update many old style function definitions
[deliverable/binutils-gdb.git] / bfd / elf64-mmix.c
1 /* MMIX-specific support for 64-bit ELF.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /* No specific ABI or "processor-specific supplement" defined. */
24
25 /* TODO:
26 - "Traditional" linker relaxation (shrinking whole sections).
27 - Merge reloc stubs jumping to same location.
28 - GETA stub relaxation (call a stub for out of range new
29 R_MMIX_GETA_STUBBABLE). */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/mmix.h"
36 #include "opcode/mmix.h"
37
38 #define MINUS_ONE (((bfd_vma) 0) - 1)
39
40 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
41
42 /* Put these everywhere in new code. */
43 #define FATAL_DEBUG \
44 _bfd_abort (__FILE__, __LINE__, \
45 "Internal: Non-debugged code (test-case missing)")
46
47 #define BAD_CASE(x) \
48 _bfd_abort (__FILE__, __LINE__, \
49 "bad case for " #x)
50
51 struct _mmix_elf_section_data
52 {
53 struct bfd_elf_section_data elf;
54 union
55 {
56 struct bpo_reloc_section_info *reloc;
57 struct bpo_greg_section_info *greg;
58 } bpo;
59
60 struct pushj_stub_info
61 {
62 /* Maximum number of stubs needed for this section. */
63 bfd_size_type n_pushj_relocs;
64
65 /* Size of stubs after a mmix_elf_relax_section round. */
66 bfd_size_type stubs_size_sum;
67
68 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
69 of these. Allocated in mmix_elf_check_common_relocs. */
70 bfd_size_type *stub_size;
71
72 /* Offset of next stub during relocation. Somewhat redundant with the
73 above: error coverage is easier and we don't have to reset the
74 stubs_size_sum for relocation. */
75 bfd_size_type stub_offset;
76 } pjs;
77
78 /* Whether there has been a warning that this section could not be
79 linked due to a specific cause. FIXME: a way to access the
80 linker info or output section, then stuff the limiter guard
81 there. */
82 bfd_boolean has_warned_bpo;
83 bfd_boolean has_warned_pushj;
84 };
85
86 #define mmix_elf_section_data(sec) \
87 ((struct _mmix_elf_section_data *) elf_section_data (sec))
88
89 /* For each section containing a base-plus-offset (BPO) reloc, we attach
90 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
91 NULL. */
92 struct bpo_reloc_section_info
93 {
94 /* The base is 1; this is the first number in this section. */
95 size_t first_base_plus_offset_reloc;
96
97 /* Number of BPO-relocs in this section. */
98 size_t n_bpo_relocs_this_section;
99
100 /* Running index, used at relocation time. */
101 size_t bpo_index;
102
103 /* We don't have access to the bfd_link_info struct in
104 mmix_final_link_relocate. What we really want to get at is the
105 global single struct greg_relocation, so we stash it here. */
106 asection *bpo_greg_section;
107 };
108
109 /* Helper struct (in global context) for the one below.
110 There's one of these created for every BPO reloc. */
111 struct bpo_reloc_request
112 {
113 bfd_vma value;
114
115 /* Valid after relaxation. The base is 0; the first register number
116 must be added. The offset is in range 0..255. */
117 size_t regindex;
118 size_t offset;
119
120 /* The order number for this BPO reloc, corresponding to the order in
121 which BPO relocs were found. Used to create an index after reloc
122 requests are sorted. */
123 size_t bpo_reloc_no;
124
125 /* Set when the value is computed. Better than coding "guard values"
126 into the other members. Is FALSE only for BPO relocs in a GC:ed
127 section. */
128 bfd_boolean valid;
129 };
130
131 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
132 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
133 which is linked into the register contents section
134 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
135 linker; using the same hook as for usual with BPO relocs does not
136 collide. */
137 struct bpo_greg_section_info
138 {
139 /* After GC, this reflects the number of remaining, non-excluded
140 BPO-relocs. */
141 size_t n_bpo_relocs;
142
143 /* This is the number of allocated bpo_reloc_requests; the size of
144 sorted_indexes. Valid after the check.*relocs functions are called
145 for all incoming sections. It includes the number of BPO relocs in
146 sections that were GC:ed. */
147 size_t n_max_bpo_relocs;
148
149 /* A counter used to find out when to fold the BPO gregs, since we
150 don't have a single "after-relaxation" hook. */
151 size_t n_remaining_bpo_relocs_this_relaxation_round;
152
153 /* The number of linker-allocated GREGs resulting from BPO relocs.
154 This is an approximation after _bfd_mmix_before_linker_allocation
155 and supposedly accurate after mmix_elf_relax_section is called for
156 all incoming non-collected sections. */
157 size_t n_allocated_bpo_gregs;
158
159 /* Index into reloc_request[], sorted on increasing "value", secondary
160 by increasing index for strict sorting order. */
161 size_t *bpo_reloc_indexes;
162
163 /* An array of all relocations, with the "value" member filled in by
164 the relaxation function. */
165 struct bpo_reloc_request *reloc_request;
166 };
167
168
169 extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *);
170
171 extern void mmix_elf_symbol_processing (bfd *, asymbol *);
172
173 /* Only intended to be called from a debugger. */
174 extern void mmix_dump_bpo_gregs
175 (struct bfd_link_info *, bfd_error_handler_type);
176
177 static void
178 mmix_set_relaxable_size (bfd *, asection *, void *);
179 static bfd_reloc_status_type
180 mmix_elf_reloc (bfd *, arelent *, asymbol *, void *,
181 asection *, bfd *, char **);
182 static bfd_reloc_status_type
183 mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma,
184 bfd_signed_vma, bfd_vma, const char *, asection *,
185 char **);
186
187
188 /* Watch out: this currently needs to have elements with the same index as
189 their R_MMIX_ number. */
190 static reloc_howto_type elf_mmix_howto_table[] =
191 {
192 /* This reloc does nothing. */
193 HOWTO (R_MMIX_NONE, /* type */
194 0, /* rightshift */
195 3, /* size (0 = byte, 1 = short, 2 = long) */
196 0, /* bitsize */
197 FALSE, /* pc_relative */
198 0, /* bitpos */
199 complain_overflow_dont, /* complain_on_overflow */
200 bfd_elf_generic_reloc, /* special_function */
201 "R_MMIX_NONE", /* name */
202 FALSE, /* partial_inplace */
203 0, /* src_mask */
204 0, /* dst_mask */
205 FALSE), /* pcrel_offset */
206
207 /* An 8 bit absolute relocation. */
208 HOWTO (R_MMIX_8, /* type */
209 0, /* rightshift */
210 0, /* size (0 = byte, 1 = short, 2 = long) */
211 8, /* bitsize */
212 FALSE, /* pc_relative */
213 0, /* bitpos */
214 complain_overflow_bitfield, /* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_MMIX_8", /* name */
217 FALSE, /* partial_inplace */
218 0, /* src_mask */
219 0xff, /* dst_mask */
220 FALSE), /* pcrel_offset */
221
222 /* An 16 bit absolute relocation. */
223 HOWTO (R_MMIX_16, /* type */
224 0, /* rightshift */
225 1, /* size (0 = byte, 1 = short, 2 = long) */
226 16, /* bitsize */
227 FALSE, /* pc_relative */
228 0, /* bitpos */
229 complain_overflow_bitfield, /* complain_on_overflow */
230 bfd_elf_generic_reloc, /* special_function */
231 "R_MMIX_16", /* name */
232 FALSE, /* partial_inplace */
233 0, /* src_mask */
234 0xffff, /* dst_mask */
235 FALSE), /* pcrel_offset */
236
237 /* An 24 bit absolute relocation. */
238 HOWTO (R_MMIX_24, /* type */
239 0, /* rightshift */
240 2, /* size (0 = byte, 1 = short, 2 = long) */
241 24, /* bitsize */
242 FALSE, /* pc_relative */
243 0, /* bitpos */
244 complain_overflow_bitfield, /* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_MMIX_24", /* name */
247 FALSE, /* partial_inplace */
248 ~0xffffff, /* src_mask */
249 0xffffff, /* dst_mask */
250 FALSE), /* pcrel_offset */
251
252 /* A 32 bit absolute relocation. */
253 HOWTO (R_MMIX_32, /* type */
254 0, /* rightshift */
255 2, /* size (0 = byte, 1 = short, 2 = long) */
256 32, /* bitsize */
257 FALSE, /* pc_relative */
258 0, /* bitpos */
259 complain_overflow_bitfield, /* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_MMIX_32", /* name */
262 FALSE, /* partial_inplace */
263 0, /* src_mask */
264 0xffffffff, /* dst_mask */
265 FALSE), /* pcrel_offset */
266
267 /* 64 bit relocation. */
268 HOWTO (R_MMIX_64, /* type */
269 0, /* rightshift */
270 4, /* size (0 = byte, 1 = short, 2 = long) */
271 64, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_MMIX_64", /* name */
277 FALSE, /* partial_inplace */
278 0, /* src_mask */
279 MINUS_ONE, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 /* An 8 bit PC-relative relocation. */
283 HOWTO (R_MMIX_PC_8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 8, /* bitsize */
287 TRUE, /* pc_relative */
288 0, /* bitpos */
289 complain_overflow_bitfield, /* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_MMIX_PC_8", /* name */
292 FALSE, /* partial_inplace */
293 0, /* src_mask */
294 0xff, /* dst_mask */
295 TRUE), /* pcrel_offset */
296
297 /* An 16 bit PC-relative relocation. */
298 HOWTO (R_MMIX_PC_16, /* type */
299 0, /* rightshift */
300 1, /* size (0 = byte, 1 = short, 2 = long) */
301 16, /* bitsize */
302 TRUE, /* pc_relative */
303 0, /* bitpos */
304 complain_overflow_bitfield, /* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_MMIX_PC_16", /* name */
307 FALSE, /* partial_inplace */
308 0, /* src_mask */
309 0xffff, /* dst_mask */
310 TRUE), /* pcrel_offset */
311
312 /* An 24 bit PC-relative relocation. */
313 HOWTO (R_MMIX_PC_24, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 24, /* bitsize */
317 TRUE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_MMIX_PC_24", /* name */
322 FALSE, /* partial_inplace */
323 ~0xffffff, /* src_mask */
324 0xffffff, /* dst_mask */
325 TRUE), /* pcrel_offset */
326
327 /* A 32 bit absolute PC-relative relocation. */
328 HOWTO (R_MMIX_PC_32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 TRUE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield, /* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_MMIX_PC_32", /* name */
337 FALSE, /* partial_inplace */
338 0, /* src_mask */
339 0xffffffff, /* dst_mask */
340 TRUE), /* pcrel_offset */
341
342 /* 64 bit PC-relative relocation. */
343 HOWTO (R_MMIX_PC_64, /* type */
344 0, /* rightshift */
345 4, /* size (0 = byte, 1 = short, 2 = long) */
346 64, /* bitsize */
347 TRUE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_MMIX_PC_64", /* name */
352 FALSE, /* partial_inplace */
353 0, /* src_mask */
354 MINUS_ONE, /* dst_mask */
355 TRUE), /* pcrel_offset */
356
357 /* GNU extension to record C++ vtable hierarchy. */
358 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
359 0, /* rightshift */
360 0, /* size (0 = byte, 1 = short, 2 = long) */
361 0, /* bitsize */
362 FALSE, /* pc_relative */
363 0, /* bitpos */
364 complain_overflow_dont, /* complain_on_overflow */
365 NULL, /* special_function */
366 "R_MMIX_GNU_VTINHERIT", /* name */
367 FALSE, /* partial_inplace */
368 0, /* src_mask */
369 0, /* dst_mask */
370 TRUE), /* pcrel_offset */
371
372 /* GNU extension to record C++ vtable member usage. */
373 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
374 0, /* rightshift */
375 0, /* size (0 = byte, 1 = short, 2 = long) */
376 0, /* bitsize */
377 FALSE, /* pc_relative */
378 0, /* bitpos */
379 complain_overflow_dont, /* complain_on_overflow */
380 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
381 "R_MMIX_GNU_VTENTRY", /* name */
382 FALSE, /* partial_inplace */
383 0, /* src_mask */
384 0, /* dst_mask */
385 FALSE), /* pcrel_offset */
386
387 /* The GETA relocation is supposed to get any address that could
388 possibly be reached by the GETA instruction. It can silently expand
389 to get a 64-bit operand, but will complain if any of the two least
390 significant bits are set. The howto members reflect a simple GETA. */
391 HOWTO (R_MMIX_GETA, /* type */
392 2, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 19, /* bitsize */
395 TRUE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_signed, /* complain_on_overflow */
398 mmix_elf_reloc, /* special_function */
399 "R_MMIX_GETA", /* name */
400 FALSE, /* partial_inplace */
401 ~0x0100ffff, /* src_mask */
402 0x0100ffff, /* dst_mask */
403 TRUE), /* pcrel_offset */
404
405 HOWTO (R_MMIX_GETA_1, /* type */
406 2, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 19, /* bitsize */
409 TRUE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_signed, /* complain_on_overflow */
412 mmix_elf_reloc, /* special_function */
413 "R_MMIX_GETA_1", /* name */
414 FALSE, /* partial_inplace */
415 ~0x0100ffff, /* src_mask */
416 0x0100ffff, /* dst_mask */
417 TRUE), /* pcrel_offset */
418
419 HOWTO (R_MMIX_GETA_2, /* type */
420 2, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 19, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 mmix_elf_reloc, /* special_function */
427 "R_MMIX_GETA_2", /* name */
428 FALSE, /* partial_inplace */
429 ~0x0100ffff, /* src_mask */
430 0x0100ffff, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 HOWTO (R_MMIX_GETA_3, /* type */
434 2, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 19, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_signed, /* complain_on_overflow */
440 mmix_elf_reloc, /* special_function */
441 "R_MMIX_GETA_3", /* name */
442 FALSE, /* partial_inplace */
443 ~0x0100ffff, /* src_mask */
444 0x0100ffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 /* The conditional branches are supposed to reach any (code) address.
448 It can silently expand to a 64-bit operand, but will emit an error if
449 any of the two least significant bits are set. The howto members
450 reflect a simple branch. */
451 HOWTO (R_MMIX_CBRANCH, /* type */
452 2, /* rightshift */
453 2, /* size (0 = byte, 1 = short, 2 = long) */
454 19, /* bitsize */
455 TRUE, /* pc_relative */
456 0, /* bitpos */
457 complain_overflow_signed, /* complain_on_overflow */
458 mmix_elf_reloc, /* special_function */
459 "R_MMIX_CBRANCH", /* name */
460 FALSE, /* partial_inplace */
461 ~0x0100ffff, /* src_mask */
462 0x0100ffff, /* dst_mask */
463 TRUE), /* pcrel_offset */
464
465 HOWTO (R_MMIX_CBRANCH_J, /* type */
466 2, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 19, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 mmix_elf_reloc, /* special_function */
473 "R_MMIX_CBRANCH_J", /* name */
474 FALSE, /* partial_inplace */
475 ~0x0100ffff, /* src_mask */
476 0x0100ffff, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 HOWTO (R_MMIX_CBRANCH_1, /* type */
480 2, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 19, /* bitsize */
483 TRUE, /* pc_relative */
484 0, /* bitpos */
485 complain_overflow_signed, /* complain_on_overflow */
486 mmix_elf_reloc, /* special_function */
487 "R_MMIX_CBRANCH_1", /* name */
488 FALSE, /* partial_inplace */
489 ~0x0100ffff, /* src_mask */
490 0x0100ffff, /* dst_mask */
491 TRUE), /* pcrel_offset */
492
493 HOWTO (R_MMIX_CBRANCH_2, /* type */
494 2, /* rightshift */
495 2, /* size (0 = byte, 1 = short, 2 = long) */
496 19, /* bitsize */
497 TRUE, /* pc_relative */
498 0, /* bitpos */
499 complain_overflow_signed, /* complain_on_overflow */
500 mmix_elf_reloc, /* special_function */
501 "R_MMIX_CBRANCH_2", /* name */
502 FALSE, /* partial_inplace */
503 ~0x0100ffff, /* src_mask */
504 0x0100ffff, /* dst_mask */
505 TRUE), /* pcrel_offset */
506
507 HOWTO (R_MMIX_CBRANCH_3, /* type */
508 2, /* rightshift */
509 2, /* size (0 = byte, 1 = short, 2 = long) */
510 19, /* bitsize */
511 TRUE, /* pc_relative */
512 0, /* bitpos */
513 complain_overflow_signed, /* complain_on_overflow */
514 mmix_elf_reloc, /* special_function */
515 "R_MMIX_CBRANCH_3", /* name */
516 FALSE, /* partial_inplace */
517 ~0x0100ffff, /* src_mask */
518 0x0100ffff, /* dst_mask */
519 TRUE), /* pcrel_offset */
520
521 /* The PUSHJ instruction can reach any (code) address, as long as it's
522 the beginning of a function (no usable restriction). It can silently
523 expand to a 64-bit operand, but will emit an error if any of the two
524 least significant bits are set. It can also expand into a call to a
525 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
526 PUSHJ. */
527 HOWTO (R_MMIX_PUSHJ, /* type */
528 2, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 19, /* bitsize */
531 TRUE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_signed, /* complain_on_overflow */
534 mmix_elf_reloc, /* special_function */
535 "R_MMIX_PUSHJ", /* name */
536 FALSE, /* partial_inplace */
537 ~0x0100ffff, /* src_mask */
538 0x0100ffff, /* dst_mask */
539 TRUE), /* pcrel_offset */
540
541 HOWTO (R_MMIX_PUSHJ_1, /* type */
542 2, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 19, /* bitsize */
545 TRUE, /* pc_relative */
546 0, /* bitpos */
547 complain_overflow_signed, /* complain_on_overflow */
548 mmix_elf_reloc, /* special_function */
549 "R_MMIX_PUSHJ_1", /* name */
550 FALSE, /* partial_inplace */
551 ~0x0100ffff, /* src_mask */
552 0x0100ffff, /* dst_mask */
553 TRUE), /* pcrel_offset */
554
555 HOWTO (R_MMIX_PUSHJ_2, /* type */
556 2, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 19, /* bitsize */
559 TRUE, /* pc_relative */
560 0, /* bitpos */
561 complain_overflow_signed, /* complain_on_overflow */
562 mmix_elf_reloc, /* special_function */
563 "R_MMIX_PUSHJ_2", /* name */
564 FALSE, /* partial_inplace */
565 ~0x0100ffff, /* src_mask */
566 0x0100ffff, /* dst_mask */
567 TRUE), /* pcrel_offset */
568
569 HOWTO (R_MMIX_PUSHJ_3, /* type */
570 2, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 19, /* bitsize */
573 TRUE, /* pc_relative */
574 0, /* bitpos */
575 complain_overflow_signed, /* complain_on_overflow */
576 mmix_elf_reloc, /* special_function */
577 "R_MMIX_PUSHJ_3", /* name */
578 FALSE, /* partial_inplace */
579 ~0x0100ffff, /* src_mask */
580 0x0100ffff, /* dst_mask */
581 TRUE), /* pcrel_offset */
582
583 /* A JMP is supposed to reach any (code) address. By itself, it can
584 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
585 limit is soon reached if you link the program in wildly different
586 memory segments. The howto members reflect a trivial JMP. */
587 HOWTO (R_MMIX_JMP, /* type */
588 2, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 27, /* bitsize */
591 TRUE, /* pc_relative */
592 0, /* bitpos */
593 complain_overflow_signed, /* complain_on_overflow */
594 mmix_elf_reloc, /* special_function */
595 "R_MMIX_JMP", /* name */
596 FALSE, /* partial_inplace */
597 ~0x1ffffff, /* src_mask */
598 0x1ffffff, /* dst_mask */
599 TRUE), /* pcrel_offset */
600
601 HOWTO (R_MMIX_JMP_1, /* type */
602 2, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 27, /* bitsize */
605 TRUE, /* pc_relative */
606 0, /* bitpos */
607 complain_overflow_signed, /* complain_on_overflow */
608 mmix_elf_reloc, /* special_function */
609 "R_MMIX_JMP_1", /* name */
610 FALSE, /* partial_inplace */
611 ~0x1ffffff, /* src_mask */
612 0x1ffffff, /* dst_mask */
613 TRUE), /* pcrel_offset */
614
615 HOWTO (R_MMIX_JMP_2, /* type */
616 2, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 27, /* bitsize */
619 TRUE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_signed, /* complain_on_overflow */
622 mmix_elf_reloc, /* special_function */
623 "R_MMIX_JMP_2", /* name */
624 FALSE, /* partial_inplace */
625 ~0x1ffffff, /* src_mask */
626 0x1ffffff, /* dst_mask */
627 TRUE), /* pcrel_offset */
628
629 HOWTO (R_MMIX_JMP_3, /* type */
630 2, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 27, /* bitsize */
633 TRUE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_signed, /* complain_on_overflow */
636 mmix_elf_reloc, /* special_function */
637 "R_MMIX_JMP_3", /* name */
638 FALSE, /* partial_inplace */
639 ~0x1ffffff, /* src_mask */
640 0x1ffffff, /* dst_mask */
641 TRUE), /* pcrel_offset */
642
643 /* When we don't emit link-time-relaxable code from the assembler, or
644 when relaxation has done all it can do, these relocs are used. For
645 GETA/PUSHJ/branches. */
646 HOWTO (R_MMIX_ADDR19, /* type */
647 2, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 19, /* bitsize */
650 TRUE, /* pc_relative */
651 0, /* bitpos */
652 complain_overflow_signed, /* complain_on_overflow */
653 mmix_elf_reloc, /* special_function */
654 "R_MMIX_ADDR19", /* name */
655 FALSE, /* partial_inplace */
656 ~0x0100ffff, /* src_mask */
657 0x0100ffff, /* dst_mask */
658 TRUE), /* pcrel_offset */
659
660 /* For JMP. */
661 HOWTO (R_MMIX_ADDR27, /* type */
662 2, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 27, /* bitsize */
665 TRUE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_signed, /* complain_on_overflow */
668 mmix_elf_reloc, /* special_function */
669 "R_MMIX_ADDR27", /* name */
670 FALSE, /* partial_inplace */
671 ~0x1ffffff, /* src_mask */
672 0x1ffffff, /* dst_mask */
673 TRUE), /* pcrel_offset */
674
675 /* A general register or the value 0..255. If a value, then the
676 instruction (offset -3) needs adjusting. */
677 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
678 0, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 8, /* bitsize */
681 FALSE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_bitfield, /* complain_on_overflow */
684 mmix_elf_reloc, /* special_function */
685 "R_MMIX_REG_OR_BYTE", /* name */
686 FALSE, /* partial_inplace */
687 0, /* src_mask */
688 0xff, /* dst_mask */
689 FALSE), /* pcrel_offset */
690
691 /* A general register. */
692 HOWTO (R_MMIX_REG, /* type */
693 0, /* rightshift */
694 1, /* size (0 = byte, 1 = short, 2 = long) */
695 8, /* bitsize */
696 FALSE, /* pc_relative */
697 0, /* bitpos */
698 complain_overflow_bitfield, /* complain_on_overflow */
699 mmix_elf_reloc, /* special_function */
700 "R_MMIX_REG", /* name */
701 FALSE, /* partial_inplace */
702 0, /* src_mask */
703 0xff, /* dst_mask */
704 FALSE), /* pcrel_offset */
705
706 /* A register plus an index, corresponding to the relocation expression.
707 The sizes must correspond to the valid range of the expression, while
708 the bitmasks correspond to what we store in the image. */
709 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
710 0, /* rightshift */
711 4, /* size (0 = byte, 1 = short, 2 = long) */
712 64, /* bitsize */
713 FALSE, /* pc_relative */
714 0, /* bitpos */
715 complain_overflow_bitfield, /* complain_on_overflow */
716 mmix_elf_reloc, /* special_function */
717 "R_MMIX_BASE_PLUS_OFFSET", /* name */
718 FALSE, /* partial_inplace */
719 0, /* src_mask */
720 0xffff, /* dst_mask */
721 FALSE), /* pcrel_offset */
722
723 /* A "magic" relocation for a LOCAL expression, asserting that the
724 expression is less than the number of global registers. No actual
725 modification of the contents is done. Implementing this as a
726 relocation was less intrusive than e.g. putting such expressions in a
727 section to discard *after* relocation. */
728 HOWTO (R_MMIX_LOCAL, /* type */
729 0, /* rightshift */
730 0, /* size (0 = byte, 1 = short, 2 = long) */
731 0, /* bitsize */
732 FALSE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 mmix_elf_reloc, /* special_function */
736 "R_MMIX_LOCAL", /* name */
737 FALSE, /* partial_inplace */
738 0, /* src_mask */
739 0, /* dst_mask */
740 FALSE), /* pcrel_offset */
741
742 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
743 2, /* rightshift */
744 2, /* size (0 = byte, 1 = short, 2 = long) */
745 19, /* bitsize */
746 TRUE, /* pc_relative */
747 0, /* bitpos */
748 complain_overflow_signed, /* complain_on_overflow */
749 mmix_elf_reloc, /* special_function */
750 "R_MMIX_PUSHJ_STUBBABLE", /* name */
751 FALSE, /* partial_inplace */
752 ~0x0100ffff, /* src_mask */
753 0x0100ffff, /* dst_mask */
754 TRUE) /* pcrel_offset */
755 };
756
757
758 /* Map BFD reloc types to MMIX ELF reloc types. */
759
760 struct mmix_reloc_map
761 {
762 bfd_reloc_code_real_type bfd_reloc_val;
763 enum elf_mmix_reloc_type elf_reloc_val;
764 };
765
766
767 static const struct mmix_reloc_map mmix_reloc_map[] =
768 {
769 {BFD_RELOC_NONE, R_MMIX_NONE},
770 {BFD_RELOC_8, R_MMIX_8},
771 {BFD_RELOC_16, R_MMIX_16},
772 {BFD_RELOC_24, R_MMIX_24},
773 {BFD_RELOC_32, R_MMIX_32},
774 {BFD_RELOC_64, R_MMIX_64},
775 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
776 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
777 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
778 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
779 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
780 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
781 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
782 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
783 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
784 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
785 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
786 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
787 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
788 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
789 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
790 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
791 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
792 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
793 };
794
795 static reloc_howto_type *
796 bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
797 bfd_reloc_code_real_type code)
798 {
799 unsigned int i;
800
801 for (i = 0;
802 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
803 i++)
804 {
805 if (mmix_reloc_map[i].bfd_reloc_val == code)
806 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
807 }
808
809 return NULL;
810 }
811
812 static reloc_howto_type *
813 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
814 const char *r_name)
815 {
816 unsigned int i;
817
818 for (i = 0;
819 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
820 i++)
821 if (elf_mmix_howto_table[i].name != NULL
822 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
823 return &elf_mmix_howto_table[i];
824
825 return NULL;
826 }
827
828 static bfd_boolean
829 mmix_elf_new_section_hook (bfd *abfd, asection *sec)
830 {
831 if (!sec->used_by_bfd)
832 {
833 struct _mmix_elf_section_data *sdata;
834 bfd_size_type amt = sizeof (*sdata);
835
836 sdata = bfd_zalloc (abfd, amt);
837 if (sdata == NULL)
838 return FALSE;
839 sec->used_by_bfd = sdata;
840 }
841
842 return _bfd_elf_new_section_hook (abfd, sec);
843 }
844
845
846 /* This function performs the actual bitfiddling and sanity check for a
847 final relocation. Each relocation gets its *worst*-case expansion
848 in size when it arrives here; any reduction in size should have been
849 caught in linker relaxation earlier. When we get here, the relocation
850 looks like the smallest instruction with SWYM:s (nop:s) appended to the
851 max size. We fill in those nop:s.
852
853 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
854 GETA $N,foo
855 ->
856 SETL $N,foo & 0xffff
857 INCML $N,(foo >> 16) & 0xffff
858 INCMH $N,(foo >> 32) & 0xffff
859 INCH $N,(foo >> 48) & 0xffff
860
861 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
862 condbranches needing relaxation might be rare enough to not be
863 worthwhile.)
864 [P]Bcc $N,foo
865 ->
866 [~P]B~cc $N,.+20
867 SETL $255,foo & ...
868 INCML ...
869 INCMH ...
870 INCH ...
871 GO $255,$255,0
872
873 R_MMIX_PUSHJ: (FIXME: Relaxation...)
874 PUSHJ $N,foo
875 ->
876 SETL $255,foo & ...
877 INCML ...
878 INCMH ...
879 INCH ...
880 PUSHGO $N,$255,0
881
882 R_MMIX_JMP: (FIXME: Relaxation...)
883 JMP foo
884 ->
885 SETL $255,foo & ...
886 INCML ...
887 INCMH ...
888 INCH ...
889 GO $255,$255,0
890
891 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
892
893 static bfd_reloc_status_type
894 mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto,
895 void *datap, bfd_vma addr, bfd_vma value,
896 char **error_message)
897 {
898 bfd *abfd = isec->owner;
899 bfd_reloc_status_type flag = bfd_reloc_ok;
900 bfd_reloc_status_type r;
901 int offs = 0;
902 int reg = 255;
903
904 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
905 We handle the differences here and the common sequence later. */
906 switch (howto->type)
907 {
908 case R_MMIX_GETA:
909 offs = 0;
910 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
911
912 /* We change to an absolute value. */
913 value += addr;
914 break;
915
916 case R_MMIX_CBRANCH:
917 {
918 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
919
920 /* Invert the condition and prediction bit, and set the offset
921 to five instructions ahead.
922
923 We *can* do better if we want to. If the branch is found to be
924 within limits, we could leave the branch as is; there'll just
925 be a bunch of NOP:s after it. But we shouldn't see this
926 sequence often enough that it's worth doing it. */
927
928 bfd_put_32 (abfd,
929 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
930 | (24/4)),
931 (bfd_byte *) datap);
932
933 /* Put a "GO $255,$255,0" after the common sequence. */
934 bfd_put_32 (abfd,
935 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
936 (bfd_byte *) datap + 20);
937
938 /* Common sequence starts at offset 4. */
939 offs = 4;
940
941 /* We change to an absolute value. */
942 value += addr;
943 }
944 break;
945
946 case R_MMIX_PUSHJ_STUBBABLE:
947 /* If the address fits, we're fine. */
948 if ((value & 3) == 0
949 /* Note rightshift 0; see R_MMIX_JMP case below. */
950 && (r = bfd_check_overflow (complain_overflow_signed,
951 howto->bitsize,
952 0,
953 bfd_arch_bits_per_address (abfd),
954 value)) == bfd_reloc_ok)
955 goto pcrel_mmix_reloc_fits;
956 else
957 {
958 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
959
960 /* We have the bytes at the PUSHJ insn and need to get the
961 position for the stub. There's supposed to be room allocated
962 for the stub. */
963 bfd_byte *stubcontents
964 = ((bfd_byte *) datap
965 - (addr - (isec->output_section->vma + isec->output_offset))
966 + size
967 + mmix_elf_section_data (isec)->pjs.stub_offset);
968 bfd_vma stubaddr;
969
970 if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0)
971 {
972 /* This shouldn't happen when linking to ELF or mmo, so
973 this is an attempt to link to "binary", right? We
974 can't access the output bfd, so we can't verify that
975 assumption. We only know that the critical
976 mmix_elf_check_common_relocs has not been called,
977 which happens when the output format is different
978 from the input format (and is not mmo). */
979 if (! mmix_elf_section_data (isec)->has_warned_pushj)
980 {
981 /* For the first such error per input section, produce
982 a verbose message. */
983 *error_message
984 = _("invalid input relocation when producing"
985 " non-ELF, non-mmo format output."
986 "\n Please use the objcopy program to convert from"
987 " ELF or mmo,"
988 "\n or assemble using"
989 " \"-no-expand\" (for gcc, \"-Wa,-no-expand\"");
990 mmix_elf_section_data (isec)->has_warned_pushj = TRUE;
991 return bfd_reloc_dangerous;
992 }
993
994 /* For subsequent errors, return this one, which is
995 rate-limited but looks a little bit different,
996 hopefully without affecting user-friendliness. */
997 return bfd_reloc_overflow;
998 }
999
1000 /* The address doesn't fit, so redirect the PUSHJ to the
1001 location of the stub. */
1002 r = mmix_elf_perform_relocation (isec,
1003 &elf_mmix_howto_table
1004 [R_MMIX_ADDR19],
1005 datap,
1006 addr,
1007 isec->output_section->vma
1008 + isec->output_offset
1009 + size
1010 + (mmix_elf_section_data (isec)
1011 ->pjs.stub_offset)
1012 - addr,
1013 error_message);
1014 if (r != bfd_reloc_ok)
1015 return r;
1016
1017 stubaddr
1018 = (isec->output_section->vma
1019 + isec->output_offset
1020 + size
1021 + mmix_elf_section_data (isec)->pjs.stub_offset);
1022
1023 /* We generate a simple JMP if that suffices, else the whole 5
1024 insn stub. */
1025 if (bfd_check_overflow (complain_overflow_signed,
1026 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1027 0,
1028 bfd_arch_bits_per_address (abfd),
1029 addr + value - stubaddr) == bfd_reloc_ok)
1030 {
1031 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1032 r = mmix_elf_perform_relocation (isec,
1033 &elf_mmix_howto_table
1034 [R_MMIX_ADDR27],
1035 stubcontents,
1036 stubaddr,
1037 value + addr - stubaddr,
1038 error_message);
1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040
1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 > isec->size)
1043 abort ();
1044
1045 return r;
1046 }
1047 else
1048 {
1049 /* Put a "GO $255,0" after the common sequence. */
1050 bfd_put_32 (abfd,
1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 | 0xff00, (bfd_byte *) stubcontents + 16);
1053
1054 /* Prepare for the general code to set the first part of the
1055 linker stub, and */
1056 value += addr;
1057 datap = stubcontents;
1058 mmix_elf_section_data (isec)->pjs.stub_offset
1059 += MAX_PUSHJ_STUB_SIZE;
1060 }
1061 }
1062 break;
1063
1064 case R_MMIX_PUSHJ:
1065 {
1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067
1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1069 bfd_put_32 (abfd,
1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 | (inreg << 16)
1072 | 0xff00,
1073 (bfd_byte *) datap + 16);
1074
1075 /* We change to an absolute value. */
1076 value += addr;
1077 }
1078 break;
1079
1080 case R_MMIX_JMP:
1081 /* This one is a little special. If we get here on a non-relaxing
1082 link, and the destination is actually in range, we don't need to
1083 execute the nops.
1084 If so, we fall through to the bit-fiddling relocs.
1085
1086 FIXME: bfd_check_overflow seems broken; the relocation is
1087 rightshifted before testing, so supply a zero rightshift. */
1088
1089 if (! ((value & 3) == 0
1090 && (r = bfd_check_overflow (complain_overflow_signed,
1091 howto->bitsize,
1092 0,
1093 bfd_arch_bits_per_address (abfd),
1094 value)) == bfd_reloc_ok))
1095 {
1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 modified below, and put a "GO $255,$255,0" after the
1098 address-loading sequence. */
1099 bfd_put_32 (abfd,
1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 | 0xffff00,
1102 (bfd_byte *) datap + 16);
1103
1104 /* We change to an absolute value. */
1105 value += addr;
1106 break;
1107 }
1108 /* FALLTHROUGH. */
1109 case R_MMIX_ADDR19:
1110 case R_MMIX_ADDR27:
1111 pcrel_mmix_reloc_fits:
1112 /* These must be in range, or else we emit an error. */
1113 if ((value & 3) == 0
1114 /* Note rightshift 0; see above. */
1115 && (r = bfd_check_overflow (complain_overflow_signed,
1116 howto->bitsize,
1117 0,
1118 bfd_arch_bits_per_address (abfd),
1119 value)) == bfd_reloc_ok)
1120 {
1121 bfd_vma in1
1122 = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 bfd_vma highbit;
1124
1125 if ((bfd_signed_vma) value < 0)
1126 {
1127 highbit = 1 << 24;
1128 value += (1 << (howto->bitsize - 1));
1129 }
1130 else
1131 highbit = 0;
1132
1133 value >>= 2;
1134
1135 bfd_put_32 (abfd,
1136 (in1 & howto->src_mask)
1137 | highbit
1138 | (value & howto->dst_mask),
1139 (bfd_byte *) datap);
1140
1141 return bfd_reloc_ok;
1142 }
1143 else
1144 return bfd_reloc_overflow;
1145
1146 case R_MMIX_BASE_PLUS_OFFSET:
1147 {
1148 struct bpo_reloc_section_info *bpodata
1149 = mmix_elf_section_data (isec)->bpo.reloc;
1150 asection *bpo_greg_section;
1151 struct bpo_greg_section_info *gregdata;
1152 size_t bpo_index;
1153
1154 if (bpodata == NULL)
1155 {
1156 /* This shouldn't happen when linking to ELF or mmo, so
1157 this is an attempt to link to "binary", right? We
1158 can't access the output bfd, so we can't verify that
1159 assumption. We only know that the critical
1160 mmix_elf_check_common_relocs has not been called, which
1161 happens when the output format is different from the
1162 input format (and is not mmo). */
1163 if (! mmix_elf_section_data (isec)->has_warned_bpo)
1164 {
1165 /* For the first such error per input section, produce
1166 a verbose message. */
1167 *error_message
1168 = _("invalid input relocation when producing"
1169 " non-ELF, non-mmo format output."
1170 "\n Please use the objcopy program to convert from"
1171 " ELF or mmo,"
1172 "\n or compile using the gcc-option"
1173 " \"-mno-base-addresses\".");
1174 mmix_elf_section_data (isec)->has_warned_bpo = TRUE;
1175 return bfd_reloc_dangerous;
1176 }
1177
1178 /* For subsequent errors, return this one, which is
1179 rate-limited but looks a little bit different,
1180 hopefully without affecting user-friendliness. */
1181 return bfd_reloc_overflow;
1182 }
1183
1184 bpo_greg_section = bpodata->bpo_greg_section;
1185 gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1186 bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1187
1188 /* A consistency check: The value we now have in "relocation" must
1189 be the same as the value we stored for that relocation. It
1190 doesn't cost much, so can be left in at all times. */
1191 if (value != gregdata->reloc_request[bpo_index].value)
1192 {
1193 (*_bfd_error_handler)
1194 (_("%s: Internal inconsistency error for value for\n\
1195 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1196 bfd_get_filename (isec->owner),
1197 (unsigned long) (value >> 32), (unsigned long) value,
1198 (unsigned long) (gregdata->reloc_request[bpo_index].value
1199 >> 32),
1200 (unsigned long) gregdata->reloc_request[bpo_index].value);
1201 bfd_set_error (bfd_error_bad_value);
1202 return bfd_reloc_overflow;
1203 }
1204
1205 /* Then store the register number and offset for that register
1206 into datap and datap + 1 respectively. */
1207 bfd_put_8 (abfd,
1208 gregdata->reloc_request[bpo_index].regindex
1209 + bpo_greg_section->output_section->vma / 8,
1210 datap);
1211 bfd_put_8 (abfd,
1212 gregdata->reloc_request[bpo_index].offset,
1213 ((unsigned char *) datap) + 1);
1214 return bfd_reloc_ok;
1215 }
1216
1217 case R_MMIX_REG_OR_BYTE:
1218 case R_MMIX_REG:
1219 if (value > 255)
1220 return bfd_reloc_overflow;
1221 bfd_put_8 (abfd, value, datap);
1222 return bfd_reloc_ok;
1223
1224 default:
1225 BAD_CASE (howto->type);
1226 }
1227
1228 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1229 sequence. */
1230
1231 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1232 everything that looks strange. */
1233 if (value & 3)
1234 flag = bfd_reloc_overflow;
1235
1236 bfd_put_32 (abfd,
1237 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1238 (bfd_byte *) datap + offs);
1239 bfd_put_32 (abfd,
1240 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1241 (bfd_byte *) datap + offs + 4);
1242 bfd_put_32 (abfd,
1243 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1244 (bfd_byte *) datap + offs + 8);
1245 bfd_put_32 (abfd,
1246 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1247 (bfd_byte *) datap + offs + 12);
1248
1249 return flag;
1250 }
1251
1252 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1253
1254 static void
1255 mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
1256 arelent *cache_ptr,
1257 Elf_Internal_Rela *dst)
1258 {
1259 unsigned int r_type;
1260
1261 r_type = ELF64_R_TYPE (dst->r_info);
1262 if (r_type >= (unsigned int) R_MMIX_max)
1263 {
1264 _bfd_error_handler (_("%B: invalid MMIX reloc number: %d"), abfd, r_type);
1265 r_type = 0;
1266 }
1267 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1268 }
1269
1270 /* Any MMIX-specific relocation gets here at assembly time or when linking
1271 to other formats (such as mmo); this is the relocation function from
1272 the reloc_table. We don't get here for final pure ELF linking. */
1273
1274 static bfd_reloc_status_type
1275 mmix_elf_reloc (bfd *abfd,
1276 arelent *reloc_entry,
1277 asymbol *symbol,
1278 void * data,
1279 asection *input_section,
1280 bfd *output_bfd,
1281 char **error_message)
1282 {
1283 bfd_vma relocation;
1284 bfd_reloc_status_type r;
1285 asection *reloc_target_output_section;
1286 bfd_reloc_status_type flag = bfd_reloc_ok;
1287 bfd_vma output_base = 0;
1288
1289 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1290 input_section, output_bfd, error_message);
1291
1292 /* If that was all that was needed (i.e. this isn't a final link, only
1293 some segment adjustments), we're done. */
1294 if (r != bfd_reloc_continue)
1295 return r;
1296
1297 if (bfd_is_und_section (symbol->section)
1298 && (symbol->flags & BSF_WEAK) == 0
1299 && output_bfd == (bfd *) NULL)
1300 return bfd_reloc_undefined;
1301
1302 /* Is the address of the relocation really within the section? */
1303 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1304 return bfd_reloc_outofrange;
1305
1306 /* Work out which section the relocation is targeted at and the
1307 initial relocation command value. */
1308
1309 /* Get symbol value. (Common symbols are special.) */
1310 if (bfd_is_com_section (symbol->section))
1311 relocation = 0;
1312 else
1313 relocation = symbol->value;
1314
1315 reloc_target_output_section = bfd_get_output_section (symbol);
1316
1317 /* Here the variable relocation holds the final address of the symbol we
1318 are relocating against, plus any addend. */
1319 if (output_bfd)
1320 output_base = 0;
1321 else
1322 output_base = reloc_target_output_section->vma;
1323
1324 relocation += output_base + symbol->section->output_offset;
1325
1326 if (output_bfd != (bfd *) NULL)
1327 {
1328 /* Add in supplied addend. */
1329 relocation += reloc_entry->addend;
1330
1331 /* This is a partial relocation, and we want to apply the
1332 relocation to the reloc entry rather than the raw data.
1333 Modify the reloc inplace to reflect what we now know. */
1334 reloc_entry->addend = relocation;
1335 reloc_entry->address += input_section->output_offset;
1336 return flag;
1337 }
1338
1339 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1340 data, reloc_entry->address,
1341 reloc_entry->addend, relocation,
1342 bfd_asymbol_name (symbol),
1343 reloc_target_output_section,
1344 error_message);
1345 }
1346 \f
1347 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1348 for guidance if you're thinking of copying this. */
1349
1350 static bfd_boolean
1351 mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1352 struct bfd_link_info *info,
1353 bfd *input_bfd,
1354 asection *input_section,
1355 bfd_byte *contents,
1356 Elf_Internal_Rela *relocs,
1357 Elf_Internal_Sym *local_syms,
1358 asection **local_sections)
1359 {
1360 Elf_Internal_Shdr *symtab_hdr;
1361 struct elf_link_hash_entry **sym_hashes;
1362 Elf_Internal_Rela *rel;
1363 Elf_Internal_Rela *relend;
1364 bfd_size_type size;
1365 size_t pjsno = 0;
1366
1367 size = input_section->rawsize ? input_section->rawsize : input_section->size;
1368 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1369 sym_hashes = elf_sym_hashes (input_bfd);
1370 relend = relocs + input_section->reloc_count;
1371
1372 /* Zero the stub area before we start. */
1373 if (input_section->rawsize != 0
1374 && input_section->size > input_section->rawsize)
1375 memset (contents + input_section->rawsize, 0,
1376 input_section->size - input_section->rawsize);
1377
1378 for (rel = relocs; rel < relend; rel ++)
1379 {
1380 reloc_howto_type *howto;
1381 unsigned long r_symndx;
1382 Elf_Internal_Sym *sym;
1383 asection *sec;
1384 struct elf_link_hash_entry *h;
1385 bfd_vma relocation;
1386 bfd_reloc_status_type r;
1387 const char *name = NULL;
1388 int r_type;
1389 bfd_boolean undefined_signalled = FALSE;
1390
1391 r_type = ELF64_R_TYPE (rel->r_info);
1392
1393 if (r_type == R_MMIX_GNU_VTINHERIT
1394 || r_type == R_MMIX_GNU_VTENTRY)
1395 continue;
1396
1397 r_symndx = ELF64_R_SYM (rel->r_info);
1398
1399 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1400 h = NULL;
1401 sym = NULL;
1402 sec = NULL;
1403
1404 if (r_symndx < symtab_hdr->sh_info)
1405 {
1406 sym = local_syms + r_symndx;
1407 sec = local_sections [r_symndx];
1408 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1409
1410 name = bfd_elf_string_from_elf_section (input_bfd,
1411 symtab_hdr->sh_link,
1412 sym->st_name);
1413 if (name == NULL)
1414 name = bfd_section_name (input_bfd, sec);
1415 }
1416 else
1417 {
1418 bfd_boolean unresolved_reloc, ignored;
1419
1420 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1421 r_symndx, symtab_hdr, sym_hashes,
1422 h, sec, relocation,
1423 unresolved_reloc, undefined_signalled,
1424 ignored);
1425 name = h->root.root.string;
1426 }
1427
1428 if (sec != NULL && discarded_section (sec))
1429 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1430 rel, 1, relend, howto, 0, contents);
1431
1432 if (bfd_link_relocatable (info))
1433 {
1434 /* This is a relocatable link. For most relocs we don't have to
1435 change anything, unless the reloc is against a section
1436 symbol, in which case we have to adjust according to where
1437 the section symbol winds up in the output section. */
1438 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1439 rel->r_addend += sec->output_offset;
1440
1441 /* For PUSHJ stub relocs however, we may need to change the
1442 reloc and the section contents, if the reloc doesn't reach
1443 beyond the end of the output section and previous stubs.
1444 Then we change the section contents to be a PUSHJ to the end
1445 of the input section plus stubs (we can do that without using
1446 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1447 at the stub location. */
1448 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1449 {
1450 /* We've already checked whether we need a stub; use that
1451 knowledge. */
1452 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1453 != 0)
1454 {
1455 Elf_Internal_Rela relcpy;
1456
1457 if (mmix_elf_section_data (input_section)
1458 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1459 abort ();
1460
1461 /* There's already a PUSHJ insn there, so just fill in
1462 the offset bits to the stub. */
1463 if (mmix_final_link_relocate (elf_mmix_howto_table
1464 + R_MMIX_ADDR19,
1465 input_section,
1466 contents,
1467 rel->r_offset,
1468 0,
1469 input_section
1470 ->output_section->vma
1471 + input_section->output_offset
1472 + size
1473 + mmix_elf_section_data (input_section)
1474 ->pjs.stub_offset,
1475 NULL, NULL, NULL) != bfd_reloc_ok)
1476 return FALSE;
1477
1478 /* Put a JMP insn at the stub; it goes with the
1479 R_MMIX_JMP reloc. */
1480 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1481 contents
1482 + size
1483 + mmix_elf_section_data (input_section)
1484 ->pjs.stub_offset);
1485
1486 /* Change the reloc to be at the stub, and to a full
1487 R_MMIX_JMP reloc. */
1488 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1489 rel->r_offset
1490 = (size
1491 + mmix_elf_section_data (input_section)
1492 ->pjs.stub_offset);
1493
1494 mmix_elf_section_data (input_section)->pjs.stub_offset
1495 += MAX_PUSHJ_STUB_SIZE;
1496
1497 /* Shift this reloc to the end of the relocs to maintain
1498 the r_offset sorted reloc order. */
1499 relcpy = *rel;
1500 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1501 relend[-1] = relcpy;
1502
1503 /* Back up one reloc, or else we'd skip the next reloc
1504 in turn. */
1505 rel--;
1506 }
1507
1508 pjsno++;
1509 }
1510 continue;
1511 }
1512
1513 r = mmix_final_link_relocate (howto, input_section,
1514 contents, rel->r_offset,
1515 rel->r_addend, relocation, name, sec, NULL);
1516
1517 if (r != bfd_reloc_ok)
1518 {
1519 bfd_boolean check_ok = TRUE;
1520 const char * msg = (const char *) NULL;
1521
1522 switch (r)
1523 {
1524 case bfd_reloc_overflow:
1525 check_ok = info->callbacks->reloc_overflow
1526 (info, (h ? &h->root : NULL), name, howto->name,
1527 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1528 break;
1529
1530 case bfd_reloc_undefined:
1531 /* We may have sent this message above. */
1532 if (! undefined_signalled)
1533 check_ok = info->callbacks->undefined_symbol
1534 (info, name, input_bfd, input_section, rel->r_offset,
1535 TRUE);
1536 undefined_signalled = TRUE;
1537 break;
1538
1539 case bfd_reloc_outofrange:
1540 msg = _("internal error: out of range error");
1541 break;
1542
1543 case bfd_reloc_notsupported:
1544 msg = _("internal error: unsupported relocation error");
1545 break;
1546
1547 case bfd_reloc_dangerous:
1548 msg = _("internal error: dangerous relocation");
1549 break;
1550
1551 default:
1552 msg = _("internal error: unknown error");
1553 break;
1554 }
1555
1556 if (msg)
1557 check_ok = info->callbacks->warning
1558 (info, msg, name, input_bfd, input_section, rel->r_offset);
1559
1560 if (! check_ok)
1561 return FALSE;
1562 }
1563 }
1564
1565 return TRUE;
1566 }
1567 \f
1568 /* Perform a single relocation. By default we use the standard BFD
1569 routines. A few relocs we have to do ourselves. */
1570
1571 static bfd_reloc_status_type
1572 mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section,
1573 bfd_byte *contents, bfd_vma r_offset,
1574 bfd_signed_vma r_addend, bfd_vma relocation,
1575 const char *symname, asection *symsec,
1576 char **error_message)
1577 {
1578 bfd_reloc_status_type r = bfd_reloc_ok;
1579 bfd_vma addr
1580 = (input_section->output_section->vma
1581 + input_section->output_offset
1582 + r_offset);
1583 bfd_signed_vma srel
1584 = (bfd_signed_vma) relocation + r_addend;
1585
1586 switch (howto->type)
1587 {
1588 /* All these are PC-relative. */
1589 case R_MMIX_PUSHJ_STUBBABLE:
1590 case R_MMIX_PUSHJ:
1591 case R_MMIX_CBRANCH:
1592 case R_MMIX_ADDR19:
1593 case R_MMIX_GETA:
1594 case R_MMIX_ADDR27:
1595 case R_MMIX_JMP:
1596 contents += r_offset;
1597
1598 srel -= (input_section->output_section->vma
1599 + input_section->output_offset
1600 + r_offset);
1601
1602 r = mmix_elf_perform_relocation (input_section, howto, contents,
1603 addr, srel, error_message);
1604 break;
1605
1606 case R_MMIX_BASE_PLUS_OFFSET:
1607 if (symsec == NULL)
1608 return bfd_reloc_undefined;
1609
1610 /* Check that we're not relocating against a register symbol. */
1611 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1612 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1613 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1614 MMIX_REG_SECTION_NAME) == 0)
1615 {
1616 /* Note: This is separated out into two messages in order
1617 to ease the translation into other languages. */
1618 if (symname == NULL || *symname == 0)
1619 (*_bfd_error_handler)
1620 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1621 bfd_get_filename (input_section->owner),
1622 bfd_get_section_name (symsec->owner, symsec));
1623 else
1624 (*_bfd_error_handler)
1625 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1626 bfd_get_filename (input_section->owner), symname,
1627 bfd_get_section_name (symsec->owner, symsec));
1628 return bfd_reloc_overflow;
1629 }
1630 goto do_mmix_reloc;
1631
1632 case R_MMIX_REG_OR_BYTE:
1633 case R_MMIX_REG:
1634 /* For now, we handle these alike. They must refer to an register
1635 symbol, which is either relative to the register section and in
1636 the range 0..255, or is in the register contents section with vma
1637 regno * 8. */
1638
1639 /* FIXME: A better way to check for reg contents section?
1640 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1641 if (symsec == NULL)
1642 return bfd_reloc_undefined;
1643
1644 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1645 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1646 {
1647 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1648 {
1649 /* The bfd_reloc_outofrange return value, though intuitively
1650 a better value, will not get us an error. */
1651 return bfd_reloc_overflow;
1652 }
1653 srel /= 8;
1654 }
1655 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1656 MMIX_REG_SECTION_NAME) == 0)
1657 {
1658 if (srel < 0 || srel > 255)
1659 /* The bfd_reloc_outofrange return value, though intuitively a
1660 better value, will not get us an error. */
1661 return bfd_reloc_overflow;
1662 }
1663 else
1664 {
1665 /* Note: This is separated out into two messages in order
1666 to ease the translation into other languages. */
1667 if (symname == NULL || *symname == 0)
1668 (*_bfd_error_handler)
1669 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1670 bfd_get_filename (input_section->owner),
1671 bfd_get_section_name (symsec->owner, symsec));
1672 else
1673 (*_bfd_error_handler)
1674 (_("%s: register relocation against non-register symbol: %s in %s"),
1675 bfd_get_filename (input_section->owner), symname,
1676 bfd_get_section_name (symsec->owner, symsec));
1677
1678 /* The bfd_reloc_outofrange return value, though intuitively a
1679 better value, will not get us an error. */
1680 return bfd_reloc_overflow;
1681 }
1682 do_mmix_reloc:
1683 contents += r_offset;
1684 r = mmix_elf_perform_relocation (input_section, howto, contents,
1685 addr, srel, error_message);
1686 break;
1687
1688 case R_MMIX_LOCAL:
1689 /* This isn't a real relocation, it's just an assertion that the
1690 final relocation value corresponds to a local register. We
1691 ignore the actual relocation; nothing is changed. */
1692 {
1693 asection *regsec
1694 = bfd_get_section_by_name (input_section->output_section->owner,
1695 MMIX_REG_CONTENTS_SECTION_NAME);
1696 bfd_vma first_global;
1697
1698 /* Check that this is an absolute value, or a reference to the
1699 register contents section or the register (symbol) section.
1700 Absolute numbers can get here as undefined section. Undefined
1701 symbols are signalled elsewhere, so there's no conflict in us
1702 accidentally handling it. */
1703 if (!bfd_is_abs_section (symsec)
1704 && !bfd_is_und_section (symsec)
1705 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1706 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1707 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1708 MMIX_REG_SECTION_NAME) != 0)
1709 {
1710 (*_bfd_error_handler)
1711 (_("%s: directive LOCAL valid only with a register or absolute value"),
1712 bfd_get_filename (input_section->owner));
1713
1714 return bfd_reloc_overflow;
1715 }
1716
1717 /* If we don't have a register contents section, then $255 is the
1718 first global register. */
1719 if (regsec == NULL)
1720 first_global = 255;
1721 else
1722 {
1723 first_global
1724 = bfd_get_section_vma (input_section->output_section->owner,
1725 regsec) / 8;
1726 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1727 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1728 {
1729 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1730 /* The bfd_reloc_outofrange return value, though
1731 intuitively a better value, will not get us an error. */
1732 return bfd_reloc_overflow;
1733 srel /= 8;
1734 }
1735 }
1736
1737 if ((bfd_vma) srel >= first_global)
1738 {
1739 /* FIXME: Better error message. */
1740 (*_bfd_error_handler)
1741 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1742 bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1743
1744 return bfd_reloc_overflow;
1745 }
1746 }
1747 r = bfd_reloc_ok;
1748 break;
1749
1750 default:
1751 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1752 contents, r_offset,
1753 relocation, r_addend);
1754 }
1755
1756 return r;
1757 }
1758 \f
1759 /* Return the section that should be marked against GC for a given
1760 relocation. */
1761
1762 static asection *
1763 mmix_elf_gc_mark_hook (asection *sec,
1764 struct bfd_link_info *info,
1765 Elf_Internal_Rela *rel,
1766 struct elf_link_hash_entry *h,
1767 Elf_Internal_Sym *sym)
1768 {
1769 if (h != NULL)
1770 switch (ELF64_R_TYPE (rel->r_info))
1771 {
1772 case R_MMIX_GNU_VTINHERIT:
1773 case R_MMIX_GNU_VTENTRY:
1774 return NULL;
1775 }
1776
1777 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1778 }
1779
1780 /* Update relocation info for a GC-excluded section. We could supposedly
1781 perform the allocation after GC, but there's no suitable hook between
1782 GC (or section merge) and the point when all input sections must be
1783 present. Better to waste some memory and (perhaps) a little time. */
1784
1785 static bfd_boolean
1786 mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
1787 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1788 asection *sec,
1789 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
1790 {
1791 struct bpo_reloc_section_info *bpodata
1792 = mmix_elf_section_data (sec)->bpo.reloc;
1793 asection *allocated_gregs_section;
1794
1795 /* If no bpodata here, we have nothing to do. */
1796 if (bpodata == NULL)
1797 return TRUE;
1798
1799 allocated_gregs_section = bpodata->bpo_greg_section;
1800
1801 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1802 -= bpodata->n_bpo_relocs_this_section;
1803
1804 return TRUE;
1805 }
1806 \f
1807 /* Sort register relocs to come before expanding relocs. */
1808
1809 static int
1810 mmix_elf_sort_relocs (const void * p1, const void * p2)
1811 {
1812 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1813 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1814 int r1_is_reg, r2_is_reg;
1815
1816 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1817 insns. */
1818 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1819 return 1;
1820 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1821 return -1;
1822
1823 r1_is_reg
1824 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1825 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1826 r2_is_reg
1827 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1828 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1829 if (r1_is_reg != r2_is_reg)
1830 return r2_is_reg - r1_is_reg;
1831
1832 /* Neither or both are register relocs. Then sort on full offset. */
1833 if (r1->r_offset > r2->r_offset)
1834 return 1;
1835 else if (r1->r_offset < r2->r_offset)
1836 return -1;
1837 return 0;
1838 }
1839
1840 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1841
1842 static bfd_boolean
1843 mmix_elf_check_common_relocs (bfd *abfd,
1844 struct bfd_link_info *info,
1845 asection *sec,
1846 const Elf_Internal_Rela *relocs)
1847 {
1848 bfd *bpo_greg_owner = NULL;
1849 asection *allocated_gregs_section = NULL;
1850 struct bpo_greg_section_info *gregdata = NULL;
1851 struct bpo_reloc_section_info *bpodata = NULL;
1852 const Elf_Internal_Rela *rel;
1853 const Elf_Internal_Rela *rel_end;
1854
1855 /* We currently have to abuse this COFF-specific member, since there's
1856 no target-machine-dedicated member. There's no alternative outside
1857 the bfd_link_info struct; we can't specialize a hash-table since
1858 they're different between ELF and mmo. */
1859 bpo_greg_owner = (bfd *) info->base_file;
1860
1861 rel_end = relocs + sec->reloc_count;
1862 for (rel = relocs; rel < rel_end; rel++)
1863 {
1864 switch (ELF64_R_TYPE (rel->r_info))
1865 {
1866 /* This relocation causes a GREG allocation. We need to count
1867 them, and we need to create a section for them, so we need an
1868 object to fake as the owner of that section. We can't use
1869 the ELF dynobj for this, since the ELF bits assume lots of
1870 DSO-related stuff if that member is non-NULL. */
1871 case R_MMIX_BASE_PLUS_OFFSET:
1872 /* We don't do anything with this reloc for a relocatable link. */
1873 if (bfd_link_relocatable (info))
1874 break;
1875
1876 if (bpo_greg_owner == NULL)
1877 {
1878 bpo_greg_owner = abfd;
1879 info->base_file = bpo_greg_owner;
1880 }
1881
1882 if (allocated_gregs_section == NULL)
1883 allocated_gregs_section
1884 = bfd_get_section_by_name (bpo_greg_owner,
1885 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1886
1887 if (allocated_gregs_section == NULL)
1888 {
1889 allocated_gregs_section
1890 = bfd_make_section_with_flags (bpo_greg_owner,
1891 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1892 (SEC_HAS_CONTENTS
1893 | SEC_IN_MEMORY
1894 | SEC_LINKER_CREATED));
1895 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1896 treated like any other section, and we'd get errors for
1897 address overlap with the text section. Let's set none of
1898 those flags, as that is what currently happens for usual
1899 GREG allocations, and that works. */
1900 if (allocated_gregs_section == NULL
1901 || !bfd_set_section_alignment (bpo_greg_owner,
1902 allocated_gregs_section,
1903 3))
1904 return FALSE;
1905
1906 gregdata = (struct bpo_greg_section_info *)
1907 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1908 if (gregdata == NULL)
1909 return FALSE;
1910 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1911 = gregdata;
1912 }
1913 else if (gregdata == NULL)
1914 gregdata
1915 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1916
1917 /* Get ourselves some auxiliary info for the BPO-relocs. */
1918 if (bpodata == NULL)
1919 {
1920 /* No use doing a separate iteration pass to find the upper
1921 limit - just use the number of relocs. */
1922 bpodata = (struct bpo_reloc_section_info *)
1923 bfd_alloc (bpo_greg_owner,
1924 sizeof (struct bpo_reloc_section_info)
1925 * (sec->reloc_count + 1));
1926 if (bpodata == NULL)
1927 return FALSE;
1928 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1929 bpodata->first_base_plus_offset_reloc
1930 = bpodata->bpo_index
1931 = gregdata->n_max_bpo_relocs;
1932 bpodata->bpo_greg_section
1933 = allocated_gregs_section;
1934 bpodata->n_bpo_relocs_this_section = 0;
1935 }
1936
1937 bpodata->n_bpo_relocs_this_section++;
1938 gregdata->n_max_bpo_relocs++;
1939
1940 /* We don't get another chance to set this before GC; we've not
1941 set up any hook that runs before GC. */
1942 gregdata->n_bpo_relocs
1943 = gregdata->n_max_bpo_relocs;
1944 break;
1945
1946 case R_MMIX_PUSHJ_STUBBABLE:
1947 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1948 break;
1949 }
1950 }
1951
1952 /* Allocate per-reloc stub storage and initialize it to the max stub
1953 size. */
1954 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1955 {
1956 size_t i;
1957
1958 mmix_elf_section_data (sec)->pjs.stub_size
1959 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1960 * sizeof (mmix_elf_section_data (sec)
1961 ->pjs.stub_size[0]));
1962 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1963 return FALSE;
1964
1965 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1966 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1967 }
1968
1969 return TRUE;
1970 }
1971
1972 /* Look through the relocs for a section during the first phase. */
1973
1974 static bfd_boolean
1975 mmix_elf_check_relocs (bfd *abfd,
1976 struct bfd_link_info *info,
1977 asection *sec,
1978 const Elf_Internal_Rela *relocs)
1979 {
1980 Elf_Internal_Shdr *symtab_hdr;
1981 struct elf_link_hash_entry **sym_hashes;
1982 const Elf_Internal_Rela *rel;
1983 const Elf_Internal_Rela *rel_end;
1984
1985 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1986 sym_hashes = elf_sym_hashes (abfd);
1987
1988 /* First we sort the relocs so that any register relocs come before
1989 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1990 qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1991 mmix_elf_sort_relocs);
1992
1993 /* Do the common part. */
1994 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
1995 return FALSE;
1996
1997 if (bfd_link_relocatable (info))
1998 return TRUE;
1999
2000 rel_end = relocs + sec->reloc_count;
2001 for (rel = relocs; rel < rel_end; rel++)
2002 {
2003 struct elf_link_hash_entry *h;
2004 unsigned long r_symndx;
2005
2006 r_symndx = ELF64_R_SYM (rel->r_info);
2007 if (r_symndx < symtab_hdr->sh_info)
2008 h = NULL;
2009 else
2010 {
2011 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2012 while (h->root.type == bfd_link_hash_indirect
2013 || h->root.type == bfd_link_hash_warning)
2014 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2015
2016 /* PR15323, ref flags aren't set for references in the same
2017 object. */
2018 h->root.non_ir_ref = 1;
2019 }
2020
2021 switch (ELF64_R_TYPE (rel->r_info))
2022 {
2023 /* This relocation describes the C++ object vtable hierarchy.
2024 Reconstruct it for later use during GC. */
2025 case R_MMIX_GNU_VTINHERIT:
2026 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2027 return FALSE;
2028 break;
2029
2030 /* This relocation describes which C++ vtable entries are actually
2031 used. Record for later use during GC. */
2032 case R_MMIX_GNU_VTENTRY:
2033 BFD_ASSERT (h != NULL);
2034 if (h != NULL
2035 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2036 return FALSE;
2037 break;
2038 }
2039 }
2040
2041 return TRUE;
2042 }
2043
2044 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2045 Copied from elf_link_add_object_symbols. */
2046
2047 bfd_boolean
2048 _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info)
2049 {
2050 asection *o;
2051
2052 for (o = abfd->sections; o != NULL; o = o->next)
2053 {
2054 Elf_Internal_Rela *internal_relocs;
2055 bfd_boolean ok;
2056
2057 if ((o->flags & SEC_RELOC) == 0
2058 || o->reloc_count == 0
2059 || ((info->strip == strip_all || info->strip == strip_debugger)
2060 && (o->flags & SEC_DEBUGGING) != 0)
2061 || bfd_is_abs_section (o->output_section))
2062 continue;
2063
2064 internal_relocs
2065 = _bfd_elf_link_read_relocs (abfd, o, NULL,
2066 (Elf_Internal_Rela *) NULL,
2067 info->keep_memory);
2068 if (internal_relocs == NULL)
2069 return FALSE;
2070
2071 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2072
2073 if (! info->keep_memory)
2074 free (internal_relocs);
2075
2076 if (! ok)
2077 return FALSE;
2078 }
2079
2080 return TRUE;
2081 }
2082 \f
2083 /* Change symbols relative to the reg contents section to instead be to
2084 the register section, and scale them down to correspond to the register
2085 number. */
2086
2087 static int
2088 mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2089 const char *name ATTRIBUTE_UNUSED,
2090 Elf_Internal_Sym *sym,
2091 asection *input_sec,
2092 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
2093 {
2094 if (input_sec != NULL
2095 && input_sec->name != NULL
2096 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2097 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2098 {
2099 sym->st_value /= 8;
2100 sym->st_shndx = SHN_REGISTER;
2101 }
2102
2103 return 1;
2104 }
2105
2106 /* We fake a register section that holds values that are register numbers.
2107 Having a SHN_REGISTER and register section translates better to other
2108 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2109 This section faking is based on a construct in elf32-mips.c. */
2110 static asection mmix_elf_reg_section;
2111 static asymbol mmix_elf_reg_section_symbol;
2112 static asymbol *mmix_elf_reg_section_symbol_ptr;
2113
2114 /* Handle the special section numbers that a symbol may use. */
2115
2116 void
2117 mmix_elf_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
2118 {
2119 elf_symbol_type *elfsym;
2120
2121 elfsym = (elf_symbol_type *) asym;
2122 switch (elfsym->internal_elf_sym.st_shndx)
2123 {
2124 case SHN_REGISTER:
2125 if (mmix_elf_reg_section.name == NULL)
2126 {
2127 /* Initialize the register section. */
2128 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2129 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2130 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2131 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2132 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2133 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2134 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2135 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2136 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2137 }
2138 asym->section = &mmix_elf_reg_section;
2139 break;
2140
2141 default:
2142 break;
2143 }
2144 }
2145
2146 /* Given a BFD section, try to locate the corresponding ELF section
2147 index. */
2148
2149 static bfd_boolean
2150 mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED,
2151 asection * sec,
2152 int * retval)
2153 {
2154 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2155 *retval = SHN_REGISTER;
2156 else
2157 return FALSE;
2158
2159 return TRUE;
2160 }
2161
2162 /* Hook called by the linker routine which adds symbols from an object
2163 file. We must handle the special SHN_REGISTER section number here.
2164
2165 We also check that we only have *one* each of the section-start
2166 symbols, since otherwise having two with the same value would cause
2167 them to be "merged", but with the contents serialized. */
2168
2169 static bfd_boolean
2170 mmix_elf_add_symbol_hook (bfd *abfd,
2171 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2172 Elf_Internal_Sym *sym,
2173 const char **namep ATTRIBUTE_UNUSED,
2174 flagword *flagsp ATTRIBUTE_UNUSED,
2175 asection **secp,
2176 bfd_vma *valp ATTRIBUTE_UNUSED)
2177 {
2178 if (sym->st_shndx == SHN_REGISTER)
2179 {
2180 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2181 (*secp)->flags |= SEC_LINKER_CREATED;
2182 }
2183 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2184 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
2185 {
2186 /* See if we have another one. */
2187 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2188 *namep,
2189 FALSE,
2190 FALSE,
2191 FALSE);
2192
2193 if (h != NULL && h->type != bfd_link_hash_undefined)
2194 {
2195 /* How do we get the asymbol (or really: the filename) from h?
2196 h->u.def.section->owner is NULL. */
2197 ((*_bfd_error_handler)
2198 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2199 bfd_get_filename (abfd), *namep,
2200 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2201 bfd_set_error (bfd_error_bad_value);
2202 return FALSE;
2203 }
2204 }
2205
2206 return TRUE;
2207 }
2208
2209 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2210
2211 static bfd_boolean
2212 mmix_elf_is_local_label_name (bfd *abfd, const char *name)
2213 {
2214 const char *colpos;
2215 int digits;
2216
2217 /* Also include the default local-label definition. */
2218 if (_bfd_elf_is_local_label_name (abfd, name))
2219 return TRUE;
2220
2221 if (*name != 'L')
2222 return FALSE;
2223
2224 /* If there's no ":", or more than one, it's not a local symbol. */
2225 colpos = strchr (name, ':');
2226 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2227 return FALSE;
2228
2229 /* Check that there are remaining characters and that they are digits. */
2230 if (colpos[1] == 0)
2231 return FALSE;
2232
2233 digits = strspn (colpos + 1, "0123456789");
2234 return digits != 0 && colpos[1 + digits] == 0;
2235 }
2236
2237 /* We get rid of the register section here. */
2238
2239 bfd_boolean
2240 mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info)
2241 {
2242 /* We never output a register section, though we create one for
2243 temporary measures. Check that nobody entered contents into it. */
2244 asection *reg_section;
2245
2246 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2247
2248 if (reg_section != NULL)
2249 {
2250 /* FIXME: Pass error state gracefully. */
2251 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2252 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2253
2254 /* Really remove the section, if it hasn't already been done. */
2255 if (!bfd_section_removed_from_list (abfd, reg_section))
2256 {
2257 bfd_section_list_remove (abfd, reg_section);
2258 --abfd->section_count;
2259 }
2260 }
2261
2262 if (! bfd_elf_final_link (abfd, info))
2263 return FALSE;
2264
2265 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2266 the regular linker machinery. We do it here, like other targets with
2267 special sections. */
2268 if (info->base_file != NULL)
2269 {
2270 asection *greg_section
2271 = bfd_get_section_by_name ((bfd *) info->base_file,
2272 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2273 if (!bfd_set_section_contents (abfd,
2274 greg_section->output_section,
2275 greg_section->contents,
2276 (file_ptr) greg_section->output_offset,
2277 greg_section->size))
2278 return FALSE;
2279 }
2280 return TRUE;
2281 }
2282
2283 /* We need to include the maximum size of PUSHJ-stubs in the initial
2284 section size. This is expected to shrink during linker relaxation. */
2285
2286 static void
2287 mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED,
2288 asection *sec,
2289 void *ptr)
2290 {
2291 struct bfd_link_info *info = ptr;
2292
2293 /* Make sure we only do this for section where we know we want this,
2294 otherwise we might end up resetting the size of COMMONs. */
2295 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2296 return;
2297
2298 sec->rawsize = sec->size;
2299 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2300 * MAX_PUSHJ_STUB_SIZE);
2301
2302 /* For use in relocatable link, we start with a max stubs size. See
2303 mmix_elf_relax_section. */
2304 if (bfd_link_relocatable (info) && sec->output_section)
2305 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2306 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2307 * MAX_PUSHJ_STUB_SIZE);
2308 }
2309
2310 /* Initialize stuff for the linker-generated GREGs to match
2311 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2312
2313 bfd_boolean
2314 _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2315 struct bfd_link_info *info)
2316 {
2317 asection *bpo_gregs_section;
2318 bfd *bpo_greg_owner;
2319 struct bpo_greg_section_info *gregdata;
2320 size_t n_gregs;
2321 bfd_vma gregs_size;
2322 size_t i;
2323 size_t *bpo_reloc_indexes;
2324 bfd *ibfd;
2325
2326 /* Set the initial size of sections. */
2327 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2328 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2329
2330 /* The bpo_greg_owner bfd is supposed to have been set by
2331 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2332 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2333 bpo_greg_owner = (bfd *) info->base_file;
2334 if (bpo_greg_owner == NULL)
2335 return TRUE;
2336
2337 bpo_gregs_section
2338 = bfd_get_section_by_name (bpo_greg_owner,
2339 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2340
2341 if (bpo_gregs_section == NULL)
2342 return TRUE;
2343
2344 /* We use the target-data handle in the ELF section data. */
2345 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2346 if (gregdata == NULL)
2347 return FALSE;
2348
2349 n_gregs = gregdata->n_bpo_relocs;
2350 gregdata->n_allocated_bpo_gregs = n_gregs;
2351
2352 /* When this reaches zero during relaxation, all entries have been
2353 filled in and the size of the linker gregs can be calculated. */
2354 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2355
2356 /* Set the zeroth-order estimate for the GREGs size. */
2357 gregs_size = n_gregs * 8;
2358
2359 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2360 return FALSE;
2361
2362 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2363 time. Note that we must use the max number ever noted for the array,
2364 since the index numbers were created before GC. */
2365 gregdata->reloc_request
2366 = bfd_zalloc (bpo_greg_owner,
2367 sizeof (struct bpo_reloc_request)
2368 * gregdata->n_max_bpo_relocs);
2369
2370 gregdata->bpo_reloc_indexes
2371 = bpo_reloc_indexes
2372 = bfd_alloc (bpo_greg_owner,
2373 gregdata->n_max_bpo_relocs
2374 * sizeof (size_t));
2375 if (bpo_reloc_indexes == NULL)
2376 return FALSE;
2377
2378 /* The default order is an identity mapping. */
2379 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2380 {
2381 bpo_reloc_indexes[i] = i;
2382 gregdata->reloc_request[i].bpo_reloc_no = i;
2383 }
2384
2385 return TRUE;
2386 }
2387 \f
2388 /* Fill in contents in the linker allocated gregs. Everything is
2389 calculated at this point; we just move the contents into place here. */
2390
2391 bfd_boolean
2392 _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2393 struct bfd_link_info *link_info)
2394 {
2395 asection *bpo_gregs_section;
2396 bfd *bpo_greg_owner;
2397 struct bpo_greg_section_info *gregdata;
2398 size_t n_gregs;
2399 size_t i, j;
2400 size_t lastreg;
2401 bfd_byte *contents;
2402
2403 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2404 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2405 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2406 bpo_greg_owner = (bfd *) link_info->base_file;
2407 if (bpo_greg_owner == NULL)
2408 return TRUE;
2409
2410 bpo_gregs_section
2411 = bfd_get_section_by_name (bpo_greg_owner,
2412 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2413
2414 /* This can't happen without DSO handling. When DSOs are handled
2415 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2416 section. */
2417 if (bpo_gregs_section == NULL)
2418 return TRUE;
2419
2420 /* We use the target-data handle in the ELF section data. */
2421
2422 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2423 if (gregdata == NULL)
2424 return FALSE;
2425
2426 n_gregs = gregdata->n_allocated_bpo_gregs;
2427
2428 bpo_gregs_section->contents
2429 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2430 if (contents == NULL)
2431 return FALSE;
2432
2433 /* Sanity check: If these numbers mismatch, some relocation has not been
2434 accounted for and the rest of gregdata is probably inconsistent.
2435 It's a bug, but it's more helpful to identify it than segfaulting
2436 below. */
2437 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2438 != gregdata->n_bpo_relocs)
2439 {
2440 (*_bfd_error_handler)
2441 (_("Internal inconsistency: remaining %u != max %u.\n\
2442 Please report this bug."),
2443 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2444 gregdata->n_bpo_relocs);
2445 return FALSE;
2446 }
2447
2448 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2449 if (gregdata->reloc_request[i].regindex != lastreg)
2450 {
2451 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2452 contents + j * 8);
2453 lastreg = gregdata->reloc_request[i].regindex;
2454 j++;
2455 }
2456
2457 return TRUE;
2458 }
2459
2460 /* Sort valid relocs to come before non-valid relocs, then on increasing
2461 value. */
2462
2463 static int
2464 bpo_reloc_request_sort_fn (const void * p1, const void * p2)
2465 {
2466 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2467 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2468
2469 /* Primary function is validity; non-valid relocs sorted after valid
2470 ones. */
2471 if (r1->valid != r2->valid)
2472 return r2->valid - r1->valid;
2473
2474 /* Then sort on value. Don't simplify and return just the difference of
2475 the values: the upper bits of the 64-bit value would be truncated on
2476 a host with 32-bit ints. */
2477 if (r1->value != r2->value)
2478 return r1->value > r2->value ? 1 : -1;
2479
2480 /* As a last re-sort, use the relocation number, so we get a stable
2481 sort. The *addresses* aren't stable since items are swapped during
2482 sorting. It depends on the qsort implementation if this actually
2483 happens. */
2484 return r1->bpo_reloc_no > r2->bpo_reloc_no
2485 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2486 }
2487
2488 /* For debug use only. Dumps the global register allocations resulting
2489 from base-plus-offset relocs. */
2490
2491 void
2492 mmix_dump_bpo_gregs (struct bfd_link_info *link_info,
2493 bfd_error_handler_type pf)
2494 {
2495 bfd *bpo_greg_owner;
2496 asection *bpo_gregs_section;
2497 struct bpo_greg_section_info *gregdata;
2498 unsigned int i;
2499
2500 if (link_info == NULL || link_info->base_file == NULL)
2501 return;
2502
2503 bpo_greg_owner = (bfd *) link_info->base_file;
2504
2505 bpo_gregs_section
2506 = bfd_get_section_by_name (bpo_greg_owner,
2507 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2508
2509 if (bpo_gregs_section == NULL)
2510 return;
2511
2512 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2513 if (gregdata == NULL)
2514 return;
2515
2516 if (pf == NULL)
2517 pf = _bfd_error_handler;
2518
2519 /* These format strings are not translated. They are for debug purposes
2520 only and never displayed to an end user. Should they escape, we
2521 surely want them in original. */
2522 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2523 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2524 gregdata->n_max_bpo_relocs,
2525 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2526 gregdata->n_allocated_bpo_gregs);
2527
2528 if (gregdata->reloc_request)
2529 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2530 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2531 i,
2532 (gregdata->bpo_reloc_indexes != NULL
2533 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2534 gregdata->reloc_request[i].bpo_reloc_no,
2535 gregdata->reloc_request[i].valid,
2536
2537 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2538 (unsigned long) gregdata->reloc_request[i].value,
2539 gregdata->reloc_request[i].regindex,
2540 gregdata->reloc_request[i].offset);
2541 }
2542
2543 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2544 when the last such reloc is done, an index-array is sorted according to
2545 the values and iterated over to produce register numbers (indexed by 0
2546 from the first allocated register number) and offsets for use in real
2547 relocation. (N.B.: Relocatable runs are handled, not just punted.)
2548
2549 PUSHJ stub accounting is also done here.
2550
2551 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2552
2553 static bfd_boolean
2554 mmix_elf_relax_section (bfd *abfd,
2555 asection *sec,
2556 struct bfd_link_info *link_info,
2557 bfd_boolean *again)
2558 {
2559 Elf_Internal_Shdr *symtab_hdr;
2560 Elf_Internal_Rela *internal_relocs;
2561 Elf_Internal_Rela *irel, *irelend;
2562 asection *bpo_gregs_section = NULL;
2563 struct bpo_greg_section_info *gregdata;
2564 struct bpo_reloc_section_info *bpodata
2565 = mmix_elf_section_data (sec)->bpo.reloc;
2566 /* The initialization is to quiet compiler warnings. The value is to
2567 spot a missing actual initialization. */
2568 size_t bpono = (size_t) -1;
2569 size_t pjsno = 0;
2570 Elf_Internal_Sym *isymbuf = NULL;
2571 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2572
2573 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2574
2575 /* Assume nothing changes. */
2576 *again = FALSE;
2577
2578 /* We don't have to do anything if this section does not have relocs, or
2579 if this is not a code section. */
2580 if ((sec->flags & SEC_RELOC) == 0
2581 || sec->reloc_count == 0
2582 || (sec->flags & SEC_CODE) == 0
2583 || (sec->flags & SEC_LINKER_CREATED) != 0
2584 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2585 then nothing to do. */
2586 || (bpodata == NULL
2587 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2588 return TRUE;
2589
2590 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2591
2592 if (bpodata != NULL)
2593 {
2594 bpo_gregs_section = bpodata->bpo_greg_section;
2595 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2596 bpono = bpodata->first_base_plus_offset_reloc;
2597 }
2598 else
2599 gregdata = NULL;
2600
2601 /* Get a copy of the native relocations. */
2602 internal_relocs
2603 = _bfd_elf_link_read_relocs (abfd, sec, NULL,
2604 (Elf_Internal_Rela *) NULL,
2605 link_info->keep_memory);
2606 if (internal_relocs == NULL)
2607 goto error_return;
2608
2609 /* Walk through them looking for relaxing opportunities. */
2610 irelend = internal_relocs + sec->reloc_count;
2611 for (irel = internal_relocs; irel < irelend; irel++)
2612 {
2613 bfd_vma symval;
2614 struct elf_link_hash_entry *h = NULL;
2615
2616 /* We only process two relocs. */
2617 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2618 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2619 continue;
2620
2621 /* We process relocs in a distinctly different way when this is a
2622 relocatable link (for one, we don't look at symbols), so we avoid
2623 mixing its code with that for the "normal" relaxation. */
2624 if (bfd_link_relocatable (link_info))
2625 {
2626 /* The only transformation in a relocatable link is to generate
2627 a full stub at the location of the stub calculated for the
2628 input section, if the relocated stub location, the end of the
2629 output section plus earlier stubs, cannot be reached. Thus
2630 relocatable linking can only lead to worse code, but it still
2631 works. */
2632 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2633 {
2634 /* If we can reach the end of the output-section and beyond
2635 any current stubs, then we don't need a stub for this
2636 reloc. The relaxed order of output stub allocation may
2637 not exactly match the straightforward order, so we always
2638 assume presence of output stubs, which will allow
2639 relaxation only on relocations indifferent to the
2640 presence of output stub allocations for other relocations
2641 and thus the order of output stub allocation. */
2642 if (bfd_check_overflow (complain_overflow_signed,
2643 19,
2644 0,
2645 bfd_arch_bits_per_address (abfd),
2646 /* Output-stub location. */
2647 sec->output_section->rawsize
2648 + (mmix_elf_section_data (sec
2649 ->output_section)
2650 ->pjs.stubs_size_sum)
2651 /* Location of this PUSHJ reloc. */
2652 - (sec->output_offset + irel->r_offset)
2653 /* Don't count *this* stub twice. */
2654 - (mmix_elf_section_data (sec)
2655 ->pjs.stub_size[pjsno]
2656 + MAX_PUSHJ_STUB_SIZE))
2657 == bfd_reloc_ok)
2658 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2659
2660 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2661 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2662
2663 pjsno++;
2664 }
2665
2666 continue;
2667 }
2668
2669 /* Get the value of the symbol referred to by the reloc. */
2670 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2671 {
2672 /* A local symbol. */
2673 Elf_Internal_Sym *isym;
2674 asection *sym_sec;
2675
2676 /* Read this BFD's local symbols if we haven't already. */
2677 if (isymbuf == NULL)
2678 {
2679 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2680 if (isymbuf == NULL)
2681 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2682 symtab_hdr->sh_info, 0,
2683 NULL, NULL, NULL);
2684 if (isymbuf == 0)
2685 goto error_return;
2686 }
2687
2688 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2689 if (isym->st_shndx == SHN_UNDEF)
2690 sym_sec = bfd_und_section_ptr;
2691 else if (isym->st_shndx == SHN_ABS)
2692 sym_sec = bfd_abs_section_ptr;
2693 else if (isym->st_shndx == SHN_COMMON)
2694 sym_sec = bfd_com_section_ptr;
2695 else
2696 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2697 symval = (isym->st_value
2698 + sym_sec->output_section->vma
2699 + sym_sec->output_offset);
2700 }
2701 else
2702 {
2703 unsigned long indx;
2704
2705 /* An external symbol. */
2706 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2707 h = elf_sym_hashes (abfd)[indx];
2708 BFD_ASSERT (h != NULL);
2709 if (h->root.type != bfd_link_hash_defined
2710 && h->root.type != bfd_link_hash_defweak)
2711 {
2712 /* This appears to be a reference to an undefined symbol. Just
2713 ignore it--it will be caught by the regular reloc processing.
2714 We need to keep BPO reloc accounting consistent, though
2715 else we'll abort instead of emitting an error message. */
2716 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2717 && gregdata != NULL)
2718 {
2719 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2720 bpono++;
2721 }
2722 continue;
2723 }
2724
2725 symval = (h->root.u.def.value
2726 + h->root.u.def.section->output_section->vma
2727 + h->root.u.def.section->output_offset);
2728 }
2729
2730 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2731 {
2732 bfd_vma value = symval + irel->r_addend;
2733 bfd_vma dot
2734 = (sec->output_section->vma
2735 + sec->output_offset
2736 + irel->r_offset);
2737 bfd_vma stubaddr
2738 = (sec->output_section->vma
2739 + sec->output_offset
2740 + size
2741 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2742
2743 if ((value & 3) == 0
2744 && bfd_check_overflow (complain_overflow_signed,
2745 19,
2746 0,
2747 bfd_arch_bits_per_address (abfd),
2748 value - dot
2749 - (value > dot
2750 ? mmix_elf_section_data (sec)
2751 ->pjs.stub_size[pjsno]
2752 : 0))
2753 == bfd_reloc_ok)
2754 /* If the reloc fits, no stub is needed. */
2755 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2756 else
2757 /* Maybe we can get away with just a JMP insn? */
2758 if ((value & 3) == 0
2759 && bfd_check_overflow (complain_overflow_signed,
2760 27,
2761 0,
2762 bfd_arch_bits_per_address (abfd),
2763 value - stubaddr
2764 - (value > dot
2765 ? mmix_elf_section_data (sec)
2766 ->pjs.stub_size[pjsno] - 4
2767 : 0))
2768 == bfd_reloc_ok)
2769 /* Yep, account for a stub consisting of a single JMP insn. */
2770 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2771 else
2772 /* Nope, go for the full insn stub. It doesn't seem useful to
2773 emit the intermediate sizes; those will only be useful for
2774 a >64M program assuming contiguous code. */
2775 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2776 = MAX_PUSHJ_STUB_SIZE;
2777
2778 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2779 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2780 pjsno++;
2781 continue;
2782 }
2783
2784 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2785
2786 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2787 = symval + irel->r_addend;
2788 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2789 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2790 }
2791
2792 /* Check if that was the last BPO-reloc. If so, sort the values and
2793 calculate how many registers we need to cover them. Set the size of
2794 the linker gregs, and if the number of registers changed, indicate
2795 that we need to relax some more because we have more work to do. */
2796 if (gregdata != NULL
2797 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2798 {
2799 size_t i;
2800 bfd_vma prev_base;
2801 size_t regindex;
2802
2803 /* First, reset the remaining relocs for the next round. */
2804 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2805 = gregdata->n_bpo_relocs;
2806
2807 qsort (gregdata->reloc_request,
2808 gregdata->n_max_bpo_relocs,
2809 sizeof (struct bpo_reloc_request),
2810 bpo_reloc_request_sort_fn);
2811
2812 /* Recalculate indexes. When we find a change (however unlikely
2813 after the initial iteration), we know we need to relax again,
2814 since items in the GREG-array are sorted by increasing value and
2815 stored in the relaxation phase. */
2816 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2817 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2818 != i)
2819 {
2820 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2821 = i;
2822 *again = TRUE;
2823 }
2824
2825 /* Allocate register numbers (indexing from 0). Stop at the first
2826 non-valid reloc. */
2827 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2828 i < gregdata->n_bpo_relocs;
2829 i++)
2830 {
2831 if (gregdata->reloc_request[i].value > prev_base + 255)
2832 {
2833 regindex++;
2834 prev_base = gregdata->reloc_request[i].value;
2835 }
2836 gregdata->reloc_request[i].regindex = regindex;
2837 gregdata->reloc_request[i].offset
2838 = gregdata->reloc_request[i].value - prev_base;
2839 }
2840
2841 /* If it's not the same as the last time, we need to relax again,
2842 because the size of the section has changed. I'm not sure we
2843 actually need to do any adjustments since the shrinking happens
2844 at the start of this section, but better safe than sorry. */
2845 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2846 {
2847 gregdata->n_allocated_bpo_gregs = regindex + 1;
2848 *again = TRUE;
2849 }
2850
2851 bpo_gregs_section->size = (regindex + 1) * 8;
2852 }
2853
2854 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2855 {
2856 if (! link_info->keep_memory)
2857 free (isymbuf);
2858 else
2859 {
2860 /* Cache the symbols for elf_link_input_bfd. */
2861 symtab_hdr->contents = (unsigned char *) isymbuf;
2862 }
2863 }
2864
2865 if (internal_relocs != NULL
2866 && elf_section_data (sec)->relocs != internal_relocs)
2867 free (internal_relocs);
2868
2869 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2870 abort ();
2871
2872 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2873 {
2874 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2875 *again = TRUE;
2876 }
2877
2878 return TRUE;
2879
2880 error_return:
2881 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2882 free (isymbuf);
2883 if (internal_relocs != NULL
2884 && elf_section_data (sec)->relocs != internal_relocs)
2885 free (internal_relocs);
2886 return FALSE;
2887 }
2888 \f
2889 #define ELF_ARCH bfd_arch_mmix
2890 #define ELF_MACHINE_CODE EM_MMIX
2891
2892 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2893 However, that's too much for something somewhere in the linker part of
2894 BFD; perhaps the start-address has to be a non-zero multiple of this
2895 number, or larger than this number. The symptom is that the linker
2896 complains: "warning: allocated section `.text' not in segment". We
2897 settle for 64k; the page-size used in examples is 8k.
2898 #define ELF_MAXPAGESIZE 0x10000
2899
2900 Unfortunately, this causes excessive padding in the supposedly small
2901 for-education programs that are the expected usage (where people would
2902 inspect output). We stick to 256 bytes just to have *some* default
2903 alignment. */
2904 #define ELF_MAXPAGESIZE 0x100
2905
2906 #define TARGET_BIG_SYM mmix_elf64_vec
2907 #define TARGET_BIG_NAME "elf64-mmix"
2908
2909 #define elf_info_to_howto_rel NULL
2910 #define elf_info_to_howto mmix_info_to_howto_rela
2911 #define elf_backend_relocate_section mmix_elf_relocate_section
2912 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2913 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2914
2915 #define elf_backend_link_output_symbol_hook \
2916 mmix_elf_link_output_symbol_hook
2917 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2918
2919 #define elf_backend_check_relocs mmix_elf_check_relocs
2920 #define elf_backend_symbol_processing mmix_elf_symbol_processing
2921 #define elf_backend_omit_section_dynsym \
2922 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2923
2924 #define bfd_elf64_bfd_is_local_label_name \
2925 mmix_elf_is_local_label_name
2926
2927 #define elf_backend_may_use_rel_p 0
2928 #define elf_backend_may_use_rela_p 1
2929 #define elf_backend_default_use_rela_p 1
2930
2931 #define elf_backend_can_gc_sections 1
2932 #define elf_backend_section_from_bfd_section \
2933 mmix_elf_section_from_bfd_section
2934
2935 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2936 #define bfd_elf64_bfd_final_link mmix_elf_final_link
2937 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2938
2939 #include "elf64-target.h"
This page took 0.089888 seconds and 4 git commands to generate.