gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2020 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get PLT address
75 : ldo RR'lt_ptr+ltoff(%r1),%r22 ;
76 : ldw 0(%r22),%r21 ; get procedure entry point
77 : bv %r0(%r21)
78 : ldw 4(%r22),%r19 ; get new dlt value.
79
80 Import stub to call shared library routine from shared library
81 (single sub-space version)
82 : addil LR'ltoff,%r19 ; get PLT address
83 : ldo RR'ltoff(%r1),%r22
84 : ldw 0(%r22),%r21 ; get procedure entry point
85 : bv %r0(%r21)
86 : ldw 4(%r22),%r19 ; get new dlt value.
87
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get PLT address
91 : ldo RR'lt_ptr+ltoff(%r1),%r22 ;
92 : ldw 0(%r22),%r21 ; get procedure entry point
93 : ldsid (%r21),%r1 ; get target sid
94 : ldw 4(%r22),%r19 ; get new dlt value.
95 : mtsp %r1,%sr0
96 : be 0(%sr0,%r21) ; branch to target
97 : stw %rp,-24(%sp) ; save rp
98
99 Import stub to call shared library routine from shared library
100 (multiple sub-space support)
101 : addil LR'ltoff,%r19 ; get PLT address
102 : ldo RR'ltoff(%r1),%r22
103 : ldw 0(%r22),%r21 ; get procedure entry point
104 : ldsid (%r21),%r1 ; get target sid
105 : ldw 4(%r22),%r19 ; get new dlt value.
106 : mtsp %r1,%sr0
107 : be 0(%sr0,%r21) ; branch to target
108 : stw %rp,-24(%sp) ; save rp
109
110 Export stub to return from shared lib routine (multiple sub-space support)
111 One of these is created for each exported procedure in a shared
112 library (and stored in the shared lib). Shared lib routines are
113 called via the first instruction in the export stub so that we can
114 do an inter-space return. Not required for single sub-space.
115 : bl,n X,%rp ; trap the return
116 : nop
117 : ldw -24(%sp),%rp ; restore the original rp
118 : ldsid (%rp),%r1
119 : mtsp %r1,%sr0
120 : be,n 0(%sr0,%rp) ; inter-space return. */
121
122
123 /* Variable names follow a coding style.
124 Please follow this (Apps Hungarian) style:
125
126 Structure/Variable Prefix
127 elf_link_hash_table "etab"
128 elf_link_hash_entry "eh"
129
130 elf32_hppa_link_hash_table "htab"
131 elf32_hppa_link_hash_entry "hh"
132
133 bfd_hash_table "btab"
134 bfd_hash_entry "bh"
135
136 bfd_hash_table containing stubs "bstab"
137 elf32_hppa_stub_hash_entry "hsh"
138
139 Always remember to use GNU Coding Style. */
140
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define LONG_BRANCH_STUB_SIZE 8
144 #define LONG_BRANCH_SHARED_STUB_SIZE 12
145 #define IMPORT_STUB_SIZE 20
146 #define IMPORT_SHARED_STUB_SIZE 32
147 #define EXPORT_STUB_SIZE 24
148 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
149
150 static const bfd_byte plt_stub[] =
151 {
152 0x0e, 0x80, 0x10, 0x95, /* 1: ldw 0(%r20),%r21 */
153 0xea, 0xa0, 0xc0, 0x00, /* bv %r0(%r21) */
154 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
155 #define PLT_STUB_ENTRY (3*4)
156 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
157 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
158 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
159 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
160 };
161
162 /* Section name for stubs is the associated section name plus this
163 string. */
164 #define STUB_SUFFIX ".stub"
165
166 /* We don't need to copy certain PC- or GP-relative dynamic relocs
167 into a shared object's dynamic section. All the relocs of the
168 limited class we are interested in, are absolute. */
169 #ifndef RELATIVE_DYNRELOCS
170 #define RELATIVE_DYNRELOCS 0
171 #define IS_ABSOLUTE_RELOC(r_type) 1
172 #define pc_dynrelocs(hh) 0
173 #endif
174
175 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
176 copying dynamic variables from a shared lib into an app's dynbss
177 section, and instead use a dynamic relocation to point into the
178 shared lib. */
179 #define ELIMINATE_COPY_RELOCS 1
180
181 enum elf32_hppa_stub_type
182 {
183 hppa_stub_long_branch,
184 hppa_stub_long_branch_shared,
185 hppa_stub_import,
186 hppa_stub_import_shared,
187 hppa_stub_export,
188 hppa_stub_none
189 };
190
191 struct elf32_hppa_stub_hash_entry
192 {
193 /* Base hash table entry structure. */
194 struct bfd_hash_entry bh_root;
195
196 /* The stub section. */
197 asection *stub_sec;
198
199 /* Offset within stub_sec of the beginning of this stub. */
200 bfd_vma stub_offset;
201
202 /* Given the symbol's value and its section we can determine its final
203 value when building the stubs (so the stub knows where to jump. */
204 bfd_vma target_value;
205 asection *target_section;
206
207 enum elf32_hppa_stub_type stub_type;
208
209 /* The symbol table entry, if any, that this was derived from. */
210 struct elf32_hppa_link_hash_entry *hh;
211
212 /* Where this stub is being called from, or, in the case of combined
213 stub sections, the first input section in the group. */
214 asection *id_sec;
215 };
216
217 enum _tls_type
218 {
219 GOT_UNKNOWN = 0,
220 GOT_NORMAL = 1,
221 GOT_TLS_GD = 2,
222 GOT_TLS_LDM = 4,
223 GOT_TLS_IE = 8
224 };
225
226 struct elf32_hppa_link_hash_entry
227 {
228 struct elf_link_hash_entry eh;
229
230 /* A pointer to the most recently used stub hash entry against this
231 symbol. */
232 struct elf32_hppa_stub_hash_entry *hsh_cache;
233
234 ENUM_BITFIELD (_tls_type) tls_type : 8;
235
236 /* Set if this symbol is used by a plabel reloc. */
237 unsigned int plabel:1;
238 };
239
240 struct elf32_hppa_link_hash_table
241 {
242 /* The main hash table. */
243 struct elf_link_hash_table etab;
244
245 /* The stub hash table. */
246 struct bfd_hash_table bstab;
247
248 /* Linker stub bfd. */
249 bfd *stub_bfd;
250
251 /* Linker call-backs. */
252 asection * (*add_stub_section) (const char *, asection *);
253 void (*layout_sections_again) (void);
254
255 /* Array to keep track of which stub sections have been created, and
256 information on stub grouping. */
257 struct map_stub
258 {
259 /* This is the section to which stubs in the group will be
260 attached. */
261 asection *link_sec;
262 /* The stub section. */
263 asection *stub_sec;
264 } *stub_group;
265
266 /* Assorted information used by elf32_hppa_size_stubs. */
267 unsigned int bfd_count;
268 unsigned int top_index;
269 asection **input_list;
270 Elf_Internal_Sym **all_local_syms;
271
272 /* Used during a final link to store the base of the text and data
273 segments so that we can perform SEGREL relocations. */
274 bfd_vma text_segment_base;
275 bfd_vma data_segment_base;
276
277 /* Whether we support multiple sub-spaces for shared libs. */
278 unsigned int multi_subspace:1;
279
280 /* Flags set when various size branches are detected. Used to
281 select suitable defaults for the stub group size. */
282 unsigned int has_12bit_branch:1;
283 unsigned int has_17bit_branch:1;
284 unsigned int has_22bit_branch:1;
285
286 /* Set if we need a .plt stub to support lazy dynamic linking. */
287 unsigned int need_plt_stub:1;
288
289 /* Small local sym cache. */
290 struct sym_cache sym_cache;
291
292 /* Data for LDM relocations. */
293 union
294 {
295 bfd_signed_vma refcount;
296 bfd_vma offset;
297 } tls_ldm_got;
298 };
299
300 /* Various hash macros and functions. */
301 #define hppa_link_hash_table(p) \
302 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
303 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
304
305 #define hppa_elf_hash_entry(ent) \
306 ((struct elf32_hppa_link_hash_entry *)(ent))
307
308 #define hppa_stub_hash_entry(ent) \
309 ((struct elf32_hppa_stub_hash_entry *)(ent))
310
311 #define hppa_stub_hash_lookup(table, string, create, copy) \
312 ((struct elf32_hppa_stub_hash_entry *) \
313 bfd_hash_lookup ((table), (string), (create), (copy)))
314
315 #define hppa_elf_local_got_tls_type(abfd) \
316 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
317
318 #define hh_name(hh) \
319 (hh ? hh->eh.root.root.string : "<undef>")
320
321 #define eh_name(eh) \
322 (eh ? eh->root.root.string : "<undef>")
323
324 /* Assorted hash table functions. */
325
326 /* Initialize an entry in the stub hash table. */
327
328 static struct bfd_hash_entry *
329 stub_hash_newfunc (struct bfd_hash_entry *entry,
330 struct bfd_hash_table *table,
331 const char *string)
332 {
333 /* Allocate the structure if it has not already been allocated by a
334 subclass. */
335 if (entry == NULL)
336 {
337 entry = bfd_hash_allocate (table,
338 sizeof (struct elf32_hppa_stub_hash_entry));
339 if (entry == NULL)
340 return entry;
341 }
342
343 /* Call the allocation method of the superclass. */
344 entry = bfd_hash_newfunc (entry, table, string);
345 if (entry != NULL)
346 {
347 struct elf32_hppa_stub_hash_entry *hsh;
348
349 /* Initialize the local fields. */
350 hsh = hppa_stub_hash_entry (entry);
351 hsh->stub_sec = NULL;
352 hsh->stub_offset = 0;
353 hsh->target_value = 0;
354 hsh->target_section = NULL;
355 hsh->stub_type = hppa_stub_long_branch;
356 hsh->hh = NULL;
357 hsh->id_sec = NULL;
358 }
359
360 return entry;
361 }
362
363 /* Initialize an entry in the link hash table. */
364
365 static struct bfd_hash_entry *
366 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
367 struct bfd_hash_table *table,
368 const char *string)
369 {
370 /* Allocate the structure if it has not already been allocated by a
371 subclass. */
372 if (entry == NULL)
373 {
374 entry = bfd_hash_allocate (table,
375 sizeof (struct elf32_hppa_link_hash_entry));
376 if (entry == NULL)
377 return entry;
378 }
379
380 /* Call the allocation method of the superclass. */
381 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
382 if (entry != NULL)
383 {
384 struct elf32_hppa_link_hash_entry *hh;
385
386 /* Initialize the local fields. */
387 hh = hppa_elf_hash_entry (entry);
388 hh->hsh_cache = NULL;
389 hh->plabel = 0;
390 hh->tls_type = GOT_UNKNOWN;
391 }
392
393 return entry;
394 }
395
396 /* Free the derived linker hash table. */
397
398 static void
399 elf32_hppa_link_hash_table_free (bfd *obfd)
400 {
401 struct elf32_hppa_link_hash_table *htab
402 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
403
404 bfd_hash_table_free (&htab->bstab);
405 _bfd_elf_link_hash_table_free (obfd);
406 }
407
408 /* Create the derived linker hash table. The PA ELF port uses the derived
409 hash table to keep information specific to the PA ELF linker (without
410 using static variables). */
411
412 static struct bfd_link_hash_table *
413 elf32_hppa_link_hash_table_create (bfd *abfd)
414 {
415 struct elf32_hppa_link_hash_table *htab;
416 size_t amt = sizeof (*htab);
417
418 htab = bfd_zmalloc (amt);
419 if (htab == NULL)
420 return NULL;
421
422 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
423 sizeof (struct elf32_hppa_link_hash_entry),
424 HPPA32_ELF_DATA))
425 {
426 free (htab);
427 return NULL;
428 }
429
430 /* Init the stub hash table too. */
431 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
432 sizeof (struct elf32_hppa_stub_hash_entry)))
433 {
434 _bfd_elf_link_hash_table_free (abfd);
435 return NULL;
436 }
437 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
438
439 htab->text_segment_base = (bfd_vma) -1;
440 htab->data_segment_base = (bfd_vma) -1;
441 return &htab->etab.root;
442 }
443
444 /* Initialize the linker stubs BFD so that we can use it for linker
445 created dynamic sections. */
446
447 void
448 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
449 {
450 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
451
452 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
453 htab->etab.dynobj = abfd;
454 }
455
456 /* Build a name for an entry in the stub hash table. */
457
458 static char *
459 hppa_stub_name (const asection *input_section,
460 const asection *sym_sec,
461 const struct elf32_hppa_link_hash_entry *hh,
462 const Elf_Internal_Rela *rela)
463 {
464 char *stub_name;
465 bfd_size_type len;
466
467 if (hh)
468 {
469 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
470 stub_name = bfd_malloc (len);
471 if (stub_name != NULL)
472 sprintf (stub_name, "%08x_%s+%x",
473 input_section->id & 0xffffffff,
474 hh_name (hh),
475 (int) rela->r_addend & 0xffffffff);
476 }
477 else
478 {
479 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
480 stub_name = bfd_malloc (len);
481 if (stub_name != NULL)
482 sprintf (stub_name, "%08x_%x:%x+%x",
483 input_section->id & 0xffffffff,
484 sym_sec->id & 0xffffffff,
485 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
486 (int) rela->r_addend & 0xffffffff);
487 }
488 return stub_name;
489 }
490
491 /* Look up an entry in the stub hash. Stub entries are cached because
492 creating the stub name takes a bit of time. */
493
494 static struct elf32_hppa_stub_hash_entry *
495 hppa_get_stub_entry (const asection *input_section,
496 const asection *sym_sec,
497 struct elf32_hppa_link_hash_entry *hh,
498 const Elf_Internal_Rela *rela,
499 struct elf32_hppa_link_hash_table *htab)
500 {
501 struct elf32_hppa_stub_hash_entry *hsh_entry;
502 const asection *id_sec;
503
504 /* If this input section is part of a group of sections sharing one
505 stub section, then use the id of the first section in the group.
506 Stub names need to include a section id, as there may well be
507 more than one stub used to reach say, printf, and we need to
508 distinguish between them. */
509 id_sec = htab->stub_group[input_section->id].link_sec;
510 if (id_sec == NULL)
511 return NULL;
512
513 if (hh != NULL && hh->hsh_cache != NULL
514 && hh->hsh_cache->hh == hh
515 && hh->hsh_cache->id_sec == id_sec)
516 {
517 hsh_entry = hh->hsh_cache;
518 }
519 else
520 {
521 char *stub_name;
522
523 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
524 if (stub_name == NULL)
525 return NULL;
526
527 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
528 stub_name, FALSE, FALSE);
529 if (hh != NULL)
530 hh->hsh_cache = hsh_entry;
531
532 free (stub_name);
533 }
534
535 return hsh_entry;
536 }
537
538 /* Add a new stub entry to the stub hash. Not all fields of the new
539 stub entry are initialised. */
540
541 static struct elf32_hppa_stub_hash_entry *
542 hppa_add_stub (const char *stub_name,
543 asection *section,
544 struct elf32_hppa_link_hash_table *htab)
545 {
546 asection *link_sec;
547 asection *stub_sec;
548 struct elf32_hppa_stub_hash_entry *hsh;
549
550 link_sec = htab->stub_group[section->id].link_sec;
551 stub_sec = htab->stub_group[section->id].stub_sec;
552 if (stub_sec == NULL)
553 {
554 stub_sec = htab->stub_group[link_sec->id].stub_sec;
555 if (stub_sec == NULL)
556 {
557 size_t namelen;
558 bfd_size_type len;
559 char *s_name;
560
561 namelen = strlen (link_sec->name);
562 len = namelen + sizeof (STUB_SUFFIX);
563 s_name = bfd_alloc (htab->stub_bfd, len);
564 if (s_name == NULL)
565 return NULL;
566
567 memcpy (s_name, link_sec->name, namelen);
568 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
569 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
570 if (stub_sec == NULL)
571 return NULL;
572 htab->stub_group[link_sec->id].stub_sec = stub_sec;
573 }
574 htab->stub_group[section->id].stub_sec = stub_sec;
575 }
576
577 /* Enter this entry into the linker stub hash table. */
578 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
579 TRUE, FALSE);
580 if (hsh == NULL)
581 {
582 /* xgettext:c-format */
583 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
584 section->owner, stub_name);
585 return NULL;
586 }
587
588 hsh->stub_sec = stub_sec;
589 hsh->stub_offset = 0;
590 hsh->id_sec = link_sec;
591 return hsh;
592 }
593
594 /* Determine the type of stub needed, if any, for a call. */
595
596 static enum elf32_hppa_stub_type
597 hppa_type_of_stub (asection *input_sec,
598 const Elf_Internal_Rela *rela,
599 struct elf32_hppa_link_hash_entry *hh,
600 bfd_vma destination,
601 struct bfd_link_info *info)
602 {
603 bfd_vma location;
604 bfd_vma branch_offset;
605 bfd_vma max_branch_offset;
606 unsigned int r_type;
607
608 if (hh != NULL
609 && hh->eh.plt.offset != (bfd_vma) -1
610 && hh->eh.dynindx != -1
611 && !hh->plabel
612 && (bfd_link_pic (info)
613 || !hh->eh.def_regular
614 || hh->eh.root.type == bfd_link_hash_defweak))
615 {
616 /* We need an import stub. Decide between hppa_stub_import
617 and hppa_stub_import_shared later. */
618 return hppa_stub_import;
619 }
620
621 if (destination == (bfd_vma) -1)
622 return hppa_stub_none;
623
624 /* Determine where the call point is. */
625 location = (input_sec->output_offset
626 + input_sec->output_section->vma
627 + rela->r_offset);
628
629 branch_offset = destination - location - 8;
630 r_type = ELF32_R_TYPE (rela->r_info);
631
632 /* Determine if a long branch stub is needed. parisc branch offsets
633 are relative to the second instruction past the branch, ie. +8
634 bytes on from the branch instruction location. The offset is
635 signed and counts in units of 4 bytes. */
636 if (r_type == (unsigned int) R_PARISC_PCREL17F)
637 max_branch_offset = (1 << (17 - 1)) << 2;
638
639 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
640 max_branch_offset = (1 << (12 - 1)) << 2;
641
642 else /* R_PARISC_PCREL22F. */
643 max_branch_offset = (1 << (22 - 1)) << 2;
644
645 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
646 return hppa_stub_long_branch;
647
648 return hppa_stub_none;
649 }
650
651 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
652 IN_ARG contains the link info pointer. */
653
654 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
655 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
656
657 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
658 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
659 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
660
661 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
662 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
663 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
664 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
665
666 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
667 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
668
669 #define LDO_R1_R22 0x34360000 /* ldo RR'XXX(%r1),%r22 */
670 #define LDW_R22_R21 0x0ec01095 /* ldw 0(%r22),%r21 */
671 #define LDW_R22_R19 0x0ec81093 /* ldw 4(%r22),%r19 */
672
673 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
674 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
675 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
676 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
677
678 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
679 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
680 #define NOP 0x08000240 /* nop */
681 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
682 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
683 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
684
685 #ifndef R19_STUBS
686 #define R19_STUBS 1
687 #endif
688
689 #if R19_STUBS
690 #define LDW_R1_DLT LDW_R1_R19
691 #else
692 #define LDW_R1_DLT LDW_R1_DP
693 #endif
694
695 static bfd_boolean
696 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
697 {
698 struct elf32_hppa_stub_hash_entry *hsh;
699 struct bfd_link_info *info;
700 struct elf32_hppa_link_hash_table *htab;
701 asection *stub_sec;
702 bfd *stub_bfd;
703 bfd_byte *loc;
704 bfd_vma sym_value;
705 bfd_vma insn;
706 bfd_vma off;
707 int val;
708 int size;
709
710 /* Massage our args to the form they really have. */
711 hsh = hppa_stub_hash_entry (bh);
712 info = (struct bfd_link_info *)in_arg;
713
714 htab = hppa_link_hash_table (info);
715 if (htab == NULL)
716 return FALSE;
717
718 stub_sec = hsh->stub_sec;
719
720 /* Make a note of the offset within the stubs for this entry. */
721 hsh->stub_offset = stub_sec->size;
722 loc = stub_sec->contents + hsh->stub_offset;
723
724 stub_bfd = stub_sec->owner;
725
726 switch (hsh->stub_type)
727 {
728 case hppa_stub_long_branch:
729 /* Fail if the target section could not be assigned to an output
730 section. The user should fix his linker script. */
731 if (hsh->target_section->output_section == NULL
732 && info->non_contiguous_regions)
733 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output "
734 "section. Retry without "
735 "--enable-non-contiguous-regions.\n"),
736 hsh->target_section);
737
738 /* Create the long branch. A long branch is formed with "ldil"
739 loading the upper bits of the target address into a register,
740 then branching with "be" which adds in the lower bits.
741 The "be" has its delay slot nullified. */
742 sym_value = (hsh->target_value
743 + hsh->target_section->output_offset
744 + hsh->target_section->output_section->vma);
745
746 val = hppa_field_adjust (sym_value, 0, e_lrsel);
747 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
748 bfd_put_32 (stub_bfd, insn, loc);
749
750 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
751 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
753
754 size = LONG_BRANCH_STUB_SIZE;
755 break;
756
757 case hppa_stub_long_branch_shared:
758 /* Fail if the target section could not be assigned to an output
759 section. The user should fix his linker script. */
760 if (hsh->target_section->output_section == NULL
761 && info->non_contiguous_regions)
762 info->callbacks->einfo (_("%F%P: Could not assign %pA to an output "
763 "section. Retry without "
764 "--enable-non-contiguous-regions.\n"),
765 hsh->target_section);
766
767 /* Branches are relative. This is where we are going to. */
768 sym_value = (hsh->target_value
769 + hsh->target_section->output_offset
770 + hsh->target_section->output_section->vma);
771
772 /* And this is where we are coming from, more or less. */
773 sym_value -= (hsh->stub_offset
774 + stub_sec->output_offset
775 + stub_sec->output_section->vma);
776
777 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
778 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
779 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
780 bfd_put_32 (stub_bfd, insn, loc + 4);
781
782 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
783 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
784 bfd_put_32 (stub_bfd, insn, loc + 8);
785 size = LONG_BRANCH_SHARED_STUB_SIZE;
786 break;
787
788 case hppa_stub_import:
789 case hppa_stub_import_shared:
790 off = hsh->hh->eh.plt.offset;
791 if (off >= (bfd_vma) -2)
792 abort ();
793
794 off &= ~ (bfd_vma) 1;
795 sym_value = (off
796 + htab->etab.splt->output_offset
797 + htab->etab.splt->output_section->vma
798 - elf_gp (htab->etab.splt->output_section->owner));
799
800 insn = ADDIL_DP;
801 #if R19_STUBS
802 if (hsh->stub_type == hppa_stub_import_shared)
803 insn = ADDIL_R19;
804 #endif
805
806 /* Load function descriptor address into register %r22. It is
807 sometimes needed for lazy binding. */
808 val = hppa_field_adjust (sym_value, 0, e_lrsel),
809 insn = hppa_rebuild_insn ((int) insn, val, 21);
810 bfd_put_32 (stub_bfd, insn, loc);
811
812 val = hppa_field_adjust (sym_value, 0, e_rrsel);
813 insn = hppa_rebuild_insn ((int) LDO_R1_R22, val, 14);
814 bfd_put_32 (stub_bfd, insn, loc + 4);
815
816 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R21, loc + 8);
817
818 if (htab->multi_subspace)
819 {
820 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
821 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
822 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 20);
823 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 24);
824 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 28);
825
826 size = IMPORT_SHARED_STUB_SIZE;
827 }
828 else
829 {
830 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 12);
831 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
832
833 size = IMPORT_STUB_SIZE;
834 }
835
836 break;
837
838 case hppa_stub_export:
839 /* Fail if the target section could not be assigned to an output
840 section. The user should fix his linker script. */
841 if (hsh->target_section->output_section == NULL
842 && info->non_contiguous_regions)
843 info->callbacks->einfo (_("%F%P: Could not assign %pA to an output "
844 "section. Retry without "
845 "--enable-non-contiguous-regions.\n"),
846 hsh->target_section);
847
848 /* Branches are relative. This is where we are going to. */
849 sym_value = (hsh->target_value
850 + hsh->target_section->output_offset
851 + hsh->target_section->output_section->vma);
852
853 /* And this is where we are coming from. */
854 sym_value -= (hsh->stub_offset
855 + stub_sec->output_offset
856 + stub_sec->output_section->vma);
857
858 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
859 && (!htab->has_22bit_branch
860 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
861 {
862 _bfd_error_handler
863 /* xgettext:c-format */
864 (_("%pB(%pA+%#" PRIx64 "): "
865 "cannot reach %s, recompile with -ffunction-sections"),
866 hsh->target_section->owner,
867 stub_sec,
868 (uint64_t) hsh->stub_offset,
869 hsh->bh_root.string);
870 bfd_set_error (bfd_error_bad_value);
871 return FALSE;
872 }
873
874 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
875 if (!htab->has_22bit_branch)
876 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
877 else
878 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
879 bfd_put_32 (stub_bfd, insn, loc);
880
881 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
882 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
883 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
884 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
885 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
886
887 /* Point the function symbol at the stub. */
888 hsh->hh->eh.root.u.def.section = stub_sec;
889 hsh->hh->eh.root.u.def.value = stub_sec->size;
890
891 size = EXPORT_STUB_SIZE;
892 break;
893
894 default:
895 BFD_FAIL ();
896 return FALSE;
897 }
898
899 stub_sec->size += size;
900 return TRUE;
901 }
902
903 #undef LDIL_R1
904 #undef BE_SR4_R1
905 #undef BL_R1
906 #undef ADDIL_R1
907 #undef DEPI_R1
908 #undef LDW_R1_R21
909 #undef LDW_R1_DLT
910 #undef LDW_R1_R19
911 #undef ADDIL_R19
912 #undef LDW_R1_DP
913 #undef LDSID_R21_R1
914 #undef MTSP_R1
915 #undef BE_SR0_R21
916 #undef STW_RP
917 #undef BV_R0_R21
918 #undef BL_RP
919 #undef NOP
920 #undef LDW_RP
921 #undef LDSID_RP_R1
922 #undef BE_SR0_RP
923
924 /* As above, but don't actually build the stub. Just bump offset so
925 we know stub section sizes. */
926
927 static bfd_boolean
928 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
929 {
930 struct elf32_hppa_stub_hash_entry *hsh;
931 struct elf32_hppa_link_hash_table *htab;
932 int size;
933
934 /* Massage our args to the form they really have. */
935 hsh = hppa_stub_hash_entry (bh);
936 htab = in_arg;
937
938 if (hsh->stub_type == hppa_stub_long_branch)
939 size = LONG_BRANCH_STUB_SIZE;
940 else if (hsh->stub_type == hppa_stub_long_branch_shared)
941 size = LONG_BRANCH_SHARED_STUB_SIZE;
942 else if (hsh->stub_type == hppa_stub_export)
943 size = EXPORT_STUB_SIZE;
944 else /* hppa_stub_import or hppa_stub_import_shared. */
945 {
946 if (htab->multi_subspace)
947 size = IMPORT_SHARED_STUB_SIZE;
948 else
949 size = IMPORT_STUB_SIZE;
950 }
951
952 hsh->stub_sec->size += size;
953 return TRUE;
954 }
955
956 /* Return nonzero if ABFD represents an HPPA ELF32 file.
957 Additionally we set the default architecture and machine. */
958
959 static bfd_boolean
960 elf32_hppa_object_p (bfd *abfd)
961 {
962 Elf_Internal_Ehdr * i_ehdrp;
963 unsigned int flags;
964
965 i_ehdrp = elf_elfheader (abfd);
966 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
967 {
968 /* GCC on hppa-linux produces binaries with OSABI=GNU,
969 but the kernel produces corefiles with OSABI=SysV. */
970 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
971 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
972 return FALSE;
973 }
974 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
975 {
976 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
977 but the kernel produces corefiles with OSABI=SysV. */
978 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
979 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
980 return FALSE;
981 }
982 else
983 {
984 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
985 return FALSE;
986 }
987
988 flags = i_ehdrp->e_flags;
989 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
990 {
991 case EFA_PARISC_1_0:
992 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
993 case EFA_PARISC_1_1:
994 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
995 case EFA_PARISC_2_0:
996 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
997 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
998 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
999 }
1000 return TRUE;
1001 }
1002
1003 /* Create the .plt and .got sections, and set up our hash table
1004 short-cuts to various dynamic sections. */
1005
1006 static bfd_boolean
1007 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
1008 {
1009 struct elf32_hppa_link_hash_table *htab;
1010 struct elf_link_hash_entry *eh;
1011
1012 /* Don't try to create the .plt and .got twice. */
1013 htab = hppa_link_hash_table (info);
1014 if (htab == NULL)
1015 return FALSE;
1016 if (htab->etab.splt != NULL)
1017 return TRUE;
1018
1019 /* Call the generic code to do most of the work. */
1020 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1021 return FALSE;
1022
1023 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1024 application, because __canonicalize_funcptr_for_compare needs it. */
1025 eh = elf_hash_table (info)->hgot;
1026 eh->forced_local = 0;
1027 eh->other = STV_DEFAULT;
1028 return bfd_elf_link_record_dynamic_symbol (info, eh);
1029 }
1030
1031 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1032
1033 static void
1034 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1035 struct elf_link_hash_entry *eh_dir,
1036 struct elf_link_hash_entry *eh_ind)
1037 {
1038 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1039
1040 hh_dir = hppa_elf_hash_entry (eh_dir);
1041 hh_ind = hppa_elf_hash_entry (eh_ind);
1042
1043 if (eh_ind->root.type == bfd_link_hash_indirect)
1044 {
1045 hh_dir->plabel |= hh_ind->plabel;
1046 hh_dir->tls_type |= hh_ind->tls_type;
1047 hh_ind->tls_type = GOT_UNKNOWN;
1048 }
1049
1050 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1051 }
1052
1053 static int
1054 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1055 int r_type, int is_local ATTRIBUTE_UNUSED)
1056 {
1057 /* For now we don't support linker optimizations. */
1058 return r_type;
1059 }
1060
1061 /* Return a pointer to the local GOT, PLT and TLS reference counts
1062 for ABFD. Returns NULL if the storage allocation fails. */
1063
1064 static bfd_signed_vma *
1065 hppa32_elf_local_refcounts (bfd *abfd)
1066 {
1067 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1068 bfd_signed_vma *local_refcounts;
1069
1070 local_refcounts = elf_local_got_refcounts (abfd);
1071 if (local_refcounts == NULL)
1072 {
1073 bfd_size_type size;
1074
1075 /* Allocate space for local GOT and PLT reference
1076 counts. Done this way to save polluting elf_obj_tdata
1077 with another target specific pointer. */
1078 size = symtab_hdr->sh_info;
1079 size *= 2 * sizeof (bfd_signed_vma);
1080 /* Add in space to store the local GOT TLS types. */
1081 size += symtab_hdr->sh_info;
1082 local_refcounts = bfd_zalloc (abfd, size);
1083 if (local_refcounts == NULL)
1084 return NULL;
1085 elf_local_got_refcounts (abfd) = local_refcounts;
1086 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1087 symtab_hdr->sh_info);
1088 }
1089 return local_refcounts;
1090 }
1091
1092
1093 /* Look through the relocs for a section during the first phase, and
1094 calculate needed space in the global offset table, procedure linkage
1095 table, and dynamic reloc sections. At this point we haven't
1096 necessarily read all the input files. */
1097
1098 static bfd_boolean
1099 elf32_hppa_check_relocs (bfd *abfd,
1100 struct bfd_link_info *info,
1101 asection *sec,
1102 const Elf_Internal_Rela *relocs)
1103 {
1104 Elf_Internal_Shdr *symtab_hdr;
1105 struct elf_link_hash_entry **eh_syms;
1106 const Elf_Internal_Rela *rela;
1107 const Elf_Internal_Rela *rela_end;
1108 struct elf32_hppa_link_hash_table *htab;
1109 asection *sreloc;
1110
1111 if (bfd_link_relocatable (info))
1112 return TRUE;
1113
1114 htab = hppa_link_hash_table (info);
1115 if (htab == NULL)
1116 return FALSE;
1117 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1118 eh_syms = elf_sym_hashes (abfd);
1119 sreloc = NULL;
1120
1121 rela_end = relocs + sec->reloc_count;
1122 for (rela = relocs; rela < rela_end; rela++)
1123 {
1124 enum {
1125 NEED_GOT = 1,
1126 NEED_PLT = 2,
1127 NEED_DYNREL = 4,
1128 PLT_PLABEL = 8
1129 };
1130
1131 unsigned int r_symndx, r_type;
1132 struct elf32_hppa_link_hash_entry *hh;
1133 int need_entry = 0;
1134
1135 r_symndx = ELF32_R_SYM (rela->r_info);
1136
1137 if (r_symndx < symtab_hdr->sh_info)
1138 hh = NULL;
1139 else
1140 {
1141 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1142 while (hh->eh.root.type == bfd_link_hash_indirect
1143 || hh->eh.root.type == bfd_link_hash_warning)
1144 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1145 }
1146
1147 r_type = ELF32_R_TYPE (rela->r_info);
1148 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1149
1150 switch (r_type)
1151 {
1152 case R_PARISC_DLTIND14F:
1153 case R_PARISC_DLTIND14R:
1154 case R_PARISC_DLTIND21L:
1155 /* This symbol requires a global offset table entry. */
1156 need_entry = NEED_GOT;
1157 break;
1158
1159 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1160 case R_PARISC_PLABEL21L:
1161 case R_PARISC_PLABEL32:
1162 /* If the addend is non-zero, we break badly. */
1163 if (rela->r_addend != 0)
1164 abort ();
1165
1166 /* If we are creating a shared library, then we need to
1167 create a PLT entry for all PLABELs, because PLABELs with
1168 local symbols may be passed via a pointer to another
1169 object. Additionally, output a dynamic relocation
1170 pointing to the PLT entry.
1171
1172 For executables, the original 32-bit ABI allowed two
1173 different styles of PLABELs (function pointers): For
1174 global functions, the PLABEL word points into the .plt
1175 two bytes past a (function address, gp) pair, and for
1176 local functions the PLABEL points directly at the
1177 function. The magic +2 for the first type allows us to
1178 differentiate between the two. As you can imagine, this
1179 is a real pain when it comes to generating code to call
1180 functions indirectly or to compare function pointers.
1181 We avoid the mess by always pointing a PLABEL into the
1182 .plt, even for local functions. */
1183 need_entry = PLT_PLABEL | NEED_PLT;
1184 if (bfd_link_pic (info))
1185 need_entry |= NEED_DYNREL;
1186 break;
1187
1188 case R_PARISC_PCREL12F:
1189 htab->has_12bit_branch = 1;
1190 goto branch_common;
1191
1192 case R_PARISC_PCREL17C:
1193 case R_PARISC_PCREL17F:
1194 htab->has_17bit_branch = 1;
1195 goto branch_common;
1196
1197 case R_PARISC_PCREL22F:
1198 htab->has_22bit_branch = 1;
1199 branch_common:
1200 /* Function calls might need to go through the .plt, and
1201 might require long branch stubs. */
1202 if (hh == NULL)
1203 {
1204 /* We know local syms won't need a .plt entry, and if
1205 they need a long branch stub we can't guarantee that
1206 we can reach the stub. So just flag an error later
1207 if we're doing a shared link and find we need a long
1208 branch stub. */
1209 continue;
1210 }
1211 else
1212 {
1213 /* Global symbols will need a .plt entry if they remain
1214 global, and in most cases won't need a long branch
1215 stub. Unfortunately, we have to cater for the case
1216 where a symbol is forced local by versioning, or due
1217 to symbolic linking, and we lose the .plt entry. */
1218 need_entry = NEED_PLT;
1219 if (hh->eh.type == STT_PARISC_MILLI)
1220 need_entry = 0;
1221 }
1222 break;
1223
1224 case R_PARISC_SEGBASE: /* Used to set segment base. */
1225 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1226 case R_PARISC_PCREL14F: /* PC relative load/store. */
1227 case R_PARISC_PCREL14R:
1228 case R_PARISC_PCREL17R: /* External branches. */
1229 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1230 case R_PARISC_PCREL32:
1231 /* We don't need to propagate the relocation if linking a
1232 shared object since these are section relative. */
1233 continue;
1234
1235 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1236 case R_PARISC_DPREL14R:
1237 case R_PARISC_DPREL21L:
1238 if (bfd_link_pic (info))
1239 {
1240 _bfd_error_handler
1241 /* xgettext:c-format */
1242 (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1243 abfd,
1244 elf_hppa_howto_table[r_type].name);
1245 bfd_set_error (bfd_error_bad_value);
1246 return FALSE;
1247 }
1248 /* Fall through. */
1249
1250 case R_PARISC_DIR17F: /* Used for external branches. */
1251 case R_PARISC_DIR17R:
1252 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1253 case R_PARISC_DIR14R:
1254 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1255 case R_PARISC_DIR32: /* .word relocs. */
1256 /* We may want to output a dynamic relocation later. */
1257 need_entry = NEED_DYNREL;
1258 break;
1259
1260 /* This relocation describes the C++ object vtable hierarchy.
1261 Reconstruct it for later use during GC. */
1262 case R_PARISC_GNU_VTINHERIT:
1263 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1264 return FALSE;
1265 continue;
1266
1267 /* This relocation describes which C++ vtable entries are actually
1268 used. Record for later use during GC. */
1269 case R_PARISC_GNU_VTENTRY:
1270 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1271 return FALSE;
1272 continue;
1273
1274 case R_PARISC_TLS_GD21L:
1275 case R_PARISC_TLS_GD14R:
1276 case R_PARISC_TLS_LDM21L:
1277 case R_PARISC_TLS_LDM14R:
1278 need_entry = NEED_GOT;
1279 break;
1280
1281 case R_PARISC_TLS_IE21L:
1282 case R_PARISC_TLS_IE14R:
1283 if (bfd_link_dll (info))
1284 info->flags |= DF_STATIC_TLS;
1285 need_entry = NEED_GOT;
1286 break;
1287
1288 default:
1289 continue;
1290 }
1291
1292 /* Now carry out our orders. */
1293 if (need_entry & NEED_GOT)
1294 {
1295 int tls_type = GOT_NORMAL;
1296
1297 switch (r_type)
1298 {
1299 default:
1300 break;
1301 case R_PARISC_TLS_GD21L:
1302 case R_PARISC_TLS_GD14R:
1303 tls_type = GOT_TLS_GD;
1304 break;
1305 case R_PARISC_TLS_LDM21L:
1306 case R_PARISC_TLS_LDM14R:
1307 tls_type = GOT_TLS_LDM;
1308 break;
1309 case R_PARISC_TLS_IE21L:
1310 case R_PARISC_TLS_IE14R:
1311 tls_type = GOT_TLS_IE;
1312 break;
1313 }
1314
1315 /* Allocate space for a GOT entry, as well as a dynamic
1316 relocation for this entry. */
1317 if (htab->etab.sgot == NULL)
1318 {
1319 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1320 return FALSE;
1321 }
1322
1323 if (hh != NULL)
1324 {
1325 if (tls_type == GOT_TLS_LDM)
1326 htab->tls_ldm_got.refcount += 1;
1327 else
1328 hh->eh.got.refcount += 1;
1329 hh->tls_type |= tls_type;
1330 }
1331 else
1332 {
1333 bfd_signed_vma *local_got_refcounts;
1334
1335 /* This is a global offset table entry for a local symbol. */
1336 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1337 if (local_got_refcounts == NULL)
1338 return FALSE;
1339 if (tls_type == GOT_TLS_LDM)
1340 htab->tls_ldm_got.refcount += 1;
1341 else
1342 local_got_refcounts[r_symndx] += 1;
1343
1344 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1345 }
1346 }
1347
1348 if (need_entry & NEED_PLT)
1349 {
1350 /* If we are creating a shared library, and this is a reloc
1351 against a weak symbol or a global symbol in a dynamic
1352 object, then we will be creating an import stub and a
1353 .plt entry for the symbol. Similarly, on a normal link
1354 to symbols defined in a dynamic object we'll need the
1355 import stub and a .plt entry. We don't know yet whether
1356 the symbol is defined or not, so make an entry anyway and
1357 clean up later in adjust_dynamic_symbol. */
1358 if ((sec->flags & SEC_ALLOC) != 0)
1359 {
1360 if (hh != NULL)
1361 {
1362 hh->eh.needs_plt = 1;
1363 hh->eh.plt.refcount += 1;
1364
1365 /* If this .plt entry is for a plabel, mark it so
1366 that adjust_dynamic_symbol will keep the entry
1367 even if it appears to be local. */
1368 if (need_entry & PLT_PLABEL)
1369 hh->plabel = 1;
1370 }
1371 else if (need_entry & PLT_PLABEL)
1372 {
1373 bfd_signed_vma *local_got_refcounts;
1374 bfd_signed_vma *local_plt_refcounts;
1375
1376 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1377 if (local_got_refcounts == NULL)
1378 return FALSE;
1379 local_plt_refcounts = (local_got_refcounts
1380 + symtab_hdr->sh_info);
1381 local_plt_refcounts[r_symndx] += 1;
1382 }
1383 }
1384 }
1385
1386 if ((need_entry & NEED_DYNREL) != 0
1387 && (sec->flags & SEC_ALLOC) != 0)
1388 {
1389 /* Flag this symbol as having a non-got, non-plt reference
1390 so that we generate copy relocs if it turns out to be
1391 dynamic. */
1392 if (hh != NULL)
1393 hh->eh.non_got_ref = 1;
1394
1395 /* If we are creating a shared library then we need to copy
1396 the reloc into the shared library. However, if we are
1397 linking with -Bsymbolic, we need only copy absolute
1398 relocs or relocs against symbols that are not defined in
1399 an object we are including in the link. PC- or DP- or
1400 DLT-relative relocs against any local sym or global sym
1401 with DEF_REGULAR set, can be discarded. At this point we
1402 have not seen all the input files, so it is possible that
1403 DEF_REGULAR is not set now but will be set later (it is
1404 never cleared). We account for that possibility below by
1405 storing information in the dyn_relocs field of the
1406 hash table entry.
1407
1408 A similar situation to the -Bsymbolic case occurs when
1409 creating shared libraries and symbol visibility changes
1410 render the symbol local.
1411
1412 As it turns out, all the relocs we will be creating here
1413 are absolute, so we cannot remove them on -Bsymbolic
1414 links or visibility changes anyway. A STUB_REL reloc
1415 is absolute too, as in that case it is the reloc in the
1416 stub we will be creating, rather than copying the PCREL
1417 reloc in the branch.
1418
1419 If on the other hand, we are creating an executable, we
1420 may need to keep relocations for symbols satisfied by a
1421 dynamic library if we manage to avoid copy relocs for the
1422 symbol. */
1423 if ((bfd_link_pic (info)
1424 && (IS_ABSOLUTE_RELOC (r_type)
1425 || (hh != NULL
1426 && (!SYMBOLIC_BIND (info, &hh->eh)
1427 || hh->eh.root.type == bfd_link_hash_defweak
1428 || !hh->eh.def_regular))))
1429 || (ELIMINATE_COPY_RELOCS
1430 && !bfd_link_pic (info)
1431 && hh != NULL
1432 && (hh->eh.root.type == bfd_link_hash_defweak
1433 || !hh->eh.def_regular)))
1434 {
1435 struct elf_dyn_relocs *hdh_p;
1436 struct elf_dyn_relocs **hdh_head;
1437
1438 /* Create a reloc section in dynobj and make room for
1439 this reloc. */
1440 if (sreloc == NULL)
1441 {
1442 sreloc = _bfd_elf_make_dynamic_reloc_section
1443 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1444
1445 if (sreloc == NULL)
1446 {
1447 bfd_set_error (bfd_error_bad_value);
1448 return FALSE;
1449 }
1450 }
1451
1452 /* If this is a global symbol, we count the number of
1453 relocations we need for this symbol. */
1454 if (hh != NULL)
1455 {
1456 hdh_head = &hh->eh.dyn_relocs;
1457 }
1458 else
1459 {
1460 /* Track dynamic relocs needed for local syms too.
1461 We really need local syms available to do this
1462 easily. Oh well. */
1463 asection *sr;
1464 void *vpp;
1465 Elf_Internal_Sym *isym;
1466
1467 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1468 abfd, r_symndx);
1469 if (isym == NULL)
1470 return FALSE;
1471
1472 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1473 if (sr == NULL)
1474 sr = sec;
1475
1476 vpp = &elf_section_data (sr)->local_dynrel;
1477 hdh_head = (struct elf_dyn_relocs **) vpp;
1478 }
1479
1480 hdh_p = *hdh_head;
1481 if (hdh_p == NULL || hdh_p->sec != sec)
1482 {
1483 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1484 if (hdh_p == NULL)
1485 return FALSE;
1486 hdh_p->next = *hdh_head;
1487 *hdh_head = hdh_p;
1488 hdh_p->sec = sec;
1489 hdh_p->count = 0;
1490 #if RELATIVE_DYNRELOCS
1491 hdh_p->pc_count = 0;
1492 #endif
1493 }
1494
1495 hdh_p->count += 1;
1496 #if RELATIVE_DYNRELOCS
1497 if (!IS_ABSOLUTE_RELOC (rtype))
1498 hdh_p->pc_count += 1;
1499 #endif
1500 }
1501 }
1502 }
1503
1504 return TRUE;
1505 }
1506
1507 /* Return the section that should be marked against garbage collection
1508 for a given relocation. */
1509
1510 static asection *
1511 elf32_hppa_gc_mark_hook (asection *sec,
1512 struct bfd_link_info *info,
1513 Elf_Internal_Rela *rela,
1514 struct elf_link_hash_entry *hh,
1515 Elf_Internal_Sym *sym)
1516 {
1517 if (hh != NULL)
1518 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1519 {
1520 case R_PARISC_GNU_VTINHERIT:
1521 case R_PARISC_GNU_VTENTRY:
1522 return NULL;
1523 }
1524
1525 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1526 }
1527
1528 /* Support for core dump NOTE sections. */
1529
1530 static bfd_boolean
1531 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1532 {
1533 int offset;
1534 size_t size;
1535
1536 switch (note->descsz)
1537 {
1538 default:
1539 return FALSE;
1540
1541 case 396: /* Linux/hppa */
1542 /* pr_cursig */
1543 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1544
1545 /* pr_pid */
1546 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1547
1548 /* pr_reg */
1549 offset = 72;
1550 size = 320;
1551
1552 break;
1553 }
1554
1555 /* Make a ".reg/999" section. */
1556 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1557 size, note->descpos + offset);
1558 }
1559
1560 static bfd_boolean
1561 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1562 {
1563 switch (note->descsz)
1564 {
1565 default:
1566 return FALSE;
1567
1568 case 124: /* Linux/hppa elf_prpsinfo. */
1569 elf_tdata (abfd)->core->program
1570 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1571 elf_tdata (abfd)->core->command
1572 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1573 }
1574
1575 /* Note that for some reason, a spurious space is tacked
1576 onto the end of the args in some (at least one anyway)
1577 implementations, so strip it off if it exists. */
1578 {
1579 char *command = elf_tdata (abfd)->core->command;
1580 int n = strlen (command);
1581
1582 if (0 < n && command[n - 1] == ' ')
1583 command[n - 1] = '\0';
1584 }
1585
1586 return TRUE;
1587 }
1588
1589 /* Our own version of hide_symbol, so that we can keep plt entries for
1590 plabels. */
1591
1592 static void
1593 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1594 struct elf_link_hash_entry *eh,
1595 bfd_boolean force_local)
1596 {
1597 if (force_local)
1598 {
1599 eh->forced_local = 1;
1600 if (eh->dynindx != -1)
1601 {
1602 eh->dynindx = -1;
1603 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1604 eh->dynstr_index);
1605 }
1606
1607 /* PR 16082: Remove version information from hidden symbol. */
1608 eh->verinfo.verdef = NULL;
1609 eh->verinfo.vertree = NULL;
1610 }
1611
1612 /* STT_GNU_IFUNC symbol must go through PLT. */
1613 if (! hppa_elf_hash_entry (eh)->plabel
1614 && eh->type != STT_GNU_IFUNC)
1615 {
1616 eh->needs_plt = 0;
1617 eh->plt = elf_hash_table (info)->init_plt_offset;
1618 }
1619 }
1620
1621 /* Return true if we have dynamic relocs against H or any of its weak
1622 aliases, that apply to read-only sections. Cannot be used after
1623 size_dynamic_sections. */
1624
1625 static bfd_boolean
1626 alias_readonly_dynrelocs (struct elf_link_hash_entry *eh)
1627 {
1628 struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1629 do
1630 {
1631 if (_bfd_elf_readonly_dynrelocs (&hh->eh))
1632 return TRUE;
1633 hh = hppa_elf_hash_entry (hh->eh.u.alias);
1634 } while (hh != NULL && &hh->eh != eh);
1635
1636 return FALSE;
1637 }
1638
1639 /* Adjust a symbol defined by a dynamic object and referenced by a
1640 regular object. The current definition is in some section of the
1641 dynamic object, but we're not including those sections. We have to
1642 change the definition to something the rest of the link can
1643 understand. */
1644
1645 static bfd_boolean
1646 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1647 struct elf_link_hash_entry *eh)
1648 {
1649 struct elf32_hppa_link_hash_table *htab;
1650 asection *sec, *srel;
1651
1652 /* If this is a function, put it in the procedure linkage table. We
1653 will fill in the contents of the procedure linkage table later. */
1654 if (eh->type == STT_FUNC
1655 || eh->needs_plt)
1656 {
1657 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1658 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1659 /* Discard dyn_relocs when non-pic if we've decided that a
1660 function symbol is local. */
1661 if (!bfd_link_pic (info) && local)
1662 eh->dyn_relocs = NULL;
1663
1664 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1665 The refcounts are not reliable when it has been hidden since
1666 hide_symbol can be called before the plabel flag is set. */
1667 if (hppa_elf_hash_entry (eh)->plabel)
1668 eh->plt.refcount = 1;
1669
1670 /* Note that unlike some other backends, the refcount is not
1671 incremented for a non-call (and non-plabel) function reference. */
1672 else if (eh->plt.refcount <= 0
1673 || local)
1674 {
1675 /* The .plt entry is not needed when:
1676 a) Garbage collection has removed all references to the
1677 symbol, or
1678 b) We know for certain the symbol is defined in this
1679 object, and it's not a weak definition, nor is the symbol
1680 used by a plabel relocation. Either this object is the
1681 application or we are doing a shared symbolic link. */
1682 eh->plt.offset = (bfd_vma) -1;
1683 eh->needs_plt = 0;
1684 }
1685
1686 /* Unlike other targets, elf32-hppa.c does not define a function
1687 symbol in a non-pic executable on PLT stub code, so we don't
1688 have a local definition in that case. ie. dyn_relocs can't
1689 be discarded. */
1690
1691 /* Function symbols can't have copy relocs. */
1692 return TRUE;
1693 }
1694 else
1695 eh->plt.offset = (bfd_vma) -1;
1696
1697 htab = hppa_link_hash_table (info);
1698 if (htab == NULL)
1699 return FALSE;
1700
1701 /* If this is a weak symbol, and there is a real definition, the
1702 processor independent code will have arranged for us to see the
1703 real definition first, and we can just use the same value. */
1704 if (eh->is_weakalias)
1705 {
1706 struct elf_link_hash_entry *def = weakdef (eh);
1707 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1708 eh->root.u.def.section = def->root.u.def.section;
1709 eh->root.u.def.value = def->root.u.def.value;
1710 if (def->root.u.def.section == htab->etab.sdynbss
1711 || def->root.u.def.section == htab->etab.sdynrelro)
1712 eh->dyn_relocs = NULL;
1713 return TRUE;
1714 }
1715
1716 /* This is a reference to a symbol defined by a dynamic object which
1717 is not a function. */
1718
1719 /* If we are creating a shared library, we must presume that the
1720 only references to the symbol are via the global offset table.
1721 For such cases we need not do anything here; the relocations will
1722 be handled correctly by relocate_section. */
1723 if (bfd_link_pic (info))
1724 return TRUE;
1725
1726 /* If there are no references to this symbol that do not use the
1727 GOT, we don't need to generate a copy reloc. */
1728 if (!eh->non_got_ref)
1729 return TRUE;
1730
1731 /* If -z nocopyreloc was given, we won't generate them either. */
1732 if (info->nocopyreloc)
1733 return TRUE;
1734
1735 /* If we don't find any dynamic relocs in read-only sections, then
1736 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1737 if (ELIMINATE_COPY_RELOCS
1738 && !alias_readonly_dynrelocs (eh))
1739 return TRUE;
1740
1741 /* We must allocate the symbol in our .dynbss section, which will
1742 become part of the .bss section of the executable. There will be
1743 an entry for this symbol in the .dynsym section. The dynamic
1744 object will contain position independent code, so all references
1745 from the dynamic object to this symbol will go through the global
1746 offset table. The dynamic linker will use the .dynsym entry to
1747 determine the address it must put in the global offset table, so
1748 both the dynamic object and the regular object will refer to the
1749 same memory location for the variable. */
1750 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1751 {
1752 sec = htab->etab.sdynrelro;
1753 srel = htab->etab.sreldynrelro;
1754 }
1755 else
1756 {
1757 sec = htab->etab.sdynbss;
1758 srel = htab->etab.srelbss;
1759 }
1760 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1761 {
1762 /* We must generate a COPY reloc to tell the dynamic linker to
1763 copy the initial value out of the dynamic object and into the
1764 runtime process image. */
1765 srel->size += sizeof (Elf32_External_Rela);
1766 eh->needs_copy = 1;
1767 }
1768
1769 /* We no longer want dyn_relocs. */
1770 eh->dyn_relocs = NULL;
1771 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1772 }
1773
1774 /* If EH is undefined, make it dynamic if that makes sense. */
1775
1776 static bfd_boolean
1777 ensure_undef_dynamic (struct bfd_link_info *info,
1778 struct elf_link_hash_entry *eh)
1779 {
1780 struct elf_link_hash_table *htab = elf_hash_table (info);
1781
1782 if (htab->dynamic_sections_created
1783 && (eh->root.type == bfd_link_hash_undefweak
1784 || eh->root.type == bfd_link_hash_undefined)
1785 && eh->dynindx == -1
1786 && !eh->forced_local
1787 && eh->type != STT_PARISC_MILLI
1788 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1789 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1790 return bfd_elf_link_record_dynamic_symbol (info, eh);
1791 return TRUE;
1792 }
1793
1794 /* Allocate space in the .plt for entries that won't have relocations.
1795 ie. plabel entries. */
1796
1797 static bfd_boolean
1798 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1799 {
1800 struct bfd_link_info *info;
1801 struct elf32_hppa_link_hash_table *htab;
1802 struct elf32_hppa_link_hash_entry *hh;
1803 asection *sec;
1804
1805 if (eh->root.type == bfd_link_hash_indirect)
1806 return TRUE;
1807
1808 info = (struct bfd_link_info *) inf;
1809 hh = hppa_elf_hash_entry (eh);
1810 htab = hppa_link_hash_table (info);
1811 if (htab == NULL)
1812 return FALSE;
1813
1814 if (htab->etab.dynamic_sections_created
1815 && eh->plt.refcount > 0)
1816 {
1817 if (!ensure_undef_dynamic (info, eh))
1818 return FALSE;
1819
1820 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1821 {
1822 /* Allocate these later. From this point on, h->plabel
1823 means that the plt entry is only used by a plabel.
1824 We'll be using a normal plt entry for this symbol, so
1825 clear the plabel indicator. */
1826
1827 hh->plabel = 0;
1828 }
1829 else if (hh->plabel)
1830 {
1831 /* Make an entry in the .plt section for plabel references
1832 that won't have a .plt entry for other reasons. */
1833 sec = htab->etab.splt;
1834 eh->plt.offset = sec->size;
1835 sec->size += PLT_ENTRY_SIZE;
1836 if (bfd_link_pic (info))
1837 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1838 }
1839 else
1840 {
1841 /* No .plt entry needed. */
1842 eh->plt.offset = (bfd_vma) -1;
1843 eh->needs_plt = 0;
1844 }
1845 }
1846 else
1847 {
1848 eh->plt.offset = (bfd_vma) -1;
1849 eh->needs_plt = 0;
1850 }
1851
1852 return TRUE;
1853 }
1854
1855 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1856
1857 static inline unsigned int
1858 got_entries_needed (int tls_type)
1859 {
1860 unsigned int need = 0;
1861
1862 if ((tls_type & GOT_NORMAL) != 0)
1863 need += GOT_ENTRY_SIZE;
1864 if ((tls_type & GOT_TLS_GD) != 0)
1865 need += GOT_ENTRY_SIZE * 2;
1866 if ((tls_type & GOT_TLS_IE) != 0)
1867 need += GOT_ENTRY_SIZE;
1868 return need;
1869 }
1870
1871 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1872 NEEDed GOT entries. TPREL_KNOWN says a TPREL offset can be
1873 calculated at link time. DTPREL_KNOWN says the same for a DTPREL
1874 offset. */
1875
1876 static inline unsigned int
1877 got_relocs_needed (int tls_type, unsigned int need,
1878 bfd_boolean dtprel_known, bfd_boolean tprel_known)
1879 {
1880 /* All the entries we allocated need relocs.
1881 Except for GD and IE with local symbols. */
1882 if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known)
1883 need -= GOT_ENTRY_SIZE;
1884 if ((tls_type & GOT_TLS_IE) != 0 && tprel_known)
1885 need -= GOT_ENTRY_SIZE;
1886 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1887 }
1888
1889 /* Allocate space in .plt, .got and associated reloc sections for
1890 global syms. */
1891
1892 static bfd_boolean
1893 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1894 {
1895 struct bfd_link_info *info;
1896 struct elf32_hppa_link_hash_table *htab;
1897 asection *sec;
1898 struct elf32_hppa_link_hash_entry *hh;
1899 struct elf_dyn_relocs *hdh_p;
1900
1901 if (eh->root.type == bfd_link_hash_indirect)
1902 return TRUE;
1903
1904 info = inf;
1905 htab = hppa_link_hash_table (info);
1906 if (htab == NULL)
1907 return FALSE;
1908
1909 hh = hppa_elf_hash_entry (eh);
1910
1911 if (htab->etab.dynamic_sections_created
1912 && eh->plt.offset != (bfd_vma) -1
1913 && !hh->plabel
1914 && eh->plt.refcount > 0)
1915 {
1916 /* Make an entry in the .plt section. */
1917 sec = htab->etab.splt;
1918 eh->plt.offset = sec->size;
1919 sec->size += PLT_ENTRY_SIZE;
1920
1921 /* We also need to make an entry in the .rela.plt section. */
1922 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1923 htab->need_plt_stub = 1;
1924 }
1925
1926 if (eh->got.refcount > 0)
1927 {
1928 unsigned int need;
1929
1930 if (!ensure_undef_dynamic (info, eh))
1931 return FALSE;
1932
1933 sec = htab->etab.sgot;
1934 eh->got.offset = sec->size;
1935 need = got_entries_needed (hh->tls_type);
1936 sec->size += need;
1937 if (htab->etab.dynamic_sections_created
1938 && (bfd_link_dll (info)
1939 || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0)
1940 || (eh->dynindx != -1
1941 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1942 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1943 {
1944 bfd_boolean local = SYMBOL_REFERENCES_LOCAL (info, eh);
1945 htab->etab.srelgot->size
1946 += got_relocs_needed (hh->tls_type, need, local,
1947 local && bfd_link_executable (info));
1948 }
1949 }
1950 else
1951 eh->got.offset = (bfd_vma) -1;
1952
1953 /* If no dynamic sections we can't have dynamic relocs. */
1954 if (!htab->etab.dynamic_sections_created)
1955 eh->dyn_relocs = NULL;
1956
1957 /* Discard relocs on undefined syms with non-default visibility. */
1958 else if ((eh->root.type == bfd_link_hash_undefined
1959 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
1960 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1961 eh->dyn_relocs = NULL;
1962
1963 if (eh->dyn_relocs == NULL)
1964 return TRUE;
1965
1966 /* If this is a -Bsymbolic shared link, then we need to discard all
1967 space allocated for dynamic pc-relative relocs against symbols
1968 defined in a regular object. For the normal shared case, discard
1969 space for relocs that have become local due to symbol visibility
1970 changes. */
1971 if (bfd_link_pic (info))
1972 {
1973 #if RELATIVE_DYNRELOCS
1974 if (SYMBOL_CALLS_LOCAL (info, eh))
1975 {
1976 struct elf_dyn_relocs **hdh_pp;
1977
1978 for (hdh_pp = &eh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1979 {
1980 hdh_p->count -= hdh_p->pc_count;
1981 hdh_p->pc_count = 0;
1982 if (hdh_p->count == 0)
1983 *hdh_pp = hdh_p->next;
1984 else
1985 hdh_pp = &hdh_p->next;
1986 }
1987 }
1988 #endif
1989
1990 if (eh->dyn_relocs != NULL)
1991 {
1992 if (!ensure_undef_dynamic (info, eh))
1993 return FALSE;
1994 }
1995 }
1996 else if (ELIMINATE_COPY_RELOCS)
1997 {
1998 /* For the non-shared case, discard space for relocs against
1999 symbols which turn out to need copy relocs or are not
2000 dynamic. */
2001
2002 if (eh->dynamic_adjusted
2003 && !eh->def_regular
2004 && !ELF_COMMON_DEF_P (eh))
2005 {
2006 if (!ensure_undef_dynamic (info, eh))
2007 return FALSE;
2008
2009 if (eh->dynindx == -1)
2010 eh->dyn_relocs = NULL;
2011 }
2012 else
2013 eh->dyn_relocs = NULL;
2014 }
2015
2016 /* Finally, allocate space. */
2017 for (hdh_p = eh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
2018 {
2019 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2020 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2021 }
2022
2023 return TRUE;
2024 }
2025
2026 /* This function is called via elf_link_hash_traverse to force
2027 millicode symbols local so they do not end up as globals in the
2028 dynamic symbol table. We ought to be able to do this in
2029 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2030 for all dynamic symbols. Arguably, this is a bug in
2031 elf_adjust_dynamic_symbol. */
2032
2033 static bfd_boolean
2034 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2035 struct bfd_link_info *info)
2036 {
2037 if (eh->type == STT_PARISC_MILLI
2038 && !eh->forced_local)
2039 {
2040 elf32_hppa_hide_symbol (info, eh, TRUE);
2041 }
2042 return TRUE;
2043 }
2044
2045 /* Set the sizes of the dynamic sections. */
2046
2047 static bfd_boolean
2048 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2049 struct bfd_link_info *info)
2050 {
2051 struct elf32_hppa_link_hash_table *htab;
2052 bfd *dynobj;
2053 bfd *ibfd;
2054 asection *sec;
2055 bfd_boolean relocs;
2056
2057 htab = hppa_link_hash_table (info);
2058 if (htab == NULL)
2059 return FALSE;
2060
2061 dynobj = htab->etab.dynobj;
2062 if (dynobj == NULL)
2063 abort ();
2064
2065 if (htab->etab.dynamic_sections_created)
2066 {
2067 /* Set the contents of the .interp section to the interpreter. */
2068 if (bfd_link_executable (info) && !info->nointerp)
2069 {
2070 sec = bfd_get_linker_section (dynobj, ".interp");
2071 if (sec == NULL)
2072 abort ();
2073 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2074 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2075 }
2076
2077 /* Force millicode symbols local. */
2078 elf_link_hash_traverse (&htab->etab,
2079 clobber_millicode_symbols,
2080 info);
2081 }
2082
2083 /* Set up .got and .plt offsets for local syms, and space for local
2084 dynamic relocs. */
2085 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2086 {
2087 bfd_signed_vma *local_got;
2088 bfd_signed_vma *end_local_got;
2089 bfd_signed_vma *local_plt;
2090 bfd_signed_vma *end_local_plt;
2091 bfd_size_type locsymcount;
2092 Elf_Internal_Shdr *symtab_hdr;
2093 asection *srel;
2094 char *local_tls_type;
2095
2096 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2097 continue;
2098
2099 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2100 {
2101 struct elf_dyn_relocs *hdh_p;
2102
2103 for (hdh_p = ((struct elf_dyn_relocs *)
2104 elf_section_data (sec)->local_dynrel);
2105 hdh_p != NULL;
2106 hdh_p = hdh_p->next)
2107 {
2108 if (!bfd_is_abs_section (hdh_p->sec)
2109 && bfd_is_abs_section (hdh_p->sec->output_section))
2110 {
2111 /* Input section has been discarded, either because
2112 it is a copy of a linkonce section or due to
2113 linker script /DISCARD/, so we'll be discarding
2114 the relocs too. */
2115 }
2116 else if (hdh_p->count != 0)
2117 {
2118 srel = elf_section_data (hdh_p->sec)->sreloc;
2119 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2120 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2121 info->flags |= DF_TEXTREL;
2122 }
2123 }
2124 }
2125
2126 local_got = elf_local_got_refcounts (ibfd);
2127 if (!local_got)
2128 continue;
2129
2130 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2131 locsymcount = symtab_hdr->sh_info;
2132 end_local_got = local_got + locsymcount;
2133 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2134 sec = htab->etab.sgot;
2135 srel = htab->etab.srelgot;
2136 for (; local_got < end_local_got; ++local_got)
2137 {
2138 if (*local_got > 0)
2139 {
2140 unsigned int need;
2141
2142 *local_got = sec->size;
2143 need = got_entries_needed (*local_tls_type);
2144 sec->size += need;
2145 if (bfd_link_dll (info)
2146 || (bfd_link_pic (info)
2147 && (*local_tls_type & GOT_NORMAL) != 0))
2148 htab->etab.srelgot->size
2149 += got_relocs_needed (*local_tls_type, need, TRUE,
2150 bfd_link_executable (info));
2151 }
2152 else
2153 *local_got = (bfd_vma) -1;
2154
2155 ++local_tls_type;
2156 }
2157
2158 local_plt = end_local_got;
2159 end_local_plt = local_plt + locsymcount;
2160 if (! htab->etab.dynamic_sections_created)
2161 {
2162 /* Won't be used, but be safe. */
2163 for (; local_plt < end_local_plt; ++local_plt)
2164 *local_plt = (bfd_vma) -1;
2165 }
2166 else
2167 {
2168 sec = htab->etab.splt;
2169 srel = htab->etab.srelplt;
2170 for (; local_plt < end_local_plt; ++local_plt)
2171 {
2172 if (*local_plt > 0)
2173 {
2174 *local_plt = sec->size;
2175 sec->size += PLT_ENTRY_SIZE;
2176 if (bfd_link_pic (info))
2177 srel->size += sizeof (Elf32_External_Rela);
2178 }
2179 else
2180 *local_plt = (bfd_vma) -1;
2181 }
2182 }
2183 }
2184
2185 if (htab->tls_ldm_got.refcount > 0)
2186 {
2187 /* Allocate 2 got entries and 1 dynamic reloc for
2188 R_PARISC_TLS_DTPMOD32 relocs. */
2189 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2190 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2191 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2192 }
2193 else
2194 htab->tls_ldm_got.offset = -1;
2195
2196 /* Do all the .plt entries without relocs first. The dynamic linker
2197 uses the last .plt reloc to find the end of the .plt (and hence
2198 the start of the .got) for lazy linking. */
2199 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2200
2201 /* Allocate global sym .plt and .got entries, and space for global
2202 sym dynamic relocs. */
2203 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2204
2205 /* The check_relocs and adjust_dynamic_symbol entry points have
2206 determined the sizes of the various dynamic sections. Allocate
2207 memory for them. */
2208 relocs = FALSE;
2209 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2210 {
2211 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2212 continue;
2213
2214 if (sec == htab->etab.splt)
2215 {
2216 if (htab->need_plt_stub)
2217 {
2218 /* Make space for the plt stub at the end of the .plt
2219 section. We want this stub right at the end, up
2220 against the .got section. */
2221 int gotalign = bfd_section_alignment (htab->etab.sgot);
2222 int pltalign = bfd_section_alignment (sec);
2223 int align = gotalign > 3 ? gotalign : 3;
2224 bfd_size_type mask;
2225
2226 if (align > pltalign)
2227 bfd_set_section_alignment (sec, align);
2228 mask = ((bfd_size_type) 1 << gotalign) - 1;
2229 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2230 }
2231 }
2232 else if (sec == htab->etab.sgot
2233 || sec == htab->etab.sdynbss
2234 || sec == htab->etab.sdynrelro)
2235 ;
2236 else if (CONST_STRNEQ (bfd_section_name (sec), ".rela"))
2237 {
2238 if (sec->size != 0)
2239 {
2240 /* Remember whether there are any reloc sections other
2241 than .rela.plt. */
2242 if (sec != htab->etab.srelplt)
2243 relocs = TRUE;
2244
2245 /* We use the reloc_count field as a counter if we need
2246 to copy relocs into the output file. */
2247 sec->reloc_count = 0;
2248 }
2249 }
2250 else
2251 {
2252 /* It's not one of our sections, so don't allocate space. */
2253 continue;
2254 }
2255
2256 if (sec->size == 0)
2257 {
2258 /* If we don't need this section, strip it from the
2259 output file. This is mostly to handle .rela.bss and
2260 .rela.plt. We must create both sections in
2261 create_dynamic_sections, because they must be created
2262 before the linker maps input sections to output
2263 sections. The linker does that before
2264 adjust_dynamic_symbol is called, and it is that
2265 function which decides whether anything needs to go
2266 into these sections. */
2267 sec->flags |= SEC_EXCLUDE;
2268 continue;
2269 }
2270
2271 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2272 continue;
2273
2274 /* Allocate memory for the section contents. Zero it, because
2275 we may not fill in all the reloc sections. */
2276 sec->contents = bfd_zalloc (dynobj, sec->size);
2277 if (sec->contents == NULL)
2278 return FALSE;
2279 }
2280
2281 if (htab->etab.dynamic_sections_created)
2282 {
2283 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2284 actually has nothing to do with the PLT, it is how we
2285 communicate the LTP value of a load module to the dynamic
2286 linker. */
2287 #define add_dynamic_entry(TAG, VAL) \
2288 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2289
2290 if (!add_dynamic_entry (DT_PLTGOT, 0))
2291 return FALSE;
2292
2293 /* Add some entries to the .dynamic section. We fill in the
2294 values later, in elf32_hppa_finish_dynamic_sections, but we
2295 must add the entries now so that we get the correct size for
2296 the .dynamic section. The DT_DEBUG entry is filled in by the
2297 dynamic linker and used by the debugger. */
2298 if (bfd_link_executable (info))
2299 {
2300 if (!add_dynamic_entry (DT_DEBUG, 0))
2301 return FALSE;
2302 }
2303
2304 if (htab->etab.srelplt->size != 0)
2305 {
2306 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2307 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2308 || !add_dynamic_entry (DT_JMPREL, 0))
2309 return FALSE;
2310 }
2311
2312 if (relocs)
2313 {
2314 if (!add_dynamic_entry (DT_RELA, 0)
2315 || !add_dynamic_entry (DT_RELASZ, 0)
2316 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2317 return FALSE;
2318
2319 /* If any dynamic relocs apply to a read-only section,
2320 then we need a DT_TEXTREL entry. */
2321 if ((info->flags & DF_TEXTREL) == 0)
2322 elf_link_hash_traverse (&htab->etab,
2323 _bfd_elf_maybe_set_textrel, info);
2324
2325 if ((info->flags & DF_TEXTREL) != 0)
2326 {
2327 if (!add_dynamic_entry (DT_TEXTREL, 0))
2328 return FALSE;
2329 }
2330 }
2331 }
2332 #undef add_dynamic_entry
2333
2334 return TRUE;
2335 }
2336
2337 /* External entry points for sizing and building linker stubs. */
2338
2339 /* Set up various things so that we can make a list of input sections
2340 for each output section included in the link. Returns -1 on error,
2341 0 when no stubs will be needed, and 1 on success. */
2342
2343 int
2344 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2345 {
2346 bfd *input_bfd;
2347 unsigned int bfd_count;
2348 unsigned int top_id, top_index;
2349 asection *section;
2350 asection **input_list, **list;
2351 size_t amt;
2352 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2353
2354 if (htab == NULL)
2355 return -1;
2356
2357 /* Count the number of input BFDs and find the top input section id. */
2358 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2359 input_bfd != NULL;
2360 input_bfd = input_bfd->link.next)
2361 {
2362 bfd_count += 1;
2363 for (section = input_bfd->sections;
2364 section != NULL;
2365 section = section->next)
2366 {
2367 if (top_id < section->id)
2368 top_id = section->id;
2369 }
2370 }
2371 htab->bfd_count = bfd_count;
2372
2373 amt = sizeof (struct map_stub) * (top_id + 1);
2374 htab->stub_group = bfd_zmalloc (amt);
2375 if (htab->stub_group == NULL)
2376 return -1;
2377
2378 /* We can't use output_bfd->section_count here to find the top output
2379 section index as some sections may have been removed, and
2380 strip_excluded_output_sections doesn't renumber the indices. */
2381 for (section = output_bfd->sections, top_index = 0;
2382 section != NULL;
2383 section = section->next)
2384 {
2385 if (top_index < section->index)
2386 top_index = section->index;
2387 }
2388
2389 htab->top_index = top_index;
2390 amt = sizeof (asection *) * (top_index + 1);
2391 input_list = bfd_malloc (amt);
2392 htab->input_list = input_list;
2393 if (input_list == NULL)
2394 return -1;
2395
2396 /* For sections we aren't interested in, mark their entries with a
2397 value we can check later. */
2398 list = input_list + top_index;
2399 do
2400 *list = bfd_abs_section_ptr;
2401 while (list-- != input_list);
2402
2403 for (section = output_bfd->sections;
2404 section != NULL;
2405 section = section->next)
2406 {
2407 if ((section->flags & SEC_CODE) != 0)
2408 input_list[section->index] = NULL;
2409 }
2410
2411 return 1;
2412 }
2413
2414 /* The linker repeatedly calls this function for each input section,
2415 in the order that input sections are linked into output sections.
2416 Build lists of input sections to determine groupings between which
2417 we may insert linker stubs. */
2418
2419 void
2420 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2421 {
2422 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2423
2424 if (htab == NULL)
2425 return;
2426
2427 if (isec->output_section->index <= htab->top_index)
2428 {
2429 asection **list = htab->input_list + isec->output_section->index;
2430 if (*list != bfd_abs_section_ptr)
2431 {
2432 /* Steal the link_sec pointer for our list. */
2433 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2434 /* This happens to make the list in reverse order,
2435 which is what we want. */
2436 PREV_SEC (isec) = *list;
2437 *list = isec;
2438 }
2439 }
2440 }
2441
2442 /* See whether we can group stub sections together. Grouping stub
2443 sections may result in fewer stubs. More importantly, we need to
2444 put all .init* and .fini* stubs at the beginning of the .init or
2445 .fini output sections respectively, because glibc splits the
2446 _init and _fini functions into multiple parts. Putting a stub in
2447 the middle of a function is not a good idea. */
2448
2449 static void
2450 group_sections (struct elf32_hppa_link_hash_table *htab,
2451 bfd_size_type stub_group_size,
2452 bfd_boolean stubs_always_before_branch)
2453 {
2454 asection **list = htab->input_list + htab->top_index;
2455 do
2456 {
2457 asection *tail = *list;
2458 if (tail == bfd_abs_section_ptr)
2459 continue;
2460 while (tail != NULL)
2461 {
2462 asection *curr;
2463 asection *prev;
2464 bfd_size_type total;
2465 bfd_boolean big_sec;
2466
2467 curr = tail;
2468 total = tail->size;
2469 big_sec = total >= stub_group_size;
2470
2471 while ((prev = PREV_SEC (curr)) != NULL
2472 && ((total += curr->output_offset - prev->output_offset)
2473 < stub_group_size))
2474 curr = prev;
2475
2476 /* OK, the size from the start of CURR to the end is less
2477 than 240000 bytes and thus can be handled by one stub
2478 section. (or the tail section is itself larger than
2479 240000 bytes, in which case we may be toast.)
2480 We should really be keeping track of the total size of
2481 stubs added here, as stubs contribute to the final output
2482 section size. That's a little tricky, and this way will
2483 only break if stubs added total more than 22144 bytes, or
2484 2768 long branch stubs. It seems unlikely for more than
2485 2768 different functions to be called, especially from
2486 code only 240000 bytes long. This limit used to be
2487 250000, but c++ code tends to generate lots of little
2488 functions, and sometimes violated the assumption. */
2489 do
2490 {
2491 prev = PREV_SEC (tail);
2492 /* Set up this stub group. */
2493 htab->stub_group[tail->id].link_sec = curr;
2494 }
2495 while (tail != curr && (tail = prev) != NULL);
2496
2497 /* But wait, there's more! Input sections up to 240000
2498 bytes before the stub section can be handled by it too.
2499 Don't do this if we have a really large section after the
2500 stubs, as adding more stubs increases the chance that
2501 branches may not reach into the stub section. */
2502 if (!stubs_always_before_branch && !big_sec)
2503 {
2504 total = 0;
2505 while (prev != NULL
2506 && ((total += tail->output_offset - prev->output_offset)
2507 < stub_group_size))
2508 {
2509 tail = prev;
2510 prev = PREV_SEC (tail);
2511 htab->stub_group[tail->id].link_sec = curr;
2512 }
2513 }
2514 tail = prev;
2515 }
2516 }
2517 while (list-- != htab->input_list);
2518 free (htab->input_list);
2519 #undef PREV_SEC
2520 }
2521
2522 /* Read in all local syms for all input bfds, and create hash entries
2523 for export stubs if we are building a multi-subspace shared lib.
2524 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2525
2526 static int
2527 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2528 {
2529 unsigned int bfd_indx;
2530 Elf_Internal_Sym *local_syms, **all_local_syms;
2531 int stub_changed = 0;
2532 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2533
2534 if (htab == NULL)
2535 return -1;
2536
2537 /* We want to read in symbol extension records only once. To do this
2538 we need to read in the local symbols in parallel and save them for
2539 later use; so hold pointers to the local symbols in an array. */
2540 size_t amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2541 all_local_syms = bfd_zmalloc (amt);
2542 htab->all_local_syms = all_local_syms;
2543 if (all_local_syms == NULL)
2544 return -1;
2545
2546 /* Walk over all the input BFDs, swapping in local symbols.
2547 If we are creating a shared library, create hash entries for the
2548 export stubs. */
2549 for (bfd_indx = 0;
2550 input_bfd != NULL;
2551 input_bfd = input_bfd->link.next, bfd_indx++)
2552 {
2553 Elf_Internal_Shdr *symtab_hdr;
2554
2555 /* We'll need the symbol table in a second. */
2556 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2557 if (symtab_hdr->sh_info == 0)
2558 continue;
2559
2560 /* We need an array of the local symbols attached to the input bfd. */
2561 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2562 if (local_syms == NULL)
2563 {
2564 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2565 symtab_hdr->sh_info, 0,
2566 NULL, NULL, NULL);
2567 /* Cache them for elf_link_input_bfd. */
2568 symtab_hdr->contents = (unsigned char *) local_syms;
2569 }
2570 if (local_syms == NULL)
2571 return -1;
2572
2573 all_local_syms[bfd_indx] = local_syms;
2574
2575 if (bfd_link_pic (info) && htab->multi_subspace)
2576 {
2577 struct elf_link_hash_entry **eh_syms;
2578 struct elf_link_hash_entry **eh_symend;
2579 unsigned int symcount;
2580
2581 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2582 - symtab_hdr->sh_info);
2583 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2584 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2585
2586 /* Look through the global syms for functions; We need to
2587 build export stubs for all globally visible functions. */
2588 for (; eh_syms < eh_symend; eh_syms++)
2589 {
2590 struct elf32_hppa_link_hash_entry *hh;
2591
2592 hh = hppa_elf_hash_entry (*eh_syms);
2593
2594 while (hh->eh.root.type == bfd_link_hash_indirect
2595 || hh->eh.root.type == bfd_link_hash_warning)
2596 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2597
2598 /* At this point in the link, undefined syms have been
2599 resolved, so we need to check that the symbol was
2600 defined in this BFD. */
2601 if ((hh->eh.root.type == bfd_link_hash_defined
2602 || hh->eh.root.type == bfd_link_hash_defweak)
2603 && hh->eh.type == STT_FUNC
2604 && hh->eh.root.u.def.section->output_section != NULL
2605 && (hh->eh.root.u.def.section->output_section->owner
2606 == output_bfd)
2607 && hh->eh.root.u.def.section->owner == input_bfd
2608 && hh->eh.def_regular
2609 && !hh->eh.forced_local
2610 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2611 {
2612 asection *sec;
2613 const char *stub_name;
2614 struct elf32_hppa_stub_hash_entry *hsh;
2615
2616 sec = hh->eh.root.u.def.section;
2617 stub_name = hh_name (hh);
2618 hsh = hppa_stub_hash_lookup (&htab->bstab,
2619 stub_name,
2620 FALSE, FALSE);
2621 if (hsh == NULL)
2622 {
2623 hsh = hppa_add_stub (stub_name, sec, htab);
2624 if (!hsh)
2625 return -1;
2626
2627 hsh->target_value = hh->eh.root.u.def.value;
2628 hsh->target_section = hh->eh.root.u.def.section;
2629 hsh->stub_type = hppa_stub_export;
2630 hsh->hh = hh;
2631 stub_changed = 1;
2632 }
2633 else
2634 {
2635 /* xgettext:c-format */
2636 _bfd_error_handler (_("%pB: duplicate export stub %s"),
2637 input_bfd, stub_name);
2638 }
2639 }
2640 }
2641 }
2642 }
2643
2644 return stub_changed;
2645 }
2646
2647 /* Determine and set the size of the stub section for a final link.
2648
2649 The basic idea here is to examine all the relocations looking for
2650 PC-relative calls to a target that is unreachable with a "bl"
2651 instruction. */
2652
2653 bfd_boolean
2654 elf32_hppa_size_stubs
2655 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2656 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2657 asection * (*add_stub_section) (const char *, asection *),
2658 void (*layout_sections_again) (void))
2659 {
2660 bfd_size_type stub_group_size;
2661 bfd_boolean stubs_always_before_branch;
2662 bfd_boolean stub_changed;
2663 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2664
2665 if (htab == NULL)
2666 return FALSE;
2667
2668 /* Stash our params away. */
2669 htab->stub_bfd = stub_bfd;
2670 htab->multi_subspace = multi_subspace;
2671 htab->add_stub_section = add_stub_section;
2672 htab->layout_sections_again = layout_sections_again;
2673 stubs_always_before_branch = group_size < 0;
2674 if (group_size < 0)
2675 stub_group_size = -group_size;
2676 else
2677 stub_group_size = group_size;
2678 if (stub_group_size == 1)
2679 {
2680 /* Default values. */
2681 if (stubs_always_before_branch)
2682 {
2683 stub_group_size = 7680000;
2684 if (htab->has_17bit_branch || htab->multi_subspace)
2685 stub_group_size = 240000;
2686 if (htab->has_12bit_branch)
2687 stub_group_size = 7500;
2688 }
2689 else
2690 {
2691 stub_group_size = 6971392;
2692 if (htab->has_17bit_branch || htab->multi_subspace)
2693 stub_group_size = 217856;
2694 if (htab->has_12bit_branch)
2695 stub_group_size = 6808;
2696 }
2697 }
2698
2699 group_sections (htab, stub_group_size, stubs_always_before_branch);
2700
2701 switch (get_local_syms (output_bfd, info->input_bfds, info))
2702 {
2703 default:
2704 if (htab->all_local_syms)
2705 goto error_ret_free_local;
2706 return FALSE;
2707
2708 case 0:
2709 stub_changed = FALSE;
2710 break;
2711
2712 case 1:
2713 stub_changed = TRUE;
2714 break;
2715 }
2716
2717 while (1)
2718 {
2719 bfd *input_bfd;
2720 unsigned int bfd_indx;
2721 asection *stub_sec;
2722
2723 for (input_bfd = info->input_bfds, bfd_indx = 0;
2724 input_bfd != NULL;
2725 input_bfd = input_bfd->link.next, bfd_indx++)
2726 {
2727 Elf_Internal_Shdr *symtab_hdr;
2728 asection *section;
2729 Elf_Internal_Sym *local_syms;
2730
2731 /* We'll need the symbol table in a second. */
2732 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2733 if (symtab_hdr->sh_info == 0)
2734 continue;
2735
2736 local_syms = htab->all_local_syms[bfd_indx];
2737
2738 /* Walk over each section attached to the input bfd. */
2739 for (section = input_bfd->sections;
2740 section != NULL;
2741 section = section->next)
2742 {
2743 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2744
2745 /* If there aren't any relocs, then there's nothing more
2746 to do. */
2747 if ((section->flags & SEC_RELOC) == 0
2748 || (section->flags & SEC_ALLOC) == 0
2749 || (section->flags & SEC_LOAD) == 0
2750 || (section->flags & SEC_CODE) == 0
2751 || section->reloc_count == 0)
2752 continue;
2753
2754 /* If this section is a link-once section that will be
2755 discarded, then don't create any stubs. */
2756 if (section->output_section == NULL
2757 || section->output_section->owner != output_bfd)
2758 continue;
2759
2760 /* Get the relocs. */
2761 internal_relocs
2762 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2763 info->keep_memory);
2764 if (internal_relocs == NULL)
2765 goto error_ret_free_local;
2766
2767 /* Now examine each relocation. */
2768 irela = internal_relocs;
2769 irelaend = irela + section->reloc_count;
2770 for (; irela < irelaend; irela++)
2771 {
2772 unsigned int r_type, r_indx;
2773 enum elf32_hppa_stub_type stub_type;
2774 struct elf32_hppa_stub_hash_entry *hsh;
2775 asection *sym_sec;
2776 bfd_vma sym_value;
2777 bfd_vma destination;
2778 struct elf32_hppa_link_hash_entry *hh;
2779 char *stub_name;
2780 const asection *id_sec;
2781
2782 r_type = ELF32_R_TYPE (irela->r_info);
2783 r_indx = ELF32_R_SYM (irela->r_info);
2784
2785 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2786 {
2787 bfd_set_error (bfd_error_bad_value);
2788 error_ret_free_internal:
2789 if (elf_section_data (section)->relocs == NULL)
2790 free (internal_relocs);
2791 goto error_ret_free_local;
2792 }
2793
2794 /* Only look for stubs on call instructions. */
2795 if (r_type != (unsigned int) R_PARISC_PCREL12F
2796 && r_type != (unsigned int) R_PARISC_PCREL17F
2797 && r_type != (unsigned int) R_PARISC_PCREL22F)
2798 continue;
2799
2800 /* Now determine the call target, its name, value,
2801 section. */
2802 sym_sec = NULL;
2803 sym_value = 0;
2804 destination = -1;
2805 hh = NULL;
2806 if (r_indx < symtab_hdr->sh_info)
2807 {
2808 /* It's a local symbol. */
2809 Elf_Internal_Sym *sym;
2810 Elf_Internal_Shdr *hdr;
2811 unsigned int shndx;
2812
2813 sym = local_syms + r_indx;
2814 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2815 sym_value = sym->st_value;
2816 shndx = sym->st_shndx;
2817 if (shndx < elf_numsections (input_bfd))
2818 {
2819 hdr = elf_elfsections (input_bfd)[shndx];
2820 sym_sec = hdr->bfd_section;
2821 destination = (sym_value + irela->r_addend
2822 + sym_sec->output_offset
2823 + sym_sec->output_section->vma);
2824 }
2825 }
2826 else
2827 {
2828 /* It's an external symbol. */
2829 int e_indx;
2830
2831 e_indx = r_indx - symtab_hdr->sh_info;
2832 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2833
2834 while (hh->eh.root.type == bfd_link_hash_indirect
2835 || hh->eh.root.type == bfd_link_hash_warning)
2836 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2837
2838 if (hh->eh.root.type == bfd_link_hash_defined
2839 || hh->eh.root.type == bfd_link_hash_defweak)
2840 {
2841 sym_sec = hh->eh.root.u.def.section;
2842 sym_value = hh->eh.root.u.def.value;
2843 if (sym_sec->output_section != NULL)
2844 destination = (sym_value + irela->r_addend
2845 + sym_sec->output_offset
2846 + sym_sec->output_section->vma);
2847 }
2848 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2849 {
2850 if (! bfd_link_pic (info))
2851 continue;
2852 }
2853 else if (hh->eh.root.type == bfd_link_hash_undefined)
2854 {
2855 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2856 && (ELF_ST_VISIBILITY (hh->eh.other)
2857 == STV_DEFAULT)
2858 && hh->eh.type != STT_PARISC_MILLI))
2859 continue;
2860 }
2861 else
2862 {
2863 bfd_set_error (bfd_error_bad_value);
2864 goto error_ret_free_internal;
2865 }
2866 }
2867
2868 /* Determine what (if any) linker stub is needed. */
2869 stub_type = hppa_type_of_stub (section, irela, hh,
2870 destination, info);
2871 if (stub_type == hppa_stub_none)
2872 continue;
2873
2874 /* Support for grouping stub sections. */
2875 id_sec = htab->stub_group[section->id].link_sec;
2876
2877 /* Get the name of this stub. */
2878 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2879 if (!stub_name)
2880 goto error_ret_free_internal;
2881
2882 hsh = hppa_stub_hash_lookup (&htab->bstab,
2883 stub_name,
2884 FALSE, FALSE);
2885 if (hsh != NULL)
2886 {
2887 /* The proper stub has already been created. */
2888 free (stub_name);
2889 continue;
2890 }
2891
2892 hsh = hppa_add_stub (stub_name, section, htab);
2893 if (hsh == NULL)
2894 {
2895 free (stub_name);
2896 goto error_ret_free_internal;
2897 }
2898
2899 hsh->target_value = sym_value;
2900 hsh->target_section = sym_sec;
2901 hsh->stub_type = stub_type;
2902 if (bfd_link_pic (info))
2903 {
2904 if (stub_type == hppa_stub_import)
2905 hsh->stub_type = hppa_stub_import_shared;
2906 else if (stub_type == hppa_stub_long_branch)
2907 hsh->stub_type = hppa_stub_long_branch_shared;
2908 }
2909 hsh->hh = hh;
2910 stub_changed = TRUE;
2911 }
2912
2913 /* We're done with the internal relocs, free them. */
2914 if (elf_section_data (section)->relocs == NULL)
2915 free (internal_relocs);
2916 }
2917 }
2918
2919 if (!stub_changed)
2920 break;
2921
2922 /* OK, we've added some stubs. Find out the new size of the
2923 stub sections. */
2924 for (stub_sec = htab->stub_bfd->sections;
2925 stub_sec != NULL;
2926 stub_sec = stub_sec->next)
2927 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2928 stub_sec->size = 0;
2929
2930 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2931
2932 /* Ask the linker to do its stuff. */
2933 (*htab->layout_sections_again) ();
2934 stub_changed = FALSE;
2935 }
2936
2937 free (htab->all_local_syms);
2938 return TRUE;
2939
2940 error_ret_free_local:
2941 free (htab->all_local_syms);
2942 return FALSE;
2943 }
2944
2945 /* For a final link, this function is called after we have sized the
2946 stubs to provide a value for __gp. */
2947
2948 bfd_boolean
2949 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2950 {
2951 struct bfd_link_hash_entry *h;
2952 asection *sec = NULL;
2953 bfd_vma gp_val = 0;
2954
2955 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
2956
2957 if (h != NULL
2958 && (h->type == bfd_link_hash_defined
2959 || h->type == bfd_link_hash_defweak))
2960 {
2961 gp_val = h->u.def.value;
2962 sec = h->u.def.section;
2963 }
2964 else
2965 {
2966 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2967 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2968
2969 /* Choose to point our LTP at, in this order, one of .plt, .got,
2970 or .data, if these sections exist. In the case of choosing
2971 .plt try to make the LTP ideal for addressing anywhere in the
2972 .plt or .got with a 14 bit signed offset. Typically, the end
2973 of the .plt is the start of the .got, so choose .plt + 0x2000
2974 if either the .plt or .got is larger than 0x2000. If both
2975 the .plt and .got are smaller than 0x2000, choose the end of
2976 the .plt section. */
2977 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
2978 ? NULL : splt;
2979 if (sec != NULL)
2980 {
2981 gp_val = sec->size;
2982 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
2983 {
2984 gp_val = 0x2000;
2985 }
2986 }
2987 else
2988 {
2989 sec = sgot;
2990 if (sec != NULL)
2991 {
2992 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
2993 {
2994 /* We know we don't have a .plt. If .got is large,
2995 offset our LTP. */
2996 if (sec->size > 0x2000)
2997 gp_val = 0x2000;
2998 }
2999 }
3000 else
3001 {
3002 /* No .plt or .got. Who cares what the LTP is? */
3003 sec = bfd_get_section_by_name (abfd, ".data");
3004 }
3005 }
3006
3007 if (h != NULL)
3008 {
3009 h->type = bfd_link_hash_defined;
3010 h->u.def.value = gp_val;
3011 if (sec != NULL)
3012 h->u.def.section = sec;
3013 else
3014 h->u.def.section = bfd_abs_section_ptr;
3015 }
3016 }
3017
3018 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3019 {
3020 if (sec != NULL && sec->output_section != NULL)
3021 gp_val += sec->output_section->vma + sec->output_offset;
3022
3023 elf_gp (abfd) = gp_val;
3024 }
3025 return TRUE;
3026 }
3027
3028 /* Build all the stubs associated with the current output file. The
3029 stubs are kept in a hash table attached to the main linker hash
3030 table. We also set up the .plt entries for statically linked PIC
3031 functions here. This function is called via hppaelf_finish in the
3032 linker. */
3033
3034 bfd_boolean
3035 elf32_hppa_build_stubs (struct bfd_link_info *info)
3036 {
3037 asection *stub_sec;
3038 struct bfd_hash_table *table;
3039 struct elf32_hppa_link_hash_table *htab;
3040
3041 htab = hppa_link_hash_table (info);
3042 if (htab == NULL)
3043 return FALSE;
3044
3045 for (stub_sec = htab->stub_bfd->sections;
3046 stub_sec != NULL;
3047 stub_sec = stub_sec->next)
3048 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3049 && stub_sec->size != 0)
3050 {
3051 /* Allocate memory to hold the linker stubs. */
3052 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3053 if (stub_sec->contents == NULL)
3054 return FALSE;
3055 stub_sec->size = 0;
3056 }
3057
3058 /* Build the stubs as directed by the stub hash table. */
3059 table = &htab->bstab;
3060 bfd_hash_traverse (table, hppa_build_one_stub, info);
3061
3062 return TRUE;
3063 }
3064
3065 /* Return the base vma address which should be subtracted from the real
3066 address when resolving a dtpoff relocation.
3067 This is PT_TLS segment p_vaddr. */
3068
3069 static bfd_vma
3070 dtpoff_base (struct bfd_link_info *info)
3071 {
3072 /* If tls_sec is NULL, we should have signalled an error already. */
3073 if (elf_hash_table (info)->tls_sec == NULL)
3074 return 0;
3075 return elf_hash_table (info)->tls_sec->vma;
3076 }
3077
3078 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3079
3080 static bfd_vma
3081 tpoff (struct bfd_link_info *info, bfd_vma address)
3082 {
3083 struct elf_link_hash_table *htab = elf_hash_table (info);
3084
3085 /* If tls_sec is NULL, we should have signalled an error already. */
3086 if (htab->tls_sec == NULL)
3087 return 0;
3088 /* hppa TLS ABI is variant I and static TLS block start just after
3089 tcbhead structure which has 2 pointer fields. */
3090 return (address - htab->tls_sec->vma
3091 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3092 }
3093
3094 /* Perform a final link. */
3095
3096 static bfd_boolean
3097 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3098 {
3099 struct stat buf;
3100
3101 /* Invoke the regular ELF linker to do all the work. */
3102 if (!bfd_elf_final_link (abfd, info))
3103 return FALSE;
3104
3105 /* If we're producing a final executable, sort the contents of the
3106 unwind section. */
3107 if (bfd_link_relocatable (info))
3108 return TRUE;
3109
3110 /* Do not attempt to sort non-regular files. This is here
3111 especially for configure scripts and kernel builds which run
3112 tests with "ld [...] -o /dev/null". */
3113 if (stat (bfd_get_filename (abfd), &buf) != 0
3114 || !S_ISREG(buf.st_mode))
3115 return TRUE;
3116
3117 return elf_hppa_sort_unwind (abfd);
3118 }
3119
3120 /* Record the lowest address for the data and text segments. */
3121
3122 static void
3123 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3124 {
3125 struct elf32_hppa_link_hash_table *htab;
3126
3127 htab = (struct elf32_hppa_link_hash_table*) data;
3128 if (htab == NULL)
3129 return;
3130
3131 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3132 {
3133 bfd_vma value;
3134 Elf_Internal_Phdr *p;
3135
3136 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3137 BFD_ASSERT (p != NULL);
3138 value = p->p_vaddr;
3139
3140 if ((section->flags & SEC_READONLY) != 0)
3141 {
3142 if (value < htab->text_segment_base)
3143 htab->text_segment_base = value;
3144 }
3145 else
3146 {
3147 if (value < htab->data_segment_base)
3148 htab->data_segment_base = value;
3149 }
3150 }
3151 }
3152
3153 /* Perform a relocation as part of a final link. */
3154
3155 static bfd_reloc_status_type
3156 final_link_relocate (asection *input_section,
3157 bfd_byte *contents,
3158 const Elf_Internal_Rela *rela,
3159 bfd_vma value,
3160 struct elf32_hppa_link_hash_table *htab,
3161 asection *sym_sec,
3162 struct elf32_hppa_link_hash_entry *hh,
3163 struct bfd_link_info *info)
3164 {
3165 unsigned int insn;
3166 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3167 unsigned int orig_r_type = r_type;
3168 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3169 int r_format = howto->bitsize;
3170 enum hppa_reloc_field_selector_type_alt r_field;
3171 bfd *input_bfd = input_section->owner;
3172 bfd_vma offset = rela->r_offset;
3173 bfd_vma max_branch_offset = 0;
3174 bfd_byte *hit_data = contents + offset;
3175 bfd_signed_vma addend = rela->r_addend;
3176 bfd_vma location;
3177 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3178 int val;
3179
3180 if (r_type == R_PARISC_NONE)
3181 return bfd_reloc_ok;
3182
3183 insn = bfd_get_32 (input_bfd, hit_data);
3184
3185 /* Find out where we are and where we're going. */
3186 location = (offset +
3187 input_section->output_offset +
3188 input_section->output_section->vma);
3189
3190 /* If we are not building a shared library, convert DLTIND relocs to
3191 DPREL relocs. */
3192 if (!bfd_link_pic (info))
3193 {
3194 switch (r_type)
3195 {
3196 case R_PARISC_DLTIND21L:
3197 case R_PARISC_TLS_GD21L:
3198 case R_PARISC_TLS_LDM21L:
3199 case R_PARISC_TLS_IE21L:
3200 r_type = R_PARISC_DPREL21L;
3201 break;
3202
3203 case R_PARISC_DLTIND14R:
3204 case R_PARISC_TLS_GD14R:
3205 case R_PARISC_TLS_LDM14R:
3206 case R_PARISC_TLS_IE14R:
3207 r_type = R_PARISC_DPREL14R;
3208 break;
3209
3210 case R_PARISC_DLTIND14F:
3211 r_type = R_PARISC_DPREL14F;
3212 break;
3213 }
3214 }
3215
3216 switch (r_type)
3217 {
3218 case R_PARISC_PCREL12F:
3219 case R_PARISC_PCREL17F:
3220 case R_PARISC_PCREL22F:
3221 /* If this call should go via the plt, find the import stub in
3222 the stub hash. */
3223 if (sym_sec == NULL
3224 || sym_sec->output_section == NULL
3225 || (hh != NULL
3226 && hh->eh.plt.offset != (bfd_vma) -1
3227 && hh->eh.dynindx != -1
3228 && !hh->plabel
3229 && (bfd_link_pic (info)
3230 || !hh->eh.def_regular
3231 || hh->eh.root.type == bfd_link_hash_defweak)))
3232 {
3233 hsh = hppa_get_stub_entry (input_section, sym_sec,
3234 hh, rela, htab);
3235 if (hsh != NULL)
3236 {
3237 value = (hsh->stub_offset
3238 + hsh->stub_sec->output_offset
3239 + hsh->stub_sec->output_section->vma);
3240 addend = 0;
3241 }
3242 else if (sym_sec == NULL && hh != NULL
3243 && hh->eh.root.type == bfd_link_hash_undefweak)
3244 {
3245 /* It's OK if undefined weak. Calls to undefined weak
3246 symbols behave as if the "called" function
3247 immediately returns. We can thus call to a weak
3248 function without first checking whether the function
3249 is defined. */
3250 value = location;
3251 addend = 8;
3252 }
3253 else
3254 return bfd_reloc_undefined;
3255 }
3256 /* Fall thru. */
3257
3258 case R_PARISC_PCREL21L:
3259 case R_PARISC_PCREL17C:
3260 case R_PARISC_PCREL17R:
3261 case R_PARISC_PCREL14R:
3262 case R_PARISC_PCREL14F:
3263 case R_PARISC_PCREL32:
3264 /* Make it a pc relative offset. */
3265 value -= location;
3266 addend -= 8;
3267 break;
3268
3269 case R_PARISC_DPREL21L:
3270 case R_PARISC_DPREL14R:
3271 case R_PARISC_DPREL14F:
3272 /* Convert instructions that use the linkage table pointer (r19) to
3273 instructions that use the global data pointer (dp). This is the
3274 most efficient way of using PIC code in an incomplete executable,
3275 but the user must follow the standard runtime conventions for
3276 accessing data for this to work. */
3277 if (orig_r_type != r_type)
3278 {
3279 if (r_type == R_PARISC_DPREL21L)
3280 {
3281 /* GCC sometimes uses a register other than r19 for the
3282 operation, so we must convert any addil instruction
3283 that uses this relocation. */
3284 if ((insn & 0xfc000000) == OP_ADDIL << 26)
3285 insn = ADDIL_DP;
3286 else
3287 /* We must have a ldil instruction. It's too hard to find
3288 and convert the associated add instruction, so issue an
3289 error. */
3290 _bfd_error_handler
3291 /* xgettext:c-format */
3292 (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x "
3293 "is not supported in a non-shared link"),
3294 input_bfd,
3295 input_section,
3296 (uint64_t) offset,
3297 howto->name,
3298 insn);
3299 }
3300 else if (r_type == R_PARISC_DPREL14F)
3301 {
3302 /* This must be a format 1 load/store. Change the base
3303 register to dp. */
3304 insn = (insn & 0xfc1ffff) | (27 << 21);
3305 }
3306 }
3307
3308 /* For all the DP relative relocations, we need to examine the symbol's
3309 section. If it has no section or if it's a code section, then
3310 "data pointer relative" makes no sense. In that case we don't
3311 adjust the "value", and for 21 bit addil instructions, we change the
3312 source addend register from %dp to %r0. This situation commonly
3313 arises for undefined weak symbols and when a variable's "constness"
3314 is declared differently from the way the variable is defined. For
3315 instance: "extern int foo" with foo defined as "const int foo". */
3316 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3317 {
3318 if ((insn & ((0x3fu << 26) | (0x1f << 21)))
3319 == ((OP_ADDIL << 26) | (27 << 21)))
3320 {
3321 insn &= ~ (0x1f << 21);
3322 }
3323 /* Now try to make things easy for the dynamic linker. */
3324
3325 break;
3326 }
3327 /* Fall thru. */
3328
3329 case R_PARISC_DLTIND21L:
3330 case R_PARISC_DLTIND14R:
3331 case R_PARISC_DLTIND14F:
3332 case R_PARISC_TLS_GD21L:
3333 case R_PARISC_TLS_LDM21L:
3334 case R_PARISC_TLS_IE21L:
3335 case R_PARISC_TLS_GD14R:
3336 case R_PARISC_TLS_LDM14R:
3337 case R_PARISC_TLS_IE14R:
3338 value -= elf_gp (input_section->output_section->owner);
3339 break;
3340
3341 case R_PARISC_SEGREL32:
3342 if ((sym_sec->flags & SEC_CODE) != 0)
3343 value -= htab->text_segment_base;
3344 else
3345 value -= htab->data_segment_base;
3346 break;
3347
3348 default:
3349 break;
3350 }
3351
3352 switch (r_type)
3353 {
3354 case R_PARISC_DIR32:
3355 case R_PARISC_DIR14F:
3356 case R_PARISC_DIR17F:
3357 case R_PARISC_PCREL17C:
3358 case R_PARISC_PCREL14F:
3359 case R_PARISC_PCREL32:
3360 case R_PARISC_DPREL14F:
3361 case R_PARISC_PLABEL32:
3362 case R_PARISC_DLTIND14F:
3363 case R_PARISC_SEGBASE:
3364 case R_PARISC_SEGREL32:
3365 case R_PARISC_TLS_DTPMOD32:
3366 case R_PARISC_TLS_DTPOFF32:
3367 case R_PARISC_TLS_TPREL32:
3368 r_field = e_fsel;
3369 break;
3370
3371 case R_PARISC_DLTIND21L:
3372 case R_PARISC_PCREL21L:
3373 case R_PARISC_PLABEL21L:
3374 r_field = e_lsel;
3375 break;
3376
3377 case R_PARISC_DIR21L:
3378 case R_PARISC_DPREL21L:
3379 case R_PARISC_TLS_GD21L:
3380 case R_PARISC_TLS_LDM21L:
3381 case R_PARISC_TLS_LDO21L:
3382 case R_PARISC_TLS_IE21L:
3383 case R_PARISC_TLS_LE21L:
3384 r_field = e_lrsel;
3385 break;
3386
3387 case R_PARISC_PCREL17R:
3388 case R_PARISC_PCREL14R:
3389 case R_PARISC_PLABEL14R:
3390 case R_PARISC_DLTIND14R:
3391 r_field = e_rsel;
3392 break;
3393
3394 case R_PARISC_DIR17R:
3395 case R_PARISC_DIR14R:
3396 case R_PARISC_DPREL14R:
3397 case R_PARISC_TLS_GD14R:
3398 case R_PARISC_TLS_LDM14R:
3399 case R_PARISC_TLS_LDO14R:
3400 case R_PARISC_TLS_IE14R:
3401 case R_PARISC_TLS_LE14R:
3402 r_field = e_rrsel;
3403 break;
3404
3405 case R_PARISC_PCREL12F:
3406 case R_PARISC_PCREL17F:
3407 case R_PARISC_PCREL22F:
3408 r_field = e_fsel;
3409
3410 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3411 {
3412 max_branch_offset = (1 << (17-1)) << 2;
3413 }
3414 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3415 {
3416 max_branch_offset = (1 << (12-1)) << 2;
3417 }
3418 else
3419 {
3420 max_branch_offset = (1 << (22-1)) << 2;
3421 }
3422
3423 /* sym_sec is NULL on undefined weak syms or when shared on
3424 undefined syms. We've already checked for a stub for the
3425 shared undefined case. */
3426 if (sym_sec == NULL)
3427 break;
3428
3429 /* If the branch is out of reach, then redirect the
3430 call to the local stub for this function. */
3431 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3432 {
3433 hsh = hppa_get_stub_entry (input_section, sym_sec,
3434 hh, rela, htab);
3435 if (hsh == NULL)
3436 return bfd_reloc_undefined;
3437
3438 /* Munge up the value and addend so that we call the stub
3439 rather than the procedure directly. */
3440 value = (hsh->stub_offset
3441 + hsh->stub_sec->output_offset
3442 + hsh->stub_sec->output_section->vma
3443 - location);
3444 addend = -8;
3445 }
3446 break;
3447
3448 /* Something we don't know how to handle. */
3449 default:
3450 return bfd_reloc_notsupported;
3451 }
3452
3453 /* Make sure we can reach the stub. */
3454 if (max_branch_offset != 0
3455 && value + addend + max_branch_offset >= 2*max_branch_offset)
3456 {
3457 _bfd_error_handler
3458 /* xgettext:c-format */
3459 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s, "
3460 "recompile with -ffunction-sections"),
3461 input_bfd,
3462 input_section,
3463 (uint64_t) offset,
3464 hsh->bh_root.string);
3465 bfd_set_error (bfd_error_bad_value);
3466 return bfd_reloc_notsupported;
3467 }
3468
3469 val = hppa_field_adjust (value, addend, r_field);
3470
3471 switch (r_type)
3472 {
3473 case R_PARISC_PCREL12F:
3474 case R_PARISC_PCREL17C:
3475 case R_PARISC_PCREL17F:
3476 case R_PARISC_PCREL17R:
3477 case R_PARISC_PCREL22F:
3478 case R_PARISC_DIR17F:
3479 case R_PARISC_DIR17R:
3480 /* This is a branch. Divide the offset by four.
3481 Note that we need to decide whether it's a branch or
3482 otherwise by inspecting the reloc. Inspecting insn won't
3483 work as insn might be from a .word directive. */
3484 val >>= 2;
3485 break;
3486
3487 default:
3488 break;
3489 }
3490
3491 insn = hppa_rebuild_insn (insn, val, r_format);
3492
3493 /* Update the instruction word. */
3494 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3495 return bfd_reloc_ok;
3496 }
3497
3498 /* Relocate an HPPA ELF section. */
3499
3500 static bfd_boolean
3501 elf32_hppa_relocate_section (bfd *output_bfd,
3502 struct bfd_link_info *info,
3503 bfd *input_bfd,
3504 asection *input_section,
3505 bfd_byte *contents,
3506 Elf_Internal_Rela *relocs,
3507 Elf_Internal_Sym *local_syms,
3508 asection **local_sections)
3509 {
3510 bfd_vma *local_got_offsets;
3511 struct elf32_hppa_link_hash_table *htab;
3512 Elf_Internal_Shdr *symtab_hdr;
3513 Elf_Internal_Rela *rela;
3514 Elf_Internal_Rela *relend;
3515
3516 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3517
3518 htab = hppa_link_hash_table (info);
3519 if (htab == NULL)
3520 return FALSE;
3521
3522 local_got_offsets = elf_local_got_offsets (input_bfd);
3523
3524 rela = relocs;
3525 relend = relocs + input_section->reloc_count;
3526 for (; rela < relend; rela++)
3527 {
3528 unsigned int r_type;
3529 reloc_howto_type *howto;
3530 unsigned int r_symndx;
3531 struct elf32_hppa_link_hash_entry *hh;
3532 Elf_Internal_Sym *sym;
3533 asection *sym_sec;
3534 bfd_vma relocation;
3535 bfd_reloc_status_type rstatus;
3536 const char *sym_name;
3537 bfd_boolean plabel;
3538 bfd_boolean warned_undef;
3539
3540 r_type = ELF32_R_TYPE (rela->r_info);
3541 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3542 {
3543 bfd_set_error (bfd_error_bad_value);
3544 return FALSE;
3545 }
3546 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3547 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3548 continue;
3549
3550 r_symndx = ELF32_R_SYM (rela->r_info);
3551 hh = NULL;
3552 sym = NULL;
3553 sym_sec = NULL;
3554 warned_undef = FALSE;
3555 if (r_symndx < symtab_hdr->sh_info)
3556 {
3557 /* This is a local symbol, h defaults to NULL. */
3558 sym = local_syms + r_symndx;
3559 sym_sec = local_sections[r_symndx];
3560 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3561 }
3562 else
3563 {
3564 struct elf_link_hash_entry *eh;
3565 bfd_boolean unresolved_reloc, ignored;
3566 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3567
3568 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3569 r_symndx, symtab_hdr, sym_hashes,
3570 eh, sym_sec, relocation,
3571 unresolved_reloc, warned_undef,
3572 ignored);
3573
3574 if (!bfd_link_relocatable (info)
3575 && relocation == 0
3576 && eh->root.type != bfd_link_hash_defined
3577 && eh->root.type != bfd_link_hash_defweak
3578 && eh->root.type != bfd_link_hash_undefweak)
3579 {
3580 if (info->unresolved_syms_in_objects == RM_IGNORE
3581 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3582 && eh->type == STT_PARISC_MILLI)
3583 {
3584 (*info->callbacks->undefined_symbol)
3585 (info, eh_name (eh), input_bfd,
3586 input_section, rela->r_offset, FALSE);
3587 warned_undef = TRUE;
3588 }
3589 }
3590 hh = hppa_elf_hash_entry (eh);
3591 }
3592
3593 if (sym_sec != NULL && discarded_section (sym_sec))
3594 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3595 rela, 1, relend,
3596 elf_hppa_howto_table + r_type, 0,
3597 contents);
3598
3599 if (bfd_link_relocatable (info))
3600 continue;
3601
3602 /* Do any required modifications to the relocation value, and
3603 determine what types of dynamic info we need to output, if
3604 any. */
3605 plabel = 0;
3606 switch (r_type)
3607 {
3608 case R_PARISC_DLTIND14F:
3609 case R_PARISC_DLTIND14R:
3610 case R_PARISC_DLTIND21L:
3611 {
3612 bfd_vma off;
3613 bfd_boolean do_got = FALSE;
3614 bfd_boolean reloc = bfd_link_pic (info);
3615
3616 /* Relocation is to the entry for this symbol in the
3617 global offset table. */
3618 if (hh != NULL)
3619 {
3620 bfd_boolean dyn;
3621
3622 off = hh->eh.got.offset;
3623 dyn = htab->etab.dynamic_sections_created;
3624 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3625 && (reloc
3626 || (hh->eh.dynindx != -1
3627 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3628 if (!reloc
3629 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3630 bfd_link_pic (info),
3631 &hh->eh))
3632 {
3633 /* If we aren't going to call finish_dynamic_symbol,
3634 then we need to handle initialisation of the .got
3635 entry and create needed relocs here. Since the
3636 offset must always be a multiple of 4, we use the
3637 least significant bit to record whether we have
3638 initialised it already. */
3639 if ((off & 1) != 0)
3640 off &= ~1;
3641 else
3642 {
3643 hh->eh.got.offset |= 1;
3644 do_got = TRUE;
3645 }
3646 }
3647 }
3648 else
3649 {
3650 /* Local symbol case. */
3651 if (local_got_offsets == NULL)
3652 abort ();
3653
3654 off = local_got_offsets[r_symndx];
3655
3656 /* The offset must always be a multiple of 4. We use
3657 the least significant bit to record whether we have
3658 already generated the necessary reloc. */
3659 if ((off & 1) != 0)
3660 off &= ~1;
3661 else
3662 {
3663 local_got_offsets[r_symndx] |= 1;
3664 do_got = TRUE;
3665 }
3666 }
3667
3668 if (do_got)
3669 {
3670 if (reloc)
3671 {
3672 /* Output a dynamic relocation for this GOT entry.
3673 In this case it is relative to the base of the
3674 object because the symbol index is zero. */
3675 Elf_Internal_Rela outrel;
3676 bfd_byte *loc;
3677 asection *sec = htab->etab.srelgot;
3678
3679 outrel.r_offset = (off
3680 + htab->etab.sgot->output_offset
3681 + htab->etab.sgot->output_section->vma);
3682 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3683 outrel.r_addend = relocation;
3684 loc = sec->contents;
3685 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3686 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3687 }
3688 else
3689 bfd_put_32 (output_bfd, relocation,
3690 htab->etab.sgot->contents + off);
3691 }
3692
3693 if (off >= (bfd_vma) -2)
3694 abort ();
3695
3696 /* Add the base of the GOT to the relocation value. */
3697 relocation = (off
3698 + htab->etab.sgot->output_offset
3699 + htab->etab.sgot->output_section->vma);
3700 }
3701 break;
3702
3703 case R_PARISC_SEGREL32:
3704 /* If this is the first SEGREL relocation, then initialize
3705 the segment base values. */
3706 if (htab->text_segment_base == (bfd_vma) -1)
3707 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3708 break;
3709
3710 case R_PARISC_PLABEL14R:
3711 case R_PARISC_PLABEL21L:
3712 case R_PARISC_PLABEL32:
3713 if (htab->etab.dynamic_sections_created)
3714 {
3715 bfd_vma off;
3716 bfd_boolean do_plt = 0;
3717 /* If we have a global symbol with a PLT slot, then
3718 redirect this relocation to it. */
3719 if (hh != NULL)
3720 {
3721 off = hh->eh.plt.offset;
3722 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3723 bfd_link_pic (info),
3724 &hh->eh))
3725 {
3726 /* In a non-shared link, adjust_dynamic_symbol
3727 isn't called for symbols forced local. We
3728 need to write out the plt entry here. */
3729 if ((off & 1) != 0)
3730 off &= ~1;
3731 else
3732 {
3733 hh->eh.plt.offset |= 1;
3734 do_plt = 1;
3735 }
3736 }
3737 }
3738 else
3739 {
3740 bfd_vma *local_plt_offsets;
3741
3742 if (local_got_offsets == NULL)
3743 abort ();
3744
3745 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3746 off = local_plt_offsets[r_symndx];
3747
3748 /* As for the local .got entry case, we use the last
3749 bit to record whether we've already initialised
3750 this local .plt entry. */
3751 if ((off & 1) != 0)
3752 off &= ~1;
3753 else
3754 {
3755 local_plt_offsets[r_symndx] |= 1;
3756 do_plt = 1;
3757 }
3758 }
3759
3760 if (do_plt)
3761 {
3762 if (bfd_link_pic (info))
3763 {
3764 /* Output a dynamic IPLT relocation for this
3765 PLT entry. */
3766 Elf_Internal_Rela outrel;
3767 bfd_byte *loc;
3768 asection *s = htab->etab.srelplt;
3769
3770 outrel.r_offset = (off
3771 + htab->etab.splt->output_offset
3772 + htab->etab.splt->output_section->vma);
3773 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3774 outrel.r_addend = relocation;
3775 loc = s->contents;
3776 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3777 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3778 }
3779 else
3780 {
3781 bfd_put_32 (output_bfd,
3782 relocation,
3783 htab->etab.splt->contents + off);
3784 bfd_put_32 (output_bfd,
3785 elf_gp (htab->etab.splt->output_section->owner),
3786 htab->etab.splt->contents + off + 4);
3787 }
3788 }
3789
3790 if (off >= (bfd_vma) -2)
3791 abort ();
3792
3793 /* PLABELs contain function pointers. Relocation is to
3794 the entry for the function in the .plt. The magic +2
3795 offset signals to $$dyncall that the function pointer
3796 is in the .plt and thus has a gp pointer too.
3797 Exception: Undefined PLABELs should have a value of
3798 zero. */
3799 if (hh == NULL
3800 || (hh->eh.root.type != bfd_link_hash_undefweak
3801 && hh->eh.root.type != bfd_link_hash_undefined))
3802 {
3803 relocation = (off
3804 + htab->etab.splt->output_offset
3805 + htab->etab.splt->output_section->vma
3806 + 2);
3807 }
3808 plabel = 1;
3809 }
3810 /* Fall through. */
3811
3812 case R_PARISC_DIR17F:
3813 case R_PARISC_DIR17R:
3814 case R_PARISC_DIR14F:
3815 case R_PARISC_DIR14R:
3816 case R_PARISC_DIR21L:
3817 case R_PARISC_DPREL14F:
3818 case R_PARISC_DPREL14R:
3819 case R_PARISC_DPREL21L:
3820 case R_PARISC_DIR32:
3821 if ((input_section->flags & SEC_ALLOC) == 0)
3822 break;
3823
3824 if (bfd_link_pic (info)
3825 ? ((hh == NULL
3826 || hh->eh.dyn_relocs != NULL)
3827 && ((hh != NULL && pc_dynrelocs (hh))
3828 || IS_ABSOLUTE_RELOC (r_type)))
3829 : (hh != NULL
3830 && hh->eh.dyn_relocs != NULL))
3831 {
3832 Elf_Internal_Rela outrel;
3833 bfd_boolean skip;
3834 asection *sreloc;
3835 bfd_byte *loc;
3836
3837 /* When generating a shared object, these relocations
3838 are copied into the output file to be resolved at run
3839 time. */
3840
3841 outrel.r_addend = rela->r_addend;
3842 outrel.r_offset =
3843 _bfd_elf_section_offset (output_bfd, info, input_section,
3844 rela->r_offset);
3845 skip = (outrel.r_offset == (bfd_vma) -1
3846 || outrel.r_offset == (bfd_vma) -2);
3847 outrel.r_offset += (input_section->output_offset
3848 + input_section->output_section->vma);
3849
3850 if (skip)
3851 {
3852 memset (&outrel, 0, sizeof (outrel));
3853 }
3854 else if (hh != NULL
3855 && hh->eh.dynindx != -1
3856 && (plabel
3857 || !IS_ABSOLUTE_RELOC (r_type)
3858 || !bfd_link_pic (info)
3859 || !SYMBOLIC_BIND (info, &hh->eh)
3860 || !hh->eh.def_regular))
3861 {
3862 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3863 }
3864 else /* It's a local symbol, or one marked to become local. */
3865 {
3866 int indx = 0;
3867
3868 /* Add the absolute offset of the symbol. */
3869 outrel.r_addend += relocation;
3870
3871 /* Global plabels need to be processed by the
3872 dynamic linker so that functions have at most one
3873 fptr. For this reason, we need to differentiate
3874 between global and local plabels, which we do by
3875 providing the function symbol for a global plabel
3876 reloc, and no symbol for local plabels. */
3877 if (! plabel
3878 && sym_sec != NULL
3879 && sym_sec->output_section != NULL
3880 && ! bfd_is_abs_section (sym_sec))
3881 {
3882 asection *osec;
3883
3884 osec = sym_sec->output_section;
3885 indx = elf_section_data (osec)->dynindx;
3886 if (indx == 0)
3887 {
3888 osec = htab->etab.text_index_section;
3889 indx = elf_section_data (osec)->dynindx;
3890 }
3891 BFD_ASSERT (indx != 0);
3892
3893 /* We are turning this relocation into one
3894 against a section symbol, so subtract out the
3895 output section's address but not the offset
3896 of the input section in the output section. */
3897 outrel.r_addend -= osec->vma;
3898 }
3899
3900 outrel.r_info = ELF32_R_INFO (indx, r_type);
3901 }
3902 sreloc = elf_section_data (input_section)->sreloc;
3903 if (sreloc == NULL)
3904 abort ();
3905
3906 loc = sreloc->contents;
3907 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3908 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3909 }
3910 break;
3911
3912 case R_PARISC_TLS_LDM21L:
3913 case R_PARISC_TLS_LDM14R:
3914 {
3915 bfd_vma off;
3916
3917 off = htab->tls_ldm_got.offset;
3918 if (off & 1)
3919 off &= ~1;
3920 else
3921 {
3922 Elf_Internal_Rela outrel;
3923 bfd_byte *loc;
3924
3925 outrel.r_offset = (off
3926 + htab->etab.sgot->output_section->vma
3927 + htab->etab.sgot->output_offset);
3928 outrel.r_addend = 0;
3929 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
3930 loc = htab->etab.srelgot->contents;
3931 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3932
3933 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3934 htab->tls_ldm_got.offset |= 1;
3935 }
3936
3937 /* Add the base of the GOT to the relocation value. */
3938 relocation = (off
3939 + htab->etab.sgot->output_offset
3940 + htab->etab.sgot->output_section->vma);
3941
3942 break;
3943 }
3944
3945 case R_PARISC_TLS_LDO21L:
3946 case R_PARISC_TLS_LDO14R:
3947 relocation -= dtpoff_base (info);
3948 break;
3949
3950 case R_PARISC_TLS_GD21L:
3951 case R_PARISC_TLS_GD14R:
3952 case R_PARISC_TLS_IE21L:
3953 case R_PARISC_TLS_IE14R:
3954 {
3955 bfd_vma off;
3956 int indx;
3957 char tls_type;
3958
3959 indx = 0;
3960 if (hh != NULL)
3961 {
3962 if (!htab->etab.dynamic_sections_created
3963 || hh->eh.dynindx == -1
3964 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
3965 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
3966 /* This is actually a static link, or it is a
3967 -Bsymbolic link and the symbol is defined
3968 locally, or the symbol was forced to be local
3969 because of a version file. */
3970 ;
3971 else
3972 indx = hh->eh.dynindx;
3973 off = hh->eh.got.offset;
3974 tls_type = hh->tls_type;
3975 }
3976 else
3977 {
3978 off = local_got_offsets[r_symndx];
3979 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
3980 }
3981
3982 if (tls_type == GOT_UNKNOWN)
3983 abort ();
3984
3985 if ((off & 1) != 0)
3986 off &= ~1;
3987 else
3988 {
3989 bfd_boolean need_relocs = FALSE;
3990 Elf_Internal_Rela outrel;
3991 bfd_byte *loc = NULL;
3992 int cur_off = off;
3993
3994 /* The GOT entries have not been initialized yet. Do it
3995 now, and emit any relocations. If both an IE GOT and a
3996 GD GOT are necessary, we emit the GD first. */
3997
3998 if (indx != 0
3999 || (bfd_link_dll (info)
4000 && (hh == NULL
4001 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4002 {
4003 need_relocs = TRUE;
4004 loc = htab->etab.srelgot->contents;
4005 loc += (htab->etab.srelgot->reloc_count
4006 * sizeof (Elf32_External_Rela));
4007 }
4008
4009 if (tls_type & GOT_TLS_GD)
4010 {
4011 if (need_relocs)
4012 {
4013 outrel.r_offset
4014 = (cur_off
4015 + htab->etab.sgot->output_section->vma
4016 + htab->etab.sgot->output_offset);
4017 outrel.r_info
4018 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4019 outrel.r_addend = 0;
4020 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4021 htab->etab.srelgot->reloc_count++;
4022 loc += sizeof (Elf32_External_Rela);
4023 bfd_put_32 (output_bfd, 0,
4024 htab->etab.sgot->contents + cur_off);
4025 }
4026 else
4027 /* If we are not emitting relocations for a
4028 general dynamic reference, then we must be in a
4029 static link or an executable link with the
4030 symbol binding locally. Mark it as belonging
4031 to module 1, the executable. */
4032 bfd_put_32 (output_bfd, 1,
4033 htab->etab.sgot->contents + cur_off);
4034
4035 if (indx != 0)
4036 {
4037 outrel.r_info
4038 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4039 outrel.r_offset += 4;
4040 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4041 htab->etab.srelgot->reloc_count++;
4042 loc += sizeof (Elf32_External_Rela);
4043 bfd_put_32 (output_bfd, 0,
4044 htab->etab.sgot->contents + cur_off + 4);
4045 }
4046 else
4047 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4048 htab->etab.sgot->contents + cur_off + 4);
4049 cur_off += 8;
4050 }
4051
4052 if (tls_type & GOT_TLS_IE)
4053 {
4054 if (need_relocs
4055 && !(bfd_link_executable (info)
4056 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4057 {
4058 outrel.r_offset
4059 = (cur_off
4060 + htab->etab.sgot->output_section->vma
4061 + htab->etab.sgot->output_offset);
4062 outrel.r_info = ELF32_R_INFO (indx,
4063 R_PARISC_TLS_TPREL32);
4064 if (indx == 0)
4065 outrel.r_addend = relocation - dtpoff_base (info);
4066 else
4067 outrel.r_addend = 0;
4068 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4069 htab->etab.srelgot->reloc_count++;
4070 loc += sizeof (Elf32_External_Rela);
4071 }
4072 else
4073 bfd_put_32 (output_bfd, tpoff (info, relocation),
4074 htab->etab.sgot->contents + cur_off);
4075 cur_off += 4;
4076 }
4077
4078 if (hh != NULL)
4079 hh->eh.got.offset |= 1;
4080 else
4081 local_got_offsets[r_symndx] |= 1;
4082 }
4083
4084 if ((tls_type & GOT_NORMAL) != 0
4085 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4086 {
4087 if (hh != NULL)
4088 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4089 hh_name (hh));
4090 else
4091 {
4092 Elf_Internal_Sym *isym
4093 = bfd_sym_from_r_symndx (&htab->sym_cache,
4094 input_bfd, r_symndx);
4095 if (isym == NULL)
4096 return FALSE;
4097 sym_name
4098 = bfd_elf_string_from_elf_section (input_bfd,
4099 symtab_hdr->sh_link,
4100 isym->st_name);
4101 if (sym_name == NULL)
4102 return FALSE;
4103 if (*sym_name == '\0')
4104 sym_name = bfd_section_name (sym_sec);
4105 _bfd_error_handler
4106 (_("%pB:%s has both normal and TLS relocs"),
4107 input_bfd, sym_name);
4108 }
4109 bfd_set_error (bfd_error_bad_value);
4110 return FALSE;
4111 }
4112
4113 if ((tls_type & GOT_TLS_GD)
4114 && r_type != R_PARISC_TLS_GD21L
4115 && r_type != R_PARISC_TLS_GD14R)
4116 off += 2 * GOT_ENTRY_SIZE;
4117
4118 /* Add the base of the GOT to the relocation value. */
4119 relocation = (off
4120 + htab->etab.sgot->output_offset
4121 + htab->etab.sgot->output_section->vma);
4122
4123 break;
4124 }
4125
4126 case R_PARISC_TLS_LE21L:
4127 case R_PARISC_TLS_LE14R:
4128 {
4129 relocation = tpoff (info, relocation);
4130 break;
4131 }
4132 break;
4133
4134 default:
4135 break;
4136 }
4137
4138 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4139 htab, sym_sec, hh, info);
4140
4141 if (rstatus == bfd_reloc_ok)
4142 continue;
4143
4144 if (hh != NULL)
4145 sym_name = hh_name (hh);
4146 else
4147 {
4148 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4149 symtab_hdr->sh_link,
4150 sym->st_name);
4151 if (sym_name == NULL)
4152 return FALSE;
4153 if (*sym_name == '\0')
4154 sym_name = bfd_section_name (sym_sec);
4155 }
4156
4157 howto = elf_hppa_howto_table + r_type;
4158
4159 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4160 {
4161 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4162 {
4163 _bfd_error_handler
4164 /* xgettext:c-format */
4165 (_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"),
4166 input_bfd,
4167 input_section,
4168 (uint64_t) rela->r_offset,
4169 howto->name,
4170 sym_name);
4171 bfd_set_error (bfd_error_bad_value);
4172 return FALSE;
4173 }
4174 }
4175 else
4176 (*info->callbacks->reloc_overflow)
4177 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4178 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4179 }
4180
4181 return TRUE;
4182 }
4183
4184 /* Finish up dynamic symbol handling. We set the contents of various
4185 dynamic sections here. */
4186
4187 static bfd_boolean
4188 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4189 struct bfd_link_info *info,
4190 struct elf_link_hash_entry *eh,
4191 Elf_Internal_Sym *sym)
4192 {
4193 struct elf32_hppa_link_hash_table *htab;
4194 Elf_Internal_Rela rela;
4195 bfd_byte *loc;
4196
4197 htab = hppa_link_hash_table (info);
4198 if (htab == NULL)
4199 return FALSE;
4200
4201 if (eh->plt.offset != (bfd_vma) -1)
4202 {
4203 bfd_vma value;
4204
4205 if (eh->plt.offset & 1)
4206 abort ();
4207
4208 /* This symbol has an entry in the procedure linkage table. Set
4209 it up.
4210
4211 The format of a plt entry is
4212 <funcaddr>
4213 <__gp>
4214 */
4215 value = 0;
4216 if (eh->root.type == bfd_link_hash_defined
4217 || eh->root.type == bfd_link_hash_defweak)
4218 {
4219 value = eh->root.u.def.value;
4220 if (eh->root.u.def.section->output_section != NULL)
4221 value += (eh->root.u.def.section->output_offset
4222 + eh->root.u.def.section->output_section->vma);
4223 }
4224
4225 /* Create a dynamic IPLT relocation for this entry. */
4226 rela.r_offset = (eh->plt.offset
4227 + htab->etab.splt->output_offset
4228 + htab->etab.splt->output_section->vma);
4229 if (eh->dynindx != -1)
4230 {
4231 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4232 rela.r_addend = 0;
4233 }
4234 else
4235 {
4236 /* This symbol has been marked to become local, and is
4237 used by a plabel so must be kept in the .plt. */
4238 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4239 rela.r_addend = value;
4240 }
4241
4242 loc = htab->etab.srelplt->contents;
4243 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4244 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4245
4246 if (!eh->def_regular)
4247 {
4248 /* Mark the symbol as undefined, rather than as defined in
4249 the .plt section. Leave the value alone. */
4250 sym->st_shndx = SHN_UNDEF;
4251 }
4252 }
4253
4254 if (eh->got.offset != (bfd_vma) -1
4255 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4256 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4257 {
4258 bfd_boolean is_dyn = (eh->dynindx != -1
4259 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4260
4261 if (is_dyn || bfd_link_pic (info))
4262 {
4263 /* This symbol has an entry in the global offset table. Set
4264 it up. */
4265
4266 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4267 + htab->etab.sgot->output_offset
4268 + htab->etab.sgot->output_section->vma);
4269
4270 /* If this is a -Bsymbolic link and the symbol is defined
4271 locally or was forced to be local because of a version
4272 file, we just want to emit a RELATIVE reloc. The entry
4273 in the global offset table will already have been
4274 initialized in the relocate_section function. */
4275 if (!is_dyn)
4276 {
4277 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4278 rela.r_addend = (eh->root.u.def.value
4279 + eh->root.u.def.section->output_offset
4280 + eh->root.u.def.section->output_section->vma);
4281 }
4282 else
4283 {
4284 if ((eh->got.offset & 1) != 0)
4285 abort ();
4286
4287 bfd_put_32 (output_bfd, 0,
4288 htab->etab.sgot->contents + (eh->got.offset & ~1));
4289 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4290 rela.r_addend = 0;
4291 }
4292
4293 loc = htab->etab.srelgot->contents;
4294 loc += (htab->etab.srelgot->reloc_count++
4295 * sizeof (Elf32_External_Rela));
4296 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4297 }
4298 }
4299
4300 if (eh->needs_copy)
4301 {
4302 asection *sec;
4303
4304 /* This symbol needs a copy reloc. Set it up. */
4305
4306 if (! (eh->dynindx != -1
4307 && (eh->root.type == bfd_link_hash_defined
4308 || eh->root.type == bfd_link_hash_defweak)))
4309 abort ();
4310
4311 rela.r_offset = (eh->root.u.def.value
4312 + eh->root.u.def.section->output_offset
4313 + eh->root.u.def.section->output_section->vma);
4314 rela.r_addend = 0;
4315 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4316 if (eh->root.u.def.section == htab->etab.sdynrelro)
4317 sec = htab->etab.sreldynrelro;
4318 else
4319 sec = htab->etab.srelbss;
4320 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4321 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4322 }
4323
4324 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4325 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4326 {
4327 sym->st_shndx = SHN_ABS;
4328 }
4329
4330 return TRUE;
4331 }
4332
4333 /* Used to decide how to sort relocs in an optimal manner for the
4334 dynamic linker, before writing them out. */
4335
4336 static enum elf_reloc_type_class
4337 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4338 const asection *rel_sec ATTRIBUTE_UNUSED,
4339 const Elf_Internal_Rela *rela)
4340 {
4341 /* Handle TLS relocs first; we don't want them to be marked
4342 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4343 check below. */
4344 switch ((int) ELF32_R_TYPE (rela->r_info))
4345 {
4346 case R_PARISC_TLS_DTPMOD32:
4347 case R_PARISC_TLS_DTPOFF32:
4348 case R_PARISC_TLS_TPREL32:
4349 return reloc_class_normal;
4350 }
4351
4352 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4353 return reloc_class_relative;
4354
4355 switch ((int) ELF32_R_TYPE (rela->r_info))
4356 {
4357 case R_PARISC_IPLT:
4358 return reloc_class_plt;
4359 case R_PARISC_COPY:
4360 return reloc_class_copy;
4361 default:
4362 return reloc_class_normal;
4363 }
4364 }
4365
4366 /* Finish up the dynamic sections. */
4367
4368 static bfd_boolean
4369 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4370 struct bfd_link_info *info)
4371 {
4372 bfd *dynobj;
4373 struct elf32_hppa_link_hash_table *htab;
4374 asection *sdyn;
4375 asection * sgot;
4376
4377 htab = hppa_link_hash_table (info);
4378 if (htab == NULL)
4379 return FALSE;
4380
4381 dynobj = htab->etab.dynobj;
4382
4383 sgot = htab->etab.sgot;
4384 /* A broken linker script might have discarded the dynamic sections.
4385 Catch this here so that we do not seg-fault later on. */
4386 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4387 return FALSE;
4388
4389 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4390
4391 if (htab->etab.dynamic_sections_created)
4392 {
4393 Elf32_External_Dyn *dyncon, *dynconend;
4394
4395 if (sdyn == NULL)
4396 abort ();
4397
4398 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4399 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4400 for (; dyncon < dynconend; dyncon++)
4401 {
4402 Elf_Internal_Dyn dyn;
4403 asection *s;
4404
4405 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4406
4407 switch (dyn.d_tag)
4408 {
4409 default:
4410 continue;
4411
4412 case DT_PLTGOT:
4413 /* Use PLTGOT to set the GOT register. */
4414 dyn.d_un.d_ptr = elf_gp (output_bfd);
4415 break;
4416
4417 case DT_JMPREL:
4418 s = htab->etab.srelplt;
4419 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4420 break;
4421
4422 case DT_PLTRELSZ:
4423 s = htab->etab.srelplt;
4424 dyn.d_un.d_val = s->size;
4425 break;
4426 }
4427
4428 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4429 }
4430 }
4431
4432 if (sgot != NULL && sgot->size != 0)
4433 {
4434 /* Fill in the first entry in the global offset table.
4435 We use it to point to our dynamic section, if we have one. */
4436 bfd_put_32 (output_bfd,
4437 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4438 sgot->contents);
4439
4440 /* The second entry is reserved for use by the dynamic linker. */
4441 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4442
4443 /* Set .got entry size. */
4444 elf_section_data (sgot->output_section)
4445 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4446 }
4447
4448 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4449 {
4450 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4451 plt stubs and as such the section does not hold a table of fixed-size
4452 entries. */
4453 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4454
4455 if (htab->need_plt_stub)
4456 {
4457 /* Set up the .plt stub. */
4458 memcpy (htab->etab.splt->contents
4459 + htab->etab.splt->size - sizeof (plt_stub),
4460 plt_stub, sizeof (plt_stub));
4461
4462 if ((htab->etab.splt->output_offset
4463 + htab->etab.splt->output_section->vma
4464 + htab->etab.splt->size)
4465 != (sgot->output_offset
4466 + sgot->output_section->vma))
4467 {
4468 _bfd_error_handler
4469 (_(".got section not immediately after .plt section"));
4470 return FALSE;
4471 }
4472 }
4473 }
4474
4475 return TRUE;
4476 }
4477
4478 /* Called when writing out an object file to decide the type of a
4479 symbol. */
4480 static int
4481 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4482 {
4483 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4484 return STT_PARISC_MILLI;
4485 else
4486 return type;
4487 }
4488
4489 /* Misc BFD support code. */
4490 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4491 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4492 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4493 #define elf_info_to_howto elf_hppa_info_to_howto
4494 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4495
4496 /* Stuff for the BFD linker. */
4497 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4498 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4499 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4500 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4501 #define elf_backend_check_relocs elf32_hppa_check_relocs
4502 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4503 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4504 #define elf_backend_fake_sections elf_hppa_fake_sections
4505 #define elf_backend_relocate_section elf32_hppa_relocate_section
4506 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4507 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4508 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4509 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4510 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4511 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4512 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4513 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4514 #define elf_backend_object_p elf32_hppa_object_p
4515 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4516 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4517 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4518 #define elf_backend_action_discarded elf_hppa_action_discarded
4519
4520 #define elf_backend_can_gc_sections 1
4521 #define elf_backend_can_refcount 1
4522 #define elf_backend_plt_alignment 2
4523 #define elf_backend_want_got_plt 0
4524 #define elf_backend_plt_readonly 0
4525 #define elf_backend_want_plt_sym 0
4526 #define elf_backend_got_header_size 8
4527 #define elf_backend_want_dynrelro 1
4528 #define elf_backend_rela_normal 1
4529 #define elf_backend_dtrel_excludes_plt 1
4530 #define elf_backend_no_page_alias 1
4531
4532 #define TARGET_BIG_SYM hppa_elf32_vec
4533 #define TARGET_BIG_NAME "elf32-hppa"
4534 #define ELF_ARCH bfd_arch_hppa
4535 #define ELF_TARGET_ID HPPA32_ELF_DATA
4536 #define ELF_MACHINE_CODE EM_PARISC
4537 #define ELF_MAXPAGESIZE 0x1000
4538 #define ELF_OSABI ELFOSABI_HPUX
4539 #define elf32_bed elf32_hppa_hpux_bed
4540
4541 #include "elf32-target.h"
4542
4543 #undef TARGET_BIG_SYM
4544 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4545 #undef TARGET_BIG_NAME
4546 #define TARGET_BIG_NAME "elf32-hppa-linux"
4547 #undef ELF_OSABI
4548 #define ELF_OSABI ELFOSABI_GNU
4549 #undef elf32_bed
4550 #define elf32_bed elf32_hppa_linux_bed
4551
4552 #include "elf32-target.h"
4553
4554 #undef TARGET_BIG_SYM
4555 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4556 #undef TARGET_BIG_NAME
4557 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4558 #undef ELF_OSABI
4559 #define ELF_OSABI ELFOSABI_NETBSD
4560 #undef elf32_bed
4561 #define elf32_bed elf32_hppa_netbsd_bed
4562
4563 #include "elf32-target.h"
This page took 0.129979 seconds and 4 git commands to generate.