gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2020 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
56 file_ptr offset, size_t align);
57
58 /* Swap version information in and out. The version information is
59 currently size independent. If that ever changes, this code will
60 need to move into elfcode.h. */
61
62 /* Swap in a Verdef structure. */
63
64 void
65 _bfd_elf_swap_verdef_in (bfd *abfd,
66 const Elf_External_Verdef *src,
67 Elf_Internal_Verdef *dst)
68 {
69 dst->vd_version = H_GET_16 (abfd, src->vd_version);
70 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
71 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
72 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
73 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
74 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
75 dst->vd_next = H_GET_32 (abfd, src->vd_next);
76 }
77
78 /* Swap out a Verdef structure. */
79
80 void
81 _bfd_elf_swap_verdef_out (bfd *abfd,
82 const Elf_Internal_Verdef *src,
83 Elf_External_Verdef *dst)
84 {
85 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
86 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
87 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
88 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
89 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
90 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
91 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
92 }
93
94 /* Swap in a Verdaux structure. */
95
96 void
97 _bfd_elf_swap_verdaux_in (bfd *abfd,
98 const Elf_External_Verdaux *src,
99 Elf_Internal_Verdaux *dst)
100 {
101 dst->vda_name = H_GET_32 (abfd, src->vda_name);
102 dst->vda_next = H_GET_32 (abfd, src->vda_next);
103 }
104
105 /* Swap out a Verdaux structure. */
106
107 void
108 _bfd_elf_swap_verdaux_out (bfd *abfd,
109 const Elf_Internal_Verdaux *src,
110 Elf_External_Verdaux *dst)
111 {
112 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
113 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
114 }
115
116 /* Swap in a Verneed structure. */
117
118 void
119 _bfd_elf_swap_verneed_in (bfd *abfd,
120 const Elf_External_Verneed *src,
121 Elf_Internal_Verneed *dst)
122 {
123 dst->vn_version = H_GET_16 (abfd, src->vn_version);
124 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
125 dst->vn_file = H_GET_32 (abfd, src->vn_file);
126 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
127 dst->vn_next = H_GET_32 (abfd, src->vn_next);
128 }
129
130 /* Swap out a Verneed structure. */
131
132 void
133 _bfd_elf_swap_verneed_out (bfd *abfd,
134 const Elf_Internal_Verneed *src,
135 Elf_External_Verneed *dst)
136 {
137 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
138 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
139 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
140 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
141 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
142 }
143
144 /* Swap in a Vernaux structure. */
145
146 void
147 _bfd_elf_swap_vernaux_in (bfd *abfd,
148 const Elf_External_Vernaux *src,
149 Elf_Internal_Vernaux *dst)
150 {
151 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
152 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
153 dst->vna_other = H_GET_16 (abfd, src->vna_other);
154 dst->vna_name = H_GET_32 (abfd, src->vna_name);
155 dst->vna_next = H_GET_32 (abfd, src->vna_next);
156 }
157
158 /* Swap out a Vernaux structure. */
159
160 void
161 _bfd_elf_swap_vernaux_out (bfd *abfd,
162 const Elf_Internal_Vernaux *src,
163 Elf_External_Vernaux *dst)
164 {
165 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
166 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
167 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
168 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
169 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
170 }
171
172 /* Swap in a Versym structure. */
173
174 void
175 _bfd_elf_swap_versym_in (bfd *abfd,
176 const Elf_External_Versym *src,
177 Elf_Internal_Versym *dst)
178 {
179 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
180 }
181
182 /* Swap out a Versym structure. */
183
184 void
185 _bfd_elf_swap_versym_out (bfd *abfd,
186 const Elf_Internal_Versym *src,
187 Elf_External_Versym *dst)
188 {
189 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
190 }
191
192 /* Standard ELF hash function. Do not change this function; you will
193 cause invalid hash tables to be generated. */
194
195 unsigned long
196 bfd_elf_hash (const char *namearg)
197 {
198 const unsigned char *name = (const unsigned char *) namearg;
199 unsigned long h = 0;
200 unsigned long g;
201 int ch;
202
203 while ((ch = *name++) != '\0')
204 {
205 h = (h << 4) + ch;
206 if ((g = (h & 0xf0000000)) != 0)
207 {
208 h ^= g >> 24;
209 /* The ELF ABI says `h &= ~g', but this is equivalent in
210 this case and on some machines one insn instead of two. */
211 h ^= g;
212 }
213 }
214 return h & 0xffffffff;
215 }
216
217 /* DT_GNU_HASH hash function. Do not change this function; you will
218 cause invalid hash tables to be generated. */
219
220 unsigned long
221 bfd_elf_gnu_hash (const char *namearg)
222 {
223 const unsigned char *name = (const unsigned char *) namearg;
224 unsigned long h = 5381;
225 unsigned char ch;
226
227 while ((ch = *name++) != '\0')
228 h = (h << 5) + h + ch;
229 return h & 0xffffffff;
230 }
231
232 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
233 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
234 bfd_boolean
235 bfd_elf_allocate_object (bfd *abfd,
236 size_t object_size,
237 enum elf_target_id object_id)
238 {
239 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
240 abfd->tdata.any = bfd_zalloc (abfd, object_size);
241 if (abfd->tdata.any == NULL)
242 return FALSE;
243
244 elf_object_id (abfd) = object_id;
245 if (abfd->direction != read_direction)
246 {
247 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
248 if (o == NULL)
249 return FALSE;
250 elf_tdata (abfd)->o = o;
251 elf_program_header_size (abfd) = (bfd_size_type) -1;
252 }
253 return TRUE;
254 }
255
256
257 bfd_boolean
258 bfd_elf_make_object (bfd *abfd)
259 {
260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
261 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
262 bed->target_id);
263 }
264
265 bfd_boolean
266 bfd_elf_mkcorefile (bfd *abfd)
267 {
268 /* I think this can be done just like an object file. */
269 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
270 return FALSE;
271 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
272 return elf_tdata (abfd)->core != NULL;
273 }
274
275 char *
276 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
277 {
278 Elf_Internal_Shdr **i_shdrp;
279 bfd_byte *shstrtab = NULL;
280 file_ptr offset;
281 bfd_size_type shstrtabsize;
282
283 i_shdrp = elf_elfsections (abfd);
284 if (i_shdrp == 0
285 || shindex >= elf_numsections (abfd)
286 || i_shdrp[shindex] == 0)
287 return NULL;
288
289 shstrtab = i_shdrp[shindex]->contents;
290 if (shstrtab == NULL)
291 {
292 /* No cached one, attempt to read, and cache what we read. */
293 offset = i_shdrp[shindex]->sh_offset;
294 shstrtabsize = i_shdrp[shindex]->sh_size;
295
296 /* Allocate and clear an extra byte at the end, to prevent crashes
297 in case the string table is not terminated. */
298 if (shstrtabsize + 1 <= 1
299 || bfd_seek (abfd, offset, SEEK_SET) != 0
300 || (shstrtab = _bfd_alloc_and_read (abfd, shstrtabsize + 1,
301 shstrtabsize)) == NULL)
302 {
303 /* Once we've failed to read it, make sure we don't keep
304 trying. Otherwise, we'll keep allocating space for
305 the string table over and over. */
306 i_shdrp[shindex]->sh_size = 0;
307 }
308 else
309 shstrtab[shstrtabsize] = '\0';
310 i_shdrp[shindex]->contents = shstrtab;
311 }
312 return (char *) shstrtab;
313 }
314
315 char *
316 bfd_elf_string_from_elf_section (bfd *abfd,
317 unsigned int shindex,
318 unsigned int strindex)
319 {
320 Elf_Internal_Shdr *hdr;
321
322 if (strindex == 0)
323 return "";
324
325 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
326 return NULL;
327
328 hdr = elf_elfsections (abfd)[shindex];
329
330 if (hdr->contents == NULL)
331 {
332 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
333 {
334 /* PR 17512: file: f057ec89. */
335 /* xgettext:c-format */
336 _bfd_error_handler (_("%pB: attempt to load strings from"
337 " a non-string section (number %d)"),
338 abfd, shindex);
339 return NULL;
340 }
341
342 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
343 return NULL;
344 }
345 else
346 {
347 /* PR 24273: The string section's contents may have already
348 been loaded elsewhere, eg because a corrupt file has the
349 string section index in the ELF header pointing at a group
350 section. So be paranoid, and test that the last byte of
351 the section is zero. */
352 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
353 return NULL;
354 }
355
356 if (strindex >= hdr->sh_size)
357 {
358 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
359 _bfd_error_handler
360 /* xgettext:c-format */
361 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
362 abfd, strindex, (uint64_t) hdr->sh_size,
363 (shindex == shstrndx && strindex == hdr->sh_name
364 ? ".shstrtab"
365 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
366 return NULL;
367 }
368
369 return ((char *) hdr->contents) + strindex;
370 }
371
372 /* Read and convert symbols to internal format.
373 SYMCOUNT specifies the number of symbols to read, starting from
374 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
375 are non-NULL, they are used to store the internal symbols, external
376 symbols, and symbol section index extensions, respectively.
377 Returns a pointer to the internal symbol buffer (malloced if necessary)
378 or NULL if there were no symbols or some kind of problem. */
379
380 Elf_Internal_Sym *
381 bfd_elf_get_elf_syms (bfd *ibfd,
382 Elf_Internal_Shdr *symtab_hdr,
383 size_t symcount,
384 size_t symoffset,
385 Elf_Internal_Sym *intsym_buf,
386 void *extsym_buf,
387 Elf_External_Sym_Shndx *extshndx_buf)
388 {
389 Elf_Internal_Shdr *shndx_hdr;
390 void *alloc_ext;
391 const bfd_byte *esym;
392 Elf_External_Sym_Shndx *alloc_extshndx;
393 Elf_External_Sym_Shndx *shndx;
394 Elf_Internal_Sym *alloc_intsym;
395 Elf_Internal_Sym *isym;
396 Elf_Internal_Sym *isymend;
397 const struct elf_backend_data *bed;
398 size_t extsym_size;
399 size_t amt;
400 file_ptr pos;
401
402 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
403 abort ();
404
405 if (symcount == 0)
406 return intsym_buf;
407
408 /* Normal syms might have section extension entries. */
409 shndx_hdr = NULL;
410 if (elf_symtab_shndx_list (ibfd) != NULL)
411 {
412 elf_section_list * entry;
413 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
414
415 /* Find an index section that is linked to this symtab section. */
416 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
417 {
418 /* PR 20063. */
419 if (entry->hdr.sh_link >= elf_numsections (ibfd))
420 continue;
421
422 if (sections[entry->hdr.sh_link] == symtab_hdr)
423 {
424 shndx_hdr = & entry->hdr;
425 break;
426 };
427 }
428
429 if (shndx_hdr == NULL)
430 {
431 if (symtab_hdr == & elf_symtab_hdr (ibfd))
432 /* Not really accurate, but this was how the old code used to work. */
433 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
434 /* Otherwise we do nothing. The assumption is that
435 the index table will not be needed. */
436 }
437 }
438
439 /* Read the symbols. */
440 alloc_ext = NULL;
441 alloc_extshndx = NULL;
442 alloc_intsym = NULL;
443 bed = get_elf_backend_data (ibfd);
444 extsym_size = bed->s->sizeof_sym;
445 if (_bfd_mul_overflow (symcount, extsym_size, &amt))
446 {
447 bfd_set_error (bfd_error_file_too_big);
448 intsym_buf = NULL;
449 goto out;
450 }
451 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
452 if (extsym_buf == NULL)
453 {
454 alloc_ext = bfd_malloc (amt);
455 extsym_buf = alloc_ext;
456 }
457 if (extsym_buf == NULL
458 || bfd_seek (ibfd, pos, SEEK_SET) != 0
459 || bfd_bread (extsym_buf, amt, ibfd) != amt)
460 {
461 intsym_buf = NULL;
462 goto out;
463 }
464
465 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
466 extshndx_buf = NULL;
467 else
468 {
469 if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt))
470 {
471 bfd_set_error (bfd_error_file_too_big);
472 intsym_buf = NULL;
473 goto out;
474 }
475 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
476 if (extshndx_buf == NULL)
477 {
478 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
479 extshndx_buf = alloc_extshndx;
480 }
481 if (extshndx_buf == NULL
482 || bfd_seek (ibfd, pos, SEEK_SET) != 0
483 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
484 {
485 intsym_buf = NULL;
486 goto out;
487 }
488 }
489
490 if (intsym_buf == NULL)
491 {
492 if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt))
493 {
494 bfd_set_error (bfd_error_file_too_big);
495 goto out;
496 }
497 alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt);
498 intsym_buf = alloc_intsym;
499 if (intsym_buf == NULL)
500 goto out;
501 }
502
503 /* Convert the symbols to internal form. */
504 isymend = intsym_buf + symcount;
505 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
506 shndx = extshndx_buf;
507 isym < isymend;
508 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
509 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
510 {
511 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
512 /* xgettext:c-format */
513 _bfd_error_handler (_("%pB symbol number %lu references"
514 " nonexistent SHT_SYMTAB_SHNDX section"),
515 ibfd, (unsigned long) symoffset);
516 free (alloc_intsym);
517 intsym_buf = NULL;
518 goto out;
519 }
520
521 out:
522 free (alloc_ext);
523 free (alloc_extshndx);
524
525 return intsym_buf;
526 }
527
528 /* Look up a symbol name. */
529 const char *
530 bfd_elf_sym_name (bfd *abfd,
531 Elf_Internal_Shdr *symtab_hdr,
532 Elf_Internal_Sym *isym,
533 asection *sym_sec)
534 {
535 const char *name;
536 unsigned int iname = isym->st_name;
537 unsigned int shindex = symtab_hdr->sh_link;
538
539 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
540 /* Check for a bogus st_shndx to avoid crashing. */
541 && isym->st_shndx < elf_numsections (abfd))
542 {
543 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
544 shindex = elf_elfheader (abfd)->e_shstrndx;
545 }
546
547 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
548 if (name == NULL)
549 name = "(null)";
550 else if (sym_sec && *name == '\0')
551 name = bfd_section_name (sym_sec);
552
553 return name;
554 }
555
556 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
557 sections. The first element is the flags, the rest are section
558 pointers. */
559
560 typedef union elf_internal_group {
561 Elf_Internal_Shdr *shdr;
562 unsigned int flags;
563 } Elf_Internal_Group;
564
565 /* Return the name of the group signature symbol. Why isn't the
566 signature just a string? */
567
568 static const char *
569 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
570 {
571 Elf_Internal_Shdr *hdr;
572 unsigned char esym[sizeof (Elf64_External_Sym)];
573 Elf_External_Sym_Shndx eshndx;
574 Elf_Internal_Sym isym;
575
576 /* First we need to ensure the symbol table is available. Make sure
577 that it is a symbol table section. */
578 if (ghdr->sh_link >= elf_numsections (abfd))
579 return NULL;
580 hdr = elf_elfsections (abfd) [ghdr->sh_link];
581 if (hdr->sh_type != SHT_SYMTAB
582 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
583 return NULL;
584
585 /* Go read the symbol. */
586 hdr = &elf_tdata (abfd)->symtab_hdr;
587 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
588 &isym, esym, &eshndx) == NULL)
589 return NULL;
590
591 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
592 }
593
594 /* Set next_in_group list pointer, and group name for NEWSECT. */
595
596 static bfd_boolean
597 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
598 {
599 unsigned int num_group = elf_tdata (abfd)->num_group;
600
601 /* If num_group is zero, read in all SHT_GROUP sections. The count
602 is set to -1 if there are no SHT_GROUP sections. */
603 if (num_group == 0)
604 {
605 unsigned int i, shnum;
606
607 /* First count the number of groups. If we have a SHT_GROUP
608 section with just a flag word (ie. sh_size is 4), ignore it. */
609 shnum = elf_numsections (abfd);
610 num_group = 0;
611
612 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
613 ( (shdr)->sh_type == SHT_GROUP \
614 && (shdr)->sh_size >= minsize \
615 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
616 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
617
618 for (i = 0; i < shnum; i++)
619 {
620 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
621
622 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
623 num_group += 1;
624 }
625
626 if (num_group == 0)
627 {
628 num_group = (unsigned) -1;
629 elf_tdata (abfd)->num_group = num_group;
630 elf_tdata (abfd)->group_sect_ptr = NULL;
631 }
632 else
633 {
634 /* We keep a list of elf section headers for group sections,
635 so we can find them quickly. */
636 size_t amt;
637
638 elf_tdata (abfd)->num_group = num_group;
639 amt = num_group * sizeof (Elf_Internal_Shdr *);
640 elf_tdata (abfd)->group_sect_ptr
641 = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
642 if (elf_tdata (abfd)->group_sect_ptr == NULL)
643 return FALSE;
644 num_group = 0;
645
646 for (i = 0; i < shnum; i++)
647 {
648 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
649
650 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
651 {
652 unsigned char *src;
653 Elf_Internal_Group *dest;
654
655 /* Make sure the group section has a BFD section
656 attached to it. */
657 if (!bfd_section_from_shdr (abfd, i))
658 return FALSE;
659
660 /* Add to list of sections. */
661 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
662 num_group += 1;
663
664 /* Read the raw contents. */
665 BFD_ASSERT (sizeof (*dest) >= 4 && sizeof (*dest) % 4 == 0);
666 shdr->contents = NULL;
667 if (_bfd_mul_overflow (shdr->sh_size,
668 sizeof (*dest) / 4, &amt)
669 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
670 || !(shdr->contents
671 = _bfd_alloc_and_read (abfd, amt, shdr->sh_size)))
672 {
673 _bfd_error_handler
674 /* xgettext:c-format */
675 (_("%pB: invalid size field in group section"
676 " header: %#" PRIx64 ""),
677 abfd, (uint64_t) shdr->sh_size);
678 bfd_set_error (bfd_error_bad_value);
679 -- num_group;
680 continue;
681 }
682
683 /* Translate raw contents, a flag word followed by an
684 array of elf section indices all in target byte order,
685 to the flag word followed by an array of elf section
686 pointers. */
687 src = shdr->contents + shdr->sh_size;
688 dest = (Elf_Internal_Group *) (shdr->contents + amt);
689
690 while (1)
691 {
692 unsigned int idx;
693
694 src -= 4;
695 --dest;
696 idx = H_GET_32 (abfd, src);
697 if (src == shdr->contents)
698 {
699 dest->shdr = NULL;
700 dest->flags = idx;
701 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
702 shdr->bfd_section->flags
703 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
704 break;
705 }
706 if (idx < shnum)
707 {
708 dest->shdr = elf_elfsections (abfd)[idx];
709 /* PR binutils/23199: All sections in a
710 section group should be marked with
711 SHF_GROUP. But some tools generate
712 broken objects without SHF_GROUP. Fix
713 them up here. */
714 dest->shdr->sh_flags |= SHF_GROUP;
715 }
716 if (idx >= shnum
717 || dest->shdr->sh_type == SHT_GROUP)
718 {
719 _bfd_error_handler
720 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
721 abfd, i);
722 dest->shdr = NULL;
723 }
724 }
725 }
726 }
727
728 /* PR 17510: Corrupt binaries might contain invalid groups. */
729 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
730 {
731 elf_tdata (abfd)->num_group = num_group;
732
733 /* If all groups are invalid then fail. */
734 if (num_group == 0)
735 {
736 elf_tdata (abfd)->group_sect_ptr = NULL;
737 elf_tdata (abfd)->num_group = num_group = -1;
738 _bfd_error_handler
739 (_("%pB: no valid group sections found"), abfd);
740 bfd_set_error (bfd_error_bad_value);
741 }
742 }
743 }
744 }
745
746 if (num_group != (unsigned) -1)
747 {
748 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
749 unsigned int j;
750
751 for (j = 0; j < num_group; j++)
752 {
753 /* Begin search from previous found group. */
754 unsigned i = (j + search_offset) % num_group;
755
756 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
757 Elf_Internal_Group *idx;
758 bfd_size_type n_elt;
759
760 if (shdr == NULL)
761 continue;
762
763 idx = (Elf_Internal_Group *) shdr->contents;
764 if (idx == NULL || shdr->sh_size < 4)
765 {
766 /* See PR 21957 for a reproducer. */
767 /* xgettext:c-format */
768 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
769 abfd, shdr->bfd_section);
770 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
771 bfd_set_error (bfd_error_bad_value);
772 return FALSE;
773 }
774 n_elt = shdr->sh_size / 4;
775
776 /* Look through this group's sections to see if current
777 section is a member. */
778 while (--n_elt != 0)
779 if ((++idx)->shdr == hdr)
780 {
781 asection *s = NULL;
782
783 /* We are a member of this group. Go looking through
784 other members to see if any others are linked via
785 next_in_group. */
786 idx = (Elf_Internal_Group *) shdr->contents;
787 n_elt = shdr->sh_size / 4;
788 while (--n_elt != 0)
789 if ((++idx)->shdr != NULL
790 && (s = idx->shdr->bfd_section) != NULL
791 && elf_next_in_group (s) != NULL)
792 break;
793 if (n_elt != 0)
794 {
795 /* Snarf the group name from other member, and
796 insert current section in circular list. */
797 elf_group_name (newsect) = elf_group_name (s);
798 elf_next_in_group (newsect) = elf_next_in_group (s);
799 elf_next_in_group (s) = newsect;
800 }
801 else
802 {
803 const char *gname;
804
805 gname = group_signature (abfd, shdr);
806 if (gname == NULL)
807 return FALSE;
808 elf_group_name (newsect) = gname;
809
810 /* Start a circular list with one element. */
811 elf_next_in_group (newsect) = newsect;
812 }
813
814 /* If the group section has been created, point to the
815 new member. */
816 if (shdr->bfd_section != NULL)
817 elf_next_in_group (shdr->bfd_section) = newsect;
818
819 elf_tdata (abfd)->group_search_offset = i;
820 j = num_group - 1;
821 break;
822 }
823 }
824 }
825
826 if (elf_group_name (newsect) == NULL)
827 {
828 /* xgettext:c-format */
829 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
830 abfd, newsect);
831 return FALSE;
832 }
833 return TRUE;
834 }
835
836 bfd_boolean
837 _bfd_elf_setup_sections (bfd *abfd)
838 {
839 unsigned int i;
840 unsigned int num_group = elf_tdata (abfd)->num_group;
841 bfd_boolean result = TRUE;
842 asection *s;
843
844 /* Process SHF_LINK_ORDER. */
845 for (s = abfd->sections; s != NULL; s = s->next)
846 {
847 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
848 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
849 {
850 unsigned int elfsec = this_hdr->sh_link;
851 /* FIXME: The old Intel compiler and old strip/objcopy may
852 not set the sh_link or sh_info fields. Hence we could
853 get the situation where elfsec is 0. */
854 if (elfsec == 0)
855 {
856 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
857 bed->link_order_error_handler
858 /* xgettext:c-format */
859 (_("%pB: warning: sh_link not set for section `%pA'"),
860 abfd, s);
861 }
862 else
863 {
864 asection *linksec = NULL;
865
866 if (elfsec < elf_numsections (abfd))
867 {
868 this_hdr = elf_elfsections (abfd)[elfsec];
869 linksec = this_hdr->bfd_section;
870 }
871
872 /* PR 1991, 2008:
873 Some strip/objcopy may leave an incorrect value in
874 sh_link. We don't want to proceed. */
875 if (linksec == NULL)
876 {
877 _bfd_error_handler
878 /* xgettext:c-format */
879 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
880 s->owner, elfsec, s);
881 result = FALSE;
882 }
883
884 elf_linked_to_section (s) = linksec;
885 }
886 }
887 else if (this_hdr->sh_type == SHT_GROUP
888 && elf_next_in_group (s) == NULL)
889 {
890 _bfd_error_handler
891 /* xgettext:c-format */
892 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
893 abfd, elf_section_data (s)->this_idx);
894 result = FALSE;
895 }
896 }
897
898 /* Process section groups. */
899 if (num_group == (unsigned) -1)
900 return result;
901
902 for (i = 0; i < num_group; i++)
903 {
904 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
905 Elf_Internal_Group *idx;
906 unsigned int n_elt;
907
908 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
909 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
910 {
911 _bfd_error_handler
912 /* xgettext:c-format */
913 (_("%pB: section group entry number %u is corrupt"),
914 abfd, i);
915 result = FALSE;
916 continue;
917 }
918
919 idx = (Elf_Internal_Group *) shdr->contents;
920 n_elt = shdr->sh_size / 4;
921
922 while (--n_elt != 0)
923 {
924 ++ idx;
925
926 if (idx->shdr == NULL)
927 continue;
928 else if (idx->shdr->bfd_section)
929 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
930 else if (idx->shdr->sh_type != SHT_RELA
931 && idx->shdr->sh_type != SHT_REL)
932 {
933 /* There are some unknown sections in the group. */
934 _bfd_error_handler
935 /* xgettext:c-format */
936 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
937 abfd,
938 idx->shdr->sh_type,
939 bfd_elf_string_from_elf_section (abfd,
940 (elf_elfheader (abfd)
941 ->e_shstrndx),
942 idx->shdr->sh_name),
943 shdr->bfd_section);
944 result = FALSE;
945 }
946 }
947 }
948
949 return result;
950 }
951
952 bfd_boolean
953 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
954 {
955 return elf_next_in_group (sec) != NULL;
956 }
957
958 const char *
959 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
960 {
961 if (elf_sec_group (sec) != NULL)
962 return elf_group_name (sec);
963 return NULL;
964 }
965
966 static char *
967 convert_debug_to_zdebug (bfd *abfd, const char *name)
968 {
969 unsigned int len = strlen (name);
970 char *new_name = bfd_alloc (abfd, len + 2);
971 if (new_name == NULL)
972 return NULL;
973 new_name[0] = '.';
974 new_name[1] = 'z';
975 memcpy (new_name + 2, name + 1, len);
976 return new_name;
977 }
978
979 static char *
980 convert_zdebug_to_debug (bfd *abfd, const char *name)
981 {
982 unsigned int len = strlen (name);
983 char *new_name = bfd_alloc (abfd, len);
984 if (new_name == NULL)
985 return NULL;
986 new_name[0] = '.';
987 memcpy (new_name + 1, name + 2, len - 1);
988 return new_name;
989 }
990
991 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
992
993 struct lto_section
994 {
995 int16_t major_version;
996 int16_t minor_version;
997 unsigned char slim_object;
998
999 /* Flags is a private field that is not defined publicly. */
1000 uint16_t flags;
1001 };
1002
1003 /* Make a BFD section from an ELF section. We store a pointer to the
1004 BFD section in the bfd_section field of the header. */
1005
1006 bfd_boolean
1007 _bfd_elf_make_section_from_shdr (bfd *abfd,
1008 Elf_Internal_Shdr *hdr,
1009 const char *name,
1010 int shindex)
1011 {
1012 asection *newsect;
1013 flagword flags;
1014 const struct elf_backend_data *bed;
1015 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
1016
1017 if (hdr->bfd_section != NULL)
1018 return TRUE;
1019
1020 newsect = bfd_make_section_anyway (abfd, name);
1021 if (newsect == NULL)
1022 return FALSE;
1023
1024 hdr->bfd_section = newsect;
1025 elf_section_data (newsect)->this_hdr = *hdr;
1026 elf_section_data (newsect)->this_idx = shindex;
1027
1028 /* Always use the real type/flags. */
1029 elf_section_type (newsect) = hdr->sh_type;
1030 elf_section_flags (newsect) = hdr->sh_flags;
1031
1032 newsect->filepos = hdr->sh_offset;
1033
1034 flags = SEC_NO_FLAGS;
1035 if (hdr->sh_type != SHT_NOBITS)
1036 flags |= SEC_HAS_CONTENTS;
1037 if (hdr->sh_type == SHT_GROUP)
1038 flags |= SEC_GROUP;
1039 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1040 {
1041 flags |= SEC_ALLOC;
1042 if (hdr->sh_type != SHT_NOBITS)
1043 flags |= SEC_LOAD;
1044 }
1045 if ((hdr->sh_flags & SHF_WRITE) == 0)
1046 flags |= SEC_READONLY;
1047 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1048 flags |= SEC_CODE;
1049 else if ((flags & SEC_LOAD) != 0)
1050 flags |= SEC_DATA;
1051 if ((hdr->sh_flags & SHF_MERGE) != 0)
1052 {
1053 flags |= SEC_MERGE;
1054 newsect->entsize = hdr->sh_entsize;
1055 }
1056 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1057 flags |= SEC_STRINGS;
1058 if (hdr->sh_flags & SHF_GROUP)
1059 if (!setup_group (abfd, hdr, newsect))
1060 return FALSE;
1061 if ((hdr->sh_flags & SHF_TLS) != 0)
1062 flags |= SEC_THREAD_LOCAL;
1063 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1064 flags |= SEC_EXCLUDE;
1065
1066 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1067 {
1068 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1069 but binutils as of 2019-07-23 did not set the EI_OSABI header
1070 byte. */
1071 case ELFOSABI_NONE:
1072 case ELFOSABI_GNU:
1073 case ELFOSABI_FREEBSD:
1074 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1075 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1076 break;
1077 }
1078
1079 if ((flags & SEC_ALLOC) == 0)
1080 {
1081 /* The debugging sections appear to be recognized only by name,
1082 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1083 if (name [0] == '.')
1084 {
1085 if (strncmp (name, ".debug", 6) == 0
1086 || strncmp (name, ".gnu.linkonce.wi.", 17) == 0
1087 || strncmp (name, ".zdebug", 7) == 0)
1088 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1089 else if (strncmp (name, GNU_BUILD_ATTRS_SECTION_NAME, 21) == 0
1090 || strncmp (name, ".note.gnu", 9) == 0)
1091 {
1092 flags |= SEC_ELF_OCTETS;
1093 opb = 1;
1094 }
1095 else if (strncmp (name, ".line", 5) == 0
1096 || strncmp (name, ".stab", 5) == 0
1097 || strcmp (name, ".gdb_index") == 0)
1098 flags |= SEC_DEBUGGING;
1099 }
1100 }
1101
1102 if (!bfd_set_section_vma (newsect, hdr->sh_addr / opb)
1103 || !bfd_set_section_size (newsect, hdr->sh_size)
1104 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1105 return FALSE;
1106
1107 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1108 only link a single copy of the section. This is used to support
1109 g++. g++ will emit each template expansion in its own section.
1110 The symbols will be defined as weak, so that multiple definitions
1111 are permitted. The GNU linker extension is to actually discard
1112 all but one of the sections. */
1113 if (CONST_STRNEQ (name, ".gnu.linkonce")
1114 && elf_next_in_group (newsect) == NULL)
1115 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1116
1117 if (!bfd_set_section_flags (newsect, flags))
1118 return FALSE;
1119
1120 bed = get_elf_backend_data (abfd);
1121 if (bed->elf_backend_section_flags)
1122 if (!bed->elf_backend_section_flags (hdr))
1123 return FALSE;
1124
1125 /* We do not parse the PT_NOTE segments as we are interested even in the
1126 separate debug info files which may have the segments offsets corrupted.
1127 PT_NOTEs from the core files are currently not parsed using BFD. */
1128 if (hdr->sh_type == SHT_NOTE)
1129 {
1130 bfd_byte *contents;
1131
1132 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1133 return FALSE;
1134
1135 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1136 hdr->sh_offset, hdr->sh_addralign);
1137 free (contents);
1138 }
1139
1140 if ((newsect->flags & SEC_ALLOC) != 0)
1141 {
1142 Elf_Internal_Phdr *phdr;
1143 unsigned int i, nload;
1144
1145 /* Some ELF linkers produce binaries with all the program header
1146 p_paddr fields zero. If we have such a binary with more than
1147 one PT_LOAD header, then leave the section lma equal to vma
1148 so that we don't create sections with overlapping lma. */
1149 phdr = elf_tdata (abfd)->phdr;
1150 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1151 if (phdr->p_paddr != 0)
1152 break;
1153 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1154 ++nload;
1155 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1156 return TRUE;
1157
1158 phdr = elf_tdata (abfd)->phdr;
1159 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1160 {
1161 if (((phdr->p_type == PT_LOAD
1162 && (hdr->sh_flags & SHF_TLS) == 0)
1163 || phdr->p_type == PT_TLS)
1164 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1165 {
1166 if ((newsect->flags & SEC_LOAD) == 0)
1167 newsect->lma = (phdr->p_paddr
1168 + hdr->sh_addr - phdr->p_vaddr) / opb;
1169 else
1170 /* We used to use the same adjustment for SEC_LOAD
1171 sections, but that doesn't work if the segment
1172 is packed with code from multiple VMAs.
1173 Instead we calculate the section LMA based on
1174 the segment LMA. It is assumed that the
1175 segment will contain sections with contiguous
1176 LMAs, even if the VMAs are not. */
1177 newsect->lma = (phdr->p_paddr
1178 + hdr->sh_offset - phdr->p_offset) / opb;
1179
1180 /* With contiguous segments, we can't tell from file
1181 offsets whether a section with zero size should
1182 be placed at the end of one segment or the
1183 beginning of the next. Decide based on vaddr. */
1184 if (hdr->sh_addr >= phdr->p_vaddr
1185 && (hdr->sh_addr + hdr->sh_size
1186 <= phdr->p_vaddr + phdr->p_memsz))
1187 break;
1188 }
1189 }
1190 }
1191
1192 /* Compress/decompress DWARF debug sections with names: .debug_* and
1193 .zdebug_*, after the section flags is set. */
1194 if ((newsect->flags & SEC_DEBUGGING)
1195 && ((name[1] == 'd' && name[6] == '_')
1196 || (name[1] == 'z' && name[7] == '_')))
1197 {
1198 enum { nothing, compress, decompress } action = nothing;
1199 int compression_header_size;
1200 bfd_size_type uncompressed_size;
1201 unsigned int uncompressed_align_power;
1202 bfd_boolean compressed
1203 = bfd_is_section_compressed_with_header (abfd, newsect,
1204 &compression_header_size,
1205 &uncompressed_size,
1206 &uncompressed_align_power);
1207 if (compressed)
1208 {
1209 /* Compressed section. Check if we should decompress. */
1210 if ((abfd->flags & BFD_DECOMPRESS))
1211 action = decompress;
1212 }
1213
1214 /* Compress the uncompressed section or convert from/to .zdebug*
1215 section. Check if we should compress. */
1216 if (action == nothing)
1217 {
1218 if (newsect->size != 0
1219 && (abfd->flags & BFD_COMPRESS)
1220 && compression_header_size >= 0
1221 && uncompressed_size > 0
1222 && (!compressed
1223 || ((compression_header_size > 0)
1224 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1225 action = compress;
1226 else
1227 return TRUE;
1228 }
1229
1230 if (action == compress)
1231 {
1232 if (!bfd_init_section_compress_status (abfd, newsect))
1233 {
1234 _bfd_error_handler
1235 /* xgettext:c-format */
1236 (_("%pB: unable to initialize compress status for section %s"),
1237 abfd, name);
1238 return FALSE;
1239 }
1240 }
1241 else
1242 {
1243 if (!bfd_init_section_decompress_status (abfd, newsect))
1244 {
1245 _bfd_error_handler
1246 /* xgettext:c-format */
1247 (_("%pB: unable to initialize decompress status for section %s"),
1248 abfd, name);
1249 return FALSE;
1250 }
1251 }
1252
1253 if (abfd->is_linker_input)
1254 {
1255 if (name[1] == 'z'
1256 && (action == decompress
1257 || (action == compress
1258 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1259 {
1260 /* Convert section name from .zdebug_* to .debug_* so
1261 that linker will consider this section as a debug
1262 section. */
1263 char *new_name = convert_zdebug_to_debug (abfd, name);
1264 if (new_name == NULL)
1265 return FALSE;
1266 bfd_rename_section (newsect, new_name);
1267 }
1268 }
1269 else
1270 /* For objdump, don't rename the section. For objcopy, delay
1271 section rename to elf_fake_sections. */
1272 newsect->flags |= SEC_ELF_RENAME;
1273 }
1274
1275 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1276 section. */
1277 const char *lto_section_name = ".gnu.lto_.lto.";
1278 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1279 {
1280 struct lto_section lsection;
1281 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1282 sizeof (struct lto_section)))
1283 abfd->lto_slim_object = lsection.slim_object;
1284 }
1285
1286 return TRUE;
1287 }
1288
1289 const char *const bfd_elf_section_type_names[] =
1290 {
1291 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1292 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1293 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1294 };
1295
1296 /* ELF relocs are against symbols. If we are producing relocatable
1297 output, and the reloc is against an external symbol, and nothing
1298 has given us any additional addend, the resulting reloc will also
1299 be against the same symbol. In such a case, we don't want to
1300 change anything about the way the reloc is handled, since it will
1301 all be done at final link time. Rather than put special case code
1302 into bfd_perform_relocation, all the reloc types use this howto
1303 function. It just short circuits the reloc if producing
1304 relocatable output against an external symbol. */
1305
1306 bfd_reloc_status_type
1307 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1308 arelent *reloc_entry,
1309 asymbol *symbol,
1310 void *data ATTRIBUTE_UNUSED,
1311 asection *input_section,
1312 bfd *output_bfd,
1313 char **error_message ATTRIBUTE_UNUSED)
1314 {
1315 if (output_bfd != NULL
1316 && (symbol->flags & BSF_SECTION_SYM) == 0
1317 && (! reloc_entry->howto->partial_inplace
1318 || reloc_entry->addend == 0))
1319 {
1320 reloc_entry->address += input_section->output_offset;
1321 return bfd_reloc_ok;
1322 }
1323
1324 return bfd_reloc_continue;
1325 }
1326 \f
1327 /* Returns TRUE if section A matches section B.
1328 Names, addresses and links may be different, but everything else
1329 should be the same. */
1330
1331 static bfd_boolean
1332 section_match (const Elf_Internal_Shdr * a,
1333 const Elf_Internal_Shdr * b)
1334 {
1335 if (a->sh_type != b->sh_type
1336 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1337 || a->sh_addralign != b->sh_addralign
1338 || a->sh_entsize != b->sh_entsize)
1339 return FALSE;
1340 if (a->sh_type == SHT_SYMTAB
1341 || a->sh_type == SHT_STRTAB)
1342 return TRUE;
1343 return a->sh_size == b->sh_size;
1344 }
1345
1346 /* Find a section in OBFD that has the same characteristics
1347 as IHEADER. Return the index of this section or SHN_UNDEF if
1348 none can be found. Check's section HINT first, as this is likely
1349 to be the correct section. */
1350
1351 static unsigned int
1352 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1353 const unsigned int hint)
1354 {
1355 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1356 unsigned int i;
1357
1358 BFD_ASSERT (iheader != NULL);
1359
1360 /* See PR 20922 for a reproducer of the NULL test. */
1361 if (hint < elf_numsections (obfd)
1362 && oheaders[hint] != NULL
1363 && section_match (oheaders[hint], iheader))
1364 return hint;
1365
1366 for (i = 1; i < elf_numsections (obfd); i++)
1367 {
1368 Elf_Internal_Shdr * oheader = oheaders[i];
1369
1370 if (oheader == NULL)
1371 continue;
1372 if (section_match (oheader, iheader))
1373 /* FIXME: Do we care if there is a potential for
1374 multiple matches ? */
1375 return i;
1376 }
1377
1378 return SHN_UNDEF;
1379 }
1380
1381 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1382 Processor specific section, based upon a matching input section.
1383 Returns TRUE upon success, FALSE otherwise. */
1384
1385 static bfd_boolean
1386 copy_special_section_fields (const bfd *ibfd,
1387 bfd *obfd,
1388 const Elf_Internal_Shdr *iheader,
1389 Elf_Internal_Shdr *oheader,
1390 const unsigned int secnum)
1391 {
1392 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1393 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1394 bfd_boolean changed = FALSE;
1395 unsigned int sh_link;
1396
1397 if (oheader->sh_type == SHT_NOBITS)
1398 {
1399 /* This is a feature for objcopy --only-keep-debug:
1400 When a section's type is changed to NOBITS, we preserve
1401 the sh_link and sh_info fields so that they can be
1402 matched up with the original.
1403
1404 Note: Strictly speaking these assignments are wrong.
1405 The sh_link and sh_info fields should point to the
1406 relevent sections in the output BFD, which may not be in
1407 the same location as they were in the input BFD. But
1408 the whole point of this action is to preserve the
1409 original values of the sh_link and sh_info fields, so
1410 that they can be matched up with the section headers in
1411 the original file. So strictly speaking we may be
1412 creating an invalid ELF file, but it is only for a file
1413 that just contains debug info and only for sections
1414 without any contents. */
1415 if (oheader->sh_link == 0)
1416 oheader->sh_link = iheader->sh_link;
1417 if (oheader->sh_info == 0)
1418 oheader->sh_info = iheader->sh_info;
1419 return TRUE;
1420 }
1421
1422 /* Allow the target a chance to decide how these fields should be set. */
1423 if (bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1424 iheader, oheader))
1425 return TRUE;
1426
1427 /* We have an iheader which might match oheader, and which has non-zero
1428 sh_info and/or sh_link fields. Attempt to follow those links and find
1429 the section in the output bfd which corresponds to the linked section
1430 in the input bfd. */
1431 if (iheader->sh_link != SHN_UNDEF)
1432 {
1433 /* See PR 20931 for a reproducer. */
1434 if (iheader->sh_link >= elf_numsections (ibfd))
1435 {
1436 _bfd_error_handler
1437 /* xgettext:c-format */
1438 (_("%pB: invalid sh_link field (%d) in section number %d"),
1439 ibfd, iheader->sh_link, secnum);
1440 return FALSE;
1441 }
1442
1443 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1444 if (sh_link != SHN_UNDEF)
1445 {
1446 oheader->sh_link = sh_link;
1447 changed = TRUE;
1448 }
1449 else
1450 /* FIXME: Should we install iheader->sh_link
1451 if we could not find a match ? */
1452 _bfd_error_handler
1453 /* xgettext:c-format */
1454 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1455 }
1456
1457 if (iheader->sh_info)
1458 {
1459 /* The sh_info field can hold arbitrary information, but if the
1460 SHF_LINK_INFO flag is set then it should be interpreted as a
1461 section index. */
1462 if (iheader->sh_flags & SHF_INFO_LINK)
1463 {
1464 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1465 iheader->sh_info);
1466 if (sh_link != SHN_UNDEF)
1467 oheader->sh_flags |= SHF_INFO_LINK;
1468 }
1469 else
1470 /* No idea what it means - just copy it. */
1471 sh_link = iheader->sh_info;
1472
1473 if (sh_link != SHN_UNDEF)
1474 {
1475 oheader->sh_info = sh_link;
1476 changed = TRUE;
1477 }
1478 else
1479 _bfd_error_handler
1480 /* xgettext:c-format */
1481 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1482 }
1483
1484 return changed;
1485 }
1486
1487 /* Copy the program header and other data from one object module to
1488 another. */
1489
1490 bfd_boolean
1491 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1492 {
1493 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1494 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1495 const struct elf_backend_data *bed;
1496 unsigned int i;
1497
1498 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1499 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1500 return TRUE;
1501
1502 if (!elf_flags_init (obfd))
1503 {
1504 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1505 elf_flags_init (obfd) = TRUE;
1506 }
1507
1508 elf_gp (obfd) = elf_gp (ibfd);
1509
1510 /* Also copy the EI_OSABI field. */
1511 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1512 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1513
1514 /* If set, copy the EI_ABIVERSION field. */
1515 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1516 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1517 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1518
1519 /* Copy object attributes. */
1520 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1521
1522 if (iheaders == NULL || oheaders == NULL)
1523 return TRUE;
1524
1525 bed = get_elf_backend_data (obfd);
1526
1527 /* Possibly copy other fields in the section header. */
1528 for (i = 1; i < elf_numsections (obfd); i++)
1529 {
1530 unsigned int j;
1531 Elf_Internal_Shdr * oheader = oheaders[i];
1532
1533 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1534 because of a special case need for generating separate debug info
1535 files. See below for more details. */
1536 if (oheader == NULL
1537 || (oheader->sh_type != SHT_NOBITS
1538 && oheader->sh_type < SHT_LOOS))
1539 continue;
1540
1541 /* Ignore empty sections, and sections whose
1542 fields have already been initialised. */
1543 if (oheader->sh_size == 0
1544 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1545 continue;
1546
1547 /* Scan for the matching section in the input bfd.
1548 First we try for a direct mapping between the input and output sections. */
1549 for (j = 1; j < elf_numsections (ibfd); j++)
1550 {
1551 const Elf_Internal_Shdr * iheader = iheaders[j];
1552
1553 if (iheader == NULL)
1554 continue;
1555
1556 if (oheader->bfd_section != NULL
1557 && iheader->bfd_section != NULL
1558 && iheader->bfd_section->output_section != NULL
1559 && iheader->bfd_section->output_section == oheader->bfd_section)
1560 {
1561 /* We have found a connection from the input section to the
1562 output section. Attempt to copy the header fields. If
1563 this fails then do not try any further sections - there
1564 should only be a one-to-one mapping between input and output. */
1565 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1566 j = elf_numsections (ibfd);
1567 break;
1568 }
1569 }
1570
1571 if (j < elf_numsections (ibfd))
1572 continue;
1573
1574 /* That failed. So try to deduce the corresponding input section.
1575 Unfortunately we cannot compare names as the output string table
1576 is empty, so instead we check size, address and type. */
1577 for (j = 1; j < elf_numsections (ibfd); j++)
1578 {
1579 const Elf_Internal_Shdr * iheader = iheaders[j];
1580
1581 if (iheader == NULL)
1582 continue;
1583
1584 /* Try matching fields in the input section's header.
1585 Since --only-keep-debug turns all non-debug sections into
1586 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1587 input type. */
1588 if ((oheader->sh_type == SHT_NOBITS
1589 || iheader->sh_type == oheader->sh_type)
1590 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1591 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1592 && iheader->sh_addralign == oheader->sh_addralign
1593 && iheader->sh_entsize == oheader->sh_entsize
1594 && iheader->sh_size == oheader->sh_size
1595 && iheader->sh_addr == oheader->sh_addr
1596 && (iheader->sh_info != oheader->sh_info
1597 || iheader->sh_link != oheader->sh_link))
1598 {
1599 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1600 break;
1601 }
1602 }
1603
1604 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1605 {
1606 /* Final attempt. Call the backend copy function
1607 with a NULL input section. */
1608 (void) bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1609 NULL, oheader);
1610 }
1611 }
1612
1613 return TRUE;
1614 }
1615
1616 static const char *
1617 get_segment_type (unsigned int p_type)
1618 {
1619 const char *pt;
1620 switch (p_type)
1621 {
1622 case PT_NULL: pt = "NULL"; break;
1623 case PT_LOAD: pt = "LOAD"; break;
1624 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1625 case PT_INTERP: pt = "INTERP"; break;
1626 case PT_NOTE: pt = "NOTE"; break;
1627 case PT_SHLIB: pt = "SHLIB"; break;
1628 case PT_PHDR: pt = "PHDR"; break;
1629 case PT_TLS: pt = "TLS"; break;
1630 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1631 case PT_GNU_STACK: pt = "STACK"; break;
1632 case PT_GNU_RELRO: pt = "RELRO"; break;
1633 default: pt = NULL; break;
1634 }
1635 return pt;
1636 }
1637
1638 /* Print out the program headers. */
1639
1640 bfd_boolean
1641 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1642 {
1643 FILE *f = (FILE *) farg;
1644 Elf_Internal_Phdr *p;
1645 asection *s;
1646 bfd_byte *dynbuf = NULL;
1647
1648 p = elf_tdata (abfd)->phdr;
1649 if (p != NULL)
1650 {
1651 unsigned int i, c;
1652
1653 fprintf (f, _("\nProgram Header:\n"));
1654 c = elf_elfheader (abfd)->e_phnum;
1655 for (i = 0; i < c; i++, p++)
1656 {
1657 const char *pt = get_segment_type (p->p_type);
1658 char buf[20];
1659
1660 if (pt == NULL)
1661 {
1662 sprintf (buf, "0x%lx", p->p_type);
1663 pt = buf;
1664 }
1665 fprintf (f, "%8s off 0x", pt);
1666 bfd_fprintf_vma (abfd, f, p->p_offset);
1667 fprintf (f, " vaddr 0x");
1668 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1669 fprintf (f, " paddr 0x");
1670 bfd_fprintf_vma (abfd, f, p->p_paddr);
1671 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1672 fprintf (f, " filesz 0x");
1673 bfd_fprintf_vma (abfd, f, p->p_filesz);
1674 fprintf (f, " memsz 0x");
1675 bfd_fprintf_vma (abfd, f, p->p_memsz);
1676 fprintf (f, " flags %c%c%c",
1677 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1678 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1679 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1680 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1681 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1682 fprintf (f, "\n");
1683 }
1684 }
1685
1686 s = bfd_get_section_by_name (abfd, ".dynamic");
1687 if (s != NULL)
1688 {
1689 unsigned int elfsec;
1690 unsigned long shlink;
1691 bfd_byte *extdyn, *extdynend;
1692 size_t extdynsize;
1693 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1694
1695 fprintf (f, _("\nDynamic Section:\n"));
1696
1697 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1698 goto error_return;
1699
1700 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1701 if (elfsec == SHN_BAD)
1702 goto error_return;
1703 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1704
1705 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1706 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1707
1708 extdyn = dynbuf;
1709 /* PR 17512: file: 6f427532. */
1710 if (s->size < extdynsize)
1711 goto error_return;
1712 extdynend = extdyn + s->size;
1713 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1714 Fix range check. */
1715 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1716 {
1717 Elf_Internal_Dyn dyn;
1718 const char *name = "";
1719 char ab[20];
1720 bfd_boolean stringp;
1721 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1722
1723 (*swap_dyn_in) (abfd, extdyn, &dyn);
1724
1725 if (dyn.d_tag == DT_NULL)
1726 break;
1727
1728 stringp = FALSE;
1729 switch (dyn.d_tag)
1730 {
1731 default:
1732 if (bed->elf_backend_get_target_dtag)
1733 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1734
1735 if (!strcmp (name, ""))
1736 {
1737 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1738 name = ab;
1739 }
1740 break;
1741
1742 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1743 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1744 case DT_PLTGOT: name = "PLTGOT"; break;
1745 case DT_HASH: name = "HASH"; break;
1746 case DT_STRTAB: name = "STRTAB"; break;
1747 case DT_SYMTAB: name = "SYMTAB"; break;
1748 case DT_RELA: name = "RELA"; break;
1749 case DT_RELASZ: name = "RELASZ"; break;
1750 case DT_RELAENT: name = "RELAENT"; break;
1751 case DT_STRSZ: name = "STRSZ"; break;
1752 case DT_SYMENT: name = "SYMENT"; break;
1753 case DT_INIT: name = "INIT"; break;
1754 case DT_FINI: name = "FINI"; break;
1755 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1756 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1757 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1758 case DT_REL: name = "REL"; break;
1759 case DT_RELSZ: name = "RELSZ"; break;
1760 case DT_RELENT: name = "RELENT"; break;
1761 case DT_PLTREL: name = "PLTREL"; break;
1762 case DT_DEBUG: name = "DEBUG"; break;
1763 case DT_TEXTREL: name = "TEXTREL"; break;
1764 case DT_JMPREL: name = "JMPREL"; break;
1765 case DT_BIND_NOW: name = "BIND_NOW"; break;
1766 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1767 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1768 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1769 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1770 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1771 case DT_FLAGS: name = "FLAGS"; break;
1772 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1773 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1774 case DT_CHECKSUM: name = "CHECKSUM"; break;
1775 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1776 case DT_MOVEENT: name = "MOVEENT"; break;
1777 case DT_MOVESZ: name = "MOVESZ"; break;
1778 case DT_FEATURE: name = "FEATURE"; break;
1779 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1780 case DT_SYMINSZ: name = "SYMINSZ"; break;
1781 case DT_SYMINENT: name = "SYMINENT"; break;
1782 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1783 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1784 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1785 case DT_PLTPAD: name = "PLTPAD"; break;
1786 case DT_MOVETAB: name = "MOVETAB"; break;
1787 case DT_SYMINFO: name = "SYMINFO"; break;
1788 case DT_RELACOUNT: name = "RELACOUNT"; break;
1789 case DT_RELCOUNT: name = "RELCOUNT"; break;
1790 case DT_FLAGS_1: name = "FLAGS_1"; break;
1791 case DT_VERSYM: name = "VERSYM"; break;
1792 case DT_VERDEF: name = "VERDEF"; break;
1793 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1794 case DT_VERNEED: name = "VERNEED"; break;
1795 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1796 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1797 case DT_USED: name = "USED"; break;
1798 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1799 case DT_GNU_HASH: name = "GNU_HASH"; break;
1800 }
1801
1802 fprintf (f, " %-20s ", name);
1803 if (! stringp)
1804 {
1805 fprintf (f, "0x");
1806 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1807 }
1808 else
1809 {
1810 const char *string;
1811 unsigned int tagv = dyn.d_un.d_val;
1812
1813 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1814 if (string == NULL)
1815 goto error_return;
1816 fprintf (f, "%s", string);
1817 }
1818 fprintf (f, "\n");
1819 }
1820
1821 free (dynbuf);
1822 dynbuf = NULL;
1823 }
1824
1825 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1826 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1827 {
1828 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1829 return FALSE;
1830 }
1831
1832 if (elf_dynverdef (abfd) != 0)
1833 {
1834 Elf_Internal_Verdef *t;
1835
1836 fprintf (f, _("\nVersion definitions:\n"));
1837 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1838 {
1839 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1840 t->vd_flags, t->vd_hash,
1841 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1842 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1843 {
1844 Elf_Internal_Verdaux *a;
1845
1846 fprintf (f, "\t");
1847 for (a = t->vd_auxptr->vda_nextptr;
1848 a != NULL;
1849 a = a->vda_nextptr)
1850 fprintf (f, "%s ",
1851 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1852 fprintf (f, "\n");
1853 }
1854 }
1855 }
1856
1857 if (elf_dynverref (abfd) != 0)
1858 {
1859 Elf_Internal_Verneed *t;
1860
1861 fprintf (f, _("\nVersion References:\n"));
1862 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1863 {
1864 Elf_Internal_Vernaux *a;
1865
1866 fprintf (f, _(" required from %s:\n"),
1867 t->vn_filename ? t->vn_filename : "<corrupt>");
1868 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1869 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1870 a->vna_flags, a->vna_other,
1871 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1872 }
1873 }
1874
1875 return TRUE;
1876
1877 error_return:
1878 free (dynbuf);
1879 return FALSE;
1880 }
1881
1882 /* Get version name. If BASE_P is TRUE, return "Base" for VER_FLG_BASE
1883 and return symbol version for symbol version itself. */
1884
1885 const char *
1886 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1887 bfd_boolean base_p,
1888 bfd_boolean *hidden)
1889 {
1890 const char *version_string = NULL;
1891 if (elf_dynversym (abfd) != 0
1892 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1893 {
1894 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1895
1896 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1897 vernum &= VERSYM_VERSION;
1898
1899 if (vernum == 0)
1900 version_string = "";
1901 else if (vernum == 1
1902 && (vernum > elf_tdata (abfd)->cverdefs
1903 || (elf_tdata (abfd)->verdef[0].vd_flags
1904 == VER_FLG_BASE)))
1905 version_string = base_p ? "Base" : "";
1906 else if (vernum <= elf_tdata (abfd)->cverdefs)
1907 {
1908 const char *nodename
1909 = elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1910 version_string = "";
1911 if (base_p
1912 || nodename == NULL
1913 || symbol->name == NULL
1914 || strcmp (symbol->name, nodename) != 0)
1915 version_string = nodename;
1916 }
1917 else
1918 {
1919 Elf_Internal_Verneed *t;
1920
1921 version_string = _("<corrupt>");
1922 for (t = elf_tdata (abfd)->verref;
1923 t != NULL;
1924 t = t->vn_nextref)
1925 {
1926 Elf_Internal_Vernaux *a;
1927
1928 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1929 {
1930 if (a->vna_other == vernum)
1931 {
1932 version_string = a->vna_nodename;
1933 break;
1934 }
1935 }
1936 }
1937 }
1938 }
1939 return version_string;
1940 }
1941
1942 /* Display ELF-specific fields of a symbol. */
1943
1944 void
1945 bfd_elf_print_symbol (bfd *abfd,
1946 void *filep,
1947 asymbol *symbol,
1948 bfd_print_symbol_type how)
1949 {
1950 FILE *file = (FILE *) filep;
1951 switch (how)
1952 {
1953 case bfd_print_symbol_name:
1954 fprintf (file, "%s", symbol->name);
1955 break;
1956 case bfd_print_symbol_more:
1957 fprintf (file, "elf ");
1958 bfd_fprintf_vma (abfd, file, symbol->value);
1959 fprintf (file, " %x", symbol->flags);
1960 break;
1961 case bfd_print_symbol_all:
1962 {
1963 const char *section_name;
1964 const char *name = NULL;
1965 const struct elf_backend_data *bed;
1966 unsigned char st_other;
1967 bfd_vma val;
1968 const char *version_string;
1969 bfd_boolean hidden;
1970
1971 section_name = symbol->section ? symbol->section->name : "(*none*)";
1972
1973 bed = get_elf_backend_data (abfd);
1974 if (bed->elf_backend_print_symbol_all)
1975 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1976
1977 if (name == NULL)
1978 {
1979 name = symbol->name;
1980 bfd_print_symbol_vandf (abfd, file, symbol);
1981 }
1982
1983 fprintf (file, " %s\t", section_name);
1984 /* Print the "other" value for a symbol. For common symbols,
1985 we've already printed the size; now print the alignment.
1986 For other symbols, we have no specified alignment, and
1987 we've printed the address; now print the size. */
1988 if (symbol->section && bfd_is_com_section (symbol->section))
1989 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1990 else
1991 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1992 bfd_fprintf_vma (abfd, file, val);
1993
1994 /* If we have version information, print it. */
1995 version_string = _bfd_elf_get_symbol_version_string (abfd,
1996 symbol,
1997 TRUE,
1998 &hidden);
1999 if (version_string)
2000 {
2001 if (!hidden)
2002 fprintf (file, " %-11s", version_string);
2003 else
2004 {
2005 int i;
2006
2007 fprintf (file, " (%s)", version_string);
2008 for (i = 10 - strlen (version_string); i > 0; --i)
2009 putc (' ', file);
2010 }
2011 }
2012
2013 /* If the st_other field is not zero, print it. */
2014 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2015
2016 switch (st_other)
2017 {
2018 case 0: break;
2019 case STV_INTERNAL: fprintf (file, " .internal"); break;
2020 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2021 case STV_PROTECTED: fprintf (file, " .protected"); break;
2022 default:
2023 /* Some other non-defined flags are also present, so print
2024 everything hex. */
2025 fprintf (file, " 0x%02x", (unsigned int) st_other);
2026 }
2027
2028 fprintf (file, " %s", name);
2029 }
2030 break;
2031 }
2032 }
2033 \f
2034 /* ELF .o/exec file reading */
2035
2036 /* Create a new bfd section from an ELF section header. */
2037
2038 bfd_boolean
2039 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2040 {
2041 Elf_Internal_Shdr *hdr;
2042 Elf_Internal_Ehdr *ehdr;
2043 const struct elf_backend_data *bed;
2044 const char *name;
2045 bfd_boolean ret = TRUE;
2046 static bfd_boolean * sections_being_created = NULL;
2047 static bfd * sections_being_created_abfd = NULL;
2048 static unsigned int nesting = 0;
2049
2050 if (shindex >= elf_numsections (abfd))
2051 return FALSE;
2052
2053 if (++ nesting > 3)
2054 {
2055 /* PR17512: A corrupt ELF binary might contain a recursive group of
2056 sections, with each the string indices pointing to the next in the
2057 loop. Detect this here, by refusing to load a section that we are
2058 already in the process of loading. We only trigger this test if
2059 we have nested at least three sections deep as normal ELF binaries
2060 can expect to recurse at least once.
2061
2062 FIXME: It would be better if this array was attached to the bfd,
2063 rather than being held in a static pointer. */
2064
2065 if (sections_being_created_abfd != abfd)
2066 sections_being_created = NULL;
2067 if (sections_being_created == NULL)
2068 {
2069 size_t amt = elf_numsections (abfd) * sizeof (bfd_boolean);
2070
2071 /* PR 26005: Do not use bfd_zalloc here as the memory might
2072 be released before the bfd has been fully scanned. */
2073 sections_being_created = (bfd_boolean *) bfd_malloc (amt);
2074 if (sections_being_created == NULL)
2075 return FALSE;
2076 memset (sections_being_created, FALSE, amt);
2077 sections_being_created_abfd = abfd;
2078 }
2079 if (sections_being_created [shindex])
2080 {
2081 _bfd_error_handler
2082 (_("%pB: warning: loop in section dependencies detected"), abfd);
2083 return FALSE;
2084 }
2085 sections_being_created [shindex] = TRUE;
2086 }
2087
2088 hdr = elf_elfsections (abfd)[shindex];
2089 ehdr = elf_elfheader (abfd);
2090 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2091 hdr->sh_name);
2092 if (name == NULL)
2093 goto fail;
2094
2095 bed = get_elf_backend_data (abfd);
2096 switch (hdr->sh_type)
2097 {
2098 case SHT_NULL:
2099 /* Inactive section. Throw it away. */
2100 goto success;
2101
2102 case SHT_PROGBITS: /* Normal section with contents. */
2103 case SHT_NOBITS: /* .bss section. */
2104 case SHT_HASH: /* .hash section. */
2105 case SHT_NOTE: /* .note section. */
2106 case SHT_INIT_ARRAY: /* .init_array section. */
2107 case SHT_FINI_ARRAY: /* .fini_array section. */
2108 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2109 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2110 case SHT_GNU_HASH: /* .gnu.hash section. */
2111 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2112 goto success;
2113
2114 case SHT_DYNAMIC: /* Dynamic linking information. */
2115 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2116 goto fail;
2117
2118 if (hdr->sh_link > elf_numsections (abfd))
2119 {
2120 /* PR 10478: Accept Solaris binaries with a sh_link
2121 field set to SHN_BEFORE or SHN_AFTER. */
2122 switch (bfd_get_arch (abfd))
2123 {
2124 case bfd_arch_i386:
2125 case bfd_arch_sparc:
2126 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2127 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2128 break;
2129 /* Otherwise fall through. */
2130 default:
2131 goto fail;
2132 }
2133 }
2134 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2135 goto fail;
2136 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2137 {
2138 Elf_Internal_Shdr *dynsymhdr;
2139
2140 /* The shared libraries distributed with hpux11 have a bogus
2141 sh_link field for the ".dynamic" section. Find the
2142 string table for the ".dynsym" section instead. */
2143 if (elf_dynsymtab (abfd) != 0)
2144 {
2145 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2146 hdr->sh_link = dynsymhdr->sh_link;
2147 }
2148 else
2149 {
2150 unsigned int i, num_sec;
2151
2152 num_sec = elf_numsections (abfd);
2153 for (i = 1; i < num_sec; i++)
2154 {
2155 dynsymhdr = elf_elfsections (abfd)[i];
2156 if (dynsymhdr->sh_type == SHT_DYNSYM)
2157 {
2158 hdr->sh_link = dynsymhdr->sh_link;
2159 break;
2160 }
2161 }
2162 }
2163 }
2164 goto success;
2165
2166 case SHT_SYMTAB: /* A symbol table. */
2167 if (elf_onesymtab (abfd) == shindex)
2168 goto success;
2169
2170 if (hdr->sh_entsize != bed->s->sizeof_sym)
2171 goto fail;
2172
2173 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2174 {
2175 if (hdr->sh_size != 0)
2176 goto fail;
2177 /* Some assemblers erroneously set sh_info to one with a
2178 zero sh_size. ld sees this as a global symbol count
2179 of (unsigned) -1. Fix it here. */
2180 hdr->sh_info = 0;
2181 goto success;
2182 }
2183
2184 /* PR 18854: A binary might contain more than one symbol table.
2185 Unusual, but possible. Warn, but continue. */
2186 if (elf_onesymtab (abfd) != 0)
2187 {
2188 _bfd_error_handler
2189 /* xgettext:c-format */
2190 (_("%pB: warning: multiple symbol tables detected"
2191 " - ignoring the table in section %u"),
2192 abfd, shindex);
2193 goto success;
2194 }
2195 elf_onesymtab (abfd) = shindex;
2196 elf_symtab_hdr (abfd) = *hdr;
2197 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2198 abfd->flags |= HAS_SYMS;
2199
2200 /* Sometimes a shared object will map in the symbol table. If
2201 SHF_ALLOC is set, and this is a shared object, then we also
2202 treat this section as a BFD section. We can not base the
2203 decision purely on SHF_ALLOC, because that flag is sometimes
2204 set in a relocatable object file, which would confuse the
2205 linker. */
2206 if ((hdr->sh_flags & SHF_ALLOC) != 0
2207 && (abfd->flags & DYNAMIC) != 0
2208 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2209 shindex))
2210 goto fail;
2211
2212 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2213 can't read symbols without that section loaded as well. It
2214 is most likely specified by the next section header. */
2215 {
2216 elf_section_list * entry;
2217 unsigned int i, num_sec;
2218
2219 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2220 if (entry->hdr.sh_link == shindex)
2221 goto success;
2222
2223 num_sec = elf_numsections (abfd);
2224 for (i = shindex + 1; i < num_sec; i++)
2225 {
2226 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2227
2228 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2229 && hdr2->sh_link == shindex)
2230 break;
2231 }
2232
2233 if (i == num_sec)
2234 for (i = 1; i < shindex; i++)
2235 {
2236 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2237
2238 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2239 && hdr2->sh_link == shindex)
2240 break;
2241 }
2242
2243 if (i != shindex)
2244 ret = bfd_section_from_shdr (abfd, i);
2245 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2246 goto success;
2247 }
2248
2249 case SHT_DYNSYM: /* A dynamic symbol table. */
2250 if (elf_dynsymtab (abfd) == shindex)
2251 goto success;
2252
2253 if (hdr->sh_entsize != bed->s->sizeof_sym)
2254 goto fail;
2255
2256 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2257 {
2258 if (hdr->sh_size != 0)
2259 goto fail;
2260
2261 /* Some linkers erroneously set sh_info to one with a
2262 zero sh_size. ld sees this as a global symbol count
2263 of (unsigned) -1. Fix it here. */
2264 hdr->sh_info = 0;
2265 goto success;
2266 }
2267
2268 /* PR 18854: A binary might contain more than one dynamic symbol table.
2269 Unusual, but possible. Warn, but continue. */
2270 if (elf_dynsymtab (abfd) != 0)
2271 {
2272 _bfd_error_handler
2273 /* xgettext:c-format */
2274 (_("%pB: warning: multiple dynamic symbol tables detected"
2275 " - ignoring the table in section %u"),
2276 abfd, shindex);
2277 goto success;
2278 }
2279 elf_dynsymtab (abfd) = shindex;
2280 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2281 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2282 abfd->flags |= HAS_SYMS;
2283
2284 /* Besides being a symbol table, we also treat this as a regular
2285 section, so that objcopy can handle it. */
2286 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2287 goto success;
2288
2289 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2290 {
2291 elf_section_list * entry;
2292
2293 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2294 if (entry->ndx == shindex)
2295 goto success;
2296
2297 entry = bfd_alloc (abfd, sizeof (*entry));
2298 if (entry == NULL)
2299 goto fail;
2300 entry->ndx = shindex;
2301 entry->hdr = * hdr;
2302 entry->next = elf_symtab_shndx_list (abfd);
2303 elf_symtab_shndx_list (abfd) = entry;
2304 elf_elfsections (abfd)[shindex] = & entry->hdr;
2305 goto success;
2306 }
2307
2308 case SHT_STRTAB: /* A string table. */
2309 if (hdr->bfd_section != NULL)
2310 goto success;
2311
2312 if (ehdr->e_shstrndx == shindex)
2313 {
2314 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2315 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2316 goto success;
2317 }
2318
2319 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2320 {
2321 symtab_strtab:
2322 elf_tdata (abfd)->strtab_hdr = *hdr;
2323 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2324 goto success;
2325 }
2326
2327 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2328 {
2329 dynsymtab_strtab:
2330 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2331 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2332 elf_elfsections (abfd)[shindex] = hdr;
2333 /* We also treat this as a regular section, so that objcopy
2334 can handle it. */
2335 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2336 shindex);
2337 goto success;
2338 }
2339
2340 /* If the string table isn't one of the above, then treat it as a
2341 regular section. We need to scan all the headers to be sure,
2342 just in case this strtab section appeared before the above. */
2343 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2344 {
2345 unsigned int i, num_sec;
2346
2347 num_sec = elf_numsections (abfd);
2348 for (i = 1; i < num_sec; i++)
2349 {
2350 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2351 if (hdr2->sh_link == shindex)
2352 {
2353 /* Prevent endless recursion on broken objects. */
2354 if (i == shindex)
2355 goto fail;
2356 if (! bfd_section_from_shdr (abfd, i))
2357 goto fail;
2358 if (elf_onesymtab (abfd) == i)
2359 goto symtab_strtab;
2360 if (elf_dynsymtab (abfd) == i)
2361 goto dynsymtab_strtab;
2362 }
2363 }
2364 }
2365 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2366 goto success;
2367
2368 case SHT_REL:
2369 case SHT_RELA:
2370 /* *These* do a lot of work -- but build no sections! */
2371 {
2372 asection *target_sect;
2373 Elf_Internal_Shdr *hdr2, **p_hdr;
2374 unsigned int num_sec = elf_numsections (abfd);
2375 struct bfd_elf_section_data *esdt;
2376
2377 if (hdr->sh_entsize
2378 != (bfd_size_type) (hdr->sh_type == SHT_REL
2379 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2380 goto fail;
2381
2382 /* Check for a bogus link to avoid crashing. */
2383 if (hdr->sh_link >= num_sec)
2384 {
2385 _bfd_error_handler
2386 /* xgettext:c-format */
2387 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2388 abfd, hdr->sh_link, name, shindex);
2389 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2390 shindex);
2391 goto success;
2392 }
2393
2394 /* For some incomprehensible reason Oracle distributes
2395 libraries for Solaris in which some of the objects have
2396 bogus sh_link fields. It would be nice if we could just
2397 reject them, but, unfortunately, some people need to use
2398 them. We scan through the section headers; if we find only
2399 one suitable symbol table, we clobber the sh_link to point
2400 to it. I hope this doesn't break anything.
2401
2402 Don't do it on executable nor shared library. */
2403 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2404 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2405 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2406 {
2407 unsigned int scan;
2408 int found;
2409
2410 found = 0;
2411 for (scan = 1; scan < num_sec; scan++)
2412 {
2413 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2414 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2415 {
2416 if (found != 0)
2417 {
2418 found = 0;
2419 break;
2420 }
2421 found = scan;
2422 }
2423 }
2424 if (found != 0)
2425 hdr->sh_link = found;
2426 }
2427
2428 /* Get the symbol table. */
2429 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2430 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2431 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2432 goto fail;
2433
2434 /* If this is an alloc section in an executable or shared
2435 library, or the reloc section does not use the main symbol
2436 table we don't treat it as a reloc section. BFD can't
2437 adequately represent such a section, so at least for now,
2438 we don't try. We just present it as a normal section. We
2439 also can't use it as a reloc section if it points to the
2440 null section, an invalid section, another reloc section, or
2441 its sh_link points to the null section. */
2442 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2443 && (hdr->sh_flags & SHF_ALLOC) != 0)
2444 || hdr->sh_link == SHN_UNDEF
2445 || hdr->sh_link != elf_onesymtab (abfd)
2446 || hdr->sh_info == SHN_UNDEF
2447 || hdr->sh_info >= num_sec
2448 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2449 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2450 {
2451 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2452 shindex);
2453 goto success;
2454 }
2455
2456 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2457 goto fail;
2458
2459 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2460 if (target_sect == NULL)
2461 goto fail;
2462
2463 esdt = elf_section_data (target_sect);
2464 if (hdr->sh_type == SHT_RELA)
2465 p_hdr = &esdt->rela.hdr;
2466 else
2467 p_hdr = &esdt->rel.hdr;
2468
2469 /* PR 17512: file: 0b4f81b7.
2470 Also see PR 24456, for a file which deliberately has two reloc
2471 sections. */
2472 if (*p_hdr != NULL)
2473 {
2474 if (!bed->init_secondary_reloc_section (abfd, hdr, name, shindex))
2475 {
2476 _bfd_error_handler
2477 /* xgettext:c-format */
2478 (_("%pB: warning: secondary relocation section '%s' "
2479 "for section %pA found - ignoring"),
2480 abfd, name, target_sect);
2481 }
2482 goto success;
2483 }
2484
2485 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2486 if (hdr2 == NULL)
2487 goto fail;
2488 *hdr2 = *hdr;
2489 *p_hdr = hdr2;
2490 elf_elfsections (abfd)[shindex] = hdr2;
2491 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2492 * bed->s->int_rels_per_ext_rel);
2493 target_sect->flags |= SEC_RELOC;
2494 target_sect->relocation = NULL;
2495 target_sect->rel_filepos = hdr->sh_offset;
2496 /* In the section to which the relocations apply, mark whether
2497 its relocations are of the REL or RELA variety. */
2498 if (hdr->sh_size != 0)
2499 {
2500 if (hdr->sh_type == SHT_RELA)
2501 target_sect->use_rela_p = 1;
2502 }
2503 abfd->flags |= HAS_RELOC;
2504 goto success;
2505 }
2506
2507 case SHT_GNU_verdef:
2508 elf_dynverdef (abfd) = shindex;
2509 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2510 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2511 goto success;
2512
2513 case SHT_GNU_versym:
2514 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2515 goto fail;
2516
2517 elf_dynversym (abfd) = shindex;
2518 elf_tdata (abfd)->dynversym_hdr = *hdr;
2519 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2520 goto success;
2521
2522 case SHT_GNU_verneed:
2523 elf_dynverref (abfd) = shindex;
2524 elf_tdata (abfd)->dynverref_hdr = *hdr;
2525 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2526 goto success;
2527
2528 case SHT_SHLIB:
2529 goto success;
2530
2531 case SHT_GROUP:
2532 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2533 goto fail;
2534
2535 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2536 goto fail;
2537
2538 goto success;
2539
2540 default:
2541 /* Possibly an attributes section. */
2542 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2543 || hdr->sh_type == bed->obj_attrs_section_type)
2544 {
2545 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2546 goto fail;
2547 _bfd_elf_parse_attributes (abfd, hdr);
2548 goto success;
2549 }
2550
2551 /* Check for any processor-specific section types. */
2552 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2553 goto success;
2554
2555 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2556 {
2557 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2558 /* FIXME: How to properly handle allocated section reserved
2559 for applications? */
2560 _bfd_error_handler
2561 /* xgettext:c-format */
2562 (_("%pB: unknown type [%#x] section `%s'"),
2563 abfd, hdr->sh_type, name);
2564 else
2565 {
2566 /* Allow sections reserved for applications. */
2567 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2568 shindex);
2569 goto success;
2570 }
2571 }
2572 else if (hdr->sh_type >= SHT_LOPROC
2573 && hdr->sh_type <= SHT_HIPROC)
2574 /* FIXME: We should handle this section. */
2575 _bfd_error_handler
2576 /* xgettext:c-format */
2577 (_("%pB: unknown type [%#x] section `%s'"),
2578 abfd, hdr->sh_type, name);
2579 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2580 {
2581 /* Unrecognised OS-specific sections. */
2582 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2583 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2584 required to correctly process the section and the file should
2585 be rejected with an error message. */
2586 _bfd_error_handler
2587 /* xgettext:c-format */
2588 (_("%pB: unknown type [%#x] section `%s'"),
2589 abfd, hdr->sh_type, name);
2590 else
2591 {
2592 /* Otherwise it should be processed. */
2593 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2594 goto success;
2595 }
2596 }
2597 else
2598 /* FIXME: We should handle this section. */
2599 _bfd_error_handler
2600 /* xgettext:c-format */
2601 (_("%pB: unknown type [%#x] section `%s'"),
2602 abfd, hdr->sh_type, name);
2603
2604 goto fail;
2605 }
2606
2607 fail:
2608 ret = FALSE;
2609 success:
2610 if (sections_being_created && sections_being_created_abfd == abfd)
2611 sections_being_created [shindex] = FALSE;
2612 if (-- nesting == 0)
2613 {
2614 free (sections_being_created);
2615 sections_being_created = NULL;
2616 sections_being_created_abfd = NULL;
2617 }
2618 return ret;
2619 }
2620
2621 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2622
2623 Elf_Internal_Sym *
2624 bfd_sym_from_r_symndx (struct sym_cache *cache,
2625 bfd *abfd,
2626 unsigned long r_symndx)
2627 {
2628 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2629
2630 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2631 {
2632 Elf_Internal_Shdr *symtab_hdr;
2633 unsigned char esym[sizeof (Elf64_External_Sym)];
2634 Elf_External_Sym_Shndx eshndx;
2635
2636 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2637 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2638 &cache->sym[ent], esym, &eshndx) == NULL)
2639 return NULL;
2640
2641 if (cache->abfd != abfd)
2642 {
2643 memset (cache->indx, -1, sizeof (cache->indx));
2644 cache->abfd = abfd;
2645 }
2646 cache->indx[ent] = r_symndx;
2647 }
2648
2649 return &cache->sym[ent];
2650 }
2651
2652 /* Given an ELF section number, retrieve the corresponding BFD
2653 section. */
2654
2655 asection *
2656 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2657 {
2658 if (sec_index >= elf_numsections (abfd))
2659 return NULL;
2660 return elf_elfsections (abfd)[sec_index]->bfd_section;
2661 }
2662
2663 static const struct bfd_elf_special_section special_sections_b[] =
2664 {
2665 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2666 { NULL, 0, 0, 0, 0 }
2667 };
2668
2669 static const struct bfd_elf_special_section special_sections_c[] =
2670 {
2671 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2672 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2673 { NULL, 0, 0, 0, 0 }
2674 };
2675
2676 static const struct bfd_elf_special_section special_sections_d[] =
2677 {
2678 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2679 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2680 /* There are more DWARF sections than these, but they needn't be added here
2681 unless you have to cope with broken compilers that don't emit section
2682 attributes or you want to help the user writing assembler. */
2683 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2684 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2685 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2686 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2687 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2688 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2689 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2690 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2691 { NULL, 0, 0, 0, 0 }
2692 };
2693
2694 static const struct bfd_elf_special_section special_sections_f[] =
2695 {
2696 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2697 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2698 { NULL, 0 , 0, 0, 0 }
2699 };
2700
2701 static const struct bfd_elf_special_section special_sections_g[] =
2702 {
2703 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2704 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2705 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2706 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2707 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2708 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2709 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2710 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2711 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2712 { NULL, 0, 0, 0, 0 }
2713 };
2714
2715 static const struct bfd_elf_special_section special_sections_h[] =
2716 {
2717 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2718 { NULL, 0, 0, 0, 0 }
2719 };
2720
2721 static const struct bfd_elf_special_section special_sections_i[] =
2722 {
2723 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2724 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2725 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2726 { NULL, 0, 0, 0, 0 }
2727 };
2728
2729 static const struct bfd_elf_special_section special_sections_l[] =
2730 {
2731 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2732 { NULL, 0, 0, 0, 0 }
2733 };
2734
2735 static const struct bfd_elf_special_section special_sections_n[] =
2736 {
2737 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2738 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2739 { NULL, 0, 0, 0, 0 }
2740 };
2741
2742 static const struct bfd_elf_special_section special_sections_p[] =
2743 {
2744 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2745 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2746 { NULL, 0, 0, 0, 0 }
2747 };
2748
2749 static const struct bfd_elf_special_section special_sections_r[] =
2750 {
2751 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2752 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2753 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2754 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2755 { NULL, 0, 0, 0, 0 }
2756 };
2757
2758 static const struct bfd_elf_special_section special_sections_s[] =
2759 {
2760 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2761 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2762 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2763 /* See struct bfd_elf_special_section declaration for the semantics of
2764 this special case where .prefix_length != strlen (.prefix). */
2765 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2766 { NULL, 0, 0, 0, 0 }
2767 };
2768
2769 static const struct bfd_elf_special_section special_sections_t[] =
2770 {
2771 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2772 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2773 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2774 { NULL, 0, 0, 0, 0 }
2775 };
2776
2777 static const struct bfd_elf_special_section special_sections_z[] =
2778 {
2779 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2780 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2781 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2782 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2783 { NULL, 0, 0, 0, 0 }
2784 };
2785
2786 static const struct bfd_elf_special_section * const special_sections[] =
2787 {
2788 special_sections_b, /* 'b' */
2789 special_sections_c, /* 'c' */
2790 special_sections_d, /* 'd' */
2791 NULL, /* 'e' */
2792 special_sections_f, /* 'f' */
2793 special_sections_g, /* 'g' */
2794 special_sections_h, /* 'h' */
2795 special_sections_i, /* 'i' */
2796 NULL, /* 'j' */
2797 NULL, /* 'k' */
2798 special_sections_l, /* 'l' */
2799 NULL, /* 'm' */
2800 special_sections_n, /* 'n' */
2801 NULL, /* 'o' */
2802 special_sections_p, /* 'p' */
2803 NULL, /* 'q' */
2804 special_sections_r, /* 'r' */
2805 special_sections_s, /* 's' */
2806 special_sections_t, /* 't' */
2807 NULL, /* 'u' */
2808 NULL, /* 'v' */
2809 NULL, /* 'w' */
2810 NULL, /* 'x' */
2811 NULL, /* 'y' */
2812 special_sections_z /* 'z' */
2813 };
2814
2815 const struct bfd_elf_special_section *
2816 _bfd_elf_get_special_section (const char *name,
2817 const struct bfd_elf_special_section *spec,
2818 unsigned int rela)
2819 {
2820 int i;
2821 int len;
2822
2823 len = strlen (name);
2824
2825 for (i = 0; spec[i].prefix != NULL; i++)
2826 {
2827 int suffix_len;
2828 int prefix_len = spec[i].prefix_length;
2829
2830 if (len < prefix_len)
2831 continue;
2832 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2833 continue;
2834
2835 suffix_len = spec[i].suffix_length;
2836 if (suffix_len <= 0)
2837 {
2838 if (name[prefix_len] != 0)
2839 {
2840 if (suffix_len == 0)
2841 continue;
2842 if (name[prefix_len] != '.'
2843 && (suffix_len == -2
2844 || (rela && spec[i].type == SHT_REL)))
2845 continue;
2846 }
2847 }
2848 else
2849 {
2850 if (len < prefix_len + suffix_len)
2851 continue;
2852 if (memcmp (name + len - suffix_len,
2853 spec[i].prefix + prefix_len,
2854 suffix_len) != 0)
2855 continue;
2856 }
2857 return &spec[i];
2858 }
2859
2860 return NULL;
2861 }
2862
2863 const struct bfd_elf_special_section *
2864 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2865 {
2866 int i;
2867 const struct bfd_elf_special_section *spec;
2868 const struct elf_backend_data *bed;
2869
2870 /* See if this is one of the special sections. */
2871 if (sec->name == NULL)
2872 return NULL;
2873
2874 bed = get_elf_backend_data (abfd);
2875 spec = bed->special_sections;
2876 if (spec)
2877 {
2878 spec = _bfd_elf_get_special_section (sec->name,
2879 bed->special_sections,
2880 sec->use_rela_p);
2881 if (spec != NULL)
2882 return spec;
2883 }
2884
2885 if (sec->name[0] != '.')
2886 return NULL;
2887
2888 i = sec->name[1] - 'b';
2889 if (i < 0 || i > 'z' - 'b')
2890 return NULL;
2891
2892 spec = special_sections[i];
2893
2894 if (spec == NULL)
2895 return NULL;
2896
2897 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2898 }
2899
2900 bfd_boolean
2901 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2902 {
2903 struct bfd_elf_section_data *sdata;
2904 const struct elf_backend_data *bed;
2905 const struct bfd_elf_special_section *ssect;
2906
2907 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2908 if (sdata == NULL)
2909 {
2910 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2911 sizeof (*sdata));
2912 if (sdata == NULL)
2913 return FALSE;
2914 sec->used_by_bfd = sdata;
2915 }
2916
2917 /* Indicate whether or not this section should use RELA relocations. */
2918 bed = get_elf_backend_data (abfd);
2919 sec->use_rela_p = bed->default_use_rela_p;
2920
2921 /* Set up ELF section type and flags for newly created sections, if
2922 there is an ABI mandated section. */
2923 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2924 if (ssect != NULL)
2925 {
2926 elf_section_type (sec) = ssect->type;
2927 elf_section_flags (sec) = ssect->attr;
2928 }
2929
2930 return _bfd_generic_new_section_hook (abfd, sec);
2931 }
2932
2933 /* Create a new bfd section from an ELF program header.
2934
2935 Since program segments have no names, we generate a synthetic name
2936 of the form segment<NUM>, where NUM is generally the index in the
2937 program header table. For segments that are split (see below) we
2938 generate the names segment<NUM>a and segment<NUM>b.
2939
2940 Note that some program segments may have a file size that is different than
2941 (less than) the memory size. All this means is that at execution the
2942 system must allocate the amount of memory specified by the memory size,
2943 but only initialize it with the first "file size" bytes read from the
2944 file. This would occur for example, with program segments consisting
2945 of combined data+bss.
2946
2947 To handle the above situation, this routine generates TWO bfd sections
2948 for the single program segment. The first has the length specified by
2949 the file size of the segment, and the second has the length specified
2950 by the difference between the two sizes. In effect, the segment is split
2951 into its initialized and uninitialized parts.
2952
2953 */
2954
2955 bfd_boolean
2956 _bfd_elf_make_section_from_phdr (bfd *abfd,
2957 Elf_Internal_Phdr *hdr,
2958 int hdr_index,
2959 const char *type_name)
2960 {
2961 asection *newsect;
2962 char *name;
2963 char namebuf[64];
2964 size_t len;
2965 int split;
2966 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
2967
2968 split = ((hdr->p_memsz > 0)
2969 && (hdr->p_filesz > 0)
2970 && (hdr->p_memsz > hdr->p_filesz));
2971
2972 if (hdr->p_filesz > 0)
2973 {
2974 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2975 len = strlen (namebuf) + 1;
2976 name = (char *) bfd_alloc (abfd, len);
2977 if (!name)
2978 return FALSE;
2979 memcpy (name, namebuf, len);
2980 newsect = bfd_make_section (abfd, name);
2981 if (newsect == NULL)
2982 return FALSE;
2983 newsect->vma = hdr->p_vaddr / opb;
2984 newsect->lma = hdr->p_paddr / opb;
2985 newsect->size = hdr->p_filesz;
2986 newsect->filepos = hdr->p_offset;
2987 newsect->flags |= SEC_HAS_CONTENTS;
2988 newsect->alignment_power = bfd_log2 (hdr->p_align);
2989 if (hdr->p_type == PT_LOAD)
2990 {
2991 newsect->flags |= SEC_ALLOC;
2992 newsect->flags |= SEC_LOAD;
2993 if (hdr->p_flags & PF_X)
2994 {
2995 /* FIXME: all we known is that it has execute PERMISSION,
2996 may be data. */
2997 newsect->flags |= SEC_CODE;
2998 }
2999 }
3000 if (!(hdr->p_flags & PF_W))
3001 {
3002 newsect->flags |= SEC_READONLY;
3003 }
3004 }
3005
3006 if (hdr->p_memsz > hdr->p_filesz)
3007 {
3008 bfd_vma align;
3009
3010 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3011 len = strlen (namebuf) + 1;
3012 name = (char *) bfd_alloc (abfd, len);
3013 if (!name)
3014 return FALSE;
3015 memcpy (name, namebuf, len);
3016 newsect = bfd_make_section (abfd, name);
3017 if (newsect == NULL)
3018 return FALSE;
3019 newsect->vma = (hdr->p_vaddr + hdr->p_filesz) / opb;
3020 newsect->lma = (hdr->p_paddr + hdr->p_filesz) / opb;
3021 newsect->size = hdr->p_memsz - hdr->p_filesz;
3022 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3023 align = newsect->vma & -newsect->vma;
3024 if (align == 0 || align > hdr->p_align)
3025 align = hdr->p_align;
3026 newsect->alignment_power = bfd_log2 (align);
3027 if (hdr->p_type == PT_LOAD)
3028 {
3029 /* Hack for gdb. Segments that have not been modified do
3030 not have their contents written to a core file, on the
3031 assumption that a debugger can find the contents in the
3032 executable. We flag this case by setting the fake
3033 section size to zero. Note that "real" bss sections will
3034 always have their contents dumped to the core file. */
3035 if (bfd_get_format (abfd) == bfd_core)
3036 newsect->size = 0;
3037 newsect->flags |= SEC_ALLOC;
3038 if (hdr->p_flags & PF_X)
3039 newsect->flags |= SEC_CODE;
3040 }
3041 if (!(hdr->p_flags & PF_W))
3042 newsect->flags |= SEC_READONLY;
3043 }
3044
3045 return TRUE;
3046 }
3047
3048 static bfd_boolean
3049 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3050 {
3051 /* The return value is ignored. Build-ids are considered optional. */
3052 if (templ->xvec->flavour == bfd_target_elf_flavour)
3053 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3054 (templ, offset);
3055 return FALSE;
3056 }
3057
3058 bfd_boolean
3059 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3060 {
3061 const struct elf_backend_data *bed;
3062
3063 switch (hdr->p_type)
3064 {
3065 case PT_NULL:
3066 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3067
3068 case PT_LOAD:
3069 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3070 return FALSE;
3071 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3072 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3073 return TRUE;
3074
3075 case PT_DYNAMIC:
3076 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3077
3078 case PT_INTERP:
3079 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3080
3081 case PT_NOTE:
3082 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3083 return FALSE;
3084 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3085 hdr->p_align))
3086 return FALSE;
3087 return TRUE;
3088
3089 case PT_SHLIB:
3090 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3091
3092 case PT_PHDR:
3093 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3094
3095 case PT_GNU_EH_FRAME:
3096 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3097 "eh_frame_hdr");
3098
3099 case PT_GNU_STACK:
3100 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3101
3102 case PT_GNU_RELRO:
3103 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3104
3105 default:
3106 /* Check for any processor-specific program segment types. */
3107 bed = get_elf_backend_data (abfd);
3108 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3109 }
3110 }
3111
3112 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3113 REL or RELA. */
3114
3115 Elf_Internal_Shdr *
3116 _bfd_elf_single_rel_hdr (asection *sec)
3117 {
3118 if (elf_section_data (sec)->rel.hdr)
3119 {
3120 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3121 return elf_section_data (sec)->rel.hdr;
3122 }
3123 else
3124 return elf_section_data (sec)->rela.hdr;
3125 }
3126
3127 static bfd_boolean
3128 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3129 Elf_Internal_Shdr *rel_hdr,
3130 const char *sec_name,
3131 bfd_boolean use_rela_p)
3132 {
3133 char *name = (char *) bfd_alloc (abfd,
3134 sizeof ".rela" + strlen (sec_name));
3135 if (name == NULL)
3136 return FALSE;
3137
3138 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3139 rel_hdr->sh_name =
3140 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3141 FALSE);
3142 if (rel_hdr->sh_name == (unsigned int) -1)
3143 return FALSE;
3144
3145 return TRUE;
3146 }
3147
3148 /* Allocate and initialize a section-header for a new reloc section,
3149 containing relocations against ASECT. It is stored in RELDATA. If
3150 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3151 relocations. */
3152
3153 static bfd_boolean
3154 _bfd_elf_init_reloc_shdr (bfd *abfd,
3155 struct bfd_elf_section_reloc_data *reldata,
3156 const char *sec_name,
3157 bfd_boolean use_rela_p,
3158 bfd_boolean delay_st_name_p)
3159 {
3160 Elf_Internal_Shdr *rel_hdr;
3161 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3162
3163 BFD_ASSERT (reldata->hdr == NULL);
3164 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3165 reldata->hdr = rel_hdr;
3166
3167 if (delay_st_name_p)
3168 rel_hdr->sh_name = (unsigned int) -1;
3169 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3170 use_rela_p))
3171 return FALSE;
3172 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3173 rel_hdr->sh_entsize = (use_rela_p
3174 ? bed->s->sizeof_rela
3175 : bed->s->sizeof_rel);
3176 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3177 rel_hdr->sh_flags = 0;
3178 rel_hdr->sh_addr = 0;
3179 rel_hdr->sh_size = 0;
3180 rel_hdr->sh_offset = 0;
3181
3182 return TRUE;
3183 }
3184
3185 /* Return the default section type based on the passed in section flags. */
3186
3187 int
3188 bfd_elf_get_default_section_type (flagword flags)
3189 {
3190 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3191 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3192 return SHT_NOBITS;
3193 return SHT_PROGBITS;
3194 }
3195
3196 struct fake_section_arg
3197 {
3198 struct bfd_link_info *link_info;
3199 bfd_boolean failed;
3200 };
3201
3202 /* Set up an ELF internal section header for a section. */
3203
3204 static void
3205 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3206 {
3207 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3208 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3209 struct bfd_elf_section_data *esd = elf_section_data (asect);
3210 Elf_Internal_Shdr *this_hdr;
3211 unsigned int sh_type;
3212 const char *name = asect->name;
3213 bfd_boolean delay_st_name_p = FALSE;
3214 bfd_vma mask;
3215
3216 if (arg->failed)
3217 {
3218 /* We already failed; just get out of the bfd_map_over_sections
3219 loop. */
3220 return;
3221 }
3222
3223 this_hdr = &esd->this_hdr;
3224
3225 if (arg->link_info)
3226 {
3227 /* ld: compress DWARF debug sections with names: .debug_*. */
3228 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3229 && (asect->flags & SEC_DEBUGGING)
3230 && name[1] == 'd'
3231 && name[6] == '_')
3232 {
3233 /* Set SEC_ELF_COMPRESS to indicate this section should be
3234 compressed. */
3235 asect->flags |= SEC_ELF_COMPRESS;
3236 /* If this section will be compressed, delay adding section
3237 name to section name section after it is compressed in
3238 _bfd_elf_assign_file_positions_for_non_load. */
3239 delay_st_name_p = TRUE;
3240 }
3241 }
3242 else if ((asect->flags & SEC_ELF_RENAME))
3243 {
3244 /* objcopy: rename output DWARF debug section. */
3245 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3246 {
3247 /* When we decompress or compress with SHF_COMPRESSED,
3248 convert section name from .zdebug_* to .debug_* if
3249 needed. */
3250 if (name[1] == 'z')
3251 {
3252 char *new_name = convert_zdebug_to_debug (abfd, name);
3253 if (new_name == NULL)
3254 {
3255 arg->failed = TRUE;
3256 return;
3257 }
3258 name = new_name;
3259 }
3260 }
3261 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3262 {
3263 /* PR binutils/18087: Compression does not always make a
3264 section smaller. So only rename the section when
3265 compression has actually taken place. If input section
3266 name is .zdebug_*, we should never compress it again. */
3267 char *new_name = convert_debug_to_zdebug (abfd, name);
3268 if (new_name == NULL)
3269 {
3270 arg->failed = TRUE;
3271 return;
3272 }
3273 BFD_ASSERT (name[1] != 'z');
3274 name = new_name;
3275 }
3276 }
3277
3278 if (delay_st_name_p)
3279 this_hdr->sh_name = (unsigned int) -1;
3280 else
3281 {
3282 this_hdr->sh_name
3283 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3284 name, FALSE);
3285 if (this_hdr->sh_name == (unsigned int) -1)
3286 {
3287 arg->failed = TRUE;
3288 return;
3289 }
3290 }
3291
3292 /* Don't clear sh_flags. Assembler may set additional bits. */
3293
3294 if ((asect->flags & SEC_ALLOC) != 0
3295 || asect->user_set_vma)
3296 this_hdr->sh_addr = asect->vma * bfd_octets_per_byte (abfd, asect);
3297 else
3298 this_hdr->sh_addr = 0;
3299
3300 this_hdr->sh_offset = 0;
3301 this_hdr->sh_size = asect->size;
3302 this_hdr->sh_link = 0;
3303 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3304 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3305 {
3306 _bfd_error_handler
3307 /* xgettext:c-format */
3308 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3309 abfd, asect->alignment_power, asect);
3310 arg->failed = TRUE;
3311 return;
3312 }
3313 /* Set sh_addralign to the highest power of two given by alignment
3314 consistent with the section VMA. Linker scripts can force VMA. */
3315 mask = ((bfd_vma) 1 << asect->alignment_power) | this_hdr->sh_addr;
3316 this_hdr->sh_addralign = mask & -mask;
3317 /* The sh_entsize and sh_info fields may have been set already by
3318 copy_private_section_data. */
3319
3320 this_hdr->bfd_section = asect;
3321 this_hdr->contents = NULL;
3322
3323 /* If the section type is unspecified, we set it based on
3324 asect->flags. */
3325 if ((asect->flags & SEC_GROUP) != 0)
3326 sh_type = SHT_GROUP;
3327 else
3328 sh_type = bfd_elf_get_default_section_type (asect->flags);
3329
3330 if (this_hdr->sh_type == SHT_NULL)
3331 this_hdr->sh_type = sh_type;
3332 else if (this_hdr->sh_type == SHT_NOBITS
3333 && sh_type == SHT_PROGBITS
3334 && (asect->flags & SEC_ALLOC) != 0)
3335 {
3336 /* Warn if we are changing a NOBITS section to PROGBITS, but
3337 allow the link to proceed. This can happen when users link
3338 non-bss input sections to bss output sections, or emit data
3339 to a bss output section via a linker script. */
3340 _bfd_error_handler
3341 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3342 this_hdr->sh_type = sh_type;
3343 }
3344
3345 switch (this_hdr->sh_type)
3346 {
3347 default:
3348 break;
3349
3350 case SHT_STRTAB:
3351 case SHT_NOTE:
3352 case SHT_NOBITS:
3353 case SHT_PROGBITS:
3354 break;
3355
3356 case SHT_INIT_ARRAY:
3357 case SHT_FINI_ARRAY:
3358 case SHT_PREINIT_ARRAY:
3359 this_hdr->sh_entsize = bed->s->arch_size / 8;
3360 break;
3361
3362 case SHT_HASH:
3363 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3364 break;
3365
3366 case SHT_DYNSYM:
3367 this_hdr->sh_entsize = bed->s->sizeof_sym;
3368 break;
3369
3370 case SHT_DYNAMIC:
3371 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3372 break;
3373
3374 case SHT_RELA:
3375 if (get_elf_backend_data (abfd)->may_use_rela_p)
3376 this_hdr->sh_entsize = bed->s->sizeof_rela;
3377 break;
3378
3379 case SHT_REL:
3380 if (get_elf_backend_data (abfd)->may_use_rel_p)
3381 this_hdr->sh_entsize = bed->s->sizeof_rel;
3382 break;
3383
3384 case SHT_GNU_versym:
3385 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3386 break;
3387
3388 case SHT_GNU_verdef:
3389 this_hdr->sh_entsize = 0;
3390 /* objcopy or strip will copy over sh_info, but may not set
3391 cverdefs. The linker will set cverdefs, but sh_info will be
3392 zero. */
3393 if (this_hdr->sh_info == 0)
3394 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3395 else
3396 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3397 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3398 break;
3399
3400 case SHT_GNU_verneed:
3401 this_hdr->sh_entsize = 0;
3402 /* objcopy or strip will copy over sh_info, but may not set
3403 cverrefs. The linker will set cverrefs, but sh_info will be
3404 zero. */
3405 if (this_hdr->sh_info == 0)
3406 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3407 else
3408 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3409 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3410 break;
3411
3412 case SHT_GROUP:
3413 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3414 break;
3415
3416 case SHT_GNU_HASH:
3417 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3418 break;
3419 }
3420
3421 if ((asect->flags & SEC_ALLOC) != 0)
3422 this_hdr->sh_flags |= SHF_ALLOC;
3423 if ((asect->flags & SEC_READONLY) == 0)
3424 this_hdr->sh_flags |= SHF_WRITE;
3425 if ((asect->flags & SEC_CODE) != 0)
3426 this_hdr->sh_flags |= SHF_EXECINSTR;
3427 if ((asect->flags & SEC_MERGE) != 0)
3428 {
3429 this_hdr->sh_flags |= SHF_MERGE;
3430 this_hdr->sh_entsize = asect->entsize;
3431 }
3432 if ((asect->flags & SEC_STRINGS) != 0)
3433 this_hdr->sh_flags |= SHF_STRINGS;
3434 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3435 this_hdr->sh_flags |= SHF_GROUP;
3436 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3437 {
3438 this_hdr->sh_flags |= SHF_TLS;
3439 if (asect->size == 0
3440 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3441 {
3442 struct bfd_link_order *o = asect->map_tail.link_order;
3443
3444 this_hdr->sh_size = 0;
3445 if (o != NULL)
3446 {
3447 this_hdr->sh_size = o->offset + o->size;
3448 if (this_hdr->sh_size != 0)
3449 this_hdr->sh_type = SHT_NOBITS;
3450 }
3451 }
3452 }
3453 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3454 this_hdr->sh_flags |= SHF_EXCLUDE;
3455
3456 /* If the section has relocs, set up a section header for the
3457 SHT_REL[A] section. If two relocation sections are required for
3458 this section, it is up to the processor-specific back-end to
3459 create the other. */
3460 if ((asect->flags & SEC_RELOC) != 0)
3461 {
3462 /* When doing a relocatable link, create both REL and RELA sections if
3463 needed. */
3464 if (arg->link_info
3465 /* Do the normal setup if we wouldn't create any sections here. */
3466 && esd->rel.count + esd->rela.count > 0
3467 && (bfd_link_relocatable (arg->link_info)
3468 || arg->link_info->emitrelocations))
3469 {
3470 if (esd->rel.count && esd->rel.hdr == NULL
3471 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3472 FALSE, delay_st_name_p))
3473 {
3474 arg->failed = TRUE;
3475 return;
3476 }
3477 if (esd->rela.count && esd->rela.hdr == NULL
3478 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3479 TRUE, delay_st_name_p))
3480 {
3481 arg->failed = TRUE;
3482 return;
3483 }
3484 }
3485 else if (!_bfd_elf_init_reloc_shdr (abfd,
3486 (asect->use_rela_p
3487 ? &esd->rela : &esd->rel),
3488 name,
3489 asect->use_rela_p,
3490 delay_st_name_p))
3491 {
3492 arg->failed = TRUE;
3493 return;
3494 }
3495 }
3496
3497 /* Check for processor-specific section types. */
3498 sh_type = this_hdr->sh_type;
3499 if (bed->elf_backend_fake_sections
3500 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3501 {
3502 arg->failed = TRUE;
3503 return;
3504 }
3505
3506 if (sh_type == SHT_NOBITS && asect->size != 0)
3507 {
3508 /* Don't change the header type from NOBITS if we are being
3509 called for objcopy --only-keep-debug. */
3510 this_hdr->sh_type = sh_type;
3511 }
3512 }
3513
3514 /* Fill in the contents of a SHT_GROUP section. Called from
3515 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3516 when ELF targets use the generic linker, ld. Called for ld -r
3517 from bfd_elf_final_link. */
3518
3519 void
3520 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3521 {
3522 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3523 asection *elt, *first;
3524 unsigned char *loc;
3525 bfd_boolean gas;
3526
3527 /* Ignore linker created group section. See elfNN_ia64_object_p in
3528 elfxx-ia64.c. */
3529 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3530 || sec->size == 0
3531 || *failedptr)
3532 return;
3533
3534 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3535 {
3536 unsigned long symindx = 0;
3537
3538 /* elf_group_id will have been set up by objcopy and the
3539 generic linker. */
3540 if (elf_group_id (sec) != NULL)
3541 symindx = elf_group_id (sec)->udata.i;
3542
3543 if (symindx == 0)
3544 {
3545 /* If called from the assembler, swap_out_syms will have set up
3546 elf_section_syms.
3547 PR 25699: A corrupt input file could contain bogus group info. */
3548 if (elf_section_syms (abfd) == NULL)
3549 {
3550 *failedptr = TRUE;
3551 return;
3552 }
3553 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3554 }
3555 elf_section_data (sec)->this_hdr.sh_info = symindx;
3556 }
3557 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3558 {
3559 /* The ELF backend linker sets sh_info to -2 when the group
3560 signature symbol is global, and thus the index can't be
3561 set until all local symbols are output. */
3562 asection *igroup;
3563 struct bfd_elf_section_data *sec_data;
3564 unsigned long symndx;
3565 unsigned long extsymoff;
3566 struct elf_link_hash_entry *h;
3567
3568 /* The point of this little dance to the first SHF_GROUP section
3569 then back to the SHT_GROUP section is that this gets us to
3570 the SHT_GROUP in the input object. */
3571 igroup = elf_sec_group (elf_next_in_group (sec));
3572 sec_data = elf_section_data (igroup);
3573 symndx = sec_data->this_hdr.sh_info;
3574 extsymoff = 0;
3575 if (!elf_bad_symtab (igroup->owner))
3576 {
3577 Elf_Internal_Shdr *symtab_hdr;
3578
3579 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3580 extsymoff = symtab_hdr->sh_info;
3581 }
3582 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3583 while (h->root.type == bfd_link_hash_indirect
3584 || h->root.type == bfd_link_hash_warning)
3585 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3586
3587 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3588 }
3589
3590 /* The contents won't be allocated for "ld -r" or objcopy. */
3591 gas = TRUE;
3592 if (sec->contents == NULL)
3593 {
3594 gas = FALSE;
3595 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3596
3597 /* Arrange for the section to be written out. */
3598 elf_section_data (sec)->this_hdr.contents = sec->contents;
3599 if (sec->contents == NULL)
3600 {
3601 *failedptr = TRUE;
3602 return;
3603 }
3604 }
3605
3606 loc = sec->contents + sec->size;
3607
3608 /* Get the pointer to the first section in the group that gas
3609 squirreled away here. objcopy arranges for this to be set to the
3610 start of the input section group. */
3611 first = elt = elf_next_in_group (sec);
3612
3613 /* First element is a flag word. Rest of section is elf section
3614 indices for all the sections of the group. Write them backwards
3615 just to keep the group in the same order as given in .section
3616 directives, not that it matters. */
3617 while (elt != NULL)
3618 {
3619 asection *s;
3620
3621 s = elt;
3622 if (!gas)
3623 s = s->output_section;
3624 if (s != NULL
3625 && !bfd_is_abs_section (s))
3626 {
3627 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3628 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3629
3630 if (elf_sec->rel.hdr != NULL
3631 && (gas
3632 || (input_elf_sec->rel.hdr != NULL
3633 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3634 {
3635 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3636 loc -= 4;
3637 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3638 }
3639 if (elf_sec->rela.hdr != NULL
3640 && (gas
3641 || (input_elf_sec->rela.hdr != NULL
3642 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3643 {
3644 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3645 loc -= 4;
3646 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3647 }
3648 loc -= 4;
3649 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3650 }
3651 elt = elf_next_in_group (elt);
3652 if (elt == first)
3653 break;
3654 }
3655
3656 loc -= 4;
3657 BFD_ASSERT (loc == sec->contents);
3658
3659 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3660 }
3661
3662 /* Given NAME, the name of a relocation section stripped of its
3663 .rel/.rela prefix, return the section in ABFD to which the
3664 relocations apply. */
3665
3666 asection *
3667 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3668 {
3669 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3670 section likely apply to .got.plt or .got section. */
3671 if (get_elf_backend_data (abfd)->want_got_plt
3672 && strcmp (name, ".plt") == 0)
3673 {
3674 asection *sec;
3675
3676 name = ".got.plt";
3677 sec = bfd_get_section_by_name (abfd, name);
3678 if (sec != NULL)
3679 return sec;
3680 name = ".got";
3681 }
3682
3683 return bfd_get_section_by_name (abfd, name);
3684 }
3685
3686 /* Return the section to which RELOC_SEC applies. */
3687
3688 static asection *
3689 elf_get_reloc_section (asection *reloc_sec)
3690 {
3691 const char *name;
3692 unsigned int type;
3693 bfd *abfd;
3694 const struct elf_backend_data *bed;
3695
3696 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3697 if (type != SHT_REL && type != SHT_RELA)
3698 return NULL;
3699
3700 /* We look up the section the relocs apply to by name. */
3701 name = reloc_sec->name;
3702 if (strncmp (name, ".rel", 4) != 0)
3703 return NULL;
3704 name += 4;
3705 if (type == SHT_RELA && *name++ != 'a')
3706 return NULL;
3707
3708 abfd = reloc_sec->owner;
3709 bed = get_elf_backend_data (abfd);
3710 return bed->get_reloc_section (abfd, name);
3711 }
3712
3713 /* Assign all ELF section numbers. The dummy first section is handled here
3714 too. The link/info pointers for the standard section types are filled
3715 in here too, while we're at it. */
3716
3717 static bfd_boolean
3718 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3719 {
3720 struct elf_obj_tdata *t = elf_tdata (abfd);
3721 asection *sec;
3722 unsigned int section_number;
3723 Elf_Internal_Shdr **i_shdrp;
3724 struct bfd_elf_section_data *d;
3725 bfd_boolean need_symtab;
3726 size_t amt;
3727
3728 section_number = 1;
3729
3730 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3731
3732 /* SHT_GROUP sections are in relocatable files only. */
3733 if (link_info == NULL || !link_info->resolve_section_groups)
3734 {
3735 size_t reloc_count = 0;
3736
3737 /* Put SHT_GROUP sections first. */
3738 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3739 {
3740 d = elf_section_data (sec);
3741
3742 if (d->this_hdr.sh_type == SHT_GROUP)
3743 {
3744 if (sec->flags & SEC_LINKER_CREATED)
3745 {
3746 /* Remove the linker created SHT_GROUP sections. */
3747 bfd_section_list_remove (abfd, sec);
3748 abfd->section_count--;
3749 }
3750 else
3751 d->this_idx = section_number++;
3752 }
3753
3754 /* Count relocations. */
3755 reloc_count += sec->reloc_count;
3756 }
3757
3758 /* Clear HAS_RELOC if there are no relocations. */
3759 if (reloc_count == 0)
3760 abfd->flags &= ~HAS_RELOC;
3761 }
3762
3763 for (sec = abfd->sections; sec; sec = sec->next)
3764 {
3765 d = elf_section_data (sec);
3766
3767 if (d->this_hdr.sh_type != SHT_GROUP)
3768 d->this_idx = section_number++;
3769 if (d->this_hdr.sh_name != (unsigned int) -1)
3770 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3771 if (d->rel.hdr)
3772 {
3773 d->rel.idx = section_number++;
3774 if (d->rel.hdr->sh_name != (unsigned int) -1)
3775 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3776 }
3777 else
3778 d->rel.idx = 0;
3779
3780 if (d->rela.hdr)
3781 {
3782 d->rela.idx = section_number++;
3783 if (d->rela.hdr->sh_name != (unsigned int) -1)
3784 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3785 }
3786 else
3787 d->rela.idx = 0;
3788 }
3789
3790 need_symtab = (bfd_get_symcount (abfd) > 0
3791 || (link_info == NULL
3792 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3793 == HAS_RELOC)));
3794 if (need_symtab)
3795 {
3796 elf_onesymtab (abfd) = section_number++;
3797 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3798 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3799 {
3800 elf_section_list *entry;
3801
3802 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3803
3804 entry = bfd_zalloc (abfd, sizeof (*entry));
3805 entry->ndx = section_number++;
3806 elf_symtab_shndx_list (abfd) = entry;
3807 entry->hdr.sh_name
3808 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3809 ".symtab_shndx", FALSE);
3810 if (entry->hdr.sh_name == (unsigned int) -1)
3811 return FALSE;
3812 }
3813 elf_strtab_sec (abfd) = section_number++;
3814 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3815 }
3816
3817 elf_shstrtab_sec (abfd) = section_number++;
3818 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3819 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3820
3821 if (section_number >= SHN_LORESERVE)
3822 {
3823 /* xgettext:c-format */
3824 _bfd_error_handler (_("%pB: too many sections: %u"),
3825 abfd, section_number);
3826 return FALSE;
3827 }
3828
3829 elf_numsections (abfd) = section_number;
3830 elf_elfheader (abfd)->e_shnum = section_number;
3831
3832 /* Set up the list of section header pointers, in agreement with the
3833 indices. */
3834 amt = section_number * sizeof (Elf_Internal_Shdr *);
3835 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
3836 if (i_shdrp == NULL)
3837 return FALSE;
3838
3839 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3840 sizeof (Elf_Internal_Shdr));
3841 if (i_shdrp[0] == NULL)
3842 {
3843 bfd_release (abfd, i_shdrp);
3844 return FALSE;
3845 }
3846
3847 elf_elfsections (abfd) = i_shdrp;
3848
3849 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3850 if (need_symtab)
3851 {
3852 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3853 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3854 {
3855 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3856 BFD_ASSERT (entry != NULL);
3857 i_shdrp[entry->ndx] = & entry->hdr;
3858 entry->hdr.sh_link = elf_onesymtab (abfd);
3859 }
3860 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3861 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3862 }
3863
3864 for (sec = abfd->sections; sec; sec = sec->next)
3865 {
3866 asection *s;
3867
3868 d = elf_section_data (sec);
3869
3870 i_shdrp[d->this_idx] = &d->this_hdr;
3871 if (d->rel.idx != 0)
3872 i_shdrp[d->rel.idx] = d->rel.hdr;
3873 if (d->rela.idx != 0)
3874 i_shdrp[d->rela.idx] = d->rela.hdr;
3875
3876 /* Fill in the sh_link and sh_info fields while we're at it. */
3877
3878 /* sh_link of a reloc section is the section index of the symbol
3879 table. sh_info is the section index of the section to which
3880 the relocation entries apply. */
3881 if (d->rel.idx != 0)
3882 {
3883 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3884 d->rel.hdr->sh_info = d->this_idx;
3885 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3886 }
3887 if (d->rela.idx != 0)
3888 {
3889 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3890 d->rela.hdr->sh_info = d->this_idx;
3891 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3892 }
3893
3894 /* We need to set up sh_link for SHF_LINK_ORDER. */
3895 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3896 {
3897 s = elf_linked_to_section (sec);
3898 if (s)
3899 {
3900 /* elf_linked_to_section points to the input section. */
3901 if (link_info != NULL)
3902 {
3903 /* Check discarded linkonce section. */
3904 if (discarded_section (s))
3905 {
3906 asection *kept;
3907 _bfd_error_handler
3908 /* xgettext:c-format */
3909 (_("%pB: sh_link of section `%pA' points to"
3910 " discarded section `%pA' of `%pB'"),
3911 abfd, d->this_hdr.bfd_section,
3912 s, s->owner);
3913 /* Point to the kept section if it has the same
3914 size as the discarded one. */
3915 kept = _bfd_elf_check_kept_section (s, link_info);
3916 if (kept == NULL)
3917 {
3918 bfd_set_error (bfd_error_bad_value);
3919 return FALSE;
3920 }
3921 s = kept;
3922 }
3923
3924 s = s->output_section;
3925 BFD_ASSERT (s != NULL);
3926 }
3927 else
3928 {
3929 /* Handle objcopy. */
3930 if (s->output_section == NULL)
3931 {
3932 _bfd_error_handler
3933 /* xgettext:c-format */
3934 (_("%pB: sh_link of section `%pA' points to"
3935 " removed section `%pA' of `%pB'"),
3936 abfd, d->this_hdr.bfd_section, s, s->owner);
3937 bfd_set_error (bfd_error_bad_value);
3938 return FALSE;
3939 }
3940 s = s->output_section;
3941 }
3942 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3943 }
3944 else
3945 {
3946 /* PR 290:
3947 The Intel C compiler generates SHT_IA_64_UNWIND with
3948 SHF_LINK_ORDER. But it doesn't set the sh_link or
3949 sh_info fields. Hence we could get the situation
3950 where s is NULL. */
3951 const struct elf_backend_data *bed
3952 = get_elf_backend_data (abfd);
3953 bed->link_order_error_handler
3954 /* xgettext:c-format */
3955 (_("%pB: warning: sh_link not set for section `%pA'"),
3956 abfd, sec);
3957 }
3958 }
3959
3960 switch (d->this_hdr.sh_type)
3961 {
3962 case SHT_REL:
3963 case SHT_RELA:
3964 /* A reloc section which we are treating as a normal BFD
3965 section. sh_link is the section index of the symbol
3966 table. sh_info is the section index of the section to
3967 which the relocation entries apply. We assume that an
3968 allocated reloc section uses the dynamic symbol table.
3969 FIXME: How can we be sure? */
3970 s = bfd_get_section_by_name (abfd, ".dynsym");
3971 if (s != NULL)
3972 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3973
3974 s = elf_get_reloc_section (sec);
3975 if (s != NULL)
3976 {
3977 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3978 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3979 }
3980 break;
3981
3982 case SHT_STRTAB:
3983 /* We assume that a section named .stab*str is a stabs
3984 string section. We look for a section with the same name
3985 but without the trailing ``str'', and set its sh_link
3986 field to point to this section. */
3987 if (CONST_STRNEQ (sec->name, ".stab")
3988 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3989 {
3990 size_t len;
3991 char *alc;
3992
3993 len = strlen (sec->name);
3994 alc = (char *) bfd_malloc (len - 2);
3995 if (alc == NULL)
3996 return FALSE;
3997 memcpy (alc, sec->name, len - 3);
3998 alc[len - 3] = '\0';
3999 s = bfd_get_section_by_name (abfd, alc);
4000 free (alc);
4001 if (s != NULL)
4002 {
4003 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
4004
4005 /* This is a .stab section. */
4006 elf_section_data (s)->this_hdr.sh_entsize = 12;
4007 }
4008 }
4009 break;
4010
4011 case SHT_DYNAMIC:
4012 case SHT_DYNSYM:
4013 case SHT_GNU_verneed:
4014 case SHT_GNU_verdef:
4015 /* sh_link is the section header index of the string table
4016 used for the dynamic entries, or the symbol table, or the
4017 version strings. */
4018 s = bfd_get_section_by_name (abfd, ".dynstr");
4019 if (s != NULL)
4020 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4021 break;
4022
4023 case SHT_GNU_LIBLIST:
4024 /* sh_link is the section header index of the prelink library
4025 list used for the dynamic entries, or the symbol table, or
4026 the version strings. */
4027 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4028 ? ".dynstr" : ".gnu.libstr");
4029 if (s != NULL)
4030 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4031 break;
4032
4033 case SHT_HASH:
4034 case SHT_GNU_HASH:
4035 case SHT_GNU_versym:
4036 /* sh_link is the section header index of the symbol table
4037 this hash table or version table is for. */
4038 s = bfd_get_section_by_name (abfd, ".dynsym");
4039 if (s != NULL)
4040 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4041 break;
4042
4043 case SHT_GROUP:
4044 d->this_hdr.sh_link = elf_onesymtab (abfd);
4045 }
4046 }
4047
4048 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4049 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4050 debug section name from .debug_* to .zdebug_* if needed. */
4051
4052 return TRUE;
4053 }
4054
4055 static bfd_boolean
4056 sym_is_global (bfd *abfd, asymbol *sym)
4057 {
4058 /* If the backend has a special mapping, use it. */
4059 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4060 if (bed->elf_backend_sym_is_global)
4061 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4062
4063 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4064 || bfd_is_und_section (bfd_asymbol_section (sym))
4065 || bfd_is_com_section (bfd_asymbol_section (sym)));
4066 }
4067
4068 /* Filter global symbols of ABFD to include in the import library. All
4069 SYMCOUNT symbols of ABFD can be examined from their pointers in
4070 SYMS. Pointers of symbols to keep should be stored contiguously at
4071 the beginning of that array.
4072
4073 Returns the number of symbols to keep. */
4074
4075 unsigned int
4076 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4077 asymbol **syms, long symcount)
4078 {
4079 long src_count, dst_count = 0;
4080
4081 for (src_count = 0; src_count < symcount; src_count++)
4082 {
4083 asymbol *sym = syms[src_count];
4084 char *name = (char *) bfd_asymbol_name (sym);
4085 struct bfd_link_hash_entry *h;
4086
4087 if (!sym_is_global (abfd, sym))
4088 continue;
4089
4090 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4091 if (h == NULL)
4092 continue;
4093 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4094 continue;
4095 if (h->linker_def || h->ldscript_def)
4096 continue;
4097
4098 syms[dst_count++] = sym;
4099 }
4100
4101 syms[dst_count] = NULL;
4102
4103 return dst_count;
4104 }
4105
4106 /* Don't output section symbols for sections that are not going to be
4107 output, that are duplicates or there is no BFD section. */
4108
4109 static bfd_boolean
4110 ignore_section_sym (bfd *abfd, asymbol *sym)
4111 {
4112 elf_symbol_type *type_ptr;
4113
4114 if (sym == NULL)
4115 return FALSE;
4116
4117 if ((sym->flags & BSF_SECTION_SYM) == 0)
4118 return FALSE;
4119
4120 if (sym->section == NULL)
4121 return TRUE;
4122
4123 type_ptr = elf_symbol_from (abfd, sym);
4124 return ((type_ptr != NULL
4125 && type_ptr->internal_elf_sym.st_shndx != 0
4126 && bfd_is_abs_section (sym->section))
4127 || !(sym->section->owner == abfd
4128 || (sym->section->output_section != NULL
4129 && sym->section->output_section->owner == abfd
4130 && sym->section->output_offset == 0)
4131 || bfd_is_abs_section (sym->section)));
4132 }
4133
4134 /* Map symbol from it's internal number to the external number, moving
4135 all local symbols to be at the head of the list. */
4136
4137 static bfd_boolean
4138 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4139 {
4140 unsigned int symcount = bfd_get_symcount (abfd);
4141 asymbol **syms = bfd_get_outsymbols (abfd);
4142 asymbol **sect_syms;
4143 unsigned int num_locals = 0;
4144 unsigned int num_globals = 0;
4145 unsigned int num_locals2 = 0;
4146 unsigned int num_globals2 = 0;
4147 unsigned int max_index = 0;
4148 unsigned int idx;
4149 asection *asect;
4150 asymbol **new_syms;
4151 size_t amt;
4152
4153 #ifdef DEBUG
4154 fprintf (stderr, "elf_map_symbols\n");
4155 fflush (stderr);
4156 #endif
4157
4158 for (asect = abfd->sections; asect; asect = asect->next)
4159 {
4160 if (max_index < asect->index)
4161 max_index = asect->index;
4162 }
4163
4164 max_index++;
4165 amt = max_index * sizeof (asymbol *);
4166 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
4167 if (sect_syms == NULL)
4168 return FALSE;
4169 elf_section_syms (abfd) = sect_syms;
4170 elf_num_section_syms (abfd) = max_index;
4171
4172 /* Init sect_syms entries for any section symbols we have already
4173 decided to output. */
4174 for (idx = 0; idx < symcount; idx++)
4175 {
4176 asymbol *sym = syms[idx];
4177
4178 if ((sym->flags & BSF_SECTION_SYM) != 0
4179 && sym->value == 0
4180 && !ignore_section_sym (abfd, sym)
4181 && !bfd_is_abs_section (sym->section))
4182 {
4183 asection *sec = sym->section;
4184
4185 if (sec->owner != abfd)
4186 sec = sec->output_section;
4187
4188 sect_syms[sec->index] = syms[idx];
4189 }
4190 }
4191
4192 /* Classify all of the symbols. */
4193 for (idx = 0; idx < symcount; idx++)
4194 {
4195 if (sym_is_global (abfd, syms[idx]))
4196 num_globals++;
4197 else if (!ignore_section_sym (abfd, syms[idx]))
4198 num_locals++;
4199 }
4200
4201 /* We will be adding a section symbol for each normal BFD section. Most
4202 sections will already have a section symbol in outsymbols, but
4203 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4204 at least in that case. */
4205 for (asect = abfd->sections; asect; asect = asect->next)
4206 {
4207 if (sect_syms[asect->index] == NULL)
4208 {
4209 if (!sym_is_global (abfd, asect->symbol))
4210 num_locals++;
4211 else
4212 num_globals++;
4213 }
4214 }
4215
4216 /* Now sort the symbols so the local symbols are first. */
4217 amt = (num_locals + num_globals) * sizeof (asymbol *);
4218 new_syms = (asymbol **) bfd_alloc (abfd, amt);
4219 if (new_syms == NULL)
4220 return FALSE;
4221
4222 for (idx = 0; idx < symcount; idx++)
4223 {
4224 asymbol *sym = syms[idx];
4225 unsigned int i;
4226
4227 if (sym_is_global (abfd, sym))
4228 i = num_locals + num_globals2++;
4229 else if (!ignore_section_sym (abfd, sym))
4230 i = num_locals2++;
4231 else
4232 continue;
4233 new_syms[i] = sym;
4234 sym->udata.i = i + 1;
4235 }
4236 for (asect = abfd->sections; asect; asect = asect->next)
4237 {
4238 if (sect_syms[asect->index] == NULL)
4239 {
4240 asymbol *sym = asect->symbol;
4241 unsigned int i;
4242
4243 sect_syms[asect->index] = sym;
4244 if (!sym_is_global (abfd, sym))
4245 i = num_locals2++;
4246 else
4247 i = num_locals + num_globals2++;
4248 new_syms[i] = sym;
4249 sym->udata.i = i + 1;
4250 }
4251 }
4252
4253 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4254
4255 *pnum_locals = num_locals;
4256 return TRUE;
4257 }
4258
4259 /* Align to the maximum file alignment that could be required for any
4260 ELF data structure. */
4261
4262 static inline file_ptr
4263 align_file_position (file_ptr off, int align)
4264 {
4265 return (off + align - 1) & ~(align - 1);
4266 }
4267
4268 /* Assign a file position to a section, optionally aligning to the
4269 required section alignment. */
4270
4271 file_ptr
4272 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4273 file_ptr offset,
4274 bfd_boolean align)
4275 {
4276 if (align && i_shdrp->sh_addralign > 1)
4277 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4278 i_shdrp->sh_offset = offset;
4279 if (i_shdrp->bfd_section != NULL)
4280 i_shdrp->bfd_section->filepos = offset;
4281 if (i_shdrp->sh_type != SHT_NOBITS)
4282 offset += i_shdrp->sh_size;
4283 return offset;
4284 }
4285
4286 /* Compute the file positions we are going to put the sections at, and
4287 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4288 is not NULL, this is being called by the ELF backend linker. */
4289
4290 bfd_boolean
4291 _bfd_elf_compute_section_file_positions (bfd *abfd,
4292 struct bfd_link_info *link_info)
4293 {
4294 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4295 struct fake_section_arg fsargs;
4296 bfd_boolean failed;
4297 struct elf_strtab_hash *strtab = NULL;
4298 Elf_Internal_Shdr *shstrtab_hdr;
4299 bfd_boolean need_symtab;
4300
4301 if (abfd->output_has_begun)
4302 return TRUE;
4303
4304 /* Do any elf backend specific processing first. */
4305 if (bed->elf_backend_begin_write_processing)
4306 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4307
4308 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4309 return FALSE;
4310
4311 fsargs.failed = FALSE;
4312 fsargs.link_info = link_info;
4313 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4314 if (fsargs.failed)
4315 return FALSE;
4316
4317 if (!assign_section_numbers (abfd, link_info))
4318 return FALSE;
4319
4320 /* The backend linker builds symbol table information itself. */
4321 need_symtab = (link_info == NULL
4322 && (bfd_get_symcount (abfd) > 0
4323 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4324 == HAS_RELOC)));
4325 if (need_symtab)
4326 {
4327 /* Non-zero if doing a relocatable link. */
4328 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4329
4330 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4331 return FALSE;
4332 }
4333
4334 failed = FALSE;
4335 if (link_info == NULL)
4336 {
4337 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4338 if (failed)
4339 return FALSE;
4340 }
4341
4342 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4343 /* sh_name was set in init_file_header. */
4344 shstrtab_hdr->sh_type = SHT_STRTAB;
4345 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4346 shstrtab_hdr->sh_addr = 0;
4347 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4348 shstrtab_hdr->sh_entsize = 0;
4349 shstrtab_hdr->sh_link = 0;
4350 shstrtab_hdr->sh_info = 0;
4351 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4352 shstrtab_hdr->sh_addralign = 1;
4353
4354 if (!assign_file_positions_except_relocs (abfd, link_info))
4355 return FALSE;
4356
4357 if (need_symtab)
4358 {
4359 file_ptr off;
4360 Elf_Internal_Shdr *hdr;
4361
4362 off = elf_next_file_pos (abfd);
4363
4364 hdr = & elf_symtab_hdr (abfd);
4365 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4366
4367 if (elf_symtab_shndx_list (abfd) != NULL)
4368 {
4369 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4370 if (hdr->sh_size != 0)
4371 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4372 /* FIXME: What about other symtab_shndx sections in the list ? */
4373 }
4374
4375 hdr = &elf_tdata (abfd)->strtab_hdr;
4376 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4377
4378 elf_next_file_pos (abfd) = off;
4379
4380 /* Now that we know where the .strtab section goes, write it
4381 out. */
4382 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4383 || ! _bfd_elf_strtab_emit (abfd, strtab))
4384 return FALSE;
4385 _bfd_elf_strtab_free (strtab);
4386 }
4387
4388 abfd->output_has_begun = TRUE;
4389
4390 return TRUE;
4391 }
4392
4393 /* Make an initial estimate of the size of the program header. If we
4394 get the number wrong here, we'll redo section placement. */
4395
4396 static bfd_size_type
4397 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4398 {
4399 size_t segs;
4400 asection *s;
4401 const struct elf_backend_data *bed;
4402
4403 /* Assume we will need exactly two PT_LOAD segments: one for text
4404 and one for data. */
4405 segs = 2;
4406
4407 s = bfd_get_section_by_name (abfd, ".interp");
4408 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4409 {
4410 /* If we have a loadable interpreter section, we need a
4411 PT_INTERP segment. In this case, assume we also need a
4412 PT_PHDR segment, although that may not be true for all
4413 targets. */
4414 segs += 2;
4415 }
4416
4417 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4418 {
4419 /* We need a PT_DYNAMIC segment. */
4420 ++segs;
4421 }
4422
4423 if (info != NULL && info->relro)
4424 {
4425 /* We need a PT_GNU_RELRO segment. */
4426 ++segs;
4427 }
4428
4429 if (elf_eh_frame_hdr (abfd))
4430 {
4431 /* We need a PT_GNU_EH_FRAME segment. */
4432 ++segs;
4433 }
4434
4435 if (elf_stack_flags (abfd))
4436 {
4437 /* We need a PT_GNU_STACK segment. */
4438 ++segs;
4439 }
4440
4441 s = bfd_get_section_by_name (abfd,
4442 NOTE_GNU_PROPERTY_SECTION_NAME);
4443 if (s != NULL && s->size != 0)
4444 {
4445 /* We need a PT_GNU_PROPERTY segment. */
4446 ++segs;
4447 }
4448
4449 for (s = abfd->sections; s != NULL; s = s->next)
4450 {
4451 if ((s->flags & SEC_LOAD) != 0
4452 && elf_section_type (s) == SHT_NOTE)
4453 {
4454 unsigned int alignment_power;
4455 /* We need a PT_NOTE segment. */
4456 ++segs;
4457 /* Try to create just one PT_NOTE segment for all adjacent
4458 loadable SHT_NOTE sections. gABI requires that within a
4459 PT_NOTE segment (and also inside of each SHT_NOTE section)
4460 each note should have the same alignment. So we check
4461 whether the sections are correctly aligned. */
4462 alignment_power = s->alignment_power;
4463 while (s->next != NULL
4464 && s->next->alignment_power == alignment_power
4465 && (s->next->flags & SEC_LOAD) != 0
4466 && elf_section_type (s->next) == SHT_NOTE)
4467 s = s->next;
4468 }
4469 }
4470
4471 for (s = abfd->sections; s != NULL; s = s->next)
4472 {
4473 if (s->flags & SEC_THREAD_LOCAL)
4474 {
4475 /* We need a PT_TLS segment. */
4476 ++segs;
4477 break;
4478 }
4479 }
4480
4481 bed = get_elf_backend_data (abfd);
4482
4483 if ((abfd->flags & D_PAGED) != 0
4484 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4485 {
4486 /* Add a PT_GNU_MBIND segment for each mbind section. */
4487 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4488 for (s = abfd->sections; s != NULL; s = s->next)
4489 if (elf_section_flags (s) & SHF_GNU_MBIND)
4490 {
4491 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4492 {
4493 _bfd_error_handler
4494 /* xgettext:c-format */
4495 (_("%pB: GNU_MBIND section `%pA' has invalid "
4496 "sh_info field: %d"),
4497 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4498 continue;
4499 }
4500 /* Align mbind section to page size. */
4501 if (s->alignment_power < page_align_power)
4502 s->alignment_power = page_align_power;
4503 segs ++;
4504 }
4505 }
4506
4507 /* Let the backend count up any program headers it might need. */
4508 if (bed->elf_backend_additional_program_headers)
4509 {
4510 int a;
4511
4512 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4513 if (a == -1)
4514 abort ();
4515 segs += a;
4516 }
4517
4518 return segs * bed->s->sizeof_phdr;
4519 }
4520
4521 /* Find the segment that contains the output_section of section. */
4522
4523 Elf_Internal_Phdr *
4524 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4525 {
4526 struct elf_segment_map *m;
4527 Elf_Internal_Phdr *p;
4528
4529 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4530 m != NULL;
4531 m = m->next, p++)
4532 {
4533 int i;
4534
4535 for (i = m->count - 1; i >= 0; i--)
4536 if (m->sections[i] == section)
4537 return p;
4538 }
4539
4540 return NULL;
4541 }
4542
4543 /* Create a mapping from a set of sections to a program segment. */
4544
4545 static struct elf_segment_map *
4546 make_mapping (bfd *abfd,
4547 asection **sections,
4548 unsigned int from,
4549 unsigned int to,
4550 bfd_boolean phdr)
4551 {
4552 struct elf_segment_map *m;
4553 unsigned int i;
4554 asection **hdrpp;
4555 size_t amt;
4556
4557 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4558 amt += (to - from) * sizeof (asection *);
4559 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4560 if (m == NULL)
4561 return NULL;
4562 m->next = NULL;
4563 m->p_type = PT_LOAD;
4564 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4565 m->sections[i - from] = *hdrpp;
4566 m->count = to - from;
4567
4568 if (from == 0 && phdr)
4569 {
4570 /* Include the headers in the first PT_LOAD segment. */
4571 m->includes_filehdr = 1;
4572 m->includes_phdrs = 1;
4573 }
4574
4575 return m;
4576 }
4577
4578 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4579 on failure. */
4580
4581 struct elf_segment_map *
4582 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4583 {
4584 struct elf_segment_map *m;
4585
4586 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4587 sizeof (struct elf_segment_map));
4588 if (m == NULL)
4589 return NULL;
4590 m->next = NULL;
4591 m->p_type = PT_DYNAMIC;
4592 m->count = 1;
4593 m->sections[0] = dynsec;
4594
4595 return m;
4596 }
4597
4598 /* Possibly add or remove segments from the segment map. */
4599
4600 static bfd_boolean
4601 elf_modify_segment_map (bfd *abfd,
4602 struct bfd_link_info *info,
4603 bfd_boolean remove_empty_load)
4604 {
4605 struct elf_segment_map **m;
4606 const struct elf_backend_data *bed;
4607
4608 /* The placement algorithm assumes that non allocated sections are
4609 not in PT_LOAD segments. We ensure this here by removing such
4610 sections from the segment map. We also remove excluded
4611 sections. Finally, any PT_LOAD segment without sections is
4612 removed. */
4613 m = &elf_seg_map (abfd);
4614 while (*m)
4615 {
4616 unsigned int i, new_count;
4617
4618 for (new_count = 0, i = 0; i < (*m)->count; i++)
4619 {
4620 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4621 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4622 || (*m)->p_type != PT_LOAD))
4623 {
4624 (*m)->sections[new_count] = (*m)->sections[i];
4625 new_count++;
4626 }
4627 }
4628 (*m)->count = new_count;
4629
4630 if (remove_empty_load
4631 && (*m)->p_type == PT_LOAD
4632 && (*m)->count == 0
4633 && !(*m)->includes_phdrs)
4634 *m = (*m)->next;
4635 else
4636 m = &(*m)->next;
4637 }
4638
4639 bed = get_elf_backend_data (abfd);
4640 if (bed->elf_backend_modify_segment_map != NULL)
4641 {
4642 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4643 return FALSE;
4644 }
4645
4646 return TRUE;
4647 }
4648
4649 #define IS_TBSS(s) \
4650 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4651
4652 /* Set up a mapping from BFD sections to program segments. */
4653
4654 bfd_boolean
4655 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4656 {
4657 unsigned int count;
4658 struct elf_segment_map *m;
4659 asection **sections = NULL;
4660 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4661 bfd_boolean no_user_phdrs;
4662
4663 no_user_phdrs = elf_seg_map (abfd) == NULL;
4664
4665 if (info != NULL)
4666 info->user_phdrs = !no_user_phdrs;
4667
4668 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4669 {
4670 asection *s;
4671 unsigned int i;
4672 struct elf_segment_map *mfirst;
4673 struct elf_segment_map **pm;
4674 asection *last_hdr;
4675 bfd_vma last_size;
4676 unsigned int hdr_index;
4677 bfd_vma maxpagesize;
4678 asection **hdrpp;
4679 bfd_boolean phdr_in_segment;
4680 bfd_boolean writable;
4681 bfd_boolean executable;
4682 unsigned int tls_count = 0;
4683 asection *first_tls = NULL;
4684 asection *first_mbind = NULL;
4685 asection *dynsec, *eh_frame_hdr;
4686 size_t amt;
4687 bfd_vma addr_mask, wrap_to = 0; /* Bytes. */
4688 bfd_size_type phdr_size; /* Octets/bytes. */
4689 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
4690
4691 /* Select the allocated sections, and sort them. */
4692
4693 amt = bfd_count_sections (abfd) * sizeof (asection *);
4694 sections = (asection **) bfd_malloc (amt);
4695 if (sections == NULL)
4696 goto error_return;
4697
4698 /* Calculate top address, avoiding undefined behaviour of shift
4699 left operator when shift count is equal to size of type
4700 being shifted. */
4701 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4702 addr_mask = (addr_mask << 1) + 1;
4703
4704 i = 0;
4705 for (s = abfd->sections; s != NULL; s = s->next)
4706 {
4707 if ((s->flags & SEC_ALLOC) != 0)
4708 {
4709 /* target_index is unused until bfd_elf_final_link
4710 starts output of section symbols. Use it to make
4711 qsort stable. */
4712 s->target_index = i;
4713 sections[i] = s;
4714 ++i;
4715 /* A wrapping section potentially clashes with header. */
4716 if (((s->lma + s->size / opb) & addr_mask) < (s->lma & addr_mask))
4717 wrap_to = (s->lma + s->size / opb) & addr_mask;
4718 }
4719 }
4720 BFD_ASSERT (i <= bfd_count_sections (abfd));
4721 count = i;
4722
4723 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4724
4725 phdr_size = elf_program_header_size (abfd);
4726 if (phdr_size == (bfd_size_type) -1)
4727 phdr_size = get_program_header_size (abfd, info);
4728 phdr_size += bed->s->sizeof_ehdr;
4729 /* phdr_size is compared to LMA values which are in bytes. */
4730 phdr_size /= opb;
4731 maxpagesize = bed->maxpagesize;
4732 if (maxpagesize == 0)
4733 maxpagesize = 1;
4734 phdr_in_segment = info != NULL && info->load_phdrs;
4735 if (count != 0
4736 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4737 >= (phdr_size & (maxpagesize - 1))))
4738 /* For compatibility with old scripts that may not be using
4739 SIZEOF_HEADERS, add headers when it looks like space has
4740 been left for them. */
4741 phdr_in_segment = TRUE;
4742
4743 /* Build the mapping. */
4744 mfirst = NULL;
4745 pm = &mfirst;
4746
4747 /* If we have a .interp section, then create a PT_PHDR segment for
4748 the program headers and a PT_INTERP segment for the .interp
4749 section. */
4750 s = bfd_get_section_by_name (abfd, ".interp");
4751 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4752 {
4753 amt = sizeof (struct elf_segment_map);
4754 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4755 if (m == NULL)
4756 goto error_return;
4757 m->next = NULL;
4758 m->p_type = PT_PHDR;
4759 m->p_flags = PF_R;
4760 m->p_flags_valid = 1;
4761 m->includes_phdrs = 1;
4762 phdr_in_segment = TRUE;
4763 *pm = m;
4764 pm = &m->next;
4765
4766 amt = sizeof (struct elf_segment_map);
4767 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4768 if (m == NULL)
4769 goto error_return;
4770 m->next = NULL;
4771 m->p_type = PT_INTERP;
4772 m->count = 1;
4773 m->sections[0] = s;
4774
4775 *pm = m;
4776 pm = &m->next;
4777 }
4778
4779 /* Look through the sections. We put sections in the same program
4780 segment when the start of the second section can be placed within
4781 a few bytes of the end of the first section. */
4782 last_hdr = NULL;
4783 last_size = 0;
4784 hdr_index = 0;
4785 writable = FALSE;
4786 executable = FALSE;
4787 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4788 if (dynsec != NULL
4789 && (dynsec->flags & SEC_LOAD) == 0)
4790 dynsec = NULL;
4791
4792 if ((abfd->flags & D_PAGED) == 0)
4793 phdr_in_segment = FALSE;
4794
4795 /* Deal with -Ttext or something similar such that the first section
4796 is not adjacent to the program headers. This is an
4797 approximation, since at this point we don't know exactly how many
4798 program headers we will need. */
4799 if (phdr_in_segment && count > 0)
4800 {
4801 bfd_vma phdr_lma; /* Bytes. */
4802 bfd_boolean separate_phdr = FALSE;
4803
4804 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4805 if (info != NULL
4806 && info->separate_code
4807 && (sections[0]->flags & SEC_CODE) != 0)
4808 {
4809 /* If data sections should be separate from code and
4810 thus not executable, and the first section is
4811 executable then put the file and program headers in
4812 their own PT_LOAD. */
4813 separate_phdr = TRUE;
4814 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4815 == (sections[0]->lma & addr_mask & -maxpagesize)))
4816 {
4817 /* The file and program headers are currently on the
4818 same page as the first section. Put them on the
4819 previous page if we can. */
4820 if (phdr_lma >= maxpagesize)
4821 phdr_lma -= maxpagesize;
4822 else
4823 separate_phdr = FALSE;
4824 }
4825 }
4826 if ((sections[0]->lma & addr_mask) < phdr_lma
4827 || (sections[0]->lma & addr_mask) < phdr_size)
4828 /* If file and program headers would be placed at the end
4829 of memory then it's probably better to omit them. */
4830 phdr_in_segment = FALSE;
4831 else if (phdr_lma < wrap_to)
4832 /* If a section wraps around to where we'll be placing
4833 file and program headers, then the headers will be
4834 overwritten. */
4835 phdr_in_segment = FALSE;
4836 else if (separate_phdr)
4837 {
4838 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4839 if (m == NULL)
4840 goto error_return;
4841 m->p_paddr = phdr_lma * opb;
4842 m->p_vaddr_offset
4843 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4844 m->p_paddr_valid = 1;
4845 *pm = m;
4846 pm = &m->next;
4847 phdr_in_segment = FALSE;
4848 }
4849 }
4850
4851 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4852 {
4853 asection *hdr;
4854 bfd_boolean new_segment;
4855
4856 hdr = *hdrpp;
4857
4858 /* See if this section and the last one will fit in the same
4859 segment. */
4860
4861 if (last_hdr == NULL)
4862 {
4863 /* If we don't have a segment yet, then we don't need a new
4864 one (we build the last one after this loop). */
4865 new_segment = FALSE;
4866 }
4867 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4868 {
4869 /* If this section has a different relation between the
4870 virtual address and the load address, then we need a new
4871 segment. */
4872 new_segment = TRUE;
4873 }
4874 else if (hdr->lma < last_hdr->lma + last_size
4875 || last_hdr->lma + last_size < last_hdr->lma)
4876 {
4877 /* If this section has a load address that makes it overlap
4878 the previous section, then we need a new segment. */
4879 new_segment = TRUE;
4880 }
4881 else if ((abfd->flags & D_PAGED) != 0
4882 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4883 == (hdr->lma & -maxpagesize)))
4884 {
4885 /* If we are demand paged then we can't map two disk
4886 pages onto the same memory page. */
4887 new_segment = FALSE;
4888 }
4889 /* In the next test we have to be careful when last_hdr->lma is close
4890 to the end of the address space. If the aligned address wraps
4891 around to the start of the address space, then there are no more
4892 pages left in memory and it is OK to assume that the current
4893 section can be included in the current segment. */
4894 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4895 + maxpagesize > last_hdr->lma)
4896 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4897 + maxpagesize <= hdr->lma))
4898 {
4899 /* If putting this section in this segment would force us to
4900 skip a page in the segment, then we need a new segment. */
4901 new_segment = TRUE;
4902 }
4903 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4904 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4905 {
4906 /* We don't want to put a loaded section after a
4907 nonloaded (ie. bss style) section in the same segment
4908 as that will force the non-loaded section to be loaded.
4909 Consider .tbss sections as loaded for this purpose. */
4910 new_segment = TRUE;
4911 }
4912 else if ((abfd->flags & D_PAGED) == 0)
4913 {
4914 /* If the file is not demand paged, which means that we
4915 don't require the sections to be correctly aligned in the
4916 file, then there is no other reason for a new segment. */
4917 new_segment = FALSE;
4918 }
4919 else if (info != NULL
4920 && info->separate_code
4921 && executable != ((hdr->flags & SEC_CODE) != 0))
4922 {
4923 new_segment = TRUE;
4924 }
4925 else if (! writable
4926 && (hdr->flags & SEC_READONLY) == 0)
4927 {
4928 /* We don't want to put a writable section in a read only
4929 segment. */
4930 new_segment = TRUE;
4931 }
4932 else
4933 {
4934 /* Otherwise, we can use the same segment. */
4935 new_segment = FALSE;
4936 }
4937
4938 /* Allow interested parties a chance to override our decision. */
4939 if (last_hdr != NULL
4940 && info != NULL
4941 && info->callbacks->override_segment_assignment != NULL)
4942 new_segment
4943 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4944 last_hdr,
4945 new_segment);
4946
4947 if (! new_segment)
4948 {
4949 if ((hdr->flags & SEC_READONLY) == 0)
4950 writable = TRUE;
4951 if ((hdr->flags & SEC_CODE) != 0)
4952 executable = TRUE;
4953 last_hdr = hdr;
4954 /* .tbss sections effectively have zero size. */
4955 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4956 continue;
4957 }
4958
4959 /* We need a new program segment. We must create a new program
4960 header holding all the sections from hdr_index until hdr. */
4961
4962 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4963 if (m == NULL)
4964 goto error_return;
4965
4966 *pm = m;
4967 pm = &m->next;
4968
4969 if ((hdr->flags & SEC_READONLY) == 0)
4970 writable = TRUE;
4971 else
4972 writable = FALSE;
4973
4974 if ((hdr->flags & SEC_CODE) == 0)
4975 executable = FALSE;
4976 else
4977 executable = TRUE;
4978
4979 last_hdr = hdr;
4980 /* .tbss sections effectively have zero size. */
4981 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4982 hdr_index = i;
4983 phdr_in_segment = FALSE;
4984 }
4985
4986 /* Create a final PT_LOAD program segment, but not if it's just
4987 for .tbss. */
4988 if (last_hdr != NULL
4989 && (i - hdr_index != 1
4990 || !IS_TBSS (last_hdr)))
4991 {
4992 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4993 if (m == NULL)
4994 goto error_return;
4995
4996 *pm = m;
4997 pm = &m->next;
4998 }
4999
5000 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
5001 if (dynsec != NULL)
5002 {
5003 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
5004 if (m == NULL)
5005 goto error_return;
5006 *pm = m;
5007 pm = &m->next;
5008 }
5009
5010 /* For each batch of consecutive loadable SHT_NOTE sections,
5011 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5012 because if we link together nonloadable .note sections and
5013 loadable .note sections, we will generate two .note sections
5014 in the output file. */
5015 for (s = abfd->sections; s != NULL; s = s->next)
5016 {
5017 if ((s->flags & SEC_LOAD) != 0
5018 && elf_section_type (s) == SHT_NOTE)
5019 {
5020 asection *s2;
5021 unsigned int alignment_power = s->alignment_power;
5022
5023 count = 1;
5024 for (s2 = s; s2->next != NULL; s2 = s2->next)
5025 {
5026 if (s2->next->alignment_power == alignment_power
5027 && (s2->next->flags & SEC_LOAD) != 0
5028 && elf_section_type (s2->next) == SHT_NOTE
5029 && align_power (s2->lma + s2->size / opb,
5030 alignment_power)
5031 == s2->next->lma)
5032 count++;
5033 else
5034 break;
5035 }
5036 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5037 amt += count * sizeof (asection *);
5038 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5039 if (m == NULL)
5040 goto error_return;
5041 m->next = NULL;
5042 m->p_type = PT_NOTE;
5043 m->count = count;
5044 while (count > 1)
5045 {
5046 m->sections[m->count - count--] = s;
5047 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5048 s = s->next;
5049 }
5050 m->sections[m->count - 1] = s;
5051 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5052 *pm = m;
5053 pm = &m->next;
5054 }
5055 if (s->flags & SEC_THREAD_LOCAL)
5056 {
5057 if (! tls_count)
5058 first_tls = s;
5059 tls_count++;
5060 }
5061 if (first_mbind == NULL
5062 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5063 first_mbind = s;
5064 }
5065
5066 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5067 if (tls_count > 0)
5068 {
5069 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5070 amt += tls_count * sizeof (asection *);
5071 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5072 if (m == NULL)
5073 goto error_return;
5074 m->next = NULL;
5075 m->p_type = PT_TLS;
5076 m->count = tls_count;
5077 /* Mandated PF_R. */
5078 m->p_flags = PF_R;
5079 m->p_flags_valid = 1;
5080 s = first_tls;
5081 for (i = 0; i < tls_count; ++i)
5082 {
5083 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5084 {
5085 _bfd_error_handler
5086 (_("%pB: TLS sections are not adjacent:"), abfd);
5087 s = first_tls;
5088 i = 0;
5089 while (i < tls_count)
5090 {
5091 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5092 {
5093 _bfd_error_handler (_(" TLS: %pA"), s);
5094 i++;
5095 }
5096 else
5097 _bfd_error_handler (_(" non-TLS: %pA"), s);
5098 s = s->next;
5099 }
5100 bfd_set_error (bfd_error_bad_value);
5101 goto error_return;
5102 }
5103 m->sections[i] = s;
5104 s = s->next;
5105 }
5106
5107 *pm = m;
5108 pm = &m->next;
5109 }
5110
5111 if (first_mbind
5112 && (abfd->flags & D_PAGED) != 0
5113 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5114 for (s = first_mbind; s != NULL; s = s->next)
5115 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5116 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5117 {
5118 /* Mandated PF_R. */
5119 unsigned long p_flags = PF_R;
5120 if ((s->flags & SEC_READONLY) == 0)
5121 p_flags |= PF_W;
5122 if ((s->flags & SEC_CODE) != 0)
5123 p_flags |= PF_X;
5124
5125 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5126 m = bfd_zalloc (abfd, amt);
5127 if (m == NULL)
5128 goto error_return;
5129 m->next = NULL;
5130 m->p_type = (PT_GNU_MBIND_LO
5131 + elf_section_data (s)->this_hdr.sh_info);
5132 m->count = 1;
5133 m->p_flags_valid = 1;
5134 m->sections[0] = s;
5135 m->p_flags = p_flags;
5136
5137 *pm = m;
5138 pm = &m->next;
5139 }
5140
5141 s = bfd_get_section_by_name (abfd,
5142 NOTE_GNU_PROPERTY_SECTION_NAME);
5143 if (s != NULL && s->size != 0)
5144 {
5145 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5146 m = bfd_zalloc (abfd, amt);
5147 if (m == NULL)
5148 goto error_return;
5149 m->next = NULL;
5150 m->p_type = PT_GNU_PROPERTY;
5151 m->count = 1;
5152 m->p_flags_valid = 1;
5153 m->sections[0] = s;
5154 m->p_flags = PF_R;
5155 *pm = m;
5156 pm = &m->next;
5157 }
5158
5159 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5160 segment. */
5161 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5162 if (eh_frame_hdr != NULL
5163 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5164 {
5165 amt = sizeof (struct elf_segment_map);
5166 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5167 if (m == NULL)
5168 goto error_return;
5169 m->next = NULL;
5170 m->p_type = PT_GNU_EH_FRAME;
5171 m->count = 1;
5172 m->sections[0] = eh_frame_hdr->output_section;
5173
5174 *pm = m;
5175 pm = &m->next;
5176 }
5177
5178 if (elf_stack_flags (abfd))
5179 {
5180 amt = sizeof (struct elf_segment_map);
5181 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5182 if (m == NULL)
5183 goto error_return;
5184 m->next = NULL;
5185 m->p_type = PT_GNU_STACK;
5186 m->p_flags = elf_stack_flags (abfd);
5187 m->p_align = bed->stack_align;
5188 m->p_flags_valid = 1;
5189 m->p_align_valid = m->p_align != 0;
5190 if (info->stacksize > 0)
5191 {
5192 m->p_size = info->stacksize;
5193 m->p_size_valid = 1;
5194 }
5195
5196 *pm = m;
5197 pm = &m->next;
5198 }
5199
5200 if (info != NULL && info->relro)
5201 {
5202 for (m = mfirst; m != NULL; m = m->next)
5203 {
5204 if (m->p_type == PT_LOAD
5205 && m->count != 0
5206 && m->sections[0]->vma >= info->relro_start
5207 && m->sections[0]->vma < info->relro_end)
5208 {
5209 i = m->count;
5210 while (--i != (unsigned) -1)
5211 {
5212 if (m->sections[i]->size > 0
5213 && (m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5214 == (SEC_LOAD | SEC_HAS_CONTENTS))
5215 break;
5216 }
5217
5218 if (i != (unsigned) -1)
5219 break;
5220 }
5221 }
5222
5223 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5224 if (m != NULL)
5225 {
5226 amt = sizeof (struct elf_segment_map);
5227 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5228 if (m == NULL)
5229 goto error_return;
5230 m->next = NULL;
5231 m->p_type = PT_GNU_RELRO;
5232 *pm = m;
5233 pm = &m->next;
5234 }
5235 }
5236
5237 free (sections);
5238 elf_seg_map (abfd) = mfirst;
5239 }
5240
5241 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5242 return FALSE;
5243
5244 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5245 ++count;
5246 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5247
5248 return TRUE;
5249
5250 error_return:
5251 free (sections);
5252 return FALSE;
5253 }
5254
5255 /* Sort sections by address. */
5256
5257 static int
5258 elf_sort_sections (const void *arg1, const void *arg2)
5259 {
5260 const asection *sec1 = *(const asection **) arg1;
5261 const asection *sec2 = *(const asection **) arg2;
5262 bfd_size_type size1, size2;
5263
5264 /* Sort by LMA first, since this is the address used to
5265 place the section into a segment. */
5266 if (sec1->lma < sec2->lma)
5267 return -1;
5268 else if (sec1->lma > sec2->lma)
5269 return 1;
5270
5271 /* Then sort by VMA. Normally the LMA and the VMA will be
5272 the same, and this will do nothing. */
5273 if (sec1->vma < sec2->vma)
5274 return -1;
5275 else if (sec1->vma > sec2->vma)
5276 return 1;
5277
5278 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5279
5280 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5281
5282 if (TOEND (sec1))
5283 {
5284 if (!TOEND (sec2))
5285 return 1;
5286 }
5287 else if (TOEND (sec2))
5288 return -1;
5289
5290 #undef TOEND
5291
5292 /* Sort by size, to put zero sized sections
5293 before others at the same address. */
5294
5295 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5296 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5297
5298 if (size1 < size2)
5299 return -1;
5300 if (size1 > size2)
5301 return 1;
5302
5303 return sec1->target_index - sec2->target_index;
5304 }
5305
5306 /* This qsort comparison functions sorts PT_LOAD segments first and
5307 by p_paddr, for assign_file_positions_for_load_sections. */
5308
5309 static int
5310 elf_sort_segments (const void *arg1, const void *arg2)
5311 {
5312 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5313 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5314
5315 if (m1->p_type != m2->p_type)
5316 {
5317 if (m1->p_type == PT_NULL)
5318 return 1;
5319 if (m2->p_type == PT_NULL)
5320 return -1;
5321 return m1->p_type < m2->p_type ? -1 : 1;
5322 }
5323 if (m1->includes_filehdr != m2->includes_filehdr)
5324 return m1->includes_filehdr ? -1 : 1;
5325 if (m1->no_sort_lma != m2->no_sort_lma)
5326 return m1->no_sort_lma ? -1 : 1;
5327 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5328 {
5329 bfd_vma lma1, lma2; /* Octets. */
5330 lma1 = 0;
5331 if (m1->p_paddr_valid)
5332 lma1 = m1->p_paddr;
5333 else if (m1->count != 0)
5334 {
5335 unsigned int opb = bfd_octets_per_byte (m1->sections[0]->owner,
5336 m1->sections[0]);
5337 lma1 = (m1->sections[0]->lma + m1->p_vaddr_offset) * opb;
5338 }
5339 lma2 = 0;
5340 if (m2->p_paddr_valid)
5341 lma2 = m2->p_paddr;
5342 else if (m2->count != 0)
5343 {
5344 unsigned int opb = bfd_octets_per_byte (m2->sections[0]->owner,
5345 m2->sections[0]);
5346 lma2 = (m2->sections[0]->lma + m2->p_vaddr_offset) * opb;
5347 }
5348 if (lma1 != lma2)
5349 return lma1 < lma2 ? -1 : 1;
5350 }
5351 if (m1->idx != m2->idx)
5352 return m1->idx < m2->idx ? -1 : 1;
5353 return 0;
5354 }
5355
5356 /* Ian Lance Taylor writes:
5357
5358 We shouldn't be using % with a negative signed number. That's just
5359 not good. We have to make sure either that the number is not
5360 negative, or that the number has an unsigned type. When the types
5361 are all the same size they wind up as unsigned. When file_ptr is a
5362 larger signed type, the arithmetic winds up as signed long long,
5363 which is wrong.
5364
5365 What we're trying to say here is something like ``increase OFF by
5366 the least amount that will cause it to be equal to the VMA modulo
5367 the page size.'' */
5368 /* In other words, something like:
5369
5370 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5371 off_offset = off % bed->maxpagesize;
5372 if (vma_offset < off_offset)
5373 adjustment = vma_offset + bed->maxpagesize - off_offset;
5374 else
5375 adjustment = vma_offset - off_offset;
5376
5377 which can be collapsed into the expression below. */
5378
5379 static file_ptr
5380 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5381 {
5382 /* PR binutils/16199: Handle an alignment of zero. */
5383 if (maxpagesize == 0)
5384 maxpagesize = 1;
5385 return ((vma - off) % maxpagesize);
5386 }
5387
5388 static void
5389 print_segment_map (const struct elf_segment_map *m)
5390 {
5391 unsigned int j;
5392 const char *pt = get_segment_type (m->p_type);
5393 char buf[32];
5394
5395 if (pt == NULL)
5396 {
5397 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5398 sprintf (buf, "LOPROC+%7.7x",
5399 (unsigned int) (m->p_type - PT_LOPROC));
5400 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5401 sprintf (buf, "LOOS+%7.7x",
5402 (unsigned int) (m->p_type - PT_LOOS));
5403 else
5404 snprintf (buf, sizeof (buf), "%8.8x",
5405 (unsigned int) m->p_type);
5406 pt = buf;
5407 }
5408 fflush (stdout);
5409 fprintf (stderr, "%s:", pt);
5410 for (j = 0; j < m->count; j++)
5411 fprintf (stderr, " %s", m->sections [j]->name);
5412 putc ('\n',stderr);
5413 fflush (stderr);
5414 }
5415
5416 static bfd_boolean
5417 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5418 {
5419 void *buf;
5420 bfd_boolean ret;
5421
5422 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5423 return FALSE;
5424 buf = bfd_zmalloc (len);
5425 if (buf == NULL)
5426 return FALSE;
5427 ret = bfd_bwrite (buf, len, abfd) == len;
5428 free (buf);
5429 return ret;
5430 }
5431
5432 /* Assign file positions to the sections based on the mapping from
5433 sections to segments. This function also sets up some fields in
5434 the file header. */
5435
5436 static bfd_boolean
5437 assign_file_positions_for_load_sections (bfd *abfd,
5438 struct bfd_link_info *link_info)
5439 {
5440 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5441 struct elf_segment_map *m;
5442 struct elf_segment_map *phdr_load_seg;
5443 Elf_Internal_Phdr *phdrs;
5444 Elf_Internal_Phdr *p;
5445 file_ptr off; /* Octets. */
5446 bfd_size_type maxpagesize;
5447 unsigned int alloc, actual;
5448 unsigned int i, j;
5449 struct elf_segment_map **sorted_seg_map;
5450 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
5451
5452 if (link_info == NULL
5453 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5454 return FALSE;
5455
5456 alloc = 0;
5457 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5458 m->idx = alloc++;
5459
5460 if (alloc)
5461 {
5462 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5463 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5464 }
5465 else
5466 {
5467 /* PR binutils/12467. */
5468 elf_elfheader (abfd)->e_phoff = 0;
5469 elf_elfheader (abfd)->e_phentsize = 0;
5470 }
5471
5472 elf_elfheader (abfd)->e_phnum = alloc;
5473
5474 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5475 {
5476 actual = alloc;
5477 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5478 }
5479 else
5480 {
5481 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5482 BFD_ASSERT (elf_program_header_size (abfd)
5483 == actual * bed->s->sizeof_phdr);
5484 BFD_ASSERT (actual >= alloc);
5485 }
5486
5487 if (alloc == 0)
5488 {
5489 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5490 return TRUE;
5491 }
5492
5493 /* We're writing the size in elf_program_header_size (abfd),
5494 see assign_file_positions_except_relocs, so make sure we have
5495 that amount allocated, with trailing space cleared.
5496 The variable alloc contains the computed need, while
5497 elf_program_header_size (abfd) contains the size used for the
5498 layout.
5499 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5500 where the layout is forced to according to a larger size in the
5501 last iterations for the testcase ld-elf/header. */
5502 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5503 + alloc * sizeof (*sorted_seg_map)));
5504 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5505 elf_tdata (abfd)->phdr = phdrs;
5506 if (phdrs == NULL)
5507 return FALSE;
5508
5509 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5510 {
5511 sorted_seg_map[j] = m;
5512 /* If elf_segment_map is not from map_sections_to_segments, the
5513 sections may not be correctly ordered. NOTE: sorting should
5514 not be done to the PT_NOTE section of a corefile, which may
5515 contain several pseudo-sections artificially created by bfd.
5516 Sorting these pseudo-sections breaks things badly. */
5517 if (m->count > 1
5518 && !(elf_elfheader (abfd)->e_type == ET_CORE
5519 && m->p_type == PT_NOTE))
5520 {
5521 for (i = 0; i < m->count; i++)
5522 m->sections[i]->target_index = i;
5523 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5524 elf_sort_sections);
5525 }
5526 }
5527 if (alloc > 1)
5528 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5529 elf_sort_segments);
5530
5531 maxpagesize = 1;
5532 if ((abfd->flags & D_PAGED) != 0)
5533 maxpagesize = bed->maxpagesize;
5534
5535 /* Sections must map to file offsets past the ELF file header. */
5536 off = bed->s->sizeof_ehdr;
5537 /* And if one of the PT_LOAD headers doesn't include the program
5538 headers then we'll be mapping program headers in the usual
5539 position after the ELF file header. */
5540 phdr_load_seg = NULL;
5541 for (j = 0; j < alloc; j++)
5542 {
5543 m = sorted_seg_map[j];
5544 if (m->p_type != PT_LOAD)
5545 break;
5546 if (m->includes_phdrs)
5547 {
5548 phdr_load_seg = m;
5549 break;
5550 }
5551 }
5552 if (phdr_load_seg == NULL)
5553 off += actual * bed->s->sizeof_phdr;
5554
5555 for (j = 0; j < alloc; j++)
5556 {
5557 asection **secpp;
5558 bfd_vma off_adjust; /* Octets. */
5559 bfd_boolean no_contents;
5560
5561 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5562 number of sections with contents contributing to both p_filesz
5563 and p_memsz, followed by a number of sections with no contents
5564 that just contribute to p_memsz. In this loop, OFF tracks next
5565 available file offset for PT_LOAD and PT_NOTE segments. */
5566 m = sorted_seg_map[j];
5567 p = phdrs + m->idx;
5568 p->p_type = m->p_type;
5569 p->p_flags = m->p_flags;
5570
5571 if (m->count == 0)
5572 p->p_vaddr = m->p_vaddr_offset * opb;
5573 else
5574 p->p_vaddr = (m->sections[0]->vma + m->p_vaddr_offset) * opb;
5575
5576 if (m->p_paddr_valid)
5577 p->p_paddr = m->p_paddr;
5578 else if (m->count == 0)
5579 p->p_paddr = 0;
5580 else
5581 p->p_paddr = (m->sections[0]->lma + m->p_vaddr_offset) * opb;
5582
5583 if (p->p_type == PT_LOAD
5584 && (abfd->flags & D_PAGED) != 0)
5585 {
5586 /* p_align in demand paged PT_LOAD segments effectively stores
5587 the maximum page size. When copying an executable with
5588 objcopy, we set m->p_align from the input file. Use this
5589 value for maxpagesize rather than bed->maxpagesize, which
5590 may be different. Note that we use maxpagesize for PT_TLS
5591 segment alignment later in this function, so we are relying
5592 on at least one PT_LOAD segment appearing before a PT_TLS
5593 segment. */
5594 if (m->p_align_valid)
5595 maxpagesize = m->p_align;
5596
5597 p->p_align = maxpagesize;
5598 }
5599 else if (m->p_align_valid)
5600 p->p_align = m->p_align;
5601 else if (m->count == 0)
5602 p->p_align = 1 << bed->s->log_file_align;
5603
5604 if (m == phdr_load_seg)
5605 {
5606 if (!m->includes_filehdr)
5607 p->p_offset = off;
5608 off += actual * bed->s->sizeof_phdr;
5609 }
5610
5611 no_contents = FALSE;
5612 off_adjust = 0;
5613 if (p->p_type == PT_LOAD
5614 && m->count > 0)
5615 {
5616 bfd_size_type align; /* Bytes. */
5617 unsigned int align_power = 0;
5618
5619 if (m->p_align_valid)
5620 align = p->p_align;
5621 else
5622 {
5623 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5624 {
5625 unsigned int secalign;
5626
5627 secalign = bfd_section_alignment (*secpp);
5628 if (secalign > align_power)
5629 align_power = secalign;
5630 }
5631 align = (bfd_size_type) 1 << align_power;
5632 if (align < maxpagesize)
5633 align = maxpagesize;
5634 }
5635
5636 for (i = 0; i < m->count; i++)
5637 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5638 /* If we aren't making room for this section, then
5639 it must be SHT_NOBITS regardless of what we've
5640 set via struct bfd_elf_special_section. */
5641 elf_section_type (m->sections[i]) = SHT_NOBITS;
5642
5643 /* Find out whether this segment contains any loadable
5644 sections. */
5645 no_contents = TRUE;
5646 for (i = 0; i < m->count; i++)
5647 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5648 {
5649 no_contents = FALSE;
5650 break;
5651 }
5652
5653 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align * opb);
5654
5655 /* Broken hardware and/or kernel require that files do not
5656 map the same page with different permissions on some hppa
5657 processors. */
5658 if (j != 0
5659 && (abfd->flags & D_PAGED) != 0
5660 && bed->no_page_alias
5661 && (off & (maxpagesize - 1)) != 0
5662 && ((off & -maxpagesize)
5663 == ((off + off_adjust) & -maxpagesize)))
5664 off_adjust += maxpagesize;
5665 off += off_adjust;
5666 if (no_contents)
5667 {
5668 /* We shouldn't need to align the segment on disk since
5669 the segment doesn't need file space, but the gABI
5670 arguably requires the alignment and glibc ld.so
5671 checks it. So to comply with the alignment
5672 requirement but not waste file space, we adjust
5673 p_offset for just this segment. (OFF_ADJUST is
5674 subtracted from OFF later.) This may put p_offset
5675 past the end of file, but that shouldn't matter. */
5676 }
5677 else
5678 off_adjust = 0;
5679 }
5680 /* Make sure the .dynamic section is the first section in the
5681 PT_DYNAMIC segment. */
5682 else if (p->p_type == PT_DYNAMIC
5683 && m->count > 1
5684 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5685 {
5686 _bfd_error_handler
5687 (_("%pB: The first section in the PT_DYNAMIC segment"
5688 " is not the .dynamic section"),
5689 abfd);
5690 bfd_set_error (bfd_error_bad_value);
5691 return FALSE;
5692 }
5693 /* Set the note section type to SHT_NOTE. */
5694 else if (p->p_type == PT_NOTE)
5695 for (i = 0; i < m->count; i++)
5696 elf_section_type (m->sections[i]) = SHT_NOTE;
5697
5698 if (m->includes_filehdr)
5699 {
5700 if (!m->p_flags_valid)
5701 p->p_flags |= PF_R;
5702 p->p_filesz = bed->s->sizeof_ehdr;
5703 p->p_memsz = bed->s->sizeof_ehdr;
5704 if (p->p_type == PT_LOAD)
5705 {
5706 if (m->count > 0)
5707 {
5708 if (p->p_vaddr < (bfd_vma) off
5709 || (!m->p_paddr_valid
5710 && p->p_paddr < (bfd_vma) off))
5711 {
5712 _bfd_error_handler
5713 (_("%pB: not enough room for program headers,"
5714 " try linking with -N"),
5715 abfd);
5716 bfd_set_error (bfd_error_bad_value);
5717 return FALSE;
5718 }
5719 p->p_vaddr -= off;
5720 if (!m->p_paddr_valid)
5721 p->p_paddr -= off;
5722 }
5723 }
5724 else if (sorted_seg_map[0]->includes_filehdr)
5725 {
5726 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5727 p->p_vaddr = filehdr->p_vaddr;
5728 if (!m->p_paddr_valid)
5729 p->p_paddr = filehdr->p_paddr;
5730 }
5731 }
5732
5733 if (m->includes_phdrs)
5734 {
5735 if (!m->p_flags_valid)
5736 p->p_flags |= PF_R;
5737 p->p_filesz += actual * bed->s->sizeof_phdr;
5738 p->p_memsz += actual * bed->s->sizeof_phdr;
5739 if (!m->includes_filehdr)
5740 {
5741 if (p->p_type == PT_LOAD)
5742 {
5743 elf_elfheader (abfd)->e_phoff = p->p_offset;
5744 if (m->count > 0)
5745 {
5746 p->p_vaddr -= off - p->p_offset;
5747 if (!m->p_paddr_valid)
5748 p->p_paddr -= off - p->p_offset;
5749 }
5750 }
5751 else if (phdr_load_seg != NULL)
5752 {
5753 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5754 bfd_vma phdr_off = 0; /* Octets. */
5755 if (phdr_load_seg->includes_filehdr)
5756 phdr_off = bed->s->sizeof_ehdr;
5757 p->p_vaddr = phdr->p_vaddr + phdr_off;
5758 if (!m->p_paddr_valid)
5759 p->p_paddr = phdr->p_paddr + phdr_off;
5760 p->p_offset = phdr->p_offset + phdr_off;
5761 }
5762 else
5763 p->p_offset = bed->s->sizeof_ehdr;
5764 }
5765 }
5766
5767 if (p->p_type == PT_LOAD
5768 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5769 {
5770 if (!m->includes_filehdr && !m->includes_phdrs)
5771 {
5772 p->p_offset = off;
5773 if (no_contents)
5774 {
5775 /* Put meaningless p_offset for PT_LOAD segments
5776 without file contents somewhere within the first
5777 page, in an attempt to not point past EOF. */
5778 bfd_size_type align = maxpagesize;
5779 if (align < p->p_align)
5780 align = p->p_align;
5781 if (align < 1)
5782 align = 1;
5783 p->p_offset = off % align;
5784 }
5785 }
5786 else
5787 {
5788 file_ptr adjust; /* Octets. */
5789
5790 adjust = off - (p->p_offset + p->p_filesz);
5791 if (!no_contents)
5792 p->p_filesz += adjust;
5793 p->p_memsz += adjust;
5794 }
5795 }
5796
5797 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5798 maps. Set filepos for sections in PT_LOAD segments, and in
5799 core files, for sections in PT_NOTE segments.
5800 assign_file_positions_for_non_load_sections will set filepos
5801 for other sections and update p_filesz for other segments. */
5802 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5803 {
5804 asection *sec;
5805 bfd_size_type align;
5806 Elf_Internal_Shdr *this_hdr;
5807
5808 sec = *secpp;
5809 this_hdr = &elf_section_data (sec)->this_hdr;
5810 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5811
5812 if ((p->p_type == PT_LOAD
5813 || p->p_type == PT_TLS)
5814 && (this_hdr->sh_type != SHT_NOBITS
5815 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5816 && ((this_hdr->sh_flags & SHF_TLS) == 0
5817 || p->p_type == PT_TLS))))
5818 {
5819 bfd_vma p_start = p->p_paddr; /* Octets. */
5820 bfd_vma p_end = p_start + p->p_memsz; /* Octets. */
5821 bfd_vma s_start = sec->lma * opb; /* Octets. */
5822 bfd_vma adjust = s_start - p_end; /* Octets. */
5823
5824 if (adjust != 0
5825 && (s_start < p_end
5826 || p_end < p_start))
5827 {
5828 _bfd_error_handler
5829 /* xgettext:c-format */
5830 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5831 abfd, sec, (uint64_t) s_start / opb,
5832 (uint64_t) p_end / opb);
5833 adjust = 0;
5834 sec->lma = p_end / opb;
5835 }
5836 p->p_memsz += adjust;
5837
5838 if (p->p_type == PT_LOAD)
5839 {
5840 if (this_hdr->sh_type != SHT_NOBITS)
5841 {
5842 off_adjust = 0;
5843 if (p->p_filesz + adjust < p->p_memsz)
5844 {
5845 /* We have a PROGBITS section following NOBITS ones.
5846 Allocate file space for the NOBITS section(s) and
5847 zero it. */
5848 adjust = p->p_memsz - p->p_filesz;
5849 if (!write_zeros (abfd, off, adjust))
5850 return FALSE;
5851 }
5852 }
5853 /* We only adjust sh_offset in SHT_NOBITS sections
5854 as would seem proper for their address when the
5855 section is first in the segment. sh_offset
5856 doesn't really have any significance for
5857 SHT_NOBITS anyway, apart from a notional position
5858 relative to other sections. Historically we
5859 didn't bother with adjusting sh_offset and some
5860 programs depend on it not being adjusted. See
5861 pr12921 and pr25662. */
5862 if (this_hdr->sh_type != SHT_NOBITS || i == 0)
5863 {
5864 off += adjust;
5865 if (this_hdr->sh_type == SHT_NOBITS)
5866 off_adjust += adjust;
5867 }
5868 }
5869 if (this_hdr->sh_type != SHT_NOBITS)
5870 p->p_filesz += adjust;
5871 }
5872
5873 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5874 {
5875 /* The section at i == 0 is the one that actually contains
5876 everything. */
5877 if (i == 0)
5878 {
5879 this_hdr->sh_offset = sec->filepos = off;
5880 off += this_hdr->sh_size;
5881 p->p_filesz = this_hdr->sh_size;
5882 p->p_memsz = 0;
5883 p->p_align = 1;
5884 }
5885 else
5886 {
5887 /* The rest are fake sections that shouldn't be written. */
5888 sec->filepos = 0;
5889 sec->size = 0;
5890 sec->flags = 0;
5891 continue;
5892 }
5893 }
5894 else
5895 {
5896 if (p->p_type == PT_LOAD)
5897 {
5898 this_hdr->sh_offset = sec->filepos = off;
5899 if (this_hdr->sh_type != SHT_NOBITS)
5900 off += this_hdr->sh_size;
5901 }
5902 else if (this_hdr->sh_type == SHT_NOBITS
5903 && (this_hdr->sh_flags & SHF_TLS) != 0
5904 && this_hdr->sh_offset == 0)
5905 {
5906 /* This is a .tbss section that didn't get a PT_LOAD.
5907 (See _bfd_elf_map_sections_to_segments "Create a
5908 final PT_LOAD".) Set sh_offset to the value it
5909 would have if we had created a zero p_filesz and
5910 p_memsz PT_LOAD header for the section. This
5911 also makes the PT_TLS header have the same
5912 p_offset value. */
5913 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5914 off, align);
5915 this_hdr->sh_offset = sec->filepos = off + adjust;
5916 }
5917
5918 if (this_hdr->sh_type != SHT_NOBITS)
5919 {
5920 p->p_filesz += this_hdr->sh_size;
5921 /* A load section without SHF_ALLOC is something like
5922 a note section in a PT_NOTE segment. These take
5923 file space but are not loaded into memory. */
5924 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5925 p->p_memsz += this_hdr->sh_size;
5926 }
5927 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5928 {
5929 if (p->p_type == PT_TLS)
5930 p->p_memsz += this_hdr->sh_size;
5931
5932 /* .tbss is special. It doesn't contribute to p_memsz of
5933 normal segments. */
5934 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5935 p->p_memsz += this_hdr->sh_size;
5936 }
5937
5938 if (align > p->p_align
5939 && !m->p_align_valid
5940 && (p->p_type != PT_LOAD
5941 || (abfd->flags & D_PAGED) == 0))
5942 p->p_align = align;
5943 }
5944
5945 if (!m->p_flags_valid)
5946 {
5947 p->p_flags |= PF_R;
5948 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5949 p->p_flags |= PF_X;
5950 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5951 p->p_flags |= PF_W;
5952 }
5953 }
5954
5955 off -= off_adjust;
5956
5957 /* PR ld/20815 - Check that the program header segment, if
5958 present, will be loaded into memory. */
5959 if (p->p_type == PT_PHDR
5960 && phdr_load_seg == NULL
5961 && !(bed->elf_backend_allow_non_load_phdr != NULL
5962 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5963 {
5964 /* The fix for this error is usually to edit the linker script being
5965 used and set up the program headers manually. Either that or
5966 leave room for the headers at the start of the SECTIONS. */
5967 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5968 " by LOAD segment"),
5969 abfd);
5970 if (link_info == NULL)
5971 return FALSE;
5972 /* Arrange for the linker to exit with an error, deleting
5973 the output file unless --noinhibit-exec is given. */
5974 link_info->callbacks->info ("%X");
5975 }
5976
5977 /* Check that all sections are in a PT_LOAD segment.
5978 Don't check funky gdb generated core files. */
5979 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5980 {
5981 bfd_boolean check_vma = TRUE;
5982
5983 for (i = 1; i < m->count; i++)
5984 if (m->sections[i]->vma == m->sections[i - 1]->vma
5985 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5986 ->this_hdr), p) != 0
5987 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5988 ->this_hdr), p) != 0)
5989 {
5990 /* Looks like we have overlays packed into the segment. */
5991 check_vma = FALSE;
5992 break;
5993 }
5994
5995 for (i = 0; i < m->count; i++)
5996 {
5997 Elf_Internal_Shdr *this_hdr;
5998 asection *sec;
5999
6000 sec = m->sections[i];
6001 this_hdr = &(elf_section_data(sec)->this_hdr);
6002 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
6003 && !ELF_TBSS_SPECIAL (this_hdr, p))
6004 {
6005 _bfd_error_handler
6006 /* xgettext:c-format */
6007 (_("%pB: section `%pA' can't be allocated in segment %d"),
6008 abfd, sec, j);
6009 print_segment_map (m);
6010 }
6011 }
6012 }
6013 }
6014
6015 elf_next_file_pos (abfd) = off;
6016
6017 if (link_info != NULL
6018 && phdr_load_seg != NULL
6019 && phdr_load_seg->includes_filehdr)
6020 {
6021 /* There is a segment that contains both the file headers and the
6022 program headers, so provide a symbol __ehdr_start pointing there.
6023 A program can use this to examine itself robustly. */
6024
6025 struct elf_link_hash_entry *hash
6026 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
6027 FALSE, FALSE, TRUE);
6028 /* If the symbol was referenced and not defined, define it. */
6029 if (hash != NULL
6030 && (hash->root.type == bfd_link_hash_new
6031 || hash->root.type == bfd_link_hash_undefined
6032 || hash->root.type == bfd_link_hash_undefweak
6033 || hash->root.type == bfd_link_hash_common))
6034 {
6035 asection *s = NULL;
6036 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr / opb;
6037
6038 if (phdr_load_seg->count != 0)
6039 /* The segment contains sections, so use the first one. */
6040 s = phdr_load_seg->sections[0];
6041 else
6042 /* Use the first (i.e. lowest-addressed) section in any segment. */
6043 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6044 if (m->p_type == PT_LOAD && m->count != 0)
6045 {
6046 s = m->sections[0];
6047 break;
6048 }
6049
6050 if (s != NULL)
6051 {
6052 hash->root.u.def.value = filehdr_vaddr - s->vma;
6053 hash->root.u.def.section = s;
6054 }
6055 else
6056 {
6057 hash->root.u.def.value = filehdr_vaddr;
6058 hash->root.u.def.section = bfd_abs_section_ptr;
6059 }
6060
6061 hash->root.type = bfd_link_hash_defined;
6062 hash->def_regular = 1;
6063 hash->non_elf = 0;
6064 }
6065 }
6066
6067 return TRUE;
6068 }
6069
6070 /* Determine if a bfd is a debuginfo file. Unfortunately there
6071 is no defined method for detecting such files, so we have to
6072 use heuristics instead. */
6073
6074 bfd_boolean
6075 is_debuginfo_file (bfd *abfd)
6076 {
6077 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6078 return FALSE;
6079
6080 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6081 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6082 Elf_Internal_Shdr **headerp;
6083
6084 for (headerp = start_headers; headerp < end_headers; headerp ++)
6085 {
6086 Elf_Internal_Shdr *header = * headerp;
6087
6088 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6089 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6090 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6091 && header->sh_type != SHT_NOBITS
6092 && header->sh_type != SHT_NOTE)
6093 return FALSE;
6094 }
6095
6096 return TRUE;
6097 }
6098
6099 /* Assign file positions for the other sections, except for compressed debugging
6100 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6101
6102 static bfd_boolean
6103 assign_file_positions_for_non_load_sections (bfd *abfd,
6104 struct bfd_link_info *link_info)
6105 {
6106 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6107 Elf_Internal_Shdr **i_shdrpp;
6108 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6109 Elf_Internal_Phdr *phdrs;
6110 Elf_Internal_Phdr *p;
6111 struct elf_segment_map *m;
6112 file_ptr off;
6113 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
6114
6115 i_shdrpp = elf_elfsections (abfd);
6116 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6117 off = elf_next_file_pos (abfd);
6118 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6119 {
6120 Elf_Internal_Shdr *hdr;
6121
6122 hdr = *hdrpp;
6123 if (hdr->bfd_section != NULL
6124 && (hdr->bfd_section->filepos != 0
6125 || (hdr->sh_type == SHT_NOBITS
6126 && hdr->contents == NULL)))
6127 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6128 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6129 {
6130 if (hdr->sh_size != 0
6131 /* PR 24717 - debuginfo files are known to be not strictly
6132 compliant with the ELF standard. In particular they often
6133 have .note.gnu.property sections that are outside of any
6134 loadable segment. This is not a problem for such files,
6135 so do not warn about them. */
6136 && ! is_debuginfo_file (abfd))
6137 _bfd_error_handler
6138 /* xgettext:c-format */
6139 (_("%pB: warning: allocated section `%s' not in segment"),
6140 abfd,
6141 (hdr->bfd_section == NULL
6142 ? "*unknown*"
6143 : hdr->bfd_section->name));
6144 /* We don't need to page align empty sections. */
6145 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6146 off += vma_page_aligned_bias (hdr->sh_addr, off,
6147 bed->maxpagesize);
6148 else
6149 off += vma_page_aligned_bias (hdr->sh_addr, off,
6150 hdr->sh_addralign);
6151 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6152 FALSE);
6153 }
6154 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6155 && hdr->bfd_section == NULL)
6156 /* We don't know the offset of these sections yet: their size has
6157 not been decided. */
6158 || (hdr->bfd_section != NULL
6159 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6160 || (bfd_section_is_ctf (hdr->bfd_section)
6161 && abfd->is_linker_output)))
6162 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6163 || (elf_symtab_shndx_list (abfd) != NULL
6164 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6165 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6166 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6167 hdr->sh_offset = -1;
6168 else
6169 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6170 }
6171 elf_next_file_pos (abfd) = off;
6172
6173 /* Now that we have set the section file positions, we can set up
6174 the file positions for the non PT_LOAD segments. */
6175 phdrs = elf_tdata (abfd)->phdr;
6176 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6177 {
6178 if (p->p_type == PT_GNU_RELRO)
6179 {
6180 bfd_vma start, end; /* Bytes. */
6181 bfd_boolean ok;
6182
6183 if (link_info != NULL)
6184 {
6185 /* During linking the range of the RELRO segment is passed
6186 in link_info. Note that there may be padding between
6187 relro_start and the first RELRO section. */
6188 start = link_info->relro_start;
6189 end = link_info->relro_end;
6190 }
6191 else if (m->count != 0)
6192 {
6193 if (!m->p_size_valid)
6194 abort ();
6195 start = m->sections[0]->vma;
6196 end = start + m->p_size / opb;
6197 }
6198 else
6199 {
6200 start = 0;
6201 end = 0;
6202 }
6203
6204 ok = FALSE;
6205 if (start < end)
6206 {
6207 struct elf_segment_map *lm;
6208 const Elf_Internal_Phdr *lp;
6209 unsigned int i;
6210
6211 /* Find a LOAD segment containing a section in the RELRO
6212 segment. */
6213 for (lm = elf_seg_map (abfd), lp = phdrs;
6214 lm != NULL;
6215 lm = lm->next, lp++)
6216 {
6217 if (lp->p_type == PT_LOAD
6218 && lm->count != 0
6219 && (lm->sections[lm->count - 1]->vma
6220 + (!IS_TBSS (lm->sections[lm->count - 1])
6221 ? lm->sections[lm->count - 1]->size / opb
6222 : 0)) > start
6223 && lm->sections[0]->vma < end)
6224 break;
6225 }
6226
6227 if (lm != NULL)
6228 {
6229 /* Find the section starting the RELRO segment. */
6230 for (i = 0; i < lm->count; i++)
6231 {
6232 asection *s = lm->sections[i];
6233 if (s->vma >= start
6234 && s->vma < end
6235 && s->size != 0)
6236 break;
6237 }
6238
6239 if (i < lm->count)
6240 {
6241 p->p_vaddr = lm->sections[i]->vma * opb;
6242 p->p_paddr = lm->sections[i]->lma * opb;
6243 p->p_offset = lm->sections[i]->filepos;
6244 p->p_memsz = end * opb - p->p_vaddr;
6245 p->p_filesz = p->p_memsz;
6246
6247 /* The RELRO segment typically ends a few bytes
6248 into .got.plt but other layouts are possible.
6249 In cases where the end does not match any
6250 loaded section (for instance is in file
6251 padding), trim p_filesz back to correspond to
6252 the end of loaded section contents. */
6253 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6254 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6255
6256 /* Preserve the alignment and flags if they are
6257 valid. The gold linker generates RW/4 for
6258 the PT_GNU_RELRO section. It is better for
6259 objcopy/strip to honor these attributes
6260 otherwise gdb will choke when using separate
6261 debug files. */
6262 if (!m->p_align_valid)
6263 p->p_align = 1;
6264 if (!m->p_flags_valid)
6265 p->p_flags = PF_R;
6266 ok = TRUE;
6267 }
6268 }
6269 }
6270 if (link_info != NULL)
6271 BFD_ASSERT (ok);
6272 if (!ok)
6273 memset (p, 0, sizeof *p);
6274 }
6275 else if (p->p_type == PT_GNU_STACK)
6276 {
6277 if (m->p_size_valid)
6278 p->p_memsz = m->p_size;
6279 }
6280 else if (m->count != 0)
6281 {
6282 unsigned int i;
6283
6284 if (p->p_type != PT_LOAD
6285 && (p->p_type != PT_NOTE
6286 || bfd_get_format (abfd) != bfd_core))
6287 {
6288 /* A user specified segment layout may include a PHDR
6289 segment that overlaps with a LOAD segment... */
6290 if (p->p_type == PT_PHDR)
6291 {
6292 m->count = 0;
6293 continue;
6294 }
6295
6296 if (m->includes_filehdr || m->includes_phdrs)
6297 {
6298 /* PR 17512: file: 2195325e. */
6299 _bfd_error_handler
6300 (_("%pB: error: non-load segment %d includes file header "
6301 "and/or program header"),
6302 abfd, (int) (p - phdrs));
6303 return FALSE;
6304 }
6305
6306 p->p_filesz = 0;
6307 p->p_offset = m->sections[0]->filepos;
6308 for (i = m->count; i-- != 0;)
6309 {
6310 asection *sect = m->sections[i];
6311 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6312 if (hdr->sh_type != SHT_NOBITS)
6313 {
6314 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6315 + hdr->sh_size);
6316 break;
6317 }
6318 }
6319 }
6320 }
6321 }
6322
6323 return TRUE;
6324 }
6325
6326 static elf_section_list *
6327 find_section_in_list (unsigned int i, elf_section_list * list)
6328 {
6329 for (;list != NULL; list = list->next)
6330 if (list->ndx == i)
6331 break;
6332 return list;
6333 }
6334
6335 /* Work out the file positions of all the sections. This is called by
6336 _bfd_elf_compute_section_file_positions. All the section sizes and
6337 VMAs must be known before this is called.
6338
6339 Reloc sections come in two flavours: Those processed specially as
6340 "side-channel" data attached to a section to which they apply, and those that
6341 bfd doesn't process as relocations. The latter sort are stored in a normal
6342 bfd section by bfd_section_from_shdr. We don't consider the former sort
6343 here, unless they form part of the loadable image. Reloc sections not
6344 assigned here (and compressed debugging sections and CTF sections which
6345 nothing else in the file can rely upon) will be handled later by
6346 assign_file_positions_for_relocs.
6347
6348 We also don't set the positions of the .symtab and .strtab here. */
6349
6350 static bfd_boolean
6351 assign_file_positions_except_relocs (bfd *abfd,
6352 struct bfd_link_info *link_info)
6353 {
6354 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6355 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6356 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6357 unsigned int alloc;
6358
6359 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6360 && bfd_get_format (abfd) != bfd_core)
6361 {
6362 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6363 unsigned int num_sec = elf_numsections (abfd);
6364 Elf_Internal_Shdr **hdrpp;
6365 unsigned int i;
6366 file_ptr off;
6367
6368 /* Start after the ELF header. */
6369 off = i_ehdrp->e_ehsize;
6370
6371 /* We are not creating an executable, which means that we are
6372 not creating a program header, and that the actual order of
6373 the sections in the file is unimportant. */
6374 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6375 {
6376 Elf_Internal_Shdr *hdr;
6377
6378 hdr = *hdrpp;
6379 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6380 && hdr->bfd_section == NULL)
6381 /* Do not assign offsets for these sections yet: we don't know
6382 their sizes. */
6383 || (hdr->bfd_section != NULL
6384 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6385 || (bfd_section_is_ctf (hdr->bfd_section)
6386 && abfd->is_linker_output)))
6387 || i == elf_onesymtab (abfd)
6388 || (elf_symtab_shndx_list (abfd) != NULL
6389 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6390 || i == elf_strtab_sec (abfd)
6391 || i == elf_shstrtab_sec (abfd))
6392 {
6393 hdr->sh_offset = -1;
6394 }
6395 else
6396 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6397 }
6398
6399 elf_next_file_pos (abfd) = off;
6400 elf_program_header_size (abfd) = 0;
6401 }
6402 else
6403 {
6404 /* Assign file positions for the loaded sections based on the
6405 assignment of sections to segments. */
6406 if (!assign_file_positions_for_load_sections (abfd, link_info))
6407 return FALSE;
6408
6409 /* And for non-load sections. */
6410 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6411 return FALSE;
6412 }
6413
6414 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6415 return FALSE;
6416
6417 /* Write out the program headers. */
6418 alloc = i_ehdrp->e_phnum;
6419 if (alloc != 0)
6420 {
6421 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6422 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6423 return FALSE;
6424 }
6425
6426 return TRUE;
6427 }
6428
6429 bfd_boolean
6430 _bfd_elf_init_file_header (bfd *abfd,
6431 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6432 {
6433 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6434 struct elf_strtab_hash *shstrtab;
6435 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6436
6437 i_ehdrp = elf_elfheader (abfd);
6438
6439 shstrtab = _bfd_elf_strtab_init ();
6440 if (shstrtab == NULL)
6441 return FALSE;
6442
6443 elf_shstrtab (abfd) = shstrtab;
6444
6445 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6446 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6447 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6448 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6449
6450 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6451 i_ehdrp->e_ident[EI_DATA] =
6452 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6453 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6454
6455 if ((abfd->flags & DYNAMIC) != 0)
6456 i_ehdrp->e_type = ET_DYN;
6457 else if ((abfd->flags & EXEC_P) != 0)
6458 i_ehdrp->e_type = ET_EXEC;
6459 else if (bfd_get_format (abfd) == bfd_core)
6460 i_ehdrp->e_type = ET_CORE;
6461 else
6462 i_ehdrp->e_type = ET_REL;
6463
6464 switch (bfd_get_arch (abfd))
6465 {
6466 case bfd_arch_unknown:
6467 i_ehdrp->e_machine = EM_NONE;
6468 break;
6469
6470 /* There used to be a long list of cases here, each one setting
6471 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6472 in the corresponding bfd definition. To avoid duplication,
6473 the switch was removed. Machines that need special handling
6474 can generally do it in elf_backend_final_write_processing(),
6475 unless they need the information earlier than the final write.
6476 Such need can generally be supplied by replacing the tests for
6477 e_machine with the conditions used to determine it. */
6478 default:
6479 i_ehdrp->e_machine = bed->elf_machine_code;
6480 }
6481
6482 i_ehdrp->e_version = bed->s->ev_current;
6483 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6484
6485 /* No program header, for now. */
6486 i_ehdrp->e_phoff = 0;
6487 i_ehdrp->e_phentsize = 0;
6488 i_ehdrp->e_phnum = 0;
6489
6490 /* Each bfd section is section header entry. */
6491 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6492 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6493
6494 elf_tdata (abfd)->symtab_hdr.sh_name =
6495 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6496 elf_tdata (abfd)->strtab_hdr.sh_name =
6497 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6498 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6499 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6500 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6501 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6502 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6503 return FALSE;
6504
6505 return TRUE;
6506 }
6507
6508 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6509
6510 FIXME: We used to have code here to sort the PT_LOAD segments into
6511 ascending order, as per the ELF spec. But this breaks some programs,
6512 including the Linux kernel. But really either the spec should be
6513 changed or the programs updated. */
6514
6515 bfd_boolean
6516 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6517 {
6518 if (link_info != NULL && bfd_link_pie (link_info))
6519 {
6520 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6521 unsigned int num_segments = i_ehdrp->e_phnum;
6522 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6523 Elf_Internal_Phdr *segment = tdata->phdr;
6524 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6525
6526 /* Find the lowest p_vaddr in PT_LOAD segments. */
6527 bfd_vma p_vaddr = (bfd_vma) -1;
6528 for (; segment < end_segment; segment++)
6529 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6530 p_vaddr = segment->p_vaddr;
6531
6532 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6533 segments is non-zero. */
6534 if (p_vaddr)
6535 i_ehdrp->e_type = ET_EXEC;
6536 }
6537 return TRUE;
6538 }
6539
6540 /* Assign file positions for all the reloc sections which are not part
6541 of the loadable file image, and the file position of section headers. */
6542
6543 static bfd_boolean
6544 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6545 {
6546 file_ptr off;
6547 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6548 Elf_Internal_Shdr *shdrp;
6549 Elf_Internal_Ehdr *i_ehdrp;
6550 const struct elf_backend_data *bed;
6551
6552 off = elf_next_file_pos (abfd);
6553
6554 shdrpp = elf_elfsections (abfd);
6555 end_shdrpp = shdrpp + elf_numsections (abfd);
6556 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6557 {
6558 shdrp = *shdrpp;
6559 if (shdrp->sh_offset == -1)
6560 {
6561 asection *sec = shdrp->bfd_section;
6562 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6563 || shdrp->sh_type == SHT_RELA);
6564 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6565 if (is_rel
6566 || is_ctf
6567 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6568 {
6569 if (!is_rel && !is_ctf)
6570 {
6571 const char *name = sec->name;
6572 struct bfd_elf_section_data *d;
6573
6574 /* Compress DWARF debug sections. */
6575 if (!bfd_compress_section (abfd, sec,
6576 shdrp->contents))
6577 return FALSE;
6578
6579 if (sec->compress_status == COMPRESS_SECTION_DONE
6580 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6581 {
6582 /* If section is compressed with zlib-gnu, convert
6583 section name from .debug_* to .zdebug_*. */
6584 char *new_name
6585 = convert_debug_to_zdebug (abfd, name);
6586 if (new_name == NULL)
6587 return FALSE;
6588 name = new_name;
6589 }
6590 /* Add section name to section name section. */
6591 if (shdrp->sh_name != (unsigned int) -1)
6592 abort ();
6593 shdrp->sh_name
6594 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6595 name, FALSE);
6596 d = elf_section_data (sec);
6597
6598 /* Add reloc section name to section name section. */
6599 if (d->rel.hdr
6600 && !_bfd_elf_set_reloc_sh_name (abfd,
6601 d->rel.hdr,
6602 name, FALSE))
6603 return FALSE;
6604 if (d->rela.hdr
6605 && !_bfd_elf_set_reloc_sh_name (abfd,
6606 d->rela.hdr,
6607 name, TRUE))
6608 return FALSE;
6609
6610 /* Update section size and contents. */
6611 shdrp->sh_size = sec->size;
6612 shdrp->contents = sec->contents;
6613 shdrp->bfd_section->contents = NULL;
6614 }
6615 else if (is_ctf)
6616 {
6617 /* Update section size and contents. */
6618 shdrp->sh_size = sec->size;
6619 shdrp->contents = sec->contents;
6620 }
6621
6622 off = _bfd_elf_assign_file_position_for_section (shdrp,
6623 off,
6624 TRUE);
6625 }
6626 }
6627 }
6628
6629 /* Place section name section after DWARF debug sections have been
6630 compressed. */
6631 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6632 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6633 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6634 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6635
6636 /* Place the section headers. */
6637 i_ehdrp = elf_elfheader (abfd);
6638 bed = get_elf_backend_data (abfd);
6639 off = align_file_position (off, 1 << bed->s->log_file_align);
6640 i_ehdrp->e_shoff = off;
6641 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6642 elf_next_file_pos (abfd) = off;
6643
6644 return TRUE;
6645 }
6646
6647 bfd_boolean
6648 _bfd_elf_write_object_contents (bfd *abfd)
6649 {
6650 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6651 Elf_Internal_Shdr **i_shdrp;
6652 bfd_boolean failed;
6653 unsigned int count, num_sec;
6654 struct elf_obj_tdata *t;
6655
6656 if (! abfd->output_has_begun
6657 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6658 return FALSE;
6659 /* Do not rewrite ELF data when the BFD has been opened for update.
6660 abfd->output_has_begun was set to TRUE on opening, so creation of new
6661 sections, and modification of existing section sizes was restricted.
6662 This means the ELF header, program headers and section headers can't have
6663 changed.
6664 If the contents of any sections has been modified, then those changes have
6665 already been written to the BFD. */
6666 else if (abfd->direction == both_direction)
6667 {
6668 BFD_ASSERT (abfd->output_has_begun);
6669 return TRUE;
6670 }
6671
6672 i_shdrp = elf_elfsections (abfd);
6673
6674 failed = FALSE;
6675 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6676 if (failed)
6677 return FALSE;
6678
6679 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6680 return FALSE;
6681
6682 /* After writing the headers, we need to write the sections too... */
6683 num_sec = elf_numsections (abfd);
6684 for (count = 1; count < num_sec; count++)
6685 {
6686 i_shdrp[count]->sh_name
6687 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6688 i_shdrp[count]->sh_name);
6689 if (bed->elf_backend_section_processing)
6690 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6691 return FALSE;
6692 if (i_shdrp[count]->contents)
6693 {
6694 bfd_size_type amt = i_shdrp[count]->sh_size;
6695
6696 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6697 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6698 return FALSE;
6699 }
6700 }
6701
6702 /* Write out the section header names. */
6703 t = elf_tdata (abfd);
6704 if (elf_shstrtab (abfd) != NULL
6705 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6706 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6707 return FALSE;
6708
6709 if (!(*bed->elf_backend_final_write_processing) (abfd))
6710 return FALSE;
6711
6712 if (!bed->s->write_shdrs_and_ehdr (abfd))
6713 return FALSE;
6714
6715 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6716 if (t->o->build_id.after_write_object_contents != NULL)
6717 return (*t->o->build_id.after_write_object_contents) (abfd);
6718
6719 return TRUE;
6720 }
6721
6722 bfd_boolean
6723 _bfd_elf_write_corefile_contents (bfd *abfd)
6724 {
6725 /* Hopefully this can be done just like an object file. */
6726 return _bfd_elf_write_object_contents (abfd);
6727 }
6728
6729 /* Given a section, search the header to find them. */
6730
6731 unsigned int
6732 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6733 {
6734 const struct elf_backend_data *bed;
6735 unsigned int sec_index;
6736
6737 if (elf_section_data (asect) != NULL
6738 && elf_section_data (asect)->this_idx != 0)
6739 return elf_section_data (asect)->this_idx;
6740
6741 if (bfd_is_abs_section (asect))
6742 sec_index = SHN_ABS;
6743 else if (bfd_is_com_section (asect))
6744 sec_index = SHN_COMMON;
6745 else if (bfd_is_und_section (asect))
6746 sec_index = SHN_UNDEF;
6747 else
6748 sec_index = SHN_BAD;
6749
6750 bed = get_elf_backend_data (abfd);
6751 if (bed->elf_backend_section_from_bfd_section)
6752 {
6753 int retval = sec_index;
6754
6755 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6756 return retval;
6757 }
6758
6759 if (sec_index == SHN_BAD)
6760 bfd_set_error (bfd_error_nonrepresentable_section);
6761
6762 return sec_index;
6763 }
6764
6765 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6766 on error. */
6767
6768 int
6769 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6770 {
6771 asymbol *asym_ptr = *asym_ptr_ptr;
6772 int idx;
6773 flagword flags = asym_ptr->flags;
6774
6775 /* When gas creates relocations against local labels, it creates its
6776 own symbol for the section, but does put the symbol into the
6777 symbol chain, so udata is 0. When the linker is generating
6778 relocatable output, this section symbol may be for one of the
6779 input sections rather than the output section. */
6780 if (asym_ptr->udata.i == 0
6781 && (flags & BSF_SECTION_SYM)
6782 && asym_ptr->section)
6783 {
6784 asection *sec;
6785 int indx;
6786
6787 sec = asym_ptr->section;
6788 if (sec->owner != abfd && sec->output_section != NULL)
6789 sec = sec->output_section;
6790 if (sec->owner == abfd
6791 && (indx = sec->index) < elf_num_section_syms (abfd)
6792 && elf_section_syms (abfd)[indx] != NULL)
6793 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6794 }
6795
6796 idx = asym_ptr->udata.i;
6797
6798 if (idx == 0)
6799 {
6800 /* This case can occur when using --strip-symbol on a symbol
6801 which is used in a relocation entry. */
6802 _bfd_error_handler
6803 /* xgettext:c-format */
6804 (_("%pB: symbol `%s' required but not present"),
6805 abfd, bfd_asymbol_name (asym_ptr));
6806 bfd_set_error (bfd_error_no_symbols);
6807 return -1;
6808 }
6809
6810 #if DEBUG & 4
6811 {
6812 fprintf (stderr,
6813 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6814 (long) asym_ptr, asym_ptr->name, idx, flags);
6815 fflush (stderr);
6816 }
6817 #endif
6818
6819 return idx;
6820 }
6821
6822 /* Rewrite program header information. */
6823
6824 static bfd_boolean
6825 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6826 {
6827 Elf_Internal_Ehdr *iehdr;
6828 struct elf_segment_map *map;
6829 struct elf_segment_map *map_first;
6830 struct elf_segment_map **pointer_to_map;
6831 Elf_Internal_Phdr *segment;
6832 asection *section;
6833 unsigned int i;
6834 unsigned int num_segments;
6835 bfd_boolean phdr_included = FALSE;
6836 bfd_boolean p_paddr_valid;
6837 bfd_vma maxpagesize;
6838 struct elf_segment_map *phdr_adjust_seg = NULL;
6839 unsigned int phdr_adjust_num = 0;
6840 const struct elf_backend_data *bed;
6841 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
6842
6843 bed = get_elf_backend_data (ibfd);
6844 iehdr = elf_elfheader (ibfd);
6845
6846 map_first = NULL;
6847 pointer_to_map = &map_first;
6848
6849 num_segments = elf_elfheader (ibfd)->e_phnum;
6850 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6851
6852 /* Returns the end address of the segment + 1. */
6853 #define SEGMENT_END(segment, start) \
6854 (start + (segment->p_memsz > segment->p_filesz \
6855 ? segment->p_memsz : segment->p_filesz))
6856
6857 #define SECTION_SIZE(section, segment) \
6858 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6859 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6860 ? section->size : 0)
6861
6862 /* Returns TRUE if the given section is contained within
6863 the given segment. VMA addresses are compared. */
6864 #define IS_CONTAINED_BY_VMA(section, segment, opb) \
6865 (section->vma * (opb) >= segment->p_vaddr \
6866 && (section->vma * (opb) + SECTION_SIZE (section, segment) \
6867 <= (SEGMENT_END (segment, segment->p_vaddr))))
6868
6869 /* Returns TRUE if the given section is contained within
6870 the given segment. LMA addresses are compared. */
6871 #define IS_CONTAINED_BY_LMA(section, segment, base, opb) \
6872 (section->lma * (opb) >= base \
6873 && (section->lma + SECTION_SIZE (section, segment) / (opb) >= section->lma) \
6874 && (section->lma * (opb) + SECTION_SIZE (section, segment) \
6875 <= SEGMENT_END (segment, base)))
6876
6877 /* Handle PT_NOTE segment. */
6878 #define IS_NOTE(p, s) \
6879 (p->p_type == PT_NOTE \
6880 && elf_section_type (s) == SHT_NOTE \
6881 && (bfd_vma) s->filepos >= p->p_offset \
6882 && ((bfd_vma) s->filepos + s->size \
6883 <= p->p_offset + p->p_filesz))
6884
6885 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6886 etc. */
6887 #define IS_COREFILE_NOTE(p, s) \
6888 (IS_NOTE (p, s) \
6889 && bfd_get_format (ibfd) == bfd_core \
6890 && s->vma == 0 \
6891 && s->lma == 0)
6892
6893 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6894 linker, which generates a PT_INTERP section with p_vaddr and
6895 p_memsz set to 0. */
6896 #define IS_SOLARIS_PT_INTERP(p, s) \
6897 (p->p_vaddr == 0 \
6898 && p->p_paddr == 0 \
6899 && p->p_memsz == 0 \
6900 && p->p_filesz > 0 \
6901 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6902 && s->size > 0 \
6903 && (bfd_vma) s->filepos >= p->p_offset \
6904 && ((bfd_vma) s->filepos + s->size \
6905 <= p->p_offset + p->p_filesz))
6906
6907 /* Decide if the given section should be included in the given segment.
6908 A section will be included if:
6909 1. It is within the address space of the segment -- we use the LMA
6910 if that is set for the segment and the VMA otherwise,
6911 2. It is an allocated section or a NOTE section in a PT_NOTE
6912 segment.
6913 3. There is an output section associated with it,
6914 4. The section has not already been allocated to a previous segment.
6915 5. PT_GNU_STACK segments do not include any sections.
6916 6. PT_TLS segment includes only SHF_TLS sections.
6917 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6918 8. PT_DYNAMIC should not contain empty sections at the beginning
6919 (with the possible exception of .dynamic). */
6920 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed, opb) \
6921 ((((segment->p_paddr \
6922 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr, opb) \
6923 : IS_CONTAINED_BY_VMA (section, segment, opb)) \
6924 && (section->flags & SEC_ALLOC) != 0) \
6925 || IS_NOTE (segment, section)) \
6926 && segment->p_type != PT_GNU_STACK \
6927 && (segment->p_type != PT_TLS \
6928 || (section->flags & SEC_THREAD_LOCAL)) \
6929 && (segment->p_type == PT_LOAD \
6930 || segment->p_type == PT_TLS \
6931 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6932 && (segment->p_type != PT_DYNAMIC \
6933 || SECTION_SIZE (section, segment) > 0 \
6934 || (segment->p_paddr \
6935 ? segment->p_paddr != section->lma * (opb) \
6936 : segment->p_vaddr != section->vma * (opb)) \
6937 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6938 && (segment->p_type != PT_LOAD || !section->segment_mark))
6939
6940 /* If the output section of a section in the input segment is NULL,
6941 it is removed from the corresponding output segment. */
6942 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed, opb) \
6943 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb) \
6944 && section->output_section != NULL)
6945
6946 /* Returns TRUE iff seg1 starts after the end of seg2. */
6947 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6948 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6949
6950 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6951 their VMA address ranges and their LMA address ranges overlap.
6952 It is possible to have overlapping VMA ranges without overlapping LMA
6953 ranges. RedBoot images for example can have both .data and .bss mapped
6954 to the same VMA range, but with the .data section mapped to a different
6955 LMA. */
6956 #define SEGMENT_OVERLAPS(seg1, seg2) \
6957 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6958 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6959 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6960 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6961
6962 /* Initialise the segment mark field. */
6963 for (section = ibfd->sections; section != NULL; section = section->next)
6964 section->segment_mark = FALSE;
6965
6966 /* The Solaris linker creates program headers in which all the
6967 p_paddr fields are zero. When we try to objcopy or strip such a
6968 file, we get confused. Check for this case, and if we find it
6969 don't set the p_paddr_valid fields. */
6970 p_paddr_valid = FALSE;
6971 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6972 i < num_segments;
6973 i++, segment++)
6974 if (segment->p_paddr != 0)
6975 {
6976 p_paddr_valid = TRUE;
6977 break;
6978 }
6979
6980 /* Scan through the segments specified in the program header
6981 of the input BFD. For this first scan we look for overlaps
6982 in the loadable segments. These can be created by weird
6983 parameters to objcopy. Also, fix some solaris weirdness. */
6984 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6985 i < num_segments;
6986 i++, segment++)
6987 {
6988 unsigned int j;
6989 Elf_Internal_Phdr *segment2;
6990
6991 if (segment->p_type == PT_INTERP)
6992 for (section = ibfd->sections; section; section = section->next)
6993 if (IS_SOLARIS_PT_INTERP (segment, section))
6994 {
6995 /* Mininal change so that the normal section to segment
6996 assignment code will work. */
6997 segment->p_vaddr = section->vma * opb;
6998 break;
6999 }
7000
7001 if (segment->p_type != PT_LOAD)
7002 {
7003 /* Remove PT_GNU_RELRO segment. */
7004 if (segment->p_type == PT_GNU_RELRO)
7005 segment->p_type = PT_NULL;
7006 continue;
7007 }
7008
7009 /* Determine if this segment overlaps any previous segments. */
7010 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
7011 {
7012 bfd_signed_vma extra_length;
7013
7014 if (segment2->p_type != PT_LOAD
7015 || !SEGMENT_OVERLAPS (segment, segment2))
7016 continue;
7017
7018 /* Merge the two segments together. */
7019 if (segment2->p_vaddr < segment->p_vaddr)
7020 {
7021 /* Extend SEGMENT2 to include SEGMENT and then delete
7022 SEGMENT. */
7023 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
7024 - SEGMENT_END (segment2, segment2->p_vaddr));
7025
7026 if (extra_length > 0)
7027 {
7028 segment2->p_memsz += extra_length;
7029 segment2->p_filesz += extra_length;
7030 }
7031
7032 segment->p_type = PT_NULL;
7033
7034 /* Since we have deleted P we must restart the outer loop. */
7035 i = 0;
7036 segment = elf_tdata (ibfd)->phdr;
7037 break;
7038 }
7039 else
7040 {
7041 /* Extend SEGMENT to include SEGMENT2 and then delete
7042 SEGMENT2. */
7043 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7044 - SEGMENT_END (segment, segment->p_vaddr));
7045
7046 if (extra_length > 0)
7047 {
7048 segment->p_memsz += extra_length;
7049 segment->p_filesz += extra_length;
7050 }
7051
7052 segment2->p_type = PT_NULL;
7053 }
7054 }
7055 }
7056
7057 /* The second scan attempts to assign sections to segments. */
7058 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7059 i < num_segments;
7060 i++, segment++)
7061 {
7062 unsigned int section_count;
7063 asection **sections;
7064 asection *output_section;
7065 unsigned int isec;
7066 asection *matching_lma;
7067 asection *suggested_lma;
7068 unsigned int j;
7069 size_t amt;
7070 asection *first_section;
7071
7072 if (segment->p_type == PT_NULL)
7073 continue;
7074
7075 first_section = NULL;
7076 /* Compute how many sections might be placed into this segment. */
7077 for (section = ibfd->sections, section_count = 0;
7078 section != NULL;
7079 section = section->next)
7080 {
7081 /* Find the first section in the input segment, which may be
7082 removed from the corresponding output segment. */
7083 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb))
7084 {
7085 if (first_section == NULL)
7086 first_section = section;
7087 if (section->output_section != NULL)
7088 ++section_count;
7089 }
7090 }
7091
7092 /* Allocate a segment map big enough to contain
7093 all of the sections we have selected. */
7094 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7095 amt += section_count * sizeof (asection *);
7096 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7097 if (map == NULL)
7098 return FALSE;
7099
7100 /* Initialise the fields of the segment map. Default to
7101 using the physical address of the segment in the input BFD. */
7102 map->next = NULL;
7103 map->p_type = segment->p_type;
7104 map->p_flags = segment->p_flags;
7105 map->p_flags_valid = 1;
7106
7107 /* If the first section in the input segment is removed, there is
7108 no need to preserve segment physical address in the corresponding
7109 output segment. */
7110 if (!first_section || first_section->output_section != NULL)
7111 {
7112 map->p_paddr = segment->p_paddr;
7113 map->p_paddr_valid = p_paddr_valid;
7114 }
7115
7116 /* Determine if this segment contains the ELF file header
7117 and if it contains the program headers themselves. */
7118 map->includes_filehdr = (segment->p_offset == 0
7119 && segment->p_filesz >= iehdr->e_ehsize);
7120 map->includes_phdrs = 0;
7121
7122 if (!phdr_included || segment->p_type != PT_LOAD)
7123 {
7124 map->includes_phdrs =
7125 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7126 && (segment->p_offset + segment->p_filesz
7127 >= ((bfd_vma) iehdr->e_phoff
7128 + iehdr->e_phnum * iehdr->e_phentsize)));
7129
7130 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7131 phdr_included = TRUE;
7132 }
7133
7134 if (section_count == 0)
7135 {
7136 /* Special segments, such as the PT_PHDR segment, may contain
7137 no sections, but ordinary, loadable segments should contain
7138 something. They are allowed by the ELF spec however, so only
7139 a warning is produced.
7140 There is however the valid use case of embedded systems which
7141 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7142 flash memory with zeros. No warning is shown for that case. */
7143 if (segment->p_type == PT_LOAD
7144 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7145 /* xgettext:c-format */
7146 _bfd_error_handler
7147 (_("%pB: warning: empty loadable segment detected"
7148 " at vaddr=%#" PRIx64 ", is this intentional?"),
7149 ibfd, (uint64_t) segment->p_vaddr);
7150
7151 map->p_vaddr_offset = segment->p_vaddr / opb;
7152 map->count = 0;
7153 *pointer_to_map = map;
7154 pointer_to_map = &map->next;
7155
7156 continue;
7157 }
7158
7159 /* Now scan the sections in the input BFD again and attempt
7160 to add their corresponding output sections to the segment map.
7161 The problem here is how to handle an output section which has
7162 been moved (ie had its LMA changed). There are four possibilities:
7163
7164 1. None of the sections have been moved.
7165 In this case we can continue to use the segment LMA from the
7166 input BFD.
7167
7168 2. All of the sections have been moved by the same amount.
7169 In this case we can change the segment's LMA to match the LMA
7170 of the first section.
7171
7172 3. Some of the sections have been moved, others have not.
7173 In this case those sections which have not been moved can be
7174 placed in the current segment which will have to have its size,
7175 and possibly its LMA changed, and a new segment or segments will
7176 have to be created to contain the other sections.
7177
7178 4. The sections have been moved, but not by the same amount.
7179 In this case we can change the segment's LMA to match the LMA
7180 of the first section and we will have to create a new segment
7181 or segments to contain the other sections.
7182
7183 In order to save time, we allocate an array to hold the section
7184 pointers that we are interested in. As these sections get assigned
7185 to a segment, they are removed from this array. */
7186
7187 amt = section_count * sizeof (asection *);
7188 sections = (asection **) bfd_malloc (amt);
7189 if (sections == NULL)
7190 return FALSE;
7191
7192 /* Step One: Scan for segment vs section LMA conflicts.
7193 Also add the sections to the section array allocated above.
7194 Also add the sections to the current segment. In the common
7195 case, where the sections have not been moved, this means that
7196 we have completely filled the segment, and there is nothing
7197 more to do. */
7198 isec = 0;
7199 matching_lma = NULL;
7200 suggested_lma = NULL;
7201
7202 for (section = first_section, j = 0;
7203 section != NULL;
7204 section = section->next)
7205 {
7206 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed, opb))
7207 {
7208 output_section = section->output_section;
7209
7210 sections[j++] = section;
7211
7212 /* The Solaris native linker always sets p_paddr to 0.
7213 We try to catch that case here, and set it to the
7214 correct value. Note - some backends require that
7215 p_paddr be left as zero. */
7216 if (!p_paddr_valid
7217 && segment->p_vaddr != 0
7218 && !bed->want_p_paddr_set_to_zero
7219 && isec == 0
7220 && output_section->lma != 0
7221 && (align_power (segment->p_vaddr
7222 + (map->includes_filehdr
7223 ? iehdr->e_ehsize : 0)
7224 + (map->includes_phdrs
7225 ? iehdr->e_phnum * iehdr->e_phentsize
7226 : 0),
7227 output_section->alignment_power * opb)
7228 == (output_section->vma * opb)))
7229 map->p_paddr = segment->p_vaddr;
7230
7231 /* Match up the physical address of the segment with the
7232 LMA address of the output section. */
7233 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7234 opb)
7235 || IS_COREFILE_NOTE (segment, section)
7236 || (bed->want_p_paddr_set_to_zero
7237 && IS_CONTAINED_BY_VMA (output_section, segment, opb)))
7238 {
7239 if (matching_lma == NULL
7240 || output_section->lma < matching_lma->lma)
7241 matching_lma = output_section;
7242
7243 /* We assume that if the section fits within the segment
7244 then it does not overlap any other section within that
7245 segment. */
7246 map->sections[isec++] = output_section;
7247 }
7248 else if (suggested_lma == NULL)
7249 suggested_lma = output_section;
7250
7251 if (j == section_count)
7252 break;
7253 }
7254 }
7255
7256 BFD_ASSERT (j == section_count);
7257
7258 /* Step Two: Adjust the physical address of the current segment,
7259 if necessary. */
7260 if (isec == section_count)
7261 {
7262 /* All of the sections fitted within the segment as currently
7263 specified. This is the default case. Add the segment to
7264 the list of built segments and carry on to process the next
7265 program header in the input BFD. */
7266 map->count = section_count;
7267 *pointer_to_map = map;
7268 pointer_to_map = &map->next;
7269
7270 if (p_paddr_valid
7271 && !bed->want_p_paddr_set_to_zero)
7272 {
7273 bfd_vma hdr_size = 0;
7274 if (map->includes_filehdr)
7275 hdr_size = iehdr->e_ehsize;
7276 if (map->includes_phdrs)
7277 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7278
7279 /* Account for padding before the first section in the
7280 segment. */
7281 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7282 - matching_lma->lma);
7283 }
7284
7285 free (sections);
7286 continue;
7287 }
7288 else
7289 {
7290 /* Change the current segment's physical address to match
7291 the LMA of the first section that fitted, or if no
7292 section fitted, the first section. */
7293 if (matching_lma == NULL)
7294 matching_lma = suggested_lma;
7295
7296 map->p_paddr = matching_lma->lma * opb;
7297
7298 /* Offset the segment physical address from the lma
7299 to allow for space taken up by elf headers. */
7300 if (map->includes_phdrs)
7301 {
7302 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7303
7304 /* iehdr->e_phnum is just an estimate of the number
7305 of program headers that we will need. Make a note
7306 here of the number we used and the segment we chose
7307 to hold these headers, so that we can adjust the
7308 offset when we know the correct value. */
7309 phdr_adjust_num = iehdr->e_phnum;
7310 phdr_adjust_seg = map;
7311 }
7312
7313 if (map->includes_filehdr)
7314 {
7315 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7316 map->p_paddr -= iehdr->e_ehsize;
7317 /* We've subtracted off the size of headers from the
7318 first section lma, but there may have been some
7319 alignment padding before that section too. Try to
7320 account for that by adjusting the segment lma down to
7321 the same alignment. */
7322 if (segment->p_align != 0 && segment->p_align < align)
7323 align = segment->p_align;
7324 map->p_paddr &= -(align * opb);
7325 }
7326 }
7327
7328 /* Step Three: Loop over the sections again, this time assigning
7329 those that fit to the current segment and removing them from the
7330 sections array; but making sure not to leave large gaps. Once all
7331 possible sections have been assigned to the current segment it is
7332 added to the list of built segments and if sections still remain
7333 to be assigned, a new segment is constructed before repeating
7334 the loop. */
7335 isec = 0;
7336 do
7337 {
7338 map->count = 0;
7339 suggested_lma = NULL;
7340
7341 /* Fill the current segment with sections that fit. */
7342 for (j = 0; j < section_count; j++)
7343 {
7344 section = sections[j];
7345
7346 if (section == NULL)
7347 continue;
7348
7349 output_section = section->output_section;
7350
7351 BFD_ASSERT (output_section != NULL);
7352
7353 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7354 opb)
7355 || IS_COREFILE_NOTE (segment, section))
7356 {
7357 if (map->count == 0)
7358 {
7359 /* If the first section in a segment does not start at
7360 the beginning of the segment, then something is
7361 wrong. */
7362 if (align_power (map->p_paddr
7363 + (map->includes_filehdr
7364 ? iehdr->e_ehsize : 0)
7365 + (map->includes_phdrs
7366 ? iehdr->e_phnum * iehdr->e_phentsize
7367 : 0),
7368 output_section->alignment_power * opb)
7369 != output_section->lma * opb)
7370 goto sorry;
7371 }
7372 else
7373 {
7374 asection *prev_sec;
7375
7376 prev_sec = map->sections[map->count - 1];
7377
7378 /* If the gap between the end of the previous section
7379 and the start of this section is more than
7380 maxpagesize then we need to start a new segment. */
7381 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7382 maxpagesize)
7383 < BFD_ALIGN (output_section->lma, maxpagesize))
7384 || (prev_sec->lma + prev_sec->size
7385 > output_section->lma))
7386 {
7387 if (suggested_lma == NULL)
7388 suggested_lma = output_section;
7389
7390 continue;
7391 }
7392 }
7393
7394 map->sections[map->count++] = output_section;
7395 ++isec;
7396 sections[j] = NULL;
7397 if (segment->p_type == PT_LOAD)
7398 section->segment_mark = TRUE;
7399 }
7400 else if (suggested_lma == NULL)
7401 suggested_lma = output_section;
7402 }
7403
7404 /* PR 23932. A corrupt input file may contain sections that cannot
7405 be assigned to any segment - because for example they have a
7406 negative size - or segments that do not contain any sections.
7407 But there are also valid reasons why a segment can be empty.
7408 So allow a count of zero. */
7409
7410 /* Add the current segment to the list of built segments. */
7411 *pointer_to_map = map;
7412 pointer_to_map = &map->next;
7413
7414 if (isec < section_count)
7415 {
7416 /* We still have not allocated all of the sections to
7417 segments. Create a new segment here, initialise it
7418 and carry on looping. */
7419 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7420 amt += section_count * sizeof (asection *);
7421 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7422 if (map == NULL)
7423 {
7424 free (sections);
7425 return FALSE;
7426 }
7427
7428 /* Initialise the fields of the segment map. Set the physical
7429 physical address to the LMA of the first section that has
7430 not yet been assigned. */
7431 map->next = NULL;
7432 map->p_type = segment->p_type;
7433 map->p_flags = segment->p_flags;
7434 map->p_flags_valid = 1;
7435 map->p_paddr = suggested_lma->lma * opb;
7436 map->p_paddr_valid = p_paddr_valid;
7437 map->includes_filehdr = 0;
7438 map->includes_phdrs = 0;
7439 }
7440
7441 continue;
7442 sorry:
7443 bfd_set_error (bfd_error_sorry);
7444 free (sections);
7445 return FALSE;
7446 }
7447 while (isec < section_count);
7448
7449 free (sections);
7450 }
7451
7452 elf_seg_map (obfd) = map_first;
7453
7454 /* If we had to estimate the number of program headers that were
7455 going to be needed, then check our estimate now and adjust
7456 the offset if necessary. */
7457 if (phdr_adjust_seg != NULL)
7458 {
7459 unsigned int count;
7460
7461 for (count = 0, map = map_first; map != NULL; map = map->next)
7462 count++;
7463
7464 if (count > phdr_adjust_num)
7465 phdr_adjust_seg->p_paddr
7466 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7467
7468 for (map = map_first; map != NULL; map = map->next)
7469 if (map->p_type == PT_PHDR)
7470 {
7471 bfd_vma adjust
7472 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7473 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7474 break;
7475 }
7476 }
7477
7478 #undef SEGMENT_END
7479 #undef SECTION_SIZE
7480 #undef IS_CONTAINED_BY_VMA
7481 #undef IS_CONTAINED_BY_LMA
7482 #undef IS_NOTE
7483 #undef IS_COREFILE_NOTE
7484 #undef IS_SOLARIS_PT_INTERP
7485 #undef IS_SECTION_IN_INPUT_SEGMENT
7486 #undef INCLUDE_SECTION_IN_SEGMENT
7487 #undef SEGMENT_AFTER_SEGMENT
7488 #undef SEGMENT_OVERLAPS
7489 return TRUE;
7490 }
7491
7492 /* Copy ELF program header information. */
7493
7494 static bfd_boolean
7495 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7496 {
7497 Elf_Internal_Ehdr *iehdr;
7498 struct elf_segment_map *map;
7499 struct elf_segment_map *map_first;
7500 struct elf_segment_map **pointer_to_map;
7501 Elf_Internal_Phdr *segment;
7502 unsigned int i;
7503 unsigned int num_segments;
7504 bfd_boolean phdr_included = FALSE;
7505 bfd_boolean p_paddr_valid;
7506 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
7507
7508 iehdr = elf_elfheader (ibfd);
7509
7510 map_first = NULL;
7511 pointer_to_map = &map_first;
7512
7513 /* If all the segment p_paddr fields are zero, don't set
7514 map->p_paddr_valid. */
7515 p_paddr_valid = FALSE;
7516 num_segments = elf_elfheader (ibfd)->e_phnum;
7517 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7518 i < num_segments;
7519 i++, segment++)
7520 if (segment->p_paddr != 0)
7521 {
7522 p_paddr_valid = TRUE;
7523 break;
7524 }
7525
7526 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7527 i < num_segments;
7528 i++, segment++)
7529 {
7530 asection *section;
7531 unsigned int section_count;
7532 size_t amt;
7533 Elf_Internal_Shdr *this_hdr;
7534 asection *first_section = NULL;
7535 asection *lowest_section;
7536
7537 /* Compute how many sections are in this segment. */
7538 for (section = ibfd->sections, section_count = 0;
7539 section != NULL;
7540 section = section->next)
7541 {
7542 this_hdr = &(elf_section_data(section)->this_hdr);
7543 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7544 {
7545 if (first_section == NULL)
7546 first_section = section;
7547 section_count++;
7548 }
7549 }
7550
7551 /* Allocate a segment map big enough to contain
7552 all of the sections we have selected. */
7553 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7554 amt += section_count * sizeof (asection *);
7555 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7556 if (map == NULL)
7557 return FALSE;
7558
7559 /* Initialize the fields of the output segment map with the
7560 input segment. */
7561 map->next = NULL;
7562 map->p_type = segment->p_type;
7563 map->p_flags = segment->p_flags;
7564 map->p_flags_valid = 1;
7565 map->p_paddr = segment->p_paddr;
7566 map->p_paddr_valid = p_paddr_valid;
7567 map->p_align = segment->p_align;
7568 map->p_align_valid = 1;
7569 map->p_vaddr_offset = 0;
7570
7571 if (map->p_type == PT_GNU_RELRO
7572 || map->p_type == PT_GNU_STACK)
7573 {
7574 /* The PT_GNU_RELRO segment may contain the first a few
7575 bytes in the .got.plt section even if the whole .got.plt
7576 section isn't in the PT_GNU_RELRO segment. We won't
7577 change the size of the PT_GNU_RELRO segment.
7578 Similarly, PT_GNU_STACK size is significant on uclinux
7579 systems. */
7580 map->p_size = segment->p_memsz;
7581 map->p_size_valid = 1;
7582 }
7583
7584 /* Determine if this segment contains the ELF file header
7585 and if it contains the program headers themselves. */
7586 map->includes_filehdr = (segment->p_offset == 0
7587 && segment->p_filesz >= iehdr->e_ehsize);
7588
7589 map->includes_phdrs = 0;
7590 if (! phdr_included || segment->p_type != PT_LOAD)
7591 {
7592 map->includes_phdrs =
7593 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7594 && (segment->p_offset + segment->p_filesz
7595 >= ((bfd_vma) iehdr->e_phoff
7596 + iehdr->e_phnum * iehdr->e_phentsize)));
7597
7598 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7599 phdr_included = TRUE;
7600 }
7601
7602 lowest_section = NULL;
7603 if (section_count != 0)
7604 {
7605 unsigned int isec = 0;
7606
7607 for (section = first_section;
7608 section != NULL;
7609 section = section->next)
7610 {
7611 this_hdr = &(elf_section_data(section)->this_hdr);
7612 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7613 {
7614 map->sections[isec++] = section->output_section;
7615 if ((section->flags & SEC_ALLOC) != 0)
7616 {
7617 bfd_vma seg_off;
7618
7619 if (lowest_section == NULL
7620 || section->lma < lowest_section->lma)
7621 lowest_section = section;
7622
7623 /* Section lmas are set up from PT_LOAD header
7624 p_paddr in _bfd_elf_make_section_from_shdr.
7625 If this header has a p_paddr that disagrees
7626 with the section lma, flag the p_paddr as
7627 invalid. */
7628 if ((section->flags & SEC_LOAD) != 0)
7629 seg_off = this_hdr->sh_offset - segment->p_offset;
7630 else
7631 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7632 if (section->lma * opb - segment->p_paddr != seg_off)
7633 map->p_paddr_valid = FALSE;
7634 }
7635 if (isec == section_count)
7636 break;
7637 }
7638 }
7639 }
7640
7641 if (section_count == 0)
7642 map->p_vaddr_offset = segment->p_vaddr / opb;
7643 else if (map->p_paddr_valid)
7644 {
7645 /* Account for padding before the first section in the segment. */
7646 bfd_vma hdr_size = 0;
7647 if (map->includes_filehdr)
7648 hdr_size = iehdr->e_ehsize;
7649 if (map->includes_phdrs)
7650 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7651
7652 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7653 - (lowest_section ? lowest_section->lma : 0));
7654 }
7655
7656 map->count = section_count;
7657 *pointer_to_map = map;
7658 pointer_to_map = &map->next;
7659 }
7660
7661 elf_seg_map (obfd) = map_first;
7662 return TRUE;
7663 }
7664
7665 /* Copy private BFD data. This copies or rewrites ELF program header
7666 information. */
7667
7668 static bfd_boolean
7669 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7670 {
7671 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7672 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7673 return TRUE;
7674
7675 if (elf_tdata (ibfd)->phdr == NULL)
7676 return TRUE;
7677
7678 if (ibfd->xvec == obfd->xvec)
7679 {
7680 /* Check to see if any sections in the input BFD
7681 covered by ELF program header have changed. */
7682 Elf_Internal_Phdr *segment;
7683 asection *section, *osec;
7684 unsigned int i, num_segments;
7685 Elf_Internal_Shdr *this_hdr;
7686 const struct elf_backend_data *bed;
7687
7688 bed = get_elf_backend_data (ibfd);
7689
7690 /* Regenerate the segment map if p_paddr is set to 0. */
7691 if (bed->want_p_paddr_set_to_zero)
7692 goto rewrite;
7693
7694 /* Initialize the segment mark field. */
7695 for (section = obfd->sections; section != NULL;
7696 section = section->next)
7697 section->segment_mark = FALSE;
7698
7699 num_segments = elf_elfheader (ibfd)->e_phnum;
7700 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7701 i < num_segments;
7702 i++, segment++)
7703 {
7704 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7705 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7706 which severly confuses things, so always regenerate the segment
7707 map in this case. */
7708 if (segment->p_paddr == 0
7709 && segment->p_memsz == 0
7710 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7711 goto rewrite;
7712
7713 for (section = ibfd->sections;
7714 section != NULL; section = section->next)
7715 {
7716 /* We mark the output section so that we know it comes
7717 from the input BFD. */
7718 osec = section->output_section;
7719 if (osec)
7720 osec->segment_mark = TRUE;
7721
7722 /* Check if this section is covered by the segment. */
7723 this_hdr = &(elf_section_data(section)->this_hdr);
7724 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7725 {
7726 /* FIXME: Check if its output section is changed or
7727 removed. What else do we need to check? */
7728 if (osec == NULL
7729 || section->flags != osec->flags
7730 || section->lma != osec->lma
7731 || section->vma != osec->vma
7732 || section->size != osec->size
7733 || section->rawsize != osec->rawsize
7734 || section->alignment_power != osec->alignment_power)
7735 goto rewrite;
7736 }
7737 }
7738 }
7739
7740 /* Check to see if any output section do not come from the
7741 input BFD. */
7742 for (section = obfd->sections; section != NULL;
7743 section = section->next)
7744 {
7745 if (!section->segment_mark)
7746 goto rewrite;
7747 else
7748 section->segment_mark = FALSE;
7749 }
7750
7751 return copy_elf_program_header (ibfd, obfd);
7752 }
7753
7754 rewrite:
7755 if (ibfd->xvec == obfd->xvec)
7756 {
7757 /* When rewriting program header, set the output maxpagesize to
7758 the maximum alignment of input PT_LOAD segments. */
7759 Elf_Internal_Phdr *segment;
7760 unsigned int i;
7761 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7762 bfd_vma maxpagesize = 0;
7763
7764 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7765 i < num_segments;
7766 i++, segment++)
7767 if (segment->p_type == PT_LOAD
7768 && maxpagesize < segment->p_align)
7769 {
7770 /* PR 17512: file: f17299af. */
7771 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7772 /* xgettext:c-format */
7773 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7774 PRIx64 " is too large"),
7775 ibfd, (uint64_t) segment->p_align);
7776 else
7777 maxpagesize = segment->p_align;
7778 }
7779
7780 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7781 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7782 }
7783
7784 return rewrite_elf_program_header (ibfd, obfd);
7785 }
7786
7787 /* Initialize private output section information from input section. */
7788
7789 bfd_boolean
7790 _bfd_elf_init_private_section_data (bfd *ibfd,
7791 asection *isec,
7792 bfd *obfd,
7793 asection *osec,
7794 struct bfd_link_info *link_info)
7795
7796 {
7797 Elf_Internal_Shdr *ihdr, *ohdr;
7798 bfd_boolean final_link = (link_info != NULL
7799 && !bfd_link_relocatable (link_info));
7800
7801 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7802 || obfd->xvec->flavour != bfd_target_elf_flavour)
7803 return TRUE;
7804
7805 BFD_ASSERT (elf_section_data (osec) != NULL);
7806
7807 /* If this is a known ABI section, ELF section type and flags may
7808 have been set up when OSEC was created. For normal sections we
7809 allow the user to override the type and flags other than
7810 SHF_MASKOS and SHF_MASKPROC. */
7811 if (elf_section_type (osec) == SHT_PROGBITS
7812 || elf_section_type (osec) == SHT_NOTE
7813 || elf_section_type (osec) == SHT_NOBITS)
7814 elf_section_type (osec) = SHT_NULL;
7815 /* For objcopy and relocatable link, copy the ELF section type from
7816 the input file if the BFD section flags are the same. (If they
7817 are different the user may be doing something like
7818 "objcopy --set-section-flags .text=alloc,data".) For a final
7819 link allow some flags that the linker clears to differ. */
7820 if (elf_section_type (osec) == SHT_NULL
7821 && (osec->flags == isec->flags
7822 || (final_link
7823 && ((osec->flags ^ isec->flags)
7824 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7825 elf_section_type (osec) = elf_section_type (isec);
7826
7827 /* FIXME: Is this correct for all OS/PROC specific flags? */
7828 elf_section_flags (osec) = (elf_section_flags (isec)
7829 & (SHF_MASKOS | SHF_MASKPROC));
7830
7831 /* Copy sh_info from input for mbind section. */
7832 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7833 && elf_section_flags (isec) & SHF_GNU_MBIND)
7834 elf_section_data (osec)->this_hdr.sh_info
7835 = elf_section_data (isec)->this_hdr.sh_info;
7836
7837 /* Set things up for objcopy and relocatable link. The output
7838 SHT_GROUP section will have its elf_next_in_group pointing back
7839 to the input group members. Ignore linker created group section.
7840 See elfNN_ia64_object_p in elfxx-ia64.c. */
7841 if ((link_info == NULL
7842 || !link_info->resolve_section_groups)
7843 && (elf_sec_group (isec) == NULL
7844 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7845 {
7846 if (elf_section_flags (isec) & SHF_GROUP)
7847 elf_section_flags (osec) |= SHF_GROUP;
7848 elf_next_in_group (osec) = elf_next_in_group (isec);
7849 elf_section_data (osec)->group = elf_section_data (isec)->group;
7850 }
7851
7852 /* If not decompress, preserve SHF_COMPRESSED. */
7853 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7854 elf_section_flags (osec) |= (elf_section_flags (isec)
7855 & SHF_COMPRESSED);
7856
7857 ihdr = &elf_section_data (isec)->this_hdr;
7858
7859 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7860 don't use the output section of the linked-to section since it
7861 may be NULL at this point. */
7862 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7863 {
7864 ohdr = &elf_section_data (osec)->this_hdr;
7865 ohdr->sh_flags |= SHF_LINK_ORDER;
7866 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7867 }
7868
7869 osec->use_rela_p = isec->use_rela_p;
7870
7871 return TRUE;
7872 }
7873
7874 /* Copy private section information. This copies over the entsize
7875 field, and sometimes the info field. */
7876
7877 bfd_boolean
7878 _bfd_elf_copy_private_section_data (bfd *ibfd,
7879 asection *isec,
7880 bfd *obfd,
7881 asection *osec)
7882 {
7883 Elf_Internal_Shdr *ihdr, *ohdr;
7884
7885 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7886 || obfd->xvec->flavour != bfd_target_elf_flavour)
7887 return TRUE;
7888
7889 ihdr = &elf_section_data (isec)->this_hdr;
7890 ohdr = &elf_section_data (osec)->this_hdr;
7891
7892 ohdr->sh_entsize = ihdr->sh_entsize;
7893
7894 if (ihdr->sh_type == SHT_SYMTAB
7895 || ihdr->sh_type == SHT_DYNSYM
7896 || ihdr->sh_type == SHT_GNU_verneed
7897 || ihdr->sh_type == SHT_GNU_verdef)
7898 ohdr->sh_info = ihdr->sh_info;
7899
7900 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7901 NULL);
7902 }
7903
7904 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7905 necessary if we are removing either the SHT_GROUP section or any of
7906 the group member sections. DISCARDED is the value that a section's
7907 output_section has if the section will be discarded, NULL when this
7908 function is called from objcopy, bfd_abs_section_ptr when called
7909 from the linker. */
7910
7911 bfd_boolean
7912 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7913 {
7914 asection *isec;
7915
7916 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7917 if (elf_section_type (isec) == SHT_GROUP)
7918 {
7919 asection *first = elf_next_in_group (isec);
7920 asection *s = first;
7921 bfd_size_type removed = 0;
7922
7923 while (s != NULL)
7924 {
7925 /* If this member section is being output but the
7926 SHT_GROUP section is not, then clear the group info
7927 set up by _bfd_elf_copy_private_section_data. */
7928 if (s->output_section != discarded
7929 && isec->output_section == discarded)
7930 {
7931 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7932 elf_group_name (s->output_section) = NULL;
7933 }
7934 else
7935 {
7936 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7937 if (s->output_section == discarded
7938 && isec->output_section != discarded)
7939 {
7940 /* Conversely, if the member section is not being
7941 output but the SHT_GROUP section is, then adjust
7942 its size. */
7943 removed += 4;
7944 if (elf_sec->rel.hdr != NULL
7945 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7946 removed += 4;
7947 if (elf_sec->rela.hdr != NULL
7948 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7949 removed += 4;
7950 }
7951 else
7952 {
7953 /* Also adjust for zero-sized relocation member
7954 section. */
7955 if (elf_sec->rel.hdr != NULL
7956 && elf_sec->rel.hdr->sh_size == 0)
7957 removed += 4;
7958 if (elf_sec->rela.hdr != NULL
7959 && elf_sec->rela.hdr->sh_size == 0)
7960 removed += 4;
7961 }
7962 }
7963 s = elf_next_in_group (s);
7964 if (s == first)
7965 break;
7966 }
7967 if (removed != 0)
7968 {
7969 if (discarded != NULL)
7970 {
7971 /* If we've been called for ld -r, then we need to
7972 adjust the input section size. */
7973 if (isec->rawsize == 0)
7974 isec->rawsize = isec->size;
7975 isec->size = isec->rawsize - removed;
7976 if (isec->size <= 4)
7977 {
7978 isec->size = 0;
7979 isec->flags |= SEC_EXCLUDE;
7980 }
7981 }
7982 else
7983 {
7984 /* Adjust the output section size when called from
7985 objcopy. */
7986 isec->output_section->size -= removed;
7987 if (isec->output_section->size <= 4)
7988 {
7989 isec->output_section->size = 0;
7990 isec->output_section->flags |= SEC_EXCLUDE;
7991 }
7992 }
7993 }
7994 }
7995
7996 return TRUE;
7997 }
7998
7999 /* Copy private header information. */
8000
8001 bfd_boolean
8002 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
8003 {
8004 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8005 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8006 return TRUE;
8007
8008 /* Copy over private BFD data if it has not already been copied.
8009 This must be done here, rather than in the copy_private_bfd_data
8010 entry point, because the latter is called after the section
8011 contents have been set, which means that the program headers have
8012 already been worked out. */
8013 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
8014 {
8015 if (! copy_private_bfd_data (ibfd, obfd))
8016 return FALSE;
8017 }
8018
8019 return _bfd_elf_fixup_group_sections (ibfd, NULL);
8020 }
8021
8022 /* Copy private symbol information. If this symbol is in a section
8023 which we did not map into a BFD section, try to map the section
8024 index correctly. We use special macro definitions for the mapped
8025 section indices; these definitions are interpreted by the
8026 swap_out_syms function. */
8027
8028 #define MAP_ONESYMTAB (SHN_HIOS + 1)
8029 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
8030 #define MAP_STRTAB (SHN_HIOS + 3)
8031 #define MAP_SHSTRTAB (SHN_HIOS + 4)
8032 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
8033
8034 bfd_boolean
8035 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
8036 asymbol *isymarg,
8037 bfd *obfd,
8038 asymbol *osymarg)
8039 {
8040 elf_symbol_type *isym, *osym;
8041
8042 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8043 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8044 return TRUE;
8045
8046 isym = elf_symbol_from (ibfd, isymarg);
8047 osym = elf_symbol_from (obfd, osymarg);
8048
8049 if (isym != NULL
8050 && isym->internal_elf_sym.st_shndx != 0
8051 && osym != NULL
8052 && bfd_is_abs_section (isym->symbol.section))
8053 {
8054 unsigned int shndx;
8055
8056 shndx = isym->internal_elf_sym.st_shndx;
8057 if (shndx == elf_onesymtab (ibfd))
8058 shndx = MAP_ONESYMTAB;
8059 else if (shndx == elf_dynsymtab (ibfd))
8060 shndx = MAP_DYNSYMTAB;
8061 else if (shndx == elf_strtab_sec (ibfd))
8062 shndx = MAP_STRTAB;
8063 else if (shndx == elf_shstrtab_sec (ibfd))
8064 shndx = MAP_SHSTRTAB;
8065 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
8066 shndx = MAP_SYM_SHNDX;
8067 osym->internal_elf_sym.st_shndx = shndx;
8068 }
8069
8070 return TRUE;
8071 }
8072
8073 /* Swap out the symbols. */
8074
8075 static bfd_boolean
8076 swap_out_syms (bfd *abfd,
8077 struct elf_strtab_hash **sttp,
8078 int relocatable_p)
8079 {
8080 const struct elf_backend_data *bed;
8081 unsigned int symcount;
8082 asymbol **syms;
8083 struct elf_strtab_hash *stt;
8084 Elf_Internal_Shdr *symtab_hdr;
8085 Elf_Internal_Shdr *symtab_shndx_hdr;
8086 Elf_Internal_Shdr *symstrtab_hdr;
8087 struct elf_sym_strtab *symstrtab;
8088 bfd_byte *outbound_syms;
8089 bfd_byte *outbound_shndx;
8090 unsigned long outbound_syms_index;
8091 unsigned long outbound_shndx_index;
8092 unsigned int idx;
8093 unsigned int num_locals;
8094 size_t amt;
8095 bfd_boolean name_local_sections;
8096
8097 if (!elf_map_symbols (abfd, &num_locals))
8098 return FALSE;
8099
8100 /* Dump out the symtabs. */
8101 stt = _bfd_elf_strtab_init ();
8102 if (stt == NULL)
8103 return FALSE;
8104
8105 bed = get_elf_backend_data (abfd);
8106 symcount = bfd_get_symcount (abfd);
8107 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8108 symtab_hdr->sh_type = SHT_SYMTAB;
8109 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8110 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8111 symtab_hdr->sh_info = num_locals + 1;
8112 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8113
8114 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8115 symstrtab_hdr->sh_type = SHT_STRTAB;
8116
8117 /* Allocate buffer to swap out the .strtab section. */
8118 if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt)
8119 || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL)
8120 {
8121 bfd_set_error (bfd_error_no_memory);
8122 _bfd_elf_strtab_free (stt);
8123 return FALSE;
8124 }
8125
8126 if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt)
8127 || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL)
8128 {
8129 error_no_mem:
8130 bfd_set_error (bfd_error_no_memory);
8131 error_return:
8132 free (symstrtab);
8133 _bfd_elf_strtab_free (stt);
8134 return FALSE;
8135 }
8136 symtab_hdr->contents = outbound_syms;
8137 outbound_syms_index = 0;
8138
8139 outbound_shndx = NULL;
8140 outbound_shndx_index = 0;
8141
8142 if (elf_symtab_shndx_list (abfd))
8143 {
8144 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8145 if (symtab_shndx_hdr->sh_name != 0)
8146 {
8147 if (_bfd_mul_overflow (symcount + 1,
8148 sizeof (Elf_External_Sym_Shndx), &amt))
8149 goto error_no_mem;
8150 outbound_shndx = (bfd_byte *) bfd_zalloc (abfd, amt);
8151 if (outbound_shndx == NULL)
8152 goto error_return;
8153
8154 symtab_shndx_hdr->contents = outbound_shndx;
8155 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8156 symtab_shndx_hdr->sh_size = amt;
8157 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8158 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8159 }
8160 /* FIXME: What about any other headers in the list ? */
8161 }
8162
8163 /* Now generate the data (for "contents"). */
8164 {
8165 /* Fill in zeroth symbol and swap it out. */
8166 Elf_Internal_Sym sym;
8167 sym.st_name = 0;
8168 sym.st_value = 0;
8169 sym.st_size = 0;
8170 sym.st_info = 0;
8171 sym.st_other = 0;
8172 sym.st_shndx = SHN_UNDEF;
8173 sym.st_target_internal = 0;
8174 symstrtab[0].sym = sym;
8175 symstrtab[0].dest_index = outbound_syms_index;
8176 symstrtab[0].destshndx_index = outbound_shndx_index;
8177 outbound_syms_index++;
8178 if (outbound_shndx != NULL)
8179 outbound_shndx_index++;
8180 }
8181
8182 name_local_sections
8183 = (bed->elf_backend_name_local_section_symbols
8184 && bed->elf_backend_name_local_section_symbols (abfd));
8185
8186 syms = bfd_get_outsymbols (abfd);
8187 for (idx = 0; idx < symcount;)
8188 {
8189 Elf_Internal_Sym sym;
8190 bfd_vma value = syms[idx]->value;
8191 elf_symbol_type *type_ptr;
8192 flagword flags = syms[idx]->flags;
8193 int type;
8194
8195 if (!name_local_sections
8196 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8197 {
8198 /* Local section symbols have no name. */
8199 sym.st_name = (unsigned long) -1;
8200 }
8201 else
8202 {
8203 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8204 to get the final offset for st_name. */
8205 sym.st_name
8206 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8207 FALSE);
8208 if (sym.st_name == (unsigned long) -1)
8209 goto error_return;
8210 }
8211
8212 type_ptr = elf_symbol_from (abfd, syms[idx]);
8213
8214 if ((flags & BSF_SECTION_SYM) == 0
8215 && bfd_is_com_section (syms[idx]->section))
8216 {
8217 /* ELF common symbols put the alignment into the `value' field,
8218 and the size into the `size' field. This is backwards from
8219 how BFD handles it, so reverse it here. */
8220 sym.st_size = value;
8221 if (type_ptr == NULL
8222 || type_ptr->internal_elf_sym.st_value == 0)
8223 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8224 else
8225 sym.st_value = type_ptr->internal_elf_sym.st_value;
8226 sym.st_shndx = _bfd_elf_section_from_bfd_section
8227 (abfd, syms[idx]->section);
8228 }
8229 else
8230 {
8231 asection *sec = syms[idx]->section;
8232 unsigned int shndx;
8233
8234 if (sec->output_section)
8235 {
8236 value += sec->output_offset;
8237 sec = sec->output_section;
8238 }
8239
8240 /* Don't add in the section vma for relocatable output. */
8241 if (! relocatable_p)
8242 value += sec->vma;
8243 sym.st_value = value;
8244 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8245
8246 if (bfd_is_abs_section (sec)
8247 && type_ptr != NULL
8248 && type_ptr->internal_elf_sym.st_shndx != 0)
8249 {
8250 /* This symbol is in a real ELF section which we did
8251 not create as a BFD section. Undo the mapping done
8252 by copy_private_symbol_data. */
8253 shndx = type_ptr->internal_elf_sym.st_shndx;
8254 switch (shndx)
8255 {
8256 case MAP_ONESYMTAB:
8257 shndx = elf_onesymtab (abfd);
8258 break;
8259 case MAP_DYNSYMTAB:
8260 shndx = elf_dynsymtab (abfd);
8261 break;
8262 case MAP_STRTAB:
8263 shndx = elf_strtab_sec (abfd);
8264 break;
8265 case MAP_SHSTRTAB:
8266 shndx = elf_shstrtab_sec (abfd);
8267 break;
8268 case MAP_SYM_SHNDX:
8269 if (elf_symtab_shndx_list (abfd))
8270 shndx = elf_symtab_shndx_list (abfd)->ndx;
8271 break;
8272 case SHN_COMMON:
8273 case SHN_ABS:
8274 shndx = SHN_ABS;
8275 break;
8276 default:
8277 if (shndx >= SHN_LOPROC && shndx <= SHN_HIOS)
8278 {
8279 if (bed->symbol_section_index)
8280 shndx = bed->symbol_section_index (abfd, type_ptr);
8281 /* Otherwise just leave the index alone. */
8282 }
8283 else
8284 {
8285 if (shndx > SHN_HIOS && shndx < SHN_HIRESERVE)
8286 _bfd_error_handler (_("%pB: \
8287 Unable to handle section index %x in ELF symbol. Using ABS instead."),
8288 abfd, shndx);
8289 shndx = SHN_ABS;
8290 }
8291 break;
8292 }
8293 }
8294 else
8295 {
8296 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8297
8298 if (shndx == SHN_BAD)
8299 {
8300 asection *sec2;
8301
8302 /* Writing this would be a hell of a lot easier if
8303 we had some decent documentation on bfd, and
8304 knew what to expect of the library, and what to
8305 demand of applications. For example, it
8306 appears that `objcopy' might not set the
8307 section of a symbol to be a section that is
8308 actually in the output file. */
8309 sec2 = bfd_get_section_by_name (abfd, sec->name);
8310 if (sec2 != NULL)
8311 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8312 if (shndx == SHN_BAD)
8313 {
8314 /* xgettext:c-format */
8315 _bfd_error_handler
8316 (_("unable to find equivalent output section"
8317 " for symbol '%s' from section '%s'"),
8318 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8319 sec->name);
8320 bfd_set_error (bfd_error_invalid_operation);
8321 goto error_return;
8322 }
8323 }
8324 }
8325
8326 sym.st_shndx = shndx;
8327 }
8328
8329 if ((flags & BSF_THREAD_LOCAL) != 0)
8330 type = STT_TLS;
8331 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8332 type = STT_GNU_IFUNC;
8333 else if ((flags & BSF_FUNCTION) != 0)
8334 type = STT_FUNC;
8335 else if ((flags & BSF_OBJECT) != 0)
8336 type = STT_OBJECT;
8337 else if ((flags & BSF_RELC) != 0)
8338 type = STT_RELC;
8339 else if ((flags & BSF_SRELC) != 0)
8340 type = STT_SRELC;
8341 else
8342 type = STT_NOTYPE;
8343
8344 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8345 type = STT_TLS;
8346
8347 /* Processor-specific types. */
8348 if (type_ptr != NULL
8349 && bed->elf_backend_get_symbol_type)
8350 type = ((*bed->elf_backend_get_symbol_type)
8351 (&type_ptr->internal_elf_sym, type));
8352
8353 if (flags & BSF_SECTION_SYM)
8354 {
8355 if (flags & BSF_GLOBAL)
8356 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8357 else
8358 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8359 }
8360 else if (bfd_is_com_section (syms[idx]->section))
8361 {
8362 if (type != STT_TLS)
8363 {
8364 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8365 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8366 ? STT_COMMON : STT_OBJECT);
8367 else
8368 type = ((flags & BSF_ELF_COMMON) != 0
8369 ? STT_COMMON : STT_OBJECT);
8370 }
8371 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8372 }
8373 else if (bfd_is_und_section (syms[idx]->section))
8374 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8375 ? STB_WEAK
8376 : STB_GLOBAL),
8377 type);
8378 else if (flags & BSF_FILE)
8379 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8380 else
8381 {
8382 int bind = STB_LOCAL;
8383
8384 if (flags & BSF_LOCAL)
8385 bind = STB_LOCAL;
8386 else if (flags & BSF_GNU_UNIQUE)
8387 bind = STB_GNU_UNIQUE;
8388 else if (flags & BSF_WEAK)
8389 bind = STB_WEAK;
8390 else if (flags & BSF_GLOBAL)
8391 bind = STB_GLOBAL;
8392
8393 sym.st_info = ELF_ST_INFO (bind, type);
8394 }
8395
8396 if (type_ptr != NULL)
8397 {
8398 sym.st_other = type_ptr->internal_elf_sym.st_other;
8399 sym.st_target_internal
8400 = type_ptr->internal_elf_sym.st_target_internal;
8401 }
8402 else
8403 {
8404 sym.st_other = 0;
8405 sym.st_target_internal = 0;
8406 }
8407
8408 idx++;
8409 symstrtab[idx].sym = sym;
8410 symstrtab[idx].dest_index = outbound_syms_index;
8411 symstrtab[idx].destshndx_index = outbound_shndx_index;
8412
8413 outbound_syms_index++;
8414 if (outbound_shndx != NULL)
8415 outbound_shndx_index++;
8416 }
8417
8418 /* Finalize the .strtab section. */
8419 _bfd_elf_strtab_finalize (stt);
8420
8421 /* Swap out the .strtab section. */
8422 for (idx = 0; idx <= symcount; idx++)
8423 {
8424 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8425 if (elfsym->sym.st_name == (unsigned long) -1)
8426 elfsym->sym.st_name = 0;
8427 else
8428 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8429 elfsym->sym.st_name);
8430 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8431 (outbound_syms
8432 + (elfsym->dest_index
8433 * bed->s->sizeof_sym)),
8434 (outbound_shndx
8435 + (elfsym->destshndx_index
8436 * sizeof (Elf_External_Sym_Shndx))));
8437 }
8438 free (symstrtab);
8439
8440 *sttp = stt;
8441 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8442 symstrtab_hdr->sh_type = SHT_STRTAB;
8443 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8444 symstrtab_hdr->sh_addr = 0;
8445 symstrtab_hdr->sh_entsize = 0;
8446 symstrtab_hdr->sh_link = 0;
8447 symstrtab_hdr->sh_info = 0;
8448 symstrtab_hdr->sh_addralign = 1;
8449
8450 return TRUE;
8451 }
8452
8453 /* Return the number of bytes required to hold the symtab vector.
8454
8455 Note that we base it on the count plus 1, since we will null terminate
8456 the vector allocated based on this size. However, the ELF symbol table
8457 always has a dummy entry as symbol #0, so it ends up even. */
8458
8459 long
8460 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8461 {
8462 bfd_size_type symcount;
8463 long symtab_size;
8464 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8465
8466 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8467 if (symcount >= LONG_MAX / sizeof (asymbol *))
8468 {
8469 bfd_set_error (bfd_error_file_too_big);
8470 return -1;
8471 }
8472 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8473 if (symcount > 0)
8474 symtab_size -= sizeof (asymbol *);
8475
8476 return symtab_size;
8477 }
8478
8479 long
8480 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8481 {
8482 bfd_size_type symcount;
8483 long symtab_size;
8484 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8485
8486 if (elf_dynsymtab (abfd) == 0)
8487 {
8488 bfd_set_error (bfd_error_invalid_operation);
8489 return -1;
8490 }
8491
8492 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8493 if (symcount >= LONG_MAX / sizeof (asymbol *))
8494 {
8495 bfd_set_error (bfd_error_file_too_big);
8496 return -1;
8497 }
8498 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8499 if (symcount > 0)
8500 symtab_size -= sizeof (asymbol *);
8501
8502 return symtab_size;
8503 }
8504
8505 long
8506 _bfd_elf_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
8507 {
8508 if (asect->reloc_count != 0)
8509 {
8510 /* Sanity check reloc section size. */
8511 struct bfd_elf_section_data *d = elf_section_data (asect);
8512 Elf_Internal_Shdr *rel_hdr = &d->this_hdr;
8513 bfd_size_type ext_rel_size = rel_hdr->sh_size;
8514 ufile_ptr filesize = bfd_get_file_size (abfd);
8515
8516 if (filesize != 0 && ext_rel_size > filesize)
8517 {
8518 bfd_set_error (bfd_error_file_truncated);
8519 return -1;
8520 }
8521 }
8522
8523 #if SIZEOF_LONG == SIZEOF_INT
8524 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8525 {
8526 bfd_set_error (bfd_error_file_too_big);
8527 return -1;
8528 }
8529 #endif
8530 return (asect->reloc_count + 1) * sizeof (arelent *);
8531 }
8532
8533 /* Canonicalize the relocs. */
8534
8535 long
8536 _bfd_elf_canonicalize_reloc (bfd *abfd,
8537 sec_ptr section,
8538 arelent **relptr,
8539 asymbol **symbols)
8540 {
8541 arelent *tblptr;
8542 unsigned int i;
8543 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8544
8545 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8546 return -1;
8547
8548 tblptr = section->relocation;
8549 for (i = 0; i < section->reloc_count; i++)
8550 *relptr++ = tblptr++;
8551
8552 *relptr = NULL;
8553
8554 return section->reloc_count;
8555 }
8556
8557 long
8558 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8559 {
8560 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8561 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8562
8563 if (symcount >= 0)
8564 abfd->symcount = symcount;
8565 return symcount;
8566 }
8567
8568 long
8569 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8570 asymbol **allocation)
8571 {
8572 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8573 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8574
8575 if (symcount >= 0)
8576 abfd->dynsymcount = symcount;
8577 return symcount;
8578 }
8579
8580 /* Return the size required for the dynamic reloc entries. Any loadable
8581 section that was actually installed in the BFD, and has type SHT_REL
8582 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8583 dynamic reloc section. */
8584
8585 long
8586 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8587 {
8588 bfd_size_type count, ext_rel_size;
8589 asection *s;
8590
8591 if (elf_dynsymtab (abfd) == 0)
8592 {
8593 bfd_set_error (bfd_error_invalid_operation);
8594 return -1;
8595 }
8596
8597 count = 1;
8598 ext_rel_size = 0;
8599 for (s = abfd->sections; s != NULL; s = s->next)
8600 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8601 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8602 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8603 {
8604 ext_rel_size += s->size;
8605 if (ext_rel_size < s->size)
8606 {
8607 bfd_set_error (bfd_error_file_truncated);
8608 return -1;
8609 }
8610 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8611 if (count > LONG_MAX / sizeof (arelent *))
8612 {
8613 bfd_set_error (bfd_error_file_too_big);
8614 return -1;
8615 }
8616 }
8617 if (count > 1)
8618 {
8619 /* Sanity check reloc section sizes. */
8620 ufile_ptr filesize = bfd_get_file_size (abfd);
8621 if (filesize != 0 && ext_rel_size > filesize)
8622 {
8623 bfd_set_error (bfd_error_file_truncated);
8624 return -1;
8625 }
8626 }
8627 return count * sizeof (arelent *);
8628 }
8629
8630 /* Canonicalize the dynamic relocation entries. Note that we return the
8631 dynamic relocations as a single block, although they are actually
8632 associated with particular sections; the interface, which was
8633 designed for SunOS style shared libraries, expects that there is only
8634 one set of dynamic relocs. Any loadable section that was actually
8635 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8636 dynamic symbol table, is considered to be a dynamic reloc section. */
8637
8638 long
8639 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8640 arelent **storage,
8641 asymbol **syms)
8642 {
8643 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8644 asection *s;
8645 long ret;
8646
8647 if (elf_dynsymtab (abfd) == 0)
8648 {
8649 bfd_set_error (bfd_error_invalid_operation);
8650 return -1;
8651 }
8652
8653 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8654 ret = 0;
8655 for (s = abfd->sections; s != NULL; s = s->next)
8656 {
8657 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8658 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8659 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8660 {
8661 arelent *p;
8662 long count, i;
8663
8664 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8665 return -1;
8666 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8667 p = s->relocation;
8668 for (i = 0; i < count; i++)
8669 *storage++ = p++;
8670 ret += count;
8671 }
8672 }
8673
8674 *storage = NULL;
8675
8676 return ret;
8677 }
8678 \f
8679 /* Read in the version information. */
8680
8681 bfd_boolean
8682 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8683 {
8684 bfd_byte *contents = NULL;
8685 unsigned int freeidx = 0;
8686 size_t amt;
8687
8688 if (elf_dynverref (abfd) != 0)
8689 {
8690 Elf_Internal_Shdr *hdr;
8691 Elf_External_Verneed *everneed;
8692 Elf_Internal_Verneed *iverneed;
8693 unsigned int i;
8694 bfd_byte *contents_end;
8695
8696 hdr = &elf_tdata (abfd)->dynverref_hdr;
8697
8698 if (hdr->sh_info == 0
8699 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8700 {
8701 error_return_bad_verref:
8702 _bfd_error_handler
8703 (_("%pB: .gnu.version_r invalid entry"), abfd);
8704 bfd_set_error (bfd_error_bad_value);
8705 error_return_verref:
8706 elf_tdata (abfd)->verref = NULL;
8707 elf_tdata (abfd)->cverrefs = 0;
8708 goto error_return;
8709 }
8710
8711 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8712 goto error_return_verref;
8713 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8714 if (contents == NULL)
8715 goto error_return_verref;
8716
8717 if (_bfd_mul_overflow (hdr->sh_info, sizeof (Elf_Internal_Verneed), &amt))
8718 {
8719 bfd_set_error (bfd_error_file_too_big);
8720 goto error_return_verref;
8721 }
8722 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_alloc (abfd, amt);
8723 if (elf_tdata (abfd)->verref == NULL)
8724 goto error_return_verref;
8725
8726 BFD_ASSERT (sizeof (Elf_External_Verneed)
8727 == sizeof (Elf_External_Vernaux));
8728 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8729 everneed = (Elf_External_Verneed *) contents;
8730 iverneed = elf_tdata (abfd)->verref;
8731 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8732 {
8733 Elf_External_Vernaux *evernaux;
8734 Elf_Internal_Vernaux *ivernaux;
8735 unsigned int j;
8736
8737 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8738
8739 iverneed->vn_bfd = abfd;
8740
8741 iverneed->vn_filename =
8742 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8743 iverneed->vn_file);
8744 if (iverneed->vn_filename == NULL)
8745 goto error_return_bad_verref;
8746
8747 if (iverneed->vn_cnt == 0)
8748 iverneed->vn_auxptr = NULL;
8749 else
8750 {
8751 if (_bfd_mul_overflow (iverneed->vn_cnt,
8752 sizeof (Elf_Internal_Vernaux), &amt))
8753 {
8754 bfd_set_error (bfd_error_file_too_big);
8755 goto error_return_verref;
8756 }
8757 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8758 bfd_alloc (abfd, amt);
8759 if (iverneed->vn_auxptr == NULL)
8760 goto error_return_verref;
8761 }
8762
8763 if (iverneed->vn_aux
8764 > (size_t) (contents_end - (bfd_byte *) everneed))
8765 goto error_return_bad_verref;
8766
8767 evernaux = ((Elf_External_Vernaux *)
8768 ((bfd_byte *) everneed + iverneed->vn_aux));
8769 ivernaux = iverneed->vn_auxptr;
8770 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8771 {
8772 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8773
8774 ivernaux->vna_nodename =
8775 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8776 ivernaux->vna_name);
8777 if (ivernaux->vna_nodename == NULL)
8778 goto error_return_bad_verref;
8779
8780 if (ivernaux->vna_other > freeidx)
8781 freeidx = ivernaux->vna_other;
8782
8783 ivernaux->vna_nextptr = NULL;
8784 if (ivernaux->vna_next == 0)
8785 {
8786 iverneed->vn_cnt = j + 1;
8787 break;
8788 }
8789 if (j + 1 < iverneed->vn_cnt)
8790 ivernaux->vna_nextptr = ivernaux + 1;
8791
8792 if (ivernaux->vna_next
8793 > (size_t) (contents_end - (bfd_byte *) evernaux))
8794 goto error_return_bad_verref;
8795
8796 evernaux = ((Elf_External_Vernaux *)
8797 ((bfd_byte *) evernaux + ivernaux->vna_next));
8798 }
8799
8800 iverneed->vn_nextref = NULL;
8801 if (iverneed->vn_next == 0)
8802 break;
8803 if (i + 1 < hdr->sh_info)
8804 iverneed->vn_nextref = iverneed + 1;
8805
8806 if (iverneed->vn_next
8807 > (size_t) (contents_end - (bfd_byte *) everneed))
8808 goto error_return_bad_verref;
8809
8810 everneed = ((Elf_External_Verneed *)
8811 ((bfd_byte *) everneed + iverneed->vn_next));
8812 }
8813 elf_tdata (abfd)->cverrefs = i;
8814
8815 free (contents);
8816 contents = NULL;
8817 }
8818
8819 if (elf_dynverdef (abfd) != 0)
8820 {
8821 Elf_Internal_Shdr *hdr;
8822 Elf_External_Verdef *everdef;
8823 Elf_Internal_Verdef *iverdef;
8824 Elf_Internal_Verdef *iverdefarr;
8825 Elf_Internal_Verdef iverdefmem;
8826 unsigned int i;
8827 unsigned int maxidx;
8828 bfd_byte *contents_end_def, *contents_end_aux;
8829
8830 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8831
8832 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8833 {
8834 error_return_bad_verdef:
8835 _bfd_error_handler
8836 (_("%pB: .gnu.version_d invalid entry"), abfd);
8837 bfd_set_error (bfd_error_bad_value);
8838 error_return_verdef:
8839 elf_tdata (abfd)->verdef = NULL;
8840 elf_tdata (abfd)->cverdefs = 0;
8841 goto error_return;
8842 }
8843
8844 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8845 goto error_return_verdef;
8846 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8847 if (contents == NULL)
8848 goto error_return_verdef;
8849
8850 BFD_ASSERT (sizeof (Elf_External_Verdef)
8851 >= sizeof (Elf_External_Verdaux));
8852 contents_end_def = contents + hdr->sh_size
8853 - sizeof (Elf_External_Verdef);
8854 contents_end_aux = contents + hdr->sh_size
8855 - sizeof (Elf_External_Verdaux);
8856
8857 /* We know the number of entries in the section but not the maximum
8858 index. Therefore we have to run through all entries and find
8859 the maximum. */
8860 everdef = (Elf_External_Verdef *) contents;
8861 maxidx = 0;
8862 for (i = 0; i < hdr->sh_info; ++i)
8863 {
8864 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8865
8866 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8867 goto error_return_bad_verdef;
8868 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8869 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8870
8871 if (iverdefmem.vd_next == 0)
8872 break;
8873
8874 if (iverdefmem.vd_next
8875 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8876 goto error_return_bad_verdef;
8877
8878 everdef = ((Elf_External_Verdef *)
8879 ((bfd_byte *) everdef + iverdefmem.vd_next));
8880 }
8881
8882 if (default_imported_symver)
8883 {
8884 if (freeidx > maxidx)
8885 maxidx = ++freeidx;
8886 else
8887 freeidx = ++maxidx;
8888 }
8889 if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt))
8890 {
8891 bfd_set_error (bfd_error_file_too_big);
8892 goto error_return_verdef;
8893 }
8894 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8895 if (elf_tdata (abfd)->verdef == NULL)
8896 goto error_return_verdef;
8897
8898 elf_tdata (abfd)->cverdefs = maxidx;
8899
8900 everdef = (Elf_External_Verdef *) contents;
8901 iverdefarr = elf_tdata (abfd)->verdef;
8902 for (i = 0; i < hdr->sh_info; i++)
8903 {
8904 Elf_External_Verdaux *everdaux;
8905 Elf_Internal_Verdaux *iverdaux;
8906 unsigned int j;
8907
8908 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8909
8910 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8911 goto error_return_bad_verdef;
8912
8913 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8914 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8915
8916 iverdef->vd_bfd = abfd;
8917
8918 if (iverdef->vd_cnt == 0)
8919 iverdef->vd_auxptr = NULL;
8920 else
8921 {
8922 if (_bfd_mul_overflow (iverdef->vd_cnt,
8923 sizeof (Elf_Internal_Verdaux), &amt))
8924 {
8925 bfd_set_error (bfd_error_file_too_big);
8926 goto error_return_verdef;
8927 }
8928 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8929 bfd_alloc (abfd, amt);
8930 if (iverdef->vd_auxptr == NULL)
8931 goto error_return_verdef;
8932 }
8933
8934 if (iverdef->vd_aux
8935 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8936 goto error_return_bad_verdef;
8937
8938 everdaux = ((Elf_External_Verdaux *)
8939 ((bfd_byte *) everdef + iverdef->vd_aux));
8940 iverdaux = iverdef->vd_auxptr;
8941 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8942 {
8943 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8944
8945 iverdaux->vda_nodename =
8946 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8947 iverdaux->vda_name);
8948 if (iverdaux->vda_nodename == NULL)
8949 goto error_return_bad_verdef;
8950
8951 iverdaux->vda_nextptr = NULL;
8952 if (iverdaux->vda_next == 0)
8953 {
8954 iverdef->vd_cnt = j + 1;
8955 break;
8956 }
8957 if (j + 1 < iverdef->vd_cnt)
8958 iverdaux->vda_nextptr = iverdaux + 1;
8959
8960 if (iverdaux->vda_next
8961 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8962 goto error_return_bad_verdef;
8963
8964 everdaux = ((Elf_External_Verdaux *)
8965 ((bfd_byte *) everdaux + iverdaux->vda_next));
8966 }
8967
8968 iverdef->vd_nodename = NULL;
8969 if (iverdef->vd_cnt)
8970 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8971
8972 iverdef->vd_nextdef = NULL;
8973 if (iverdef->vd_next == 0)
8974 break;
8975 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8976 iverdef->vd_nextdef = iverdef + 1;
8977
8978 everdef = ((Elf_External_Verdef *)
8979 ((bfd_byte *) everdef + iverdef->vd_next));
8980 }
8981
8982 free (contents);
8983 contents = NULL;
8984 }
8985 else if (default_imported_symver)
8986 {
8987 if (freeidx < 3)
8988 freeidx = 3;
8989 else
8990 freeidx++;
8991
8992 if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt))
8993 {
8994 bfd_set_error (bfd_error_file_too_big);
8995 goto error_return;
8996 }
8997 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8998 if (elf_tdata (abfd)->verdef == NULL)
8999 goto error_return;
9000
9001 elf_tdata (abfd)->cverdefs = freeidx;
9002 }
9003
9004 /* Create a default version based on the soname. */
9005 if (default_imported_symver)
9006 {
9007 Elf_Internal_Verdef *iverdef;
9008 Elf_Internal_Verdaux *iverdaux;
9009
9010 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
9011
9012 iverdef->vd_version = VER_DEF_CURRENT;
9013 iverdef->vd_flags = 0;
9014 iverdef->vd_ndx = freeidx;
9015 iverdef->vd_cnt = 1;
9016
9017 iverdef->vd_bfd = abfd;
9018
9019 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
9020 if (iverdef->vd_nodename == NULL)
9021 goto error_return_verdef;
9022 iverdef->vd_nextdef = NULL;
9023 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
9024 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
9025 if (iverdef->vd_auxptr == NULL)
9026 goto error_return_verdef;
9027
9028 iverdaux = iverdef->vd_auxptr;
9029 iverdaux->vda_nodename = iverdef->vd_nodename;
9030 }
9031
9032 return TRUE;
9033
9034 error_return:
9035 free (contents);
9036 return FALSE;
9037 }
9038 \f
9039 asymbol *
9040 _bfd_elf_make_empty_symbol (bfd *abfd)
9041 {
9042 elf_symbol_type *newsym;
9043
9044 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
9045 if (!newsym)
9046 return NULL;
9047 newsym->symbol.the_bfd = abfd;
9048 return &newsym->symbol;
9049 }
9050
9051 void
9052 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
9053 asymbol *symbol,
9054 symbol_info *ret)
9055 {
9056 bfd_symbol_info (symbol, ret);
9057 }
9058
9059 /* Return whether a symbol name implies a local symbol. Most targets
9060 use this function for the is_local_label_name entry point, but some
9061 override it. */
9062
9063 bfd_boolean
9064 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
9065 const char *name)
9066 {
9067 /* Normal local symbols start with ``.L''. */
9068 if (name[0] == '.' && name[1] == 'L')
9069 return TRUE;
9070
9071 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
9072 DWARF debugging symbols starting with ``..''. */
9073 if (name[0] == '.' && name[1] == '.')
9074 return TRUE;
9075
9076 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
9077 emitting DWARF debugging output. I suspect this is actually a
9078 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
9079 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
9080 underscore to be emitted on some ELF targets). For ease of use,
9081 we treat such symbols as local. */
9082 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
9083 return TRUE;
9084
9085 /* Treat assembler generated fake symbols, dollar local labels and
9086 forward-backward labels (aka local labels) as locals.
9087 These labels have the form:
9088
9089 L0^A.* (fake symbols)
9090
9091 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
9092
9093 Versions which start with .L will have already been matched above,
9094 so we only need to match the rest. */
9095 if (name[0] == 'L' && ISDIGIT (name[1]))
9096 {
9097 bfd_boolean ret = FALSE;
9098 const char * p;
9099 char c;
9100
9101 for (p = name + 2; (c = *p); p++)
9102 {
9103 if (c == 1 || c == 2)
9104 {
9105 if (c == 1 && p == name + 2)
9106 /* A fake symbol. */
9107 return TRUE;
9108
9109 /* FIXME: We are being paranoid here and treating symbols like
9110 L0^Bfoo as if there were non-local, on the grounds that the
9111 assembler will never generate them. But can any symbol
9112 containing an ASCII value in the range 1-31 ever be anything
9113 other than some kind of local ? */
9114 ret = TRUE;
9115 }
9116
9117 if (! ISDIGIT (c))
9118 {
9119 ret = FALSE;
9120 break;
9121 }
9122 }
9123 return ret;
9124 }
9125
9126 return FALSE;
9127 }
9128
9129 alent *
9130 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9131 asymbol *symbol ATTRIBUTE_UNUSED)
9132 {
9133 abort ();
9134 return NULL;
9135 }
9136
9137 bfd_boolean
9138 _bfd_elf_set_arch_mach (bfd *abfd,
9139 enum bfd_architecture arch,
9140 unsigned long machine)
9141 {
9142 /* If this isn't the right architecture for this backend, and this
9143 isn't the generic backend, fail. */
9144 if (arch != get_elf_backend_data (abfd)->arch
9145 && arch != bfd_arch_unknown
9146 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9147 return FALSE;
9148
9149 return bfd_default_set_arch_mach (abfd, arch, machine);
9150 }
9151
9152 /* Find the nearest line to a particular section and offset,
9153 for error reporting. */
9154
9155 bfd_boolean
9156 _bfd_elf_find_nearest_line (bfd *abfd,
9157 asymbol **symbols,
9158 asection *section,
9159 bfd_vma offset,
9160 const char **filename_ptr,
9161 const char **functionname_ptr,
9162 unsigned int *line_ptr,
9163 unsigned int *discriminator_ptr)
9164 {
9165 bfd_boolean found;
9166
9167 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9168 filename_ptr, functionname_ptr,
9169 line_ptr, discriminator_ptr,
9170 dwarf_debug_sections,
9171 &elf_tdata (abfd)->dwarf2_find_line_info))
9172 return TRUE;
9173
9174 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9175 filename_ptr, functionname_ptr, line_ptr))
9176 {
9177 if (!*functionname_ptr)
9178 _bfd_elf_find_function (abfd, symbols, section, offset,
9179 *filename_ptr ? NULL : filename_ptr,
9180 functionname_ptr);
9181 return TRUE;
9182 }
9183
9184 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9185 &found, filename_ptr,
9186 functionname_ptr, line_ptr,
9187 &elf_tdata (abfd)->line_info))
9188 return FALSE;
9189 if (found && (*functionname_ptr || *line_ptr))
9190 return TRUE;
9191
9192 if (symbols == NULL)
9193 return FALSE;
9194
9195 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9196 filename_ptr, functionname_ptr))
9197 return FALSE;
9198
9199 *line_ptr = 0;
9200 return TRUE;
9201 }
9202
9203 /* Find the line for a symbol. */
9204
9205 bfd_boolean
9206 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9207 const char **filename_ptr, unsigned int *line_ptr)
9208 {
9209 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9210 filename_ptr, NULL, line_ptr, NULL,
9211 dwarf_debug_sections,
9212 &elf_tdata (abfd)->dwarf2_find_line_info);
9213 }
9214
9215 /* After a call to bfd_find_nearest_line, successive calls to
9216 bfd_find_inliner_info can be used to get source information about
9217 each level of function inlining that terminated at the address
9218 passed to bfd_find_nearest_line. Currently this is only supported
9219 for DWARF2 with appropriate DWARF3 extensions. */
9220
9221 bfd_boolean
9222 _bfd_elf_find_inliner_info (bfd *abfd,
9223 const char **filename_ptr,
9224 const char **functionname_ptr,
9225 unsigned int *line_ptr)
9226 {
9227 bfd_boolean found;
9228 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9229 functionname_ptr, line_ptr,
9230 & elf_tdata (abfd)->dwarf2_find_line_info);
9231 return found;
9232 }
9233
9234 int
9235 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9236 {
9237 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9238 int ret = bed->s->sizeof_ehdr;
9239
9240 if (!bfd_link_relocatable (info))
9241 {
9242 bfd_size_type phdr_size = elf_program_header_size (abfd);
9243
9244 if (phdr_size == (bfd_size_type) -1)
9245 {
9246 struct elf_segment_map *m;
9247
9248 phdr_size = 0;
9249 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9250 phdr_size += bed->s->sizeof_phdr;
9251
9252 if (phdr_size == 0)
9253 phdr_size = get_program_header_size (abfd, info);
9254 }
9255
9256 elf_program_header_size (abfd) = phdr_size;
9257 ret += phdr_size;
9258 }
9259
9260 return ret;
9261 }
9262
9263 bfd_boolean
9264 _bfd_elf_set_section_contents (bfd *abfd,
9265 sec_ptr section,
9266 const void *location,
9267 file_ptr offset,
9268 bfd_size_type count)
9269 {
9270 Elf_Internal_Shdr *hdr;
9271 file_ptr pos;
9272
9273 if (! abfd->output_has_begun
9274 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9275 return FALSE;
9276
9277 if (!count)
9278 return TRUE;
9279
9280 hdr = &elf_section_data (section)->this_hdr;
9281 if (hdr->sh_offset == (file_ptr) -1)
9282 {
9283 unsigned char *contents;
9284
9285 if (bfd_section_is_ctf (section))
9286 /* Nothing to do with this section: the contents are generated
9287 later. */
9288 return TRUE;
9289
9290 if ((section->flags & SEC_ELF_COMPRESS) == 0)
9291 {
9292 _bfd_error_handler
9293 (_("%pB:%pA: error: attempting to write into an unallocated compressed section"),
9294 abfd, section);
9295 bfd_set_error (bfd_error_invalid_operation);
9296 return FALSE;
9297 }
9298
9299 if ((offset + count) > hdr->sh_size)
9300 {
9301 _bfd_error_handler
9302 (_("%pB:%pA: error: attempting to write over the end of the section"),
9303 abfd, section);
9304
9305 bfd_set_error (bfd_error_invalid_operation);
9306 return FALSE;
9307 }
9308
9309 contents = hdr->contents;
9310 if (contents == NULL)
9311 {
9312 _bfd_error_handler
9313 (_("%pB:%pA: error: attempting to write section into an empty buffer"),
9314 abfd, section);
9315
9316 bfd_set_error (bfd_error_invalid_operation);
9317 return FALSE;
9318 }
9319
9320 memcpy (contents + offset, location, count);
9321 return TRUE;
9322 }
9323
9324 pos = hdr->sh_offset + offset;
9325 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9326 || bfd_bwrite (location, count, abfd) != count)
9327 return FALSE;
9328
9329 return TRUE;
9330 }
9331
9332 bfd_boolean
9333 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9334 arelent *cache_ptr ATTRIBUTE_UNUSED,
9335 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9336 {
9337 abort ();
9338 return FALSE;
9339 }
9340
9341 /* Try to convert a non-ELF reloc into an ELF one. */
9342
9343 bfd_boolean
9344 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9345 {
9346 /* Check whether we really have an ELF howto. */
9347
9348 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9349 {
9350 bfd_reloc_code_real_type code;
9351 reloc_howto_type *howto;
9352
9353 /* Alien reloc: Try to determine its type to replace it with an
9354 equivalent ELF reloc. */
9355
9356 if (areloc->howto->pc_relative)
9357 {
9358 switch (areloc->howto->bitsize)
9359 {
9360 case 8:
9361 code = BFD_RELOC_8_PCREL;
9362 break;
9363 case 12:
9364 code = BFD_RELOC_12_PCREL;
9365 break;
9366 case 16:
9367 code = BFD_RELOC_16_PCREL;
9368 break;
9369 case 24:
9370 code = BFD_RELOC_24_PCREL;
9371 break;
9372 case 32:
9373 code = BFD_RELOC_32_PCREL;
9374 break;
9375 case 64:
9376 code = BFD_RELOC_64_PCREL;
9377 break;
9378 default:
9379 goto fail;
9380 }
9381
9382 howto = bfd_reloc_type_lookup (abfd, code);
9383
9384 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9385 {
9386 if (howto->pcrel_offset)
9387 areloc->addend += areloc->address;
9388 else
9389 areloc->addend -= areloc->address; /* addend is unsigned!! */
9390 }
9391 }
9392 else
9393 {
9394 switch (areloc->howto->bitsize)
9395 {
9396 case 8:
9397 code = BFD_RELOC_8;
9398 break;
9399 case 14:
9400 code = BFD_RELOC_14;
9401 break;
9402 case 16:
9403 code = BFD_RELOC_16;
9404 break;
9405 case 26:
9406 code = BFD_RELOC_26;
9407 break;
9408 case 32:
9409 code = BFD_RELOC_32;
9410 break;
9411 case 64:
9412 code = BFD_RELOC_64;
9413 break;
9414 default:
9415 goto fail;
9416 }
9417
9418 howto = bfd_reloc_type_lookup (abfd, code);
9419 }
9420
9421 if (howto)
9422 areloc->howto = howto;
9423 else
9424 goto fail;
9425 }
9426
9427 return TRUE;
9428
9429 fail:
9430 /* xgettext:c-format */
9431 _bfd_error_handler (_("%pB: %s unsupported"),
9432 abfd, areloc->howto->name);
9433 bfd_set_error (bfd_error_sorry);
9434 return FALSE;
9435 }
9436
9437 bfd_boolean
9438 _bfd_elf_close_and_cleanup (bfd *abfd)
9439 {
9440 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9441 if (tdata != NULL
9442 && (bfd_get_format (abfd) == bfd_object
9443 || bfd_get_format (abfd) == bfd_core))
9444 {
9445 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9446 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9447 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9448 }
9449
9450 return _bfd_generic_close_and_cleanup (abfd);
9451 }
9452
9453 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9454 in the relocation's offset. Thus we cannot allow any sort of sanity
9455 range-checking to interfere. There is nothing else to do in processing
9456 this reloc. */
9457
9458 bfd_reloc_status_type
9459 _bfd_elf_rel_vtable_reloc_fn
9460 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9461 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9462 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9463 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9464 {
9465 return bfd_reloc_ok;
9466 }
9467 \f
9468 /* Elf core file support. Much of this only works on native
9469 toolchains, since we rely on knowing the
9470 machine-dependent procfs structure in order to pick
9471 out details about the corefile. */
9472
9473 #ifdef HAVE_SYS_PROCFS_H
9474 /* Needed for new procfs interface on sparc-solaris. */
9475 # define _STRUCTURED_PROC 1
9476 # include <sys/procfs.h>
9477 #endif
9478
9479 /* Return a PID that identifies a "thread" for threaded cores, or the
9480 PID of the main process for non-threaded cores. */
9481
9482 static int
9483 elfcore_make_pid (bfd *abfd)
9484 {
9485 int pid;
9486
9487 pid = elf_tdata (abfd)->core->lwpid;
9488 if (pid == 0)
9489 pid = elf_tdata (abfd)->core->pid;
9490
9491 return pid;
9492 }
9493
9494 /* If there isn't a section called NAME, make one, using
9495 data from SECT. Note, this function will generate a
9496 reference to NAME, so you shouldn't deallocate or
9497 overwrite it. */
9498
9499 static bfd_boolean
9500 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9501 {
9502 asection *sect2;
9503
9504 if (bfd_get_section_by_name (abfd, name) != NULL)
9505 return TRUE;
9506
9507 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9508 if (sect2 == NULL)
9509 return FALSE;
9510
9511 sect2->size = sect->size;
9512 sect2->filepos = sect->filepos;
9513 sect2->alignment_power = sect->alignment_power;
9514 return TRUE;
9515 }
9516
9517 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9518 actually creates up to two pseudosections:
9519 - For the single-threaded case, a section named NAME, unless
9520 such a section already exists.
9521 - For the multi-threaded case, a section named "NAME/PID", where
9522 PID is elfcore_make_pid (abfd).
9523 Both pseudosections have identical contents. */
9524 bfd_boolean
9525 _bfd_elfcore_make_pseudosection (bfd *abfd,
9526 char *name,
9527 size_t size,
9528 ufile_ptr filepos)
9529 {
9530 char buf[100];
9531 char *threaded_name;
9532 size_t len;
9533 asection *sect;
9534
9535 /* Build the section name. */
9536
9537 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9538 len = strlen (buf) + 1;
9539 threaded_name = (char *) bfd_alloc (abfd, len);
9540 if (threaded_name == NULL)
9541 return FALSE;
9542 memcpy (threaded_name, buf, len);
9543
9544 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9545 SEC_HAS_CONTENTS);
9546 if (sect == NULL)
9547 return FALSE;
9548 sect->size = size;
9549 sect->filepos = filepos;
9550 sect->alignment_power = 2;
9551
9552 return elfcore_maybe_make_sect (abfd, name, sect);
9553 }
9554
9555 static bfd_boolean
9556 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9557 size_t offs)
9558 {
9559 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9560 SEC_HAS_CONTENTS);
9561
9562 if (sect == NULL)
9563 return FALSE;
9564
9565 sect->size = note->descsz - offs;
9566 sect->filepos = note->descpos + offs;
9567 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9568
9569 return TRUE;
9570 }
9571
9572 /* prstatus_t exists on:
9573 solaris 2.5+
9574 linux 2.[01] + glibc
9575 unixware 4.2
9576 */
9577
9578 #if defined (HAVE_PRSTATUS_T)
9579
9580 static bfd_boolean
9581 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9582 {
9583 size_t size;
9584 int offset;
9585
9586 if (note->descsz == sizeof (prstatus_t))
9587 {
9588 prstatus_t prstat;
9589
9590 size = sizeof (prstat.pr_reg);
9591 offset = offsetof (prstatus_t, pr_reg);
9592 memcpy (&prstat, note->descdata, sizeof (prstat));
9593
9594 /* Do not overwrite the core signal if it
9595 has already been set by another thread. */
9596 if (elf_tdata (abfd)->core->signal == 0)
9597 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9598 if (elf_tdata (abfd)->core->pid == 0)
9599 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9600
9601 /* pr_who exists on:
9602 solaris 2.5+
9603 unixware 4.2
9604 pr_who doesn't exist on:
9605 linux 2.[01]
9606 */
9607 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9608 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9609 #else
9610 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9611 #endif
9612 }
9613 #if defined (HAVE_PRSTATUS32_T)
9614 else if (note->descsz == sizeof (prstatus32_t))
9615 {
9616 /* 64-bit host, 32-bit corefile */
9617 prstatus32_t prstat;
9618
9619 size = sizeof (prstat.pr_reg);
9620 offset = offsetof (prstatus32_t, pr_reg);
9621 memcpy (&prstat, note->descdata, sizeof (prstat));
9622
9623 /* Do not overwrite the core signal if it
9624 has already been set by another thread. */
9625 if (elf_tdata (abfd)->core->signal == 0)
9626 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9627 if (elf_tdata (abfd)->core->pid == 0)
9628 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9629
9630 /* pr_who exists on:
9631 solaris 2.5+
9632 unixware 4.2
9633 pr_who doesn't exist on:
9634 linux 2.[01]
9635 */
9636 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9637 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9638 #else
9639 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9640 #endif
9641 }
9642 #endif /* HAVE_PRSTATUS32_T */
9643 else
9644 {
9645 /* Fail - we don't know how to handle any other
9646 note size (ie. data object type). */
9647 return TRUE;
9648 }
9649
9650 /* Make a ".reg/999" section and a ".reg" section. */
9651 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9652 size, note->descpos + offset);
9653 }
9654 #endif /* defined (HAVE_PRSTATUS_T) */
9655
9656 /* Create a pseudosection containing the exact contents of NOTE. */
9657 static bfd_boolean
9658 elfcore_make_note_pseudosection (bfd *abfd,
9659 char *name,
9660 Elf_Internal_Note *note)
9661 {
9662 return _bfd_elfcore_make_pseudosection (abfd, name,
9663 note->descsz, note->descpos);
9664 }
9665
9666 /* There isn't a consistent prfpregset_t across platforms,
9667 but it doesn't matter, because we don't have to pick this
9668 data structure apart. */
9669
9670 static bfd_boolean
9671 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9672 {
9673 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9674 }
9675
9676 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9677 type of NT_PRXFPREG. Just include the whole note's contents
9678 literally. */
9679
9680 static bfd_boolean
9681 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9682 {
9683 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9684 }
9685
9686 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9687 with a note type of NT_X86_XSTATE. Just include the whole note's
9688 contents literally. */
9689
9690 static bfd_boolean
9691 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9692 {
9693 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9694 }
9695
9696 static bfd_boolean
9697 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9698 {
9699 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9700 }
9701
9702 static bfd_boolean
9703 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9704 {
9705 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9706 }
9707
9708 static bfd_boolean
9709 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9710 {
9711 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9712 }
9713
9714 static bfd_boolean
9715 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9716 {
9717 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9718 }
9719
9720 static bfd_boolean
9721 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9722 {
9723 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9724 }
9725
9726 static bfd_boolean
9727 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9728 {
9729 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9730 }
9731
9732 static bfd_boolean
9733 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9734 {
9735 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9736 }
9737
9738 static bfd_boolean
9739 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9740 {
9741 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9742 }
9743
9744 static bfd_boolean
9745 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9746 {
9747 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9748 }
9749
9750 static bfd_boolean
9751 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9752 {
9753 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9754 }
9755
9756 static bfd_boolean
9757 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9758 {
9759 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9760 }
9761
9762 static bfd_boolean
9763 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9764 {
9765 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9766 }
9767
9768 static bfd_boolean
9769 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9770 {
9771 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9772 }
9773
9774 static bfd_boolean
9775 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9776 {
9777 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9778 }
9779
9780 static bfd_boolean
9781 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9782 {
9783 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9784 }
9785
9786 static bfd_boolean
9787 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9788 {
9789 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9790 }
9791
9792 static bfd_boolean
9793 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9794 {
9795 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9796 }
9797
9798 static bfd_boolean
9799 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9800 {
9801 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9802 }
9803
9804 static bfd_boolean
9805 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9806 {
9807 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9808 }
9809
9810 static bfd_boolean
9811 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9812 {
9813 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9814 }
9815
9816 static bfd_boolean
9817 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9818 {
9819 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9820 }
9821
9822 static bfd_boolean
9823 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9824 {
9825 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9826 }
9827
9828 static bfd_boolean
9829 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9830 {
9831 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9832 }
9833
9834 static bfd_boolean
9835 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9836 {
9837 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9838 }
9839
9840 static bfd_boolean
9841 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9842 {
9843 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9844 }
9845
9846 static bfd_boolean
9847 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9848 {
9849 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9850 }
9851
9852 static bfd_boolean
9853 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9854 {
9855 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9856 }
9857
9858 static bfd_boolean
9859 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9860 {
9861 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9862 }
9863
9864 static bfd_boolean
9865 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9866 {
9867 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9868 }
9869
9870 static bfd_boolean
9871 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9872 {
9873 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9874 }
9875
9876 static bfd_boolean
9877 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9878 {
9879 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9880 }
9881
9882 static bfd_boolean
9883 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9884 {
9885 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9886 }
9887
9888 static bfd_boolean
9889 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9890 {
9891 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9892 }
9893
9894 static bfd_boolean
9895 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9896 {
9897 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9898 }
9899
9900 static bfd_boolean
9901 elfcore_grok_arc_v2 (bfd *abfd, Elf_Internal_Note *note)
9902 {
9903 return elfcore_make_note_pseudosection (abfd, ".reg-arc-v2", note);
9904 }
9905
9906 #if defined (HAVE_PRPSINFO_T)
9907 typedef prpsinfo_t elfcore_psinfo_t;
9908 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9909 typedef prpsinfo32_t elfcore_psinfo32_t;
9910 #endif
9911 #endif
9912
9913 #if defined (HAVE_PSINFO_T)
9914 typedef psinfo_t elfcore_psinfo_t;
9915 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9916 typedef psinfo32_t elfcore_psinfo32_t;
9917 #endif
9918 #endif
9919
9920 /* return a malloc'ed copy of a string at START which is at
9921 most MAX bytes long, possibly without a terminating '\0'.
9922 the copy will always have a terminating '\0'. */
9923
9924 char *
9925 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9926 {
9927 char *dups;
9928 char *end = (char *) memchr (start, '\0', max);
9929 size_t len;
9930
9931 if (end == NULL)
9932 len = max;
9933 else
9934 len = end - start;
9935
9936 dups = (char *) bfd_alloc (abfd, len + 1);
9937 if (dups == NULL)
9938 return NULL;
9939
9940 memcpy (dups, start, len);
9941 dups[len] = '\0';
9942
9943 return dups;
9944 }
9945
9946 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9947 static bfd_boolean
9948 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9949 {
9950 if (note->descsz == sizeof (elfcore_psinfo_t))
9951 {
9952 elfcore_psinfo_t psinfo;
9953
9954 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9955
9956 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9957 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9958 #endif
9959 elf_tdata (abfd)->core->program
9960 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9961 sizeof (psinfo.pr_fname));
9962
9963 elf_tdata (abfd)->core->command
9964 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9965 sizeof (psinfo.pr_psargs));
9966 }
9967 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9968 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9969 {
9970 /* 64-bit host, 32-bit corefile */
9971 elfcore_psinfo32_t psinfo;
9972
9973 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9974
9975 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9976 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9977 #endif
9978 elf_tdata (abfd)->core->program
9979 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9980 sizeof (psinfo.pr_fname));
9981
9982 elf_tdata (abfd)->core->command
9983 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9984 sizeof (psinfo.pr_psargs));
9985 }
9986 #endif
9987
9988 else
9989 {
9990 /* Fail - we don't know how to handle any other
9991 note size (ie. data object type). */
9992 return TRUE;
9993 }
9994
9995 /* Note that for some reason, a spurious space is tacked
9996 onto the end of the args in some (at least one anyway)
9997 implementations, so strip it off if it exists. */
9998
9999 {
10000 char *command = elf_tdata (abfd)->core->command;
10001 int n = strlen (command);
10002
10003 if (0 < n && command[n - 1] == ' ')
10004 command[n - 1] = '\0';
10005 }
10006
10007 return TRUE;
10008 }
10009 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
10010
10011 #if defined (HAVE_PSTATUS_T)
10012 static bfd_boolean
10013 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
10014 {
10015 if (note->descsz == sizeof (pstatus_t)
10016 #if defined (HAVE_PXSTATUS_T)
10017 || note->descsz == sizeof (pxstatus_t)
10018 #endif
10019 )
10020 {
10021 pstatus_t pstat;
10022
10023 memcpy (&pstat, note->descdata, sizeof (pstat));
10024
10025 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10026 }
10027 #if defined (HAVE_PSTATUS32_T)
10028 else if (note->descsz == sizeof (pstatus32_t))
10029 {
10030 /* 64-bit host, 32-bit corefile */
10031 pstatus32_t pstat;
10032
10033 memcpy (&pstat, note->descdata, sizeof (pstat));
10034
10035 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10036 }
10037 #endif
10038 /* Could grab some more details from the "representative"
10039 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
10040 NT_LWPSTATUS note, presumably. */
10041
10042 return TRUE;
10043 }
10044 #endif /* defined (HAVE_PSTATUS_T) */
10045
10046 #if defined (HAVE_LWPSTATUS_T)
10047 static bfd_boolean
10048 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
10049 {
10050 lwpstatus_t lwpstat;
10051 char buf[100];
10052 char *name;
10053 size_t len;
10054 asection *sect;
10055
10056 if (note->descsz != sizeof (lwpstat)
10057 #if defined (HAVE_LWPXSTATUS_T)
10058 && note->descsz != sizeof (lwpxstatus_t)
10059 #endif
10060 )
10061 return TRUE;
10062
10063 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
10064
10065 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
10066 /* Do not overwrite the core signal if it has already been set by
10067 another thread. */
10068 if (elf_tdata (abfd)->core->signal == 0)
10069 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
10070
10071 /* Make a ".reg/999" section. */
10072
10073 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
10074 len = strlen (buf) + 1;
10075 name = bfd_alloc (abfd, len);
10076 if (name == NULL)
10077 return FALSE;
10078 memcpy (name, buf, len);
10079
10080 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10081 if (sect == NULL)
10082 return FALSE;
10083
10084 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10085 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
10086 sect->filepos = note->descpos
10087 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
10088 #endif
10089
10090 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10091 sect->size = sizeof (lwpstat.pr_reg);
10092 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
10093 #endif
10094
10095 sect->alignment_power = 2;
10096
10097 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
10098 return FALSE;
10099
10100 /* Make a ".reg2/999" section */
10101
10102 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
10103 len = strlen (buf) + 1;
10104 name = bfd_alloc (abfd, len);
10105 if (name == NULL)
10106 return FALSE;
10107 memcpy (name, buf, len);
10108
10109 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10110 if (sect == NULL)
10111 return FALSE;
10112
10113 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10114 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
10115 sect->filepos = note->descpos
10116 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
10117 #endif
10118
10119 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
10120 sect->size = sizeof (lwpstat.pr_fpreg);
10121 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
10122 #endif
10123
10124 sect->alignment_power = 2;
10125
10126 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
10127 }
10128 #endif /* defined (HAVE_LWPSTATUS_T) */
10129
10130 static bfd_boolean
10131 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
10132 {
10133 char buf[30];
10134 char *name;
10135 size_t len;
10136 asection *sect;
10137 int type;
10138 int is_active_thread;
10139 bfd_vma base_addr;
10140
10141 if (note->descsz < 728)
10142 return TRUE;
10143
10144 if (! CONST_STRNEQ (note->namedata, "win32"))
10145 return TRUE;
10146
10147 type = bfd_get_32 (abfd, note->descdata);
10148
10149 switch (type)
10150 {
10151 case 1 /* NOTE_INFO_PROCESS */:
10152 /* FIXME: need to add ->core->command. */
10153 /* process_info.pid */
10154 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
10155 /* process_info.signal */
10156 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
10157 break;
10158
10159 case 2 /* NOTE_INFO_THREAD */:
10160 /* Make a ".reg/999" section. */
10161 /* thread_info.tid */
10162 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
10163
10164 len = strlen (buf) + 1;
10165 name = (char *) bfd_alloc (abfd, len);
10166 if (name == NULL)
10167 return FALSE;
10168
10169 memcpy (name, buf, len);
10170
10171 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10172 if (sect == NULL)
10173 return FALSE;
10174
10175 /* sizeof (thread_info.thread_context) */
10176 sect->size = 716;
10177 /* offsetof (thread_info.thread_context) */
10178 sect->filepos = note->descpos + 12;
10179 sect->alignment_power = 2;
10180
10181 /* thread_info.is_active_thread */
10182 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10183
10184 if (is_active_thread)
10185 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10186 return FALSE;
10187 break;
10188
10189 case 3 /* NOTE_INFO_MODULE */:
10190 /* Make a ".module/xxxxxxxx" section. */
10191 /* module_info.base_address */
10192 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10193 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10194
10195 len = strlen (buf) + 1;
10196 name = (char *) bfd_alloc (abfd, len);
10197 if (name == NULL)
10198 return FALSE;
10199
10200 memcpy (name, buf, len);
10201
10202 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10203
10204 if (sect == NULL)
10205 return FALSE;
10206
10207 sect->size = note->descsz;
10208 sect->filepos = note->descpos;
10209 sect->alignment_power = 2;
10210 break;
10211
10212 default:
10213 return TRUE;
10214 }
10215
10216 return TRUE;
10217 }
10218
10219 static bfd_boolean
10220 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10221 {
10222 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10223
10224 switch (note->type)
10225 {
10226 default:
10227 return TRUE;
10228
10229 case NT_PRSTATUS:
10230 if (bed->elf_backend_grok_prstatus)
10231 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10232 return TRUE;
10233 #if defined (HAVE_PRSTATUS_T)
10234 return elfcore_grok_prstatus (abfd, note);
10235 #else
10236 return TRUE;
10237 #endif
10238
10239 #if defined (HAVE_PSTATUS_T)
10240 case NT_PSTATUS:
10241 return elfcore_grok_pstatus (abfd, note);
10242 #endif
10243
10244 #if defined (HAVE_LWPSTATUS_T)
10245 case NT_LWPSTATUS:
10246 return elfcore_grok_lwpstatus (abfd, note);
10247 #endif
10248
10249 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10250 return elfcore_grok_prfpreg (abfd, note);
10251
10252 case NT_WIN32PSTATUS:
10253 return elfcore_grok_win32pstatus (abfd, note);
10254
10255 case NT_PRXFPREG: /* Linux SSE extension */
10256 if (note->namesz == 6
10257 && strcmp (note->namedata, "LINUX") == 0)
10258 return elfcore_grok_prxfpreg (abfd, note);
10259 else
10260 return TRUE;
10261
10262 case NT_X86_XSTATE: /* Linux XSAVE extension */
10263 if (note->namesz == 6
10264 && strcmp (note->namedata, "LINUX") == 0)
10265 return elfcore_grok_xstatereg (abfd, note);
10266 else
10267 return TRUE;
10268
10269 case NT_PPC_VMX:
10270 if (note->namesz == 6
10271 && strcmp (note->namedata, "LINUX") == 0)
10272 return elfcore_grok_ppc_vmx (abfd, note);
10273 else
10274 return TRUE;
10275
10276 case NT_PPC_VSX:
10277 if (note->namesz == 6
10278 && strcmp (note->namedata, "LINUX") == 0)
10279 return elfcore_grok_ppc_vsx (abfd, note);
10280 else
10281 return TRUE;
10282
10283 case NT_PPC_TAR:
10284 if (note->namesz == 6
10285 && strcmp (note->namedata, "LINUX") == 0)
10286 return elfcore_grok_ppc_tar (abfd, note);
10287 else
10288 return TRUE;
10289
10290 case NT_PPC_PPR:
10291 if (note->namesz == 6
10292 && strcmp (note->namedata, "LINUX") == 0)
10293 return elfcore_grok_ppc_ppr (abfd, note);
10294 else
10295 return TRUE;
10296
10297 case NT_PPC_DSCR:
10298 if (note->namesz == 6
10299 && strcmp (note->namedata, "LINUX") == 0)
10300 return elfcore_grok_ppc_dscr (abfd, note);
10301 else
10302 return TRUE;
10303
10304 case NT_PPC_EBB:
10305 if (note->namesz == 6
10306 && strcmp (note->namedata, "LINUX") == 0)
10307 return elfcore_grok_ppc_ebb (abfd, note);
10308 else
10309 return TRUE;
10310
10311 case NT_PPC_PMU:
10312 if (note->namesz == 6
10313 && strcmp (note->namedata, "LINUX") == 0)
10314 return elfcore_grok_ppc_pmu (abfd, note);
10315 else
10316 return TRUE;
10317
10318 case NT_PPC_TM_CGPR:
10319 if (note->namesz == 6
10320 && strcmp (note->namedata, "LINUX") == 0)
10321 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10322 else
10323 return TRUE;
10324
10325 case NT_PPC_TM_CFPR:
10326 if (note->namesz == 6
10327 && strcmp (note->namedata, "LINUX") == 0)
10328 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10329 else
10330 return TRUE;
10331
10332 case NT_PPC_TM_CVMX:
10333 if (note->namesz == 6
10334 && strcmp (note->namedata, "LINUX") == 0)
10335 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10336 else
10337 return TRUE;
10338
10339 case NT_PPC_TM_CVSX:
10340 if (note->namesz == 6
10341 && strcmp (note->namedata, "LINUX") == 0)
10342 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10343 else
10344 return TRUE;
10345
10346 case NT_PPC_TM_SPR:
10347 if (note->namesz == 6
10348 && strcmp (note->namedata, "LINUX") == 0)
10349 return elfcore_grok_ppc_tm_spr (abfd, note);
10350 else
10351 return TRUE;
10352
10353 case NT_PPC_TM_CTAR:
10354 if (note->namesz == 6
10355 && strcmp (note->namedata, "LINUX") == 0)
10356 return elfcore_grok_ppc_tm_ctar (abfd, note);
10357 else
10358 return TRUE;
10359
10360 case NT_PPC_TM_CPPR:
10361 if (note->namesz == 6
10362 && strcmp (note->namedata, "LINUX") == 0)
10363 return elfcore_grok_ppc_tm_cppr (abfd, note);
10364 else
10365 return TRUE;
10366
10367 case NT_PPC_TM_CDSCR:
10368 if (note->namesz == 6
10369 && strcmp (note->namedata, "LINUX") == 0)
10370 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10371 else
10372 return TRUE;
10373
10374 case NT_S390_HIGH_GPRS:
10375 if (note->namesz == 6
10376 && strcmp (note->namedata, "LINUX") == 0)
10377 return elfcore_grok_s390_high_gprs (abfd, note);
10378 else
10379 return TRUE;
10380
10381 case NT_S390_TIMER:
10382 if (note->namesz == 6
10383 && strcmp (note->namedata, "LINUX") == 0)
10384 return elfcore_grok_s390_timer (abfd, note);
10385 else
10386 return TRUE;
10387
10388 case NT_S390_TODCMP:
10389 if (note->namesz == 6
10390 && strcmp (note->namedata, "LINUX") == 0)
10391 return elfcore_grok_s390_todcmp (abfd, note);
10392 else
10393 return TRUE;
10394
10395 case NT_S390_TODPREG:
10396 if (note->namesz == 6
10397 && strcmp (note->namedata, "LINUX") == 0)
10398 return elfcore_grok_s390_todpreg (abfd, note);
10399 else
10400 return TRUE;
10401
10402 case NT_S390_CTRS:
10403 if (note->namesz == 6
10404 && strcmp (note->namedata, "LINUX") == 0)
10405 return elfcore_grok_s390_ctrs (abfd, note);
10406 else
10407 return TRUE;
10408
10409 case NT_S390_PREFIX:
10410 if (note->namesz == 6
10411 && strcmp (note->namedata, "LINUX") == 0)
10412 return elfcore_grok_s390_prefix (abfd, note);
10413 else
10414 return TRUE;
10415
10416 case NT_S390_LAST_BREAK:
10417 if (note->namesz == 6
10418 && strcmp (note->namedata, "LINUX") == 0)
10419 return elfcore_grok_s390_last_break (abfd, note);
10420 else
10421 return TRUE;
10422
10423 case NT_S390_SYSTEM_CALL:
10424 if (note->namesz == 6
10425 && strcmp (note->namedata, "LINUX") == 0)
10426 return elfcore_grok_s390_system_call (abfd, note);
10427 else
10428 return TRUE;
10429
10430 case NT_S390_TDB:
10431 if (note->namesz == 6
10432 && strcmp (note->namedata, "LINUX") == 0)
10433 return elfcore_grok_s390_tdb (abfd, note);
10434 else
10435 return TRUE;
10436
10437 case NT_S390_VXRS_LOW:
10438 if (note->namesz == 6
10439 && strcmp (note->namedata, "LINUX") == 0)
10440 return elfcore_grok_s390_vxrs_low (abfd, note);
10441 else
10442 return TRUE;
10443
10444 case NT_S390_VXRS_HIGH:
10445 if (note->namesz == 6
10446 && strcmp (note->namedata, "LINUX") == 0)
10447 return elfcore_grok_s390_vxrs_high (abfd, note);
10448 else
10449 return TRUE;
10450
10451 case NT_S390_GS_CB:
10452 if (note->namesz == 6
10453 && strcmp (note->namedata, "LINUX") == 0)
10454 return elfcore_grok_s390_gs_cb (abfd, note);
10455 else
10456 return TRUE;
10457
10458 case NT_S390_GS_BC:
10459 if (note->namesz == 6
10460 && strcmp (note->namedata, "LINUX") == 0)
10461 return elfcore_grok_s390_gs_bc (abfd, note);
10462 else
10463 return TRUE;
10464
10465 case NT_ARC_V2:
10466 if (note->namesz == 6
10467 && strcmp (note->namedata, "LINUX") == 0)
10468 return elfcore_grok_arc_v2 (abfd, note);
10469 else
10470 return TRUE;
10471
10472 case NT_ARM_VFP:
10473 if (note->namesz == 6
10474 && strcmp (note->namedata, "LINUX") == 0)
10475 return elfcore_grok_arm_vfp (abfd, note);
10476 else
10477 return TRUE;
10478
10479 case NT_ARM_TLS:
10480 if (note->namesz == 6
10481 && strcmp (note->namedata, "LINUX") == 0)
10482 return elfcore_grok_aarch_tls (abfd, note);
10483 else
10484 return TRUE;
10485
10486 case NT_ARM_HW_BREAK:
10487 if (note->namesz == 6
10488 && strcmp (note->namedata, "LINUX") == 0)
10489 return elfcore_grok_aarch_hw_break (abfd, note);
10490 else
10491 return TRUE;
10492
10493 case NT_ARM_HW_WATCH:
10494 if (note->namesz == 6
10495 && strcmp (note->namedata, "LINUX") == 0)
10496 return elfcore_grok_aarch_hw_watch (abfd, note);
10497 else
10498 return TRUE;
10499
10500 case NT_ARM_SVE:
10501 if (note->namesz == 6
10502 && strcmp (note->namedata, "LINUX") == 0)
10503 return elfcore_grok_aarch_sve (abfd, note);
10504 else
10505 return TRUE;
10506
10507 case NT_ARM_PAC_MASK:
10508 if (note->namesz == 6
10509 && strcmp (note->namedata, "LINUX") == 0)
10510 return elfcore_grok_aarch_pauth (abfd, note);
10511 else
10512 return TRUE;
10513
10514 case NT_PRPSINFO:
10515 case NT_PSINFO:
10516 if (bed->elf_backend_grok_psinfo)
10517 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10518 return TRUE;
10519 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10520 return elfcore_grok_psinfo (abfd, note);
10521 #else
10522 return TRUE;
10523 #endif
10524
10525 case NT_AUXV:
10526 return elfcore_make_auxv_note_section (abfd, note, 0);
10527
10528 case NT_FILE:
10529 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10530 note);
10531
10532 case NT_SIGINFO:
10533 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10534 note);
10535
10536 }
10537 }
10538
10539 static bfd_boolean
10540 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10541 {
10542 struct bfd_build_id* build_id;
10543
10544 if (note->descsz == 0)
10545 return FALSE;
10546
10547 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10548 if (build_id == NULL)
10549 return FALSE;
10550
10551 build_id->size = note->descsz;
10552 memcpy (build_id->data, note->descdata, note->descsz);
10553 abfd->build_id = build_id;
10554
10555 return TRUE;
10556 }
10557
10558 static bfd_boolean
10559 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10560 {
10561 switch (note->type)
10562 {
10563 default:
10564 return TRUE;
10565
10566 case NT_GNU_PROPERTY_TYPE_0:
10567 return _bfd_elf_parse_gnu_properties (abfd, note);
10568
10569 case NT_GNU_BUILD_ID:
10570 return elfobj_grok_gnu_build_id (abfd, note);
10571 }
10572 }
10573
10574 static bfd_boolean
10575 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10576 {
10577 struct sdt_note *cur =
10578 (struct sdt_note *) bfd_alloc (abfd,
10579 sizeof (struct sdt_note) + note->descsz);
10580
10581 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10582 cur->size = (bfd_size_type) note->descsz;
10583 memcpy (cur->data, note->descdata, note->descsz);
10584
10585 elf_tdata (abfd)->sdt_note_head = cur;
10586
10587 return TRUE;
10588 }
10589
10590 static bfd_boolean
10591 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10592 {
10593 switch (note->type)
10594 {
10595 case NT_STAPSDT:
10596 return elfobj_grok_stapsdt_note_1 (abfd, note);
10597
10598 default:
10599 return TRUE;
10600 }
10601 }
10602
10603 static bfd_boolean
10604 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10605 {
10606 size_t offset;
10607
10608 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10609 {
10610 case ELFCLASS32:
10611 if (note->descsz < 108)
10612 return FALSE;
10613 break;
10614
10615 case ELFCLASS64:
10616 if (note->descsz < 120)
10617 return FALSE;
10618 break;
10619
10620 default:
10621 return FALSE;
10622 }
10623
10624 /* Check for version 1 in pr_version. */
10625 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10626 return FALSE;
10627
10628 offset = 4;
10629
10630 /* Skip over pr_psinfosz. */
10631 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10632 offset += 4;
10633 else
10634 {
10635 offset += 4; /* Padding before pr_psinfosz. */
10636 offset += 8;
10637 }
10638
10639 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10640 elf_tdata (abfd)->core->program
10641 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10642 offset += 17;
10643
10644 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10645 elf_tdata (abfd)->core->command
10646 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10647 offset += 81;
10648
10649 /* Padding before pr_pid. */
10650 offset += 2;
10651
10652 /* The pr_pid field was added in version "1a". */
10653 if (note->descsz < offset + 4)
10654 return TRUE;
10655
10656 elf_tdata (abfd)->core->pid
10657 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10658
10659 return TRUE;
10660 }
10661
10662 static bfd_boolean
10663 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10664 {
10665 size_t offset;
10666 size_t size;
10667 size_t min_size;
10668
10669 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10670 Also compute minimum size of this note. */
10671 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10672 {
10673 case ELFCLASS32:
10674 offset = 4 + 4;
10675 min_size = offset + (4 * 2) + 4 + 4 + 4;
10676 break;
10677
10678 case ELFCLASS64:
10679 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10680 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10681 break;
10682
10683 default:
10684 return FALSE;
10685 }
10686
10687 if (note->descsz < min_size)
10688 return FALSE;
10689
10690 /* Check for version 1 in pr_version. */
10691 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10692 return FALSE;
10693
10694 /* Extract size of pr_reg from pr_gregsetsz. */
10695 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10696 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10697 {
10698 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10699 offset += 4 * 2;
10700 }
10701 else
10702 {
10703 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10704 offset += 8 * 2;
10705 }
10706
10707 /* Skip over pr_osreldate. */
10708 offset += 4;
10709
10710 /* Read signal from pr_cursig. */
10711 if (elf_tdata (abfd)->core->signal == 0)
10712 elf_tdata (abfd)->core->signal
10713 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10714 offset += 4;
10715
10716 /* Read TID from pr_pid. */
10717 elf_tdata (abfd)->core->lwpid
10718 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10719 offset += 4;
10720
10721 /* Padding before pr_reg. */
10722 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10723 offset += 4;
10724
10725 /* Make sure that there is enough data remaining in the note. */
10726 if ((note->descsz - offset) < size)
10727 return FALSE;
10728
10729 /* Make a ".reg/999" section and a ".reg" section. */
10730 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10731 size, note->descpos + offset);
10732 }
10733
10734 static bfd_boolean
10735 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10736 {
10737 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10738
10739 switch (note->type)
10740 {
10741 case NT_PRSTATUS:
10742 if (bed->elf_backend_grok_freebsd_prstatus)
10743 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10744 return TRUE;
10745 return elfcore_grok_freebsd_prstatus (abfd, note);
10746
10747 case NT_FPREGSET:
10748 return elfcore_grok_prfpreg (abfd, note);
10749
10750 case NT_PRPSINFO:
10751 return elfcore_grok_freebsd_psinfo (abfd, note);
10752
10753 case NT_FREEBSD_THRMISC:
10754 if (note->namesz == 8)
10755 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10756 else
10757 return TRUE;
10758
10759 case NT_FREEBSD_PROCSTAT_PROC:
10760 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10761 note);
10762
10763 case NT_FREEBSD_PROCSTAT_FILES:
10764 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10765 note);
10766
10767 case NT_FREEBSD_PROCSTAT_VMMAP:
10768 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10769 note);
10770
10771 case NT_FREEBSD_PROCSTAT_AUXV:
10772 return elfcore_make_auxv_note_section (abfd, note, 4);
10773
10774 case NT_X86_XSTATE:
10775 if (note->namesz == 8)
10776 return elfcore_grok_xstatereg (abfd, note);
10777 else
10778 return TRUE;
10779
10780 case NT_FREEBSD_PTLWPINFO:
10781 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10782 note);
10783
10784 case NT_ARM_VFP:
10785 return elfcore_grok_arm_vfp (abfd, note);
10786
10787 default:
10788 return TRUE;
10789 }
10790 }
10791
10792 static bfd_boolean
10793 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10794 {
10795 char *cp;
10796
10797 cp = strchr (note->namedata, '@');
10798 if (cp != NULL)
10799 {
10800 *lwpidp = atoi(cp + 1);
10801 return TRUE;
10802 }
10803 return FALSE;
10804 }
10805
10806 static bfd_boolean
10807 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10808 {
10809 if (note->descsz <= 0x7c + 31)
10810 return FALSE;
10811
10812 /* Signal number at offset 0x08. */
10813 elf_tdata (abfd)->core->signal
10814 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10815
10816 /* Process ID at offset 0x50. */
10817 elf_tdata (abfd)->core->pid
10818 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10819
10820 /* Command name at 0x7c (max 32 bytes, including nul). */
10821 elf_tdata (abfd)->core->command
10822 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10823
10824 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10825 note);
10826 }
10827
10828 static bfd_boolean
10829 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10830 {
10831 int lwp;
10832
10833 if (elfcore_netbsd_get_lwpid (note, &lwp))
10834 elf_tdata (abfd)->core->lwpid = lwp;
10835
10836 switch (note->type)
10837 {
10838 case NT_NETBSDCORE_PROCINFO:
10839 /* NetBSD-specific core "procinfo". Note that we expect to
10840 find this note before any of the others, which is fine,
10841 since the kernel writes this note out first when it
10842 creates a core file. */
10843 return elfcore_grok_netbsd_procinfo (abfd, note);
10844 #ifdef NT_NETBSDCORE_AUXV
10845 case NT_NETBSDCORE_AUXV:
10846 /* NetBSD-specific Elf Auxiliary Vector data. */
10847 return elfcore_make_auxv_note_section (abfd, note, 4);
10848 #endif
10849 #ifdef NT_NETBSDCORE_LWPSTATUS
10850 case NT_NETBSDCORE_LWPSTATUS:
10851 return elfcore_make_note_pseudosection (abfd,
10852 ".note.netbsdcore.lwpstatus",
10853 note);
10854 #endif
10855 default:
10856 break;
10857 }
10858
10859 /* As of March 2020 there are no other machine-independent notes
10860 defined for NetBSD core files. If the note type is less
10861 than the start of the machine-dependent note types, we don't
10862 understand it. */
10863
10864 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10865 return TRUE;
10866
10867
10868 switch (bfd_get_arch (abfd))
10869 {
10870 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10871 PT_GETFPREGS == mach+2. */
10872
10873 case bfd_arch_aarch64:
10874 case bfd_arch_alpha:
10875 case bfd_arch_sparc:
10876 switch (note->type)
10877 {
10878 case NT_NETBSDCORE_FIRSTMACH+0:
10879 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10880
10881 case NT_NETBSDCORE_FIRSTMACH+2:
10882 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10883
10884 default:
10885 return TRUE;
10886 }
10887
10888 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10889 There's also old PT___GETREGS40 == mach + 1 for old reg
10890 structure which lacks GBR. */
10891
10892 case bfd_arch_sh:
10893 switch (note->type)
10894 {
10895 case NT_NETBSDCORE_FIRSTMACH+3:
10896 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10897
10898 case NT_NETBSDCORE_FIRSTMACH+5:
10899 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10900
10901 default:
10902 return TRUE;
10903 }
10904
10905 /* On all other arch's, PT_GETREGS == mach+1 and
10906 PT_GETFPREGS == mach+3. */
10907
10908 default:
10909 switch (note->type)
10910 {
10911 case NT_NETBSDCORE_FIRSTMACH+1:
10912 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10913
10914 case NT_NETBSDCORE_FIRSTMACH+3:
10915 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10916
10917 default:
10918 return TRUE;
10919 }
10920 }
10921 /* NOTREACHED */
10922 }
10923
10924 static bfd_boolean
10925 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10926 {
10927 if (note->descsz <= 0x48 + 31)
10928 return FALSE;
10929
10930 /* Signal number at offset 0x08. */
10931 elf_tdata (abfd)->core->signal
10932 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10933
10934 /* Process ID at offset 0x20. */
10935 elf_tdata (abfd)->core->pid
10936 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10937
10938 /* Command name at 0x48 (max 32 bytes, including nul). */
10939 elf_tdata (abfd)->core->command
10940 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10941
10942 return TRUE;
10943 }
10944
10945 static bfd_boolean
10946 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10947 {
10948 if (note->type == NT_OPENBSD_PROCINFO)
10949 return elfcore_grok_openbsd_procinfo (abfd, note);
10950
10951 if (note->type == NT_OPENBSD_REGS)
10952 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10953
10954 if (note->type == NT_OPENBSD_FPREGS)
10955 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10956
10957 if (note->type == NT_OPENBSD_XFPREGS)
10958 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10959
10960 if (note->type == NT_OPENBSD_AUXV)
10961 return elfcore_make_auxv_note_section (abfd, note, 0);
10962
10963 if (note->type == NT_OPENBSD_WCOOKIE)
10964 {
10965 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10966 SEC_HAS_CONTENTS);
10967
10968 if (sect == NULL)
10969 return FALSE;
10970 sect->size = note->descsz;
10971 sect->filepos = note->descpos;
10972 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10973
10974 return TRUE;
10975 }
10976
10977 return TRUE;
10978 }
10979
10980 static bfd_boolean
10981 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10982 {
10983 void *ddata = note->descdata;
10984 char buf[100];
10985 char *name;
10986 asection *sect;
10987 short sig;
10988 unsigned flags;
10989
10990 if (note->descsz < 16)
10991 return FALSE;
10992
10993 /* nto_procfs_status 'pid' field is at offset 0. */
10994 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10995
10996 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10997 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10998
10999 /* nto_procfs_status 'flags' field is at offset 8. */
11000 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
11001
11002 /* nto_procfs_status 'what' field is at offset 14. */
11003 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
11004 {
11005 elf_tdata (abfd)->core->signal = sig;
11006 elf_tdata (abfd)->core->lwpid = *tid;
11007 }
11008
11009 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
11010 do not come from signals so we make sure we set the current
11011 thread just in case. */
11012 if (flags & 0x00000080)
11013 elf_tdata (abfd)->core->lwpid = *tid;
11014
11015 /* Make a ".qnx_core_status/%d" section. */
11016 sprintf (buf, ".qnx_core_status/%ld", *tid);
11017
11018 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11019 if (name == NULL)
11020 return FALSE;
11021 strcpy (name, buf);
11022
11023 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11024 if (sect == NULL)
11025 return FALSE;
11026
11027 sect->size = note->descsz;
11028 sect->filepos = note->descpos;
11029 sect->alignment_power = 2;
11030
11031 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
11032 }
11033
11034 static bfd_boolean
11035 elfcore_grok_nto_regs (bfd *abfd,
11036 Elf_Internal_Note *note,
11037 long tid,
11038 char *base)
11039 {
11040 char buf[100];
11041 char *name;
11042 asection *sect;
11043
11044 /* Make a "(base)/%d" section. */
11045 sprintf (buf, "%s/%ld", base, tid);
11046
11047 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11048 if (name == NULL)
11049 return FALSE;
11050 strcpy (name, buf);
11051
11052 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11053 if (sect == NULL)
11054 return FALSE;
11055
11056 sect->size = note->descsz;
11057 sect->filepos = note->descpos;
11058 sect->alignment_power = 2;
11059
11060 /* This is the current thread. */
11061 if (elf_tdata (abfd)->core->lwpid == tid)
11062 return elfcore_maybe_make_sect (abfd, base, sect);
11063
11064 return TRUE;
11065 }
11066
11067 #define BFD_QNT_CORE_INFO 7
11068 #define BFD_QNT_CORE_STATUS 8
11069 #define BFD_QNT_CORE_GREG 9
11070 #define BFD_QNT_CORE_FPREG 10
11071
11072 static bfd_boolean
11073 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
11074 {
11075 /* Every GREG section has a STATUS section before it. Store the
11076 tid from the previous call to pass down to the next gregs
11077 function. */
11078 static long tid = 1;
11079
11080 switch (note->type)
11081 {
11082 case BFD_QNT_CORE_INFO:
11083 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
11084 case BFD_QNT_CORE_STATUS:
11085 return elfcore_grok_nto_status (abfd, note, &tid);
11086 case BFD_QNT_CORE_GREG:
11087 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
11088 case BFD_QNT_CORE_FPREG:
11089 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
11090 default:
11091 return TRUE;
11092 }
11093 }
11094
11095 static bfd_boolean
11096 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
11097 {
11098 char *name;
11099 asection *sect;
11100 size_t len;
11101
11102 /* Use note name as section name. */
11103 len = note->namesz;
11104 name = (char *) bfd_alloc (abfd, len);
11105 if (name == NULL)
11106 return FALSE;
11107 memcpy (name, note->namedata, len);
11108 name[len - 1] = '\0';
11109
11110 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11111 if (sect == NULL)
11112 return FALSE;
11113
11114 sect->size = note->descsz;
11115 sect->filepos = note->descpos;
11116 sect->alignment_power = 1;
11117
11118 return TRUE;
11119 }
11120
11121 /* Function: elfcore_write_note
11122
11123 Inputs:
11124 buffer to hold note, and current size of buffer
11125 name of note
11126 type of note
11127 data for note
11128 size of data for note
11129
11130 Writes note to end of buffer. ELF64 notes are written exactly as
11131 for ELF32, despite the current (as of 2006) ELF gabi specifying
11132 that they ought to have 8-byte namesz and descsz field, and have
11133 8-byte alignment. Other writers, eg. Linux kernel, do the same.
11134
11135 Return:
11136 Pointer to realloc'd buffer, *BUFSIZ updated. */
11137
11138 char *
11139 elfcore_write_note (bfd *abfd,
11140 char *buf,
11141 int *bufsiz,
11142 const char *name,
11143 int type,
11144 const void *input,
11145 int size)
11146 {
11147 Elf_External_Note *xnp;
11148 size_t namesz;
11149 size_t newspace;
11150 char *dest;
11151
11152 namesz = 0;
11153 if (name != NULL)
11154 namesz = strlen (name) + 1;
11155
11156 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
11157
11158 buf = (char *) realloc (buf, *bufsiz + newspace);
11159 if (buf == NULL)
11160 return buf;
11161 dest = buf + *bufsiz;
11162 *bufsiz += newspace;
11163 xnp = (Elf_External_Note *) dest;
11164 H_PUT_32 (abfd, namesz, xnp->namesz);
11165 H_PUT_32 (abfd, size, xnp->descsz);
11166 H_PUT_32 (abfd, type, xnp->type);
11167 dest = xnp->name;
11168 if (name != NULL)
11169 {
11170 memcpy (dest, name, namesz);
11171 dest += namesz;
11172 while (namesz & 3)
11173 {
11174 *dest++ = '\0';
11175 ++namesz;
11176 }
11177 }
11178 memcpy (dest, input, size);
11179 dest += size;
11180 while (size & 3)
11181 {
11182 *dest++ = '\0';
11183 ++size;
11184 }
11185 return buf;
11186 }
11187
11188 /* gcc-8 warns (*) on all the strncpy calls in this function about
11189 possible string truncation. The "truncation" is not a bug. We
11190 have an external representation of structs with fields that are not
11191 necessarily NULL terminated and corresponding internal
11192 representation fields that are one larger so that they can always
11193 be NULL terminated.
11194 gcc versions between 4.2 and 4.6 do not allow pragma control of
11195 diagnostics inside functions, giving a hard error if you try to use
11196 the finer control available with later versions.
11197 gcc prior to 4.2 warns about diagnostic push and pop.
11198 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11199 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11200 (*) Depending on your system header files! */
11201 #if GCC_VERSION >= 8000
11202 # pragma GCC diagnostic push
11203 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11204 #endif
11205 char *
11206 elfcore_write_prpsinfo (bfd *abfd,
11207 char *buf,
11208 int *bufsiz,
11209 const char *fname,
11210 const char *psargs)
11211 {
11212 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11213
11214 if (bed->elf_backend_write_core_note != NULL)
11215 {
11216 char *ret;
11217 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11218 NT_PRPSINFO, fname, psargs);
11219 if (ret != NULL)
11220 return ret;
11221 }
11222
11223 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11224 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11225 if (bed->s->elfclass == ELFCLASS32)
11226 {
11227 # if defined (HAVE_PSINFO32_T)
11228 psinfo32_t data;
11229 int note_type = NT_PSINFO;
11230 # else
11231 prpsinfo32_t data;
11232 int note_type = NT_PRPSINFO;
11233 # endif
11234
11235 memset (&data, 0, sizeof (data));
11236 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11237 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11238 return elfcore_write_note (abfd, buf, bufsiz,
11239 "CORE", note_type, &data, sizeof (data));
11240 }
11241 else
11242 # endif
11243 {
11244 # if defined (HAVE_PSINFO_T)
11245 psinfo_t data;
11246 int note_type = NT_PSINFO;
11247 # else
11248 prpsinfo_t data;
11249 int note_type = NT_PRPSINFO;
11250 # endif
11251
11252 memset (&data, 0, sizeof (data));
11253 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11254 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11255 return elfcore_write_note (abfd, buf, bufsiz,
11256 "CORE", note_type, &data, sizeof (data));
11257 }
11258 #endif /* PSINFO_T or PRPSINFO_T */
11259
11260 free (buf);
11261 return NULL;
11262 }
11263 #if GCC_VERSION >= 8000
11264 # pragma GCC diagnostic pop
11265 #endif
11266
11267 char *
11268 elfcore_write_linux_prpsinfo32
11269 (bfd *abfd, char *buf, int *bufsiz,
11270 const struct elf_internal_linux_prpsinfo *prpsinfo)
11271 {
11272 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11273 {
11274 struct elf_external_linux_prpsinfo32_ugid16 data;
11275
11276 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11277 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11278 &data, sizeof (data));
11279 }
11280 else
11281 {
11282 struct elf_external_linux_prpsinfo32_ugid32 data;
11283
11284 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11285 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11286 &data, sizeof (data));
11287 }
11288 }
11289
11290 char *
11291 elfcore_write_linux_prpsinfo64
11292 (bfd *abfd, char *buf, int *bufsiz,
11293 const struct elf_internal_linux_prpsinfo *prpsinfo)
11294 {
11295 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11296 {
11297 struct elf_external_linux_prpsinfo64_ugid16 data;
11298
11299 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11300 return elfcore_write_note (abfd, buf, bufsiz,
11301 "CORE", NT_PRPSINFO, &data, sizeof (data));
11302 }
11303 else
11304 {
11305 struct elf_external_linux_prpsinfo64_ugid32 data;
11306
11307 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11308 return elfcore_write_note (abfd, buf, bufsiz,
11309 "CORE", NT_PRPSINFO, &data, sizeof (data));
11310 }
11311 }
11312
11313 char *
11314 elfcore_write_prstatus (bfd *abfd,
11315 char *buf,
11316 int *bufsiz,
11317 long pid,
11318 int cursig,
11319 const void *gregs)
11320 {
11321 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11322
11323 if (bed->elf_backend_write_core_note != NULL)
11324 {
11325 char *ret;
11326 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11327 NT_PRSTATUS,
11328 pid, cursig, gregs);
11329 if (ret != NULL)
11330 return ret;
11331 }
11332
11333 #if defined (HAVE_PRSTATUS_T)
11334 #if defined (HAVE_PRSTATUS32_T)
11335 if (bed->s->elfclass == ELFCLASS32)
11336 {
11337 prstatus32_t prstat;
11338
11339 memset (&prstat, 0, sizeof (prstat));
11340 prstat.pr_pid = pid;
11341 prstat.pr_cursig = cursig;
11342 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11343 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11344 NT_PRSTATUS, &prstat, sizeof (prstat));
11345 }
11346 else
11347 #endif
11348 {
11349 prstatus_t prstat;
11350
11351 memset (&prstat, 0, sizeof (prstat));
11352 prstat.pr_pid = pid;
11353 prstat.pr_cursig = cursig;
11354 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11355 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11356 NT_PRSTATUS, &prstat, sizeof (prstat));
11357 }
11358 #endif /* HAVE_PRSTATUS_T */
11359
11360 free (buf);
11361 return NULL;
11362 }
11363
11364 #if defined (HAVE_LWPSTATUS_T)
11365 char *
11366 elfcore_write_lwpstatus (bfd *abfd,
11367 char *buf,
11368 int *bufsiz,
11369 long pid,
11370 int cursig,
11371 const void *gregs)
11372 {
11373 lwpstatus_t lwpstat;
11374 const char *note_name = "CORE";
11375
11376 memset (&lwpstat, 0, sizeof (lwpstat));
11377 lwpstat.pr_lwpid = pid >> 16;
11378 lwpstat.pr_cursig = cursig;
11379 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11380 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11381 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11382 #if !defined(gregs)
11383 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11384 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11385 #else
11386 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11387 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11388 #endif
11389 #endif
11390 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11391 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11392 }
11393 #endif /* HAVE_LWPSTATUS_T */
11394
11395 #if defined (HAVE_PSTATUS_T)
11396 char *
11397 elfcore_write_pstatus (bfd *abfd,
11398 char *buf,
11399 int *bufsiz,
11400 long pid,
11401 int cursig ATTRIBUTE_UNUSED,
11402 const void *gregs ATTRIBUTE_UNUSED)
11403 {
11404 const char *note_name = "CORE";
11405 #if defined (HAVE_PSTATUS32_T)
11406 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11407
11408 if (bed->s->elfclass == ELFCLASS32)
11409 {
11410 pstatus32_t pstat;
11411
11412 memset (&pstat, 0, sizeof (pstat));
11413 pstat.pr_pid = pid & 0xffff;
11414 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11415 NT_PSTATUS, &pstat, sizeof (pstat));
11416 return buf;
11417 }
11418 else
11419 #endif
11420 {
11421 pstatus_t pstat;
11422
11423 memset (&pstat, 0, sizeof (pstat));
11424 pstat.pr_pid = pid & 0xffff;
11425 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11426 NT_PSTATUS, &pstat, sizeof (pstat));
11427 return buf;
11428 }
11429 }
11430 #endif /* HAVE_PSTATUS_T */
11431
11432 char *
11433 elfcore_write_prfpreg (bfd *abfd,
11434 char *buf,
11435 int *bufsiz,
11436 const void *fpregs,
11437 int size)
11438 {
11439 const char *note_name = "CORE";
11440 return elfcore_write_note (abfd, buf, bufsiz,
11441 note_name, NT_FPREGSET, fpregs, size);
11442 }
11443
11444 char *
11445 elfcore_write_prxfpreg (bfd *abfd,
11446 char *buf,
11447 int *bufsiz,
11448 const void *xfpregs,
11449 int size)
11450 {
11451 char *note_name = "LINUX";
11452 return elfcore_write_note (abfd, buf, bufsiz,
11453 note_name, NT_PRXFPREG, xfpregs, size);
11454 }
11455
11456 char *
11457 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11458 const void *xfpregs, int size)
11459 {
11460 char *note_name;
11461 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11462 note_name = "FreeBSD";
11463 else
11464 note_name = "LINUX";
11465 return elfcore_write_note (abfd, buf, bufsiz,
11466 note_name, NT_X86_XSTATE, xfpregs, size);
11467 }
11468
11469 char *
11470 elfcore_write_ppc_vmx (bfd *abfd,
11471 char *buf,
11472 int *bufsiz,
11473 const void *ppc_vmx,
11474 int size)
11475 {
11476 char *note_name = "LINUX";
11477 return elfcore_write_note (abfd, buf, bufsiz,
11478 note_name, NT_PPC_VMX, ppc_vmx, size);
11479 }
11480
11481 char *
11482 elfcore_write_ppc_vsx (bfd *abfd,
11483 char *buf,
11484 int *bufsiz,
11485 const void *ppc_vsx,
11486 int size)
11487 {
11488 char *note_name = "LINUX";
11489 return elfcore_write_note (abfd, buf, bufsiz,
11490 note_name, NT_PPC_VSX, ppc_vsx, size);
11491 }
11492
11493 char *
11494 elfcore_write_ppc_tar (bfd *abfd,
11495 char *buf,
11496 int *bufsiz,
11497 const void *ppc_tar,
11498 int size)
11499 {
11500 char *note_name = "LINUX";
11501 return elfcore_write_note (abfd, buf, bufsiz,
11502 note_name, NT_PPC_TAR, ppc_tar, size);
11503 }
11504
11505 char *
11506 elfcore_write_ppc_ppr (bfd *abfd,
11507 char *buf,
11508 int *bufsiz,
11509 const void *ppc_ppr,
11510 int size)
11511 {
11512 char *note_name = "LINUX";
11513 return elfcore_write_note (abfd, buf, bufsiz,
11514 note_name, NT_PPC_PPR, ppc_ppr, size);
11515 }
11516
11517 char *
11518 elfcore_write_ppc_dscr (bfd *abfd,
11519 char *buf,
11520 int *bufsiz,
11521 const void *ppc_dscr,
11522 int size)
11523 {
11524 char *note_name = "LINUX";
11525 return elfcore_write_note (abfd, buf, bufsiz,
11526 note_name, NT_PPC_DSCR, ppc_dscr, size);
11527 }
11528
11529 char *
11530 elfcore_write_ppc_ebb (bfd *abfd,
11531 char *buf,
11532 int *bufsiz,
11533 const void *ppc_ebb,
11534 int size)
11535 {
11536 char *note_name = "LINUX";
11537 return elfcore_write_note (abfd, buf, bufsiz,
11538 note_name, NT_PPC_EBB, ppc_ebb, size);
11539 }
11540
11541 char *
11542 elfcore_write_ppc_pmu (bfd *abfd,
11543 char *buf,
11544 int *bufsiz,
11545 const void *ppc_pmu,
11546 int size)
11547 {
11548 char *note_name = "LINUX";
11549 return elfcore_write_note (abfd, buf, bufsiz,
11550 note_name, NT_PPC_PMU, ppc_pmu, size);
11551 }
11552
11553 char *
11554 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11555 char *buf,
11556 int *bufsiz,
11557 const void *ppc_tm_cgpr,
11558 int size)
11559 {
11560 char *note_name = "LINUX";
11561 return elfcore_write_note (abfd, buf, bufsiz,
11562 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11563 }
11564
11565 char *
11566 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11567 char *buf,
11568 int *bufsiz,
11569 const void *ppc_tm_cfpr,
11570 int size)
11571 {
11572 char *note_name = "LINUX";
11573 return elfcore_write_note (abfd, buf, bufsiz,
11574 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11575 }
11576
11577 char *
11578 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11579 char *buf,
11580 int *bufsiz,
11581 const void *ppc_tm_cvmx,
11582 int size)
11583 {
11584 char *note_name = "LINUX";
11585 return elfcore_write_note (abfd, buf, bufsiz,
11586 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11587 }
11588
11589 char *
11590 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11591 char *buf,
11592 int *bufsiz,
11593 const void *ppc_tm_cvsx,
11594 int size)
11595 {
11596 char *note_name = "LINUX";
11597 return elfcore_write_note (abfd, buf, bufsiz,
11598 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11599 }
11600
11601 char *
11602 elfcore_write_ppc_tm_spr (bfd *abfd,
11603 char *buf,
11604 int *bufsiz,
11605 const void *ppc_tm_spr,
11606 int size)
11607 {
11608 char *note_name = "LINUX";
11609 return elfcore_write_note (abfd, buf, bufsiz,
11610 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11611 }
11612
11613 char *
11614 elfcore_write_ppc_tm_ctar (bfd *abfd,
11615 char *buf,
11616 int *bufsiz,
11617 const void *ppc_tm_ctar,
11618 int size)
11619 {
11620 char *note_name = "LINUX";
11621 return elfcore_write_note (abfd, buf, bufsiz,
11622 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11623 }
11624
11625 char *
11626 elfcore_write_ppc_tm_cppr (bfd *abfd,
11627 char *buf,
11628 int *bufsiz,
11629 const void *ppc_tm_cppr,
11630 int size)
11631 {
11632 char *note_name = "LINUX";
11633 return elfcore_write_note (abfd, buf, bufsiz,
11634 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11635 }
11636
11637 char *
11638 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11639 char *buf,
11640 int *bufsiz,
11641 const void *ppc_tm_cdscr,
11642 int size)
11643 {
11644 char *note_name = "LINUX";
11645 return elfcore_write_note (abfd, buf, bufsiz,
11646 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11647 }
11648
11649 static char *
11650 elfcore_write_s390_high_gprs (bfd *abfd,
11651 char *buf,
11652 int *bufsiz,
11653 const void *s390_high_gprs,
11654 int size)
11655 {
11656 char *note_name = "LINUX";
11657 return elfcore_write_note (abfd, buf, bufsiz,
11658 note_name, NT_S390_HIGH_GPRS,
11659 s390_high_gprs, size);
11660 }
11661
11662 char *
11663 elfcore_write_s390_timer (bfd *abfd,
11664 char *buf,
11665 int *bufsiz,
11666 const void *s390_timer,
11667 int size)
11668 {
11669 char *note_name = "LINUX";
11670 return elfcore_write_note (abfd, buf, bufsiz,
11671 note_name, NT_S390_TIMER, s390_timer, size);
11672 }
11673
11674 char *
11675 elfcore_write_s390_todcmp (bfd *abfd,
11676 char *buf,
11677 int *bufsiz,
11678 const void *s390_todcmp,
11679 int size)
11680 {
11681 char *note_name = "LINUX";
11682 return elfcore_write_note (abfd, buf, bufsiz,
11683 note_name, NT_S390_TODCMP, s390_todcmp, size);
11684 }
11685
11686 char *
11687 elfcore_write_s390_todpreg (bfd *abfd,
11688 char *buf,
11689 int *bufsiz,
11690 const void *s390_todpreg,
11691 int size)
11692 {
11693 char *note_name = "LINUX";
11694 return elfcore_write_note (abfd, buf, bufsiz,
11695 note_name, NT_S390_TODPREG, s390_todpreg, size);
11696 }
11697
11698 char *
11699 elfcore_write_s390_ctrs (bfd *abfd,
11700 char *buf,
11701 int *bufsiz,
11702 const void *s390_ctrs,
11703 int size)
11704 {
11705 char *note_name = "LINUX";
11706 return elfcore_write_note (abfd, buf, bufsiz,
11707 note_name, NT_S390_CTRS, s390_ctrs, size);
11708 }
11709
11710 char *
11711 elfcore_write_s390_prefix (bfd *abfd,
11712 char *buf,
11713 int *bufsiz,
11714 const void *s390_prefix,
11715 int size)
11716 {
11717 char *note_name = "LINUX";
11718 return elfcore_write_note (abfd, buf, bufsiz,
11719 note_name, NT_S390_PREFIX, s390_prefix, size);
11720 }
11721
11722 char *
11723 elfcore_write_s390_last_break (bfd *abfd,
11724 char *buf,
11725 int *bufsiz,
11726 const void *s390_last_break,
11727 int size)
11728 {
11729 char *note_name = "LINUX";
11730 return elfcore_write_note (abfd, buf, bufsiz,
11731 note_name, NT_S390_LAST_BREAK,
11732 s390_last_break, size);
11733 }
11734
11735 char *
11736 elfcore_write_s390_system_call (bfd *abfd,
11737 char *buf,
11738 int *bufsiz,
11739 const void *s390_system_call,
11740 int size)
11741 {
11742 char *note_name = "LINUX";
11743 return elfcore_write_note (abfd, buf, bufsiz,
11744 note_name, NT_S390_SYSTEM_CALL,
11745 s390_system_call, size);
11746 }
11747
11748 char *
11749 elfcore_write_s390_tdb (bfd *abfd,
11750 char *buf,
11751 int *bufsiz,
11752 const void *s390_tdb,
11753 int size)
11754 {
11755 char *note_name = "LINUX";
11756 return elfcore_write_note (abfd, buf, bufsiz,
11757 note_name, NT_S390_TDB, s390_tdb, size);
11758 }
11759
11760 char *
11761 elfcore_write_s390_vxrs_low (bfd *abfd,
11762 char *buf,
11763 int *bufsiz,
11764 const void *s390_vxrs_low,
11765 int size)
11766 {
11767 char *note_name = "LINUX";
11768 return elfcore_write_note (abfd, buf, bufsiz,
11769 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11770 }
11771
11772 char *
11773 elfcore_write_s390_vxrs_high (bfd *abfd,
11774 char *buf,
11775 int *bufsiz,
11776 const void *s390_vxrs_high,
11777 int size)
11778 {
11779 char *note_name = "LINUX";
11780 return elfcore_write_note (abfd, buf, bufsiz,
11781 note_name, NT_S390_VXRS_HIGH,
11782 s390_vxrs_high, size);
11783 }
11784
11785 char *
11786 elfcore_write_s390_gs_cb (bfd *abfd,
11787 char *buf,
11788 int *bufsiz,
11789 const void *s390_gs_cb,
11790 int size)
11791 {
11792 char *note_name = "LINUX";
11793 return elfcore_write_note (abfd, buf, bufsiz,
11794 note_name, NT_S390_GS_CB,
11795 s390_gs_cb, size);
11796 }
11797
11798 char *
11799 elfcore_write_s390_gs_bc (bfd *abfd,
11800 char *buf,
11801 int *bufsiz,
11802 const void *s390_gs_bc,
11803 int size)
11804 {
11805 char *note_name = "LINUX";
11806 return elfcore_write_note (abfd, buf, bufsiz,
11807 note_name, NT_S390_GS_BC,
11808 s390_gs_bc, size);
11809 }
11810
11811 char *
11812 elfcore_write_arm_vfp (bfd *abfd,
11813 char *buf,
11814 int *bufsiz,
11815 const void *arm_vfp,
11816 int size)
11817 {
11818 char *note_name = "LINUX";
11819 return elfcore_write_note (abfd, buf, bufsiz,
11820 note_name, NT_ARM_VFP, arm_vfp, size);
11821 }
11822
11823 char *
11824 elfcore_write_aarch_tls (bfd *abfd,
11825 char *buf,
11826 int *bufsiz,
11827 const void *aarch_tls,
11828 int size)
11829 {
11830 char *note_name = "LINUX";
11831 return elfcore_write_note (abfd, buf, bufsiz,
11832 note_name, NT_ARM_TLS, aarch_tls, size);
11833 }
11834
11835 char *
11836 elfcore_write_aarch_hw_break (bfd *abfd,
11837 char *buf,
11838 int *bufsiz,
11839 const void *aarch_hw_break,
11840 int size)
11841 {
11842 char *note_name = "LINUX";
11843 return elfcore_write_note (abfd, buf, bufsiz,
11844 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11845 }
11846
11847 char *
11848 elfcore_write_aarch_hw_watch (bfd *abfd,
11849 char *buf,
11850 int *bufsiz,
11851 const void *aarch_hw_watch,
11852 int size)
11853 {
11854 char *note_name = "LINUX";
11855 return elfcore_write_note (abfd, buf, bufsiz,
11856 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11857 }
11858
11859 char *
11860 elfcore_write_aarch_sve (bfd *abfd,
11861 char *buf,
11862 int *bufsiz,
11863 const void *aarch_sve,
11864 int size)
11865 {
11866 char *note_name = "LINUX";
11867 return elfcore_write_note (abfd, buf, bufsiz,
11868 note_name, NT_ARM_SVE, aarch_sve, size);
11869 }
11870
11871 char *
11872 elfcore_write_aarch_pauth (bfd *abfd,
11873 char *buf,
11874 int *bufsiz,
11875 const void *aarch_pauth,
11876 int size)
11877 {
11878 char *note_name = "LINUX";
11879 return elfcore_write_note (abfd, buf, bufsiz,
11880 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11881 }
11882
11883 char *
11884 elfcore_write_arc_v2 (bfd *abfd,
11885 char *buf,
11886 int *bufsiz,
11887 const void *arc_v2,
11888 int size)
11889 {
11890 char *note_name = "LINUX";
11891 return elfcore_write_note (abfd, buf, bufsiz,
11892 note_name, NT_ARC_V2, arc_v2, size);
11893 }
11894
11895 char *
11896 elfcore_write_register_note (bfd *abfd,
11897 char *buf,
11898 int *bufsiz,
11899 const char *section,
11900 const void *data,
11901 int size)
11902 {
11903 if (strcmp (section, ".reg2") == 0)
11904 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11905 if (strcmp (section, ".reg-xfp") == 0)
11906 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11907 if (strcmp (section, ".reg-xstate") == 0)
11908 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11909 if (strcmp (section, ".reg-ppc-vmx") == 0)
11910 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11911 if (strcmp (section, ".reg-ppc-vsx") == 0)
11912 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11913 if (strcmp (section, ".reg-ppc-tar") == 0)
11914 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11915 if (strcmp (section, ".reg-ppc-ppr") == 0)
11916 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11917 if (strcmp (section, ".reg-ppc-dscr") == 0)
11918 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11919 if (strcmp (section, ".reg-ppc-ebb") == 0)
11920 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11921 if (strcmp (section, ".reg-ppc-pmu") == 0)
11922 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11923 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11924 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11925 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11926 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11927 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11928 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11929 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11930 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11931 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11932 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11933 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11934 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11935 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11936 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11937 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11938 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11939 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11940 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11941 if (strcmp (section, ".reg-s390-timer") == 0)
11942 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11943 if (strcmp (section, ".reg-s390-todcmp") == 0)
11944 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11945 if (strcmp (section, ".reg-s390-todpreg") == 0)
11946 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11947 if (strcmp (section, ".reg-s390-ctrs") == 0)
11948 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11949 if (strcmp (section, ".reg-s390-prefix") == 0)
11950 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11951 if (strcmp (section, ".reg-s390-last-break") == 0)
11952 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11953 if (strcmp (section, ".reg-s390-system-call") == 0)
11954 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11955 if (strcmp (section, ".reg-s390-tdb") == 0)
11956 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11957 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11958 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11959 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11960 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11961 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11962 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11963 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11964 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11965 if (strcmp (section, ".reg-arm-vfp") == 0)
11966 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11967 if (strcmp (section, ".reg-aarch-tls") == 0)
11968 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11969 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11970 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11971 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11972 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11973 if (strcmp (section, ".reg-aarch-sve") == 0)
11974 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11975 if (strcmp (section, ".reg-aarch-pauth") == 0)
11976 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11977 if (strcmp (section, ".reg-arc-v2") == 0)
11978 return elfcore_write_arc_v2 (abfd, buf, bufsiz, data, size);
11979 return NULL;
11980 }
11981
11982 static bfd_boolean
11983 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11984 size_t align)
11985 {
11986 char *p;
11987
11988 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11989 gABI specifies that PT_NOTE alignment should be aligned to 4
11990 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11991 align is less than 4, we use 4 byte alignment. */
11992 if (align < 4)
11993 align = 4;
11994 if (align != 4 && align != 8)
11995 return FALSE;
11996
11997 p = buf;
11998 while (p < buf + size)
11999 {
12000 Elf_External_Note *xnp = (Elf_External_Note *) p;
12001 Elf_Internal_Note in;
12002
12003 if (offsetof (Elf_External_Note, name) > buf - p + size)
12004 return FALSE;
12005
12006 in.type = H_GET_32 (abfd, xnp->type);
12007
12008 in.namesz = H_GET_32 (abfd, xnp->namesz);
12009 in.namedata = xnp->name;
12010 if (in.namesz > buf - in.namedata + size)
12011 return FALSE;
12012
12013 in.descsz = H_GET_32 (abfd, xnp->descsz);
12014 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
12015 in.descpos = offset + (in.descdata - buf);
12016 if (in.descsz != 0
12017 && (in.descdata >= buf + size
12018 || in.descsz > buf - in.descdata + size))
12019 return FALSE;
12020
12021 switch (bfd_get_format (abfd))
12022 {
12023 default:
12024 return TRUE;
12025
12026 case bfd_core:
12027 {
12028 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
12029 struct
12030 {
12031 const char * string;
12032 size_t len;
12033 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
12034 }
12035 grokers[] =
12036 {
12037 GROKER_ELEMENT ("", elfcore_grok_note),
12038 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
12039 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
12040 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
12041 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
12042 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
12043 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
12044 };
12045 #undef GROKER_ELEMENT
12046 int i;
12047
12048 for (i = ARRAY_SIZE (grokers); i--;)
12049 {
12050 if (in.namesz >= grokers[i].len
12051 && strncmp (in.namedata, grokers[i].string,
12052 grokers[i].len) == 0)
12053 {
12054 if (! grokers[i].func (abfd, & in))
12055 return FALSE;
12056 break;
12057 }
12058 }
12059 break;
12060 }
12061
12062 case bfd_object:
12063 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
12064 {
12065 if (! elfobj_grok_gnu_note (abfd, &in))
12066 return FALSE;
12067 }
12068 else if (in.namesz == sizeof "stapsdt"
12069 && strcmp (in.namedata, "stapsdt") == 0)
12070 {
12071 if (! elfobj_grok_stapsdt_note (abfd, &in))
12072 return FALSE;
12073 }
12074 break;
12075 }
12076
12077 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
12078 }
12079
12080 return TRUE;
12081 }
12082
12083 bfd_boolean
12084 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
12085 size_t align)
12086 {
12087 char *buf;
12088
12089 if (size == 0 || (size + 1) == 0)
12090 return TRUE;
12091
12092 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
12093 return FALSE;
12094
12095 buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size);
12096 if (buf == NULL)
12097 return FALSE;
12098
12099 /* PR 17512: file: ec08f814
12100 0-termintate the buffer so that string searches will not overflow. */
12101 buf[size] = 0;
12102
12103 if (!elf_parse_notes (abfd, buf, size, offset, align))
12104 {
12105 free (buf);
12106 return FALSE;
12107 }
12108
12109 free (buf);
12110 return TRUE;
12111 }
12112 \f
12113 /* Providing external access to the ELF program header table. */
12114
12115 /* Return an upper bound on the number of bytes required to store a
12116 copy of ABFD's program header table entries. Return -1 if an error
12117 occurs; bfd_get_error will return an appropriate code. */
12118
12119 long
12120 bfd_get_elf_phdr_upper_bound (bfd *abfd)
12121 {
12122 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12123 {
12124 bfd_set_error (bfd_error_wrong_format);
12125 return -1;
12126 }
12127
12128 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
12129 }
12130
12131 /* Copy ABFD's program header table entries to *PHDRS. The entries
12132 will be stored as an array of Elf_Internal_Phdr structures, as
12133 defined in include/elf/internal.h. To find out how large the
12134 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
12135
12136 Return the number of program header table entries read, or -1 if an
12137 error occurs; bfd_get_error will return an appropriate code. */
12138
12139 int
12140 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
12141 {
12142 int num_phdrs;
12143
12144 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12145 {
12146 bfd_set_error (bfd_error_wrong_format);
12147 return -1;
12148 }
12149
12150 num_phdrs = elf_elfheader (abfd)->e_phnum;
12151 if (num_phdrs != 0)
12152 memcpy (phdrs, elf_tdata (abfd)->phdr,
12153 num_phdrs * sizeof (Elf_Internal_Phdr));
12154
12155 return num_phdrs;
12156 }
12157
12158 enum elf_reloc_type_class
12159 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
12160 const asection *rel_sec ATTRIBUTE_UNUSED,
12161 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
12162 {
12163 return reloc_class_normal;
12164 }
12165
12166 /* For RELA architectures, return the relocation value for a
12167 relocation against a local symbol. */
12168
12169 bfd_vma
12170 _bfd_elf_rela_local_sym (bfd *abfd,
12171 Elf_Internal_Sym *sym,
12172 asection **psec,
12173 Elf_Internal_Rela *rel)
12174 {
12175 asection *sec = *psec;
12176 bfd_vma relocation;
12177
12178 relocation = (sec->output_section->vma
12179 + sec->output_offset
12180 + sym->st_value);
12181 if ((sec->flags & SEC_MERGE)
12182 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
12183 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
12184 {
12185 rel->r_addend =
12186 _bfd_merged_section_offset (abfd, psec,
12187 elf_section_data (sec)->sec_info,
12188 sym->st_value + rel->r_addend);
12189 if (sec != *psec)
12190 {
12191 /* If we have changed the section, and our original section is
12192 marked with SEC_EXCLUDE, it means that the original
12193 SEC_MERGE section has been completely subsumed in some
12194 other SEC_MERGE section. In this case, we need to leave
12195 some info around for --emit-relocs. */
12196 if ((sec->flags & SEC_EXCLUDE) != 0)
12197 sec->kept_section = *psec;
12198 sec = *psec;
12199 }
12200 rel->r_addend -= relocation;
12201 rel->r_addend += sec->output_section->vma + sec->output_offset;
12202 }
12203 return relocation;
12204 }
12205
12206 bfd_vma
12207 _bfd_elf_rel_local_sym (bfd *abfd,
12208 Elf_Internal_Sym *sym,
12209 asection **psec,
12210 bfd_vma addend)
12211 {
12212 asection *sec = *psec;
12213
12214 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12215 return sym->st_value + addend;
12216
12217 return _bfd_merged_section_offset (abfd, psec,
12218 elf_section_data (sec)->sec_info,
12219 sym->st_value + addend);
12220 }
12221
12222 /* Adjust an address within a section. Given OFFSET within SEC, return
12223 the new offset within the section, based upon changes made to the
12224 section. Returns -1 if the offset is now invalid.
12225 The offset (in abnd out) is in target sized bytes, however big a
12226 byte may be. */
12227
12228 bfd_vma
12229 _bfd_elf_section_offset (bfd *abfd,
12230 struct bfd_link_info *info,
12231 asection *sec,
12232 bfd_vma offset)
12233 {
12234 switch (sec->sec_info_type)
12235 {
12236 case SEC_INFO_TYPE_STABS:
12237 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12238 offset);
12239 case SEC_INFO_TYPE_EH_FRAME:
12240 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12241
12242 default:
12243 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12244 {
12245 /* Reverse the offset. */
12246 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12247 bfd_size_type address_size = bed->s->arch_size / 8;
12248
12249 /* address_size and sec->size are in octets. Convert
12250 to bytes before subtracting the original offset. */
12251 offset = ((sec->size - address_size)
12252 / bfd_octets_per_byte (abfd, sec) - offset);
12253 }
12254 return offset;
12255 }
12256 }
12257 \f
12258 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12259 reconstruct an ELF file by reading the segments out of remote memory
12260 based on the ELF file header at EHDR_VMA and the ELF program headers it
12261 points to. If not null, *LOADBASEP is filled in with the difference
12262 between the VMAs from which the segments were read, and the VMAs the
12263 file headers (and hence BFD's idea of each section's VMA) put them at.
12264
12265 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12266 remote memory at target address VMA into the local buffer at MYADDR; it
12267 should return zero on success or an `errno' code on failure. TEMPL must
12268 be a BFD for an ELF target with the word size and byte order found in
12269 the remote memory. */
12270
12271 bfd *
12272 bfd_elf_bfd_from_remote_memory
12273 (bfd *templ,
12274 bfd_vma ehdr_vma,
12275 bfd_size_type size,
12276 bfd_vma *loadbasep,
12277 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12278 {
12279 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12280 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12281 }
12282 \f
12283 long
12284 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12285 long symcount ATTRIBUTE_UNUSED,
12286 asymbol **syms ATTRIBUTE_UNUSED,
12287 long dynsymcount,
12288 asymbol **dynsyms,
12289 asymbol **ret)
12290 {
12291 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12292 asection *relplt;
12293 asymbol *s;
12294 const char *relplt_name;
12295 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12296 arelent *p;
12297 long count, i, n;
12298 size_t size;
12299 Elf_Internal_Shdr *hdr;
12300 char *names;
12301 asection *plt;
12302
12303 *ret = NULL;
12304
12305 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12306 return 0;
12307
12308 if (dynsymcount <= 0)
12309 return 0;
12310
12311 if (!bed->plt_sym_val)
12312 return 0;
12313
12314 relplt_name = bed->relplt_name;
12315 if (relplt_name == NULL)
12316 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12317 relplt = bfd_get_section_by_name (abfd, relplt_name);
12318 if (relplt == NULL)
12319 return 0;
12320
12321 hdr = &elf_section_data (relplt)->this_hdr;
12322 if (hdr->sh_link != elf_dynsymtab (abfd)
12323 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12324 return 0;
12325
12326 plt = bfd_get_section_by_name (abfd, ".plt");
12327 if (plt == NULL)
12328 return 0;
12329
12330 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12331 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12332 return -1;
12333
12334 count = relplt->size / hdr->sh_entsize;
12335 size = count * sizeof (asymbol);
12336 p = relplt->relocation;
12337 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12338 {
12339 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12340 if (p->addend != 0)
12341 {
12342 #ifdef BFD64
12343 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12344 #else
12345 size += sizeof ("+0x") - 1 + 8;
12346 #endif
12347 }
12348 }
12349
12350 s = *ret = (asymbol *) bfd_malloc (size);
12351 if (s == NULL)
12352 return -1;
12353
12354 names = (char *) (s + count);
12355 p = relplt->relocation;
12356 n = 0;
12357 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12358 {
12359 size_t len;
12360 bfd_vma addr;
12361
12362 addr = bed->plt_sym_val (i, plt, p);
12363 if (addr == (bfd_vma) -1)
12364 continue;
12365
12366 *s = **p->sym_ptr_ptr;
12367 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12368 we are defining a symbol, ensure one of them is set. */
12369 if ((s->flags & BSF_LOCAL) == 0)
12370 s->flags |= BSF_GLOBAL;
12371 s->flags |= BSF_SYNTHETIC;
12372 s->section = plt;
12373 s->value = addr - plt->vma;
12374 s->name = names;
12375 s->udata.p = NULL;
12376 len = strlen ((*p->sym_ptr_ptr)->name);
12377 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12378 names += len;
12379 if (p->addend != 0)
12380 {
12381 char buf[30], *a;
12382
12383 memcpy (names, "+0x", sizeof ("+0x") - 1);
12384 names += sizeof ("+0x") - 1;
12385 bfd_sprintf_vma (abfd, buf, p->addend);
12386 for (a = buf; *a == '0'; ++a)
12387 ;
12388 len = strlen (a);
12389 memcpy (names, a, len);
12390 names += len;
12391 }
12392 memcpy (names, "@plt", sizeof ("@plt"));
12393 names += sizeof ("@plt");
12394 ++s, ++n;
12395 }
12396
12397 return n;
12398 }
12399
12400 /* It is only used by x86-64 so far.
12401 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12402 but current usage would allow all of _bfd_std_section to be zero. */
12403 static const asymbol lcomm_sym
12404 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12405 asection _bfd_elf_large_com_section
12406 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12407 "LARGE_COMMON", 0, SEC_IS_COMMON);
12408
12409 bfd_boolean
12410 _bfd_elf_final_write_processing (bfd *abfd)
12411 {
12412 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12413
12414 i_ehdrp = elf_elfheader (abfd);
12415
12416 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12417 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12418
12419 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12420 SHF_GNU_MBIND sections or symbols of STT_GNU_IFUNC type or
12421 STB_GNU_UNIQUE binding. */
12422 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12423 {
12424 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12425 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12426 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12427 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12428 {
12429 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12430 _bfd_error_handler (_("GNU_MBIND section is unsupported"));
12431 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12432 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is unsupported"));
12433 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12434 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is unsupported"));
12435 bfd_set_error (bfd_error_sorry);
12436 return FALSE;
12437 }
12438 }
12439 return TRUE;
12440 }
12441
12442
12443 /* Return TRUE for ELF symbol types that represent functions.
12444 This is the default version of this function, which is sufficient for
12445 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12446
12447 bfd_boolean
12448 _bfd_elf_is_function_type (unsigned int type)
12449 {
12450 return (type == STT_FUNC
12451 || type == STT_GNU_IFUNC);
12452 }
12453
12454 /* If the ELF symbol SYM might be a function in SEC, return the
12455 function size and set *CODE_OFF to the function's entry point,
12456 otherwise return zero. */
12457
12458 bfd_size_type
12459 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12460 bfd_vma *code_off)
12461 {
12462 bfd_size_type size;
12463
12464 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12465 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12466 || sym->section != sec)
12467 return 0;
12468
12469 *code_off = sym->value;
12470 size = 0;
12471 if (!(sym->flags & BSF_SYNTHETIC))
12472 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12473 if (size == 0)
12474 size = 1;
12475 return size;
12476 }
12477
12478 /* Set to non-zero to enable some debug messages. */
12479 #define DEBUG_SECONDARY_RELOCS 0
12480
12481 /* An internal-to-the-bfd-library only section type
12482 used to indicate a cached secondary reloc section. */
12483 #define SHT_SECONDARY_RELOC (SHT_LOOS + SHT_RELA)
12484
12485 /* Create a BFD section to hold a secondary reloc section. */
12486
12487 bfd_boolean
12488 _bfd_elf_init_secondary_reloc_section (bfd * abfd,
12489 Elf_Internal_Shdr *hdr,
12490 const char * name,
12491 unsigned int shindex)
12492 {
12493 /* We only support RELA secondary relocs. */
12494 if (hdr->sh_type != SHT_RELA)
12495 return FALSE;
12496
12497 #if DEBUG_SECONDARY_RELOCS
12498 fprintf (stderr, "secondary reloc section %s encountered\n", name);
12499 #endif
12500 hdr->sh_type = SHT_SECONDARY_RELOC;
12501 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
12502 }
12503
12504 /* Read in any secondary relocs associated with SEC. */
12505
12506 bfd_boolean
12507 _bfd_elf_slurp_secondary_reloc_section (bfd * abfd,
12508 asection * sec,
12509 asymbol ** symbols)
12510 {
12511 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12512 asection * relsec;
12513 bfd_boolean result = TRUE;
12514 bfd_vma (*r_sym) (bfd_vma);
12515
12516 #if BFD_DEFAULT_TARGET_SIZE > 32
12517 if (bfd_arch_bits_per_address (abfd) != 32)
12518 r_sym = elf64_r_sym;
12519 else
12520 #endif
12521 r_sym = elf32_r_sym;
12522
12523 /* Discover if there are any secondary reloc sections
12524 associated with SEC. */
12525 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12526 {
12527 Elf_Internal_Shdr * hdr = & elf_section_data (relsec)->this_hdr;
12528
12529 if (hdr->sh_type == SHT_SECONDARY_RELOC
12530 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx)
12531 {
12532 bfd_byte * native_relocs;
12533 bfd_byte * native_reloc;
12534 arelent * internal_relocs;
12535 arelent * internal_reloc;
12536 unsigned int i;
12537 unsigned int entsize;
12538 unsigned int symcount;
12539 unsigned int reloc_count;
12540 size_t amt;
12541
12542 if (ebd->elf_info_to_howto == NULL)
12543 return FALSE;
12544
12545 #if DEBUG_SECONDARY_RELOCS
12546 fprintf (stderr, "read secondary relocs for %s from %s\n",
12547 sec->name, relsec->name);
12548 #endif
12549 entsize = hdr->sh_entsize;
12550
12551 native_relocs = bfd_malloc (hdr->sh_size);
12552 if (native_relocs == NULL)
12553 {
12554 result = FALSE;
12555 continue;
12556 }
12557
12558 reloc_count = NUM_SHDR_ENTRIES (hdr);
12559 if (_bfd_mul_overflow (reloc_count, sizeof (arelent), & amt))
12560 {
12561 free (native_relocs);
12562 bfd_set_error (bfd_error_file_too_big);
12563 result = FALSE;
12564 continue;
12565 }
12566
12567 internal_relocs = (arelent *) bfd_alloc (abfd, amt);
12568 if (internal_relocs == NULL)
12569 {
12570 free (native_relocs);
12571 result = FALSE;
12572 continue;
12573 }
12574
12575 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
12576 || (bfd_bread (native_relocs, hdr->sh_size, abfd)
12577 != hdr->sh_size))
12578 {
12579 free (native_relocs);
12580 /* The internal_relocs will be freed when
12581 the memory for the bfd is released. */
12582 result = FALSE;
12583 continue;
12584 }
12585
12586 symcount = bfd_get_symcount (abfd);
12587
12588 for (i = 0, internal_reloc = internal_relocs,
12589 native_reloc = native_relocs;
12590 i < reloc_count;
12591 i++, internal_reloc++, native_reloc += entsize)
12592 {
12593 bfd_boolean res;
12594 Elf_Internal_Rela rela;
12595
12596 ebd->s->swap_reloca_in (abfd, native_reloc, & rela);
12597
12598 /* The address of an ELF reloc is section relative for an object
12599 file, and absolute for an executable file or shared library.
12600 The address of a normal BFD reloc is always section relative,
12601 and the address of a dynamic reloc is absolute.. */
12602 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
12603 internal_reloc->address = rela.r_offset;
12604 else
12605 internal_reloc->address = rela.r_offset - sec->vma;
12606
12607 if (r_sym (rela.r_info) == STN_UNDEF)
12608 {
12609 /* FIXME: This and the error case below mean that we
12610 have a symbol on relocs that is not elf_symbol_type. */
12611 internal_reloc->sym_ptr_ptr =
12612 bfd_abs_section_ptr->symbol_ptr_ptr;
12613 }
12614 else if (r_sym (rela.r_info) > symcount)
12615 {
12616 _bfd_error_handler
12617 /* xgettext:c-format */
12618 (_("%pB(%pA): relocation %d has invalid symbol index %ld"),
12619 abfd, sec, i, (long) r_sym (rela.r_info));
12620 bfd_set_error (bfd_error_bad_value);
12621 internal_reloc->sym_ptr_ptr =
12622 bfd_abs_section_ptr->symbol_ptr_ptr;
12623 result = FALSE;
12624 }
12625 else
12626 {
12627 asymbol **ps;
12628
12629 ps = symbols + r_sym (rela.r_info) - 1;
12630
12631 internal_reloc->sym_ptr_ptr = ps;
12632 /* Make sure that this symbol is not removed by strip. */
12633 (*ps)->flags |= BSF_KEEP;
12634 }
12635
12636 internal_reloc->addend = rela.r_addend;
12637
12638 res = ebd->elf_info_to_howto (abfd, internal_reloc, & rela);
12639 if (! res || internal_reloc->howto == NULL)
12640 {
12641 #if DEBUG_SECONDARY_RELOCS
12642 fprintf (stderr, "there is no howto associated with reloc %lx\n",
12643 rela.r_info);
12644 #endif
12645 result = FALSE;
12646 }
12647 }
12648
12649 free (native_relocs);
12650 /* Store the internal relocs. */
12651 elf_section_data (relsec)->sec_info = internal_relocs;
12652 }
12653 }
12654
12655 return result;
12656 }
12657
12658 /* Set the ELF section header fields of an output secondary reloc section. */
12659
12660 bfd_boolean
12661 _bfd_elf_copy_special_section_fields (const bfd * ibfd ATTRIBUTE_UNUSED,
12662 bfd * obfd ATTRIBUTE_UNUSED,
12663 const Elf_Internal_Shdr * isection,
12664 Elf_Internal_Shdr * osection)
12665 {
12666 asection * isec;
12667 asection * osec;
12668
12669 if (isection == NULL)
12670 return FALSE;
12671
12672 if (isection->sh_type != SHT_SECONDARY_RELOC)
12673 return TRUE;
12674
12675 isec = isection->bfd_section;
12676 if (isec == NULL)
12677 return FALSE;
12678
12679 osec = osection->bfd_section;
12680 if (osec == NULL)
12681 return FALSE;
12682
12683 BFD_ASSERT (elf_section_data (osec)->sec_info == NULL);
12684 elf_section_data (osec)->sec_info = elf_section_data (isec)->sec_info;
12685 osection->sh_type = SHT_RELA;
12686 osection->sh_link = elf_onesymtab (obfd);
12687 if (osection->sh_link == 0)
12688 {
12689 /* There is no symbol table - we are hosed... */
12690 _bfd_error_handler
12691 /* xgettext:c-format */
12692 (_("%pB(%pA): link section cannot be set because the output file does not have a symbol table"),
12693 obfd, osec);
12694 bfd_set_error (bfd_error_bad_value);
12695 return FALSE;
12696 }
12697
12698 /* Find the output section that corresponds to the isection's sh_info link. */
12699 if (isection->sh_info == 0
12700 || isection->sh_info >= elf_numsections (ibfd))
12701 {
12702 _bfd_error_handler
12703 /* xgettext:c-format */
12704 (_("%pB(%pA): info section index is invalid"),
12705 obfd, osec);
12706 bfd_set_error (bfd_error_bad_value);
12707 return FALSE;
12708 }
12709
12710 isection = elf_elfsections (ibfd)[isection->sh_info];
12711
12712 if (isection == NULL
12713 || isection->bfd_section == NULL
12714 || isection->bfd_section->output_section == NULL)
12715 {
12716 _bfd_error_handler
12717 /* xgettext:c-format */
12718 (_("%pB(%pA): info section index cannot be set because the section is not in the output"),
12719 obfd, osec);
12720 bfd_set_error (bfd_error_bad_value);
12721 return FALSE;
12722 }
12723
12724 osection->sh_info =
12725 elf_section_data (isection->bfd_section->output_section)->this_idx;
12726
12727 #if DEBUG_SECONDARY_RELOCS
12728 fprintf (stderr, "update header of %s, sh_link = %u, sh_info = %u\n",
12729 osec->name, osection->sh_link, osection->sh_info);
12730 #endif
12731
12732 return TRUE;
12733 }
12734
12735 /* Write out a secondary reloc section. */
12736
12737 bfd_boolean
12738 _bfd_elf_write_secondary_reloc_section (bfd *abfd, asection *sec)
12739 {
12740 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12741 bfd_vma addr_offset;
12742 asection * relsec;
12743 bfd_vma (*r_info) (bfd_vma, bfd_vma);
12744 bfd_boolean result = TRUE;
12745
12746 if (sec == NULL)
12747 return FALSE;
12748
12749 #if BFD_DEFAULT_TARGET_SIZE > 32
12750 if (bfd_arch_bits_per_address (abfd) != 32)
12751 r_info = elf64_r_info;
12752 else
12753 #endif
12754 r_info = elf32_r_info;
12755
12756 /* The address of an ELF reloc is section relative for an object
12757 file, and absolute for an executable file or shared library.
12758 The address of a BFD reloc is always section relative. */
12759 addr_offset = 0;
12760 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
12761 addr_offset = sec->vma;
12762
12763 /* Discover if there are any secondary reloc sections
12764 associated with SEC. */
12765 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12766 {
12767 const struct bfd_elf_section_data * const esd = elf_section_data (relsec);
12768 Elf_Internal_Shdr * const hdr = (Elf_Internal_Shdr *) & esd->this_hdr;
12769
12770 if (hdr->sh_type == SHT_RELA
12771 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx)
12772 {
12773 asymbol * last_sym;
12774 int last_sym_idx;
12775 unsigned int reloc_count;
12776 unsigned int idx;
12777 arelent * src_irel;
12778 bfd_byte * dst_rela;
12779
12780 if (hdr->contents != NULL)
12781 {
12782 _bfd_error_handler
12783 /* xgettext:c-format */
12784 (_("%pB(%pA): error: secondary reloc section processed twice"),
12785 abfd, relsec);
12786 bfd_set_error (bfd_error_bad_value);
12787 result = FALSE;
12788 continue;
12789 }
12790
12791 reloc_count = hdr->sh_size / hdr->sh_entsize;
12792 if (reloc_count <= 0)
12793 {
12794 _bfd_error_handler
12795 /* xgettext:c-format */
12796 (_("%pB(%pA): error: secondary reloc section is empty!"),
12797 abfd, relsec);
12798 bfd_set_error (bfd_error_bad_value);
12799 result = FALSE;
12800 continue;
12801 }
12802
12803 hdr->contents = bfd_alloc (abfd, hdr->sh_size);
12804 if (hdr->contents == NULL)
12805 continue;
12806
12807 #if DEBUG_SECONDARY_RELOCS
12808 fprintf (stderr, "write %u secondary relocs for %s from %s\n",
12809 reloc_count, sec->name, relsec->name);
12810 #endif
12811 last_sym = NULL;
12812 last_sym_idx = 0;
12813 dst_rela = hdr->contents;
12814 src_irel = (arelent *) esd->sec_info;
12815 if (src_irel == NULL)
12816 {
12817 _bfd_error_handler
12818 /* xgettext:c-format */
12819 (_("%pB(%pA): error: internal relocs missing for secondary reloc section"),
12820 abfd, relsec);
12821 bfd_set_error (bfd_error_bad_value);
12822 result = FALSE;
12823 continue;
12824 }
12825
12826 for (idx = 0; idx < reloc_count; idx++, dst_rela += hdr->sh_entsize)
12827 {
12828 Elf_Internal_Rela src_rela;
12829 arelent *ptr;
12830 asymbol *sym;
12831 int n;
12832
12833 ptr = src_irel + idx;
12834 if (ptr == NULL)
12835 {
12836 _bfd_error_handler
12837 /* xgettext:c-format */
12838 (_("%pB(%pA): error: reloc table entry %u is empty"),
12839 abfd, relsec, idx);
12840 bfd_set_error (bfd_error_bad_value);
12841 result = FALSE;
12842 break;
12843 }
12844
12845 if (ptr->sym_ptr_ptr == NULL)
12846 {
12847 /* FIXME: Is this an error ? */
12848 n = 0;
12849 }
12850 else
12851 {
12852 sym = *ptr->sym_ptr_ptr;
12853
12854 if (sym == last_sym)
12855 n = last_sym_idx;
12856 else
12857 {
12858 n = _bfd_elf_symbol_from_bfd_symbol (abfd, & sym);
12859 if (n < 0)
12860 {
12861 _bfd_error_handler
12862 /* xgettext:c-format */
12863 (_("%pB(%pA): error: secondary reloc %u references a missing symbol"),
12864 abfd, relsec, idx);
12865 bfd_set_error (bfd_error_bad_value);
12866 result = FALSE;
12867 n = 0;
12868 }
12869
12870 last_sym = sym;
12871 last_sym_idx = n;
12872 }
12873
12874 if (sym->the_bfd != NULL
12875 && sym->the_bfd->xvec != abfd->xvec
12876 && ! _bfd_elf_validate_reloc (abfd, ptr))
12877 {
12878 _bfd_error_handler
12879 /* xgettext:c-format */
12880 (_("%pB(%pA): error: secondary reloc %u references a deleted symbol"),
12881 abfd, relsec, idx);
12882 bfd_set_error (bfd_error_bad_value);
12883 result = FALSE;
12884 n = 0;
12885 }
12886 }
12887
12888 src_rela.r_offset = ptr->address + addr_offset;
12889 if (ptr->howto == NULL)
12890 {
12891 _bfd_error_handler
12892 /* xgettext:c-format */
12893 (_("%pB(%pA): error: secondary reloc %u is of an unknown type"),
12894 abfd, relsec, idx);
12895 bfd_set_error (bfd_error_bad_value);
12896 result = FALSE;
12897 src_rela.r_info = r_info (0, 0);
12898 }
12899 else
12900 src_rela.r_info = r_info (n, ptr->howto->type);
12901 src_rela.r_addend = ptr->addend;
12902 ebd->s->swap_reloca_out (abfd, &src_rela, dst_rela);
12903 }
12904 }
12905 }
12906
12907 return result;
12908 }
This page took 0.319707 seconds and 4 git commands to generate.