2f804dbe6e51f550794b5c9815b45864746ce9e1
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
37
38 struct elf_info_failed
39 {
40 struct bfd_link_info *info;
41 bfd_boolean failed;
42 };
43
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
46
47 struct elf_find_verdep_info
48 {
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
52 unsigned int vers;
53 /* Whether we had a failure. */
54 bfd_boolean failed;
55 };
56
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
59
60 asection *
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
63 bfd_boolean discard)
64 {
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
67 {
68 struct elf_link_hash_entry *h;
69
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
71
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
75
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
80 else
81 return NULL;
82 }
83 else
84 {
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
88 asection *isec;
89 Elf_Internal_Sym *isym;
90
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
94 if (isec != NULL
95 && discard ? discarded_section (isec) : 1)
96 return isec;
97 }
98 return NULL;
99 }
100
101 /* Define a symbol in a dynamic linkage section. */
102
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
106 asection *sec,
107 const char *name)
108 {
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
112
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
114 if (h != NULL)
115 {
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
121 bh = &h->root;
122 }
123 else
124 bh = NULL;
125
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
129 &bh))
130 return NULL;
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
133 h->def_regular = 1;
134 h->non_elf = 0;
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
139
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
141 return h;
142 }
143
144 bfd_boolean
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
146 {
147 flagword flags;
148 asection *s;
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
152
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
155 return TRUE;
156
157 flags = bed->dynamic_sec_flags;
158
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
163 | SEC_READONLY));
164 if (s == NULL
165 || !bfd_set_section_alignment (s, bed->s->log_file_align))
166 return FALSE;
167 htab->srelgot = s;
168
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
170 if (s == NULL
171 || !bfd_set_section_alignment (s, bed->s->log_file_align))
172 return FALSE;
173 htab->sgot = s;
174
175 if (bed->want_got_plt)
176 {
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
178 if (s == NULL
179 || !bfd_set_section_alignment (s, bed->s->log_file_align))
180 return FALSE;
181 htab->sgotplt = s;
182 }
183
184 /* The first bit of the global offset table is the header. */
185 s->size += bed->got_header_size;
186
187 if (bed->want_got_sym)
188 {
189 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
190 (or .got.plt) section. We don't do this in the linker script
191 because we don't want to define the symbol if we are not creating
192 a global offset table. */
193 h = _bfd_elf_define_linkage_sym (abfd, info, s,
194 "_GLOBAL_OFFSET_TABLE_");
195 elf_hash_table (info)->hgot = h;
196 if (h == NULL)
197 return FALSE;
198 }
199
200 return TRUE;
201 }
202 \f
203 /* Create a strtab to hold the dynamic symbol names. */
204 static bfd_boolean
205 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
206 {
207 struct elf_link_hash_table *hash_table;
208
209 hash_table = elf_hash_table (info);
210 if (hash_table->dynobj == NULL)
211 {
212 /* We may not set dynobj, an input file holding linker created
213 dynamic sections to abfd, which may be a dynamic object with
214 its own dynamic sections. We need to find a normal input file
215 to hold linker created sections if possible. */
216 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
217 {
218 bfd *ibfd;
219 asection *s;
220 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
221 if ((ibfd->flags
222 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
223 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
224 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
225 && !((s = ibfd->sections) != NULL
226 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
227 {
228 abfd = ibfd;
229 break;
230 }
231 }
232 hash_table->dynobj = abfd;
233 }
234
235 if (hash_table->dynstr == NULL)
236 {
237 hash_table->dynstr = _bfd_elf_strtab_init ();
238 if (hash_table->dynstr == NULL)
239 return FALSE;
240 }
241 return TRUE;
242 }
243
244 /* Create some sections which will be filled in with dynamic linking
245 information. ABFD is an input file which requires dynamic sections
246 to be created. The dynamic sections take up virtual memory space
247 when the final executable is run, so we need to create them before
248 addresses are assigned to the output sections. We work out the
249 actual contents and size of these sections later. */
250
251 bfd_boolean
252 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
253 {
254 flagword flags;
255 asection *s;
256 const struct elf_backend_data *bed;
257 struct elf_link_hash_entry *h;
258
259 if (! is_elf_hash_table (info->hash))
260 return FALSE;
261
262 if (elf_hash_table (info)->dynamic_sections_created)
263 return TRUE;
264
265 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
266 return FALSE;
267
268 abfd = elf_hash_table (info)->dynobj;
269 bed = get_elf_backend_data (abfd);
270
271 flags = bed->dynamic_sec_flags;
272
273 /* A dynamically linked executable has a .interp section, but a
274 shared library does not. */
275 if (bfd_link_executable (info) && !info->nointerp)
276 {
277 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
278 flags | SEC_READONLY);
279 if (s == NULL)
280 return FALSE;
281 }
282
283 /* Create sections to hold version informations. These are removed
284 if they are not needed. */
285 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
286 flags | SEC_READONLY);
287 if (s == NULL
288 || !bfd_set_section_alignment (s, bed->s->log_file_align))
289 return FALSE;
290
291 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
292 flags | SEC_READONLY);
293 if (s == NULL
294 || !bfd_set_section_alignment (s, 1))
295 return FALSE;
296
297 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
298 flags | SEC_READONLY);
299 if (s == NULL
300 || !bfd_set_section_alignment (s, bed->s->log_file_align))
301 return FALSE;
302
303 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
304 flags | SEC_READONLY);
305 if (s == NULL
306 || !bfd_set_section_alignment (s, bed->s->log_file_align))
307 return FALSE;
308 elf_hash_table (info)->dynsym = s;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
311 flags | SEC_READONLY);
312 if (s == NULL)
313 return FALSE;
314
315 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
316 if (s == NULL
317 || !bfd_set_section_alignment (s, bed->s->log_file_align))
318 return FALSE;
319
320 /* The special symbol _DYNAMIC is always set to the start of the
321 .dynamic section. We could set _DYNAMIC in a linker script, but we
322 only want to define it if we are, in fact, creating a .dynamic
323 section. We don't want to define it if there is no .dynamic
324 section, since on some ELF platforms the start up code examines it
325 to decide how to initialize the process. */
326 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
327 elf_hash_table (info)->hdynamic = h;
328 if (h == NULL)
329 return FALSE;
330
331 if (info->emit_hash)
332 {
333 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
334 flags | SEC_READONLY);
335 if (s == NULL
336 || !bfd_set_section_alignment (s, bed->s->log_file_align))
337 return FALSE;
338 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
339 }
340
341 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
342 {
343 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
344 flags | SEC_READONLY);
345 if (s == NULL
346 || !bfd_set_section_alignment (s, bed->s->log_file_align))
347 return FALSE;
348 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
349 4 32-bit words followed by variable count of 64-bit words, then
350 variable count of 32-bit words. */
351 if (bed->s->arch_size == 64)
352 elf_section_data (s)->this_hdr.sh_entsize = 0;
353 else
354 elf_section_data (s)->this_hdr.sh_entsize = 4;
355 }
356
357 /* Let the backend create the rest of the sections. This lets the
358 backend set the right flags. The backend will normally create
359 the .got and .plt sections. */
360 if (bed->elf_backend_create_dynamic_sections == NULL
361 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
362 return FALSE;
363
364 elf_hash_table (info)->dynamic_sections_created = TRUE;
365
366 return TRUE;
367 }
368
369 /* Create dynamic sections when linking against a dynamic object. */
370
371 bfd_boolean
372 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
373 {
374 flagword flags, pltflags;
375 struct elf_link_hash_entry *h;
376 asection *s;
377 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
378 struct elf_link_hash_table *htab = elf_hash_table (info);
379
380 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
381 .rel[a].bss sections. */
382 flags = bed->dynamic_sec_flags;
383
384 pltflags = flags;
385 if (bed->plt_not_loaded)
386 /* We do not clear SEC_ALLOC here because we still want the OS to
387 allocate space for the section; it's just that there's nothing
388 to read in from the object file. */
389 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
390 else
391 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
392 if (bed->plt_readonly)
393 pltflags |= SEC_READONLY;
394
395 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
396 if (s == NULL
397 || !bfd_set_section_alignment (s, bed->plt_alignment))
398 return FALSE;
399 htab->splt = s;
400
401 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
402 .plt section. */
403 if (bed->want_plt_sym)
404 {
405 h = _bfd_elf_define_linkage_sym (abfd, info, s,
406 "_PROCEDURE_LINKAGE_TABLE_");
407 elf_hash_table (info)->hplt = h;
408 if (h == NULL)
409 return FALSE;
410 }
411
412 s = bfd_make_section_anyway_with_flags (abfd,
413 (bed->rela_plts_and_copies_p
414 ? ".rela.plt" : ".rel.plt"),
415 flags | SEC_READONLY);
416 if (s == NULL
417 || !bfd_set_section_alignment (s, bed->s->log_file_align))
418 return FALSE;
419 htab->srelplt = s;
420
421 if (! _bfd_elf_create_got_section (abfd, info))
422 return FALSE;
423
424 if (bed->want_dynbss)
425 {
426 /* The .dynbss section is a place to put symbols which are defined
427 by dynamic objects, are referenced by regular objects, and are
428 not functions. We must allocate space for them in the process
429 image and use a R_*_COPY reloc to tell the dynamic linker to
430 initialize them at run time. The linker script puts the .dynbss
431 section into the .bss section of the final image. */
432 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
433 SEC_ALLOC | SEC_LINKER_CREATED);
434 if (s == NULL)
435 return FALSE;
436 htab->sdynbss = s;
437
438 if (bed->want_dynrelro)
439 {
440 /* Similarly, but for symbols that were originally in read-only
441 sections. This section doesn't really need to have contents,
442 but make it like other .data.rel.ro sections. */
443 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
444 flags);
445 if (s == NULL)
446 return FALSE;
447 htab->sdynrelro = s;
448 }
449
450 /* The .rel[a].bss section holds copy relocs. This section is not
451 normally needed. We need to create it here, though, so that the
452 linker will map it to an output section. We can't just create it
453 only if we need it, because we will not know whether we need it
454 until we have seen all the input files, and the first time the
455 main linker code calls BFD after examining all the input files
456 (size_dynamic_sections) the input sections have already been
457 mapped to the output sections. If the section turns out not to
458 be needed, we can discard it later. We will never need this
459 section when generating a shared object, since they do not use
460 copy relocs. */
461 if (bfd_link_executable (info))
462 {
463 s = bfd_make_section_anyway_with_flags (abfd,
464 (bed->rela_plts_and_copies_p
465 ? ".rela.bss" : ".rel.bss"),
466 flags | SEC_READONLY);
467 if (s == NULL
468 || !bfd_set_section_alignment (s, bed->s->log_file_align))
469 return FALSE;
470 htab->srelbss = s;
471
472 if (bed->want_dynrelro)
473 {
474 s = (bfd_make_section_anyway_with_flags
475 (abfd, (bed->rela_plts_and_copies_p
476 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
477 flags | SEC_READONLY));
478 if (s == NULL
479 || !bfd_set_section_alignment (s, bed->s->log_file_align))
480 return FALSE;
481 htab->sreldynrelro = s;
482 }
483 }
484 }
485
486 return TRUE;
487 }
488 \f
489 /* Record a new dynamic symbol. We record the dynamic symbols as we
490 read the input files, since we need to have a list of all of them
491 before we can determine the final sizes of the output sections.
492 Note that we may actually call this function even though we are not
493 going to output any dynamic symbols; in some cases we know that a
494 symbol should be in the dynamic symbol table, but only if there is
495 one. */
496
497 bfd_boolean
498 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
499 struct elf_link_hash_entry *h)
500 {
501 if (h->dynindx == -1)
502 {
503 struct elf_strtab_hash *dynstr;
504 char *p;
505 const char *name;
506 size_t indx;
507
508 /* XXX: The ABI draft says the linker must turn hidden and
509 internal symbols into STB_LOCAL symbols when producing the
510 DSO. However, if ld.so honors st_other in the dynamic table,
511 this would not be necessary. */
512 switch (ELF_ST_VISIBILITY (h->other))
513 {
514 case STV_INTERNAL:
515 case STV_HIDDEN:
516 if (h->root.type != bfd_link_hash_undefined
517 && h->root.type != bfd_link_hash_undefweak)
518 {
519 h->forced_local = 1;
520 if (!elf_hash_table (info)->is_relocatable_executable)
521 return TRUE;
522 }
523
524 default:
525 break;
526 }
527
528 h->dynindx = elf_hash_table (info)->dynsymcount;
529 ++elf_hash_table (info)->dynsymcount;
530
531 dynstr = elf_hash_table (info)->dynstr;
532 if (dynstr == NULL)
533 {
534 /* Create a strtab to hold the dynamic symbol names. */
535 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
536 if (dynstr == NULL)
537 return FALSE;
538 }
539
540 /* We don't put any version information in the dynamic string
541 table. */
542 name = h->root.root.string;
543 p = strchr (name, ELF_VER_CHR);
544 if (p != NULL)
545 /* We know that the p points into writable memory. In fact,
546 there are only a few symbols that have read-only names, being
547 those like _GLOBAL_OFFSET_TABLE_ that are created specially
548 by the backends. Most symbols will have names pointing into
549 an ELF string table read from a file, or to objalloc memory. */
550 *p = 0;
551
552 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
553
554 if (p != NULL)
555 *p = ELF_VER_CHR;
556
557 if (indx == (size_t) -1)
558 return FALSE;
559 h->dynstr_index = indx;
560 }
561
562 return TRUE;
563 }
564 \f
565 /* Mark a symbol dynamic. */
566
567 static void
568 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
569 struct elf_link_hash_entry *h,
570 Elf_Internal_Sym *sym)
571 {
572 struct bfd_elf_dynamic_list *d = info->dynamic_list;
573
574 /* It may be called more than once on the same H. */
575 if(h->dynamic || bfd_link_relocatable (info))
576 return;
577
578 if ((info->dynamic_data
579 && (h->type == STT_OBJECT
580 || h->type == STT_COMMON
581 || (sym != NULL
582 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
583 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
584 || (d != NULL
585 && h->non_elf
586 && (*d->match) (&d->head, NULL, h->root.root.string)))
587 {
588 h->dynamic = 1;
589 /* NB: If a symbol is made dynamic by --dynamic-list, it has
590 non-IR reference. */
591 h->root.non_ir_ref_dynamic = 1;
592 }
593 }
594
595 /* Record an assignment to a symbol made by a linker script. We need
596 this in case some dynamic object refers to this symbol. */
597
598 bfd_boolean
599 bfd_elf_record_link_assignment (bfd *output_bfd,
600 struct bfd_link_info *info,
601 const char *name,
602 bfd_boolean provide,
603 bfd_boolean hidden)
604 {
605 struct elf_link_hash_entry *h, *hv;
606 struct elf_link_hash_table *htab;
607 const struct elf_backend_data *bed;
608
609 if (!is_elf_hash_table (info->hash))
610 return TRUE;
611
612 htab = elf_hash_table (info);
613 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
614 if (h == NULL)
615 return provide;
616
617 if (h->root.type == bfd_link_hash_warning)
618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
619
620 if (h->versioned == unknown)
621 {
622 /* Set versioned if symbol version is unknown. */
623 char *version = strrchr (name, ELF_VER_CHR);
624 if (version)
625 {
626 if (version > name && version[-1] != ELF_VER_CHR)
627 h->versioned = versioned_hidden;
628 else
629 h->versioned = versioned;
630 }
631 }
632
633 /* Symbols defined in a linker script but not referenced anywhere
634 else will have non_elf set. */
635 if (h->non_elf)
636 {
637 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
638 h->non_elf = 0;
639 }
640
641 switch (h->root.type)
642 {
643 case bfd_link_hash_defined:
644 case bfd_link_hash_defweak:
645 case bfd_link_hash_common:
646 break;
647 case bfd_link_hash_undefweak:
648 case bfd_link_hash_undefined:
649 /* Since we're defining the symbol, don't let it seem to have not
650 been defined. record_dynamic_symbol and size_dynamic_sections
651 may depend on this. */
652 h->root.type = bfd_link_hash_new;
653 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
654 bfd_link_repair_undef_list (&htab->root);
655 break;
656 case bfd_link_hash_new:
657 break;
658 case bfd_link_hash_indirect:
659 /* We had a versioned symbol in a dynamic library. We make the
660 the versioned symbol point to this one. */
661 bed = get_elf_backend_data (output_bfd);
662 hv = h;
663 while (hv->root.type == bfd_link_hash_indirect
664 || hv->root.type == bfd_link_hash_warning)
665 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
666 /* We don't need to update h->root.u since linker will set them
667 later. */
668 h->root.type = bfd_link_hash_undefined;
669 hv->root.type = bfd_link_hash_indirect;
670 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
671 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
672 break;
673 default:
674 BFD_FAIL ();
675 return FALSE;
676 }
677
678 /* If this symbol is being provided by the linker script, and it is
679 currently defined by a dynamic object, but not by a regular
680 object, then mark it as undefined so that the generic linker will
681 force the correct value. */
682 if (provide
683 && h->def_dynamic
684 && !h->def_regular)
685 h->root.type = bfd_link_hash_undefined;
686
687 /* If this symbol is currently defined by a dynamic object, but not
688 by a regular object, then clear out any version information because
689 the symbol will not be associated with the dynamic object any
690 more. */
691 if (h->def_dynamic && !h->def_regular)
692 h->verinfo.verdef = NULL;
693
694 /* Make sure this symbol is not garbage collected. */
695 h->mark = 1;
696
697 h->def_regular = 1;
698
699 if (hidden)
700 {
701 bed = get_elf_backend_data (output_bfd);
702 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
703 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
704 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
705 }
706
707 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
708 and executables. */
709 if (!bfd_link_relocatable (info)
710 && h->dynindx != -1
711 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
712 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
713 h->forced_local = 1;
714
715 if ((h->def_dynamic
716 || h->ref_dynamic
717 || bfd_link_dll (info)
718 || elf_hash_table (info)->is_relocatable_executable)
719 && !h->forced_local
720 && h->dynindx == -1)
721 {
722 if (! bfd_elf_link_record_dynamic_symbol (info, h))
723 return FALSE;
724
725 /* If this is a weak defined symbol, and we know a corresponding
726 real symbol from the same dynamic object, make sure the real
727 symbol is also made into a dynamic symbol. */
728 if (h->is_weakalias)
729 {
730 struct elf_link_hash_entry *def = weakdef (h);
731
732 if (def->dynindx == -1
733 && !bfd_elf_link_record_dynamic_symbol (info, def))
734 return FALSE;
735 }
736 }
737
738 return TRUE;
739 }
740
741 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
742 success, and 2 on a failure caused by attempting to record a symbol
743 in a discarded section, eg. a discarded link-once section symbol. */
744
745 int
746 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
747 bfd *input_bfd,
748 long input_indx)
749 {
750 bfd_size_type amt;
751 struct elf_link_local_dynamic_entry *entry;
752 struct elf_link_hash_table *eht;
753 struct elf_strtab_hash *dynstr;
754 size_t dynstr_index;
755 char *name;
756 Elf_External_Sym_Shndx eshndx;
757 char esym[sizeof (Elf64_External_Sym)];
758
759 if (! is_elf_hash_table (info->hash))
760 return 0;
761
762 /* See if the entry exists already. */
763 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
764 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
765 return 1;
766
767 amt = sizeof (*entry);
768 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
769 if (entry == NULL)
770 return 0;
771
772 /* Go find the symbol, so that we can find it's name. */
773 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
774 1, input_indx, &entry->isym, esym, &eshndx))
775 {
776 bfd_release (input_bfd, entry);
777 return 0;
778 }
779
780 if (entry->isym.st_shndx != SHN_UNDEF
781 && entry->isym.st_shndx < SHN_LORESERVE)
782 {
783 asection *s;
784
785 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
786 if (s == NULL || bfd_is_abs_section (s->output_section))
787 {
788 /* We can still bfd_release here as nothing has done another
789 bfd_alloc. We can't do this later in this function. */
790 bfd_release (input_bfd, entry);
791 return 2;
792 }
793 }
794
795 name = (bfd_elf_string_from_elf_section
796 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
797 entry->isym.st_name));
798
799 dynstr = elf_hash_table (info)->dynstr;
800 if (dynstr == NULL)
801 {
802 /* Create a strtab to hold the dynamic symbol names. */
803 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
804 if (dynstr == NULL)
805 return 0;
806 }
807
808 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
809 if (dynstr_index == (size_t) -1)
810 return 0;
811 entry->isym.st_name = dynstr_index;
812
813 eht = elf_hash_table (info);
814
815 entry->next = eht->dynlocal;
816 eht->dynlocal = entry;
817 entry->input_bfd = input_bfd;
818 entry->input_indx = input_indx;
819 eht->dynsymcount++;
820
821 /* Whatever binding the symbol had before, it's now local. */
822 entry->isym.st_info
823 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
824
825 /* The dynindx will be set at the end of size_dynamic_sections. */
826
827 return 1;
828 }
829
830 /* Return the dynindex of a local dynamic symbol. */
831
832 long
833 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
834 bfd *input_bfd,
835 long input_indx)
836 {
837 struct elf_link_local_dynamic_entry *e;
838
839 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
840 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
841 return e->dynindx;
842 return -1;
843 }
844
845 /* This function is used to renumber the dynamic symbols, if some of
846 them are removed because they are marked as local. This is called
847 via elf_link_hash_traverse. */
848
849 static bfd_boolean
850 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
851 void *data)
852 {
853 size_t *count = (size_t *) data;
854
855 if (h->forced_local)
856 return TRUE;
857
858 if (h->dynindx != -1)
859 h->dynindx = ++(*count);
860
861 return TRUE;
862 }
863
864
865 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
866 STB_LOCAL binding. */
867
868 static bfd_boolean
869 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
870 void *data)
871 {
872 size_t *count = (size_t *) data;
873
874 if (!h->forced_local)
875 return TRUE;
876
877 if (h->dynindx != -1)
878 h->dynindx = ++(*count);
879
880 return TRUE;
881 }
882
883 /* Return true if the dynamic symbol for a given section should be
884 omitted when creating a shared library. */
885 bfd_boolean
886 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
887 struct bfd_link_info *info,
888 asection *p)
889 {
890 struct elf_link_hash_table *htab;
891 asection *ip;
892
893 switch (elf_section_data (p)->this_hdr.sh_type)
894 {
895 case SHT_PROGBITS:
896 case SHT_NOBITS:
897 /* If sh_type is yet undecided, assume it could be
898 SHT_PROGBITS/SHT_NOBITS. */
899 case SHT_NULL:
900 htab = elf_hash_table (info);
901 if (htab->text_index_section != NULL)
902 return p != htab->text_index_section && p != htab->data_index_section;
903
904 return (htab->dynobj != NULL
905 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
906 && ip->output_section == p);
907
908 /* There shouldn't be section relative relocations
909 against any other section. */
910 default:
911 return TRUE;
912 }
913 }
914
915 bfd_boolean
916 _bfd_elf_omit_section_dynsym_all
917 (bfd *output_bfd ATTRIBUTE_UNUSED,
918 struct bfd_link_info *info ATTRIBUTE_UNUSED,
919 asection *p ATTRIBUTE_UNUSED)
920 {
921 return TRUE;
922 }
923
924 /* Assign dynsym indices. In a shared library we generate a section
925 symbol for each output section, which come first. Next come symbols
926 which have been forced to local binding. Then all of the back-end
927 allocated local dynamic syms, followed by the rest of the global
928 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
929 (This prevents the early call before elf_backend_init_index_section
930 and strip_excluded_output_sections setting dynindx for sections
931 that are stripped.) */
932
933 static unsigned long
934 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
935 struct bfd_link_info *info,
936 unsigned long *section_sym_count)
937 {
938 unsigned long dynsymcount = 0;
939 bfd_boolean do_sec = section_sym_count != NULL;
940
941 if (bfd_link_pic (info)
942 || elf_hash_table (info)->is_relocatable_executable)
943 {
944 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
945 asection *p;
946 for (p = output_bfd->sections; p ; p = p->next)
947 if ((p->flags & SEC_EXCLUDE) == 0
948 && (p->flags & SEC_ALLOC) != 0
949 && elf_hash_table (info)->dynamic_relocs
950 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
951 {
952 ++dynsymcount;
953 if (do_sec)
954 elf_section_data (p)->dynindx = dynsymcount;
955 }
956 else if (do_sec)
957 elf_section_data (p)->dynindx = 0;
958 }
959 if (do_sec)
960 *section_sym_count = dynsymcount;
961
962 elf_link_hash_traverse (elf_hash_table (info),
963 elf_link_renumber_local_hash_table_dynsyms,
964 &dynsymcount);
965
966 if (elf_hash_table (info)->dynlocal)
967 {
968 struct elf_link_local_dynamic_entry *p;
969 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
970 p->dynindx = ++dynsymcount;
971 }
972 elf_hash_table (info)->local_dynsymcount = dynsymcount;
973
974 elf_link_hash_traverse (elf_hash_table (info),
975 elf_link_renumber_hash_table_dynsyms,
976 &dynsymcount);
977
978 /* There is an unused NULL entry at the head of the table which we
979 must account for in our count even if the table is empty since it
980 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
981 .dynamic section. */
982 dynsymcount++;
983
984 elf_hash_table (info)->dynsymcount = dynsymcount;
985 return dynsymcount;
986 }
987
988 /* Merge st_other field. */
989
990 static void
991 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
992 const Elf_Internal_Sym *isym, asection *sec,
993 bfd_boolean definition, bfd_boolean dynamic)
994 {
995 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
996
997 /* If st_other has a processor-specific meaning, specific
998 code might be needed here. */
999 if (bed->elf_backend_merge_symbol_attribute)
1000 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1001 dynamic);
1002
1003 if (!dynamic)
1004 {
1005 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1006 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1007
1008 /* Keep the most constraining visibility. Leave the remainder
1009 of the st_other field to elf_backend_merge_symbol_attribute. */
1010 if (symvis - 1 < hvis - 1)
1011 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1012 }
1013 else if (definition
1014 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1015 && (sec->flags & SEC_READONLY) == 0)
1016 h->protected_def = 1;
1017 }
1018
1019 /* This function is called when we want to merge a new symbol with an
1020 existing symbol. It handles the various cases which arise when we
1021 find a definition in a dynamic object, or when there is already a
1022 definition in a dynamic object. The new symbol is described by
1023 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1024 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1025 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1026 of an old common symbol. We set OVERRIDE if the old symbol is
1027 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1028 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1029 to change. By OK to change, we mean that we shouldn't warn if the
1030 type or size does change. */
1031
1032 static bfd_boolean
1033 _bfd_elf_merge_symbol (bfd *abfd,
1034 struct bfd_link_info *info,
1035 const char *name,
1036 Elf_Internal_Sym *sym,
1037 asection **psec,
1038 bfd_vma *pvalue,
1039 struct elf_link_hash_entry **sym_hash,
1040 bfd **poldbfd,
1041 bfd_boolean *pold_weak,
1042 unsigned int *pold_alignment,
1043 bfd_boolean *skip,
1044 bfd_boolean *override,
1045 bfd_boolean *type_change_ok,
1046 bfd_boolean *size_change_ok,
1047 bfd_boolean *matched)
1048 {
1049 asection *sec, *oldsec;
1050 struct elf_link_hash_entry *h;
1051 struct elf_link_hash_entry *hi;
1052 struct elf_link_hash_entry *flip;
1053 int bind;
1054 bfd *oldbfd;
1055 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1056 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1057 const struct elf_backend_data *bed;
1058 char *new_version;
1059 bfd_boolean default_sym = *matched;
1060
1061 *skip = FALSE;
1062 *override = FALSE;
1063
1064 sec = *psec;
1065 bind = ELF_ST_BIND (sym->st_info);
1066
1067 if (! bfd_is_und_section (sec))
1068 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1069 else
1070 h = ((struct elf_link_hash_entry *)
1071 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1072 if (h == NULL)
1073 return FALSE;
1074 *sym_hash = h;
1075
1076 bed = get_elf_backend_data (abfd);
1077
1078 /* NEW_VERSION is the symbol version of the new symbol. */
1079 if (h->versioned != unversioned)
1080 {
1081 /* Symbol version is unknown or versioned. */
1082 new_version = strrchr (name, ELF_VER_CHR);
1083 if (new_version)
1084 {
1085 if (h->versioned == unknown)
1086 {
1087 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1088 h->versioned = versioned_hidden;
1089 else
1090 h->versioned = versioned;
1091 }
1092 new_version += 1;
1093 if (new_version[0] == '\0')
1094 new_version = NULL;
1095 }
1096 else
1097 h->versioned = unversioned;
1098 }
1099 else
1100 new_version = NULL;
1101
1102 /* For merging, we only care about real symbols. But we need to make
1103 sure that indirect symbol dynamic flags are updated. */
1104 hi = h;
1105 while (h->root.type == bfd_link_hash_indirect
1106 || h->root.type == bfd_link_hash_warning)
1107 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1108
1109 if (!*matched)
1110 {
1111 if (hi == h || h->root.type == bfd_link_hash_new)
1112 *matched = TRUE;
1113 else
1114 {
1115 /* OLD_HIDDEN is true if the existing symbol is only visible
1116 to the symbol with the same symbol version. NEW_HIDDEN is
1117 true if the new symbol is only visible to the symbol with
1118 the same symbol version. */
1119 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1120 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1121 if (!old_hidden && !new_hidden)
1122 /* The new symbol matches the existing symbol if both
1123 aren't hidden. */
1124 *matched = TRUE;
1125 else
1126 {
1127 /* OLD_VERSION is the symbol version of the existing
1128 symbol. */
1129 char *old_version;
1130
1131 if (h->versioned >= versioned)
1132 old_version = strrchr (h->root.root.string,
1133 ELF_VER_CHR) + 1;
1134 else
1135 old_version = NULL;
1136
1137 /* The new symbol matches the existing symbol if they
1138 have the same symbol version. */
1139 *matched = (old_version == new_version
1140 || (old_version != NULL
1141 && new_version != NULL
1142 && strcmp (old_version, new_version) == 0));
1143 }
1144 }
1145 }
1146
1147 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1148 existing symbol. */
1149
1150 oldbfd = NULL;
1151 oldsec = NULL;
1152 switch (h->root.type)
1153 {
1154 default:
1155 break;
1156
1157 case bfd_link_hash_undefined:
1158 case bfd_link_hash_undefweak:
1159 oldbfd = h->root.u.undef.abfd;
1160 break;
1161
1162 case bfd_link_hash_defined:
1163 case bfd_link_hash_defweak:
1164 oldbfd = h->root.u.def.section->owner;
1165 oldsec = h->root.u.def.section;
1166 break;
1167
1168 case bfd_link_hash_common:
1169 oldbfd = h->root.u.c.p->section->owner;
1170 oldsec = h->root.u.c.p->section;
1171 if (pold_alignment)
1172 *pold_alignment = h->root.u.c.p->alignment_power;
1173 break;
1174 }
1175 if (poldbfd && *poldbfd == NULL)
1176 *poldbfd = oldbfd;
1177
1178 /* Differentiate strong and weak symbols. */
1179 newweak = bind == STB_WEAK;
1180 oldweak = (h->root.type == bfd_link_hash_defweak
1181 || h->root.type == bfd_link_hash_undefweak);
1182 if (pold_weak)
1183 *pold_weak = oldweak;
1184
1185 /* We have to check it for every instance since the first few may be
1186 references and not all compilers emit symbol type for undefined
1187 symbols. */
1188 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1189
1190 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1191 respectively, is from a dynamic object. */
1192
1193 newdyn = (abfd->flags & DYNAMIC) != 0;
1194
1195 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1196 syms and defined syms in dynamic libraries respectively.
1197 ref_dynamic on the other hand can be set for a symbol defined in
1198 a dynamic library, and def_dynamic may not be set; When the
1199 definition in a dynamic lib is overridden by a definition in the
1200 executable use of the symbol in the dynamic lib becomes a
1201 reference to the executable symbol. */
1202 if (newdyn)
1203 {
1204 if (bfd_is_und_section (sec))
1205 {
1206 if (bind != STB_WEAK)
1207 {
1208 h->ref_dynamic_nonweak = 1;
1209 hi->ref_dynamic_nonweak = 1;
1210 }
1211 }
1212 else
1213 {
1214 /* Update the existing symbol only if they match. */
1215 if (*matched)
1216 h->dynamic_def = 1;
1217 hi->dynamic_def = 1;
1218 }
1219 }
1220
1221 /* If we just created the symbol, mark it as being an ELF symbol.
1222 Other than that, there is nothing to do--there is no merge issue
1223 with a newly defined symbol--so we just return. */
1224
1225 if (h->root.type == bfd_link_hash_new)
1226 {
1227 h->non_elf = 0;
1228 return TRUE;
1229 }
1230
1231 /* In cases involving weak versioned symbols, we may wind up trying
1232 to merge a symbol with itself. Catch that here, to avoid the
1233 confusion that results if we try to override a symbol with
1234 itself. The additional tests catch cases like
1235 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1236 dynamic object, which we do want to handle here. */
1237 if (abfd == oldbfd
1238 && (newweak || oldweak)
1239 && ((abfd->flags & DYNAMIC) == 0
1240 || !h->def_regular))
1241 return TRUE;
1242
1243 olddyn = FALSE;
1244 if (oldbfd != NULL)
1245 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1246 else if (oldsec != NULL)
1247 {
1248 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1249 indices used by MIPS ELF. */
1250 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1251 }
1252
1253 /* Handle a case where plugin_notice won't be called and thus won't
1254 set the non_ir_ref flags on the first pass over symbols. */
1255 if (oldbfd != NULL
1256 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1257 && newdyn != olddyn)
1258 {
1259 h->root.non_ir_ref_dynamic = TRUE;
1260 hi->root.non_ir_ref_dynamic = TRUE;
1261 }
1262
1263 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1264 respectively, appear to be a definition rather than reference. */
1265
1266 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1267
1268 olddef = (h->root.type != bfd_link_hash_undefined
1269 && h->root.type != bfd_link_hash_undefweak
1270 && h->root.type != bfd_link_hash_common);
1271
1272 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1273 respectively, appear to be a function. */
1274
1275 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1276 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1277
1278 oldfunc = (h->type != STT_NOTYPE
1279 && bed->is_function_type (h->type));
1280
1281 if (!(newfunc && oldfunc)
1282 && ELF_ST_TYPE (sym->st_info) != h->type
1283 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1284 && h->type != STT_NOTYPE
1285 && (newdef || bfd_is_com_section (sec))
1286 && (olddef || h->root.type == bfd_link_hash_common))
1287 {
1288 /* If creating a default indirect symbol ("foo" or "foo@") from
1289 a dynamic versioned definition ("foo@@") skip doing so if
1290 there is an existing regular definition with a different
1291 type. We don't want, for example, a "time" variable in the
1292 executable overriding a "time" function in a shared library. */
1293 if (newdyn
1294 && !olddyn)
1295 {
1296 *skip = TRUE;
1297 return TRUE;
1298 }
1299
1300 /* When adding a symbol from a regular object file after we have
1301 created indirect symbols, undo the indirection and any
1302 dynamic state. */
1303 if (hi != h
1304 && !newdyn
1305 && olddyn)
1306 {
1307 h = hi;
1308 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1309 h->forced_local = 0;
1310 h->ref_dynamic = 0;
1311 h->def_dynamic = 0;
1312 h->dynamic_def = 0;
1313 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1314 {
1315 h->root.type = bfd_link_hash_undefined;
1316 h->root.u.undef.abfd = abfd;
1317 }
1318 else
1319 {
1320 h->root.type = bfd_link_hash_new;
1321 h->root.u.undef.abfd = NULL;
1322 }
1323 return TRUE;
1324 }
1325 }
1326
1327 /* Check TLS symbols. We don't check undefined symbols introduced
1328 by "ld -u" which have no type (and oldbfd NULL), and we don't
1329 check symbols from plugins because they also have no type. */
1330 if (oldbfd != NULL
1331 && (oldbfd->flags & BFD_PLUGIN) == 0
1332 && (abfd->flags & BFD_PLUGIN) == 0
1333 && ELF_ST_TYPE (sym->st_info) != h->type
1334 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1335 {
1336 bfd *ntbfd, *tbfd;
1337 bfd_boolean ntdef, tdef;
1338 asection *ntsec, *tsec;
1339
1340 if (h->type == STT_TLS)
1341 {
1342 ntbfd = abfd;
1343 ntsec = sec;
1344 ntdef = newdef;
1345 tbfd = oldbfd;
1346 tsec = oldsec;
1347 tdef = olddef;
1348 }
1349 else
1350 {
1351 ntbfd = oldbfd;
1352 ntsec = oldsec;
1353 ntdef = olddef;
1354 tbfd = abfd;
1355 tsec = sec;
1356 tdef = newdef;
1357 }
1358
1359 if (tdef && ntdef)
1360 _bfd_error_handler
1361 /* xgettext:c-format */
1362 (_("%s: TLS definition in %pB section %pA "
1363 "mismatches non-TLS definition in %pB section %pA"),
1364 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1365 else if (!tdef && !ntdef)
1366 _bfd_error_handler
1367 /* xgettext:c-format */
1368 (_("%s: TLS reference in %pB "
1369 "mismatches non-TLS reference in %pB"),
1370 h->root.root.string, tbfd, ntbfd);
1371 else if (tdef)
1372 _bfd_error_handler
1373 /* xgettext:c-format */
1374 (_("%s: TLS definition in %pB section %pA "
1375 "mismatches non-TLS reference in %pB"),
1376 h->root.root.string, tbfd, tsec, ntbfd);
1377 else
1378 _bfd_error_handler
1379 /* xgettext:c-format */
1380 (_("%s: TLS reference in %pB "
1381 "mismatches non-TLS definition in %pB section %pA"),
1382 h->root.root.string, tbfd, ntbfd, ntsec);
1383
1384 bfd_set_error (bfd_error_bad_value);
1385 return FALSE;
1386 }
1387
1388 /* If the old symbol has non-default visibility, we ignore the new
1389 definition from a dynamic object. */
1390 if (newdyn
1391 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1392 && !bfd_is_und_section (sec))
1393 {
1394 *skip = TRUE;
1395 /* Make sure this symbol is dynamic. */
1396 h->ref_dynamic = 1;
1397 hi->ref_dynamic = 1;
1398 /* A protected symbol has external availability. Make sure it is
1399 recorded as dynamic.
1400
1401 FIXME: Should we check type and size for protected symbol? */
1402 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1403 return bfd_elf_link_record_dynamic_symbol (info, h);
1404 else
1405 return TRUE;
1406 }
1407 else if (!newdyn
1408 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1409 && h->def_dynamic)
1410 {
1411 /* If the new symbol with non-default visibility comes from a
1412 relocatable file and the old definition comes from a dynamic
1413 object, we remove the old definition. */
1414 if (hi->root.type == bfd_link_hash_indirect)
1415 {
1416 /* Handle the case where the old dynamic definition is
1417 default versioned. We need to copy the symbol info from
1418 the symbol with default version to the normal one if it
1419 was referenced before. */
1420 if (h->ref_regular)
1421 {
1422 hi->root.type = h->root.type;
1423 h->root.type = bfd_link_hash_indirect;
1424 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1425
1426 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1427 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1428 {
1429 /* If the new symbol is hidden or internal, completely undo
1430 any dynamic link state. */
1431 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1432 h->forced_local = 0;
1433 h->ref_dynamic = 0;
1434 }
1435 else
1436 h->ref_dynamic = 1;
1437
1438 h->def_dynamic = 0;
1439 /* FIXME: Should we check type and size for protected symbol? */
1440 h->size = 0;
1441 h->type = 0;
1442
1443 h = hi;
1444 }
1445 else
1446 h = hi;
1447 }
1448
1449 /* If the old symbol was undefined before, then it will still be
1450 on the undefs list. If the new symbol is undefined or
1451 common, we can't make it bfd_link_hash_new here, because new
1452 undefined or common symbols will be added to the undefs list
1453 by _bfd_generic_link_add_one_symbol. Symbols may not be
1454 added twice to the undefs list. Also, if the new symbol is
1455 undefweak then we don't want to lose the strong undef. */
1456 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1457 {
1458 h->root.type = bfd_link_hash_undefined;
1459 h->root.u.undef.abfd = abfd;
1460 }
1461 else
1462 {
1463 h->root.type = bfd_link_hash_new;
1464 h->root.u.undef.abfd = NULL;
1465 }
1466
1467 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1468 {
1469 /* If the new symbol is hidden or internal, completely undo
1470 any dynamic link state. */
1471 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1472 h->forced_local = 0;
1473 h->ref_dynamic = 0;
1474 }
1475 else
1476 h->ref_dynamic = 1;
1477 h->def_dynamic = 0;
1478 /* FIXME: Should we check type and size for protected symbol? */
1479 h->size = 0;
1480 h->type = 0;
1481 return TRUE;
1482 }
1483
1484 /* If a new weak symbol definition comes from a regular file and the
1485 old symbol comes from a dynamic library, we treat the new one as
1486 strong. Similarly, an old weak symbol definition from a regular
1487 file is treated as strong when the new symbol comes from a dynamic
1488 library. Further, an old weak symbol from a dynamic library is
1489 treated as strong if the new symbol is from a dynamic library.
1490 This reflects the way glibc's ld.so works.
1491
1492 Also allow a weak symbol to override a linker script symbol
1493 defined by an early pass over the script. This is done so the
1494 linker knows the symbol is defined in an object file, for the
1495 DEFINED script function.
1496
1497 Do this before setting *type_change_ok or *size_change_ok so that
1498 we warn properly when dynamic library symbols are overridden. */
1499
1500 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1501 newweak = FALSE;
1502 if (olddef && newdyn)
1503 oldweak = FALSE;
1504
1505 /* Allow changes between different types of function symbol. */
1506 if (newfunc && oldfunc)
1507 *type_change_ok = TRUE;
1508
1509 /* It's OK to change the type if either the existing symbol or the
1510 new symbol is weak. A type change is also OK if the old symbol
1511 is undefined and the new symbol is defined. */
1512
1513 if (oldweak
1514 || newweak
1515 || (newdef
1516 && h->root.type == bfd_link_hash_undefined))
1517 *type_change_ok = TRUE;
1518
1519 /* It's OK to change the size if either the existing symbol or the
1520 new symbol is weak, or if the old symbol is undefined. */
1521
1522 if (*type_change_ok
1523 || h->root.type == bfd_link_hash_undefined)
1524 *size_change_ok = TRUE;
1525
1526 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1527 symbol, respectively, appears to be a common symbol in a dynamic
1528 object. If a symbol appears in an uninitialized section, and is
1529 not weak, and is not a function, then it may be a common symbol
1530 which was resolved when the dynamic object was created. We want
1531 to treat such symbols specially, because they raise special
1532 considerations when setting the symbol size: if the symbol
1533 appears as a common symbol in a regular object, and the size in
1534 the regular object is larger, we must make sure that we use the
1535 larger size. This problematic case can always be avoided in C,
1536 but it must be handled correctly when using Fortran shared
1537 libraries.
1538
1539 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1540 likewise for OLDDYNCOMMON and OLDDEF.
1541
1542 Note that this test is just a heuristic, and that it is quite
1543 possible to have an uninitialized symbol in a shared object which
1544 is really a definition, rather than a common symbol. This could
1545 lead to some minor confusion when the symbol really is a common
1546 symbol in some regular object. However, I think it will be
1547 harmless. */
1548
1549 if (newdyn
1550 && newdef
1551 && !newweak
1552 && (sec->flags & SEC_ALLOC) != 0
1553 && (sec->flags & SEC_LOAD) == 0
1554 && sym->st_size > 0
1555 && !newfunc)
1556 newdyncommon = TRUE;
1557 else
1558 newdyncommon = FALSE;
1559
1560 if (olddyn
1561 && olddef
1562 && h->root.type == bfd_link_hash_defined
1563 && h->def_dynamic
1564 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1565 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1566 && h->size > 0
1567 && !oldfunc)
1568 olddyncommon = TRUE;
1569 else
1570 olddyncommon = FALSE;
1571
1572 /* We now know everything about the old and new symbols. We ask the
1573 backend to check if we can merge them. */
1574 if (bed->merge_symbol != NULL)
1575 {
1576 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1577 return FALSE;
1578 sec = *psec;
1579 }
1580
1581 /* There are multiple definitions of a normal symbol. Skip the
1582 default symbol as well as definition from an IR object. */
1583 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1584 && !default_sym && h->def_regular
1585 && !(oldbfd != NULL
1586 && (oldbfd->flags & BFD_PLUGIN) != 0
1587 && (abfd->flags & BFD_PLUGIN) == 0))
1588 {
1589 /* Handle a multiple definition. */
1590 (*info->callbacks->multiple_definition) (info, &h->root,
1591 abfd, sec, *pvalue);
1592 *skip = TRUE;
1593 return TRUE;
1594 }
1595
1596 /* If both the old and the new symbols look like common symbols in a
1597 dynamic object, set the size of the symbol to the larger of the
1598 two. */
1599
1600 if (olddyncommon
1601 && newdyncommon
1602 && sym->st_size != h->size)
1603 {
1604 /* Since we think we have two common symbols, issue a multiple
1605 common warning if desired. Note that we only warn if the
1606 size is different. If the size is the same, we simply let
1607 the old symbol override the new one as normally happens with
1608 symbols defined in dynamic objects. */
1609
1610 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1611 bfd_link_hash_common, sym->st_size);
1612 if (sym->st_size > h->size)
1613 h->size = sym->st_size;
1614
1615 *size_change_ok = TRUE;
1616 }
1617
1618 /* If we are looking at a dynamic object, and we have found a
1619 definition, we need to see if the symbol was already defined by
1620 some other object. If so, we want to use the existing
1621 definition, and we do not want to report a multiple symbol
1622 definition error; we do this by clobbering *PSEC to be
1623 bfd_und_section_ptr.
1624
1625 We treat a common symbol as a definition if the symbol in the
1626 shared library is a function, since common symbols always
1627 represent variables; this can cause confusion in principle, but
1628 any such confusion would seem to indicate an erroneous program or
1629 shared library. We also permit a common symbol in a regular
1630 object to override a weak symbol in a shared object. */
1631
1632 if (newdyn
1633 && newdef
1634 && (olddef
1635 || (h->root.type == bfd_link_hash_common
1636 && (newweak || newfunc))))
1637 {
1638 *override = TRUE;
1639 newdef = FALSE;
1640 newdyncommon = FALSE;
1641
1642 *psec = sec = bfd_und_section_ptr;
1643 *size_change_ok = TRUE;
1644
1645 /* If we get here when the old symbol is a common symbol, then
1646 we are explicitly letting it override a weak symbol or
1647 function in a dynamic object, and we don't want to warn about
1648 a type change. If the old symbol is a defined symbol, a type
1649 change warning may still be appropriate. */
1650
1651 if (h->root.type == bfd_link_hash_common)
1652 *type_change_ok = TRUE;
1653 }
1654
1655 /* Handle the special case of an old common symbol merging with a
1656 new symbol which looks like a common symbol in a shared object.
1657 We change *PSEC and *PVALUE to make the new symbol look like a
1658 common symbol, and let _bfd_generic_link_add_one_symbol do the
1659 right thing. */
1660
1661 if (newdyncommon
1662 && h->root.type == bfd_link_hash_common)
1663 {
1664 *override = TRUE;
1665 newdef = FALSE;
1666 newdyncommon = FALSE;
1667 *pvalue = sym->st_size;
1668 *psec = sec = bed->common_section (oldsec);
1669 *size_change_ok = TRUE;
1670 }
1671
1672 /* Skip weak definitions of symbols that are already defined. */
1673 if (newdef && olddef && newweak)
1674 {
1675 /* Don't skip new non-IR weak syms. */
1676 if (!(oldbfd != NULL
1677 && (oldbfd->flags & BFD_PLUGIN) != 0
1678 && (abfd->flags & BFD_PLUGIN) == 0))
1679 {
1680 newdef = FALSE;
1681 *skip = TRUE;
1682 }
1683
1684 /* Merge st_other. If the symbol already has a dynamic index,
1685 but visibility says it should not be visible, turn it into a
1686 local symbol. */
1687 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1688 if (h->dynindx != -1)
1689 switch (ELF_ST_VISIBILITY (h->other))
1690 {
1691 case STV_INTERNAL:
1692 case STV_HIDDEN:
1693 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1694 break;
1695 }
1696 }
1697
1698 /* If the old symbol is from a dynamic object, and the new symbol is
1699 a definition which is not from a dynamic object, then the new
1700 symbol overrides the old symbol. Symbols from regular files
1701 always take precedence over symbols from dynamic objects, even if
1702 they are defined after the dynamic object in the link.
1703
1704 As above, we again permit a common symbol in a regular object to
1705 override a definition in a shared object if the shared object
1706 symbol is a function or is weak. */
1707
1708 flip = NULL;
1709 if (!newdyn
1710 && (newdef
1711 || (bfd_is_com_section (sec)
1712 && (oldweak || oldfunc)))
1713 && olddyn
1714 && olddef
1715 && h->def_dynamic)
1716 {
1717 /* Change the hash table entry to undefined, and let
1718 _bfd_generic_link_add_one_symbol do the right thing with the
1719 new definition. */
1720
1721 h->root.type = bfd_link_hash_undefined;
1722 h->root.u.undef.abfd = h->root.u.def.section->owner;
1723 *size_change_ok = TRUE;
1724
1725 olddef = FALSE;
1726 olddyncommon = FALSE;
1727
1728 /* We again permit a type change when a common symbol may be
1729 overriding a function. */
1730
1731 if (bfd_is_com_section (sec))
1732 {
1733 if (oldfunc)
1734 {
1735 /* If a common symbol overrides a function, make sure
1736 that it isn't defined dynamically nor has type
1737 function. */
1738 h->def_dynamic = 0;
1739 h->type = STT_NOTYPE;
1740 }
1741 *type_change_ok = TRUE;
1742 }
1743
1744 if (hi->root.type == bfd_link_hash_indirect)
1745 flip = hi;
1746 else
1747 /* This union may have been set to be non-NULL when this symbol
1748 was seen in a dynamic object. We must force the union to be
1749 NULL, so that it is correct for a regular symbol. */
1750 h->verinfo.vertree = NULL;
1751 }
1752
1753 /* Handle the special case of a new common symbol merging with an
1754 old symbol that looks like it might be a common symbol defined in
1755 a shared object. Note that we have already handled the case in
1756 which a new common symbol should simply override the definition
1757 in the shared library. */
1758
1759 if (! newdyn
1760 && bfd_is_com_section (sec)
1761 && olddyncommon)
1762 {
1763 /* It would be best if we could set the hash table entry to a
1764 common symbol, but we don't know what to use for the section
1765 or the alignment. */
1766 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1767 bfd_link_hash_common, sym->st_size);
1768
1769 /* If the presumed common symbol in the dynamic object is
1770 larger, pretend that the new symbol has its size. */
1771
1772 if (h->size > *pvalue)
1773 *pvalue = h->size;
1774
1775 /* We need to remember the alignment required by the symbol
1776 in the dynamic object. */
1777 BFD_ASSERT (pold_alignment);
1778 *pold_alignment = h->root.u.def.section->alignment_power;
1779
1780 olddef = FALSE;
1781 olddyncommon = FALSE;
1782
1783 h->root.type = bfd_link_hash_undefined;
1784 h->root.u.undef.abfd = h->root.u.def.section->owner;
1785
1786 *size_change_ok = TRUE;
1787 *type_change_ok = TRUE;
1788
1789 if (hi->root.type == bfd_link_hash_indirect)
1790 flip = hi;
1791 else
1792 h->verinfo.vertree = NULL;
1793 }
1794
1795 if (flip != NULL)
1796 {
1797 /* Handle the case where we had a versioned symbol in a dynamic
1798 library and now find a definition in a normal object. In this
1799 case, we make the versioned symbol point to the normal one. */
1800 flip->root.type = h->root.type;
1801 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1802 h->root.type = bfd_link_hash_indirect;
1803 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1804 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1805 if (h->def_dynamic)
1806 {
1807 h->def_dynamic = 0;
1808 flip->ref_dynamic = 1;
1809 }
1810 }
1811
1812 return TRUE;
1813 }
1814
1815 /* This function is called to create an indirect symbol from the
1816 default for the symbol with the default version if needed. The
1817 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1818 set DYNSYM if the new indirect symbol is dynamic. */
1819
1820 static bfd_boolean
1821 _bfd_elf_add_default_symbol (bfd *abfd,
1822 struct bfd_link_info *info,
1823 struct elf_link_hash_entry *h,
1824 const char *name,
1825 Elf_Internal_Sym *sym,
1826 asection *sec,
1827 bfd_vma value,
1828 bfd **poldbfd,
1829 bfd_boolean *dynsym)
1830 {
1831 bfd_boolean type_change_ok;
1832 bfd_boolean size_change_ok;
1833 bfd_boolean skip;
1834 char *shortname;
1835 struct elf_link_hash_entry *hi;
1836 struct bfd_link_hash_entry *bh;
1837 const struct elf_backend_data *bed;
1838 bfd_boolean collect;
1839 bfd_boolean dynamic;
1840 bfd_boolean override;
1841 char *p;
1842 size_t len, shortlen;
1843 asection *tmp_sec;
1844 bfd_boolean matched;
1845
1846 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1847 return TRUE;
1848
1849 /* If this symbol has a version, and it is the default version, we
1850 create an indirect symbol from the default name to the fully
1851 decorated name. This will cause external references which do not
1852 specify a version to be bound to this version of the symbol. */
1853 p = strchr (name, ELF_VER_CHR);
1854 if (h->versioned == unknown)
1855 {
1856 if (p == NULL)
1857 {
1858 h->versioned = unversioned;
1859 return TRUE;
1860 }
1861 else
1862 {
1863 if (p[1] != ELF_VER_CHR)
1864 {
1865 h->versioned = versioned_hidden;
1866 return TRUE;
1867 }
1868 else
1869 h->versioned = versioned;
1870 }
1871 }
1872 else
1873 {
1874 /* PR ld/19073: We may see an unversioned definition after the
1875 default version. */
1876 if (p == NULL)
1877 return TRUE;
1878 }
1879
1880 bed = get_elf_backend_data (abfd);
1881 collect = bed->collect;
1882 dynamic = (abfd->flags & DYNAMIC) != 0;
1883
1884 shortlen = p - name;
1885 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1886 if (shortname == NULL)
1887 return FALSE;
1888 memcpy (shortname, name, shortlen);
1889 shortname[shortlen] = '\0';
1890
1891 /* We are going to create a new symbol. Merge it with any existing
1892 symbol with this name. For the purposes of the merge, act as
1893 though we were defining the symbol we just defined, although we
1894 actually going to define an indirect symbol. */
1895 type_change_ok = FALSE;
1896 size_change_ok = FALSE;
1897 matched = TRUE;
1898 tmp_sec = sec;
1899 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1900 &hi, poldbfd, NULL, NULL, &skip, &override,
1901 &type_change_ok, &size_change_ok, &matched))
1902 return FALSE;
1903
1904 if (skip)
1905 goto nondefault;
1906
1907 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1908 {
1909 /* If the undecorated symbol will have a version added by a
1910 script different to H, then don't indirect to/from the
1911 undecorated symbol. This isn't ideal because we may not yet
1912 have seen symbol versions, if given by a script on the
1913 command line rather than via --version-script. */
1914 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1915 {
1916 bfd_boolean hide;
1917
1918 hi->verinfo.vertree
1919 = bfd_find_version_for_sym (info->version_info,
1920 hi->root.root.string, &hide);
1921 if (hi->verinfo.vertree != NULL && hide)
1922 {
1923 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1924 goto nondefault;
1925 }
1926 }
1927 if (hi->verinfo.vertree != NULL
1928 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1929 goto nondefault;
1930 }
1931
1932 if (! override)
1933 {
1934 /* Add the default symbol if not performing a relocatable link. */
1935 if (! bfd_link_relocatable (info))
1936 {
1937 bh = &hi->root;
1938 if (bh->type == bfd_link_hash_defined
1939 && bh->u.def.section->owner != NULL
1940 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1941 {
1942 /* Mark the previous definition from IR object as
1943 undefined so that the generic linker will override
1944 it. */
1945 bh->type = bfd_link_hash_undefined;
1946 bh->u.undef.abfd = bh->u.def.section->owner;
1947 }
1948 if (! (_bfd_generic_link_add_one_symbol
1949 (info, abfd, shortname, BSF_INDIRECT,
1950 bfd_ind_section_ptr,
1951 0, name, FALSE, collect, &bh)))
1952 return FALSE;
1953 hi = (struct elf_link_hash_entry *) bh;
1954 }
1955 }
1956 else
1957 {
1958 /* In this case the symbol named SHORTNAME is overriding the
1959 indirect symbol we want to add. We were planning on making
1960 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1961 is the name without a version. NAME is the fully versioned
1962 name, and it is the default version.
1963
1964 Overriding means that we already saw a definition for the
1965 symbol SHORTNAME in a regular object, and it is overriding
1966 the symbol defined in the dynamic object.
1967
1968 When this happens, we actually want to change NAME, the
1969 symbol we just added, to refer to SHORTNAME. This will cause
1970 references to NAME in the shared object to become references
1971 to SHORTNAME in the regular object. This is what we expect
1972 when we override a function in a shared object: that the
1973 references in the shared object will be mapped to the
1974 definition in the regular object. */
1975
1976 while (hi->root.type == bfd_link_hash_indirect
1977 || hi->root.type == bfd_link_hash_warning)
1978 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1979
1980 h->root.type = bfd_link_hash_indirect;
1981 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1982 if (h->def_dynamic)
1983 {
1984 h->def_dynamic = 0;
1985 hi->ref_dynamic = 1;
1986 if (hi->ref_regular
1987 || hi->def_regular)
1988 {
1989 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1990 return FALSE;
1991 }
1992 }
1993
1994 /* Now set HI to H, so that the following code will set the
1995 other fields correctly. */
1996 hi = h;
1997 }
1998
1999 /* Check if HI is a warning symbol. */
2000 if (hi->root.type == bfd_link_hash_warning)
2001 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2002
2003 /* If there is a duplicate definition somewhere, then HI may not
2004 point to an indirect symbol. We will have reported an error to
2005 the user in that case. */
2006
2007 if (hi->root.type == bfd_link_hash_indirect)
2008 {
2009 struct elf_link_hash_entry *ht;
2010
2011 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2012 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2013
2014 /* A reference to the SHORTNAME symbol from a dynamic library
2015 will be satisfied by the versioned symbol at runtime. In
2016 effect, we have a reference to the versioned symbol. */
2017 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2018 hi->dynamic_def |= ht->dynamic_def;
2019
2020 /* See if the new flags lead us to realize that the symbol must
2021 be dynamic. */
2022 if (! *dynsym)
2023 {
2024 if (! dynamic)
2025 {
2026 if (! bfd_link_executable (info)
2027 || hi->def_dynamic
2028 || hi->ref_dynamic)
2029 *dynsym = TRUE;
2030 }
2031 else
2032 {
2033 if (hi->ref_regular)
2034 *dynsym = TRUE;
2035 }
2036 }
2037 }
2038
2039 /* We also need to define an indirection from the nondefault version
2040 of the symbol. */
2041
2042 nondefault:
2043 len = strlen (name);
2044 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2045 if (shortname == NULL)
2046 return FALSE;
2047 memcpy (shortname, name, shortlen);
2048 memcpy (shortname + shortlen, p + 1, len - shortlen);
2049
2050 /* Once again, merge with any existing symbol. */
2051 type_change_ok = FALSE;
2052 size_change_ok = FALSE;
2053 tmp_sec = sec;
2054 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2055 &hi, poldbfd, NULL, NULL, &skip, &override,
2056 &type_change_ok, &size_change_ok, &matched))
2057 return FALSE;
2058
2059 if (skip)
2060 return TRUE;
2061
2062 if (override)
2063 {
2064 /* Here SHORTNAME is a versioned name, so we don't expect to see
2065 the type of override we do in the case above unless it is
2066 overridden by a versioned definition. */
2067 if (hi->root.type != bfd_link_hash_defined
2068 && hi->root.type != bfd_link_hash_defweak)
2069 _bfd_error_handler
2070 /* xgettext:c-format */
2071 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2072 abfd, shortname);
2073 }
2074 else
2075 {
2076 bh = &hi->root;
2077 if (! (_bfd_generic_link_add_one_symbol
2078 (info, abfd, shortname, BSF_INDIRECT,
2079 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2080 return FALSE;
2081 hi = (struct elf_link_hash_entry *) bh;
2082
2083 /* If there is a duplicate definition somewhere, then HI may not
2084 point to an indirect symbol. We will have reported an error
2085 to the user in that case. */
2086
2087 if (hi->root.type == bfd_link_hash_indirect)
2088 {
2089 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2090 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2091 hi->dynamic_def |= h->dynamic_def;
2092
2093 /* See if the new flags lead us to realize that the symbol
2094 must be dynamic. */
2095 if (! *dynsym)
2096 {
2097 if (! dynamic)
2098 {
2099 if (! bfd_link_executable (info)
2100 || hi->ref_dynamic)
2101 *dynsym = TRUE;
2102 }
2103 else
2104 {
2105 if (hi->ref_regular)
2106 *dynsym = TRUE;
2107 }
2108 }
2109 }
2110 }
2111
2112 return TRUE;
2113 }
2114 \f
2115 /* This routine is used to export all defined symbols into the dynamic
2116 symbol table. It is called via elf_link_hash_traverse. */
2117
2118 static bfd_boolean
2119 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2120 {
2121 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2122
2123 /* Ignore indirect symbols. These are added by the versioning code. */
2124 if (h->root.type == bfd_link_hash_indirect)
2125 return TRUE;
2126
2127 /* Ignore this if we won't export it. */
2128 if (!eif->info->export_dynamic && !h->dynamic)
2129 return TRUE;
2130
2131 if (h->dynindx == -1
2132 && (h->def_regular || h->ref_regular)
2133 && ! bfd_hide_sym_by_version (eif->info->version_info,
2134 h->root.root.string))
2135 {
2136 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2137 {
2138 eif->failed = TRUE;
2139 return FALSE;
2140 }
2141 }
2142
2143 return TRUE;
2144 }
2145 \f
2146 /* Look through the symbols which are defined in other shared
2147 libraries and referenced here. Update the list of version
2148 dependencies. This will be put into the .gnu.version_r section.
2149 This function is called via elf_link_hash_traverse. */
2150
2151 static bfd_boolean
2152 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2153 void *data)
2154 {
2155 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2156 Elf_Internal_Verneed *t;
2157 Elf_Internal_Vernaux *a;
2158 bfd_size_type amt;
2159
2160 /* We only care about symbols defined in shared objects with version
2161 information. */
2162 if (!h->def_dynamic
2163 || h->def_regular
2164 || h->dynindx == -1
2165 || h->verinfo.verdef == NULL
2166 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2167 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2168 return TRUE;
2169
2170 /* See if we already know about this version. */
2171 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2172 t != NULL;
2173 t = t->vn_nextref)
2174 {
2175 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2176 continue;
2177
2178 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2179 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2180 return TRUE;
2181
2182 break;
2183 }
2184
2185 /* This is a new version. Add it to tree we are building. */
2186
2187 if (t == NULL)
2188 {
2189 amt = sizeof *t;
2190 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2191 if (t == NULL)
2192 {
2193 rinfo->failed = TRUE;
2194 return FALSE;
2195 }
2196
2197 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2198 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2199 elf_tdata (rinfo->info->output_bfd)->verref = t;
2200 }
2201
2202 amt = sizeof *a;
2203 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2204 if (a == NULL)
2205 {
2206 rinfo->failed = TRUE;
2207 return FALSE;
2208 }
2209
2210 /* Note that we are copying a string pointer here, and testing it
2211 above. If bfd_elf_string_from_elf_section is ever changed to
2212 discard the string data when low in memory, this will have to be
2213 fixed. */
2214 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2215
2216 a->vna_flags = h->verinfo.verdef->vd_flags;
2217 a->vna_nextptr = t->vn_auxptr;
2218
2219 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2220 ++rinfo->vers;
2221
2222 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2223
2224 t->vn_auxptr = a;
2225
2226 return TRUE;
2227 }
2228
2229 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2230 hidden. Set *T_P to NULL if there is no match. */
2231
2232 static bfd_boolean
2233 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2234 struct elf_link_hash_entry *h,
2235 const char *version_p,
2236 struct bfd_elf_version_tree **t_p,
2237 bfd_boolean *hide)
2238 {
2239 struct bfd_elf_version_tree *t;
2240
2241 /* Look for the version. If we find it, it is no longer weak. */
2242 for (t = info->version_info; t != NULL; t = t->next)
2243 {
2244 if (strcmp (t->name, version_p) == 0)
2245 {
2246 size_t len;
2247 char *alc;
2248 struct bfd_elf_version_expr *d;
2249
2250 len = version_p - h->root.root.string;
2251 alc = (char *) bfd_malloc (len);
2252 if (alc == NULL)
2253 return FALSE;
2254 memcpy (alc, h->root.root.string, len - 1);
2255 alc[len - 1] = '\0';
2256 if (alc[len - 2] == ELF_VER_CHR)
2257 alc[len - 2] = '\0';
2258
2259 h->verinfo.vertree = t;
2260 t->used = TRUE;
2261 d = NULL;
2262
2263 if (t->globals.list != NULL)
2264 d = (*t->match) (&t->globals, NULL, alc);
2265
2266 /* See if there is anything to force this symbol to
2267 local scope. */
2268 if (d == NULL && t->locals.list != NULL)
2269 {
2270 d = (*t->match) (&t->locals, NULL, alc);
2271 if (d != NULL
2272 && h->dynindx != -1
2273 && ! info->export_dynamic)
2274 *hide = TRUE;
2275 }
2276
2277 free (alc);
2278 break;
2279 }
2280 }
2281
2282 *t_p = t;
2283
2284 return TRUE;
2285 }
2286
2287 /* Return TRUE if the symbol H is hidden by version script. */
2288
2289 bfd_boolean
2290 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2291 struct elf_link_hash_entry *h)
2292 {
2293 const char *p;
2294 bfd_boolean hide = FALSE;
2295 const struct elf_backend_data *bed
2296 = get_elf_backend_data (info->output_bfd);
2297
2298 /* Version script only hides symbols defined in regular objects. */
2299 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2300 return TRUE;
2301
2302 p = strchr (h->root.root.string, ELF_VER_CHR);
2303 if (p != NULL && h->verinfo.vertree == NULL)
2304 {
2305 struct bfd_elf_version_tree *t;
2306
2307 ++p;
2308 if (*p == ELF_VER_CHR)
2309 ++p;
2310
2311 if (*p != '\0'
2312 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2313 && hide)
2314 {
2315 if (hide)
2316 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2317 return TRUE;
2318 }
2319 }
2320
2321 /* If we don't have a version for this symbol, see if we can find
2322 something. */
2323 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2324 {
2325 h->verinfo.vertree
2326 = bfd_find_version_for_sym (info->version_info,
2327 h->root.root.string, &hide);
2328 if (h->verinfo.vertree != NULL && hide)
2329 {
2330 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2331 return TRUE;
2332 }
2333 }
2334
2335 return FALSE;
2336 }
2337
2338 /* Figure out appropriate versions for all the symbols. We may not
2339 have the version number script until we have read all of the input
2340 files, so until that point we don't know which symbols should be
2341 local. This function is called via elf_link_hash_traverse. */
2342
2343 static bfd_boolean
2344 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2345 {
2346 struct elf_info_failed *sinfo;
2347 struct bfd_link_info *info;
2348 const struct elf_backend_data *bed;
2349 struct elf_info_failed eif;
2350 char *p;
2351 bfd_boolean hide;
2352
2353 sinfo = (struct elf_info_failed *) data;
2354 info = sinfo->info;
2355
2356 /* Fix the symbol flags. */
2357 eif.failed = FALSE;
2358 eif.info = info;
2359 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2360 {
2361 if (eif.failed)
2362 sinfo->failed = TRUE;
2363 return FALSE;
2364 }
2365
2366 bed = get_elf_backend_data (info->output_bfd);
2367
2368 /* We only need version numbers for symbols defined in regular
2369 objects. */
2370 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2371 {
2372 /* Hide symbols defined in discarded input sections. */
2373 if ((h->root.type == bfd_link_hash_defined
2374 || h->root.type == bfd_link_hash_defweak)
2375 && discarded_section (h->root.u.def.section))
2376 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2377 return TRUE;
2378 }
2379
2380 hide = FALSE;
2381 p = strchr (h->root.root.string, ELF_VER_CHR);
2382 if (p != NULL && h->verinfo.vertree == NULL)
2383 {
2384 struct bfd_elf_version_tree *t;
2385
2386 ++p;
2387 if (*p == ELF_VER_CHR)
2388 ++p;
2389
2390 /* If there is no version string, we can just return out. */
2391 if (*p == '\0')
2392 return TRUE;
2393
2394 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2395 {
2396 sinfo->failed = TRUE;
2397 return FALSE;
2398 }
2399
2400 if (hide)
2401 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2402
2403 /* If we are building an application, we need to create a
2404 version node for this version. */
2405 if (t == NULL && bfd_link_executable (info))
2406 {
2407 struct bfd_elf_version_tree **pp;
2408 int version_index;
2409
2410 /* If we aren't going to export this symbol, we don't need
2411 to worry about it. */
2412 if (h->dynindx == -1)
2413 return TRUE;
2414
2415 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2416 sizeof *t);
2417 if (t == NULL)
2418 {
2419 sinfo->failed = TRUE;
2420 return FALSE;
2421 }
2422
2423 t->name = p;
2424 t->name_indx = (unsigned int) -1;
2425 t->used = TRUE;
2426
2427 version_index = 1;
2428 /* Don't count anonymous version tag. */
2429 if (sinfo->info->version_info != NULL
2430 && sinfo->info->version_info->vernum == 0)
2431 version_index = 0;
2432 for (pp = &sinfo->info->version_info;
2433 *pp != NULL;
2434 pp = &(*pp)->next)
2435 ++version_index;
2436 t->vernum = version_index;
2437
2438 *pp = t;
2439
2440 h->verinfo.vertree = t;
2441 }
2442 else if (t == NULL)
2443 {
2444 /* We could not find the version for a symbol when
2445 generating a shared archive. Return an error. */
2446 _bfd_error_handler
2447 /* xgettext:c-format */
2448 (_("%pB: version node not found for symbol %s"),
2449 info->output_bfd, h->root.root.string);
2450 bfd_set_error (bfd_error_bad_value);
2451 sinfo->failed = TRUE;
2452 return FALSE;
2453 }
2454 }
2455
2456 /* If we don't have a version for this symbol, see if we can find
2457 something. */
2458 if (!hide
2459 && h->verinfo.vertree == NULL
2460 && sinfo->info->version_info != NULL)
2461 {
2462 h->verinfo.vertree
2463 = bfd_find_version_for_sym (sinfo->info->version_info,
2464 h->root.root.string, &hide);
2465 if (h->verinfo.vertree != NULL && hide)
2466 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2467 }
2468
2469 return TRUE;
2470 }
2471 \f
2472 /* Read and swap the relocs from the section indicated by SHDR. This
2473 may be either a REL or a RELA section. The relocations are
2474 translated into RELA relocations and stored in INTERNAL_RELOCS,
2475 which should have already been allocated to contain enough space.
2476 The EXTERNAL_RELOCS are a buffer where the external form of the
2477 relocations should be stored.
2478
2479 Returns FALSE if something goes wrong. */
2480
2481 static bfd_boolean
2482 elf_link_read_relocs_from_section (bfd *abfd,
2483 asection *sec,
2484 Elf_Internal_Shdr *shdr,
2485 void *external_relocs,
2486 Elf_Internal_Rela *internal_relocs)
2487 {
2488 const struct elf_backend_data *bed;
2489 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2490 const bfd_byte *erela;
2491 const bfd_byte *erelaend;
2492 Elf_Internal_Rela *irela;
2493 Elf_Internal_Shdr *symtab_hdr;
2494 size_t nsyms;
2495
2496 /* Position ourselves at the start of the section. */
2497 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2498 return FALSE;
2499
2500 /* Read the relocations. */
2501 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2502 return FALSE;
2503
2504 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2505 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2506
2507 bed = get_elf_backend_data (abfd);
2508
2509 /* Convert the external relocations to the internal format. */
2510 if (shdr->sh_entsize == bed->s->sizeof_rel)
2511 swap_in = bed->s->swap_reloc_in;
2512 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2513 swap_in = bed->s->swap_reloca_in;
2514 else
2515 {
2516 bfd_set_error (bfd_error_wrong_format);
2517 return FALSE;
2518 }
2519
2520 erela = (const bfd_byte *) external_relocs;
2521 /* Setting erelaend like this and comparing with <= handles case of
2522 a fuzzed object with sh_size not a multiple of sh_entsize. */
2523 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2524 irela = internal_relocs;
2525 while (erela <= erelaend)
2526 {
2527 bfd_vma r_symndx;
2528
2529 (*swap_in) (abfd, erela, irela);
2530 r_symndx = ELF32_R_SYM (irela->r_info);
2531 if (bed->s->arch_size == 64)
2532 r_symndx >>= 24;
2533 if (nsyms > 0)
2534 {
2535 if ((size_t) r_symndx >= nsyms)
2536 {
2537 _bfd_error_handler
2538 /* xgettext:c-format */
2539 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2540 " for offset %#" PRIx64 " in section `%pA'"),
2541 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2542 (uint64_t) irela->r_offset, sec);
2543 bfd_set_error (bfd_error_bad_value);
2544 return FALSE;
2545 }
2546 }
2547 else if (r_symndx != STN_UNDEF)
2548 {
2549 _bfd_error_handler
2550 /* xgettext:c-format */
2551 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2552 " for offset %#" PRIx64 " in section `%pA'"
2553 " when the object file has no symbol table"),
2554 abfd, (uint64_t) r_symndx,
2555 (uint64_t) irela->r_offset, sec);
2556 bfd_set_error (bfd_error_bad_value);
2557 return FALSE;
2558 }
2559 irela += bed->s->int_rels_per_ext_rel;
2560 erela += shdr->sh_entsize;
2561 }
2562
2563 return TRUE;
2564 }
2565
2566 /* Read and swap the relocs for a section O. They may have been
2567 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2568 not NULL, they are used as buffers to read into. They are known to
2569 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2570 the return value is allocated using either malloc or bfd_alloc,
2571 according to the KEEP_MEMORY argument. If O has two relocation
2572 sections (both REL and RELA relocations), then the REL_HDR
2573 relocations will appear first in INTERNAL_RELOCS, followed by the
2574 RELA_HDR relocations. */
2575
2576 Elf_Internal_Rela *
2577 _bfd_elf_link_read_relocs (bfd *abfd,
2578 asection *o,
2579 void *external_relocs,
2580 Elf_Internal_Rela *internal_relocs,
2581 bfd_boolean keep_memory)
2582 {
2583 void *alloc1 = NULL;
2584 Elf_Internal_Rela *alloc2 = NULL;
2585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2586 struct bfd_elf_section_data *esdo = elf_section_data (o);
2587 Elf_Internal_Rela *internal_rela_relocs;
2588
2589 if (esdo->relocs != NULL)
2590 return esdo->relocs;
2591
2592 if (o->reloc_count == 0)
2593 return NULL;
2594
2595 if (internal_relocs == NULL)
2596 {
2597 bfd_size_type size;
2598
2599 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2600 if (keep_memory)
2601 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2602 else
2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2604 if (internal_relocs == NULL)
2605 goto error_return;
2606 }
2607
2608 if (external_relocs == NULL)
2609 {
2610 bfd_size_type size = 0;
2611
2612 if (esdo->rel.hdr)
2613 size += esdo->rel.hdr->sh_size;
2614 if (esdo->rela.hdr)
2615 size += esdo->rela.hdr->sh_size;
2616
2617 alloc1 = bfd_malloc (size);
2618 if (alloc1 == NULL)
2619 goto error_return;
2620 external_relocs = alloc1;
2621 }
2622
2623 internal_rela_relocs = internal_relocs;
2624 if (esdo->rel.hdr)
2625 {
2626 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2627 external_relocs,
2628 internal_relocs))
2629 goto error_return;
2630 external_relocs = (((bfd_byte *) external_relocs)
2631 + esdo->rel.hdr->sh_size);
2632 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2633 * bed->s->int_rels_per_ext_rel);
2634 }
2635
2636 if (esdo->rela.hdr
2637 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2638 external_relocs,
2639 internal_rela_relocs)))
2640 goto error_return;
2641
2642 /* Cache the results for next time, if we can. */
2643 if (keep_memory)
2644 esdo->relocs = internal_relocs;
2645
2646 if (alloc1 != NULL)
2647 free (alloc1);
2648
2649 /* Don't free alloc2, since if it was allocated we are passing it
2650 back (under the name of internal_relocs). */
2651
2652 return internal_relocs;
2653
2654 error_return:
2655 if (alloc1 != NULL)
2656 free (alloc1);
2657 if (alloc2 != NULL)
2658 {
2659 if (keep_memory)
2660 bfd_release (abfd, alloc2);
2661 else
2662 free (alloc2);
2663 }
2664 return NULL;
2665 }
2666
2667 /* Compute the size of, and allocate space for, REL_HDR which is the
2668 section header for a section containing relocations for O. */
2669
2670 static bfd_boolean
2671 _bfd_elf_link_size_reloc_section (bfd *abfd,
2672 struct bfd_elf_section_reloc_data *reldata)
2673 {
2674 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2675
2676 /* That allows us to calculate the size of the section. */
2677 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2678
2679 /* The contents field must last into write_object_contents, so we
2680 allocate it with bfd_alloc rather than malloc. Also since we
2681 cannot be sure that the contents will actually be filled in,
2682 we zero the allocated space. */
2683 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2684 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2685 return FALSE;
2686
2687 if (reldata->hashes == NULL && reldata->count)
2688 {
2689 struct elf_link_hash_entry **p;
2690
2691 p = ((struct elf_link_hash_entry **)
2692 bfd_zmalloc (reldata->count * sizeof (*p)));
2693 if (p == NULL)
2694 return FALSE;
2695
2696 reldata->hashes = p;
2697 }
2698
2699 return TRUE;
2700 }
2701
2702 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2703 originated from the section given by INPUT_REL_HDR) to the
2704 OUTPUT_BFD. */
2705
2706 bfd_boolean
2707 _bfd_elf_link_output_relocs (bfd *output_bfd,
2708 asection *input_section,
2709 Elf_Internal_Shdr *input_rel_hdr,
2710 Elf_Internal_Rela *internal_relocs,
2711 struct elf_link_hash_entry **rel_hash
2712 ATTRIBUTE_UNUSED)
2713 {
2714 Elf_Internal_Rela *irela;
2715 Elf_Internal_Rela *irelaend;
2716 bfd_byte *erel;
2717 struct bfd_elf_section_reloc_data *output_reldata;
2718 asection *output_section;
2719 const struct elf_backend_data *bed;
2720 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2721 struct bfd_elf_section_data *esdo;
2722
2723 output_section = input_section->output_section;
2724
2725 bed = get_elf_backend_data (output_bfd);
2726 esdo = elf_section_data (output_section);
2727 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2728 {
2729 output_reldata = &esdo->rel;
2730 swap_out = bed->s->swap_reloc_out;
2731 }
2732 else if (esdo->rela.hdr
2733 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2734 {
2735 output_reldata = &esdo->rela;
2736 swap_out = bed->s->swap_reloca_out;
2737 }
2738 else
2739 {
2740 _bfd_error_handler
2741 /* xgettext:c-format */
2742 (_("%pB: relocation size mismatch in %pB section %pA"),
2743 output_bfd, input_section->owner, input_section);
2744 bfd_set_error (bfd_error_wrong_format);
2745 return FALSE;
2746 }
2747
2748 erel = output_reldata->hdr->contents;
2749 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2750 irela = internal_relocs;
2751 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2752 * bed->s->int_rels_per_ext_rel);
2753 while (irela < irelaend)
2754 {
2755 (*swap_out) (output_bfd, irela, erel);
2756 irela += bed->s->int_rels_per_ext_rel;
2757 erel += input_rel_hdr->sh_entsize;
2758 }
2759
2760 /* Bump the counter, so that we know where to add the next set of
2761 relocations. */
2762 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2763
2764 return TRUE;
2765 }
2766 \f
2767 /* Make weak undefined symbols in PIE dynamic. */
2768
2769 bfd_boolean
2770 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2771 struct elf_link_hash_entry *h)
2772 {
2773 if (bfd_link_pie (info)
2774 && h->dynindx == -1
2775 && h->root.type == bfd_link_hash_undefweak)
2776 return bfd_elf_link_record_dynamic_symbol (info, h);
2777
2778 return TRUE;
2779 }
2780
2781 /* Fix up the flags for a symbol. This handles various cases which
2782 can only be fixed after all the input files are seen. This is
2783 currently called by both adjust_dynamic_symbol and
2784 assign_sym_version, which is unnecessary but perhaps more robust in
2785 the face of future changes. */
2786
2787 static bfd_boolean
2788 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2789 struct elf_info_failed *eif)
2790 {
2791 const struct elf_backend_data *bed;
2792
2793 /* If this symbol was mentioned in a non-ELF file, try to set
2794 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2795 permit a non-ELF file to correctly refer to a symbol defined in
2796 an ELF dynamic object. */
2797 if (h->non_elf)
2798 {
2799 while (h->root.type == bfd_link_hash_indirect)
2800 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2801
2802 if (h->root.type != bfd_link_hash_defined
2803 && h->root.type != bfd_link_hash_defweak)
2804 {
2805 h->ref_regular = 1;
2806 h->ref_regular_nonweak = 1;
2807 }
2808 else
2809 {
2810 if (h->root.u.def.section->owner != NULL
2811 && (bfd_get_flavour (h->root.u.def.section->owner)
2812 == bfd_target_elf_flavour))
2813 {
2814 h->ref_regular = 1;
2815 h->ref_regular_nonweak = 1;
2816 }
2817 else
2818 h->def_regular = 1;
2819 }
2820
2821 if (h->dynindx == -1
2822 && (h->def_dynamic
2823 || h->ref_dynamic))
2824 {
2825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2826 {
2827 eif->failed = TRUE;
2828 return FALSE;
2829 }
2830 }
2831 }
2832 else
2833 {
2834 /* Unfortunately, NON_ELF is only correct if the symbol
2835 was first seen in a non-ELF file. Fortunately, if the symbol
2836 was first seen in an ELF file, we're probably OK unless the
2837 symbol was defined in a non-ELF file. Catch that case here.
2838 FIXME: We're still in trouble if the symbol was first seen in
2839 a dynamic object, and then later in a non-ELF regular object. */
2840 if ((h->root.type == bfd_link_hash_defined
2841 || h->root.type == bfd_link_hash_defweak)
2842 && !h->def_regular
2843 && (h->root.u.def.section->owner != NULL
2844 ? (bfd_get_flavour (h->root.u.def.section->owner)
2845 != bfd_target_elf_flavour)
2846 : (bfd_is_abs_section (h->root.u.def.section)
2847 && !h->def_dynamic)))
2848 h->def_regular = 1;
2849 }
2850
2851 /* Backend specific symbol fixup. */
2852 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2853 if (bed->elf_backend_fixup_symbol
2854 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2855 return FALSE;
2856
2857 /* If this is a final link, and the symbol was defined as a common
2858 symbol in a regular object file, and there was no definition in
2859 any dynamic object, then the linker will have allocated space for
2860 the symbol in a common section but the DEF_REGULAR
2861 flag will not have been set. */
2862 if (h->root.type == bfd_link_hash_defined
2863 && !h->def_regular
2864 && h->ref_regular
2865 && !h->def_dynamic
2866 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2867 h->def_regular = 1;
2868
2869 /* Symbols defined in discarded sections shouldn't be dynamic. */
2870 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2871 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2872
2873 /* If a weak undefined symbol has non-default visibility, we also
2874 hide it from the dynamic linker. */
2875 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2876 && h->root.type == bfd_link_hash_undefweak)
2877 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2878
2879 /* A hidden versioned symbol in executable should be forced local if
2880 it is is locally defined, not referenced by shared library and not
2881 exported. */
2882 else if (bfd_link_executable (eif->info)
2883 && h->versioned == versioned_hidden
2884 && !eif->info->export_dynamic
2885 && !h->dynamic
2886 && !h->ref_dynamic
2887 && h->def_regular)
2888 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2889
2890 /* If -Bsymbolic was used (which means to bind references to global
2891 symbols to the definition within the shared object), and this
2892 symbol was defined in a regular object, then it actually doesn't
2893 need a PLT entry. Likewise, if the symbol has non-default
2894 visibility. If the symbol has hidden or internal visibility, we
2895 will force it local. */
2896 else if (h->needs_plt
2897 && bfd_link_pic (eif->info)
2898 && is_elf_hash_table (eif->info->hash)
2899 && (SYMBOLIC_BIND (eif->info, h)
2900 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2901 && h->def_regular)
2902 {
2903 bfd_boolean force_local;
2904
2905 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2906 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2907 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2908 }
2909
2910 /* If this is a weak defined symbol in a dynamic object, and we know
2911 the real definition in the dynamic object, copy interesting flags
2912 over to the real definition. */
2913 if (h->is_weakalias)
2914 {
2915 struct elf_link_hash_entry *def = weakdef (h);
2916
2917 /* If the real definition is defined by a regular object file,
2918 don't do anything special. See the longer description in
2919 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2920 bfd_link_hash_defined as it was when put on the alias list
2921 then it must have originally been a versioned symbol (for
2922 which a non-versioned indirect symbol is created) and later
2923 a definition for the non-versioned symbol is found. In that
2924 case the indirection is flipped with the versioned symbol
2925 becoming an indirect pointing at the non-versioned symbol.
2926 Thus, not an alias any more. */
2927 if (def->def_regular
2928 || def->root.type != bfd_link_hash_defined)
2929 {
2930 h = def;
2931 while ((h = h->u.alias) != def)
2932 h->is_weakalias = 0;
2933 }
2934 else
2935 {
2936 while (h->root.type == bfd_link_hash_indirect)
2937 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2938 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2939 || h->root.type == bfd_link_hash_defweak);
2940 BFD_ASSERT (def->def_dynamic);
2941 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2942 }
2943 }
2944
2945 return TRUE;
2946 }
2947
2948 /* Make the backend pick a good value for a dynamic symbol. This is
2949 called via elf_link_hash_traverse, and also calls itself
2950 recursively. */
2951
2952 static bfd_boolean
2953 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2954 {
2955 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2956 struct elf_link_hash_table *htab;
2957 const struct elf_backend_data *bed;
2958
2959 if (! is_elf_hash_table (eif->info->hash))
2960 return FALSE;
2961
2962 /* Ignore indirect symbols. These are added by the versioning code. */
2963 if (h->root.type == bfd_link_hash_indirect)
2964 return TRUE;
2965
2966 /* Fix the symbol flags. */
2967 if (! _bfd_elf_fix_symbol_flags (h, eif))
2968 return FALSE;
2969
2970 htab = elf_hash_table (eif->info);
2971 bed = get_elf_backend_data (htab->dynobj);
2972
2973 if (h->root.type == bfd_link_hash_undefweak)
2974 {
2975 if (eif->info->dynamic_undefined_weak == 0)
2976 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2977 else if (eif->info->dynamic_undefined_weak > 0
2978 && h->ref_regular
2979 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2980 && !bfd_hide_sym_by_version (eif->info->version_info,
2981 h->root.root.string))
2982 {
2983 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2984 {
2985 eif->failed = TRUE;
2986 return FALSE;
2987 }
2988 }
2989 }
2990
2991 /* If this symbol does not require a PLT entry, and it is not
2992 defined by a dynamic object, or is not referenced by a regular
2993 object, ignore it. We do have to handle a weak defined symbol,
2994 even if no regular object refers to it, if we decided to add it
2995 to the dynamic symbol table. FIXME: Do we normally need to worry
2996 about symbols which are defined by one dynamic object and
2997 referenced by another one? */
2998 if (!h->needs_plt
2999 && h->type != STT_GNU_IFUNC
3000 && (h->def_regular
3001 || !h->def_dynamic
3002 || (!h->ref_regular
3003 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3004 {
3005 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3006 return TRUE;
3007 }
3008
3009 /* If we've already adjusted this symbol, don't do it again. This
3010 can happen via a recursive call. */
3011 if (h->dynamic_adjusted)
3012 return TRUE;
3013
3014 /* Don't look at this symbol again. Note that we must set this
3015 after checking the above conditions, because we may look at a
3016 symbol once, decide not to do anything, and then get called
3017 recursively later after REF_REGULAR is set below. */
3018 h->dynamic_adjusted = 1;
3019
3020 /* If this is a weak definition, and we know a real definition, and
3021 the real symbol is not itself defined by a regular object file,
3022 then get a good value for the real definition. We handle the
3023 real symbol first, for the convenience of the backend routine.
3024
3025 Note that there is a confusing case here. If the real definition
3026 is defined by a regular object file, we don't get the real symbol
3027 from the dynamic object, but we do get the weak symbol. If the
3028 processor backend uses a COPY reloc, then if some routine in the
3029 dynamic object changes the real symbol, we will not see that
3030 change in the corresponding weak symbol. This is the way other
3031 ELF linkers work as well, and seems to be a result of the shared
3032 library model.
3033
3034 I will clarify this issue. Most SVR4 shared libraries define the
3035 variable _timezone and define timezone as a weak synonym. The
3036 tzset call changes _timezone. If you write
3037 extern int timezone;
3038 int _timezone = 5;
3039 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3040 you might expect that, since timezone is a synonym for _timezone,
3041 the same number will print both times. However, if the processor
3042 backend uses a COPY reloc, then actually timezone will be copied
3043 into your process image, and, since you define _timezone
3044 yourself, _timezone will not. Thus timezone and _timezone will
3045 wind up at different memory locations. The tzset call will set
3046 _timezone, leaving timezone unchanged. */
3047
3048 if (h->is_weakalias)
3049 {
3050 struct elf_link_hash_entry *def = weakdef (h);
3051
3052 /* If we get to this point, there is an implicit reference to
3053 the alias by a regular object file via the weak symbol H. */
3054 def->ref_regular = 1;
3055
3056 /* Ensure that the backend adjust_dynamic_symbol function sees
3057 the strong alias before H by recursively calling ourselves. */
3058 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3059 return FALSE;
3060 }
3061
3062 /* If a symbol has no type and no size and does not require a PLT
3063 entry, then we are probably about to do the wrong thing here: we
3064 are probably going to create a COPY reloc for an empty object.
3065 This case can arise when a shared object is built with assembly
3066 code, and the assembly code fails to set the symbol type. */
3067 if (h->size == 0
3068 && h->type == STT_NOTYPE
3069 && !h->needs_plt)
3070 _bfd_error_handler
3071 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3072 h->root.root.string);
3073
3074 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3075 {
3076 eif->failed = TRUE;
3077 return FALSE;
3078 }
3079
3080 return TRUE;
3081 }
3082
3083 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3084 DYNBSS. */
3085
3086 bfd_boolean
3087 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3088 struct elf_link_hash_entry *h,
3089 asection *dynbss)
3090 {
3091 unsigned int power_of_two;
3092 bfd_vma mask;
3093 asection *sec = h->root.u.def.section;
3094
3095 /* The section alignment of the definition is the maximum alignment
3096 requirement of symbols defined in the section. Since we don't
3097 know the symbol alignment requirement, we start with the
3098 maximum alignment and check low bits of the symbol address
3099 for the minimum alignment. */
3100 power_of_two = bfd_section_alignment (sec);
3101 mask = ((bfd_vma) 1 << power_of_two) - 1;
3102 while ((h->root.u.def.value & mask) != 0)
3103 {
3104 mask >>= 1;
3105 --power_of_two;
3106 }
3107
3108 if (power_of_two > bfd_section_alignment (dynbss))
3109 {
3110 /* Adjust the section alignment if needed. */
3111 if (!bfd_set_section_alignment (dynbss, power_of_two))
3112 return FALSE;
3113 }
3114
3115 /* We make sure that the symbol will be aligned properly. */
3116 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3117
3118 /* Define the symbol as being at this point in DYNBSS. */
3119 h->root.u.def.section = dynbss;
3120 h->root.u.def.value = dynbss->size;
3121
3122 /* Increment the size of DYNBSS to make room for the symbol. */
3123 dynbss->size += h->size;
3124
3125 /* No error if extern_protected_data is true. */
3126 if (h->protected_def
3127 && (!info->extern_protected_data
3128 || (info->extern_protected_data < 0
3129 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3130 info->callbacks->einfo
3131 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3132 h->root.root.string);
3133
3134 return TRUE;
3135 }
3136
3137 /* Adjust all external symbols pointing into SEC_MERGE sections
3138 to reflect the object merging within the sections. */
3139
3140 static bfd_boolean
3141 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3142 {
3143 asection *sec;
3144
3145 if ((h->root.type == bfd_link_hash_defined
3146 || h->root.type == bfd_link_hash_defweak)
3147 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3148 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3149 {
3150 bfd *output_bfd = (bfd *) data;
3151
3152 h->root.u.def.value =
3153 _bfd_merged_section_offset (output_bfd,
3154 &h->root.u.def.section,
3155 elf_section_data (sec)->sec_info,
3156 h->root.u.def.value);
3157 }
3158
3159 return TRUE;
3160 }
3161
3162 /* Returns false if the symbol referred to by H should be considered
3163 to resolve local to the current module, and true if it should be
3164 considered to bind dynamically. */
3165
3166 bfd_boolean
3167 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3168 struct bfd_link_info *info,
3169 bfd_boolean not_local_protected)
3170 {
3171 bfd_boolean binding_stays_local_p;
3172 const struct elf_backend_data *bed;
3173 struct elf_link_hash_table *hash_table;
3174
3175 if (h == NULL)
3176 return FALSE;
3177
3178 while (h->root.type == bfd_link_hash_indirect
3179 || h->root.type == bfd_link_hash_warning)
3180 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3181
3182 /* If it was forced local, then clearly it's not dynamic. */
3183 if (h->dynindx == -1)
3184 return FALSE;
3185 if (h->forced_local)
3186 return FALSE;
3187
3188 /* Identify the cases where name binding rules say that a
3189 visible symbol resolves locally. */
3190 binding_stays_local_p = (bfd_link_executable (info)
3191 || SYMBOLIC_BIND (info, h));
3192
3193 switch (ELF_ST_VISIBILITY (h->other))
3194 {
3195 case STV_INTERNAL:
3196 case STV_HIDDEN:
3197 return FALSE;
3198
3199 case STV_PROTECTED:
3200 hash_table = elf_hash_table (info);
3201 if (!is_elf_hash_table (hash_table))
3202 return FALSE;
3203
3204 bed = get_elf_backend_data (hash_table->dynobj);
3205
3206 /* Proper resolution for function pointer equality may require
3207 that these symbols perhaps be resolved dynamically, even though
3208 we should be resolving them to the current module. */
3209 if (!not_local_protected || !bed->is_function_type (h->type))
3210 binding_stays_local_p = TRUE;
3211 break;
3212
3213 default:
3214 break;
3215 }
3216
3217 /* If it isn't defined locally, then clearly it's dynamic. */
3218 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3219 return TRUE;
3220
3221 /* Otherwise, the symbol is dynamic if binding rules don't tell
3222 us that it remains local. */
3223 return !binding_stays_local_p;
3224 }
3225
3226 /* Return true if the symbol referred to by H should be considered
3227 to resolve local to the current module, and false otherwise. Differs
3228 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3229 undefined symbols. The two functions are virtually identical except
3230 for the place where dynindx == -1 is tested. If that test is true,
3231 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3232 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3233 defined symbols.
3234 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3235 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3236 treatment of undefined weak symbols. For those that do not make
3237 undefined weak symbols dynamic, both functions may return false. */
3238
3239 bfd_boolean
3240 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3241 struct bfd_link_info *info,
3242 bfd_boolean local_protected)
3243 {
3244 const struct elf_backend_data *bed;
3245 struct elf_link_hash_table *hash_table;
3246
3247 /* If it's a local sym, of course we resolve locally. */
3248 if (h == NULL)
3249 return TRUE;
3250
3251 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3252 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3253 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3254 return TRUE;
3255
3256 /* Forced local symbols resolve locally. */
3257 if (h->forced_local)
3258 return TRUE;
3259
3260 /* Common symbols that become definitions don't get the DEF_REGULAR
3261 flag set, so test it first, and don't bail out. */
3262 if (ELF_COMMON_DEF_P (h))
3263 /* Do nothing. */;
3264 /* If we don't have a definition in a regular file, then we can't
3265 resolve locally. The sym is either undefined or dynamic. */
3266 else if (!h->def_regular)
3267 return FALSE;
3268
3269 /* Non-dynamic symbols resolve locally. */
3270 if (h->dynindx == -1)
3271 return TRUE;
3272
3273 /* At this point, we know the symbol is defined and dynamic. In an
3274 executable it must resolve locally, likewise when building symbolic
3275 shared libraries. */
3276 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3277 return TRUE;
3278
3279 /* Now deal with defined dynamic symbols in shared libraries. Ones
3280 with default visibility might not resolve locally. */
3281 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3282 return FALSE;
3283
3284 hash_table = elf_hash_table (info);
3285 if (!is_elf_hash_table (hash_table))
3286 return TRUE;
3287
3288 bed = get_elf_backend_data (hash_table->dynobj);
3289
3290 /* If extern_protected_data is false, STV_PROTECTED non-function
3291 symbols are local. */
3292 if ((!info->extern_protected_data
3293 || (info->extern_protected_data < 0
3294 && !bed->extern_protected_data))
3295 && !bed->is_function_type (h->type))
3296 return TRUE;
3297
3298 /* Function pointer equality tests may require that STV_PROTECTED
3299 symbols be treated as dynamic symbols. If the address of a
3300 function not defined in an executable is set to that function's
3301 plt entry in the executable, then the address of the function in
3302 a shared library must also be the plt entry in the executable. */
3303 return local_protected;
3304 }
3305
3306 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3307 aligned. Returns the first TLS output section. */
3308
3309 struct bfd_section *
3310 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3311 {
3312 struct bfd_section *sec, *tls;
3313 unsigned int align = 0;
3314
3315 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3316 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3317 break;
3318 tls = sec;
3319
3320 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3321 if (sec->alignment_power > align)
3322 align = sec->alignment_power;
3323
3324 elf_hash_table (info)->tls_sec = tls;
3325
3326 /* Ensure the alignment of the first section is the largest alignment,
3327 so that the tls segment starts aligned. */
3328 if (tls != NULL)
3329 tls->alignment_power = align;
3330
3331 return tls;
3332 }
3333
3334 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3335 static bfd_boolean
3336 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3337 Elf_Internal_Sym *sym)
3338 {
3339 const struct elf_backend_data *bed;
3340
3341 /* Local symbols do not count, but target specific ones might. */
3342 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3343 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3344 return FALSE;
3345
3346 bed = get_elf_backend_data (abfd);
3347 /* Function symbols do not count. */
3348 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3349 return FALSE;
3350
3351 /* If the section is undefined, then so is the symbol. */
3352 if (sym->st_shndx == SHN_UNDEF)
3353 return FALSE;
3354
3355 /* If the symbol is defined in the common section, then
3356 it is a common definition and so does not count. */
3357 if (bed->common_definition (sym))
3358 return FALSE;
3359
3360 /* If the symbol is in a target specific section then we
3361 must rely upon the backend to tell us what it is. */
3362 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3363 /* FIXME - this function is not coded yet:
3364
3365 return _bfd_is_global_symbol_definition (abfd, sym);
3366
3367 Instead for now assume that the definition is not global,
3368 Even if this is wrong, at least the linker will behave
3369 in the same way that it used to do. */
3370 return FALSE;
3371
3372 return TRUE;
3373 }
3374
3375 /* Search the symbol table of the archive element of the archive ABFD
3376 whose archive map contains a mention of SYMDEF, and determine if
3377 the symbol is defined in this element. */
3378 static bfd_boolean
3379 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3380 {
3381 Elf_Internal_Shdr * hdr;
3382 size_t symcount;
3383 size_t extsymcount;
3384 size_t extsymoff;
3385 Elf_Internal_Sym *isymbuf;
3386 Elf_Internal_Sym *isym;
3387 Elf_Internal_Sym *isymend;
3388 bfd_boolean result;
3389
3390 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3391 if (abfd == NULL)
3392 return FALSE;
3393
3394 if (! bfd_check_format (abfd, bfd_object))
3395 return FALSE;
3396
3397 /* Select the appropriate symbol table. If we don't know if the
3398 object file is an IR object, give linker LTO plugin a chance to
3399 get the correct symbol table. */
3400 if (abfd->plugin_format == bfd_plugin_yes
3401 #if BFD_SUPPORTS_PLUGINS
3402 || (abfd->plugin_format == bfd_plugin_unknown
3403 && bfd_link_plugin_object_p (abfd))
3404 #endif
3405 )
3406 {
3407 /* Use the IR symbol table if the object has been claimed by
3408 plugin. */
3409 abfd = abfd->plugin_dummy_bfd;
3410 hdr = &elf_tdata (abfd)->symtab_hdr;
3411 }
3412 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3413 hdr = &elf_tdata (abfd)->symtab_hdr;
3414 else
3415 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3416
3417 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3418
3419 /* The sh_info field of the symtab header tells us where the
3420 external symbols start. We don't care about the local symbols. */
3421 if (elf_bad_symtab (abfd))
3422 {
3423 extsymcount = symcount;
3424 extsymoff = 0;
3425 }
3426 else
3427 {
3428 extsymcount = symcount - hdr->sh_info;
3429 extsymoff = hdr->sh_info;
3430 }
3431
3432 if (extsymcount == 0)
3433 return FALSE;
3434
3435 /* Read in the symbol table. */
3436 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3437 NULL, NULL, NULL);
3438 if (isymbuf == NULL)
3439 return FALSE;
3440
3441 /* Scan the symbol table looking for SYMDEF. */
3442 result = FALSE;
3443 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3444 {
3445 const char *name;
3446
3447 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3448 isym->st_name);
3449 if (name == NULL)
3450 break;
3451
3452 if (strcmp (name, symdef->name) == 0)
3453 {
3454 result = is_global_data_symbol_definition (abfd, isym);
3455 break;
3456 }
3457 }
3458
3459 free (isymbuf);
3460
3461 return result;
3462 }
3463 \f
3464 /* Add an entry to the .dynamic table. */
3465
3466 bfd_boolean
3467 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3468 bfd_vma tag,
3469 bfd_vma val)
3470 {
3471 struct elf_link_hash_table *hash_table;
3472 const struct elf_backend_data *bed;
3473 asection *s;
3474 bfd_size_type newsize;
3475 bfd_byte *newcontents;
3476 Elf_Internal_Dyn dyn;
3477
3478 hash_table = elf_hash_table (info);
3479 if (! is_elf_hash_table (hash_table))
3480 return FALSE;
3481
3482 if (tag == DT_RELA || tag == DT_REL)
3483 hash_table->dynamic_relocs = TRUE;
3484
3485 bed = get_elf_backend_data (hash_table->dynobj);
3486 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3487 BFD_ASSERT (s != NULL);
3488
3489 newsize = s->size + bed->s->sizeof_dyn;
3490 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3491 if (newcontents == NULL)
3492 return FALSE;
3493
3494 dyn.d_tag = tag;
3495 dyn.d_un.d_val = val;
3496 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3497
3498 s->size = newsize;
3499 s->contents = newcontents;
3500
3501 return TRUE;
3502 }
3503
3504 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3505 otherwise just check whether one already exists. Returns -1 on error,
3506 1 if a DT_NEEDED tag already exists, and 0 on success. */
3507
3508 static int
3509 elf_add_dt_needed_tag (bfd *abfd,
3510 struct bfd_link_info *info,
3511 const char *soname,
3512 bfd_boolean do_it)
3513 {
3514 struct elf_link_hash_table *hash_table;
3515 size_t strindex;
3516
3517 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3518 return -1;
3519
3520 hash_table = elf_hash_table (info);
3521 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3522 if (strindex == (size_t) -1)
3523 return -1;
3524
3525 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3526 {
3527 asection *sdyn;
3528 const struct elf_backend_data *bed;
3529 bfd_byte *extdyn;
3530
3531 bed = get_elf_backend_data (hash_table->dynobj);
3532 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3533 if (sdyn != NULL)
3534 for (extdyn = sdyn->contents;
3535 extdyn < sdyn->contents + sdyn->size;
3536 extdyn += bed->s->sizeof_dyn)
3537 {
3538 Elf_Internal_Dyn dyn;
3539
3540 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3541 if (dyn.d_tag == DT_NEEDED
3542 && dyn.d_un.d_val == strindex)
3543 {
3544 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3545 return 1;
3546 }
3547 }
3548 }
3549
3550 if (do_it)
3551 {
3552 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3553 return -1;
3554
3555 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3556 return -1;
3557 }
3558 else
3559 /* We were just checking for existence of the tag. */
3560 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3561
3562 return 0;
3563 }
3564
3565 /* Return true if SONAME is on the needed list between NEEDED and STOP
3566 (or the end of list if STOP is NULL), and needed by a library that
3567 will be loaded. */
3568
3569 static bfd_boolean
3570 on_needed_list (const char *soname,
3571 struct bfd_link_needed_list *needed,
3572 struct bfd_link_needed_list *stop)
3573 {
3574 struct bfd_link_needed_list *look;
3575 for (look = needed; look != stop; look = look->next)
3576 if (strcmp (soname, look->name) == 0
3577 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3578 /* If needed by a library that itself is not directly
3579 needed, recursively check whether that library is
3580 indirectly needed. Since we add DT_NEEDED entries to
3581 the end of the list, library dependencies appear after
3582 the library. Therefore search prior to the current
3583 LOOK, preventing possible infinite recursion. */
3584 || on_needed_list (elf_dt_name (look->by), needed, look)))
3585 return TRUE;
3586
3587 return FALSE;
3588 }
3589
3590 /* Sort symbol by value, section, size, and type. */
3591 static int
3592 elf_sort_symbol (const void *arg1, const void *arg2)
3593 {
3594 const struct elf_link_hash_entry *h1;
3595 const struct elf_link_hash_entry *h2;
3596 bfd_signed_vma vdiff;
3597 int sdiff;
3598 const char *n1;
3599 const char *n2;
3600
3601 h1 = *(const struct elf_link_hash_entry **) arg1;
3602 h2 = *(const struct elf_link_hash_entry **) arg2;
3603 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3604 if (vdiff != 0)
3605 return vdiff > 0 ? 1 : -1;
3606
3607 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3608 if (sdiff != 0)
3609 return sdiff;
3610
3611 /* Sort so that sized symbols are selected over zero size symbols. */
3612 vdiff = h1->size - h2->size;
3613 if (vdiff != 0)
3614 return vdiff > 0 ? 1 : -1;
3615
3616 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3617 if (h1->type != h2->type)
3618 return h1->type - h2->type;
3619
3620 /* If symbols are properly sized and typed, and multiple strong
3621 aliases are not defined in a shared library by the user we
3622 shouldn't get here. Unfortunately linker script symbols like
3623 __bss_start sometimes match a user symbol defined at the start of
3624 .bss without proper size and type. We'd like to preference the
3625 user symbol over reserved system symbols. Sort on leading
3626 underscores. */
3627 n1 = h1->root.root.string;
3628 n2 = h2->root.root.string;
3629 while (*n1 == *n2)
3630 {
3631 if (*n1 == 0)
3632 break;
3633 ++n1;
3634 ++n2;
3635 }
3636 if (*n1 == '_')
3637 return -1;
3638 if (*n2 == '_')
3639 return 1;
3640
3641 /* Final sort on name selects user symbols like '_u' over reserved
3642 system symbols like '_Z' and also will avoid qsort instability. */
3643 return *n1 - *n2;
3644 }
3645
3646 /* This function is used to adjust offsets into .dynstr for
3647 dynamic symbols. This is called via elf_link_hash_traverse. */
3648
3649 static bfd_boolean
3650 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3651 {
3652 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3653
3654 if (h->dynindx != -1)
3655 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3656 return TRUE;
3657 }
3658
3659 /* Assign string offsets in .dynstr, update all structures referencing
3660 them. */
3661
3662 static bfd_boolean
3663 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3664 {
3665 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3666 struct elf_link_local_dynamic_entry *entry;
3667 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3668 bfd *dynobj = hash_table->dynobj;
3669 asection *sdyn;
3670 bfd_size_type size;
3671 const struct elf_backend_data *bed;
3672 bfd_byte *extdyn;
3673
3674 _bfd_elf_strtab_finalize (dynstr);
3675 size = _bfd_elf_strtab_size (dynstr);
3676
3677 bed = get_elf_backend_data (dynobj);
3678 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3679 BFD_ASSERT (sdyn != NULL);
3680
3681 /* Update all .dynamic entries referencing .dynstr strings. */
3682 for (extdyn = sdyn->contents;
3683 extdyn < sdyn->contents + sdyn->size;
3684 extdyn += bed->s->sizeof_dyn)
3685 {
3686 Elf_Internal_Dyn dyn;
3687
3688 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3689 switch (dyn.d_tag)
3690 {
3691 case DT_STRSZ:
3692 dyn.d_un.d_val = size;
3693 break;
3694 case DT_NEEDED:
3695 case DT_SONAME:
3696 case DT_RPATH:
3697 case DT_RUNPATH:
3698 case DT_FILTER:
3699 case DT_AUXILIARY:
3700 case DT_AUDIT:
3701 case DT_DEPAUDIT:
3702 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3703 break;
3704 default:
3705 continue;
3706 }
3707 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3708 }
3709
3710 /* Now update local dynamic symbols. */
3711 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3712 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3713 entry->isym.st_name);
3714
3715 /* And the rest of dynamic symbols. */
3716 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3717
3718 /* Adjust version definitions. */
3719 if (elf_tdata (output_bfd)->cverdefs)
3720 {
3721 asection *s;
3722 bfd_byte *p;
3723 size_t i;
3724 Elf_Internal_Verdef def;
3725 Elf_Internal_Verdaux defaux;
3726
3727 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3728 p = s->contents;
3729 do
3730 {
3731 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3732 &def);
3733 p += sizeof (Elf_External_Verdef);
3734 if (def.vd_aux != sizeof (Elf_External_Verdef))
3735 continue;
3736 for (i = 0; i < def.vd_cnt; ++i)
3737 {
3738 _bfd_elf_swap_verdaux_in (output_bfd,
3739 (Elf_External_Verdaux *) p, &defaux);
3740 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3741 defaux.vda_name);
3742 _bfd_elf_swap_verdaux_out (output_bfd,
3743 &defaux, (Elf_External_Verdaux *) p);
3744 p += sizeof (Elf_External_Verdaux);
3745 }
3746 }
3747 while (def.vd_next);
3748 }
3749
3750 /* Adjust version references. */
3751 if (elf_tdata (output_bfd)->verref)
3752 {
3753 asection *s;
3754 bfd_byte *p;
3755 size_t i;
3756 Elf_Internal_Verneed need;
3757 Elf_Internal_Vernaux needaux;
3758
3759 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3760 p = s->contents;
3761 do
3762 {
3763 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3764 &need);
3765 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3766 _bfd_elf_swap_verneed_out (output_bfd, &need,
3767 (Elf_External_Verneed *) p);
3768 p += sizeof (Elf_External_Verneed);
3769 for (i = 0; i < need.vn_cnt; ++i)
3770 {
3771 _bfd_elf_swap_vernaux_in (output_bfd,
3772 (Elf_External_Vernaux *) p, &needaux);
3773 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3774 needaux.vna_name);
3775 _bfd_elf_swap_vernaux_out (output_bfd,
3776 &needaux,
3777 (Elf_External_Vernaux *) p);
3778 p += sizeof (Elf_External_Vernaux);
3779 }
3780 }
3781 while (need.vn_next);
3782 }
3783
3784 return TRUE;
3785 }
3786 \f
3787 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3788 The default is to only match when the INPUT and OUTPUT are exactly
3789 the same target. */
3790
3791 bfd_boolean
3792 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3793 const bfd_target *output)
3794 {
3795 return input == output;
3796 }
3797
3798 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3799 This version is used when different targets for the same architecture
3800 are virtually identical. */
3801
3802 bfd_boolean
3803 _bfd_elf_relocs_compatible (const bfd_target *input,
3804 const bfd_target *output)
3805 {
3806 const struct elf_backend_data *obed, *ibed;
3807
3808 if (input == output)
3809 return TRUE;
3810
3811 ibed = xvec_get_elf_backend_data (input);
3812 obed = xvec_get_elf_backend_data (output);
3813
3814 if (ibed->arch != obed->arch)
3815 return FALSE;
3816
3817 /* If both backends are using this function, deem them compatible. */
3818 return ibed->relocs_compatible == obed->relocs_compatible;
3819 }
3820
3821 /* Make a special call to the linker "notice" function to tell it that
3822 we are about to handle an as-needed lib, or have finished
3823 processing the lib. */
3824
3825 bfd_boolean
3826 _bfd_elf_notice_as_needed (bfd *ibfd,
3827 struct bfd_link_info *info,
3828 enum notice_asneeded_action act)
3829 {
3830 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3831 }
3832
3833 /* Check relocations an ELF object file. */
3834
3835 bfd_boolean
3836 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3837 {
3838 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3839 struct elf_link_hash_table *htab = elf_hash_table (info);
3840
3841 /* If this object is the same format as the output object, and it is
3842 not a shared library, then let the backend look through the
3843 relocs.
3844
3845 This is required to build global offset table entries and to
3846 arrange for dynamic relocs. It is not required for the
3847 particular common case of linking non PIC code, even when linking
3848 against shared libraries, but unfortunately there is no way of
3849 knowing whether an object file has been compiled PIC or not.
3850 Looking through the relocs is not particularly time consuming.
3851 The problem is that we must either (1) keep the relocs in memory,
3852 which causes the linker to require additional runtime memory or
3853 (2) read the relocs twice from the input file, which wastes time.
3854 This would be a good case for using mmap.
3855
3856 I have no idea how to handle linking PIC code into a file of a
3857 different format. It probably can't be done. */
3858 if ((abfd->flags & DYNAMIC) == 0
3859 && is_elf_hash_table (htab)
3860 && bed->check_relocs != NULL
3861 && elf_object_id (abfd) == elf_hash_table_id (htab)
3862 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3863 {
3864 asection *o;
3865
3866 for (o = abfd->sections; o != NULL; o = o->next)
3867 {
3868 Elf_Internal_Rela *internal_relocs;
3869 bfd_boolean ok;
3870
3871 /* Don't check relocations in excluded sections. */
3872 if ((o->flags & SEC_RELOC) == 0
3873 || (o->flags & SEC_EXCLUDE) != 0
3874 || o->reloc_count == 0
3875 || ((info->strip == strip_all || info->strip == strip_debugger)
3876 && (o->flags & SEC_DEBUGGING) != 0)
3877 || bfd_is_abs_section (o->output_section))
3878 continue;
3879
3880 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3881 info->keep_memory);
3882 if (internal_relocs == NULL)
3883 return FALSE;
3884
3885 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3886
3887 if (elf_section_data (o)->relocs != internal_relocs)
3888 free (internal_relocs);
3889
3890 if (! ok)
3891 return FALSE;
3892 }
3893 }
3894
3895 return TRUE;
3896 }
3897
3898 /* Add symbols from an ELF object file to the linker hash table. */
3899
3900 static bfd_boolean
3901 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3902 {
3903 Elf_Internal_Ehdr *ehdr;
3904 Elf_Internal_Shdr *hdr;
3905 size_t symcount;
3906 size_t extsymcount;
3907 size_t extsymoff;
3908 struct elf_link_hash_entry **sym_hash;
3909 bfd_boolean dynamic;
3910 Elf_External_Versym *extversym = NULL;
3911 Elf_External_Versym *extversym_end = NULL;
3912 Elf_External_Versym *ever;
3913 struct elf_link_hash_entry *weaks;
3914 struct elf_link_hash_entry **nondeflt_vers = NULL;
3915 size_t nondeflt_vers_cnt = 0;
3916 Elf_Internal_Sym *isymbuf = NULL;
3917 Elf_Internal_Sym *isym;
3918 Elf_Internal_Sym *isymend;
3919 const struct elf_backend_data *bed;
3920 bfd_boolean add_needed;
3921 struct elf_link_hash_table *htab;
3922 bfd_size_type amt;
3923 void *alloc_mark = NULL;
3924 struct bfd_hash_entry **old_table = NULL;
3925 unsigned int old_size = 0;
3926 unsigned int old_count = 0;
3927 void *old_tab = NULL;
3928 void *old_ent;
3929 struct bfd_link_hash_entry *old_undefs = NULL;
3930 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3931 void *old_strtab = NULL;
3932 size_t tabsize = 0;
3933 asection *s;
3934 bfd_boolean just_syms;
3935
3936 htab = elf_hash_table (info);
3937 bed = get_elf_backend_data (abfd);
3938
3939 if ((abfd->flags & DYNAMIC) == 0)
3940 dynamic = FALSE;
3941 else
3942 {
3943 dynamic = TRUE;
3944
3945 /* You can't use -r against a dynamic object. Also, there's no
3946 hope of using a dynamic object which does not exactly match
3947 the format of the output file. */
3948 if (bfd_link_relocatable (info)
3949 || !is_elf_hash_table (htab)
3950 || info->output_bfd->xvec != abfd->xvec)
3951 {
3952 if (bfd_link_relocatable (info))
3953 bfd_set_error (bfd_error_invalid_operation);
3954 else
3955 bfd_set_error (bfd_error_wrong_format);
3956 goto error_return;
3957 }
3958 }
3959
3960 ehdr = elf_elfheader (abfd);
3961 if (info->warn_alternate_em
3962 && bed->elf_machine_code != ehdr->e_machine
3963 && ((bed->elf_machine_alt1 != 0
3964 && ehdr->e_machine == bed->elf_machine_alt1)
3965 || (bed->elf_machine_alt2 != 0
3966 && ehdr->e_machine == bed->elf_machine_alt2)))
3967 _bfd_error_handler
3968 /* xgettext:c-format */
3969 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3970 ehdr->e_machine, abfd, bed->elf_machine_code);
3971
3972 /* As a GNU extension, any input sections which are named
3973 .gnu.warning.SYMBOL are treated as warning symbols for the given
3974 symbol. This differs from .gnu.warning sections, which generate
3975 warnings when they are included in an output file. */
3976 /* PR 12761: Also generate this warning when building shared libraries. */
3977 for (s = abfd->sections; s != NULL; s = s->next)
3978 {
3979 const char *name;
3980
3981 name = bfd_section_name (s);
3982 if (CONST_STRNEQ (name, ".gnu.warning."))
3983 {
3984 char *msg;
3985 bfd_size_type sz;
3986
3987 name += sizeof ".gnu.warning." - 1;
3988
3989 /* If this is a shared object, then look up the symbol
3990 in the hash table. If it is there, and it is already
3991 been defined, then we will not be using the entry
3992 from this shared object, so we don't need to warn.
3993 FIXME: If we see the definition in a regular object
3994 later on, we will warn, but we shouldn't. The only
3995 fix is to keep track of what warnings we are supposed
3996 to emit, and then handle them all at the end of the
3997 link. */
3998 if (dynamic)
3999 {
4000 struct elf_link_hash_entry *h;
4001
4002 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4003
4004 /* FIXME: What about bfd_link_hash_common? */
4005 if (h != NULL
4006 && (h->root.type == bfd_link_hash_defined
4007 || h->root.type == bfd_link_hash_defweak))
4008 continue;
4009 }
4010
4011 sz = s->size;
4012 msg = (char *) bfd_alloc (abfd, sz + 1);
4013 if (msg == NULL)
4014 goto error_return;
4015
4016 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4017 goto error_return;
4018
4019 msg[sz] = '\0';
4020
4021 if (! (_bfd_generic_link_add_one_symbol
4022 (info, abfd, name, BSF_WARNING, s, 0, msg,
4023 FALSE, bed->collect, NULL)))
4024 goto error_return;
4025
4026 if (bfd_link_executable (info))
4027 {
4028 /* Clobber the section size so that the warning does
4029 not get copied into the output file. */
4030 s->size = 0;
4031
4032 /* Also set SEC_EXCLUDE, so that symbols defined in
4033 the warning section don't get copied to the output. */
4034 s->flags |= SEC_EXCLUDE;
4035 }
4036 }
4037 }
4038
4039 just_syms = ((s = abfd->sections) != NULL
4040 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4041
4042 add_needed = TRUE;
4043 if (! dynamic)
4044 {
4045 /* If we are creating a shared library, create all the dynamic
4046 sections immediately. We need to attach them to something,
4047 so we attach them to this BFD, provided it is the right
4048 format and is not from ld --just-symbols. Always create the
4049 dynamic sections for -E/--dynamic-list. FIXME: If there
4050 are no input BFD's of the same format as the output, we can't
4051 make a shared library. */
4052 if (!just_syms
4053 && (bfd_link_pic (info)
4054 || (!bfd_link_relocatable (info)
4055 && info->nointerp
4056 && (info->export_dynamic || info->dynamic)))
4057 && is_elf_hash_table (htab)
4058 && info->output_bfd->xvec == abfd->xvec
4059 && !htab->dynamic_sections_created)
4060 {
4061 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4062 goto error_return;
4063 }
4064 }
4065 else if (!is_elf_hash_table (htab))
4066 goto error_return;
4067 else
4068 {
4069 const char *soname = NULL;
4070 char *audit = NULL;
4071 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4072 const Elf_Internal_Phdr *phdr;
4073 int ret;
4074
4075 /* ld --just-symbols and dynamic objects don't mix very well.
4076 ld shouldn't allow it. */
4077 if (just_syms)
4078 abort ();
4079
4080 /* If this dynamic lib was specified on the command line with
4081 --as-needed in effect, then we don't want to add a DT_NEEDED
4082 tag unless the lib is actually used. Similary for libs brought
4083 in by another lib's DT_NEEDED. When --no-add-needed is used
4084 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4085 any dynamic library in DT_NEEDED tags in the dynamic lib at
4086 all. */
4087 add_needed = (elf_dyn_lib_class (abfd)
4088 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4089 | DYN_NO_NEEDED)) == 0;
4090
4091 s = bfd_get_section_by_name (abfd, ".dynamic");
4092 if (s != NULL)
4093 {
4094 bfd_byte *dynbuf;
4095 bfd_byte *extdyn;
4096 unsigned int elfsec;
4097 unsigned long shlink;
4098
4099 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4100 {
4101 error_free_dyn:
4102 free (dynbuf);
4103 goto error_return;
4104 }
4105
4106 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4107 if (elfsec == SHN_BAD)
4108 goto error_free_dyn;
4109 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4110
4111 for (extdyn = dynbuf;
4112 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4113 extdyn += bed->s->sizeof_dyn)
4114 {
4115 Elf_Internal_Dyn dyn;
4116
4117 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4118 if (dyn.d_tag == DT_SONAME)
4119 {
4120 unsigned int tagv = dyn.d_un.d_val;
4121 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4122 if (soname == NULL)
4123 goto error_free_dyn;
4124 }
4125 if (dyn.d_tag == DT_NEEDED)
4126 {
4127 struct bfd_link_needed_list *n, **pn;
4128 char *fnm, *anm;
4129 unsigned int tagv = dyn.d_un.d_val;
4130
4131 amt = sizeof (struct bfd_link_needed_list);
4132 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4133 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4134 if (n == NULL || fnm == NULL)
4135 goto error_free_dyn;
4136 amt = strlen (fnm) + 1;
4137 anm = (char *) bfd_alloc (abfd, amt);
4138 if (anm == NULL)
4139 goto error_free_dyn;
4140 memcpy (anm, fnm, amt);
4141 n->name = anm;
4142 n->by = abfd;
4143 n->next = NULL;
4144 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4145 ;
4146 *pn = n;
4147 }
4148 if (dyn.d_tag == DT_RUNPATH)
4149 {
4150 struct bfd_link_needed_list *n, **pn;
4151 char *fnm, *anm;
4152 unsigned int tagv = dyn.d_un.d_val;
4153
4154 amt = sizeof (struct bfd_link_needed_list);
4155 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4156 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4157 if (n == NULL || fnm == NULL)
4158 goto error_free_dyn;
4159 amt = strlen (fnm) + 1;
4160 anm = (char *) bfd_alloc (abfd, amt);
4161 if (anm == NULL)
4162 goto error_free_dyn;
4163 memcpy (anm, fnm, amt);
4164 n->name = anm;
4165 n->by = abfd;
4166 n->next = NULL;
4167 for (pn = & runpath;
4168 *pn != NULL;
4169 pn = &(*pn)->next)
4170 ;
4171 *pn = n;
4172 }
4173 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4174 if (!runpath && dyn.d_tag == DT_RPATH)
4175 {
4176 struct bfd_link_needed_list *n, **pn;
4177 char *fnm, *anm;
4178 unsigned int tagv = dyn.d_un.d_val;
4179
4180 amt = sizeof (struct bfd_link_needed_list);
4181 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4182 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4183 if (n == NULL || fnm == NULL)
4184 goto error_free_dyn;
4185 amt = strlen (fnm) + 1;
4186 anm = (char *) bfd_alloc (abfd, amt);
4187 if (anm == NULL)
4188 goto error_free_dyn;
4189 memcpy (anm, fnm, amt);
4190 n->name = anm;
4191 n->by = abfd;
4192 n->next = NULL;
4193 for (pn = & rpath;
4194 *pn != NULL;
4195 pn = &(*pn)->next)
4196 ;
4197 *pn = n;
4198 }
4199 if (dyn.d_tag == DT_AUDIT)
4200 {
4201 unsigned int tagv = dyn.d_un.d_val;
4202 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4203 }
4204 }
4205
4206 free (dynbuf);
4207 }
4208
4209 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4210 frees all more recently bfd_alloc'd blocks as well. */
4211 if (runpath)
4212 rpath = runpath;
4213
4214 if (rpath)
4215 {
4216 struct bfd_link_needed_list **pn;
4217 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4218 ;
4219 *pn = rpath;
4220 }
4221
4222 /* If we have a PT_GNU_RELRO program header, mark as read-only
4223 all sections contained fully therein. This makes relro
4224 shared library sections appear as they will at run-time. */
4225 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4226 while (phdr-- > elf_tdata (abfd)->phdr)
4227 if (phdr->p_type == PT_GNU_RELRO)
4228 {
4229 for (s = abfd->sections; s != NULL; s = s->next)
4230 if ((s->flags & SEC_ALLOC) != 0
4231 && s->vma >= phdr->p_vaddr
4232 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4233 s->flags |= SEC_READONLY;
4234 break;
4235 }
4236
4237 /* We do not want to include any of the sections in a dynamic
4238 object in the output file. We hack by simply clobbering the
4239 list of sections in the BFD. This could be handled more
4240 cleanly by, say, a new section flag; the existing
4241 SEC_NEVER_LOAD flag is not the one we want, because that one
4242 still implies that the section takes up space in the output
4243 file. */
4244 bfd_section_list_clear (abfd);
4245
4246 /* Find the name to use in a DT_NEEDED entry that refers to this
4247 object. If the object has a DT_SONAME entry, we use it.
4248 Otherwise, if the generic linker stuck something in
4249 elf_dt_name, we use that. Otherwise, we just use the file
4250 name. */
4251 if (soname == NULL || *soname == '\0')
4252 {
4253 soname = elf_dt_name (abfd);
4254 if (soname == NULL || *soname == '\0')
4255 soname = bfd_get_filename (abfd);
4256 }
4257
4258 /* Save the SONAME because sometimes the linker emulation code
4259 will need to know it. */
4260 elf_dt_name (abfd) = soname;
4261
4262 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4263 if (ret < 0)
4264 goto error_return;
4265
4266 /* If we have already included this dynamic object in the
4267 link, just ignore it. There is no reason to include a
4268 particular dynamic object more than once. */
4269 if (ret > 0)
4270 return TRUE;
4271
4272 /* Save the DT_AUDIT entry for the linker emulation code. */
4273 elf_dt_audit (abfd) = audit;
4274 }
4275
4276 /* If this is a dynamic object, we always link against the .dynsym
4277 symbol table, not the .symtab symbol table. The dynamic linker
4278 will only see the .dynsym symbol table, so there is no reason to
4279 look at .symtab for a dynamic object. */
4280
4281 if (! dynamic || elf_dynsymtab (abfd) == 0)
4282 hdr = &elf_tdata (abfd)->symtab_hdr;
4283 else
4284 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4285
4286 symcount = hdr->sh_size / bed->s->sizeof_sym;
4287
4288 /* The sh_info field of the symtab header tells us where the
4289 external symbols start. We don't care about the local symbols at
4290 this point. */
4291 if (elf_bad_symtab (abfd))
4292 {
4293 extsymcount = symcount;
4294 extsymoff = 0;
4295 }
4296 else
4297 {
4298 extsymcount = symcount - hdr->sh_info;
4299 extsymoff = hdr->sh_info;
4300 }
4301
4302 sym_hash = elf_sym_hashes (abfd);
4303 if (extsymcount != 0)
4304 {
4305 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4306 NULL, NULL, NULL);
4307 if (isymbuf == NULL)
4308 goto error_return;
4309
4310 if (sym_hash == NULL)
4311 {
4312 /* We store a pointer to the hash table entry for each
4313 external symbol. */
4314 amt = extsymcount;
4315 amt *= sizeof (struct elf_link_hash_entry *);
4316 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4317 if (sym_hash == NULL)
4318 goto error_free_sym;
4319 elf_sym_hashes (abfd) = sym_hash;
4320 }
4321 }
4322
4323 if (dynamic)
4324 {
4325 /* Read in any version definitions. */
4326 if (!_bfd_elf_slurp_version_tables (abfd,
4327 info->default_imported_symver))
4328 goto error_free_sym;
4329
4330 /* Read in the symbol versions, but don't bother to convert them
4331 to internal format. */
4332 if (elf_dynversym (abfd) != 0)
4333 {
4334 Elf_Internal_Shdr *versymhdr;
4335
4336 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4337 amt = versymhdr->sh_size;
4338 extversym = (Elf_External_Versym *) bfd_malloc (amt);
4339 if (extversym == NULL)
4340 goto error_free_sym;
4341 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4342 || bfd_bread (extversym, amt, abfd) != amt)
4343 goto error_free_vers;
4344 extversym_end = extversym + (amt / sizeof (* extversym));
4345 }
4346 }
4347
4348 /* If we are loading an as-needed shared lib, save the symbol table
4349 state before we start adding symbols. If the lib turns out
4350 to be unneeded, restore the state. */
4351 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4352 {
4353 unsigned int i;
4354 size_t entsize;
4355
4356 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4357 {
4358 struct bfd_hash_entry *p;
4359 struct elf_link_hash_entry *h;
4360
4361 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4362 {
4363 h = (struct elf_link_hash_entry *) p;
4364 entsize += htab->root.table.entsize;
4365 if (h->root.type == bfd_link_hash_warning)
4366 entsize += htab->root.table.entsize;
4367 }
4368 }
4369
4370 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4371 old_tab = bfd_malloc (tabsize + entsize);
4372 if (old_tab == NULL)
4373 goto error_free_vers;
4374
4375 /* Remember the current objalloc pointer, so that all mem for
4376 symbols added can later be reclaimed. */
4377 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4378 if (alloc_mark == NULL)
4379 goto error_free_vers;
4380
4381 /* Make a special call to the linker "notice" function to
4382 tell it that we are about to handle an as-needed lib. */
4383 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4384 goto error_free_vers;
4385
4386 /* Clone the symbol table. Remember some pointers into the
4387 symbol table, and dynamic symbol count. */
4388 old_ent = (char *) old_tab + tabsize;
4389 memcpy (old_tab, htab->root.table.table, tabsize);
4390 old_undefs = htab->root.undefs;
4391 old_undefs_tail = htab->root.undefs_tail;
4392 old_table = htab->root.table.table;
4393 old_size = htab->root.table.size;
4394 old_count = htab->root.table.count;
4395 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4396 if (old_strtab == NULL)
4397 goto error_free_vers;
4398
4399 for (i = 0; i < htab->root.table.size; i++)
4400 {
4401 struct bfd_hash_entry *p;
4402 struct elf_link_hash_entry *h;
4403
4404 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4405 {
4406 memcpy (old_ent, p, htab->root.table.entsize);
4407 old_ent = (char *) old_ent + htab->root.table.entsize;
4408 h = (struct elf_link_hash_entry *) p;
4409 if (h->root.type == bfd_link_hash_warning)
4410 {
4411 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4412 old_ent = (char *) old_ent + htab->root.table.entsize;
4413 }
4414 }
4415 }
4416 }
4417
4418 weaks = NULL;
4419 if (extversym == NULL)
4420 ever = NULL;
4421 else if (extversym + extsymoff < extversym_end)
4422 ever = extversym + extsymoff;
4423 else
4424 {
4425 /* xgettext:c-format */
4426 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4427 abfd, (long) extsymoff,
4428 (long) (extversym_end - extversym) / sizeof (* extversym));
4429 bfd_set_error (bfd_error_bad_value);
4430 goto error_free_vers;
4431 }
4432
4433 if (!bfd_link_relocatable (info)
4434 && abfd->lto_slim_object)
4435 {
4436 _bfd_error_handler
4437 (_("%pB: plugin needed to handle lto object"), abfd);
4438 }
4439
4440 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4441 isym < isymend;
4442 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4443 {
4444 int bind;
4445 bfd_vma value;
4446 asection *sec, *new_sec;
4447 flagword flags;
4448 const char *name;
4449 struct elf_link_hash_entry *h;
4450 struct elf_link_hash_entry *hi;
4451 bfd_boolean definition;
4452 bfd_boolean size_change_ok;
4453 bfd_boolean type_change_ok;
4454 bfd_boolean new_weak;
4455 bfd_boolean old_weak;
4456 bfd_boolean override;
4457 bfd_boolean common;
4458 bfd_boolean discarded;
4459 unsigned int old_alignment;
4460 unsigned int shindex;
4461 bfd *old_bfd;
4462 bfd_boolean matched;
4463
4464 override = FALSE;
4465
4466 flags = BSF_NO_FLAGS;
4467 sec = NULL;
4468 value = isym->st_value;
4469 common = bed->common_definition (isym);
4470 if (common && info->inhibit_common_definition)
4471 {
4472 /* Treat common symbol as undefined for --no-define-common. */
4473 isym->st_shndx = SHN_UNDEF;
4474 common = FALSE;
4475 }
4476 discarded = FALSE;
4477
4478 bind = ELF_ST_BIND (isym->st_info);
4479 switch (bind)
4480 {
4481 case STB_LOCAL:
4482 /* This should be impossible, since ELF requires that all
4483 global symbols follow all local symbols, and that sh_info
4484 point to the first global symbol. Unfortunately, Irix 5
4485 screws this up. */
4486 if (elf_bad_symtab (abfd))
4487 continue;
4488
4489 /* If we aren't prepared to handle locals within the globals
4490 then we'll likely segfault on a NULL symbol hash if the
4491 symbol is ever referenced in relocations. */
4492 shindex = elf_elfheader (abfd)->e_shstrndx;
4493 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4494 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4495 " (>= sh_info of %lu)"),
4496 abfd, name, (long) (isym - isymbuf + extsymoff),
4497 (long) extsymoff);
4498
4499 /* Dynamic object relocations are not processed by ld, so
4500 ld won't run into the problem mentioned above. */
4501 if (dynamic)
4502 continue;
4503 bfd_set_error (bfd_error_bad_value);
4504 goto error_free_vers;
4505
4506 case STB_GLOBAL:
4507 if (isym->st_shndx != SHN_UNDEF && !common)
4508 flags = BSF_GLOBAL;
4509 break;
4510
4511 case STB_WEAK:
4512 flags = BSF_WEAK;
4513 break;
4514
4515 case STB_GNU_UNIQUE:
4516 flags = BSF_GNU_UNIQUE;
4517 break;
4518
4519 default:
4520 /* Leave it up to the processor backend. */
4521 break;
4522 }
4523
4524 if (isym->st_shndx == SHN_UNDEF)
4525 sec = bfd_und_section_ptr;
4526 else if (isym->st_shndx == SHN_ABS)
4527 sec = bfd_abs_section_ptr;
4528 else if (isym->st_shndx == SHN_COMMON)
4529 {
4530 sec = bfd_com_section_ptr;
4531 /* What ELF calls the size we call the value. What ELF
4532 calls the value we call the alignment. */
4533 value = isym->st_size;
4534 }
4535 else
4536 {
4537 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4538 if (sec == NULL)
4539 sec = bfd_abs_section_ptr;
4540 else if (discarded_section (sec))
4541 {
4542 /* Symbols from discarded section are undefined. We keep
4543 its visibility. */
4544 sec = bfd_und_section_ptr;
4545 discarded = TRUE;
4546 isym->st_shndx = SHN_UNDEF;
4547 }
4548 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4549 value -= sec->vma;
4550 }
4551
4552 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4553 isym->st_name);
4554 if (name == NULL)
4555 goto error_free_vers;
4556
4557 if (isym->st_shndx == SHN_COMMON
4558 && (abfd->flags & BFD_PLUGIN) != 0)
4559 {
4560 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4561
4562 if (xc == NULL)
4563 {
4564 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4565 | SEC_EXCLUDE);
4566 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4567 if (xc == NULL)
4568 goto error_free_vers;
4569 }
4570 sec = xc;
4571 }
4572 else if (isym->st_shndx == SHN_COMMON
4573 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4574 && !bfd_link_relocatable (info))
4575 {
4576 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4577
4578 if (tcomm == NULL)
4579 {
4580 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4581 | SEC_LINKER_CREATED);
4582 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4583 if (tcomm == NULL)
4584 goto error_free_vers;
4585 }
4586 sec = tcomm;
4587 }
4588 else if (bed->elf_add_symbol_hook)
4589 {
4590 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4591 &sec, &value))
4592 goto error_free_vers;
4593
4594 /* The hook function sets the name to NULL if this symbol
4595 should be skipped for some reason. */
4596 if (name == NULL)
4597 continue;
4598 }
4599
4600 /* Sanity check that all possibilities were handled. */
4601 if (sec == NULL)
4602 abort ();
4603
4604 /* Silently discard TLS symbols from --just-syms. There's
4605 no way to combine a static TLS block with a new TLS block
4606 for this executable. */
4607 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4608 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4609 continue;
4610
4611 if (bfd_is_und_section (sec)
4612 || bfd_is_com_section (sec))
4613 definition = FALSE;
4614 else
4615 definition = TRUE;
4616
4617 size_change_ok = FALSE;
4618 type_change_ok = bed->type_change_ok;
4619 old_weak = FALSE;
4620 matched = FALSE;
4621 old_alignment = 0;
4622 old_bfd = NULL;
4623 new_sec = sec;
4624
4625 if (is_elf_hash_table (htab))
4626 {
4627 Elf_Internal_Versym iver;
4628 unsigned int vernum = 0;
4629 bfd_boolean skip;
4630
4631 if (ever == NULL)
4632 {
4633 if (info->default_imported_symver)
4634 /* Use the default symbol version created earlier. */
4635 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4636 else
4637 iver.vs_vers = 0;
4638 }
4639 else if (ever >= extversym_end)
4640 {
4641 /* xgettext:c-format */
4642 _bfd_error_handler (_("%pB: not enough version information"),
4643 abfd);
4644 bfd_set_error (bfd_error_bad_value);
4645 goto error_free_vers;
4646 }
4647 else
4648 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4649
4650 vernum = iver.vs_vers & VERSYM_VERSION;
4651
4652 /* If this is a hidden symbol, or if it is not version
4653 1, we append the version name to the symbol name.
4654 However, we do not modify a non-hidden absolute symbol
4655 if it is not a function, because it might be the version
4656 symbol itself. FIXME: What if it isn't? */
4657 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4658 || (vernum > 1
4659 && (!bfd_is_abs_section (sec)
4660 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4661 {
4662 const char *verstr;
4663 size_t namelen, verlen, newlen;
4664 char *newname, *p;
4665
4666 if (isym->st_shndx != SHN_UNDEF)
4667 {
4668 if (vernum > elf_tdata (abfd)->cverdefs)
4669 verstr = NULL;
4670 else if (vernum > 1)
4671 verstr =
4672 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4673 else
4674 verstr = "";
4675
4676 if (verstr == NULL)
4677 {
4678 _bfd_error_handler
4679 /* xgettext:c-format */
4680 (_("%pB: %s: invalid version %u (max %d)"),
4681 abfd, name, vernum,
4682 elf_tdata (abfd)->cverdefs);
4683 bfd_set_error (bfd_error_bad_value);
4684 goto error_free_vers;
4685 }
4686 }
4687 else
4688 {
4689 /* We cannot simply test for the number of
4690 entries in the VERNEED section since the
4691 numbers for the needed versions do not start
4692 at 0. */
4693 Elf_Internal_Verneed *t;
4694
4695 verstr = NULL;
4696 for (t = elf_tdata (abfd)->verref;
4697 t != NULL;
4698 t = t->vn_nextref)
4699 {
4700 Elf_Internal_Vernaux *a;
4701
4702 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4703 {
4704 if (a->vna_other == vernum)
4705 {
4706 verstr = a->vna_nodename;
4707 break;
4708 }
4709 }
4710 if (a != NULL)
4711 break;
4712 }
4713 if (verstr == NULL)
4714 {
4715 _bfd_error_handler
4716 /* xgettext:c-format */
4717 (_("%pB: %s: invalid needed version %d"),
4718 abfd, name, vernum);
4719 bfd_set_error (bfd_error_bad_value);
4720 goto error_free_vers;
4721 }
4722 }
4723
4724 namelen = strlen (name);
4725 verlen = strlen (verstr);
4726 newlen = namelen + verlen + 2;
4727 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4728 && isym->st_shndx != SHN_UNDEF)
4729 ++newlen;
4730
4731 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4732 if (newname == NULL)
4733 goto error_free_vers;
4734 memcpy (newname, name, namelen);
4735 p = newname + namelen;
4736 *p++ = ELF_VER_CHR;
4737 /* If this is a defined non-hidden version symbol,
4738 we add another @ to the name. This indicates the
4739 default version of the symbol. */
4740 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4741 && isym->st_shndx != SHN_UNDEF)
4742 *p++ = ELF_VER_CHR;
4743 memcpy (p, verstr, verlen + 1);
4744
4745 name = newname;
4746 }
4747
4748 /* If this symbol has default visibility and the user has
4749 requested we not re-export it, then mark it as hidden. */
4750 if (!bfd_is_und_section (sec)
4751 && !dynamic
4752 && abfd->no_export
4753 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4754 isym->st_other = (STV_HIDDEN
4755 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4756
4757 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4758 sym_hash, &old_bfd, &old_weak,
4759 &old_alignment, &skip, &override,
4760 &type_change_ok, &size_change_ok,
4761 &matched))
4762 goto error_free_vers;
4763
4764 if (skip)
4765 continue;
4766
4767 /* Override a definition only if the new symbol matches the
4768 existing one. */
4769 if (override && matched)
4770 definition = FALSE;
4771
4772 h = *sym_hash;
4773 while (h->root.type == bfd_link_hash_indirect
4774 || h->root.type == bfd_link_hash_warning)
4775 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4776
4777 if (elf_tdata (abfd)->verdef != NULL
4778 && vernum > 1
4779 && definition)
4780 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4781 }
4782
4783 if (! (_bfd_generic_link_add_one_symbol
4784 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4785 (struct bfd_link_hash_entry **) sym_hash)))
4786 goto error_free_vers;
4787
4788 h = *sym_hash;
4789 /* We need to make sure that indirect symbol dynamic flags are
4790 updated. */
4791 hi = h;
4792 while (h->root.type == bfd_link_hash_indirect
4793 || h->root.type == bfd_link_hash_warning)
4794 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4795
4796 /* Setting the index to -3 tells elf_link_output_extsym that
4797 this symbol is defined in a discarded section. */
4798 if (discarded)
4799 h->indx = -3;
4800
4801 *sym_hash = h;
4802
4803 new_weak = (flags & BSF_WEAK) != 0;
4804 if (dynamic
4805 && definition
4806 && new_weak
4807 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4808 && is_elf_hash_table (htab)
4809 && h->u.alias == NULL)
4810 {
4811 /* Keep a list of all weak defined non function symbols from
4812 a dynamic object, using the alias field. Later in this
4813 function we will set the alias field to the correct
4814 value. We only put non-function symbols from dynamic
4815 objects on this list, because that happens to be the only
4816 time we need to know the normal symbol corresponding to a
4817 weak symbol, and the information is time consuming to
4818 figure out. If the alias field is not already NULL,
4819 then this symbol was already defined by some previous
4820 dynamic object, and we will be using that previous
4821 definition anyhow. */
4822
4823 h->u.alias = weaks;
4824 weaks = h;
4825 }
4826
4827 /* Set the alignment of a common symbol. */
4828 if ((common || bfd_is_com_section (sec))
4829 && h->root.type == bfd_link_hash_common)
4830 {
4831 unsigned int align;
4832
4833 if (common)
4834 align = bfd_log2 (isym->st_value);
4835 else
4836 {
4837 /* The new symbol is a common symbol in a shared object.
4838 We need to get the alignment from the section. */
4839 align = new_sec->alignment_power;
4840 }
4841 if (align > old_alignment)
4842 h->root.u.c.p->alignment_power = align;
4843 else
4844 h->root.u.c.p->alignment_power = old_alignment;
4845 }
4846
4847 if (is_elf_hash_table (htab))
4848 {
4849 /* Set a flag in the hash table entry indicating the type of
4850 reference or definition we just found. A dynamic symbol
4851 is one which is referenced or defined by both a regular
4852 object and a shared object. */
4853 bfd_boolean dynsym = FALSE;
4854
4855 /* Plugin symbols aren't normal. Don't set def_regular or
4856 ref_regular for them, or make them dynamic. */
4857 if ((abfd->flags & BFD_PLUGIN) != 0)
4858 ;
4859 else if (! dynamic)
4860 {
4861 if (! definition)
4862 {
4863 h->ref_regular = 1;
4864 if (bind != STB_WEAK)
4865 h->ref_regular_nonweak = 1;
4866 }
4867 else
4868 {
4869 h->def_regular = 1;
4870 if (h->def_dynamic)
4871 {
4872 h->def_dynamic = 0;
4873 h->ref_dynamic = 1;
4874 }
4875 }
4876
4877 /* If the indirect symbol has been forced local, don't
4878 make the real symbol dynamic. */
4879 if ((h == hi || !hi->forced_local)
4880 && (bfd_link_dll (info)
4881 || h->def_dynamic
4882 || h->ref_dynamic))
4883 dynsym = TRUE;
4884 }
4885 else
4886 {
4887 if (! definition)
4888 {
4889 h->ref_dynamic = 1;
4890 hi->ref_dynamic = 1;
4891 }
4892 else
4893 {
4894 h->def_dynamic = 1;
4895 hi->def_dynamic = 1;
4896 }
4897
4898 /* If the indirect symbol has been forced local, don't
4899 make the real symbol dynamic. */
4900 if ((h == hi || !hi->forced_local)
4901 && (h->def_regular
4902 || h->ref_regular
4903 || (h->is_weakalias
4904 && weakdef (h)->dynindx != -1)))
4905 dynsym = TRUE;
4906 }
4907
4908 /* Check to see if we need to add an indirect symbol for
4909 the default name. */
4910 if (definition
4911 || (!override && h->root.type == bfd_link_hash_common))
4912 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4913 sec, value, &old_bfd, &dynsym))
4914 goto error_free_vers;
4915
4916 /* Check the alignment when a common symbol is involved. This
4917 can change when a common symbol is overridden by a normal
4918 definition or a common symbol is ignored due to the old
4919 normal definition. We need to make sure the maximum
4920 alignment is maintained. */
4921 if ((old_alignment || common)
4922 && h->root.type != bfd_link_hash_common)
4923 {
4924 unsigned int common_align;
4925 unsigned int normal_align;
4926 unsigned int symbol_align;
4927 bfd *normal_bfd;
4928 bfd *common_bfd;
4929
4930 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4931 || h->root.type == bfd_link_hash_defweak);
4932
4933 symbol_align = ffs (h->root.u.def.value) - 1;
4934 if (h->root.u.def.section->owner != NULL
4935 && (h->root.u.def.section->owner->flags
4936 & (DYNAMIC | BFD_PLUGIN)) == 0)
4937 {
4938 normal_align = h->root.u.def.section->alignment_power;
4939 if (normal_align > symbol_align)
4940 normal_align = symbol_align;
4941 }
4942 else
4943 normal_align = symbol_align;
4944
4945 if (old_alignment)
4946 {
4947 common_align = old_alignment;
4948 common_bfd = old_bfd;
4949 normal_bfd = abfd;
4950 }
4951 else
4952 {
4953 common_align = bfd_log2 (isym->st_value);
4954 common_bfd = abfd;
4955 normal_bfd = old_bfd;
4956 }
4957
4958 if (normal_align < common_align)
4959 {
4960 /* PR binutils/2735 */
4961 if (normal_bfd == NULL)
4962 _bfd_error_handler
4963 /* xgettext:c-format */
4964 (_("warning: alignment %u of common symbol `%s' in %pB is"
4965 " greater than the alignment (%u) of its section %pA"),
4966 1 << common_align, name, common_bfd,
4967 1 << normal_align, h->root.u.def.section);
4968 else
4969 _bfd_error_handler
4970 /* xgettext:c-format */
4971 (_("warning: alignment %u of symbol `%s' in %pB"
4972 " is smaller than %u in %pB"),
4973 1 << normal_align, name, normal_bfd,
4974 1 << common_align, common_bfd);
4975 }
4976 }
4977
4978 /* Remember the symbol size if it isn't undefined. */
4979 if (isym->st_size != 0
4980 && isym->st_shndx != SHN_UNDEF
4981 && (definition || h->size == 0))
4982 {
4983 if (h->size != 0
4984 && h->size != isym->st_size
4985 && ! size_change_ok)
4986 _bfd_error_handler
4987 /* xgettext:c-format */
4988 (_("warning: size of symbol `%s' changed"
4989 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4990 name, (uint64_t) h->size, old_bfd,
4991 (uint64_t) isym->st_size, abfd);
4992
4993 h->size = isym->st_size;
4994 }
4995
4996 /* If this is a common symbol, then we always want H->SIZE
4997 to be the size of the common symbol. The code just above
4998 won't fix the size if a common symbol becomes larger. We
4999 don't warn about a size change here, because that is
5000 covered by --warn-common. Allow changes between different
5001 function types. */
5002 if (h->root.type == bfd_link_hash_common)
5003 h->size = h->root.u.c.size;
5004
5005 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5006 && ((definition && !new_weak)
5007 || (old_weak && h->root.type == bfd_link_hash_common)
5008 || h->type == STT_NOTYPE))
5009 {
5010 unsigned int type = ELF_ST_TYPE (isym->st_info);
5011
5012 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5013 symbol. */
5014 if (type == STT_GNU_IFUNC
5015 && (abfd->flags & DYNAMIC) != 0)
5016 type = STT_FUNC;
5017
5018 if (h->type != type)
5019 {
5020 if (h->type != STT_NOTYPE && ! type_change_ok)
5021 /* xgettext:c-format */
5022 _bfd_error_handler
5023 (_("warning: type of symbol `%s' changed"
5024 " from %d to %d in %pB"),
5025 name, h->type, type, abfd);
5026
5027 h->type = type;
5028 }
5029 }
5030
5031 /* Merge st_other field. */
5032 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
5033
5034 /* We don't want to make debug symbol dynamic. */
5035 if (definition
5036 && (sec->flags & SEC_DEBUGGING)
5037 && !bfd_link_relocatable (info))
5038 dynsym = FALSE;
5039
5040 /* Nor should we make plugin symbols dynamic. */
5041 if ((abfd->flags & BFD_PLUGIN) != 0)
5042 dynsym = FALSE;
5043
5044 if (definition)
5045 {
5046 h->target_internal = isym->st_target_internal;
5047 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5048 }
5049
5050 if (definition && !dynamic)
5051 {
5052 char *p = strchr (name, ELF_VER_CHR);
5053 if (p != NULL && p[1] != ELF_VER_CHR)
5054 {
5055 /* Queue non-default versions so that .symver x, x@FOO
5056 aliases can be checked. */
5057 if (!nondeflt_vers)
5058 {
5059 amt = ((isymend - isym + 1)
5060 * sizeof (struct elf_link_hash_entry *));
5061 nondeflt_vers
5062 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5063 if (!nondeflt_vers)
5064 goto error_free_vers;
5065 }
5066 nondeflt_vers[nondeflt_vers_cnt++] = h;
5067 }
5068 }
5069
5070 if (dynsym && h->dynindx == -1)
5071 {
5072 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5073 goto error_free_vers;
5074 if (h->is_weakalias
5075 && weakdef (h)->dynindx == -1)
5076 {
5077 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5078 goto error_free_vers;
5079 }
5080 }
5081 else if (h->dynindx != -1)
5082 /* If the symbol already has a dynamic index, but
5083 visibility says it should not be visible, turn it into
5084 a local symbol. */
5085 switch (ELF_ST_VISIBILITY (h->other))
5086 {
5087 case STV_INTERNAL:
5088 case STV_HIDDEN:
5089 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5090 dynsym = FALSE;
5091 break;
5092 }
5093
5094 /* Don't add DT_NEEDED for references from the dummy bfd nor
5095 for unmatched symbol. */
5096 if (!add_needed
5097 && matched
5098 && definition
5099 && ((dynsym
5100 && h->ref_regular_nonweak
5101 && (old_bfd == NULL
5102 || (old_bfd->flags & BFD_PLUGIN) == 0))
5103 || (h->ref_dynamic_nonweak
5104 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5105 && !on_needed_list (elf_dt_name (abfd),
5106 htab->needed, NULL))))
5107 {
5108 int ret;
5109 const char *soname = elf_dt_name (abfd);
5110
5111 info->callbacks->minfo ("%!", soname, old_bfd,
5112 h->root.root.string);
5113
5114 /* A symbol from a library loaded via DT_NEEDED of some
5115 other library is referenced by a regular object.
5116 Add a DT_NEEDED entry for it. Issue an error if
5117 --no-add-needed is used and the reference was not
5118 a weak one. */
5119 if (old_bfd != NULL
5120 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5121 {
5122 _bfd_error_handler
5123 /* xgettext:c-format */
5124 (_("%pB: undefined reference to symbol '%s'"),
5125 old_bfd, name);
5126 bfd_set_error (bfd_error_missing_dso);
5127 goto error_free_vers;
5128 }
5129
5130 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5131 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5132
5133 add_needed = TRUE;
5134 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
5135 if (ret < 0)
5136 goto error_free_vers;
5137
5138 BFD_ASSERT (ret == 0);
5139 }
5140 }
5141 }
5142
5143 if (info->lto_plugin_active
5144 && !bfd_link_relocatable (info)
5145 && (abfd->flags & BFD_PLUGIN) == 0
5146 && !just_syms
5147 && extsymcount)
5148 {
5149 int r_sym_shift;
5150
5151 if (bed->s->arch_size == 32)
5152 r_sym_shift = 8;
5153 else
5154 r_sym_shift = 32;
5155
5156 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5157 referenced in regular objects so that linker plugin will get
5158 the correct symbol resolution. */
5159
5160 sym_hash = elf_sym_hashes (abfd);
5161 for (s = abfd->sections; s != NULL; s = s->next)
5162 {
5163 Elf_Internal_Rela *internal_relocs;
5164 Elf_Internal_Rela *rel, *relend;
5165
5166 /* Don't check relocations in excluded sections. */
5167 if ((s->flags & SEC_RELOC) == 0
5168 || s->reloc_count == 0
5169 || (s->flags & SEC_EXCLUDE) != 0
5170 || ((info->strip == strip_all
5171 || info->strip == strip_debugger)
5172 && (s->flags & SEC_DEBUGGING) != 0))
5173 continue;
5174
5175 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5176 NULL,
5177 info->keep_memory);
5178 if (internal_relocs == NULL)
5179 goto error_free_vers;
5180
5181 rel = internal_relocs;
5182 relend = rel + s->reloc_count;
5183 for ( ; rel < relend; rel++)
5184 {
5185 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5186 struct elf_link_hash_entry *h;
5187
5188 /* Skip local symbols. */
5189 if (r_symndx < extsymoff)
5190 continue;
5191
5192 h = sym_hash[r_symndx - extsymoff];
5193 if (h != NULL)
5194 h->root.non_ir_ref_regular = 1;
5195 }
5196
5197 if (elf_section_data (s)->relocs != internal_relocs)
5198 free (internal_relocs);
5199 }
5200 }
5201
5202 if (extversym != NULL)
5203 {
5204 free (extversym);
5205 extversym = NULL;
5206 }
5207
5208 if (isymbuf != NULL)
5209 {
5210 free (isymbuf);
5211 isymbuf = NULL;
5212 }
5213
5214 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5215 {
5216 unsigned int i;
5217
5218 /* Restore the symbol table. */
5219 old_ent = (char *) old_tab + tabsize;
5220 memset (elf_sym_hashes (abfd), 0,
5221 extsymcount * sizeof (struct elf_link_hash_entry *));
5222 htab->root.table.table = old_table;
5223 htab->root.table.size = old_size;
5224 htab->root.table.count = old_count;
5225 memcpy (htab->root.table.table, old_tab, tabsize);
5226 htab->root.undefs = old_undefs;
5227 htab->root.undefs_tail = old_undefs_tail;
5228 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5229 free (old_strtab);
5230 old_strtab = NULL;
5231 for (i = 0; i < htab->root.table.size; i++)
5232 {
5233 struct bfd_hash_entry *p;
5234 struct elf_link_hash_entry *h;
5235 bfd_size_type size;
5236 unsigned int alignment_power;
5237 unsigned int non_ir_ref_dynamic;
5238
5239 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5240 {
5241 h = (struct elf_link_hash_entry *) p;
5242 if (h->root.type == bfd_link_hash_warning)
5243 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5244
5245 /* Preserve the maximum alignment and size for common
5246 symbols even if this dynamic lib isn't on DT_NEEDED
5247 since it can still be loaded at run time by another
5248 dynamic lib. */
5249 if (h->root.type == bfd_link_hash_common)
5250 {
5251 size = h->root.u.c.size;
5252 alignment_power = h->root.u.c.p->alignment_power;
5253 }
5254 else
5255 {
5256 size = 0;
5257 alignment_power = 0;
5258 }
5259 /* Preserve non_ir_ref_dynamic so that this symbol
5260 will be exported when the dynamic lib becomes needed
5261 in the second pass. */
5262 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5263 memcpy (p, old_ent, htab->root.table.entsize);
5264 old_ent = (char *) old_ent + htab->root.table.entsize;
5265 h = (struct elf_link_hash_entry *) p;
5266 if (h->root.type == bfd_link_hash_warning)
5267 {
5268 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5269 old_ent = (char *) old_ent + htab->root.table.entsize;
5270 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5271 }
5272 if (h->root.type == bfd_link_hash_common)
5273 {
5274 if (size > h->root.u.c.size)
5275 h->root.u.c.size = size;
5276 if (alignment_power > h->root.u.c.p->alignment_power)
5277 h->root.u.c.p->alignment_power = alignment_power;
5278 }
5279 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5280 }
5281 }
5282
5283 /* Make a special call to the linker "notice" function to
5284 tell it that symbols added for crefs may need to be removed. */
5285 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5286 goto error_free_vers;
5287
5288 free (old_tab);
5289 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5290 alloc_mark);
5291 if (nondeflt_vers != NULL)
5292 free (nondeflt_vers);
5293 return TRUE;
5294 }
5295
5296 if (old_tab != NULL)
5297 {
5298 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5299 goto error_free_vers;
5300 free (old_tab);
5301 old_tab = NULL;
5302 }
5303
5304 /* Now that all the symbols from this input file are created, if
5305 not performing a relocatable link, handle .symver foo, foo@BAR
5306 such that any relocs against foo become foo@BAR. */
5307 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5308 {
5309 size_t cnt, symidx;
5310
5311 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5312 {
5313 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5314 char *shortname, *p;
5315
5316 p = strchr (h->root.root.string, ELF_VER_CHR);
5317 if (p == NULL
5318 || (h->root.type != bfd_link_hash_defined
5319 && h->root.type != bfd_link_hash_defweak))
5320 continue;
5321
5322 amt = p - h->root.root.string;
5323 shortname = (char *) bfd_malloc (amt + 1);
5324 if (!shortname)
5325 goto error_free_vers;
5326 memcpy (shortname, h->root.root.string, amt);
5327 shortname[amt] = '\0';
5328
5329 hi = (struct elf_link_hash_entry *)
5330 bfd_link_hash_lookup (&htab->root, shortname,
5331 FALSE, FALSE, FALSE);
5332 if (hi != NULL
5333 && hi->root.type == h->root.type
5334 && hi->root.u.def.value == h->root.u.def.value
5335 && hi->root.u.def.section == h->root.u.def.section)
5336 {
5337 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5338 hi->root.type = bfd_link_hash_indirect;
5339 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5340 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5341 sym_hash = elf_sym_hashes (abfd);
5342 if (sym_hash)
5343 for (symidx = 0; symidx < extsymcount; ++symidx)
5344 if (sym_hash[symidx] == hi)
5345 {
5346 sym_hash[symidx] = h;
5347 break;
5348 }
5349 }
5350 free (shortname);
5351 }
5352 free (nondeflt_vers);
5353 nondeflt_vers = NULL;
5354 }
5355
5356 /* Now set the alias field correctly for all the weak defined
5357 symbols we found. The only way to do this is to search all the
5358 symbols. Since we only need the information for non functions in
5359 dynamic objects, that's the only time we actually put anything on
5360 the list WEAKS. We need this information so that if a regular
5361 object refers to a symbol defined weakly in a dynamic object, the
5362 real symbol in the dynamic object is also put in the dynamic
5363 symbols; we also must arrange for both symbols to point to the
5364 same memory location. We could handle the general case of symbol
5365 aliasing, but a general symbol alias can only be generated in
5366 assembler code, handling it correctly would be very time
5367 consuming, and other ELF linkers don't handle general aliasing
5368 either. */
5369 if (weaks != NULL)
5370 {
5371 struct elf_link_hash_entry **hpp;
5372 struct elf_link_hash_entry **hppend;
5373 struct elf_link_hash_entry **sorted_sym_hash;
5374 struct elf_link_hash_entry *h;
5375 size_t sym_count;
5376
5377 /* Since we have to search the whole symbol list for each weak
5378 defined symbol, search time for N weak defined symbols will be
5379 O(N^2). Binary search will cut it down to O(NlogN). */
5380 amt = extsymcount;
5381 amt *= sizeof (*sorted_sym_hash);
5382 sorted_sym_hash = bfd_malloc (amt);
5383 if (sorted_sym_hash == NULL)
5384 goto error_return;
5385 sym_hash = sorted_sym_hash;
5386 hpp = elf_sym_hashes (abfd);
5387 hppend = hpp + extsymcount;
5388 sym_count = 0;
5389 for (; hpp < hppend; hpp++)
5390 {
5391 h = *hpp;
5392 if (h != NULL
5393 && h->root.type == bfd_link_hash_defined
5394 && !bed->is_function_type (h->type))
5395 {
5396 *sym_hash = h;
5397 sym_hash++;
5398 sym_count++;
5399 }
5400 }
5401
5402 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5403 elf_sort_symbol);
5404
5405 while (weaks != NULL)
5406 {
5407 struct elf_link_hash_entry *hlook;
5408 asection *slook;
5409 bfd_vma vlook;
5410 size_t i, j, idx = 0;
5411
5412 hlook = weaks;
5413 weaks = hlook->u.alias;
5414 hlook->u.alias = NULL;
5415
5416 if (hlook->root.type != bfd_link_hash_defined
5417 && hlook->root.type != bfd_link_hash_defweak)
5418 continue;
5419
5420 slook = hlook->root.u.def.section;
5421 vlook = hlook->root.u.def.value;
5422
5423 i = 0;
5424 j = sym_count;
5425 while (i != j)
5426 {
5427 bfd_signed_vma vdiff;
5428 idx = (i + j) / 2;
5429 h = sorted_sym_hash[idx];
5430 vdiff = vlook - h->root.u.def.value;
5431 if (vdiff < 0)
5432 j = idx;
5433 else if (vdiff > 0)
5434 i = idx + 1;
5435 else
5436 {
5437 int sdiff = slook->id - h->root.u.def.section->id;
5438 if (sdiff < 0)
5439 j = idx;
5440 else if (sdiff > 0)
5441 i = idx + 1;
5442 else
5443 break;
5444 }
5445 }
5446
5447 /* We didn't find a value/section match. */
5448 if (i == j)
5449 continue;
5450
5451 /* With multiple aliases, or when the weak symbol is already
5452 strongly defined, we have multiple matching symbols and
5453 the binary search above may land on any of them. Step
5454 one past the matching symbol(s). */
5455 while (++idx != j)
5456 {
5457 h = sorted_sym_hash[idx];
5458 if (h->root.u.def.section != slook
5459 || h->root.u.def.value != vlook)
5460 break;
5461 }
5462
5463 /* Now look back over the aliases. Since we sorted by size
5464 as well as value and section, we'll choose the one with
5465 the largest size. */
5466 while (idx-- != i)
5467 {
5468 h = sorted_sym_hash[idx];
5469
5470 /* Stop if value or section doesn't match. */
5471 if (h->root.u.def.section != slook
5472 || h->root.u.def.value != vlook)
5473 break;
5474 else if (h != hlook)
5475 {
5476 struct elf_link_hash_entry *t;
5477
5478 hlook->u.alias = h;
5479 hlook->is_weakalias = 1;
5480 t = h;
5481 if (t->u.alias != NULL)
5482 while (t->u.alias != h)
5483 t = t->u.alias;
5484 t->u.alias = hlook;
5485
5486 /* If the weak definition is in the list of dynamic
5487 symbols, make sure the real definition is put
5488 there as well. */
5489 if (hlook->dynindx != -1 && h->dynindx == -1)
5490 {
5491 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5492 {
5493 err_free_sym_hash:
5494 free (sorted_sym_hash);
5495 goto error_return;
5496 }
5497 }
5498
5499 /* If the real definition is in the list of dynamic
5500 symbols, make sure the weak definition is put
5501 there as well. If we don't do this, then the
5502 dynamic loader might not merge the entries for the
5503 real definition and the weak definition. */
5504 if (h->dynindx != -1 && hlook->dynindx == -1)
5505 {
5506 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5507 goto err_free_sym_hash;
5508 }
5509 break;
5510 }
5511 }
5512 }
5513
5514 free (sorted_sym_hash);
5515 }
5516
5517 if (bed->check_directives
5518 && !(*bed->check_directives) (abfd, info))
5519 return FALSE;
5520
5521 /* If this is a non-traditional link, try to optimize the handling
5522 of the .stab/.stabstr sections. */
5523 if (! dynamic
5524 && ! info->traditional_format
5525 && is_elf_hash_table (htab)
5526 && (info->strip != strip_all && info->strip != strip_debugger))
5527 {
5528 asection *stabstr;
5529
5530 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5531 if (stabstr != NULL)
5532 {
5533 bfd_size_type string_offset = 0;
5534 asection *stab;
5535
5536 for (stab = abfd->sections; stab; stab = stab->next)
5537 if (CONST_STRNEQ (stab->name, ".stab")
5538 && (!stab->name[5] ||
5539 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5540 && (stab->flags & SEC_MERGE) == 0
5541 && !bfd_is_abs_section (stab->output_section))
5542 {
5543 struct bfd_elf_section_data *secdata;
5544
5545 secdata = elf_section_data (stab);
5546 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5547 stabstr, &secdata->sec_info,
5548 &string_offset))
5549 goto error_return;
5550 if (secdata->sec_info)
5551 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5552 }
5553 }
5554 }
5555
5556 if (is_elf_hash_table (htab) && add_needed)
5557 {
5558 /* Add this bfd to the loaded list. */
5559 struct elf_link_loaded_list *n;
5560
5561 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5562 if (n == NULL)
5563 goto error_return;
5564 n->abfd = abfd;
5565 n->next = htab->loaded;
5566 htab->loaded = n;
5567 }
5568
5569 return TRUE;
5570
5571 error_free_vers:
5572 if (old_tab != NULL)
5573 free (old_tab);
5574 if (old_strtab != NULL)
5575 free (old_strtab);
5576 if (nondeflt_vers != NULL)
5577 free (nondeflt_vers);
5578 if (extversym != NULL)
5579 free (extversym);
5580 error_free_sym:
5581 if (isymbuf != NULL)
5582 free (isymbuf);
5583 error_return:
5584 return FALSE;
5585 }
5586
5587 /* Return the linker hash table entry of a symbol that might be
5588 satisfied by an archive symbol. Return -1 on error. */
5589
5590 struct elf_link_hash_entry *
5591 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5592 struct bfd_link_info *info,
5593 const char *name)
5594 {
5595 struct elf_link_hash_entry *h;
5596 char *p, *copy;
5597 size_t len, first;
5598
5599 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5600 if (h != NULL)
5601 return h;
5602
5603 /* If this is a default version (the name contains @@), look up the
5604 symbol again with only one `@' as well as without the version.
5605 The effect is that references to the symbol with and without the
5606 version will be matched by the default symbol in the archive. */
5607
5608 p = strchr (name, ELF_VER_CHR);
5609 if (p == NULL || p[1] != ELF_VER_CHR)
5610 return h;
5611
5612 /* First check with only one `@'. */
5613 len = strlen (name);
5614 copy = (char *) bfd_alloc (abfd, len);
5615 if (copy == NULL)
5616 return (struct elf_link_hash_entry *) -1;
5617
5618 first = p - name + 1;
5619 memcpy (copy, name, first);
5620 memcpy (copy + first, name + first + 1, len - first);
5621
5622 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5623 if (h == NULL)
5624 {
5625 /* We also need to check references to the symbol without the
5626 version. */
5627 copy[first - 1] = '\0';
5628 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5629 FALSE, FALSE, TRUE);
5630 }
5631
5632 bfd_release (abfd, copy);
5633 return h;
5634 }
5635
5636 /* Add symbols from an ELF archive file to the linker hash table. We
5637 don't use _bfd_generic_link_add_archive_symbols because we need to
5638 handle versioned symbols.
5639
5640 Fortunately, ELF archive handling is simpler than that done by
5641 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5642 oddities. In ELF, if we find a symbol in the archive map, and the
5643 symbol is currently undefined, we know that we must pull in that
5644 object file.
5645
5646 Unfortunately, we do have to make multiple passes over the symbol
5647 table until nothing further is resolved. */
5648
5649 static bfd_boolean
5650 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5651 {
5652 symindex c;
5653 unsigned char *included = NULL;
5654 carsym *symdefs;
5655 bfd_boolean loop;
5656 bfd_size_type amt;
5657 const struct elf_backend_data *bed;
5658 struct elf_link_hash_entry * (*archive_symbol_lookup)
5659 (bfd *, struct bfd_link_info *, const char *);
5660
5661 if (! bfd_has_map (abfd))
5662 {
5663 /* An empty archive is a special case. */
5664 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5665 return TRUE;
5666 bfd_set_error (bfd_error_no_armap);
5667 return FALSE;
5668 }
5669
5670 /* Keep track of all symbols we know to be already defined, and all
5671 files we know to be already included. This is to speed up the
5672 second and subsequent passes. */
5673 c = bfd_ardata (abfd)->symdef_count;
5674 if (c == 0)
5675 return TRUE;
5676 amt = c;
5677 amt *= sizeof (*included);
5678 included = (unsigned char *) bfd_zmalloc (amt);
5679 if (included == NULL)
5680 return FALSE;
5681
5682 symdefs = bfd_ardata (abfd)->symdefs;
5683 bed = get_elf_backend_data (abfd);
5684 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5685
5686 do
5687 {
5688 file_ptr last;
5689 symindex i;
5690 carsym *symdef;
5691 carsym *symdefend;
5692
5693 loop = FALSE;
5694 last = -1;
5695
5696 symdef = symdefs;
5697 symdefend = symdef + c;
5698 for (i = 0; symdef < symdefend; symdef++, i++)
5699 {
5700 struct elf_link_hash_entry *h;
5701 bfd *element;
5702 struct bfd_link_hash_entry *undefs_tail;
5703 symindex mark;
5704
5705 if (included[i])
5706 continue;
5707 if (symdef->file_offset == last)
5708 {
5709 included[i] = TRUE;
5710 continue;
5711 }
5712
5713 h = archive_symbol_lookup (abfd, info, symdef->name);
5714 if (h == (struct elf_link_hash_entry *) -1)
5715 goto error_return;
5716
5717 if (h == NULL)
5718 continue;
5719
5720 if (h->root.type == bfd_link_hash_common)
5721 {
5722 /* We currently have a common symbol. The archive map contains
5723 a reference to this symbol, so we may want to include it. We
5724 only want to include it however, if this archive element
5725 contains a definition of the symbol, not just another common
5726 declaration of it.
5727
5728 Unfortunately some archivers (including GNU ar) will put
5729 declarations of common symbols into their archive maps, as
5730 well as real definitions, so we cannot just go by the archive
5731 map alone. Instead we must read in the element's symbol
5732 table and check that to see what kind of symbol definition
5733 this is. */
5734 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5735 continue;
5736 }
5737 else if (h->root.type != bfd_link_hash_undefined)
5738 {
5739 if (h->root.type != bfd_link_hash_undefweak)
5740 /* Symbol must be defined. Don't check it again. */
5741 included[i] = TRUE;
5742 continue;
5743 }
5744
5745 /* We need to include this archive member. */
5746 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5747 if (element == NULL)
5748 goto error_return;
5749
5750 if (! bfd_check_format (element, bfd_object))
5751 goto error_return;
5752
5753 undefs_tail = info->hash->undefs_tail;
5754
5755 if (!(*info->callbacks
5756 ->add_archive_element) (info, element, symdef->name, &element))
5757 continue;
5758 if (!bfd_link_add_symbols (element, info))
5759 goto error_return;
5760
5761 /* If there are any new undefined symbols, we need to make
5762 another pass through the archive in order to see whether
5763 they can be defined. FIXME: This isn't perfect, because
5764 common symbols wind up on undefs_tail and because an
5765 undefined symbol which is defined later on in this pass
5766 does not require another pass. This isn't a bug, but it
5767 does make the code less efficient than it could be. */
5768 if (undefs_tail != info->hash->undefs_tail)
5769 loop = TRUE;
5770
5771 /* Look backward to mark all symbols from this object file
5772 which we have already seen in this pass. */
5773 mark = i;
5774 do
5775 {
5776 included[mark] = TRUE;
5777 if (mark == 0)
5778 break;
5779 --mark;
5780 }
5781 while (symdefs[mark].file_offset == symdef->file_offset);
5782
5783 /* We mark subsequent symbols from this object file as we go
5784 on through the loop. */
5785 last = symdef->file_offset;
5786 }
5787 }
5788 while (loop);
5789
5790 free (included);
5791
5792 return TRUE;
5793
5794 error_return:
5795 if (included != NULL)
5796 free (included);
5797 return FALSE;
5798 }
5799
5800 /* Given an ELF BFD, add symbols to the global hash table as
5801 appropriate. */
5802
5803 bfd_boolean
5804 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5805 {
5806 switch (bfd_get_format (abfd))
5807 {
5808 case bfd_object:
5809 return elf_link_add_object_symbols (abfd, info);
5810 case bfd_archive:
5811 return elf_link_add_archive_symbols (abfd, info);
5812 default:
5813 bfd_set_error (bfd_error_wrong_format);
5814 return FALSE;
5815 }
5816 }
5817 \f
5818 struct hash_codes_info
5819 {
5820 unsigned long *hashcodes;
5821 bfd_boolean error;
5822 };
5823
5824 /* This function will be called though elf_link_hash_traverse to store
5825 all hash value of the exported symbols in an array. */
5826
5827 static bfd_boolean
5828 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5829 {
5830 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5831 const char *name;
5832 unsigned long ha;
5833 char *alc = NULL;
5834
5835 /* Ignore indirect symbols. These are added by the versioning code. */
5836 if (h->dynindx == -1)
5837 return TRUE;
5838
5839 name = h->root.root.string;
5840 if (h->versioned >= versioned)
5841 {
5842 char *p = strchr (name, ELF_VER_CHR);
5843 if (p != NULL)
5844 {
5845 alc = (char *) bfd_malloc (p - name + 1);
5846 if (alc == NULL)
5847 {
5848 inf->error = TRUE;
5849 return FALSE;
5850 }
5851 memcpy (alc, name, p - name);
5852 alc[p - name] = '\0';
5853 name = alc;
5854 }
5855 }
5856
5857 /* Compute the hash value. */
5858 ha = bfd_elf_hash (name);
5859
5860 /* Store the found hash value in the array given as the argument. */
5861 *(inf->hashcodes)++ = ha;
5862
5863 /* And store it in the struct so that we can put it in the hash table
5864 later. */
5865 h->u.elf_hash_value = ha;
5866
5867 if (alc != NULL)
5868 free (alc);
5869
5870 return TRUE;
5871 }
5872
5873 struct collect_gnu_hash_codes
5874 {
5875 bfd *output_bfd;
5876 const struct elf_backend_data *bed;
5877 unsigned long int nsyms;
5878 unsigned long int maskbits;
5879 unsigned long int *hashcodes;
5880 unsigned long int *hashval;
5881 unsigned long int *indx;
5882 unsigned long int *counts;
5883 bfd_vma *bitmask;
5884 bfd_byte *contents;
5885 bfd_size_type xlat;
5886 long int min_dynindx;
5887 unsigned long int bucketcount;
5888 unsigned long int symindx;
5889 long int local_indx;
5890 long int shift1, shift2;
5891 unsigned long int mask;
5892 bfd_boolean error;
5893 };
5894
5895 /* This function will be called though elf_link_hash_traverse to store
5896 all hash value of the exported symbols in an array. */
5897
5898 static bfd_boolean
5899 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5900 {
5901 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5902 const char *name;
5903 unsigned long ha;
5904 char *alc = NULL;
5905
5906 /* Ignore indirect symbols. These are added by the versioning code. */
5907 if (h->dynindx == -1)
5908 return TRUE;
5909
5910 /* Ignore also local symbols and undefined symbols. */
5911 if (! (*s->bed->elf_hash_symbol) (h))
5912 return TRUE;
5913
5914 name = h->root.root.string;
5915 if (h->versioned >= versioned)
5916 {
5917 char *p = strchr (name, ELF_VER_CHR);
5918 if (p != NULL)
5919 {
5920 alc = (char *) bfd_malloc (p - name + 1);
5921 if (alc == NULL)
5922 {
5923 s->error = TRUE;
5924 return FALSE;
5925 }
5926 memcpy (alc, name, p - name);
5927 alc[p - name] = '\0';
5928 name = alc;
5929 }
5930 }
5931
5932 /* Compute the hash value. */
5933 ha = bfd_elf_gnu_hash (name);
5934
5935 /* Store the found hash value in the array for compute_bucket_count,
5936 and also for .dynsym reordering purposes. */
5937 s->hashcodes[s->nsyms] = ha;
5938 s->hashval[h->dynindx] = ha;
5939 ++s->nsyms;
5940 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5941 s->min_dynindx = h->dynindx;
5942
5943 if (alc != NULL)
5944 free (alc);
5945
5946 return TRUE;
5947 }
5948
5949 /* This function will be called though elf_link_hash_traverse to do
5950 final dynamic symbol renumbering in case of .gnu.hash.
5951 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
5952 to the translation table. */
5953
5954 static bfd_boolean
5955 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
5956 {
5957 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5958 unsigned long int bucket;
5959 unsigned long int val;
5960
5961 /* Ignore indirect symbols. */
5962 if (h->dynindx == -1)
5963 return TRUE;
5964
5965 /* Ignore also local symbols and undefined symbols. */
5966 if (! (*s->bed->elf_hash_symbol) (h))
5967 {
5968 if (h->dynindx >= s->min_dynindx)
5969 {
5970 if (s->bed->record_xhash_symbol != NULL)
5971 {
5972 (*s->bed->record_xhash_symbol) (h, 0);
5973 s->local_indx++;
5974 }
5975 else
5976 h->dynindx = s->local_indx++;
5977 }
5978 return TRUE;
5979 }
5980
5981 bucket = s->hashval[h->dynindx] % s->bucketcount;
5982 val = (s->hashval[h->dynindx] >> s->shift1)
5983 & ((s->maskbits >> s->shift1) - 1);
5984 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5985 s->bitmask[val]
5986 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5987 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5988 if (s->counts[bucket] == 1)
5989 /* Last element terminates the chain. */
5990 val |= 1;
5991 bfd_put_32 (s->output_bfd, val,
5992 s->contents + (s->indx[bucket] - s->symindx) * 4);
5993 --s->counts[bucket];
5994 if (s->bed->record_xhash_symbol != NULL)
5995 {
5996 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
5997
5998 (*s->bed->record_xhash_symbol) (h, xlat_loc);
5999 }
6000 else
6001 h->dynindx = s->indx[bucket]++;
6002 return TRUE;
6003 }
6004
6005 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6006
6007 bfd_boolean
6008 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6009 {
6010 return !(h->forced_local
6011 || h->root.type == bfd_link_hash_undefined
6012 || h->root.type == bfd_link_hash_undefweak
6013 || ((h->root.type == bfd_link_hash_defined
6014 || h->root.type == bfd_link_hash_defweak)
6015 && h->root.u.def.section->output_section == NULL));
6016 }
6017
6018 /* Array used to determine the number of hash table buckets to use
6019 based on the number of symbols there are. If there are fewer than
6020 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6021 fewer than 37 we use 17 buckets, and so forth. We never use more
6022 than 32771 buckets. */
6023
6024 static const size_t elf_buckets[] =
6025 {
6026 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6027 16411, 32771, 0
6028 };
6029
6030 /* Compute bucket count for hashing table. We do not use a static set
6031 of possible tables sizes anymore. Instead we determine for all
6032 possible reasonable sizes of the table the outcome (i.e., the
6033 number of collisions etc) and choose the best solution. The
6034 weighting functions are not too simple to allow the table to grow
6035 without bounds. Instead one of the weighting factors is the size.
6036 Therefore the result is always a good payoff between few collisions
6037 (= short chain lengths) and table size. */
6038 static size_t
6039 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6040 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6041 unsigned long int nsyms,
6042 int gnu_hash)
6043 {
6044 size_t best_size = 0;
6045 unsigned long int i;
6046
6047 /* We have a problem here. The following code to optimize the table
6048 size requires an integer type with more the 32 bits. If
6049 BFD_HOST_U_64_BIT is set we know about such a type. */
6050 #ifdef BFD_HOST_U_64_BIT
6051 if (info->optimize)
6052 {
6053 size_t minsize;
6054 size_t maxsize;
6055 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6056 bfd *dynobj = elf_hash_table (info)->dynobj;
6057 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6058 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6059 unsigned long int *counts;
6060 bfd_size_type amt;
6061 unsigned int no_improvement_count = 0;
6062
6063 /* Possible optimization parameters: if we have NSYMS symbols we say
6064 that the hashing table must at least have NSYMS/4 and at most
6065 2*NSYMS buckets. */
6066 minsize = nsyms / 4;
6067 if (minsize == 0)
6068 minsize = 1;
6069 best_size = maxsize = nsyms * 2;
6070 if (gnu_hash)
6071 {
6072 if (minsize < 2)
6073 minsize = 2;
6074 if ((best_size & 31) == 0)
6075 ++best_size;
6076 }
6077
6078 /* Create array where we count the collisions in. We must use bfd_malloc
6079 since the size could be large. */
6080 amt = maxsize;
6081 amt *= sizeof (unsigned long int);
6082 counts = (unsigned long int *) bfd_malloc (amt);
6083 if (counts == NULL)
6084 return 0;
6085
6086 /* Compute the "optimal" size for the hash table. The criteria is a
6087 minimal chain length. The minor criteria is (of course) the size
6088 of the table. */
6089 for (i = minsize; i < maxsize; ++i)
6090 {
6091 /* Walk through the array of hashcodes and count the collisions. */
6092 BFD_HOST_U_64_BIT max;
6093 unsigned long int j;
6094 unsigned long int fact;
6095
6096 if (gnu_hash && (i & 31) == 0)
6097 continue;
6098
6099 memset (counts, '\0', i * sizeof (unsigned long int));
6100
6101 /* Determine how often each hash bucket is used. */
6102 for (j = 0; j < nsyms; ++j)
6103 ++counts[hashcodes[j] % i];
6104
6105 /* For the weight function we need some information about the
6106 pagesize on the target. This is information need not be 100%
6107 accurate. Since this information is not available (so far) we
6108 define it here to a reasonable default value. If it is crucial
6109 to have a better value some day simply define this value. */
6110 # ifndef BFD_TARGET_PAGESIZE
6111 # define BFD_TARGET_PAGESIZE (4096)
6112 # endif
6113
6114 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6115 and the chains. */
6116 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6117
6118 # if 1
6119 /* Variant 1: optimize for short chains. We add the squares
6120 of all the chain lengths (which favors many small chain
6121 over a few long chains). */
6122 for (j = 0; j < i; ++j)
6123 max += counts[j] * counts[j];
6124
6125 /* This adds penalties for the overall size of the table. */
6126 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6127 max *= fact * fact;
6128 # else
6129 /* Variant 2: Optimize a lot more for small table. Here we
6130 also add squares of the size but we also add penalties for
6131 empty slots (the +1 term). */
6132 for (j = 0; j < i; ++j)
6133 max += (1 + counts[j]) * (1 + counts[j]);
6134
6135 /* The overall size of the table is considered, but not as
6136 strong as in variant 1, where it is squared. */
6137 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6138 max *= fact;
6139 # endif
6140
6141 /* Compare with current best results. */
6142 if (max < best_chlen)
6143 {
6144 best_chlen = max;
6145 best_size = i;
6146 no_improvement_count = 0;
6147 }
6148 /* PR 11843: Avoid futile long searches for the best bucket size
6149 when there are a large number of symbols. */
6150 else if (++no_improvement_count == 100)
6151 break;
6152 }
6153
6154 free (counts);
6155 }
6156 else
6157 #endif /* defined (BFD_HOST_U_64_BIT) */
6158 {
6159 /* This is the fallback solution if no 64bit type is available or if we
6160 are not supposed to spend much time on optimizations. We select the
6161 bucket count using a fixed set of numbers. */
6162 for (i = 0; elf_buckets[i] != 0; i++)
6163 {
6164 best_size = elf_buckets[i];
6165 if (nsyms < elf_buckets[i + 1])
6166 break;
6167 }
6168 if (gnu_hash && best_size < 2)
6169 best_size = 2;
6170 }
6171
6172 return best_size;
6173 }
6174
6175 /* Size any SHT_GROUP section for ld -r. */
6176
6177 bfd_boolean
6178 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6179 {
6180 bfd *ibfd;
6181 asection *s;
6182
6183 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6184 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6185 && (s = ibfd->sections) != NULL
6186 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6187 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6188 return FALSE;
6189 return TRUE;
6190 }
6191
6192 /* Set a default stack segment size. The value in INFO wins. If it
6193 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6194 undefined it is initialized. */
6195
6196 bfd_boolean
6197 bfd_elf_stack_segment_size (bfd *output_bfd,
6198 struct bfd_link_info *info,
6199 const char *legacy_symbol,
6200 bfd_vma default_size)
6201 {
6202 struct elf_link_hash_entry *h = NULL;
6203
6204 /* Look for legacy symbol. */
6205 if (legacy_symbol)
6206 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6207 FALSE, FALSE, FALSE);
6208 if (h && (h->root.type == bfd_link_hash_defined
6209 || h->root.type == bfd_link_hash_defweak)
6210 && h->def_regular
6211 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6212 {
6213 /* The symbol has no type if specified on the command line. */
6214 h->type = STT_OBJECT;
6215 if (info->stacksize)
6216 /* xgettext:c-format */
6217 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6218 output_bfd, legacy_symbol);
6219 else if (h->root.u.def.section != bfd_abs_section_ptr)
6220 /* xgettext:c-format */
6221 _bfd_error_handler (_("%pB: %s not absolute"),
6222 output_bfd, legacy_symbol);
6223 else
6224 info->stacksize = h->root.u.def.value;
6225 }
6226
6227 if (!info->stacksize)
6228 /* If the user didn't set a size, or explicitly inhibit the
6229 size, set it now. */
6230 info->stacksize = default_size;
6231
6232 /* Provide the legacy symbol, if it is referenced. */
6233 if (h && (h->root.type == bfd_link_hash_undefined
6234 || h->root.type == bfd_link_hash_undefweak))
6235 {
6236 struct bfd_link_hash_entry *bh = NULL;
6237
6238 if (!(_bfd_generic_link_add_one_symbol
6239 (info, output_bfd, legacy_symbol,
6240 BSF_GLOBAL, bfd_abs_section_ptr,
6241 info->stacksize >= 0 ? info->stacksize : 0,
6242 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6243 return FALSE;
6244
6245 h = (struct elf_link_hash_entry *) bh;
6246 h->def_regular = 1;
6247 h->type = STT_OBJECT;
6248 }
6249
6250 return TRUE;
6251 }
6252
6253 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6254
6255 struct elf_gc_sweep_symbol_info
6256 {
6257 struct bfd_link_info *info;
6258 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6259 bfd_boolean);
6260 };
6261
6262 static bfd_boolean
6263 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6264 {
6265 if (!h->mark
6266 && (((h->root.type == bfd_link_hash_defined
6267 || h->root.type == bfd_link_hash_defweak)
6268 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6269 && h->root.u.def.section->gc_mark))
6270 || h->root.type == bfd_link_hash_undefined
6271 || h->root.type == bfd_link_hash_undefweak))
6272 {
6273 struct elf_gc_sweep_symbol_info *inf;
6274
6275 inf = (struct elf_gc_sweep_symbol_info *) data;
6276 (*inf->hide_symbol) (inf->info, h, TRUE);
6277 h->def_regular = 0;
6278 h->ref_regular = 0;
6279 h->ref_regular_nonweak = 0;
6280 }
6281
6282 return TRUE;
6283 }
6284
6285 /* Set up the sizes and contents of the ELF dynamic sections. This is
6286 called by the ELF linker emulation before_allocation routine. We
6287 must set the sizes of the sections before the linker sets the
6288 addresses of the various sections. */
6289
6290 bfd_boolean
6291 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6292 const char *soname,
6293 const char *rpath,
6294 const char *filter_shlib,
6295 const char *audit,
6296 const char *depaudit,
6297 const char * const *auxiliary_filters,
6298 struct bfd_link_info *info,
6299 asection **sinterpptr)
6300 {
6301 bfd *dynobj;
6302 const struct elf_backend_data *bed;
6303
6304 *sinterpptr = NULL;
6305
6306 if (!is_elf_hash_table (info->hash))
6307 return TRUE;
6308
6309 dynobj = elf_hash_table (info)->dynobj;
6310
6311 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6312 {
6313 struct bfd_elf_version_tree *verdefs;
6314 struct elf_info_failed asvinfo;
6315 struct bfd_elf_version_tree *t;
6316 struct bfd_elf_version_expr *d;
6317 asection *s;
6318 size_t soname_indx;
6319
6320 /* If we are supposed to export all symbols into the dynamic symbol
6321 table (this is not the normal case), then do so. */
6322 if (info->export_dynamic
6323 || (bfd_link_executable (info) && info->dynamic))
6324 {
6325 struct elf_info_failed eif;
6326
6327 eif.info = info;
6328 eif.failed = FALSE;
6329 elf_link_hash_traverse (elf_hash_table (info),
6330 _bfd_elf_export_symbol,
6331 &eif);
6332 if (eif.failed)
6333 return FALSE;
6334 }
6335
6336 if (soname != NULL)
6337 {
6338 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6339 soname, TRUE);
6340 if (soname_indx == (size_t) -1
6341 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6342 return FALSE;
6343 }
6344 else
6345 soname_indx = (size_t) -1;
6346
6347 /* Make all global versions with definition. */
6348 for (t = info->version_info; t != NULL; t = t->next)
6349 for (d = t->globals.list; d != NULL; d = d->next)
6350 if (!d->symver && d->literal)
6351 {
6352 const char *verstr, *name;
6353 size_t namelen, verlen, newlen;
6354 char *newname, *p, leading_char;
6355 struct elf_link_hash_entry *newh;
6356
6357 leading_char = bfd_get_symbol_leading_char (output_bfd);
6358 name = d->pattern;
6359 namelen = strlen (name) + (leading_char != '\0');
6360 verstr = t->name;
6361 verlen = strlen (verstr);
6362 newlen = namelen + verlen + 3;
6363
6364 newname = (char *) bfd_malloc (newlen);
6365 if (newname == NULL)
6366 return FALSE;
6367 newname[0] = leading_char;
6368 memcpy (newname + (leading_char != '\0'), name, namelen);
6369
6370 /* Check the hidden versioned definition. */
6371 p = newname + namelen;
6372 *p++ = ELF_VER_CHR;
6373 memcpy (p, verstr, verlen + 1);
6374 newh = elf_link_hash_lookup (elf_hash_table (info),
6375 newname, FALSE, FALSE,
6376 FALSE);
6377 if (newh == NULL
6378 || (newh->root.type != bfd_link_hash_defined
6379 && newh->root.type != bfd_link_hash_defweak))
6380 {
6381 /* Check the default versioned definition. */
6382 *p++ = ELF_VER_CHR;
6383 memcpy (p, verstr, verlen + 1);
6384 newh = elf_link_hash_lookup (elf_hash_table (info),
6385 newname, FALSE, FALSE,
6386 FALSE);
6387 }
6388 free (newname);
6389
6390 /* Mark this version if there is a definition and it is
6391 not defined in a shared object. */
6392 if (newh != NULL
6393 && !newh->def_dynamic
6394 && (newh->root.type == bfd_link_hash_defined
6395 || newh->root.type == bfd_link_hash_defweak))
6396 d->symver = 1;
6397 }
6398
6399 /* Attach all the symbols to their version information. */
6400 asvinfo.info = info;
6401 asvinfo.failed = FALSE;
6402
6403 elf_link_hash_traverse (elf_hash_table (info),
6404 _bfd_elf_link_assign_sym_version,
6405 &asvinfo);
6406 if (asvinfo.failed)
6407 return FALSE;
6408
6409 if (!info->allow_undefined_version)
6410 {
6411 /* Check if all global versions have a definition. */
6412 bfd_boolean all_defined = TRUE;
6413 for (t = info->version_info; t != NULL; t = t->next)
6414 for (d = t->globals.list; d != NULL; d = d->next)
6415 if (d->literal && !d->symver && !d->script)
6416 {
6417 _bfd_error_handler
6418 (_("%s: undefined version: %s"),
6419 d->pattern, t->name);
6420 all_defined = FALSE;
6421 }
6422
6423 if (!all_defined)
6424 {
6425 bfd_set_error (bfd_error_bad_value);
6426 return FALSE;
6427 }
6428 }
6429
6430 /* Set up the version definition section. */
6431 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6432 BFD_ASSERT (s != NULL);
6433
6434 /* We may have created additional version definitions if we are
6435 just linking a regular application. */
6436 verdefs = info->version_info;
6437
6438 /* Skip anonymous version tag. */
6439 if (verdefs != NULL && verdefs->vernum == 0)
6440 verdefs = verdefs->next;
6441
6442 if (verdefs == NULL && !info->create_default_symver)
6443 s->flags |= SEC_EXCLUDE;
6444 else
6445 {
6446 unsigned int cdefs;
6447 bfd_size_type size;
6448 bfd_byte *p;
6449 Elf_Internal_Verdef def;
6450 Elf_Internal_Verdaux defaux;
6451 struct bfd_link_hash_entry *bh;
6452 struct elf_link_hash_entry *h;
6453 const char *name;
6454
6455 cdefs = 0;
6456 size = 0;
6457
6458 /* Make space for the base version. */
6459 size += sizeof (Elf_External_Verdef);
6460 size += sizeof (Elf_External_Verdaux);
6461 ++cdefs;
6462
6463 /* Make space for the default version. */
6464 if (info->create_default_symver)
6465 {
6466 size += sizeof (Elf_External_Verdef);
6467 ++cdefs;
6468 }
6469
6470 for (t = verdefs; t != NULL; t = t->next)
6471 {
6472 struct bfd_elf_version_deps *n;
6473
6474 /* Don't emit base version twice. */
6475 if (t->vernum == 0)
6476 continue;
6477
6478 size += sizeof (Elf_External_Verdef);
6479 size += sizeof (Elf_External_Verdaux);
6480 ++cdefs;
6481
6482 for (n = t->deps; n != NULL; n = n->next)
6483 size += sizeof (Elf_External_Verdaux);
6484 }
6485
6486 s->size = size;
6487 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6488 if (s->contents == NULL && s->size != 0)
6489 return FALSE;
6490
6491 /* Fill in the version definition section. */
6492
6493 p = s->contents;
6494
6495 def.vd_version = VER_DEF_CURRENT;
6496 def.vd_flags = VER_FLG_BASE;
6497 def.vd_ndx = 1;
6498 def.vd_cnt = 1;
6499 if (info->create_default_symver)
6500 {
6501 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6502 def.vd_next = sizeof (Elf_External_Verdef);
6503 }
6504 else
6505 {
6506 def.vd_aux = sizeof (Elf_External_Verdef);
6507 def.vd_next = (sizeof (Elf_External_Verdef)
6508 + sizeof (Elf_External_Verdaux));
6509 }
6510
6511 if (soname_indx != (size_t) -1)
6512 {
6513 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6514 soname_indx);
6515 def.vd_hash = bfd_elf_hash (soname);
6516 defaux.vda_name = soname_indx;
6517 name = soname;
6518 }
6519 else
6520 {
6521 size_t indx;
6522
6523 name = lbasename (output_bfd->filename);
6524 def.vd_hash = bfd_elf_hash (name);
6525 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6526 name, FALSE);
6527 if (indx == (size_t) -1)
6528 return FALSE;
6529 defaux.vda_name = indx;
6530 }
6531 defaux.vda_next = 0;
6532
6533 _bfd_elf_swap_verdef_out (output_bfd, &def,
6534 (Elf_External_Verdef *) p);
6535 p += sizeof (Elf_External_Verdef);
6536 if (info->create_default_symver)
6537 {
6538 /* Add a symbol representing this version. */
6539 bh = NULL;
6540 if (! (_bfd_generic_link_add_one_symbol
6541 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6542 0, NULL, FALSE,
6543 get_elf_backend_data (dynobj)->collect, &bh)))
6544 return FALSE;
6545 h = (struct elf_link_hash_entry *) bh;
6546 h->non_elf = 0;
6547 h->def_regular = 1;
6548 h->type = STT_OBJECT;
6549 h->verinfo.vertree = NULL;
6550
6551 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6552 return FALSE;
6553
6554 /* Create a duplicate of the base version with the same
6555 aux block, but different flags. */
6556 def.vd_flags = 0;
6557 def.vd_ndx = 2;
6558 def.vd_aux = sizeof (Elf_External_Verdef);
6559 if (verdefs)
6560 def.vd_next = (sizeof (Elf_External_Verdef)
6561 + sizeof (Elf_External_Verdaux));
6562 else
6563 def.vd_next = 0;
6564 _bfd_elf_swap_verdef_out (output_bfd, &def,
6565 (Elf_External_Verdef *) p);
6566 p += sizeof (Elf_External_Verdef);
6567 }
6568 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6569 (Elf_External_Verdaux *) p);
6570 p += sizeof (Elf_External_Verdaux);
6571
6572 for (t = verdefs; t != NULL; t = t->next)
6573 {
6574 unsigned int cdeps;
6575 struct bfd_elf_version_deps *n;
6576
6577 /* Don't emit the base version twice. */
6578 if (t->vernum == 0)
6579 continue;
6580
6581 cdeps = 0;
6582 for (n = t->deps; n != NULL; n = n->next)
6583 ++cdeps;
6584
6585 /* Add a symbol representing this version. */
6586 bh = NULL;
6587 if (! (_bfd_generic_link_add_one_symbol
6588 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6589 0, NULL, FALSE,
6590 get_elf_backend_data (dynobj)->collect, &bh)))
6591 return FALSE;
6592 h = (struct elf_link_hash_entry *) bh;
6593 h->non_elf = 0;
6594 h->def_regular = 1;
6595 h->type = STT_OBJECT;
6596 h->verinfo.vertree = t;
6597
6598 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6599 return FALSE;
6600
6601 def.vd_version = VER_DEF_CURRENT;
6602 def.vd_flags = 0;
6603 if (t->globals.list == NULL
6604 && t->locals.list == NULL
6605 && ! t->used)
6606 def.vd_flags |= VER_FLG_WEAK;
6607 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6608 def.vd_cnt = cdeps + 1;
6609 def.vd_hash = bfd_elf_hash (t->name);
6610 def.vd_aux = sizeof (Elf_External_Verdef);
6611 def.vd_next = 0;
6612
6613 /* If a basever node is next, it *must* be the last node in
6614 the chain, otherwise Verdef construction breaks. */
6615 if (t->next != NULL && t->next->vernum == 0)
6616 BFD_ASSERT (t->next->next == NULL);
6617
6618 if (t->next != NULL && t->next->vernum != 0)
6619 def.vd_next = (sizeof (Elf_External_Verdef)
6620 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6621
6622 _bfd_elf_swap_verdef_out (output_bfd, &def,
6623 (Elf_External_Verdef *) p);
6624 p += sizeof (Elf_External_Verdef);
6625
6626 defaux.vda_name = h->dynstr_index;
6627 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6628 h->dynstr_index);
6629 defaux.vda_next = 0;
6630 if (t->deps != NULL)
6631 defaux.vda_next = sizeof (Elf_External_Verdaux);
6632 t->name_indx = defaux.vda_name;
6633
6634 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6635 (Elf_External_Verdaux *) p);
6636 p += sizeof (Elf_External_Verdaux);
6637
6638 for (n = t->deps; n != NULL; n = n->next)
6639 {
6640 if (n->version_needed == NULL)
6641 {
6642 /* This can happen if there was an error in the
6643 version script. */
6644 defaux.vda_name = 0;
6645 }
6646 else
6647 {
6648 defaux.vda_name = n->version_needed->name_indx;
6649 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6650 defaux.vda_name);
6651 }
6652 if (n->next == NULL)
6653 defaux.vda_next = 0;
6654 else
6655 defaux.vda_next = sizeof (Elf_External_Verdaux);
6656
6657 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6658 (Elf_External_Verdaux *) p);
6659 p += sizeof (Elf_External_Verdaux);
6660 }
6661 }
6662
6663 elf_tdata (output_bfd)->cverdefs = cdefs;
6664 }
6665 }
6666
6667 bed = get_elf_backend_data (output_bfd);
6668
6669 if (info->gc_sections && bed->can_gc_sections)
6670 {
6671 struct elf_gc_sweep_symbol_info sweep_info;
6672
6673 /* Remove the symbols that were in the swept sections from the
6674 dynamic symbol table. */
6675 sweep_info.info = info;
6676 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6677 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6678 &sweep_info);
6679 }
6680
6681 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6682 {
6683 asection *s;
6684 struct elf_find_verdep_info sinfo;
6685
6686 /* Work out the size of the version reference section. */
6687
6688 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6689 BFD_ASSERT (s != NULL);
6690
6691 sinfo.info = info;
6692 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6693 if (sinfo.vers == 0)
6694 sinfo.vers = 1;
6695 sinfo.failed = FALSE;
6696
6697 elf_link_hash_traverse (elf_hash_table (info),
6698 _bfd_elf_link_find_version_dependencies,
6699 &sinfo);
6700 if (sinfo.failed)
6701 return FALSE;
6702
6703 if (elf_tdata (output_bfd)->verref == NULL)
6704 s->flags |= SEC_EXCLUDE;
6705 else
6706 {
6707 Elf_Internal_Verneed *vn;
6708 unsigned int size;
6709 unsigned int crefs;
6710 bfd_byte *p;
6711
6712 /* Build the version dependency section. */
6713 size = 0;
6714 crefs = 0;
6715 for (vn = elf_tdata (output_bfd)->verref;
6716 vn != NULL;
6717 vn = vn->vn_nextref)
6718 {
6719 Elf_Internal_Vernaux *a;
6720
6721 size += sizeof (Elf_External_Verneed);
6722 ++crefs;
6723 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6724 size += sizeof (Elf_External_Vernaux);
6725 }
6726
6727 s->size = size;
6728 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6729 if (s->contents == NULL)
6730 return FALSE;
6731
6732 p = s->contents;
6733 for (vn = elf_tdata (output_bfd)->verref;
6734 vn != NULL;
6735 vn = vn->vn_nextref)
6736 {
6737 unsigned int caux;
6738 Elf_Internal_Vernaux *a;
6739 size_t indx;
6740
6741 caux = 0;
6742 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6743 ++caux;
6744
6745 vn->vn_version = VER_NEED_CURRENT;
6746 vn->vn_cnt = caux;
6747 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6748 elf_dt_name (vn->vn_bfd) != NULL
6749 ? elf_dt_name (vn->vn_bfd)
6750 : lbasename (vn->vn_bfd->filename),
6751 FALSE);
6752 if (indx == (size_t) -1)
6753 return FALSE;
6754 vn->vn_file = indx;
6755 vn->vn_aux = sizeof (Elf_External_Verneed);
6756 if (vn->vn_nextref == NULL)
6757 vn->vn_next = 0;
6758 else
6759 vn->vn_next = (sizeof (Elf_External_Verneed)
6760 + caux * sizeof (Elf_External_Vernaux));
6761
6762 _bfd_elf_swap_verneed_out (output_bfd, vn,
6763 (Elf_External_Verneed *) p);
6764 p += sizeof (Elf_External_Verneed);
6765
6766 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6767 {
6768 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6769 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6770 a->vna_nodename, FALSE);
6771 if (indx == (size_t) -1)
6772 return FALSE;
6773 a->vna_name = indx;
6774 if (a->vna_nextptr == NULL)
6775 a->vna_next = 0;
6776 else
6777 a->vna_next = sizeof (Elf_External_Vernaux);
6778
6779 _bfd_elf_swap_vernaux_out (output_bfd, a,
6780 (Elf_External_Vernaux *) p);
6781 p += sizeof (Elf_External_Vernaux);
6782 }
6783 }
6784
6785 elf_tdata (output_bfd)->cverrefs = crefs;
6786 }
6787 }
6788
6789 /* Any syms created from now on start with -1 in
6790 got.refcount/offset and plt.refcount/offset. */
6791 elf_hash_table (info)->init_got_refcount
6792 = elf_hash_table (info)->init_got_offset;
6793 elf_hash_table (info)->init_plt_refcount
6794 = elf_hash_table (info)->init_plt_offset;
6795
6796 if (bfd_link_relocatable (info)
6797 && !_bfd_elf_size_group_sections (info))
6798 return FALSE;
6799
6800 /* The backend may have to create some sections regardless of whether
6801 we're dynamic or not. */
6802 if (bed->elf_backend_always_size_sections
6803 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6804 return FALSE;
6805
6806 /* Determine any GNU_STACK segment requirements, after the backend
6807 has had a chance to set a default segment size. */
6808 if (info->execstack)
6809 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6810 else if (info->noexecstack)
6811 elf_stack_flags (output_bfd) = PF_R | PF_W;
6812 else
6813 {
6814 bfd *inputobj;
6815 asection *notesec = NULL;
6816 int exec = 0;
6817
6818 for (inputobj = info->input_bfds;
6819 inputobj;
6820 inputobj = inputobj->link.next)
6821 {
6822 asection *s;
6823
6824 if (inputobj->flags
6825 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6826 continue;
6827 s = inputobj->sections;
6828 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6829 continue;
6830
6831 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6832 if (s)
6833 {
6834 if (s->flags & SEC_CODE)
6835 exec = PF_X;
6836 notesec = s;
6837 }
6838 else if (bed->default_execstack)
6839 exec = PF_X;
6840 }
6841 if (notesec || info->stacksize > 0)
6842 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6843 if (notesec && exec && bfd_link_relocatable (info)
6844 && notesec->output_section != bfd_abs_section_ptr)
6845 notesec->output_section->flags |= SEC_CODE;
6846 }
6847
6848 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6849 {
6850 struct elf_info_failed eif;
6851 struct elf_link_hash_entry *h;
6852 asection *dynstr;
6853 asection *s;
6854
6855 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6856 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6857
6858 if (info->symbolic)
6859 {
6860 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6861 return FALSE;
6862 info->flags |= DF_SYMBOLIC;
6863 }
6864
6865 if (rpath != NULL)
6866 {
6867 size_t indx;
6868 bfd_vma tag;
6869
6870 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6871 TRUE);
6872 if (indx == (size_t) -1)
6873 return FALSE;
6874
6875 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6876 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6877 return FALSE;
6878 }
6879
6880 if (filter_shlib != NULL)
6881 {
6882 size_t indx;
6883
6884 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6885 filter_shlib, TRUE);
6886 if (indx == (size_t) -1
6887 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6888 return FALSE;
6889 }
6890
6891 if (auxiliary_filters != NULL)
6892 {
6893 const char * const *p;
6894
6895 for (p = auxiliary_filters; *p != NULL; p++)
6896 {
6897 size_t indx;
6898
6899 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6900 *p, TRUE);
6901 if (indx == (size_t) -1
6902 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6903 return FALSE;
6904 }
6905 }
6906
6907 if (audit != NULL)
6908 {
6909 size_t indx;
6910
6911 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6912 TRUE);
6913 if (indx == (size_t) -1
6914 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6915 return FALSE;
6916 }
6917
6918 if (depaudit != NULL)
6919 {
6920 size_t indx;
6921
6922 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6923 TRUE);
6924 if (indx == (size_t) -1
6925 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6926 return FALSE;
6927 }
6928
6929 eif.info = info;
6930 eif.failed = FALSE;
6931
6932 /* Find all symbols which were defined in a dynamic object and make
6933 the backend pick a reasonable value for them. */
6934 elf_link_hash_traverse (elf_hash_table (info),
6935 _bfd_elf_adjust_dynamic_symbol,
6936 &eif);
6937 if (eif.failed)
6938 return FALSE;
6939
6940 /* Add some entries to the .dynamic section. We fill in some of the
6941 values later, in bfd_elf_final_link, but we must add the entries
6942 now so that we know the final size of the .dynamic section. */
6943
6944 /* If there are initialization and/or finalization functions to
6945 call then add the corresponding DT_INIT/DT_FINI entries. */
6946 h = (info->init_function
6947 ? elf_link_hash_lookup (elf_hash_table (info),
6948 info->init_function, FALSE,
6949 FALSE, FALSE)
6950 : NULL);
6951 if (h != NULL
6952 && (h->ref_regular
6953 || h->def_regular))
6954 {
6955 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6956 return FALSE;
6957 }
6958 h = (info->fini_function
6959 ? elf_link_hash_lookup (elf_hash_table (info),
6960 info->fini_function, FALSE,
6961 FALSE, FALSE)
6962 : NULL);
6963 if (h != NULL
6964 && (h->ref_regular
6965 || h->def_regular))
6966 {
6967 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6968 return FALSE;
6969 }
6970
6971 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6972 if (s != NULL && s->linker_has_input)
6973 {
6974 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6975 if (! bfd_link_executable (info))
6976 {
6977 bfd *sub;
6978 asection *o;
6979
6980 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6981 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6982 && (o = sub->sections) != NULL
6983 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6984 for (o = sub->sections; o != NULL; o = o->next)
6985 if (elf_section_data (o)->this_hdr.sh_type
6986 == SHT_PREINIT_ARRAY)
6987 {
6988 _bfd_error_handler
6989 (_("%pB: .preinit_array section is not allowed in DSO"),
6990 sub);
6991 break;
6992 }
6993
6994 bfd_set_error (bfd_error_nonrepresentable_section);
6995 return FALSE;
6996 }
6997
6998 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6999 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7000 return FALSE;
7001 }
7002 s = bfd_get_section_by_name (output_bfd, ".init_array");
7003 if (s != NULL && s->linker_has_input)
7004 {
7005 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7006 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7007 return FALSE;
7008 }
7009 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7010 if (s != NULL && s->linker_has_input)
7011 {
7012 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7013 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7014 return FALSE;
7015 }
7016
7017 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7018 /* If .dynstr is excluded from the link, we don't want any of
7019 these tags. Strictly, we should be checking each section
7020 individually; This quick check covers for the case where
7021 someone does a /DISCARD/ : { *(*) }. */
7022 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7023 {
7024 bfd_size_type strsize;
7025
7026 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7027 if ((info->emit_hash
7028 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7029 || (info->emit_gnu_hash
7030 && (bed->record_xhash_symbol == NULL
7031 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7032 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7033 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7034 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7035 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7036 bed->s->sizeof_sym))
7037 return FALSE;
7038 }
7039 }
7040
7041 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7042 return FALSE;
7043
7044 /* The backend must work out the sizes of all the other dynamic
7045 sections. */
7046 if (dynobj != NULL
7047 && bed->elf_backend_size_dynamic_sections != NULL
7048 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7049 return FALSE;
7050
7051 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7052 {
7053 if (elf_tdata (output_bfd)->cverdefs)
7054 {
7055 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7056
7057 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7058 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7059 return FALSE;
7060 }
7061
7062 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7063 {
7064 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7065 return FALSE;
7066 }
7067 else if (info->flags & DF_BIND_NOW)
7068 {
7069 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7070 return FALSE;
7071 }
7072
7073 if (info->flags_1)
7074 {
7075 if (bfd_link_executable (info))
7076 info->flags_1 &= ~ (DF_1_INITFIRST
7077 | DF_1_NODELETE
7078 | DF_1_NOOPEN);
7079 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7080 return FALSE;
7081 }
7082
7083 if (elf_tdata (output_bfd)->cverrefs)
7084 {
7085 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7086
7087 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7088 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7089 return FALSE;
7090 }
7091
7092 if ((elf_tdata (output_bfd)->cverrefs == 0
7093 && elf_tdata (output_bfd)->cverdefs == 0)
7094 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7095 {
7096 asection *s;
7097
7098 s = bfd_get_linker_section (dynobj, ".gnu.version");
7099 s->flags |= SEC_EXCLUDE;
7100 }
7101 }
7102 return TRUE;
7103 }
7104
7105 /* Find the first non-excluded output section. We'll use its
7106 section symbol for some emitted relocs. */
7107 void
7108 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7109 {
7110 asection *s;
7111 asection *found = NULL;
7112
7113 for (s = output_bfd->sections; s != NULL; s = s->next)
7114 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7115 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7116 {
7117 found = s;
7118 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7119 break;
7120 }
7121 elf_hash_table (info)->text_index_section = found;
7122 }
7123
7124 /* Find two non-excluded output sections, one for code, one for data.
7125 We'll use their section symbols for some emitted relocs. */
7126 void
7127 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7128 {
7129 asection *s;
7130 asection *found = NULL;
7131
7132 /* Data first, since setting text_index_section changes
7133 _bfd_elf_omit_section_dynsym_default. */
7134 for (s = output_bfd->sections; s != NULL; s = s->next)
7135 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7136 && !(s->flags & SEC_READONLY)
7137 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7138 {
7139 found = s;
7140 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7141 break;
7142 }
7143 elf_hash_table (info)->data_index_section = found;
7144
7145 for (s = output_bfd->sections; s != NULL; s = s->next)
7146 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7147 && (s->flags & SEC_READONLY)
7148 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7149 {
7150 found = s;
7151 break;
7152 }
7153 elf_hash_table (info)->text_index_section = found;
7154 }
7155
7156 #define GNU_HASH_SECTION_NAME(bed) \
7157 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7158
7159 bfd_boolean
7160 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7161 {
7162 const struct elf_backend_data *bed;
7163 unsigned long section_sym_count;
7164 bfd_size_type dynsymcount = 0;
7165
7166 if (!is_elf_hash_table (info->hash))
7167 return TRUE;
7168
7169 bed = get_elf_backend_data (output_bfd);
7170 (*bed->elf_backend_init_index_section) (output_bfd, info);
7171
7172 /* Assign dynsym indices. In a shared library we generate a section
7173 symbol for each output section, which come first. Next come all
7174 of the back-end allocated local dynamic syms, followed by the rest
7175 of the global symbols.
7176
7177 This is usually not needed for static binaries, however backends
7178 can request to always do it, e.g. the MIPS backend uses dynamic
7179 symbol counts to lay out GOT, which will be produced in the
7180 presence of GOT relocations even in static binaries (holding fixed
7181 data in that case, to satisfy those relocations). */
7182
7183 if (elf_hash_table (info)->dynamic_sections_created
7184 || bed->always_renumber_dynsyms)
7185 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7186 &section_sym_count);
7187
7188 if (elf_hash_table (info)->dynamic_sections_created)
7189 {
7190 bfd *dynobj;
7191 asection *s;
7192 unsigned int dtagcount;
7193
7194 dynobj = elf_hash_table (info)->dynobj;
7195
7196 /* Work out the size of the symbol version section. */
7197 s = bfd_get_linker_section (dynobj, ".gnu.version");
7198 BFD_ASSERT (s != NULL);
7199 if ((s->flags & SEC_EXCLUDE) == 0)
7200 {
7201 s->size = dynsymcount * sizeof (Elf_External_Versym);
7202 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7203 if (s->contents == NULL)
7204 return FALSE;
7205
7206 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7207 return FALSE;
7208 }
7209
7210 /* Set the size of the .dynsym and .hash sections. We counted
7211 the number of dynamic symbols in elf_link_add_object_symbols.
7212 We will build the contents of .dynsym and .hash when we build
7213 the final symbol table, because until then we do not know the
7214 correct value to give the symbols. We built the .dynstr
7215 section as we went along in elf_link_add_object_symbols. */
7216 s = elf_hash_table (info)->dynsym;
7217 BFD_ASSERT (s != NULL);
7218 s->size = dynsymcount * bed->s->sizeof_sym;
7219
7220 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7221 if (s->contents == NULL)
7222 return FALSE;
7223
7224 /* The first entry in .dynsym is a dummy symbol. Clear all the
7225 section syms, in case we don't output them all. */
7226 ++section_sym_count;
7227 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7228
7229 elf_hash_table (info)->bucketcount = 0;
7230
7231 /* Compute the size of the hashing table. As a side effect this
7232 computes the hash values for all the names we export. */
7233 if (info->emit_hash)
7234 {
7235 unsigned long int *hashcodes;
7236 struct hash_codes_info hashinf;
7237 bfd_size_type amt;
7238 unsigned long int nsyms;
7239 size_t bucketcount;
7240 size_t hash_entry_size;
7241
7242 /* Compute the hash values for all exported symbols. At the same
7243 time store the values in an array so that we could use them for
7244 optimizations. */
7245 amt = dynsymcount * sizeof (unsigned long int);
7246 hashcodes = (unsigned long int *) bfd_malloc (amt);
7247 if (hashcodes == NULL)
7248 return FALSE;
7249 hashinf.hashcodes = hashcodes;
7250 hashinf.error = FALSE;
7251
7252 /* Put all hash values in HASHCODES. */
7253 elf_link_hash_traverse (elf_hash_table (info),
7254 elf_collect_hash_codes, &hashinf);
7255 if (hashinf.error)
7256 {
7257 free (hashcodes);
7258 return FALSE;
7259 }
7260
7261 nsyms = hashinf.hashcodes - hashcodes;
7262 bucketcount
7263 = compute_bucket_count (info, hashcodes, nsyms, 0);
7264 free (hashcodes);
7265
7266 if (bucketcount == 0 && nsyms > 0)
7267 return FALSE;
7268
7269 elf_hash_table (info)->bucketcount = bucketcount;
7270
7271 s = bfd_get_linker_section (dynobj, ".hash");
7272 BFD_ASSERT (s != NULL);
7273 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7274 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7275 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7276 if (s->contents == NULL)
7277 return FALSE;
7278
7279 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7280 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7281 s->contents + hash_entry_size);
7282 }
7283
7284 if (info->emit_gnu_hash)
7285 {
7286 size_t i, cnt;
7287 unsigned char *contents;
7288 struct collect_gnu_hash_codes cinfo;
7289 bfd_size_type amt;
7290 size_t bucketcount;
7291
7292 memset (&cinfo, 0, sizeof (cinfo));
7293
7294 /* Compute the hash values for all exported symbols. At the same
7295 time store the values in an array so that we could use them for
7296 optimizations. */
7297 amt = dynsymcount * 2 * sizeof (unsigned long int);
7298 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7299 if (cinfo.hashcodes == NULL)
7300 return FALSE;
7301
7302 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7303 cinfo.min_dynindx = -1;
7304 cinfo.output_bfd = output_bfd;
7305 cinfo.bed = bed;
7306
7307 /* Put all hash values in HASHCODES. */
7308 elf_link_hash_traverse (elf_hash_table (info),
7309 elf_collect_gnu_hash_codes, &cinfo);
7310 if (cinfo.error)
7311 {
7312 free (cinfo.hashcodes);
7313 return FALSE;
7314 }
7315
7316 bucketcount
7317 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7318
7319 if (bucketcount == 0)
7320 {
7321 free (cinfo.hashcodes);
7322 return FALSE;
7323 }
7324
7325 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7326 BFD_ASSERT (s != NULL);
7327
7328 if (cinfo.nsyms == 0)
7329 {
7330 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7331 BFD_ASSERT (cinfo.min_dynindx == -1);
7332 free (cinfo.hashcodes);
7333 s->size = 5 * 4 + bed->s->arch_size / 8;
7334 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7335 if (contents == NULL)
7336 return FALSE;
7337 s->contents = contents;
7338 /* 1 empty bucket. */
7339 bfd_put_32 (output_bfd, 1, contents);
7340 /* SYMIDX above the special symbol 0. */
7341 bfd_put_32 (output_bfd, 1, contents + 4);
7342 /* Just one word for bitmask. */
7343 bfd_put_32 (output_bfd, 1, contents + 8);
7344 /* Only hash fn bloom filter. */
7345 bfd_put_32 (output_bfd, 0, contents + 12);
7346 /* No hashes are valid - empty bitmask. */
7347 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7348 /* No hashes in the only bucket. */
7349 bfd_put_32 (output_bfd, 0,
7350 contents + 16 + bed->s->arch_size / 8);
7351 }
7352 else
7353 {
7354 unsigned long int maskwords, maskbitslog2, x;
7355 BFD_ASSERT (cinfo.min_dynindx != -1);
7356
7357 x = cinfo.nsyms;
7358 maskbitslog2 = 1;
7359 while ((x >>= 1) != 0)
7360 ++maskbitslog2;
7361 if (maskbitslog2 < 3)
7362 maskbitslog2 = 5;
7363 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7364 maskbitslog2 = maskbitslog2 + 3;
7365 else
7366 maskbitslog2 = maskbitslog2 + 2;
7367 if (bed->s->arch_size == 64)
7368 {
7369 if (maskbitslog2 == 5)
7370 maskbitslog2 = 6;
7371 cinfo.shift1 = 6;
7372 }
7373 else
7374 cinfo.shift1 = 5;
7375 cinfo.mask = (1 << cinfo.shift1) - 1;
7376 cinfo.shift2 = maskbitslog2;
7377 cinfo.maskbits = 1 << maskbitslog2;
7378 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7379 amt = bucketcount * sizeof (unsigned long int) * 2;
7380 amt += maskwords * sizeof (bfd_vma);
7381 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7382 if (cinfo.bitmask == NULL)
7383 {
7384 free (cinfo.hashcodes);
7385 return FALSE;
7386 }
7387
7388 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7389 cinfo.indx = cinfo.counts + bucketcount;
7390 cinfo.symindx = dynsymcount - cinfo.nsyms;
7391 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7392
7393 /* Determine how often each hash bucket is used. */
7394 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7395 for (i = 0; i < cinfo.nsyms; ++i)
7396 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7397
7398 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7399 if (cinfo.counts[i] != 0)
7400 {
7401 cinfo.indx[i] = cnt;
7402 cnt += cinfo.counts[i];
7403 }
7404 BFD_ASSERT (cnt == dynsymcount);
7405 cinfo.bucketcount = bucketcount;
7406 cinfo.local_indx = cinfo.min_dynindx;
7407
7408 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7409 s->size += cinfo.maskbits / 8;
7410 if (bed->record_xhash_symbol != NULL)
7411 s->size += cinfo.nsyms * 4;
7412 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7413 if (contents == NULL)
7414 {
7415 free (cinfo.bitmask);
7416 free (cinfo.hashcodes);
7417 return FALSE;
7418 }
7419
7420 s->contents = contents;
7421 bfd_put_32 (output_bfd, bucketcount, contents);
7422 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7423 bfd_put_32 (output_bfd, maskwords, contents + 8);
7424 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7425 contents += 16 + cinfo.maskbits / 8;
7426
7427 for (i = 0; i < bucketcount; ++i)
7428 {
7429 if (cinfo.counts[i] == 0)
7430 bfd_put_32 (output_bfd, 0, contents);
7431 else
7432 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7433 contents += 4;
7434 }
7435
7436 cinfo.contents = contents;
7437
7438 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7439 /* Renumber dynamic symbols, if populating .gnu.hash section.
7440 If using .MIPS.xhash, populate the translation table. */
7441 elf_link_hash_traverse (elf_hash_table (info),
7442 elf_gnu_hash_process_symidx, &cinfo);
7443
7444 contents = s->contents + 16;
7445 for (i = 0; i < maskwords; ++i)
7446 {
7447 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7448 contents);
7449 contents += bed->s->arch_size / 8;
7450 }
7451
7452 free (cinfo.bitmask);
7453 free (cinfo.hashcodes);
7454 }
7455 }
7456
7457 s = bfd_get_linker_section (dynobj, ".dynstr");
7458 BFD_ASSERT (s != NULL);
7459
7460 elf_finalize_dynstr (output_bfd, info);
7461
7462 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7463
7464 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7465 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7466 return FALSE;
7467 }
7468
7469 return TRUE;
7470 }
7471 \f
7472 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7473
7474 static void
7475 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7476 asection *sec)
7477 {
7478 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7479 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7480 }
7481
7482 /* Finish SHF_MERGE section merging. */
7483
7484 bfd_boolean
7485 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7486 {
7487 bfd *ibfd;
7488 asection *sec;
7489
7490 if (!is_elf_hash_table (info->hash))
7491 return FALSE;
7492
7493 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7494 if ((ibfd->flags & DYNAMIC) == 0
7495 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7496 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7497 == get_elf_backend_data (obfd)->s->elfclass))
7498 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7499 if ((sec->flags & SEC_MERGE) != 0
7500 && !bfd_is_abs_section (sec->output_section))
7501 {
7502 struct bfd_elf_section_data *secdata;
7503
7504 secdata = elf_section_data (sec);
7505 if (! _bfd_add_merge_section (obfd,
7506 &elf_hash_table (info)->merge_info,
7507 sec, &secdata->sec_info))
7508 return FALSE;
7509 else if (secdata->sec_info)
7510 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7511 }
7512
7513 if (elf_hash_table (info)->merge_info != NULL)
7514 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7515 merge_sections_remove_hook);
7516 return TRUE;
7517 }
7518
7519 /* Create an entry in an ELF linker hash table. */
7520
7521 struct bfd_hash_entry *
7522 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7523 struct bfd_hash_table *table,
7524 const char *string)
7525 {
7526 /* Allocate the structure if it has not already been allocated by a
7527 subclass. */
7528 if (entry == NULL)
7529 {
7530 entry = (struct bfd_hash_entry *)
7531 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7532 if (entry == NULL)
7533 return entry;
7534 }
7535
7536 /* Call the allocation method of the superclass. */
7537 entry = _bfd_link_hash_newfunc (entry, table, string);
7538 if (entry != NULL)
7539 {
7540 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7541 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7542
7543 /* Set local fields. */
7544 ret->indx = -1;
7545 ret->dynindx = -1;
7546 ret->got = htab->init_got_refcount;
7547 ret->plt = htab->init_plt_refcount;
7548 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7549 - offsetof (struct elf_link_hash_entry, size)));
7550 /* Assume that we have been called by a non-ELF symbol reader.
7551 This flag is then reset by the code which reads an ELF input
7552 file. This ensures that a symbol created by a non-ELF symbol
7553 reader will have the flag set correctly. */
7554 ret->non_elf = 1;
7555 }
7556
7557 return entry;
7558 }
7559
7560 /* Copy data from an indirect symbol to its direct symbol, hiding the
7561 old indirect symbol. Also used for copying flags to a weakdef. */
7562
7563 void
7564 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7565 struct elf_link_hash_entry *dir,
7566 struct elf_link_hash_entry *ind)
7567 {
7568 struct elf_link_hash_table *htab;
7569
7570 /* Copy down any references that we may have already seen to the
7571 symbol which just became indirect. */
7572
7573 if (dir->versioned != versioned_hidden)
7574 dir->ref_dynamic |= ind->ref_dynamic;
7575 dir->ref_regular |= ind->ref_regular;
7576 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7577 dir->non_got_ref |= ind->non_got_ref;
7578 dir->needs_plt |= ind->needs_plt;
7579 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7580
7581 if (ind->root.type != bfd_link_hash_indirect)
7582 return;
7583
7584 /* Copy over the global and procedure linkage table refcount entries.
7585 These may have been already set up by a check_relocs routine. */
7586 htab = elf_hash_table (info);
7587 if (ind->got.refcount > htab->init_got_refcount.refcount)
7588 {
7589 if (dir->got.refcount < 0)
7590 dir->got.refcount = 0;
7591 dir->got.refcount += ind->got.refcount;
7592 ind->got.refcount = htab->init_got_refcount.refcount;
7593 }
7594
7595 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7596 {
7597 if (dir->plt.refcount < 0)
7598 dir->plt.refcount = 0;
7599 dir->plt.refcount += ind->plt.refcount;
7600 ind->plt.refcount = htab->init_plt_refcount.refcount;
7601 }
7602
7603 if (ind->dynindx != -1)
7604 {
7605 if (dir->dynindx != -1)
7606 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7607 dir->dynindx = ind->dynindx;
7608 dir->dynstr_index = ind->dynstr_index;
7609 ind->dynindx = -1;
7610 ind->dynstr_index = 0;
7611 }
7612 }
7613
7614 void
7615 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7616 struct elf_link_hash_entry *h,
7617 bfd_boolean force_local)
7618 {
7619 /* STT_GNU_IFUNC symbol must go through PLT. */
7620 if (h->type != STT_GNU_IFUNC)
7621 {
7622 h->plt = elf_hash_table (info)->init_plt_offset;
7623 h->needs_plt = 0;
7624 }
7625 if (force_local)
7626 {
7627 h->forced_local = 1;
7628 if (h->dynindx != -1)
7629 {
7630 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7631 h->dynstr_index);
7632 h->dynindx = -1;
7633 h->dynstr_index = 0;
7634 }
7635 }
7636 }
7637
7638 /* Hide a symbol. */
7639
7640 void
7641 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7642 struct bfd_link_info *info,
7643 struct bfd_link_hash_entry *h)
7644 {
7645 if (is_elf_hash_table (info->hash))
7646 {
7647 const struct elf_backend_data *bed
7648 = get_elf_backend_data (output_bfd);
7649 struct elf_link_hash_entry *eh
7650 = (struct elf_link_hash_entry *) h;
7651 bed->elf_backend_hide_symbol (info, eh, TRUE);
7652 eh->def_dynamic = 0;
7653 eh->ref_dynamic = 0;
7654 eh->dynamic_def = 0;
7655 }
7656 }
7657
7658 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7659 caller. */
7660
7661 bfd_boolean
7662 _bfd_elf_link_hash_table_init
7663 (struct elf_link_hash_table *table,
7664 bfd *abfd,
7665 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7666 struct bfd_hash_table *,
7667 const char *),
7668 unsigned int entsize,
7669 enum elf_target_id target_id)
7670 {
7671 bfd_boolean ret;
7672 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7673
7674 table->init_got_refcount.refcount = can_refcount - 1;
7675 table->init_plt_refcount.refcount = can_refcount - 1;
7676 table->init_got_offset.offset = -(bfd_vma) 1;
7677 table->init_plt_offset.offset = -(bfd_vma) 1;
7678 /* The first dynamic symbol is a dummy. */
7679 table->dynsymcount = 1;
7680
7681 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7682
7683 table->root.type = bfd_link_elf_hash_table;
7684 table->hash_table_id = target_id;
7685
7686 return ret;
7687 }
7688
7689 /* Create an ELF linker hash table. */
7690
7691 struct bfd_link_hash_table *
7692 _bfd_elf_link_hash_table_create (bfd *abfd)
7693 {
7694 struct elf_link_hash_table *ret;
7695 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7696
7697 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7698 if (ret == NULL)
7699 return NULL;
7700
7701 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7702 sizeof (struct elf_link_hash_entry),
7703 GENERIC_ELF_DATA))
7704 {
7705 free (ret);
7706 return NULL;
7707 }
7708 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7709
7710 return &ret->root;
7711 }
7712
7713 /* Destroy an ELF linker hash table. */
7714
7715 void
7716 _bfd_elf_link_hash_table_free (bfd *obfd)
7717 {
7718 struct elf_link_hash_table *htab;
7719
7720 htab = (struct elf_link_hash_table *) obfd->link.hash;
7721 if (htab->dynstr != NULL)
7722 _bfd_elf_strtab_free (htab->dynstr);
7723 _bfd_merge_sections_free (htab->merge_info);
7724 _bfd_generic_link_hash_table_free (obfd);
7725 }
7726
7727 /* This is a hook for the ELF emulation code in the generic linker to
7728 tell the backend linker what file name to use for the DT_NEEDED
7729 entry for a dynamic object. */
7730
7731 void
7732 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7733 {
7734 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7735 && bfd_get_format (abfd) == bfd_object)
7736 elf_dt_name (abfd) = name;
7737 }
7738
7739 int
7740 bfd_elf_get_dyn_lib_class (bfd *abfd)
7741 {
7742 int lib_class;
7743 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7744 && bfd_get_format (abfd) == bfd_object)
7745 lib_class = elf_dyn_lib_class (abfd);
7746 else
7747 lib_class = 0;
7748 return lib_class;
7749 }
7750
7751 void
7752 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7753 {
7754 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7755 && bfd_get_format (abfd) == bfd_object)
7756 elf_dyn_lib_class (abfd) = lib_class;
7757 }
7758
7759 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7760 the linker ELF emulation code. */
7761
7762 struct bfd_link_needed_list *
7763 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7764 struct bfd_link_info *info)
7765 {
7766 if (! is_elf_hash_table (info->hash))
7767 return NULL;
7768 return elf_hash_table (info)->needed;
7769 }
7770
7771 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7772 hook for the linker ELF emulation code. */
7773
7774 struct bfd_link_needed_list *
7775 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7776 struct bfd_link_info *info)
7777 {
7778 if (! is_elf_hash_table (info->hash))
7779 return NULL;
7780 return elf_hash_table (info)->runpath;
7781 }
7782
7783 /* Get the name actually used for a dynamic object for a link. This
7784 is the SONAME entry if there is one. Otherwise, it is the string
7785 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7786
7787 const char *
7788 bfd_elf_get_dt_soname (bfd *abfd)
7789 {
7790 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7791 && bfd_get_format (abfd) == bfd_object)
7792 return elf_dt_name (abfd);
7793 return NULL;
7794 }
7795
7796 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7797 the ELF linker emulation code. */
7798
7799 bfd_boolean
7800 bfd_elf_get_bfd_needed_list (bfd *abfd,
7801 struct bfd_link_needed_list **pneeded)
7802 {
7803 asection *s;
7804 bfd_byte *dynbuf = NULL;
7805 unsigned int elfsec;
7806 unsigned long shlink;
7807 bfd_byte *extdyn, *extdynend;
7808 size_t extdynsize;
7809 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7810
7811 *pneeded = NULL;
7812
7813 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7814 || bfd_get_format (abfd) != bfd_object)
7815 return TRUE;
7816
7817 s = bfd_get_section_by_name (abfd, ".dynamic");
7818 if (s == NULL || s->size == 0)
7819 return TRUE;
7820
7821 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7822 goto error_return;
7823
7824 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7825 if (elfsec == SHN_BAD)
7826 goto error_return;
7827
7828 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7829
7830 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7831 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7832
7833 extdyn = dynbuf;
7834 extdynend = extdyn + s->size;
7835 for (; extdyn < extdynend; extdyn += extdynsize)
7836 {
7837 Elf_Internal_Dyn dyn;
7838
7839 (*swap_dyn_in) (abfd, extdyn, &dyn);
7840
7841 if (dyn.d_tag == DT_NULL)
7842 break;
7843
7844 if (dyn.d_tag == DT_NEEDED)
7845 {
7846 const char *string;
7847 struct bfd_link_needed_list *l;
7848 unsigned int tagv = dyn.d_un.d_val;
7849 bfd_size_type amt;
7850
7851 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7852 if (string == NULL)
7853 goto error_return;
7854
7855 amt = sizeof *l;
7856 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7857 if (l == NULL)
7858 goto error_return;
7859
7860 l->by = abfd;
7861 l->name = string;
7862 l->next = *pneeded;
7863 *pneeded = l;
7864 }
7865 }
7866
7867 free (dynbuf);
7868
7869 return TRUE;
7870
7871 error_return:
7872 if (dynbuf != NULL)
7873 free (dynbuf);
7874 return FALSE;
7875 }
7876
7877 struct elf_symbuf_symbol
7878 {
7879 unsigned long st_name; /* Symbol name, index in string tbl */
7880 unsigned char st_info; /* Type and binding attributes */
7881 unsigned char st_other; /* Visibilty, and target specific */
7882 };
7883
7884 struct elf_symbuf_head
7885 {
7886 struct elf_symbuf_symbol *ssym;
7887 size_t count;
7888 unsigned int st_shndx;
7889 };
7890
7891 struct elf_symbol
7892 {
7893 union
7894 {
7895 Elf_Internal_Sym *isym;
7896 struct elf_symbuf_symbol *ssym;
7897 void *p;
7898 } u;
7899 const char *name;
7900 };
7901
7902 /* Sort references to symbols by ascending section number. */
7903
7904 static int
7905 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7906 {
7907 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7908 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7909
7910 if (s1->st_shndx != s2->st_shndx)
7911 return s1->st_shndx > s2->st_shndx ? 1 : -1;
7912 /* Final sort by the address of the sym in the symbuf ensures
7913 a stable sort. */
7914 if (s1 != s2)
7915 return s1 > s2 ? 1 : -1;
7916 return 0;
7917 }
7918
7919 static int
7920 elf_sym_name_compare (const void *arg1, const void *arg2)
7921 {
7922 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7923 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7924 int ret = strcmp (s1->name, s2->name);
7925 if (ret != 0)
7926 return ret;
7927 if (s1->u.p != s2->u.p)
7928 return s1->u.p > s2->u.p ? 1 : -1;
7929 return 0;
7930 }
7931
7932 static struct elf_symbuf_head *
7933 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7934 {
7935 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7936 struct elf_symbuf_symbol *ssym;
7937 struct elf_symbuf_head *ssymbuf, *ssymhead;
7938 size_t i, shndx_count, total_size;
7939
7940 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7941 if (indbuf == NULL)
7942 return NULL;
7943
7944 for (ind = indbuf, i = 0; i < symcount; i++)
7945 if (isymbuf[i].st_shndx != SHN_UNDEF)
7946 *ind++ = &isymbuf[i];
7947 indbufend = ind;
7948
7949 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7950 elf_sort_elf_symbol);
7951
7952 shndx_count = 0;
7953 if (indbufend > indbuf)
7954 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7955 if (ind[0]->st_shndx != ind[1]->st_shndx)
7956 shndx_count++;
7957
7958 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7959 + (indbufend - indbuf) * sizeof (*ssym));
7960 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7961 if (ssymbuf == NULL)
7962 {
7963 free (indbuf);
7964 return NULL;
7965 }
7966
7967 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7968 ssymbuf->ssym = NULL;
7969 ssymbuf->count = shndx_count;
7970 ssymbuf->st_shndx = 0;
7971 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7972 {
7973 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7974 {
7975 ssymhead++;
7976 ssymhead->ssym = ssym;
7977 ssymhead->count = 0;
7978 ssymhead->st_shndx = (*ind)->st_shndx;
7979 }
7980 ssym->st_name = (*ind)->st_name;
7981 ssym->st_info = (*ind)->st_info;
7982 ssym->st_other = (*ind)->st_other;
7983 ssymhead->count++;
7984 }
7985 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7986 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7987 == total_size));
7988
7989 free (indbuf);
7990 return ssymbuf;
7991 }
7992
7993 /* Check if 2 sections define the same set of local and global
7994 symbols. */
7995
7996 static bfd_boolean
7997 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7998 struct bfd_link_info *info)
7999 {
8000 bfd *bfd1, *bfd2;
8001 const struct elf_backend_data *bed1, *bed2;
8002 Elf_Internal_Shdr *hdr1, *hdr2;
8003 size_t symcount1, symcount2;
8004 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8005 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8006 Elf_Internal_Sym *isym, *isymend;
8007 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8008 size_t count1, count2, i;
8009 unsigned int shndx1, shndx2;
8010 bfd_boolean result;
8011
8012 bfd1 = sec1->owner;
8013 bfd2 = sec2->owner;
8014
8015 /* Both sections have to be in ELF. */
8016 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8017 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8018 return FALSE;
8019
8020 if (elf_section_type (sec1) != elf_section_type (sec2))
8021 return FALSE;
8022
8023 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8024 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8025 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8026 return FALSE;
8027
8028 bed1 = get_elf_backend_data (bfd1);
8029 bed2 = get_elf_backend_data (bfd2);
8030 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8031 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8032 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8033 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8034
8035 if (symcount1 == 0 || symcount2 == 0)
8036 return FALSE;
8037
8038 result = FALSE;
8039 isymbuf1 = NULL;
8040 isymbuf2 = NULL;
8041 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8042 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8043
8044 if (ssymbuf1 == NULL)
8045 {
8046 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8047 NULL, NULL, NULL);
8048 if (isymbuf1 == NULL)
8049 goto done;
8050
8051 if (!info->reduce_memory_overheads)
8052 {
8053 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8054 elf_tdata (bfd1)->symbuf = ssymbuf1;
8055 }
8056 }
8057
8058 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8059 {
8060 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8061 NULL, NULL, NULL);
8062 if (isymbuf2 == NULL)
8063 goto done;
8064
8065 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8066 {
8067 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8068 elf_tdata (bfd2)->symbuf = ssymbuf2;
8069 }
8070 }
8071
8072 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8073 {
8074 /* Optimized faster version. */
8075 size_t lo, hi, mid;
8076 struct elf_symbol *symp;
8077 struct elf_symbuf_symbol *ssym, *ssymend;
8078
8079 lo = 0;
8080 hi = ssymbuf1->count;
8081 ssymbuf1++;
8082 count1 = 0;
8083 while (lo < hi)
8084 {
8085 mid = (lo + hi) / 2;
8086 if (shndx1 < ssymbuf1[mid].st_shndx)
8087 hi = mid;
8088 else if (shndx1 > ssymbuf1[mid].st_shndx)
8089 lo = mid + 1;
8090 else
8091 {
8092 count1 = ssymbuf1[mid].count;
8093 ssymbuf1 += mid;
8094 break;
8095 }
8096 }
8097
8098 lo = 0;
8099 hi = ssymbuf2->count;
8100 ssymbuf2++;
8101 count2 = 0;
8102 while (lo < hi)
8103 {
8104 mid = (lo + hi) / 2;
8105 if (shndx2 < ssymbuf2[mid].st_shndx)
8106 hi = mid;
8107 else if (shndx2 > ssymbuf2[mid].st_shndx)
8108 lo = mid + 1;
8109 else
8110 {
8111 count2 = ssymbuf2[mid].count;
8112 ssymbuf2 += mid;
8113 break;
8114 }
8115 }
8116
8117 if (count1 == 0 || count2 == 0 || count1 != count2)
8118 goto done;
8119
8120 symtable1
8121 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8122 symtable2
8123 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8124 if (symtable1 == NULL || symtable2 == NULL)
8125 goto done;
8126
8127 symp = symtable1;
8128 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8129 ssym < ssymend; ssym++, symp++)
8130 {
8131 symp->u.ssym = ssym;
8132 symp->name = bfd_elf_string_from_elf_section (bfd1,
8133 hdr1->sh_link,
8134 ssym->st_name);
8135 }
8136
8137 symp = symtable2;
8138 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8139 ssym < ssymend; ssym++, symp++)
8140 {
8141 symp->u.ssym = ssym;
8142 symp->name = bfd_elf_string_from_elf_section (bfd2,
8143 hdr2->sh_link,
8144 ssym->st_name);
8145 }
8146
8147 /* Sort symbol by name. */
8148 qsort (symtable1, count1, sizeof (struct elf_symbol),
8149 elf_sym_name_compare);
8150 qsort (symtable2, count1, sizeof (struct elf_symbol),
8151 elf_sym_name_compare);
8152
8153 for (i = 0; i < count1; i++)
8154 /* Two symbols must have the same binding, type and name. */
8155 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8156 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8157 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8158 goto done;
8159
8160 result = TRUE;
8161 goto done;
8162 }
8163
8164 symtable1 = (struct elf_symbol *)
8165 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8166 symtable2 = (struct elf_symbol *)
8167 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8168 if (symtable1 == NULL || symtable2 == NULL)
8169 goto done;
8170
8171 /* Count definitions in the section. */
8172 count1 = 0;
8173 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8174 if (isym->st_shndx == shndx1)
8175 symtable1[count1++].u.isym = isym;
8176
8177 count2 = 0;
8178 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8179 if (isym->st_shndx == shndx2)
8180 symtable2[count2++].u.isym = isym;
8181
8182 if (count1 == 0 || count2 == 0 || count1 != count2)
8183 goto done;
8184
8185 for (i = 0; i < count1; i++)
8186 symtable1[i].name
8187 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8188 symtable1[i].u.isym->st_name);
8189
8190 for (i = 0; i < count2; i++)
8191 symtable2[i].name
8192 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8193 symtable2[i].u.isym->st_name);
8194
8195 /* Sort symbol by name. */
8196 qsort (symtable1, count1, sizeof (struct elf_symbol),
8197 elf_sym_name_compare);
8198 qsort (symtable2, count1, sizeof (struct elf_symbol),
8199 elf_sym_name_compare);
8200
8201 for (i = 0; i < count1; i++)
8202 /* Two symbols must have the same binding, type and name. */
8203 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8204 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8205 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8206 goto done;
8207
8208 result = TRUE;
8209
8210 done:
8211 if (symtable1)
8212 free (symtable1);
8213 if (symtable2)
8214 free (symtable2);
8215 if (isymbuf1)
8216 free (isymbuf1);
8217 if (isymbuf2)
8218 free (isymbuf2);
8219
8220 return result;
8221 }
8222
8223 /* Return TRUE if 2 section types are compatible. */
8224
8225 bfd_boolean
8226 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8227 bfd *bbfd, const asection *bsec)
8228 {
8229 if (asec == NULL
8230 || bsec == NULL
8231 || abfd->xvec->flavour != bfd_target_elf_flavour
8232 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8233 return TRUE;
8234
8235 return elf_section_type (asec) == elf_section_type (bsec);
8236 }
8237 \f
8238 /* Final phase of ELF linker. */
8239
8240 /* A structure we use to avoid passing large numbers of arguments. */
8241
8242 struct elf_final_link_info
8243 {
8244 /* General link information. */
8245 struct bfd_link_info *info;
8246 /* Output BFD. */
8247 bfd *output_bfd;
8248 /* Symbol string table. */
8249 struct elf_strtab_hash *symstrtab;
8250 /* .hash section. */
8251 asection *hash_sec;
8252 /* symbol version section (.gnu.version). */
8253 asection *symver_sec;
8254 /* Buffer large enough to hold contents of any section. */
8255 bfd_byte *contents;
8256 /* Buffer large enough to hold external relocs of any section. */
8257 void *external_relocs;
8258 /* Buffer large enough to hold internal relocs of any section. */
8259 Elf_Internal_Rela *internal_relocs;
8260 /* Buffer large enough to hold external local symbols of any input
8261 BFD. */
8262 bfd_byte *external_syms;
8263 /* And a buffer for symbol section indices. */
8264 Elf_External_Sym_Shndx *locsym_shndx;
8265 /* Buffer large enough to hold internal local symbols of any input
8266 BFD. */
8267 Elf_Internal_Sym *internal_syms;
8268 /* Array large enough to hold a symbol index for each local symbol
8269 of any input BFD. */
8270 long *indices;
8271 /* Array large enough to hold a section pointer for each local
8272 symbol of any input BFD. */
8273 asection **sections;
8274 /* Buffer for SHT_SYMTAB_SHNDX section. */
8275 Elf_External_Sym_Shndx *symshndxbuf;
8276 /* Number of STT_FILE syms seen. */
8277 size_t filesym_count;
8278 };
8279
8280 /* This struct is used to pass information to elf_link_output_extsym. */
8281
8282 struct elf_outext_info
8283 {
8284 bfd_boolean failed;
8285 bfd_boolean localsyms;
8286 bfd_boolean file_sym_done;
8287 struct elf_final_link_info *flinfo;
8288 };
8289
8290
8291 /* Support for evaluating a complex relocation.
8292
8293 Complex relocations are generalized, self-describing relocations. The
8294 implementation of them consists of two parts: complex symbols, and the
8295 relocations themselves.
8296
8297 The relocations are use a reserved elf-wide relocation type code (R_RELC
8298 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8299 information (start bit, end bit, word width, etc) into the addend. This
8300 information is extracted from CGEN-generated operand tables within gas.
8301
8302 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8303 internal) representing prefix-notation expressions, including but not
8304 limited to those sorts of expressions normally encoded as addends in the
8305 addend field. The symbol mangling format is:
8306
8307 <node> := <literal>
8308 | <unary-operator> ':' <node>
8309 | <binary-operator> ':' <node> ':' <node>
8310 ;
8311
8312 <literal> := 's' <digits=N> ':' <N character symbol name>
8313 | 'S' <digits=N> ':' <N character section name>
8314 | '#' <hexdigits>
8315 ;
8316
8317 <binary-operator> := as in C
8318 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8319
8320 static void
8321 set_symbol_value (bfd *bfd_with_globals,
8322 Elf_Internal_Sym *isymbuf,
8323 size_t locsymcount,
8324 size_t symidx,
8325 bfd_vma val)
8326 {
8327 struct elf_link_hash_entry **sym_hashes;
8328 struct elf_link_hash_entry *h;
8329 size_t extsymoff = locsymcount;
8330
8331 if (symidx < locsymcount)
8332 {
8333 Elf_Internal_Sym *sym;
8334
8335 sym = isymbuf + symidx;
8336 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8337 {
8338 /* It is a local symbol: move it to the
8339 "absolute" section and give it a value. */
8340 sym->st_shndx = SHN_ABS;
8341 sym->st_value = val;
8342 return;
8343 }
8344 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8345 extsymoff = 0;
8346 }
8347
8348 /* It is a global symbol: set its link type
8349 to "defined" and give it a value. */
8350
8351 sym_hashes = elf_sym_hashes (bfd_with_globals);
8352 h = sym_hashes [symidx - extsymoff];
8353 while (h->root.type == bfd_link_hash_indirect
8354 || h->root.type == bfd_link_hash_warning)
8355 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8356 h->root.type = bfd_link_hash_defined;
8357 h->root.u.def.value = val;
8358 h->root.u.def.section = bfd_abs_section_ptr;
8359 }
8360
8361 static bfd_boolean
8362 resolve_symbol (const char *name,
8363 bfd *input_bfd,
8364 struct elf_final_link_info *flinfo,
8365 bfd_vma *result,
8366 Elf_Internal_Sym *isymbuf,
8367 size_t locsymcount)
8368 {
8369 Elf_Internal_Sym *sym;
8370 struct bfd_link_hash_entry *global_entry;
8371 const char *candidate = NULL;
8372 Elf_Internal_Shdr *symtab_hdr;
8373 size_t i;
8374
8375 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8376
8377 for (i = 0; i < locsymcount; ++ i)
8378 {
8379 sym = isymbuf + i;
8380
8381 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8382 continue;
8383
8384 candidate = bfd_elf_string_from_elf_section (input_bfd,
8385 symtab_hdr->sh_link,
8386 sym->st_name);
8387 #ifdef DEBUG
8388 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8389 name, candidate, (unsigned long) sym->st_value);
8390 #endif
8391 if (candidate && strcmp (candidate, name) == 0)
8392 {
8393 asection *sec = flinfo->sections [i];
8394
8395 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8396 *result += sec->output_offset + sec->output_section->vma;
8397 #ifdef DEBUG
8398 printf ("Found symbol with value %8.8lx\n",
8399 (unsigned long) *result);
8400 #endif
8401 return TRUE;
8402 }
8403 }
8404
8405 /* Hmm, haven't found it yet. perhaps it is a global. */
8406 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8407 FALSE, FALSE, TRUE);
8408 if (!global_entry)
8409 return FALSE;
8410
8411 if (global_entry->type == bfd_link_hash_defined
8412 || global_entry->type == bfd_link_hash_defweak)
8413 {
8414 *result = (global_entry->u.def.value
8415 + global_entry->u.def.section->output_section->vma
8416 + global_entry->u.def.section->output_offset);
8417 #ifdef DEBUG
8418 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8419 global_entry->root.string, (unsigned long) *result);
8420 #endif
8421 return TRUE;
8422 }
8423
8424 return FALSE;
8425 }
8426
8427 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8428 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8429 names like "foo.end" which is the end address of section "foo". */
8430
8431 static bfd_boolean
8432 resolve_section (const char *name,
8433 asection *sections,
8434 bfd_vma *result,
8435 bfd * abfd)
8436 {
8437 asection *curr;
8438 unsigned int len;
8439
8440 for (curr = sections; curr; curr = curr->next)
8441 if (strcmp (curr->name, name) == 0)
8442 {
8443 *result = curr->vma;
8444 return TRUE;
8445 }
8446
8447 /* Hmm. still haven't found it. try pseudo-section names. */
8448 /* FIXME: This could be coded more efficiently... */
8449 for (curr = sections; curr; curr = curr->next)
8450 {
8451 len = strlen (curr->name);
8452 if (len > strlen (name))
8453 continue;
8454
8455 if (strncmp (curr->name, name, len) == 0)
8456 {
8457 if (strncmp (".end", name + len, 4) == 0)
8458 {
8459 *result = (curr->vma
8460 + curr->size / bfd_octets_per_byte (abfd, curr));
8461 return TRUE;
8462 }
8463
8464 /* Insert more pseudo-section names here, if you like. */
8465 }
8466 }
8467
8468 return FALSE;
8469 }
8470
8471 static void
8472 undefined_reference (const char *reftype, const char *name)
8473 {
8474 /* xgettext:c-format */
8475 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8476 reftype, name);
8477 }
8478
8479 static bfd_boolean
8480 eval_symbol (bfd_vma *result,
8481 const char **symp,
8482 bfd *input_bfd,
8483 struct elf_final_link_info *flinfo,
8484 bfd_vma dot,
8485 Elf_Internal_Sym *isymbuf,
8486 size_t locsymcount,
8487 int signed_p)
8488 {
8489 size_t len;
8490 size_t symlen;
8491 bfd_vma a;
8492 bfd_vma b;
8493 char symbuf[4096];
8494 const char *sym = *symp;
8495 const char *symend;
8496 bfd_boolean symbol_is_section = FALSE;
8497
8498 len = strlen (sym);
8499 symend = sym + len;
8500
8501 if (len < 1 || len > sizeof (symbuf))
8502 {
8503 bfd_set_error (bfd_error_invalid_operation);
8504 return FALSE;
8505 }
8506
8507 switch (* sym)
8508 {
8509 case '.':
8510 *result = dot;
8511 *symp = sym + 1;
8512 return TRUE;
8513
8514 case '#':
8515 ++sym;
8516 *result = strtoul (sym, (char **) symp, 16);
8517 return TRUE;
8518
8519 case 'S':
8520 symbol_is_section = TRUE;
8521 /* Fall through. */
8522 case 's':
8523 ++sym;
8524 symlen = strtol (sym, (char **) symp, 10);
8525 sym = *symp + 1; /* Skip the trailing ':'. */
8526
8527 if (symend < sym || symlen + 1 > sizeof (symbuf))
8528 {
8529 bfd_set_error (bfd_error_invalid_operation);
8530 return FALSE;
8531 }
8532
8533 memcpy (symbuf, sym, symlen);
8534 symbuf[symlen] = '\0';
8535 *symp = sym + symlen;
8536
8537 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8538 the symbol as a section, or vice-versa. so we're pretty liberal in our
8539 interpretation here; section means "try section first", not "must be a
8540 section", and likewise with symbol. */
8541
8542 if (symbol_is_section)
8543 {
8544 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8545 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8546 isymbuf, locsymcount))
8547 {
8548 undefined_reference ("section", symbuf);
8549 return FALSE;
8550 }
8551 }
8552 else
8553 {
8554 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8555 isymbuf, locsymcount)
8556 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8557 result, input_bfd))
8558 {
8559 undefined_reference ("symbol", symbuf);
8560 return FALSE;
8561 }
8562 }
8563
8564 return TRUE;
8565
8566 /* All that remains are operators. */
8567
8568 #define UNARY_OP(op) \
8569 if (strncmp (sym, #op, strlen (#op)) == 0) \
8570 { \
8571 sym += strlen (#op); \
8572 if (*sym == ':') \
8573 ++sym; \
8574 *symp = sym; \
8575 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8576 isymbuf, locsymcount, signed_p)) \
8577 return FALSE; \
8578 if (signed_p) \
8579 *result = op ((bfd_signed_vma) a); \
8580 else \
8581 *result = op a; \
8582 return TRUE; \
8583 }
8584
8585 #define BINARY_OP(op) \
8586 if (strncmp (sym, #op, strlen (#op)) == 0) \
8587 { \
8588 sym += strlen (#op); \
8589 if (*sym == ':') \
8590 ++sym; \
8591 *symp = sym; \
8592 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8593 isymbuf, locsymcount, signed_p)) \
8594 return FALSE; \
8595 ++*symp; \
8596 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8597 isymbuf, locsymcount, signed_p)) \
8598 return FALSE; \
8599 if (signed_p) \
8600 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8601 else \
8602 *result = a op b; \
8603 return TRUE; \
8604 }
8605
8606 default:
8607 UNARY_OP (0-);
8608 BINARY_OP (<<);
8609 BINARY_OP (>>);
8610 BINARY_OP (==);
8611 BINARY_OP (!=);
8612 BINARY_OP (<=);
8613 BINARY_OP (>=);
8614 BINARY_OP (&&);
8615 BINARY_OP (||);
8616 UNARY_OP (~);
8617 UNARY_OP (!);
8618 BINARY_OP (*);
8619 BINARY_OP (/);
8620 BINARY_OP (%);
8621 BINARY_OP (^);
8622 BINARY_OP (|);
8623 BINARY_OP (&);
8624 BINARY_OP (+);
8625 BINARY_OP (-);
8626 BINARY_OP (<);
8627 BINARY_OP (>);
8628 #undef UNARY_OP
8629 #undef BINARY_OP
8630 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8631 bfd_set_error (bfd_error_invalid_operation);
8632 return FALSE;
8633 }
8634 }
8635
8636 static void
8637 put_value (bfd_vma size,
8638 unsigned long chunksz,
8639 bfd *input_bfd,
8640 bfd_vma x,
8641 bfd_byte *location)
8642 {
8643 location += (size - chunksz);
8644
8645 for (; size; size -= chunksz, location -= chunksz)
8646 {
8647 switch (chunksz)
8648 {
8649 case 1:
8650 bfd_put_8 (input_bfd, x, location);
8651 x >>= 8;
8652 break;
8653 case 2:
8654 bfd_put_16 (input_bfd, x, location);
8655 x >>= 16;
8656 break;
8657 case 4:
8658 bfd_put_32 (input_bfd, x, location);
8659 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8660 x >>= 16;
8661 x >>= 16;
8662 break;
8663 #ifdef BFD64
8664 case 8:
8665 bfd_put_64 (input_bfd, x, location);
8666 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8667 x >>= 32;
8668 x >>= 32;
8669 break;
8670 #endif
8671 default:
8672 abort ();
8673 break;
8674 }
8675 }
8676 }
8677
8678 static bfd_vma
8679 get_value (bfd_vma size,
8680 unsigned long chunksz,
8681 bfd *input_bfd,
8682 bfd_byte *location)
8683 {
8684 int shift;
8685 bfd_vma x = 0;
8686
8687 /* Sanity checks. */
8688 BFD_ASSERT (chunksz <= sizeof (x)
8689 && size >= chunksz
8690 && chunksz != 0
8691 && (size % chunksz) == 0
8692 && input_bfd != NULL
8693 && location != NULL);
8694
8695 if (chunksz == sizeof (x))
8696 {
8697 BFD_ASSERT (size == chunksz);
8698
8699 /* Make sure that we do not perform an undefined shift operation.
8700 We know that size == chunksz so there will only be one iteration
8701 of the loop below. */
8702 shift = 0;
8703 }
8704 else
8705 shift = 8 * chunksz;
8706
8707 for (; size; size -= chunksz, location += chunksz)
8708 {
8709 switch (chunksz)
8710 {
8711 case 1:
8712 x = (x << shift) | bfd_get_8 (input_bfd, location);
8713 break;
8714 case 2:
8715 x = (x << shift) | bfd_get_16 (input_bfd, location);
8716 break;
8717 case 4:
8718 x = (x << shift) | bfd_get_32 (input_bfd, location);
8719 break;
8720 #ifdef BFD64
8721 case 8:
8722 x = (x << shift) | bfd_get_64 (input_bfd, location);
8723 break;
8724 #endif
8725 default:
8726 abort ();
8727 }
8728 }
8729 return x;
8730 }
8731
8732 static void
8733 decode_complex_addend (unsigned long *start, /* in bits */
8734 unsigned long *oplen, /* in bits */
8735 unsigned long *len, /* in bits */
8736 unsigned long *wordsz, /* in bytes */
8737 unsigned long *chunksz, /* in bytes */
8738 unsigned long *lsb0_p,
8739 unsigned long *signed_p,
8740 unsigned long *trunc_p,
8741 unsigned long encoded)
8742 {
8743 * start = encoded & 0x3F;
8744 * len = (encoded >> 6) & 0x3F;
8745 * oplen = (encoded >> 12) & 0x3F;
8746 * wordsz = (encoded >> 18) & 0xF;
8747 * chunksz = (encoded >> 22) & 0xF;
8748 * lsb0_p = (encoded >> 27) & 1;
8749 * signed_p = (encoded >> 28) & 1;
8750 * trunc_p = (encoded >> 29) & 1;
8751 }
8752
8753 bfd_reloc_status_type
8754 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8755 asection *input_section,
8756 bfd_byte *contents,
8757 Elf_Internal_Rela *rel,
8758 bfd_vma relocation)
8759 {
8760 bfd_vma shift, x, mask;
8761 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8762 bfd_reloc_status_type r;
8763 bfd_size_type octets;
8764
8765 /* Perform this reloc, since it is complex.
8766 (this is not to say that it necessarily refers to a complex
8767 symbol; merely that it is a self-describing CGEN based reloc.
8768 i.e. the addend has the complete reloc information (bit start, end,
8769 word size, etc) encoded within it.). */
8770
8771 decode_complex_addend (&start, &oplen, &len, &wordsz,
8772 &chunksz, &lsb0_p, &signed_p,
8773 &trunc_p, rel->r_addend);
8774
8775 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8776
8777 if (lsb0_p)
8778 shift = (start + 1) - len;
8779 else
8780 shift = (8 * wordsz) - (start + len);
8781
8782 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
8783 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
8784
8785 #ifdef DEBUG
8786 printf ("Doing complex reloc: "
8787 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8788 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8789 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8790 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8791 oplen, (unsigned long) x, (unsigned long) mask,
8792 (unsigned long) relocation);
8793 #endif
8794
8795 r = bfd_reloc_ok;
8796 if (! trunc_p)
8797 /* Now do an overflow check. */
8798 r = bfd_check_overflow ((signed_p
8799 ? complain_overflow_signed
8800 : complain_overflow_unsigned),
8801 len, 0, (8 * wordsz),
8802 relocation);
8803
8804 /* Do the deed. */
8805 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8806
8807 #ifdef DEBUG
8808 printf (" relocation: %8.8lx\n"
8809 " shifted mask: %8.8lx\n"
8810 " shifted/masked reloc: %8.8lx\n"
8811 " result: %8.8lx\n",
8812 (unsigned long) relocation, (unsigned long) (mask << shift),
8813 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8814 #endif
8815 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
8816 return r;
8817 }
8818
8819 /* Functions to read r_offset from external (target order) reloc
8820 entry. Faster than bfd_getl32 et al, because we let the compiler
8821 know the value is aligned. */
8822
8823 static bfd_vma
8824 ext32l_r_offset (const void *p)
8825 {
8826 union aligned32
8827 {
8828 uint32_t v;
8829 unsigned char c[4];
8830 };
8831 const union aligned32 *a
8832 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8833
8834 uint32_t aval = ( (uint32_t) a->c[0]
8835 | (uint32_t) a->c[1] << 8
8836 | (uint32_t) a->c[2] << 16
8837 | (uint32_t) a->c[3] << 24);
8838 return aval;
8839 }
8840
8841 static bfd_vma
8842 ext32b_r_offset (const void *p)
8843 {
8844 union aligned32
8845 {
8846 uint32_t v;
8847 unsigned char c[4];
8848 };
8849 const union aligned32 *a
8850 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8851
8852 uint32_t aval = ( (uint32_t) a->c[0] << 24
8853 | (uint32_t) a->c[1] << 16
8854 | (uint32_t) a->c[2] << 8
8855 | (uint32_t) a->c[3]);
8856 return aval;
8857 }
8858
8859 #ifdef BFD_HOST_64_BIT
8860 static bfd_vma
8861 ext64l_r_offset (const void *p)
8862 {
8863 union aligned64
8864 {
8865 uint64_t v;
8866 unsigned char c[8];
8867 };
8868 const union aligned64 *a
8869 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8870
8871 uint64_t aval = ( (uint64_t) a->c[0]
8872 | (uint64_t) a->c[1] << 8
8873 | (uint64_t) a->c[2] << 16
8874 | (uint64_t) a->c[3] << 24
8875 | (uint64_t) a->c[4] << 32
8876 | (uint64_t) a->c[5] << 40
8877 | (uint64_t) a->c[6] << 48
8878 | (uint64_t) a->c[7] << 56);
8879 return aval;
8880 }
8881
8882 static bfd_vma
8883 ext64b_r_offset (const void *p)
8884 {
8885 union aligned64
8886 {
8887 uint64_t v;
8888 unsigned char c[8];
8889 };
8890 const union aligned64 *a
8891 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8892
8893 uint64_t aval = ( (uint64_t) a->c[0] << 56
8894 | (uint64_t) a->c[1] << 48
8895 | (uint64_t) a->c[2] << 40
8896 | (uint64_t) a->c[3] << 32
8897 | (uint64_t) a->c[4] << 24
8898 | (uint64_t) a->c[5] << 16
8899 | (uint64_t) a->c[6] << 8
8900 | (uint64_t) a->c[7]);
8901 return aval;
8902 }
8903 #endif
8904
8905 /* When performing a relocatable link, the input relocations are
8906 preserved. But, if they reference global symbols, the indices
8907 referenced must be updated. Update all the relocations found in
8908 RELDATA. */
8909
8910 static bfd_boolean
8911 elf_link_adjust_relocs (bfd *abfd,
8912 asection *sec,
8913 struct bfd_elf_section_reloc_data *reldata,
8914 bfd_boolean sort,
8915 struct bfd_link_info *info)
8916 {
8917 unsigned int i;
8918 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8919 bfd_byte *erela;
8920 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8921 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8922 bfd_vma r_type_mask;
8923 int r_sym_shift;
8924 unsigned int count = reldata->count;
8925 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8926
8927 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8928 {
8929 swap_in = bed->s->swap_reloc_in;
8930 swap_out = bed->s->swap_reloc_out;
8931 }
8932 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8933 {
8934 swap_in = bed->s->swap_reloca_in;
8935 swap_out = bed->s->swap_reloca_out;
8936 }
8937 else
8938 abort ();
8939
8940 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8941 abort ();
8942
8943 if (bed->s->arch_size == 32)
8944 {
8945 r_type_mask = 0xff;
8946 r_sym_shift = 8;
8947 }
8948 else
8949 {
8950 r_type_mask = 0xffffffff;
8951 r_sym_shift = 32;
8952 }
8953
8954 erela = reldata->hdr->contents;
8955 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8956 {
8957 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8958 unsigned int j;
8959
8960 if (*rel_hash == NULL)
8961 continue;
8962
8963 if ((*rel_hash)->indx == -2
8964 && info->gc_sections
8965 && ! info->gc_keep_exported)
8966 {
8967 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8968 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8969 abfd, sec,
8970 (*rel_hash)->root.root.string);
8971 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8972 abfd, sec);
8973 bfd_set_error (bfd_error_invalid_operation);
8974 return FALSE;
8975 }
8976 BFD_ASSERT ((*rel_hash)->indx >= 0);
8977
8978 (*swap_in) (abfd, erela, irela);
8979 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8980 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8981 | (irela[j].r_info & r_type_mask));
8982 (*swap_out) (abfd, irela, erela);
8983 }
8984
8985 if (bed->elf_backend_update_relocs)
8986 (*bed->elf_backend_update_relocs) (sec, reldata);
8987
8988 if (sort && count != 0)
8989 {
8990 bfd_vma (*ext_r_off) (const void *);
8991 bfd_vma r_off;
8992 size_t elt_size;
8993 bfd_byte *base, *end, *p, *loc;
8994 bfd_byte *buf = NULL;
8995
8996 if (bed->s->arch_size == 32)
8997 {
8998 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8999 ext_r_off = ext32l_r_offset;
9000 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9001 ext_r_off = ext32b_r_offset;
9002 else
9003 abort ();
9004 }
9005 else
9006 {
9007 #ifdef BFD_HOST_64_BIT
9008 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9009 ext_r_off = ext64l_r_offset;
9010 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9011 ext_r_off = ext64b_r_offset;
9012 else
9013 #endif
9014 abort ();
9015 }
9016
9017 /* Must use a stable sort here. A modified insertion sort,
9018 since the relocs are mostly sorted already. */
9019 elt_size = reldata->hdr->sh_entsize;
9020 base = reldata->hdr->contents;
9021 end = base + count * elt_size;
9022 if (elt_size > sizeof (Elf64_External_Rela))
9023 abort ();
9024
9025 /* Ensure the first element is lowest. This acts as a sentinel,
9026 speeding the main loop below. */
9027 r_off = (*ext_r_off) (base);
9028 for (p = loc = base; (p += elt_size) < end; )
9029 {
9030 bfd_vma r_off2 = (*ext_r_off) (p);
9031 if (r_off > r_off2)
9032 {
9033 r_off = r_off2;
9034 loc = p;
9035 }
9036 }
9037 if (loc != base)
9038 {
9039 /* Don't just swap *base and *loc as that changes the order
9040 of the original base[0] and base[1] if they happen to
9041 have the same r_offset. */
9042 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9043 memcpy (onebuf, loc, elt_size);
9044 memmove (base + elt_size, base, loc - base);
9045 memcpy (base, onebuf, elt_size);
9046 }
9047
9048 for (p = base + elt_size; (p += elt_size) < end; )
9049 {
9050 /* base to p is sorted, *p is next to insert. */
9051 r_off = (*ext_r_off) (p);
9052 /* Search the sorted region for location to insert. */
9053 loc = p - elt_size;
9054 while (r_off < (*ext_r_off) (loc))
9055 loc -= elt_size;
9056 loc += elt_size;
9057 if (loc != p)
9058 {
9059 /* Chances are there is a run of relocs to insert here,
9060 from one of more input files. Files are not always
9061 linked in order due to the way elf_link_input_bfd is
9062 called. See pr17666. */
9063 size_t sortlen = p - loc;
9064 bfd_vma r_off2 = (*ext_r_off) (loc);
9065 size_t runlen = elt_size;
9066 size_t buf_size = 96 * 1024;
9067 while (p + runlen < end
9068 && (sortlen <= buf_size
9069 || runlen + elt_size <= buf_size)
9070 && r_off2 > (*ext_r_off) (p + runlen))
9071 runlen += elt_size;
9072 if (buf == NULL)
9073 {
9074 buf = bfd_malloc (buf_size);
9075 if (buf == NULL)
9076 return FALSE;
9077 }
9078 if (runlen < sortlen)
9079 {
9080 memcpy (buf, p, runlen);
9081 memmove (loc + runlen, loc, sortlen);
9082 memcpy (loc, buf, runlen);
9083 }
9084 else
9085 {
9086 memcpy (buf, loc, sortlen);
9087 memmove (loc, p, runlen);
9088 memcpy (loc + runlen, buf, sortlen);
9089 }
9090 p += runlen - elt_size;
9091 }
9092 }
9093 /* Hashes are no longer valid. */
9094 free (reldata->hashes);
9095 reldata->hashes = NULL;
9096 free (buf);
9097 }
9098 return TRUE;
9099 }
9100
9101 struct elf_link_sort_rela
9102 {
9103 union {
9104 bfd_vma offset;
9105 bfd_vma sym_mask;
9106 } u;
9107 enum elf_reloc_type_class type;
9108 /* We use this as an array of size int_rels_per_ext_rel. */
9109 Elf_Internal_Rela rela[1];
9110 };
9111
9112 /* qsort stability here and for cmp2 is only an issue if multiple
9113 dynamic relocations are emitted at the same address. But targets
9114 that apply a series of dynamic relocations each operating on the
9115 result of the prior relocation can't use -z combreloc as
9116 implemented anyway. Such schemes tend to be broken by sorting on
9117 symbol index. That leaves dynamic NONE relocs as the only other
9118 case where ld might emit multiple relocs at the same address, and
9119 those are only emitted due to target bugs. */
9120
9121 static int
9122 elf_link_sort_cmp1 (const void *A, const void *B)
9123 {
9124 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9125 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9126 int relativea, relativeb;
9127
9128 relativea = a->type == reloc_class_relative;
9129 relativeb = b->type == reloc_class_relative;
9130
9131 if (relativea < relativeb)
9132 return 1;
9133 if (relativea > relativeb)
9134 return -1;
9135 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9136 return -1;
9137 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9138 return 1;
9139 if (a->rela->r_offset < b->rela->r_offset)
9140 return -1;
9141 if (a->rela->r_offset > b->rela->r_offset)
9142 return 1;
9143 return 0;
9144 }
9145
9146 static int
9147 elf_link_sort_cmp2 (const void *A, const void *B)
9148 {
9149 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9150 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9151
9152 if (a->type < b->type)
9153 return -1;
9154 if (a->type > b->type)
9155 return 1;
9156 if (a->u.offset < b->u.offset)
9157 return -1;
9158 if (a->u.offset > b->u.offset)
9159 return 1;
9160 if (a->rela->r_offset < b->rela->r_offset)
9161 return -1;
9162 if (a->rela->r_offset > b->rela->r_offset)
9163 return 1;
9164 return 0;
9165 }
9166
9167 static size_t
9168 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9169 {
9170 asection *dynamic_relocs;
9171 asection *rela_dyn;
9172 asection *rel_dyn;
9173 bfd_size_type count, size;
9174 size_t i, ret, sort_elt, ext_size;
9175 bfd_byte *sort, *s_non_relative, *p;
9176 struct elf_link_sort_rela *sq;
9177 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9178 int i2e = bed->s->int_rels_per_ext_rel;
9179 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9180 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9181 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9182 struct bfd_link_order *lo;
9183 bfd_vma r_sym_mask;
9184 bfd_boolean use_rela;
9185
9186 /* Find a dynamic reloc section. */
9187 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9188 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9189 if (rela_dyn != NULL && rela_dyn->size > 0
9190 && rel_dyn != NULL && rel_dyn->size > 0)
9191 {
9192 bfd_boolean use_rela_initialised = FALSE;
9193
9194 /* This is just here to stop gcc from complaining.
9195 Its initialization checking code is not perfect. */
9196 use_rela = TRUE;
9197
9198 /* Both sections are present. Examine the sizes
9199 of the indirect sections to help us choose. */
9200 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9201 if (lo->type == bfd_indirect_link_order)
9202 {
9203 asection *o = lo->u.indirect.section;
9204
9205 if ((o->size % bed->s->sizeof_rela) == 0)
9206 {
9207 if ((o->size % bed->s->sizeof_rel) == 0)
9208 /* Section size is divisible by both rel and rela sizes.
9209 It is of no help to us. */
9210 ;
9211 else
9212 {
9213 /* Section size is only divisible by rela. */
9214 if (use_rela_initialised && !use_rela)
9215 {
9216 _bfd_error_handler (_("%pB: unable to sort relocs - "
9217 "they are in more than one size"),
9218 abfd);
9219 bfd_set_error (bfd_error_invalid_operation);
9220 return 0;
9221 }
9222 else
9223 {
9224 use_rela = TRUE;
9225 use_rela_initialised = TRUE;
9226 }
9227 }
9228 }
9229 else if ((o->size % bed->s->sizeof_rel) == 0)
9230 {
9231 /* Section size is only divisible by rel. */
9232 if (use_rela_initialised && use_rela)
9233 {
9234 _bfd_error_handler (_("%pB: unable to sort relocs - "
9235 "they are in more than one size"),
9236 abfd);
9237 bfd_set_error (bfd_error_invalid_operation);
9238 return 0;
9239 }
9240 else
9241 {
9242 use_rela = FALSE;
9243 use_rela_initialised = TRUE;
9244 }
9245 }
9246 else
9247 {
9248 /* The section size is not divisible by either -
9249 something is wrong. */
9250 _bfd_error_handler (_("%pB: unable to sort relocs - "
9251 "they are of an unknown size"), abfd);
9252 bfd_set_error (bfd_error_invalid_operation);
9253 return 0;
9254 }
9255 }
9256
9257 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9258 if (lo->type == bfd_indirect_link_order)
9259 {
9260 asection *o = lo->u.indirect.section;
9261
9262 if ((o->size % bed->s->sizeof_rela) == 0)
9263 {
9264 if ((o->size % bed->s->sizeof_rel) == 0)
9265 /* Section size is divisible by both rel and rela sizes.
9266 It is of no help to us. */
9267 ;
9268 else
9269 {
9270 /* Section size is only divisible by rela. */
9271 if (use_rela_initialised && !use_rela)
9272 {
9273 _bfd_error_handler (_("%pB: unable to sort relocs - "
9274 "they are in more than one size"),
9275 abfd);
9276 bfd_set_error (bfd_error_invalid_operation);
9277 return 0;
9278 }
9279 else
9280 {
9281 use_rela = TRUE;
9282 use_rela_initialised = TRUE;
9283 }
9284 }
9285 }
9286 else if ((o->size % bed->s->sizeof_rel) == 0)
9287 {
9288 /* Section size is only divisible by rel. */
9289 if (use_rela_initialised && use_rela)
9290 {
9291 _bfd_error_handler (_("%pB: unable to sort relocs - "
9292 "they are in more than one size"),
9293 abfd);
9294 bfd_set_error (bfd_error_invalid_operation);
9295 return 0;
9296 }
9297 else
9298 {
9299 use_rela = FALSE;
9300 use_rela_initialised = TRUE;
9301 }
9302 }
9303 else
9304 {
9305 /* The section size is not divisible by either -
9306 something is wrong. */
9307 _bfd_error_handler (_("%pB: unable to sort relocs - "
9308 "they are of an unknown size"), abfd);
9309 bfd_set_error (bfd_error_invalid_operation);
9310 return 0;
9311 }
9312 }
9313
9314 if (! use_rela_initialised)
9315 /* Make a guess. */
9316 use_rela = TRUE;
9317 }
9318 else if (rela_dyn != NULL && rela_dyn->size > 0)
9319 use_rela = TRUE;
9320 else if (rel_dyn != NULL && rel_dyn->size > 0)
9321 use_rela = FALSE;
9322 else
9323 return 0;
9324
9325 if (use_rela)
9326 {
9327 dynamic_relocs = rela_dyn;
9328 ext_size = bed->s->sizeof_rela;
9329 swap_in = bed->s->swap_reloca_in;
9330 swap_out = bed->s->swap_reloca_out;
9331 }
9332 else
9333 {
9334 dynamic_relocs = rel_dyn;
9335 ext_size = bed->s->sizeof_rel;
9336 swap_in = bed->s->swap_reloc_in;
9337 swap_out = bed->s->swap_reloc_out;
9338 }
9339
9340 size = 0;
9341 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9342 if (lo->type == bfd_indirect_link_order)
9343 size += lo->u.indirect.section->size;
9344
9345 if (size != dynamic_relocs->size)
9346 return 0;
9347
9348 sort_elt = (sizeof (struct elf_link_sort_rela)
9349 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9350
9351 count = dynamic_relocs->size / ext_size;
9352 if (count == 0)
9353 return 0;
9354 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9355
9356 if (sort == NULL)
9357 {
9358 (*info->callbacks->warning)
9359 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9360 return 0;
9361 }
9362
9363 if (bed->s->arch_size == 32)
9364 r_sym_mask = ~(bfd_vma) 0xff;
9365 else
9366 r_sym_mask = ~(bfd_vma) 0xffffffff;
9367
9368 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9369 if (lo->type == bfd_indirect_link_order)
9370 {
9371 bfd_byte *erel, *erelend;
9372 asection *o = lo->u.indirect.section;
9373
9374 if (o->contents == NULL && o->size != 0)
9375 {
9376 /* This is a reloc section that is being handled as a normal
9377 section. See bfd_section_from_shdr. We can't combine
9378 relocs in this case. */
9379 free (sort);
9380 return 0;
9381 }
9382 erel = o->contents;
9383 erelend = o->contents + o->size;
9384 p = sort + o->output_offset * opb / ext_size * sort_elt;
9385
9386 while (erel < erelend)
9387 {
9388 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9389
9390 (*swap_in) (abfd, erel, s->rela);
9391 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9392 s->u.sym_mask = r_sym_mask;
9393 p += sort_elt;
9394 erel += ext_size;
9395 }
9396 }
9397
9398 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9399
9400 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9401 {
9402 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9403 if (s->type != reloc_class_relative)
9404 break;
9405 }
9406 ret = i;
9407 s_non_relative = p;
9408
9409 sq = (struct elf_link_sort_rela *) s_non_relative;
9410 for (; i < count; i++, p += sort_elt)
9411 {
9412 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9413 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9414 sq = sp;
9415 sp->u.offset = sq->rela->r_offset;
9416 }
9417
9418 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9419
9420 struct elf_link_hash_table *htab = elf_hash_table (info);
9421 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9422 {
9423 /* We have plt relocs in .rela.dyn. */
9424 sq = (struct elf_link_sort_rela *) sort;
9425 for (i = 0; i < count; i++)
9426 if (sq[count - i - 1].type != reloc_class_plt)
9427 break;
9428 if (i != 0 && htab->srelplt->size == i * ext_size)
9429 {
9430 struct bfd_link_order **plo;
9431 /* Put srelplt link_order last. This is so the output_offset
9432 set in the next loop is correct for DT_JMPREL. */
9433 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9434 if ((*plo)->type == bfd_indirect_link_order
9435 && (*plo)->u.indirect.section == htab->srelplt)
9436 {
9437 lo = *plo;
9438 *plo = lo->next;
9439 }
9440 else
9441 plo = &(*plo)->next;
9442 *plo = lo;
9443 lo->next = NULL;
9444 dynamic_relocs->map_tail.link_order = lo;
9445 }
9446 }
9447
9448 p = sort;
9449 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9450 if (lo->type == bfd_indirect_link_order)
9451 {
9452 bfd_byte *erel, *erelend;
9453 asection *o = lo->u.indirect.section;
9454
9455 erel = o->contents;
9456 erelend = o->contents + o->size;
9457 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9458 while (erel < erelend)
9459 {
9460 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9461 (*swap_out) (abfd, s->rela, erel);
9462 p += sort_elt;
9463 erel += ext_size;
9464 }
9465 }
9466
9467 free (sort);
9468 *psec = dynamic_relocs;
9469 return ret;
9470 }
9471
9472 /* Add a symbol to the output symbol string table. */
9473
9474 static int
9475 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9476 const char *name,
9477 Elf_Internal_Sym *elfsym,
9478 asection *input_sec,
9479 struct elf_link_hash_entry *h)
9480 {
9481 int (*output_symbol_hook)
9482 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9483 struct elf_link_hash_entry *);
9484 struct elf_link_hash_table *hash_table;
9485 const struct elf_backend_data *bed;
9486 bfd_size_type strtabsize;
9487
9488 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9489
9490 bed = get_elf_backend_data (flinfo->output_bfd);
9491 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9492 if (output_symbol_hook != NULL)
9493 {
9494 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9495 if (ret != 1)
9496 return ret;
9497 }
9498
9499 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9500 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9501 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9502 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9503
9504 if (name == NULL
9505 || *name == '\0'
9506 || (input_sec->flags & SEC_EXCLUDE))
9507 elfsym->st_name = (unsigned long) -1;
9508 else
9509 {
9510 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9511 to get the final offset for st_name. */
9512 elfsym->st_name
9513 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9514 name, FALSE);
9515 if (elfsym->st_name == (unsigned long) -1)
9516 return 0;
9517 }
9518
9519 hash_table = elf_hash_table (flinfo->info);
9520 strtabsize = hash_table->strtabsize;
9521 if (strtabsize <= hash_table->strtabcount)
9522 {
9523 strtabsize += strtabsize;
9524 hash_table->strtabsize = strtabsize;
9525 strtabsize *= sizeof (*hash_table->strtab);
9526 hash_table->strtab
9527 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9528 strtabsize);
9529 if (hash_table->strtab == NULL)
9530 return 0;
9531 }
9532 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9533 hash_table->strtab[hash_table->strtabcount].dest_index
9534 = hash_table->strtabcount;
9535 hash_table->strtab[hash_table->strtabcount].destshndx_index
9536 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9537
9538 flinfo->output_bfd->symcount += 1;
9539 hash_table->strtabcount += 1;
9540
9541 return 1;
9542 }
9543
9544 /* Swap symbols out to the symbol table and flush the output symbols to
9545 the file. */
9546
9547 static bfd_boolean
9548 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9549 {
9550 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9551 bfd_size_type amt;
9552 size_t i;
9553 const struct elf_backend_data *bed;
9554 bfd_byte *symbuf;
9555 Elf_Internal_Shdr *hdr;
9556 file_ptr pos;
9557 bfd_boolean ret;
9558
9559 if (!hash_table->strtabcount)
9560 return TRUE;
9561
9562 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9563
9564 bed = get_elf_backend_data (flinfo->output_bfd);
9565
9566 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9567 symbuf = (bfd_byte *) bfd_malloc (amt);
9568 if (symbuf == NULL)
9569 return FALSE;
9570
9571 if (flinfo->symshndxbuf)
9572 {
9573 amt = sizeof (Elf_External_Sym_Shndx);
9574 amt *= bfd_get_symcount (flinfo->output_bfd);
9575 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9576 if (flinfo->symshndxbuf == NULL)
9577 {
9578 free (symbuf);
9579 return FALSE;
9580 }
9581 }
9582
9583 for (i = 0; i < hash_table->strtabcount; i++)
9584 {
9585 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9586 if (elfsym->sym.st_name == (unsigned long) -1)
9587 elfsym->sym.st_name = 0;
9588 else
9589 elfsym->sym.st_name
9590 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9591 elfsym->sym.st_name);
9592 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9593 ((bfd_byte *) symbuf
9594 + (elfsym->dest_index
9595 * bed->s->sizeof_sym)),
9596 (flinfo->symshndxbuf
9597 + elfsym->destshndx_index));
9598 }
9599
9600 /* Allow the linker to examine the strtab and symtab now they are
9601 populated. */
9602
9603 if (flinfo->info->callbacks->examine_strtab)
9604 flinfo->info->callbacks->examine_strtab (hash_table->strtab,
9605 hash_table->strtabcount,
9606 flinfo->symstrtab);
9607
9608 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9609 pos = hdr->sh_offset + hdr->sh_size;
9610 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9611 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9612 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9613 {
9614 hdr->sh_size += amt;
9615 ret = TRUE;
9616 }
9617 else
9618 ret = FALSE;
9619
9620 free (symbuf);
9621
9622 free (hash_table->strtab);
9623 hash_table->strtab = NULL;
9624
9625 return ret;
9626 }
9627
9628 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9629
9630 static bfd_boolean
9631 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9632 {
9633 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9634 && sym->st_shndx < SHN_LORESERVE)
9635 {
9636 /* The gABI doesn't support dynamic symbols in output sections
9637 beyond 64k. */
9638 _bfd_error_handler
9639 /* xgettext:c-format */
9640 (_("%pB: too many sections: %d (>= %d)"),
9641 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9642 bfd_set_error (bfd_error_nonrepresentable_section);
9643 return FALSE;
9644 }
9645 return TRUE;
9646 }
9647
9648 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9649 allowing an unsatisfied unversioned symbol in the DSO to match a
9650 versioned symbol that would normally require an explicit version.
9651 We also handle the case that a DSO references a hidden symbol
9652 which may be satisfied by a versioned symbol in another DSO. */
9653
9654 static bfd_boolean
9655 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9656 const struct elf_backend_data *bed,
9657 struct elf_link_hash_entry *h)
9658 {
9659 bfd *abfd;
9660 struct elf_link_loaded_list *loaded;
9661
9662 if (!is_elf_hash_table (info->hash))
9663 return FALSE;
9664
9665 /* Check indirect symbol. */
9666 while (h->root.type == bfd_link_hash_indirect)
9667 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9668
9669 switch (h->root.type)
9670 {
9671 default:
9672 abfd = NULL;
9673 break;
9674
9675 case bfd_link_hash_undefined:
9676 case bfd_link_hash_undefweak:
9677 abfd = h->root.u.undef.abfd;
9678 if (abfd == NULL
9679 || (abfd->flags & DYNAMIC) == 0
9680 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9681 return FALSE;
9682 break;
9683
9684 case bfd_link_hash_defined:
9685 case bfd_link_hash_defweak:
9686 abfd = h->root.u.def.section->owner;
9687 break;
9688
9689 case bfd_link_hash_common:
9690 abfd = h->root.u.c.p->section->owner;
9691 break;
9692 }
9693 BFD_ASSERT (abfd != NULL);
9694
9695 for (loaded = elf_hash_table (info)->loaded;
9696 loaded != NULL;
9697 loaded = loaded->next)
9698 {
9699 bfd *input;
9700 Elf_Internal_Shdr *hdr;
9701 size_t symcount;
9702 size_t extsymcount;
9703 size_t extsymoff;
9704 Elf_Internal_Shdr *versymhdr;
9705 Elf_Internal_Sym *isym;
9706 Elf_Internal_Sym *isymend;
9707 Elf_Internal_Sym *isymbuf;
9708 Elf_External_Versym *ever;
9709 Elf_External_Versym *extversym;
9710
9711 input = loaded->abfd;
9712
9713 /* We check each DSO for a possible hidden versioned definition. */
9714 if (input == abfd
9715 || (input->flags & DYNAMIC) == 0
9716 || elf_dynversym (input) == 0)
9717 continue;
9718
9719 hdr = &elf_tdata (input)->dynsymtab_hdr;
9720
9721 symcount = hdr->sh_size / bed->s->sizeof_sym;
9722 if (elf_bad_symtab (input))
9723 {
9724 extsymcount = symcount;
9725 extsymoff = 0;
9726 }
9727 else
9728 {
9729 extsymcount = symcount - hdr->sh_info;
9730 extsymoff = hdr->sh_info;
9731 }
9732
9733 if (extsymcount == 0)
9734 continue;
9735
9736 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9737 NULL, NULL, NULL);
9738 if (isymbuf == NULL)
9739 return FALSE;
9740
9741 /* Read in any version definitions. */
9742 versymhdr = &elf_tdata (input)->dynversym_hdr;
9743 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9744 if (extversym == NULL)
9745 goto error_ret;
9746
9747 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9748 || (bfd_bread (extversym, versymhdr->sh_size, input)
9749 != versymhdr->sh_size))
9750 {
9751 free (extversym);
9752 error_ret:
9753 free (isymbuf);
9754 return FALSE;
9755 }
9756
9757 ever = extversym + extsymoff;
9758 isymend = isymbuf + extsymcount;
9759 for (isym = isymbuf; isym < isymend; isym++, ever++)
9760 {
9761 const char *name;
9762 Elf_Internal_Versym iver;
9763 unsigned short version_index;
9764
9765 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9766 || isym->st_shndx == SHN_UNDEF)
9767 continue;
9768
9769 name = bfd_elf_string_from_elf_section (input,
9770 hdr->sh_link,
9771 isym->st_name);
9772 if (strcmp (name, h->root.root.string) != 0)
9773 continue;
9774
9775 _bfd_elf_swap_versym_in (input, ever, &iver);
9776
9777 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9778 && !(h->def_regular
9779 && h->forced_local))
9780 {
9781 /* If we have a non-hidden versioned sym, then it should
9782 have provided a definition for the undefined sym unless
9783 it is defined in a non-shared object and forced local.
9784 */
9785 abort ();
9786 }
9787
9788 version_index = iver.vs_vers & VERSYM_VERSION;
9789 if (version_index == 1 || version_index == 2)
9790 {
9791 /* This is the base or first version. We can use it. */
9792 free (extversym);
9793 free (isymbuf);
9794 return TRUE;
9795 }
9796 }
9797
9798 free (extversym);
9799 free (isymbuf);
9800 }
9801
9802 return FALSE;
9803 }
9804
9805 /* Convert ELF common symbol TYPE. */
9806
9807 static int
9808 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9809 {
9810 /* Commom symbol can only appear in relocatable link. */
9811 if (!bfd_link_relocatable (info))
9812 abort ();
9813 switch (info->elf_stt_common)
9814 {
9815 case unchanged:
9816 break;
9817 case elf_stt_common:
9818 type = STT_COMMON;
9819 break;
9820 case no_elf_stt_common:
9821 type = STT_OBJECT;
9822 break;
9823 }
9824 return type;
9825 }
9826
9827 /* Add an external symbol to the symbol table. This is called from
9828 the hash table traversal routine. When generating a shared object,
9829 we go through the symbol table twice. The first time we output
9830 anything that might have been forced to local scope in a version
9831 script. The second time we output the symbols that are still
9832 global symbols. */
9833
9834 static bfd_boolean
9835 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9836 {
9837 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9838 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9839 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9840 bfd_boolean strip;
9841 Elf_Internal_Sym sym;
9842 asection *input_sec;
9843 const struct elf_backend_data *bed;
9844 long indx;
9845 int ret;
9846 unsigned int type;
9847
9848 if (h->root.type == bfd_link_hash_warning)
9849 {
9850 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9851 if (h->root.type == bfd_link_hash_new)
9852 return TRUE;
9853 }
9854
9855 /* Decide whether to output this symbol in this pass. */
9856 if (eoinfo->localsyms)
9857 {
9858 if (!h->forced_local)
9859 return TRUE;
9860 }
9861 else
9862 {
9863 if (h->forced_local)
9864 return TRUE;
9865 }
9866
9867 bed = get_elf_backend_data (flinfo->output_bfd);
9868
9869 if (h->root.type == bfd_link_hash_undefined)
9870 {
9871 /* If we have an undefined symbol reference here then it must have
9872 come from a shared library that is being linked in. (Undefined
9873 references in regular files have already been handled unless
9874 they are in unreferenced sections which are removed by garbage
9875 collection). */
9876 bfd_boolean ignore_undef = FALSE;
9877
9878 /* Some symbols may be special in that the fact that they're
9879 undefined can be safely ignored - let backend determine that. */
9880 if (bed->elf_backend_ignore_undef_symbol)
9881 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9882
9883 /* If we are reporting errors for this situation then do so now. */
9884 if (!ignore_undef
9885 && h->ref_dynamic_nonweak
9886 && (!h->ref_regular || flinfo->info->gc_sections)
9887 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9888 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9889 (*flinfo->info->callbacks->undefined_symbol)
9890 (flinfo->info, h->root.root.string,
9891 h->ref_regular ? NULL : h->root.u.undef.abfd,
9892 NULL, 0,
9893 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9894
9895 /* Strip a global symbol defined in a discarded section. */
9896 if (h->indx == -3)
9897 return TRUE;
9898 }
9899
9900 /* We should also warn if a forced local symbol is referenced from
9901 shared libraries. */
9902 if (bfd_link_executable (flinfo->info)
9903 && h->forced_local
9904 && h->ref_dynamic
9905 && h->def_regular
9906 && !h->dynamic_def
9907 && h->ref_dynamic_nonweak
9908 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9909 {
9910 bfd *def_bfd;
9911 const char *msg;
9912 struct elf_link_hash_entry *hi = h;
9913
9914 /* Check indirect symbol. */
9915 while (hi->root.type == bfd_link_hash_indirect)
9916 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9917
9918 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9919 /* xgettext:c-format */
9920 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9921 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9922 /* xgettext:c-format */
9923 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9924 else
9925 /* xgettext:c-format */
9926 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9927 def_bfd = flinfo->output_bfd;
9928 if (hi->root.u.def.section != bfd_abs_section_ptr)
9929 def_bfd = hi->root.u.def.section->owner;
9930 _bfd_error_handler (msg, flinfo->output_bfd,
9931 h->root.root.string, def_bfd);
9932 bfd_set_error (bfd_error_bad_value);
9933 eoinfo->failed = TRUE;
9934 return FALSE;
9935 }
9936
9937 /* We don't want to output symbols that have never been mentioned by
9938 a regular file, or that we have been told to strip. However, if
9939 h->indx is set to -2, the symbol is used by a reloc and we must
9940 output it. */
9941 strip = FALSE;
9942 if (h->indx == -2)
9943 ;
9944 else if ((h->def_dynamic
9945 || h->ref_dynamic
9946 || h->root.type == bfd_link_hash_new)
9947 && !h->def_regular
9948 && !h->ref_regular)
9949 strip = TRUE;
9950 else if (flinfo->info->strip == strip_all)
9951 strip = TRUE;
9952 else if (flinfo->info->strip == strip_some
9953 && bfd_hash_lookup (flinfo->info->keep_hash,
9954 h->root.root.string, FALSE, FALSE) == NULL)
9955 strip = TRUE;
9956 else if ((h->root.type == bfd_link_hash_defined
9957 || h->root.type == bfd_link_hash_defweak)
9958 && ((flinfo->info->strip_discarded
9959 && discarded_section (h->root.u.def.section))
9960 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9961 && h->root.u.def.section->owner != NULL
9962 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9963 strip = TRUE;
9964 else if ((h->root.type == bfd_link_hash_undefined
9965 || h->root.type == bfd_link_hash_undefweak)
9966 && h->root.u.undef.abfd != NULL
9967 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9968 strip = TRUE;
9969
9970 type = h->type;
9971
9972 /* If we're stripping it, and it's not a dynamic symbol, there's
9973 nothing else to do. However, if it is a forced local symbol or
9974 an ifunc symbol we need to give the backend finish_dynamic_symbol
9975 function a chance to make it dynamic. */
9976 if (strip
9977 && h->dynindx == -1
9978 && type != STT_GNU_IFUNC
9979 && !h->forced_local)
9980 return TRUE;
9981
9982 sym.st_value = 0;
9983 sym.st_size = h->size;
9984 sym.st_other = h->other;
9985 switch (h->root.type)
9986 {
9987 default:
9988 case bfd_link_hash_new:
9989 case bfd_link_hash_warning:
9990 abort ();
9991 return FALSE;
9992
9993 case bfd_link_hash_undefined:
9994 case bfd_link_hash_undefweak:
9995 input_sec = bfd_und_section_ptr;
9996 sym.st_shndx = SHN_UNDEF;
9997 break;
9998
9999 case bfd_link_hash_defined:
10000 case bfd_link_hash_defweak:
10001 {
10002 input_sec = h->root.u.def.section;
10003 if (input_sec->output_section != NULL)
10004 {
10005 sym.st_shndx =
10006 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10007 input_sec->output_section);
10008 if (sym.st_shndx == SHN_BAD)
10009 {
10010 _bfd_error_handler
10011 /* xgettext:c-format */
10012 (_("%pB: could not find output section %pA for input section %pA"),
10013 flinfo->output_bfd, input_sec->output_section, input_sec);
10014 bfd_set_error (bfd_error_nonrepresentable_section);
10015 eoinfo->failed = TRUE;
10016 return FALSE;
10017 }
10018
10019 /* ELF symbols in relocatable files are section relative,
10020 but in nonrelocatable files they are virtual
10021 addresses. */
10022 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10023 if (!bfd_link_relocatable (flinfo->info))
10024 {
10025 sym.st_value += input_sec->output_section->vma;
10026 if (h->type == STT_TLS)
10027 {
10028 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10029 if (tls_sec != NULL)
10030 sym.st_value -= tls_sec->vma;
10031 }
10032 }
10033 }
10034 else
10035 {
10036 BFD_ASSERT (input_sec->owner == NULL
10037 || (input_sec->owner->flags & DYNAMIC) != 0);
10038 sym.st_shndx = SHN_UNDEF;
10039 input_sec = bfd_und_section_ptr;
10040 }
10041 }
10042 break;
10043
10044 case bfd_link_hash_common:
10045 input_sec = h->root.u.c.p->section;
10046 sym.st_shndx = bed->common_section_index (input_sec);
10047 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10048 break;
10049
10050 case bfd_link_hash_indirect:
10051 /* These symbols are created by symbol versioning. They point
10052 to the decorated version of the name. For example, if the
10053 symbol foo@@GNU_1.2 is the default, which should be used when
10054 foo is used with no version, then we add an indirect symbol
10055 foo which points to foo@@GNU_1.2. We ignore these symbols,
10056 since the indirected symbol is already in the hash table. */
10057 return TRUE;
10058 }
10059
10060 if (type == STT_COMMON || type == STT_OBJECT)
10061 switch (h->root.type)
10062 {
10063 case bfd_link_hash_common:
10064 type = elf_link_convert_common_type (flinfo->info, type);
10065 break;
10066 case bfd_link_hash_defined:
10067 case bfd_link_hash_defweak:
10068 if (bed->common_definition (&sym))
10069 type = elf_link_convert_common_type (flinfo->info, type);
10070 else
10071 type = STT_OBJECT;
10072 break;
10073 case bfd_link_hash_undefined:
10074 case bfd_link_hash_undefweak:
10075 break;
10076 default:
10077 abort ();
10078 }
10079
10080 if (h->forced_local)
10081 {
10082 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10083 /* Turn off visibility on local symbol. */
10084 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10085 }
10086 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10087 else if (h->unique_global && h->def_regular)
10088 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10089 else if (h->root.type == bfd_link_hash_undefweak
10090 || h->root.type == bfd_link_hash_defweak)
10091 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10092 else
10093 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10094 sym.st_target_internal = h->target_internal;
10095
10096 /* Give the processor backend a chance to tweak the symbol value,
10097 and also to finish up anything that needs to be done for this
10098 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10099 forced local syms when non-shared is due to a historical quirk.
10100 STT_GNU_IFUNC symbol must go through PLT. */
10101 if ((h->type == STT_GNU_IFUNC
10102 && h->def_regular
10103 && !bfd_link_relocatable (flinfo->info))
10104 || ((h->dynindx != -1
10105 || h->forced_local)
10106 && ((bfd_link_pic (flinfo->info)
10107 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10108 || h->root.type != bfd_link_hash_undefweak))
10109 || !h->forced_local)
10110 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10111 {
10112 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10113 (flinfo->output_bfd, flinfo->info, h, &sym)))
10114 {
10115 eoinfo->failed = TRUE;
10116 return FALSE;
10117 }
10118 }
10119
10120 /* If we are marking the symbol as undefined, and there are no
10121 non-weak references to this symbol from a regular object, then
10122 mark the symbol as weak undefined; if there are non-weak
10123 references, mark the symbol as strong. We can't do this earlier,
10124 because it might not be marked as undefined until the
10125 finish_dynamic_symbol routine gets through with it. */
10126 if (sym.st_shndx == SHN_UNDEF
10127 && h->ref_regular
10128 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10129 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10130 {
10131 int bindtype;
10132 type = ELF_ST_TYPE (sym.st_info);
10133
10134 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10135 if (type == STT_GNU_IFUNC)
10136 type = STT_FUNC;
10137
10138 if (h->ref_regular_nonweak)
10139 bindtype = STB_GLOBAL;
10140 else
10141 bindtype = STB_WEAK;
10142 sym.st_info = ELF_ST_INFO (bindtype, type);
10143 }
10144
10145 /* If this is a symbol defined in a dynamic library, don't use the
10146 symbol size from the dynamic library. Relinking an executable
10147 against a new library may introduce gratuitous changes in the
10148 executable's symbols if we keep the size. */
10149 if (sym.st_shndx == SHN_UNDEF
10150 && !h->def_regular
10151 && h->def_dynamic)
10152 sym.st_size = 0;
10153
10154 /* If a non-weak symbol with non-default visibility is not defined
10155 locally, it is a fatal error. */
10156 if (!bfd_link_relocatable (flinfo->info)
10157 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10158 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10159 && h->root.type == bfd_link_hash_undefined
10160 && !h->def_regular)
10161 {
10162 const char *msg;
10163
10164 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10165 /* xgettext:c-format */
10166 msg = _("%pB: protected symbol `%s' isn't defined");
10167 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10168 /* xgettext:c-format */
10169 msg = _("%pB: internal symbol `%s' isn't defined");
10170 else
10171 /* xgettext:c-format */
10172 msg = _("%pB: hidden symbol `%s' isn't defined");
10173 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10174 bfd_set_error (bfd_error_bad_value);
10175 eoinfo->failed = TRUE;
10176 return FALSE;
10177 }
10178
10179 /* If this symbol should be put in the .dynsym section, then put it
10180 there now. We already know the symbol index. We also fill in
10181 the entry in the .hash section. */
10182 if (h->dynindx != -1
10183 && elf_hash_table (flinfo->info)->dynamic_sections_created
10184 && elf_hash_table (flinfo->info)->dynsym != NULL
10185 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10186 {
10187 bfd_byte *esym;
10188
10189 /* Since there is no version information in the dynamic string,
10190 if there is no version info in symbol version section, we will
10191 have a run-time problem if not linking executable, referenced
10192 by shared library, or not bound locally. */
10193 if (h->verinfo.verdef == NULL
10194 && (!bfd_link_executable (flinfo->info)
10195 || h->ref_dynamic
10196 || !h->def_regular))
10197 {
10198 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10199
10200 if (p && p [1] != '\0')
10201 {
10202 _bfd_error_handler
10203 /* xgettext:c-format */
10204 (_("%pB: no symbol version section for versioned symbol `%s'"),
10205 flinfo->output_bfd, h->root.root.string);
10206 eoinfo->failed = TRUE;
10207 return FALSE;
10208 }
10209 }
10210
10211 sym.st_name = h->dynstr_index;
10212 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10213 + h->dynindx * bed->s->sizeof_sym);
10214 if (!check_dynsym (flinfo->output_bfd, &sym))
10215 {
10216 eoinfo->failed = TRUE;
10217 return FALSE;
10218 }
10219 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10220
10221 if (flinfo->hash_sec != NULL)
10222 {
10223 size_t hash_entry_size;
10224 bfd_byte *bucketpos;
10225 bfd_vma chain;
10226 size_t bucketcount;
10227 size_t bucket;
10228
10229 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10230 bucket = h->u.elf_hash_value % bucketcount;
10231
10232 hash_entry_size
10233 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10234 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10235 + (bucket + 2) * hash_entry_size);
10236 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10237 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10238 bucketpos);
10239 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10240 ((bfd_byte *) flinfo->hash_sec->contents
10241 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10242 }
10243
10244 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10245 {
10246 Elf_Internal_Versym iversym;
10247 Elf_External_Versym *eversym;
10248
10249 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10250 {
10251 if (h->verinfo.verdef == NULL
10252 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10253 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10254 iversym.vs_vers = 0;
10255 else
10256 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10257 }
10258 else
10259 {
10260 if (h->verinfo.vertree == NULL)
10261 iversym.vs_vers = 1;
10262 else
10263 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10264 if (flinfo->info->create_default_symver)
10265 iversym.vs_vers++;
10266 }
10267
10268 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10269 defined locally. */
10270 if (h->versioned == versioned_hidden && h->def_regular)
10271 iversym.vs_vers |= VERSYM_HIDDEN;
10272
10273 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10274 eversym += h->dynindx;
10275 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10276 }
10277 }
10278
10279 /* If the symbol is undefined, and we didn't output it to .dynsym,
10280 strip it from .symtab too. Obviously we can't do this for
10281 relocatable output or when needed for --emit-relocs. */
10282 else if (input_sec == bfd_und_section_ptr
10283 && h->indx != -2
10284 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10285 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10286 && !bfd_link_relocatable (flinfo->info))
10287 return TRUE;
10288
10289 /* Also strip others that we couldn't earlier due to dynamic symbol
10290 processing. */
10291 if (strip)
10292 return TRUE;
10293 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10294 return TRUE;
10295
10296 /* Output a FILE symbol so that following locals are not associated
10297 with the wrong input file. We need one for forced local symbols
10298 if we've seen more than one FILE symbol or when we have exactly
10299 one FILE symbol but global symbols are present in a file other
10300 than the one with the FILE symbol. We also need one if linker
10301 defined symbols are present. In practice these conditions are
10302 always met, so just emit the FILE symbol unconditionally. */
10303 if (eoinfo->localsyms
10304 && !eoinfo->file_sym_done
10305 && eoinfo->flinfo->filesym_count != 0)
10306 {
10307 Elf_Internal_Sym fsym;
10308
10309 memset (&fsym, 0, sizeof (fsym));
10310 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10311 fsym.st_shndx = SHN_ABS;
10312 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10313 bfd_und_section_ptr, NULL))
10314 return FALSE;
10315
10316 eoinfo->file_sym_done = TRUE;
10317 }
10318
10319 indx = bfd_get_symcount (flinfo->output_bfd);
10320 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10321 input_sec, h);
10322 if (ret == 0)
10323 {
10324 eoinfo->failed = TRUE;
10325 return FALSE;
10326 }
10327 else if (ret == 1)
10328 h->indx = indx;
10329 else if (h->indx == -2)
10330 abort();
10331
10332 return TRUE;
10333 }
10334
10335 /* Return TRUE if special handling is done for relocs in SEC against
10336 symbols defined in discarded sections. */
10337
10338 static bfd_boolean
10339 elf_section_ignore_discarded_relocs (asection *sec)
10340 {
10341 const struct elf_backend_data *bed;
10342
10343 switch (sec->sec_info_type)
10344 {
10345 case SEC_INFO_TYPE_STABS:
10346 case SEC_INFO_TYPE_EH_FRAME:
10347 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10348 return TRUE;
10349 default:
10350 break;
10351 }
10352
10353 bed = get_elf_backend_data (sec->owner);
10354 if (bed->elf_backend_ignore_discarded_relocs != NULL
10355 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10356 return TRUE;
10357
10358 return FALSE;
10359 }
10360
10361 /* Return a mask saying how ld should treat relocations in SEC against
10362 symbols defined in discarded sections. If this function returns
10363 COMPLAIN set, ld will issue a warning message. If this function
10364 returns PRETEND set, and the discarded section was link-once and the
10365 same size as the kept link-once section, ld will pretend that the
10366 symbol was actually defined in the kept section. Otherwise ld will
10367 zero the reloc (at least that is the intent, but some cooperation by
10368 the target dependent code is needed, particularly for REL targets). */
10369
10370 unsigned int
10371 _bfd_elf_default_action_discarded (asection *sec)
10372 {
10373 if (sec->flags & SEC_DEBUGGING)
10374 return PRETEND;
10375
10376 if (strcmp (".eh_frame", sec->name) == 0)
10377 return 0;
10378
10379 if (strcmp (".gcc_except_table", sec->name) == 0)
10380 return 0;
10381
10382 return COMPLAIN | PRETEND;
10383 }
10384
10385 /* Find a match between a section and a member of a section group. */
10386
10387 static asection *
10388 match_group_member (asection *sec, asection *group,
10389 struct bfd_link_info *info)
10390 {
10391 asection *first = elf_next_in_group (group);
10392 asection *s = first;
10393
10394 while (s != NULL)
10395 {
10396 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10397 return s;
10398
10399 s = elf_next_in_group (s);
10400 if (s == first)
10401 break;
10402 }
10403
10404 return NULL;
10405 }
10406
10407 /* Check if the kept section of a discarded section SEC can be used
10408 to replace it. Return the replacement if it is OK. Otherwise return
10409 NULL. */
10410
10411 asection *
10412 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10413 {
10414 asection *kept;
10415
10416 kept = sec->kept_section;
10417 if (kept != NULL)
10418 {
10419 if ((kept->flags & SEC_GROUP) != 0)
10420 kept = match_group_member (sec, kept, info);
10421 if (kept != NULL
10422 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10423 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10424 kept = NULL;
10425 sec->kept_section = kept;
10426 }
10427 return kept;
10428 }
10429
10430 /* Link an input file into the linker output file. This function
10431 handles all the sections and relocations of the input file at once.
10432 This is so that we only have to read the local symbols once, and
10433 don't have to keep them in memory. */
10434
10435 static bfd_boolean
10436 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10437 {
10438 int (*relocate_section)
10439 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10440 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10441 bfd *output_bfd;
10442 Elf_Internal_Shdr *symtab_hdr;
10443 size_t locsymcount;
10444 size_t extsymoff;
10445 Elf_Internal_Sym *isymbuf;
10446 Elf_Internal_Sym *isym;
10447 Elf_Internal_Sym *isymend;
10448 long *pindex;
10449 asection **ppsection;
10450 asection *o;
10451 const struct elf_backend_data *bed;
10452 struct elf_link_hash_entry **sym_hashes;
10453 bfd_size_type address_size;
10454 bfd_vma r_type_mask;
10455 int r_sym_shift;
10456 bfd_boolean have_file_sym = FALSE;
10457
10458 output_bfd = flinfo->output_bfd;
10459 bed = get_elf_backend_data (output_bfd);
10460 relocate_section = bed->elf_backend_relocate_section;
10461
10462 /* If this is a dynamic object, we don't want to do anything here:
10463 we don't want the local symbols, and we don't want the section
10464 contents. */
10465 if ((input_bfd->flags & DYNAMIC) != 0)
10466 return TRUE;
10467
10468 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10469 if (elf_bad_symtab (input_bfd))
10470 {
10471 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10472 extsymoff = 0;
10473 }
10474 else
10475 {
10476 locsymcount = symtab_hdr->sh_info;
10477 extsymoff = symtab_hdr->sh_info;
10478 }
10479
10480 /* Read the local symbols. */
10481 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10482 if (isymbuf == NULL && locsymcount != 0)
10483 {
10484 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10485 flinfo->internal_syms,
10486 flinfo->external_syms,
10487 flinfo->locsym_shndx);
10488 if (isymbuf == NULL)
10489 return FALSE;
10490 }
10491
10492 /* Find local symbol sections and adjust values of symbols in
10493 SEC_MERGE sections. Write out those local symbols we know are
10494 going into the output file. */
10495 isymend = isymbuf + locsymcount;
10496 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10497 isym < isymend;
10498 isym++, pindex++, ppsection++)
10499 {
10500 asection *isec;
10501 const char *name;
10502 Elf_Internal_Sym osym;
10503 long indx;
10504 int ret;
10505
10506 *pindex = -1;
10507
10508 if (elf_bad_symtab (input_bfd))
10509 {
10510 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10511 {
10512 *ppsection = NULL;
10513 continue;
10514 }
10515 }
10516
10517 if (isym->st_shndx == SHN_UNDEF)
10518 isec = bfd_und_section_ptr;
10519 else if (isym->st_shndx == SHN_ABS)
10520 isec = bfd_abs_section_ptr;
10521 else if (isym->st_shndx == SHN_COMMON)
10522 isec = bfd_com_section_ptr;
10523 else
10524 {
10525 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10526 if (isec == NULL)
10527 {
10528 /* Don't attempt to output symbols with st_shnx in the
10529 reserved range other than SHN_ABS and SHN_COMMON. */
10530 isec = bfd_und_section_ptr;
10531 }
10532 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10533 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10534 isym->st_value =
10535 _bfd_merged_section_offset (output_bfd, &isec,
10536 elf_section_data (isec)->sec_info,
10537 isym->st_value);
10538 }
10539
10540 *ppsection = isec;
10541
10542 /* Don't output the first, undefined, symbol. In fact, don't
10543 output any undefined local symbol. */
10544 if (isec == bfd_und_section_ptr)
10545 continue;
10546
10547 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10548 {
10549 /* We never output section symbols. Instead, we use the
10550 section symbol of the corresponding section in the output
10551 file. */
10552 continue;
10553 }
10554
10555 /* If we are stripping all symbols, we don't want to output this
10556 one. */
10557 if (flinfo->info->strip == strip_all)
10558 continue;
10559
10560 /* If we are discarding all local symbols, we don't want to
10561 output this one. If we are generating a relocatable output
10562 file, then some of the local symbols may be required by
10563 relocs; we output them below as we discover that they are
10564 needed. */
10565 if (flinfo->info->discard == discard_all)
10566 continue;
10567
10568 /* If this symbol is defined in a section which we are
10569 discarding, we don't need to keep it. */
10570 if (isym->st_shndx != SHN_UNDEF
10571 && isym->st_shndx < SHN_LORESERVE
10572 && bfd_section_removed_from_list (output_bfd,
10573 isec->output_section))
10574 continue;
10575
10576 /* Get the name of the symbol. */
10577 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10578 isym->st_name);
10579 if (name == NULL)
10580 return FALSE;
10581
10582 /* See if we are discarding symbols with this name. */
10583 if ((flinfo->info->strip == strip_some
10584 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10585 == NULL))
10586 || (((flinfo->info->discard == discard_sec_merge
10587 && (isec->flags & SEC_MERGE)
10588 && !bfd_link_relocatable (flinfo->info))
10589 || flinfo->info->discard == discard_l)
10590 && bfd_is_local_label_name (input_bfd, name)))
10591 continue;
10592
10593 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10594 {
10595 if (input_bfd->lto_output)
10596 /* -flto puts a temp file name here. This means builds
10597 are not reproducible. Discard the symbol. */
10598 continue;
10599 have_file_sym = TRUE;
10600 flinfo->filesym_count += 1;
10601 }
10602 if (!have_file_sym)
10603 {
10604 /* In the absence of debug info, bfd_find_nearest_line uses
10605 FILE symbols to determine the source file for local
10606 function symbols. Provide a FILE symbol here if input
10607 files lack such, so that their symbols won't be
10608 associated with a previous input file. It's not the
10609 source file, but the best we can do. */
10610 have_file_sym = TRUE;
10611 flinfo->filesym_count += 1;
10612 memset (&osym, 0, sizeof (osym));
10613 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10614 osym.st_shndx = SHN_ABS;
10615 if (!elf_link_output_symstrtab (flinfo,
10616 (input_bfd->lto_output ? NULL
10617 : input_bfd->filename),
10618 &osym, bfd_abs_section_ptr,
10619 NULL))
10620 return FALSE;
10621 }
10622
10623 osym = *isym;
10624
10625 /* Adjust the section index for the output file. */
10626 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10627 isec->output_section);
10628 if (osym.st_shndx == SHN_BAD)
10629 return FALSE;
10630
10631 /* ELF symbols in relocatable files are section relative, but
10632 in executable files they are virtual addresses. Note that
10633 this code assumes that all ELF sections have an associated
10634 BFD section with a reasonable value for output_offset; below
10635 we assume that they also have a reasonable value for
10636 output_section. Any special sections must be set up to meet
10637 these requirements. */
10638 osym.st_value += isec->output_offset;
10639 if (!bfd_link_relocatable (flinfo->info))
10640 {
10641 osym.st_value += isec->output_section->vma;
10642 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10643 {
10644 /* STT_TLS symbols are relative to PT_TLS segment base. */
10645 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10646 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10647 else
10648 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10649 STT_NOTYPE);
10650 }
10651 }
10652
10653 indx = bfd_get_symcount (output_bfd);
10654 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10655 if (ret == 0)
10656 return FALSE;
10657 else if (ret == 1)
10658 *pindex = indx;
10659 }
10660
10661 if (bed->s->arch_size == 32)
10662 {
10663 r_type_mask = 0xff;
10664 r_sym_shift = 8;
10665 address_size = 4;
10666 }
10667 else
10668 {
10669 r_type_mask = 0xffffffff;
10670 r_sym_shift = 32;
10671 address_size = 8;
10672 }
10673
10674 /* Relocate the contents of each section. */
10675 sym_hashes = elf_sym_hashes (input_bfd);
10676 for (o = input_bfd->sections; o != NULL; o = o->next)
10677 {
10678 bfd_byte *contents;
10679
10680 if (! o->linker_mark)
10681 {
10682 /* This section was omitted from the link. */
10683 continue;
10684 }
10685
10686 if (!flinfo->info->resolve_section_groups
10687 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10688 {
10689 /* Deal with the group signature symbol. */
10690 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10691 unsigned long symndx = sec_data->this_hdr.sh_info;
10692 asection *osec = o->output_section;
10693
10694 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10695 if (symndx >= locsymcount
10696 || (elf_bad_symtab (input_bfd)
10697 && flinfo->sections[symndx] == NULL))
10698 {
10699 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10700 while (h->root.type == bfd_link_hash_indirect
10701 || h->root.type == bfd_link_hash_warning)
10702 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10703 /* Arrange for symbol to be output. */
10704 h->indx = -2;
10705 elf_section_data (osec)->this_hdr.sh_info = -2;
10706 }
10707 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10708 {
10709 /* We'll use the output section target_index. */
10710 asection *sec = flinfo->sections[symndx]->output_section;
10711 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10712 }
10713 else
10714 {
10715 if (flinfo->indices[symndx] == -1)
10716 {
10717 /* Otherwise output the local symbol now. */
10718 Elf_Internal_Sym sym = isymbuf[symndx];
10719 asection *sec = flinfo->sections[symndx]->output_section;
10720 const char *name;
10721 long indx;
10722 int ret;
10723
10724 name = bfd_elf_string_from_elf_section (input_bfd,
10725 symtab_hdr->sh_link,
10726 sym.st_name);
10727 if (name == NULL)
10728 return FALSE;
10729
10730 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10731 sec);
10732 if (sym.st_shndx == SHN_BAD)
10733 return FALSE;
10734
10735 sym.st_value += o->output_offset;
10736
10737 indx = bfd_get_symcount (output_bfd);
10738 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10739 NULL);
10740 if (ret == 0)
10741 return FALSE;
10742 else if (ret == 1)
10743 flinfo->indices[symndx] = indx;
10744 else
10745 abort ();
10746 }
10747 elf_section_data (osec)->this_hdr.sh_info
10748 = flinfo->indices[symndx];
10749 }
10750 }
10751
10752 if ((o->flags & SEC_HAS_CONTENTS) == 0
10753 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10754 continue;
10755
10756 if ((o->flags & SEC_LINKER_CREATED) != 0)
10757 {
10758 /* Section was created by _bfd_elf_link_create_dynamic_sections
10759 or somesuch. */
10760 continue;
10761 }
10762
10763 /* Get the contents of the section. They have been cached by a
10764 relaxation routine. Note that o is a section in an input
10765 file, so the contents field will not have been set by any of
10766 the routines which work on output files. */
10767 if (elf_section_data (o)->this_hdr.contents != NULL)
10768 {
10769 contents = elf_section_data (o)->this_hdr.contents;
10770 if (bed->caches_rawsize
10771 && o->rawsize != 0
10772 && o->rawsize < o->size)
10773 {
10774 memcpy (flinfo->contents, contents, o->rawsize);
10775 contents = flinfo->contents;
10776 }
10777 }
10778 else
10779 {
10780 contents = flinfo->contents;
10781 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10782 return FALSE;
10783 }
10784
10785 if ((o->flags & SEC_RELOC) != 0)
10786 {
10787 Elf_Internal_Rela *internal_relocs;
10788 Elf_Internal_Rela *rel, *relend;
10789 int action_discarded;
10790 int ret;
10791
10792 /* Get the swapped relocs. */
10793 internal_relocs
10794 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10795 flinfo->internal_relocs, FALSE);
10796 if (internal_relocs == NULL
10797 && o->reloc_count > 0)
10798 return FALSE;
10799
10800 /* We need to reverse-copy input .ctors/.dtors sections if
10801 they are placed in .init_array/.finit_array for output. */
10802 if (o->size > address_size
10803 && ((strncmp (o->name, ".ctors", 6) == 0
10804 && strcmp (o->output_section->name,
10805 ".init_array") == 0)
10806 || (strncmp (o->name, ".dtors", 6) == 0
10807 && strcmp (o->output_section->name,
10808 ".fini_array") == 0))
10809 && (o->name[6] == 0 || o->name[6] == '.'))
10810 {
10811 if (o->size * bed->s->int_rels_per_ext_rel
10812 != o->reloc_count * address_size)
10813 {
10814 _bfd_error_handler
10815 /* xgettext:c-format */
10816 (_("error: %pB: size of section %pA is not "
10817 "multiple of address size"),
10818 input_bfd, o);
10819 bfd_set_error (bfd_error_bad_value);
10820 return FALSE;
10821 }
10822 o->flags |= SEC_ELF_REVERSE_COPY;
10823 }
10824
10825 action_discarded = -1;
10826 if (!elf_section_ignore_discarded_relocs (o))
10827 action_discarded = (*bed->action_discarded) (o);
10828
10829 /* Run through the relocs evaluating complex reloc symbols and
10830 looking for relocs against symbols from discarded sections
10831 or section symbols from removed link-once sections.
10832 Complain about relocs against discarded sections. Zero
10833 relocs against removed link-once sections. */
10834
10835 rel = internal_relocs;
10836 relend = rel + o->reloc_count;
10837 for ( ; rel < relend; rel++)
10838 {
10839 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10840 unsigned int s_type;
10841 asection **ps, *sec;
10842 struct elf_link_hash_entry *h = NULL;
10843 const char *sym_name;
10844
10845 if (r_symndx == STN_UNDEF)
10846 continue;
10847
10848 if (r_symndx >= locsymcount
10849 || (elf_bad_symtab (input_bfd)
10850 && flinfo->sections[r_symndx] == NULL))
10851 {
10852 h = sym_hashes[r_symndx - extsymoff];
10853
10854 /* Badly formatted input files can contain relocs that
10855 reference non-existant symbols. Check here so that
10856 we do not seg fault. */
10857 if (h == NULL)
10858 {
10859 _bfd_error_handler
10860 /* xgettext:c-format */
10861 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10862 "that references a non-existent global symbol"),
10863 input_bfd, (uint64_t) rel->r_info, o);
10864 bfd_set_error (bfd_error_bad_value);
10865 return FALSE;
10866 }
10867
10868 while (h->root.type == bfd_link_hash_indirect
10869 || h->root.type == bfd_link_hash_warning)
10870 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10871
10872 s_type = h->type;
10873
10874 /* If a plugin symbol is referenced from a non-IR file,
10875 mark the symbol as undefined. Note that the
10876 linker may attach linker created dynamic sections
10877 to the plugin bfd. Symbols defined in linker
10878 created sections are not plugin symbols. */
10879 if ((h->root.non_ir_ref_regular
10880 || h->root.non_ir_ref_dynamic)
10881 && (h->root.type == bfd_link_hash_defined
10882 || h->root.type == bfd_link_hash_defweak)
10883 && (h->root.u.def.section->flags
10884 & SEC_LINKER_CREATED) == 0
10885 && h->root.u.def.section->owner != NULL
10886 && (h->root.u.def.section->owner->flags
10887 & BFD_PLUGIN) != 0)
10888 {
10889 h->root.type = bfd_link_hash_undefined;
10890 h->root.u.undef.abfd = h->root.u.def.section->owner;
10891 }
10892
10893 ps = NULL;
10894 if (h->root.type == bfd_link_hash_defined
10895 || h->root.type == bfd_link_hash_defweak)
10896 ps = &h->root.u.def.section;
10897
10898 sym_name = h->root.root.string;
10899 }
10900 else
10901 {
10902 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10903
10904 s_type = ELF_ST_TYPE (sym->st_info);
10905 ps = &flinfo->sections[r_symndx];
10906 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10907 sym, *ps);
10908 }
10909
10910 if ((s_type == STT_RELC || s_type == STT_SRELC)
10911 && !bfd_link_relocatable (flinfo->info))
10912 {
10913 bfd_vma val;
10914 bfd_vma dot = (rel->r_offset
10915 + o->output_offset + o->output_section->vma);
10916 #ifdef DEBUG
10917 printf ("Encountered a complex symbol!");
10918 printf (" (input_bfd %s, section %s, reloc %ld\n",
10919 input_bfd->filename, o->name,
10920 (long) (rel - internal_relocs));
10921 printf (" symbol: idx %8.8lx, name %s\n",
10922 r_symndx, sym_name);
10923 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10924 (unsigned long) rel->r_info,
10925 (unsigned long) rel->r_offset);
10926 #endif
10927 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10928 isymbuf, locsymcount, s_type == STT_SRELC))
10929 return FALSE;
10930
10931 /* Symbol evaluated OK. Update to absolute value. */
10932 set_symbol_value (input_bfd, isymbuf, locsymcount,
10933 r_symndx, val);
10934 continue;
10935 }
10936
10937 if (action_discarded != -1 && ps != NULL)
10938 {
10939 /* Complain if the definition comes from a
10940 discarded section. */
10941 if ((sec = *ps) != NULL && discarded_section (sec))
10942 {
10943 BFD_ASSERT (r_symndx != STN_UNDEF);
10944 if (action_discarded & COMPLAIN)
10945 (*flinfo->info->callbacks->einfo)
10946 /* xgettext:c-format */
10947 (_("%X`%s' referenced in section `%pA' of %pB: "
10948 "defined in discarded section `%pA' of %pB\n"),
10949 sym_name, o, input_bfd, sec, sec->owner);
10950
10951 /* Try to do the best we can to support buggy old
10952 versions of gcc. Pretend that the symbol is
10953 really defined in the kept linkonce section.
10954 FIXME: This is quite broken. Modifying the
10955 symbol here means we will be changing all later
10956 uses of the symbol, not just in this section. */
10957 if (action_discarded & PRETEND)
10958 {
10959 asection *kept;
10960
10961 kept = _bfd_elf_check_kept_section (sec,
10962 flinfo->info);
10963 if (kept != NULL)
10964 {
10965 *ps = kept;
10966 continue;
10967 }
10968 }
10969 }
10970 }
10971 }
10972
10973 /* Relocate the section by invoking a back end routine.
10974
10975 The back end routine is responsible for adjusting the
10976 section contents as necessary, and (if using Rela relocs
10977 and generating a relocatable output file) adjusting the
10978 reloc addend as necessary.
10979
10980 The back end routine does not have to worry about setting
10981 the reloc address or the reloc symbol index.
10982
10983 The back end routine is given a pointer to the swapped in
10984 internal symbols, and can access the hash table entries
10985 for the external symbols via elf_sym_hashes (input_bfd).
10986
10987 When generating relocatable output, the back end routine
10988 must handle STB_LOCAL/STT_SECTION symbols specially. The
10989 output symbol is going to be a section symbol
10990 corresponding to the output section, which will require
10991 the addend to be adjusted. */
10992
10993 ret = (*relocate_section) (output_bfd, flinfo->info,
10994 input_bfd, o, contents,
10995 internal_relocs,
10996 isymbuf,
10997 flinfo->sections);
10998 if (!ret)
10999 return FALSE;
11000
11001 if (ret == 2
11002 || bfd_link_relocatable (flinfo->info)
11003 || flinfo->info->emitrelocations)
11004 {
11005 Elf_Internal_Rela *irela;
11006 Elf_Internal_Rela *irelaend, *irelamid;
11007 bfd_vma last_offset;
11008 struct elf_link_hash_entry **rel_hash;
11009 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11010 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11011 unsigned int next_erel;
11012 bfd_boolean rela_normal;
11013 struct bfd_elf_section_data *esdi, *esdo;
11014
11015 esdi = elf_section_data (o);
11016 esdo = elf_section_data (o->output_section);
11017 rela_normal = FALSE;
11018
11019 /* Adjust the reloc addresses and symbol indices. */
11020
11021 irela = internal_relocs;
11022 irelaend = irela + o->reloc_count;
11023 rel_hash = esdo->rel.hashes + esdo->rel.count;
11024 /* We start processing the REL relocs, if any. When we reach
11025 IRELAMID in the loop, we switch to the RELA relocs. */
11026 irelamid = irela;
11027 if (esdi->rel.hdr != NULL)
11028 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11029 * bed->s->int_rels_per_ext_rel);
11030 rel_hash_list = rel_hash;
11031 rela_hash_list = NULL;
11032 last_offset = o->output_offset;
11033 if (!bfd_link_relocatable (flinfo->info))
11034 last_offset += o->output_section->vma;
11035 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11036 {
11037 unsigned long r_symndx;
11038 asection *sec;
11039 Elf_Internal_Sym sym;
11040
11041 if (next_erel == bed->s->int_rels_per_ext_rel)
11042 {
11043 rel_hash++;
11044 next_erel = 0;
11045 }
11046
11047 if (irela == irelamid)
11048 {
11049 rel_hash = esdo->rela.hashes + esdo->rela.count;
11050 rela_hash_list = rel_hash;
11051 rela_normal = bed->rela_normal;
11052 }
11053
11054 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11055 flinfo->info, o,
11056 irela->r_offset);
11057 if (irela->r_offset >= (bfd_vma) -2)
11058 {
11059 /* This is a reloc for a deleted entry or somesuch.
11060 Turn it into an R_*_NONE reloc, at the same
11061 offset as the last reloc. elf_eh_frame.c and
11062 bfd_elf_discard_info rely on reloc offsets
11063 being ordered. */
11064 irela->r_offset = last_offset;
11065 irela->r_info = 0;
11066 irela->r_addend = 0;
11067 continue;
11068 }
11069
11070 irela->r_offset += o->output_offset;
11071
11072 /* Relocs in an executable have to be virtual addresses. */
11073 if (!bfd_link_relocatable (flinfo->info))
11074 irela->r_offset += o->output_section->vma;
11075
11076 last_offset = irela->r_offset;
11077
11078 r_symndx = irela->r_info >> r_sym_shift;
11079 if (r_symndx == STN_UNDEF)
11080 continue;
11081
11082 if (r_symndx >= locsymcount
11083 || (elf_bad_symtab (input_bfd)
11084 && flinfo->sections[r_symndx] == NULL))
11085 {
11086 struct elf_link_hash_entry *rh;
11087 unsigned long indx;
11088
11089 /* This is a reloc against a global symbol. We
11090 have not yet output all the local symbols, so
11091 we do not know the symbol index of any global
11092 symbol. We set the rel_hash entry for this
11093 reloc to point to the global hash table entry
11094 for this symbol. The symbol index is then
11095 set at the end of bfd_elf_final_link. */
11096 indx = r_symndx - extsymoff;
11097 rh = elf_sym_hashes (input_bfd)[indx];
11098 while (rh->root.type == bfd_link_hash_indirect
11099 || rh->root.type == bfd_link_hash_warning)
11100 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11101
11102 /* Setting the index to -2 tells
11103 elf_link_output_extsym that this symbol is
11104 used by a reloc. */
11105 BFD_ASSERT (rh->indx < 0);
11106 rh->indx = -2;
11107 *rel_hash = rh;
11108
11109 continue;
11110 }
11111
11112 /* This is a reloc against a local symbol. */
11113
11114 *rel_hash = NULL;
11115 sym = isymbuf[r_symndx];
11116 sec = flinfo->sections[r_symndx];
11117 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11118 {
11119 /* I suppose the backend ought to fill in the
11120 section of any STT_SECTION symbol against a
11121 processor specific section. */
11122 r_symndx = STN_UNDEF;
11123 if (bfd_is_abs_section (sec))
11124 ;
11125 else if (sec == NULL || sec->owner == NULL)
11126 {
11127 bfd_set_error (bfd_error_bad_value);
11128 return FALSE;
11129 }
11130 else
11131 {
11132 asection *osec = sec->output_section;
11133
11134 /* If we have discarded a section, the output
11135 section will be the absolute section. In
11136 case of discarded SEC_MERGE sections, use
11137 the kept section. relocate_section should
11138 have already handled discarded linkonce
11139 sections. */
11140 if (bfd_is_abs_section (osec)
11141 && sec->kept_section != NULL
11142 && sec->kept_section->output_section != NULL)
11143 {
11144 osec = sec->kept_section->output_section;
11145 irela->r_addend -= osec->vma;
11146 }
11147
11148 if (!bfd_is_abs_section (osec))
11149 {
11150 r_symndx = osec->target_index;
11151 if (r_symndx == STN_UNDEF)
11152 {
11153 irela->r_addend += osec->vma;
11154 osec = _bfd_nearby_section (output_bfd, osec,
11155 osec->vma);
11156 irela->r_addend -= osec->vma;
11157 r_symndx = osec->target_index;
11158 }
11159 }
11160 }
11161
11162 /* Adjust the addend according to where the
11163 section winds up in the output section. */
11164 if (rela_normal)
11165 irela->r_addend += sec->output_offset;
11166 }
11167 else
11168 {
11169 if (flinfo->indices[r_symndx] == -1)
11170 {
11171 unsigned long shlink;
11172 const char *name;
11173 asection *osec;
11174 long indx;
11175
11176 if (flinfo->info->strip == strip_all)
11177 {
11178 /* You can't do ld -r -s. */
11179 bfd_set_error (bfd_error_invalid_operation);
11180 return FALSE;
11181 }
11182
11183 /* This symbol was skipped earlier, but
11184 since it is needed by a reloc, we
11185 must output it now. */
11186 shlink = symtab_hdr->sh_link;
11187 name = (bfd_elf_string_from_elf_section
11188 (input_bfd, shlink, sym.st_name));
11189 if (name == NULL)
11190 return FALSE;
11191
11192 osec = sec->output_section;
11193 sym.st_shndx =
11194 _bfd_elf_section_from_bfd_section (output_bfd,
11195 osec);
11196 if (sym.st_shndx == SHN_BAD)
11197 return FALSE;
11198
11199 sym.st_value += sec->output_offset;
11200 if (!bfd_link_relocatable (flinfo->info))
11201 {
11202 sym.st_value += osec->vma;
11203 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11204 {
11205 struct elf_link_hash_table *htab
11206 = elf_hash_table (flinfo->info);
11207
11208 /* STT_TLS symbols are relative to PT_TLS
11209 segment base. */
11210 if (htab->tls_sec != NULL)
11211 sym.st_value -= htab->tls_sec->vma;
11212 else
11213 sym.st_info
11214 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11215 STT_NOTYPE);
11216 }
11217 }
11218
11219 indx = bfd_get_symcount (output_bfd);
11220 ret = elf_link_output_symstrtab (flinfo, name,
11221 &sym, sec,
11222 NULL);
11223 if (ret == 0)
11224 return FALSE;
11225 else if (ret == 1)
11226 flinfo->indices[r_symndx] = indx;
11227 else
11228 abort ();
11229 }
11230
11231 r_symndx = flinfo->indices[r_symndx];
11232 }
11233
11234 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11235 | (irela->r_info & r_type_mask));
11236 }
11237
11238 /* Swap out the relocs. */
11239 input_rel_hdr = esdi->rel.hdr;
11240 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11241 {
11242 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11243 input_rel_hdr,
11244 internal_relocs,
11245 rel_hash_list))
11246 return FALSE;
11247 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11248 * bed->s->int_rels_per_ext_rel);
11249 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11250 }
11251
11252 input_rela_hdr = esdi->rela.hdr;
11253 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11254 {
11255 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11256 input_rela_hdr,
11257 internal_relocs,
11258 rela_hash_list))
11259 return FALSE;
11260 }
11261 }
11262 }
11263
11264 /* Write out the modified section contents. */
11265 if (bed->elf_backend_write_section
11266 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11267 contents))
11268 {
11269 /* Section written out. */
11270 }
11271 else switch (o->sec_info_type)
11272 {
11273 case SEC_INFO_TYPE_STABS:
11274 if (! (_bfd_write_section_stabs
11275 (output_bfd,
11276 &elf_hash_table (flinfo->info)->stab_info,
11277 o, &elf_section_data (o)->sec_info, contents)))
11278 return FALSE;
11279 break;
11280 case SEC_INFO_TYPE_MERGE:
11281 if (! _bfd_write_merged_section (output_bfd, o,
11282 elf_section_data (o)->sec_info))
11283 return FALSE;
11284 break;
11285 case SEC_INFO_TYPE_EH_FRAME:
11286 {
11287 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11288 o, contents))
11289 return FALSE;
11290 }
11291 break;
11292 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11293 {
11294 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11295 flinfo->info,
11296 o, contents))
11297 return FALSE;
11298 }
11299 break;
11300 default:
11301 {
11302 if (! (o->flags & SEC_EXCLUDE))
11303 {
11304 file_ptr offset = (file_ptr) o->output_offset;
11305 bfd_size_type todo = o->size;
11306
11307 offset *= bfd_octets_per_byte (output_bfd, o);
11308
11309 if ((o->flags & SEC_ELF_REVERSE_COPY))
11310 {
11311 /* Reverse-copy input section to output. */
11312 do
11313 {
11314 todo -= address_size;
11315 if (! bfd_set_section_contents (output_bfd,
11316 o->output_section,
11317 contents + todo,
11318 offset,
11319 address_size))
11320 return FALSE;
11321 if (todo == 0)
11322 break;
11323 offset += address_size;
11324 }
11325 while (1);
11326 }
11327 else if (! bfd_set_section_contents (output_bfd,
11328 o->output_section,
11329 contents,
11330 offset, todo))
11331 return FALSE;
11332 }
11333 }
11334 break;
11335 }
11336 }
11337
11338 return TRUE;
11339 }
11340
11341 /* Generate a reloc when linking an ELF file. This is a reloc
11342 requested by the linker, and does not come from any input file. This
11343 is used to build constructor and destructor tables when linking
11344 with -Ur. */
11345
11346 static bfd_boolean
11347 elf_reloc_link_order (bfd *output_bfd,
11348 struct bfd_link_info *info,
11349 asection *output_section,
11350 struct bfd_link_order *link_order)
11351 {
11352 reloc_howto_type *howto;
11353 long indx;
11354 bfd_vma offset;
11355 bfd_vma addend;
11356 struct bfd_elf_section_reloc_data *reldata;
11357 struct elf_link_hash_entry **rel_hash_ptr;
11358 Elf_Internal_Shdr *rel_hdr;
11359 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11360 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11361 bfd_byte *erel;
11362 unsigned int i;
11363 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11364
11365 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11366 if (howto == NULL)
11367 {
11368 bfd_set_error (bfd_error_bad_value);
11369 return FALSE;
11370 }
11371
11372 addend = link_order->u.reloc.p->addend;
11373
11374 if (esdo->rel.hdr)
11375 reldata = &esdo->rel;
11376 else if (esdo->rela.hdr)
11377 reldata = &esdo->rela;
11378 else
11379 {
11380 reldata = NULL;
11381 BFD_ASSERT (0);
11382 }
11383
11384 /* Figure out the symbol index. */
11385 rel_hash_ptr = reldata->hashes + reldata->count;
11386 if (link_order->type == bfd_section_reloc_link_order)
11387 {
11388 indx = link_order->u.reloc.p->u.section->target_index;
11389 BFD_ASSERT (indx != 0);
11390 *rel_hash_ptr = NULL;
11391 }
11392 else
11393 {
11394 struct elf_link_hash_entry *h;
11395
11396 /* Treat a reloc against a defined symbol as though it were
11397 actually against the section. */
11398 h = ((struct elf_link_hash_entry *)
11399 bfd_wrapped_link_hash_lookup (output_bfd, info,
11400 link_order->u.reloc.p->u.name,
11401 FALSE, FALSE, TRUE));
11402 if (h != NULL
11403 && (h->root.type == bfd_link_hash_defined
11404 || h->root.type == bfd_link_hash_defweak))
11405 {
11406 asection *section;
11407
11408 section = h->root.u.def.section;
11409 indx = section->output_section->target_index;
11410 *rel_hash_ptr = NULL;
11411 /* It seems that we ought to add the symbol value to the
11412 addend here, but in practice it has already been added
11413 because it was passed to constructor_callback. */
11414 addend += section->output_section->vma + section->output_offset;
11415 }
11416 else if (h != NULL)
11417 {
11418 /* Setting the index to -2 tells elf_link_output_extsym that
11419 this symbol is used by a reloc. */
11420 h->indx = -2;
11421 *rel_hash_ptr = h;
11422 indx = 0;
11423 }
11424 else
11425 {
11426 (*info->callbacks->unattached_reloc)
11427 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11428 indx = 0;
11429 }
11430 }
11431
11432 /* If this is an inplace reloc, we must write the addend into the
11433 object file. */
11434 if (howto->partial_inplace && addend != 0)
11435 {
11436 bfd_size_type size;
11437 bfd_reloc_status_type rstat;
11438 bfd_byte *buf;
11439 bfd_boolean ok;
11440 const char *sym_name;
11441 bfd_size_type octets;
11442
11443 size = (bfd_size_type) bfd_get_reloc_size (howto);
11444 buf = (bfd_byte *) bfd_zmalloc (size);
11445 if (buf == NULL && size != 0)
11446 return FALSE;
11447 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11448 switch (rstat)
11449 {
11450 case bfd_reloc_ok:
11451 break;
11452
11453 default:
11454 case bfd_reloc_outofrange:
11455 abort ();
11456
11457 case bfd_reloc_overflow:
11458 if (link_order->type == bfd_section_reloc_link_order)
11459 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11460 else
11461 sym_name = link_order->u.reloc.p->u.name;
11462 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11463 howto->name, addend, NULL, NULL,
11464 (bfd_vma) 0);
11465 break;
11466 }
11467
11468 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
11469 output_section);
11470 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11471 octets, size);
11472 free (buf);
11473 if (! ok)
11474 return FALSE;
11475 }
11476
11477 /* The address of a reloc is relative to the section in a
11478 relocatable file, and is a virtual address in an executable
11479 file. */
11480 offset = link_order->offset;
11481 if (! bfd_link_relocatable (info))
11482 offset += output_section->vma;
11483
11484 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11485 {
11486 irel[i].r_offset = offset;
11487 irel[i].r_info = 0;
11488 irel[i].r_addend = 0;
11489 }
11490 if (bed->s->arch_size == 32)
11491 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11492 else
11493 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11494
11495 rel_hdr = reldata->hdr;
11496 erel = rel_hdr->contents;
11497 if (rel_hdr->sh_type == SHT_REL)
11498 {
11499 erel += reldata->count * bed->s->sizeof_rel;
11500 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11501 }
11502 else
11503 {
11504 irel[0].r_addend = addend;
11505 erel += reldata->count * bed->s->sizeof_rela;
11506 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11507 }
11508
11509 ++reldata->count;
11510
11511 return TRUE;
11512 }
11513
11514
11515 /* Compare two sections based on the locations of the sections they are
11516 linked to. Used by elf_fixup_link_order. */
11517
11518 static int
11519 compare_link_order (const void *a, const void *b)
11520 {
11521 const struct bfd_link_order *alo = *(const struct bfd_link_order **) a;
11522 const struct bfd_link_order *blo = *(const struct bfd_link_order **) b;
11523 asection *asec = elf_linked_to_section (alo->u.indirect.section);
11524 asection *bsec = elf_linked_to_section (blo->u.indirect.section);
11525 bfd_vma apos = asec->output_section->lma + asec->output_offset;
11526 bfd_vma bpos = bsec->output_section->lma + bsec->output_offset;
11527
11528 if (apos < bpos)
11529 return -1;
11530 if (apos > bpos)
11531 return 1;
11532
11533 /* The only way we should get matching LMAs is when the first of two
11534 sections has zero size. */
11535 if (asec->size < bsec->size)
11536 return -1;
11537 if (asec->size > bsec->size)
11538 return 1;
11539
11540 /* If they are both zero size then they almost certainly have the same
11541 VMA and thus are not ordered with respect to each other. Test VMA
11542 anyway, and fall back to id to make the result reproducible across
11543 qsort implementations. */
11544 apos = asec->output_section->vma + asec->output_offset;
11545 bpos = bsec->output_section->vma + bsec->output_offset;
11546 if (apos < bpos)
11547 return -1;
11548 if (apos > bpos)
11549 return 1;
11550
11551 return asec->id - bsec->id;
11552 }
11553
11554
11555 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11556 order as their linked sections. Returns false if this could not be done
11557 because an output section includes both ordered and unordered
11558 sections. Ideally we'd do this in the linker proper. */
11559
11560 static bfd_boolean
11561 elf_fixup_link_order (bfd *abfd, asection *o)
11562 {
11563 size_t seen_linkorder;
11564 size_t seen_other;
11565 size_t n;
11566 struct bfd_link_order *p;
11567 bfd *sub;
11568 struct bfd_link_order **sections;
11569 asection *s, *other_sec, *linkorder_sec;
11570 bfd_vma offset;
11571
11572 other_sec = NULL;
11573 linkorder_sec = NULL;
11574 seen_other = 0;
11575 seen_linkorder = 0;
11576 for (p = o->map_head.link_order; p != NULL; p = p->next)
11577 {
11578 if (p->type == bfd_indirect_link_order)
11579 {
11580 s = p->u.indirect.section;
11581 sub = s->owner;
11582 if ((s->flags & SEC_LINKER_CREATED) == 0
11583 && bfd_get_flavour (sub) == bfd_target_elf_flavour
11584 && elf_section_data (s) != NULL
11585 && elf_linked_to_section (s) != NULL)
11586 {
11587 seen_linkorder++;
11588 linkorder_sec = s;
11589 }
11590 else
11591 {
11592 seen_other++;
11593 other_sec = s;
11594 }
11595 }
11596 else
11597 seen_other++;
11598
11599 if (seen_other && seen_linkorder)
11600 {
11601 if (other_sec && linkorder_sec)
11602 _bfd_error_handler
11603 /* xgettext:c-format */
11604 (_("%pA has both ordered [`%pA' in %pB] "
11605 "and unordered [`%pA' in %pB] sections"),
11606 o, linkorder_sec, linkorder_sec->owner,
11607 other_sec, other_sec->owner);
11608 else
11609 _bfd_error_handler
11610 (_("%pA has both ordered and unordered sections"), o);
11611 bfd_set_error (bfd_error_bad_value);
11612 return FALSE;
11613 }
11614 }
11615
11616 if (!seen_linkorder)
11617 return TRUE;
11618
11619 sections = bfd_malloc (seen_linkorder * sizeof (*sections));
11620 if (sections == NULL)
11621 return FALSE;
11622
11623 seen_linkorder = 0;
11624 for (p = o->map_head.link_order; p != NULL; p = p->next)
11625 sections[seen_linkorder++] = p;
11626
11627 /* Sort the input sections in the order of their linked section. */
11628 qsort (sections, seen_linkorder, sizeof (*sections), compare_link_order);
11629
11630 /* Change the offsets of the sections. */
11631 offset = 0;
11632 for (n = 0; n < seen_linkorder; n++)
11633 {
11634 bfd_vma mask;
11635 s = sections[n]->u.indirect.section;
11636 mask = ~(bfd_vma) 0 << s->alignment_power;
11637 offset = (offset + ~mask) & mask;
11638 s->output_offset = offset / bfd_octets_per_byte (abfd, s);
11639 sections[n]->offset = offset;
11640 offset += sections[n]->size;
11641 }
11642
11643 free (sections);
11644 return TRUE;
11645 }
11646
11647 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11648 Returns TRUE upon success, FALSE otherwise. */
11649
11650 static bfd_boolean
11651 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11652 {
11653 bfd_boolean ret = FALSE;
11654 bfd *implib_bfd;
11655 const struct elf_backend_data *bed;
11656 flagword flags;
11657 enum bfd_architecture arch;
11658 unsigned int mach;
11659 asymbol **sympp = NULL;
11660 long symsize;
11661 long symcount;
11662 long src_count;
11663 elf_symbol_type *osymbuf;
11664
11665 implib_bfd = info->out_implib_bfd;
11666 bed = get_elf_backend_data (abfd);
11667
11668 if (!bfd_set_format (implib_bfd, bfd_object))
11669 return FALSE;
11670
11671 /* Use flag from executable but make it a relocatable object. */
11672 flags = bfd_get_file_flags (abfd);
11673 flags &= ~HAS_RELOC;
11674 if (!bfd_set_start_address (implib_bfd, 0)
11675 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11676 return FALSE;
11677
11678 /* Copy architecture of output file to import library file. */
11679 arch = bfd_get_arch (abfd);
11680 mach = bfd_get_mach (abfd);
11681 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11682 && (abfd->target_defaulted
11683 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11684 return FALSE;
11685
11686 /* Get symbol table size. */
11687 symsize = bfd_get_symtab_upper_bound (abfd);
11688 if (symsize < 0)
11689 return FALSE;
11690
11691 /* Read in the symbol table. */
11692 sympp = (asymbol **) bfd_malloc (symsize);
11693 if (sympp == NULL)
11694 return FALSE;
11695
11696 symcount = bfd_canonicalize_symtab (abfd, sympp);
11697 if (symcount < 0)
11698 goto free_sym_buf;
11699
11700 /* Allow the BFD backend to copy any private header data it
11701 understands from the output BFD to the import library BFD. */
11702 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11703 goto free_sym_buf;
11704
11705 /* Filter symbols to appear in the import library. */
11706 if (bed->elf_backend_filter_implib_symbols)
11707 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11708 symcount);
11709 else
11710 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11711 if (symcount == 0)
11712 {
11713 bfd_set_error (bfd_error_no_symbols);
11714 _bfd_error_handler (_("%pB: no symbol found for import library"),
11715 implib_bfd);
11716 goto free_sym_buf;
11717 }
11718
11719
11720 /* Make symbols absolute. */
11721 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11722 sizeof (*osymbuf));
11723 if (osymbuf == NULL)
11724 goto free_sym_buf;
11725
11726 for (src_count = 0; src_count < symcount; src_count++)
11727 {
11728 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11729 sizeof (*osymbuf));
11730 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11731 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11732 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11733 osymbuf[src_count].internal_elf_sym.st_value =
11734 osymbuf[src_count].symbol.value;
11735 sympp[src_count] = &osymbuf[src_count].symbol;
11736 }
11737
11738 bfd_set_symtab (implib_bfd, sympp, symcount);
11739
11740 /* Allow the BFD backend to copy any private data it understands
11741 from the output BFD to the import library BFD. This is done last
11742 to permit the routine to look at the filtered symbol table. */
11743 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11744 goto free_sym_buf;
11745
11746 if (!bfd_close (implib_bfd))
11747 goto free_sym_buf;
11748
11749 ret = TRUE;
11750
11751 free_sym_buf:
11752 free (sympp);
11753 return ret;
11754 }
11755
11756 static void
11757 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11758 {
11759 asection *o;
11760
11761 if (flinfo->symstrtab != NULL)
11762 _bfd_elf_strtab_free (flinfo->symstrtab);
11763 if (flinfo->contents != NULL)
11764 free (flinfo->contents);
11765 if (flinfo->external_relocs != NULL)
11766 free (flinfo->external_relocs);
11767 if (flinfo->internal_relocs != NULL)
11768 free (flinfo->internal_relocs);
11769 if (flinfo->external_syms != NULL)
11770 free (flinfo->external_syms);
11771 if (flinfo->locsym_shndx != NULL)
11772 free (flinfo->locsym_shndx);
11773 if (flinfo->internal_syms != NULL)
11774 free (flinfo->internal_syms);
11775 if (flinfo->indices != NULL)
11776 free (flinfo->indices);
11777 if (flinfo->sections != NULL)
11778 free (flinfo->sections);
11779 if (flinfo->symshndxbuf != NULL
11780 && flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11781 free (flinfo->symshndxbuf);
11782 for (o = obfd->sections; o != NULL; o = o->next)
11783 {
11784 struct bfd_elf_section_data *esdo = elf_section_data (o);
11785 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11786 free (esdo->rel.hashes);
11787 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11788 free (esdo->rela.hashes);
11789 }
11790 }
11791
11792 /* Do the final step of an ELF link. */
11793
11794 bfd_boolean
11795 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11796 {
11797 bfd_boolean dynamic;
11798 bfd_boolean emit_relocs;
11799 bfd *dynobj;
11800 struct elf_final_link_info flinfo;
11801 asection *o;
11802 struct bfd_link_order *p;
11803 bfd *sub;
11804 bfd_size_type max_contents_size;
11805 bfd_size_type max_external_reloc_size;
11806 bfd_size_type max_internal_reloc_count;
11807 bfd_size_type max_sym_count;
11808 bfd_size_type max_sym_shndx_count;
11809 Elf_Internal_Sym elfsym;
11810 unsigned int i;
11811 Elf_Internal_Shdr *symtab_hdr;
11812 Elf_Internal_Shdr *symtab_shndx_hdr;
11813 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11814 struct elf_outext_info eoinfo;
11815 bfd_boolean merged;
11816 size_t relativecount = 0;
11817 asection *reldyn = 0;
11818 bfd_size_type amt;
11819 asection *attr_section = NULL;
11820 bfd_vma attr_size = 0;
11821 const char *std_attrs_section;
11822 struct elf_link_hash_table *htab = elf_hash_table (info);
11823
11824 if (!is_elf_hash_table (htab))
11825 return FALSE;
11826
11827 if (bfd_link_pic (info))
11828 abfd->flags |= DYNAMIC;
11829
11830 dynamic = htab->dynamic_sections_created;
11831 dynobj = htab->dynobj;
11832
11833 emit_relocs = (bfd_link_relocatable (info)
11834 || info->emitrelocations);
11835
11836 flinfo.info = info;
11837 flinfo.output_bfd = abfd;
11838 flinfo.symstrtab = _bfd_elf_strtab_init ();
11839 if (flinfo.symstrtab == NULL)
11840 return FALSE;
11841
11842 if (! dynamic)
11843 {
11844 flinfo.hash_sec = NULL;
11845 flinfo.symver_sec = NULL;
11846 }
11847 else
11848 {
11849 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11850 /* Note that dynsym_sec can be NULL (on VMS). */
11851 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11852 /* Note that it is OK if symver_sec is NULL. */
11853 }
11854
11855 flinfo.contents = NULL;
11856 flinfo.external_relocs = NULL;
11857 flinfo.internal_relocs = NULL;
11858 flinfo.external_syms = NULL;
11859 flinfo.locsym_shndx = NULL;
11860 flinfo.internal_syms = NULL;
11861 flinfo.indices = NULL;
11862 flinfo.sections = NULL;
11863 flinfo.symshndxbuf = NULL;
11864 flinfo.filesym_count = 0;
11865
11866 /* The object attributes have been merged. Remove the input
11867 sections from the link, and set the contents of the output
11868 section. */
11869 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11870 for (o = abfd->sections; o != NULL; o = o->next)
11871 {
11872 bfd_boolean remove_section = FALSE;
11873
11874 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11875 || strcmp (o->name, ".gnu.attributes") == 0)
11876 {
11877 for (p = o->map_head.link_order; p != NULL; p = p->next)
11878 {
11879 asection *input_section;
11880
11881 if (p->type != bfd_indirect_link_order)
11882 continue;
11883 input_section = p->u.indirect.section;
11884 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11885 elf_link_input_bfd ignores this section. */
11886 input_section->flags &= ~SEC_HAS_CONTENTS;
11887 }
11888
11889 attr_size = bfd_elf_obj_attr_size (abfd);
11890 bfd_set_section_size (o, attr_size);
11891 /* Skip this section later on. */
11892 o->map_head.link_order = NULL;
11893 if (attr_size)
11894 attr_section = o;
11895 else
11896 remove_section = TRUE;
11897 }
11898 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11899 {
11900 /* Remove empty group section from linker output. */
11901 remove_section = TRUE;
11902 }
11903 if (remove_section)
11904 {
11905 o->flags |= SEC_EXCLUDE;
11906 bfd_section_list_remove (abfd, o);
11907 abfd->section_count--;
11908 }
11909 }
11910
11911 /* Count up the number of relocations we will output for each output
11912 section, so that we know the sizes of the reloc sections. We
11913 also figure out some maximum sizes. */
11914 max_contents_size = 0;
11915 max_external_reloc_size = 0;
11916 max_internal_reloc_count = 0;
11917 max_sym_count = 0;
11918 max_sym_shndx_count = 0;
11919 merged = FALSE;
11920 for (o = abfd->sections; o != NULL; o = o->next)
11921 {
11922 struct bfd_elf_section_data *esdo = elf_section_data (o);
11923 o->reloc_count = 0;
11924
11925 for (p = o->map_head.link_order; p != NULL; p = p->next)
11926 {
11927 unsigned int reloc_count = 0;
11928 unsigned int additional_reloc_count = 0;
11929 struct bfd_elf_section_data *esdi = NULL;
11930
11931 if (p->type == bfd_section_reloc_link_order
11932 || p->type == bfd_symbol_reloc_link_order)
11933 reloc_count = 1;
11934 else if (p->type == bfd_indirect_link_order)
11935 {
11936 asection *sec;
11937
11938 sec = p->u.indirect.section;
11939
11940 /* Mark all sections which are to be included in the
11941 link. This will normally be every section. We need
11942 to do this so that we can identify any sections which
11943 the linker has decided to not include. */
11944 sec->linker_mark = TRUE;
11945
11946 if (sec->flags & SEC_MERGE)
11947 merged = TRUE;
11948
11949 if (sec->rawsize > max_contents_size)
11950 max_contents_size = sec->rawsize;
11951 if (sec->size > max_contents_size)
11952 max_contents_size = sec->size;
11953
11954 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11955 && (sec->owner->flags & DYNAMIC) == 0)
11956 {
11957 size_t sym_count;
11958
11959 /* We are interested in just local symbols, not all
11960 symbols. */
11961 if (elf_bad_symtab (sec->owner))
11962 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11963 / bed->s->sizeof_sym);
11964 else
11965 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11966
11967 if (sym_count > max_sym_count)
11968 max_sym_count = sym_count;
11969
11970 if (sym_count > max_sym_shndx_count
11971 && elf_symtab_shndx_list (sec->owner) != NULL)
11972 max_sym_shndx_count = sym_count;
11973
11974 if (esdo->this_hdr.sh_type == SHT_REL
11975 || esdo->this_hdr.sh_type == SHT_RELA)
11976 /* Some backends use reloc_count in relocation sections
11977 to count particular types of relocs. Of course,
11978 reloc sections themselves can't have relocations. */
11979 ;
11980 else if (emit_relocs)
11981 {
11982 reloc_count = sec->reloc_count;
11983 if (bed->elf_backend_count_additional_relocs)
11984 {
11985 int c;
11986 c = (*bed->elf_backend_count_additional_relocs) (sec);
11987 additional_reloc_count += c;
11988 }
11989 }
11990 else if (bed->elf_backend_count_relocs)
11991 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11992
11993 esdi = elf_section_data (sec);
11994
11995 if ((sec->flags & SEC_RELOC) != 0)
11996 {
11997 size_t ext_size = 0;
11998
11999 if (esdi->rel.hdr != NULL)
12000 ext_size = esdi->rel.hdr->sh_size;
12001 if (esdi->rela.hdr != NULL)
12002 ext_size += esdi->rela.hdr->sh_size;
12003
12004 if (ext_size > max_external_reloc_size)
12005 max_external_reloc_size = ext_size;
12006 if (sec->reloc_count > max_internal_reloc_count)
12007 max_internal_reloc_count = sec->reloc_count;
12008 }
12009 }
12010 }
12011
12012 if (reloc_count == 0)
12013 continue;
12014
12015 reloc_count += additional_reloc_count;
12016 o->reloc_count += reloc_count;
12017
12018 if (p->type == bfd_indirect_link_order && emit_relocs)
12019 {
12020 if (esdi->rel.hdr)
12021 {
12022 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12023 esdo->rel.count += additional_reloc_count;
12024 }
12025 if (esdi->rela.hdr)
12026 {
12027 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12028 esdo->rela.count += additional_reloc_count;
12029 }
12030 }
12031 else
12032 {
12033 if (o->use_rela_p)
12034 esdo->rela.count += reloc_count;
12035 else
12036 esdo->rel.count += reloc_count;
12037 }
12038 }
12039
12040 if (o->reloc_count > 0)
12041 o->flags |= SEC_RELOC;
12042 else
12043 {
12044 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12045 set it (this is probably a bug) and if it is set
12046 assign_section_numbers will create a reloc section. */
12047 o->flags &=~ SEC_RELOC;
12048 }
12049
12050 /* If the SEC_ALLOC flag is not set, force the section VMA to
12051 zero. This is done in elf_fake_sections as well, but forcing
12052 the VMA to 0 here will ensure that relocs against these
12053 sections are handled correctly. */
12054 if ((o->flags & SEC_ALLOC) == 0
12055 && ! o->user_set_vma)
12056 o->vma = 0;
12057 }
12058
12059 if (! bfd_link_relocatable (info) && merged)
12060 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12061
12062 /* Figure out the file positions for everything but the symbol table
12063 and the relocs. We set symcount to force assign_section_numbers
12064 to create a symbol table. */
12065 abfd->symcount = info->strip != strip_all || emit_relocs;
12066 BFD_ASSERT (! abfd->output_has_begun);
12067 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12068 goto error_return;
12069
12070 /* Set sizes, and assign file positions for reloc sections. */
12071 for (o = abfd->sections; o != NULL; o = o->next)
12072 {
12073 struct bfd_elf_section_data *esdo = elf_section_data (o);
12074 if ((o->flags & SEC_RELOC) != 0)
12075 {
12076 if (esdo->rel.hdr
12077 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12078 goto error_return;
12079
12080 if (esdo->rela.hdr
12081 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12082 goto error_return;
12083 }
12084
12085 /* _bfd_elf_compute_section_file_positions makes temporary use
12086 of target_index. Reset it. */
12087 o->target_index = 0;
12088
12089 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12090 to count upwards while actually outputting the relocations. */
12091 esdo->rel.count = 0;
12092 esdo->rela.count = 0;
12093
12094 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12095 && !bfd_section_is_ctf (o))
12096 {
12097 /* Cache the section contents so that they can be compressed
12098 later. Use bfd_malloc since it will be freed by
12099 bfd_compress_section_contents. */
12100 unsigned char *contents = esdo->this_hdr.contents;
12101 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12102 abort ();
12103 contents
12104 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12105 if (contents == NULL)
12106 goto error_return;
12107 esdo->this_hdr.contents = contents;
12108 }
12109 }
12110
12111 /* We have now assigned file positions for all the sections except .symtab,
12112 .strtab, and non-loaded reloc and compressed debugging sections. We start
12113 the .symtab section at the current file position, and write directly to it.
12114 We build the .strtab section in memory. */
12115 abfd->symcount = 0;
12116 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12117 /* sh_name is set in prep_headers. */
12118 symtab_hdr->sh_type = SHT_SYMTAB;
12119 /* sh_flags, sh_addr and sh_size all start off zero. */
12120 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12121 /* sh_link is set in assign_section_numbers. */
12122 /* sh_info is set below. */
12123 /* sh_offset is set just below. */
12124 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12125
12126 if (max_sym_count < 20)
12127 max_sym_count = 20;
12128 htab->strtabsize = max_sym_count;
12129 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12130 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12131 if (htab->strtab == NULL)
12132 goto error_return;
12133 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12134 flinfo.symshndxbuf
12135 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12136 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12137
12138 if (info->strip != strip_all || emit_relocs)
12139 {
12140 file_ptr off = elf_next_file_pos (abfd);
12141
12142 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12143
12144 /* Note that at this point elf_next_file_pos (abfd) is
12145 incorrect. We do not yet know the size of the .symtab section.
12146 We correct next_file_pos below, after we do know the size. */
12147
12148 /* Start writing out the symbol table. The first symbol is always a
12149 dummy symbol. */
12150 elfsym.st_value = 0;
12151 elfsym.st_size = 0;
12152 elfsym.st_info = 0;
12153 elfsym.st_other = 0;
12154 elfsym.st_shndx = SHN_UNDEF;
12155 elfsym.st_target_internal = 0;
12156 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12157 bfd_und_section_ptr, NULL) != 1)
12158 goto error_return;
12159
12160 /* Output a symbol for each section. We output these even if we are
12161 discarding local symbols, since they are used for relocs. These
12162 symbols have no names. We store the index of each one in the
12163 index field of the section, so that we can find it again when
12164 outputting relocs. */
12165
12166 elfsym.st_size = 0;
12167 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12168 elfsym.st_other = 0;
12169 elfsym.st_value = 0;
12170 elfsym.st_target_internal = 0;
12171 for (i = 1; i < elf_numsections (abfd); i++)
12172 {
12173 o = bfd_section_from_elf_index (abfd, i);
12174 if (o != NULL)
12175 {
12176 o->target_index = bfd_get_symcount (abfd);
12177 elfsym.st_shndx = i;
12178 if (!bfd_link_relocatable (info))
12179 elfsym.st_value = o->vma;
12180 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12181 NULL) != 1)
12182 goto error_return;
12183 }
12184 }
12185 }
12186
12187 /* Allocate some memory to hold information read in from the input
12188 files. */
12189 if (max_contents_size != 0)
12190 {
12191 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12192 if (flinfo.contents == NULL)
12193 goto error_return;
12194 }
12195
12196 if (max_external_reloc_size != 0)
12197 {
12198 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12199 if (flinfo.external_relocs == NULL)
12200 goto error_return;
12201 }
12202
12203 if (max_internal_reloc_count != 0)
12204 {
12205 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12206 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12207 if (flinfo.internal_relocs == NULL)
12208 goto error_return;
12209 }
12210
12211 if (max_sym_count != 0)
12212 {
12213 amt = max_sym_count * bed->s->sizeof_sym;
12214 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12215 if (flinfo.external_syms == NULL)
12216 goto error_return;
12217
12218 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12219 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12220 if (flinfo.internal_syms == NULL)
12221 goto error_return;
12222
12223 amt = max_sym_count * sizeof (long);
12224 flinfo.indices = (long int *) bfd_malloc (amt);
12225 if (flinfo.indices == NULL)
12226 goto error_return;
12227
12228 amt = max_sym_count * sizeof (asection *);
12229 flinfo.sections = (asection **) bfd_malloc (amt);
12230 if (flinfo.sections == NULL)
12231 goto error_return;
12232 }
12233
12234 if (max_sym_shndx_count != 0)
12235 {
12236 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12237 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12238 if (flinfo.locsym_shndx == NULL)
12239 goto error_return;
12240 }
12241
12242 if (htab->tls_sec)
12243 {
12244 bfd_vma base, end = 0;
12245 asection *sec;
12246
12247 for (sec = htab->tls_sec;
12248 sec && (sec->flags & SEC_THREAD_LOCAL);
12249 sec = sec->next)
12250 {
12251 bfd_size_type size = sec->size;
12252
12253 if (size == 0
12254 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12255 {
12256 struct bfd_link_order *ord = sec->map_tail.link_order;
12257
12258 if (ord != NULL)
12259 size = ord->offset + ord->size;
12260 }
12261 end = sec->vma + size;
12262 }
12263 base = htab->tls_sec->vma;
12264 /* Only align end of TLS section if static TLS doesn't have special
12265 alignment requirements. */
12266 if (bed->static_tls_alignment == 1)
12267 end = align_power (end, htab->tls_sec->alignment_power);
12268 htab->tls_size = end - base;
12269 }
12270
12271 /* Reorder SHF_LINK_ORDER sections. */
12272 for (o = abfd->sections; o != NULL; o = o->next)
12273 {
12274 if (!elf_fixup_link_order (abfd, o))
12275 return FALSE;
12276 }
12277
12278 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12279 return FALSE;
12280
12281 /* Since ELF permits relocations to be against local symbols, we
12282 must have the local symbols available when we do the relocations.
12283 Since we would rather only read the local symbols once, and we
12284 would rather not keep them in memory, we handle all the
12285 relocations for a single input file at the same time.
12286
12287 Unfortunately, there is no way to know the total number of local
12288 symbols until we have seen all of them, and the local symbol
12289 indices precede the global symbol indices. This means that when
12290 we are generating relocatable output, and we see a reloc against
12291 a global symbol, we can not know the symbol index until we have
12292 finished examining all the local symbols to see which ones we are
12293 going to output. To deal with this, we keep the relocations in
12294 memory, and don't output them until the end of the link. This is
12295 an unfortunate waste of memory, but I don't see a good way around
12296 it. Fortunately, it only happens when performing a relocatable
12297 link, which is not the common case. FIXME: If keep_memory is set
12298 we could write the relocs out and then read them again; I don't
12299 know how bad the memory loss will be. */
12300
12301 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12302 sub->output_has_begun = FALSE;
12303 for (o = abfd->sections; o != NULL; o = o->next)
12304 {
12305 for (p = o->map_head.link_order; p != NULL; p = p->next)
12306 {
12307 if (p->type == bfd_indirect_link_order
12308 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12309 == bfd_target_elf_flavour)
12310 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12311 {
12312 if (! sub->output_has_begun)
12313 {
12314 if (! elf_link_input_bfd (&flinfo, sub))
12315 goto error_return;
12316 sub->output_has_begun = TRUE;
12317 }
12318 }
12319 else if (p->type == bfd_section_reloc_link_order
12320 || p->type == bfd_symbol_reloc_link_order)
12321 {
12322 if (! elf_reloc_link_order (abfd, info, o, p))
12323 goto error_return;
12324 }
12325 else
12326 {
12327 if (! _bfd_default_link_order (abfd, info, o, p))
12328 {
12329 if (p->type == bfd_indirect_link_order
12330 && (bfd_get_flavour (sub)
12331 == bfd_target_elf_flavour)
12332 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12333 != bed->s->elfclass))
12334 {
12335 const char *iclass, *oclass;
12336
12337 switch (bed->s->elfclass)
12338 {
12339 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12340 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12341 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12342 default: abort ();
12343 }
12344
12345 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12346 {
12347 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12348 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12349 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12350 default: abort ();
12351 }
12352
12353 bfd_set_error (bfd_error_wrong_format);
12354 _bfd_error_handler
12355 /* xgettext:c-format */
12356 (_("%pB: file class %s incompatible with %s"),
12357 sub, iclass, oclass);
12358 }
12359
12360 goto error_return;
12361 }
12362 }
12363 }
12364 }
12365
12366 /* Free symbol buffer if needed. */
12367 if (!info->reduce_memory_overheads)
12368 {
12369 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12370 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12371 && elf_tdata (sub)->symbuf)
12372 {
12373 free (elf_tdata (sub)->symbuf);
12374 elf_tdata (sub)->symbuf = NULL;
12375 }
12376 }
12377
12378 /* Output any global symbols that got converted to local in a
12379 version script or due to symbol visibility. We do this in a
12380 separate step since ELF requires all local symbols to appear
12381 prior to any global symbols. FIXME: We should only do this if
12382 some global symbols were, in fact, converted to become local.
12383 FIXME: Will this work correctly with the Irix 5 linker? */
12384 eoinfo.failed = FALSE;
12385 eoinfo.flinfo = &flinfo;
12386 eoinfo.localsyms = TRUE;
12387 eoinfo.file_sym_done = FALSE;
12388 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12389 if (eoinfo.failed)
12390 return FALSE;
12391
12392 /* If backend needs to output some local symbols not present in the hash
12393 table, do it now. */
12394 if (bed->elf_backend_output_arch_local_syms
12395 && (info->strip != strip_all || emit_relocs))
12396 {
12397 typedef int (*out_sym_func)
12398 (void *, const char *, Elf_Internal_Sym *, asection *,
12399 struct elf_link_hash_entry *);
12400
12401 if (! ((*bed->elf_backend_output_arch_local_syms)
12402 (abfd, info, &flinfo,
12403 (out_sym_func) elf_link_output_symstrtab)))
12404 return FALSE;
12405 }
12406
12407 /* That wrote out all the local symbols. Finish up the symbol table
12408 with the global symbols. Even if we want to strip everything we
12409 can, we still need to deal with those global symbols that got
12410 converted to local in a version script. */
12411
12412 /* The sh_info field records the index of the first non local symbol. */
12413 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12414
12415 if (dynamic
12416 && htab->dynsym != NULL
12417 && htab->dynsym->output_section != bfd_abs_section_ptr)
12418 {
12419 Elf_Internal_Sym sym;
12420 bfd_byte *dynsym = htab->dynsym->contents;
12421
12422 o = htab->dynsym->output_section;
12423 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12424
12425 /* Write out the section symbols for the output sections. */
12426 if (bfd_link_pic (info)
12427 || htab->is_relocatable_executable)
12428 {
12429 asection *s;
12430
12431 sym.st_size = 0;
12432 sym.st_name = 0;
12433 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12434 sym.st_other = 0;
12435 sym.st_target_internal = 0;
12436
12437 for (s = abfd->sections; s != NULL; s = s->next)
12438 {
12439 int indx;
12440 bfd_byte *dest;
12441 long dynindx;
12442
12443 dynindx = elf_section_data (s)->dynindx;
12444 if (dynindx <= 0)
12445 continue;
12446 indx = elf_section_data (s)->this_idx;
12447 BFD_ASSERT (indx > 0);
12448 sym.st_shndx = indx;
12449 if (! check_dynsym (abfd, &sym))
12450 return FALSE;
12451 sym.st_value = s->vma;
12452 dest = dynsym + dynindx * bed->s->sizeof_sym;
12453 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12454 }
12455 }
12456
12457 /* Write out the local dynsyms. */
12458 if (htab->dynlocal)
12459 {
12460 struct elf_link_local_dynamic_entry *e;
12461 for (e = htab->dynlocal; e ; e = e->next)
12462 {
12463 asection *s;
12464 bfd_byte *dest;
12465
12466 /* Copy the internal symbol and turn off visibility.
12467 Note that we saved a word of storage and overwrote
12468 the original st_name with the dynstr_index. */
12469 sym = e->isym;
12470 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12471
12472 s = bfd_section_from_elf_index (e->input_bfd,
12473 e->isym.st_shndx);
12474 if (s != NULL)
12475 {
12476 sym.st_shndx =
12477 elf_section_data (s->output_section)->this_idx;
12478 if (! check_dynsym (abfd, &sym))
12479 return FALSE;
12480 sym.st_value = (s->output_section->vma
12481 + s->output_offset
12482 + e->isym.st_value);
12483 }
12484
12485 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12486 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12487 }
12488 }
12489 }
12490
12491 /* We get the global symbols from the hash table. */
12492 eoinfo.failed = FALSE;
12493 eoinfo.localsyms = FALSE;
12494 eoinfo.flinfo = &flinfo;
12495 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12496 if (eoinfo.failed)
12497 return FALSE;
12498
12499 /* If backend needs to output some symbols not present in the hash
12500 table, do it now. */
12501 if (bed->elf_backend_output_arch_syms
12502 && (info->strip != strip_all || emit_relocs))
12503 {
12504 typedef int (*out_sym_func)
12505 (void *, const char *, Elf_Internal_Sym *, asection *,
12506 struct elf_link_hash_entry *);
12507
12508 if (! ((*bed->elf_backend_output_arch_syms)
12509 (abfd, info, &flinfo,
12510 (out_sym_func) elf_link_output_symstrtab)))
12511 return FALSE;
12512 }
12513
12514 /* Finalize the .strtab section. */
12515 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12516
12517 /* Swap out the .strtab section. */
12518 if (!elf_link_swap_symbols_out (&flinfo))
12519 return FALSE;
12520
12521 /* Now we know the size of the symtab section. */
12522 if (bfd_get_symcount (abfd) > 0)
12523 {
12524 /* Finish up and write out the symbol string table (.strtab)
12525 section. */
12526 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12527 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12528
12529 if (elf_symtab_shndx_list (abfd))
12530 {
12531 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12532
12533 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12534 {
12535 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12536 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12537 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12538 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12539 symtab_shndx_hdr->sh_size = amt;
12540
12541 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12542 off, TRUE);
12543
12544 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12545 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12546 return FALSE;
12547 }
12548 }
12549
12550 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12551 /* sh_name was set in prep_headers. */
12552 symstrtab_hdr->sh_type = SHT_STRTAB;
12553 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12554 symstrtab_hdr->sh_addr = 0;
12555 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12556 symstrtab_hdr->sh_entsize = 0;
12557 symstrtab_hdr->sh_link = 0;
12558 symstrtab_hdr->sh_info = 0;
12559 /* sh_offset is set just below. */
12560 symstrtab_hdr->sh_addralign = 1;
12561
12562 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12563 off, TRUE);
12564 elf_next_file_pos (abfd) = off;
12565
12566 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12567 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12568 return FALSE;
12569 }
12570
12571 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12572 {
12573 _bfd_error_handler (_("%pB: failed to generate import library"),
12574 info->out_implib_bfd);
12575 return FALSE;
12576 }
12577
12578 /* Adjust the relocs to have the correct symbol indices. */
12579 for (o = abfd->sections; o != NULL; o = o->next)
12580 {
12581 struct bfd_elf_section_data *esdo = elf_section_data (o);
12582 bfd_boolean sort;
12583
12584 if ((o->flags & SEC_RELOC) == 0)
12585 continue;
12586
12587 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12588 if (esdo->rel.hdr != NULL
12589 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12590 return FALSE;
12591 if (esdo->rela.hdr != NULL
12592 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12593 return FALSE;
12594
12595 /* Set the reloc_count field to 0 to prevent write_relocs from
12596 trying to swap the relocs out itself. */
12597 o->reloc_count = 0;
12598 }
12599
12600 if (dynamic && info->combreloc && dynobj != NULL)
12601 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12602
12603 /* If we are linking against a dynamic object, or generating a
12604 shared library, finish up the dynamic linking information. */
12605 if (dynamic)
12606 {
12607 bfd_byte *dyncon, *dynconend;
12608
12609 /* Fix up .dynamic entries. */
12610 o = bfd_get_linker_section (dynobj, ".dynamic");
12611 BFD_ASSERT (o != NULL);
12612
12613 dyncon = o->contents;
12614 dynconend = o->contents + o->size;
12615 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12616 {
12617 Elf_Internal_Dyn dyn;
12618 const char *name;
12619 unsigned int type;
12620 bfd_size_type sh_size;
12621 bfd_vma sh_addr;
12622
12623 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12624
12625 switch (dyn.d_tag)
12626 {
12627 default:
12628 continue;
12629 case DT_NULL:
12630 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12631 {
12632 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12633 {
12634 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12635 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12636 default: continue;
12637 }
12638 dyn.d_un.d_val = relativecount;
12639 relativecount = 0;
12640 break;
12641 }
12642 continue;
12643
12644 case DT_INIT:
12645 name = info->init_function;
12646 goto get_sym;
12647 case DT_FINI:
12648 name = info->fini_function;
12649 get_sym:
12650 {
12651 struct elf_link_hash_entry *h;
12652
12653 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12654 if (h != NULL
12655 && (h->root.type == bfd_link_hash_defined
12656 || h->root.type == bfd_link_hash_defweak))
12657 {
12658 dyn.d_un.d_ptr = h->root.u.def.value;
12659 o = h->root.u.def.section;
12660 if (o->output_section != NULL)
12661 dyn.d_un.d_ptr += (o->output_section->vma
12662 + o->output_offset);
12663 else
12664 {
12665 /* The symbol is imported from another shared
12666 library and does not apply to this one. */
12667 dyn.d_un.d_ptr = 0;
12668 }
12669 break;
12670 }
12671 }
12672 continue;
12673
12674 case DT_PREINIT_ARRAYSZ:
12675 name = ".preinit_array";
12676 goto get_out_size;
12677 case DT_INIT_ARRAYSZ:
12678 name = ".init_array";
12679 goto get_out_size;
12680 case DT_FINI_ARRAYSZ:
12681 name = ".fini_array";
12682 get_out_size:
12683 o = bfd_get_section_by_name (abfd, name);
12684 if (o == NULL)
12685 {
12686 _bfd_error_handler
12687 (_("could not find section %s"), name);
12688 goto error_return;
12689 }
12690 if (o->size == 0)
12691 _bfd_error_handler
12692 (_("warning: %s section has zero size"), name);
12693 dyn.d_un.d_val = o->size;
12694 break;
12695
12696 case DT_PREINIT_ARRAY:
12697 name = ".preinit_array";
12698 goto get_out_vma;
12699 case DT_INIT_ARRAY:
12700 name = ".init_array";
12701 goto get_out_vma;
12702 case DT_FINI_ARRAY:
12703 name = ".fini_array";
12704 get_out_vma:
12705 o = bfd_get_section_by_name (abfd, name);
12706 goto do_vma;
12707
12708 case DT_HASH:
12709 name = ".hash";
12710 goto get_vma;
12711 case DT_GNU_HASH:
12712 name = ".gnu.hash";
12713 goto get_vma;
12714 case DT_STRTAB:
12715 name = ".dynstr";
12716 goto get_vma;
12717 case DT_SYMTAB:
12718 name = ".dynsym";
12719 goto get_vma;
12720 case DT_VERDEF:
12721 name = ".gnu.version_d";
12722 goto get_vma;
12723 case DT_VERNEED:
12724 name = ".gnu.version_r";
12725 goto get_vma;
12726 case DT_VERSYM:
12727 name = ".gnu.version";
12728 get_vma:
12729 o = bfd_get_linker_section (dynobj, name);
12730 do_vma:
12731 if (o == NULL || bfd_is_abs_section (o->output_section))
12732 {
12733 _bfd_error_handler
12734 (_("could not find section %s"), name);
12735 goto error_return;
12736 }
12737 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12738 {
12739 _bfd_error_handler
12740 (_("warning: section '%s' is being made into a note"), name);
12741 bfd_set_error (bfd_error_nonrepresentable_section);
12742 goto error_return;
12743 }
12744 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12745 break;
12746
12747 case DT_REL:
12748 case DT_RELA:
12749 case DT_RELSZ:
12750 case DT_RELASZ:
12751 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12752 type = SHT_REL;
12753 else
12754 type = SHT_RELA;
12755 sh_size = 0;
12756 sh_addr = 0;
12757 for (i = 1; i < elf_numsections (abfd); i++)
12758 {
12759 Elf_Internal_Shdr *hdr;
12760
12761 hdr = elf_elfsections (abfd)[i];
12762 if (hdr->sh_type == type
12763 && (hdr->sh_flags & SHF_ALLOC) != 0)
12764 {
12765 sh_size += hdr->sh_size;
12766 if (sh_addr == 0
12767 || sh_addr > hdr->sh_addr)
12768 sh_addr = hdr->sh_addr;
12769 }
12770 }
12771
12772 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12773 {
12774 /* Don't count procedure linkage table relocs in the
12775 overall reloc count. */
12776 sh_size -= htab->srelplt->size;
12777 if (sh_size == 0)
12778 /* If the size is zero, make the address zero too.
12779 This is to avoid a glibc bug. If the backend
12780 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12781 zero, then we'll put DT_RELA at the end of
12782 DT_JMPREL. glibc will interpret the end of
12783 DT_RELA matching the end of DT_JMPREL as the
12784 case where DT_RELA includes DT_JMPREL, and for
12785 LD_BIND_NOW will decide that processing DT_RELA
12786 will process the PLT relocs too. Net result:
12787 No PLT relocs applied. */
12788 sh_addr = 0;
12789
12790 /* If .rela.plt is the first .rela section, exclude
12791 it from DT_RELA. */
12792 else if (sh_addr == (htab->srelplt->output_section->vma
12793 + htab->srelplt->output_offset))
12794 sh_addr += htab->srelplt->size;
12795 }
12796
12797 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12798 dyn.d_un.d_val = sh_size;
12799 else
12800 dyn.d_un.d_ptr = sh_addr;
12801 break;
12802 }
12803 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12804 }
12805 }
12806
12807 /* If we have created any dynamic sections, then output them. */
12808 if (dynobj != NULL)
12809 {
12810 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12811 goto error_return;
12812
12813 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12814 if (((info->warn_shared_textrel && bfd_link_pic (info))
12815 || info->error_textrel)
12816 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12817 {
12818 bfd_byte *dyncon, *dynconend;
12819
12820 dyncon = o->contents;
12821 dynconend = o->contents + o->size;
12822 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12823 {
12824 Elf_Internal_Dyn dyn;
12825
12826 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12827
12828 if (dyn.d_tag == DT_TEXTREL)
12829 {
12830 if (info->error_textrel)
12831 info->callbacks->einfo
12832 (_("%P%X: read-only segment has dynamic relocations\n"));
12833 else
12834 info->callbacks->einfo
12835 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12836 break;
12837 }
12838 }
12839 }
12840
12841 for (o = dynobj->sections; o != NULL; o = o->next)
12842 {
12843 if ((o->flags & SEC_HAS_CONTENTS) == 0
12844 || o->size == 0
12845 || o->output_section == bfd_abs_section_ptr)
12846 continue;
12847 if ((o->flags & SEC_LINKER_CREATED) == 0)
12848 {
12849 /* At this point, we are only interested in sections
12850 created by _bfd_elf_link_create_dynamic_sections. */
12851 continue;
12852 }
12853 if (htab->stab_info.stabstr == o)
12854 continue;
12855 if (htab->eh_info.hdr_sec == o)
12856 continue;
12857 if (strcmp (o->name, ".dynstr") != 0)
12858 {
12859 bfd_size_type octets = ((file_ptr) o->output_offset
12860 * bfd_octets_per_byte (abfd, o));
12861 if (!bfd_set_section_contents (abfd, o->output_section,
12862 o->contents, octets, o->size))
12863 goto error_return;
12864 }
12865 else
12866 {
12867 /* The contents of the .dynstr section are actually in a
12868 stringtab. */
12869 file_ptr off;
12870
12871 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12872 if (bfd_seek (abfd, off, SEEK_SET) != 0
12873 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12874 goto error_return;
12875 }
12876 }
12877 }
12878
12879 if (!info->resolve_section_groups)
12880 {
12881 bfd_boolean failed = FALSE;
12882
12883 BFD_ASSERT (bfd_link_relocatable (info));
12884 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12885 if (failed)
12886 goto error_return;
12887 }
12888
12889 /* If we have optimized stabs strings, output them. */
12890 if (htab->stab_info.stabstr != NULL)
12891 {
12892 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12893 goto error_return;
12894 }
12895
12896 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12897 goto error_return;
12898
12899 if (info->callbacks->emit_ctf)
12900 info->callbacks->emit_ctf ();
12901
12902 elf_final_link_free (abfd, &flinfo);
12903
12904 if (attr_section)
12905 {
12906 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12907 if (contents == NULL)
12908 return FALSE; /* Bail out and fail. */
12909 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12910 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12911 free (contents);
12912 }
12913
12914 return TRUE;
12915
12916 error_return:
12917 elf_final_link_free (abfd, &flinfo);
12918 return FALSE;
12919 }
12920 \f
12921 /* Initialize COOKIE for input bfd ABFD. */
12922
12923 static bfd_boolean
12924 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12925 struct bfd_link_info *info, bfd *abfd)
12926 {
12927 Elf_Internal_Shdr *symtab_hdr;
12928 const struct elf_backend_data *bed;
12929
12930 bed = get_elf_backend_data (abfd);
12931 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12932
12933 cookie->abfd = abfd;
12934 cookie->sym_hashes = elf_sym_hashes (abfd);
12935 cookie->bad_symtab = elf_bad_symtab (abfd);
12936 if (cookie->bad_symtab)
12937 {
12938 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12939 cookie->extsymoff = 0;
12940 }
12941 else
12942 {
12943 cookie->locsymcount = symtab_hdr->sh_info;
12944 cookie->extsymoff = symtab_hdr->sh_info;
12945 }
12946
12947 if (bed->s->arch_size == 32)
12948 cookie->r_sym_shift = 8;
12949 else
12950 cookie->r_sym_shift = 32;
12951
12952 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12953 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12954 {
12955 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12956 cookie->locsymcount, 0,
12957 NULL, NULL, NULL);
12958 if (cookie->locsyms == NULL)
12959 {
12960 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12961 return FALSE;
12962 }
12963 if (info->keep_memory)
12964 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12965 }
12966 return TRUE;
12967 }
12968
12969 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12970
12971 static void
12972 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12973 {
12974 Elf_Internal_Shdr *symtab_hdr;
12975
12976 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12977 if (cookie->locsyms != NULL
12978 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12979 free (cookie->locsyms);
12980 }
12981
12982 /* Initialize the relocation information in COOKIE for input section SEC
12983 of input bfd ABFD. */
12984
12985 static bfd_boolean
12986 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12987 struct bfd_link_info *info, bfd *abfd,
12988 asection *sec)
12989 {
12990 if (sec->reloc_count == 0)
12991 {
12992 cookie->rels = NULL;
12993 cookie->relend = NULL;
12994 }
12995 else
12996 {
12997 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12998 info->keep_memory);
12999 if (cookie->rels == NULL)
13000 return FALSE;
13001 cookie->rel = cookie->rels;
13002 cookie->relend = cookie->rels + sec->reloc_count;
13003 }
13004 cookie->rel = cookie->rels;
13005 return TRUE;
13006 }
13007
13008 /* Free the memory allocated by init_reloc_cookie_rels,
13009 if appropriate. */
13010
13011 static void
13012 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13013 asection *sec)
13014 {
13015 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
13016 free (cookie->rels);
13017 }
13018
13019 /* Initialize the whole of COOKIE for input section SEC. */
13020
13021 static bfd_boolean
13022 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13023 struct bfd_link_info *info,
13024 asection *sec)
13025 {
13026 if (!init_reloc_cookie (cookie, info, sec->owner))
13027 goto error1;
13028 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13029 goto error2;
13030 return TRUE;
13031
13032 error2:
13033 fini_reloc_cookie (cookie, sec->owner);
13034 error1:
13035 return FALSE;
13036 }
13037
13038 /* Free the memory allocated by init_reloc_cookie_for_section,
13039 if appropriate. */
13040
13041 static void
13042 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13043 asection *sec)
13044 {
13045 fini_reloc_cookie_rels (cookie, sec);
13046 fini_reloc_cookie (cookie, sec->owner);
13047 }
13048 \f
13049 /* Garbage collect unused sections. */
13050
13051 /* Default gc_mark_hook. */
13052
13053 asection *
13054 _bfd_elf_gc_mark_hook (asection *sec,
13055 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13056 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13057 struct elf_link_hash_entry *h,
13058 Elf_Internal_Sym *sym)
13059 {
13060 if (h != NULL)
13061 {
13062 switch (h->root.type)
13063 {
13064 case bfd_link_hash_defined:
13065 case bfd_link_hash_defweak:
13066 return h->root.u.def.section;
13067
13068 case bfd_link_hash_common:
13069 return h->root.u.c.p->section;
13070
13071 default:
13072 break;
13073 }
13074 }
13075 else
13076 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13077
13078 return NULL;
13079 }
13080
13081 /* Return the debug definition section. */
13082
13083 static asection *
13084 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13085 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13086 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13087 struct elf_link_hash_entry *h,
13088 Elf_Internal_Sym *sym)
13089 {
13090 if (h != NULL)
13091 {
13092 /* Return the global debug definition section. */
13093 if ((h->root.type == bfd_link_hash_defined
13094 || h->root.type == bfd_link_hash_defweak)
13095 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13096 return h->root.u.def.section;
13097 }
13098 else
13099 {
13100 /* Return the local debug definition section. */
13101 asection *isec = bfd_section_from_elf_index (sec->owner,
13102 sym->st_shndx);
13103 if ((isec->flags & SEC_DEBUGGING) != 0)
13104 return isec;
13105 }
13106
13107 return NULL;
13108 }
13109
13110 /* COOKIE->rel describes a relocation against section SEC, which is
13111 a section we've decided to keep. Return the section that contains
13112 the relocation symbol, or NULL if no section contains it. */
13113
13114 asection *
13115 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13116 elf_gc_mark_hook_fn gc_mark_hook,
13117 struct elf_reloc_cookie *cookie,
13118 bfd_boolean *start_stop)
13119 {
13120 unsigned long r_symndx;
13121 struct elf_link_hash_entry *h;
13122
13123 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13124 if (r_symndx == STN_UNDEF)
13125 return NULL;
13126
13127 if (r_symndx >= cookie->locsymcount
13128 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13129 {
13130 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13131 if (h == NULL)
13132 {
13133 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13134 sec->owner);
13135 return NULL;
13136 }
13137 while (h->root.type == bfd_link_hash_indirect
13138 || h->root.type == bfd_link_hash_warning)
13139 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13140 h->mark = 1;
13141 /* If this symbol is weak and there is a non-weak definition, we
13142 keep the non-weak definition because many backends put
13143 dynamic reloc info on the non-weak definition for code
13144 handling copy relocs. */
13145 if (h->is_weakalias)
13146 weakdef (h)->mark = 1;
13147
13148 if (start_stop != NULL)
13149 {
13150 /* To work around a glibc bug, mark XXX input sections
13151 when there is a reference to __start_XXX or __stop_XXX
13152 symbols. */
13153 if (h->start_stop)
13154 {
13155 asection *s = h->u2.start_stop_section;
13156 *start_stop = !s->gc_mark;
13157 return s;
13158 }
13159 }
13160
13161 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13162 }
13163
13164 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13165 &cookie->locsyms[r_symndx]);
13166 }
13167
13168 /* COOKIE->rel describes a relocation against section SEC, which is
13169 a section we've decided to keep. Mark the section that contains
13170 the relocation symbol. */
13171
13172 bfd_boolean
13173 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13174 asection *sec,
13175 elf_gc_mark_hook_fn gc_mark_hook,
13176 struct elf_reloc_cookie *cookie)
13177 {
13178 asection *rsec;
13179 bfd_boolean start_stop = FALSE;
13180
13181 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13182 while (rsec != NULL)
13183 {
13184 if (!rsec->gc_mark)
13185 {
13186 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13187 || (rsec->owner->flags & DYNAMIC) != 0)
13188 rsec->gc_mark = 1;
13189 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13190 return FALSE;
13191 }
13192 if (!start_stop)
13193 break;
13194 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13195 }
13196 return TRUE;
13197 }
13198
13199 /* The mark phase of garbage collection. For a given section, mark
13200 it and any sections in this section's group, and all the sections
13201 which define symbols to which it refers. */
13202
13203 bfd_boolean
13204 _bfd_elf_gc_mark (struct bfd_link_info *info,
13205 asection *sec,
13206 elf_gc_mark_hook_fn gc_mark_hook)
13207 {
13208 bfd_boolean ret;
13209 asection *group_sec, *eh_frame;
13210
13211 sec->gc_mark = 1;
13212
13213 /* Mark all the sections in the group. */
13214 group_sec = elf_section_data (sec)->next_in_group;
13215 if (group_sec && !group_sec->gc_mark)
13216 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13217 return FALSE;
13218
13219 /* Look through the section relocs. */
13220 ret = TRUE;
13221 eh_frame = elf_eh_frame_section (sec->owner);
13222 if ((sec->flags & SEC_RELOC) != 0
13223 && sec->reloc_count > 0
13224 && sec != eh_frame)
13225 {
13226 struct elf_reloc_cookie cookie;
13227
13228 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13229 ret = FALSE;
13230 else
13231 {
13232 for (; cookie.rel < cookie.relend; cookie.rel++)
13233 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13234 {
13235 ret = FALSE;
13236 break;
13237 }
13238 fini_reloc_cookie_for_section (&cookie, sec);
13239 }
13240 }
13241
13242 if (ret && eh_frame && elf_fde_list (sec))
13243 {
13244 struct elf_reloc_cookie cookie;
13245
13246 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13247 ret = FALSE;
13248 else
13249 {
13250 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13251 gc_mark_hook, &cookie))
13252 ret = FALSE;
13253 fini_reloc_cookie_for_section (&cookie, eh_frame);
13254 }
13255 }
13256
13257 eh_frame = elf_section_eh_frame_entry (sec);
13258 if (ret && eh_frame && !eh_frame->gc_mark)
13259 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13260 ret = FALSE;
13261
13262 return ret;
13263 }
13264
13265 /* Scan and mark sections in a special or debug section group. */
13266
13267 static void
13268 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13269 {
13270 /* Point to first section of section group. */
13271 asection *ssec;
13272 /* Used to iterate the section group. */
13273 asection *msec;
13274
13275 bfd_boolean is_special_grp = TRUE;
13276 bfd_boolean is_debug_grp = TRUE;
13277
13278 /* First scan to see if group contains any section other than debug
13279 and special section. */
13280 ssec = msec = elf_next_in_group (grp);
13281 do
13282 {
13283 if ((msec->flags & SEC_DEBUGGING) == 0)
13284 is_debug_grp = FALSE;
13285
13286 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13287 is_special_grp = FALSE;
13288
13289 msec = elf_next_in_group (msec);
13290 }
13291 while (msec != ssec);
13292
13293 /* If this is a pure debug section group or pure special section group,
13294 keep all sections in this group. */
13295 if (is_debug_grp || is_special_grp)
13296 {
13297 do
13298 {
13299 msec->gc_mark = 1;
13300 msec = elf_next_in_group (msec);
13301 }
13302 while (msec != ssec);
13303 }
13304 }
13305
13306 /* Keep debug and special sections. */
13307
13308 bfd_boolean
13309 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13310 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
13311 {
13312 bfd *ibfd;
13313
13314 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13315 {
13316 asection *isec;
13317 bfd_boolean some_kept;
13318 bfd_boolean debug_frag_seen;
13319 bfd_boolean has_kept_debug_info;
13320
13321 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13322 continue;
13323 isec = ibfd->sections;
13324 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13325 continue;
13326
13327 /* Ensure all linker created sections are kept,
13328 see if any other section is already marked,
13329 and note if we have any fragmented debug sections. */
13330 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13331 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13332 {
13333 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13334 isec->gc_mark = 1;
13335 else if (isec->gc_mark
13336 && (isec->flags & SEC_ALLOC) != 0
13337 && elf_section_type (isec) != SHT_NOTE)
13338 some_kept = TRUE;
13339
13340 if (!debug_frag_seen
13341 && (isec->flags & SEC_DEBUGGING)
13342 && CONST_STRNEQ (isec->name, ".debug_line."))
13343 debug_frag_seen = TRUE;
13344 }
13345
13346 /* If no non-note alloc section in this file will be kept, then
13347 we can toss out the debug and special sections. */
13348 if (!some_kept)
13349 continue;
13350
13351 /* Keep debug and special sections like .comment when they are
13352 not part of a group. Also keep section groups that contain
13353 just debug sections or special sections. */
13354 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13355 {
13356 if ((isec->flags & SEC_GROUP) != 0)
13357 _bfd_elf_gc_mark_debug_special_section_group (isec);
13358 else if (((isec->flags & SEC_DEBUGGING) != 0
13359 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13360 && elf_next_in_group (isec) == NULL)
13361 isec->gc_mark = 1;
13362 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13363 has_kept_debug_info = TRUE;
13364 }
13365
13366 /* Look for CODE sections which are going to be discarded,
13367 and find and discard any fragmented debug sections which
13368 are associated with that code section. */
13369 if (debug_frag_seen)
13370 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13371 if ((isec->flags & SEC_CODE) != 0
13372 && isec->gc_mark == 0)
13373 {
13374 unsigned int ilen;
13375 asection *dsec;
13376
13377 ilen = strlen (isec->name);
13378
13379 /* Association is determined by the name of the debug
13380 section containing the name of the code section as
13381 a suffix. For example .debug_line.text.foo is a
13382 debug section associated with .text.foo. */
13383 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13384 {
13385 unsigned int dlen;
13386
13387 if (dsec->gc_mark == 0
13388 || (dsec->flags & SEC_DEBUGGING) == 0)
13389 continue;
13390
13391 dlen = strlen (dsec->name);
13392
13393 if (dlen > ilen
13394 && strncmp (dsec->name + (dlen - ilen),
13395 isec->name, ilen) == 0)
13396 dsec->gc_mark = 0;
13397 }
13398 }
13399
13400 /* Mark debug sections referenced by kept debug sections. */
13401 if (has_kept_debug_info)
13402 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13403 if (isec->gc_mark
13404 && (isec->flags & SEC_DEBUGGING) != 0)
13405 if (!_bfd_elf_gc_mark (info, isec,
13406 elf_gc_mark_debug_section))
13407 return FALSE;
13408 }
13409 return TRUE;
13410 }
13411
13412 static bfd_boolean
13413 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13414 {
13415 bfd *sub;
13416 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13417
13418 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13419 {
13420 asection *o;
13421
13422 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13423 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13424 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13425 continue;
13426 o = sub->sections;
13427 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13428 continue;
13429
13430 for (o = sub->sections; o != NULL; o = o->next)
13431 {
13432 /* When any section in a section group is kept, we keep all
13433 sections in the section group. If the first member of
13434 the section group is excluded, we will also exclude the
13435 group section. */
13436 if (o->flags & SEC_GROUP)
13437 {
13438 asection *first = elf_next_in_group (o);
13439 o->gc_mark = first->gc_mark;
13440 }
13441
13442 if (o->gc_mark)
13443 continue;
13444
13445 /* Skip sweeping sections already excluded. */
13446 if (o->flags & SEC_EXCLUDE)
13447 continue;
13448
13449 /* Since this is early in the link process, it is simple
13450 to remove a section from the output. */
13451 o->flags |= SEC_EXCLUDE;
13452
13453 if (info->print_gc_sections && o->size != 0)
13454 /* xgettext:c-format */
13455 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13456 o, sub);
13457 }
13458 }
13459
13460 return TRUE;
13461 }
13462
13463 /* Propagate collected vtable information. This is called through
13464 elf_link_hash_traverse. */
13465
13466 static bfd_boolean
13467 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13468 {
13469 /* Those that are not vtables. */
13470 if (h->start_stop
13471 || h->u2.vtable == NULL
13472 || h->u2.vtable->parent == NULL)
13473 return TRUE;
13474
13475 /* Those vtables that do not have parents, we cannot merge. */
13476 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13477 return TRUE;
13478
13479 /* If we've already been done, exit. */
13480 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13481 return TRUE;
13482
13483 /* Make sure the parent's table is up to date. */
13484 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13485
13486 if (h->u2.vtable->used == NULL)
13487 {
13488 /* None of this table's entries were referenced. Re-use the
13489 parent's table. */
13490 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13491 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13492 }
13493 else
13494 {
13495 size_t n;
13496 bfd_boolean *cu, *pu;
13497
13498 /* Or the parent's entries into ours. */
13499 cu = h->u2.vtable->used;
13500 cu[-1] = TRUE;
13501 pu = h->u2.vtable->parent->u2.vtable->used;
13502 if (pu != NULL)
13503 {
13504 const struct elf_backend_data *bed;
13505 unsigned int log_file_align;
13506
13507 bed = get_elf_backend_data (h->root.u.def.section->owner);
13508 log_file_align = bed->s->log_file_align;
13509 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13510 while (n--)
13511 {
13512 if (*pu)
13513 *cu = TRUE;
13514 pu++;
13515 cu++;
13516 }
13517 }
13518 }
13519
13520 return TRUE;
13521 }
13522
13523 static bfd_boolean
13524 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13525 {
13526 asection *sec;
13527 bfd_vma hstart, hend;
13528 Elf_Internal_Rela *relstart, *relend, *rel;
13529 const struct elf_backend_data *bed;
13530 unsigned int log_file_align;
13531
13532 /* Take care of both those symbols that do not describe vtables as
13533 well as those that are not loaded. */
13534 if (h->start_stop
13535 || h->u2.vtable == NULL
13536 || h->u2.vtable->parent == NULL)
13537 return TRUE;
13538
13539 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13540 || h->root.type == bfd_link_hash_defweak);
13541
13542 sec = h->root.u.def.section;
13543 hstart = h->root.u.def.value;
13544 hend = hstart + h->size;
13545
13546 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13547 if (!relstart)
13548 return *(bfd_boolean *) okp = FALSE;
13549 bed = get_elf_backend_data (sec->owner);
13550 log_file_align = bed->s->log_file_align;
13551
13552 relend = relstart + sec->reloc_count;
13553
13554 for (rel = relstart; rel < relend; ++rel)
13555 if (rel->r_offset >= hstart && rel->r_offset < hend)
13556 {
13557 /* If the entry is in use, do nothing. */
13558 if (h->u2.vtable->used
13559 && (rel->r_offset - hstart) < h->u2.vtable->size)
13560 {
13561 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13562 if (h->u2.vtable->used[entry])
13563 continue;
13564 }
13565 /* Otherwise, kill it. */
13566 rel->r_offset = rel->r_info = rel->r_addend = 0;
13567 }
13568
13569 return TRUE;
13570 }
13571
13572 /* Mark sections containing dynamically referenced symbols. When
13573 building shared libraries, we must assume that any visible symbol is
13574 referenced. */
13575
13576 bfd_boolean
13577 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13578 {
13579 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13580 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13581
13582 if ((h->root.type == bfd_link_hash_defined
13583 || h->root.type == bfd_link_hash_defweak)
13584 && ((h->ref_dynamic && !h->forced_local)
13585 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13586 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13587 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13588 && (!bfd_link_executable (info)
13589 || info->gc_keep_exported
13590 || info->export_dynamic
13591 || (h->dynamic
13592 && d != NULL
13593 && (*d->match) (&d->head, NULL, h->root.root.string)))
13594 && (h->versioned >= versioned
13595 || !bfd_hide_sym_by_version (info->version_info,
13596 h->root.root.string)))))
13597 h->root.u.def.section->flags |= SEC_KEEP;
13598
13599 return TRUE;
13600 }
13601
13602 /* Keep all sections containing symbols undefined on the command-line,
13603 and the section containing the entry symbol. */
13604
13605 void
13606 _bfd_elf_gc_keep (struct bfd_link_info *info)
13607 {
13608 struct bfd_sym_chain *sym;
13609
13610 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13611 {
13612 struct elf_link_hash_entry *h;
13613
13614 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13615 FALSE, FALSE, FALSE);
13616
13617 if (h != NULL
13618 && (h->root.type == bfd_link_hash_defined
13619 || h->root.type == bfd_link_hash_defweak)
13620 && !bfd_is_abs_section (h->root.u.def.section)
13621 && !bfd_is_und_section (h->root.u.def.section))
13622 h->root.u.def.section->flags |= SEC_KEEP;
13623 }
13624 }
13625
13626 bfd_boolean
13627 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13628 struct bfd_link_info *info)
13629 {
13630 bfd *ibfd = info->input_bfds;
13631
13632 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13633 {
13634 asection *sec;
13635 struct elf_reloc_cookie cookie;
13636
13637 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13638 continue;
13639 sec = ibfd->sections;
13640 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13641 continue;
13642
13643 if (!init_reloc_cookie (&cookie, info, ibfd))
13644 return FALSE;
13645
13646 for (sec = ibfd->sections; sec; sec = sec->next)
13647 {
13648 if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry")
13649 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13650 {
13651 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13652 fini_reloc_cookie_rels (&cookie, sec);
13653 }
13654 }
13655 }
13656 return TRUE;
13657 }
13658
13659 /* Do mark and sweep of unused sections. */
13660
13661 bfd_boolean
13662 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13663 {
13664 bfd_boolean ok = TRUE;
13665 bfd *sub;
13666 elf_gc_mark_hook_fn gc_mark_hook;
13667 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13668 struct elf_link_hash_table *htab;
13669
13670 if (!bed->can_gc_sections
13671 || !is_elf_hash_table (info->hash))
13672 {
13673 _bfd_error_handler(_("warning: gc-sections option ignored"));
13674 return TRUE;
13675 }
13676
13677 bed->gc_keep (info);
13678 htab = elf_hash_table (info);
13679
13680 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13681 at the .eh_frame section if we can mark the FDEs individually. */
13682 for (sub = info->input_bfds;
13683 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13684 sub = sub->link.next)
13685 {
13686 asection *sec;
13687 struct elf_reloc_cookie cookie;
13688
13689 sec = sub->sections;
13690 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13691 continue;
13692 sec = bfd_get_section_by_name (sub, ".eh_frame");
13693 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13694 {
13695 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13696 if (elf_section_data (sec)->sec_info
13697 && (sec->flags & SEC_LINKER_CREATED) == 0)
13698 elf_eh_frame_section (sub) = sec;
13699 fini_reloc_cookie_for_section (&cookie, sec);
13700 sec = bfd_get_next_section_by_name (NULL, sec);
13701 }
13702 }
13703
13704 /* Apply transitive closure to the vtable entry usage info. */
13705 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13706 if (!ok)
13707 return FALSE;
13708
13709 /* Kill the vtable relocations that were not used. */
13710 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13711 if (!ok)
13712 return FALSE;
13713
13714 /* Mark dynamically referenced symbols. */
13715 if (htab->dynamic_sections_created || info->gc_keep_exported)
13716 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13717
13718 /* Grovel through relocs to find out who stays ... */
13719 gc_mark_hook = bed->gc_mark_hook;
13720 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13721 {
13722 asection *o;
13723
13724 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13725 || elf_object_id (sub) != elf_hash_table_id (htab)
13726 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13727 continue;
13728
13729 o = sub->sections;
13730 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13731 continue;
13732
13733 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13734 Also treat note sections as a root, if the section is not part
13735 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13736 well as FINI_ARRAY sections for ld -r. */
13737 for (o = sub->sections; o != NULL; o = o->next)
13738 if (!o->gc_mark
13739 && (o->flags & SEC_EXCLUDE) == 0
13740 && ((o->flags & SEC_KEEP) != 0
13741 || (bfd_link_relocatable (info)
13742 && ((elf_section_data (o)->this_hdr.sh_type
13743 == SHT_PREINIT_ARRAY)
13744 || (elf_section_data (o)->this_hdr.sh_type
13745 == SHT_INIT_ARRAY)
13746 || (elf_section_data (o)->this_hdr.sh_type
13747 == SHT_FINI_ARRAY)))
13748 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13749 && elf_next_in_group (o) == NULL )))
13750 {
13751 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13752 return FALSE;
13753 }
13754 }
13755
13756 /* Allow the backend to mark additional target specific sections. */
13757 bed->gc_mark_extra_sections (info, gc_mark_hook);
13758
13759 /* ... and mark SEC_EXCLUDE for those that go. */
13760 return elf_gc_sweep (abfd, info);
13761 }
13762 \f
13763 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13764
13765 bfd_boolean
13766 bfd_elf_gc_record_vtinherit (bfd *abfd,
13767 asection *sec,
13768 struct elf_link_hash_entry *h,
13769 bfd_vma offset)
13770 {
13771 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13772 struct elf_link_hash_entry **search, *child;
13773 size_t extsymcount;
13774 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13775
13776 /* The sh_info field of the symtab header tells us where the
13777 external symbols start. We don't care about the local symbols at
13778 this point. */
13779 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13780 if (!elf_bad_symtab (abfd))
13781 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13782
13783 sym_hashes = elf_sym_hashes (abfd);
13784 sym_hashes_end = sym_hashes + extsymcount;
13785
13786 /* Hunt down the child symbol, which is in this section at the same
13787 offset as the relocation. */
13788 for (search = sym_hashes; search != sym_hashes_end; ++search)
13789 {
13790 if ((child = *search) != NULL
13791 && (child->root.type == bfd_link_hash_defined
13792 || child->root.type == bfd_link_hash_defweak)
13793 && child->root.u.def.section == sec
13794 && child->root.u.def.value == offset)
13795 goto win;
13796 }
13797
13798 /* xgettext:c-format */
13799 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13800 abfd, sec, (uint64_t) offset);
13801 bfd_set_error (bfd_error_invalid_operation);
13802 return FALSE;
13803
13804 win:
13805 if (!child->u2.vtable)
13806 {
13807 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13808 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13809 if (!child->u2.vtable)
13810 return FALSE;
13811 }
13812 if (!h)
13813 {
13814 /* This *should* only be the absolute section. It could potentially
13815 be that someone has defined a non-global vtable though, which
13816 would be bad. It isn't worth paging in the local symbols to be
13817 sure though; that case should simply be handled by the assembler. */
13818
13819 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13820 }
13821 else
13822 child->u2.vtable->parent = h;
13823
13824 return TRUE;
13825 }
13826
13827 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13828
13829 bfd_boolean
13830 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
13831 struct elf_link_hash_entry *h,
13832 bfd_vma addend)
13833 {
13834 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13835 unsigned int log_file_align = bed->s->log_file_align;
13836
13837 if (!h)
13838 {
13839 /* xgettext:c-format */
13840 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13841 abfd, sec);
13842 bfd_set_error (bfd_error_bad_value);
13843 return FALSE;
13844 }
13845
13846 if (!h->u2.vtable)
13847 {
13848 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13849 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13850 if (!h->u2.vtable)
13851 return FALSE;
13852 }
13853
13854 if (addend >= h->u2.vtable->size)
13855 {
13856 size_t size, bytes, file_align;
13857 bfd_boolean *ptr = h->u2.vtable->used;
13858
13859 /* While the symbol is undefined, we have to be prepared to handle
13860 a zero size. */
13861 file_align = 1 << log_file_align;
13862 if (h->root.type == bfd_link_hash_undefined)
13863 size = addend + file_align;
13864 else
13865 {
13866 size = h->size;
13867 if (addend >= size)
13868 {
13869 /* Oops! We've got a reference past the defined end of
13870 the table. This is probably a bug -- shall we warn? */
13871 size = addend + file_align;
13872 }
13873 }
13874 size = (size + file_align - 1) & -file_align;
13875
13876 /* Allocate one extra entry for use as a "done" flag for the
13877 consolidation pass. */
13878 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13879
13880 if (ptr)
13881 {
13882 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13883
13884 if (ptr != NULL)
13885 {
13886 size_t oldbytes;
13887
13888 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13889 * sizeof (bfd_boolean));
13890 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13891 }
13892 }
13893 else
13894 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13895
13896 if (ptr == NULL)
13897 return FALSE;
13898
13899 /* And arrange for that done flag to be at index -1. */
13900 h->u2.vtable->used = ptr + 1;
13901 h->u2.vtable->size = size;
13902 }
13903
13904 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13905
13906 return TRUE;
13907 }
13908
13909 /* Map an ELF section header flag to its corresponding string. */
13910 typedef struct
13911 {
13912 char *flag_name;
13913 flagword flag_value;
13914 } elf_flags_to_name_table;
13915
13916 static elf_flags_to_name_table elf_flags_to_names [] =
13917 {
13918 { "SHF_WRITE", SHF_WRITE },
13919 { "SHF_ALLOC", SHF_ALLOC },
13920 { "SHF_EXECINSTR", SHF_EXECINSTR },
13921 { "SHF_MERGE", SHF_MERGE },
13922 { "SHF_STRINGS", SHF_STRINGS },
13923 { "SHF_INFO_LINK", SHF_INFO_LINK},
13924 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13925 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13926 { "SHF_GROUP", SHF_GROUP },
13927 { "SHF_TLS", SHF_TLS },
13928 { "SHF_MASKOS", SHF_MASKOS },
13929 { "SHF_EXCLUDE", SHF_EXCLUDE },
13930 };
13931
13932 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13933 bfd_boolean
13934 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13935 struct flag_info *flaginfo,
13936 asection *section)
13937 {
13938 const bfd_vma sh_flags = elf_section_flags (section);
13939
13940 if (!flaginfo->flags_initialized)
13941 {
13942 bfd *obfd = info->output_bfd;
13943 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13944 struct flag_info_list *tf = flaginfo->flag_list;
13945 int with_hex = 0;
13946 int without_hex = 0;
13947
13948 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13949 {
13950 unsigned i;
13951 flagword (*lookup) (char *);
13952
13953 lookup = bed->elf_backend_lookup_section_flags_hook;
13954 if (lookup != NULL)
13955 {
13956 flagword hexval = (*lookup) ((char *) tf->name);
13957
13958 if (hexval != 0)
13959 {
13960 if (tf->with == with_flags)
13961 with_hex |= hexval;
13962 else if (tf->with == without_flags)
13963 without_hex |= hexval;
13964 tf->valid = TRUE;
13965 continue;
13966 }
13967 }
13968 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13969 {
13970 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13971 {
13972 if (tf->with == with_flags)
13973 with_hex |= elf_flags_to_names[i].flag_value;
13974 else if (tf->with == without_flags)
13975 without_hex |= elf_flags_to_names[i].flag_value;
13976 tf->valid = TRUE;
13977 break;
13978 }
13979 }
13980 if (!tf->valid)
13981 {
13982 info->callbacks->einfo
13983 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13984 return FALSE;
13985 }
13986 }
13987 flaginfo->flags_initialized = TRUE;
13988 flaginfo->only_with_flags |= with_hex;
13989 flaginfo->not_with_flags |= without_hex;
13990 }
13991
13992 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13993 return FALSE;
13994
13995 if ((flaginfo->not_with_flags & sh_flags) != 0)
13996 return FALSE;
13997
13998 return TRUE;
13999 }
14000
14001 struct alloc_got_off_arg {
14002 bfd_vma gotoff;
14003 struct bfd_link_info *info;
14004 };
14005
14006 /* We need a special top-level link routine to convert got reference counts
14007 to real got offsets. */
14008
14009 static bfd_boolean
14010 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14011 {
14012 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14013 bfd *obfd = gofarg->info->output_bfd;
14014 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14015
14016 if (h->got.refcount > 0)
14017 {
14018 h->got.offset = gofarg->gotoff;
14019 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14020 }
14021 else
14022 h->got.offset = (bfd_vma) -1;
14023
14024 return TRUE;
14025 }
14026
14027 /* And an accompanying bit to work out final got entry offsets once
14028 we're done. Should be called from final_link. */
14029
14030 bfd_boolean
14031 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14032 struct bfd_link_info *info)
14033 {
14034 bfd *i;
14035 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14036 bfd_vma gotoff;
14037 struct alloc_got_off_arg gofarg;
14038
14039 BFD_ASSERT (abfd == info->output_bfd);
14040
14041 if (! is_elf_hash_table (info->hash))
14042 return FALSE;
14043
14044 /* The GOT offset is relative to the .got section, but the GOT header is
14045 put into the .got.plt section, if the backend uses it. */
14046 if (bed->want_got_plt)
14047 gotoff = 0;
14048 else
14049 gotoff = bed->got_header_size;
14050
14051 /* Do the local .got entries first. */
14052 for (i = info->input_bfds; i; i = i->link.next)
14053 {
14054 bfd_signed_vma *local_got;
14055 size_t j, locsymcount;
14056 Elf_Internal_Shdr *symtab_hdr;
14057
14058 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14059 continue;
14060
14061 local_got = elf_local_got_refcounts (i);
14062 if (!local_got)
14063 continue;
14064
14065 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14066 if (elf_bad_symtab (i))
14067 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14068 else
14069 locsymcount = symtab_hdr->sh_info;
14070
14071 for (j = 0; j < locsymcount; ++j)
14072 {
14073 if (local_got[j] > 0)
14074 {
14075 local_got[j] = gotoff;
14076 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14077 }
14078 else
14079 local_got[j] = (bfd_vma) -1;
14080 }
14081 }
14082
14083 /* Then the global .got entries. .plt refcounts are handled by
14084 adjust_dynamic_symbol */
14085 gofarg.gotoff = gotoff;
14086 gofarg.info = info;
14087 elf_link_hash_traverse (elf_hash_table (info),
14088 elf_gc_allocate_got_offsets,
14089 &gofarg);
14090 return TRUE;
14091 }
14092
14093 /* Many folk need no more in the way of final link than this, once
14094 got entry reference counting is enabled. */
14095
14096 bfd_boolean
14097 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14098 {
14099 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14100 return FALSE;
14101
14102 /* Invoke the regular ELF backend linker to do all the work. */
14103 return bfd_elf_final_link (abfd, info);
14104 }
14105
14106 bfd_boolean
14107 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14108 {
14109 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14110
14111 if (rcookie->bad_symtab)
14112 rcookie->rel = rcookie->rels;
14113
14114 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14115 {
14116 unsigned long r_symndx;
14117
14118 if (! rcookie->bad_symtab)
14119 if (rcookie->rel->r_offset > offset)
14120 return FALSE;
14121 if (rcookie->rel->r_offset != offset)
14122 continue;
14123
14124 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14125 if (r_symndx == STN_UNDEF)
14126 return TRUE;
14127
14128 if (r_symndx >= rcookie->locsymcount
14129 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14130 {
14131 struct elf_link_hash_entry *h;
14132
14133 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14134
14135 while (h->root.type == bfd_link_hash_indirect
14136 || h->root.type == bfd_link_hash_warning)
14137 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14138
14139 if ((h->root.type == bfd_link_hash_defined
14140 || h->root.type == bfd_link_hash_defweak)
14141 && (h->root.u.def.section->owner != rcookie->abfd
14142 || h->root.u.def.section->kept_section != NULL
14143 || discarded_section (h->root.u.def.section)))
14144 return TRUE;
14145 }
14146 else
14147 {
14148 /* It's not a relocation against a global symbol,
14149 but it could be a relocation against a local
14150 symbol for a discarded section. */
14151 asection *isec;
14152 Elf_Internal_Sym *isym;
14153
14154 /* Need to: get the symbol; get the section. */
14155 isym = &rcookie->locsyms[r_symndx];
14156 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14157 if (isec != NULL
14158 && (isec->kept_section != NULL
14159 || discarded_section (isec)))
14160 return TRUE;
14161 }
14162 return FALSE;
14163 }
14164 return FALSE;
14165 }
14166
14167 /* Discard unneeded references to discarded sections.
14168 Returns -1 on error, 1 if any section's size was changed, 0 if
14169 nothing changed. This function assumes that the relocations are in
14170 sorted order, which is true for all known assemblers. */
14171
14172 int
14173 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14174 {
14175 struct elf_reloc_cookie cookie;
14176 asection *o;
14177 bfd *abfd;
14178 int changed = 0;
14179
14180 if (info->traditional_format
14181 || !is_elf_hash_table (info->hash))
14182 return 0;
14183
14184 o = bfd_get_section_by_name (output_bfd, ".stab");
14185 if (o != NULL)
14186 {
14187 asection *i;
14188
14189 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14190 {
14191 if (i->size == 0
14192 || i->reloc_count == 0
14193 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14194 continue;
14195
14196 abfd = i->owner;
14197 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14198 continue;
14199
14200 if (!init_reloc_cookie_for_section (&cookie, info, i))
14201 return -1;
14202
14203 if (_bfd_discard_section_stabs (abfd, i,
14204 elf_section_data (i)->sec_info,
14205 bfd_elf_reloc_symbol_deleted_p,
14206 &cookie))
14207 changed = 1;
14208
14209 fini_reloc_cookie_for_section (&cookie, i);
14210 }
14211 }
14212
14213 o = NULL;
14214 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14215 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14216 if (o != NULL)
14217 {
14218 asection *i;
14219 int eh_changed = 0;
14220 unsigned int eh_alignment;
14221
14222 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14223 {
14224 if (i->size == 0)
14225 continue;
14226
14227 abfd = i->owner;
14228 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14229 continue;
14230
14231 if (!init_reloc_cookie_for_section (&cookie, info, i))
14232 return -1;
14233
14234 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14235 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14236 bfd_elf_reloc_symbol_deleted_p,
14237 &cookie))
14238 {
14239 eh_changed = 1;
14240 if (i->size != i->rawsize)
14241 changed = 1;
14242 }
14243
14244 fini_reloc_cookie_for_section (&cookie, i);
14245 }
14246
14247 eh_alignment = 1 << o->alignment_power;
14248 /* Skip over zero terminator, and prevent empty sections from
14249 adding alignment padding at the end. */
14250 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14251 if (i->size == 0)
14252 i->flags |= SEC_EXCLUDE;
14253 else if (i->size > 4)
14254 break;
14255 /* The last non-empty eh_frame section doesn't need padding. */
14256 if (i != NULL)
14257 i = i->map_tail.s;
14258 /* Any prior sections must pad the last FDE out to the output
14259 section alignment. Otherwise we might have zero padding
14260 between sections, which would be seen as a terminator. */
14261 for (; i != NULL; i = i->map_tail.s)
14262 if (i->size == 4)
14263 /* All but the last zero terminator should have been removed. */
14264 BFD_FAIL ();
14265 else
14266 {
14267 bfd_size_type size
14268 = (i->size + eh_alignment - 1) & -eh_alignment;
14269 if (i->size != size)
14270 {
14271 i->size = size;
14272 changed = 1;
14273 eh_changed = 1;
14274 }
14275 }
14276 if (eh_changed)
14277 elf_link_hash_traverse (elf_hash_table (info),
14278 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14279 }
14280
14281 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14282 {
14283 const struct elf_backend_data *bed;
14284 asection *s;
14285
14286 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14287 continue;
14288 s = abfd->sections;
14289 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14290 continue;
14291
14292 bed = get_elf_backend_data (abfd);
14293
14294 if (bed->elf_backend_discard_info != NULL)
14295 {
14296 if (!init_reloc_cookie (&cookie, info, abfd))
14297 return -1;
14298
14299 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14300 changed = 1;
14301
14302 fini_reloc_cookie (&cookie, abfd);
14303 }
14304 }
14305
14306 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14307 _bfd_elf_end_eh_frame_parsing (info);
14308
14309 if (info->eh_frame_hdr_type
14310 && !bfd_link_relocatable (info)
14311 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14312 changed = 1;
14313
14314 return changed;
14315 }
14316
14317 bfd_boolean
14318 _bfd_elf_section_already_linked (bfd *abfd,
14319 asection *sec,
14320 struct bfd_link_info *info)
14321 {
14322 flagword flags;
14323 const char *name, *key;
14324 struct bfd_section_already_linked *l;
14325 struct bfd_section_already_linked_hash_entry *already_linked_list;
14326
14327 if (sec->output_section == bfd_abs_section_ptr)
14328 return FALSE;
14329
14330 flags = sec->flags;
14331
14332 /* Return if it isn't a linkonce section. A comdat group section
14333 also has SEC_LINK_ONCE set. */
14334 if ((flags & SEC_LINK_ONCE) == 0)
14335 return FALSE;
14336
14337 /* Don't put group member sections on our list of already linked
14338 sections. They are handled as a group via their group section. */
14339 if (elf_sec_group (sec) != NULL)
14340 return FALSE;
14341
14342 /* For a SHT_GROUP section, use the group signature as the key. */
14343 name = sec->name;
14344 if ((flags & SEC_GROUP) != 0
14345 && elf_next_in_group (sec) != NULL
14346 && elf_group_name (elf_next_in_group (sec)) != NULL)
14347 key = elf_group_name (elf_next_in_group (sec));
14348 else
14349 {
14350 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14351 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14352 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14353 key++;
14354 else
14355 /* Must be a user linkonce section that doesn't follow gcc's
14356 naming convention. In this case we won't be matching
14357 single member groups. */
14358 key = name;
14359 }
14360
14361 already_linked_list = bfd_section_already_linked_table_lookup (key);
14362
14363 for (l = already_linked_list->entry; l != NULL; l = l->next)
14364 {
14365 /* We may have 2 different types of sections on the list: group
14366 sections with a signature of <key> (<key> is some string),
14367 and linkonce sections named .gnu.linkonce.<type>.<key>.
14368 Match like sections. LTO plugin sections are an exception.
14369 They are always named .gnu.linkonce.t.<key> and match either
14370 type of section. */
14371 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14372 && ((flags & SEC_GROUP) != 0
14373 || strcmp (name, l->sec->name) == 0))
14374 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14375 {
14376 /* The section has already been linked. See if we should
14377 issue a warning. */
14378 if (!_bfd_handle_already_linked (sec, l, info))
14379 return FALSE;
14380
14381 if (flags & SEC_GROUP)
14382 {
14383 asection *first = elf_next_in_group (sec);
14384 asection *s = first;
14385
14386 while (s != NULL)
14387 {
14388 s->output_section = bfd_abs_section_ptr;
14389 /* Record which group discards it. */
14390 s->kept_section = l->sec;
14391 s = elf_next_in_group (s);
14392 /* These lists are circular. */
14393 if (s == first)
14394 break;
14395 }
14396 }
14397
14398 return TRUE;
14399 }
14400 }
14401
14402 /* A single member comdat group section may be discarded by a
14403 linkonce section and vice versa. */
14404 if ((flags & SEC_GROUP) != 0)
14405 {
14406 asection *first = elf_next_in_group (sec);
14407
14408 if (first != NULL && elf_next_in_group (first) == first)
14409 /* Check this single member group against linkonce sections. */
14410 for (l = already_linked_list->entry; l != NULL; l = l->next)
14411 if ((l->sec->flags & SEC_GROUP) == 0
14412 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14413 {
14414 first->output_section = bfd_abs_section_ptr;
14415 first->kept_section = l->sec;
14416 sec->output_section = bfd_abs_section_ptr;
14417 break;
14418 }
14419 }
14420 else
14421 /* Check this linkonce section against single member groups. */
14422 for (l = already_linked_list->entry; l != NULL; l = l->next)
14423 if (l->sec->flags & SEC_GROUP)
14424 {
14425 asection *first = elf_next_in_group (l->sec);
14426
14427 if (first != NULL
14428 && elf_next_in_group (first) == first
14429 && bfd_elf_match_symbols_in_sections (first, sec, info))
14430 {
14431 sec->output_section = bfd_abs_section_ptr;
14432 sec->kept_section = first;
14433 break;
14434 }
14435 }
14436
14437 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14438 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14439 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14440 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14441 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14442 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14443 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14444 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14445 The reverse order cannot happen as there is never a bfd with only the
14446 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14447 matter as here were are looking only for cross-bfd sections. */
14448
14449 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14450 for (l = already_linked_list->entry; l != NULL; l = l->next)
14451 if ((l->sec->flags & SEC_GROUP) == 0
14452 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14453 {
14454 if (abfd != l->sec->owner)
14455 sec->output_section = bfd_abs_section_ptr;
14456 break;
14457 }
14458
14459 /* This is the first section with this name. Record it. */
14460 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14461 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14462 return sec->output_section == bfd_abs_section_ptr;
14463 }
14464
14465 bfd_boolean
14466 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14467 {
14468 return sym->st_shndx == SHN_COMMON;
14469 }
14470
14471 unsigned int
14472 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14473 {
14474 return SHN_COMMON;
14475 }
14476
14477 asection *
14478 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14479 {
14480 return bfd_com_section_ptr;
14481 }
14482
14483 bfd_vma
14484 _bfd_elf_default_got_elt_size (bfd *abfd,
14485 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14486 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14487 bfd *ibfd ATTRIBUTE_UNUSED,
14488 unsigned long symndx ATTRIBUTE_UNUSED)
14489 {
14490 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14491 return bed->s->arch_size / 8;
14492 }
14493
14494 /* Routines to support the creation of dynamic relocs. */
14495
14496 /* Returns the name of the dynamic reloc section associated with SEC. */
14497
14498 static const char *
14499 get_dynamic_reloc_section_name (bfd * abfd,
14500 asection * sec,
14501 bfd_boolean is_rela)
14502 {
14503 char *name;
14504 const char *old_name = bfd_section_name (sec);
14505 const char *prefix = is_rela ? ".rela" : ".rel";
14506
14507 if (old_name == NULL)
14508 return NULL;
14509
14510 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14511 sprintf (name, "%s%s", prefix, old_name);
14512
14513 return name;
14514 }
14515
14516 /* Returns the dynamic reloc section associated with SEC.
14517 If necessary compute the name of the dynamic reloc section based
14518 on SEC's name (looked up in ABFD's string table) and the setting
14519 of IS_RELA. */
14520
14521 asection *
14522 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14523 asection * sec,
14524 bfd_boolean is_rela)
14525 {
14526 asection * reloc_sec = elf_section_data (sec)->sreloc;
14527
14528 if (reloc_sec == NULL)
14529 {
14530 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14531
14532 if (name != NULL)
14533 {
14534 reloc_sec = bfd_get_linker_section (abfd, name);
14535
14536 if (reloc_sec != NULL)
14537 elf_section_data (sec)->sreloc = reloc_sec;
14538 }
14539 }
14540
14541 return reloc_sec;
14542 }
14543
14544 /* Returns the dynamic reloc section associated with SEC. If the
14545 section does not exist it is created and attached to the DYNOBJ
14546 bfd and stored in the SRELOC field of SEC's elf_section_data
14547 structure.
14548
14549 ALIGNMENT is the alignment for the newly created section and
14550 IS_RELA defines whether the name should be .rela.<SEC's name>
14551 or .rel.<SEC's name>. The section name is looked up in the
14552 string table associated with ABFD. */
14553
14554 asection *
14555 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14556 bfd *dynobj,
14557 unsigned int alignment,
14558 bfd *abfd,
14559 bfd_boolean is_rela)
14560 {
14561 asection * reloc_sec = elf_section_data (sec)->sreloc;
14562
14563 if (reloc_sec == NULL)
14564 {
14565 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14566
14567 if (name == NULL)
14568 return NULL;
14569
14570 reloc_sec = bfd_get_linker_section (dynobj, name);
14571
14572 if (reloc_sec == NULL)
14573 {
14574 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14575 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14576 if ((sec->flags & SEC_ALLOC) != 0)
14577 flags |= SEC_ALLOC | SEC_LOAD;
14578
14579 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14580 if (reloc_sec != NULL)
14581 {
14582 /* _bfd_elf_get_sec_type_attr chooses a section type by
14583 name. Override as it may be wrong, eg. for a user
14584 section named "auto" we'll get ".relauto" which is
14585 seen to be a .rela section. */
14586 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14587 if (!bfd_set_section_alignment (reloc_sec, alignment))
14588 reloc_sec = NULL;
14589 }
14590 }
14591
14592 elf_section_data (sec)->sreloc = reloc_sec;
14593 }
14594
14595 return reloc_sec;
14596 }
14597
14598 /* Copy the ELF symbol type and other attributes for a linker script
14599 assignment from HSRC to HDEST. Generally this should be treated as
14600 if we found a strong non-dynamic definition for HDEST (except that
14601 ld ignores multiple definition errors). */
14602 void
14603 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14604 struct bfd_link_hash_entry *hdest,
14605 struct bfd_link_hash_entry *hsrc)
14606 {
14607 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14608 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14609 Elf_Internal_Sym isym;
14610
14611 ehdest->type = ehsrc->type;
14612 ehdest->target_internal = ehsrc->target_internal;
14613
14614 isym.st_other = ehsrc->other;
14615 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14616 }
14617
14618 /* Append a RELA relocation REL to section S in BFD. */
14619
14620 void
14621 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14622 {
14623 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14624 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14625 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14626 bed->s->swap_reloca_out (abfd, rel, loc);
14627 }
14628
14629 /* Append a REL relocation REL to section S in BFD. */
14630
14631 void
14632 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14633 {
14634 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14635 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14636 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14637 bed->s->swap_reloc_out (abfd, rel, loc);
14638 }
14639
14640 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14641
14642 struct bfd_link_hash_entry *
14643 bfd_elf_define_start_stop (struct bfd_link_info *info,
14644 const char *symbol, asection *sec)
14645 {
14646 struct elf_link_hash_entry *h;
14647
14648 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14649 FALSE, FALSE, TRUE);
14650 if (h != NULL
14651 && (h->root.type == bfd_link_hash_undefined
14652 || h->root.type == bfd_link_hash_undefweak
14653 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14654 {
14655 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14656 h->root.type = bfd_link_hash_defined;
14657 h->root.u.def.section = sec;
14658 h->root.u.def.value = 0;
14659 h->def_regular = 1;
14660 h->def_dynamic = 0;
14661 h->start_stop = 1;
14662 h->u2.start_stop_section = sec;
14663 if (symbol[0] == '.')
14664 {
14665 /* .startof. and .sizeof. symbols are local. */
14666 const struct elf_backend_data *bed;
14667 bed = get_elf_backend_data (info->output_bfd);
14668 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14669 }
14670 else
14671 {
14672 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14673 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14674 if (was_dynamic)
14675 bfd_elf_link_record_dynamic_symbol (info, h);
14676 }
14677 return &h->root;
14678 }
14679 return NULL;
14680 }
This page took 0.319357 seconds and 3 git commands to generate.