relax_delete_bytes (abfd, sec,
4356 irel->r_offset + 2, 2))
4357 goto error_return;
4358
4359 /* That will change things, so, we should relax again.
4360 Note that this is not required, and it may be slow. */
4361 *again = TRUE;
4362 break;
4363 }
4364 }
4365 }
4366 }
4367
4368 if (isymbuf != NULL
4369 && symtab_hdr->contents != (unsigned char *) isymbuf)
4370 {
4371 if (! link_info->keep_memory)
4372 free (isymbuf);
4373 else
4374 {
4375 /* Cache the symbols for elf_link_input_bfd. */
4376 symtab_hdr->contents = (unsigned char *) isymbuf;
4377 }
4378 }
4379
4380 if (contents != NULL
4381 && elf_section_data (sec)->this_hdr.contents != contents)
4382 {
4383 if (! link_info->keep_memory)
4384 free (contents);
4385 else
4386 {
4387 /* Cache the section contents for elf_link_input_bfd. */
4388 elf_section_data (sec)->this_hdr.contents = contents;
4389 }
4390 }
4391
4392 if (elf_section_data (sec)->relocs != internal_relocs)
4393 free (internal_relocs);
4394
4395 return TRUE;
4396
4397 error_return:
4398 if (symtab_hdr->contents != (unsigned char *) isymbuf)
4399 free (isymbuf);
4400 if (elf_section_data (section)->this_hdr.contents != contents)
4401 free (contents);
4402 if (elf_section_data (section)->relocs != internal_relocs)
4403 free (internal_relocs);
4404
4405 return FALSE;
4406 }
4407
4408 /* This is a version of bfd_generic_get_relocated_section_contents
4409 which uses mn10300_elf_relocate_section. */
4410
4411 static bfd_byte *
4412 mn10300_elf_get_relocated_section_contents (bfd *output_bfd,
4413 struct bfd_link_info *link_info,
4414 struct bfd_link_order *link_order,
4415 bfd_byte *data,
4416 bfd_boolean relocatable,
4417 asymbol **symbols)
4418 {
4419 Elf_Internal_Shdr *symtab_hdr;
4420 asection *input_section = link_order->u.indirect.section;
4421 bfd *input_bfd = input_section->owner;
4422 asection **sections = NULL;
4423 Elf_Internal_Rela *internal_relocs = NULL;
4424 Elf_Internal_Sym *isymbuf = NULL;
4425
4426 /* We only need to handle the case of relaxing, or of having a
4427 particular set of section contents, specially. */
4428 if (relocatable
4429 || elf_section_data (input_section)->this_hdr.contents == NULL)
4430 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
4431 link_order, data,
4432 relocatable,
4433 symbols);
4434
4435 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4436
4437 memcpy (data, elf_section_data (input_section)->this_hdr.contents,
4438 (size_t) input_section->size);
4439
4440 if ((input_section->flags & SEC_RELOC) != 0
4441 && input_section->reloc_count > 0)
4442 {
4443 asection **secpp;
4444 Elf_Internal_Sym *isym, *isymend;
4445 bfd_size_type amt;
4446
4447 internal_relocs = _bfd_elf_link_read_relocs (input_bfd, input_section,
4448 NULL, NULL, FALSE);
4449 if (internal_relocs == NULL)
4450 goto error_return;
4451
4452 if (symtab_hdr->sh_info != 0)
4453 {
4454 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4455 if (isymbuf == NULL)
4456 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4457 symtab_hdr->sh_info, 0,
4458 NULL, NULL, NULL);
4459 if (isymbuf == NULL)
4460 goto error_return;
4461 }
4462
4463 amt = symtab_hdr->sh_info;
4464 amt *= sizeof (asection *);
4465 sections = bfd_malloc (amt);
4466 if (sections == NULL && amt != 0)
4467 goto error_return;
4468
4469 isymend = isymbuf + symtab_hdr->sh_info;
4470 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
4471 {
4472 asection *isec;
4473
4474 if (isym->st_shndx == SHN_UNDEF)
4475 isec = bfd_und_section_ptr;
4476 else if (isym->st_shndx == SHN_ABS)
4477 isec = bfd_abs_section_ptr;
4478 else if (isym->st_shndx == SHN_COMMON)
4479 isec = bfd_com_section_ptr;
4480 else
4481 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
4482
4483 *secpp = isec;
4484 }
4485
4486 if (! mn10300_elf_relocate_section (output_bfd, link_info, input_bfd,
4487 input_section, data, internal_relocs,
4488 isymbuf, sections))
4489 goto error_return;
4490
4491 free (sections);
4492 if (symtab_hdr->contents != (unsigned char *) isymbuf)
4493 free (isymbuf);
4494 if (internal_relocs != elf_section_data (input_section)->relocs)
4495 free (internal_relocs);
4496 }
4497
4498 return data;
4499
4500 error_return:
4501 free (sections);
4502 if (symtab_hdr->contents != (unsigned char *) isymbuf)
4503 free (isymbuf);
4504 if (internal_relocs != elf_section_data (input_section)->relocs)
4505 free (internal_relocs);
4506 return NULL;
4507 }
4508
4509 /* Assorted hash table functions. */
4510
4511 /* Initialize an entry in the link hash table. */
4512
4513 /* Create an entry in an MN10300 ELF linker hash table. */
4514
4515 static struct bfd_hash_entry *
4516 elf32_mn10300_link_hash_newfunc (struct bfd_hash_entry *entry,
4517 struct bfd_hash_table *table,
4518 const char *string)
4519 {
4520 struct elf32_mn10300_link_hash_entry *ret =
4521 (struct elf32_mn10300_link_hash_entry *) entry;
4522
4523 /* Allocate the structure if it has not already been allocated by a
4524 subclass. */
4525 if (ret == NULL)
4526 ret = (struct elf32_mn10300_link_hash_entry *)
4527 bfd_hash_allocate (table, sizeof (* ret));
4528 if (ret == NULL)
4529 return (struct bfd_hash_entry *) ret;
4530
4531 /* Call the allocation method of the superclass. */
4532 ret = (struct elf32_mn10300_link_hash_entry *)
4533 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
4534 table, string);
4535 if (ret != NULL)
4536 {
4537 ret->direct_calls = 0;
4538 ret->stack_size = 0;
4539 ret->movm_args = 0;
4540 ret->movm_stack_size = 0;
4541 ret->flags = 0;
4542 ret->value = 0;
4543 ret->tls_type = GOT_UNKNOWN;
4544 }
4545
4546 return (struct bfd_hash_entry *) ret;
4547 }
4548
4549 static void
4550 _bfd_mn10300_copy_indirect_symbol (struct bfd_link_info * info,
4551 struct elf_link_hash_entry * dir,
4552 struct elf_link_hash_entry * ind)
4553 {
4554 struct elf32_mn10300_link_hash_entry * edir;
4555 struct elf32_mn10300_link_hash_entry * eind;
4556
4557 edir = elf_mn10300_hash_entry (dir);
4558 eind = elf_mn10300_hash_entry (ind);
4559
4560 if (ind->root.type == bfd_link_hash_indirect
4561 && dir->got.refcount <= 0)
4562 {
4563 edir->tls_type = eind->tls_type;
4564 eind->tls_type = GOT_UNKNOWN;
4565 }
4566 edir->direct_calls = eind->direct_calls;
4567 edir->stack_size = eind->stack_size;
4568 edir->movm_args = eind->movm_args;
4569 edir->movm_stack_size = eind->movm_stack_size;
4570 edir->flags = eind->flags;
4571
4572 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4573 }
4574
4575 /* Destroy an mn10300 ELF linker hash table. */
4576
4577 static void
4578 elf32_mn10300_link_hash_table_free (bfd *obfd)
4579 {
4580 struct elf32_mn10300_link_hash_table *ret
4581 = (struct elf32_mn10300_link_hash_table *) obfd->link.hash;
4582
4583 obfd->link.hash = &ret->static_hash_table->root.root;
4584 _bfd_elf_link_hash_table_free (obfd);
4585 obfd->is_linker_output = TRUE;
4586 obfd->link.hash = &ret->root.root;
4587 _bfd_elf_link_hash_table_free (obfd);
4588 }
4589
4590 /* Create an mn10300 ELF linker hash table. */
4591
4592 static struct bfd_link_hash_table *
4593 elf32_mn10300_link_hash_table_create (bfd *abfd)
4594 {
4595 struct elf32_mn10300_link_hash_table *ret;
4596 size_t amt = sizeof (* ret);
4597
4598 ret = bfd_zmalloc (amt);
4599 if (ret == NULL)
4600 return NULL;
4601
4602 amt = sizeof (struct elf_link_hash_table);
4603 ret->static_hash_table = bfd_zmalloc (amt);
4604 if (ret->static_hash_table == NULL)
4605 {
4606 free (ret);
4607 return NULL;
4608 }
4609
4610 if (!_bfd_elf_link_hash_table_init (&ret->static_hash_table->root, abfd,
4611 elf32_mn10300_link_hash_newfunc,
4612 sizeof (struct elf32_mn10300_link_hash_entry),
4613 MN10300_ELF_DATA))
4614 {
4615 free (ret->static_hash_table);
4616 free (ret);
4617 return NULL;
4618 }
4619
4620 abfd->is_linker_output = FALSE;
4621 abfd->link.hash = NULL;
4622 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
4623 elf32_mn10300_link_hash_newfunc,
4624 sizeof (struct elf32_mn10300_link_hash_entry),
4625 MN10300_ELF_DATA))
4626 {
4627 abfd->is_linker_output = TRUE;
4628 abfd->link.hash = &ret->static_hash_table->root.root;
4629 _bfd_elf_link_hash_table_free (abfd);
4630 free (ret);
4631 return NULL;
4632 }
4633 ret->root.root.hash_table_free = elf32_mn10300_link_hash_table_free;
4634
4635 ret->tls_ldm_got.offset = -1;
4636
4637 return & ret->root.root;
4638 }
4639
4640 static unsigned long
4641 elf_mn10300_mach (flagword flags)
4642 {
4643 switch (flags & EF_MN10300_MACH)
4644 {
4645 case E_MN10300_MACH_MN10300:
4646 default:
4647 return bfd_mach_mn10300;
4648
4649 case E_MN10300_MACH_AM33:
4650 return bfd_mach_am33;
4651
4652 case E_MN10300_MACH_AM33_2:
4653 return bfd_mach_am33_2;
4654 }
4655 }
4656
4657 /* The final processing done just before writing out a MN10300 ELF object
4658 file. This gets the MN10300 architecture right based on the machine
4659 number. */
4660
4661 static bfd_boolean
4662 _bfd_mn10300_elf_final_write_processing (bfd *abfd)
4663 {
4664 unsigned long val;
4665
4666 switch (bfd_get_mach (abfd))
4667 {
4668 default:
4669 case bfd_mach_mn10300:
4670 val = E_MN10300_MACH_MN10300;
4671 break;
4672
4673 case bfd_mach_am33:
4674 val = E_MN10300_MACH_AM33;
4675 break;
4676
4677 case bfd_mach_am33_2:
4678 val = E_MN10300_MACH_AM33_2;
4679 break;
4680 }
4681
4682 elf_elfheader (abfd)->e_flags &= ~ (EF_MN10300_MACH);
4683 elf_elfheader (abfd)->e_flags |= val;
4684 return _bfd_elf_final_write_processing (abfd);
4685 }
4686
4687 static bfd_boolean
4688 _bfd_mn10300_elf_object_p (bfd *abfd)
4689 {
4690 bfd_default_set_arch_mach (abfd, bfd_arch_mn10300,
4691 elf_mn10300_mach (elf_elfheader (abfd)->e_flags));
4692 return TRUE;
4693 }
4694
4695 /* Merge backend specific data from an object file to the output
4696 object file when linking. */
4697
4698 static bfd_boolean
4699 _bfd_mn10300_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
4700 {
4701 bfd *obfd = info->output_bfd;
4702
4703 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4704 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4705 return TRUE;
4706
4707 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
4708 && bfd_get_mach (obfd) < bfd_get_mach (ibfd))
4709 {
4710 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
4711 bfd_get_mach (ibfd)))
4712 return FALSE;
4713 }
4714
4715 return TRUE;
4716 }
4717
4718 #define PLT0_ENTRY_SIZE 15
4719 #define PLT_ENTRY_SIZE 20
4720 #define PIC_PLT_ENTRY_SIZE 24
4721
4722 static const bfd_byte elf_mn10300_plt0_entry[PLT0_ENTRY_SIZE] =
4723 {
4724 0xfc, 0xa0, 0, 0, 0, 0, /* mov (.got+8),a0 */
4725 0xfe, 0xe, 0x10, 0, 0, 0, 0, /* mov (.got+4),r1 */
4726 0xf0, 0xf4, /* jmp (a0) */
4727 };
4728
4729 static const bfd_byte elf_mn10300_plt_entry[PLT_ENTRY_SIZE] =
4730 {
4731 0xfc, 0xa0, 0, 0, 0, 0, /* mov (nameN@GOT + .got),a0 */
4732 0xf0, 0xf4, /* jmp (a0) */
4733 0xfe, 8, 0, 0, 0, 0, 0, /* mov reloc-table-address,r0 */
4734 0xdc, 0, 0, 0, 0, /* jmp .plt0 */
4735 };
4736
4737 static const bfd_byte elf_mn10300_pic_plt_entry[PIC_PLT_ENTRY_SIZE] =
4738 {
4739 0xfc, 0x22, 0, 0, 0, 0, /* mov (nameN@GOT,a2),a0 */
4740 0xf0, 0xf4, /* jmp (a0) */
4741 0xfe, 8, 0, 0, 0, 0, 0, /* mov reloc-table-address,r0 */
4742 0xf8, 0x22, 8, /* mov (8,a2),a0 */
4743 0xfb, 0xa, 0x1a, 4, /* mov (4,a2),r1 */
4744 0xf0, 0xf4, /* jmp (a0) */
4745 };
4746
4747 /* Return size of the first PLT entry. */
4748 #define elf_mn10300_sizeof_plt0(info) \
4749 (bfd_link_pic (info) ? PIC_PLT_ENTRY_SIZE : PLT0_ENTRY_SIZE)
4750
4751 /* Return size of a PLT entry. */
4752 #define elf_mn10300_sizeof_plt(info) \
4753 (bfd_link_pic (info) ? PIC_PLT_ENTRY_SIZE : PLT_ENTRY_SIZE)
4754
4755 /* Return offset of the PLT0 address in an absolute PLT entry. */
4756 #define elf_mn10300_plt_plt0_offset(info) 16
4757
4758 /* Return offset of the linker in PLT0 entry. */
4759 #define elf_mn10300_plt0_linker_offset(info) 2
4760
4761 /* Return offset of the GOT id in PLT0 entry. */
4762 #define elf_mn10300_plt0_gotid_offset(info) 9
4763
4764 /* Return offset of the temporary in PLT entry. */
4765 #define elf_mn10300_plt_temp_offset(info) 8
4766
4767 /* Return offset of the symbol in PLT entry. */
4768 #define elf_mn10300_plt_symbol_offset(info) 2
4769
4770 /* Return offset of the relocation in PLT entry. */
4771 #define elf_mn10300_plt_reloc_offset(info) 11
4772
4773 /* The name of the dynamic interpreter. This is put in the .interp
4774 section. */
4775
4776 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
4777
4778 /* Create dynamic sections when linking against a dynamic object. */
4779
4780 static bfd_boolean
4781 _bfd_mn10300_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
4782 {
4783 flagword flags;
4784 asection * s;
4785 const struct elf_backend_data * bed = get_elf_backend_data (abfd);
4786 struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
4787 int ptralign = 0;
4788
4789 switch (bed->s->arch_size)
4790 {
4791 case 32:
4792 ptralign = 2;
4793 break;
4794
4795 case 64:
4796 ptralign = 3;
4797 break;
4798
4799 default:
4800 bfd_set_error (bfd_error_bad_value);
4801 return FALSE;
4802 }
4803
4804 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
4805 .rel[a].bss sections. */
4806 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4807 | SEC_LINKER_CREATED);
4808
4809 s = bfd_make_section_anyway_with_flags (abfd,
4810 (bed->default_use_rela_p
4811 ? ".rela.plt" : ".rel.plt"),
4812 flags | SEC_READONLY);
4813 htab->root.srelplt = s;
4814 if (s == NULL
4815 || !bfd_set_section_alignment (s, ptralign))
4816 return FALSE;
4817
4818 if (! _bfd_mn10300_elf_create_got_section (abfd, info))
4819 return FALSE;
4820
4821 if (bed->want_dynbss)
4822 {
4823 /* The .dynbss section is a place to put symbols which are defined
4824 by dynamic objects, are referenced by regular objects, and are
4825 not functions. We must allocate space for them in the process
4826 image and use a R_*_COPY reloc to tell the dynamic linker to
4827 initialize them at run time. The linker script puts the .dynbss
4828 section into the .bss section of the final image. */
4829 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
4830 SEC_ALLOC | SEC_LINKER_CREATED);
4831 if (s == NULL)
4832 return FALSE;
4833
4834 /* The .rel[a].bss section holds copy relocs. This section is not
4835 normally needed. We need to create it here, though, so that the
4836 linker will map it to an output section. We can't just create it
4837 only if we need it, because we will not know whether we need it
4838 until we have seen all the input files, and the first time the
4839 main linker code calls BFD after examining all the input files
4840 (size_dynamic_sections) the input sections have already been
4841 mapped to the output sections. If the section turns out not to
4842 be needed, we can discard it later. We will never need this
4843 section when generating a shared object, since they do not use
4844 copy relocs. */
4845 if (! bfd_link_pic (info))
4846 {
4847 s = bfd_make_section_anyway_with_flags (abfd,
4848 (bed->default_use_rela_p
4849 ? ".rela.bss" : ".rel.bss"),
4850 flags | SEC_READONLY);
4851 if (s == NULL
4852 || !bfd_set_section_alignment (s, ptralign))
4853 return FALSE;
4854 }
4855 }
4856
4857 return TRUE;
4858 }
4859 \f
4860 /* Adjust a symbol defined by a dynamic object and referenced by a
4861 regular object. The current definition is in some section of the
4862 dynamic object, but we're not including those sections. We have to
4863 change the definition to something the rest of the link can
4864 understand. */
4865
4866 static bfd_boolean
4867 _bfd_mn10300_elf_adjust_dynamic_symbol (struct bfd_link_info * info,
4868 struct elf_link_hash_entry * h)
4869 {
4870 struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
4871 bfd * dynobj;
4872 asection * s;
4873
4874 dynobj = htab->root.dynobj;
4875
4876 /* Make sure we know what is going on here. */
4877 BFD_ASSERT (dynobj != NULL
4878 && (h->needs_plt
4879 || h->is_weakalias
4880 || (h->def_dynamic
4881 && h->ref_regular
4882 && !h->def_regular)));
4883
4884 /* If this is a function, put it in the procedure linkage table. We
4885 will fill in the contents of the procedure linkage table later,
4886 when we know the address of the .got section. */
4887 if (h->type == STT_FUNC
4888 || h->needs_plt)
4889 {
4890 if (! bfd_link_pic (info)
4891 && !h->def_dynamic
4892 && !h->ref_dynamic)
4893 {
4894 /* This case can occur if we saw a PLT reloc in an input
4895 file, but the symbol was never referred to by a dynamic
4896 object. In such a case, we don't actually need to build
4897 a procedure linkage table, and we can just do a REL32
4898 reloc instead. */
4899 BFD_ASSERT (h->needs_plt);
4900 return TRUE;
4901 }
4902
4903 /* Make sure this symbol is output as a dynamic symbol. */
4904 if (h->dynindx == -1)
4905 {
4906 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4907 return FALSE;
4908 }
4909
4910 s = htab->root.splt;
4911 BFD_ASSERT (s != NULL);
4912
4913 /* If this is the first .plt entry, make room for the special
4914 first entry. */
4915 if (s->size == 0)
4916 s->size += elf_mn10300_sizeof_plt0 (info);
4917
4918 /* If this symbol is not defined in a regular file, and we are
4919 not generating a shared library, then set the symbol to this
4920 location in the .plt. This is required to make function
4921 pointers compare as equal between the normal executable and
4922 the shared library. */
4923 if (! bfd_link_pic (info)
4924 && !h->def_regular)
4925 {
4926 h->root.u.def.section = s;
4927 h->root.u.def.value = s->size;
4928 }
4929
4930 h->plt.offset = s->size;
4931
4932 /* Make room for this entry. */
4933 s->size += elf_mn10300_sizeof_plt (info);
4934
4935 /* We also need to make an entry in the .got.plt section, which
4936 will be placed in the .got section by the linker script. */
4937 s = htab->root.sgotplt;
4938 BFD_ASSERT (s != NULL);
4939 s->size += 4;
4940
4941 /* We also need to make an entry in the .rela.plt section. */
4942 s = htab->root.srelplt;
4943 BFD_ASSERT (s != NULL);
4944 s->size += sizeof (Elf32_External_Rela);
4945
4946 return TRUE;
4947 }
4948
4949 /* If this is a weak symbol, and there is a real definition, the
4950 processor independent code will have arranged for us to see the
4951 real definition first, and we can just use the same value. */
4952 if (h->is_weakalias)
4953 {
4954 struct elf_link_hash_entry *def = weakdef (h);
4955 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
4956 h->root.u.def.section = def->root.u.def.section;
4957 h->root.u.def.value = def->root.u.def.value;
4958 return TRUE;
4959 }
4960
4961 /* This is a reference to a symbol defined by a dynamic object which
4962 is not a function. */
4963
4964 /* If we are creating a shared library, we must presume that the
4965 only references to the symbol are via the global offset table.
4966 For such cases we need not do anything here; the relocations will
4967 be handled correctly by relocate_section. */
4968 if (bfd_link_pic (info))
4969 return TRUE;
4970
4971 /* If there are no references to this symbol that do not use the
4972 GOT, we don't need to generate a copy reloc. */
4973 if (!h->non_got_ref)
4974 return TRUE;
4975
4976 /* We must allocate the symbol in our .dynbss section, which will
4977 become part of the .bss section of the executable. There will be
4978 an entry for this symbol in the .dynsym section. The dynamic
4979 object will contain position independent code, so all references
4980 from the dynamic object to this symbol will go through the global
4981 offset table. The dynamic linker will use the .dynsym entry to
4982 determine the address it must put in the global offset table, so
4983 both the dynamic object and the regular object will refer to the
4984 same memory location for the variable. */
4985
4986 s = bfd_get_linker_section (dynobj, ".dynbss");
4987 BFD_ASSERT (s != NULL);
4988
4989 /* We must generate a R_MN10300_COPY reloc to tell the dynamic linker to
4990 copy the initial value out of the dynamic object and into the
4991 runtime process image. We need to remember the offset into the
4992 .rela.bss section we are going to use. */
4993 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
4994 {
4995 asection * srel;
4996
4997 srel = bfd_get_linker_section (dynobj, ".rela.bss");
4998 BFD_ASSERT (srel != NULL);
4999 srel->size += sizeof (Elf32_External_Rela);
5000 h->needs_copy = 1;
5001 }
5002
5003 return _bfd_elf_adjust_dynamic_copy (info, h, s);
5004 }
5005
5006 /* Set the sizes of the dynamic sections. */
5007
5008 static bfd_boolean
5009 _bfd_mn10300_elf_size_dynamic_sections (bfd * output_bfd,
5010 struct bfd_link_info * info)
5011 {
5012 struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
5013 bfd * dynobj;
5014 asection * s;
5015 bfd_boolean plt;
5016 bfd_boolean relocs;
5017 bfd_boolean reltext;
5018
5019 dynobj = htab->root.dynobj;
5020 BFD_ASSERT (dynobj != NULL);
5021
5022 if (elf_hash_table (info)->dynamic_sections_created)
5023 {
5024 /* Set the contents of the .interp section to the interpreter. */
5025 if (bfd_link_executable (info) && !info->nointerp)
5026 {
5027 s = bfd_get_linker_section (dynobj, ".interp");
5028 BFD_ASSERT (s != NULL);
5029 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
5030 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
5031 }
5032 }
5033 else
5034 {
5035 /* We may have created entries in the .rela.got section.
5036 However, if we are not creating the dynamic sections, we will
5037 not actually use these entries. Reset the size of .rela.got,
5038 which will cause it to get stripped from the output file
5039 below. */
5040 s = htab->root.sgot;
5041 if (s != NULL)
5042 s->size = 0;
5043 }
5044
5045 if (htab->tls_ldm_got.refcount > 0)
5046 {
5047 s = htab->root.srelgot;
5048 BFD_ASSERT (s != NULL);
5049 s->size += sizeof (Elf32_External_Rela);
5050 }
5051
5052 /* The check_relocs and adjust_dynamic_symbol entry points have
5053 determined the sizes of the various dynamic sections. Allocate
5054 memory for them. */
5055 plt = FALSE;
5056 relocs = FALSE;
5057 reltext = FALSE;
5058 for (s = dynobj->sections; s != NULL; s = s->next)
5059 {
5060 const char * name;
5061
5062 if ((s->flags & SEC_LINKER_CREATED) == 0)
5063 continue;
5064
5065 /* It's OK to base decisions on the section name, because none
5066 of the dynobj section names depend upon the input files. */
5067 name = bfd_section_name (s);
5068
5069 if (streq (name, ".plt"))
5070 {
5071 /* Remember whether there is a PLT. */
5072 plt = s->size != 0;
5073 }
5074 else if (CONST_STRNEQ (name, ".rela"))
5075 {
5076 if (s->size != 0)
5077 {
5078 asection * target;
5079
5080 /* Remember whether there are any reloc sections other
5081 than .rela.plt. */
5082 if (! streq (name, ".rela.plt"))
5083 {
5084 const char * outname;
5085
5086 relocs = TRUE;
5087
5088 /* If this relocation section applies to a read only
5089 section, then we probably need a DT_TEXTREL
5090 entry. The entries in the .rela.plt section
5091 really apply to the .got section, which we
5092 created ourselves and so know is not readonly. */
5093 outname = bfd_section_name (s->output_section);
5094 target = bfd_get_section_by_name (output_bfd, outname + 5);
5095 if (target != NULL
5096 && (target->flags & SEC_READONLY) != 0
5097 && (target->flags & SEC_ALLOC) != 0)
5098 reltext = TRUE;
5099 }
5100
5101 /* We use the reloc_count field as a counter if we need
5102 to copy relocs into the output file. */
5103 s->reloc_count = 0;
5104 }
5105 }
5106 else if (! CONST_STRNEQ (name, ".got")
5107 && ! streq (name, ".dynbss"))
5108 /* It's not one of our sections, so don't allocate space. */
5109 continue;
5110
5111 if (s->size == 0)
5112 {
5113 /* If we don't need this section, strip it from the
5114 output file. This is mostly to handle .rela.bss and
5115 .rela.plt. We must create both sections in
5116 create_dynamic_sections, because they must be created
5117 before the linker maps input sections to output
5118 sections. The linker does that before
5119 adjust_dynamic_symbol is called, and it is that
5120 function which decides whether anything needs to go
5121 into these sections. */
5122 s->flags |= SEC_EXCLUDE;
5123 continue;
5124 }
5125
5126 if ((s->flags & SEC_HAS_CONTENTS) == 0)
5127 continue;
5128
5129 /* Allocate memory for the section contents. We use bfd_zalloc
5130 here in case unused entries are not reclaimed before the
5131 section's contents are written out. This should not happen,
5132 but this way if it does, we get a R_MN10300_NONE reloc
5133 instead of garbage. */
5134 s->contents = bfd_zalloc (dynobj, s->size);
5135 if (s->contents == NULL)
5136 return FALSE;
5137 }
5138
5139 if (elf_hash_table (info)->dynamic_sections_created)
5140 {
5141 /* Add some entries to the .dynamic section. We fill in the
5142 values later, in _bfd_mn10300_elf_finish_dynamic_sections,
5143 but we must add the entries now so that we get the correct
5144 size for the .dynamic section. The DT_DEBUG entry is filled
5145 in by the dynamic linker and used by the debugger. */
5146 if (! bfd_link_pic (info))
5147 {
5148 if (!_bfd_elf_add_dynamic_entry (info, DT_DEBUG, 0))
5149 return FALSE;
5150 }
5151
5152 if (plt)
5153 {
5154 if (!_bfd_elf_add_dynamic_entry (info, DT_PLTGOT, 0)
5155 || !_bfd_elf_add_dynamic_entry (info, DT_PLTRELSZ, 0)
5156 || !_bfd_elf_add_dynamic_entry (info, DT_PLTREL, DT_RELA)
5157 || !_bfd_elf_add_dynamic_entry (info, DT_JMPREL, 0))
5158 return FALSE;
5159 }
5160
5161 if (relocs)
5162 {
5163 if (!_bfd_elf_add_dynamic_entry (info, DT_RELA, 0)
5164 || !_bfd_elf_add_dynamic_entry (info, DT_RELASZ, 0)
5165 || !_bfd_elf_add_dynamic_entry (info, DT_RELAENT,
5166 sizeof (Elf32_External_Rela)))
5167 return FALSE;
5168 }
5169
5170 if (reltext)
5171 {
5172 if (!_bfd_elf_add_dynamic_entry (info, DT_TEXTREL, 0))
5173 return FALSE;
5174 }
5175 }
5176
5177 return TRUE;
5178 }
5179
5180 /* Finish up dynamic symbol handling. We set the contents of various
5181 dynamic sections here. */
5182
5183 static bfd_boolean
5184 _bfd_mn10300_elf_finish_dynamic_symbol (bfd * output_bfd,
5185 struct bfd_link_info * info,
5186 struct elf_link_hash_entry * h,
5187 Elf_Internal_Sym * sym)
5188 {
5189 struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
5190 bfd * dynobj;
5191
5192 dynobj = htab->root.dynobj;
5193
5194 if (h->plt.offset != (bfd_vma) -1)
5195 {
5196 asection * splt;
5197 asection * sgot;
5198 asection * srel;
5199 bfd_vma plt_index;
5200 bfd_vma got_offset;
5201 Elf_Internal_Rela rel;
5202
5203 /* This symbol has an entry in the procedure linkage table. Set
5204 it up. */
5205
5206 BFD_ASSERT (h->dynindx != -1);
5207
5208 splt = htab->root.splt;
5209 sgot = htab->root.sgotplt;
5210 srel = htab->root.srelplt;
5211 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
5212
5213 /* Get the index in the procedure linkage table which
5214 corresponds to this symbol. This is the index of this symbol
5215 in all the symbols for which we are making plt entries. The
5216 first entry in the procedure linkage table is reserved. */
5217 plt_index = ((h->plt.offset - elf_mn10300_sizeof_plt0 (info))
5218 / elf_mn10300_sizeof_plt (info));
5219
5220 /* Get the offset into the .got table of the entry that
5221 corresponds to this function. Each .got entry is 4 bytes.
5222 The first three are reserved. */
5223 got_offset = (plt_index + 3) * 4;
5224
5225 /* Fill in the entry in the procedure linkage table. */
5226 if (! bfd_link_pic (info))
5227 {
5228 memcpy (splt->contents + h->plt.offset, elf_mn10300_plt_entry,
5229 elf_mn10300_sizeof_plt (info));
5230 bfd_put_32 (output_bfd,
5231 (sgot->output_section->vma
5232 + sgot->output_offset
5233 + got_offset),
5234 (splt->contents + h->plt.offset
5235 + elf_mn10300_plt_symbol_offset (info)));
5236
5237 bfd_put_32 (output_bfd,
5238 (1 - h->plt.offset - elf_mn10300_plt_plt0_offset (info)),
5239 (splt->contents + h->plt.offset
5240 + elf_mn10300_plt_plt0_offset (info)));
5241 }
5242 else
5243 {
5244 memcpy (splt->contents + h->plt.offset, elf_mn10300_pic_plt_entry,
5245 elf_mn10300_sizeof_plt (info));
5246
5247 bfd_put_32 (output_bfd, got_offset,
5248 (splt->contents + h->plt.offset
5249 + elf_mn10300_plt_symbol_offset (info)));
5250 }
5251
5252 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
5253 (splt->contents + h->plt.offset
5254 + elf_mn10300_plt_reloc_offset (info)));
5255
5256 /* Fill in the entry in the global offset table. */
5257 bfd_put_32 (output_bfd,
5258 (splt->output_section->vma
5259 + splt->output_offset
5260 + h->plt.offset
5261 + elf_mn10300_plt_temp_offset (info)),
5262 sgot->contents + got_offset);
5263
5264 /* Fill in the entry in the .rela.plt section. */
5265 rel.r_offset = (sgot->output_section->vma
5266 + sgot->output_offset
5267 + got_offset);
5268 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_JMP_SLOT);
5269 rel.r_addend = 0;
5270 bfd_elf32_swap_reloca_out (output_bfd, &rel,
5271 (bfd_byte *) ((Elf32_External_Rela *) srel->contents
5272 + plt_index));
5273
5274 if (!h->def_regular)
5275 /* Mark the symbol as undefined, rather than as defined in
5276 the .plt section. Leave the value alone. */
5277 sym->st_shndx = SHN_UNDEF;
5278 }
5279
5280 if (h->got.offset != (bfd_vma) -1)
5281 {
5282 asection * sgot;
5283 asection * srel;
5284 Elf_Internal_Rela rel;
5285
5286 /* This symbol has an entry in the global offset table. Set it up. */
5287 sgot = htab->root.sgot;
5288 srel = htab->root.srelgot;
5289 BFD_ASSERT (sgot != NULL && srel != NULL);
5290
5291 rel.r_offset = (sgot->output_section->vma
5292 + sgot->output_offset
5293 + (h->got.offset & ~1));
5294
5295 switch (elf_mn10300_hash_entry (h)->tls_type)
5296 {
5297 case GOT_TLS_GD:
5298 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
5299 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset + 4);
5300 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPMOD);
5301 rel.r_addend = 0;
5302 bfd_elf32_swap_reloca_out (output_bfd, & rel,
5303 (bfd_byte *) ((Elf32_External_Rela *) srel->contents
5304 + srel->reloc_count));
5305 ++ srel->reloc_count;
5306 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_DTPOFF);
5307 rel.r_offset += 4;
5308 rel.r_addend = 0;
5309 break;
5310
5311 case GOT_TLS_IE:
5312 /* We originally stored the addend in the GOT, but at this
5313 point, we want to move it to the reloc instead as that's
5314 where the dynamic linker wants it. */
5315 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + h->got.offset);
5316 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
5317 if (h->dynindx == -1)
5318 rel.r_info = ELF32_R_INFO (0, R_MN10300_TLS_TPOFF);
5319 else
5320 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_TLS_TPOFF);
5321 break;
5322
5323 default:
5324 /* If this is a -Bsymbolic link, and the symbol is defined
5325 locally, we just want to emit a RELATIVE reloc. Likewise if
5326 the symbol was forced to be local because of a version file.
5327 The entry in the global offset table will already have been
5328 initialized in the relocate_section function. */
5329 if (bfd_link_pic (info)
5330 && (info->symbolic || h->dynindx == -1)
5331 && h->def_regular)
5332 {
5333 rel.r_info = ELF32_R_INFO (0, R_MN10300_RELATIVE);
5334 rel.r_addend = (h->root.u.def.value
5335 + h->root.u.def.section->output_section->vma
5336 + h->root.u.def.section->output_offset);
5337 }
5338 else
5339 {
5340 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
5341 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_GLOB_DAT);
5342 rel.r_addend = 0;
5343 }
5344 }
5345
5346 if (ELF32_R_TYPE (rel.r_info) != R_MN10300_NONE)
5347 {
5348 bfd_elf32_swap_reloca_out (output_bfd, &rel,
5349 (bfd_byte *) ((Elf32_External_Rela *) srel->contents
5350 + srel->reloc_count));
5351 ++ srel->reloc_count;
5352 }
5353 }
5354
5355 if (h->needs_copy)
5356 {
5357 asection * s;
5358 Elf_Internal_Rela rel;
5359
5360 /* This symbol needs a copy reloc. Set it up. */
5361 BFD_ASSERT (h->dynindx != -1
5362 && (h->root.type == bfd_link_hash_defined
5363 || h->root.type == bfd_link_hash_defweak));
5364
5365 s = bfd_get_linker_section (dynobj, ".rela.bss");
5366 BFD_ASSERT (s != NULL);
5367
5368 rel.r_offset = (h->root.u.def.value
5369 + h->root.u.def.section->output_section->vma
5370 + h->root.u.def.section->output_offset);
5371 rel.r_info = ELF32_R_INFO (h->dynindx, R_MN10300_COPY);
5372 rel.r_addend = 0;
5373 bfd_elf32_swap_reloca_out (output_bfd, & rel,
5374 (bfd_byte *) ((Elf32_External_Rela *) s->contents
5375 + s->reloc_count));
5376 ++ s->reloc_count;
5377 }
5378
5379 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
5380 if (h == elf_hash_table (info)->hdynamic
5381 || h == elf_hash_table (info)->hgot)
5382 sym->st_shndx = SHN_ABS;
5383
5384 return TRUE;
5385 }
5386
5387 /* Finish up the dynamic sections. */
5388
5389 static bfd_boolean
5390 _bfd_mn10300_elf_finish_dynamic_sections (bfd * output_bfd,
5391 struct bfd_link_info * info)
5392 {
5393 bfd * dynobj;
5394 asection * sgot;
5395 asection * sdyn;
5396 struct elf32_mn10300_link_hash_table *htab = elf32_mn10300_hash_table (info);
5397
5398 dynobj = htab->root.dynobj;
5399 sgot = htab->root.sgotplt;
5400 BFD_ASSERT (sgot != NULL);
5401 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
5402
5403 if (elf_hash_table (info)->dynamic_sections_created)
5404 {
5405 asection * splt;
5406 Elf32_External_Dyn * dyncon;
5407 Elf32_External_Dyn * dynconend;
5408
5409 BFD_ASSERT (sdyn != NULL);
5410
5411 dyncon = (Elf32_External_Dyn *) sdyn->contents;
5412 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
5413
5414 for (; dyncon < dynconend; dyncon++)
5415 {
5416 Elf_Internal_Dyn dyn;
5417 asection * s;
5418
5419 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
5420
5421 switch (dyn.d_tag)
5422 {
5423 default:
5424 break;
5425
5426 case DT_PLTGOT:
5427 s = htab->root.sgot;
5428 goto get_vma;
5429
5430 case DT_JMPREL:
5431 s = htab->root.srelplt;
5432 get_vma:
5433 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
5434 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5435 break;
5436
5437 case DT_PLTRELSZ:
5438 s = htab->root.srelplt;
5439 dyn.d_un.d_val = s->size;
5440 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5441 break;
5442 }
5443 }
5444
5445 /* Fill in the first entry in the procedure linkage table. */
5446 splt = htab->root.splt;
5447 if (splt && splt->size > 0)
5448 {
5449 if (bfd_link_pic (info))
5450 {
5451 memcpy (splt->contents, elf_mn10300_pic_plt_entry,
5452 elf_mn10300_sizeof_plt (info));
5453 }
5454 else
5455 {
5456 memcpy (splt->contents, elf_mn10300_plt0_entry, PLT0_ENTRY_SIZE);
5457 bfd_put_32 (output_bfd,
5458 sgot->output_section->vma + sgot->output_offset + 4,
5459 splt->contents + elf_mn10300_plt0_gotid_offset (info));
5460 bfd_put_32 (output_bfd,
5461 sgot->output_section->vma + sgot->output_offset + 8,
5462 splt->contents + elf_mn10300_plt0_linker_offset (info));
5463 }
5464
5465 /* UnixWare sets the entsize of .plt to 4, although that doesn't
5466 really seem like the right value. */
5467 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
5468
5469 /* UnixWare sets the entsize of .plt to 4, but this is incorrect
5470 as it means that the size of the PLT0 section (15 bytes) is not
5471 a multiple of the sh_entsize. Some ELF tools flag this as an
5472 error. We could pad PLT0 to 16 bytes, but that would introduce
5473 compatibilty issues with previous toolchains, so instead we
5474 just set the entry size to 1. */
5475 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 1;
5476 }
5477 }
5478
5479 /* Fill in the first three entries in the global offset table. */
5480 if (sgot->size > 0)
5481 {
5482 if (sdyn == NULL)
5483 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
5484 else
5485 bfd_put_32 (output_bfd,
5486 sdyn->output_section->vma + sdyn->output_offset,
5487 sgot->contents);
5488 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
5489 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
5490 }
5491
5492 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
5493
5494 return TRUE;
5495 }
5496
5497 /* Classify relocation types, such that combreloc can sort them
5498 properly. */
5499
5500 static enum elf_reloc_type_class
5501 _bfd_mn10300_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5502 const asection *rel_sec ATTRIBUTE_UNUSED,
5503 const Elf_Internal_Rela *rela)
5504 {
5505 switch ((int) ELF32_R_TYPE (rela->r_info))
5506 {
5507 case R_MN10300_RELATIVE: return reloc_class_relative;
5508 case R_MN10300_JMP_SLOT: return reloc_class_plt;
5509 case R_MN10300_COPY: return reloc_class_copy;
5510 default: return reloc_class_normal;
5511 }
5512 }
5513
5514 /* Allocate space for an MN10300 extension to the bfd elf data structure. */
5515
5516 static bfd_boolean
5517 mn10300_elf_mkobject (bfd *abfd)
5518 {
5519 return bfd_elf_allocate_object (abfd, sizeof (struct elf_mn10300_obj_tdata),
5520 MN10300_ELF_DATA);
5521 }
5522
5523 #define bfd_elf32_mkobject mn10300_elf_mkobject
5524
5525 #ifndef ELF_ARCH
5526 #define TARGET_LITTLE_SYM mn10300_elf32_vec
5527 #define TARGET_LITTLE_NAME "elf32-mn10300"
5528 #define ELF_ARCH bfd_arch_mn10300
5529 #define ELF_TARGET_ID MN10300_ELF_DATA
5530 #define ELF_MACHINE_CODE EM_MN10300
5531 #define ELF_MACHINE_ALT1 EM_CYGNUS_MN10300
5532 #define ELF_MAXPAGESIZE 0x1000
5533 #endif
5534
5535 #define elf_info_to_howto mn10300_info_to_howto
5536 #define elf_info_to_howto_rel NULL
5537 #define elf_backend_can_gc_sections 1
5538 #define elf_backend_rela_normal 1
5539 #define elf_backend_check_relocs mn10300_elf_check_relocs
5540 #define elf_backend_gc_mark_hook mn10300_elf_gc_mark_hook
5541 #define elf_backend_relocate_section mn10300_elf_relocate_section
5542 #define bfd_elf32_bfd_relax_section mn10300_elf_relax_section
5543 #define bfd_elf32_bfd_get_relocated_section_contents \
5544 mn10300_elf_get_relocated_section_contents
5545 #define bfd_elf32_bfd_link_hash_table_create \
5546 elf32_mn10300_link_hash_table_create
5547
5548 #ifndef elf_symbol_leading_char
5549 #define elf_symbol_leading_char '_'
5550 #endif
5551
5552 /* So we can set bits in e_flags. */
5553 #define elf_backend_final_write_processing \
5554 _bfd_mn10300_elf_final_write_processing
5555 #define elf_backend_object_p _bfd_mn10300_elf_object_p
5556
5557 #define bfd_elf32_bfd_merge_private_bfd_data \
5558 _bfd_mn10300_elf_merge_private_bfd_data
5559
5560 #define elf_backend_can_gc_sections 1
5561 #define elf_backend_create_dynamic_sections \
5562 _bfd_mn10300_elf_create_dynamic_sections
5563 #define elf_backend_adjust_dynamic_symbol \
5564 _bfd_mn10300_elf_adjust_dynamic_symbol
5565 #define elf_backend_size_dynamic_sections \
5566 _bfd_mn10300_elf_size_dynamic_sections
5567 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
5568 #define elf_backend_finish_dynamic_symbol \
5569 _bfd_mn10300_elf_finish_dynamic_symbol
5570 #define elf_backend_finish_dynamic_sections \
5571 _bfd_mn10300_elf_finish_dynamic_sections
5572 #define elf_backend_copy_indirect_symbol \
5573 _bfd_mn10300_copy_indirect_symbol
5574 #define elf_backend_reloc_type_class \
5575 _bfd_mn10300_elf_reloc_type_class
5576
5577 #define elf_backend_want_got_plt 1
5578 #define elf_backend_plt_readonly 1
5579 #define elf_backend_want_plt_sym 0
5580 #define elf_backend_got_header_size 12
5581 #define elf_backend_dtrel_excludes_plt 1
5582
5583 #include "elf32-target.h"
This page took 0.147738 seconds and 4 git commands to generate.