756ffeb6bdad04ce7fc466e7f3c23c462c6a806a
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2020 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "elf-bfd.h"
143 #include "bfdlink.h"
144 #include "objalloc.h"
145 #include "elf/aarch64.h"
146 #include "elfxx-aarch64.h"
147 #include "cpu-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
220 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
221
222 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
223 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
245
246 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
247 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
258 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
259
260 #define ELIMINATE_COPY_RELOCS 1
261
262 /* Return size of a relocation entry. HTAB is the bfd's
263 elf_aarch64_link_hash_entry. */
264 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
265
266 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
267 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
268 #define PLT_ENTRY_SIZE (32)
269 #define PLT_SMALL_ENTRY_SIZE (16)
270 #define PLT_TLSDESC_ENTRY_SIZE (32)
271 /* PLT sizes with BTI insn. */
272 #define PLT_BTI_SMALL_ENTRY_SIZE (24)
273 /* PLT sizes with PAC insn. */
274 #define PLT_PAC_SMALL_ENTRY_SIZE (24)
275 /* PLT sizes with BTI and PAC insn. */
276 #define PLT_BTI_PAC_SMALL_ENTRY_SIZE (24)
277
278 /* Encoding of the nop instruction. */
279 #define INSN_NOP 0xd503201f
280
281 #define aarch64_compute_jump_table_size(htab) \
282 (((htab)->root.srelplt == NULL) ? 0 \
283 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
284
285 /* The first entry in a procedure linkage table looks like this
286 if the distance between the PLTGOT and the PLT is < 4GB use
287 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
288 in x16 and needs to work out PLTGOT[1] by using an address of
289 [x16,#-GOT_ENTRY_SIZE]. */
290 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
291 {
292 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
293 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
294 #if ARCH_SIZE == 64
295 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
296 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
297 #else
298 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
299 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
300 #endif
301 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
302 0x1f, 0x20, 0x03, 0xd5, /* nop */
303 0x1f, 0x20, 0x03, 0xd5, /* nop */
304 0x1f, 0x20, 0x03, 0xd5, /* nop */
305 };
306
307 static const bfd_byte elfNN_aarch64_small_plt0_bti_entry[PLT_ENTRY_SIZE] =
308 {
309 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
310 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
311 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
312 #if ARCH_SIZE == 64
313 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
314 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
315 #else
316 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
317 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
318 #endif
319 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
320 0x1f, 0x20, 0x03, 0xd5, /* nop */
321 0x1f, 0x20, 0x03, 0xd5, /* nop */
322 };
323
324 /* Per function entry in a procedure linkage table looks like this
325 if the distance between the PLTGOT and the PLT is < 4GB use
326 these PLT entries. Use BTI versions of the PLTs when enabled. */
327 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
328 {
329 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
330 #if ARCH_SIZE == 64
331 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
332 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
333 #else
334 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
335 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
336 #endif
337 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
338 };
339
340 static const bfd_byte
341 elfNN_aarch64_small_plt_bti_entry[PLT_BTI_SMALL_ENTRY_SIZE] =
342 {
343 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
344 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
345 #if ARCH_SIZE == 64
346 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
347 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
348 #else
349 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
350 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
351 #endif
352 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
353 0x1f, 0x20, 0x03, 0xd5, /* nop */
354 };
355
356 static const bfd_byte
357 elfNN_aarch64_small_plt_pac_entry[PLT_PAC_SMALL_ENTRY_SIZE] =
358 {
359 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
360 #if ARCH_SIZE == 64
361 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
362 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
363 #else
364 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
365 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
366 #endif
367 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
368 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
369 0x1f, 0x20, 0x03, 0xd5, /* nop */
370 };
371
372 static const bfd_byte
373 elfNN_aarch64_small_plt_bti_pac_entry[PLT_BTI_PAC_SMALL_ENTRY_SIZE] =
374 {
375 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
376 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
377 #if ARCH_SIZE == 64
378 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
379 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
380 #else
381 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
382 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
383 #endif
384 0x9f, 0x21, 0x03, 0xd5, /* autia1716 */
385 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
386 };
387
388 static const bfd_byte
389 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
390 {
391 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
392 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
393 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
394 #if ARCH_SIZE == 64
395 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
396 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
397 #else
398 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
399 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
400 #endif
401 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
402 0x1f, 0x20, 0x03, 0xd5, /* nop */
403 0x1f, 0x20, 0x03, 0xd5, /* nop */
404 };
405
406 static const bfd_byte
407 elfNN_aarch64_tlsdesc_small_plt_bti_entry[PLT_TLSDESC_ENTRY_SIZE] =
408 {
409 0x5f, 0x24, 0x03, 0xd5, /* bti c. */
410 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
411 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
412 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
413 #if ARCH_SIZE == 64
414 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
415 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
416 #else
417 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
418 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
419 #endif
420 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
421 0x1f, 0x20, 0x03, 0xd5, /* nop */
422 };
423
424 #define elf_info_to_howto elfNN_aarch64_info_to_howto
425 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
426
427 #define AARCH64_ELF_ABI_VERSION 0
428
429 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
430 #define ALL_ONES (~ (bfd_vma) 0)
431
432 /* Indexed by the bfd interal reloc enumerators.
433 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
434 in reloc.c. */
435
436 static reloc_howto_type elfNN_aarch64_howto_table[] =
437 {
438 EMPTY_HOWTO (0),
439
440 /* Basic data relocations. */
441
442 /* Deprecated, but retained for backwards compatibility. */
443 HOWTO64 (R_AARCH64_NULL, /* type */
444 0, /* rightshift */
445 3, /* size (0 = byte, 1 = short, 2 = long) */
446 0, /* bitsize */
447 FALSE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_dont, /* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_AARCH64_NULL", /* name */
452 FALSE, /* partial_inplace */
453 0, /* src_mask */
454 0, /* dst_mask */
455 FALSE), /* pcrel_offset */
456 HOWTO (R_AARCH64_NONE, /* type */
457 0, /* rightshift */
458 3, /* size (0 = byte, 1 = short, 2 = long) */
459 0, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_dont, /* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_AARCH64_NONE", /* name */
465 FALSE, /* partial_inplace */
466 0, /* src_mask */
467 0, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 /* .xword: (S+A) */
471 HOWTO64 (AARCH64_R (ABS64), /* type */
472 0, /* rightshift */
473 4, /* size (4 = long long) */
474 64, /* bitsize */
475 FALSE, /* pc_relative */
476 0, /* bitpos */
477 complain_overflow_unsigned, /* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 AARCH64_R_STR (ABS64), /* name */
480 FALSE, /* partial_inplace */
481 ALL_ONES, /* src_mask */
482 ALL_ONES, /* dst_mask */
483 FALSE), /* pcrel_offset */
484
485 /* .word: (S+A) */
486 HOWTO (AARCH64_R (ABS32), /* type */
487 0, /* rightshift */
488 2, /* size (0 = byte, 1 = short, 2 = long) */
489 32, /* bitsize */
490 FALSE, /* pc_relative */
491 0, /* bitpos */
492 complain_overflow_unsigned, /* complain_on_overflow */
493 bfd_elf_generic_reloc, /* special_function */
494 AARCH64_R_STR (ABS32), /* name */
495 FALSE, /* partial_inplace */
496 0xffffffff, /* src_mask */
497 0xffffffff, /* dst_mask */
498 FALSE), /* pcrel_offset */
499
500 /* .half: (S+A) */
501 HOWTO (AARCH64_R (ABS16), /* type */
502 0, /* rightshift */
503 1, /* size (0 = byte, 1 = short, 2 = long) */
504 16, /* bitsize */
505 FALSE, /* pc_relative */
506 0, /* bitpos */
507 complain_overflow_unsigned, /* complain_on_overflow */
508 bfd_elf_generic_reloc, /* special_function */
509 AARCH64_R_STR (ABS16), /* name */
510 FALSE, /* partial_inplace */
511 0xffff, /* src_mask */
512 0xffff, /* dst_mask */
513 FALSE), /* pcrel_offset */
514
515 /* .xword: (S+A-P) */
516 HOWTO64 (AARCH64_R (PREL64), /* type */
517 0, /* rightshift */
518 4, /* size (4 = long long) */
519 64, /* bitsize */
520 TRUE, /* pc_relative */
521 0, /* bitpos */
522 complain_overflow_signed, /* complain_on_overflow */
523 bfd_elf_generic_reloc, /* special_function */
524 AARCH64_R_STR (PREL64), /* name */
525 FALSE, /* partial_inplace */
526 ALL_ONES, /* src_mask */
527 ALL_ONES, /* dst_mask */
528 TRUE), /* pcrel_offset */
529
530 /* .word: (S+A-P) */
531 HOWTO (AARCH64_R (PREL32), /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 32, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_signed, /* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 AARCH64_R_STR (PREL32), /* name */
540 FALSE, /* partial_inplace */
541 0xffffffff, /* src_mask */
542 0xffffffff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 /* .half: (S+A-P) */
546 HOWTO (AARCH64_R (PREL16), /* type */
547 0, /* rightshift */
548 1, /* size (0 = byte, 1 = short, 2 = long) */
549 16, /* bitsize */
550 TRUE, /* pc_relative */
551 0, /* bitpos */
552 complain_overflow_signed, /* complain_on_overflow */
553 bfd_elf_generic_reloc, /* special_function */
554 AARCH64_R_STR (PREL16), /* name */
555 FALSE, /* partial_inplace */
556 0xffff, /* src_mask */
557 0xffff, /* dst_mask */
558 TRUE), /* pcrel_offset */
559
560 /* Group relocations to create a 16, 32, 48 or 64 bit
561 unsigned data or abs address inline. */
562
563 /* MOVZ: ((S+A) >> 0) & 0xffff */
564 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 16, /* bitsize */
568 FALSE, /* pc_relative */
569 0, /* bitpos */
570 complain_overflow_unsigned, /* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 AARCH64_R_STR (MOVW_UABS_G0), /* name */
573 FALSE, /* partial_inplace */
574 0xffff, /* src_mask */
575 0xffff, /* dst_mask */
576 FALSE), /* pcrel_offset */
577
578 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
579 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
580 0, /* rightshift */
581 2, /* size (0 = byte, 1 = short, 2 = long) */
582 16, /* bitsize */
583 FALSE, /* pc_relative */
584 0, /* bitpos */
585 complain_overflow_dont, /* complain_on_overflow */
586 bfd_elf_generic_reloc, /* special_function */
587 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
588 FALSE, /* partial_inplace */
589 0xffff, /* src_mask */
590 0xffff, /* dst_mask */
591 FALSE), /* pcrel_offset */
592
593 /* MOVZ: ((S+A) >> 16) & 0xffff */
594 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
595 16, /* rightshift */
596 2, /* size (0 = byte, 1 = short, 2 = long) */
597 16, /* bitsize */
598 FALSE, /* pc_relative */
599 0, /* bitpos */
600 complain_overflow_unsigned, /* complain_on_overflow */
601 bfd_elf_generic_reloc, /* special_function */
602 AARCH64_R_STR (MOVW_UABS_G1), /* name */
603 FALSE, /* partial_inplace */
604 0xffff, /* src_mask */
605 0xffff, /* dst_mask */
606 FALSE), /* pcrel_offset */
607
608 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
609 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
610 16, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 16, /* bitsize */
613 FALSE, /* pc_relative */
614 0, /* bitpos */
615 complain_overflow_dont, /* complain_on_overflow */
616 bfd_elf_generic_reloc, /* special_function */
617 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
618 FALSE, /* partial_inplace */
619 0xffff, /* src_mask */
620 0xffff, /* dst_mask */
621 FALSE), /* pcrel_offset */
622
623 /* MOVZ: ((S+A) >> 32) & 0xffff */
624 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
625 32, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 16, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_unsigned, /* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 AARCH64_R_STR (MOVW_UABS_G2), /* name */
633 FALSE, /* partial_inplace */
634 0xffff, /* src_mask */
635 0xffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
639 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
640 32, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 16, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont, /* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
648 FALSE, /* partial_inplace */
649 0xffff, /* src_mask */
650 0xffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 /* MOVZ: ((S+A) >> 48) & 0xffff */
654 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
655 48, /* rightshift */
656 2, /* size (0 = byte, 1 = short, 2 = long) */
657 16, /* bitsize */
658 FALSE, /* pc_relative */
659 0, /* bitpos */
660 complain_overflow_unsigned, /* complain_on_overflow */
661 bfd_elf_generic_reloc, /* special_function */
662 AARCH64_R_STR (MOVW_UABS_G3), /* name */
663 FALSE, /* partial_inplace */
664 0xffff, /* src_mask */
665 0xffff, /* dst_mask */
666 FALSE), /* pcrel_offset */
667
668 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
669 signed data or abs address inline. Will change instruction
670 to MOVN or MOVZ depending on sign of calculated value. */
671
672 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
673 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
674 0, /* rightshift */
675 2, /* size (0 = byte, 1 = short, 2 = long) */
676 17, /* bitsize */
677 FALSE, /* pc_relative */
678 0, /* bitpos */
679 complain_overflow_signed, /* complain_on_overflow */
680 bfd_elf_generic_reloc, /* special_function */
681 AARCH64_R_STR (MOVW_SABS_G0), /* name */
682 FALSE, /* partial_inplace */
683 0xffff, /* src_mask */
684 0xffff, /* dst_mask */
685 FALSE), /* pcrel_offset */
686
687 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
688 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
689 16, /* rightshift */
690 2, /* size (0 = byte, 1 = short, 2 = long) */
691 17, /* bitsize */
692 FALSE, /* pc_relative */
693 0, /* bitpos */
694 complain_overflow_signed, /* complain_on_overflow */
695 bfd_elf_generic_reloc, /* special_function */
696 AARCH64_R_STR (MOVW_SABS_G1), /* name */
697 FALSE, /* partial_inplace */
698 0xffff, /* src_mask */
699 0xffff, /* dst_mask */
700 FALSE), /* pcrel_offset */
701
702 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
703 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
704 32, /* rightshift */
705 2, /* size (0 = byte, 1 = short, 2 = long) */
706 17, /* bitsize */
707 FALSE, /* pc_relative */
708 0, /* bitpos */
709 complain_overflow_signed, /* complain_on_overflow */
710 bfd_elf_generic_reloc, /* special_function */
711 AARCH64_R_STR (MOVW_SABS_G2), /* name */
712 FALSE, /* partial_inplace */
713 0xffff, /* src_mask */
714 0xffff, /* dst_mask */
715 FALSE), /* pcrel_offset */
716
717 /* Group relocations to create a 16, 32, 48 or 64 bit
718 PC relative address inline. */
719
720 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
721 HOWTO (AARCH64_R (MOVW_PREL_G0), /* type */
722 0, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 17, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_signed, /* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 AARCH64_R_STR (MOVW_PREL_G0), /* name */
730 FALSE, /* partial_inplace */
731 0xffff, /* src_mask */
732 0xffff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
736 HOWTO (AARCH64_R (MOVW_PREL_G0_NC), /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_dont, /* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
745 FALSE, /* partial_inplace */
746 0xffff, /* src_mask */
747 0xffff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
751 HOWTO (AARCH64_R (MOVW_PREL_G1), /* type */
752 16, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 17, /* bitsize */
755 TRUE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_signed, /* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 AARCH64_R_STR (MOVW_PREL_G1), /* name */
760 FALSE, /* partial_inplace */
761 0xffff, /* src_mask */
762 0xffff, /* dst_mask */
763 TRUE), /* pcrel_offset */
764
765 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
766 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
767 16, /* rightshift */
768 2, /* size (0 = byte, 1 = short, 2 = long) */
769 16, /* bitsize */
770 TRUE, /* pc_relative */
771 0, /* bitpos */
772 complain_overflow_dont, /* complain_on_overflow */
773 bfd_elf_generic_reloc, /* special_function */
774 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
775 FALSE, /* partial_inplace */
776 0xffff, /* src_mask */
777 0xffff, /* dst_mask */
778 TRUE), /* pcrel_offset */
779
780 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
781 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
782 32, /* rightshift */
783 2, /* size (0 = byte, 1 = short, 2 = long) */
784 17, /* bitsize */
785 TRUE, /* pc_relative */
786 0, /* bitpos */
787 complain_overflow_signed, /* complain_on_overflow */
788 bfd_elf_generic_reloc, /* special_function */
789 AARCH64_R_STR (MOVW_PREL_G2), /* name */
790 FALSE, /* partial_inplace */
791 0xffff, /* src_mask */
792 0xffff, /* dst_mask */
793 TRUE), /* pcrel_offset */
794
795 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
796 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
797 32, /* rightshift */
798 2, /* size (0 = byte, 1 = short, 2 = long) */
799 16, /* bitsize */
800 TRUE, /* pc_relative */
801 0, /* bitpos */
802 complain_overflow_dont, /* complain_on_overflow */
803 bfd_elf_generic_reloc, /* special_function */
804 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
805 FALSE, /* partial_inplace */
806 0xffff, /* src_mask */
807 0xffff, /* dst_mask */
808 TRUE), /* pcrel_offset */
809
810 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
811 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
812 48, /* rightshift */
813 2, /* size (0 = byte, 1 = short, 2 = long) */
814 16, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_dont, /* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 AARCH64_R_STR (MOVW_PREL_G3), /* name */
820 FALSE, /* partial_inplace */
821 0xffff, /* src_mask */
822 0xffff, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
826 addresses: PG(x) is (x & ~0xfff). */
827
828 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
829 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
830 2, /* rightshift */
831 2, /* size (0 = byte, 1 = short, 2 = long) */
832 19, /* bitsize */
833 TRUE, /* pc_relative */
834 0, /* bitpos */
835 complain_overflow_signed, /* complain_on_overflow */
836 bfd_elf_generic_reloc, /* special_function */
837 AARCH64_R_STR (LD_PREL_LO19), /* name */
838 FALSE, /* partial_inplace */
839 0x7ffff, /* src_mask */
840 0x7ffff, /* dst_mask */
841 TRUE), /* pcrel_offset */
842
843 /* ADR: (S+A-P) & 0x1fffff */
844 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
845 0, /* rightshift */
846 2, /* size (0 = byte, 1 = short, 2 = long) */
847 21, /* bitsize */
848 TRUE, /* pc_relative */
849 0, /* bitpos */
850 complain_overflow_signed, /* complain_on_overflow */
851 bfd_elf_generic_reloc, /* special_function */
852 AARCH64_R_STR (ADR_PREL_LO21), /* name */
853 FALSE, /* partial_inplace */
854 0x1fffff, /* src_mask */
855 0x1fffff, /* dst_mask */
856 TRUE), /* pcrel_offset */
857
858 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
859 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
860 12, /* rightshift */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
862 21, /* bitsize */
863 TRUE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_signed, /* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
868 FALSE, /* partial_inplace */
869 0x1fffff, /* src_mask */
870 0x1fffff, /* dst_mask */
871 TRUE), /* pcrel_offset */
872
873 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
874 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
875 12, /* rightshift */
876 2, /* size (0 = byte, 1 = short, 2 = long) */
877 21, /* bitsize */
878 TRUE, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_dont, /* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
883 FALSE, /* partial_inplace */
884 0x1fffff, /* src_mask */
885 0x1fffff, /* dst_mask */
886 TRUE), /* pcrel_offset */
887
888 /* ADD: (S+A) & 0xfff [no overflow check] */
889 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
890 0, /* rightshift */
891 2, /* size (0 = byte, 1 = short, 2 = long) */
892 12, /* bitsize */
893 FALSE, /* pc_relative */
894 10, /* bitpos */
895 complain_overflow_dont, /* complain_on_overflow */
896 bfd_elf_generic_reloc, /* special_function */
897 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
898 FALSE, /* partial_inplace */
899 0x3ffc00, /* src_mask */
900 0x3ffc00, /* dst_mask */
901 FALSE), /* pcrel_offset */
902
903 /* LD/ST8: (S+A) & 0xfff */
904 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
905 0, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 12, /* bitsize */
908 FALSE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_dont, /* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
913 FALSE, /* partial_inplace */
914 0xfff, /* src_mask */
915 0xfff, /* dst_mask */
916 FALSE), /* pcrel_offset */
917
918 /* Relocations for control-flow instructions. */
919
920 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
921 HOWTO (AARCH64_R (TSTBR14), /* type */
922 2, /* rightshift */
923 2, /* size (0 = byte, 1 = short, 2 = long) */
924 14, /* bitsize */
925 TRUE, /* pc_relative */
926 0, /* bitpos */
927 complain_overflow_signed, /* complain_on_overflow */
928 bfd_elf_generic_reloc, /* special_function */
929 AARCH64_R_STR (TSTBR14), /* name */
930 FALSE, /* partial_inplace */
931 0x3fff, /* src_mask */
932 0x3fff, /* dst_mask */
933 TRUE), /* pcrel_offset */
934
935 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
936 HOWTO (AARCH64_R (CONDBR19), /* type */
937 2, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 19, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_signed, /* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 AARCH64_R_STR (CONDBR19), /* name */
945 FALSE, /* partial_inplace */
946 0x7ffff, /* src_mask */
947 0x7ffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 /* B: ((S+A-P) >> 2) & 0x3ffffff */
951 HOWTO (AARCH64_R (JUMP26), /* type */
952 2, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 26, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_signed, /* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 AARCH64_R_STR (JUMP26), /* name */
960 FALSE, /* partial_inplace */
961 0x3ffffff, /* src_mask */
962 0x3ffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
966 HOWTO (AARCH64_R (CALL26), /* type */
967 2, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 26, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_signed, /* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 AARCH64_R_STR (CALL26), /* name */
975 FALSE, /* partial_inplace */
976 0x3ffffff, /* src_mask */
977 0x3ffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
980 /* LD/ST16: (S+A) & 0xffe */
981 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
982 1, /* rightshift */
983 2, /* size (0 = byte, 1 = short, 2 = long) */
984 12, /* bitsize */
985 FALSE, /* pc_relative */
986 0, /* bitpos */
987 complain_overflow_dont, /* complain_on_overflow */
988 bfd_elf_generic_reloc, /* special_function */
989 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
990 FALSE, /* partial_inplace */
991 0xffe, /* src_mask */
992 0xffe, /* dst_mask */
993 FALSE), /* pcrel_offset */
994
995 /* LD/ST32: (S+A) & 0xffc */
996 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
997 2, /* rightshift */
998 2, /* size (0 = byte, 1 = short, 2 = long) */
999 12, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_dont, /* complain_on_overflow */
1003 bfd_elf_generic_reloc, /* special_function */
1004 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
1005 FALSE, /* partial_inplace */
1006 0xffc, /* src_mask */
1007 0xffc, /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* LD/ST64: (S+A) & 0xff8 */
1011 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
1012 3, /* rightshift */
1013 2, /* size (0 = byte, 1 = short, 2 = long) */
1014 12, /* bitsize */
1015 FALSE, /* pc_relative */
1016 0, /* bitpos */
1017 complain_overflow_dont, /* complain_on_overflow */
1018 bfd_elf_generic_reloc, /* special_function */
1019 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
1020 FALSE, /* partial_inplace */
1021 0xff8, /* src_mask */
1022 0xff8, /* dst_mask */
1023 FALSE), /* pcrel_offset */
1024
1025 /* LD/ST128: (S+A) & 0xff0 */
1026 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
1027 4, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 12, /* bitsize */
1030 FALSE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont, /* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
1035 FALSE, /* partial_inplace */
1036 0xff0, /* src_mask */
1037 0xff0, /* dst_mask */
1038 FALSE), /* pcrel_offset */
1039
1040 /* Set a load-literal immediate field to bits
1041 0x1FFFFC of G(S)-P */
1042 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
1043 2, /* rightshift */
1044 2, /* size (0 = byte,1 = short,2 = long) */
1045 19, /* bitsize */
1046 TRUE, /* pc_relative */
1047 0, /* bitpos */
1048 complain_overflow_signed, /* complain_on_overflow */
1049 bfd_elf_generic_reloc, /* special_function */
1050 AARCH64_R_STR (GOT_LD_PREL19), /* name */
1051 FALSE, /* partial_inplace */
1052 0xffffe0, /* src_mask */
1053 0xffffe0, /* dst_mask */
1054 TRUE), /* pcrel_offset */
1055
1056 /* Get to the page for the GOT entry for the symbol
1057 (G(S) - P) using an ADRP instruction. */
1058 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
1059 12, /* rightshift */
1060 2, /* size (0 = byte, 1 = short, 2 = long) */
1061 21, /* bitsize */
1062 TRUE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_dont, /* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
1067 FALSE, /* partial_inplace */
1068 0x1fffff, /* src_mask */
1069 0x1fffff, /* dst_mask */
1070 TRUE), /* pcrel_offset */
1071
1072 /* LD64: GOT offset G(S) & 0xff8 */
1073 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
1074 3, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 12, /* bitsize */
1077 FALSE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont, /* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
1082 FALSE, /* partial_inplace */
1083 0xff8, /* src_mask */
1084 0xff8, /* dst_mask */
1085 FALSE), /* pcrel_offset */
1086
1087 /* LD32: GOT offset G(S) & 0xffc */
1088 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1089 2, /* rightshift */
1090 2, /* size (0 = byte, 1 = short, 2 = long) */
1091 12, /* bitsize */
1092 FALSE, /* pc_relative */
1093 0, /* bitpos */
1094 complain_overflow_dont, /* complain_on_overflow */
1095 bfd_elf_generic_reloc, /* special_function */
1096 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1097 FALSE, /* partial_inplace */
1098 0xffc, /* src_mask */
1099 0xffc, /* dst_mask */
1100 FALSE), /* pcrel_offset */
1101
1102 /* Lower 16 bits of GOT offset for the symbol. */
1103 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1104 0, /* rightshift */
1105 2, /* size (0 = byte, 1 = short, 2 = long) */
1106 16, /* bitsize */
1107 FALSE, /* pc_relative */
1108 0, /* bitpos */
1109 complain_overflow_dont, /* complain_on_overflow */
1110 bfd_elf_generic_reloc, /* special_function */
1111 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1112 FALSE, /* partial_inplace */
1113 0xffff, /* src_mask */
1114 0xffff, /* dst_mask */
1115 FALSE), /* pcrel_offset */
1116
1117 /* Higher 16 bits of GOT offset for the symbol. */
1118 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1119 16, /* rightshift */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 16, /* bitsize */
1122 FALSE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_unsigned, /* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1127 FALSE, /* partial_inplace */
1128 0xffff, /* src_mask */
1129 0xffff, /* dst_mask */
1130 FALSE), /* pcrel_offset */
1131
1132 /* LD64: GOT offset for the symbol. */
1133 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1134 3, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 12, /* bitsize */
1137 FALSE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_unsigned, /* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1142 FALSE, /* partial_inplace */
1143 0x7ff8, /* src_mask */
1144 0x7ff8, /* dst_mask */
1145 FALSE), /* pcrel_offset */
1146
1147 /* LD32: GOT offset to the page address of GOT table.
1148 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1149 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1150 2, /* rightshift */
1151 2, /* size (0 = byte, 1 = short, 2 = long) */
1152 12, /* bitsize */
1153 FALSE, /* pc_relative */
1154 0, /* bitpos */
1155 complain_overflow_unsigned, /* complain_on_overflow */
1156 bfd_elf_generic_reloc, /* special_function */
1157 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1158 FALSE, /* partial_inplace */
1159 0x5ffc, /* src_mask */
1160 0x5ffc, /* dst_mask */
1161 FALSE), /* pcrel_offset */
1162
1163 /* LD64: GOT offset to the page address of GOT table.
1164 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1165 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1166 3, /* rightshift */
1167 2, /* size (0 = byte, 1 = short, 2 = long) */
1168 12, /* bitsize */
1169 FALSE, /* pc_relative */
1170 0, /* bitpos */
1171 complain_overflow_unsigned, /* complain_on_overflow */
1172 bfd_elf_generic_reloc, /* special_function */
1173 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1174 FALSE, /* partial_inplace */
1175 0x7ff8, /* src_mask */
1176 0x7ff8, /* dst_mask */
1177 FALSE), /* pcrel_offset */
1178
1179 /* Get to the page for the GOT entry for the symbol
1180 (G(S) - P) using an ADRP instruction. */
1181 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1182 12, /* rightshift */
1183 2, /* size (0 = byte, 1 = short, 2 = long) */
1184 21, /* bitsize */
1185 TRUE, /* pc_relative */
1186 0, /* bitpos */
1187 complain_overflow_dont, /* complain_on_overflow */
1188 bfd_elf_generic_reloc, /* special_function */
1189 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1190 FALSE, /* partial_inplace */
1191 0x1fffff, /* src_mask */
1192 0x1fffff, /* dst_mask */
1193 TRUE), /* pcrel_offset */
1194
1195 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1196 0, /* rightshift */
1197 2, /* size (0 = byte, 1 = short, 2 = long) */
1198 21, /* bitsize */
1199 TRUE, /* pc_relative */
1200 0, /* bitpos */
1201 complain_overflow_dont, /* complain_on_overflow */
1202 bfd_elf_generic_reloc, /* special_function */
1203 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1204 FALSE, /* partial_inplace */
1205 0x1fffff, /* src_mask */
1206 0x1fffff, /* dst_mask */
1207 TRUE), /* pcrel_offset */
1208
1209 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1210 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1211 0, /* rightshift */
1212 2, /* size (0 = byte, 1 = short, 2 = long) */
1213 12, /* bitsize */
1214 FALSE, /* pc_relative */
1215 0, /* bitpos */
1216 complain_overflow_dont, /* complain_on_overflow */
1217 bfd_elf_generic_reloc, /* special_function */
1218 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1219 FALSE, /* partial_inplace */
1220 0xfff, /* src_mask */
1221 0xfff, /* dst_mask */
1222 FALSE), /* pcrel_offset */
1223
1224 /* Lower 16 bits of GOT offset to tls_index. */
1225 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1226 0, /* rightshift */
1227 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 16, /* bitsize */
1229 FALSE, /* pc_relative */
1230 0, /* bitpos */
1231 complain_overflow_dont, /* complain_on_overflow */
1232 bfd_elf_generic_reloc, /* special_function */
1233 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1234 FALSE, /* partial_inplace */
1235 0xffff, /* src_mask */
1236 0xffff, /* dst_mask */
1237 FALSE), /* pcrel_offset */
1238
1239 /* Higher 16 bits of GOT offset to tls_index. */
1240 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1241 16, /* rightshift */
1242 2, /* size (0 = byte, 1 = short, 2 = long) */
1243 16, /* bitsize */
1244 FALSE, /* pc_relative */
1245 0, /* bitpos */
1246 complain_overflow_unsigned, /* complain_on_overflow */
1247 bfd_elf_generic_reloc, /* special_function */
1248 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1249 FALSE, /* partial_inplace */
1250 0xffff, /* src_mask */
1251 0xffff, /* dst_mask */
1252 FALSE), /* pcrel_offset */
1253
1254 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1255 12, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 21, /* bitsize */
1258 FALSE, /* pc_relative */
1259 0, /* bitpos */
1260 complain_overflow_dont, /* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1263 FALSE, /* partial_inplace */
1264 0x1fffff, /* src_mask */
1265 0x1fffff, /* dst_mask */
1266 FALSE), /* pcrel_offset */
1267
1268 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1269 3, /* rightshift */
1270 2, /* size (0 = byte, 1 = short, 2 = long) */
1271 12, /* bitsize */
1272 FALSE, /* pc_relative */
1273 0, /* bitpos */
1274 complain_overflow_dont, /* complain_on_overflow */
1275 bfd_elf_generic_reloc, /* special_function */
1276 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1277 FALSE, /* partial_inplace */
1278 0xff8, /* src_mask */
1279 0xff8, /* dst_mask */
1280 FALSE), /* pcrel_offset */
1281
1282 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1283 2, /* rightshift */
1284 2, /* size (0 = byte, 1 = short, 2 = long) */
1285 12, /* bitsize */
1286 FALSE, /* pc_relative */
1287 0, /* bitpos */
1288 complain_overflow_dont, /* complain_on_overflow */
1289 bfd_elf_generic_reloc, /* special_function */
1290 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1291 FALSE, /* partial_inplace */
1292 0xffc, /* src_mask */
1293 0xffc, /* dst_mask */
1294 FALSE), /* pcrel_offset */
1295
1296 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1297 2, /* rightshift */
1298 2, /* size (0 = byte, 1 = short, 2 = long) */
1299 19, /* bitsize */
1300 FALSE, /* pc_relative */
1301 0, /* bitpos */
1302 complain_overflow_dont, /* complain_on_overflow */
1303 bfd_elf_generic_reloc, /* special_function */
1304 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1305 FALSE, /* partial_inplace */
1306 0x1ffffc, /* src_mask */
1307 0x1ffffc, /* dst_mask */
1308 FALSE), /* pcrel_offset */
1309
1310 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1311 0, /* rightshift */
1312 2, /* size (0 = byte, 1 = short, 2 = long) */
1313 16, /* bitsize */
1314 FALSE, /* pc_relative */
1315 0, /* bitpos */
1316 complain_overflow_dont, /* complain_on_overflow */
1317 bfd_elf_generic_reloc, /* special_function */
1318 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1319 FALSE, /* partial_inplace */
1320 0xffff, /* src_mask */
1321 0xffff, /* dst_mask */
1322 FALSE), /* pcrel_offset */
1323
1324 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1325 16, /* rightshift */
1326 2, /* size (0 = byte, 1 = short, 2 = long) */
1327 16, /* bitsize */
1328 FALSE, /* pc_relative */
1329 0, /* bitpos */
1330 complain_overflow_unsigned, /* complain_on_overflow */
1331 bfd_elf_generic_reloc, /* special_function */
1332 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1333 FALSE, /* partial_inplace */
1334 0xffff, /* src_mask */
1335 0xffff, /* dst_mask */
1336 FALSE), /* pcrel_offset */
1337
1338 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1339 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1340 12, /* rightshift */
1341 2, /* size (0 = byte, 1 = short, 2 = long) */
1342 12, /* bitsize */
1343 FALSE, /* pc_relative */
1344 0, /* bitpos */
1345 complain_overflow_unsigned, /* complain_on_overflow */
1346 bfd_elf_generic_reloc, /* special_function */
1347 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1348 FALSE, /* partial_inplace */
1349 0xfff, /* src_mask */
1350 0xfff, /* dst_mask */
1351 FALSE), /* pcrel_offset */
1352
1353 /* Unsigned 12 bit byte offset to module TLS base address. */
1354 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1355 0, /* rightshift */
1356 2, /* size (0 = byte, 1 = short, 2 = long) */
1357 12, /* bitsize */
1358 FALSE, /* pc_relative */
1359 0, /* bitpos */
1360 complain_overflow_unsigned, /* complain_on_overflow */
1361 bfd_elf_generic_reloc, /* special_function */
1362 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1363 FALSE, /* partial_inplace */
1364 0xfff, /* src_mask */
1365 0xfff, /* dst_mask */
1366 FALSE), /* pcrel_offset */
1367
1368 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1369 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 12, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont, /* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1378 FALSE, /* partial_inplace */
1379 0xfff, /* src_mask */
1380 0xfff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1384 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1385 0, /* rightshift */
1386 2, /* size (0 = byte, 1 = short, 2 = long) */
1387 12, /* bitsize */
1388 FALSE, /* pc_relative */
1389 0, /* bitpos */
1390 complain_overflow_dont, /* complain_on_overflow */
1391 bfd_elf_generic_reloc, /* special_function */
1392 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1393 FALSE, /* partial_inplace */
1394 0xfff, /* src_mask */
1395 0xfff, /* dst_mask */
1396 FALSE), /* pcrel_offset */
1397
1398 /* Get to the page for the GOT entry for the symbol
1399 (G(S) - P) using an ADRP instruction. */
1400 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1401 12, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 21, /* bitsize */
1404 TRUE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_signed, /* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1409 FALSE, /* partial_inplace */
1410 0x1fffff, /* src_mask */
1411 0x1fffff, /* dst_mask */
1412 TRUE), /* pcrel_offset */
1413
1414 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 21, /* bitsize */
1418 TRUE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_signed, /* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1423 FALSE, /* partial_inplace */
1424 0x1fffff, /* src_mask */
1425 0x1fffff, /* dst_mask */
1426 TRUE), /* pcrel_offset */
1427
1428 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1429 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1430 1, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 11, /* bitsize */
1433 FALSE, /* pc_relative */
1434 10, /* bitpos */
1435 complain_overflow_unsigned, /* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1438 FALSE, /* partial_inplace */
1439 0x1ffc00, /* src_mask */
1440 0x1ffc00, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1444 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1445 1, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 11, /* bitsize */
1448 FALSE, /* pc_relative */
1449 10, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1453 FALSE, /* partial_inplace */
1454 0x1ffc00, /* src_mask */
1455 0x1ffc00, /* dst_mask */
1456 FALSE), /* pcrel_offset */
1457
1458 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1459 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1460 2, /* rightshift */
1461 2, /* size (0 = byte, 1 = short, 2 = long) */
1462 10, /* bitsize */
1463 FALSE, /* pc_relative */
1464 10, /* bitpos */
1465 complain_overflow_unsigned, /* complain_on_overflow */
1466 bfd_elf_generic_reloc, /* special_function */
1467 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1468 FALSE, /* partial_inplace */
1469 0x3ffc00, /* src_mask */
1470 0x3ffc00, /* dst_mask */
1471 FALSE), /* pcrel_offset */
1472
1473 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1474 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1475 2, /* rightshift */
1476 2, /* size (0 = byte, 1 = short, 2 = long) */
1477 10, /* bitsize */
1478 FALSE, /* pc_relative */
1479 10, /* bitpos */
1480 complain_overflow_dont, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1483 FALSE, /* partial_inplace */
1484 0xffc00, /* src_mask */
1485 0xffc00, /* dst_mask */
1486 FALSE), /* pcrel_offset */
1487
1488 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1489 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1490 3, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 9, /* bitsize */
1493 FALSE, /* pc_relative */
1494 10, /* bitpos */
1495 complain_overflow_unsigned, /* complain_on_overflow */
1496 bfd_elf_generic_reloc, /* special_function */
1497 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1498 FALSE, /* partial_inplace */
1499 0x3ffc00, /* src_mask */
1500 0x3ffc00, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1504 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1505 3, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 9, /* bitsize */
1508 FALSE, /* pc_relative */
1509 10, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 bfd_elf_generic_reloc, /* special_function */
1512 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1513 FALSE, /* partial_inplace */
1514 0x7fc00, /* src_mask */
1515 0x7fc00, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1519 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1520 0, /* rightshift */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1522 12, /* bitsize */
1523 FALSE, /* pc_relative */
1524 10, /* bitpos */
1525 complain_overflow_unsigned, /* complain_on_overflow */
1526 bfd_elf_generic_reloc, /* special_function */
1527 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1528 FALSE, /* partial_inplace */
1529 0x3ffc00, /* src_mask */
1530 0x3ffc00, /* dst_mask */
1531 FALSE), /* pcrel_offset */
1532
1533 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1534 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1535 0, /* rightshift */
1536 2, /* size (0 = byte, 1 = short, 2 = long) */
1537 12, /* bitsize */
1538 FALSE, /* pc_relative */
1539 10, /* bitpos */
1540 complain_overflow_dont, /* complain_on_overflow */
1541 bfd_elf_generic_reloc, /* special_function */
1542 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1543 FALSE, /* partial_inplace */
1544 0x3ffc00, /* src_mask */
1545 0x3ffc00, /* dst_mask */
1546 FALSE), /* pcrel_offset */
1547
1548 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1549 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1550 0, /* rightshift */
1551 2, /* size (0 = byte, 1 = short, 2 = long) */
1552 16, /* bitsize */
1553 FALSE, /* pc_relative */
1554 0, /* bitpos */
1555 complain_overflow_unsigned, /* complain_on_overflow */
1556 bfd_elf_generic_reloc, /* special_function */
1557 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1558 FALSE, /* partial_inplace */
1559 0xffff, /* src_mask */
1560 0xffff, /* dst_mask */
1561 FALSE), /* pcrel_offset */
1562
1563 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1564 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1565 0, /* rightshift */
1566 2, /* size (0 = byte, 1 = short, 2 = long) */
1567 16, /* bitsize */
1568 FALSE, /* pc_relative */
1569 0, /* bitpos */
1570 complain_overflow_dont, /* complain_on_overflow */
1571 bfd_elf_generic_reloc, /* special_function */
1572 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1573 FALSE, /* partial_inplace */
1574 0xffff, /* src_mask */
1575 0xffff, /* dst_mask */
1576 FALSE), /* pcrel_offset */
1577
1578 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1579 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1580 16, /* rightshift */
1581 2, /* size (0 = byte, 1 = short, 2 = long) */
1582 16, /* bitsize */
1583 FALSE, /* pc_relative */
1584 0, /* bitpos */
1585 complain_overflow_unsigned, /* complain_on_overflow */
1586 bfd_elf_generic_reloc, /* special_function */
1587 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1588 FALSE, /* partial_inplace */
1589 0xffff, /* src_mask */
1590 0xffff, /* dst_mask */
1591 FALSE), /* pcrel_offset */
1592
1593 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1594 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1595 16, /* rightshift */
1596 2, /* size (0 = byte, 1 = short, 2 = long) */
1597 16, /* bitsize */
1598 FALSE, /* pc_relative */
1599 0, /* bitpos */
1600 complain_overflow_dont, /* complain_on_overflow */
1601 bfd_elf_generic_reloc, /* special_function */
1602 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1603 FALSE, /* partial_inplace */
1604 0xffff, /* src_mask */
1605 0xffff, /* dst_mask */
1606 FALSE), /* pcrel_offset */
1607
1608 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1609 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1610 32, /* rightshift */
1611 2, /* size (0 = byte, 1 = short, 2 = long) */
1612 16, /* bitsize */
1613 FALSE, /* pc_relative */
1614 0, /* bitpos */
1615 complain_overflow_unsigned, /* complain_on_overflow */
1616 bfd_elf_generic_reloc, /* special_function */
1617 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1618 FALSE, /* partial_inplace */
1619 0xffff, /* src_mask */
1620 0xffff, /* dst_mask */
1621 FALSE), /* pcrel_offset */
1622
1623 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1624 32, /* rightshift */
1625 2, /* size (0 = byte, 1 = short, 2 = long) */
1626 16, /* bitsize */
1627 FALSE, /* pc_relative */
1628 0, /* bitpos */
1629 complain_overflow_unsigned, /* complain_on_overflow */
1630 bfd_elf_generic_reloc, /* special_function */
1631 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1632 FALSE, /* partial_inplace */
1633 0xffff, /* src_mask */
1634 0xffff, /* dst_mask */
1635 FALSE), /* pcrel_offset */
1636
1637 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1638 16, /* rightshift */
1639 2, /* size (0 = byte, 1 = short, 2 = long) */
1640 16, /* bitsize */
1641 FALSE, /* pc_relative */
1642 0, /* bitpos */
1643 complain_overflow_dont, /* complain_on_overflow */
1644 bfd_elf_generic_reloc, /* special_function */
1645 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1646 FALSE, /* partial_inplace */
1647 0xffff, /* src_mask */
1648 0xffff, /* dst_mask */
1649 FALSE), /* pcrel_offset */
1650
1651 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1652 16, /* rightshift */
1653 2, /* size (0 = byte, 1 = short, 2 = long) */
1654 16, /* bitsize */
1655 FALSE, /* pc_relative */
1656 0, /* bitpos */
1657 complain_overflow_dont, /* complain_on_overflow */
1658 bfd_elf_generic_reloc, /* special_function */
1659 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1660 FALSE, /* partial_inplace */
1661 0xffff, /* src_mask */
1662 0xffff, /* dst_mask */
1663 FALSE), /* pcrel_offset */
1664
1665 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1666 0, /* rightshift */
1667 2, /* size (0 = byte, 1 = short, 2 = long) */
1668 16, /* bitsize */
1669 FALSE, /* pc_relative */
1670 0, /* bitpos */
1671 complain_overflow_dont, /* complain_on_overflow */
1672 bfd_elf_generic_reloc, /* special_function */
1673 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1674 FALSE, /* partial_inplace */
1675 0xffff, /* src_mask */
1676 0xffff, /* dst_mask */
1677 FALSE), /* pcrel_offset */
1678
1679 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1680 0, /* rightshift */
1681 2, /* size (0 = byte, 1 = short, 2 = long) */
1682 16, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_dont, /* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1688 FALSE, /* partial_inplace */
1689 0xffff, /* src_mask */
1690 0xffff, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692
1693 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1694 12, /* rightshift */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1696 12, /* bitsize */
1697 FALSE, /* pc_relative */
1698 0, /* bitpos */
1699 complain_overflow_unsigned, /* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
1701 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1702 FALSE, /* partial_inplace */
1703 0xfff, /* src_mask */
1704 0xfff, /* dst_mask */
1705 FALSE), /* pcrel_offset */
1706
1707 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1708 0, /* rightshift */
1709 2, /* size (0 = byte, 1 = short, 2 = long) */
1710 12, /* bitsize */
1711 FALSE, /* pc_relative */
1712 0, /* bitpos */
1713 complain_overflow_unsigned, /* complain_on_overflow */
1714 bfd_elf_generic_reloc, /* special_function */
1715 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1716 FALSE, /* partial_inplace */
1717 0xfff, /* src_mask */
1718 0xfff, /* dst_mask */
1719 FALSE), /* pcrel_offset */
1720
1721 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1722 0, /* rightshift */
1723 2, /* size (0 = byte, 1 = short, 2 = long) */
1724 12, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_dont, /* complain_on_overflow */
1728 bfd_elf_generic_reloc, /* special_function */
1729 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1730 FALSE, /* partial_inplace */
1731 0xfff, /* src_mask */
1732 0xfff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1736 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1737 1, /* rightshift */
1738 2, /* size (0 = byte, 1 = short, 2 = long) */
1739 11, /* bitsize */
1740 FALSE, /* pc_relative */
1741 10, /* bitpos */
1742 complain_overflow_unsigned, /* complain_on_overflow */
1743 bfd_elf_generic_reloc, /* special_function */
1744 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1745 FALSE, /* partial_inplace */
1746 0x1ffc00, /* src_mask */
1747 0x1ffc00, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1751 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1752 1, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 11, /* bitsize */
1755 FALSE, /* pc_relative */
1756 10, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1760 FALSE, /* partial_inplace */
1761 0x1ffc00, /* src_mask */
1762 0x1ffc00, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1766 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1767 2, /* rightshift */
1768 2, /* size (0 = byte, 1 = short, 2 = long) */
1769 10, /* bitsize */
1770 FALSE, /* pc_relative */
1771 10, /* bitpos */
1772 complain_overflow_unsigned, /* complain_on_overflow */
1773 bfd_elf_generic_reloc, /* special_function */
1774 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1775 FALSE, /* partial_inplace */
1776 0xffc00, /* src_mask */
1777 0xffc00, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1781 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1782 2, /* rightshift */
1783 2, /* size (0 = byte, 1 = short, 2 = long) */
1784 10, /* bitsize */
1785 FALSE, /* pc_relative */
1786 10, /* bitpos */
1787 complain_overflow_dont, /* complain_on_overflow */
1788 bfd_elf_generic_reloc, /* special_function */
1789 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1790 FALSE, /* partial_inplace */
1791 0xffc00, /* src_mask */
1792 0xffc00, /* dst_mask */
1793 FALSE), /* pcrel_offset */
1794
1795 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1796 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1797 3, /* rightshift */
1798 2, /* size (0 = byte, 1 = short, 2 = long) */
1799 9, /* bitsize */
1800 FALSE, /* pc_relative */
1801 10, /* bitpos */
1802 complain_overflow_unsigned, /* complain_on_overflow */
1803 bfd_elf_generic_reloc, /* special_function */
1804 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1805 FALSE, /* partial_inplace */
1806 0x7fc00, /* src_mask */
1807 0x7fc00, /* dst_mask */
1808 FALSE), /* pcrel_offset */
1809
1810 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1811 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1812 3, /* rightshift */
1813 2, /* size (0 = byte, 1 = short, 2 = long) */
1814 9, /* bitsize */
1815 FALSE, /* pc_relative */
1816 10, /* bitpos */
1817 complain_overflow_dont, /* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1820 FALSE, /* partial_inplace */
1821 0x7fc00, /* src_mask */
1822 0x7fc00, /* dst_mask */
1823 FALSE), /* pcrel_offset */
1824
1825 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1826 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1827 0, /* rightshift */
1828 2, /* size (0 = byte, 1 = short, 2 = long) */
1829 12, /* bitsize */
1830 FALSE, /* pc_relative */
1831 10, /* bitpos */
1832 complain_overflow_unsigned, /* complain_on_overflow */
1833 bfd_elf_generic_reloc, /* special_function */
1834 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1835 FALSE, /* partial_inplace */
1836 0x3ffc00, /* src_mask */
1837 0x3ffc00, /* dst_mask */
1838 FALSE), /* pcrel_offset */
1839
1840 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1841 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1842 0, /* rightshift */
1843 2, /* size (0 = byte, 1 = short, 2 = long) */
1844 12, /* bitsize */
1845 FALSE, /* pc_relative */
1846 10, /* bitpos */
1847 complain_overflow_dont, /* complain_on_overflow */
1848 bfd_elf_generic_reloc, /* special_function */
1849 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1850 FALSE, /* partial_inplace */
1851 0x3ffc00, /* src_mask */
1852 0x3ffc00, /* dst_mask */
1853 FALSE), /* pcrel_offset */
1854
1855 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1856 2, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 19, /* bitsize */
1859 TRUE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_dont, /* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1864 FALSE, /* partial_inplace */
1865 0x0ffffe0, /* src_mask */
1866 0x0ffffe0, /* dst_mask */
1867 TRUE), /* pcrel_offset */
1868
1869 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1870 0, /* rightshift */
1871 2, /* size (0 = byte, 1 = short, 2 = long) */
1872 21, /* bitsize */
1873 TRUE, /* pc_relative */
1874 0, /* bitpos */
1875 complain_overflow_dont, /* complain_on_overflow */
1876 bfd_elf_generic_reloc, /* special_function */
1877 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1878 FALSE, /* partial_inplace */
1879 0x1fffff, /* src_mask */
1880 0x1fffff, /* dst_mask */
1881 TRUE), /* pcrel_offset */
1882
1883 /* Get to the page for the GOT entry for the symbol
1884 (G(S) - P) using an ADRP instruction. */
1885 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1886 12, /* rightshift */
1887 2, /* size (0 = byte, 1 = short, 2 = long) */
1888 21, /* bitsize */
1889 TRUE, /* pc_relative */
1890 0, /* bitpos */
1891 complain_overflow_dont, /* complain_on_overflow */
1892 bfd_elf_generic_reloc, /* special_function */
1893 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1894 FALSE, /* partial_inplace */
1895 0x1fffff, /* src_mask */
1896 0x1fffff, /* dst_mask */
1897 TRUE), /* pcrel_offset */
1898
1899 /* LD64: GOT offset G(S) & 0xff8. */
1900 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1901 3, /* rightshift */
1902 2, /* size (0 = byte, 1 = short, 2 = long) */
1903 12, /* bitsize */
1904 FALSE, /* pc_relative */
1905 0, /* bitpos */
1906 complain_overflow_dont, /* complain_on_overflow */
1907 bfd_elf_generic_reloc, /* special_function */
1908 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1909 FALSE, /* partial_inplace */
1910 0xff8, /* src_mask */
1911 0xff8, /* dst_mask */
1912 FALSE), /* pcrel_offset */
1913
1914 /* LD32: GOT offset G(S) & 0xffc. */
1915 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1916 2, /* rightshift */
1917 2, /* size (0 = byte, 1 = short, 2 = long) */
1918 12, /* bitsize */
1919 FALSE, /* pc_relative */
1920 0, /* bitpos */
1921 complain_overflow_dont, /* complain_on_overflow */
1922 bfd_elf_generic_reloc, /* special_function */
1923 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1924 FALSE, /* partial_inplace */
1925 0xffc, /* src_mask */
1926 0xffc, /* dst_mask */
1927 FALSE), /* pcrel_offset */
1928
1929 /* ADD: GOT offset G(S) & 0xfff. */
1930 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1931 0, /* rightshift */
1932 2, /* size (0 = byte, 1 = short, 2 = long) */
1933 12, /* bitsize */
1934 FALSE, /* pc_relative */
1935 0, /* bitpos */
1936 complain_overflow_dont,/* complain_on_overflow */
1937 bfd_elf_generic_reloc, /* special_function */
1938 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1939 FALSE, /* partial_inplace */
1940 0xfff, /* src_mask */
1941 0xfff, /* dst_mask */
1942 FALSE), /* pcrel_offset */
1943
1944 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1945 16, /* rightshift */
1946 2, /* size (0 = byte, 1 = short, 2 = long) */
1947 12, /* bitsize */
1948 FALSE, /* pc_relative */
1949 0, /* bitpos */
1950 complain_overflow_unsigned, /* complain_on_overflow */
1951 bfd_elf_generic_reloc, /* special_function */
1952 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1953 FALSE, /* partial_inplace */
1954 0xffff, /* src_mask */
1955 0xffff, /* dst_mask */
1956 FALSE), /* pcrel_offset */
1957
1958 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1959 0, /* rightshift */
1960 2, /* size (0 = byte, 1 = short, 2 = long) */
1961 12, /* bitsize */
1962 FALSE, /* pc_relative */
1963 0, /* bitpos */
1964 complain_overflow_dont, /* complain_on_overflow */
1965 bfd_elf_generic_reloc, /* special_function */
1966 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1967 FALSE, /* partial_inplace */
1968 0xffff, /* src_mask */
1969 0xffff, /* dst_mask */
1970 FALSE), /* pcrel_offset */
1971
1972 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1973 0, /* rightshift */
1974 2, /* size (0 = byte, 1 = short, 2 = long) */
1975 12, /* bitsize */
1976 FALSE, /* pc_relative */
1977 0, /* bitpos */
1978 complain_overflow_dont, /* complain_on_overflow */
1979 bfd_elf_generic_reloc, /* special_function */
1980 AARCH64_R_STR (TLSDESC_LDR), /* name */
1981 FALSE, /* partial_inplace */
1982 0x0, /* src_mask */
1983 0x0, /* dst_mask */
1984 FALSE), /* pcrel_offset */
1985
1986 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1987 0, /* rightshift */
1988 2, /* size (0 = byte, 1 = short, 2 = long) */
1989 12, /* bitsize */
1990 FALSE, /* pc_relative */
1991 0, /* bitpos */
1992 complain_overflow_dont, /* complain_on_overflow */
1993 bfd_elf_generic_reloc, /* special_function */
1994 AARCH64_R_STR (TLSDESC_ADD), /* name */
1995 FALSE, /* partial_inplace */
1996 0x0, /* src_mask */
1997 0x0, /* dst_mask */
1998 FALSE), /* pcrel_offset */
1999
2000 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
2001 0, /* rightshift */
2002 2, /* size (0 = byte, 1 = short, 2 = long) */
2003 0, /* bitsize */
2004 FALSE, /* pc_relative */
2005 0, /* bitpos */
2006 complain_overflow_dont, /* complain_on_overflow */
2007 bfd_elf_generic_reloc, /* special_function */
2008 AARCH64_R_STR (TLSDESC_CALL), /* name */
2009 FALSE, /* partial_inplace */
2010 0x0, /* src_mask */
2011 0x0, /* dst_mask */
2012 FALSE), /* pcrel_offset */
2013
2014 HOWTO (AARCH64_R (COPY), /* type */
2015 0, /* rightshift */
2016 2, /* size (0 = byte, 1 = short, 2 = long) */
2017 64, /* bitsize */
2018 FALSE, /* pc_relative */
2019 0, /* bitpos */
2020 complain_overflow_bitfield, /* complain_on_overflow */
2021 bfd_elf_generic_reloc, /* special_function */
2022 AARCH64_R_STR (COPY), /* name */
2023 TRUE, /* partial_inplace */
2024 0xffffffff, /* src_mask */
2025 0xffffffff, /* dst_mask */
2026 FALSE), /* pcrel_offset */
2027
2028 HOWTO (AARCH64_R (GLOB_DAT), /* type */
2029 0, /* rightshift */
2030 2, /* size (0 = byte, 1 = short, 2 = long) */
2031 64, /* bitsize */
2032 FALSE, /* pc_relative */
2033 0, /* bitpos */
2034 complain_overflow_bitfield, /* complain_on_overflow */
2035 bfd_elf_generic_reloc, /* special_function */
2036 AARCH64_R_STR (GLOB_DAT), /* name */
2037 TRUE, /* partial_inplace */
2038 0xffffffff, /* src_mask */
2039 0xffffffff, /* dst_mask */
2040 FALSE), /* pcrel_offset */
2041
2042 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
2043 0, /* rightshift */
2044 2, /* size (0 = byte, 1 = short, 2 = long) */
2045 64, /* bitsize */
2046 FALSE, /* pc_relative */
2047 0, /* bitpos */
2048 complain_overflow_bitfield, /* complain_on_overflow */
2049 bfd_elf_generic_reloc, /* special_function */
2050 AARCH64_R_STR (JUMP_SLOT), /* name */
2051 TRUE, /* partial_inplace */
2052 0xffffffff, /* src_mask */
2053 0xffffffff, /* dst_mask */
2054 FALSE), /* pcrel_offset */
2055
2056 HOWTO (AARCH64_R (RELATIVE), /* type */
2057 0, /* rightshift */
2058 2, /* size (0 = byte, 1 = short, 2 = long) */
2059 64, /* bitsize */
2060 FALSE, /* pc_relative */
2061 0, /* bitpos */
2062 complain_overflow_bitfield, /* complain_on_overflow */
2063 bfd_elf_generic_reloc, /* special_function */
2064 AARCH64_R_STR (RELATIVE), /* name */
2065 TRUE, /* partial_inplace */
2066 ALL_ONES, /* src_mask */
2067 ALL_ONES, /* dst_mask */
2068 FALSE), /* pcrel_offset */
2069
2070 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
2071 0, /* rightshift */
2072 2, /* size (0 = byte, 1 = short, 2 = long) */
2073 64, /* bitsize */
2074 FALSE, /* pc_relative */
2075 0, /* bitpos */
2076 complain_overflow_dont, /* complain_on_overflow */
2077 bfd_elf_generic_reloc, /* special_function */
2078 #if ARCH_SIZE == 64
2079 AARCH64_R_STR (TLS_DTPMOD64), /* name */
2080 #else
2081 AARCH64_R_STR (TLS_DTPMOD), /* name */
2082 #endif
2083 FALSE, /* partial_inplace */
2084 0, /* src_mask */
2085 ALL_ONES, /* dst_mask */
2086 FALSE), /* pc_reloffset */
2087
2088 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2089 0, /* rightshift */
2090 2, /* size (0 = byte, 1 = short, 2 = long) */
2091 64, /* bitsize */
2092 FALSE, /* pc_relative */
2093 0, /* bitpos */
2094 complain_overflow_dont, /* complain_on_overflow */
2095 bfd_elf_generic_reloc, /* special_function */
2096 #if ARCH_SIZE == 64
2097 AARCH64_R_STR (TLS_DTPREL64), /* name */
2098 #else
2099 AARCH64_R_STR (TLS_DTPREL), /* name */
2100 #endif
2101 FALSE, /* partial_inplace */
2102 0, /* src_mask */
2103 ALL_ONES, /* dst_mask */
2104 FALSE), /* pcrel_offset */
2105
2106 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2107 0, /* rightshift */
2108 2, /* size (0 = byte, 1 = short, 2 = long) */
2109 64, /* bitsize */
2110 FALSE, /* pc_relative */
2111 0, /* bitpos */
2112 complain_overflow_dont, /* complain_on_overflow */
2113 bfd_elf_generic_reloc, /* special_function */
2114 #if ARCH_SIZE == 64
2115 AARCH64_R_STR (TLS_TPREL64), /* name */
2116 #else
2117 AARCH64_R_STR (TLS_TPREL), /* name */
2118 #endif
2119 FALSE, /* partial_inplace */
2120 0, /* src_mask */
2121 ALL_ONES, /* dst_mask */
2122 FALSE), /* pcrel_offset */
2123
2124 HOWTO (AARCH64_R (TLSDESC), /* type */
2125 0, /* rightshift */
2126 2, /* size (0 = byte, 1 = short, 2 = long) */
2127 64, /* bitsize */
2128 FALSE, /* pc_relative */
2129 0, /* bitpos */
2130 complain_overflow_dont, /* complain_on_overflow */
2131 bfd_elf_generic_reloc, /* special_function */
2132 AARCH64_R_STR (TLSDESC), /* name */
2133 FALSE, /* partial_inplace */
2134 0, /* src_mask */
2135 ALL_ONES, /* dst_mask */
2136 FALSE), /* pcrel_offset */
2137
2138 HOWTO (AARCH64_R (IRELATIVE), /* type */
2139 0, /* rightshift */
2140 2, /* size (0 = byte, 1 = short, 2 = long) */
2141 64, /* bitsize */
2142 FALSE, /* pc_relative */
2143 0, /* bitpos */
2144 complain_overflow_bitfield, /* complain_on_overflow */
2145 bfd_elf_generic_reloc, /* special_function */
2146 AARCH64_R_STR (IRELATIVE), /* name */
2147 FALSE, /* partial_inplace */
2148 0, /* src_mask */
2149 ALL_ONES, /* dst_mask */
2150 FALSE), /* pcrel_offset */
2151
2152 EMPTY_HOWTO (0),
2153 };
2154
2155 static reloc_howto_type elfNN_aarch64_howto_none =
2156 HOWTO (R_AARCH64_NONE, /* type */
2157 0, /* rightshift */
2158 3, /* size (0 = byte, 1 = short, 2 = long) */
2159 0, /* bitsize */
2160 FALSE, /* pc_relative */
2161 0, /* bitpos */
2162 complain_overflow_dont,/* complain_on_overflow */
2163 bfd_elf_generic_reloc, /* special_function */
2164 "R_AARCH64_NONE", /* name */
2165 FALSE, /* partial_inplace */
2166 0, /* src_mask */
2167 0, /* dst_mask */
2168 FALSE); /* pcrel_offset */
2169
2170 /* Given HOWTO, return the bfd internal relocation enumerator. */
2171
2172 static bfd_reloc_code_real_type
2173 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2174 {
2175 const int size
2176 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2177 const ptrdiff_t offset
2178 = howto - elfNN_aarch64_howto_table;
2179
2180 if (offset > 0 && offset < size - 1)
2181 return BFD_RELOC_AARCH64_RELOC_START + offset;
2182
2183 if (howto == &elfNN_aarch64_howto_none)
2184 return BFD_RELOC_AARCH64_NONE;
2185
2186 return BFD_RELOC_AARCH64_RELOC_START;
2187 }
2188
2189 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2190
2191 static bfd_reloc_code_real_type
2192 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2193 {
2194 static bfd_boolean initialized_p = FALSE;
2195 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2196 static unsigned int offsets[R_AARCH64_end];
2197
2198 if (!initialized_p)
2199 {
2200 unsigned int i;
2201
2202 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2203 if (elfNN_aarch64_howto_table[i].type != 0)
2204 offsets[elfNN_aarch64_howto_table[i].type] = i;
2205
2206 initialized_p = TRUE;
2207 }
2208
2209 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2210 return BFD_RELOC_AARCH64_NONE;
2211
2212 /* PR 17512: file: b371e70a. */
2213 if (r_type >= R_AARCH64_end)
2214 {
2215 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2216 abfd, r_type);
2217 bfd_set_error (bfd_error_bad_value);
2218 return BFD_RELOC_AARCH64_NONE;
2219 }
2220
2221 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2222 }
2223
2224 struct elf_aarch64_reloc_map
2225 {
2226 bfd_reloc_code_real_type from;
2227 bfd_reloc_code_real_type to;
2228 };
2229
2230 /* Map bfd generic reloc to AArch64-specific reloc. */
2231 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2232 {
2233 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2234
2235 /* Basic data relocations. */
2236 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2237 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2238 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2239 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2240 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2241 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2242 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2243 };
2244
2245 /* Given the bfd internal relocation enumerator in CODE, return the
2246 corresponding howto entry. */
2247
2248 static reloc_howto_type *
2249 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2250 {
2251 unsigned int i;
2252
2253 /* Convert bfd generic reloc to AArch64-specific reloc. */
2254 if (code < BFD_RELOC_AARCH64_RELOC_START
2255 || code > BFD_RELOC_AARCH64_RELOC_END)
2256 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2257 if (elf_aarch64_reloc_map[i].from == code)
2258 {
2259 code = elf_aarch64_reloc_map[i].to;
2260 break;
2261 }
2262
2263 if (code > BFD_RELOC_AARCH64_RELOC_START
2264 && code < BFD_RELOC_AARCH64_RELOC_END)
2265 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2266 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2267
2268 if (code == BFD_RELOC_AARCH64_NONE)
2269 return &elfNN_aarch64_howto_none;
2270
2271 return NULL;
2272 }
2273
2274 static reloc_howto_type *
2275 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2276 {
2277 bfd_reloc_code_real_type val;
2278 reloc_howto_type *howto;
2279
2280 #if ARCH_SIZE == 32
2281 if (r_type > 256)
2282 {
2283 bfd_set_error (bfd_error_bad_value);
2284 return NULL;
2285 }
2286 #endif
2287
2288 if (r_type == R_AARCH64_NONE)
2289 return &elfNN_aarch64_howto_none;
2290
2291 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2292 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2293
2294 if (howto != NULL)
2295 return howto;
2296
2297 bfd_set_error (bfd_error_bad_value);
2298 return NULL;
2299 }
2300
2301 static bfd_boolean
2302 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2303 Elf_Internal_Rela *elf_reloc)
2304 {
2305 unsigned int r_type;
2306
2307 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2308 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2309
2310 if (bfd_reloc->howto == NULL)
2311 {
2312 /* xgettext:c-format */
2313 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2314 return FALSE;
2315 }
2316 return TRUE;
2317 }
2318
2319 static reloc_howto_type *
2320 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2321 bfd_reloc_code_real_type code)
2322 {
2323 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2324
2325 if (howto != NULL)
2326 return howto;
2327
2328 bfd_set_error (bfd_error_bad_value);
2329 return NULL;
2330 }
2331
2332 static reloc_howto_type *
2333 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2334 const char *r_name)
2335 {
2336 unsigned int i;
2337
2338 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2339 if (elfNN_aarch64_howto_table[i].name != NULL
2340 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2341 return &elfNN_aarch64_howto_table[i];
2342
2343 return NULL;
2344 }
2345
2346 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2347 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2348 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2349 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2350
2351 /* The linker script knows the section names for placement.
2352 The entry_names are used to do simple name mangling on the stubs.
2353 Given a function name, and its type, the stub can be found. The
2354 name can be changed. The only requirement is the %s be present. */
2355 #define STUB_ENTRY_NAME "__%s_veneer"
2356
2357 /* The name of the dynamic interpreter. This is put in the .interp
2358 section. */
2359 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2360
2361 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2362 (((1 << 25) - 1) << 2)
2363 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2364 (-((1 << 25) << 2))
2365
2366 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2367 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2368
2369 static int
2370 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2371 {
2372 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2373 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2374 }
2375
2376 static int
2377 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2378 {
2379 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2380 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2381 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2382 }
2383
2384 static const uint32_t aarch64_adrp_branch_stub [] =
2385 {
2386 0x90000010, /* adrp ip0, X */
2387 /* R_AARCH64_ADR_HI21_PCREL(X) */
2388 0x91000210, /* add ip0, ip0, :lo12:X */
2389 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2390 0xd61f0200, /* br ip0 */
2391 };
2392
2393 static const uint32_t aarch64_long_branch_stub[] =
2394 {
2395 #if ARCH_SIZE == 64
2396 0x58000090, /* ldr ip0, 1f */
2397 #else
2398 0x18000090, /* ldr wip0, 1f */
2399 #endif
2400 0x10000011, /* adr ip1, #0 */
2401 0x8b110210, /* add ip0, ip0, ip1 */
2402 0xd61f0200, /* br ip0 */
2403 0x00000000, /* 1: .xword or .word
2404 R_AARCH64_PRELNN(X) + 12
2405 */
2406 0x00000000,
2407 };
2408
2409 static const uint32_t aarch64_erratum_835769_stub[] =
2410 {
2411 0x00000000, /* Placeholder for multiply accumulate. */
2412 0x14000000, /* b <label> */
2413 };
2414
2415 static const uint32_t aarch64_erratum_843419_stub[] =
2416 {
2417 0x00000000, /* Placeholder for LDR instruction. */
2418 0x14000000, /* b <label> */
2419 };
2420
2421 /* Section name for stubs is the associated section name plus this
2422 string. */
2423 #define STUB_SUFFIX ".stub"
2424
2425 enum elf_aarch64_stub_type
2426 {
2427 aarch64_stub_none,
2428 aarch64_stub_adrp_branch,
2429 aarch64_stub_long_branch,
2430 aarch64_stub_erratum_835769_veneer,
2431 aarch64_stub_erratum_843419_veneer,
2432 };
2433
2434 struct elf_aarch64_stub_hash_entry
2435 {
2436 /* Base hash table entry structure. */
2437 struct bfd_hash_entry root;
2438
2439 /* The stub section. */
2440 asection *stub_sec;
2441
2442 /* Offset within stub_sec of the beginning of this stub. */
2443 bfd_vma stub_offset;
2444
2445 /* Given the symbol's value and its section we can determine its final
2446 value when building the stubs (so the stub knows where to jump). */
2447 bfd_vma target_value;
2448 asection *target_section;
2449
2450 enum elf_aarch64_stub_type stub_type;
2451
2452 /* The symbol table entry, if any, that this was derived from. */
2453 struct elf_aarch64_link_hash_entry *h;
2454
2455 /* Destination symbol type */
2456 unsigned char st_type;
2457
2458 /* Where this stub is being called from, or, in the case of combined
2459 stub sections, the first input section in the group. */
2460 asection *id_sec;
2461
2462 /* The name for the local symbol at the start of this stub. The
2463 stub name in the hash table has to be unique; this does not, so
2464 it can be friendlier. */
2465 char *output_name;
2466
2467 /* The instruction which caused this stub to be generated (only valid for
2468 erratum 835769 workaround stubs at present). */
2469 uint32_t veneered_insn;
2470
2471 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2472 bfd_vma adrp_offset;
2473 };
2474
2475 /* Used to build a map of a section. This is required for mixed-endian
2476 code/data. */
2477
2478 typedef struct elf_elf_section_map
2479 {
2480 bfd_vma vma;
2481 char type;
2482 }
2483 elf_aarch64_section_map;
2484
2485
2486 typedef struct _aarch64_elf_section_data
2487 {
2488 struct bfd_elf_section_data elf;
2489 unsigned int mapcount;
2490 unsigned int mapsize;
2491 elf_aarch64_section_map *map;
2492 }
2493 _aarch64_elf_section_data;
2494
2495 #define elf_aarch64_section_data(sec) \
2496 ((_aarch64_elf_section_data *) elf_section_data (sec))
2497
2498 /* The size of the thread control block which is defined to be two pointers. */
2499 #define TCB_SIZE (ARCH_SIZE/8)*2
2500
2501 struct elf_aarch64_local_symbol
2502 {
2503 unsigned int got_type;
2504 bfd_signed_vma got_refcount;
2505 bfd_vma got_offset;
2506
2507 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2508 offset is from the end of the jump table and reserved entries
2509 within the PLTGOT.
2510
2511 The magic value (bfd_vma) -1 indicates that an offset has not be
2512 allocated. */
2513 bfd_vma tlsdesc_got_jump_table_offset;
2514 };
2515
2516 struct elf_aarch64_obj_tdata
2517 {
2518 struct elf_obj_tdata root;
2519
2520 /* local symbol descriptors */
2521 struct elf_aarch64_local_symbol *locals;
2522
2523 /* Zero to warn when linking objects with incompatible enum sizes. */
2524 int no_enum_size_warning;
2525
2526 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2527 int no_wchar_size_warning;
2528
2529 /* All GNU_PROPERTY_AARCH64_FEATURE_1_AND properties. */
2530 uint32_t gnu_and_prop;
2531
2532 /* Zero to warn when linking objects with incompatible
2533 GNU_PROPERTY_AARCH64_FEATURE_1_BTI. */
2534 int no_bti_warn;
2535
2536 /* PLT type based on security. */
2537 aarch64_plt_type plt_type;
2538 };
2539
2540 #define elf_aarch64_tdata(bfd) \
2541 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2542
2543 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2544
2545 #define is_aarch64_elf(bfd) \
2546 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2547 && elf_tdata (bfd) != NULL \
2548 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2549
2550 static bfd_boolean
2551 elfNN_aarch64_mkobject (bfd *abfd)
2552 {
2553 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2554 AARCH64_ELF_DATA);
2555 }
2556
2557 #define elf_aarch64_hash_entry(ent) \
2558 ((struct elf_aarch64_link_hash_entry *)(ent))
2559
2560 #define GOT_UNKNOWN 0
2561 #define GOT_NORMAL 1
2562 #define GOT_TLS_GD 2
2563 #define GOT_TLS_IE 4
2564 #define GOT_TLSDESC_GD 8
2565
2566 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2567
2568 /* AArch64 ELF linker hash entry. */
2569 struct elf_aarch64_link_hash_entry
2570 {
2571 struct elf_link_hash_entry root;
2572
2573 /* Track dynamic relocs copied for this symbol. */
2574 struct elf_dyn_relocs *dyn_relocs;
2575
2576 /* Since PLT entries have variable size, we need to record the
2577 index into .got.plt instead of recomputing it from the PLT
2578 offset. */
2579 bfd_signed_vma plt_got_offset;
2580
2581 /* Bit mask representing the type of GOT entry(s) if any required by
2582 this symbol. */
2583 unsigned int got_type;
2584
2585 /* A pointer to the most recently used stub hash entry against this
2586 symbol. */
2587 struct elf_aarch64_stub_hash_entry *stub_cache;
2588
2589 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2590 is from the end of the jump table and reserved entries within the PLTGOT.
2591
2592 The magic value (bfd_vma) -1 indicates that an offset has not
2593 be allocated. */
2594 bfd_vma tlsdesc_got_jump_table_offset;
2595 };
2596
2597 static unsigned int
2598 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2599 bfd *abfd,
2600 unsigned long r_symndx)
2601 {
2602 if (h)
2603 return elf_aarch64_hash_entry (h)->got_type;
2604
2605 if (! elf_aarch64_locals (abfd))
2606 return GOT_UNKNOWN;
2607
2608 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2609 }
2610
2611 /* Get the AArch64 elf linker hash table from a link_info structure. */
2612 #define elf_aarch64_hash_table(info) \
2613 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2614
2615 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2616 ((struct elf_aarch64_stub_hash_entry *) \
2617 bfd_hash_lookup ((table), (string), (create), (copy)))
2618
2619 /* AArch64 ELF linker hash table. */
2620 struct elf_aarch64_link_hash_table
2621 {
2622 /* The main hash table. */
2623 struct elf_link_hash_table root;
2624
2625 /* Nonzero to force PIC branch veneers. */
2626 int pic_veneer;
2627
2628 /* Fix erratum 835769. */
2629 int fix_erratum_835769;
2630
2631 /* Fix erratum 843419. */
2632 erratum_84319_opts fix_erratum_843419;
2633
2634 /* Don't apply link-time values for dynamic relocations. */
2635 int no_apply_dynamic_relocs;
2636
2637 /* The number of bytes in the initial entry in the PLT. */
2638 bfd_size_type plt_header_size;
2639
2640 /* The bytes of the initial PLT entry. */
2641 const bfd_byte *plt0_entry;
2642
2643 /* The number of bytes in the subsequent PLT entries. */
2644 bfd_size_type plt_entry_size;
2645
2646 /* The bytes of the subsequent PLT entry. */
2647 const bfd_byte *plt_entry;
2648
2649 /* Small local sym cache. */
2650 struct sym_cache sym_cache;
2651
2652 /* For convenience in allocate_dynrelocs. */
2653 bfd *obfd;
2654
2655 /* The amount of space used by the reserved portion of the sgotplt
2656 section, plus whatever space is used by the jump slots. */
2657 bfd_vma sgotplt_jump_table_size;
2658
2659 /* The stub hash table. */
2660 struct bfd_hash_table stub_hash_table;
2661
2662 /* Linker stub bfd. */
2663 bfd *stub_bfd;
2664
2665 /* Linker call-backs. */
2666 asection *(*add_stub_section) (const char *, asection *);
2667 void (*layout_sections_again) (void);
2668
2669 /* Array to keep track of which stub sections have been created, and
2670 information on stub grouping. */
2671 struct map_stub
2672 {
2673 /* This is the section to which stubs in the group will be
2674 attached. */
2675 asection *link_sec;
2676 /* The stub section. */
2677 asection *stub_sec;
2678 } *stub_group;
2679
2680 /* Assorted information used by elfNN_aarch64_size_stubs. */
2681 unsigned int bfd_count;
2682 unsigned int top_index;
2683 asection **input_list;
2684
2685 /* JUMP_SLOT relocs for variant PCS symbols may be present. */
2686 int variant_pcs;
2687
2688 /* The offset into splt of the PLT entry for the TLS descriptor
2689 resolver. Special values are 0, if not necessary (or not found
2690 to be necessary yet), and -1 if needed but not determined
2691 yet. */
2692 bfd_vma tlsdesc_plt;
2693
2694 /* The number of bytes in the PLT enty for the TLS descriptor. */
2695 bfd_size_type tlsdesc_plt_entry_size;
2696
2697 /* The GOT offset for the lazy trampoline. Communicated to the
2698 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2699 indicates an offset is not allocated. */
2700 bfd_vma dt_tlsdesc_got;
2701
2702 /* Used by local STT_GNU_IFUNC symbols. */
2703 htab_t loc_hash_table;
2704 void * loc_hash_memory;
2705 };
2706
2707 /* Create an entry in an AArch64 ELF linker hash table. */
2708
2709 static struct bfd_hash_entry *
2710 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2711 struct bfd_hash_table *table,
2712 const char *string)
2713 {
2714 struct elf_aarch64_link_hash_entry *ret =
2715 (struct elf_aarch64_link_hash_entry *) entry;
2716
2717 /* Allocate the structure if it has not already been allocated by a
2718 subclass. */
2719 if (ret == NULL)
2720 ret = bfd_hash_allocate (table,
2721 sizeof (struct elf_aarch64_link_hash_entry));
2722 if (ret == NULL)
2723 return (struct bfd_hash_entry *) ret;
2724
2725 /* Call the allocation method of the superclass. */
2726 ret = ((struct elf_aarch64_link_hash_entry *)
2727 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2728 table, string));
2729 if (ret != NULL)
2730 {
2731 ret->dyn_relocs = NULL;
2732 ret->got_type = GOT_UNKNOWN;
2733 ret->plt_got_offset = (bfd_vma) - 1;
2734 ret->stub_cache = NULL;
2735 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2736 }
2737
2738 return (struct bfd_hash_entry *) ret;
2739 }
2740
2741 /* Initialize an entry in the stub hash table. */
2742
2743 static struct bfd_hash_entry *
2744 stub_hash_newfunc (struct bfd_hash_entry *entry,
2745 struct bfd_hash_table *table, const char *string)
2746 {
2747 /* Allocate the structure if it has not already been allocated by a
2748 subclass. */
2749 if (entry == NULL)
2750 {
2751 entry = bfd_hash_allocate (table,
2752 sizeof (struct
2753 elf_aarch64_stub_hash_entry));
2754 if (entry == NULL)
2755 return entry;
2756 }
2757
2758 /* Call the allocation method of the superclass. */
2759 entry = bfd_hash_newfunc (entry, table, string);
2760 if (entry != NULL)
2761 {
2762 struct elf_aarch64_stub_hash_entry *eh;
2763
2764 /* Initialize the local fields. */
2765 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2766 eh->adrp_offset = 0;
2767 eh->stub_sec = NULL;
2768 eh->stub_offset = 0;
2769 eh->target_value = 0;
2770 eh->target_section = NULL;
2771 eh->stub_type = aarch64_stub_none;
2772 eh->h = NULL;
2773 eh->id_sec = NULL;
2774 }
2775
2776 return entry;
2777 }
2778
2779 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2780 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2781 as global symbol. We reuse indx and dynstr_index for local symbol
2782 hash since they aren't used by global symbols in this backend. */
2783
2784 static hashval_t
2785 elfNN_aarch64_local_htab_hash (const void *ptr)
2786 {
2787 struct elf_link_hash_entry *h
2788 = (struct elf_link_hash_entry *) ptr;
2789 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2790 }
2791
2792 /* Compare local hash entries. */
2793
2794 static int
2795 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2796 {
2797 struct elf_link_hash_entry *h1
2798 = (struct elf_link_hash_entry *) ptr1;
2799 struct elf_link_hash_entry *h2
2800 = (struct elf_link_hash_entry *) ptr2;
2801
2802 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2803 }
2804
2805 /* Find and/or create a hash entry for local symbol. */
2806
2807 static struct elf_link_hash_entry *
2808 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2809 bfd *abfd, const Elf_Internal_Rela *rel,
2810 bfd_boolean create)
2811 {
2812 struct elf_aarch64_link_hash_entry e, *ret;
2813 asection *sec = abfd->sections;
2814 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2815 ELFNN_R_SYM (rel->r_info));
2816 void **slot;
2817
2818 e.root.indx = sec->id;
2819 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2820 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2821 create ? INSERT : NO_INSERT);
2822
2823 if (!slot)
2824 return NULL;
2825
2826 if (*slot)
2827 {
2828 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2829 return &ret->root;
2830 }
2831
2832 ret = (struct elf_aarch64_link_hash_entry *)
2833 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2834 sizeof (struct elf_aarch64_link_hash_entry));
2835 if (ret)
2836 {
2837 memset (ret, 0, sizeof (*ret));
2838 ret->root.indx = sec->id;
2839 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2840 ret->root.dynindx = -1;
2841 *slot = ret;
2842 }
2843 return &ret->root;
2844 }
2845
2846 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2847
2848 static void
2849 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2850 struct elf_link_hash_entry *dir,
2851 struct elf_link_hash_entry *ind)
2852 {
2853 struct elf_aarch64_link_hash_entry *edir, *eind;
2854
2855 edir = (struct elf_aarch64_link_hash_entry *) dir;
2856 eind = (struct elf_aarch64_link_hash_entry *) ind;
2857
2858 if (eind->dyn_relocs != NULL)
2859 {
2860 if (edir->dyn_relocs != NULL)
2861 {
2862 struct elf_dyn_relocs **pp;
2863 struct elf_dyn_relocs *p;
2864
2865 /* Add reloc counts against the indirect sym to the direct sym
2866 list. Merge any entries against the same section. */
2867 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2868 {
2869 struct elf_dyn_relocs *q;
2870
2871 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2872 if (q->sec == p->sec)
2873 {
2874 q->pc_count += p->pc_count;
2875 q->count += p->count;
2876 *pp = p->next;
2877 break;
2878 }
2879 if (q == NULL)
2880 pp = &p->next;
2881 }
2882 *pp = edir->dyn_relocs;
2883 }
2884
2885 edir->dyn_relocs = eind->dyn_relocs;
2886 eind->dyn_relocs = NULL;
2887 }
2888
2889 if (ind->root.type == bfd_link_hash_indirect)
2890 {
2891 /* Copy over PLT info. */
2892 if (dir->got.refcount <= 0)
2893 {
2894 edir->got_type = eind->got_type;
2895 eind->got_type = GOT_UNKNOWN;
2896 }
2897 }
2898
2899 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2900 }
2901
2902 /* Merge non-visibility st_other attributes. */
2903
2904 static void
2905 elfNN_aarch64_merge_symbol_attribute (struct elf_link_hash_entry *h,
2906 const Elf_Internal_Sym *isym,
2907 bfd_boolean definition ATTRIBUTE_UNUSED,
2908 bfd_boolean dynamic ATTRIBUTE_UNUSED)
2909 {
2910 unsigned int isym_sto = isym->st_other & ~ELF_ST_VISIBILITY (-1);
2911 unsigned int h_sto = h->other & ~ELF_ST_VISIBILITY (-1);
2912
2913 if (isym_sto == h_sto)
2914 return;
2915
2916 if (isym_sto & ~STO_AARCH64_VARIANT_PCS)
2917 /* Not fatal, this callback cannot fail. */
2918 _bfd_error_handler (_("unknown attribute for symbol `%s': 0x%02x"),
2919 h->root.root.string, isym_sto);
2920
2921 /* Note: Ideally we would warn about any attribute mismatch, but
2922 this api does not allow that without substantial changes. */
2923 if (isym_sto & STO_AARCH64_VARIANT_PCS)
2924 h->other |= STO_AARCH64_VARIANT_PCS;
2925 }
2926
2927 /* Destroy an AArch64 elf linker hash table. */
2928
2929 static void
2930 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2931 {
2932 struct elf_aarch64_link_hash_table *ret
2933 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2934
2935 if (ret->loc_hash_table)
2936 htab_delete (ret->loc_hash_table);
2937 if (ret->loc_hash_memory)
2938 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2939
2940 bfd_hash_table_free (&ret->stub_hash_table);
2941 _bfd_elf_link_hash_table_free (obfd);
2942 }
2943
2944 /* Create an AArch64 elf linker hash table. */
2945
2946 static struct bfd_link_hash_table *
2947 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2948 {
2949 struct elf_aarch64_link_hash_table *ret;
2950 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2951
2952 ret = bfd_zmalloc (amt);
2953 if (ret == NULL)
2954 return NULL;
2955
2956 if (!_bfd_elf_link_hash_table_init
2957 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2958 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2959 {
2960 free (ret);
2961 return NULL;
2962 }
2963
2964 ret->plt_header_size = PLT_ENTRY_SIZE;
2965 ret->plt0_entry = elfNN_aarch64_small_plt0_entry;
2966 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2967 ret->plt_entry = elfNN_aarch64_small_plt_entry;
2968 ret->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
2969 ret->obfd = abfd;
2970 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2971
2972 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2973 sizeof (struct elf_aarch64_stub_hash_entry)))
2974 {
2975 _bfd_elf_link_hash_table_free (abfd);
2976 return NULL;
2977 }
2978
2979 ret->loc_hash_table = htab_try_create (1024,
2980 elfNN_aarch64_local_htab_hash,
2981 elfNN_aarch64_local_htab_eq,
2982 NULL);
2983 ret->loc_hash_memory = objalloc_create ();
2984 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2985 {
2986 elfNN_aarch64_link_hash_table_free (abfd);
2987 return NULL;
2988 }
2989 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2990
2991 return &ret->root.root;
2992 }
2993
2994 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2995
2996 static bfd_boolean
2997 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2998 bfd_vma offset, bfd_vma value)
2999 {
3000 reloc_howto_type *howto;
3001 bfd_vma place;
3002
3003 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
3004 place = (input_section->output_section->vma + input_section->output_offset
3005 + offset);
3006
3007 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
3008 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, r_type, place,
3009 value, 0, FALSE);
3010 return _bfd_aarch64_elf_put_addend (input_bfd,
3011 input_section->contents + offset, r_type,
3012 howto, value) == bfd_reloc_ok;
3013 }
3014
3015 static enum elf_aarch64_stub_type
3016 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
3017 {
3018 if (aarch64_valid_for_adrp_p (value, place))
3019 return aarch64_stub_adrp_branch;
3020 return aarch64_stub_long_branch;
3021 }
3022
3023 /* Determine the type of stub needed, if any, for a call. */
3024
3025 static enum elf_aarch64_stub_type
3026 aarch64_type_of_stub (asection *input_sec,
3027 const Elf_Internal_Rela *rel,
3028 asection *sym_sec,
3029 unsigned char st_type,
3030 bfd_vma destination)
3031 {
3032 bfd_vma location;
3033 bfd_signed_vma branch_offset;
3034 unsigned int r_type;
3035 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
3036
3037 if (st_type != STT_FUNC
3038 && (sym_sec == input_sec))
3039 return stub_type;
3040
3041 /* Determine where the call point is. */
3042 location = (input_sec->output_offset
3043 + input_sec->output_section->vma + rel->r_offset);
3044
3045 branch_offset = (bfd_signed_vma) (destination - location);
3046
3047 r_type = ELFNN_R_TYPE (rel->r_info);
3048
3049 /* We don't want to redirect any old unconditional jump in this way,
3050 only one which is being used for a sibcall, where it is
3051 acceptable for the IP0 and IP1 registers to be clobbered. */
3052 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
3053 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
3054 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
3055 {
3056 stub_type = aarch64_stub_long_branch;
3057 }
3058
3059 return stub_type;
3060 }
3061
3062 /* Build a name for an entry in the stub hash table. */
3063
3064 static char *
3065 elfNN_aarch64_stub_name (const asection *input_section,
3066 const asection *sym_sec,
3067 const struct elf_aarch64_link_hash_entry *hash,
3068 const Elf_Internal_Rela *rel)
3069 {
3070 char *stub_name;
3071 bfd_size_type len;
3072
3073 if (hash)
3074 {
3075 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
3076 stub_name = bfd_malloc (len);
3077 if (stub_name != NULL)
3078 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
3079 (unsigned int) input_section->id,
3080 hash->root.root.root.string,
3081 rel->r_addend);
3082 }
3083 else
3084 {
3085 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
3086 stub_name = bfd_malloc (len);
3087 if (stub_name != NULL)
3088 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
3089 (unsigned int) input_section->id,
3090 (unsigned int) sym_sec->id,
3091 (unsigned int) ELFNN_R_SYM (rel->r_info),
3092 rel->r_addend);
3093 }
3094
3095 return stub_name;
3096 }
3097
3098 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
3099 executable PLT slots where the executable never takes the address of those
3100 functions, the function symbols are not added to the hash table. */
3101
3102 static bfd_boolean
3103 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
3104 {
3105 if (h->plt.offset != (bfd_vma) -1
3106 && !h->def_regular
3107 && !h->pointer_equality_needed)
3108 return FALSE;
3109
3110 return _bfd_elf_hash_symbol (h);
3111 }
3112
3113
3114 /* Look up an entry in the stub hash. Stub entries are cached because
3115 creating the stub name takes a bit of time. */
3116
3117 static struct elf_aarch64_stub_hash_entry *
3118 elfNN_aarch64_get_stub_entry (const asection *input_section,
3119 const asection *sym_sec,
3120 struct elf_link_hash_entry *hash,
3121 const Elf_Internal_Rela *rel,
3122 struct elf_aarch64_link_hash_table *htab)
3123 {
3124 struct elf_aarch64_stub_hash_entry *stub_entry;
3125 struct elf_aarch64_link_hash_entry *h =
3126 (struct elf_aarch64_link_hash_entry *) hash;
3127 const asection *id_sec;
3128
3129 if ((input_section->flags & SEC_CODE) == 0)
3130 return NULL;
3131
3132 /* If this input section is part of a group of sections sharing one
3133 stub section, then use the id of the first section in the group.
3134 Stub names need to include a section id, as there may well be
3135 more than one stub used to reach say, printf, and we need to
3136 distinguish between them. */
3137 id_sec = htab->stub_group[input_section->id].link_sec;
3138
3139 if (h != NULL && h->stub_cache != NULL
3140 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3141 {
3142 stub_entry = h->stub_cache;
3143 }
3144 else
3145 {
3146 char *stub_name;
3147
3148 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3149 if (stub_name == NULL)
3150 return NULL;
3151
3152 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3153 stub_name, FALSE, FALSE);
3154 if (h != NULL)
3155 h->stub_cache = stub_entry;
3156
3157 free (stub_name);
3158 }
3159
3160 return stub_entry;
3161 }
3162
3163
3164 /* Create a stub section. */
3165
3166 static asection *
3167 _bfd_aarch64_create_stub_section (asection *section,
3168 struct elf_aarch64_link_hash_table *htab)
3169 {
3170 size_t namelen;
3171 bfd_size_type len;
3172 char *s_name;
3173
3174 namelen = strlen (section->name);
3175 len = namelen + sizeof (STUB_SUFFIX);
3176 s_name = bfd_alloc (htab->stub_bfd, len);
3177 if (s_name == NULL)
3178 return NULL;
3179
3180 /* PR 25210. Set the right class on the stub_bfd. */
3181 elf_elfheader (htab->stub_bfd)->e_ident[EI_CLASS] = ELFCLASSNN;
3182 BFD_ASSERT (ELFCLASSNN == get_elf_backend_data (htab->stub_bfd)->s->elfclass);
3183
3184 memcpy (s_name, section->name, namelen);
3185 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3186 return (*htab->add_stub_section) (s_name, section);
3187 }
3188
3189
3190 /* Find or create a stub section for a link section.
3191
3192 Fix or create the stub section used to collect stubs attached to
3193 the specified link section. */
3194
3195 static asection *
3196 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3197 struct elf_aarch64_link_hash_table *htab)
3198 {
3199 if (htab->stub_group[link_section->id].stub_sec == NULL)
3200 htab->stub_group[link_section->id].stub_sec
3201 = _bfd_aarch64_create_stub_section (link_section, htab);
3202 return htab->stub_group[link_section->id].stub_sec;
3203 }
3204
3205
3206 /* Find or create a stub section in the stub group for an input
3207 section. */
3208
3209 static asection *
3210 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3211 struct elf_aarch64_link_hash_table *htab)
3212 {
3213 asection *link_sec = htab->stub_group[section->id].link_sec;
3214 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3215 }
3216
3217
3218 /* Add a new stub entry in the stub group associated with an input
3219 section to the stub hash. Not all fields of the new stub entry are
3220 initialised. */
3221
3222 static struct elf_aarch64_stub_hash_entry *
3223 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3224 asection *section,
3225 struct elf_aarch64_link_hash_table *htab)
3226 {
3227 asection *link_sec;
3228 asection *stub_sec;
3229 struct elf_aarch64_stub_hash_entry *stub_entry;
3230
3231 link_sec = htab->stub_group[section->id].link_sec;
3232 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3233
3234 /* Enter this entry into the linker stub hash table. */
3235 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3236 TRUE, FALSE);
3237 if (stub_entry == NULL)
3238 {
3239 /* xgettext:c-format */
3240 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3241 section->owner, stub_name);
3242 return NULL;
3243 }
3244
3245 stub_entry->stub_sec = stub_sec;
3246 stub_entry->stub_offset = 0;
3247 stub_entry->id_sec = link_sec;
3248
3249 return stub_entry;
3250 }
3251
3252 /* Add a new stub entry in the final stub section to the stub hash.
3253 Not all fields of the new stub entry are initialised. */
3254
3255 static struct elf_aarch64_stub_hash_entry *
3256 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3257 asection *link_section,
3258 struct elf_aarch64_link_hash_table *htab)
3259 {
3260 asection *stub_sec;
3261 struct elf_aarch64_stub_hash_entry *stub_entry;
3262
3263 stub_sec = NULL;
3264 /* Only create the actual stub if we will end up needing it. */
3265 if (htab->fix_erratum_843419 & ERRAT_ADRP)
3266 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3267 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3268 TRUE, FALSE);
3269 if (stub_entry == NULL)
3270 {
3271 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3272 return NULL;
3273 }
3274
3275 stub_entry->stub_sec = stub_sec;
3276 stub_entry->stub_offset = 0;
3277 stub_entry->id_sec = link_section;
3278
3279 return stub_entry;
3280 }
3281
3282
3283 static bfd_boolean
3284 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3285 void *in_arg ATTRIBUTE_UNUSED)
3286 {
3287 struct elf_aarch64_stub_hash_entry *stub_entry;
3288 asection *stub_sec;
3289 bfd *stub_bfd;
3290 bfd_byte *loc;
3291 bfd_vma sym_value;
3292 bfd_vma veneered_insn_loc;
3293 bfd_vma veneer_entry_loc;
3294 bfd_signed_vma branch_offset = 0;
3295 unsigned int template_size;
3296 const uint32_t *template;
3297 unsigned int i;
3298
3299 /* Massage our args to the form they really have. */
3300 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3301
3302 stub_sec = stub_entry->stub_sec;
3303
3304 /* Make a note of the offset within the stubs for this entry. */
3305 stub_entry->stub_offset = stub_sec->size;
3306 loc = stub_sec->contents + stub_entry->stub_offset;
3307
3308 stub_bfd = stub_sec->owner;
3309
3310 /* This is the address of the stub destination. */
3311 sym_value = (stub_entry->target_value
3312 + stub_entry->target_section->output_offset
3313 + stub_entry->target_section->output_section->vma);
3314
3315 if (stub_entry->stub_type == aarch64_stub_long_branch)
3316 {
3317 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3318 + stub_sec->output_offset);
3319
3320 /* See if we can relax the stub. */
3321 if (aarch64_valid_for_adrp_p (sym_value, place))
3322 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3323 }
3324
3325 switch (stub_entry->stub_type)
3326 {
3327 case aarch64_stub_adrp_branch:
3328 template = aarch64_adrp_branch_stub;
3329 template_size = sizeof (aarch64_adrp_branch_stub);
3330 break;
3331 case aarch64_stub_long_branch:
3332 template = aarch64_long_branch_stub;
3333 template_size = sizeof (aarch64_long_branch_stub);
3334 break;
3335 case aarch64_stub_erratum_835769_veneer:
3336 template = aarch64_erratum_835769_stub;
3337 template_size = sizeof (aarch64_erratum_835769_stub);
3338 break;
3339 case aarch64_stub_erratum_843419_veneer:
3340 template = aarch64_erratum_843419_stub;
3341 template_size = sizeof (aarch64_erratum_843419_stub);
3342 break;
3343 default:
3344 abort ();
3345 }
3346
3347 for (i = 0; i < (template_size / sizeof template[0]); i++)
3348 {
3349 bfd_putl32 (template[i], loc);
3350 loc += 4;
3351 }
3352
3353 template_size = (template_size + 7) & ~7;
3354 stub_sec->size += template_size;
3355
3356 switch (stub_entry->stub_type)
3357 {
3358 case aarch64_stub_adrp_branch:
3359 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3360 stub_entry->stub_offset, sym_value))
3361 /* The stub would not have been relaxed if the offset was out
3362 of range. */
3363 BFD_FAIL ();
3364
3365 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3366 stub_entry->stub_offset + 4, sym_value))
3367 BFD_FAIL ();
3368 break;
3369
3370 case aarch64_stub_long_branch:
3371 /* We want the value relative to the address 12 bytes back from the
3372 value itself. */
3373 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3374 stub_entry->stub_offset + 16, sym_value + 12))
3375 BFD_FAIL ();
3376 break;
3377
3378 case aarch64_stub_erratum_835769_veneer:
3379 veneered_insn_loc = stub_entry->target_section->output_section->vma
3380 + stub_entry->target_section->output_offset
3381 + stub_entry->target_value;
3382 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3383 + stub_entry->stub_sec->output_offset
3384 + stub_entry->stub_offset;
3385 branch_offset = veneered_insn_loc - veneer_entry_loc;
3386 branch_offset >>= 2;
3387 branch_offset &= 0x3ffffff;
3388 bfd_putl32 (stub_entry->veneered_insn,
3389 stub_sec->contents + stub_entry->stub_offset);
3390 bfd_putl32 (template[1] | branch_offset,
3391 stub_sec->contents + stub_entry->stub_offset + 4);
3392 break;
3393
3394 case aarch64_stub_erratum_843419_veneer:
3395 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3396 stub_entry->stub_offset + 4, sym_value + 4))
3397 BFD_FAIL ();
3398 break;
3399
3400 default:
3401 abort ();
3402 }
3403
3404 return TRUE;
3405 }
3406
3407 /* As above, but don't actually build the stub. Just bump offset so
3408 we know stub section sizes. */
3409
3410 static bfd_boolean
3411 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
3412 {
3413 struct elf_aarch64_stub_hash_entry *stub_entry;
3414 struct elf_aarch64_link_hash_table *htab;
3415 int size;
3416
3417 /* Massage our args to the form they really have. */
3418 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3419 htab = (struct elf_aarch64_link_hash_table *) in_arg;
3420
3421 switch (stub_entry->stub_type)
3422 {
3423 case aarch64_stub_adrp_branch:
3424 size = sizeof (aarch64_adrp_branch_stub);
3425 break;
3426 case aarch64_stub_long_branch:
3427 size = sizeof (aarch64_long_branch_stub);
3428 break;
3429 case aarch64_stub_erratum_835769_veneer:
3430 size = sizeof (aarch64_erratum_835769_stub);
3431 break;
3432 case aarch64_stub_erratum_843419_veneer:
3433 {
3434 if (htab->fix_erratum_843419 == ERRAT_ADR)
3435 return TRUE;
3436 size = sizeof (aarch64_erratum_843419_stub);
3437 }
3438 break;
3439 default:
3440 abort ();
3441 }
3442
3443 size = (size + 7) & ~7;
3444 stub_entry->stub_sec->size += size;
3445 return TRUE;
3446 }
3447
3448 /* External entry points for sizing and building linker stubs. */
3449
3450 /* Set up various things so that we can make a list of input sections
3451 for each output section included in the link. Returns -1 on error,
3452 0 when no stubs will be needed, and 1 on success. */
3453
3454 int
3455 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3456 struct bfd_link_info *info)
3457 {
3458 bfd *input_bfd;
3459 unsigned int bfd_count;
3460 unsigned int top_id, top_index;
3461 asection *section;
3462 asection **input_list, **list;
3463 bfd_size_type amt;
3464 struct elf_aarch64_link_hash_table *htab =
3465 elf_aarch64_hash_table (info);
3466
3467 if (!is_elf_hash_table (htab))
3468 return 0;
3469
3470 /* Count the number of input BFDs and find the top input section id. */
3471 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3472 input_bfd != NULL; input_bfd = input_bfd->link.next)
3473 {
3474 bfd_count += 1;
3475 for (section = input_bfd->sections;
3476 section != NULL; section = section->next)
3477 {
3478 if (top_id < section->id)
3479 top_id = section->id;
3480 }
3481 }
3482 htab->bfd_count = bfd_count;
3483
3484 amt = sizeof (struct map_stub) * (top_id + 1);
3485 htab->stub_group = bfd_zmalloc (amt);
3486 if (htab->stub_group == NULL)
3487 return -1;
3488
3489 /* We can't use output_bfd->section_count here to find the top output
3490 section index as some sections may have been removed, and
3491 _bfd_strip_section_from_output doesn't renumber the indices. */
3492 for (section = output_bfd->sections, top_index = 0;
3493 section != NULL; section = section->next)
3494 {
3495 if (top_index < section->index)
3496 top_index = section->index;
3497 }
3498
3499 htab->top_index = top_index;
3500 amt = sizeof (asection *) * (top_index + 1);
3501 input_list = bfd_malloc (amt);
3502 htab->input_list = input_list;
3503 if (input_list == NULL)
3504 return -1;
3505
3506 /* For sections we aren't interested in, mark their entries with a
3507 value we can check later. */
3508 list = input_list + top_index;
3509 do
3510 *list = bfd_abs_section_ptr;
3511 while (list-- != input_list);
3512
3513 for (section = output_bfd->sections;
3514 section != NULL; section = section->next)
3515 {
3516 if ((section->flags & SEC_CODE) != 0)
3517 input_list[section->index] = NULL;
3518 }
3519
3520 return 1;
3521 }
3522
3523 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3524 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3525
3526 /* The linker repeatedly calls this function for each input section,
3527 in the order that input sections are linked into output sections.
3528 Build lists of input sections to determine groupings between which
3529 we may insert linker stubs. */
3530
3531 void
3532 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3533 {
3534 struct elf_aarch64_link_hash_table *htab =
3535 elf_aarch64_hash_table (info);
3536
3537 if (isec->output_section->index <= htab->top_index)
3538 {
3539 asection **list = htab->input_list + isec->output_section->index;
3540
3541 if (*list != bfd_abs_section_ptr)
3542 {
3543 /* Steal the link_sec pointer for our list. */
3544 /* This happens to make the list in reverse order,
3545 which is what we want. */
3546 PREV_SEC (isec) = *list;
3547 *list = isec;
3548 }
3549 }
3550 }
3551
3552 /* See whether we can group stub sections together. Grouping stub
3553 sections may result in fewer stubs. More importantly, we need to
3554 put all .init* and .fini* stubs at the beginning of the .init or
3555 .fini output sections respectively, because glibc splits the
3556 _init and _fini functions into multiple parts. Putting a stub in
3557 the middle of a function is not a good idea. */
3558
3559 static void
3560 group_sections (struct elf_aarch64_link_hash_table *htab,
3561 bfd_size_type stub_group_size,
3562 bfd_boolean stubs_always_before_branch)
3563 {
3564 asection **list = htab->input_list + htab->top_index;
3565
3566 do
3567 {
3568 asection *tail = *list;
3569
3570 if (tail == bfd_abs_section_ptr)
3571 continue;
3572
3573 while (tail != NULL)
3574 {
3575 asection *curr;
3576 asection *prev;
3577 bfd_size_type total;
3578
3579 curr = tail;
3580 total = tail->size;
3581 while ((prev = PREV_SEC (curr)) != NULL
3582 && ((total += curr->output_offset - prev->output_offset)
3583 < stub_group_size))
3584 curr = prev;
3585
3586 /* OK, the size from the start of CURR to the end is less
3587 than stub_group_size and thus can be handled by one stub
3588 section. (Or the tail section is itself larger than
3589 stub_group_size, in which case we may be toast.)
3590 We should really be keeping track of the total size of
3591 stubs added here, as stubs contribute to the final output
3592 section size. */
3593 do
3594 {
3595 prev = PREV_SEC (tail);
3596 /* Set up this stub group. */
3597 htab->stub_group[tail->id].link_sec = curr;
3598 }
3599 while (tail != curr && (tail = prev) != NULL);
3600
3601 /* But wait, there's more! Input sections up to stub_group_size
3602 bytes before the stub section can be handled by it too. */
3603 if (!stubs_always_before_branch)
3604 {
3605 total = 0;
3606 while (prev != NULL
3607 && ((total += tail->output_offset - prev->output_offset)
3608 < stub_group_size))
3609 {
3610 tail = prev;
3611 prev = PREV_SEC (tail);
3612 htab->stub_group[tail->id].link_sec = curr;
3613 }
3614 }
3615 tail = prev;
3616 }
3617 }
3618 while (list-- != htab->input_list);
3619
3620 free (htab->input_list);
3621 }
3622
3623 #undef PREV_SEC
3624
3625 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3626
3627 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3628 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3629 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3630 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3631 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3632 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3633
3634 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3635 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3636 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3637 #define AARCH64_ZR 0x1f
3638
3639 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3640 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3641
3642 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3643 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3644 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3645 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3646 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3647 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3648 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3649 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3650 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3651 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3652 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3653 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3654 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3655 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3656 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3657 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3658 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3659 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3660
3661 /* Classify an INSN if it is indeed a load/store.
3662
3663 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3664
3665 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3666 is set equal to RT.
3667
3668 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3669
3670 static bfd_boolean
3671 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3672 bfd_boolean *pair, bfd_boolean *load)
3673 {
3674 uint32_t opcode;
3675 unsigned int r;
3676 uint32_t opc = 0;
3677 uint32_t v = 0;
3678 uint32_t opc_v = 0;
3679
3680 /* Bail out quickly if INSN doesn't fall into the load-store
3681 encoding space. */
3682 if (!AARCH64_LDST (insn))
3683 return FALSE;
3684
3685 *pair = FALSE;
3686 *load = FALSE;
3687 if (AARCH64_LDST_EX (insn))
3688 {
3689 *rt = AARCH64_RT (insn);
3690 *rt2 = *rt;
3691 if (AARCH64_BIT (insn, 21) == 1)
3692 {
3693 *pair = TRUE;
3694 *rt2 = AARCH64_RT2 (insn);
3695 }
3696 *load = AARCH64_LD (insn);
3697 return TRUE;
3698 }
3699 else if (AARCH64_LDST_NAP (insn)
3700 || AARCH64_LDSTP_PI (insn)
3701 || AARCH64_LDSTP_O (insn)
3702 || AARCH64_LDSTP_PRE (insn))
3703 {
3704 *pair = TRUE;
3705 *rt = AARCH64_RT (insn);
3706 *rt2 = AARCH64_RT2 (insn);
3707 *load = AARCH64_LD (insn);
3708 return TRUE;
3709 }
3710 else if (AARCH64_LDST_PCREL (insn)
3711 || AARCH64_LDST_UI (insn)
3712 || AARCH64_LDST_PIIMM (insn)
3713 || AARCH64_LDST_U (insn)
3714 || AARCH64_LDST_PREIMM (insn)
3715 || AARCH64_LDST_RO (insn)
3716 || AARCH64_LDST_UIMM (insn))
3717 {
3718 *rt = AARCH64_RT (insn);
3719 *rt2 = *rt;
3720 if (AARCH64_LDST_PCREL (insn))
3721 *load = TRUE;
3722 opc = AARCH64_BITS (insn, 22, 2);
3723 v = AARCH64_BIT (insn, 26);
3724 opc_v = opc | (v << 2);
3725 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3726 || opc_v == 5 || opc_v == 7);
3727 return TRUE;
3728 }
3729 else if (AARCH64_LDST_SIMD_M (insn)
3730 || AARCH64_LDST_SIMD_M_PI (insn))
3731 {
3732 *rt = AARCH64_RT (insn);
3733 *load = AARCH64_BIT (insn, 22);
3734 opcode = (insn >> 12) & 0xf;
3735 switch (opcode)
3736 {
3737 case 0:
3738 case 2:
3739 *rt2 = *rt + 3;
3740 break;
3741
3742 case 4:
3743 case 6:
3744 *rt2 = *rt + 2;
3745 break;
3746
3747 case 7:
3748 *rt2 = *rt;
3749 break;
3750
3751 case 8:
3752 case 10:
3753 *rt2 = *rt + 1;
3754 break;
3755
3756 default:
3757 return FALSE;
3758 }
3759 return TRUE;
3760 }
3761 else if (AARCH64_LDST_SIMD_S (insn)
3762 || AARCH64_LDST_SIMD_S_PI (insn))
3763 {
3764 *rt = AARCH64_RT (insn);
3765 r = (insn >> 21) & 1;
3766 *load = AARCH64_BIT (insn, 22);
3767 opcode = (insn >> 13) & 0x7;
3768 switch (opcode)
3769 {
3770 case 0:
3771 case 2:
3772 case 4:
3773 *rt2 = *rt + r;
3774 break;
3775
3776 case 1:
3777 case 3:
3778 case 5:
3779 *rt2 = *rt + (r == 0 ? 2 : 3);
3780 break;
3781
3782 case 6:
3783 *rt2 = *rt + r;
3784 break;
3785
3786 case 7:
3787 *rt2 = *rt + (r == 0 ? 2 : 3);
3788 break;
3789
3790 default:
3791 return FALSE;
3792 }
3793 return TRUE;
3794 }
3795
3796 return FALSE;
3797 }
3798
3799 /* Return TRUE if INSN is multiply-accumulate. */
3800
3801 static bfd_boolean
3802 aarch64_mlxl_p (uint32_t insn)
3803 {
3804 uint32_t op31 = AARCH64_OP31 (insn);
3805
3806 if (AARCH64_MAC (insn)
3807 && (op31 == 0 || op31 == 1 || op31 == 5)
3808 /* Exclude MUL instructions which are encoded as a multiple accumulate
3809 with RA = XZR. */
3810 && AARCH64_RA (insn) != AARCH64_ZR)
3811 return TRUE;
3812
3813 return FALSE;
3814 }
3815
3816 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3817 it is possible for a 64-bit multiply-accumulate instruction to generate an
3818 incorrect result. The details are quite complex and hard to
3819 determine statically, since branches in the code may exist in some
3820 circumstances, but all cases end with a memory (load, store, or
3821 prefetch) instruction followed immediately by the multiply-accumulate
3822 operation. We employ a linker patching technique, by moving the potentially
3823 affected multiply-accumulate instruction into a patch region and replacing
3824 the original instruction with a branch to the patch. This function checks
3825 if INSN_1 is the memory operation followed by a multiply-accumulate
3826 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3827 if INSN_1 and INSN_2 are safe. */
3828
3829 static bfd_boolean
3830 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3831 {
3832 uint32_t rt;
3833 uint32_t rt2;
3834 uint32_t rn;
3835 uint32_t rm;
3836 uint32_t ra;
3837 bfd_boolean pair;
3838 bfd_boolean load;
3839
3840 if (aarch64_mlxl_p (insn_2)
3841 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3842 {
3843 /* Any SIMD memory op is independent of the subsequent MLA
3844 by definition of the erratum. */
3845 if (AARCH64_BIT (insn_1, 26))
3846 return TRUE;
3847
3848 /* If not SIMD, check for integer memory ops and MLA relationship. */
3849 rn = AARCH64_RN (insn_2);
3850 ra = AARCH64_RA (insn_2);
3851 rm = AARCH64_RM (insn_2);
3852
3853 /* If this is a load and there's a true(RAW) dependency, we are safe
3854 and this is not an erratum sequence. */
3855 if (load &&
3856 (rt == rn || rt == rm || rt == ra
3857 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3858 return FALSE;
3859
3860 /* We conservatively put out stubs for all other cases (including
3861 writebacks). */
3862 return TRUE;
3863 }
3864
3865 return FALSE;
3866 }
3867
3868 /* Used to order a list of mapping symbols by address. */
3869
3870 static int
3871 elf_aarch64_compare_mapping (const void *a, const void *b)
3872 {
3873 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3874 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3875
3876 if (amap->vma > bmap->vma)
3877 return 1;
3878 else if (amap->vma < bmap->vma)
3879 return -1;
3880 else if (amap->type > bmap->type)
3881 /* Ensure results do not depend on the host qsort for objects with
3882 multiple mapping symbols at the same address by sorting on type
3883 after vma. */
3884 return 1;
3885 else if (amap->type < bmap->type)
3886 return -1;
3887 else
3888 return 0;
3889 }
3890
3891
3892 static char *
3893 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3894 {
3895 char *stub_name = (char *) bfd_malloc
3896 (strlen ("__erratum_835769_veneer_") + 16);
3897 if (stub_name != NULL)
3898 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3899 return stub_name;
3900 }
3901
3902 /* Scan for Cortex-A53 erratum 835769 sequence.
3903
3904 Return TRUE else FALSE on abnormal termination. */
3905
3906 static bfd_boolean
3907 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3908 struct bfd_link_info *info,
3909 unsigned int *num_fixes_p)
3910 {
3911 asection *section;
3912 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3913 unsigned int num_fixes = *num_fixes_p;
3914
3915 if (htab == NULL)
3916 return TRUE;
3917
3918 for (section = input_bfd->sections;
3919 section != NULL;
3920 section = section->next)
3921 {
3922 bfd_byte *contents = NULL;
3923 struct _aarch64_elf_section_data *sec_data;
3924 unsigned int span;
3925
3926 if (elf_section_type (section) != SHT_PROGBITS
3927 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3928 || (section->flags & SEC_EXCLUDE) != 0
3929 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3930 || (section->output_section == bfd_abs_section_ptr))
3931 continue;
3932
3933 if (elf_section_data (section)->this_hdr.contents != NULL)
3934 contents = elf_section_data (section)->this_hdr.contents;
3935 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3936 return FALSE;
3937
3938 sec_data = elf_aarch64_section_data (section);
3939
3940 qsort (sec_data->map, sec_data->mapcount,
3941 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3942
3943 for (span = 0; span < sec_data->mapcount; span++)
3944 {
3945 unsigned int span_start = sec_data->map[span].vma;
3946 unsigned int span_end = ((span == sec_data->mapcount - 1)
3947 ? sec_data->map[0].vma + section->size
3948 : sec_data->map[span + 1].vma);
3949 unsigned int i;
3950 char span_type = sec_data->map[span].type;
3951
3952 if (span_type == 'd')
3953 continue;
3954
3955 for (i = span_start; i + 4 < span_end; i += 4)
3956 {
3957 uint32_t insn_1 = bfd_getl32 (contents + i);
3958 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3959
3960 if (aarch64_erratum_sequence (insn_1, insn_2))
3961 {
3962 struct elf_aarch64_stub_hash_entry *stub_entry;
3963 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3964 if (! stub_name)
3965 return FALSE;
3966
3967 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3968 section,
3969 htab);
3970 if (! stub_entry)
3971 return FALSE;
3972
3973 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3974 stub_entry->target_section = section;
3975 stub_entry->target_value = i + 4;
3976 stub_entry->veneered_insn = insn_2;
3977 stub_entry->output_name = stub_name;
3978 num_fixes++;
3979 }
3980 }
3981 }
3982 if (elf_section_data (section)->this_hdr.contents == NULL)
3983 free (contents);
3984 }
3985
3986 *num_fixes_p = num_fixes;
3987
3988 return TRUE;
3989 }
3990
3991
3992 /* Test if instruction INSN is ADRP. */
3993
3994 static bfd_boolean
3995 _bfd_aarch64_adrp_p (uint32_t insn)
3996 {
3997 return ((insn & AARCH64_ADRP_OP_MASK) == AARCH64_ADRP_OP);
3998 }
3999
4000
4001 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
4002
4003 static bfd_boolean
4004 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
4005 uint32_t insn_3)
4006 {
4007 uint32_t rt;
4008 uint32_t rt2;
4009 bfd_boolean pair;
4010 bfd_boolean load;
4011
4012 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
4013 && (!pair
4014 || (pair && !load))
4015 && AARCH64_LDST_UIMM (insn_3)
4016 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
4017 }
4018
4019
4020 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
4021
4022 Return TRUE if section CONTENTS at offset I contains one of the
4023 erratum 843419 sequences, otherwise return FALSE. If a sequence is
4024 seen set P_VENEER_I to the offset of the final LOAD/STORE
4025 instruction in the sequence.
4026 */
4027
4028 static bfd_boolean
4029 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
4030 bfd_vma i, bfd_vma span_end,
4031 bfd_vma *p_veneer_i)
4032 {
4033 uint32_t insn_1 = bfd_getl32 (contents + i);
4034
4035 if (!_bfd_aarch64_adrp_p (insn_1))
4036 return FALSE;
4037
4038 if (span_end < i + 12)
4039 return FALSE;
4040
4041 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
4042 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
4043
4044 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
4045 return FALSE;
4046
4047 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
4048 {
4049 *p_veneer_i = i + 8;
4050 return TRUE;
4051 }
4052
4053 if (span_end < i + 16)
4054 return FALSE;
4055
4056 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
4057
4058 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
4059 {
4060 *p_veneer_i = i + 12;
4061 return TRUE;
4062 }
4063
4064 return FALSE;
4065 }
4066
4067
4068 /* Resize all stub sections. */
4069
4070 static void
4071 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
4072 {
4073 asection *section;
4074
4075 /* OK, we've added some stubs. Find out the new size of the
4076 stub sections. */
4077 for (section = htab->stub_bfd->sections;
4078 section != NULL; section = section->next)
4079 {
4080 /* Ignore non-stub sections. */
4081 if (!strstr (section->name, STUB_SUFFIX))
4082 continue;
4083 section->size = 0;
4084 }
4085
4086 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
4087
4088 for (section = htab->stub_bfd->sections;
4089 section != NULL; section = section->next)
4090 {
4091 if (!strstr (section->name, STUB_SUFFIX))
4092 continue;
4093
4094 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
4095 as long branch stubs contain a 64-bit address. */
4096 if (section->size)
4097 section->size += 8;
4098
4099 /* Ensure all stub sections have a size which is a multiple of
4100 4096. This is important in order to ensure that the insertion
4101 of stub sections does not in itself move existing code around
4102 in such a way that new errata sequences are created. We only do this
4103 when the ADRP workaround is enabled. If only the ADR workaround is
4104 enabled then the stubs workaround won't ever be used. */
4105 if (htab->fix_erratum_843419 & ERRAT_ADRP)
4106 if (section->size)
4107 section->size = BFD_ALIGN (section->size, 0x1000);
4108 }
4109 }
4110
4111 /* Construct an erratum 843419 workaround stub name. */
4112
4113 static char *
4114 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
4115 bfd_vma offset)
4116 {
4117 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
4118 char *stub_name = bfd_malloc (len);
4119
4120 if (stub_name != NULL)
4121 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
4122 input_section->owner->id,
4123 input_section->id,
4124 offset);
4125 return stub_name;
4126 }
4127
4128 /* Build a stub_entry structure describing an 843419 fixup.
4129
4130 The stub_entry constructed is populated with the bit pattern INSN
4131 of the instruction located at OFFSET within input SECTION.
4132
4133 Returns TRUE on success. */
4134
4135 static bfd_boolean
4136 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
4137 bfd_vma adrp_offset,
4138 bfd_vma ldst_offset,
4139 asection *section,
4140 struct bfd_link_info *info)
4141 {
4142 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4143 char *stub_name;
4144 struct elf_aarch64_stub_hash_entry *stub_entry;
4145
4146 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
4147 if (stub_name == NULL)
4148 return FALSE;
4149 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4150 FALSE, FALSE);
4151 if (stub_entry)
4152 {
4153 free (stub_name);
4154 return TRUE;
4155 }
4156
4157 /* We always place an 843419 workaround veneer in the stub section
4158 attached to the input section in which an erratum sequence has
4159 been found. This ensures that later in the link process (in
4160 elfNN_aarch64_write_section) when we copy the veneered
4161 instruction from the input section into the stub section the
4162 copied instruction will have had any relocations applied to it.
4163 If we placed workaround veneers in any other stub section then we
4164 could not assume that all relocations have been processed on the
4165 corresponding input section at the point we output the stub
4166 section. */
4167
4168 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4169 if (stub_entry == NULL)
4170 {
4171 free (stub_name);
4172 return FALSE;
4173 }
4174
4175 stub_entry->adrp_offset = adrp_offset;
4176 stub_entry->target_value = ldst_offset;
4177 stub_entry->target_section = section;
4178 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4179 stub_entry->veneered_insn = insn;
4180 stub_entry->output_name = stub_name;
4181
4182 return TRUE;
4183 }
4184
4185
4186 /* Scan an input section looking for the signature of erratum 843419.
4187
4188 Scans input SECTION in INPUT_BFD looking for erratum 843419
4189 signatures, for each signature found a stub_entry is created
4190 describing the location of the erratum for subsequent fixup.
4191
4192 Return TRUE on successful scan, FALSE on failure to scan.
4193 */
4194
4195 static bfd_boolean
4196 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4197 struct bfd_link_info *info)
4198 {
4199 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4200
4201 if (htab == NULL)
4202 return TRUE;
4203
4204 if (elf_section_type (section) != SHT_PROGBITS
4205 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4206 || (section->flags & SEC_EXCLUDE) != 0
4207 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4208 || (section->output_section == bfd_abs_section_ptr))
4209 return TRUE;
4210
4211 do
4212 {
4213 bfd_byte *contents = NULL;
4214 struct _aarch64_elf_section_data *sec_data;
4215 unsigned int span;
4216
4217 if (elf_section_data (section)->this_hdr.contents != NULL)
4218 contents = elf_section_data (section)->this_hdr.contents;
4219 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4220 return FALSE;
4221
4222 sec_data = elf_aarch64_section_data (section);
4223
4224 qsort (sec_data->map, sec_data->mapcount,
4225 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4226
4227 for (span = 0; span < sec_data->mapcount; span++)
4228 {
4229 unsigned int span_start = sec_data->map[span].vma;
4230 unsigned int span_end = ((span == sec_data->mapcount - 1)
4231 ? sec_data->map[0].vma + section->size
4232 : sec_data->map[span + 1].vma);
4233 unsigned int i;
4234 char span_type = sec_data->map[span].type;
4235
4236 if (span_type == 'd')
4237 continue;
4238
4239 for (i = span_start; i + 8 < span_end; i += 4)
4240 {
4241 bfd_vma vma = (section->output_section->vma
4242 + section->output_offset
4243 + i);
4244 bfd_vma veneer_i;
4245
4246 if (_bfd_aarch64_erratum_843419_p
4247 (contents, vma, i, span_end, &veneer_i))
4248 {
4249 uint32_t insn = bfd_getl32 (contents + veneer_i);
4250
4251 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4252 section, info))
4253 return FALSE;
4254 }
4255 }
4256 }
4257
4258 if (elf_section_data (section)->this_hdr.contents == NULL)
4259 free (contents);
4260 }
4261 while (0);
4262
4263 return TRUE;
4264 }
4265
4266
4267 /* Determine and set the size of the stub section for a final link.
4268
4269 The basic idea here is to examine all the relocations looking for
4270 PC-relative calls to a target that is unreachable with a "bl"
4271 instruction. */
4272
4273 bfd_boolean
4274 elfNN_aarch64_size_stubs (bfd *output_bfd,
4275 bfd *stub_bfd,
4276 struct bfd_link_info *info,
4277 bfd_signed_vma group_size,
4278 asection * (*add_stub_section) (const char *,
4279 asection *),
4280 void (*layout_sections_again) (void))
4281 {
4282 bfd_size_type stub_group_size;
4283 bfd_boolean stubs_always_before_branch;
4284 bfd_boolean stub_changed = FALSE;
4285 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4286 unsigned int num_erratum_835769_fixes = 0;
4287
4288 /* Propagate mach to stub bfd, because it may not have been
4289 finalized when we created stub_bfd. */
4290 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4291 bfd_get_mach (output_bfd));
4292
4293 /* Stash our params away. */
4294 htab->stub_bfd = stub_bfd;
4295 htab->add_stub_section = add_stub_section;
4296 htab->layout_sections_again = layout_sections_again;
4297 stubs_always_before_branch = group_size < 0;
4298 if (group_size < 0)
4299 stub_group_size = -group_size;
4300 else
4301 stub_group_size = group_size;
4302
4303 if (stub_group_size == 1)
4304 {
4305 /* Default values. */
4306 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4307 stub_group_size = 127 * 1024 * 1024;
4308 }
4309
4310 group_sections (htab, stub_group_size, stubs_always_before_branch);
4311
4312 (*htab->layout_sections_again) ();
4313
4314 if (htab->fix_erratum_835769)
4315 {
4316 bfd *input_bfd;
4317
4318 for (input_bfd = info->input_bfds;
4319 input_bfd != NULL; input_bfd = input_bfd->link.next)
4320 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4321 &num_erratum_835769_fixes))
4322 return FALSE;
4323
4324 _bfd_aarch64_resize_stubs (htab);
4325 (*htab->layout_sections_again) ();
4326 }
4327
4328 if (htab->fix_erratum_843419 != ERRAT_NONE)
4329 {
4330 bfd *input_bfd;
4331
4332 for (input_bfd = info->input_bfds;
4333 input_bfd != NULL;
4334 input_bfd = input_bfd->link.next)
4335 {
4336 asection *section;
4337
4338 for (section = input_bfd->sections;
4339 section != NULL;
4340 section = section->next)
4341 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4342 return FALSE;
4343 }
4344
4345 _bfd_aarch64_resize_stubs (htab);
4346 (*htab->layout_sections_again) ();
4347 }
4348
4349 while (1)
4350 {
4351 bfd *input_bfd;
4352
4353 for (input_bfd = info->input_bfds;
4354 input_bfd != NULL; input_bfd = input_bfd->link.next)
4355 {
4356 Elf_Internal_Shdr *symtab_hdr;
4357 asection *section;
4358 Elf_Internal_Sym *local_syms = NULL;
4359
4360 /* We'll need the symbol table in a second. */
4361 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4362 if (symtab_hdr->sh_info == 0)
4363 continue;
4364
4365 /* Walk over each section attached to the input bfd. */
4366 for (section = input_bfd->sections;
4367 section != NULL; section = section->next)
4368 {
4369 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4370
4371 /* If there aren't any relocs, then there's nothing more
4372 to do. */
4373 if ((section->flags & SEC_RELOC) == 0
4374 || section->reloc_count == 0
4375 || (section->flags & SEC_CODE) == 0)
4376 continue;
4377
4378 /* If this section is a link-once section that will be
4379 discarded, then don't create any stubs. */
4380 if (section->output_section == NULL
4381 || section->output_section->owner != output_bfd)
4382 continue;
4383
4384 /* Get the relocs. */
4385 internal_relocs
4386 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4387 NULL, info->keep_memory);
4388 if (internal_relocs == NULL)
4389 goto error_ret_free_local;
4390
4391 /* Now examine each relocation. */
4392 irela = internal_relocs;
4393 irelaend = irela + section->reloc_count;
4394 for (; irela < irelaend; irela++)
4395 {
4396 unsigned int r_type, r_indx;
4397 enum elf_aarch64_stub_type stub_type;
4398 struct elf_aarch64_stub_hash_entry *stub_entry;
4399 asection *sym_sec;
4400 bfd_vma sym_value;
4401 bfd_vma destination;
4402 struct elf_aarch64_link_hash_entry *hash;
4403 const char *sym_name;
4404 char *stub_name;
4405 const asection *id_sec;
4406 unsigned char st_type;
4407 bfd_size_type len;
4408
4409 r_type = ELFNN_R_TYPE (irela->r_info);
4410 r_indx = ELFNN_R_SYM (irela->r_info);
4411
4412 if (r_type >= (unsigned int) R_AARCH64_end)
4413 {
4414 bfd_set_error (bfd_error_bad_value);
4415 error_ret_free_internal:
4416 if (elf_section_data (section)->relocs == NULL)
4417 free (internal_relocs);
4418 goto error_ret_free_local;
4419 }
4420
4421 /* Only look for stubs on unconditional branch and
4422 branch and link instructions. */
4423 if (r_type != (unsigned int) AARCH64_R (CALL26)
4424 && r_type != (unsigned int) AARCH64_R (JUMP26))
4425 continue;
4426
4427 /* Now determine the call target, its name, value,
4428 section. */
4429 sym_sec = NULL;
4430 sym_value = 0;
4431 destination = 0;
4432 hash = NULL;
4433 sym_name = NULL;
4434 if (r_indx < symtab_hdr->sh_info)
4435 {
4436 /* It's a local symbol. */
4437 Elf_Internal_Sym *sym;
4438 Elf_Internal_Shdr *hdr;
4439
4440 if (local_syms == NULL)
4441 {
4442 local_syms
4443 = (Elf_Internal_Sym *) symtab_hdr->contents;
4444 if (local_syms == NULL)
4445 local_syms
4446 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4447 symtab_hdr->sh_info, 0,
4448 NULL, NULL, NULL);
4449 if (local_syms == NULL)
4450 goto error_ret_free_internal;
4451 }
4452
4453 sym = local_syms + r_indx;
4454 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4455 sym_sec = hdr->bfd_section;
4456 if (!sym_sec)
4457 /* This is an undefined symbol. It can never
4458 be resolved. */
4459 continue;
4460
4461 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4462 sym_value = sym->st_value;
4463 destination = (sym_value + irela->r_addend
4464 + sym_sec->output_offset
4465 + sym_sec->output_section->vma);
4466 st_type = ELF_ST_TYPE (sym->st_info);
4467 sym_name
4468 = bfd_elf_string_from_elf_section (input_bfd,
4469 symtab_hdr->sh_link,
4470 sym->st_name);
4471 }
4472 else
4473 {
4474 int e_indx;
4475
4476 e_indx = r_indx - symtab_hdr->sh_info;
4477 hash = ((struct elf_aarch64_link_hash_entry *)
4478 elf_sym_hashes (input_bfd)[e_indx]);
4479
4480 while (hash->root.root.type == bfd_link_hash_indirect
4481 || hash->root.root.type == bfd_link_hash_warning)
4482 hash = ((struct elf_aarch64_link_hash_entry *)
4483 hash->root.root.u.i.link);
4484
4485 if (hash->root.root.type == bfd_link_hash_defined
4486 || hash->root.root.type == bfd_link_hash_defweak)
4487 {
4488 struct elf_aarch64_link_hash_table *globals =
4489 elf_aarch64_hash_table (info);
4490 sym_sec = hash->root.root.u.def.section;
4491 sym_value = hash->root.root.u.def.value;
4492 /* For a destination in a shared library,
4493 use the PLT stub as target address to
4494 decide whether a branch stub is
4495 needed. */
4496 if (globals->root.splt != NULL && hash != NULL
4497 && hash->root.plt.offset != (bfd_vma) - 1)
4498 {
4499 sym_sec = globals->root.splt;
4500 sym_value = hash->root.plt.offset;
4501 if (sym_sec->output_section != NULL)
4502 destination = (sym_value
4503 + sym_sec->output_offset
4504 +
4505 sym_sec->output_section->vma);
4506 }
4507 else if (sym_sec->output_section != NULL)
4508 destination = (sym_value + irela->r_addend
4509 + sym_sec->output_offset
4510 + sym_sec->output_section->vma);
4511 }
4512 else if (hash->root.root.type == bfd_link_hash_undefined
4513 || (hash->root.root.type
4514 == bfd_link_hash_undefweak))
4515 {
4516 /* For a shared library, use the PLT stub as
4517 target address to decide whether a long
4518 branch stub is needed.
4519 For absolute code, they cannot be handled. */
4520 struct elf_aarch64_link_hash_table *globals =
4521 elf_aarch64_hash_table (info);
4522
4523 if (globals->root.splt != NULL && hash != NULL
4524 && hash->root.plt.offset != (bfd_vma) - 1)
4525 {
4526 sym_sec = globals->root.splt;
4527 sym_value = hash->root.plt.offset;
4528 if (sym_sec->output_section != NULL)
4529 destination = (sym_value
4530 + sym_sec->output_offset
4531 +
4532 sym_sec->output_section->vma);
4533 }
4534 else
4535 continue;
4536 }
4537 else
4538 {
4539 bfd_set_error (bfd_error_bad_value);
4540 goto error_ret_free_internal;
4541 }
4542 st_type = ELF_ST_TYPE (hash->root.type);
4543 sym_name = hash->root.root.root.string;
4544 }
4545
4546 /* Determine what (if any) linker stub is needed. */
4547 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4548 st_type, destination);
4549 if (stub_type == aarch64_stub_none)
4550 continue;
4551
4552 /* Support for grouping stub sections. */
4553 id_sec = htab->stub_group[section->id].link_sec;
4554
4555 /* Get the name of this stub. */
4556 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4557 irela);
4558 if (!stub_name)
4559 goto error_ret_free_internal;
4560
4561 stub_entry =
4562 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4563 stub_name, FALSE, FALSE);
4564 if (stub_entry != NULL)
4565 {
4566 /* The proper stub has already been created. */
4567 free (stub_name);
4568 /* Always update this stub's target since it may have
4569 changed after layout. */
4570 stub_entry->target_value = sym_value + irela->r_addend;
4571 continue;
4572 }
4573
4574 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4575 (stub_name, section, htab);
4576 if (stub_entry == NULL)
4577 {
4578 free (stub_name);
4579 goto error_ret_free_internal;
4580 }
4581
4582 stub_entry->target_value = sym_value + irela->r_addend;
4583 stub_entry->target_section = sym_sec;
4584 stub_entry->stub_type = stub_type;
4585 stub_entry->h = hash;
4586 stub_entry->st_type = st_type;
4587
4588 if (sym_name == NULL)
4589 sym_name = "unnamed";
4590 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4591 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4592 if (stub_entry->output_name == NULL)
4593 {
4594 free (stub_name);
4595 goto error_ret_free_internal;
4596 }
4597
4598 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4599 sym_name);
4600
4601 stub_changed = TRUE;
4602 }
4603
4604 /* We're done with the internal relocs, free them. */
4605 if (elf_section_data (section)->relocs == NULL)
4606 free (internal_relocs);
4607 }
4608 }
4609
4610 if (!stub_changed)
4611 break;
4612
4613 _bfd_aarch64_resize_stubs (htab);
4614
4615 /* Ask the linker to do its stuff. */
4616 (*htab->layout_sections_again) ();
4617 stub_changed = FALSE;
4618 }
4619
4620 return TRUE;
4621
4622 error_ret_free_local:
4623 return FALSE;
4624 }
4625
4626 /* Build all the stubs associated with the current output file. The
4627 stubs are kept in a hash table attached to the main linker hash
4628 table. We also set up the .plt entries for statically linked PIC
4629 functions here. This function is called via aarch64_elf_finish in the
4630 linker. */
4631
4632 bfd_boolean
4633 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4634 {
4635 asection *stub_sec;
4636 struct bfd_hash_table *table;
4637 struct elf_aarch64_link_hash_table *htab;
4638
4639 htab = elf_aarch64_hash_table (info);
4640
4641 for (stub_sec = htab->stub_bfd->sections;
4642 stub_sec != NULL; stub_sec = stub_sec->next)
4643 {
4644 bfd_size_type size;
4645
4646 /* Ignore non-stub sections. */
4647 if (!strstr (stub_sec->name, STUB_SUFFIX))
4648 continue;
4649
4650 /* Allocate memory to hold the linker stubs. */
4651 size = stub_sec->size;
4652 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4653 if (stub_sec->contents == NULL && size != 0)
4654 return FALSE;
4655 stub_sec->size = 0;
4656
4657 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4658 aligned, as long branch stubs contain a 64-bit address. */
4659 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4660 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4661 stub_sec->size += 8;
4662 }
4663
4664 /* Build the stubs as directed by the stub hash table. */
4665 table = &htab->stub_hash_table;
4666 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4667
4668 return TRUE;
4669 }
4670
4671
4672 /* Add an entry to the code/data map for section SEC. */
4673
4674 static void
4675 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4676 {
4677 struct _aarch64_elf_section_data *sec_data =
4678 elf_aarch64_section_data (sec);
4679 unsigned int newidx;
4680
4681 if (sec_data->map == NULL)
4682 {
4683 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4684 sec_data->mapcount = 0;
4685 sec_data->mapsize = 1;
4686 }
4687
4688 newidx = sec_data->mapcount++;
4689
4690 if (sec_data->mapcount > sec_data->mapsize)
4691 {
4692 sec_data->mapsize *= 2;
4693 sec_data->map = bfd_realloc_or_free
4694 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4695 }
4696
4697 if (sec_data->map)
4698 {
4699 sec_data->map[newidx].vma = vma;
4700 sec_data->map[newidx].type = type;
4701 }
4702 }
4703
4704
4705 /* Initialise maps of insn/data for input BFDs. */
4706 void
4707 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4708 {
4709 Elf_Internal_Sym *isymbuf;
4710 Elf_Internal_Shdr *hdr;
4711 unsigned int i, localsyms;
4712
4713 /* Make sure that we are dealing with an AArch64 elf binary. */
4714 if (!is_aarch64_elf (abfd))
4715 return;
4716
4717 if ((abfd->flags & DYNAMIC) != 0)
4718 return;
4719
4720 hdr = &elf_symtab_hdr (abfd);
4721 localsyms = hdr->sh_info;
4722
4723 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4724 should contain the number of local symbols, which should come before any
4725 global symbols. Mapping symbols are always local. */
4726 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4727
4728 /* No internal symbols read? Skip this BFD. */
4729 if (isymbuf == NULL)
4730 return;
4731
4732 for (i = 0; i < localsyms; i++)
4733 {
4734 Elf_Internal_Sym *isym = &isymbuf[i];
4735 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4736 const char *name;
4737
4738 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4739 {
4740 name = bfd_elf_string_from_elf_section (abfd,
4741 hdr->sh_link,
4742 isym->st_name);
4743
4744 if (bfd_is_aarch64_special_symbol_name
4745 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4746 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4747 }
4748 }
4749 }
4750
4751 static void
4752 setup_plt_values (struct bfd_link_info *link_info,
4753 aarch64_plt_type plt_type)
4754 {
4755 struct elf_aarch64_link_hash_table *globals;
4756 globals = elf_aarch64_hash_table (link_info);
4757
4758 if (plt_type == PLT_BTI_PAC)
4759 {
4760 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4761
4762 /* Only in ET_EXEC we need PLTn with BTI. */
4763 if (bfd_link_pde (link_info))
4764 {
4765 globals->plt_entry_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
4766 globals->plt_entry = elfNN_aarch64_small_plt_bti_pac_entry;
4767 }
4768 else
4769 {
4770 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4771 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4772 }
4773 }
4774 else if (plt_type == PLT_BTI)
4775 {
4776 globals->plt0_entry = elfNN_aarch64_small_plt0_bti_entry;
4777
4778 /* Only in ET_EXEC we need PLTn with BTI. */
4779 if (bfd_link_pde (link_info))
4780 {
4781 globals->plt_entry_size = PLT_BTI_SMALL_ENTRY_SIZE;
4782 globals->plt_entry = elfNN_aarch64_small_plt_bti_entry;
4783 }
4784 }
4785 else if (plt_type == PLT_PAC)
4786 {
4787 globals->plt_entry_size = PLT_PAC_SMALL_ENTRY_SIZE;
4788 globals->plt_entry = elfNN_aarch64_small_plt_pac_entry;
4789 }
4790 }
4791
4792 /* Set option values needed during linking. */
4793 void
4794 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4795 struct bfd_link_info *link_info,
4796 int no_enum_warn,
4797 int no_wchar_warn, int pic_veneer,
4798 int fix_erratum_835769,
4799 erratum_84319_opts fix_erratum_843419,
4800 int no_apply_dynamic_relocs,
4801 aarch64_bti_pac_info bp_info)
4802 {
4803 struct elf_aarch64_link_hash_table *globals;
4804
4805 globals = elf_aarch64_hash_table (link_info);
4806 globals->pic_veneer = pic_veneer;
4807 globals->fix_erratum_835769 = fix_erratum_835769;
4808 /* If the default options are used, then ERRAT_ADR will be set by default
4809 which will enable the ADRP->ADR workaround for the erratum 843419
4810 workaround. */
4811 globals->fix_erratum_843419 = fix_erratum_843419;
4812 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4813
4814 BFD_ASSERT (is_aarch64_elf (output_bfd));
4815 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4816 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4817
4818 switch (bp_info.bti_type)
4819 {
4820 case BTI_WARN:
4821 elf_aarch64_tdata (output_bfd)->no_bti_warn = 0;
4822 elf_aarch64_tdata (output_bfd)->gnu_and_prop
4823 |= GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
4824 break;
4825
4826 default:
4827 break;
4828 }
4829 elf_aarch64_tdata (output_bfd)->plt_type = bp_info.plt_type;
4830 setup_plt_values (link_info, bp_info.plt_type);
4831 }
4832
4833 static bfd_vma
4834 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4835 struct elf_aarch64_link_hash_table
4836 *globals, struct bfd_link_info *info,
4837 bfd_vma value, bfd *output_bfd,
4838 bfd_boolean *unresolved_reloc_p)
4839 {
4840 bfd_vma off = (bfd_vma) - 1;
4841 asection *basegot = globals->root.sgot;
4842 bfd_boolean dyn = globals->root.dynamic_sections_created;
4843
4844 if (h != NULL)
4845 {
4846 BFD_ASSERT (basegot != NULL);
4847 off = h->got.offset;
4848 BFD_ASSERT (off != (bfd_vma) - 1);
4849 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4850 || (bfd_link_pic (info)
4851 && SYMBOL_REFERENCES_LOCAL (info, h))
4852 || (ELF_ST_VISIBILITY (h->other)
4853 && h->root.type == bfd_link_hash_undefweak))
4854 {
4855 /* This is actually a static link, or it is a -Bsymbolic link
4856 and the symbol is defined locally. We must initialize this
4857 entry in the global offset table. Since the offset must
4858 always be a multiple of 8 (4 in the case of ILP32), we use
4859 the least significant bit to record whether we have
4860 initialized it already.
4861 When doing a dynamic link, we create a .rel(a).got relocation
4862 entry to initialize the value. This is done in the
4863 finish_dynamic_symbol routine. */
4864 if ((off & 1) != 0)
4865 off &= ~1;
4866 else
4867 {
4868 bfd_put_NN (output_bfd, value, basegot->contents + off);
4869 h->got.offset |= 1;
4870 }
4871 }
4872 else
4873 *unresolved_reloc_p = FALSE;
4874
4875 off = off + basegot->output_section->vma + basegot->output_offset;
4876 }
4877
4878 return off;
4879 }
4880
4881 /* Change R_TYPE to a more efficient access model where possible,
4882 return the new reloc type. */
4883
4884 static bfd_reloc_code_real_type
4885 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4886 struct elf_link_hash_entry *h)
4887 {
4888 bfd_boolean is_local = h == NULL;
4889
4890 switch (r_type)
4891 {
4892 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4893 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4894 return (is_local
4895 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4896 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4897
4898 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4899 return (is_local
4900 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4901 : r_type);
4902
4903 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4904 return (is_local
4905 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4906 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4907
4908 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4909 return (is_local
4910 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4911 : BFD_RELOC_AARCH64_NONE);
4912
4913 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4914 return (is_local
4915 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4916 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4917
4918 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4919 return (is_local
4920 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4921 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4922
4923 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4924 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4925 return (is_local
4926 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4927 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4928
4929 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4930 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4931
4932 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4933 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4934
4935 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4936 return r_type;
4937
4938 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4939 return (is_local
4940 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4941 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4942
4943 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4944 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4945 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4946 /* Instructions with these relocations will become NOPs. */
4947 return BFD_RELOC_AARCH64_NONE;
4948
4949 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4950 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4951 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4952 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4953
4954 #if ARCH_SIZE == 64
4955 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4956 return is_local
4957 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4958 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4959
4960 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4961 return is_local
4962 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4963 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4964 #endif
4965
4966 default:
4967 break;
4968 }
4969
4970 return r_type;
4971 }
4972
4973 static unsigned int
4974 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4975 {
4976 switch (r_type)
4977 {
4978 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4979 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4980 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4981 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4982 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4983 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4984 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4985 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4986 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4987 return GOT_NORMAL;
4988
4989 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4990 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4991 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4992 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4993 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4994 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4995 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4996 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4997 return GOT_TLS_GD;
4998
4999 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5000 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5001 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5002 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5003 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5004 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5005 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5006 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5007 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5008 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5009 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5010 return GOT_TLSDESC_GD;
5011
5012 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5013 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5014 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5015 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5016 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5017 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5018 return GOT_TLS_IE;
5019
5020 default:
5021 break;
5022 }
5023 return GOT_UNKNOWN;
5024 }
5025
5026 static bfd_boolean
5027 aarch64_can_relax_tls (bfd *input_bfd,
5028 struct bfd_link_info *info,
5029 bfd_reloc_code_real_type r_type,
5030 struct elf_link_hash_entry *h,
5031 unsigned long r_symndx)
5032 {
5033 unsigned int symbol_got_type;
5034 unsigned int reloc_got_type;
5035
5036 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
5037 return FALSE;
5038
5039 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
5040 reloc_got_type = aarch64_reloc_got_type (r_type);
5041
5042 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
5043 return TRUE;
5044
5045 if (!bfd_link_executable (info))
5046 return FALSE;
5047
5048 if (h && h->root.type == bfd_link_hash_undefweak)
5049 return FALSE;
5050
5051 return TRUE;
5052 }
5053
5054 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
5055 enumerator. */
5056
5057 static bfd_reloc_code_real_type
5058 aarch64_tls_transition (bfd *input_bfd,
5059 struct bfd_link_info *info,
5060 unsigned int r_type,
5061 struct elf_link_hash_entry *h,
5062 unsigned long r_symndx)
5063 {
5064 bfd_reloc_code_real_type bfd_r_type
5065 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
5066
5067 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
5068 return bfd_r_type;
5069
5070 return aarch64_tls_transition_without_check (bfd_r_type, h);
5071 }
5072
5073 /* Return the base VMA address which should be subtracted from real addresses
5074 when resolving R_AARCH64_TLS_DTPREL relocation. */
5075
5076 static bfd_vma
5077 dtpoff_base (struct bfd_link_info *info)
5078 {
5079 /* If tls_sec is NULL, we should have signalled an error already. */
5080 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
5081 return elf_hash_table (info)->tls_sec->vma;
5082 }
5083
5084 /* Return the base VMA address which should be subtracted from real addresses
5085 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
5086
5087 static bfd_vma
5088 tpoff_base (struct bfd_link_info *info)
5089 {
5090 struct elf_link_hash_table *htab = elf_hash_table (info);
5091
5092 /* If tls_sec is NULL, we should have signalled an error already. */
5093 BFD_ASSERT (htab->tls_sec != NULL);
5094
5095 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
5096 htab->tls_sec->alignment_power);
5097 return htab->tls_sec->vma - base;
5098 }
5099
5100 static bfd_vma *
5101 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5102 unsigned long r_symndx)
5103 {
5104 /* Calculate the address of the GOT entry for symbol
5105 referred to in h. */
5106 if (h != NULL)
5107 return &h->got.offset;
5108 else
5109 {
5110 /* local symbol */
5111 struct elf_aarch64_local_symbol *l;
5112
5113 l = elf_aarch64_locals (input_bfd);
5114 return &l[r_symndx].got_offset;
5115 }
5116 }
5117
5118 static void
5119 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5120 unsigned long r_symndx)
5121 {
5122 bfd_vma *p;
5123 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
5124 *p |= 1;
5125 }
5126
5127 static int
5128 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
5129 unsigned long r_symndx)
5130 {
5131 bfd_vma value;
5132 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5133 return value & 1;
5134 }
5135
5136 static bfd_vma
5137 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5138 unsigned long r_symndx)
5139 {
5140 bfd_vma value;
5141 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
5142 value &= ~1;
5143 return value;
5144 }
5145
5146 static bfd_vma *
5147 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
5148 unsigned long r_symndx)
5149 {
5150 /* Calculate the address of the GOT entry for symbol
5151 referred to in h. */
5152 if (h != NULL)
5153 {
5154 struct elf_aarch64_link_hash_entry *eh;
5155 eh = (struct elf_aarch64_link_hash_entry *) h;
5156 return &eh->tlsdesc_got_jump_table_offset;
5157 }
5158 else
5159 {
5160 /* local symbol */
5161 struct elf_aarch64_local_symbol *l;
5162
5163 l = elf_aarch64_locals (input_bfd);
5164 return &l[r_symndx].tlsdesc_got_jump_table_offset;
5165 }
5166 }
5167
5168 static void
5169 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
5170 unsigned long r_symndx)
5171 {
5172 bfd_vma *p;
5173 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5174 *p |= 1;
5175 }
5176
5177 static int
5178 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
5179 struct elf_link_hash_entry *h,
5180 unsigned long r_symndx)
5181 {
5182 bfd_vma value;
5183 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5184 return value & 1;
5185 }
5186
5187 static bfd_vma
5188 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
5189 unsigned long r_symndx)
5190 {
5191 bfd_vma value;
5192 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
5193 value &= ~1;
5194 return value;
5195 }
5196
5197 /* Data for make_branch_to_erratum_835769_stub(). */
5198
5199 struct erratum_835769_branch_to_stub_data
5200 {
5201 struct bfd_link_info *info;
5202 asection *output_section;
5203 bfd_byte *contents;
5204 };
5205
5206 /* Helper to insert branches to erratum 835769 stubs in the right
5207 places for a particular section. */
5208
5209 static bfd_boolean
5210 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5211 void *in_arg)
5212 {
5213 struct elf_aarch64_stub_hash_entry *stub_entry;
5214 struct erratum_835769_branch_to_stub_data *data;
5215 bfd_byte *contents;
5216 unsigned long branch_insn = 0;
5217 bfd_vma veneered_insn_loc, veneer_entry_loc;
5218 bfd_signed_vma branch_offset;
5219 unsigned int target;
5220 bfd *abfd;
5221
5222 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5223 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5224
5225 if (stub_entry->target_section != data->output_section
5226 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5227 return TRUE;
5228
5229 contents = data->contents;
5230 veneered_insn_loc = stub_entry->target_section->output_section->vma
5231 + stub_entry->target_section->output_offset
5232 + stub_entry->target_value;
5233 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5234 + stub_entry->stub_sec->output_offset
5235 + stub_entry->stub_offset;
5236 branch_offset = veneer_entry_loc - veneered_insn_loc;
5237
5238 abfd = stub_entry->target_section->owner;
5239 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5240 _bfd_error_handler
5241 (_("%pB: error: erratum 835769 stub out "
5242 "of range (input file too large)"), abfd);
5243
5244 target = stub_entry->target_value;
5245 branch_insn = 0x14000000;
5246 branch_offset >>= 2;
5247 branch_offset &= 0x3ffffff;
5248 branch_insn |= branch_offset;
5249 bfd_putl32 (branch_insn, &contents[target]);
5250
5251 return TRUE;
5252 }
5253
5254
5255 static bfd_boolean
5256 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5257 void *in_arg)
5258 {
5259 struct elf_aarch64_stub_hash_entry *stub_entry
5260 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5261 struct erratum_835769_branch_to_stub_data *data
5262 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5263 struct bfd_link_info *info;
5264 struct elf_aarch64_link_hash_table *htab;
5265 bfd_byte *contents;
5266 asection *section;
5267 bfd *abfd;
5268 bfd_vma place;
5269 uint32_t insn;
5270
5271 info = data->info;
5272 contents = data->contents;
5273 section = data->output_section;
5274
5275 htab = elf_aarch64_hash_table (info);
5276
5277 if (stub_entry->target_section != section
5278 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5279 return TRUE;
5280
5281 BFD_ASSERT (((htab->fix_erratum_843419 & ERRAT_ADRP) && stub_entry->stub_sec)
5282 || (htab->fix_erratum_843419 & ERRAT_ADR));
5283
5284 /* Only update the stub section if we have one. We should always have one if
5285 we're allowed to use the ADRP errata workaround, otherwise it is not
5286 required. */
5287 if (stub_entry->stub_sec)
5288 {
5289 insn = bfd_getl32 (contents + stub_entry->target_value);
5290 bfd_putl32 (insn,
5291 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5292 }
5293
5294 place = (section->output_section->vma + section->output_offset
5295 + stub_entry->adrp_offset);
5296 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5297
5298 if (!_bfd_aarch64_adrp_p (insn))
5299 abort ();
5300
5301 bfd_signed_vma imm =
5302 (_bfd_aarch64_sign_extend
5303 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5304 - (place & 0xfff));
5305
5306 if ((htab->fix_erratum_843419 & ERRAT_ADR)
5307 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5308 {
5309 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5310 | AARCH64_RT (insn));
5311 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5312 /* Stub is not needed, don't map it out. */
5313 stub_entry->stub_type = aarch64_stub_none;
5314 }
5315 else if (htab->fix_erratum_843419 & ERRAT_ADRP)
5316 {
5317 bfd_vma veneered_insn_loc;
5318 bfd_vma veneer_entry_loc;
5319 bfd_signed_vma branch_offset;
5320 uint32_t branch_insn;
5321
5322 veneered_insn_loc = stub_entry->target_section->output_section->vma
5323 + stub_entry->target_section->output_offset
5324 + stub_entry->target_value;
5325 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5326 + stub_entry->stub_sec->output_offset
5327 + stub_entry->stub_offset;
5328 branch_offset = veneer_entry_loc - veneered_insn_loc;
5329
5330 abfd = stub_entry->target_section->owner;
5331 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5332 _bfd_error_handler
5333 (_("%pB: error: erratum 843419 stub out "
5334 "of range (input file too large)"), abfd);
5335
5336 branch_insn = 0x14000000;
5337 branch_offset >>= 2;
5338 branch_offset &= 0x3ffffff;
5339 branch_insn |= branch_offset;
5340 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5341 }
5342 else
5343 {
5344 abfd = stub_entry->target_section->owner;
5345 _bfd_error_handler
5346 (_("%pB: error: erratum 843419 immediate 0x%" BFD_VMA_FMT "x "
5347 "out of range for ADR (input file too large) and "
5348 "--fix-cortex-a53-843419=adr used. Run the linker with "
5349 "--fix-cortex-a53-843419=full instead"), abfd, imm);
5350 bfd_set_error (bfd_error_bad_value);
5351 /* This function is called inside a hashtable traversal and the error
5352 handlers called above turn into non-fatal errors. Which means this
5353 case ld returns an exit code 0 and also produces a broken object file.
5354 To prevent this, issue a hard abort. */
5355 BFD_FAIL ();
5356 }
5357 return TRUE;
5358 }
5359
5360
5361 static bfd_boolean
5362 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5363 struct bfd_link_info *link_info,
5364 asection *sec,
5365 bfd_byte *contents)
5366
5367 {
5368 struct elf_aarch64_link_hash_table *globals =
5369 elf_aarch64_hash_table (link_info);
5370
5371 if (globals == NULL)
5372 return FALSE;
5373
5374 /* Fix code to point to erratum 835769 stubs. */
5375 if (globals->fix_erratum_835769)
5376 {
5377 struct erratum_835769_branch_to_stub_data data;
5378
5379 data.info = link_info;
5380 data.output_section = sec;
5381 data.contents = contents;
5382 bfd_hash_traverse (&globals->stub_hash_table,
5383 make_branch_to_erratum_835769_stub, &data);
5384 }
5385
5386 if (globals->fix_erratum_843419)
5387 {
5388 struct erratum_835769_branch_to_stub_data data;
5389
5390 data.info = link_info;
5391 data.output_section = sec;
5392 data.contents = contents;
5393 bfd_hash_traverse (&globals->stub_hash_table,
5394 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5395 }
5396
5397 return FALSE;
5398 }
5399
5400 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5401
5402 static bfd_boolean
5403 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5404 {
5405 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5406 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5407 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5408 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5409 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5410 }
5411
5412 /* Perform a relocation as part of a final link. The input relocation type
5413 should be TLS relaxed. */
5414
5415 static bfd_reloc_status_type
5416 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5417 bfd *input_bfd,
5418 bfd *output_bfd,
5419 asection *input_section,
5420 bfd_byte *contents,
5421 Elf_Internal_Rela *rel,
5422 bfd_vma value,
5423 struct bfd_link_info *info,
5424 asection *sym_sec,
5425 struct elf_link_hash_entry *h,
5426 bfd_boolean *unresolved_reloc_p,
5427 bfd_boolean save_addend,
5428 bfd_vma *saved_addend,
5429 Elf_Internal_Sym *sym)
5430 {
5431 Elf_Internal_Shdr *symtab_hdr;
5432 unsigned int r_type = howto->type;
5433 bfd_reloc_code_real_type bfd_r_type
5434 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5435 unsigned long r_symndx;
5436 bfd_byte *hit_data = contents + rel->r_offset;
5437 bfd_vma place, off, got_entry_addr = 0;
5438 bfd_signed_vma signed_addend;
5439 struct elf_aarch64_link_hash_table *globals;
5440 bfd_boolean weak_undef_p;
5441 bfd_boolean relative_reloc;
5442 asection *base_got;
5443 bfd_vma orig_value = value;
5444 bfd_boolean resolved_to_zero;
5445 bfd_boolean abs_symbol_p;
5446
5447 globals = elf_aarch64_hash_table (info);
5448
5449 symtab_hdr = &elf_symtab_hdr (input_bfd);
5450
5451 BFD_ASSERT (is_aarch64_elf (input_bfd));
5452
5453 r_symndx = ELFNN_R_SYM (rel->r_info);
5454
5455 place = input_section->output_section->vma
5456 + input_section->output_offset + rel->r_offset;
5457
5458 /* Get addend, accumulating the addend for consecutive relocs
5459 which refer to the same offset. */
5460 signed_addend = saved_addend ? *saved_addend : 0;
5461 signed_addend += rel->r_addend;
5462
5463 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5464 : bfd_is_und_section (sym_sec));
5465 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5466
5467
5468 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5469 it here if it is defined in a non-shared object. */
5470 if (h != NULL
5471 && h->type == STT_GNU_IFUNC
5472 && h->def_regular)
5473 {
5474 asection *plt;
5475 const char *name;
5476 bfd_vma addend = 0;
5477
5478 if ((input_section->flags & SEC_ALLOC) == 0)
5479 {
5480 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5481 STT_GNU_IFUNC symbol as STT_FUNC. */
5482 if (elf_section_type (input_section) == SHT_NOTE)
5483 goto skip_ifunc;
5484
5485 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5486 sections because such sections are not SEC_ALLOC and
5487 thus ld.so will not process them. */
5488 if ((input_section->flags & SEC_DEBUGGING) != 0)
5489 return bfd_reloc_ok;
5490
5491 if (h->root.root.string)
5492 name = h->root.root.string;
5493 else
5494 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5495 _bfd_error_handler
5496 /* xgettext:c-format */
5497 (_("%pB(%pA+%#" PRIx64 "): "
5498 "unresolvable %s relocation against symbol `%s'"),
5499 input_bfd, input_section, (uint64_t) rel->r_offset,
5500 howto->name, name);
5501 bfd_set_error (bfd_error_bad_value);
5502 return bfd_reloc_notsupported;
5503 }
5504 else if (h->plt.offset == (bfd_vma) -1)
5505 goto bad_ifunc_reloc;
5506
5507 /* STT_GNU_IFUNC symbol must go through PLT. */
5508 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5509 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5510
5511 switch (bfd_r_type)
5512 {
5513 default:
5514 bad_ifunc_reloc:
5515 if (h->root.root.string)
5516 name = h->root.root.string;
5517 else
5518 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5519 NULL);
5520 _bfd_error_handler
5521 /* xgettext:c-format */
5522 (_("%pB: relocation %s against STT_GNU_IFUNC "
5523 "symbol `%s' isn't handled by %s"), input_bfd,
5524 howto->name, name, __FUNCTION__);
5525 bfd_set_error (bfd_error_bad_value);
5526 return bfd_reloc_notsupported;
5527
5528 case BFD_RELOC_AARCH64_NN:
5529 if (rel->r_addend != 0)
5530 {
5531 if (h->root.root.string)
5532 name = h->root.root.string;
5533 else
5534 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5535 sym, NULL);
5536 _bfd_error_handler
5537 /* xgettext:c-format */
5538 (_("%pB: relocation %s against STT_GNU_IFUNC "
5539 "symbol `%s' has non-zero addend: %" PRId64),
5540 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5541 bfd_set_error (bfd_error_bad_value);
5542 return bfd_reloc_notsupported;
5543 }
5544
5545 /* Generate dynamic relocation only when there is a
5546 non-GOT reference in a shared object. */
5547 if (bfd_link_pic (info) && h->non_got_ref)
5548 {
5549 Elf_Internal_Rela outrel;
5550 asection *sreloc;
5551
5552 /* Need a dynamic relocation to get the real function
5553 address. */
5554 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5555 info,
5556 input_section,
5557 rel->r_offset);
5558 if (outrel.r_offset == (bfd_vma) -1
5559 || outrel.r_offset == (bfd_vma) -2)
5560 abort ();
5561
5562 outrel.r_offset += (input_section->output_section->vma
5563 + input_section->output_offset);
5564
5565 if (h->dynindx == -1
5566 || h->forced_local
5567 || bfd_link_executable (info))
5568 {
5569 /* This symbol is resolved locally. */
5570 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5571 outrel.r_addend = (h->root.u.def.value
5572 + h->root.u.def.section->output_section->vma
5573 + h->root.u.def.section->output_offset);
5574 }
5575 else
5576 {
5577 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5578 outrel.r_addend = 0;
5579 }
5580
5581 sreloc = globals->root.irelifunc;
5582 elf_append_rela (output_bfd, sreloc, &outrel);
5583
5584 /* If this reloc is against an external symbol, we
5585 do not want to fiddle with the addend. Otherwise,
5586 we need to include the symbol value so that it
5587 becomes an addend for the dynamic reloc. For an
5588 internal symbol, we have updated addend. */
5589 return bfd_reloc_ok;
5590 }
5591 /* FALLTHROUGH */
5592 case BFD_RELOC_AARCH64_CALL26:
5593 case BFD_RELOC_AARCH64_JUMP26:
5594 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5595 place, value,
5596 signed_addend,
5597 weak_undef_p);
5598 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5599 howto, value);
5600 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5601 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5602 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5603 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5604 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5605 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5606 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5607 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5608 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5609 base_got = globals->root.sgot;
5610 off = h->got.offset;
5611
5612 if (base_got == NULL)
5613 abort ();
5614
5615 if (off == (bfd_vma) -1)
5616 {
5617 bfd_vma plt_index;
5618
5619 /* We can't use h->got.offset here to save state, or
5620 even just remember the offset, as finish_dynamic_symbol
5621 would use that as offset into .got. */
5622
5623 if (globals->root.splt != NULL)
5624 {
5625 plt_index = ((h->plt.offset - globals->plt_header_size) /
5626 globals->plt_entry_size);
5627 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5628 base_got = globals->root.sgotplt;
5629 }
5630 else
5631 {
5632 plt_index = h->plt.offset / globals->plt_entry_size;
5633 off = plt_index * GOT_ENTRY_SIZE;
5634 base_got = globals->root.igotplt;
5635 }
5636
5637 if (h->dynindx == -1
5638 || h->forced_local
5639 || info->symbolic)
5640 {
5641 /* This references the local definition. We must
5642 initialize this entry in the global offset table.
5643 Since the offset must always be a multiple of 8,
5644 we use the least significant bit to record
5645 whether we have initialized it already.
5646
5647 When doing a dynamic link, we create a .rela.got
5648 relocation entry to initialize the value. This
5649 is done in the finish_dynamic_symbol routine. */
5650 if ((off & 1) != 0)
5651 off &= ~1;
5652 else
5653 {
5654 bfd_put_NN (output_bfd, value,
5655 base_got->contents + off);
5656 /* Note that this is harmless as -1 | 1 still is -1. */
5657 h->got.offset |= 1;
5658 }
5659 }
5660 value = (base_got->output_section->vma
5661 + base_got->output_offset + off);
5662 }
5663 else
5664 value = aarch64_calculate_got_entry_vma (h, globals, info,
5665 value, output_bfd,
5666 unresolved_reloc_p);
5667
5668 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5669 addend = (globals->root.sgot->output_section->vma
5670 + globals->root.sgot->output_offset);
5671
5672 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5673 place, value,
5674 addend, weak_undef_p);
5675 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5676 case BFD_RELOC_AARCH64_ADD_LO12:
5677 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5678 break;
5679 }
5680 }
5681
5682 skip_ifunc:
5683 resolved_to_zero = (h != NULL
5684 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5685
5686 switch (bfd_r_type)
5687 {
5688 case BFD_RELOC_AARCH64_NONE:
5689 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5690 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5691 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5692 *unresolved_reloc_p = FALSE;
5693 return bfd_reloc_ok;
5694
5695 case BFD_RELOC_AARCH64_NN:
5696
5697 /* When generating a shared object or relocatable executable, these
5698 relocations are copied into the output file to be resolved at
5699 run time. */
5700 if (((bfd_link_pic (info)
5701 || globals->root.is_relocatable_executable)
5702 && (input_section->flags & SEC_ALLOC)
5703 && (h == NULL
5704 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5705 && !resolved_to_zero)
5706 || h->root.type != bfd_link_hash_undefweak))
5707 /* Or we are creating an executable, we may need to keep relocations
5708 for symbols satisfied by a dynamic library if we manage to avoid
5709 copy relocs for the symbol. */
5710 || (ELIMINATE_COPY_RELOCS
5711 && !bfd_link_pic (info)
5712 && h != NULL
5713 && (input_section->flags & SEC_ALLOC)
5714 && h->dynindx != -1
5715 && !h->non_got_ref
5716 && ((h->def_dynamic
5717 && !h->def_regular)
5718 || h->root.type == bfd_link_hash_undefweak
5719 || h->root.type == bfd_link_hash_undefined)))
5720 {
5721 Elf_Internal_Rela outrel;
5722 bfd_byte *loc;
5723 bfd_boolean skip, relocate;
5724 asection *sreloc;
5725
5726 *unresolved_reloc_p = FALSE;
5727
5728 skip = FALSE;
5729 relocate = FALSE;
5730
5731 outrel.r_addend = signed_addend;
5732 outrel.r_offset =
5733 _bfd_elf_section_offset (output_bfd, info, input_section,
5734 rel->r_offset);
5735 if (outrel.r_offset == (bfd_vma) - 1)
5736 skip = TRUE;
5737 else if (outrel.r_offset == (bfd_vma) - 2)
5738 {
5739 skip = TRUE;
5740 relocate = TRUE;
5741 }
5742 else if (abs_symbol_p)
5743 {
5744 /* Local absolute symbol. */
5745 skip = (h->forced_local || (h->dynindx == -1));
5746 relocate = skip;
5747 }
5748
5749 outrel.r_offset += (input_section->output_section->vma
5750 + input_section->output_offset);
5751
5752 if (skip)
5753 memset (&outrel, 0, sizeof outrel);
5754 else if (h != NULL
5755 && h->dynindx != -1
5756 && (!bfd_link_pic (info)
5757 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5758 || !h->def_regular))
5759 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5760 else
5761 {
5762 int symbol;
5763
5764 /* On SVR4-ish systems, the dynamic loader cannot
5765 relocate the text and data segments independently,
5766 so the symbol does not matter. */
5767 symbol = 0;
5768 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5769 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5770 outrel.r_addend += value;
5771 }
5772
5773 sreloc = elf_section_data (input_section)->sreloc;
5774 if (sreloc == NULL || sreloc->contents == NULL)
5775 return bfd_reloc_notsupported;
5776
5777 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5778 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5779
5780 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5781 {
5782 /* Sanity to check that we have previously allocated
5783 sufficient space in the relocation section for the
5784 number of relocations we actually want to emit. */
5785 abort ();
5786 }
5787
5788 /* If this reloc is against an external symbol, we do not want to
5789 fiddle with the addend. Otherwise, we need to include the symbol
5790 value so that it becomes an addend for the dynamic reloc. */
5791 if (!relocate)
5792 return bfd_reloc_ok;
5793
5794 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5795 contents, rel->r_offset, value,
5796 signed_addend);
5797 }
5798 else
5799 value += signed_addend;
5800 break;
5801
5802 case BFD_RELOC_AARCH64_CALL26:
5803 case BFD_RELOC_AARCH64_JUMP26:
5804 {
5805 asection *splt = globals->root.splt;
5806 bfd_boolean via_plt_p =
5807 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5808
5809 /* A call to an undefined weak symbol is converted to a jump to
5810 the next instruction unless a PLT entry will be created.
5811 The jump to the next instruction is optimized as a NOP.
5812 Do the same for local undefined symbols. */
5813 if (weak_undef_p && ! via_plt_p)
5814 {
5815 bfd_putl32 (INSN_NOP, hit_data);
5816 return bfd_reloc_ok;
5817 }
5818
5819 /* If the call goes through a PLT entry, make sure to
5820 check distance to the right destination address. */
5821 if (via_plt_p)
5822 value = (splt->output_section->vma
5823 + splt->output_offset + h->plt.offset);
5824
5825 /* Check if a stub has to be inserted because the destination
5826 is too far away. */
5827 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5828
5829 /* If the branch destination is directed to plt stub, "value" will be
5830 the final destination, otherwise we should plus signed_addend, it may
5831 contain non-zero value, for example call to local function symbol
5832 which are turned into "sec_sym + sec_off", and sec_off is kept in
5833 signed_addend. */
5834 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5835 place))
5836 /* The target is out of reach, so redirect the branch to
5837 the local stub for this function. */
5838 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5839 rel, globals);
5840 if (stub_entry != NULL)
5841 {
5842 value = (stub_entry->stub_offset
5843 + stub_entry->stub_sec->output_offset
5844 + stub_entry->stub_sec->output_section->vma);
5845
5846 /* We have redirected the destination to stub entry address,
5847 so ignore any addend record in the original rela entry. */
5848 signed_addend = 0;
5849 }
5850 }
5851 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5852 place, value,
5853 signed_addend, weak_undef_p);
5854 *unresolved_reloc_p = FALSE;
5855 break;
5856
5857 case BFD_RELOC_AARCH64_16_PCREL:
5858 case BFD_RELOC_AARCH64_32_PCREL:
5859 case BFD_RELOC_AARCH64_64_PCREL:
5860 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5861 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5862 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5863 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5864 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5865 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5866 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5867 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5868 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5869 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5870 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5871 if (bfd_link_pic (info)
5872 && (input_section->flags & SEC_ALLOC) != 0
5873 && (input_section->flags & SEC_READONLY) != 0
5874 && !SYMBOL_REFERENCES_LOCAL (info, h))
5875 {
5876 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5877
5878 _bfd_error_handler
5879 /* xgettext:c-format */
5880 (_("%pB: relocation %s against symbol `%s' which may bind "
5881 "externally can not be used when making a shared object; "
5882 "recompile with -fPIC"),
5883 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5884 h->root.root.string);
5885 bfd_set_error (bfd_error_bad_value);
5886 return bfd_reloc_notsupported;
5887 }
5888 /* Fall through. */
5889
5890 case BFD_RELOC_AARCH64_16:
5891 #if ARCH_SIZE == 64
5892 case BFD_RELOC_AARCH64_32:
5893 #endif
5894 case BFD_RELOC_AARCH64_ADD_LO12:
5895 case BFD_RELOC_AARCH64_BRANCH19:
5896 case BFD_RELOC_AARCH64_LDST128_LO12:
5897 case BFD_RELOC_AARCH64_LDST16_LO12:
5898 case BFD_RELOC_AARCH64_LDST32_LO12:
5899 case BFD_RELOC_AARCH64_LDST64_LO12:
5900 case BFD_RELOC_AARCH64_LDST8_LO12:
5901 case BFD_RELOC_AARCH64_MOVW_G0:
5902 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5903 case BFD_RELOC_AARCH64_MOVW_G0_S:
5904 case BFD_RELOC_AARCH64_MOVW_G1:
5905 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5906 case BFD_RELOC_AARCH64_MOVW_G1_S:
5907 case BFD_RELOC_AARCH64_MOVW_G2:
5908 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5909 case BFD_RELOC_AARCH64_MOVW_G2_S:
5910 case BFD_RELOC_AARCH64_MOVW_G3:
5911 case BFD_RELOC_AARCH64_TSTBR14:
5912 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5913 place, value,
5914 signed_addend, weak_undef_p);
5915 break;
5916
5917 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5918 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5919 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5920 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5921 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5922 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5923 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5924 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5925 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5926 if (globals->root.sgot == NULL)
5927 BFD_ASSERT (h != NULL);
5928
5929 relative_reloc = FALSE;
5930 if (h != NULL)
5931 {
5932 bfd_vma addend = 0;
5933
5934 /* If a symbol is not dynamic and is not undefined weak, bind it
5935 locally and generate a RELATIVE relocation under PIC mode.
5936
5937 NOTE: one symbol may be referenced by several relocations, we
5938 should only generate one RELATIVE relocation for that symbol.
5939 Therefore, check GOT offset mark first. */
5940 if (h->dynindx == -1
5941 && !h->forced_local
5942 && h->root.type != bfd_link_hash_undefweak
5943 && bfd_link_pic (info)
5944 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5945 relative_reloc = TRUE;
5946
5947 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5948 output_bfd,
5949 unresolved_reloc_p);
5950 /* Record the GOT entry address which will be used when generating
5951 RELATIVE relocation. */
5952 if (relative_reloc)
5953 got_entry_addr = value;
5954
5955 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5956 addend = (globals->root.sgot->output_section->vma
5957 + globals->root.sgot->output_offset);
5958 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
5959 place, value,
5960 addend, weak_undef_p);
5961 }
5962 else
5963 {
5964 bfd_vma addend = 0;
5965 struct elf_aarch64_local_symbol *locals
5966 = elf_aarch64_locals (input_bfd);
5967
5968 if (locals == NULL)
5969 {
5970 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5971 _bfd_error_handler
5972 /* xgettext:c-format */
5973 (_("%pB: local symbol descriptor table be NULL when applying "
5974 "relocation %s against local symbol"),
5975 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5976 abort ();
5977 }
5978
5979 off = symbol_got_offset (input_bfd, h, r_symndx);
5980 base_got = globals->root.sgot;
5981 got_entry_addr = (base_got->output_section->vma
5982 + base_got->output_offset + off);
5983
5984 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5985 {
5986 bfd_put_64 (output_bfd, value, base_got->contents + off);
5987
5988 /* For local symbol, we have done absolute relocation in static
5989 linking stage. While for shared library, we need to update the
5990 content of GOT entry according to the shared object's runtime
5991 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
5992 for dynamic linker. */
5993 if (bfd_link_pic (info))
5994 relative_reloc = TRUE;
5995
5996 symbol_got_offset_mark (input_bfd, h, r_symndx);
5997 }
5998
5999 /* Update the relocation value to GOT entry addr as we have transformed
6000 the direct data access into indirect data access through GOT. */
6001 value = got_entry_addr;
6002
6003 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
6004 addend = base_got->output_section->vma + base_got->output_offset;
6005
6006 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6007 place, value,
6008 addend, weak_undef_p);
6009 }
6010
6011 if (relative_reloc)
6012 {
6013 asection *s;
6014 Elf_Internal_Rela outrel;
6015
6016 s = globals->root.srelgot;
6017 if (s == NULL)
6018 abort ();
6019
6020 outrel.r_offset = got_entry_addr;
6021 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
6022 outrel.r_addend = orig_value;
6023 elf_append_rela (output_bfd, s, &outrel);
6024 }
6025 break;
6026
6027 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6028 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6029 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6030 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6031 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
6032 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6033 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6034 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6035 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6036 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6037 if (globals->root.sgot == NULL)
6038 return bfd_reloc_notsupported;
6039
6040 value = (symbol_got_offset (input_bfd, h, r_symndx)
6041 + globals->root.sgot->output_section->vma
6042 + globals->root.sgot->output_offset);
6043
6044 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6045 place, value,
6046 0, weak_undef_p);
6047 *unresolved_reloc_p = FALSE;
6048 break;
6049
6050 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6051 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6052 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6053 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6054 if (globals->root.sgot == NULL)
6055 return bfd_reloc_notsupported;
6056
6057 value = symbol_got_offset (input_bfd, h, r_symndx);
6058 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6059 place, value,
6060 0, weak_undef_p);
6061 *unresolved_reloc_p = FALSE;
6062 break;
6063
6064 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
6065 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
6066 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6067 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
6068 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
6069 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
6070 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
6071 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
6072 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
6073 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
6074 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
6075 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
6076 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6077 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
6078 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
6079 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
6080 {
6081 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6082 {
6083 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6084 _bfd_error_handler
6085 /* xgettext:c-format */
6086 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6087 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6088 h->root.root.string);
6089 bfd_set_error (bfd_error_bad_value);
6090 return bfd_reloc_notsupported;
6091 }
6092
6093 bfd_vma def_value
6094 = weak_undef_p ? 0 : signed_addend - dtpoff_base (info);
6095 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6096 place, value,
6097 def_value, weak_undef_p);
6098 break;
6099 }
6100
6101 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
6102 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
6103 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6104 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
6105 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
6106 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
6107 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
6108 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
6109 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
6110 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
6111 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
6112 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
6113 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6114 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
6115 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6116 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
6117 {
6118 if (!(weak_undef_p || elf_hash_table (info)->tls_sec))
6119 {
6120 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
6121 _bfd_error_handler
6122 /* xgettext:c-format */
6123 (_("%pB: TLS relocation %s against undefined symbol `%s'"),
6124 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
6125 h->root.root.string);
6126 bfd_set_error (bfd_error_bad_value);
6127 return bfd_reloc_notsupported;
6128 }
6129
6130 bfd_vma def_value
6131 = weak_undef_p ? 0 : signed_addend - tpoff_base (info);
6132 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6133 place, value,
6134 def_value, weak_undef_p);
6135 *unresolved_reloc_p = FALSE;
6136 break;
6137 }
6138
6139 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6140 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6141 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6142 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
6143 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
6144 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6145 if (globals->root.sgot == NULL)
6146 return bfd_reloc_notsupported;
6147 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6148 + globals->root.sgotplt->output_section->vma
6149 + globals->root.sgotplt->output_offset
6150 + globals->sgotplt_jump_table_size);
6151
6152 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6153 place, value,
6154 0, weak_undef_p);
6155 *unresolved_reloc_p = FALSE;
6156 break;
6157
6158 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6159 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6160 if (globals->root.sgot == NULL)
6161 return bfd_reloc_notsupported;
6162
6163 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
6164 + globals->root.sgotplt->output_section->vma
6165 + globals->root.sgotplt->output_offset
6166 + globals->sgotplt_jump_table_size);
6167
6168 value -= (globals->root.sgot->output_section->vma
6169 + globals->root.sgot->output_offset);
6170
6171 value = _bfd_aarch64_elf_resolve_relocation (input_bfd, bfd_r_type,
6172 place, value,
6173 0, weak_undef_p);
6174 *unresolved_reloc_p = FALSE;
6175 break;
6176
6177 default:
6178 return bfd_reloc_notsupported;
6179 }
6180
6181 if (saved_addend)
6182 *saved_addend = value;
6183
6184 /* Only apply the final relocation in a sequence. */
6185 if (save_addend)
6186 return bfd_reloc_continue;
6187
6188 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
6189 howto, value);
6190 }
6191
6192 /* LP64 and ILP32 operates on x- and w-registers respectively.
6193 Next definitions take into account the difference between
6194 corresponding machine codes. R means x-register if the target
6195 arch is LP64, and w-register if the target is ILP32. */
6196
6197 #if ARCH_SIZE == 64
6198 # define add_R0_R0 (0x91000000)
6199 # define add_R0_R0_R1 (0x8b000020)
6200 # define add_R0_R1 (0x91400020)
6201 # define ldr_R0 (0x58000000)
6202 # define ldr_R0_mask(i) (i & 0xffffffe0)
6203 # define ldr_R0_x0 (0xf9400000)
6204 # define ldr_hw_R0 (0xf2a00000)
6205 # define movk_R0 (0xf2800000)
6206 # define movz_R0 (0xd2a00000)
6207 # define movz_hw_R0 (0xd2c00000)
6208 #else /*ARCH_SIZE == 32 */
6209 # define add_R0_R0 (0x11000000)
6210 # define add_R0_R0_R1 (0x0b000020)
6211 # define add_R0_R1 (0x11400020)
6212 # define ldr_R0 (0x18000000)
6213 # define ldr_R0_mask(i) (i & 0xbfffffe0)
6214 # define ldr_R0_x0 (0xb9400000)
6215 # define ldr_hw_R0 (0x72a00000)
6216 # define movk_R0 (0x72800000)
6217 # define movz_R0 (0x52a00000)
6218 # define movz_hw_R0 (0x52c00000)
6219 #endif
6220
6221 /* Structure to hold payload for _bfd_aarch64_erratum_843419_clear_stub,
6222 it is used to identify the stub information to reset. */
6223
6224 struct erratum_843419_branch_to_stub_clear_data
6225 {
6226 bfd_vma adrp_offset;
6227 asection *output_section;
6228 };
6229
6230 /* Clear the erratum information for GEN_ENTRY if the ADRP_OFFSET and
6231 section inside IN_ARG matches. The clearing is done by setting the
6232 stub_type to none. */
6233
6234 static bfd_boolean
6235 _bfd_aarch64_erratum_843419_clear_stub (struct bfd_hash_entry *gen_entry,
6236 void *in_arg)
6237 {
6238 struct elf_aarch64_stub_hash_entry *stub_entry
6239 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
6240 struct erratum_843419_branch_to_stub_clear_data *data
6241 = (struct erratum_843419_branch_to_stub_clear_data *) in_arg;
6242
6243 if (stub_entry->target_section != data->output_section
6244 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer
6245 || stub_entry->adrp_offset != data->adrp_offset)
6246 return TRUE;
6247
6248 /* Change the stub type instead of removing the entry, removing from the hash
6249 table would be slower and we have already reserved the memory for the entry
6250 so there wouldn't be much gain. Changing the stub also keeps around a
6251 record of what was there before. */
6252 stub_entry->stub_type = aarch64_stub_none;
6253
6254 /* We're done and there could have been only one matching stub at that
6255 particular offset, so abort further traversal. */
6256 return FALSE;
6257 }
6258
6259 /* TLS Relaxations may relax an adrp sequence that matches the erratum 843419
6260 sequence. In this case the erratum no longer applies and we need to remove
6261 the entry from the pending stub generation. This clears matching adrp insn
6262 at ADRP_OFFSET in INPUT_SECTION in the stub table defined in GLOBALS. */
6263
6264 static void
6265 clear_erratum_843419_entry (struct elf_aarch64_link_hash_table *globals,
6266 bfd_vma adrp_offset, asection *input_section)
6267 {
6268 if (globals->fix_erratum_843419 & ERRAT_ADRP)
6269 {
6270 struct erratum_843419_branch_to_stub_clear_data data;
6271 data.adrp_offset = adrp_offset;
6272 data.output_section = input_section;
6273
6274 bfd_hash_traverse (&globals->stub_hash_table,
6275 _bfd_aarch64_erratum_843419_clear_stub, &data);
6276 }
6277 }
6278
6279 /* Handle TLS relaxations. Relaxing is possible for symbols that use
6280 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
6281 link.
6282
6283 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
6284 is to then call final_link_relocate. Return other values in the
6285 case of error. */
6286
6287 static bfd_reloc_status_type
6288 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
6289 bfd *input_bfd, asection *input_section,
6290 bfd_byte *contents, Elf_Internal_Rela *rel,
6291 struct elf_link_hash_entry *h)
6292 {
6293 bfd_boolean is_local = h == NULL;
6294 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
6295 unsigned long insn;
6296
6297 BFD_ASSERT (globals && input_bfd && contents && rel);
6298
6299 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6300 {
6301 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6302 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6303 if (is_local)
6304 {
6305 /* GD->LE relaxation:
6306 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
6307 or
6308 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
6309
6310 Where R is x for LP64, and w for ILP32. */
6311 bfd_putl32 (movz_R0, contents + rel->r_offset);
6312 /* We have relaxed the adrp into a mov, we may have to clear any
6313 pending erratum fixes. */
6314 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6315 return bfd_reloc_continue;
6316 }
6317 else
6318 {
6319 /* GD->IE relaxation:
6320 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
6321 or
6322 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
6323 */
6324 return bfd_reloc_continue;
6325 }
6326
6327 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6328 BFD_ASSERT (0);
6329 break;
6330
6331 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6332 if (is_local)
6333 {
6334 /* Tiny TLSDESC->LE relaxation:
6335 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
6336 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
6337 .tlsdesccall var
6338 blr x1 => nop
6339
6340 Where R is x for LP64, and w for ILP32. */
6341 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6342 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6343
6344 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6345 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6346 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6347
6348 bfd_putl32 (movz_R0, contents + rel->r_offset);
6349 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6350 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6351 return bfd_reloc_continue;
6352 }
6353 else
6354 {
6355 /* Tiny TLSDESC->IE relaxation:
6356 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6357 adr x0, :tlsdesc:var => nop
6358 .tlsdesccall var
6359 blr x1 => nop
6360 */
6361 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6362 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6363
6364 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6365 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6366
6367 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6368 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6369 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6370 return bfd_reloc_continue;
6371 }
6372
6373 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6374 if (is_local)
6375 {
6376 /* Tiny GD->LE relaxation:
6377 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6378 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6379 nop => add R0, R0, #:tprel_lo12_nc:x
6380
6381 Where R is x for LP64, and x for Ilp32. */
6382
6383 /* First kill the tls_get_addr reloc on the bl instruction. */
6384 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6385
6386 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6387 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6388 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6389
6390 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6391 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6392 rel[1].r_offset = rel->r_offset + 8;
6393
6394 /* Move the current relocation to the second instruction in
6395 the sequence. */
6396 rel->r_offset += 4;
6397 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6398 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6399 return bfd_reloc_continue;
6400 }
6401 else
6402 {
6403 /* Tiny GD->IE relaxation:
6404 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6405 bl __tls_get_addr => mrs x1, tpidr_el0
6406 nop => add R0, R0, R1
6407
6408 Where R is x for LP64, and w for Ilp32. */
6409
6410 /* First kill the tls_get_addr reloc on the bl instruction. */
6411 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6412 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6413
6414 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6415 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6416 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6417 return bfd_reloc_continue;
6418 }
6419
6420 #if ARCH_SIZE == 64
6421 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6422 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6423 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6424 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6425
6426 if (is_local)
6427 {
6428 /* Large GD->LE relaxation:
6429 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6430 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6431 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6432 bl __tls_get_addr => mrs x1, tpidr_el0
6433 nop => add x0, x0, x1
6434 */
6435 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6436 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6437 rel[2].r_offset = rel->r_offset + 8;
6438
6439 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6440 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6441 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6442 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6443 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6444 }
6445 else
6446 {
6447 /* Large GD->IE relaxation:
6448 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6449 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6450 add x0, gp, x0 => ldr x0, [gp, x0]
6451 bl __tls_get_addr => mrs x1, tpidr_el0
6452 nop => add x0, x0, x1
6453 */
6454 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6455 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6456 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6457 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6458 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6459 }
6460 return bfd_reloc_continue;
6461
6462 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6463 return bfd_reloc_continue;
6464 #endif
6465
6466 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6467 return bfd_reloc_continue;
6468
6469 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6470 if (is_local)
6471 {
6472 /* GD->LE relaxation:
6473 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6474
6475 Where R is x for lp64 mode, and w for ILP32 mode. */
6476 bfd_putl32 (movk_R0, contents + rel->r_offset);
6477 return bfd_reloc_continue;
6478 }
6479 else
6480 {
6481 /* GD->IE relaxation:
6482 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6483
6484 Where R is x for lp64 mode, and w for ILP32 mode. */
6485 insn = bfd_getl32 (contents + rel->r_offset);
6486 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6487 return bfd_reloc_continue;
6488 }
6489
6490 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6491 if (is_local)
6492 {
6493 /* GD->LE relaxation
6494 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6495 bl __tls_get_addr => mrs x1, tpidr_el0
6496 nop => add R0, R1, R0
6497
6498 Where R is x for lp64 mode, and w for ILP32 mode. */
6499
6500 /* First kill the tls_get_addr reloc on the bl instruction. */
6501 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6502 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6503
6504 bfd_putl32 (movk_R0, contents + rel->r_offset);
6505 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6506 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6507 return bfd_reloc_continue;
6508 }
6509 else
6510 {
6511 /* GD->IE relaxation
6512 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6513 BL __tls_get_addr => mrs x1, tpidr_el0
6514 R_AARCH64_CALL26
6515 NOP => add R0, R1, R0
6516
6517 Where R is x for lp64 mode, and w for ilp32 mode. */
6518
6519 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6520
6521 /* Remove the relocation on the BL instruction. */
6522 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6523
6524 /* We choose to fixup the BL and NOP instructions using the
6525 offset from the second relocation to allow flexibility in
6526 scheduling instructions between the ADD and BL. */
6527 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6528 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6529 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6530 return bfd_reloc_continue;
6531 }
6532
6533 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6534 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6535 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6536 /* GD->IE/LE relaxation:
6537 add x0, x0, #:tlsdesc_lo12:var => nop
6538 blr xd => nop
6539 */
6540 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6541 return bfd_reloc_ok;
6542
6543 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6544 if (is_local)
6545 {
6546 /* GD->LE relaxation:
6547 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6548
6549 Where R is x for lp64 mode, and w for ILP32 mode. */
6550 bfd_putl32 (movk_R0, contents + rel->r_offset);
6551 return bfd_reloc_continue;
6552 }
6553 else
6554 {
6555 /* GD->IE relaxation:
6556 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6557
6558 Where R is x for lp64 mode, and w for ILP32 mode. */
6559 insn = bfd_getl32 (contents + rel->r_offset);
6560 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6561 return bfd_reloc_ok;
6562 }
6563
6564 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6565 /* GD->LE relaxation:
6566 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6567 GD->IE relaxation:
6568 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6569
6570 Where R is x for lp64 mode, and w for ILP32 mode. */
6571 if (is_local)
6572 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6573 return bfd_reloc_continue;
6574
6575 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6576 if (is_local)
6577 {
6578 /* GD->LE relaxation:
6579 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6580
6581 Where R is x for lp64 mode, and w for ILP32 mode. */
6582 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6583 return bfd_reloc_continue;
6584 }
6585 else
6586 {
6587 /* GD->IE relaxation:
6588 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6589
6590 Where R is x for lp64 mode, and w for ILP32 mode. */
6591 insn = bfd_getl32 (contents + rel->r_offset);
6592 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6593 return bfd_reloc_continue;
6594 }
6595
6596 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6597 /* IE->LE relaxation:
6598 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6599
6600 Where R is x for lp64 mode, and w for ILP32 mode. */
6601 if (is_local)
6602 {
6603 insn = bfd_getl32 (contents + rel->r_offset);
6604 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6605 /* We have relaxed the adrp into a mov, we may have to clear any
6606 pending erratum fixes. */
6607 clear_erratum_843419_entry (globals, rel->r_offset, input_section);
6608 }
6609 return bfd_reloc_continue;
6610
6611 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6612 /* IE->LE relaxation:
6613 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6614
6615 Where R is x for lp64 mode, and w for ILP32 mode. */
6616 if (is_local)
6617 {
6618 insn = bfd_getl32 (contents + rel->r_offset);
6619 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6620 }
6621 return bfd_reloc_continue;
6622
6623 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6624 /* LD->LE relaxation (tiny):
6625 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6626 bl __tls_get_addr => add R0, R0, TCB_SIZE
6627
6628 Where R is x for lp64 mode, and w for ilp32 mode. */
6629 if (is_local)
6630 {
6631 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6632 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6633 /* No need of CALL26 relocation for tls_get_addr. */
6634 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6635 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6636 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6637 contents + rel->r_offset + 4);
6638 return bfd_reloc_ok;
6639 }
6640 return bfd_reloc_continue;
6641
6642 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6643 /* LD->LE relaxation (small):
6644 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6645 */
6646 if (is_local)
6647 {
6648 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6649 return bfd_reloc_ok;
6650 }
6651 return bfd_reloc_continue;
6652
6653 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6654 /* LD->LE relaxation (small):
6655 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6656 bl __tls_get_addr => nop
6657
6658 Where R is x for lp64 mode, and w for ilp32 mode. */
6659 if (is_local)
6660 {
6661 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6662 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6663 /* No need of CALL26 relocation for tls_get_addr. */
6664 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6665 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6666 contents + rel->r_offset + 0);
6667 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6668 return bfd_reloc_ok;
6669 }
6670 return bfd_reloc_continue;
6671
6672 default:
6673 return bfd_reloc_continue;
6674 }
6675
6676 return bfd_reloc_ok;
6677 }
6678
6679 /* Relocate an AArch64 ELF section. */
6680
6681 static bfd_boolean
6682 elfNN_aarch64_relocate_section (bfd *output_bfd,
6683 struct bfd_link_info *info,
6684 bfd *input_bfd,
6685 asection *input_section,
6686 bfd_byte *contents,
6687 Elf_Internal_Rela *relocs,
6688 Elf_Internal_Sym *local_syms,
6689 asection **local_sections)
6690 {
6691 Elf_Internal_Shdr *symtab_hdr;
6692 struct elf_link_hash_entry **sym_hashes;
6693 Elf_Internal_Rela *rel;
6694 Elf_Internal_Rela *relend;
6695 const char *name;
6696 struct elf_aarch64_link_hash_table *globals;
6697 bfd_boolean save_addend = FALSE;
6698 bfd_vma addend = 0;
6699
6700 globals = elf_aarch64_hash_table (info);
6701
6702 symtab_hdr = &elf_symtab_hdr (input_bfd);
6703 sym_hashes = elf_sym_hashes (input_bfd);
6704
6705 rel = relocs;
6706 relend = relocs + input_section->reloc_count;
6707 for (; rel < relend; rel++)
6708 {
6709 unsigned int r_type;
6710 bfd_reloc_code_real_type bfd_r_type;
6711 bfd_reloc_code_real_type relaxed_bfd_r_type;
6712 reloc_howto_type *howto;
6713 unsigned long r_symndx;
6714 Elf_Internal_Sym *sym;
6715 asection *sec;
6716 struct elf_link_hash_entry *h;
6717 bfd_vma relocation;
6718 bfd_reloc_status_type r;
6719 arelent bfd_reloc;
6720 char sym_type;
6721 bfd_boolean unresolved_reloc = FALSE;
6722 char *error_message = NULL;
6723
6724 r_symndx = ELFNN_R_SYM (rel->r_info);
6725 r_type = ELFNN_R_TYPE (rel->r_info);
6726
6727 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6728 howto = bfd_reloc.howto;
6729
6730 if (howto == NULL)
6731 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6732
6733 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6734
6735 h = NULL;
6736 sym = NULL;
6737 sec = NULL;
6738
6739 if (r_symndx < symtab_hdr->sh_info)
6740 {
6741 sym = local_syms + r_symndx;
6742 sym_type = ELFNN_ST_TYPE (sym->st_info);
6743 sec = local_sections[r_symndx];
6744
6745 /* An object file might have a reference to a local
6746 undefined symbol. This is a daft object file, but we
6747 should at least do something about it. */
6748 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6749 && bfd_is_und_section (sec)
6750 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6751 (*info->callbacks->undefined_symbol)
6752 (info, bfd_elf_string_from_elf_section
6753 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6754 input_bfd, input_section, rel->r_offset, TRUE);
6755
6756 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6757
6758 /* Relocate against local STT_GNU_IFUNC symbol. */
6759 if (!bfd_link_relocatable (info)
6760 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6761 {
6762 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6763 rel, FALSE);
6764 if (h == NULL)
6765 abort ();
6766
6767 /* Set STT_GNU_IFUNC symbol value. */
6768 h->root.u.def.value = sym->st_value;
6769 h->root.u.def.section = sec;
6770 }
6771 }
6772 else
6773 {
6774 bfd_boolean warned, ignored;
6775
6776 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6777 r_symndx, symtab_hdr, sym_hashes,
6778 h, sec, relocation,
6779 unresolved_reloc, warned, ignored);
6780
6781 sym_type = h->type;
6782 }
6783
6784 if (sec != NULL && discarded_section (sec))
6785 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6786 rel, 1, relend, howto, 0, contents);
6787
6788 if (bfd_link_relocatable (info))
6789 continue;
6790
6791 if (h != NULL)
6792 name = h->root.root.string;
6793 else
6794 {
6795 name = (bfd_elf_string_from_elf_section
6796 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6797 if (name == NULL || *name == '\0')
6798 name = bfd_section_name (sec);
6799 }
6800
6801 if (r_symndx != 0
6802 && r_type != R_AARCH64_NONE
6803 && r_type != R_AARCH64_NULL
6804 && (h == NULL
6805 || h->root.type == bfd_link_hash_defined
6806 || h->root.type == bfd_link_hash_defweak)
6807 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6808 {
6809 _bfd_error_handler
6810 ((sym_type == STT_TLS
6811 /* xgettext:c-format */
6812 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6813 /* xgettext:c-format */
6814 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6815 input_bfd,
6816 input_section, (uint64_t) rel->r_offset, howto->name, name);
6817 }
6818
6819 /* We relax only if we can see that there can be a valid transition
6820 from a reloc type to another.
6821 We call elfNN_aarch64_final_link_relocate unless we're completely
6822 done, i.e., the relaxation produced the final output we want. */
6823
6824 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6825 h, r_symndx);
6826 if (relaxed_bfd_r_type != bfd_r_type)
6827 {
6828 bfd_r_type = relaxed_bfd_r_type;
6829 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6830 BFD_ASSERT (howto != NULL);
6831 r_type = howto->type;
6832 r = elfNN_aarch64_tls_relax (globals, input_bfd, input_section,
6833 contents, rel, h);
6834 unresolved_reloc = 0;
6835 }
6836 else
6837 r = bfd_reloc_continue;
6838
6839 /* There may be multiple consecutive relocations for the
6840 same offset. In that case we are supposed to treat the
6841 output of each relocation as the addend for the next. */
6842 if (rel + 1 < relend
6843 && rel->r_offset == rel[1].r_offset
6844 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6845 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6846 save_addend = TRUE;
6847 else
6848 save_addend = FALSE;
6849
6850 if (r == bfd_reloc_continue)
6851 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6852 input_section, contents, rel,
6853 relocation, info, sec,
6854 h, &unresolved_reloc,
6855 save_addend, &addend, sym);
6856
6857 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6858 {
6859 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6860 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6861 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6862 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6863 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6864 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6865 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6866 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6867 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6868 {
6869 bfd_boolean need_relocs = FALSE;
6870 bfd_byte *loc;
6871 int indx;
6872 bfd_vma off;
6873
6874 off = symbol_got_offset (input_bfd, h, r_symndx);
6875 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6876
6877 need_relocs =
6878 (!bfd_link_executable (info) || indx != 0) &&
6879 (h == NULL
6880 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6881 || h->root.type != bfd_link_hash_undefweak);
6882
6883 BFD_ASSERT (globals->root.srelgot != NULL);
6884
6885 if (need_relocs)
6886 {
6887 Elf_Internal_Rela rela;
6888 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6889 rela.r_addend = 0;
6890 rela.r_offset = globals->root.sgot->output_section->vma +
6891 globals->root.sgot->output_offset + off;
6892
6893
6894 loc = globals->root.srelgot->contents;
6895 loc += globals->root.srelgot->reloc_count++
6896 * RELOC_SIZE (htab);
6897 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6898
6899 bfd_reloc_code_real_type real_type =
6900 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6901
6902 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6903 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6904 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6905 {
6906 /* For local dynamic, don't generate DTPREL in any case.
6907 Initialize the DTPREL slot into zero, so we get module
6908 base address when invoke runtime TLS resolver. */
6909 bfd_put_NN (output_bfd, 0,
6910 globals->root.sgot->contents + off
6911 + GOT_ENTRY_SIZE);
6912 }
6913 else if (indx == 0)
6914 {
6915 bfd_put_NN (output_bfd,
6916 relocation - dtpoff_base (info),
6917 globals->root.sgot->contents + off
6918 + GOT_ENTRY_SIZE);
6919 }
6920 else
6921 {
6922 /* This TLS symbol is global. We emit a
6923 relocation to fixup the tls offset at load
6924 time. */
6925 rela.r_info =
6926 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6927 rela.r_addend = 0;
6928 rela.r_offset =
6929 (globals->root.sgot->output_section->vma
6930 + globals->root.sgot->output_offset + off
6931 + GOT_ENTRY_SIZE);
6932
6933 loc = globals->root.srelgot->contents;
6934 loc += globals->root.srelgot->reloc_count++
6935 * RELOC_SIZE (globals);
6936 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6937 bfd_put_NN (output_bfd, (bfd_vma) 0,
6938 globals->root.sgot->contents + off
6939 + GOT_ENTRY_SIZE);
6940 }
6941 }
6942 else
6943 {
6944 bfd_put_NN (output_bfd, (bfd_vma) 1,
6945 globals->root.sgot->contents + off);
6946 bfd_put_NN (output_bfd,
6947 relocation - dtpoff_base (info),
6948 globals->root.sgot->contents + off
6949 + GOT_ENTRY_SIZE);
6950 }
6951
6952 symbol_got_offset_mark (input_bfd, h, r_symndx);
6953 }
6954 break;
6955
6956 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6957 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6958 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6959 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6960 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6961 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6962 {
6963 bfd_boolean need_relocs = FALSE;
6964 bfd_byte *loc;
6965 int indx;
6966 bfd_vma off;
6967
6968 off = symbol_got_offset (input_bfd, h, r_symndx);
6969
6970 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6971
6972 need_relocs =
6973 (!bfd_link_executable (info) || indx != 0) &&
6974 (h == NULL
6975 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6976 || h->root.type != bfd_link_hash_undefweak);
6977
6978 BFD_ASSERT (globals->root.srelgot != NULL);
6979
6980 if (need_relocs)
6981 {
6982 Elf_Internal_Rela rela;
6983
6984 if (indx == 0)
6985 rela.r_addend = relocation - dtpoff_base (info);
6986 else
6987 rela.r_addend = 0;
6988
6989 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6990 rela.r_offset = globals->root.sgot->output_section->vma +
6991 globals->root.sgot->output_offset + off;
6992
6993 loc = globals->root.srelgot->contents;
6994 loc += globals->root.srelgot->reloc_count++
6995 * RELOC_SIZE (htab);
6996
6997 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6998
6999 bfd_put_NN (output_bfd, rela.r_addend,
7000 globals->root.sgot->contents + off);
7001 }
7002 else
7003 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
7004 globals->root.sgot->contents + off);
7005
7006 symbol_got_offset_mark (input_bfd, h, r_symndx);
7007 }
7008 break;
7009
7010 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7011 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7012 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7013 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
7014 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7015 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7016 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7017 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
7018 {
7019 bfd_boolean need_relocs = FALSE;
7020 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
7021 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
7022
7023 need_relocs = (h == NULL
7024 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7025 || h->root.type != bfd_link_hash_undefweak);
7026
7027 BFD_ASSERT (globals->root.srelgot != NULL);
7028 BFD_ASSERT (globals->root.sgot != NULL);
7029
7030 if (need_relocs)
7031 {
7032 bfd_byte *loc;
7033 Elf_Internal_Rela rela;
7034 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
7035
7036 rela.r_addend = 0;
7037 rela.r_offset = (globals->root.sgotplt->output_section->vma
7038 + globals->root.sgotplt->output_offset
7039 + off + globals->sgotplt_jump_table_size);
7040
7041 if (indx == 0)
7042 rela.r_addend = relocation - dtpoff_base (info);
7043
7044 /* Allocate the next available slot in the PLT reloc
7045 section to hold our R_AARCH64_TLSDESC, the next
7046 available slot is determined from reloc_count,
7047 which we step. But note, reloc_count was
7048 artifically moved down while allocating slots for
7049 real PLT relocs such that all of the PLT relocs
7050 will fit above the initial reloc_count and the
7051 extra stuff will fit below. */
7052 loc = globals->root.srelplt->contents;
7053 loc += globals->root.srelplt->reloc_count++
7054 * RELOC_SIZE (globals);
7055
7056 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
7057
7058 bfd_put_NN (output_bfd, (bfd_vma) 0,
7059 globals->root.sgotplt->contents + off +
7060 globals->sgotplt_jump_table_size);
7061 bfd_put_NN (output_bfd, (bfd_vma) 0,
7062 globals->root.sgotplt->contents + off +
7063 globals->sgotplt_jump_table_size +
7064 GOT_ENTRY_SIZE);
7065 }
7066
7067 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
7068 }
7069 break;
7070 default:
7071 break;
7072 }
7073
7074 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7075 because such sections are not SEC_ALLOC and thus ld.so will
7076 not process them. */
7077 if (unresolved_reloc
7078 && !((input_section->flags & SEC_DEBUGGING) != 0
7079 && h->def_dynamic)
7080 && _bfd_elf_section_offset (output_bfd, info, input_section,
7081 +rel->r_offset) != (bfd_vma) - 1)
7082 {
7083 _bfd_error_handler
7084 /* xgettext:c-format */
7085 (_("%pB(%pA+%#" PRIx64 "): "
7086 "unresolvable %s relocation against symbol `%s'"),
7087 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
7088 h->root.root.string);
7089 return FALSE;
7090 }
7091
7092 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
7093 {
7094 bfd_reloc_code_real_type real_r_type
7095 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
7096
7097 switch (r)
7098 {
7099 case bfd_reloc_overflow:
7100 (*info->callbacks->reloc_overflow)
7101 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
7102 input_bfd, input_section, rel->r_offset);
7103 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
7104 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
7105 {
7106 (*info->callbacks->warning)
7107 (info,
7108 _("too many GOT entries for -fpic, "
7109 "please recompile with -fPIC"),
7110 name, input_bfd, input_section, rel->r_offset);
7111 return FALSE;
7112 }
7113 /* Overflow can occur when a variable is referenced with a type
7114 that has a larger alignment than the type with which it was
7115 declared. eg:
7116 file1.c: extern int foo; int a (void) { return foo; }
7117 file2.c: char bar, foo, baz;
7118 If the variable is placed into a data section at an offset
7119 that is incompatible with the larger alignment requirement
7120 overflow will occur. (Strictly speaking this is not overflow
7121 but rather an alignment problem, but the bfd_reloc_ error
7122 enum does not have a value to cover that situation).
7123
7124 Try to catch this situation here and provide a more helpful
7125 error message to the user. */
7126 if (addend & ((1 << howto->rightshift) - 1)
7127 /* FIXME: Are we testing all of the appropriate reloc
7128 types here ? */
7129 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
7130 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
7131 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
7132 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
7133 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
7134 {
7135 info->callbacks->warning
7136 (info, _("one possible cause of this error is that the \
7137 symbol is being referenced in the indicated code as if it had a larger \
7138 alignment than was declared where it was defined"),
7139 name, input_bfd, input_section, rel->r_offset);
7140 }
7141 break;
7142
7143 case bfd_reloc_undefined:
7144 (*info->callbacks->undefined_symbol)
7145 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
7146 break;
7147
7148 case bfd_reloc_outofrange:
7149 error_message = _("out of range");
7150 goto common_error;
7151
7152 case bfd_reloc_notsupported:
7153 error_message = _("unsupported relocation");
7154 goto common_error;
7155
7156 case bfd_reloc_dangerous:
7157 /* error_message should already be set. */
7158 goto common_error;
7159
7160 default:
7161 error_message = _("unknown error");
7162 /* Fall through. */
7163
7164 common_error:
7165 BFD_ASSERT (error_message != NULL);
7166 (*info->callbacks->reloc_dangerous)
7167 (info, error_message, input_bfd, input_section, rel->r_offset);
7168 break;
7169 }
7170 }
7171
7172 if (!save_addend)
7173 addend = 0;
7174 }
7175
7176 return TRUE;
7177 }
7178
7179 /* Set the right machine number. */
7180
7181 static bfd_boolean
7182 elfNN_aarch64_object_p (bfd *abfd)
7183 {
7184 #if ARCH_SIZE == 32
7185 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
7186 #else
7187 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
7188 #endif
7189 return TRUE;
7190 }
7191
7192 /* Function to keep AArch64 specific flags in the ELF header. */
7193
7194 static bfd_boolean
7195 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
7196 {
7197 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
7198 {
7199 }
7200 else
7201 {
7202 elf_elfheader (abfd)->e_flags = flags;
7203 elf_flags_init (abfd) = TRUE;
7204 }
7205
7206 return TRUE;
7207 }
7208
7209 /* Merge backend specific data from an object file to the output
7210 object file when linking. */
7211
7212 static bfd_boolean
7213 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
7214 {
7215 bfd *obfd = info->output_bfd;
7216 flagword out_flags;
7217 flagword in_flags;
7218 bfd_boolean flags_compatible = TRUE;
7219 asection *sec;
7220
7221 /* Check if we have the same endianess. */
7222 if (!_bfd_generic_verify_endian_match (ibfd, info))
7223 return FALSE;
7224
7225 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
7226 return TRUE;
7227
7228 /* The input BFD must have had its flags initialised. */
7229 /* The following seems bogus to me -- The flags are initialized in
7230 the assembler but I don't think an elf_flags_init field is
7231 written into the object. */
7232 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7233
7234 in_flags = elf_elfheader (ibfd)->e_flags;
7235 out_flags = elf_elfheader (obfd)->e_flags;
7236
7237 if (!elf_flags_init (obfd))
7238 {
7239 /* If the input is the default architecture and had the default
7240 flags then do not bother setting the flags for the output
7241 architecture, instead allow future merges to do this. If no
7242 future merges ever set these flags then they will retain their
7243 uninitialised values, which surprise surprise, correspond
7244 to the default values. */
7245 if (bfd_get_arch_info (ibfd)->the_default
7246 && elf_elfheader (ibfd)->e_flags == 0)
7247 return TRUE;
7248
7249 elf_flags_init (obfd) = TRUE;
7250 elf_elfheader (obfd)->e_flags = in_flags;
7251
7252 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7253 && bfd_get_arch_info (obfd)->the_default)
7254 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
7255 bfd_get_mach (ibfd));
7256
7257 return TRUE;
7258 }
7259
7260 /* Identical flags must be compatible. */
7261 if (in_flags == out_flags)
7262 return TRUE;
7263
7264 /* Check to see if the input BFD actually contains any sections. If
7265 not, its flags may not have been initialised either, but it
7266 cannot actually cause any incompatiblity. Do not short-circuit
7267 dynamic objects; their section list may be emptied by
7268 elf_link_add_object_symbols.
7269
7270 Also check to see if there are no code sections in the input.
7271 In this case there is no need to check for code specific flags.
7272 XXX - do we need to worry about floating-point format compatability
7273 in data sections ? */
7274 if (!(ibfd->flags & DYNAMIC))
7275 {
7276 bfd_boolean null_input_bfd = TRUE;
7277 bfd_boolean only_data_sections = TRUE;
7278
7279 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7280 {
7281 if ((bfd_section_flags (sec)
7282 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7283 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7284 only_data_sections = FALSE;
7285
7286 null_input_bfd = FALSE;
7287 break;
7288 }
7289
7290 if (null_input_bfd || only_data_sections)
7291 return TRUE;
7292 }
7293
7294 return flags_compatible;
7295 }
7296
7297 /* Display the flags field. */
7298
7299 static bfd_boolean
7300 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
7301 {
7302 FILE *file = (FILE *) ptr;
7303 unsigned long flags;
7304
7305 BFD_ASSERT (abfd != NULL && ptr != NULL);
7306
7307 /* Print normal ELF private data. */
7308 _bfd_elf_print_private_bfd_data (abfd, ptr);
7309
7310 flags = elf_elfheader (abfd)->e_flags;
7311 /* Ignore init flag - it may not be set, despite the flags field
7312 containing valid data. */
7313
7314 /* xgettext:c-format */
7315 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7316
7317 if (flags)
7318 fprintf (file, _("<Unrecognised flag bits set>"));
7319
7320 fputc ('\n', file);
7321
7322 return TRUE;
7323 }
7324
7325 /* Find dynamic relocs for H that apply to read-only sections. */
7326
7327 static asection *
7328 readonly_dynrelocs (struct elf_link_hash_entry *h)
7329 {
7330 struct elf_dyn_relocs *p;
7331
7332 for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
7333 {
7334 asection *s = p->sec->output_section;
7335
7336 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7337 return p->sec;
7338 }
7339 return NULL;
7340 }
7341
7342 /* Return true if we need copy relocation against EH. */
7343
7344 static bfd_boolean
7345 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7346 {
7347 struct elf_dyn_relocs *p;
7348 asection *s;
7349
7350 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7351 {
7352 /* If there is any pc-relative reference, we need to keep copy relocation
7353 to avoid propagating the relocation into runtime that current glibc
7354 does not support. */
7355 if (p->pc_count)
7356 return TRUE;
7357
7358 s = p->sec->output_section;
7359 /* Need copy relocation if it's against read-only section. */
7360 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7361 return TRUE;
7362 }
7363
7364 return FALSE;
7365 }
7366
7367 /* Adjust a symbol defined by a dynamic object and referenced by a
7368 regular object. The current definition is in some section of the
7369 dynamic object, but we're not including those sections. We have to
7370 change the definition to something the rest of the link can
7371 understand. */
7372
7373 static bfd_boolean
7374 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7375 struct elf_link_hash_entry *h)
7376 {
7377 struct elf_aarch64_link_hash_table *htab;
7378 asection *s, *srel;
7379
7380 /* If this is a function, put it in the procedure linkage table. We
7381 will fill in the contents of the procedure linkage table later,
7382 when we know the address of the .got section. */
7383 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7384 {
7385 if (h->plt.refcount <= 0
7386 || (h->type != STT_GNU_IFUNC
7387 && (SYMBOL_CALLS_LOCAL (info, h)
7388 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7389 && h->root.type == bfd_link_hash_undefweak))))
7390 {
7391 /* This case can occur if we saw a CALL26 reloc in
7392 an input file, but the symbol wasn't referred to
7393 by a dynamic object or all references were
7394 garbage collected. In which case we can end up
7395 resolving. */
7396 h->plt.offset = (bfd_vma) - 1;
7397 h->needs_plt = 0;
7398 }
7399
7400 return TRUE;
7401 }
7402 else
7403 /* Otherwise, reset to -1. */
7404 h->plt.offset = (bfd_vma) - 1;
7405
7406
7407 /* If this is a weak symbol, and there is a real definition, the
7408 processor independent code will have arranged for us to see the
7409 real definition first, and we can just use the same value. */
7410 if (h->is_weakalias)
7411 {
7412 struct elf_link_hash_entry *def = weakdef (h);
7413 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7414 h->root.u.def.section = def->root.u.def.section;
7415 h->root.u.def.value = def->root.u.def.value;
7416 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7417 h->non_got_ref = def->non_got_ref;
7418 return TRUE;
7419 }
7420
7421 /* If we are creating a shared library, we must presume that the
7422 only references to the symbol are via the global offset table.
7423 For such cases we need not do anything here; the relocations will
7424 be handled correctly by relocate_section. */
7425 if (bfd_link_pic (info))
7426 return TRUE;
7427
7428 /* If there are no references to this symbol that do not use the
7429 GOT, we don't need to generate a copy reloc. */
7430 if (!h->non_got_ref)
7431 return TRUE;
7432
7433 /* If -z nocopyreloc was given, we won't generate them either. */
7434 if (info->nocopyreloc)
7435 {
7436 h->non_got_ref = 0;
7437 return TRUE;
7438 }
7439
7440 if (ELIMINATE_COPY_RELOCS)
7441 {
7442 struct elf_aarch64_link_hash_entry *eh;
7443 /* If we don't find any dynamic relocs in read-only sections, then
7444 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7445 eh = (struct elf_aarch64_link_hash_entry *) h;
7446 if (!need_copy_relocation_p (eh))
7447 {
7448 h->non_got_ref = 0;
7449 return TRUE;
7450 }
7451 }
7452
7453 /* We must allocate the symbol in our .dynbss section, which will
7454 become part of the .bss section of the executable. There will be
7455 an entry for this symbol in the .dynsym section. The dynamic
7456 object will contain position independent code, so all references
7457 from the dynamic object to this symbol will go through the global
7458 offset table. The dynamic linker will use the .dynsym entry to
7459 determine the address it must put in the global offset table, so
7460 both the dynamic object and the regular object will refer to the
7461 same memory location for the variable. */
7462
7463 htab = elf_aarch64_hash_table (info);
7464
7465 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7466 to copy the initial value out of the dynamic object and into the
7467 runtime process image. */
7468 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7469 {
7470 s = htab->root.sdynrelro;
7471 srel = htab->root.sreldynrelro;
7472 }
7473 else
7474 {
7475 s = htab->root.sdynbss;
7476 srel = htab->root.srelbss;
7477 }
7478 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7479 {
7480 srel->size += RELOC_SIZE (htab);
7481 h->needs_copy = 1;
7482 }
7483
7484 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7485
7486 }
7487
7488 static bfd_boolean
7489 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7490 {
7491 struct elf_aarch64_local_symbol *locals;
7492 locals = elf_aarch64_locals (abfd);
7493 if (locals == NULL)
7494 {
7495 locals = (struct elf_aarch64_local_symbol *)
7496 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7497 if (locals == NULL)
7498 return FALSE;
7499 elf_aarch64_locals (abfd) = locals;
7500 }
7501 return TRUE;
7502 }
7503
7504 /* Create the .got section to hold the global offset table. */
7505
7506 static bfd_boolean
7507 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7508 {
7509 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7510 flagword flags;
7511 asection *s;
7512 struct elf_link_hash_entry *h;
7513 struct elf_link_hash_table *htab = elf_hash_table (info);
7514
7515 /* This function may be called more than once. */
7516 if (htab->sgot != NULL)
7517 return TRUE;
7518
7519 flags = bed->dynamic_sec_flags;
7520
7521 s = bfd_make_section_anyway_with_flags (abfd,
7522 (bed->rela_plts_and_copies_p
7523 ? ".rela.got" : ".rel.got"),
7524 (bed->dynamic_sec_flags
7525 | SEC_READONLY));
7526 if (s == NULL
7527 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7528 return FALSE;
7529 htab->srelgot = s;
7530
7531 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7532 if (s == NULL
7533 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7534 return FALSE;
7535 htab->sgot = s;
7536 htab->sgot->size += GOT_ENTRY_SIZE;
7537
7538 if (bed->want_got_sym)
7539 {
7540 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7541 (or .got.plt) section. We don't do this in the linker script
7542 because we don't want to define the symbol if we are not creating
7543 a global offset table. */
7544 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7545 "_GLOBAL_OFFSET_TABLE_");
7546 elf_hash_table (info)->hgot = h;
7547 if (h == NULL)
7548 return FALSE;
7549 }
7550
7551 if (bed->want_got_plt)
7552 {
7553 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7554 if (s == NULL
7555 || !bfd_set_section_alignment (s, bed->s->log_file_align))
7556 return FALSE;
7557 htab->sgotplt = s;
7558 }
7559
7560 /* The first bit of the global offset table is the header. */
7561 s->size += bed->got_header_size;
7562
7563 return TRUE;
7564 }
7565
7566 /* Look through the relocs for a section during the first phase. */
7567
7568 static bfd_boolean
7569 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7570 asection *sec, const Elf_Internal_Rela *relocs)
7571 {
7572 Elf_Internal_Shdr *symtab_hdr;
7573 struct elf_link_hash_entry **sym_hashes;
7574 const Elf_Internal_Rela *rel;
7575 const Elf_Internal_Rela *rel_end;
7576 asection *sreloc;
7577
7578 struct elf_aarch64_link_hash_table *htab;
7579
7580 if (bfd_link_relocatable (info))
7581 return TRUE;
7582
7583 BFD_ASSERT (is_aarch64_elf (abfd));
7584
7585 htab = elf_aarch64_hash_table (info);
7586 sreloc = NULL;
7587
7588 symtab_hdr = &elf_symtab_hdr (abfd);
7589 sym_hashes = elf_sym_hashes (abfd);
7590
7591 rel_end = relocs + sec->reloc_count;
7592 for (rel = relocs; rel < rel_end; rel++)
7593 {
7594 struct elf_link_hash_entry *h;
7595 unsigned int r_symndx;
7596 unsigned int r_type;
7597 bfd_reloc_code_real_type bfd_r_type;
7598 Elf_Internal_Sym *isym;
7599
7600 r_symndx = ELFNN_R_SYM (rel->r_info);
7601 r_type = ELFNN_R_TYPE (rel->r_info);
7602
7603 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7604 {
7605 /* xgettext:c-format */
7606 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7607 return FALSE;
7608 }
7609
7610 if (r_symndx < symtab_hdr->sh_info)
7611 {
7612 /* A local symbol. */
7613 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7614 abfd, r_symndx);
7615 if (isym == NULL)
7616 return FALSE;
7617
7618 /* Check relocation against local STT_GNU_IFUNC symbol. */
7619 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7620 {
7621 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7622 TRUE);
7623 if (h == NULL)
7624 return FALSE;
7625
7626 /* Fake a STT_GNU_IFUNC symbol. */
7627 h->type = STT_GNU_IFUNC;
7628 h->def_regular = 1;
7629 h->ref_regular = 1;
7630 h->forced_local = 1;
7631 h->root.type = bfd_link_hash_defined;
7632 }
7633 else
7634 h = NULL;
7635 }
7636 else
7637 {
7638 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7639 while (h->root.type == bfd_link_hash_indirect
7640 || h->root.type == bfd_link_hash_warning)
7641 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7642 }
7643
7644 /* Could be done earlier, if h were already available. */
7645 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7646
7647 if (h != NULL)
7648 {
7649 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7650 This shows up in particular in an R_AARCH64_PREL64 in large model
7651 when calculating the pc-relative address to .got section which is
7652 used to initialize the gp register. */
7653 if (h->root.root.string
7654 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7655 {
7656 if (htab->root.dynobj == NULL)
7657 htab->root.dynobj = abfd;
7658
7659 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7660 return FALSE;
7661
7662 BFD_ASSERT (h == htab->root.hgot);
7663 }
7664
7665 /* Create the ifunc sections for static executables. If we
7666 never see an indirect function symbol nor we are building
7667 a static executable, those sections will be empty and
7668 won't appear in output. */
7669 switch (bfd_r_type)
7670 {
7671 default:
7672 break;
7673
7674 case BFD_RELOC_AARCH64_ADD_LO12:
7675 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7676 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7677 case BFD_RELOC_AARCH64_CALL26:
7678 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7679 case BFD_RELOC_AARCH64_JUMP26:
7680 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7681 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7682 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7683 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7684 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7685 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7686 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7687 case BFD_RELOC_AARCH64_NN:
7688 if (htab->root.dynobj == NULL)
7689 htab->root.dynobj = abfd;
7690 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7691 return FALSE;
7692 break;
7693 }
7694
7695 /* It is referenced by a non-shared object. */
7696 h->ref_regular = 1;
7697 }
7698
7699 switch (bfd_r_type)
7700 {
7701 case BFD_RELOC_AARCH64_16:
7702 #if ARCH_SIZE == 64
7703 case BFD_RELOC_AARCH64_32:
7704 #endif
7705 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7706 {
7707 if (h != NULL
7708 /* This is an absolute symbol. It represents a value instead
7709 of an address. */
7710 && (bfd_is_abs_symbol (&h->root)
7711 /* This is an undefined symbol. */
7712 || h->root.type == bfd_link_hash_undefined))
7713 break;
7714
7715 /* For local symbols, defined global symbols in a non-ABS section,
7716 it is assumed that the value is an address. */
7717 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7718 _bfd_error_handler
7719 /* xgettext:c-format */
7720 (_("%pB: relocation %s against `%s' can not be used when making "
7721 "a shared object"),
7722 abfd, elfNN_aarch64_howto_table[howto_index].name,
7723 (h) ? h->root.root.string : "a local symbol");
7724 bfd_set_error (bfd_error_bad_value);
7725 return FALSE;
7726 }
7727 else
7728 break;
7729
7730 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7731 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7732 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7733 case BFD_RELOC_AARCH64_MOVW_G3:
7734 if (bfd_link_pic (info))
7735 {
7736 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7737 _bfd_error_handler
7738 /* xgettext:c-format */
7739 (_("%pB: relocation %s against `%s' can not be used when making "
7740 "a shared object; recompile with -fPIC"),
7741 abfd, elfNN_aarch64_howto_table[howto_index].name,
7742 (h) ? h->root.root.string : "a local symbol");
7743 bfd_set_error (bfd_error_bad_value);
7744 return FALSE;
7745 }
7746 /* Fall through. */
7747
7748 case BFD_RELOC_AARCH64_16_PCREL:
7749 case BFD_RELOC_AARCH64_32_PCREL:
7750 case BFD_RELOC_AARCH64_64_PCREL:
7751 case BFD_RELOC_AARCH64_ADD_LO12:
7752 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7753 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7754 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7755 case BFD_RELOC_AARCH64_LDST128_LO12:
7756 case BFD_RELOC_AARCH64_LDST16_LO12:
7757 case BFD_RELOC_AARCH64_LDST32_LO12:
7758 case BFD_RELOC_AARCH64_LDST64_LO12:
7759 case BFD_RELOC_AARCH64_LDST8_LO12:
7760 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7761 if (h == NULL || bfd_link_pic (info))
7762 break;
7763 /* Fall through. */
7764
7765 case BFD_RELOC_AARCH64_NN:
7766
7767 /* We don't need to handle relocs into sections not going into
7768 the "real" output. */
7769 if ((sec->flags & SEC_ALLOC) == 0)
7770 break;
7771
7772 if (h != NULL)
7773 {
7774 if (!bfd_link_pic (info))
7775 h->non_got_ref = 1;
7776
7777 h->plt.refcount += 1;
7778 h->pointer_equality_needed = 1;
7779 }
7780
7781 /* No need to do anything if we're not creating a shared
7782 object. */
7783 if (!(bfd_link_pic (info)
7784 /* If on the other hand, we are creating an executable, we
7785 may need to keep relocations for symbols satisfied by a
7786 dynamic library if we manage to avoid copy relocs for the
7787 symbol.
7788
7789 NOTE: Currently, there is no support of copy relocs
7790 elimination on pc-relative relocation types, because there is
7791 no dynamic relocation support for them in glibc. We still
7792 record the dynamic symbol reference for them. This is
7793 because one symbol may be referenced by both absolute
7794 relocation (for example, BFD_RELOC_AARCH64_NN) and
7795 pc-relative relocation. We need full symbol reference
7796 information to make correct decision later in
7797 elfNN_aarch64_adjust_dynamic_symbol. */
7798 || (ELIMINATE_COPY_RELOCS
7799 && !bfd_link_pic (info)
7800 && h != NULL
7801 && (h->root.type == bfd_link_hash_defweak
7802 || !h->def_regular))))
7803 break;
7804
7805 {
7806 struct elf_dyn_relocs *p;
7807 struct elf_dyn_relocs **head;
7808 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7809
7810 /* We must copy these reloc types into the output file.
7811 Create a reloc section in dynobj and make room for
7812 this reloc. */
7813 if (sreloc == NULL)
7814 {
7815 if (htab->root.dynobj == NULL)
7816 htab->root.dynobj = abfd;
7817
7818 sreloc = _bfd_elf_make_dynamic_reloc_section
7819 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7820
7821 if (sreloc == NULL)
7822 return FALSE;
7823 }
7824
7825 /* If this is a global symbol, we count the number of
7826 relocations we need for this symbol. */
7827 if (h != NULL)
7828 {
7829 struct elf_aarch64_link_hash_entry *eh;
7830 eh = (struct elf_aarch64_link_hash_entry *) h;
7831 head = &eh->dyn_relocs;
7832 }
7833 else
7834 {
7835 /* Track dynamic relocs needed for local syms too.
7836 We really need local syms available to do this
7837 easily. Oh well. */
7838
7839 asection *s;
7840 void **vpp;
7841
7842 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7843 abfd, r_symndx);
7844 if (isym == NULL)
7845 return FALSE;
7846
7847 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7848 if (s == NULL)
7849 s = sec;
7850
7851 /* Beware of type punned pointers vs strict aliasing
7852 rules. */
7853 vpp = &(elf_section_data (s)->local_dynrel);
7854 head = (struct elf_dyn_relocs **) vpp;
7855 }
7856
7857 p = *head;
7858 if (p == NULL || p->sec != sec)
7859 {
7860 bfd_size_type amt = sizeof *p;
7861 p = ((struct elf_dyn_relocs *)
7862 bfd_zalloc (htab->root.dynobj, amt));
7863 if (p == NULL)
7864 return FALSE;
7865 p->next = *head;
7866 *head = p;
7867 p->sec = sec;
7868 }
7869
7870 p->count += 1;
7871
7872 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7873 p->pc_count += 1;
7874 }
7875 break;
7876
7877 /* RR: We probably want to keep a consistency check that
7878 there are no dangling GOT_PAGE relocs. */
7879 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7880 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7881 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7882 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7883 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7884 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7885 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7886 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7887 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7888 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7889 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7890 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7891 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7892 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7893 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7894 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7895 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7896 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7897 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7898 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7899 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7900 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7901 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7902 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7903 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7904 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7905 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7906 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7907 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7908 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7909 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7910 {
7911 unsigned got_type;
7912 unsigned old_got_type;
7913
7914 got_type = aarch64_reloc_got_type (bfd_r_type);
7915
7916 if (h)
7917 {
7918 h->got.refcount += 1;
7919 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7920 }
7921 else
7922 {
7923 struct elf_aarch64_local_symbol *locals;
7924
7925 if (!elfNN_aarch64_allocate_local_symbols
7926 (abfd, symtab_hdr->sh_info))
7927 return FALSE;
7928
7929 locals = elf_aarch64_locals (abfd);
7930 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7931 locals[r_symndx].got_refcount += 1;
7932 old_got_type = locals[r_symndx].got_type;
7933 }
7934
7935 /* If a variable is accessed with both general dynamic TLS
7936 methods, two slots may be created. */
7937 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7938 got_type |= old_got_type;
7939
7940 /* We will already have issued an error message if there
7941 is a TLS/non-TLS mismatch, based on the symbol type.
7942 So just combine any TLS types needed. */
7943 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7944 && got_type != GOT_NORMAL)
7945 got_type |= old_got_type;
7946
7947 /* If the symbol is accessed by both IE and GD methods, we
7948 are able to relax. Turn off the GD flag, without
7949 messing up with any other kind of TLS types that may be
7950 involved. */
7951 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7952 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7953
7954 if (old_got_type != got_type)
7955 {
7956 if (h != NULL)
7957 elf_aarch64_hash_entry (h)->got_type = got_type;
7958 else
7959 {
7960 struct elf_aarch64_local_symbol *locals;
7961 locals = elf_aarch64_locals (abfd);
7962 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7963 locals[r_symndx].got_type = got_type;
7964 }
7965 }
7966
7967 if (htab->root.dynobj == NULL)
7968 htab->root.dynobj = abfd;
7969 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7970 return FALSE;
7971 break;
7972 }
7973
7974 case BFD_RELOC_AARCH64_CALL26:
7975 case BFD_RELOC_AARCH64_JUMP26:
7976 /* If this is a local symbol then we resolve it
7977 directly without creating a PLT entry. */
7978 if (h == NULL)
7979 continue;
7980
7981 h->needs_plt = 1;
7982 if (h->plt.refcount <= 0)
7983 h->plt.refcount = 1;
7984 else
7985 h->plt.refcount += 1;
7986 break;
7987
7988 default:
7989 break;
7990 }
7991 }
7992
7993 return TRUE;
7994 }
7995
7996 /* Treat mapping symbols as special target symbols. */
7997
7998 static bfd_boolean
7999 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
8000 asymbol *sym)
8001 {
8002 return bfd_is_aarch64_special_symbol_name (sym->name,
8003 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
8004 }
8005
8006 /* If the ELF symbol SYM might be a function in SEC, return the
8007 function size and set *CODE_OFF to the function's entry point,
8008 otherwise return zero. */
8009
8010 static bfd_size_type
8011 elfNN_aarch64_maybe_function_sym (const asymbol *sym, asection *sec,
8012 bfd_vma *code_off)
8013 {
8014 bfd_size_type size;
8015
8016 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
8017 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
8018 || sym->section != sec)
8019 return 0;
8020
8021 if (!(sym->flags & BSF_SYNTHETIC))
8022 switch (ELF_ST_TYPE (((elf_symbol_type *) sym)->internal_elf_sym.st_info))
8023 {
8024 case STT_FUNC:
8025 case STT_NOTYPE:
8026 break;
8027 default:
8028 return 0;
8029 }
8030
8031 if ((sym->flags & BSF_LOCAL)
8032 && bfd_is_aarch64_special_symbol_name (sym->name,
8033 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY))
8034 return 0;
8035
8036 *code_off = sym->value;
8037 size = 0;
8038 if (!(sym->flags & BSF_SYNTHETIC))
8039 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
8040 if (size == 0)
8041 size = 1;
8042 return size;
8043 }
8044
8045 static bfd_boolean
8046 elfNN_aarch64_find_inliner_info (bfd *abfd,
8047 const char **filename_ptr,
8048 const char **functionname_ptr,
8049 unsigned int *line_ptr)
8050 {
8051 bfd_boolean found;
8052 found = _bfd_dwarf2_find_inliner_info
8053 (abfd, filename_ptr,
8054 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
8055 return found;
8056 }
8057
8058
8059 static bfd_boolean
8060 elfNN_aarch64_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
8061 {
8062 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
8063
8064 if (!_bfd_elf_init_file_header (abfd, link_info))
8065 return FALSE;
8066
8067 i_ehdrp = elf_elfheader (abfd);
8068 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
8069 return TRUE;
8070 }
8071
8072 static enum elf_reloc_type_class
8073 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
8074 const asection *rel_sec ATTRIBUTE_UNUSED,
8075 const Elf_Internal_Rela *rela)
8076 {
8077 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
8078
8079 if (htab->root.dynsym != NULL
8080 && htab->root.dynsym->contents != NULL)
8081 {
8082 /* Check relocation against STT_GNU_IFUNC symbol if there are
8083 dynamic symbols. */
8084 bfd *abfd = info->output_bfd;
8085 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8086 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
8087 if (r_symndx != STN_UNDEF)
8088 {
8089 Elf_Internal_Sym sym;
8090 if (!bed->s->swap_symbol_in (abfd,
8091 (htab->root.dynsym->contents
8092 + r_symndx * bed->s->sizeof_sym),
8093 0, &sym))
8094 {
8095 /* xgettext:c-format */
8096 _bfd_error_handler (_("%pB symbol number %lu references"
8097 " nonexistent SHT_SYMTAB_SHNDX section"),
8098 abfd, r_symndx);
8099 /* Ideally an error class should be returned here. */
8100 }
8101 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
8102 return reloc_class_ifunc;
8103 }
8104 }
8105
8106 switch ((int) ELFNN_R_TYPE (rela->r_info))
8107 {
8108 case AARCH64_R (IRELATIVE):
8109 return reloc_class_ifunc;
8110 case AARCH64_R (RELATIVE):
8111 return reloc_class_relative;
8112 case AARCH64_R (JUMP_SLOT):
8113 return reloc_class_plt;
8114 case AARCH64_R (COPY):
8115 return reloc_class_copy;
8116 default:
8117 return reloc_class_normal;
8118 }
8119 }
8120
8121 /* Handle an AArch64 specific section when reading an object file. This is
8122 called when bfd_section_from_shdr finds a section with an unknown
8123 type. */
8124
8125 static bfd_boolean
8126 elfNN_aarch64_section_from_shdr (bfd *abfd,
8127 Elf_Internal_Shdr *hdr,
8128 const char *name, int shindex)
8129 {
8130 /* There ought to be a place to keep ELF backend specific flags, but
8131 at the moment there isn't one. We just keep track of the
8132 sections by their name, instead. Fortunately, the ABI gives
8133 names for all the AArch64 specific sections, so we will probably get
8134 away with this. */
8135 switch (hdr->sh_type)
8136 {
8137 case SHT_AARCH64_ATTRIBUTES:
8138 break;
8139
8140 default:
8141 return FALSE;
8142 }
8143
8144 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
8145 return FALSE;
8146
8147 return TRUE;
8148 }
8149
8150 /* A structure used to record a list of sections, independently
8151 of the next and prev fields in the asection structure. */
8152 typedef struct section_list
8153 {
8154 asection *sec;
8155 struct section_list *next;
8156 struct section_list *prev;
8157 }
8158 section_list;
8159
8160 /* Unfortunately we need to keep a list of sections for which
8161 an _aarch64_elf_section_data structure has been allocated. This
8162 is because it is possible for functions like elfNN_aarch64_write_section
8163 to be called on a section which has had an elf_data_structure
8164 allocated for it (and so the used_by_bfd field is valid) but
8165 for which the AArch64 extended version of this structure - the
8166 _aarch64_elf_section_data structure - has not been allocated. */
8167 static section_list *sections_with_aarch64_elf_section_data = NULL;
8168
8169 static void
8170 record_section_with_aarch64_elf_section_data (asection *sec)
8171 {
8172 struct section_list *entry;
8173
8174 entry = bfd_malloc (sizeof (*entry));
8175 if (entry == NULL)
8176 return;
8177 entry->sec = sec;
8178 entry->next = sections_with_aarch64_elf_section_data;
8179 entry->prev = NULL;
8180 if (entry->next != NULL)
8181 entry->next->prev = entry;
8182 sections_with_aarch64_elf_section_data = entry;
8183 }
8184
8185 static struct section_list *
8186 find_aarch64_elf_section_entry (asection *sec)
8187 {
8188 struct section_list *entry;
8189 static struct section_list *last_entry = NULL;
8190
8191 /* This is a short cut for the typical case where the sections are added
8192 to the sections_with_aarch64_elf_section_data list in forward order and
8193 then looked up here in backwards order. This makes a real difference
8194 to the ld-srec/sec64k.exp linker test. */
8195 entry = sections_with_aarch64_elf_section_data;
8196 if (last_entry != NULL)
8197 {
8198 if (last_entry->sec == sec)
8199 entry = last_entry;
8200 else if (last_entry->next != NULL && last_entry->next->sec == sec)
8201 entry = last_entry->next;
8202 }
8203
8204 for (; entry; entry = entry->next)
8205 if (entry->sec == sec)
8206 break;
8207
8208 if (entry)
8209 /* Record the entry prior to this one - it is the entry we are
8210 most likely to want to locate next time. Also this way if we
8211 have been called from
8212 unrecord_section_with_aarch64_elf_section_data () we will not
8213 be caching a pointer that is about to be freed. */
8214 last_entry = entry->prev;
8215
8216 return entry;
8217 }
8218
8219 static void
8220 unrecord_section_with_aarch64_elf_section_data (asection *sec)
8221 {
8222 struct section_list *entry;
8223
8224 entry = find_aarch64_elf_section_entry (sec);
8225
8226 if (entry)
8227 {
8228 if (entry->prev != NULL)
8229 entry->prev->next = entry->next;
8230 if (entry->next != NULL)
8231 entry->next->prev = entry->prev;
8232 if (entry == sections_with_aarch64_elf_section_data)
8233 sections_with_aarch64_elf_section_data = entry->next;
8234 free (entry);
8235 }
8236 }
8237
8238
8239 typedef struct
8240 {
8241 void *finfo;
8242 struct bfd_link_info *info;
8243 asection *sec;
8244 int sec_shndx;
8245 int (*func) (void *, const char *, Elf_Internal_Sym *,
8246 asection *, struct elf_link_hash_entry *);
8247 } output_arch_syminfo;
8248
8249 enum map_symbol_type
8250 {
8251 AARCH64_MAP_INSN,
8252 AARCH64_MAP_DATA
8253 };
8254
8255
8256 /* Output a single mapping symbol. */
8257
8258 static bfd_boolean
8259 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
8260 enum map_symbol_type type, bfd_vma offset)
8261 {
8262 static const char *names[2] = { "$x", "$d" };
8263 Elf_Internal_Sym sym;
8264
8265 sym.st_value = (osi->sec->output_section->vma
8266 + osi->sec->output_offset + offset);
8267 sym.st_size = 0;
8268 sym.st_other = 0;
8269 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8270 sym.st_shndx = osi->sec_shndx;
8271 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8272 }
8273
8274 /* Output a single local symbol for a generated stub. */
8275
8276 static bfd_boolean
8277 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8278 bfd_vma offset, bfd_vma size)
8279 {
8280 Elf_Internal_Sym sym;
8281
8282 sym.st_value = (osi->sec->output_section->vma
8283 + osi->sec->output_offset + offset);
8284 sym.st_size = size;
8285 sym.st_other = 0;
8286 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8287 sym.st_shndx = osi->sec_shndx;
8288 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8289 }
8290
8291 static bfd_boolean
8292 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8293 {
8294 struct elf_aarch64_stub_hash_entry *stub_entry;
8295 asection *stub_sec;
8296 bfd_vma addr;
8297 char *stub_name;
8298 output_arch_syminfo *osi;
8299
8300 /* Massage our args to the form they really have. */
8301 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8302 osi = (output_arch_syminfo *) in_arg;
8303
8304 stub_sec = stub_entry->stub_sec;
8305
8306 /* Ensure this stub is attached to the current section being
8307 processed. */
8308 if (stub_sec != osi->sec)
8309 return TRUE;
8310
8311 addr = (bfd_vma) stub_entry->stub_offset;
8312
8313 stub_name = stub_entry->output_name;
8314
8315 switch (stub_entry->stub_type)
8316 {
8317 case aarch64_stub_adrp_branch:
8318 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8319 sizeof (aarch64_adrp_branch_stub)))
8320 return FALSE;
8321 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8322 return FALSE;
8323 break;
8324 case aarch64_stub_long_branch:
8325 if (!elfNN_aarch64_output_stub_sym
8326 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8327 return FALSE;
8328 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8329 return FALSE;
8330 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8331 return FALSE;
8332 break;
8333 case aarch64_stub_erratum_835769_veneer:
8334 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8335 sizeof (aarch64_erratum_835769_stub)))
8336 return FALSE;
8337 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8338 return FALSE;
8339 break;
8340 case aarch64_stub_erratum_843419_veneer:
8341 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8342 sizeof (aarch64_erratum_843419_stub)))
8343 return FALSE;
8344 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8345 return FALSE;
8346 break;
8347 case aarch64_stub_none:
8348 break;
8349
8350 default:
8351 abort ();
8352 }
8353
8354 return TRUE;
8355 }
8356
8357 /* Output mapping symbols for linker generated sections. */
8358
8359 static bfd_boolean
8360 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8361 struct bfd_link_info *info,
8362 void *finfo,
8363 int (*func) (void *, const char *,
8364 Elf_Internal_Sym *,
8365 asection *,
8366 struct elf_link_hash_entry
8367 *))
8368 {
8369 output_arch_syminfo osi;
8370 struct elf_aarch64_link_hash_table *htab;
8371
8372 htab = elf_aarch64_hash_table (info);
8373
8374 osi.finfo = finfo;
8375 osi.info = info;
8376 osi.func = func;
8377
8378 /* Long calls stubs. */
8379 if (htab->stub_bfd && htab->stub_bfd->sections)
8380 {
8381 asection *stub_sec;
8382
8383 for (stub_sec = htab->stub_bfd->sections;
8384 stub_sec != NULL; stub_sec = stub_sec->next)
8385 {
8386 /* Ignore non-stub sections. */
8387 if (!strstr (stub_sec->name, STUB_SUFFIX))
8388 continue;
8389
8390 osi.sec = stub_sec;
8391
8392 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8393 (output_bfd, osi.sec->output_section);
8394
8395 /* The first instruction in a stub is always a branch. */
8396 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8397 return FALSE;
8398
8399 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8400 &osi);
8401 }
8402 }
8403
8404 /* Finally, output mapping symbols for the PLT. */
8405 if (!htab->root.splt || htab->root.splt->size == 0)
8406 return TRUE;
8407
8408 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8409 (output_bfd, htab->root.splt->output_section);
8410 osi.sec = htab->root.splt;
8411
8412 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8413
8414 return TRUE;
8415
8416 }
8417
8418 /* Allocate target specific section data. */
8419
8420 static bfd_boolean
8421 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8422 {
8423 if (!sec->used_by_bfd)
8424 {
8425 _aarch64_elf_section_data *sdata;
8426 bfd_size_type amt = sizeof (*sdata);
8427
8428 sdata = bfd_zalloc (abfd, amt);
8429 if (sdata == NULL)
8430 return FALSE;
8431 sec->used_by_bfd = sdata;
8432 }
8433
8434 record_section_with_aarch64_elf_section_data (sec);
8435
8436 return _bfd_elf_new_section_hook (abfd, sec);
8437 }
8438
8439
8440 static void
8441 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8442 asection *sec,
8443 void *ignore ATTRIBUTE_UNUSED)
8444 {
8445 unrecord_section_with_aarch64_elf_section_data (sec);
8446 }
8447
8448 static bfd_boolean
8449 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8450 {
8451 if (abfd->sections)
8452 bfd_map_over_sections (abfd,
8453 unrecord_section_via_map_over_sections, NULL);
8454
8455 return _bfd_elf_close_and_cleanup (abfd);
8456 }
8457
8458 static bfd_boolean
8459 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8460 {
8461 if (abfd->sections)
8462 bfd_map_over_sections (abfd,
8463 unrecord_section_via_map_over_sections, NULL);
8464
8465 return _bfd_free_cached_info (abfd);
8466 }
8467
8468 /* Create dynamic sections. This is different from the ARM backend in that
8469 the got, plt, gotplt and their relocation sections are all created in the
8470 standard part of the bfd elf backend. */
8471
8472 static bfd_boolean
8473 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8474 struct bfd_link_info *info)
8475 {
8476 /* We need to create .got section. */
8477 if (!aarch64_elf_create_got_section (dynobj, info))
8478 return FALSE;
8479
8480 return _bfd_elf_create_dynamic_sections (dynobj, info);
8481 }
8482
8483
8484 /* Allocate space in .plt, .got and associated reloc sections for
8485 dynamic relocs. */
8486
8487 static bfd_boolean
8488 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8489 {
8490 struct bfd_link_info *info;
8491 struct elf_aarch64_link_hash_table *htab;
8492 struct elf_aarch64_link_hash_entry *eh;
8493 struct elf_dyn_relocs *p;
8494
8495 /* An example of a bfd_link_hash_indirect symbol is versioned
8496 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8497 -> __gxx_personality_v0(bfd_link_hash_defined)
8498
8499 There is no need to process bfd_link_hash_indirect symbols here
8500 because we will also be presented with the concrete instance of
8501 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8502 called to copy all relevant data from the generic to the concrete
8503 symbol instance. */
8504 if (h->root.type == bfd_link_hash_indirect)
8505 return TRUE;
8506
8507 if (h->root.type == bfd_link_hash_warning)
8508 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8509
8510 info = (struct bfd_link_info *) inf;
8511 htab = elf_aarch64_hash_table (info);
8512
8513 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8514 here if it is defined and referenced in a non-shared object. */
8515 if (h->type == STT_GNU_IFUNC
8516 && h->def_regular)
8517 return TRUE;
8518 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8519 {
8520 /* Make sure this symbol is output as a dynamic symbol.
8521 Undefined weak syms won't yet be marked as dynamic. */
8522 if (h->dynindx == -1 && !h->forced_local
8523 && h->root.type == bfd_link_hash_undefweak)
8524 {
8525 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8526 return FALSE;
8527 }
8528
8529 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8530 {
8531 asection *s = htab->root.splt;
8532
8533 /* If this is the first .plt entry, make room for the special
8534 first entry. */
8535 if (s->size == 0)
8536 s->size += htab->plt_header_size;
8537
8538 h->plt.offset = s->size;
8539
8540 /* If this symbol is not defined in a regular file, and we are
8541 not generating a shared library, then set the symbol to this
8542 location in the .plt. This is required to make function
8543 pointers compare as equal between the normal executable and
8544 the shared library. */
8545 if (!bfd_link_pic (info) && !h->def_regular)
8546 {
8547 h->root.u.def.section = s;
8548 h->root.u.def.value = h->plt.offset;
8549 }
8550
8551 /* Make room for this entry. For now we only create the
8552 small model PLT entries. We later need to find a way
8553 of relaxing into these from the large model PLT entries. */
8554 s->size += htab->plt_entry_size;
8555
8556 /* We also need to make an entry in the .got.plt section, which
8557 will be placed in the .got section by the linker script. */
8558 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8559
8560 /* We also need to make an entry in the .rela.plt section. */
8561 htab->root.srelplt->size += RELOC_SIZE (htab);
8562
8563 /* We need to ensure that all GOT entries that serve the PLT
8564 are consecutive with the special GOT slots [0] [1] and
8565 [2]. Any addtional relocations, such as
8566 R_AARCH64_TLSDESC, must be placed after the PLT related
8567 entries. We abuse the reloc_count such that during
8568 sizing we adjust reloc_count to indicate the number of
8569 PLT related reserved entries. In subsequent phases when
8570 filling in the contents of the reloc entries, PLT related
8571 entries are placed by computing their PLT index (0
8572 .. reloc_count). While other none PLT relocs are placed
8573 at the slot indicated by reloc_count and reloc_count is
8574 updated. */
8575
8576 htab->root.srelplt->reloc_count++;
8577
8578 /* Mark the DSO in case R_<CLS>_JUMP_SLOT relocs against
8579 variant PCS symbols are present. */
8580 if (h->other & STO_AARCH64_VARIANT_PCS)
8581 htab->variant_pcs = 1;
8582
8583 }
8584 else
8585 {
8586 h->plt.offset = (bfd_vma) - 1;
8587 h->needs_plt = 0;
8588 }
8589 }
8590 else
8591 {
8592 h->plt.offset = (bfd_vma) - 1;
8593 h->needs_plt = 0;
8594 }
8595
8596 eh = (struct elf_aarch64_link_hash_entry *) h;
8597 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8598
8599 if (h->got.refcount > 0)
8600 {
8601 bfd_boolean dyn;
8602 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8603
8604 h->got.offset = (bfd_vma) - 1;
8605
8606 dyn = htab->root.dynamic_sections_created;
8607
8608 /* Make sure this symbol is output as a dynamic symbol.
8609 Undefined weak syms won't yet be marked as dynamic. */
8610 if (dyn && h->dynindx == -1 && !h->forced_local
8611 && h->root.type == bfd_link_hash_undefweak)
8612 {
8613 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8614 return FALSE;
8615 }
8616
8617 if (got_type == GOT_UNKNOWN)
8618 {
8619 }
8620 else if (got_type == GOT_NORMAL)
8621 {
8622 h->got.offset = htab->root.sgot->size;
8623 htab->root.sgot->size += GOT_ENTRY_SIZE;
8624 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8625 || h->root.type != bfd_link_hash_undefweak)
8626 && (bfd_link_pic (info)
8627 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8628 /* Undefined weak symbol in static PIE resolves to 0 without
8629 any dynamic relocations. */
8630 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8631 {
8632 htab->root.srelgot->size += RELOC_SIZE (htab);
8633 }
8634 }
8635 else
8636 {
8637 int indx;
8638 if (got_type & GOT_TLSDESC_GD)
8639 {
8640 eh->tlsdesc_got_jump_table_offset =
8641 (htab->root.sgotplt->size
8642 - aarch64_compute_jump_table_size (htab));
8643 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8644 h->got.offset = (bfd_vma) - 2;
8645 }
8646
8647 if (got_type & GOT_TLS_GD)
8648 {
8649 h->got.offset = htab->root.sgot->size;
8650 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8651 }
8652
8653 if (got_type & GOT_TLS_IE)
8654 {
8655 h->got.offset = htab->root.sgot->size;
8656 htab->root.sgot->size += GOT_ENTRY_SIZE;
8657 }
8658
8659 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8660 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8661 || h->root.type != bfd_link_hash_undefweak)
8662 && (!bfd_link_executable (info)
8663 || indx != 0
8664 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8665 {
8666 if (got_type & GOT_TLSDESC_GD)
8667 {
8668 htab->root.srelplt->size += RELOC_SIZE (htab);
8669 /* Note reloc_count not incremented here! We have
8670 already adjusted reloc_count for this relocation
8671 type. */
8672
8673 /* TLSDESC PLT is now needed, but not yet determined. */
8674 htab->tlsdesc_plt = (bfd_vma) - 1;
8675 }
8676
8677 if (got_type & GOT_TLS_GD)
8678 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8679
8680 if (got_type & GOT_TLS_IE)
8681 htab->root.srelgot->size += RELOC_SIZE (htab);
8682 }
8683 }
8684 }
8685 else
8686 {
8687 h->got.offset = (bfd_vma) - 1;
8688 }
8689
8690 if (eh->dyn_relocs == NULL)
8691 return TRUE;
8692
8693 /* In the shared -Bsymbolic case, discard space allocated for
8694 dynamic pc-relative relocs against symbols which turn out to be
8695 defined in regular objects. For the normal shared case, discard
8696 space for pc-relative relocs that have become local due to symbol
8697 visibility changes. */
8698
8699 if (bfd_link_pic (info))
8700 {
8701 /* Relocs that use pc_count are those that appear on a call
8702 insn, or certain REL relocs that can generated via assembly.
8703 We want calls to protected symbols to resolve directly to the
8704 function rather than going via the plt. If people want
8705 function pointer comparisons to work as expected then they
8706 should avoid writing weird assembly. */
8707 if (SYMBOL_CALLS_LOCAL (info, h))
8708 {
8709 struct elf_dyn_relocs **pp;
8710
8711 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8712 {
8713 p->count -= p->pc_count;
8714 p->pc_count = 0;
8715 if (p->count == 0)
8716 *pp = p->next;
8717 else
8718 pp = &p->next;
8719 }
8720 }
8721
8722 /* Also discard relocs on undefined weak syms with non-default
8723 visibility. */
8724 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8725 {
8726 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8727 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8728 eh->dyn_relocs = NULL;
8729
8730 /* Make sure undefined weak symbols are output as a dynamic
8731 symbol in PIEs. */
8732 else if (h->dynindx == -1
8733 && !h->forced_local
8734 && h->root.type == bfd_link_hash_undefweak
8735 && !bfd_elf_link_record_dynamic_symbol (info, h))
8736 return FALSE;
8737 }
8738
8739 }
8740 else if (ELIMINATE_COPY_RELOCS)
8741 {
8742 /* For the non-shared case, discard space for relocs against
8743 symbols which turn out to need copy relocs or are not
8744 dynamic. */
8745
8746 if (!h->non_got_ref
8747 && ((h->def_dynamic
8748 && !h->def_regular)
8749 || (htab->root.dynamic_sections_created
8750 && (h->root.type == bfd_link_hash_undefweak
8751 || h->root.type == bfd_link_hash_undefined))))
8752 {
8753 /* Make sure this symbol is output as a dynamic symbol.
8754 Undefined weak syms won't yet be marked as dynamic. */
8755 if (h->dynindx == -1
8756 && !h->forced_local
8757 && h->root.type == bfd_link_hash_undefweak
8758 && !bfd_elf_link_record_dynamic_symbol (info, h))
8759 return FALSE;
8760
8761 /* If that succeeded, we know we'll be keeping all the
8762 relocs. */
8763 if (h->dynindx != -1)
8764 goto keep;
8765 }
8766
8767 eh->dyn_relocs = NULL;
8768
8769 keep:;
8770 }
8771
8772 /* Finally, allocate space. */
8773 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8774 {
8775 asection *sreloc;
8776
8777 sreloc = elf_section_data (p->sec)->sreloc;
8778
8779 BFD_ASSERT (sreloc != NULL);
8780
8781 sreloc->size += p->count * RELOC_SIZE (htab);
8782 }
8783
8784 return TRUE;
8785 }
8786
8787 /* Allocate space in .plt, .got and associated reloc sections for
8788 ifunc dynamic relocs. */
8789
8790 static bfd_boolean
8791 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8792 void *inf)
8793 {
8794 struct bfd_link_info *info;
8795 struct elf_aarch64_link_hash_table *htab;
8796 struct elf_aarch64_link_hash_entry *eh;
8797
8798 /* An example of a bfd_link_hash_indirect symbol is versioned
8799 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8800 -> __gxx_personality_v0(bfd_link_hash_defined)
8801
8802 There is no need to process bfd_link_hash_indirect symbols here
8803 because we will also be presented with the concrete instance of
8804 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8805 called to copy all relevant data from the generic to the concrete
8806 symbol instance. */
8807 if (h->root.type == bfd_link_hash_indirect)
8808 return TRUE;
8809
8810 if (h->root.type == bfd_link_hash_warning)
8811 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8812
8813 info = (struct bfd_link_info *) inf;
8814 htab = elf_aarch64_hash_table (info);
8815
8816 eh = (struct elf_aarch64_link_hash_entry *) h;
8817
8818 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8819 here if it is defined and referenced in a non-shared object. */
8820 if (h->type == STT_GNU_IFUNC
8821 && h->def_regular)
8822 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8823 &eh->dyn_relocs,
8824 NULL,
8825 htab->plt_entry_size,
8826 htab->plt_header_size,
8827 GOT_ENTRY_SIZE,
8828 FALSE);
8829 return TRUE;
8830 }
8831
8832 /* Allocate space in .plt, .got and associated reloc sections for
8833 local ifunc dynamic relocs. */
8834
8835 static bfd_boolean
8836 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8837 {
8838 struct elf_link_hash_entry *h
8839 = (struct elf_link_hash_entry *) *slot;
8840
8841 if (h->type != STT_GNU_IFUNC
8842 || !h->def_regular
8843 || !h->ref_regular
8844 || !h->forced_local
8845 || h->root.type != bfd_link_hash_defined)
8846 abort ();
8847
8848 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8849 }
8850
8851 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8852 read-only sections. */
8853
8854 static bfd_boolean
8855 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8856 {
8857 asection *sec;
8858
8859 if (h->root.type == bfd_link_hash_indirect)
8860 return TRUE;
8861
8862 sec = readonly_dynrelocs (h);
8863 if (sec != NULL)
8864 {
8865 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8866
8867 info->flags |= DF_TEXTREL;
8868 info->callbacks->minfo
8869 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
8870 sec->owner, h->root.root.string, sec);
8871
8872 /* Not an error, just cut short the traversal. */
8873 return FALSE;
8874 }
8875 return TRUE;
8876 }
8877
8878 /* This is the most important function of all . Innocuosly named
8879 though ! */
8880
8881 static bfd_boolean
8882 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8883 struct bfd_link_info *info)
8884 {
8885 struct elf_aarch64_link_hash_table *htab;
8886 bfd *dynobj;
8887 asection *s;
8888 bfd_boolean relocs;
8889 bfd *ibfd;
8890
8891 htab = elf_aarch64_hash_table ((info));
8892 dynobj = htab->root.dynobj;
8893
8894 BFD_ASSERT (dynobj != NULL);
8895
8896 if (htab->root.dynamic_sections_created)
8897 {
8898 if (bfd_link_executable (info) && !info->nointerp)
8899 {
8900 s = bfd_get_linker_section (dynobj, ".interp");
8901 if (s == NULL)
8902 abort ();
8903 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8904 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8905 }
8906 }
8907
8908 /* Set up .got offsets for local syms, and space for local dynamic
8909 relocs. */
8910 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8911 {
8912 struct elf_aarch64_local_symbol *locals = NULL;
8913 Elf_Internal_Shdr *symtab_hdr;
8914 asection *srel;
8915 unsigned int i;
8916
8917 if (!is_aarch64_elf (ibfd))
8918 continue;
8919
8920 for (s = ibfd->sections; s != NULL; s = s->next)
8921 {
8922 struct elf_dyn_relocs *p;
8923
8924 for (p = (struct elf_dyn_relocs *)
8925 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8926 {
8927 if (!bfd_is_abs_section (p->sec)
8928 && bfd_is_abs_section (p->sec->output_section))
8929 {
8930 /* Input section has been discarded, either because
8931 it is a copy of a linkonce section or due to
8932 linker script /DISCARD/, so we'll be discarding
8933 the relocs too. */
8934 }
8935 else if (p->count != 0)
8936 {
8937 srel = elf_section_data (p->sec)->sreloc;
8938 srel->size += p->count * RELOC_SIZE (htab);
8939 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8940 info->flags |= DF_TEXTREL;
8941 }
8942 }
8943 }
8944
8945 locals = elf_aarch64_locals (ibfd);
8946 if (!locals)
8947 continue;
8948
8949 symtab_hdr = &elf_symtab_hdr (ibfd);
8950 srel = htab->root.srelgot;
8951 for (i = 0; i < symtab_hdr->sh_info; i++)
8952 {
8953 locals[i].got_offset = (bfd_vma) - 1;
8954 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8955 if (locals[i].got_refcount > 0)
8956 {
8957 unsigned got_type = locals[i].got_type;
8958 if (got_type & GOT_TLSDESC_GD)
8959 {
8960 locals[i].tlsdesc_got_jump_table_offset =
8961 (htab->root.sgotplt->size
8962 - aarch64_compute_jump_table_size (htab));
8963 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8964 locals[i].got_offset = (bfd_vma) - 2;
8965 }
8966
8967 if (got_type & GOT_TLS_GD)
8968 {
8969 locals[i].got_offset = htab->root.sgot->size;
8970 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8971 }
8972
8973 if (got_type & GOT_TLS_IE
8974 || got_type & GOT_NORMAL)
8975 {
8976 locals[i].got_offset = htab->root.sgot->size;
8977 htab->root.sgot->size += GOT_ENTRY_SIZE;
8978 }
8979
8980 if (got_type == GOT_UNKNOWN)
8981 {
8982 }
8983
8984 if (bfd_link_pic (info))
8985 {
8986 if (got_type & GOT_TLSDESC_GD)
8987 {
8988 htab->root.srelplt->size += RELOC_SIZE (htab);
8989 /* Note RELOC_COUNT not incremented here! */
8990 htab->tlsdesc_plt = (bfd_vma) - 1;
8991 }
8992
8993 if (got_type & GOT_TLS_GD)
8994 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8995
8996 if (got_type & GOT_TLS_IE
8997 || got_type & GOT_NORMAL)
8998 htab->root.srelgot->size += RELOC_SIZE (htab);
8999 }
9000 }
9001 else
9002 {
9003 locals[i].got_refcount = (bfd_vma) - 1;
9004 }
9005 }
9006 }
9007
9008
9009 /* Allocate global sym .plt and .got entries, and space for global
9010 sym dynamic relocs. */
9011 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
9012 info);
9013
9014 /* Allocate global ifunc sym .plt and .got entries, and space for global
9015 ifunc sym dynamic relocs. */
9016 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
9017 info);
9018
9019 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
9020 htab_traverse (htab->loc_hash_table,
9021 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
9022 info);
9023
9024 /* For every jump slot reserved in the sgotplt, reloc_count is
9025 incremented. However, when we reserve space for TLS descriptors,
9026 it's not incremented, so in order to compute the space reserved
9027 for them, it suffices to multiply the reloc count by the jump
9028 slot size. */
9029
9030 if (htab->root.srelplt)
9031 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
9032
9033 if (htab->tlsdesc_plt)
9034 {
9035 if (htab->root.splt->size == 0)
9036 htab->root.splt->size += htab->plt_header_size;
9037
9038 /* If we're not using lazy TLS relocations, don't generate the
9039 GOT and PLT entry required. */
9040 if (!(info->flags & DF_BIND_NOW))
9041 {
9042 htab->tlsdesc_plt = htab->root.splt->size;
9043 htab->root.splt->size += htab->tlsdesc_plt_entry_size;
9044
9045 htab->dt_tlsdesc_got = htab->root.sgot->size;
9046 htab->root.sgot->size += GOT_ENTRY_SIZE;
9047 }
9048 }
9049
9050 /* Init mapping symbols information to use later to distingush between
9051 code and data while scanning for errata. */
9052 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
9053 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9054 {
9055 if (!is_aarch64_elf (ibfd))
9056 continue;
9057 bfd_elfNN_aarch64_init_maps (ibfd);
9058 }
9059
9060 /* We now have determined the sizes of the various dynamic sections.
9061 Allocate memory for them. */
9062 relocs = FALSE;
9063 for (s = dynobj->sections; s != NULL; s = s->next)
9064 {
9065 if ((s->flags & SEC_LINKER_CREATED) == 0)
9066 continue;
9067
9068 if (s == htab->root.splt
9069 || s == htab->root.sgot
9070 || s == htab->root.sgotplt
9071 || s == htab->root.iplt
9072 || s == htab->root.igotplt
9073 || s == htab->root.sdynbss
9074 || s == htab->root.sdynrelro)
9075 {
9076 /* Strip this section if we don't need it; see the
9077 comment below. */
9078 }
9079 else if (CONST_STRNEQ (bfd_section_name (s), ".rela"))
9080 {
9081 if (s->size != 0 && s != htab->root.srelplt)
9082 relocs = TRUE;
9083
9084 /* We use the reloc_count field as a counter if we need
9085 to copy relocs into the output file. */
9086 if (s != htab->root.srelplt)
9087 s->reloc_count = 0;
9088 }
9089 else
9090 {
9091 /* It's not one of our sections, so don't allocate space. */
9092 continue;
9093 }
9094
9095 if (s->size == 0)
9096 {
9097 /* If we don't need this section, strip it from the
9098 output file. This is mostly to handle .rela.bss and
9099 .rela.plt. We must create both sections in
9100 create_dynamic_sections, because they must be created
9101 before the linker maps input sections to output
9102 sections. The linker does that before
9103 adjust_dynamic_symbol is called, and it is that
9104 function which decides whether anything needs to go
9105 into these sections. */
9106 s->flags |= SEC_EXCLUDE;
9107 continue;
9108 }
9109
9110 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9111 continue;
9112
9113 /* Allocate memory for the section contents. We use bfd_zalloc
9114 here in case unused entries are not reclaimed before the
9115 section's contents are written out. This should not happen,
9116 but this way if it does, we get a R_AARCH64_NONE reloc instead
9117 of garbage. */
9118 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9119 if (s->contents == NULL)
9120 return FALSE;
9121 }
9122
9123 if (htab->root.dynamic_sections_created)
9124 {
9125 /* Add some entries to the .dynamic section. We fill in the
9126 values later, in elfNN_aarch64_finish_dynamic_sections, but we
9127 must add the entries now so that we get the correct size for
9128 the .dynamic section. The DT_DEBUG entry is filled in by the
9129 dynamic linker and used by the debugger. */
9130 #define add_dynamic_entry(TAG, VAL) \
9131 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9132
9133 if (bfd_link_executable (info))
9134 {
9135 if (!add_dynamic_entry (DT_DEBUG, 0))
9136 return FALSE;
9137 }
9138
9139 if (htab->root.splt->size != 0)
9140 {
9141 if (!add_dynamic_entry (DT_PLTGOT, 0)
9142 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9143 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9144 || !add_dynamic_entry (DT_JMPREL, 0))
9145 return FALSE;
9146
9147 if (htab->variant_pcs
9148 && !add_dynamic_entry (DT_AARCH64_VARIANT_PCS, 0))
9149 return FALSE;
9150
9151 if (htab->tlsdesc_plt
9152 && !(info->flags & DF_BIND_NOW)
9153 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
9154 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
9155 return FALSE;
9156
9157 if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI_PAC)
9158 && (!add_dynamic_entry (DT_AARCH64_BTI_PLT, 0)
9159 || !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0)))
9160 return FALSE;
9161
9162 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_BTI)
9163 && !add_dynamic_entry (DT_AARCH64_BTI_PLT, 0))
9164 return FALSE;
9165
9166 else if ((elf_aarch64_tdata (output_bfd)->plt_type == PLT_PAC)
9167 && !add_dynamic_entry (DT_AARCH64_PAC_PLT, 0))
9168 return FALSE;
9169 }
9170
9171 if (relocs)
9172 {
9173 if (!add_dynamic_entry (DT_RELA, 0)
9174 || !add_dynamic_entry (DT_RELASZ, 0)
9175 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
9176 return FALSE;
9177
9178 /* If any dynamic relocs apply to a read-only section,
9179 then we need a DT_TEXTREL entry. */
9180 if ((info->flags & DF_TEXTREL) == 0)
9181 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
9182
9183 if ((info->flags & DF_TEXTREL) != 0)
9184 {
9185 if (!add_dynamic_entry (DT_TEXTREL, 0))
9186 return FALSE;
9187 }
9188 }
9189 }
9190 #undef add_dynamic_entry
9191
9192 return TRUE;
9193 }
9194
9195 static inline void
9196 elf_aarch64_update_plt_entry (bfd *output_bfd,
9197 bfd_reloc_code_real_type r_type,
9198 bfd_byte *plt_entry, bfd_vma value)
9199 {
9200 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
9201
9202 /* FIXME: We should check the return value from this function call. */
9203 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
9204 }
9205
9206 static void
9207 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
9208 struct elf_aarch64_link_hash_table
9209 *htab, bfd *output_bfd,
9210 struct bfd_link_info *info)
9211 {
9212 bfd_byte *plt_entry;
9213 bfd_vma plt_index;
9214 bfd_vma got_offset;
9215 bfd_vma gotplt_entry_address;
9216 bfd_vma plt_entry_address;
9217 Elf_Internal_Rela rela;
9218 bfd_byte *loc;
9219 asection *plt, *gotplt, *relplt;
9220
9221 /* When building a static executable, use .iplt, .igot.plt and
9222 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9223 if (htab->root.splt != NULL)
9224 {
9225 plt = htab->root.splt;
9226 gotplt = htab->root.sgotplt;
9227 relplt = htab->root.srelplt;
9228 }
9229 else
9230 {
9231 plt = htab->root.iplt;
9232 gotplt = htab->root.igotplt;
9233 relplt = htab->root.irelplt;
9234 }
9235
9236 /* Get the index in the procedure linkage table which
9237 corresponds to this symbol. This is the index of this symbol
9238 in all the symbols for which we are making plt entries. The
9239 first entry in the procedure linkage table is reserved.
9240
9241 Get the offset into the .got table of the entry that
9242 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
9243 bytes. The first three are reserved for the dynamic linker.
9244
9245 For static executables, we don't reserve anything. */
9246
9247 if (plt == htab->root.splt)
9248 {
9249 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
9250 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
9251 }
9252 else
9253 {
9254 plt_index = h->plt.offset / htab->plt_entry_size;
9255 got_offset = plt_index * GOT_ENTRY_SIZE;
9256 }
9257
9258 plt_entry = plt->contents + h->plt.offset;
9259 plt_entry_address = plt->output_section->vma
9260 + plt->output_offset + h->plt.offset;
9261 gotplt_entry_address = gotplt->output_section->vma +
9262 gotplt->output_offset + got_offset;
9263
9264 /* Copy in the boiler-plate for the PLTn entry. */
9265 memcpy (plt_entry, htab->plt_entry, htab->plt_entry_size);
9266
9267 /* First instruction in BTI enabled PLT stub is a BTI
9268 instruction so skip it. */
9269 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI
9270 && elf_elfheader (output_bfd)->e_type == ET_EXEC)
9271 plt_entry = plt_entry + 4;
9272
9273 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9274 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9275 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9276 plt_entry,
9277 PG (gotplt_entry_address) -
9278 PG (plt_entry_address));
9279
9280 /* Fill in the lo12 bits for the load from the pltgot. */
9281 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9282 plt_entry + 4,
9283 PG_OFFSET (gotplt_entry_address));
9284
9285 /* Fill in the lo12 bits for the add from the pltgot entry. */
9286 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9287 plt_entry + 8,
9288 PG_OFFSET (gotplt_entry_address));
9289
9290 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9291 bfd_put_NN (output_bfd,
9292 plt->output_section->vma + plt->output_offset,
9293 gotplt->contents + got_offset);
9294
9295 rela.r_offset = gotplt_entry_address;
9296
9297 if (h->dynindx == -1
9298 || ((bfd_link_executable (info)
9299 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9300 && h->def_regular
9301 && h->type == STT_GNU_IFUNC))
9302 {
9303 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9304 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9305 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9306 rela.r_addend = (h->root.u.def.value
9307 + h->root.u.def.section->output_section->vma
9308 + h->root.u.def.section->output_offset);
9309 }
9310 else
9311 {
9312 /* Fill in the entry in the .rela.plt section. */
9313 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9314 rela.r_addend = 0;
9315 }
9316
9317 /* Compute the relocation entry to used based on PLT index and do
9318 not adjust reloc_count. The reloc_count has already been adjusted
9319 to account for this entry. */
9320 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9321 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9322 }
9323
9324 /* Size sections even though they're not dynamic. We use it to setup
9325 _TLS_MODULE_BASE_, if needed. */
9326
9327 static bfd_boolean
9328 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9329 struct bfd_link_info *info)
9330 {
9331 asection *tls_sec;
9332
9333 if (bfd_link_relocatable (info))
9334 return TRUE;
9335
9336 tls_sec = elf_hash_table (info)->tls_sec;
9337
9338 if (tls_sec)
9339 {
9340 struct elf_link_hash_entry *tlsbase;
9341
9342 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9343 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9344
9345 if (tlsbase)
9346 {
9347 struct bfd_link_hash_entry *h = NULL;
9348 const struct elf_backend_data *bed =
9349 get_elf_backend_data (output_bfd);
9350
9351 if (!(_bfd_generic_link_add_one_symbol
9352 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9353 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9354 return FALSE;
9355
9356 tlsbase->type = STT_TLS;
9357 tlsbase = (struct elf_link_hash_entry *) h;
9358 tlsbase->def_regular = 1;
9359 tlsbase->other = STV_HIDDEN;
9360 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9361 }
9362 }
9363
9364 return TRUE;
9365 }
9366
9367 /* Finish up dynamic symbol handling. We set the contents of various
9368 dynamic sections here. */
9369
9370 static bfd_boolean
9371 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9372 struct bfd_link_info *info,
9373 struct elf_link_hash_entry *h,
9374 Elf_Internal_Sym *sym)
9375 {
9376 struct elf_aarch64_link_hash_table *htab;
9377 htab = elf_aarch64_hash_table (info);
9378
9379 if (h->plt.offset != (bfd_vma) - 1)
9380 {
9381 asection *plt, *gotplt, *relplt;
9382
9383 /* This symbol has an entry in the procedure linkage table. Set
9384 it up. */
9385
9386 /* When building a static executable, use .iplt, .igot.plt and
9387 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9388 if (htab->root.splt != NULL)
9389 {
9390 plt = htab->root.splt;
9391 gotplt = htab->root.sgotplt;
9392 relplt = htab->root.srelplt;
9393 }
9394 else
9395 {
9396 plt = htab->root.iplt;
9397 gotplt = htab->root.igotplt;
9398 relplt = htab->root.irelplt;
9399 }
9400
9401 /* This symbol has an entry in the procedure linkage table. Set
9402 it up. */
9403 if ((h->dynindx == -1
9404 && !((h->forced_local || bfd_link_executable (info))
9405 && h->def_regular
9406 && h->type == STT_GNU_IFUNC))
9407 || plt == NULL
9408 || gotplt == NULL
9409 || relplt == NULL)
9410 return FALSE;
9411
9412 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9413 if (!h->def_regular)
9414 {
9415 /* Mark the symbol as undefined, rather than as defined in
9416 the .plt section. */
9417 sym->st_shndx = SHN_UNDEF;
9418 /* If the symbol is weak we need to clear the value.
9419 Otherwise, the PLT entry would provide a definition for
9420 the symbol even if the symbol wasn't defined anywhere,
9421 and so the symbol would never be NULL. Leave the value if
9422 there were any relocations where pointer equality matters
9423 (this is a clue for the dynamic linker, to make function
9424 pointer comparisons work between an application and shared
9425 library). */
9426 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9427 sym->st_value = 0;
9428 }
9429 }
9430
9431 if (h->got.offset != (bfd_vma) - 1
9432 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9433 /* Undefined weak symbol in static PIE resolves to 0 without
9434 any dynamic relocations. */
9435 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9436 {
9437 Elf_Internal_Rela rela;
9438 bfd_byte *loc;
9439
9440 /* This symbol has an entry in the global offset table. Set it
9441 up. */
9442 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9443 abort ();
9444
9445 rela.r_offset = (htab->root.sgot->output_section->vma
9446 + htab->root.sgot->output_offset
9447 + (h->got.offset & ~(bfd_vma) 1));
9448
9449 if (h->def_regular
9450 && h->type == STT_GNU_IFUNC)
9451 {
9452 if (bfd_link_pic (info))
9453 {
9454 /* Generate R_AARCH64_GLOB_DAT. */
9455 goto do_glob_dat;
9456 }
9457 else
9458 {
9459 asection *plt;
9460
9461 if (!h->pointer_equality_needed)
9462 abort ();
9463
9464 /* For non-shared object, we can't use .got.plt, which
9465 contains the real function address if we need pointer
9466 equality. We load the GOT entry with the PLT entry. */
9467 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9468 bfd_put_NN (output_bfd, (plt->output_section->vma
9469 + plt->output_offset
9470 + h->plt.offset),
9471 htab->root.sgot->contents
9472 + (h->got.offset & ~(bfd_vma) 1));
9473 return TRUE;
9474 }
9475 }
9476 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9477 {
9478 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9479 return FALSE;
9480
9481 BFD_ASSERT ((h->got.offset & 1) != 0);
9482 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9483 rela.r_addend = (h->root.u.def.value
9484 + h->root.u.def.section->output_section->vma
9485 + h->root.u.def.section->output_offset);
9486 }
9487 else
9488 {
9489 do_glob_dat:
9490 BFD_ASSERT ((h->got.offset & 1) == 0);
9491 bfd_put_NN (output_bfd, (bfd_vma) 0,
9492 htab->root.sgot->contents + h->got.offset);
9493 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9494 rela.r_addend = 0;
9495 }
9496
9497 loc = htab->root.srelgot->contents;
9498 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9499 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9500 }
9501
9502 if (h->needs_copy)
9503 {
9504 Elf_Internal_Rela rela;
9505 asection *s;
9506 bfd_byte *loc;
9507
9508 /* This symbol needs a copy reloc. Set it up. */
9509 if (h->dynindx == -1
9510 || (h->root.type != bfd_link_hash_defined
9511 && h->root.type != bfd_link_hash_defweak)
9512 || htab->root.srelbss == NULL)
9513 abort ();
9514
9515 rela.r_offset = (h->root.u.def.value
9516 + h->root.u.def.section->output_section->vma
9517 + h->root.u.def.section->output_offset);
9518 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9519 rela.r_addend = 0;
9520 if (h->root.u.def.section == htab->root.sdynrelro)
9521 s = htab->root.sreldynrelro;
9522 else
9523 s = htab->root.srelbss;
9524 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9525 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9526 }
9527
9528 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9529 be NULL for local symbols. */
9530 if (sym != NULL
9531 && (h == elf_hash_table (info)->hdynamic
9532 || h == elf_hash_table (info)->hgot))
9533 sym->st_shndx = SHN_ABS;
9534
9535 return TRUE;
9536 }
9537
9538 /* Finish up local dynamic symbol handling. We set the contents of
9539 various dynamic sections here. */
9540
9541 static bfd_boolean
9542 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9543 {
9544 struct elf_link_hash_entry *h
9545 = (struct elf_link_hash_entry *) *slot;
9546 struct bfd_link_info *info
9547 = (struct bfd_link_info *) inf;
9548
9549 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9550 info, h, NULL);
9551 }
9552
9553 static void
9554 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9555 struct elf_aarch64_link_hash_table
9556 *htab)
9557 {
9558 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9559 small and large plts and at the minute just generates
9560 the small PLT. */
9561
9562 /* PLT0 of the small PLT looks like this in ELF64 -
9563 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9564 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9565 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9566 // symbol resolver
9567 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9568 // GOTPLT entry for this.
9569 br x17
9570 PLT0 will be slightly different in ELF32 due to different got entry
9571 size. */
9572 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9573 bfd_vma plt_base;
9574
9575
9576 memcpy (htab->root.splt->contents, htab->plt0_entry,
9577 htab->plt_header_size);
9578 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9579 htab->plt_header_size;
9580
9581 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9582 + htab->root.sgotplt->output_offset
9583 + GOT_ENTRY_SIZE * 2);
9584
9585 plt_base = htab->root.splt->output_section->vma +
9586 htab->root.splt->output_offset;
9587
9588 /* First instruction in BTI enabled PLT stub is a BTI
9589 instruction so skip it. */
9590 bfd_byte *plt0_entry = htab->root.splt->contents;
9591 if (elf_aarch64_tdata (output_bfd)->plt_type & PLT_BTI)
9592 plt0_entry = plt0_entry + 4;
9593
9594 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9595 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9596 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9597 plt0_entry + 4,
9598 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9599
9600 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9601 plt0_entry + 8,
9602 PG_OFFSET (plt_got_2nd_ent));
9603
9604 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9605 plt0_entry + 12,
9606 PG_OFFSET (plt_got_2nd_ent));
9607 }
9608
9609 static bfd_boolean
9610 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9611 struct bfd_link_info *info)
9612 {
9613 struct elf_aarch64_link_hash_table *htab;
9614 bfd *dynobj;
9615 asection *sdyn;
9616
9617 htab = elf_aarch64_hash_table (info);
9618 dynobj = htab->root.dynobj;
9619 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9620
9621 if (htab->root.dynamic_sections_created)
9622 {
9623 ElfNN_External_Dyn *dyncon, *dynconend;
9624
9625 if (sdyn == NULL || htab->root.sgot == NULL)
9626 abort ();
9627
9628 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9629 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9630 for (; dyncon < dynconend; dyncon++)
9631 {
9632 Elf_Internal_Dyn dyn;
9633 asection *s;
9634
9635 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9636
9637 switch (dyn.d_tag)
9638 {
9639 default:
9640 continue;
9641
9642 case DT_PLTGOT:
9643 s = htab->root.sgotplt;
9644 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9645 break;
9646
9647 case DT_JMPREL:
9648 s = htab->root.srelplt;
9649 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9650 break;
9651
9652 case DT_PLTRELSZ:
9653 s = htab->root.srelplt;
9654 dyn.d_un.d_val = s->size;
9655 break;
9656
9657 case DT_TLSDESC_PLT:
9658 s = htab->root.splt;
9659 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9660 + htab->tlsdesc_plt;
9661 break;
9662
9663 case DT_TLSDESC_GOT:
9664 s = htab->root.sgot;
9665 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9666 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9667 + htab->dt_tlsdesc_got;
9668 break;
9669 }
9670
9671 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9672 }
9673
9674 }
9675
9676 /* Fill in the special first entry in the procedure linkage table. */
9677 if (htab->root.splt && htab->root.splt->size > 0)
9678 {
9679 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9680
9681 elf_section_data (htab->root.splt->output_section)->
9682 this_hdr.sh_entsize = htab->plt_entry_size;
9683
9684
9685 if (htab->tlsdesc_plt && !(info->flags & DF_BIND_NOW))
9686 {
9687 BFD_ASSERT (htab->dt_tlsdesc_got != (bfd_vma)-1);
9688 bfd_put_NN (output_bfd, (bfd_vma) 0,
9689 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9690
9691 const bfd_byte *entry = elfNN_aarch64_tlsdesc_small_plt_entry;
9692 htab->tlsdesc_plt_entry_size = PLT_TLSDESC_ENTRY_SIZE;
9693
9694 aarch64_plt_type type = elf_aarch64_tdata (output_bfd)->plt_type;
9695 if (type == PLT_BTI || type == PLT_BTI_PAC)
9696 {
9697 entry = elfNN_aarch64_tlsdesc_small_plt_bti_entry;
9698 }
9699
9700 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9701 entry, htab->tlsdesc_plt_entry_size);
9702
9703 {
9704 bfd_vma adrp1_addr =
9705 htab->root.splt->output_section->vma
9706 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9707
9708 bfd_vma adrp2_addr = adrp1_addr + 4;
9709
9710 bfd_vma got_addr =
9711 htab->root.sgot->output_section->vma
9712 + htab->root.sgot->output_offset;
9713
9714 bfd_vma pltgot_addr =
9715 htab->root.sgotplt->output_section->vma
9716 + htab->root.sgotplt->output_offset;
9717
9718 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9719
9720 bfd_byte *plt_entry =
9721 htab->root.splt->contents + htab->tlsdesc_plt;
9722
9723 /* First instruction in BTI enabled PLT stub is a BTI
9724 instruction so skip it. */
9725 if (type & PLT_BTI)
9726 {
9727 plt_entry = plt_entry + 4;
9728 adrp1_addr = adrp1_addr + 4;
9729 adrp2_addr = adrp2_addr + 4;
9730 }
9731
9732 /* adrp x2, DT_TLSDESC_GOT */
9733 elf_aarch64_update_plt_entry (output_bfd,
9734 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9735 plt_entry + 4,
9736 (PG (dt_tlsdesc_got)
9737 - PG (adrp1_addr)));
9738
9739 /* adrp x3, 0 */
9740 elf_aarch64_update_plt_entry (output_bfd,
9741 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9742 plt_entry + 8,
9743 (PG (pltgot_addr)
9744 - PG (adrp2_addr)));
9745
9746 /* ldr x2, [x2, #0] */
9747 elf_aarch64_update_plt_entry (output_bfd,
9748 BFD_RELOC_AARCH64_LDSTNN_LO12,
9749 plt_entry + 12,
9750 PG_OFFSET (dt_tlsdesc_got));
9751
9752 /* add x3, x3, 0 */
9753 elf_aarch64_update_plt_entry (output_bfd,
9754 BFD_RELOC_AARCH64_ADD_LO12,
9755 plt_entry + 16,
9756 PG_OFFSET (pltgot_addr));
9757 }
9758 }
9759 }
9760
9761 if (htab->root.sgotplt)
9762 {
9763 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9764 {
9765 _bfd_error_handler
9766 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9767 return FALSE;
9768 }
9769
9770 /* Fill in the first three entries in the global offset table. */
9771 if (htab->root.sgotplt->size > 0)
9772 {
9773 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9774
9775 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9776 bfd_put_NN (output_bfd,
9777 (bfd_vma) 0,
9778 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9779 bfd_put_NN (output_bfd,
9780 (bfd_vma) 0,
9781 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9782 }
9783
9784 if (htab->root.sgot)
9785 {
9786 if (htab->root.sgot->size > 0)
9787 {
9788 bfd_vma addr =
9789 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9790 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9791 }
9792 }
9793
9794 elf_section_data (htab->root.sgotplt->output_section)->
9795 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9796 }
9797
9798 if (htab->root.sgot && htab->root.sgot->size > 0)
9799 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9800 = GOT_ENTRY_SIZE;
9801
9802 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9803 htab_traverse (htab->loc_hash_table,
9804 elfNN_aarch64_finish_local_dynamic_symbol,
9805 info);
9806
9807 return TRUE;
9808 }
9809
9810 /* Check if BTI enabled PLTs are needed. Returns the type needed. */
9811 static aarch64_plt_type
9812 get_plt_type (bfd *abfd)
9813 {
9814 aarch64_plt_type ret = PLT_NORMAL;
9815 bfd_byte *contents, *extdyn, *extdynend;
9816 asection *sec = bfd_get_section_by_name (abfd, ".dynamic");
9817 if (!sec || !bfd_malloc_and_get_section (abfd, sec, &contents))
9818 return ret;
9819 extdyn = contents;
9820 extdynend = contents + sec->size;
9821 for (; extdyn < extdynend; extdyn += sizeof (ElfNN_External_Dyn))
9822 {
9823 Elf_Internal_Dyn dyn;
9824 bfd_elfNN_swap_dyn_in (abfd, extdyn, &dyn);
9825
9826 /* Let's check the processor specific dynamic array tags. */
9827 bfd_vma tag = dyn.d_tag;
9828 if (tag < DT_LOPROC || tag > DT_HIPROC)
9829 continue;
9830
9831 switch (tag)
9832 {
9833 case DT_AARCH64_BTI_PLT:
9834 ret |= PLT_BTI;
9835 break;
9836
9837 case DT_AARCH64_PAC_PLT:
9838 ret |= PLT_PAC;
9839 break;
9840
9841 default: break;
9842 }
9843 }
9844 free (contents);
9845 return ret;
9846 }
9847
9848 static long
9849 elfNN_aarch64_get_synthetic_symtab (bfd *abfd,
9850 long symcount,
9851 asymbol **syms,
9852 long dynsymcount,
9853 asymbol **dynsyms,
9854 asymbol **ret)
9855 {
9856 elf_aarch64_tdata (abfd)->plt_type = get_plt_type (abfd);
9857 return _bfd_elf_get_synthetic_symtab (abfd, symcount, syms,
9858 dynsymcount, dynsyms, ret);
9859 }
9860
9861 /* Return address for Ith PLT stub in section PLT, for relocation REL
9862 or (bfd_vma) -1 if it should not be included. */
9863
9864 static bfd_vma
9865 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9866 const arelent *rel ATTRIBUTE_UNUSED)
9867 {
9868 size_t plt0_size = PLT_ENTRY_SIZE;
9869 size_t pltn_size = PLT_SMALL_ENTRY_SIZE;
9870
9871 if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI_PAC)
9872 {
9873 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9874 pltn_size = PLT_BTI_PAC_SMALL_ENTRY_SIZE;
9875 else
9876 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9877 }
9878 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_BTI)
9879 {
9880 if (elf_elfheader (plt->owner)->e_type == ET_EXEC)
9881 pltn_size = PLT_BTI_SMALL_ENTRY_SIZE;
9882 }
9883 else if (elf_aarch64_tdata (plt->owner)->plt_type == PLT_PAC)
9884 {
9885 pltn_size = PLT_PAC_SMALL_ENTRY_SIZE;
9886 }
9887
9888 return plt->vma + plt0_size + i * pltn_size;
9889 }
9890
9891 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9892 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9893 It also allows a period initiated suffix to be added to the symbol, ie:
9894 "$[adtx]\.[:sym_char]+". */
9895
9896 static bfd_boolean
9897 is_aarch64_mapping_symbol (const char * name)
9898 {
9899 return name != NULL /* Paranoia. */
9900 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9901 the mapping symbols could have acquired a prefix.
9902 We do not support this here, since such symbols no
9903 longer conform to the ARM ELF ABI. */
9904 && (name[1] == 'd' || name[1] == 'x')
9905 && (name[2] == 0 || name[2] == '.');
9906 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9907 any characters that follow the period are legal characters for the body
9908 of a symbol's name. For now we just assume that this is the case. */
9909 }
9910
9911 /* Make sure that mapping symbols in object files are not removed via the
9912 "strip --strip-unneeded" tool. These symbols might needed in order to
9913 correctly generate linked files. Once an object file has been linked,
9914 it should be safe to remove them. */
9915
9916 static void
9917 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9918 {
9919 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9920 && sym->section != bfd_abs_section_ptr
9921 && is_aarch64_mapping_symbol (sym->name))
9922 sym->flags |= BSF_KEEP;
9923 }
9924
9925 /* Implement elf_backend_setup_gnu_properties for AArch64. It serves as a
9926 wrapper function for _bfd_aarch64_elf_link_setup_gnu_properties to account
9927 for the effect of GNU properties of the output_bfd. */
9928 static bfd *
9929 elfNN_aarch64_link_setup_gnu_properties (struct bfd_link_info *info)
9930 {
9931 uint32_t prop = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9932 bfd *pbfd = _bfd_aarch64_elf_link_setup_gnu_properties (info, &prop);
9933 elf_aarch64_tdata (info->output_bfd)->gnu_and_prop = prop;
9934 elf_aarch64_tdata (info->output_bfd)->plt_type
9935 |= (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ? PLT_BTI : 0;
9936 setup_plt_values (info, elf_aarch64_tdata (info->output_bfd)->plt_type);
9937 return pbfd;
9938 }
9939
9940 /* Implement elf_backend_merge_gnu_properties for AArch64. It serves as a
9941 wrapper function for _bfd_aarch64_elf_merge_gnu_properties to account
9942 for the effect of GNU properties of the output_bfd. */
9943 static bfd_boolean
9944 elfNN_aarch64_merge_gnu_properties (struct bfd_link_info *info,
9945 bfd *abfd, bfd *bbfd,
9946 elf_property *aprop,
9947 elf_property *bprop)
9948 {
9949 uint32_t prop
9950 = elf_aarch64_tdata (info->output_bfd)->gnu_and_prop;
9951
9952 /* If output has been marked with BTI using command line argument, give out
9953 warning if necessary. */
9954 /* Properties are merged per type, hence only check for warnings when merging
9955 GNU_PROPERTY_AARCH64_FEATURE_1_AND. */
9956 if (((aprop && aprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
9957 || (bprop && bprop->pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND))
9958 && (prop & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
9959 && (!elf_aarch64_tdata (info->output_bfd)->no_bti_warn))
9960 {
9961 if ((aprop && !(aprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9962 || !aprop)
9963 {
9964 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
9965 "all inputs do not have BTI in NOTE section."),
9966 abfd);
9967 }
9968 if ((bprop && !(bprop->u.number & GNU_PROPERTY_AARCH64_FEATURE_1_BTI))
9969 || !bprop)
9970 {
9971 _bfd_error_handler (_("%pB: warning: BTI turned on by -z force-bti when "
9972 "all inputs do not have BTI in NOTE section."),
9973 bbfd);
9974 }
9975 }
9976
9977 return _bfd_aarch64_elf_merge_gnu_properties (info, abfd, aprop,
9978 bprop, prop);
9979 }
9980
9981 /* We use this so we can override certain functions
9982 (though currently we don't). */
9983
9984 const struct elf_size_info elfNN_aarch64_size_info =
9985 {
9986 sizeof (ElfNN_External_Ehdr),
9987 sizeof (ElfNN_External_Phdr),
9988 sizeof (ElfNN_External_Shdr),
9989 sizeof (ElfNN_External_Rel),
9990 sizeof (ElfNN_External_Rela),
9991 sizeof (ElfNN_External_Sym),
9992 sizeof (ElfNN_External_Dyn),
9993 sizeof (Elf_External_Note),
9994 4, /* Hash table entry size. */
9995 1, /* Internal relocs per external relocs. */
9996 ARCH_SIZE, /* Arch size. */
9997 LOG_FILE_ALIGN, /* Log_file_align. */
9998 ELFCLASSNN, EV_CURRENT,
9999 bfd_elfNN_write_out_phdrs,
10000 bfd_elfNN_write_shdrs_and_ehdr,
10001 bfd_elfNN_checksum_contents,
10002 bfd_elfNN_write_relocs,
10003 bfd_elfNN_swap_symbol_in,
10004 bfd_elfNN_swap_symbol_out,
10005 bfd_elfNN_slurp_reloc_table,
10006 bfd_elfNN_slurp_symbol_table,
10007 bfd_elfNN_swap_dyn_in,
10008 bfd_elfNN_swap_dyn_out,
10009 bfd_elfNN_swap_reloc_in,
10010 bfd_elfNN_swap_reloc_out,
10011 bfd_elfNN_swap_reloca_in,
10012 bfd_elfNN_swap_reloca_out
10013 };
10014
10015 #define ELF_ARCH bfd_arch_aarch64
10016 #define ELF_MACHINE_CODE EM_AARCH64
10017 #define ELF_MAXPAGESIZE 0x10000
10018 #define ELF_MINPAGESIZE 0x1000
10019 #define ELF_COMMONPAGESIZE 0x1000
10020
10021 #define bfd_elfNN_close_and_cleanup \
10022 elfNN_aarch64_close_and_cleanup
10023
10024 #define bfd_elfNN_bfd_free_cached_info \
10025 elfNN_aarch64_bfd_free_cached_info
10026
10027 #define bfd_elfNN_bfd_is_target_special_symbol \
10028 elfNN_aarch64_is_target_special_symbol
10029
10030 #define bfd_elfNN_bfd_link_hash_table_create \
10031 elfNN_aarch64_link_hash_table_create
10032
10033 #define bfd_elfNN_bfd_merge_private_bfd_data \
10034 elfNN_aarch64_merge_private_bfd_data
10035
10036 #define bfd_elfNN_bfd_print_private_bfd_data \
10037 elfNN_aarch64_print_private_bfd_data
10038
10039 #define bfd_elfNN_bfd_reloc_type_lookup \
10040 elfNN_aarch64_reloc_type_lookup
10041
10042 #define bfd_elfNN_bfd_reloc_name_lookup \
10043 elfNN_aarch64_reloc_name_lookup
10044
10045 #define bfd_elfNN_bfd_set_private_flags \
10046 elfNN_aarch64_set_private_flags
10047
10048 #define bfd_elfNN_find_inliner_info \
10049 elfNN_aarch64_find_inliner_info
10050
10051 #define bfd_elfNN_get_synthetic_symtab \
10052 elfNN_aarch64_get_synthetic_symtab
10053
10054 #define bfd_elfNN_mkobject \
10055 elfNN_aarch64_mkobject
10056
10057 #define bfd_elfNN_new_section_hook \
10058 elfNN_aarch64_new_section_hook
10059
10060 #define elf_backend_adjust_dynamic_symbol \
10061 elfNN_aarch64_adjust_dynamic_symbol
10062
10063 #define elf_backend_always_size_sections \
10064 elfNN_aarch64_always_size_sections
10065
10066 #define elf_backend_check_relocs \
10067 elfNN_aarch64_check_relocs
10068
10069 #define elf_backend_copy_indirect_symbol \
10070 elfNN_aarch64_copy_indirect_symbol
10071
10072 #define elf_backend_merge_symbol_attribute \
10073 elfNN_aarch64_merge_symbol_attribute
10074
10075 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
10076 to them in our hash. */
10077 #define elf_backend_create_dynamic_sections \
10078 elfNN_aarch64_create_dynamic_sections
10079
10080 #define elf_backend_init_index_section \
10081 _bfd_elf_init_2_index_sections
10082
10083 #define elf_backend_finish_dynamic_sections \
10084 elfNN_aarch64_finish_dynamic_sections
10085
10086 #define elf_backend_finish_dynamic_symbol \
10087 elfNN_aarch64_finish_dynamic_symbol
10088
10089 #define elf_backend_object_p \
10090 elfNN_aarch64_object_p
10091
10092 #define elf_backend_output_arch_local_syms \
10093 elfNN_aarch64_output_arch_local_syms
10094
10095 #define elf_backend_maybe_function_sym \
10096 elfNN_aarch64_maybe_function_sym
10097
10098 #define elf_backend_plt_sym_val \
10099 elfNN_aarch64_plt_sym_val
10100
10101 #define elf_backend_init_file_header \
10102 elfNN_aarch64_init_file_header
10103
10104 #define elf_backend_relocate_section \
10105 elfNN_aarch64_relocate_section
10106
10107 #define elf_backend_reloc_type_class \
10108 elfNN_aarch64_reloc_type_class
10109
10110 #define elf_backend_section_from_shdr \
10111 elfNN_aarch64_section_from_shdr
10112
10113 #define elf_backend_size_dynamic_sections \
10114 elfNN_aarch64_size_dynamic_sections
10115
10116 #define elf_backend_size_info \
10117 elfNN_aarch64_size_info
10118
10119 #define elf_backend_write_section \
10120 elfNN_aarch64_write_section
10121
10122 #define elf_backend_symbol_processing \
10123 elfNN_aarch64_backend_symbol_processing
10124
10125 #define elf_backend_setup_gnu_properties \
10126 elfNN_aarch64_link_setup_gnu_properties
10127
10128 #define elf_backend_merge_gnu_properties \
10129 elfNN_aarch64_merge_gnu_properties
10130
10131 #define elf_backend_can_refcount 1
10132 #define elf_backend_can_gc_sections 1
10133 #define elf_backend_plt_readonly 1
10134 #define elf_backend_want_got_plt 1
10135 #define elf_backend_want_plt_sym 0
10136 #define elf_backend_want_dynrelro 1
10137 #define elf_backend_may_use_rel_p 0
10138 #define elf_backend_may_use_rela_p 1
10139 #define elf_backend_default_use_rela_p 1
10140 #define elf_backend_rela_normal 1
10141 #define elf_backend_dtrel_excludes_plt 1
10142 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
10143 #define elf_backend_default_execstack 0
10144 #define elf_backend_extern_protected_data 1
10145 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
10146
10147 #undef elf_backend_obj_attrs_section
10148 #define elf_backend_obj_attrs_section ".ARM.attributes"
10149
10150 #include "elfNN-target.h"
10151
10152 /* CloudABI support. */
10153
10154 #undef TARGET_LITTLE_SYM
10155 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
10156 #undef TARGET_LITTLE_NAME
10157 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
10158 #undef TARGET_BIG_SYM
10159 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
10160 #undef TARGET_BIG_NAME
10161 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
10162
10163 #undef ELF_OSABI
10164 #define ELF_OSABI ELFOSABI_CLOUDABI
10165
10166 #undef elfNN_bed
10167 #define elfNN_bed elfNN_aarch64_cloudabi_bed
10168
10169 #include "elfNN-target.h"
This page took 0.29268 seconds and 3 git commands to generate.