Fix AArch64 stub layout algorithm to allow for the fact that section layut might...
[deliverable/binutils-gdb.git] / bfd / elfnn-aarch64.c
1 /* AArch64-specific support for NN-bit ELF.
2 Copyright (C) 2009-2018 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 /* Notes on implementation:
22
23 Thread Local Store (TLS)
24
25 Overview:
26
27 The implementation currently supports both traditional TLS and TLS
28 descriptors, but only general dynamic (GD).
29
30 For traditional TLS the assembler will present us with code
31 fragments of the form:
32
33 adrp x0, :tlsgd:foo
34 R_AARCH64_TLSGD_ADR_PAGE21(foo)
35 add x0, :tlsgd_lo12:foo
36 R_AARCH64_TLSGD_ADD_LO12_NC(foo)
37 bl __tls_get_addr
38 nop
39
40 For TLS descriptors the assembler will present us with code
41 fragments of the form:
42
43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo)
44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo)
45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo)
46 .tlsdesccall foo
47 blr x1 R_AARCH64_TLSDESC_CALL(foo)
48
49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo
50 indicate that foo is thread local and should be accessed via the
51 traditional TLS mechanims.
52
53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC}
54 against foo indicate that 'foo' is thread local and should be accessed
55 via a TLS descriptor mechanism.
56
57 The precise instruction sequence is only relevant from the
58 perspective of linker relaxation which is currently not implemented.
59
60 The static linker must detect that 'foo' is a TLS object and
61 allocate a double GOT entry. The GOT entry must be created for both
62 global and local TLS symbols. Note that this is different to none
63 TLS local objects which do not need a GOT entry.
64
65 In the traditional TLS mechanism, the double GOT entry is used to
66 provide the tls_index structure, containing module and offset
67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD
68 on the module entry. The loader will subsequently fixup this
69 relocation with the module identity.
70
71 For global traditional TLS symbols the static linker places an
72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader
73 will subsequently fixup the offset. For local TLS symbols the static
74 linker fixes up offset.
75
76 In the TLS descriptor mechanism the double GOT entry is used to
77 provide the descriptor. The static linker places the relocation
78 R_AARCH64_TLSDESC on the first GOT slot. The loader will
79 subsequently fix this up.
80
81 Implementation:
82
83 The handling of TLS symbols is implemented across a number of
84 different backend functions. The following is a top level view of
85 what processing is performed where.
86
87 The TLS implementation maintains state information for each TLS
88 symbol. The state information for local and global symbols is kept
89 in different places. Global symbols use generic BFD structures while
90 local symbols use backend specific structures that are allocated and
91 maintained entirely by the backend.
92
93 The flow:
94
95 elfNN_aarch64_check_relocs()
96
97 This function is invoked for each relocation.
98
99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and
100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are
101 spotted. One time creation of local symbol data structures are
102 created when the first local symbol is seen.
103
104 The reference count for a symbol is incremented. The GOT type for
105 each symbol is marked as general dynamic.
106
107 elfNN_aarch64_allocate_dynrelocs ()
108
109 For each global with positive reference count we allocate a double
110 GOT slot. For a traditional TLS symbol we allocate space for two
111 relocation entries on the GOT, for a TLS descriptor symbol we
112 allocate space for one relocation on the slot. Record the GOT offset
113 for this symbol.
114
115 elfNN_aarch64_size_dynamic_sections ()
116
117 Iterate all input BFDS, look for in the local symbol data structure
118 constructed earlier for local TLS symbols and allocate them double
119 GOT slots along with space for a single GOT relocation. Update the
120 local symbol structure to record the GOT offset allocated.
121
122 elfNN_aarch64_relocate_section ()
123
124 Calls elfNN_aarch64_final_link_relocate ()
125
126 Emit the relevant TLS relocations against the GOT for each TLS
127 symbol. For local TLS symbols emit the GOT offset directly. The GOT
128 relocations are emitted once the first time a TLS symbol is
129 encountered. The implementation uses the LSB of the GOT offset to
130 flag that the relevant GOT relocations for a symbol have been
131 emitted. All of the TLS code that uses the GOT offset needs to take
132 care to mask out this flag bit before using the offset.
133
134 elfNN_aarch64_final_link_relocate ()
135
136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */
137
138 #include "sysdep.h"
139 #include "bfd.h"
140 #include "libiberty.h"
141 #include "libbfd.h"
142 #include "bfd_stdint.h"
143 #include "elf-bfd.h"
144 #include "bfdlink.h"
145 #include "objalloc.h"
146 #include "elf/aarch64.h"
147 #include "elfxx-aarch64.h"
148
149 #define ARCH_SIZE NN
150
151 #if ARCH_SIZE == 64
152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME
153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME
154 #define HOWTO64(...) HOWTO (__VA_ARGS__)
155 #define HOWTO32(...) EMPTY_HOWTO (0)
156 #define LOG_FILE_ALIGN 3
157 #define BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC BFD_RELOC_AARCH64_TLSDESC_LD64_LO12
158 #endif
159
160 #if ARCH_SIZE == 32
161 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME
162 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME
163 #define HOWTO64(...) EMPTY_HOWTO (0)
164 #define HOWTO32(...) HOWTO (__VA_ARGS__)
165 #define LOG_FILE_ALIGN 2
166 #define BFD_RELOC_AARCH64_TLSDESC_LD32_LO12 BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
167 #define R_AARCH64_P32_TLSDESC_ADD_LO12 R_AARCH64_P32_TLSDESC_ADD_LO12_NC
168 #endif
169
170 #define IS_AARCH64_TLS_RELOC(R_TYPE) \
171 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \
178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \
179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \
181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \
182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12 \
183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12 \
184 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC \
185 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
186 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
187 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21 \
188 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12 \
189 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC \
190 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12 \
191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC \
192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12 \
193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC \
194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12 \
195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC \
196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0 \
197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC \
198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1 \
199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC \
200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2 \
201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \
202 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \
203 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \
204 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12 \
205 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC \
206 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12 \
207 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC \
208 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12 \
209 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC \
210 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12 \
211 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC \
212 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \
213 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \
214 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \
215 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \
216 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \
217 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \
218 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \
219 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \
220 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE)))
221
222 #define IS_AARCH64_TLS_RELAX_RELOC(R_TYPE) \
223 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
224 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
225 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
226 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
227 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
228 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
229 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC \
230 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
231 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
232 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \
233 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
234 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \
235 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PREL21 \
236 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \
237 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC \
238 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_MOVW_G1 \
239 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \
240 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \
241 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC \
242 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC \
243 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21 \
244 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21)
245
246 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \
247 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC \
248 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \
249 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12 \
250 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \
251 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \
252 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \
253 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \
254 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12 \
255 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \
256 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \
257 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \
258 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1)
259
260 #define ELIMINATE_COPY_RELOCS 1
261
262 /* Return size of a relocation entry. HTAB is the bfd's
263 elf_aarch64_link_hash_entry. */
264 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
265
266 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
267 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
268 #define PLT_ENTRY_SIZE (32)
269 #define PLT_SMALL_ENTRY_SIZE (16)
270 #define PLT_TLSDESC_ENTRY_SIZE (32)
271
272 /* Encoding of the nop instruction. */
273 #define INSN_NOP 0xd503201f
274
275 #define aarch64_compute_jump_table_size(htab) \
276 (((htab)->root.srelplt == NULL) ? 0 \
277 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
278
279 /* The first entry in a procedure linkage table looks like this
280 if the distance between the PLTGOT and the PLT is < 4GB use
281 these PLT entries. Note that the dynamic linker gets &PLTGOT[2]
282 in x16 and needs to work out PLTGOT[1] by using an address of
283 [x16,#-GOT_ENTRY_SIZE]. */
284 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] =
285 {
286 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */
287 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */
288 #if ARCH_SIZE == 64
289 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */
290 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */
291 #else
292 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */
293 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */
294 #endif
295 0x20, 0x02, 0x1f, 0xd6, /* br x17 */
296 0x1f, 0x20, 0x03, 0xd5, /* nop */
297 0x1f, 0x20, 0x03, 0xd5, /* nop */
298 0x1f, 0x20, 0x03, 0xd5, /* nop */
299 };
300
301 /* Per function entry in a procedure linkage table looks like this
302 if the distance between the PLTGOT and the PLT is < 4GB use
303 these PLT entries. */
304 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
305 {
306 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */
307 #if ARCH_SIZE == 64
308 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */
309 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */
310 #else
311 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */
312 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */
313 #endif
314 0x20, 0x02, 0x1f, 0xd6, /* br x17. */
315 };
316
317 static const bfd_byte
318 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] =
319 {
320 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */
321 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */
322 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */
323 #if ARCH_SIZE == 64
324 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */
325 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */
326 #else
327 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */
328 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */
329 #endif
330 0x40, 0x00, 0x1f, 0xd6, /* br x2 */
331 0x1f, 0x20, 0x03, 0xd5, /* nop */
332 0x1f, 0x20, 0x03, 0xd5, /* nop */
333 };
334
335 #define elf_info_to_howto elfNN_aarch64_info_to_howto
336 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto
337
338 #define AARCH64_ELF_ABI_VERSION 0
339
340 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
341 #define ALL_ONES (~ (bfd_vma) 0)
342
343 /* Indexed by the bfd interal reloc enumerators.
344 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_*
345 in reloc.c. */
346
347 static reloc_howto_type elfNN_aarch64_howto_table[] =
348 {
349 EMPTY_HOWTO (0),
350
351 /* Basic data relocations. */
352
353 /* Deprecated, but retained for backwards compatibility. */
354 HOWTO64 (R_AARCH64_NULL, /* type */
355 0, /* rightshift */
356 3, /* size (0 = byte, 1 = short, 2 = long) */
357 0, /* bitsize */
358 FALSE, /* pc_relative */
359 0, /* bitpos */
360 complain_overflow_dont, /* complain_on_overflow */
361 bfd_elf_generic_reloc, /* special_function */
362 "R_AARCH64_NULL", /* name */
363 FALSE, /* partial_inplace */
364 0, /* src_mask */
365 0, /* dst_mask */
366 FALSE), /* pcrel_offset */
367 HOWTO (R_AARCH64_NONE, /* type */
368 0, /* rightshift */
369 3, /* size (0 = byte, 1 = short, 2 = long) */
370 0, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_dont, /* complain_on_overflow */
374 bfd_elf_generic_reloc, /* special_function */
375 "R_AARCH64_NONE", /* name */
376 FALSE, /* partial_inplace */
377 0, /* src_mask */
378 0, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 /* .xword: (S+A) */
382 HOWTO64 (AARCH64_R (ABS64), /* type */
383 0, /* rightshift */
384 4, /* size (4 = long long) */
385 64, /* bitsize */
386 FALSE, /* pc_relative */
387 0, /* bitpos */
388 complain_overflow_unsigned, /* complain_on_overflow */
389 bfd_elf_generic_reloc, /* special_function */
390 AARCH64_R_STR (ABS64), /* name */
391 FALSE, /* partial_inplace */
392 ALL_ONES, /* src_mask */
393 ALL_ONES, /* dst_mask */
394 FALSE), /* pcrel_offset */
395
396 /* .word: (S+A) */
397 HOWTO (AARCH64_R (ABS32), /* type */
398 0, /* rightshift */
399 2, /* size (0 = byte, 1 = short, 2 = long) */
400 32, /* bitsize */
401 FALSE, /* pc_relative */
402 0, /* bitpos */
403 complain_overflow_unsigned, /* complain_on_overflow */
404 bfd_elf_generic_reloc, /* special_function */
405 AARCH64_R_STR (ABS32), /* name */
406 FALSE, /* partial_inplace */
407 0xffffffff, /* src_mask */
408 0xffffffff, /* dst_mask */
409 FALSE), /* pcrel_offset */
410
411 /* .half: (S+A) */
412 HOWTO (AARCH64_R (ABS16), /* type */
413 0, /* rightshift */
414 1, /* size (0 = byte, 1 = short, 2 = long) */
415 16, /* bitsize */
416 FALSE, /* pc_relative */
417 0, /* bitpos */
418 complain_overflow_unsigned, /* complain_on_overflow */
419 bfd_elf_generic_reloc, /* special_function */
420 AARCH64_R_STR (ABS16), /* name */
421 FALSE, /* partial_inplace */
422 0xffff, /* src_mask */
423 0xffff, /* dst_mask */
424 FALSE), /* pcrel_offset */
425
426 /* .xword: (S+A-P) */
427 HOWTO64 (AARCH64_R (PREL64), /* type */
428 0, /* rightshift */
429 4, /* size (4 = long long) */
430 64, /* bitsize */
431 TRUE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_signed, /* complain_on_overflow */
434 bfd_elf_generic_reloc, /* special_function */
435 AARCH64_R_STR (PREL64), /* name */
436 FALSE, /* partial_inplace */
437 ALL_ONES, /* src_mask */
438 ALL_ONES, /* dst_mask */
439 TRUE), /* pcrel_offset */
440
441 /* .word: (S+A-P) */
442 HOWTO (AARCH64_R (PREL32), /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_signed, /* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 AARCH64_R_STR (PREL32), /* name */
451 FALSE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 /* .half: (S+A-P) */
457 HOWTO (AARCH64_R (PREL16), /* type */
458 0, /* rightshift */
459 1, /* size (0 = byte, 1 = short, 2 = long) */
460 16, /* bitsize */
461 TRUE, /* pc_relative */
462 0, /* bitpos */
463 complain_overflow_signed, /* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 AARCH64_R_STR (PREL16), /* name */
466 FALSE, /* partial_inplace */
467 0xffff, /* src_mask */
468 0xffff, /* dst_mask */
469 TRUE), /* pcrel_offset */
470
471 /* Group relocations to create a 16, 32, 48 or 64 bit
472 unsigned data or abs address inline. */
473
474 /* MOVZ: ((S+A) >> 0) & 0xffff */
475 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */
476 0, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 16, /* bitsize */
479 FALSE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_unsigned, /* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 AARCH64_R_STR (MOVW_UABS_G0), /* name */
484 FALSE, /* partial_inplace */
485 0xffff, /* src_mask */
486 0xffff, /* dst_mask */
487 FALSE), /* pcrel_offset */
488
489 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */
490 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */
491 0, /* rightshift */
492 2, /* size (0 = byte, 1 = short, 2 = long) */
493 16, /* bitsize */
494 FALSE, /* pc_relative */
495 0, /* bitpos */
496 complain_overflow_dont, /* complain_on_overflow */
497 bfd_elf_generic_reloc, /* special_function */
498 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */
499 FALSE, /* partial_inplace */
500 0xffff, /* src_mask */
501 0xffff, /* dst_mask */
502 FALSE), /* pcrel_offset */
503
504 /* MOVZ: ((S+A) >> 16) & 0xffff */
505 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */
506 16, /* rightshift */
507 2, /* size (0 = byte, 1 = short, 2 = long) */
508 16, /* bitsize */
509 FALSE, /* pc_relative */
510 0, /* bitpos */
511 complain_overflow_unsigned, /* complain_on_overflow */
512 bfd_elf_generic_reloc, /* special_function */
513 AARCH64_R_STR (MOVW_UABS_G1), /* name */
514 FALSE, /* partial_inplace */
515 0xffff, /* src_mask */
516 0xffff, /* dst_mask */
517 FALSE), /* pcrel_offset */
518
519 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */
520 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */
521 16, /* rightshift */
522 2, /* size (0 = byte, 1 = short, 2 = long) */
523 16, /* bitsize */
524 FALSE, /* pc_relative */
525 0, /* bitpos */
526 complain_overflow_dont, /* complain_on_overflow */
527 bfd_elf_generic_reloc, /* special_function */
528 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */
529 FALSE, /* partial_inplace */
530 0xffff, /* src_mask */
531 0xffff, /* dst_mask */
532 FALSE), /* pcrel_offset */
533
534 /* MOVZ: ((S+A) >> 32) & 0xffff */
535 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */
536 32, /* rightshift */
537 2, /* size (0 = byte, 1 = short, 2 = long) */
538 16, /* bitsize */
539 FALSE, /* pc_relative */
540 0, /* bitpos */
541 complain_overflow_unsigned, /* complain_on_overflow */
542 bfd_elf_generic_reloc, /* special_function */
543 AARCH64_R_STR (MOVW_UABS_G2), /* name */
544 FALSE, /* partial_inplace */
545 0xffff, /* src_mask */
546 0xffff, /* dst_mask */
547 FALSE), /* pcrel_offset */
548
549 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */
550 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */
551 32, /* rightshift */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
553 16, /* bitsize */
554 FALSE, /* pc_relative */
555 0, /* bitpos */
556 complain_overflow_dont, /* complain_on_overflow */
557 bfd_elf_generic_reloc, /* special_function */
558 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */
559 FALSE, /* partial_inplace */
560 0xffff, /* src_mask */
561 0xffff, /* dst_mask */
562 FALSE), /* pcrel_offset */
563
564 /* MOVZ: ((S+A) >> 48) & 0xffff */
565 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */
566 48, /* rightshift */
567 2, /* size (0 = byte, 1 = short, 2 = long) */
568 16, /* bitsize */
569 FALSE, /* pc_relative */
570 0, /* bitpos */
571 complain_overflow_unsigned, /* complain_on_overflow */
572 bfd_elf_generic_reloc, /* special_function */
573 AARCH64_R_STR (MOVW_UABS_G3), /* name */
574 FALSE, /* partial_inplace */
575 0xffff, /* src_mask */
576 0xffff, /* dst_mask */
577 FALSE), /* pcrel_offset */
578
579 /* Group relocations to create high part of a 16, 32, 48 or 64 bit
580 signed data or abs address inline. Will change instruction
581 to MOVN or MOVZ depending on sign of calculated value. */
582
583 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */
584 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */
585 0, /* rightshift */
586 2, /* size (0 = byte, 1 = short, 2 = long) */
587 17, /* bitsize */
588 FALSE, /* pc_relative */
589 0, /* bitpos */
590 complain_overflow_signed, /* complain_on_overflow */
591 bfd_elf_generic_reloc, /* special_function */
592 AARCH64_R_STR (MOVW_SABS_G0), /* name */
593 FALSE, /* partial_inplace */
594 0xffff, /* src_mask */
595 0xffff, /* dst_mask */
596 FALSE), /* pcrel_offset */
597
598 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */
599 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */
600 16, /* rightshift */
601 2, /* size (0 = byte, 1 = short, 2 = long) */
602 17, /* bitsize */
603 FALSE, /* pc_relative */
604 0, /* bitpos */
605 complain_overflow_signed, /* complain_on_overflow */
606 bfd_elf_generic_reloc, /* special_function */
607 AARCH64_R_STR (MOVW_SABS_G1), /* name */
608 FALSE, /* partial_inplace */
609 0xffff, /* src_mask */
610 0xffff, /* dst_mask */
611 FALSE), /* pcrel_offset */
612
613 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */
614 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */
615 32, /* rightshift */
616 2, /* size (0 = byte, 1 = short, 2 = long) */
617 17, /* bitsize */
618 FALSE, /* pc_relative */
619 0, /* bitpos */
620 complain_overflow_signed, /* complain_on_overflow */
621 bfd_elf_generic_reloc, /* special_function */
622 AARCH64_R_STR (MOVW_SABS_G2), /* name */
623 FALSE, /* partial_inplace */
624 0xffff, /* src_mask */
625 0xffff, /* dst_mask */
626 FALSE), /* pcrel_offset */
627
628 /* Group relocations to create a 16, 32, 48 or 64 bit
629 PC relative address inline. */
630
631 /* MOV[NZ]: ((S+A-P) >> 0) & 0xffff */
632 HOWTO64 (AARCH64_R (MOVW_PREL_G0), /* type */
633 0, /* rightshift */
634 2, /* size (0 = byte, 1 = short, 2 = long) */
635 17, /* bitsize */
636 TRUE, /* pc_relative */
637 0, /* bitpos */
638 complain_overflow_signed, /* complain_on_overflow */
639 bfd_elf_generic_reloc, /* special_function */
640 AARCH64_R_STR (MOVW_PREL_G0), /* name */
641 FALSE, /* partial_inplace */
642 0xffff, /* src_mask */
643 0xffff, /* dst_mask */
644 TRUE), /* pcrel_offset */
645
646 /* MOVK: ((S+A-P) >> 0) & 0xffff [no overflow check] */
647 HOWTO64 (AARCH64_R (MOVW_PREL_G0_NC), /* type */
648 0, /* rightshift */
649 2, /* size (0 = byte, 1 = short, 2 = long) */
650 16, /* bitsize */
651 TRUE, /* pc_relative */
652 0, /* bitpos */
653 complain_overflow_dont, /* complain_on_overflow */
654 bfd_elf_generic_reloc, /* special_function */
655 AARCH64_R_STR (MOVW_PREL_G0_NC), /* name */
656 FALSE, /* partial_inplace */
657 0xffff, /* src_mask */
658 0xffff, /* dst_mask */
659 TRUE), /* pcrel_offset */
660
661 /* MOV[NZ]: ((S+A-P) >> 16) & 0xffff */
662 HOWTO64 (AARCH64_R (MOVW_PREL_G1), /* type */
663 16, /* rightshift */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
665 17, /* bitsize */
666 TRUE, /* pc_relative */
667 0, /* bitpos */
668 complain_overflow_signed, /* complain_on_overflow */
669 bfd_elf_generic_reloc, /* special_function */
670 AARCH64_R_STR (MOVW_PREL_G1), /* name */
671 FALSE, /* partial_inplace */
672 0xffff, /* src_mask */
673 0xffff, /* dst_mask */
674 TRUE), /* pcrel_offset */
675
676 /* MOVK: ((S+A-P) >> 16) & 0xffff [no overflow check] */
677 HOWTO64 (AARCH64_R (MOVW_PREL_G1_NC), /* type */
678 16, /* rightshift */
679 2, /* size (0 = byte, 1 = short, 2 = long) */
680 16, /* bitsize */
681 TRUE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_dont, /* complain_on_overflow */
684 bfd_elf_generic_reloc, /* special_function */
685 AARCH64_R_STR (MOVW_PREL_G1_NC), /* name */
686 FALSE, /* partial_inplace */
687 0xffff, /* src_mask */
688 0xffff, /* dst_mask */
689 TRUE), /* pcrel_offset */
690
691 /* MOV[NZ]: ((S+A-P) >> 32) & 0xffff */
692 HOWTO64 (AARCH64_R (MOVW_PREL_G2), /* type */
693 32, /* rightshift */
694 2, /* size (0 = byte, 1 = short, 2 = long) */
695 17, /* bitsize */
696 TRUE, /* pc_relative */
697 0, /* bitpos */
698 complain_overflow_signed, /* complain_on_overflow */
699 bfd_elf_generic_reloc, /* special_function */
700 AARCH64_R_STR (MOVW_PREL_G2), /* name */
701 FALSE, /* partial_inplace */
702 0xffff, /* src_mask */
703 0xffff, /* dst_mask */
704 TRUE), /* pcrel_offset */
705
706 /* MOVK: ((S+A-P) >> 32) & 0xffff [no overflow check] */
707 HOWTO64 (AARCH64_R (MOVW_PREL_G2_NC), /* type */
708 32, /* rightshift */
709 2, /* size (0 = byte, 1 = short, 2 = long) */
710 16, /* bitsize */
711 TRUE, /* pc_relative */
712 0, /* bitpos */
713 complain_overflow_dont, /* complain_on_overflow */
714 bfd_elf_generic_reloc, /* special_function */
715 AARCH64_R_STR (MOVW_PREL_G2_NC), /* name */
716 FALSE, /* partial_inplace */
717 0xffff, /* src_mask */
718 0xffff, /* dst_mask */
719 TRUE), /* pcrel_offset */
720
721 /* MOV[NZ]: ((S+A-P) >> 48) & 0xffff */
722 HOWTO64 (AARCH64_R (MOVW_PREL_G3), /* type */
723 48, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont, /* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 AARCH64_R_STR (MOVW_PREL_G3), /* name */
731 FALSE, /* partial_inplace */
732 0xffff, /* src_mask */
733 0xffff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store
737 addresses: PG(x) is (x & ~0xfff). */
738
739 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */
740 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */
741 2, /* rightshift */
742 2, /* size (0 = byte, 1 = short, 2 = long) */
743 19, /* bitsize */
744 TRUE, /* pc_relative */
745 0, /* bitpos */
746 complain_overflow_signed, /* complain_on_overflow */
747 bfd_elf_generic_reloc, /* special_function */
748 AARCH64_R_STR (LD_PREL_LO19), /* name */
749 FALSE, /* partial_inplace */
750 0x7ffff, /* src_mask */
751 0x7ffff, /* dst_mask */
752 TRUE), /* pcrel_offset */
753
754 /* ADR: (S+A-P) & 0x1fffff */
755 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 21, /* bitsize */
759 TRUE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_signed, /* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 AARCH64_R_STR (ADR_PREL_LO21), /* name */
764 FALSE, /* partial_inplace */
765 0x1fffff, /* src_mask */
766 0x1fffff, /* dst_mask */
767 TRUE), /* pcrel_offset */
768
769 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
770 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */
771 12, /* rightshift */
772 2, /* size (0 = byte, 1 = short, 2 = long) */
773 21, /* bitsize */
774 TRUE, /* pc_relative */
775 0, /* bitpos */
776 complain_overflow_signed, /* complain_on_overflow */
777 bfd_elf_generic_reloc, /* special_function */
778 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */
779 FALSE, /* partial_inplace */
780 0x1fffff, /* src_mask */
781 0x1fffff, /* dst_mask */
782 TRUE), /* pcrel_offset */
783
784 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */
785 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */
786 12, /* rightshift */
787 2, /* size (0 = byte, 1 = short, 2 = long) */
788 21, /* bitsize */
789 TRUE, /* pc_relative */
790 0, /* bitpos */
791 complain_overflow_dont, /* complain_on_overflow */
792 bfd_elf_generic_reloc, /* special_function */
793 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */
794 FALSE, /* partial_inplace */
795 0x1fffff, /* src_mask */
796 0x1fffff, /* dst_mask */
797 TRUE), /* pcrel_offset */
798
799 /* ADD: (S+A) & 0xfff [no overflow check] */
800 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */
801 0, /* rightshift */
802 2, /* size (0 = byte, 1 = short, 2 = long) */
803 12, /* bitsize */
804 FALSE, /* pc_relative */
805 10, /* bitpos */
806 complain_overflow_dont, /* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */
809 FALSE, /* partial_inplace */
810 0x3ffc00, /* src_mask */
811 0x3ffc00, /* dst_mask */
812 FALSE), /* pcrel_offset */
813
814 /* LD/ST8: (S+A) & 0xfff */
815 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */
816 0, /* rightshift */
817 2, /* size (0 = byte, 1 = short, 2 = long) */
818 12, /* bitsize */
819 FALSE, /* pc_relative */
820 0, /* bitpos */
821 complain_overflow_dont, /* complain_on_overflow */
822 bfd_elf_generic_reloc, /* special_function */
823 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */
824 FALSE, /* partial_inplace */
825 0xfff, /* src_mask */
826 0xfff, /* dst_mask */
827 FALSE), /* pcrel_offset */
828
829 /* Relocations for control-flow instructions. */
830
831 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */
832 HOWTO (AARCH64_R (TSTBR14), /* type */
833 2, /* rightshift */
834 2, /* size (0 = byte, 1 = short, 2 = long) */
835 14, /* bitsize */
836 TRUE, /* pc_relative */
837 0, /* bitpos */
838 complain_overflow_signed, /* complain_on_overflow */
839 bfd_elf_generic_reloc, /* special_function */
840 AARCH64_R_STR (TSTBR14), /* name */
841 FALSE, /* partial_inplace */
842 0x3fff, /* src_mask */
843 0x3fff, /* dst_mask */
844 TRUE), /* pcrel_offset */
845
846 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */
847 HOWTO (AARCH64_R (CONDBR19), /* type */
848 2, /* rightshift */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
850 19, /* bitsize */
851 TRUE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_signed, /* complain_on_overflow */
854 bfd_elf_generic_reloc, /* special_function */
855 AARCH64_R_STR (CONDBR19), /* name */
856 FALSE, /* partial_inplace */
857 0x7ffff, /* src_mask */
858 0x7ffff, /* dst_mask */
859 TRUE), /* pcrel_offset */
860
861 /* B: ((S+A-P) >> 2) & 0x3ffffff */
862 HOWTO (AARCH64_R (JUMP26), /* type */
863 2, /* rightshift */
864 2, /* size (0 = byte, 1 = short, 2 = long) */
865 26, /* bitsize */
866 TRUE, /* pc_relative */
867 0, /* bitpos */
868 complain_overflow_signed, /* complain_on_overflow */
869 bfd_elf_generic_reloc, /* special_function */
870 AARCH64_R_STR (JUMP26), /* name */
871 FALSE, /* partial_inplace */
872 0x3ffffff, /* src_mask */
873 0x3ffffff, /* dst_mask */
874 TRUE), /* pcrel_offset */
875
876 /* BL: ((S+A-P) >> 2) & 0x3ffffff */
877 HOWTO (AARCH64_R (CALL26), /* type */
878 2, /* rightshift */
879 2, /* size (0 = byte, 1 = short, 2 = long) */
880 26, /* bitsize */
881 TRUE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_signed, /* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 AARCH64_R_STR (CALL26), /* name */
886 FALSE, /* partial_inplace */
887 0x3ffffff, /* src_mask */
888 0x3ffffff, /* dst_mask */
889 TRUE), /* pcrel_offset */
890
891 /* LD/ST16: (S+A) & 0xffe */
892 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */
893 1, /* rightshift */
894 2, /* size (0 = byte, 1 = short, 2 = long) */
895 12, /* bitsize */
896 FALSE, /* pc_relative */
897 0, /* bitpos */
898 complain_overflow_dont, /* complain_on_overflow */
899 bfd_elf_generic_reloc, /* special_function */
900 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */
901 FALSE, /* partial_inplace */
902 0xffe, /* src_mask */
903 0xffe, /* dst_mask */
904 FALSE), /* pcrel_offset */
905
906 /* LD/ST32: (S+A) & 0xffc */
907 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */
908 2, /* rightshift */
909 2, /* size (0 = byte, 1 = short, 2 = long) */
910 12, /* bitsize */
911 FALSE, /* pc_relative */
912 0, /* bitpos */
913 complain_overflow_dont, /* complain_on_overflow */
914 bfd_elf_generic_reloc, /* special_function */
915 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */
916 FALSE, /* partial_inplace */
917 0xffc, /* src_mask */
918 0xffc, /* dst_mask */
919 FALSE), /* pcrel_offset */
920
921 /* LD/ST64: (S+A) & 0xff8 */
922 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */
923 3, /* rightshift */
924 2, /* size (0 = byte, 1 = short, 2 = long) */
925 12, /* bitsize */
926 FALSE, /* pc_relative */
927 0, /* bitpos */
928 complain_overflow_dont, /* complain_on_overflow */
929 bfd_elf_generic_reloc, /* special_function */
930 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */
931 FALSE, /* partial_inplace */
932 0xff8, /* src_mask */
933 0xff8, /* dst_mask */
934 FALSE), /* pcrel_offset */
935
936 /* LD/ST128: (S+A) & 0xff0 */
937 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */
938 4, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 12, /* bitsize */
941 FALSE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont, /* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */
946 FALSE, /* partial_inplace */
947 0xff0, /* src_mask */
948 0xff0, /* dst_mask */
949 FALSE), /* pcrel_offset */
950
951 /* Set a load-literal immediate field to bits
952 0x1FFFFC of G(S)-P */
953 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */
954 2, /* rightshift */
955 2, /* size (0 = byte,1 = short,2 = long) */
956 19, /* bitsize */
957 TRUE, /* pc_relative */
958 0, /* bitpos */
959 complain_overflow_signed, /* complain_on_overflow */
960 bfd_elf_generic_reloc, /* special_function */
961 AARCH64_R_STR (GOT_LD_PREL19), /* name */
962 FALSE, /* partial_inplace */
963 0xffffe0, /* src_mask */
964 0xffffe0, /* dst_mask */
965 TRUE), /* pcrel_offset */
966
967 /* Get to the page for the GOT entry for the symbol
968 (G(S) - P) using an ADRP instruction. */
969 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */
970 12, /* rightshift */
971 2, /* size (0 = byte, 1 = short, 2 = long) */
972 21, /* bitsize */
973 TRUE, /* pc_relative */
974 0, /* bitpos */
975 complain_overflow_dont, /* complain_on_overflow */
976 bfd_elf_generic_reloc, /* special_function */
977 AARCH64_R_STR (ADR_GOT_PAGE), /* name */
978 FALSE, /* partial_inplace */
979 0x1fffff, /* src_mask */
980 0x1fffff, /* dst_mask */
981 TRUE), /* pcrel_offset */
982
983 /* LD64: GOT offset G(S) & 0xff8 */
984 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */
985 3, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 12, /* bitsize */
988 FALSE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont, /* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */
993 FALSE, /* partial_inplace */
994 0xff8, /* src_mask */
995 0xff8, /* dst_mask */
996 FALSE), /* pcrel_offset */
997
998 /* LD32: GOT offset G(S) & 0xffc */
999 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */
1000 2, /* rightshift */
1001 2, /* size (0 = byte, 1 = short, 2 = long) */
1002 12, /* bitsize */
1003 FALSE, /* pc_relative */
1004 0, /* bitpos */
1005 complain_overflow_dont, /* complain_on_overflow */
1006 bfd_elf_generic_reloc, /* special_function */
1007 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */
1008 FALSE, /* partial_inplace */
1009 0xffc, /* src_mask */
1010 0xffc, /* dst_mask */
1011 FALSE), /* pcrel_offset */
1012
1013 /* Lower 16 bits of GOT offset for the symbol. */
1014 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G0_NC), /* type */
1015 0, /* rightshift */
1016 2, /* size (0 = byte, 1 = short, 2 = long) */
1017 16, /* bitsize */
1018 FALSE, /* pc_relative */
1019 0, /* bitpos */
1020 complain_overflow_dont, /* complain_on_overflow */
1021 bfd_elf_generic_reloc, /* special_function */
1022 AARCH64_R_STR (MOVW_GOTOFF_G0_NC), /* name */
1023 FALSE, /* partial_inplace */
1024 0xffff, /* src_mask */
1025 0xffff, /* dst_mask */
1026 FALSE), /* pcrel_offset */
1027
1028 /* Higher 16 bits of GOT offset for the symbol. */
1029 HOWTO64 (AARCH64_R (MOVW_GOTOFF_G1), /* type */
1030 16, /* rightshift */
1031 2, /* size (0 = byte, 1 = short, 2 = long) */
1032 16, /* bitsize */
1033 FALSE, /* pc_relative */
1034 0, /* bitpos */
1035 complain_overflow_unsigned, /* complain_on_overflow */
1036 bfd_elf_generic_reloc, /* special_function */
1037 AARCH64_R_STR (MOVW_GOTOFF_G1), /* name */
1038 FALSE, /* partial_inplace */
1039 0xffff, /* src_mask */
1040 0xffff, /* dst_mask */
1041 FALSE), /* pcrel_offset */
1042
1043 /* LD64: GOT offset for the symbol. */
1044 HOWTO64 (AARCH64_R (LD64_GOTOFF_LO15), /* type */
1045 3, /* rightshift */
1046 2, /* size (0 = byte, 1 = short, 2 = long) */
1047 12, /* bitsize */
1048 FALSE, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_unsigned, /* complain_on_overflow */
1051 bfd_elf_generic_reloc, /* special_function */
1052 AARCH64_R_STR (LD64_GOTOFF_LO15), /* name */
1053 FALSE, /* partial_inplace */
1054 0x7ff8, /* src_mask */
1055 0x7ff8, /* dst_mask */
1056 FALSE), /* pcrel_offset */
1057
1058 /* LD32: GOT offset to the page address of GOT table.
1059 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x5ffc. */
1060 HOWTO32 (AARCH64_R (LD32_GOTPAGE_LO14), /* type */
1061 2, /* rightshift */
1062 2, /* size (0 = byte, 1 = short, 2 = long) */
1063 12, /* bitsize */
1064 FALSE, /* pc_relative */
1065 0, /* bitpos */
1066 complain_overflow_unsigned, /* complain_on_overflow */
1067 bfd_elf_generic_reloc, /* special_function */
1068 AARCH64_R_STR (LD32_GOTPAGE_LO14), /* name */
1069 FALSE, /* partial_inplace */
1070 0x5ffc, /* src_mask */
1071 0x5ffc, /* dst_mask */
1072 FALSE), /* pcrel_offset */
1073
1074 /* LD64: GOT offset to the page address of GOT table.
1075 (G(S) - PAGE (_GLOBAL_OFFSET_TABLE_)) & 0x7ff8. */
1076 HOWTO64 (AARCH64_R (LD64_GOTPAGE_LO15), /* type */
1077 3, /* rightshift */
1078 2, /* size (0 = byte, 1 = short, 2 = long) */
1079 12, /* bitsize */
1080 FALSE, /* pc_relative */
1081 0, /* bitpos */
1082 complain_overflow_unsigned, /* complain_on_overflow */
1083 bfd_elf_generic_reloc, /* special_function */
1084 AARCH64_R_STR (LD64_GOTPAGE_LO15), /* name */
1085 FALSE, /* partial_inplace */
1086 0x7ff8, /* src_mask */
1087 0x7ff8, /* dst_mask */
1088 FALSE), /* pcrel_offset */
1089
1090 /* Get to the page for the GOT entry for the symbol
1091 (G(S) - P) using an ADRP instruction. */
1092 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */
1093 12, /* rightshift */
1094 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 21, /* bitsize */
1096 TRUE, /* pc_relative */
1097 0, /* bitpos */
1098 complain_overflow_dont, /* complain_on_overflow */
1099 bfd_elf_generic_reloc, /* special_function */
1100 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */
1101 FALSE, /* partial_inplace */
1102 0x1fffff, /* src_mask */
1103 0x1fffff, /* dst_mask */
1104 TRUE), /* pcrel_offset */
1105
1106 HOWTO (AARCH64_R (TLSGD_ADR_PREL21), /* type */
1107 0, /* rightshift */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 21, /* bitsize */
1110 TRUE, /* pc_relative */
1111 0, /* bitpos */
1112 complain_overflow_dont, /* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
1114 AARCH64_R_STR (TLSGD_ADR_PREL21), /* name */
1115 FALSE, /* partial_inplace */
1116 0x1fffff, /* src_mask */
1117 0x1fffff, /* dst_mask */
1118 TRUE), /* pcrel_offset */
1119
1120 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1121 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */
1122 0, /* rightshift */
1123 2, /* size (0 = byte, 1 = short, 2 = long) */
1124 12, /* bitsize */
1125 FALSE, /* pc_relative */
1126 0, /* bitpos */
1127 complain_overflow_dont, /* complain_on_overflow */
1128 bfd_elf_generic_reloc, /* special_function */
1129 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */
1130 FALSE, /* partial_inplace */
1131 0xfff, /* src_mask */
1132 0xfff, /* dst_mask */
1133 FALSE), /* pcrel_offset */
1134
1135 /* Lower 16 bits of GOT offset to tls_index. */
1136 HOWTO64 (AARCH64_R (TLSGD_MOVW_G0_NC), /* type */
1137 0, /* rightshift */
1138 2, /* size (0 = byte, 1 = short, 2 = long) */
1139 16, /* bitsize */
1140 FALSE, /* pc_relative */
1141 0, /* bitpos */
1142 complain_overflow_dont, /* complain_on_overflow */
1143 bfd_elf_generic_reloc, /* special_function */
1144 AARCH64_R_STR (TLSGD_MOVW_G0_NC), /* name */
1145 FALSE, /* partial_inplace */
1146 0xffff, /* src_mask */
1147 0xffff, /* dst_mask */
1148 FALSE), /* pcrel_offset */
1149
1150 /* Higher 16 bits of GOT offset to tls_index. */
1151 HOWTO64 (AARCH64_R (TLSGD_MOVW_G1), /* type */
1152 16, /* rightshift */
1153 2, /* size (0 = byte, 1 = short, 2 = long) */
1154 16, /* bitsize */
1155 FALSE, /* pc_relative */
1156 0, /* bitpos */
1157 complain_overflow_unsigned, /* complain_on_overflow */
1158 bfd_elf_generic_reloc, /* special_function */
1159 AARCH64_R_STR (TLSGD_MOVW_G1), /* name */
1160 FALSE, /* partial_inplace */
1161 0xffff, /* src_mask */
1162 0xffff, /* dst_mask */
1163 FALSE), /* pcrel_offset */
1164
1165 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */
1166 12, /* rightshift */
1167 2, /* size (0 = byte, 1 = short, 2 = long) */
1168 21, /* bitsize */
1169 FALSE, /* pc_relative */
1170 0, /* bitpos */
1171 complain_overflow_dont, /* complain_on_overflow */
1172 bfd_elf_generic_reloc, /* special_function */
1173 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */
1174 FALSE, /* partial_inplace */
1175 0x1fffff, /* src_mask */
1176 0x1fffff, /* dst_mask */
1177 FALSE), /* pcrel_offset */
1178
1179 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */
1180 3, /* rightshift */
1181 2, /* size (0 = byte, 1 = short, 2 = long) */
1182 12, /* bitsize */
1183 FALSE, /* pc_relative */
1184 0, /* bitpos */
1185 complain_overflow_dont, /* complain_on_overflow */
1186 bfd_elf_generic_reloc, /* special_function */
1187 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */
1188 FALSE, /* partial_inplace */
1189 0xff8, /* src_mask */
1190 0xff8, /* dst_mask */
1191 FALSE), /* pcrel_offset */
1192
1193 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */
1194 2, /* rightshift */
1195 2, /* size (0 = byte, 1 = short, 2 = long) */
1196 12, /* bitsize */
1197 FALSE, /* pc_relative */
1198 0, /* bitpos */
1199 complain_overflow_dont, /* complain_on_overflow */
1200 bfd_elf_generic_reloc, /* special_function */
1201 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */
1202 FALSE, /* partial_inplace */
1203 0xffc, /* src_mask */
1204 0xffc, /* dst_mask */
1205 FALSE), /* pcrel_offset */
1206
1207 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */
1208 2, /* rightshift */
1209 2, /* size (0 = byte, 1 = short, 2 = long) */
1210 19, /* bitsize */
1211 FALSE, /* pc_relative */
1212 0, /* bitpos */
1213 complain_overflow_dont, /* complain_on_overflow */
1214 bfd_elf_generic_reloc, /* special_function */
1215 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */
1216 FALSE, /* partial_inplace */
1217 0x1ffffc, /* src_mask */
1218 0x1ffffc, /* dst_mask */
1219 FALSE), /* pcrel_offset */
1220
1221 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */
1222 0, /* rightshift */
1223 2, /* size (0 = byte, 1 = short, 2 = long) */
1224 16, /* bitsize */
1225 FALSE, /* pc_relative */
1226 0, /* bitpos */
1227 complain_overflow_dont, /* complain_on_overflow */
1228 bfd_elf_generic_reloc, /* special_function */
1229 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */
1230 FALSE, /* partial_inplace */
1231 0xffff, /* src_mask */
1232 0xffff, /* dst_mask */
1233 FALSE), /* pcrel_offset */
1234
1235 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */
1236 16, /* rightshift */
1237 2, /* size (0 = byte, 1 = short, 2 = long) */
1238 16, /* bitsize */
1239 FALSE, /* pc_relative */
1240 0, /* bitpos */
1241 complain_overflow_unsigned, /* complain_on_overflow */
1242 bfd_elf_generic_reloc, /* special_function */
1243 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */
1244 FALSE, /* partial_inplace */
1245 0xffff, /* src_mask */
1246 0xffff, /* dst_mask */
1247 FALSE), /* pcrel_offset */
1248
1249 /* ADD: bit[23:12] of byte offset to module TLS base address. */
1250 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_HI12), /* type */
1251 12, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 12, /* bitsize */
1254 FALSE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_unsigned, /* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 AARCH64_R_STR (TLSLD_ADD_DTPREL_HI12), /* name */
1259 FALSE, /* partial_inplace */
1260 0xfff, /* src_mask */
1261 0xfff, /* dst_mask */
1262 FALSE), /* pcrel_offset */
1263
1264 /* Unsigned 12 bit byte offset to module TLS base address. */
1265 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12), /* type */
1266 0, /* rightshift */
1267 2, /* size (0 = byte, 1 = short, 2 = long) */
1268 12, /* bitsize */
1269 FALSE, /* pc_relative */
1270 0, /* bitpos */
1271 complain_overflow_unsigned, /* complain_on_overflow */
1272 bfd_elf_generic_reloc, /* special_function */
1273 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12), /* name */
1274 FALSE, /* partial_inplace */
1275 0xfff, /* src_mask */
1276 0xfff, /* dst_mask */
1277 FALSE), /* pcrel_offset */
1278
1279 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12. */
1280 HOWTO (AARCH64_R (TLSLD_ADD_DTPREL_LO12_NC), /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 12, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_dont, /* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 AARCH64_R_STR (TLSLD_ADD_DTPREL_LO12_NC), /* name */
1289 FALSE, /* partial_inplace */
1290 0xfff, /* src_mask */
1291 0xfff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */
1295 HOWTO (AARCH64_R (TLSLD_ADD_LO12_NC), /* type */
1296 0, /* rightshift */
1297 2, /* size (0 = byte, 1 = short, 2 = long) */
1298 12, /* bitsize */
1299 FALSE, /* pc_relative */
1300 0, /* bitpos */
1301 complain_overflow_dont, /* complain_on_overflow */
1302 bfd_elf_generic_reloc, /* special_function */
1303 AARCH64_R_STR (TLSLD_ADD_LO12_NC), /* name */
1304 FALSE, /* partial_inplace */
1305 0xfff, /* src_mask */
1306 0xfff, /* dst_mask */
1307 FALSE), /* pcrel_offset */
1308
1309 /* Get to the page for the GOT entry for the symbol
1310 (G(S) - P) using an ADRP instruction. */
1311 HOWTO (AARCH64_R (TLSLD_ADR_PAGE21), /* type */
1312 12, /* rightshift */
1313 2, /* size (0 = byte, 1 = short, 2 = long) */
1314 21, /* bitsize */
1315 TRUE, /* pc_relative */
1316 0, /* bitpos */
1317 complain_overflow_signed, /* complain_on_overflow */
1318 bfd_elf_generic_reloc, /* special_function */
1319 AARCH64_R_STR (TLSLD_ADR_PAGE21), /* name */
1320 FALSE, /* partial_inplace */
1321 0x1fffff, /* src_mask */
1322 0x1fffff, /* dst_mask */
1323 TRUE), /* pcrel_offset */
1324
1325 HOWTO (AARCH64_R (TLSLD_ADR_PREL21), /* type */
1326 0, /* rightshift */
1327 2, /* size (0 = byte, 1 = short, 2 = long) */
1328 21, /* bitsize */
1329 TRUE, /* pc_relative */
1330 0, /* bitpos */
1331 complain_overflow_signed, /* complain_on_overflow */
1332 bfd_elf_generic_reloc, /* special_function */
1333 AARCH64_R_STR (TLSLD_ADR_PREL21), /* name */
1334 FALSE, /* partial_inplace */
1335 0x1fffff, /* src_mask */
1336 0x1fffff, /* dst_mask */
1337 TRUE), /* pcrel_offset */
1338
1339 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1340 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12), /* type */
1341 1, /* rightshift */
1342 2, /* size (0 = byte, 1 = short, 2 = long) */
1343 11, /* bitsize */
1344 FALSE, /* pc_relative */
1345 10, /* bitpos */
1346 complain_overflow_unsigned, /* complain_on_overflow */
1347 bfd_elf_generic_reloc, /* special_function */
1348 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12), /* name */
1349 FALSE, /* partial_inplace */
1350 0x1ffc00, /* src_mask */
1351 0x1ffc00, /* dst_mask */
1352 FALSE), /* pcrel_offset */
1353
1354 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12, but no overflow check. */
1355 HOWTO64 (AARCH64_R (TLSLD_LDST16_DTPREL_LO12_NC), /* type */
1356 1, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 11, /* bitsize */
1359 FALSE, /* pc_relative */
1360 10, /* bitpos */
1361 complain_overflow_dont, /* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 AARCH64_R_STR (TLSLD_LDST16_DTPREL_LO12_NC), /* name */
1364 FALSE, /* partial_inplace */
1365 0x1ffc00, /* src_mask */
1366 0x1ffc00, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1370 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12), /* type */
1371 2, /* rightshift */
1372 2, /* size (0 = byte, 1 = short, 2 = long) */
1373 10, /* bitsize */
1374 FALSE, /* pc_relative */
1375 10, /* bitpos */
1376 complain_overflow_unsigned, /* complain_on_overflow */
1377 bfd_elf_generic_reloc, /* special_function */
1378 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12), /* name */
1379 FALSE, /* partial_inplace */
1380 0x3ffc00, /* src_mask */
1381 0x3ffc00, /* dst_mask */
1382 FALSE), /* pcrel_offset */
1383
1384 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12, but no overflow check. */
1385 HOWTO64 (AARCH64_R (TLSLD_LDST32_DTPREL_LO12_NC), /* type */
1386 2, /* rightshift */
1387 2, /* size (0 = byte, 1 = short, 2 = long) */
1388 10, /* bitsize */
1389 FALSE, /* pc_relative */
1390 10, /* bitpos */
1391 complain_overflow_dont, /* complain_on_overflow */
1392 bfd_elf_generic_reloc, /* special_function */
1393 AARCH64_R_STR (TLSLD_LDST32_DTPREL_LO12_NC), /* name */
1394 FALSE, /* partial_inplace */
1395 0xffc00, /* src_mask */
1396 0xffc00, /* dst_mask */
1397 FALSE), /* pcrel_offset */
1398
1399 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1400 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12), /* type */
1401 3, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 9, /* bitsize */
1404 FALSE, /* pc_relative */
1405 10, /* bitpos */
1406 complain_overflow_unsigned, /* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12), /* name */
1409 FALSE, /* partial_inplace */
1410 0x3ffc00, /* src_mask */
1411 0x3ffc00, /* dst_mask */
1412 FALSE), /* pcrel_offset */
1413
1414 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12, but no overflow check. */
1415 HOWTO64 (AARCH64_R (TLSLD_LDST64_DTPREL_LO12_NC), /* type */
1416 3, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 9, /* bitsize */
1419 FALSE, /* pc_relative */
1420 10, /* bitpos */
1421 complain_overflow_dont, /* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 AARCH64_R_STR (TLSLD_LDST64_DTPREL_LO12_NC), /* name */
1424 FALSE, /* partial_inplace */
1425 0x7fc00, /* src_mask */
1426 0x7fc00, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1430 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12), /* type */
1431 0, /* rightshift */
1432 2, /* size (0 = byte, 1 = short, 2 = long) */
1433 12, /* bitsize */
1434 FALSE, /* pc_relative */
1435 10, /* bitpos */
1436 complain_overflow_unsigned, /* complain_on_overflow */
1437 bfd_elf_generic_reloc, /* special_function */
1438 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12), /* name */
1439 FALSE, /* partial_inplace */
1440 0x3ffc00, /* src_mask */
1441 0x3ffc00, /* dst_mask */
1442 FALSE), /* pcrel_offset */
1443
1444 /* Same as BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12, but no overflow check. */
1445 HOWTO64 (AARCH64_R (TLSLD_LDST8_DTPREL_LO12_NC), /* type */
1446 0, /* rightshift */
1447 2, /* size (0 = byte, 1 = short, 2 = long) */
1448 12, /* bitsize */
1449 FALSE, /* pc_relative */
1450 10, /* bitpos */
1451 complain_overflow_dont, /* complain_on_overflow */
1452 bfd_elf_generic_reloc, /* special_function */
1453 AARCH64_R_STR (TLSLD_LDST8_DTPREL_LO12_NC), /* name */
1454 FALSE, /* partial_inplace */
1455 0x3ffc00, /* src_mask */
1456 0x3ffc00, /* dst_mask */
1457 FALSE), /* pcrel_offset */
1458
1459 /* MOVZ: bit[15:0] of byte offset to module TLS base address. */
1460 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0), /* type */
1461 0, /* rightshift */
1462 2, /* size (0 = byte, 1 = short, 2 = long) */
1463 16, /* bitsize */
1464 FALSE, /* pc_relative */
1465 0, /* bitpos */
1466 complain_overflow_unsigned, /* complain_on_overflow */
1467 bfd_elf_generic_reloc, /* special_function */
1468 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0), /* name */
1469 FALSE, /* partial_inplace */
1470 0xffff, /* src_mask */
1471 0xffff, /* dst_mask */
1472 FALSE), /* pcrel_offset */
1473
1474 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
1475 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G0_NC), /* type */
1476 0, /* rightshift */
1477 2, /* size (0 = byte, 1 = short, 2 = long) */
1478 16, /* bitsize */
1479 FALSE, /* pc_relative */
1480 0, /* bitpos */
1481 complain_overflow_dont, /* complain_on_overflow */
1482 bfd_elf_generic_reloc, /* special_function */
1483 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G0_NC), /* name */
1484 FALSE, /* partial_inplace */
1485 0xffff, /* src_mask */
1486 0xffff, /* dst_mask */
1487 FALSE), /* pcrel_offset */
1488
1489 /* MOVZ: bit[31:16] of byte offset to module TLS base address. */
1490 HOWTO (AARCH64_R (TLSLD_MOVW_DTPREL_G1), /* type */
1491 16, /* rightshift */
1492 2, /* size (0 = byte, 1 = short, 2 = long) */
1493 16, /* bitsize */
1494 FALSE, /* pc_relative */
1495 0, /* bitpos */
1496 complain_overflow_unsigned, /* complain_on_overflow */
1497 bfd_elf_generic_reloc, /* special_function */
1498 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1), /* name */
1499 FALSE, /* partial_inplace */
1500 0xffff, /* src_mask */
1501 0xffff, /* dst_mask */
1502 FALSE), /* pcrel_offset */
1503
1504 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
1505 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G1_NC), /* type */
1506 16, /* rightshift */
1507 2, /* size (0 = byte, 1 = short, 2 = long) */
1508 16, /* bitsize */
1509 FALSE, /* pc_relative */
1510 0, /* bitpos */
1511 complain_overflow_dont, /* complain_on_overflow */
1512 bfd_elf_generic_reloc, /* special_function */
1513 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G1_NC), /* name */
1514 FALSE, /* partial_inplace */
1515 0xffff, /* src_mask */
1516 0xffff, /* dst_mask */
1517 FALSE), /* pcrel_offset */
1518
1519 /* MOVZ: bit[47:32] of byte offset to module TLS base address. */
1520 HOWTO64 (AARCH64_R (TLSLD_MOVW_DTPREL_G2), /* type */
1521 32, /* rightshift */
1522 2, /* size (0 = byte, 1 = short, 2 = long) */
1523 16, /* bitsize */
1524 FALSE, /* pc_relative */
1525 0, /* bitpos */
1526 complain_overflow_unsigned, /* complain_on_overflow */
1527 bfd_elf_generic_reloc, /* special_function */
1528 AARCH64_R_STR (TLSLD_MOVW_DTPREL_G2), /* name */
1529 FALSE, /* partial_inplace */
1530 0xffff, /* src_mask */
1531 0xffff, /* dst_mask */
1532 FALSE), /* pcrel_offset */
1533
1534 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */
1535 32, /* rightshift */
1536 2, /* size (0 = byte, 1 = short, 2 = long) */
1537 16, /* bitsize */
1538 FALSE, /* pc_relative */
1539 0, /* bitpos */
1540 complain_overflow_unsigned, /* complain_on_overflow */
1541 bfd_elf_generic_reloc, /* special_function */
1542 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */
1543 FALSE, /* partial_inplace */
1544 0xffff, /* src_mask */
1545 0xffff, /* dst_mask */
1546 FALSE), /* pcrel_offset */
1547
1548 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */
1549 16, /* rightshift */
1550 2, /* size (0 = byte, 1 = short, 2 = long) */
1551 16, /* bitsize */
1552 FALSE, /* pc_relative */
1553 0, /* bitpos */
1554 complain_overflow_dont, /* complain_on_overflow */
1555 bfd_elf_generic_reloc, /* special_function */
1556 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */
1557 FALSE, /* partial_inplace */
1558 0xffff, /* src_mask */
1559 0xffff, /* dst_mask */
1560 FALSE), /* pcrel_offset */
1561
1562 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */
1563 16, /* rightshift */
1564 2, /* size (0 = byte, 1 = short, 2 = long) */
1565 16, /* bitsize */
1566 FALSE, /* pc_relative */
1567 0, /* bitpos */
1568 complain_overflow_dont, /* complain_on_overflow */
1569 bfd_elf_generic_reloc, /* special_function */
1570 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */
1571 FALSE, /* partial_inplace */
1572 0xffff, /* src_mask */
1573 0xffff, /* dst_mask */
1574 FALSE), /* pcrel_offset */
1575
1576 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */
1577 0, /* rightshift */
1578 2, /* size (0 = byte, 1 = short, 2 = long) */
1579 16, /* bitsize */
1580 FALSE, /* pc_relative */
1581 0, /* bitpos */
1582 complain_overflow_dont, /* complain_on_overflow */
1583 bfd_elf_generic_reloc, /* special_function */
1584 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */
1585 FALSE, /* partial_inplace */
1586 0xffff, /* src_mask */
1587 0xffff, /* dst_mask */
1588 FALSE), /* pcrel_offset */
1589
1590 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */
1591 0, /* rightshift */
1592 2, /* size (0 = byte, 1 = short, 2 = long) */
1593 16, /* bitsize */
1594 FALSE, /* pc_relative */
1595 0, /* bitpos */
1596 complain_overflow_dont, /* complain_on_overflow */
1597 bfd_elf_generic_reloc, /* special_function */
1598 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */
1599 FALSE, /* partial_inplace */
1600 0xffff, /* src_mask */
1601 0xffff, /* dst_mask */
1602 FALSE), /* pcrel_offset */
1603
1604 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */
1605 12, /* rightshift */
1606 2, /* size (0 = byte, 1 = short, 2 = long) */
1607 12, /* bitsize */
1608 FALSE, /* pc_relative */
1609 0, /* bitpos */
1610 complain_overflow_unsigned, /* complain_on_overflow */
1611 bfd_elf_generic_reloc, /* special_function */
1612 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */
1613 FALSE, /* partial_inplace */
1614 0xfff, /* src_mask */
1615 0xfff, /* dst_mask */
1616 FALSE), /* pcrel_offset */
1617
1618 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */
1619 0, /* rightshift */
1620 2, /* size (0 = byte, 1 = short, 2 = long) */
1621 12, /* bitsize */
1622 FALSE, /* pc_relative */
1623 0, /* bitpos */
1624 complain_overflow_unsigned, /* complain_on_overflow */
1625 bfd_elf_generic_reloc, /* special_function */
1626 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */
1627 FALSE, /* partial_inplace */
1628 0xfff, /* src_mask */
1629 0xfff, /* dst_mask */
1630 FALSE), /* pcrel_offset */
1631
1632 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */
1633 0, /* rightshift */
1634 2, /* size (0 = byte, 1 = short, 2 = long) */
1635 12, /* bitsize */
1636 FALSE, /* pc_relative */
1637 0, /* bitpos */
1638 complain_overflow_dont, /* complain_on_overflow */
1639 bfd_elf_generic_reloc, /* special_function */
1640 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */
1641 FALSE, /* partial_inplace */
1642 0xfff, /* src_mask */
1643 0xfff, /* dst_mask */
1644 FALSE), /* pcrel_offset */
1645
1646 /* LD/ST16: bit[11:1] of byte offset to module TLS base address. */
1647 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12), /* type */
1648 1, /* rightshift */
1649 2, /* size (0 = byte, 1 = short, 2 = long) */
1650 11, /* bitsize */
1651 FALSE, /* pc_relative */
1652 10, /* bitpos */
1653 complain_overflow_unsigned, /* complain_on_overflow */
1654 bfd_elf_generic_reloc, /* special_function */
1655 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12), /* name */
1656 FALSE, /* partial_inplace */
1657 0x1ffc00, /* src_mask */
1658 0x1ffc00, /* dst_mask */
1659 FALSE), /* pcrel_offset */
1660
1661 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12, but no overflow check. */
1662 HOWTO (AARCH64_R (TLSLE_LDST16_TPREL_LO12_NC), /* type */
1663 1, /* rightshift */
1664 2, /* size (0 = byte, 1 = short, 2 = long) */
1665 11, /* bitsize */
1666 FALSE, /* pc_relative */
1667 10, /* bitpos */
1668 complain_overflow_dont, /* complain_on_overflow */
1669 bfd_elf_generic_reloc, /* special_function */
1670 AARCH64_R_STR (TLSLE_LDST16_TPREL_LO12_NC), /* name */
1671 FALSE, /* partial_inplace */
1672 0x1ffc00, /* src_mask */
1673 0x1ffc00, /* dst_mask */
1674 FALSE), /* pcrel_offset */
1675
1676 /* LD/ST32: bit[11:2] of byte offset to module TLS base address. */
1677 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12), /* type */
1678 2, /* rightshift */
1679 2, /* size (0 = byte, 1 = short, 2 = long) */
1680 10, /* bitsize */
1681 FALSE, /* pc_relative */
1682 10, /* bitpos */
1683 complain_overflow_unsigned, /* complain_on_overflow */
1684 bfd_elf_generic_reloc, /* special_function */
1685 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12), /* name */
1686 FALSE, /* partial_inplace */
1687 0xffc00, /* src_mask */
1688 0xffc00, /* dst_mask */
1689 FALSE), /* pcrel_offset */
1690
1691 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12, but no overflow check. */
1692 HOWTO (AARCH64_R (TLSLE_LDST32_TPREL_LO12_NC), /* type */
1693 2, /* rightshift */
1694 2, /* size (0 = byte, 1 = short, 2 = long) */
1695 10, /* bitsize */
1696 FALSE, /* pc_relative */
1697 10, /* bitpos */
1698 complain_overflow_dont, /* complain_on_overflow */
1699 bfd_elf_generic_reloc, /* special_function */
1700 AARCH64_R_STR (TLSLE_LDST32_TPREL_LO12_NC), /* name */
1701 FALSE, /* partial_inplace */
1702 0xffc00, /* src_mask */
1703 0xffc00, /* dst_mask */
1704 FALSE), /* pcrel_offset */
1705
1706 /* LD/ST64: bit[11:3] of byte offset to module TLS base address. */
1707 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12), /* type */
1708 3, /* rightshift */
1709 2, /* size (0 = byte, 1 = short, 2 = long) */
1710 9, /* bitsize */
1711 FALSE, /* pc_relative */
1712 10, /* bitpos */
1713 complain_overflow_unsigned, /* complain_on_overflow */
1714 bfd_elf_generic_reloc, /* special_function */
1715 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12), /* name */
1716 FALSE, /* partial_inplace */
1717 0x7fc00, /* src_mask */
1718 0x7fc00, /* dst_mask */
1719 FALSE), /* pcrel_offset */
1720
1721 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12, but no overflow check. */
1722 HOWTO (AARCH64_R (TLSLE_LDST64_TPREL_LO12_NC), /* type */
1723 3, /* rightshift */
1724 2, /* size (0 = byte, 1 = short, 2 = long) */
1725 9, /* bitsize */
1726 FALSE, /* pc_relative */
1727 10, /* bitpos */
1728 complain_overflow_dont, /* complain_on_overflow */
1729 bfd_elf_generic_reloc, /* special_function */
1730 AARCH64_R_STR (TLSLE_LDST64_TPREL_LO12_NC), /* name */
1731 FALSE, /* partial_inplace */
1732 0x7fc00, /* src_mask */
1733 0x7fc00, /* dst_mask */
1734 FALSE), /* pcrel_offset */
1735
1736 /* LD/ST8: bit[11:0] of byte offset to module TLS base address. */
1737 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12), /* type */
1738 0, /* rightshift */
1739 2, /* size (0 = byte, 1 = short, 2 = long) */
1740 12, /* bitsize */
1741 FALSE, /* pc_relative */
1742 10, /* bitpos */
1743 complain_overflow_unsigned, /* complain_on_overflow */
1744 bfd_elf_generic_reloc, /* special_function */
1745 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12), /* name */
1746 FALSE, /* partial_inplace */
1747 0x3ffc00, /* src_mask */
1748 0x3ffc00, /* dst_mask */
1749 FALSE), /* pcrel_offset */
1750
1751 /* Same as BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12, but no overflow check. */
1752 HOWTO (AARCH64_R (TLSLE_LDST8_TPREL_LO12_NC), /* type */
1753 0, /* rightshift */
1754 2, /* size (0 = byte, 1 = short, 2 = long) */
1755 12, /* bitsize */
1756 FALSE, /* pc_relative */
1757 10, /* bitpos */
1758 complain_overflow_dont, /* complain_on_overflow */
1759 bfd_elf_generic_reloc, /* special_function */
1760 AARCH64_R_STR (TLSLE_LDST8_TPREL_LO12_NC), /* name */
1761 FALSE, /* partial_inplace */
1762 0x3ffc00, /* src_mask */
1763 0x3ffc00, /* dst_mask */
1764 FALSE), /* pcrel_offset */
1765
1766 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */
1767 2, /* rightshift */
1768 2, /* size (0 = byte, 1 = short, 2 = long) */
1769 19, /* bitsize */
1770 TRUE, /* pc_relative */
1771 0, /* bitpos */
1772 complain_overflow_dont, /* complain_on_overflow */
1773 bfd_elf_generic_reloc, /* special_function */
1774 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */
1775 FALSE, /* partial_inplace */
1776 0x0ffffe0, /* src_mask */
1777 0x0ffffe0, /* dst_mask */
1778 TRUE), /* pcrel_offset */
1779
1780 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */
1781 0, /* rightshift */
1782 2, /* size (0 = byte, 1 = short, 2 = long) */
1783 21, /* bitsize */
1784 TRUE, /* pc_relative */
1785 0, /* bitpos */
1786 complain_overflow_dont, /* complain_on_overflow */
1787 bfd_elf_generic_reloc, /* special_function */
1788 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */
1789 FALSE, /* partial_inplace */
1790 0x1fffff, /* src_mask */
1791 0x1fffff, /* dst_mask */
1792 TRUE), /* pcrel_offset */
1793
1794 /* Get to the page for the GOT entry for the symbol
1795 (G(S) - P) using an ADRP instruction. */
1796 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */
1797 12, /* rightshift */
1798 2, /* size (0 = byte, 1 = short, 2 = long) */
1799 21, /* bitsize */
1800 TRUE, /* pc_relative */
1801 0, /* bitpos */
1802 complain_overflow_dont, /* complain_on_overflow */
1803 bfd_elf_generic_reloc, /* special_function */
1804 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */
1805 FALSE, /* partial_inplace */
1806 0x1fffff, /* src_mask */
1807 0x1fffff, /* dst_mask */
1808 TRUE), /* pcrel_offset */
1809
1810 /* LD64: GOT offset G(S) & 0xff8. */
1811 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12), /* type */
1812 3, /* rightshift */
1813 2, /* size (0 = byte, 1 = short, 2 = long) */
1814 12, /* bitsize */
1815 FALSE, /* pc_relative */
1816 0, /* bitpos */
1817 complain_overflow_dont, /* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 AARCH64_R_STR (TLSDESC_LD64_LO12), /* name */
1820 FALSE, /* partial_inplace */
1821 0xff8, /* src_mask */
1822 0xff8, /* dst_mask */
1823 FALSE), /* pcrel_offset */
1824
1825 /* LD32: GOT offset G(S) & 0xffc. */
1826 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */
1827 2, /* rightshift */
1828 2, /* size (0 = byte, 1 = short, 2 = long) */
1829 12, /* bitsize */
1830 FALSE, /* pc_relative */
1831 0, /* bitpos */
1832 complain_overflow_dont, /* complain_on_overflow */
1833 bfd_elf_generic_reloc, /* special_function */
1834 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */
1835 FALSE, /* partial_inplace */
1836 0xffc, /* src_mask */
1837 0xffc, /* dst_mask */
1838 FALSE), /* pcrel_offset */
1839
1840 /* ADD: GOT offset G(S) & 0xfff. */
1841 HOWTO (AARCH64_R (TLSDESC_ADD_LO12), /* type */
1842 0, /* rightshift */
1843 2, /* size (0 = byte, 1 = short, 2 = long) */
1844 12, /* bitsize */
1845 FALSE, /* pc_relative */
1846 0, /* bitpos */
1847 complain_overflow_dont,/* complain_on_overflow */
1848 bfd_elf_generic_reloc, /* special_function */
1849 AARCH64_R_STR (TLSDESC_ADD_LO12), /* name */
1850 FALSE, /* partial_inplace */
1851 0xfff, /* src_mask */
1852 0xfff, /* dst_mask */
1853 FALSE), /* pcrel_offset */
1854
1855 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */
1856 16, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 12, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_unsigned, /* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */
1864 FALSE, /* partial_inplace */
1865 0xffff, /* src_mask */
1866 0xffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868
1869 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */
1870 0, /* rightshift */
1871 2, /* size (0 = byte, 1 = short, 2 = long) */
1872 12, /* bitsize */
1873 FALSE, /* pc_relative */
1874 0, /* bitpos */
1875 complain_overflow_dont, /* complain_on_overflow */
1876 bfd_elf_generic_reloc, /* special_function */
1877 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */
1878 FALSE, /* partial_inplace */
1879 0xffff, /* src_mask */
1880 0xffff, /* dst_mask */
1881 FALSE), /* pcrel_offset */
1882
1883 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */
1884 0, /* rightshift */
1885 2, /* size (0 = byte, 1 = short, 2 = long) */
1886 12, /* bitsize */
1887 FALSE, /* pc_relative */
1888 0, /* bitpos */
1889 complain_overflow_dont, /* complain_on_overflow */
1890 bfd_elf_generic_reloc, /* special_function */
1891 AARCH64_R_STR (TLSDESC_LDR), /* name */
1892 FALSE, /* partial_inplace */
1893 0x0, /* src_mask */
1894 0x0, /* dst_mask */
1895 FALSE), /* pcrel_offset */
1896
1897 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */
1898 0, /* rightshift */
1899 2, /* size (0 = byte, 1 = short, 2 = long) */
1900 12, /* bitsize */
1901 FALSE, /* pc_relative */
1902 0, /* bitpos */
1903 complain_overflow_dont, /* complain_on_overflow */
1904 bfd_elf_generic_reloc, /* special_function */
1905 AARCH64_R_STR (TLSDESC_ADD), /* name */
1906 FALSE, /* partial_inplace */
1907 0x0, /* src_mask */
1908 0x0, /* dst_mask */
1909 FALSE), /* pcrel_offset */
1910
1911 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */
1912 0, /* rightshift */
1913 2, /* size (0 = byte, 1 = short, 2 = long) */
1914 0, /* bitsize */
1915 FALSE, /* pc_relative */
1916 0, /* bitpos */
1917 complain_overflow_dont, /* complain_on_overflow */
1918 bfd_elf_generic_reloc, /* special_function */
1919 AARCH64_R_STR (TLSDESC_CALL), /* name */
1920 FALSE, /* partial_inplace */
1921 0x0, /* src_mask */
1922 0x0, /* dst_mask */
1923 FALSE), /* pcrel_offset */
1924
1925 HOWTO (AARCH64_R (COPY), /* type */
1926 0, /* rightshift */
1927 2, /* size (0 = byte, 1 = short, 2 = long) */
1928 64, /* bitsize */
1929 FALSE, /* pc_relative */
1930 0, /* bitpos */
1931 complain_overflow_bitfield, /* complain_on_overflow */
1932 bfd_elf_generic_reloc, /* special_function */
1933 AARCH64_R_STR (COPY), /* name */
1934 TRUE, /* partial_inplace */
1935 0xffffffff, /* src_mask */
1936 0xffffffff, /* dst_mask */
1937 FALSE), /* pcrel_offset */
1938
1939 HOWTO (AARCH64_R (GLOB_DAT), /* type */
1940 0, /* rightshift */
1941 2, /* size (0 = byte, 1 = short, 2 = long) */
1942 64, /* bitsize */
1943 FALSE, /* pc_relative */
1944 0, /* bitpos */
1945 complain_overflow_bitfield, /* complain_on_overflow */
1946 bfd_elf_generic_reloc, /* special_function */
1947 AARCH64_R_STR (GLOB_DAT), /* name */
1948 TRUE, /* partial_inplace */
1949 0xffffffff, /* src_mask */
1950 0xffffffff, /* dst_mask */
1951 FALSE), /* pcrel_offset */
1952
1953 HOWTO (AARCH64_R (JUMP_SLOT), /* type */
1954 0, /* rightshift */
1955 2, /* size (0 = byte, 1 = short, 2 = long) */
1956 64, /* bitsize */
1957 FALSE, /* pc_relative */
1958 0, /* bitpos */
1959 complain_overflow_bitfield, /* complain_on_overflow */
1960 bfd_elf_generic_reloc, /* special_function */
1961 AARCH64_R_STR (JUMP_SLOT), /* name */
1962 TRUE, /* partial_inplace */
1963 0xffffffff, /* src_mask */
1964 0xffffffff, /* dst_mask */
1965 FALSE), /* pcrel_offset */
1966
1967 HOWTO (AARCH64_R (RELATIVE), /* type */
1968 0, /* rightshift */
1969 2, /* size (0 = byte, 1 = short, 2 = long) */
1970 64, /* bitsize */
1971 FALSE, /* pc_relative */
1972 0, /* bitpos */
1973 complain_overflow_bitfield, /* complain_on_overflow */
1974 bfd_elf_generic_reloc, /* special_function */
1975 AARCH64_R_STR (RELATIVE), /* name */
1976 TRUE, /* partial_inplace */
1977 ALL_ONES, /* src_mask */
1978 ALL_ONES, /* dst_mask */
1979 FALSE), /* pcrel_offset */
1980
1981 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */
1982 0, /* rightshift */
1983 2, /* size (0 = byte, 1 = short, 2 = long) */
1984 64, /* bitsize */
1985 FALSE, /* pc_relative */
1986 0, /* bitpos */
1987 complain_overflow_dont, /* complain_on_overflow */
1988 bfd_elf_generic_reloc, /* special_function */
1989 #if ARCH_SIZE == 64
1990 AARCH64_R_STR (TLS_DTPMOD64), /* name */
1991 #else
1992 AARCH64_R_STR (TLS_DTPMOD), /* name */
1993 #endif
1994 FALSE, /* partial_inplace */
1995 0, /* src_mask */
1996 ALL_ONES, /* dst_mask */
1997 FALSE), /* pc_reloffset */
1998
1999 HOWTO (AARCH64_R (TLS_DTPREL), /* type */
2000 0, /* rightshift */
2001 2, /* size (0 = byte, 1 = short, 2 = long) */
2002 64, /* bitsize */
2003 FALSE, /* pc_relative */
2004 0, /* bitpos */
2005 complain_overflow_dont, /* complain_on_overflow */
2006 bfd_elf_generic_reloc, /* special_function */
2007 #if ARCH_SIZE == 64
2008 AARCH64_R_STR (TLS_DTPREL64), /* name */
2009 #else
2010 AARCH64_R_STR (TLS_DTPREL), /* name */
2011 #endif
2012 FALSE, /* partial_inplace */
2013 0, /* src_mask */
2014 ALL_ONES, /* dst_mask */
2015 FALSE), /* pcrel_offset */
2016
2017 HOWTO (AARCH64_R (TLS_TPREL), /* type */
2018 0, /* rightshift */
2019 2, /* size (0 = byte, 1 = short, 2 = long) */
2020 64, /* bitsize */
2021 FALSE, /* pc_relative */
2022 0, /* bitpos */
2023 complain_overflow_dont, /* complain_on_overflow */
2024 bfd_elf_generic_reloc, /* special_function */
2025 #if ARCH_SIZE == 64
2026 AARCH64_R_STR (TLS_TPREL64), /* name */
2027 #else
2028 AARCH64_R_STR (TLS_TPREL), /* name */
2029 #endif
2030 FALSE, /* partial_inplace */
2031 0, /* src_mask */
2032 ALL_ONES, /* dst_mask */
2033 FALSE), /* pcrel_offset */
2034
2035 HOWTO (AARCH64_R (TLSDESC), /* type */
2036 0, /* rightshift */
2037 2, /* size (0 = byte, 1 = short, 2 = long) */
2038 64, /* bitsize */
2039 FALSE, /* pc_relative */
2040 0, /* bitpos */
2041 complain_overflow_dont, /* complain_on_overflow */
2042 bfd_elf_generic_reloc, /* special_function */
2043 AARCH64_R_STR (TLSDESC), /* name */
2044 FALSE, /* partial_inplace */
2045 0, /* src_mask */
2046 ALL_ONES, /* dst_mask */
2047 FALSE), /* pcrel_offset */
2048
2049 HOWTO (AARCH64_R (IRELATIVE), /* type */
2050 0, /* rightshift */
2051 2, /* size (0 = byte, 1 = short, 2 = long) */
2052 64, /* bitsize */
2053 FALSE, /* pc_relative */
2054 0, /* bitpos */
2055 complain_overflow_bitfield, /* complain_on_overflow */
2056 bfd_elf_generic_reloc, /* special_function */
2057 AARCH64_R_STR (IRELATIVE), /* name */
2058 FALSE, /* partial_inplace */
2059 0, /* src_mask */
2060 ALL_ONES, /* dst_mask */
2061 FALSE), /* pcrel_offset */
2062
2063 EMPTY_HOWTO (0),
2064 };
2065
2066 static reloc_howto_type elfNN_aarch64_howto_none =
2067 HOWTO (R_AARCH64_NONE, /* type */
2068 0, /* rightshift */
2069 3, /* size (0 = byte, 1 = short, 2 = long) */
2070 0, /* bitsize */
2071 FALSE, /* pc_relative */
2072 0, /* bitpos */
2073 complain_overflow_dont,/* complain_on_overflow */
2074 bfd_elf_generic_reloc, /* special_function */
2075 "R_AARCH64_NONE", /* name */
2076 FALSE, /* partial_inplace */
2077 0, /* src_mask */
2078 0, /* dst_mask */
2079 FALSE); /* pcrel_offset */
2080
2081 /* Given HOWTO, return the bfd internal relocation enumerator. */
2082
2083 static bfd_reloc_code_real_type
2084 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto)
2085 {
2086 const int size
2087 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table);
2088 const ptrdiff_t offset
2089 = howto - elfNN_aarch64_howto_table;
2090
2091 if (offset > 0 && offset < size - 1)
2092 return BFD_RELOC_AARCH64_RELOC_START + offset;
2093
2094 if (howto == &elfNN_aarch64_howto_none)
2095 return BFD_RELOC_AARCH64_NONE;
2096
2097 return BFD_RELOC_AARCH64_RELOC_START;
2098 }
2099
2100 /* Given R_TYPE, return the bfd internal relocation enumerator. */
2101
2102 static bfd_reloc_code_real_type
2103 elfNN_aarch64_bfd_reloc_from_type (bfd *abfd, unsigned int r_type)
2104 {
2105 static bfd_boolean initialized_p = FALSE;
2106 /* Indexed by R_TYPE, values are offsets in the howto_table. */
2107 static unsigned int offsets[R_AARCH64_end];
2108
2109 if (!initialized_p)
2110 {
2111 unsigned int i;
2112
2113 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2114 if (elfNN_aarch64_howto_table[i].type != 0)
2115 offsets[elfNN_aarch64_howto_table[i].type] = i;
2116
2117 initialized_p = TRUE;
2118 }
2119
2120 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL)
2121 return BFD_RELOC_AARCH64_NONE;
2122
2123 /* PR 17512: file: b371e70a. */
2124 if (r_type >= R_AARCH64_end)
2125 {
2126 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
2127 abfd, r_type);
2128 bfd_set_error (bfd_error_bad_value);
2129 return BFD_RELOC_AARCH64_NONE;
2130 }
2131
2132 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type];
2133 }
2134
2135 struct elf_aarch64_reloc_map
2136 {
2137 bfd_reloc_code_real_type from;
2138 bfd_reloc_code_real_type to;
2139 };
2140
2141 /* Map bfd generic reloc to AArch64-specific reloc. */
2142 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] =
2143 {
2144 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE},
2145
2146 /* Basic data relocations. */
2147 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN},
2148 {BFD_RELOC_64, BFD_RELOC_AARCH64_64},
2149 {BFD_RELOC_32, BFD_RELOC_AARCH64_32},
2150 {BFD_RELOC_16, BFD_RELOC_AARCH64_16},
2151 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL},
2152 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL},
2153 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL},
2154 };
2155
2156 /* Given the bfd internal relocation enumerator in CODE, return the
2157 corresponding howto entry. */
2158
2159 static reloc_howto_type *
2160 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
2161 {
2162 unsigned int i;
2163
2164 /* Convert bfd generic reloc to AArch64-specific reloc. */
2165 if (code < BFD_RELOC_AARCH64_RELOC_START
2166 || code > BFD_RELOC_AARCH64_RELOC_END)
2167 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++)
2168 if (elf_aarch64_reloc_map[i].from == code)
2169 {
2170 code = elf_aarch64_reloc_map[i].to;
2171 break;
2172 }
2173
2174 if (code > BFD_RELOC_AARCH64_RELOC_START
2175 && code < BFD_RELOC_AARCH64_RELOC_END)
2176 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type)
2177 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START];
2178
2179 if (code == BFD_RELOC_AARCH64_NONE)
2180 return &elfNN_aarch64_howto_none;
2181
2182 return NULL;
2183 }
2184
2185 static reloc_howto_type *
2186 elfNN_aarch64_howto_from_type (bfd *abfd, unsigned int r_type)
2187 {
2188 bfd_reloc_code_real_type val;
2189 reloc_howto_type *howto;
2190
2191 #if ARCH_SIZE == 32
2192 if (r_type > 256)
2193 {
2194 bfd_set_error (bfd_error_bad_value);
2195 return NULL;
2196 }
2197 #endif
2198
2199 if (r_type == R_AARCH64_NONE)
2200 return &elfNN_aarch64_howto_none;
2201
2202 val = elfNN_aarch64_bfd_reloc_from_type (abfd, r_type);
2203 howto = elfNN_aarch64_howto_from_bfd_reloc (val);
2204
2205 if (howto != NULL)
2206 return howto;
2207
2208 bfd_set_error (bfd_error_bad_value);
2209 return NULL;
2210 }
2211
2212 static bfd_boolean
2213 elfNN_aarch64_info_to_howto (bfd *abfd, arelent *bfd_reloc,
2214 Elf_Internal_Rela *elf_reloc)
2215 {
2216 unsigned int r_type;
2217
2218 r_type = ELFNN_R_TYPE (elf_reloc->r_info);
2219 bfd_reloc->howto = elfNN_aarch64_howto_from_type (abfd, r_type);
2220
2221 if (bfd_reloc->howto == NULL)
2222 {
2223 /* xgettext:c-format */
2224 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, r_type);
2225 return FALSE;
2226 }
2227 return TRUE;
2228 }
2229
2230 static reloc_howto_type *
2231 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2232 bfd_reloc_code_real_type code)
2233 {
2234 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code);
2235
2236 if (howto != NULL)
2237 return howto;
2238
2239 bfd_set_error (bfd_error_bad_value);
2240 return NULL;
2241 }
2242
2243 static reloc_howto_type *
2244 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2245 const char *r_name)
2246 {
2247 unsigned int i;
2248
2249 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i)
2250 if (elfNN_aarch64_howto_table[i].name != NULL
2251 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0)
2252 return &elfNN_aarch64_howto_table[i];
2253
2254 return NULL;
2255 }
2256
2257 #define TARGET_LITTLE_SYM aarch64_elfNN_le_vec
2258 #define TARGET_LITTLE_NAME "elfNN-littleaarch64"
2259 #define TARGET_BIG_SYM aarch64_elfNN_be_vec
2260 #define TARGET_BIG_NAME "elfNN-bigaarch64"
2261
2262 /* The linker script knows the section names for placement.
2263 The entry_names are used to do simple name mangling on the stubs.
2264 Given a function name, and its type, the stub can be found. The
2265 name can be changed. The only requirement is the %s be present. */
2266 #define STUB_ENTRY_NAME "__%s_veneer"
2267
2268 /* The name of the dynamic interpreter. This is put in the .interp
2269 section. */
2270 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
2271
2272 #define AARCH64_MAX_FWD_BRANCH_OFFSET \
2273 (((1 << 25) - 1) << 2)
2274 #define AARCH64_MAX_BWD_BRANCH_OFFSET \
2275 (-((1 << 25) << 2))
2276
2277 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1)
2278 #define AARCH64_MIN_ADRP_IMM (-(1 << 20))
2279
2280 static int
2281 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place)
2282 {
2283 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12;
2284 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM;
2285 }
2286
2287 static int
2288 aarch64_valid_branch_p (bfd_vma value, bfd_vma place)
2289 {
2290 bfd_signed_vma offset = (bfd_signed_vma) (value - place);
2291 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET
2292 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET);
2293 }
2294
2295 static const uint32_t aarch64_adrp_branch_stub [] =
2296 {
2297 0x90000010, /* adrp ip0, X */
2298 /* R_AARCH64_ADR_HI21_PCREL(X) */
2299 0x91000210, /* add ip0, ip0, :lo12:X */
2300 /* R_AARCH64_ADD_ABS_LO12_NC(X) */
2301 0xd61f0200, /* br ip0 */
2302 };
2303
2304 static const uint32_t aarch64_long_branch_stub[] =
2305 {
2306 #if ARCH_SIZE == 64
2307 0x58000090, /* ldr ip0, 1f */
2308 #else
2309 0x18000090, /* ldr wip0, 1f */
2310 #endif
2311 0x10000011, /* adr ip1, #0 */
2312 0x8b110210, /* add ip0, ip0, ip1 */
2313 0xd61f0200, /* br ip0 */
2314 0x00000000, /* 1: .xword or .word
2315 R_AARCH64_PRELNN(X) + 12
2316 */
2317 0x00000000,
2318 };
2319
2320 static const uint32_t aarch64_erratum_835769_stub[] =
2321 {
2322 0x00000000, /* Placeholder for multiply accumulate. */
2323 0x14000000, /* b <label> */
2324 };
2325
2326 static const uint32_t aarch64_erratum_843419_stub[] =
2327 {
2328 0x00000000, /* Placeholder for LDR instruction. */
2329 0x14000000, /* b <label> */
2330 };
2331
2332 /* Section name for stubs is the associated section name plus this
2333 string. */
2334 #define STUB_SUFFIX ".stub"
2335
2336 enum elf_aarch64_stub_type
2337 {
2338 aarch64_stub_none,
2339 aarch64_stub_adrp_branch,
2340 aarch64_stub_long_branch,
2341 aarch64_stub_erratum_835769_veneer,
2342 aarch64_stub_erratum_843419_veneer,
2343 };
2344
2345 struct elf_aarch64_stub_hash_entry
2346 {
2347 /* Base hash table entry structure. */
2348 struct bfd_hash_entry root;
2349
2350 /* The stub section. */
2351 asection *stub_sec;
2352
2353 /* Offset within stub_sec of the beginning of this stub. */
2354 bfd_vma stub_offset;
2355
2356 /* Given the symbol's value and its section we can determine its final
2357 value when building the stubs (so the stub knows where to jump). */
2358 bfd_vma target_value;
2359 asection *target_section;
2360
2361 enum elf_aarch64_stub_type stub_type;
2362
2363 /* The symbol table entry, if any, that this was derived from. */
2364 struct elf_aarch64_link_hash_entry *h;
2365
2366 /* Destination symbol type */
2367 unsigned char st_type;
2368
2369 /* Where this stub is being called from, or, in the case of combined
2370 stub sections, the first input section in the group. */
2371 asection *id_sec;
2372
2373 /* The name for the local symbol at the start of this stub. The
2374 stub name in the hash table has to be unique; this does not, so
2375 it can be friendlier. */
2376 char *output_name;
2377
2378 /* The instruction which caused this stub to be generated (only valid for
2379 erratum 835769 workaround stubs at present). */
2380 uint32_t veneered_insn;
2381
2382 /* In an erratum 843419 workaround stub, the ADRP instruction offset. */
2383 bfd_vma adrp_offset;
2384 };
2385
2386 /* Used to build a map of a section. This is required for mixed-endian
2387 code/data. */
2388
2389 typedef struct elf_elf_section_map
2390 {
2391 bfd_vma vma;
2392 char type;
2393 }
2394 elf_aarch64_section_map;
2395
2396
2397 typedef struct _aarch64_elf_section_data
2398 {
2399 struct bfd_elf_section_data elf;
2400 unsigned int mapcount;
2401 unsigned int mapsize;
2402 elf_aarch64_section_map *map;
2403 }
2404 _aarch64_elf_section_data;
2405
2406 #define elf_aarch64_section_data(sec) \
2407 ((_aarch64_elf_section_data *) elf_section_data (sec))
2408
2409 /* The size of the thread control block which is defined to be two pointers. */
2410 #define TCB_SIZE (ARCH_SIZE/8)*2
2411
2412 struct elf_aarch64_local_symbol
2413 {
2414 unsigned int got_type;
2415 bfd_signed_vma got_refcount;
2416 bfd_vma got_offset;
2417
2418 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The
2419 offset is from the end of the jump table and reserved entries
2420 within the PLTGOT.
2421
2422 The magic value (bfd_vma) -1 indicates that an offset has not be
2423 allocated. */
2424 bfd_vma tlsdesc_got_jump_table_offset;
2425 };
2426
2427 struct elf_aarch64_obj_tdata
2428 {
2429 struct elf_obj_tdata root;
2430
2431 /* local symbol descriptors */
2432 struct elf_aarch64_local_symbol *locals;
2433
2434 /* Zero to warn when linking objects with incompatible enum sizes. */
2435 int no_enum_size_warning;
2436
2437 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2438 int no_wchar_size_warning;
2439 };
2440
2441 #define elf_aarch64_tdata(bfd) \
2442 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any)
2443
2444 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals)
2445
2446 #define is_aarch64_elf(bfd) \
2447 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2448 && elf_tdata (bfd) != NULL \
2449 && elf_object_id (bfd) == AARCH64_ELF_DATA)
2450
2451 static bfd_boolean
2452 elfNN_aarch64_mkobject (bfd *abfd)
2453 {
2454 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata),
2455 AARCH64_ELF_DATA);
2456 }
2457
2458 #define elf_aarch64_hash_entry(ent) \
2459 ((struct elf_aarch64_link_hash_entry *)(ent))
2460
2461 #define GOT_UNKNOWN 0
2462 #define GOT_NORMAL 1
2463 #define GOT_TLS_GD 2
2464 #define GOT_TLS_IE 4
2465 #define GOT_TLSDESC_GD 8
2466
2467 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD))
2468
2469 /* AArch64 ELF linker hash entry. */
2470 struct elf_aarch64_link_hash_entry
2471 {
2472 struct elf_link_hash_entry root;
2473
2474 /* Track dynamic relocs copied for this symbol. */
2475 struct elf_dyn_relocs *dyn_relocs;
2476
2477 /* Since PLT entries have variable size, we need to record the
2478 index into .got.plt instead of recomputing it from the PLT
2479 offset. */
2480 bfd_signed_vma plt_got_offset;
2481
2482 /* Bit mask representing the type of GOT entry(s) if any required by
2483 this symbol. */
2484 unsigned int got_type;
2485
2486 /* A pointer to the most recently used stub hash entry against this
2487 symbol. */
2488 struct elf_aarch64_stub_hash_entry *stub_cache;
2489
2490 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset
2491 is from the end of the jump table and reserved entries within the PLTGOT.
2492
2493 The magic value (bfd_vma) -1 indicates that an offset has not
2494 be allocated. */
2495 bfd_vma tlsdesc_got_jump_table_offset;
2496 };
2497
2498 static unsigned int
2499 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h,
2500 bfd *abfd,
2501 unsigned long r_symndx)
2502 {
2503 if (h)
2504 return elf_aarch64_hash_entry (h)->got_type;
2505
2506 if (! elf_aarch64_locals (abfd))
2507 return GOT_UNKNOWN;
2508
2509 return elf_aarch64_locals (abfd)[r_symndx].got_type;
2510 }
2511
2512 /* Get the AArch64 elf linker hash table from a link_info structure. */
2513 #define elf_aarch64_hash_table(info) \
2514 ((struct elf_aarch64_link_hash_table *) ((info)->hash))
2515
2516 #define aarch64_stub_hash_lookup(table, string, create, copy) \
2517 ((struct elf_aarch64_stub_hash_entry *) \
2518 bfd_hash_lookup ((table), (string), (create), (copy)))
2519
2520 /* AArch64 ELF linker hash table. */
2521 struct elf_aarch64_link_hash_table
2522 {
2523 /* The main hash table. */
2524 struct elf_link_hash_table root;
2525
2526 /* Nonzero to force PIC branch veneers. */
2527 int pic_veneer;
2528
2529 /* Fix erratum 835769. */
2530 int fix_erratum_835769;
2531
2532 /* Fix erratum 843419. */
2533 int fix_erratum_843419;
2534
2535 /* Enable ADRP->ADR rewrite for erratum 843419 workaround. */
2536 int fix_erratum_843419_adr;
2537
2538 /* Don't apply link-time values for dynamic relocations. */
2539 int no_apply_dynamic_relocs;
2540
2541 /* The number of bytes in the initial entry in the PLT. */
2542 bfd_size_type plt_header_size;
2543
2544 /* The number of bytes in the subsequent PLT etries. */
2545 bfd_size_type plt_entry_size;
2546
2547 /* Small local sym cache. */
2548 struct sym_cache sym_cache;
2549
2550 /* For convenience in allocate_dynrelocs. */
2551 bfd *obfd;
2552
2553 /* The amount of space used by the reserved portion of the sgotplt
2554 section, plus whatever space is used by the jump slots. */
2555 bfd_vma sgotplt_jump_table_size;
2556
2557 /* The stub hash table. */
2558 struct bfd_hash_table stub_hash_table;
2559
2560 /* Linker stub bfd. */
2561 bfd *stub_bfd;
2562
2563 /* Linker call-backs. */
2564 asection *(*add_stub_section) (const char *, asection *);
2565 void (*layout_sections_again) (void);
2566
2567 /* Array to keep track of which stub sections have been created, and
2568 information on stub grouping. */
2569 struct map_stub
2570 {
2571 /* This is the section to which stubs in the group will be
2572 attached. */
2573 asection *link_sec;
2574 /* The stub section. */
2575 asection *stub_sec;
2576 } *stub_group;
2577
2578 /* Assorted information used by elfNN_aarch64_size_stubs. */
2579 unsigned int bfd_count;
2580 unsigned int top_index;
2581 asection **input_list;
2582
2583 /* The offset into splt of the PLT entry for the TLS descriptor
2584 resolver. Special values are 0, if not necessary (or not found
2585 to be necessary yet), and -1 if needed but not determined
2586 yet. */
2587 bfd_vma tlsdesc_plt;
2588
2589 /* The GOT offset for the lazy trampoline. Communicated to the
2590 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1
2591 indicates an offset is not allocated. */
2592 bfd_vma dt_tlsdesc_got;
2593
2594 /* Used by local STT_GNU_IFUNC symbols. */
2595 htab_t loc_hash_table;
2596 void * loc_hash_memory;
2597 };
2598
2599 /* Create an entry in an AArch64 ELF linker hash table. */
2600
2601 static struct bfd_hash_entry *
2602 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry,
2603 struct bfd_hash_table *table,
2604 const char *string)
2605 {
2606 struct elf_aarch64_link_hash_entry *ret =
2607 (struct elf_aarch64_link_hash_entry *) entry;
2608
2609 /* Allocate the structure if it has not already been allocated by a
2610 subclass. */
2611 if (ret == NULL)
2612 ret = bfd_hash_allocate (table,
2613 sizeof (struct elf_aarch64_link_hash_entry));
2614 if (ret == NULL)
2615 return (struct bfd_hash_entry *) ret;
2616
2617 /* Call the allocation method of the superclass. */
2618 ret = ((struct elf_aarch64_link_hash_entry *)
2619 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2620 table, string));
2621 if (ret != NULL)
2622 {
2623 ret->dyn_relocs = NULL;
2624 ret->got_type = GOT_UNKNOWN;
2625 ret->plt_got_offset = (bfd_vma) - 1;
2626 ret->stub_cache = NULL;
2627 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
2628 }
2629
2630 return (struct bfd_hash_entry *) ret;
2631 }
2632
2633 /* Initialize an entry in the stub hash table. */
2634
2635 static struct bfd_hash_entry *
2636 stub_hash_newfunc (struct bfd_hash_entry *entry,
2637 struct bfd_hash_table *table, const char *string)
2638 {
2639 /* Allocate the structure if it has not already been allocated by a
2640 subclass. */
2641 if (entry == NULL)
2642 {
2643 entry = bfd_hash_allocate (table,
2644 sizeof (struct
2645 elf_aarch64_stub_hash_entry));
2646 if (entry == NULL)
2647 return entry;
2648 }
2649
2650 /* Call the allocation method of the superclass. */
2651 entry = bfd_hash_newfunc (entry, table, string);
2652 if (entry != NULL)
2653 {
2654 struct elf_aarch64_stub_hash_entry *eh;
2655
2656 /* Initialize the local fields. */
2657 eh = (struct elf_aarch64_stub_hash_entry *) entry;
2658 eh->adrp_offset = 0;
2659 eh->stub_sec = NULL;
2660 eh->stub_offset = 0;
2661 eh->target_value = 0;
2662 eh->target_section = NULL;
2663 eh->stub_type = aarch64_stub_none;
2664 eh->h = NULL;
2665 eh->id_sec = NULL;
2666 }
2667
2668 return entry;
2669 }
2670
2671 /* Compute a hash of a local hash entry. We use elf_link_hash_entry
2672 for local symbol so that we can handle local STT_GNU_IFUNC symbols
2673 as global symbol. We reuse indx and dynstr_index for local symbol
2674 hash since they aren't used by global symbols in this backend. */
2675
2676 static hashval_t
2677 elfNN_aarch64_local_htab_hash (const void *ptr)
2678 {
2679 struct elf_link_hash_entry *h
2680 = (struct elf_link_hash_entry *) ptr;
2681 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
2682 }
2683
2684 /* Compare local hash entries. */
2685
2686 static int
2687 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2)
2688 {
2689 struct elf_link_hash_entry *h1
2690 = (struct elf_link_hash_entry *) ptr1;
2691 struct elf_link_hash_entry *h2
2692 = (struct elf_link_hash_entry *) ptr2;
2693
2694 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
2695 }
2696
2697 /* Find and/or create a hash entry for local symbol. */
2698
2699 static struct elf_link_hash_entry *
2700 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab,
2701 bfd *abfd, const Elf_Internal_Rela *rel,
2702 bfd_boolean create)
2703 {
2704 struct elf_aarch64_link_hash_entry e, *ret;
2705 asection *sec = abfd->sections;
2706 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
2707 ELFNN_R_SYM (rel->r_info));
2708 void **slot;
2709
2710 e.root.indx = sec->id;
2711 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2712 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
2713 create ? INSERT : NO_INSERT);
2714
2715 if (!slot)
2716 return NULL;
2717
2718 if (*slot)
2719 {
2720 ret = (struct elf_aarch64_link_hash_entry *) *slot;
2721 return &ret->root;
2722 }
2723
2724 ret = (struct elf_aarch64_link_hash_entry *)
2725 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
2726 sizeof (struct elf_aarch64_link_hash_entry));
2727 if (ret)
2728 {
2729 memset (ret, 0, sizeof (*ret));
2730 ret->root.indx = sec->id;
2731 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info);
2732 ret->root.dynindx = -1;
2733 *slot = ret;
2734 }
2735 return &ret->root;
2736 }
2737
2738 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2739
2740 static void
2741 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info,
2742 struct elf_link_hash_entry *dir,
2743 struct elf_link_hash_entry *ind)
2744 {
2745 struct elf_aarch64_link_hash_entry *edir, *eind;
2746
2747 edir = (struct elf_aarch64_link_hash_entry *) dir;
2748 eind = (struct elf_aarch64_link_hash_entry *) ind;
2749
2750 if (eind->dyn_relocs != NULL)
2751 {
2752 if (edir->dyn_relocs != NULL)
2753 {
2754 struct elf_dyn_relocs **pp;
2755 struct elf_dyn_relocs *p;
2756
2757 /* Add reloc counts against the indirect sym to the direct sym
2758 list. Merge any entries against the same section. */
2759 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;)
2760 {
2761 struct elf_dyn_relocs *q;
2762
2763 for (q = edir->dyn_relocs; q != NULL; q = q->next)
2764 if (q->sec == p->sec)
2765 {
2766 q->pc_count += p->pc_count;
2767 q->count += p->count;
2768 *pp = p->next;
2769 break;
2770 }
2771 if (q == NULL)
2772 pp = &p->next;
2773 }
2774 *pp = edir->dyn_relocs;
2775 }
2776
2777 edir->dyn_relocs = eind->dyn_relocs;
2778 eind->dyn_relocs = NULL;
2779 }
2780
2781 if (ind->root.type == bfd_link_hash_indirect)
2782 {
2783 /* Copy over PLT info. */
2784 if (dir->got.refcount <= 0)
2785 {
2786 edir->got_type = eind->got_type;
2787 eind->got_type = GOT_UNKNOWN;
2788 }
2789 }
2790
2791 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2792 }
2793
2794 /* Destroy an AArch64 elf linker hash table. */
2795
2796 static void
2797 elfNN_aarch64_link_hash_table_free (bfd *obfd)
2798 {
2799 struct elf_aarch64_link_hash_table *ret
2800 = (struct elf_aarch64_link_hash_table *) obfd->link.hash;
2801
2802 if (ret->loc_hash_table)
2803 htab_delete (ret->loc_hash_table);
2804 if (ret->loc_hash_memory)
2805 objalloc_free ((struct objalloc *) ret->loc_hash_memory);
2806
2807 bfd_hash_table_free (&ret->stub_hash_table);
2808 _bfd_elf_link_hash_table_free (obfd);
2809 }
2810
2811 /* Create an AArch64 elf linker hash table. */
2812
2813 static struct bfd_link_hash_table *
2814 elfNN_aarch64_link_hash_table_create (bfd *abfd)
2815 {
2816 struct elf_aarch64_link_hash_table *ret;
2817 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table);
2818
2819 ret = bfd_zmalloc (amt);
2820 if (ret == NULL)
2821 return NULL;
2822
2823 if (!_bfd_elf_link_hash_table_init
2824 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc,
2825 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA))
2826 {
2827 free (ret);
2828 return NULL;
2829 }
2830
2831 ret->plt_header_size = PLT_ENTRY_SIZE;
2832 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
2833 ret->obfd = abfd;
2834 ret->dt_tlsdesc_got = (bfd_vma) - 1;
2835
2836 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2837 sizeof (struct elf_aarch64_stub_hash_entry)))
2838 {
2839 _bfd_elf_link_hash_table_free (abfd);
2840 return NULL;
2841 }
2842
2843 ret->loc_hash_table = htab_try_create (1024,
2844 elfNN_aarch64_local_htab_hash,
2845 elfNN_aarch64_local_htab_eq,
2846 NULL);
2847 ret->loc_hash_memory = objalloc_create ();
2848 if (!ret->loc_hash_table || !ret->loc_hash_memory)
2849 {
2850 elfNN_aarch64_link_hash_table_free (abfd);
2851 return NULL;
2852 }
2853 ret->root.root.hash_table_free = elfNN_aarch64_link_hash_table_free;
2854
2855 return &ret->root.root;
2856 }
2857
2858 /* Perform relocation R_TYPE. Returns TRUE upon success, FALSE otherwise. */
2859
2860 static bfd_boolean
2861 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
2862 bfd_vma offset, bfd_vma value)
2863 {
2864 reloc_howto_type *howto;
2865 bfd_vma place;
2866
2867 howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
2868 place = (input_section->output_section->vma + input_section->output_offset
2869 + offset);
2870
2871 r_type = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
2872 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE);
2873 return _bfd_aarch64_elf_put_addend (input_bfd,
2874 input_section->contents + offset, r_type,
2875 howto, value) == bfd_reloc_ok;
2876 }
2877
2878 static enum elf_aarch64_stub_type
2879 aarch64_select_branch_stub (bfd_vma value, bfd_vma place)
2880 {
2881 if (aarch64_valid_for_adrp_p (value, place))
2882 return aarch64_stub_adrp_branch;
2883 return aarch64_stub_long_branch;
2884 }
2885
2886 /* Determine the type of stub needed, if any, for a call. */
2887
2888 static enum elf_aarch64_stub_type
2889 aarch64_type_of_stub (asection *input_sec,
2890 const Elf_Internal_Rela *rel,
2891 asection *sym_sec,
2892 unsigned char st_type,
2893 bfd_vma destination)
2894 {
2895 bfd_vma location;
2896 bfd_signed_vma branch_offset;
2897 unsigned int r_type;
2898 enum elf_aarch64_stub_type stub_type = aarch64_stub_none;
2899
2900 if (st_type != STT_FUNC
2901 && (sym_sec == input_sec))
2902 return stub_type;
2903
2904 /* Determine where the call point is. */
2905 location = (input_sec->output_offset
2906 + input_sec->output_section->vma + rel->r_offset);
2907
2908 branch_offset = (bfd_signed_vma) (destination - location);
2909
2910 r_type = ELFNN_R_TYPE (rel->r_info);
2911
2912 /* We don't want to redirect any old unconditional jump in this way,
2913 only one which is being used for a sibcall, where it is
2914 acceptable for the IP0 and IP1 registers to be clobbered. */
2915 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26))
2916 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET
2917 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET))
2918 {
2919 stub_type = aarch64_stub_long_branch;
2920 }
2921
2922 return stub_type;
2923 }
2924
2925 /* Build a name for an entry in the stub hash table. */
2926
2927 static char *
2928 elfNN_aarch64_stub_name (const asection *input_section,
2929 const asection *sym_sec,
2930 const struct elf_aarch64_link_hash_entry *hash,
2931 const Elf_Internal_Rela *rel)
2932 {
2933 char *stub_name;
2934 bfd_size_type len;
2935
2936 if (hash)
2937 {
2938 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
2939 stub_name = bfd_malloc (len);
2940 if (stub_name != NULL)
2941 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x",
2942 (unsigned int) input_section->id,
2943 hash->root.root.root.string,
2944 rel->r_addend);
2945 }
2946 else
2947 {
2948 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
2949 stub_name = bfd_malloc (len);
2950 if (stub_name != NULL)
2951 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x",
2952 (unsigned int) input_section->id,
2953 (unsigned int) sym_sec->id,
2954 (unsigned int) ELFNN_R_SYM (rel->r_info),
2955 rel->r_addend);
2956 }
2957
2958 return stub_name;
2959 }
2960
2961 /* Return TRUE if symbol H should be hashed in the `.gnu.hash' section. For
2962 executable PLT slots where the executable never takes the address of those
2963 functions, the function symbols are not added to the hash table. */
2964
2965 static bfd_boolean
2966 elf_aarch64_hash_symbol (struct elf_link_hash_entry *h)
2967 {
2968 if (h->plt.offset != (bfd_vma) -1
2969 && !h->def_regular
2970 && !h->pointer_equality_needed)
2971 return FALSE;
2972
2973 return _bfd_elf_hash_symbol (h);
2974 }
2975
2976
2977 /* Look up an entry in the stub hash. Stub entries are cached because
2978 creating the stub name takes a bit of time. */
2979
2980 static struct elf_aarch64_stub_hash_entry *
2981 elfNN_aarch64_get_stub_entry (const asection *input_section,
2982 const asection *sym_sec,
2983 struct elf_link_hash_entry *hash,
2984 const Elf_Internal_Rela *rel,
2985 struct elf_aarch64_link_hash_table *htab)
2986 {
2987 struct elf_aarch64_stub_hash_entry *stub_entry;
2988 struct elf_aarch64_link_hash_entry *h =
2989 (struct elf_aarch64_link_hash_entry *) hash;
2990 const asection *id_sec;
2991
2992 if ((input_section->flags & SEC_CODE) == 0)
2993 return NULL;
2994
2995 /* If this input section is part of a group of sections sharing one
2996 stub section, then use the id of the first section in the group.
2997 Stub names need to include a section id, as there may well be
2998 more than one stub used to reach say, printf, and we need to
2999 distinguish between them. */
3000 id_sec = htab->stub_group[input_section->id].link_sec;
3001
3002 if (h != NULL && h->stub_cache != NULL
3003 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
3004 {
3005 stub_entry = h->stub_cache;
3006 }
3007 else
3008 {
3009 char *stub_name;
3010
3011 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel);
3012 if (stub_name == NULL)
3013 return NULL;
3014
3015 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table,
3016 stub_name, FALSE, FALSE);
3017 if (h != NULL)
3018 h->stub_cache = stub_entry;
3019
3020 free (stub_name);
3021 }
3022
3023 return stub_entry;
3024 }
3025
3026
3027 /* Create a stub section. */
3028
3029 static asection *
3030 _bfd_aarch64_create_stub_section (asection *section,
3031 struct elf_aarch64_link_hash_table *htab)
3032 {
3033 size_t namelen;
3034 bfd_size_type len;
3035 char *s_name;
3036
3037 namelen = strlen (section->name);
3038 len = namelen + sizeof (STUB_SUFFIX);
3039 s_name = bfd_alloc (htab->stub_bfd, len);
3040 if (s_name == NULL)
3041 return NULL;
3042
3043 memcpy (s_name, section->name, namelen);
3044 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3045 return (*htab->add_stub_section) (s_name, section);
3046 }
3047
3048
3049 /* Find or create a stub section for a link section.
3050
3051 Fix or create the stub section used to collect stubs attached to
3052 the specified link section. */
3053
3054 static asection *
3055 _bfd_aarch64_get_stub_for_link_section (asection *link_section,
3056 struct elf_aarch64_link_hash_table *htab)
3057 {
3058 if (htab->stub_group[link_section->id].stub_sec == NULL)
3059 htab->stub_group[link_section->id].stub_sec
3060 = _bfd_aarch64_create_stub_section (link_section, htab);
3061 return htab->stub_group[link_section->id].stub_sec;
3062 }
3063
3064
3065 /* Find or create a stub section in the stub group for an input
3066 section. */
3067
3068 static asection *
3069 _bfd_aarch64_create_or_find_stub_sec (asection *section,
3070 struct elf_aarch64_link_hash_table *htab)
3071 {
3072 asection *link_sec = htab->stub_group[section->id].link_sec;
3073 return _bfd_aarch64_get_stub_for_link_section (link_sec, htab);
3074 }
3075
3076
3077 /* Add a new stub entry in the stub group associated with an input
3078 section to the stub hash. Not all fields of the new stub entry are
3079 initialised. */
3080
3081 static struct elf_aarch64_stub_hash_entry *
3082 _bfd_aarch64_add_stub_entry_in_group (const char *stub_name,
3083 asection *section,
3084 struct elf_aarch64_link_hash_table *htab)
3085 {
3086 asection *link_sec;
3087 asection *stub_sec;
3088 struct elf_aarch64_stub_hash_entry *stub_entry;
3089
3090 link_sec = htab->stub_group[section->id].link_sec;
3091 stub_sec = _bfd_aarch64_create_or_find_stub_sec (section, htab);
3092
3093 /* Enter this entry into the linker stub hash table. */
3094 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3095 TRUE, FALSE);
3096 if (stub_entry == NULL)
3097 {
3098 /* xgettext:c-format */
3099 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3100 section->owner, stub_name);
3101 return NULL;
3102 }
3103
3104 stub_entry->stub_sec = stub_sec;
3105 stub_entry->stub_offset = 0;
3106 stub_entry->id_sec = link_sec;
3107
3108 return stub_entry;
3109 }
3110
3111 /* Add a new stub entry in the final stub section to the stub hash.
3112 Not all fields of the new stub entry are initialised. */
3113
3114 static struct elf_aarch64_stub_hash_entry *
3115 _bfd_aarch64_add_stub_entry_after (const char *stub_name,
3116 asection *link_section,
3117 struct elf_aarch64_link_hash_table *htab)
3118 {
3119 asection *stub_sec;
3120 struct elf_aarch64_stub_hash_entry *stub_entry;
3121
3122 stub_sec = _bfd_aarch64_get_stub_for_link_section (link_section, htab);
3123 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3124 TRUE, FALSE);
3125 if (stub_entry == NULL)
3126 {
3127 _bfd_error_handler (_("cannot create stub entry %s"), stub_name);
3128 return NULL;
3129 }
3130
3131 stub_entry->stub_sec = stub_sec;
3132 stub_entry->stub_offset = 0;
3133 stub_entry->id_sec = link_section;
3134
3135 return stub_entry;
3136 }
3137
3138
3139 static bfd_boolean
3140 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry,
3141 void *in_arg ATTRIBUTE_UNUSED)
3142 {
3143 struct elf_aarch64_stub_hash_entry *stub_entry;
3144 asection *stub_sec;
3145 bfd *stub_bfd;
3146 bfd_byte *loc;
3147 bfd_vma sym_value;
3148 bfd_vma veneered_insn_loc;
3149 bfd_vma veneer_entry_loc;
3150 bfd_signed_vma branch_offset = 0;
3151 unsigned int template_size;
3152 const uint32_t *template;
3153 unsigned int i;
3154
3155 /* Massage our args to the form they really have. */
3156 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3157
3158 stub_sec = stub_entry->stub_sec;
3159
3160 /* Make a note of the offset within the stubs for this entry. */
3161 stub_entry->stub_offset = stub_sec->size;
3162 loc = stub_sec->contents + stub_entry->stub_offset;
3163
3164 stub_bfd = stub_sec->owner;
3165
3166 /* This is the address of the stub destination. */
3167 sym_value = (stub_entry->target_value
3168 + stub_entry->target_section->output_offset
3169 + stub_entry->target_section->output_section->vma);
3170
3171 if (stub_entry->stub_type == aarch64_stub_long_branch)
3172 {
3173 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma
3174 + stub_sec->output_offset);
3175
3176 /* See if we can relax the stub. */
3177 if (aarch64_valid_for_adrp_p (sym_value, place))
3178 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place);
3179 }
3180
3181 switch (stub_entry->stub_type)
3182 {
3183 case aarch64_stub_adrp_branch:
3184 template = aarch64_adrp_branch_stub;
3185 template_size = sizeof (aarch64_adrp_branch_stub);
3186 break;
3187 case aarch64_stub_long_branch:
3188 template = aarch64_long_branch_stub;
3189 template_size = sizeof (aarch64_long_branch_stub);
3190 break;
3191 case aarch64_stub_erratum_835769_veneer:
3192 template = aarch64_erratum_835769_stub;
3193 template_size = sizeof (aarch64_erratum_835769_stub);
3194 break;
3195 case aarch64_stub_erratum_843419_veneer:
3196 template = aarch64_erratum_843419_stub;
3197 template_size = sizeof (aarch64_erratum_843419_stub);
3198 break;
3199 default:
3200 abort ();
3201 }
3202
3203 for (i = 0; i < (template_size / sizeof template[0]); i++)
3204 {
3205 bfd_putl32 (template[i], loc);
3206 loc += 4;
3207 }
3208
3209 template_size = (template_size + 7) & ~7;
3210 stub_sec->size += template_size;
3211
3212 switch (stub_entry->stub_type)
3213 {
3214 case aarch64_stub_adrp_branch:
3215 if (!aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec,
3216 stub_entry->stub_offset, sym_value))
3217 /* The stub would not have been relaxed if the offset was out
3218 of range. */
3219 BFD_FAIL ();
3220
3221 if (!aarch64_relocate (AARCH64_R (ADD_ABS_LO12_NC), stub_bfd, stub_sec,
3222 stub_entry->stub_offset + 4, sym_value))
3223 BFD_FAIL ();
3224 break;
3225
3226 case aarch64_stub_long_branch:
3227 /* We want the value relative to the address 12 bytes back from the
3228 value itself. */
3229 if (!aarch64_relocate (AARCH64_R (PRELNN), stub_bfd, stub_sec,
3230 stub_entry->stub_offset + 16, sym_value + 12))
3231 BFD_FAIL ();
3232 break;
3233
3234 case aarch64_stub_erratum_835769_veneer:
3235 veneered_insn_loc = stub_entry->target_section->output_section->vma
3236 + stub_entry->target_section->output_offset
3237 + stub_entry->target_value;
3238 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
3239 + stub_entry->stub_sec->output_offset
3240 + stub_entry->stub_offset;
3241 branch_offset = veneered_insn_loc - veneer_entry_loc;
3242 branch_offset >>= 2;
3243 branch_offset &= 0x3ffffff;
3244 bfd_putl32 (stub_entry->veneered_insn,
3245 stub_sec->contents + stub_entry->stub_offset);
3246 bfd_putl32 (template[1] | branch_offset,
3247 stub_sec->contents + stub_entry->stub_offset + 4);
3248 break;
3249
3250 case aarch64_stub_erratum_843419_veneer:
3251 if (!aarch64_relocate (AARCH64_R (JUMP26), stub_bfd, stub_sec,
3252 stub_entry->stub_offset + 4, sym_value + 4))
3253 BFD_FAIL ();
3254 break;
3255
3256 default:
3257 abort ();
3258 }
3259
3260 return TRUE;
3261 }
3262
3263 /* As above, but don't actually build the stub. Just bump offset so
3264 we know stub section sizes. */
3265
3266 static bfd_boolean
3267 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry,
3268 void *in_arg ATTRIBUTE_UNUSED)
3269 {
3270 struct elf_aarch64_stub_hash_entry *stub_entry;
3271 int size;
3272
3273 /* Massage our args to the form they really have. */
3274 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
3275
3276 switch (stub_entry->stub_type)
3277 {
3278 case aarch64_stub_adrp_branch:
3279 size = sizeof (aarch64_adrp_branch_stub);
3280 break;
3281 case aarch64_stub_long_branch:
3282 size = sizeof (aarch64_long_branch_stub);
3283 break;
3284 case aarch64_stub_erratum_835769_veneer:
3285 size = sizeof (aarch64_erratum_835769_stub);
3286 break;
3287 case aarch64_stub_erratum_843419_veneer:
3288 size = sizeof (aarch64_erratum_843419_stub);
3289 break;
3290 default:
3291 abort ();
3292 }
3293
3294 size = (size + 7) & ~7;
3295 stub_entry->stub_sec->size += size;
3296 return TRUE;
3297 }
3298
3299 /* External entry points for sizing and building linker stubs. */
3300
3301 /* Set up various things so that we can make a list of input sections
3302 for each output section included in the link. Returns -1 on error,
3303 0 when no stubs will be needed, and 1 on success. */
3304
3305 int
3306 elfNN_aarch64_setup_section_lists (bfd *output_bfd,
3307 struct bfd_link_info *info)
3308 {
3309 bfd *input_bfd;
3310 unsigned int bfd_count;
3311 unsigned int top_id, top_index;
3312 asection *section;
3313 asection **input_list, **list;
3314 bfd_size_type amt;
3315 struct elf_aarch64_link_hash_table *htab =
3316 elf_aarch64_hash_table (info);
3317
3318 if (!is_elf_hash_table (htab))
3319 return 0;
3320
3321 /* Count the number of input BFDs and find the top input section id. */
3322 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3323 input_bfd != NULL; input_bfd = input_bfd->link.next)
3324 {
3325 bfd_count += 1;
3326 for (section = input_bfd->sections;
3327 section != NULL; section = section->next)
3328 {
3329 if (top_id < section->id)
3330 top_id = section->id;
3331 }
3332 }
3333 htab->bfd_count = bfd_count;
3334
3335 amt = sizeof (struct map_stub) * (top_id + 1);
3336 htab->stub_group = bfd_zmalloc (amt);
3337 if (htab->stub_group == NULL)
3338 return -1;
3339
3340 /* We can't use output_bfd->section_count here to find the top output
3341 section index as some sections may have been removed, and
3342 _bfd_strip_section_from_output doesn't renumber the indices. */
3343 for (section = output_bfd->sections, top_index = 0;
3344 section != NULL; section = section->next)
3345 {
3346 if (top_index < section->index)
3347 top_index = section->index;
3348 }
3349
3350 htab->top_index = top_index;
3351 amt = sizeof (asection *) * (top_index + 1);
3352 input_list = bfd_malloc (amt);
3353 htab->input_list = input_list;
3354 if (input_list == NULL)
3355 return -1;
3356
3357 /* For sections we aren't interested in, mark their entries with a
3358 value we can check later. */
3359 list = input_list + top_index;
3360 do
3361 *list = bfd_abs_section_ptr;
3362 while (list-- != input_list);
3363
3364 for (section = output_bfd->sections;
3365 section != NULL; section = section->next)
3366 {
3367 if ((section->flags & SEC_CODE) != 0)
3368 input_list[section->index] = NULL;
3369 }
3370
3371 return 1;
3372 }
3373
3374 /* Used by elfNN_aarch64_next_input_section and group_sections. */
3375 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3376
3377 /* The linker repeatedly calls this function for each input section,
3378 in the order that input sections are linked into output sections.
3379 Build lists of input sections to determine groupings between which
3380 we may insert linker stubs. */
3381
3382 void
3383 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec)
3384 {
3385 struct elf_aarch64_link_hash_table *htab =
3386 elf_aarch64_hash_table (info);
3387
3388 if (isec->output_section->index <= htab->top_index)
3389 {
3390 asection **list = htab->input_list + isec->output_section->index;
3391
3392 if (*list != bfd_abs_section_ptr)
3393 {
3394 /* Steal the link_sec pointer for our list. */
3395 /* This happens to make the list in reverse order,
3396 which is what we want. */
3397 PREV_SEC (isec) = *list;
3398 *list = isec;
3399 }
3400 }
3401 }
3402
3403 /* See whether we can group stub sections together. Grouping stub
3404 sections may result in fewer stubs. More importantly, we need to
3405 put all .init* and .fini* stubs at the beginning of the .init or
3406 .fini output sections respectively, because glibc splits the
3407 _init and _fini functions into multiple parts. Putting a stub in
3408 the middle of a function is not a good idea. */
3409
3410 static void
3411 group_sections (struct elf_aarch64_link_hash_table *htab,
3412 bfd_size_type stub_group_size,
3413 bfd_boolean stubs_always_before_branch)
3414 {
3415 asection **list = htab->input_list + htab->top_index;
3416
3417 do
3418 {
3419 asection *tail = *list;
3420
3421 if (tail == bfd_abs_section_ptr)
3422 continue;
3423
3424 while (tail != NULL)
3425 {
3426 asection *curr;
3427 asection *prev;
3428 bfd_size_type total;
3429
3430 curr = tail;
3431 total = tail->size;
3432 while ((prev = PREV_SEC (curr)) != NULL
3433 && ((total += curr->output_offset - prev->output_offset)
3434 < stub_group_size))
3435 curr = prev;
3436
3437 /* OK, the size from the start of CURR to the end is less
3438 than stub_group_size and thus can be handled by one stub
3439 section. (Or the tail section is itself larger than
3440 stub_group_size, in which case we may be toast.)
3441 We should really be keeping track of the total size of
3442 stubs added here, as stubs contribute to the final output
3443 section size. */
3444 do
3445 {
3446 prev = PREV_SEC (tail);
3447 /* Set up this stub group. */
3448 htab->stub_group[tail->id].link_sec = curr;
3449 }
3450 while (tail != curr && (tail = prev) != NULL);
3451
3452 /* But wait, there's more! Input sections up to stub_group_size
3453 bytes before the stub section can be handled by it too. */
3454 if (!stubs_always_before_branch)
3455 {
3456 total = 0;
3457 while (prev != NULL
3458 && ((total += tail->output_offset - prev->output_offset)
3459 < stub_group_size))
3460 {
3461 tail = prev;
3462 prev = PREV_SEC (tail);
3463 htab->stub_group[tail->id].link_sec = curr;
3464 }
3465 }
3466 tail = prev;
3467 }
3468 }
3469 while (list-- != htab->input_list);
3470
3471 free (htab->input_list);
3472 }
3473
3474 #undef PREV_SEC
3475
3476 #define AARCH64_BITS(x, pos, n) (((x) >> (pos)) & ((1 << (n)) - 1))
3477
3478 #define AARCH64_RT(insn) AARCH64_BITS (insn, 0, 5)
3479 #define AARCH64_RT2(insn) AARCH64_BITS (insn, 10, 5)
3480 #define AARCH64_RA(insn) AARCH64_BITS (insn, 10, 5)
3481 #define AARCH64_RD(insn) AARCH64_BITS (insn, 0, 5)
3482 #define AARCH64_RN(insn) AARCH64_BITS (insn, 5, 5)
3483 #define AARCH64_RM(insn) AARCH64_BITS (insn, 16, 5)
3484
3485 #define AARCH64_MAC(insn) (((insn) & 0xff000000) == 0x9b000000)
3486 #define AARCH64_BIT(insn, n) AARCH64_BITS (insn, n, 1)
3487 #define AARCH64_OP31(insn) AARCH64_BITS (insn, 21, 3)
3488 #define AARCH64_ZR 0x1f
3489
3490 /* All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
3491 LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops. */
3492
3493 #define AARCH64_LD(insn) (AARCH64_BIT (insn, 22) == 1)
3494 #define AARCH64_LDST(insn) (((insn) & 0x0a000000) == 0x08000000)
3495 #define AARCH64_LDST_EX(insn) (((insn) & 0x3f000000) == 0x08000000)
3496 #define AARCH64_LDST_PCREL(insn) (((insn) & 0x3b000000) == 0x18000000)
3497 #define AARCH64_LDST_NAP(insn) (((insn) & 0x3b800000) == 0x28000000)
3498 #define AARCH64_LDSTP_PI(insn) (((insn) & 0x3b800000) == 0x28800000)
3499 #define AARCH64_LDSTP_O(insn) (((insn) & 0x3b800000) == 0x29000000)
3500 #define AARCH64_LDSTP_PRE(insn) (((insn) & 0x3b800000) == 0x29800000)
3501 #define AARCH64_LDST_UI(insn) (((insn) & 0x3b200c00) == 0x38000000)
3502 #define AARCH64_LDST_PIIMM(insn) (((insn) & 0x3b200c00) == 0x38000400)
3503 #define AARCH64_LDST_U(insn) (((insn) & 0x3b200c00) == 0x38000800)
3504 #define AARCH64_LDST_PREIMM(insn) (((insn) & 0x3b200c00) == 0x38000c00)
3505 #define AARCH64_LDST_RO(insn) (((insn) & 0x3b200c00) == 0x38200800)
3506 #define AARCH64_LDST_UIMM(insn) (((insn) & 0x3b000000) == 0x39000000)
3507 #define AARCH64_LDST_SIMD_M(insn) (((insn) & 0xbfbf0000) == 0x0c000000)
3508 #define AARCH64_LDST_SIMD_M_PI(insn) (((insn) & 0xbfa00000) == 0x0c800000)
3509 #define AARCH64_LDST_SIMD_S(insn) (((insn) & 0xbf9f0000) == 0x0d000000)
3510 #define AARCH64_LDST_SIMD_S_PI(insn) (((insn) & 0xbf800000) == 0x0d800000)
3511
3512 /* Classify an INSN if it is indeed a load/store.
3513
3514 Return TRUE if INSN is a LD/ST instruction otherwise return FALSE.
3515
3516 For scalar LD/ST instructions PAIR is FALSE, RT is returned and RT2
3517 is set equal to RT.
3518
3519 For LD/ST pair instructions PAIR is TRUE, RT and RT2 are returned. */
3520
3521 static bfd_boolean
3522 aarch64_mem_op_p (uint32_t insn, unsigned int *rt, unsigned int *rt2,
3523 bfd_boolean *pair, bfd_boolean *load)
3524 {
3525 uint32_t opcode;
3526 unsigned int r;
3527 uint32_t opc = 0;
3528 uint32_t v = 0;
3529 uint32_t opc_v = 0;
3530
3531 /* Bail out quickly if INSN doesn't fall into the load-store
3532 encoding space. */
3533 if (!AARCH64_LDST (insn))
3534 return FALSE;
3535
3536 *pair = FALSE;
3537 *load = FALSE;
3538 if (AARCH64_LDST_EX (insn))
3539 {
3540 *rt = AARCH64_RT (insn);
3541 *rt2 = *rt;
3542 if (AARCH64_BIT (insn, 21) == 1)
3543 {
3544 *pair = TRUE;
3545 *rt2 = AARCH64_RT2 (insn);
3546 }
3547 *load = AARCH64_LD (insn);
3548 return TRUE;
3549 }
3550 else if (AARCH64_LDST_NAP (insn)
3551 || AARCH64_LDSTP_PI (insn)
3552 || AARCH64_LDSTP_O (insn)
3553 || AARCH64_LDSTP_PRE (insn))
3554 {
3555 *pair = TRUE;
3556 *rt = AARCH64_RT (insn);
3557 *rt2 = AARCH64_RT2 (insn);
3558 *load = AARCH64_LD (insn);
3559 return TRUE;
3560 }
3561 else if (AARCH64_LDST_PCREL (insn)
3562 || AARCH64_LDST_UI (insn)
3563 || AARCH64_LDST_PIIMM (insn)
3564 || AARCH64_LDST_U (insn)
3565 || AARCH64_LDST_PREIMM (insn)
3566 || AARCH64_LDST_RO (insn)
3567 || AARCH64_LDST_UIMM (insn))
3568 {
3569 *rt = AARCH64_RT (insn);
3570 *rt2 = *rt;
3571 if (AARCH64_LDST_PCREL (insn))
3572 *load = TRUE;
3573 opc = AARCH64_BITS (insn, 22, 2);
3574 v = AARCH64_BIT (insn, 26);
3575 opc_v = opc | (v << 2);
3576 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
3577 || opc_v == 5 || opc_v == 7);
3578 return TRUE;
3579 }
3580 else if (AARCH64_LDST_SIMD_M (insn)
3581 || AARCH64_LDST_SIMD_M_PI (insn))
3582 {
3583 *rt = AARCH64_RT (insn);
3584 *load = AARCH64_BIT (insn, 22);
3585 opcode = (insn >> 12) & 0xf;
3586 switch (opcode)
3587 {
3588 case 0:
3589 case 2:
3590 *rt2 = *rt + 3;
3591 break;
3592
3593 case 4:
3594 case 6:
3595 *rt2 = *rt + 2;
3596 break;
3597
3598 case 7:
3599 *rt2 = *rt;
3600 break;
3601
3602 case 8:
3603 case 10:
3604 *rt2 = *rt + 1;
3605 break;
3606
3607 default:
3608 return FALSE;
3609 }
3610 return TRUE;
3611 }
3612 else if (AARCH64_LDST_SIMD_S (insn)
3613 || AARCH64_LDST_SIMD_S_PI (insn))
3614 {
3615 *rt = AARCH64_RT (insn);
3616 r = (insn >> 21) & 1;
3617 *load = AARCH64_BIT (insn, 22);
3618 opcode = (insn >> 13) & 0x7;
3619 switch (opcode)
3620 {
3621 case 0:
3622 case 2:
3623 case 4:
3624 *rt2 = *rt + r;
3625 break;
3626
3627 case 1:
3628 case 3:
3629 case 5:
3630 *rt2 = *rt + (r == 0 ? 2 : 3);
3631 break;
3632
3633 case 6:
3634 *rt2 = *rt + r;
3635 break;
3636
3637 case 7:
3638 *rt2 = *rt + (r == 0 ? 2 : 3);
3639 break;
3640
3641 default:
3642 return FALSE;
3643 }
3644 return TRUE;
3645 }
3646
3647 return FALSE;
3648 }
3649
3650 /* Return TRUE if INSN is multiply-accumulate. */
3651
3652 static bfd_boolean
3653 aarch64_mlxl_p (uint32_t insn)
3654 {
3655 uint32_t op31 = AARCH64_OP31 (insn);
3656
3657 if (AARCH64_MAC (insn)
3658 && (op31 == 0 || op31 == 1 || op31 == 5)
3659 /* Exclude MUL instructions which are encoded as a multiple accumulate
3660 with RA = XZR. */
3661 && AARCH64_RA (insn) != AARCH64_ZR)
3662 return TRUE;
3663
3664 return FALSE;
3665 }
3666
3667 /* Some early revisions of the Cortex-A53 have an erratum (835769) whereby
3668 it is possible for a 64-bit multiply-accumulate instruction to generate an
3669 incorrect result. The details are quite complex and hard to
3670 determine statically, since branches in the code may exist in some
3671 circumstances, but all cases end with a memory (load, store, or
3672 prefetch) instruction followed immediately by the multiply-accumulate
3673 operation. We employ a linker patching technique, by moving the potentially
3674 affected multiply-accumulate instruction into a patch region and replacing
3675 the original instruction with a branch to the patch. This function checks
3676 if INSN_1 is the memory operation followed by a multiply-accumulate
3677 operation (INSN_2). Return TRUE if an erratum sequence is found, FALSE
3678 if INSN_1 and INSN_2 are safe. */
3679
3680 static bfd_boolean
3681 aarch64_erratum_sequence (uint32_t insn_1, uint32_t insn_2)
3682 {
3683 uint32_t rt;
3684 uint32_t rt2;
3685 uint32_t rn;
3686 uint32_t rm;
3687 uint32_t ra;
3688 bfd_boolean pair;
3689 bfd_boolean load;
3690
3691 if (aarch64_mlxl_p (insn_2)
3692 && aarch64_mem_op_p (insn_1, &rt, &rt2, &pair, &load))
3693 {
3694 /* Any SIMD memory op is independent of the subsequent MLA
3695 by definition of the erratum. */
3696 if (AARCH64_BIT (insn_1, 26))
3697 return TRUE;
3698
3699 /* If not SIMD, check for integer memory ops and MLA relationship. */
3700 rn = AARCH64_RN (insn_2);
3701 ra = AARCH64_RA (insn_2);
3702 rm = AARCH64_RM (insn_2);
3703
3704 /* If this is a load and there's a true(RAW) dependency, we are safe
3705 and this is not an erratum sequence. */
3706 if (load &&
3707 (rt == rn || rt == rm || rt == ra
3708 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
3709 return FALSE;
3710
3711 /* We conservatively put out stubs for all other cases (including
3712 writebacks). */
3713 return TRUE;
3714 }
3715
3716 return FALSE;
3717 }
3718
3719 /* Used to order a list of mapping symbols by address. */
3720
3721 static int
3722 elf_aarch64_compare_mapping (const void *a, const void *b)
3723 {
3724 const elf_aarch64_section_map *amap = (const elf_aarch64_section_map *) a;
3725 const elf_aarch64_section_map *bmap = (const elf_aarch64_section_map *) b;
3726
3727 if (amap->vma > bmap->vma)
3728 return 1;
3729 else if (amap->vma < bmap->vma)
3730 return -1;
3731 else if (amap->type > bmap->type)
3732 /* Ensure results do not depend on the host qsort for objects with
3733 multiple mapping symbols at the same address by sorting on type
3734 after vma. */
3735 return 1;
3736 else if (amap->type < bmap->type)
3737 return -1;
3738 else
3739 return 0;
3740 }
3741
3742
3743 static char *
3744 _bfd_aarch64_erratum_835769_stub_name (unsigned num_fixes)
3745 {
3746 char *stub_name = (char *) bfd_malloc
3747 (strlen ("__erratum_835769_veneer_") + 16);
3748 if (stub_name != NULL)
3749 sprintf (stub_name,"__erratum_835769_veneer_%d", num_fixes);
3750 return stub_name;
3751 }
3752
3753 /* Scan for Cortex-A53 erratum 835769 sequence.
3754
3755 Return TRUE else FALSE on abnormal termination. */
3756
3757 static bfd_boolean
3758 _bfd_aarch64_erratum_835769_scan (bfd *input_bfd,
3759 struct bfd_link_info *info,
3760 unsigned int *num_fixes_p)
3761 {
3762 asection *section;
3763 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3764 unsigned int num_fixes = *num_fixes_p;
3765
3766 if (htab == NULL)
3767 return TRUE;
3768
3769 for (section = input_bfd->sections;
3770 section != NULL;
3771 section = section->next)
3772 {
3773 bfd_byte *contents = NULL;
3774 struct _aarch64_elf_section_data *sec_data;
3775 unsigned int span;
3776
3777 if (elf_section_type (section) != SHT_PROGBITS
3778 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3779 || (section->flags & SEC_EXCLUDE) != 0
3780 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3781 || (section->output_section == bfd_abs_section_ptr))
3782 continue;
3783
3784 if (elf_section_data (section)->this_hdr.contents != NULL)
3785 contents = elf_section_data (section)->this_hdr.contents;
3786 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3787 return FALSE;
3788
3789 sec_data = elf_aarch64_section_data (section);
3790
3791 qsort (sec_data->map, sec_data->mapcount,
3792 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
3793
3794 for (span = 0; span < sec_data->mapcount; span++)
3795 {
3796 unsigned int span_start = sec_data->map[span].vma;
3797 unsigned int span_end = ((span == sec_data->mapcount - 1)
3798 ? sec_data->map[0].vma + section->size
3799 : sec_data->map[span + 1].vma);
3800 unsigned int i;
3801 char span_type = sec_data->map[span].type;
3802
3803 if (span_type == 'd')
3804 continue;
3805
3806 for (i = span_start; i + 4 < span_end; i += 4)
3807 {
3808 uint32_t insn_1 = bfd_getl32 (contents + i);
3809 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3810
3811 if (aarch64_erratum_sequence (insn_1, insn_2))
3812 {
3813 struct elf_aarch64_stub_hash_entry *stub_entry;
3814 char *stub_name = _bfd_aarch64_erratum_835769_stub_name (num_fixes);
3815 if (! stub_name)
3816 return FALSE;
3817
3818 stub_entry = _bfd_aarch64_add_stub_entry_in_group (stub_name,
3819 section,
3820 htab);
3821 if (! stub_entry)
3822 return FALSE;
3823
3824 stub_entry->stub_type = aarch64_stub_erratum_835769_veneer;
3825 stub_entry->target_section = section;
3826 stub_entry->target_value = i + 4;
3827 stub_entry->veneered_insn = insn_2;
3828 stub_entry->output_name = stub_name;
3829 num_fixes++;
3830 }
3831 }
3832 }
3833 if (elf_section_data (section)->this_hdr.contents == NULL)
3834 free (contents);
3835 }
3836
3837 *num_fixes_p = num_fixes;
3838
3839 return TRUE;
3840 }
3841
3842
3843 /* Test if instruction INSN is ADRP. */
3844
3845 static bfd_boolean
3846 _bfd_aarch64_adrp_p (uint32_t insn)
3847 {
3848 return ((insn & 0x9f000000) == 0x90000000);
3849 }
3850
3851
3852 /* Helper predicate to look for cortex-a53 erratum 843419 sequence 1. */
3853
3854 static bfd_boolean
3855 _bfd_aarch64_erratum_843419_sequence_p (uint32_t insn_1, uint32_t insn_2,
3856 uint32_t insn_3)
3857 {
3858 uint32_t rt;
3859 uint32_t rt2;
3860 bfd_boolean pair;
3861 bfd_boolean load;
3862
3863 return (aarch64_mem_op_p (insn_2, &rt, &rt2, &pair, &load)
3864 && (!pair
3865 || (pair && !load))
3866 && AARCH64_LDST_UIMM (insn_3)
3867 && AARCH64_RN (insn_3) == AARCH64_RD (insn_1));
3868 }
3869
3870
3871 /* Test for the presence of Cortex-A53 erratum 843419 instruction sequence.
3872
3873 Return TRUE if section CONTENTS at offset I contains one of the
3874 erratum 843419 sequences, otherwise return FALSE. If a sequence is
3875 seen set P_VENEER_I to the offset of the final LOAD/STORE
3876 instruction in the sequence.
3877 */
3878
3879 static bfd_boolean
3880 _bfd_aarch64_erratum_843419_p (bfd_byte *contents, bfd_vma vma,
3881 bfd_vma i, bfd_vma span_end,
3882 bfd_vma *p_veneer_i)
3883 {
3884 uint32_t insn_1 = bfd_getl32 (contents + i);
3885
3886 if (!_bfd_aarch64_adrp_p (insn_1))
3887 return FALSE;
3888
3889 if (span_end < i + 12)
3890 return FALSE;
3891
3892 uint32_t insn_2 = bfd_getl32 (contents + i + 4);
3893 uint32_t insn_3 = bfd_getl32 (contents + i + 8);
3894
3895 if ((vma & 0xfff) != 0xff8 && (vma & 0xfff) != 0xffc)
3896 return FALSE;
3897
3898 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_3))
3899 {
3900 *p_veneer_i = i + 8;
3901 return TRUE;
3902 }
3903
3904 if (span_end < i + 16)
3905 return FALSE;
3906
3907 uint32_t insn_4 = bfd_getl32 (contents + i + 12);
3908
3909 if (_bfd_aarch64_erratum_843419_sequence_p (insn_1, insn_2, insn_4))
3910 {
3911 *p_veneer_i = i + 12;
3912 return TRUE;
3913 }
3914
3915 return FALSE;
3916 }
3917
3918
3919 /* Resize all stub sections. */
3920
3921 static void
3922 _bfd_aarch64_resize_stubs (struct elf_aarch64_link_hash_table *htab)
3923 {
3924 asection *section;
3925
3926 /* OK, we've added some stubs. Find out the new size of the
3927 stub sections. */
3928 for (section = htab->stub_bfd->sections;
3929 section != NULL; section = section->next)
3930 {
3931 /* Ignore non-stub sections. */
3932 if (!strstr (section->name, STUB_SUFFIX))
3933 continue;
3934 section->size = 0;
3935 }
3936
3937 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab);
3938
3939 for (section = htab->stub_bfd->sections;
3940 section != NULL; section = section->next)
3941 {
3942 if (!strstr (section->name, STUB_SUFFIX))
3943 continue;
3944
3945 /* Add space for a branch. Add 8 bytes to keep section 8 byte aligned,
3946 as long branch stubs contain a 64-bit address. */
3947 if (section->size)
3948 section->size += 8;
3949
3950 /* Ensure all stub sections have a size which is a multiple of
3951 4096. This is important in order to ensure that the insertion
3952 of stub sections does not in itself move existing code around
3953 in such a way that new errata sequences are created. */
3954 if (htab->fix_erratum_843419)
3955 if (section->size)
3956 section->size = BFD_ALIGN (section->size, 0x1000);
3957 }
3958 }
3959
3960 /* Construct an erratum 843419 workaround stub name. */
3961
3962 static char *
3963 _bfd_aarch64_erratum_843419_stub_name (asection *input_section,
3964 bfd_vma offset)
3965 {
3966 const bfd_size_type len = 8 + 4 + 1 + 8 + 1 + 16 + 1;
3967 char *stub_name = bfd_malloc (len);
3968
3969 if (stub_name != NULL)
3970 snprintf (stub_name, len, "e843419@%04x_%08x_%" BFD_VMA_FMT "x",
3971 input_section->owner->id,
3972 input_section->id,
3973 offset);
3974 return stub_name;
3975 }
3976
3977 /* Build a stub_entry structure describing an 843419 fixup.
3978
3979 The stub_entry constructed is populated with the bit pattern INSN
3980 of the instruction located at OFFSET within input SECTION.
3981
3982 Returns TRUE on success. */
3983
3984 static bfd_boolean
3985 _bfd_aarch64_erratum_843419_fixup (uint32_t insn,
3986 bfd_vma adrp_offset,
3987 bfd_vma ldst_offset,
3988 asection *section,
3989 struct bfd_link_info *info)
3990 {
3991 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
3992 char *stub_name;
3993 struct elf_aarch64_stub_hash_entry *stub_entry;
3994
3995 stub_name = _bfd_aarch64_erratum_843419_stub_name (section, ldst_offset);
3996 if (stub_name == NULL)
3997 return FALSE;
3998 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3999 FALSE, FALSE);
4000 if (stub_entry)
4001 {
4002 free (stub_name);
4003 return TRUE;
4004 }
4005
4006 /* We always place an 843419 workaround veneer in the stub section
4007 attached to the input section in which an erratum sequence has
4008 been found. This ensures that later in the link process (in
4009 elfNN_aarch64_write_section) when we copy the veneered
4010 instruction from the input section into the stub section the
4011 copied instruction will have had any relocations applied to it.
4012 If we placed workaround veneers in any other stub section then we
4013 could not assume that all relocations have been processed on the
4014 corresponding input section at the point we output the stub
4015 section. */
4016
4017 stub_entry = _bfd_aarch64_add_stub_entry_after (stub_name, section, htab);
4018 if (stub_entry == NULL)
4019 {
4020 free (stub_name);
4021 return FALSE;
4022 }
4023
4024 stub_entry->adrp_offset = adrp_offset;
4025 stub_entry->target_value = ldst_offset;
4026 stub_entry->target_section = section;
4027 stub_entry->stub_type = aarch64_stub_erratum_843419_veneer;
4028 stub_entry->veneered_insn = insn;
4029 stub_entry->output_name = stub_name;
4030
4031 return TRUE;
4032 }
4033
4034
4035 /* Scan an input section looking for the signature of erratum 843419.
4036
4037 Scans input SECTION in INPUT_BFD looking for erratum 843419
4038 signatures, for each signature found a stub_entry is created
4039 describing the location of the erratum for subsequent fixup.
4040
4041 Return TRUE on successful scan, FALSE on failure to scan.
4042 */
4043
4044 static bfd_boolean
4045 _bfd_aarch64_erratum_843419_scan (bfd *input_bfd, asection *section,
4046 struct bfd_link_info *info)
4047 {
4048 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4049
4050 if (htab == NULL)
4051 return TRUE;
4052
4053 if (elf_section_type (section) != SHT_PROGBITS
4054 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4055 || (section->flags & SEC_EXCLUDE) != 0
4056 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4057 || (section->output_section == bfd_abs_section_ptr))
4058 return TRUE;
4059
4060 do
4061 {
4062 bfd_byte *contents = NULL;
4063 struct _aarch64_elf_section_data *sec_data;
4064 unsigned int span;
4065
4066 if (elf_section_data (section)->this_hdr.contents != NULL)
4067 contents = elf_section_data (section)->this_hdr.contents;
4068 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4069 return FALSE;
4070
4071 sec_data = elf_aarch64_section_data (section);
4072
4073 qsort (sec_data->map, sec_data->mapcount,
4074 sizeof (elf_aarch64_section_map), elf_aarch64_compare_mapping);
4075
4076 for (span = 0; span < sec_data->mapcount; span++)
4077 {
4078 unsigned int span_start = sec_data->map[span].vma;
4079 unsigned int span_end = ((span == sec_data->mapcount - 1)
4080 ? sec_data->map[0].vma + section->size
4081 : sec_data->map[span + 1].vma);
4082 unsigned int i;
4083 char span_type = sec_data->map[span].type;
4084
4085 if (span_type == 'd')
4086 continue;
4087
4088 for (i = span_start; i + 8 < span_end; i += 4)
4089 {
4090 bfd_vma vma = (section->output_section->vma
4091 + section->output_offset
4092 + i);
4093 bfd_vma veneer_i;
4094
4095 if (_bfd_aarch64_erratum_843419_p
4096 (contents, vma, i, span_end, &veneer_i))
4097 {
4098 uint32_t insn = bfd_getl32 (contents + veneer_i);
4099
4100 if (!_bfd_aarch64_erratum_843419_fixup (insn, i, veneer_i,
4101 section, info))
4102 return FALSE;
4103 }
4104 }
4105 }
4106
4107 if (elf_section_data (section)->this_hdr.contents == NULL)
4108 free (contents);
4109 }
4110 while (0);
4111
4112 return TRUE;
4113 }
4114
4115
4116 /* Determine and set the size of the stub section for a final link.
4117
4118 The basic idea here is to examine all the relocations looking for
4119 PC-relative calls to a target that is unreachable with a "bl"
4120 instruction. */
4121
4122 bfd_boolean
4123 elfNN_aarch64_size_stubs (bfd *output_bfd,
4124 bfd *stub_bfd,
4125 struct bfd_link_info *info,
4126 bfd_signed_vma group_size,
4127 asection * (*add_stub_section) (const char *,
4128 asection *),
4129 void (*layout_sections_again) (void))
4130 {
4131 bfd_size_type stub_group_size;
4132 bfd_boolean stubs_always_before_branch;
4133 bfd_boolean stub_changed = FALSE;
4134 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
4135 unsigned int num_erratum_835769_fixes = 0;
4136
4137 /* Propagate mach to stub bfd, because it may not have been
4138 finalized when we created stub_bfd. */
4139 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4140 bfd_get_mach (output_bfd));
4141
4142 /* Stash our params away. */
4143 htab->stub_bfd = stub_bfd;
4144 htab->add_stub_section = add_stub_section;
4145 htab->layout_sections_again = layout_sections_again;
4146 stubs_always_before_branch = group_size < 0;
4147 if (group_size < 0)
4148 stub_group_size = -group_size;
4149 else
4150 stub_group_size = group_size;
4151
4152 if (stub_group_size == 1)
4153 {
4154 /* Default values. */
4155 /* AArch64 branch range is +-128MB. The value used is 1MB less. */
4156 stub_group_size = 127 * 1024 * 1024;
4157 }
4158
4159 group_sections (htab, stub_group_size, stubs_always_before_branch);
4160
4161 (*htab->layout_sections_again) ();
4162
4163 if (htab->fix_erratum_835769)
4164 {
4165 bfd *input_bfd;
4166
4167 for (input_bfd = info->input_bfds;
4168 input_bfd != NULL; input_bfd = input_bfd->link.next)
4169 if (!_bfd_aarch64_erratum_835769_scan (input_bfd, info,
4170 &num_erratum_835769_fixes))
4171 return FALSE;
4172
4173 _bfd_aarch64_resize_stubs (htab);
4174 (*htab->layout_sections_again) ();
4175 }
4176
4177 if (htab->fix_erratum_843419)
4178 {
4179 bfd *input_bfd;
4180
4181 for (input_bfd = info->input_bfds;
4182 input_bfd != NULL;
4183 input_bfd = input_bfd->link.next)
4184 {
4185 asection *section;
4186
4187 for (section = input_bfd->sections;
4188 section != NULL;
4189 section = section->next)
4190 if (!_bfd_aarch64_erratum_843419_scan (input_bfd, section, info))
4191 return FALSE;
4192 }
4193
4194 _bfd_aarch64_resize_stubs (htab);
4195 (*htab->layout_sections_again) ();
4196 }
4197
4198 while (1)
4199 {
4200 bfd *input_bfd;
4201
4202 for (input_bfd = info->input_bfds;
4203 input_bfd != NULL; input_bfd = input_bfd->link.next)
4204 {
4205 Elf_Internal_Shdr *symtab_hdr;
4206 asection *section;
4207 Elf_Internal_Sym *local_syms = NULL;
4208
4209 /* We'll need the symbol table in a second. */
4210 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4211 if (symtab_hdr->sh_info == 0)
4212 continue;
4213
4214 /* Walk over each section attached to the input bfd. */
4215 for (section = input_bfd->sections;
4216 section != NULL; section = section->next)
4217 {
4218 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4219
4220 /* If there aren't any relocs, then there's nothing more
4221 to do. */
4222 if ((section->flags & SEC_RELOC) == 0
4223 || section->reloc_count == 0
4224 || (section->flags & SEC_CODE) == 0)
4225 continue;
4226
4227 /* If this section is a link-once section that will be
4228 discarded, then don't create any stubs. */
4229 if (section->output_section == NULL
4230 || section->output_section->owner != output_bfd)
4231 continue;
4232
4233 /* Get the relocs. */
4234 internal_relocs
4235 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4236 NULL, info->keep_memory);
4237 if (internal_relocs == NULL)
4238 goto error_ret_free_local;
4239
4240 /* Now examine each relocation. */
4241 irela = internal_relocs;
4242 irelaend = irela + section->reloc_count;
4243 for (; irela < irelaend; irela++)
4244 {
4245 unsigned int r_type, r_indx;
4246 enum elf_aarch64_stub_type stub_type;
4247 struct elf_aarch64_stub_hash_entry *stub_entry;
4248 asection *sym_sec;
4249 bfd_vma sym_value;
4250 bfd_vma destination;
4251 struct elf_aarch64_link_hash_entry *hash;
4252 const char *sym_name;
4253 char *stub_name;
4254 const asection *id_sec;
4255 unsigned char st_type;
4256 bfd_size_type len;
4257
4258 r_type = ELFNN_R_TYPE (irela->r_info);
4259 r_indx = ELFNN_R_SYM (irela->r_info);
4260
4261 if (r_type >= (unsigned int) R_AARCH64_end)
4262 {
4263 bfd_set_error (bfd_error_bad_value);
4264 error_ret_free_internal:
4265 if (elf_section_data (section)->relocs == NULL)
4266 free (internal_relocs);
4267 goto error_ret_free_local;
4268 }
4269
4270 /* Only look for stubs on unconditional branch and
4271 branch and link instructions. */
4272 if (r_type != (unsigned int) AARCH64_R (CALL26)
4273 && r_type != (unsigned int) AARCH64_R (JUMP26))
4274 continue;
4275
4276 /* Now determine the call target, its name, value,
4277 section. */
4278 sym_sec = NULL;
4279 sym_value = 0;
4280 destination = 0;
4281 hash = NULL;
4282 sym_name = NULL;
4283 if (r_indx < symtab_hdr->sh_info)
4284 {
4285 /* It's a local symbol. */
4286 Elf_Internal_Sym *sym;
4287 Elf_Internal_Shdr *hdr;
4288
4289 if (local_syms == NULL)
4290 {
4291 local_syms
4292 = (Elf_Internal_Sym *) symtab_hdr->contents;
4293 if (local_syms == NULL)
4294 local_syms
4295 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4296 symtab_hdr->sh_info, 0,
4297 NULL, NULL, NULL);
4298 if (local_syms == NULL)
4299 goto error_ret_free_internal;
4300 }
4301
4302 sym = local_syms + r_indx;
4303 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4304 sym_sec = hdr->bfd_section;
4305 if (!sym_sec)
4306 /* This is an undefined symbol. It can never
4307 be resolved. */
4308 continue;
4309
4310 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4311 sym_value = sym->st_value;
4312 destination = (sym_value + irela->r_addend
4313 + sym_sec->output_offset
4314 + sym_sec->output_section->vma);
4315 st_type = ELF_ST_TYPE (sym->st_info);
4316 sym_name
4317 = bfd_elf_string_from_elf_section (input_bfd,
4318 symtab_hdr->sh_link,
4319 sym->st_name);
4320 }
4321 else
4322 {
4323 int e_indx;
4324
4325 e_indx = r_indx - symtab_hdr->sh_info;
4326 hash = ((struct elf_aarch64_link_hash_entry *)
4327 elf_sym_hashes (input_bfd)[e_indx]);
4328
4329 while (hash->root.root.type == bfd_link_hash_indirect
4330 || hash->root.root.type == bfd_link_hash_warning)
4331 hash = ((struct elf_aarch64_link_hash_entry *)
4332 hash->root.root.u.i.link);
4333
4334 if (hash->root.root.type == bfd_link_hash_defined
4335 || hash->root.root.type == bfd_link_hash_defweak)
4336 {
4337 struct elf_aarch64_link_hash_table *globals =
4338 elf_aarch64_hash_table (info);
4339 sym_sec = hash->root.root.u.def.section;
4340 sym_value = hash->root.root.u.def.value;
4341 /* For a destination in a shared library,
4342 use the PLT stub as target address to
4343 decide whether a branch stub is
4344 needed. */
4345 if (globals->root.splt != NULL && hash != NULL
4346 && hash->root.plt.offset != (bfd_vma) - 1)
4347 {
4348 sym_sec = globals->root.splt;
4349 sym_value = hash->root.plt.offset;
4350 if (sym_sec->output_section != NULL)
4351 destination = (sym_value
4352 + sym_sec->output_offset
4353 +
4354 sym_sec->output_section->vma);
4355 }
4356 else if (sym_sec->output_section != NULL)
4357 destination = (sym_value + irela->r_addend
4358 + sym_sec->output_offset
4359 + sym_sec->output_section->vma);
4360 }
4361 else if (hash->root.root.type == bfd_link_hash_undefined
4362 || (hash->root.root.type
4363 == bfd_link_hash_undefweak))
4364 {
4365 /* For a shared library, use the PLT stub as
4366 target address to decide whether a long
4367 branch stub is needed.
4368 For absolute code, they cannot be handled. */
4369 struct elf_aarch64_link_hash_table *globals =
4370 elf_aarch64_hash_table (info);
4371
4372 if (globals->root.splt != NULL && hash != NULL
4373 && hash->root.plt.offset != (bfd_vma) - 1)
4374 {
4375 sym_sec = globals->root.splt;
4376 sym_value = hash->root.plt.offset;
4377 if (sym_sec->output_section != NULL)
4378 destination = (sym_value
4379 + sym_sec->output_offset
4380 +
4381 sym_sec->output_section->vma);
4382 }
4383 else
4384 continue;
4385 }
4386 else
4387 {
4388 bfd_set_error (bfd_error_bad_value);
4389 goto error_ret_free_internal;
4390 }
4391 st_type = ELF_ST_TYPE (hash->root.type);
4392 sym_name = hash->root.root.root.string;
4393 }
4394
4395 /* Determine what (if any) linker stub is needed. */
4396 stub_type = aarch64_type_of_stub (section, irela, sym_sec,
4397 st_type, destination);
4398 if (stub_type == aarch64_stub_none)
4399 continue;
4400
4401 /* Support for grouping stub sections. */
4402 id_sec = htab->stub_group[section->id].link_sec;
4403
4404 /* Get the name of this stub. */
4405 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash,
4406 irela);
4407 if (!stub_name)
4408 goto error_ret_free_internal;
4409
4410 stub_entry =
4411 aarch64_stub_hash_lookup (&htab->stub_hash_table,
4412 stub_name, FALSE, FALSE);
4413 if (stub_entry != NULL)
4414 {
4415 /* The proper stub has already been created. */
4416 free (stub_name);
4417 /* Always update this stub's target since it may have
4418 changed after layout. */
4419 stub_entry->target_value = sym_value + irela->r_addend;
4420 continue;
4421 }
4422
4423 stub_entry = _bfd_aarch64_add_stub_entry_in_group
4424 (stub_name, section, htab);
4425 if (stub_entry == NULL)
4426 {
4427 free (stub_name);
4428 goto error_ret_free_internal;
4429 }
4430
4431 stub_entry->target_value = sym_value + irela->r_addend;
4432 stub_entry->target_section = sym_sec;
4433 stub_entry->stub_type = stub_type;
4434 stub_entry->h = hash;
4435 stub_entry->st_type = st_type;
4436
4437 if (sym_name == NULL)
4438 sym_name = "unnamed";
4439 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
4440 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
4441 if (stub_entry->output_name == NULL)
4442 {
4443 free (stub_name);
4444 goto error_ret_free_internal;
4445 }
4446
4447 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
4448 sym_name);
4449
4450 stub_changed = TRUE;
4451 }
4452
4453 /* We're done with the internal relocs, free them. */
4454 if (elf_section_data (section)->relocs == NULL)
4455 free (internal_relocs);
4456 }
4457 }
4458
4459 if (!stub_changed)
4460 break;
4461
4462 _bfd_aarch64_resize_stubs (htab);
4463
4464 /* Ask the linker to do its stuff. */
4465 (*htab->layout_sections_again) ();
4466 stub_changed = FALSE;
4467 }
4468
4469 return TRUE;
4470
4471 error_ret_free_local:
4472 return FALSE;
4473 }
4474
4475 /* Build all the stubs associated with the current output file. The
4476 stubs are kept in a hash table attached to the main linker hash
4477 table. We also set up the .plt entries for statically linked PIC
4478 functions here. This function is called via aarch64_elf_finish in the
4479 linker. */
4480
4481 bfd_boolean
4482 elfNN_aarch64_build_stubs (struct bfd_link_info *info)
4483 {
4484 asection *stub_sec;
4485 struct bfd_hash_table *table;
4486 struct elf_aarch64_link_hash_table *htab;
4487
4488 htab = elf_aarch64_hash_table (info);
4489
4490 for (stub_sec = htab->stub_bfd->sections;
4491 stub_sec != NULL; stub_sec = stub_sec->next)
4492 {
4493 bfd_size_type size;
4494
4495 /* Ignore non-stub sections. */
4496 if (!strstr (stub_sec->name, STUB_SUFFIX))
4497 continue;
4498
4499 /* Allocate memory to hold the linker stubs. */
4500 size = stub_sec->size;
4501 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
4502 if (stub_sec->contents == NULL && size != 0)
4503 return FALSE;
4504 stub_sec->size = 0;
4505
4506 /* Add a branch around the stub section, and a nop, to keep it 8 byte
4507 aligned, as long branch stubs contain a 64-bit address. */
4508 bfd_putl32 (0x14000000 | (size >> 2), stub_sec->contents);
4509 bfd_putl32 (INSN_NOP, stub_sec->contents + 4);
4510 stub_sec->size += 8;
4511 }
4512
4513 /* Build the stubs as directed by the stub hash table. */
4514 table = &htab->stub_hash_table;
4515 bfd_hash_traverse (table, aarch64_build_one_stub, info);
4516
4517 return TRUE;
4518 }
4519
4520
4521 /* Add an entry to the code/data map for section SEC. */
4522
4523 static void
4524 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma)
4525 {
4526 struct _aarch64_elf_section_data *sec_data =
4527 elf_aarch64_section_data (sec);
4528 unsigned int newidx;
4529
4530 if (sec_data->map == NULL)
4531 {
4532 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map));
4533 sec_data->mapcount = 0;
4534 sec_data->mapsize = 1;
4535 }
4536
4537 newidx = sec_data->mapcount++;
4538
4539 if (sec_data->mapcount > sec_data->mapsize)
4540 {
4541 sec_data->mapsize *= 2;
4542 sec_data->map = bfd_realloc_or_free
4543 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map));
4544 }
4545
4546 if (sec_data->map)
4547 {
4548 sec_data->map[newidx].vma = vma;
4549 sec_data->map[newidx].type = type;
4550 }
4551 }
4552
4553
4554 /* Initialise maps of insn/data for input BFDs. */
4555 void
4556 bfd_elfNN_aarch64_init_maps (bfd *abfd)
4557 {
4558 Elf_Internal_Sym *isymbuf;
4559 Elf_Internal_Shdr *hdr;
4560 unsigned int i, localsyms;
4561
4562 /* Make sure that we are dealing with an AArch64 elf binary. */
4563 if (!is_aarch64_elf (abfd))
4564 return;
4565
4566 if ((abfd->flags & DYNAMIC) != 0)
4567 return;
4568
4569 hdr = &elf_symtab_hdr (abfd);
4570 localsyms = hdr->sh_info;
4571
4572 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4573 should contain the number of local symbols, which should come before any
4574 global symbols. Mapping symbols are always local. */
4575 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL);
4576
4577 /* No internal symbols read? Skip this BFD. */
4578 if (isymbuf == NULL)
4579 return;
4580
4581 for (i = 0; i < localsyms; i++)
4582 {
4583 Elf_Internal_Sym *isym = &isymbuf[i];
4584 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4585 const char *name;
4586
4587 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4588 {
4589 name = bfd_elf_string_from_elf_section (abfd,
4590 hdr->sh_link,
4591 isym->st_name);
4592
4593 if (bfd_is_aarch64_special_symbol_name
4594 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP))
4595 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value);
4596 }
4597 }
4598 }
4599
4600 /* Set option values needed during linking. */
4601 void
4602 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd,
4603 struct bfd_link_info *link_info,
4604 int no_enum_warn,
4605 int no_wchar_warn, int pic_veneer,
4606 int fix_erratum_835769,
4607 int fix_erratum_843419,
4608 int no_apply_dynamic_relocs)
4609 {
4610 struct elf_aarch64_link_hash_table *globals;
4611
4612 globals = elf_aarch64_hash_table (link_info);
4613 globals->pic_veneer = pic_veneer;
4614 globals->fix_erratum_835769 = fix_erratum_835769;
4615 globals->fix_erratum_843419 = fix_erratum_843419;
4616 globals->fix_erratum_843419_adr = TRUE;
4617 globals->no_apply_dynamic_relocs = no_apply_dynamic_relocs;
4618
4619 BFD_ASSERT (is_aarch64_elf (output_bfd));
4620 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4621 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
4622 }
4623
4624 static bfd_vma
4625 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h,
4626 struct elf_aarch64_link_hash_table
4627 *globals, struct bfd_link_info *info,
4628 bfd_vma value, bfd *output_bfd,
4629 bfd_boolean *unresolved_reloc_p)
4630 {
4631 bfd_vma off = (bfd_vma) - 1;
4632 asection *basegot = globals->root.sgot;
4633 bfd_boolean dyn = globals->root.dynamic_sections_created;
4634
4635 if (h != NULL)
4636 {
4637 BFD_ASSERT (basegot != NULL);
4638 off = h->got.offset;
4639 BFD_ASSERT (off != (bfd_vma) - 1);
4640 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
4641 || (bfd_link_pic (info)
4642 && SYMBOL_REFERENCES_LOCAL (info, h))
4643 || (ELF_ST_VISIBILITY (h->other)
4644 && h->root.type == bfd_link_hash_undefweak))
4645 {
4646 /* This is actually a static link, or it is a -Bsymbolic link
4647 and the symbol is defined locally. We must initialize this
4648 entry in the global offset table. Since the offset must
4649 always be a multiple of 8 (4 in the case of ILP32), we use
4650 the least significant bit to record whether we have
4651 initialized it already.
4652 When doing a dynamic link, we create a .rel(a).got relocation
4653 entry to initialize the value. This is done in the
4654 finish_dynamic_symbol routine. */
4655 if ((off & 1) != 0)
4656 off &= ~1;
4657 else
4658 {
4659 bfd_put_NN (output_bfd, value, basegot->contents + off);
4660 h->got.offset |= 1;
4661 }
4662 }
4663 else
4664 *unresolved_reloc_p = FALSE;
4665
4666 off = off + basegot->output_section->vma + basegot->output_offset;
4667 }
4668
4669 return off;
4670 }
4671
4672 /* Change R_TYPE to a more efficient access model where possible,
4673 return the new reloc type. */
4674
4675 static bfd_reloc_code_real_type
4676 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type,
4677 struct elf_link_hash_entry *h)
4678 {
4679 bfd_boolean is_local = h == NULL;
4680
4681 switch (r_type)
4682 {
4683 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4684 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4685 return (is_local
4686 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4687 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21);
4688
4689 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4690 return (is_local
4691 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4692 : r_type);
4693
4694 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4695 return (is_local
4696 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1
4697 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4698
4699 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4700 return (is_local
4701 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4702 : BFD_RELOC_AARCH64_NONE);
4703
4704 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4705 return (is_local
4706 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4707 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC);
4708
4709 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4710 return (is_local
4711 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4712 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1);
4713
4714 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
4715 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4716 return (is_local
4717 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC
4718 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC);
4719
4720 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4721 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type;
4722
4723 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
4724 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type;
4725
4726 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4727 return r_type;
4728
4729 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4730 return (is_local
4731 ? BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12
4732 : BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19);
4733
4734 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4735 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4736 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4737 /* Instructions with these relocations will become NOPs. */
4738 return BFD_RELOC_AARCH64_NONE;
4739
4740 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4741 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4742 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4743 return is_local ? BFD_RELOC_AARCH64_NONE : r_type;
4744
4745 #if ARCH_SIZE == 64
4746 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4747 return is_local
4748 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC
4749 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC;
4750
4751 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4752 return is_local
4753 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2
4754 : BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1;
4755 #endif
4756
4757 default:
4758 break;
4759 }
4760
4761 return r_type;
4762 }
4763
4764 static unsigned int
4765 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type)
4766 {
4767 switch (r_type)
4768 {
4769 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
4770 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
4771 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
4772 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
4773 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
4774 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
4775 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
4776 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
4777 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
4778 return GOT_NORMAL;
4779
4780 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
4781 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
4782 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
4783 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
4784 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
4785 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
4786 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
4787 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
4788 return GOT_TLS_GD;
4789
4790 case BFD_RELOC_AARCH64_TLSDESC_ADD:
4791 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
4792 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
4793 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
4794 case BFD_RELOC_AARCH64_TLSDESC_CALL:
4795 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
4796 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
4797 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
4798 case BFD_RELOC_AARCH64_TLSDESC_LDR:
4799 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
4800 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
4801 return GOT_TLSDESC_GD;
4802
4803 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
4804 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
4805 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
4806 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
4807 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
4808 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
4809 return GOT_TLS_IE;
4810
4811 default:
4812 break;
4813 }
4814 return GOT_UNKNOWN;
4815 }
4816
4817 static bfd_boolean
4818 aarch64_can_relax_tls (bfd *input_bfd,
4819 struct bfd_link_info *info,
4820 bfd_reloc_code_real_type r_type,
4821 struct elf_link_hash_entry *h,
4822 unsigned long r_symndx)
4823 {
4824 unsigned int symbol_got_type;
4825 unsigned int reloc_got_type;
4826
4827 if (! IS_AARCH64_TLS_RELAX_RELOC (r_type))
4828 return FALSE;
4829
4830 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx);
4831 reloc_got_type = aarch64_reloc_got_type (r_type);
4832
4833 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type))
4834 return TRUE;
4835
4836 if (!bfd_link_executable (info))
4837 return FALSE;
4838
4839 if (h && h->root.type == bfd_link_hash_undefweak)
4840 return FALSE;
4841
4842 return TRUE;
4843 }
4844
4845 /* Given the relocation code R_TYPE, return the relaxed bfd reloc
4846 enumerator. */
4847
4848 static bfd_reloc_code_real_type
4849 aarch64_tls_transition (bfd *input_bfd,
4850 struct bfd_link_info *info,
4851 unsigned int r_type,
4852 struct elf_link_hash_entry *h,
4853 unsigned long r_symndx)
4854 {
4855 bfd_reloc_code_real_type bfd_r_type
4856 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
4857
4858 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
4859 return bfd_r_type;
4860
4861 return aarch64_tls_transition_without_check (bfd_r_type, h);
4862 }
4863
4864 /* Return the base VMA address which should be subtracted from real addresses
4865 when resolving R_AARCH64_TLS_DTPREL relocation. */
4866
4867 static bfd_vma
4868 dtpoff_base (struct bfd_link_info *info)
4869 {
4870 /* If tls_sec is NULL, we should have signalled an error already. */
4871 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4872 return elf_hash_table (info)->tls_sec->vma;
4873 }
4874
4875 /* Return the base VMA address which should be subtracted from real addresses
4876 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */
4877
4878 static bfd_vma
4879 tpoff_base (struct bfd_link_info *info)
4880 {
4881 struct elf_link_hash_table *htab = elf_hash_table (info);
4882
4883 /* If tls_sec is NULL, we should have signalled an error already. */
4884 BFD_ASSERT (htab->tls_sec != NULL);
4885
4886 bfd_vma base = align_power ((bfd_vma) TCB_SIZE,
4887 htab->tls_sec->alignment_power);
4888 return htab->tls_sec->vma - base;
4889 }
4890
4891 static bfd_vma *
4892 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4893 unsigned long r_symndx)
4894 {
4895 /* Calculate the address of the GOT entry for symbol
4896 referred to in h. */
4897 if (h != NULL)
4898 return &h->got.offset;
4899 else
4900 {
4901 /* local symbol */
4902 struct elf_aarch64_local_symbol *l;
4903
4904 l = elf_aarch64_locals (input_bfd);
4905 return &l[r_symndx].got_offset;
4906 }
4907 }
4908
4909 static void
4910 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4911 unsigned long r_symndx)
4912 {
4913 bfd_vma *p;
4914 p = symbol_got_offset_ref (input_bfd, h, r_symndx);
4915 *p |= 1;
4916 }
4917
4918 static int
4919 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
4920 unsigned long r_symndx)
4921 {
4922 bfd_vma value;
4923 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4924 return value & 1;
4925 }
4926
4927 static bfd_vma
4928 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4929 unsigned long r_symndx)
4930 {
4931 bfd_vma value;
4932 value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
4933 value &= ~1;
4934 return value;
4935 }
4936
4937 static bfd_vma *
4938 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
4939 unsigned long r_symndx)
4940 {
4941 /* Calculate the address of the GOT entry for symbol
4942 referred to in h. */
4943 if (h != NULL)
4944 {
4945 struct elf_aarch64_link_hash_entry *eh;
4946 eh = (struct elf_aarch64_link_hash_entry *) h;
4947 return &eh->tlsdesc_got_jump_table_offset;
4948 }
4949 else
4950 {
4951 /* local symbol */
4952 struct elf_aarch64_local_symbol *l;
4953
4954 l = elf_aarch64_locals (input_bfd);
4955 return &l[r_symndx].tlsdesc_got_jump_table_offset;
4956 }
4957 }
4958
4959 static void
4960 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
4961 unsigned long r_symndx)
4962 {
4963 bfd_vma *p;
4964 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4965 *p |= 1;
4966 }
4967
4968 static int
4969 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd,
4970 struct elf_link_hash_entry *h,
4971 unsigned long r_symndx)
4972 {
4973 bfd_vma value;
4974 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4975 return value & 1;
4976 }
4977
4978 static bfd_vma
4979 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
4980 unsigned long r_symndx)
4981 {
4982 bfd_vma value;
4983 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx);
4984 value &= ~1;
4985 return value;
4986 }
4987
4988 /* Data for make_branch_to_erratum_835769_stub(). */
4989
4990 struct erratum_835769_branch_to_stub_data
4991 {
4992 struct bfd_link_info *info;
4993 asection *output_section;
4994 bfd_byte *contents;
4995 };
4996
4997 /* Helper to insert branches to erratum 835769 stubs in the right
4998 places for a particular section. */
4999
5000 static bfd_boolean
5001 make_branch_to_erratum_835769_stub (struct bfd_hash_entry *gen_entry,
5002 void *in_arg)
5003 {
5004 struct elf_aarch64_stub_hash_entry *stub_entry;
5005 struct erratum_835769_branch_to_stub_data *data;
5006 bfd_byte *contents;
5007 unsigned long branch_insn = 0;
5008 bfd_vma veneered_insn_loc, veneer_entry_loc;
5009 bfd_signed_vma branch_offset;
5010 unsigned int target;
5011 bfd *abfd;
5012
5013 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5014 data = (struct erratum_835769_branch_to_stub_data *) in_arg;
5015
5016 if (stub_entry->target_section != data->output_section
5017 || stub_entry->stub_type != aarch64_stub_erratum_835769_veneer)
5018 return TRUE;
5019
5020 contents = data->contents;
5021 veneered_insn_loc = stub_entry->target_section->output_section->vma
5022 + stub_entry->target_section->output_offset
5023 + stub_entry->target_value;
5024 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5025 + stub_entry->stub_sec->output_offset
5026 + stub_entry->stub_offset;
5027 branch_offset = veneer_entry_loc - veneered_insn_loc;
5028
5029 abfd = stub_entry->target_section->owner;
5030 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5031 _bfd_error_handler
5032 (_("%pB: error: erratum 835769 stub out "
5033 "of range (input file too large)"), abfd);
5034
5035 target = stub_entry->target_value;
5036 branch_insn = 0x14000000;
5037 branch_offset >>= 2;
5038 branch_offset &= 0x3ffffff;
5039 branch_insn |= branch_offset;
5040 bfd_putl32 (branch_insn, &contents[target]);
5041
5042 return TRUE;
5043 }
5044
5045
5046 static bfd_boolean
5047 _bfd_aarch64_erratum_843419_branch_to_stub (struct bfd_hash_entry *gen_entry,
5048 void *in_arg)
5049 {
5050 struct elf_aarch64_stub_hash_entry *stub_entry
5051 = (struct elf_aarch64_stub_hash_entry *) gen_entry;
5052 struct erratum_835769_branch_to_stub_data *data
5053 = (struct erratum_835769_branch_to_stub_data *) in_arg;
5054 struct bfd_link_info *info;
5055 struct elf_aarch64_link_hash_table *htab;
5056 bfd_byte *contents;
5057 asection *section;
5058 bfd *abfd;
5059 bfd_vma place;
5060 uint32_t insn;
5061
5062 info = data->info;
5063 contents = data->contents;
5064 section = data->output_section;
5065
5066 htab = elf_aarch64_hash_table (info);
5067
5068 if (stub_entry->target_section != section
5069 || stub_entry->stub_type != aarch64_stub_erratum_843419_veneer)
5070 return TRUE;
5071
5072 insn = bfd_getl32 (contents + stub_entry->target_value);
5073 bfd_putl32 (insn,
5074 stub_entry->stub_sec->contents + stub_entry->stub_offset);
5075
5076 place = (section->output_section->vma + section->output_offset
5077 + stub_entry->adrp_offset);
5078 insn = bfd_getl32 (contents + stub_entry->adrp_offset);
5079
5080 if ((insn & AARCH64_ADRP_OP_MASK) != AARCH64_ADRP_OP)
5081 abort ();
5082
5083 bfd_signed_vma imm =
5084 (_bfd_aarch64_sign_extend
5085 ((bfd_vma) _bfd_aarch64_decode_adrp_imm (insn) << 12, 33)
5086 - (place & 0xfff));
5087
5088 if (htab->fix_erratum_843419_adr
5089 && (imm >= AARCH64_MIN_ADRP_IMM && imm <= AARCH64_MAX_ADRP_IMM))
5090 {
5091 insn = (_bfd_aarch64_reencode_adr_imm (AARCH64_ADR_OP, imm)
5092 | AARCH64_RT (insn));
5093 bfd_putl32 (insn, contents + stub_entry->adrp_offset);
5094 }
5095 else
5096 {
5097 bfd_vma veneered_insn_loc;
5098 bfd_vma veneer_entry_loc;
5099 bfd_signed_vma branch_offset;
5100 uint32_t branch_insn;
5101
5102 veneered_insn_loc = stub_entry->target_section->output_section->vma
5103 + stub_entry->target_section->output_offset
5104 + stub_entry->target_value;
5105 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
5106 + stub_entry->stub_sec->output_offset
5107 + stub_entry->stub_offset;
5108 branch_offset = veneer_entry_loc - veneered_insn_loc;
5109
5110 abfd = stub_entry->target_section->owner;
5111 if (!aarch64_valid_branch_p (veneer_entry_loc, veneered_insn_loc))
5112 _bfd_error_handler
5113 (_("%pB: error: erratum 843419 stub out "
5114 "of range (input file too large)"), abfd);
5115
5116 branch_insn = 0x14000000;
5117 branch_offset >>= 2;
5118 branch_offset &= 0x3ffffff;
5119 branch_insn |= branch_offset;
5120 bfd_putl32 (branch_insn, contents + stub_entry->target_value);
5121 }
5122 return TRUE;
5123 }
5124
5125
5126 static bfd_boolean
5127 elfNN_aarch64_write_section (bfd *output_bfd ATTRIBUTE_UNUSED,
5128 struct bfd_link_info *link_info,
5129 asection *sec,
5130 bfd_byte *contents)
5131
5132 {
5133 struct elf_aarch64_link_hash_table *globals =
5134 elf_aarch64_hash_table (link_info);
5135
5136 if (globals == NULL)
5137 return FALSE;
5138
5139 /* Fix code to point to erratum 835769 stubs. */
5140 if (globals->fix_erratum_835769)
5141 {
5142 struct erratum_835769_branch_to_stub_data data;
5143
5144 data.info = link_info;
5145 data.output_section = sec;
5146 data.contents = contents;
5147 bfd_hash_traverse (&globals->stub_hash_table,
5148 make_branch_to_erratum_835769_stub, &data);
5149 }
5150
5151 if (globals->fix_erratum_843419)
5152 {
5153 struct erratum_835769_branch_to_stub_data data;
5154
5155 data.info = link_info;
5156 data.output_section = sec;
5157 data.contents = contents;
5158 bfd_hash_traverse (&globals->stub_hash_table,
5159 _bfd_aarch64_erratum_843419_branch_to_stub, &data);
5160 }
5161
5162 return FALSE;
5163 }
5164
5165 /* Return TRUE if RELOC is a relocation against the base of GOT table. */
5166
5167 static bfd_boolean
5168 aarch64_relocation_aginst_gp_p (bfd_reloc_code_real_type reloc)
5169 {
5170 return (reloc == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14
5171 || reloc == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
5172 || reloc == BFD_RELOC_AARCH64_LD64_GOTOFF_LO15
5173 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC
5174 || reloc == BFD_RELOC_AARCH64_MOVW_GOTOFF_G1);
5175 }
5176
5177 /* Perform a relocation as part of a final link. The input relocation type
5178 should be TLS relaxed. */
5179
5180 static bfd_reloc_status_type
5181 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto,
5182 bfd *input_bfd,
5183 bfd *output_bfd,
5184 asection *input_section,
5185 bfd_byte *contents,
5186 Elf_Internal_Rela *rel,
5187 bfd_vma value,
5188 struct bfd_link_info *info,
5189 asection *sym_sec,
5190 struct elf_link_hash_entry *h,
5191 bfd_boolean *unresolved_reloc_p,
5192 bfd_boolean save_addend,
5193 bfd_vma *saved_addend,
5194 Elf_Internal_Sym *sym)
5195 {
5196 Elf_Internal_Shdr *symtab_hdr;
5197 unsigned int r_type = howto->type;
5198 bfd_reloc_code_real_type bfd_r_type
5199 = elfNN_aarch64_bfd_reloc_from_howto (howto);
5200 unsigned long r_symndx;
5201 bfd_byte *hit_data = contents + rel->r_offset;
5202 bfd_vma place, off, got_entry_addr = 0;
5203 bfd_signed_vma signed_addend;
5204 struct elf_aarch64_link_hash_table *globals;
5205 bfd_boolean weak_undef_p;
5206 bfd_boolean relative_reloc;
5207 asection *base_got;
5208 bfd_vma orig_value = value;
5209 bfd_boolean resolved_to_zero;
5210 bfd_boolean abs_symbol_p;
5211
5212 globals = elf_aarch64_hash_table (info);
5213
5214 symtab_hdr = &elf_symtab_hdr (input_bfd);
5215
5216 BFD_ASSERT (is_aarch64_elf (input_bfd));
5217
5218 r_symndx = ELFNN_R_SYM (rel->r_info);
5219
5220 place = input_section->output_section->vma
5221 + input_section->output_offset + rel->r_offset;
5222
5223 /* Get addend, accumulating the addend for consecutive relocs
5224 which refer to the same offset. */
5225 signed_addend = saved_addend ? *saved_addend : 0;
5226 signed_addend += rel->r_addend;
5227
5228 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
5229 : bfd_is_und_section (sym_sec));
5230 abs_symbol_p = h != NULL && bfd_is_abs_symbol (&h->root);
5231
5232
5233 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle
5234 it here if it is defined in a non-shared object. */
5235 if (h != NULL
5236 && h->type == STT_GNU_IFUNC
5237 && h->def_regular)
5238 {
5239 asection *plt;
5240 const char *name;
5241 bfd_vma addend = 0;
5242
5243 if ((input_section->flags & SEC_ALLOC) == 0)
5244 {
5245 /* If this is a SHT_NOTE section without SHF_ALLOC, treat
5246 STT_GNU_IFUNC symbol as STT_FUNC. */
5247 if (elf_section_type (input_section) == SHT_NOTE)
5248 goto skip_ifunc;
5249
5250 /* Dynamic relocs are not propagated for SEC_DEBUGGING
5251 sections because such sections are not SEC_ALLOC and
5252 thus ld.so will not process them. */
5253 if ((input_section->flags & SEC_DEBUGGING) != 0)
5254 return bfd_reloc_ok;
5255
5256 if (h->root.root.string)
5257 name = h->root.root.string;
5258 else
5259 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, NULL);
5260 _bfd_error_handler
5261 /* xgettext:c-format */
5262 (_("%pB(%pA+%#" PRIx64 "): "
5263 "unresolvable %s relocation against symbol `%s'"),
5264 input_bfd, input_section, (uint64_t) rel->r_offset,
5265 howto->name, name);
5266 bfd_set_error (bfd_error_bad_value);
5267 return bfd_reloc_notsupported;
5268 }
5269 else if (h->plt.offset == (bfd_vma) -1)
5270 goto bad_ifunc_reloc;
5271
5272 /* STT_GNU_IFUNC symbol must go through PLT. */
5273 plt = globals->root.splt ? globals->root.splt : globals->root.iplt;
5274 value = (plt->output_section->vma + plt->output_offset + h->plt.offset);
5275
5276 switch (bfd_r_type)
5277 {
5278 default:
5279 bad_ifunc_reloc:
5280 if (h->root.root.string)
5281 name = h->root.root.string;
5282 else
5283 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5284 NULL);
5285 _bfd_error_handler
5286 /* xgettext:c-format */
5287 (_("%pB: relocation %s against STT_GNU_IFUNC "
5288 "symbol `%s' isn't handled by %s"), input_bfd,
5289 howto->name, name, __FUNCTION__);
5290 bfd_set_error (bfd_error_bad_value);
5291 return bfd_reloc_notsupported;
5292
5293 case BFD_RELOC_AARCH64_NN:
5294 if (rel->r_addend != 0)
5295 {
5296 if (h->root.root.string)
5297 name = h->root.root.string;
5298 else
5299 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
5300 sym, NULL);
5301 _bfd_error_handler
5302 /* xgettext:c-format */
5303 (_("%pB: relocation %s against STT_GNU_IFUNC "
5304 "symbol `%s' has non-zero addend: %" PRId64),
5305 input_bfd, howto->name, name, (int64_t) rel->r_addend);
5306 bfd_set_error (bfd_error_bad_value);
5307 return bfd_reloc_notsupported;
5308 }
5309
5310 /* Generate dynamic relocation only when there is a
5311 non-GOT reference in a shared object. */
5312 if (bfd_link_pic (info) && h->non_got_ref)
5313 {
5314 Elf_Internal_Rela outrel;
5315 asection *sreloc;
5316
5317 /* Need a dynamic relocation to get the real function
5318 address. */
5319 outrel.r_offset = _bfd_elf_section_offset (output_bfd,
5320 info,
5321 input_section,
5322 rel->r_offset);
5323 if (outrel.r_offset == (bfd_vma) -1
5324 || outrel.r_offset == (bfd_vma) -2)
5325 abort ();
5326
5327 outrel.r_offset += (input_section->output_section->vma
5328 + input_section->output_offset);
5329
5330 if (h->dynindx == -1
5331 || h->forced_local
5332 || bfd_link_executable (info))
5333 {
5334 /* This symbol is resolved locally. */
5335 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
5336 outrel.r_addend = (h->root.u.def.value
5337 + h->root.u.def.section->output_section->vma
5338 + h->root.u.def.section->output_offset);
5339 }
5340 else
5341 {
5342 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5343 outrel.r_addend = 0;
5344 }
5345
5346 sreloc = globals->root.irelifunc;
5347 elf_append_rela (output_bfd, sreloc, &outrel);
5348
5349 /* If this reloc is against an external symbol, we
5350 do not want to fiddle with the addend. Otherwise,
5351 we need to include the symbol value so that it
5352 becomes an addend for the dynamic reloc. For an
5353 internal symbol, we have updated addend. */
5354 return bfd_reloc_ok;
5355 }
5356 /* FALLTHROUGH */
5357 case BFD_RELOC_AARCH64_CALL26:
5358 case BFD_RELOC_AARCH64_JUMP26:
5359 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5360 signed_addend,
5361 weak_undef_p);
5362 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5363 howto, value);
5364 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5365 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5366 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5367 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5368 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5369 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5370 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5371 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5372 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5373 base_got = globals->root.sgot;
5374 off = h->got.offset;
5375
5376 if (base_got == NULL)
5377 abort ();
5378
5379 if (off == (bfd_vma) -1)
5380 {
5381 bfd_vma plt_index;
5382
5383 /* We can't use h->got.offset here to save state, or
5384 even just remember the offset, as finish_dynamic_symbol
5385 would use that as offset into .got. */
5386
5387 if (globals->root.splt != NULL)
5388 {
5389 plt_index = ((h->plt.offset - globals->plt_header_size) /
5390 globals->plt_entry_size);
5391 off = (plt_index + 3) * GOT_ENTRY_SIZE;
5392 base_got = globals->root.sgotplt;
5393 }
5394 else
5395 {
5396 plt_index = h->plt.offset / globals->plt_entry_size;
5397 off = plt_index * GOT_ENTRY_SIZE;
5398 base_got = globals->root.igotplt;
5399 }
5400
5401 if (h->dynindx == -1
5402 || h->forced_local
5403 || info->symbolic)
5404 {
5405 /* This references the local definition. We must
5406 initialize this entry in the global offset table.
5407 Since the offset must always be a multiple of 8,
5408 we use the least significant bit to record
5409 whether we have initialized it already.
5410
5411 When doing a dynamic link, we create a .rela.got
5412 relocation entry to initialize the value. This
5413 is done in the finish_dynamic_symbol routine. */
5414 if ((off & 1) != 0)
5415 off &= ~1;
5416 else
5417 {
5418 bfd_put_NN (output_bfd, value,
5419 base_got->contents + off);
5420 /* Note that this is harmless as -1 | 1 still is -1. */
5421 h->got.offset |= 1;
5422 }
5423 }
5424 value = (base_got->output_section->vma
5425 + base_got->output_offset + off);
5426 }
5427 else
5428 value = aarch64_calculate_got_entry_vma (h, globals, info,
5429 value, output_bfd,
5430 unresolved_reloc_p);
5431
5432 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5433 addend = (globals->root.sgot->output_section->vma
5434 + globals->root.sgot->output_offset);
5435
5436 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5437 addend, weak_undef_p);
5438 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value);
5439 case BFD_RELOC_AARCH64_ADD_LO12:
5440 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5441 break;
5442 }
5443 }
5444
5445 skip_ifunc:
5446 resolved_to_zero = (h != NULL
5447 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
5448
5449 switch (bfd_r_type)
5450 {
5451 case BFD_RELOC_AARCH64_NONE:
5452 case BFD_RELOC_AARCH64_TLSDESC_ADD:
5453 case BFD_RELOC_AARCH64_TLSDESC_CALL:
5454 case BFD_RELOC_AARCH64_TLSDESC_LDR:
5455 *unresolved_reloc_p = FALSE;
5456 return bfd_reloc_ok;
5457
5458 case BFD_RELOC_AARCH64_NN:
5459
5460 /* When generating a shared object or relocatable executable, these
5461 relocations are copied into the output file to be resolved at
5462 run time. */
5463 if (((bfd_link_pic (info)
5464 || globals->root.is_relocatable_executable)
5465 && (input_section->flags & SEC_ALLOC)
5466 && (h == NULL
5467 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5468 && !resolved_to_zero)
5469 || h->root.type != bfd_link_hash_undefweak))
5470 /* Or we are creating an executable, we may need to keep relocations
5471 for symbols satisfied by a dynamic library if we manage to avoid
5472 copy relocs for the symbol. */
5473 || (ELIMINATE_COPY_RELOCS
5474 && !bfd_link_pic (info)
5475 && h != NULL
5476 && (input_section->flags & SEC_ALLOC)
5477 && h->dynindx != -1
5478 && !h->non_got_ref
5479 && ((h->def_dynamic
5480 && !h->def_regular)
5481 || h->root.type == bfd_link_hash_undefweak
5482 || h->root.type == bfd_link_hash_undefined)))
5483 {
5484 Elf_Internal_Rela outrel;
5485 bfd_byte *loc;
5486 bfd_boolean skip, relocate;
5487 asection *sreloc;
5488
5489 *unresolved_reloc_p = FALSE;
5490
5491 skip = FALSE;
5492 relocate = FALSE;
5493
5494 outrel.r_addend = signed_addend;
5495 outrel.r_offset =
5496 _bfd_elf_section_offset (output_bfd, info, input_section,
5497 rel->r_offset);
5498 if (outrel.r_offset == (bfd_vma) - 1)
5499 skip = TRUE;
5500 else if (outrel.r_offset == (bfd_vma) - 2)
5501 {
5502 skip = TRUE;
5503 relocate = TRUE;
5504 }
5505 else if (abs_symbol_p)
5506 {
5507 /* Local absolute symbol. */
5508 skip = (h->forced_local || (h->dynindx == -1));
5509 relocate = skip;
5510 }
5511
5512 outrel.r_offset += (input_section->output_section->vma
5513 + input_section->output_offset);
5514
5515 if (skip)
5516 memset (&outrel, 0, sizeof outrel);
5517 else if (h != NULL
5518 && h->dynindx != -1
5519 && (!bfd_link_pic (info)
5520 || !(bfd_link_pie (info) || SYMBOLIC_BIND (info, h))
5521 || !h->def_regular))
5522 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
5523 else
5524 {
5525 int symbol;
5526
5527 /* On SVR4-ish systems, the dynamic loader cannot
5528 relocate the text and data segments independently,
5529 so the symbol does not matter. */
5530 symbol = 0;
5531 relocate = globals->no_apply_dynamic_relocs ? FALSE : TRUE;
5532 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE));
5533 outrel.r_addend += value;
5534 }
5535
5536 sreloc = elf_section_data (input_section)->sreloc;
5537 if (sreloc == NULL || sreloc->contents == NULL)
5538 return bfd_reloc_notsupported;
5539
5540 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
5541 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5542
5543 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
5544 {
5545 /* Sanity to check that we have previously allocated
5546 sufficient space in the relocation section for the
5547 number of relocations we actually want to emit. */
5548 abort ();
5549 }
5550
5551 /* If this reloc is against an external symbol, we do not want to
5552 fiddle with the addend. Otherwise, we need to include the symbol
5553 value so that it becomes an addend for the dynamic reloc. */
5554 if (!relocate)
5555 return bfd_reloc_ok;
5556
5557 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5558 contents, rel->r_offset, value,
5559 signed_addend);
5560 }
5561 else
5562 value += signed_addend;
5563 break;
5564
5565 case BFD_RELOC_AARCH64_CALL26:
5566 case BFD_RELOC_AARCH64_JUMP26:
5567 {
5568 asection *splt = globals->root.splt;
5569 bfd_boolean via_plt_p =
5570 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
5571
5572 /* A call to an undefined weak symbol is converted to a jump to
5573 the next instruction unless a PLT entry will be created.
5574 The jump to the next instruction is optimized as a NOP.
5575 Do the same for local undefined symbols. */
5576 if (weak_undef_p && ! via_plt_p)
5577 {
5578 bfd_putl32 (INSN_NOP, hit_data);
5579 return bfd_reloc_ok;
5580 }
5581
5582 /* If the call goes through a PLT entry, make sure to
5583 check distance to the right destination address. */
5584 if (via_plt_p)
5585 value = (splt->output_section->vma
5586 + splt->output_offset + h->plt.offset);
5587
5588 /* Check if a stub has to be inserted because the destination
5589 is too far away. */
5590 struct elf_aarch64_stub_hash_entry *stub_entry = NULL;
5591
5592 /* If the branch destination is directed to plt stub, "value" will be
5593 the final destination, otherwise we should plus signed_addend, it may
5594 contain non-zero value, for example call to local function symbol
5595 which are turned into "sec_sym + sec_off", and sec_off is kept in
5596 signed_addend. */
5597 if (! aarch64_valid_branch_p (via_plt_p ? value : value + signed_addend,
5598 place))
5599 /* The target is out of reach, so redirect the branch to
5600 the local stub for this function. */
5601 stub_entry = elfNN_aarch64_get_stub_entry (input_section, sym_sec, h,
5602 rel, globals);
5603 if (stub_entry != NULL)
5604 {
5605 value = (stub_entry->stub_offset
5606 + stub_entry->stub_sec->output_offset
5607 + stub_entry->stub_sec->output_section->vma);
5608
5609 /* We have redirected the destination to stub entry address,
5610 so ignore any addend record in the original rela entry. */
5611 signed_addend = 0;
5612 }
5613 }
5614 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5615 signed_addend, weak_undef_p);
5616 *unresolved_reloc_p = FALSE;
5617 break;
5618
5619 case BFD_RELOC_AARCH64_16_PCREL:
5620 case BFD_RELOC_AARCH64_32_PCREL:
5621 case BFD_RELOC_AARCH64_64_PCREL:
5622 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
5623 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
5624 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
5625 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
5626 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5627 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5628 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5629 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5630 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5631 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5632 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5633 if (bfd_link_pic (info)
5634 && (input_section->flags & SEC_ALLOC) != 0
5635 && (input_section->flags & SEC_READONLY) != 0
5636 && !SYMBOL_REFERENCES_LOCAL (info, h))
5637 {
5638 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5639
5640 _bfd_error_handler
5641 /* xgettext:c-format */
5642 (_("%pB: relocation %s against symbol `%s' which may bind "
5643 "externally can not be used when making a shared object; "
5644 "recompile with -fPIC"),
5645 input_bfd, elfNN_aarch64_howto_table[howto_index].name,
5646 h->root.root.string);
5647 bfd_set_error (bfd_error_bad_value);
5648 return bfd_reloc_notsupported;
5649 }
5650 /* Fall through. */
5651
5652 case BFD_RELOC_AARCH64_16:
5653 #if ARCH_SIZE == 64
5654 case BFD_RELOC_AARCH64_32:
5655 #endif
5656 case BFD_RELOC_AARCH64_ADD_LO12:
5657 case BFD_RELOC_AARCH64_BRANCH19:
5658 case BFD_RELOC_AARCH64_LDST128_LO12:
5659 case BFD_RELOC_AARCH64_LDST16_LO12:
5660 case BFD_RELOC_AARCH64_LDST32_LO12:
5661 case BFD_RELOC_AARCH64_LDST64_LO12:
5662 case BFD_RELOC_AARCH64_LDST8_LO12:
5663 case BFD_RELOC_AARCH64_MOVW_G0:
5664 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5665 case BFD_RELOC_AARCH64_MOVW_G0_S:
5666 case BFD_RELOC_AARCH64_MOVW_G1:
5667 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5668 case BFD_RELOC_AARCH64_MOVW_G1_S:
5669 case BFD_RELOC_AARCH64_MOVW_G2:
5670 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5671 case BFD_RELOC_AARCH64_MOVW_G2_S:
5672 case BFD_RELOC_AARCH64_MOVW_G3:
5673 case BFD_RELOC_AARCH64_TSTBR14:
5674 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5675 signed_addend, weak_undef_p);
5676 break;
5677
5678 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
5679 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
5680 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
5681 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
5682 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
5683 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
5684 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
5685 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5686 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5687 if (globals->root.sgot == NULL)
5688 BFD_ASSERT (h != NULL);
5689
5690 relative_reloc = FALSE;
5691 if (h != NULL)
5692 {
5693 bfd_vma addend = 0;
5694
5695 /* If a symbol is not dynamic and is not undefined weak, bind it
5696 locally and generate a RELATIVE relocation under PIC mode.
5697
5698 NOTE: one symbol may be referenced by several relocations, we
5699 should only generate one RELATIVE relocation for that symbol.
5700 Therefore, check GOT offset mark first. */
5701 if (h->dynindx == -1
5702 && !h->forced_local
5703 && h->root.type != bfd_link_hash_undefweak
5704 && bfd_link_pic (info)
5705 && !symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5706 relative_reloc = TRUE;
5707
5708 value = aarch64_calculate_got_entry_vma (h, globals, info, value,
5709 output_bfd,
5710 unresolved_reloc_p);
5711 /* Record the GOT entry address which will be used when generating
5712 RELATIVE relocation. */
5713 if (relative_reloc)
5714 got_entry_addr = value;
5715
5716 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5717 addend = (globals->root.sgot->output_section->vma
5718 + globals->root.sgot->output_offset);
5719 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5720 addend, weak_undef_p);
5721 }
5722 else
5723 {
5724 bfd_vma addend = 0;
5725 struct elf_aarch64_local_symbol *locals
5726 = elf_aarch64_locals (input_bfd);
5727
5728 if (locals == NULL)
5729 {
5730 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
5731 _bfd_error_handler
5732 /* xgettext:c-format */
5733 (_("%pB: local symbol descriptor table be NULL when applying "
5734 "relocation %s against local symbol"),
5735 input_bfd, elfNN_aarch64_howto_table[howto_index].name);
5736 abort ();
5737 }
5738
5739 off = symbol_got_offset (input_bfd, h, r_symndx);
5740 base_got = globals->root.sgot;
5741 got_entry_addr = (base_got->output_section->vma
5742 + base_got->output_offset + off);
5743
5744 if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
5745 {
5746 bfd_put_64 (output_bfd, value, base_got->contents + off);
5747
5748 /* For local symbol, we have done absolute relocation in static
5749 linking stage. While for shared library, we need to update the
5750 content of GOT entry according to the shared object's runtime
5751 base address. So, we need to generate a R_AARCH64_RELATIVE reloc
5752 for dynamic linker. */
5753 if (bfd_link_pic (info))
5754 relative_reloc = TRUE;
5755
5756 symbol_got_offset_mark (input_bfd, h, r_symndx);
5757 }
5758
5759 /* Update the relocation value to GOT entry addr as we have transformed
5760 the direct data access into indirect data access through GOT. */
5761 value = got_entry_addr;
5762
5763 if (aarch64_relocation_aginst_gp_p (bfd_r_type))
5764 addend = base_got->output_section->vma + base_got->output_offset;
5765
5766 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5767 addend, weak_undef_p);
5768 }
5769
5770 if (relative_reloc)
5771 {
5772 asection *s;
5773 Elf_Internal_Rela outrel;
5774
5775 s = globals->root.srelgot;
5776 if (s == NULL)
5777 abort ();
5778
5779 outrel.r_offset = got_entry_addr;
5780 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
5781 outrel.r_addend = orig_value;
5782 elf_append_rela (output_bfd, s, &outrel);
5783 }
5784 break;
5785
5786 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
5787 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5788 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
5789 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5790 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
5791 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5792 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5793 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
5794 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
5795 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
5796 if (globals->root.sgot == NULL)
5797 return bfd_reloc_notsupported;
5798
5799 value = (symbol_got_offset (input_bfd, h, r_symndx)
5800 + globals->root.sgot->output_section->vma
5801 + globals->root.sgot->output_offset);
5802
5803 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5804 0, weak_undef_p);
5805 *unresolved_reloc_p = FALSE;
5806 break;
5807
5808 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5809 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5810 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5811 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5812 if (globals->root.sgot == NULL)
5813 return bfd_reloc_notsupported;
5814
5815 value = symbol_got_offset (input_bfd, h, r_symndx);
5816 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5817 0, weak_undef_p);
5818 *unresolved_reloc_p = FALSE;
5819 break;
5820
5821 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
5822 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
5823 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5824 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
5825 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
5826 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
5827 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
5828 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
5829 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
5830 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
5831 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
5832 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5833 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5834 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5835 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5836 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5837 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5838 signed_addend - dtpoff_base (info),
5839 weak_undef_p);
5840 break;
5841
5842 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5843 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
5844 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5845 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
5846 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
5847 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
5848 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
5849 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
5850 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
5851 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
5852 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
5853 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5854 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5855 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5856 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5857 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5858 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5859 signed_addend - tpoff_base (info),
5860 weak_undef_p);
5861 *unresolved_reloc_p = FALSE;
5862 break;
5863
5864 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
5865 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5866 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5867 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
5868 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
5869 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5870 if (globals->root.sgot == NULL)
5871 return bfd_reloc_notsupported;
5872 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5873 + globals->root.sgotplt->output_section->vma
5874 + globals->root.sgotplt->output_offset
5875 + globals->sgotplt_jump_table_size);
5876
5877 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5878 0, weak_undef_p);
5879 *unresolved_reloc_p = FALSE;
5880 break;
5881
5882 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5883 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5884 if (globals->root.sgot == NULL)
5885 return bfd_reloc_notsupported;
5886
5887 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx)
5888 + globals->root.sgotplt->output_section->vma
5889 + globals->root.sgotplt->output_offset
5890 + globals->sgotplt_jump_table_size);
5891
5892 value -= (globals->root.sgot->output_section->vma
5893 + globals->root.sgot->output_offset);
5894
5895 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value,
5896 0, weak_undef_p);
5897 *unresolved_reloc_p = FALSE;
5898 break;
5899
5900 default:
5901 return bfd_reloc_notsupported;
5902 }
5903
5904 if (saved_addend)
5905 *saved_addend = value;
5906
5907 /* Only apply the final relocation in a sequence. */
5908 if (save_addend)
5909 return bfd_reloc_continue;
5910
5911 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type,
5912 howto, value);
5913 }
5914
5915 /* LP64 and ILP32 operates on x- and w-registers respectively.
5916 Next definitions take into account the difference between
5917 corresponding machine codes. R means x-register if the target
5918 arch is LP64, and w-register if the target is ILP32. */
5919
5920 #if ARCH_SIZE == 64
5921 # define add_R0_R0 (0x91000000)
5922 # define add_R0_R0_R1 (0x8b000020)
5923 # define add_R0_R1 (0x91400020)
5924 # define ldr_R0 (0x58000000)
5925 # define ldr_R0_mask(i) (i & 0xffffffe0)
5926 # define ldr_R0_x0 (0xf9400000)
5927 # define ldr_hw_R0 (0xf2a00000)
5928 # define movk_R0 (0xf2800000)
5929 # define movz_R0 (0xd2a00000)
5930 # define movz_hw_R0 (0xd2c00000)
5931 #else /*ARCH_SIZE == 32 */
5932 # define add_R0_R0 (0x11000000)
5933 # define add_R0_R0_R1 (0x0b000020)
5934 # define add_R0_R1 (0x11400020)
5935 # define ldr_R0 (0x18000000)
5936 # define ldr_R0_mask(i) (i & 0xbfffffe0)
5937 # define ldr_R0_x0 (0xb9400000)
5938 # define ldr_hw_R0 (0x72a00000)
5939 # define movk_R0 (0x72800000)
5940 # define movz_R0 (0x52a00000)
5941 # define movz_hw_R0 (0x52c00000)
5942 #endif
5943
5944 /* Handle TLS relaxations. Relaxing is possible for symbols that use
5945 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static
5946 link.
5947
5948 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
5949 is to then call final_link_relocate. Return other values in the
5950 case of error. */
5951
5952 static bfd_reloc_status_type
5953 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals,
5954 bfd *input_bfd, bfd_byte *contents,
5955 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h)
5956 {
5957 bfd_boolean is_local = h == NULL;
5958 unsigned int r_type = ELFNN_R_TYPE (rel->r_info);
5959 unsigned long insn;
5960
5961 BFD_ASSERT (globals && input_bfd && contents && rel);
5962
5963 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
5964 {
5965 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
5966 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
5967 if (is_local)
5968 {
5969 /* GD->LE relaxation:
5970 adrp x0, :tlsgd:var => movz R0, :tprel_g1:var
5971 or
5972 adrp x0, :tlsdesc:var => movz R0, :tprel_g1:var
5973
5974 Where R is x for LP64, and w for ILP32. */
5975 bfd_putl32 (movz_R0, contents + rel->r_offset);
5976 return bfd_reloc_continue;
5977 }
5978 else
5979 {
5980 /* GD->IE relaxation:
5981 adrp x0, :tlsgd:var => adrp x0, :gottprel:var
5982 or
5983 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var
5984 */
5985 return bfd_reloc_continue;
5986 }
5987
5988 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
5989 BFD_ASSERT (0);
5990 break;
5991
5992 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
5993 if (is_local)
5994 {
5995 /* Tiny TLSDESC->LE relaxation:
5996 ldr x1, :tlsdesc:var => movz R0, #:tprel_g1:var
5997 adr x0, :tlsdesc:var => movk R0, #:tprel_g0_nc:var
5998 .tlsdesccall var
5999 blr x1 => nop
6000
6001 Where R is x for LP64, and w for ILP32. */
6002 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6003 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6004
6005 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6006 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6007 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6008
6009 bfd_putl32 (movz_R0, contents + rel->r_offset);
6010 bfd_putl32 (movk_R0, contents + rel->r_offset + 4);
6011 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6012 return bfd_reloc_continue;
6013 }
6014 else
6015 {
6016 /* Tiny TLSDESC->IE relaxation:
6017 ldr x1, :tlsdesc:var => ldr x0, :gottprel:var
6018 adr x0, :tlsdesc:var => nop
6019 .tlsdesccall var
6020 blr x1 => nop
6021 */
6022 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSDESC_ADR_PREL21));
6023 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (TLSDESC_CALL));
6024
6025 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6026 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6027
6028 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6029 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6030 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 8);
6031 return bfd_reloc_continue;
6032 }
6033
6034 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6035 if (is_local)
6036 {
6037 /* Tiny GD->LE relaxation:
6038 adr x0, :tlsgd:var => mrs x1, tpidr_el0
6039 bl __tls_get_addr => add R0, R1, #:tprel_hi12:x, lsl #12
6040 nop => add R0, R0, #:tprel_lo12_nc:x
6041
6042 Where R is x for LP64, and x for Ilp32. */
6043
6044 /* First kill the tls_get_addr reloc on the bl instruction. */
6045 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6046
6047 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 0);
6048 bfd_putl32 (add_R0_R1, contents + rel->r_offset + 4);
6049 bfd_putl32 (add_R0_R0, contents + rel->r_offset + 8);
6050
6051 rel[1].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6052 AARCH64_R (TLSLE_ADD_TPREL_LO12_NC));
6053 rel[1].r_offset = rel->r_offset + 8;
6054
6055 /* Move the current relocation to the second instruction in
6056 the sequence. */
6057 rel->r_offset += 4;
6058 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6059 AARCH64_R (TLSLE_ADD_TPREL_HI12));
6060 return bfd_reloc_continue;
6061 }
6062 else
6063 {
6064 /* Tiny GD->IE relaxation:
6065 adr x0, :tlsgd:var => ldr R0, :gottprel:var
6066 bl __tls_get_addr => mrs x1, tpidr_el0
6067 nop => add R0, R0, R1
6068
6069 Where R is x for LP64, and w for Ilp32. */
6070
6071 /* First kill the tls_get_addr reloc on the bl instruction. */
6072 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6073 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6074
6075 bfd_putl32 (ldr_R0, contents + rel->r_offset);
6076 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6077 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6078 return bfd_reloc_continue;
6079 }
6080
6081 #if ARCH_SIZE == 64
6082 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6083 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (TLSGD_MOVW_G0_NC));
6084 BFD_ASSERT (rel->r_offset + 12 == rel[2].r_offset);
6085 BFD_ASSERT (ELFNN_R_TYPE (rel[2].r_info) == AARCH64_R (CALL26));
6086
6087 if (is_local)
6088 {
6089 /* Large GD->LE relaxation:
6090 movz x0, #:tlsgd_g1:var => movz x0, #:tprel_g2:var, lsl #32
6091 movk x0, #:tlsgd_g0_nc:var => movk x0, #:tprel_g1_nc:var, lsl #16
6092 add x0, gp, x0 => movk x0, #:tprel_g0_nc:var
6093 bl __tls_get_addr => mrs x1, tpidr_el0
6094 nop => add x0, x0, x1
6095 */
6096 rel[2].r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info),
6097 AARCH64_R (TLSLE_MOVW_TPREL_G0_NC));
6098 rel[2].r_offset = rel->r_offset + 8;
6099
6100 bfd_putl32 (movz_hw_R0, contents + rel->r_offset + 0);
6101 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset + 4);
6102 bfd_putl32 (movk_R0, contents + rel->r_offset + 8);
6103 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6104 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6105 }
6106 else
6107 {
6108 /* Large GD->IE relaxation:
6109 movz x0, #:tlsgd_g1:var => movz x0, #:gottprel_g1:var, lsl #16
6110 movk x0, #:tlsgd_g0_nc:var => movk x0, #:gottprel_g0_nc:var
6111 add x0, gp, x0 => ldr x0, [gp, x0]
6112 bl __tls_get_addr => mrs x1, tpidr_el0
6113 nop => add x0, x0, x1
6114 */
6115 rel[2].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6116 bfd_putl32 (0xd2a80000, contents + rel->r_offset + 0);
6117 bfd_putl32 (ldr_R0, contents + rel->r_offset + 8);
6118 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 12);
6119 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 16);
6120 }
6121 return bfd_reloc_continue;
6122
6123 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6124 return bfd_reloc_continue;
6125 #endif
6126
6127 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6128 return bfd_reloc_continue;
6129
6130 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6131 if (is_local)
6132 {
6133 /* GD->LE relaxation:
6134 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var
6135
6136 Where R is x for lp64 mode, and w for ILP32 mode. */
6137 bfd_putl32 (movk_R0, contents + rel->r_offset);
6138 return bfd_reloc_continue;
6139 }
6140 else
6141 {
6142 /* GD->IE relaxation:
6143 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr R0, [x0, #:gottprel_lo12:var]
6144
6145 Where R is x for lp64 mode, and w for ILP32 mode. */
6146 insn = bfd_getl32 (contents + rel->r_offset);
6147 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6148 return bfd_reloc_continue;
6149 }
6150
6151 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6152 if (is_local)
6153 {
6154 /* GD->LE relaxation
6155 add x0, #:tlsgd_lo12:var => movk R0, :tprel_g0_nc:var
6156 bl __tls_get_addr => mrs x1, tpidr_el0
6157 nop => add R0, R1, R0
6158
6159 Where R is x for lp64 mode, and w for ILP32 mode. */
6160
6161 /* First kill the tls_get_addr reloc on the bl instruction. */
6162 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6163 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6164
6165 bfd_putl32 (movk_R0, contents + rel->r_offset);
6166 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4);
6167 bfd_putl32 (add_R0_R0_R1, contents + rel->r_offset + 8);
6168 return bfd_reloc_continue;
6169 }
6170 else
6171 {
6172 /* GD->IE relaxation
6173 ADD x0, #:tlsgd_lo12:var => ldr R0, [x0, #:gottprel_lo12:var]
6174 BL __tls_get_addr => mrs x1, tpidr_el0
6175 R_AARCH64_CALL26
6176 NOP => add R0, R1, R0
6177
6178 Where R is x for lp64 mode, and w for ilp32 mode. */
6179
6180 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6181
6182 /* Remove the relocation on the BL instruction. */
6183 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6184
6185 /* We choose to fixup the BL and NOP instructions using the
6186 offset from the second relocation to allow flexibility in
6187 scheduling instructions between the ADD and BL. */
6188 bfd_putl32 (ldr_R0_x0, contents + rel->r_offset);
6189 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset);
6190 bfd_putl32 (add_R0_R0_R1, contents + rel[1].r_offset + 4);
6191 return bfd_reloc_continue;
6192 }
6193
6194 case BFD_RELOC_AARCH64_TLSDESC_ADD:
6195 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6196 case BFD_RELOC_AARCH64_TLSDESC_CALL:
6197 /* GD->IE/LE relaxation:
6198 add x0, x0, #:tlsdesc_lo12:var => nop
6199 blr xd => nop
6200 */
6201 bfd_putl32 (INSN_NOP, contents + rel->r_offset);
6202 return bfd_reloc_ok;
6203
6204 case BFD_RELOC_AARCH64_TLSDESC_LDR:
6205 if (is_local)
6206 {
6207 /* GD->LE relaxation:
6208 ldr xd, [gp, xn] => movk R0, #:tprel_g0_nc:var
6209
6210 Where R is x for lp64 mode, and w for ILP32 mode. */
6211 bfd_putl32 (movk_R0, contents + rel->r_offset);
6212 return bfd_reloc_continue;
6213 }
6214 else
6215 {
6216 /* GD->IE relaxation:
6217 ldr xd, [gp, xn] => ldr R0, [gp, xn]
6218
6219 Where R is x for lp64 mode, and w for ILP32 mode. */
6220 insn = bfd_getl32 (contents + rel->r_offset);
6221 bfd_putl32 (ldr_R0_mask (insn), contents + rel->r_offset);
6222 return bfd_reloc_ok;
6223 }
6224
6225 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6226 /* GD->LE relaxation:
6227 movk xd, #:tlsdesc_off_g0_nc:var => movk R0, #:tprel_g1_nc:var, lsl #16
6228 GD->IE relaxation:
6229 movk xd, #:tlsdesc_off_g0_nc:var => movk Rd, #:gottprel_g0_nc:var
6230
6231 Where R is x for lp64 mode, and w for ILP32 mode. */
6232 if (is_local)
6233 bfd_putl32 (ldr_hw_R0, contents + rel->r_offset);
6234 return bfd_reloc_continue;
6235
6236 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6237 if (is_local)
6238 {
6239 /* GD->LE relaxation:
6240 movz xd, #:tlsdesc_off_g1:var => movz R0, #:tprel_g2:var, lsl #32
6241
6242 Where R is x for lp64 mode, and w for ILP32 mode. */
6243 bfd_putl32 (movz_hw_R0, contents + rel->r_offset);
6244 return bfd_reloc_continue;
6245 }
6246 else
6247 {
6248 /* GD->IE relaxation:
6249 movz xd, #:tlsdesc_off_g1:var => movz Rd, #:gottprel_g1:var, lsl #16
6250
6251 Where R is x for lp64 mode, and w for ILP32 mode. */
6252 insn = bfd_getl32 (contents + rel->r_offset);
6253 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6254 return bfd_reloc_continue;
6255 }
6256
6257 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6258 /* IE->LE relaxation:
6259 adrp xd, :gottprel:var => movz Rd, :tprel_g1:var
6260
6261 Where R is x for lp64 mode, and w for ILP32 mode. */
6262 if (is_local)
6263 {
6264 insn = bfd_getl32 (contents + rel->r_offset);
6265 bfd_putl32 (movz_R0 | (insn & 0x1f), contents + rel->r_offset);
6266 }
6267 return bfd_reloc_continue;
6268
6269 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6270 /* IE->LE relaxation:
6271 ldr xd, [xm, #:gottprel_lo12:var] => movk Rd, :tprel_g0_nc:var
6272
6273 Where R is x for lp64 mode, and w for ILP32 mode. */
6274 if (is_local)
6275 {
6276 insn = bfd_getl32 (contents + rel->r_offset);
6277 bfd_putl32 (movk_R0 | (insn & 0x1f), contents + rel->r_offset);
6278 }
6279 return bfd_reloc_continue;
6280
6281 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6282 /* LD->LE relaxation (tiny):
6283 adr x0, :tlsldm:x => mrs x0, tpidr_el0
6284 bl __tls_get_addr => add R0, R0, TCB_SIZE
6285
6286 Where R is x for lp64 mode, and w for ilp32 mode. */
6287 if (is_local)
6288 {
6289 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6290 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6291 /* No need of CALL26 relocation for tls_get_addr. */
6292 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6293 bfd_putl32 (0xd53bd040, contents + rel->r_offset + 0);
6294 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6295 contents + rel->r_offset + 4);
6296 return bfd_reloc_ok;
6297 }
6298 return bfd_reloc_continue;
6299
6300 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6301 /* LD->LE relaxation (small):
6302 adrp x0, :tlsldm:x => mrs x0, tpidr_el0
6303 */
6304 if (is_local)
6305 {
6306 bfd_putl32 (0xd53bd040, contents + rel->r_offset);
6307 return bfd_reloc_ok;
6308 }
6309 return bfd_reloc_continue;
6310
6311 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6312 /* LD->LE relaxation (small):
6313 add x0, #:tlsldm_lo12:x => add R0, R0, TCB_SIZE
6314 bl __tls_get_addr => nop
6315
6316 Where R is x for lp64 mode, and w for ilp32 mode. */
6317 if (is_local)
6318 {
6319 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset);
6320 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26));
6321 /* No need of CALL26 relocation for tls_get_addr. */
6322 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE);
6323 bfd_putl32 (add_R0_R0 | (TCB_SIZE << 10),
6324 contents + rel->r_offset + 0);
6325 bfd_putl32 (INSN_NOP, contents + rel->r_offset + 4);
6326 return bfd_reloc_ok;
6327 }
6328 return bfd_reloc_continue;
6329
6330 default:
6331 return bfd_reloc_continue;
6332 }
6333
6334 return bfd_reloc_ok;
6335 }
6336
6337 /* Relocate an AArch64 ELF section. */
6338
6339 static bfd_boolean
6340 elfNN_aarch64_relocate_section (bfd *output_bfd,
6341 struct bfd_link_info *info,
6342 bfd *input_bfd,
6343 asection *input_section,
6344 bfd_byte *contents,
6345 Elf_Internal_Rela *relocs,
6346 Elf_Internal_Sym *local_syms,
6347 asection **local_sections)
6348 {
6349 Elf_Internal_Shdr *symtab_hdr;
6350 struct elf_link_hash_entry **sym_hashes;
6351 Elf_Internal_Rela *rel;
6352 Elf_Internal_Rela *relend;
6353 const char *name;
6354 struct elf_aarch64_link_hash_table *globals;
6355 bfd_boolean save_addend = FALSE;
6356 bfd_vma addend = 0;
6357
6358 globals = elf_aarch64_hash_table (info);
6359
6360 symtab_hdr = &elf_symtab_hdr (input_bfd);
6361 sym_hashes = elf_sym_hashes (input_bfd);
6362
6363 rel = relocs;
6364 relend = relocs + input_section->reloc_count;
6365 for (; rel < relend; rel++)
6366 {
6367 unsigned int r_type;
6368 bfd_reloc_code_real_type bfd_r_type;
6369 bfd_reloc_code_real_type relaxed_bfd_r_type;
6370 reloc_howto_type *howto;
6371 unsigned long r_symndx;
6372 Elf_Internal_Sym *sym;
6373 asection *sec;
6374 struct elf_link_hash_entry *h;
6375 bfd_vma relocation;
6376 bfd_reloc_status_type r;
6377 arelent bfd_reloc;
6378 char sym_type;
6379 bfd_boolean unresolved_reloc = FALSE;
6380 char *error_message = NULL;
6381
6382 r_symndx = ELFNN_R_SYM (rel->r_info);
6383 r_type = ELFNN_R_TYPE (rel->r_info);
6384
6385 bfd_reloc.howto = elfNN_aarch64_howto_from_type (input_bfd, r_type);
6386 howto = bfd_reloc.howto;
6387
6388 if (howto == NULL)
6389 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
6390
6391 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto);
6392
6393 h = NULL;
6394 sym = NULL;
6395 sec = NULL;
6396
6397 if (r_symndx < symtab_hdr->sh_info)
6398 {
6399 sym = local_syms + r_symndx;
6400 sym_type = ELFNN_ST_TYPE (sym->st_info);
6401 sec = local_sections[r_symndx];
6402
6403 /* An object file might have a reference to a local
6404 undefined symbol. This is a daft object file, but we
6405 should at least do something about it. */
6406 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL
6407 && bfd_is_und_section (sec)
6408 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
6409 (*info->callbacks->undefined_symbol)
6410 (info, bfd_elf_string_from_elf_section
6411 (input_bfd, symtab_hdr->sh_link, sym->st_name),
6412 input_bfd, input_section, rel->r_offset, TRUE);
6413
6414 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6415
6416 /* Relocate against local STT_GNU_IFUNC symbol. */
6417 if (!bfd_link_relocatable (info)
6418 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
6419 {
6420 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd,
6421 rel, FALSE);
6422 if (h == NULL)
6423 abort ();
6424
6425 /* Set STT_GNU_IFUNC symbol value. */
6426 h->root.u.def.value = sym->st_value;
6427 h->root.u.def.section = sec;
6428 }
6429 }
6430 else
6431 {
6432 bfd_boolean warned, ignored;
6433
6434 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6435 r_symndx, symtab_hdr, sym_hashes,
6436 h, sec, relocation,
6437 unresolved_reloc, warned, ignored);
6438
6439 sym_type = h->type;
6440 }
6441
6442 if (sec != NULL && discarded_section (sec))
6443 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
6444 rel, 1, relend, howto, 0, contents);
6445
6446 if (bfd_link_relocatable (info))
6447 continue;
6448
6449 if (h != NULL)
6450 name = h->root.root.string;
6451 else
6452 {
6453 name = (bfd_elf_string_from_elf_section
6454 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6455 if (name == NULL || *name == '\0')
6456 name = bfd_section_name (input_bfd, sec);
6457 }
6458
6459 if (r_symndx != 0
6460 && r_type != R_AARCH64_NONE
6461 && r_type != R_AARCH64_NULL
6462 && (h == NULL
6463 || h->root.type == bfd_link_hash_defined
6464 || h->root.type == bfd_link_hash_defweak)
6465 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
6466 {
6467 _bfd_error_handler
6468 ((sym_type == STT_TLS
6469 /* xgettext:c-format */
6470 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
6471 /* xgettext:c-format */
6472 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
6473 input_bfd,
6474 input_section, (uint64_t) rel->r_offset, howto->name, name);
6475 }
6476
6477 /* We relax only if we can see that there can be a valid transition
6478 from a reloc type to another.
6479 We call elfNN_aarch64_final_link_relocate unless we're completely
6480 done, i.e., the relaxation produced the final output we want. */
6481
6482 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type,
6483 h, r_symndx);
6484 if (relaxed_bfd_r_type != bfd_r_type)
6485 {
6486 bfd_r_type = relaxed_bfd_r_type;
6487 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type);
6488 BFD_ASSERT (howto != NULL);
6489 r_type = howto->type;
6490 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h);
6491 unresolved_reloc = 0;
6492 }
6493 else
6494 r = bfd_reloc_continue;
6495
6496 /* There may be multiple consecutive relocations for the
6497 same offset. In that case we are supposed to treat the
6498 output of each relocation as the addend for the next. */
6499 if (rel + 1 < relend
6500 && rel->r_offset == rel[1].r_offset
6501 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE
6502 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL)
6503 save_addend = TRUE;
6504 else
6505 save_addend = FALSE;
6506
6507 if (r == bfd_reloc_continue)
6508 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd,
6509 input_section, contents, rel,
6510 relocation, info, sec,
6511 h, &unresolved_reloc,
6512 save_addend, &addend, sym);
6513
6514 switch (elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type))
6515 {
6516 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
6517 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
6518 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
6519 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
6520 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
6521 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
6522 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
6523 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
6524 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6525 {
6526 bfd_boolean need_relocs = FALSE;
6527 bfd_byte *loc;
6528 int indx;
6529 bfd_vma off;
6530
6531 off = symbol_got_offset (input_bfd, h, r_symndx);
6532 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6533
6534 need_relocs =
6535 (!bfd_link_executable (info) || indx != 0) &&
6536 (h == NULL
6537 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6538 || h->root.type != bfd_link_hash_undefweak);
6539
6540 BFD_ASSERT (globals->root.srelgot != NULL);
6541
6542 if (need_relocs)
6543 {
6544 Elf_Internal_Rela rela;
6545 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD));
6546 rela.r_addend = 0;
6547 rela.r_offset = globals->root.sgot->output_section->vma +
6548 globals->root.sgot->output_offset + off;
6549
6550
6551 loc = globals->root.srelgot->contents;
6552 loc += globals->root.srelgot->reloc_count++
6553 * RELOC_SIZE (htab);
6554 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6555
6556 bfd_reloc_code_real_type real_type =
6557 elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6558
6559 if (real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PREL21
6560 || real_type == BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21
6561 || real_type == BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC)
6562 {
6563 /* For local dynamic, don't generate DTPREL in any case.
6564 Initialize the DTPREL slot into zero, so we get module
6565 base address when invoke runtime TLS resolver. */
6566 bfd_put_NN (output_bfd, 0,
6567 globals->root.sgot->contents + off
6568 + GOT_ENTRY_SIZE);
6569 }
6570 else if (indx == 0)
6571 {
6572 bfd_put_NN (output_bfd,
6573 relocation - dtpoff_base (info),
6574 globals->root.sgot->contents + off
6575 + GOT_ENTRY_SIZE);
6576 }
6577 else
6578 {
6579 /* This TLS symbol is global. We emit a
6580 relocation to fixup the tls offset at load
6581 time. */
6582 rela.r_info =
6583 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL));
6584 rela.r_addend = 0;
6585 rela.r_offset =
6586 (globals->root.sgot->output_section->vma
6587 + globals->root.sgot->output_offset + off
6588 + GOT_ENTRY_SIZE);
6589
6590 loc = globals->root.srelgot->contents;
6591 loc += globals->root.srelgot->reloc_count++
6592 * RELOC_SIZE (globals);
6593 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6594 bfd_put_NN (output_bfd, (bfd_vma) 0,
6595 globals->root.sgot->contents + off
6596 + GOT_ENTRY_SIZE);
6597 }
6598 }
6599 else
6600 {
6601 bfd_put_NN (output_bfd, (bfd_vma) 1,
6602 globals->root.sgot->contents + off);
6603 bfd_put_NN (output_bfd,
6604 relocation - dtpoff_base (info),
6605 globals->root.sgot->contents + off
6606 + GOT_ENTRY_SIZE);
6607 }
6608
6609 symbol_got_offset_mark (input_bfd, h, r_symndx);
6610 }
6611 break;
6612
6613 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6614 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC:
6615 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
6616 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
6617 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
6618 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
6619 {
6620 bfd_boolean need_relocs = FALSE;
6621 bfd_byte *loc;
6622 int indx;
6623 bfd_vma off;
6624
6625 off = symbol_got_offset (input_bfd, h, r_symndx);
6626
6627 indx = h && h->dynindx != -1 ? h->dynindx : 0;
6628
6629 need_relocs =
6630 (!bfd_link_executable (info) || indx != 0) &&
6631 (h == NULL
6632 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6633 || h->root.type != bfd_link_hash_undefweak);
6634
6635 BFD_ASSERT (globals->root.srelgot != NULL);
6636
6637 if (need_relocs)
6638 {
6639 Elf_Internal_Rela rela;
6640
6641 if (indx == 0)
6642 rela.r_addend = relocation - dtpoff_base (info);
6643 else
6644 rela.r_addend = 0;
6645
6646 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL));
6647 rela.r_offset = globals->root.sgot->output_section->vma +
6648 globals->root.sgot->output_offset + off;
6649
6650 loc = globals->root.srelgot->contents;
6651 loc += globals->root.srelgot->reloc_count++
6652 * RELOC_SIZE (htab);
6653
6654 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6655
6656 bfd_put_NN (output_bfd, rela.r_addend,
6657 globals->root.sgot->contents + off);
6658 }
6659 else
6660 bfd_put_NN (output_bfd, relocation - tpoff_base (info),
6661 globals->root.sgot->contents + off);
6662
6663 symbol_got_offset_mark (input_bfd, h, r_symndx);
6664 }
6665 break;
6666
6667 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
6668 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
6669 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
6670 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC:
6671 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
6672 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
6673 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
6674 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx))
6675 {
6676 bfd_boolean need_relocs = FALSE;
6677 int indx = h && h->dynindx != -1 ? h->dynindx : 0;
6678 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx);
6679
6680 need_relocs = (h == NULL
6681 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6682 || h->root.type != bfd_link_hash_undefweak);
6683
6684 BFD_ASSERT (globals->root.srelgot != NULL);
6685 BFD_ASSERT (globals->root.sgot != NULL);
6686
6687 if (need_relocs)
6688 {
6689 bfd_byte *loc;
6690 Elf_Internal_Rela rela;
6691 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC));
6692
6693 rela.r_addend = 0;
6694 rela.r_offset = (globals->root.sgotplt->output_section->vma
6695 + globals->root.sgotplt->output_offset
6696 + off + globals->sgotplt_jump_table_size);
6697
6698 if (indx == 0)
6699 rela.r_addend = relocation - dtpoff_base (info);
6700
6701 /* Allocate the next available slot in the PLT reloc
6702 section to hold our R_AARCH64_TLSDESC, the next
6703 available slot is determined from reloc_count,
6704 which we step. But note, reloc_count was
6705 artifically moved down while allocating slots for
6706 real PLT relocs such that all of the PLT relocs
6707 will fit above the initial reloc_count and the
6708 extra stuff will fit below. */
6709 loc = globals->root.srelplt->contents;
6710 loc += globals->root.srelplt->reloc_count++
6711 * RELOC_SIZE (globals);
6712
6713 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
6714
6715 bfd_put_NN (output_bfd, (bfd_vma) 0,
6716 globals->root.sgotplt->contents + off +
6717 globals->sgotplt_jump_table_size);
6718 bfd_put_NN (output_bfd, (bfd_vma) 0,
6719 globals->root.sgotplt->contents + off +
6720 globals->sgotplt_jump_table_size +
6721 GOT_ENTRY_SIZE);
6722 }
6723
6724 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx);
6725 }
6726 break;
6727 default:
6728 break;
6729 }
6730
6731 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6732 because such sections are not SEC_ALLOC and thus ld.so will
6733 not process them. */
6734 if (unresolved_reloc
6735 && !((input_section->flags & SEC_DEBUGGING) != 0
6736 && h->def_dynamic)
6737 && _bfd_elf_section_offset (output_bfd, info, input_section,
6738 +rel->r_offset) != (bfd_vma) - 1)
6739 {
6740 _bfd_error_handler
6741 /* xgettext:c-format */
6742 (_("%pB(%pA+%#" PRIx64 "): "
6743 "unresolvable %s relocation against symbol `%s'"),
6744 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
6745 h->root.root.string);
6746 return FALSE;
6747 }
6748
6749 if (r != bfd_reloc_ok && r != bfd_reloc_continue)
6750 {
6751 bfd_reloc_code_real_type real_r_type
6752 = elfNN_aarch64_bfd_reloc_from_type (input_bfd, r_type);
6753
6754 switch (r)
6755 {
6756 case bfd_reloc_overflow:
6757 (*info->callbacks->reloc_overflow)
6758 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
6759 input_bfd, input_section, rel->r_offset);
6760 if (real_r_type == BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15
6761 || real_r_type == BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14)
6762 {
6763 (*info->callbacks->warning)
6764 (info,
6765 _("too many GOT entries for -fpic, "
6766 "please recompile with -fPIC"),
6767 name, input_bfd, input_section, rel->r_offset);
6768 return FALSE;
6769 }
6770 /* Overflow can occur when a variable is referenced with a type
6771 that has a larger alignment than the type with which it was
6772 declared. eg:
6773 file1.c: extern int foo; int a (void) { return foo; }
6774 file2.c: char bar, foo, baz;
6775 If the variable is placed into a data section at an offset
6776 that is incompatible with the larger alignment requirement
6777 overflow will occur. (Strictly speaking this is not overflow
6778 but rather an alignment problem, but the bfd_reloc_ error
6779 enum does not have a value to cover that situation).
6780
6781 Try to catch this situation here and provide a more helpful
6782 error message to the user. */
6783 if (addend & ((1 << howto->rightshift) - 1)
6784 /* FIXME: Are we testing all of the appropriate reloc
6785 types here ? */
6786 && (real_r_type == BFD_RELOC_AARCH64_LD_LO19_PCREL
6787 || real_r_type == BFD_RELOC_AARCH64_LDST16_LO12
6788 || real_r_type == BFD_RELOC_AARCH64_LDST32_LO12
6789 || real_r_type == BFD_RELOC_AARCH64_LDST64_LO12
6790 || real_r_type == BFD_RELOC_AARCH64_LDST128_LO12))
6791 {
6792 info->callbacks->warning
6793 (info, _("one possible cause of this error is that the \
6794 symbol is being referenced in the indicated code as if it had a larger \
6795 alignment than was declared where it was defined"),
6796 name, input_bfd, input_section, rel->r_offset);
6797 }
6798 break;
6799
6800 case bfd_reloc_undefined:
6801 (*info->callbacks->undefined_symbol)
6802 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
6803 break;
6804
6805 case bfd_reloc_outofrange:
6806 error_message = _("out of range");
6807 goto common_error;
6808
6809 case bfd_reloc_notsupported:
6810 error_message = _("unsupported relocation");
6811 goto common_error;
6812
6813 case bfd_reloc_dangerous:
6814 /* error_message should already be set. */
6815 goto common_error;
6816
6817 default:
6818 error_message = _("unknown error");
6819 /* Fall through. */
6820
6821 common_error:
6822 BFD_ASSERT (error_message != NULL);
6823 (*info->callbacks->reloc_dangerous)
6824 (info, error_message, input_bfd, input_section, rel->r_offset);
6825 break;
6826 }
6827 }
6828
6829 if (!save_addend)
6830 addend = 0;
6831 }
6832
6833 return TRUE;
6834 }
6835
6836 /* Set the right machine number. */
6837
6838 static bfd_boolean
6839 elfNN_aarch64_object_p (bfd *abfd)
6840 {
6841 #if ARCH_SIZE == 32
6842 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32);
6843 #else
6844 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64);
6845 #endif
6846 return TRUE;
6847 }
6848
6849 /* Function to keep AArch64 specific flags in the ELF header. */
6850
6851 static bfd_boolean
6852 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags)
6853 {
6854 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
6855 {
6856 }
6857 else
6858 {
6859 elf_elfheader (abfd)->e_flags = flags;
6860 elf_flags_init (abfd) = TRUE;
6861 }
6862
6863 return TRUE;
6864 }
6865
6866 /* Merge backend specific data from an object file to the output
6867 object file when linking. */
6868
6869 static bfd_boolean
6870 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
6871 {
6872 bfd *obfd = info->output_bfd;
6873 flagword out_flags;
6874 flagword in_flags;
6875 bfd_boolean flags_compatible = TRUE;
6876 asection *sec;
6877
6878 /* Check if we have the same endianess. */
6879 if (!_bfd_generic_verify_endian_match (ibfd, info))
6880 return FALSE;
6881
6882 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd))
6883 return TRUE;
6884
6885 /* The input BFD must have had its flags initialised. */
6886 /* The following seems bogus to me -- The flags are initialized in
6887 the assembler but I don't think an elf_flags_init field is
6888 written into the object. */
6889 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6890
6891 in_flags = elf_elfheader (ibfd)->e_flags;
6892 out_flags = elf_elfheader (obfd)->e_flags;
6893
6894 if (!elf_flags_init (obfd))
6895 {
6896 /* If the input is the default architecture and had the default
6897 flags then do not bother setting the flags for the output
6898 architecture, instead allow future merges to do this. If no
6899 future merges ever set these flags then they will retain their
6900 uninitialised values, which surprise surprise, correspond
6901 to the default values. */
6902 if (bfd_get_arch_info (ibfd)->the_default
6903 && elf_elfheader (ibfd)->e_flags == 0)
6904 return TRUE;
6905
6906 elf_flags_init (obfd) = TRUE;
6907 elf_elfheader (obfd)->e_flags = in_flags;
6908
6909 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6910 && bfd_get_arch_info (obfd)->the_default)
6911 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
6912 bfd_get_mach (ibfd));
6913
6914 return TRUE;
6915 }
6916
6917 /* Identical flags must be compatible. */
6918 if (in_flags == out_flags)
6919 return TRUE;
6920
6921 /* Check to see if the input BFD actually contains any sections. If
6922 not, its flags may not have been initialised either, but it
6923 cannot actually cause any incompatiblity. Do not short-circuit
6924 dynamic objects; their section list may be emptied by
6925 elf_link_add_object_symbols.
6926
6927 Also check to see if there are no code sections in the input.
6928 In this case there is no need to check for code specific flags.
6929 XXX - do we need to worry about floating-point format compatability
6930 in data sections ? */
6931 if (!(ibfd->flags & DYNAMIC))
6932 {
6933 bfd_boolean null_input_bfd = TRUE;
6934 bfd_boolean only_data_sections = TRUE;
6935
6936 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6937 {
6938 if ((bfd_get_section_flags (ibfd, sec)
6939 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6940 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
6941 only_data_sections = FALSE;
6942
6943 null_input_bfd = FALSE;
6944 break;
6945 }
6946
6947 if (null_input_bfd || only_data_sections)
6948 return TRUE;
6949 }
6950
6951 return flags_compatible;
6952 }
6953
6954 /* Display the flags field. */
6955
6956 static bfd_boolean
6957 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr)
6958 {
6959 FILE *file = (FILE *) ptr;
6960 unsigned long flags;
6961
6962 BFD_ASSERT (abfd != NULL && ptr != NULL);
6963
6964 /* Print normal ELF private data. */
6965 _bfd_elf_print_private_bfd_data (abfd, ptr);
6966
6967 flags = elf_elfheader (abfd)->e_flags;
6968 /* Ignore init flag - it may not be set, despite the flags field
6969 containing valid data. */
6970
6971 /* xgettext:c-format */
6972 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
6973
6974 if (flags)
6975 fprintf (file, _("<Unrecognised flag bits set>"));
6976
6977 fputc ('\n', file);
6978
6979 return TRUE;
6980 }
6981
6982 /* Find dynamic relocs for H that apply to read-only sections. */
6983
6984 static asection *
6985 readonly_dynrelocs (struct elf_link_hash_entry *h)
6986 {
6987 struct elf_dyn_relocs *p;
6988
6989 for (p = elf_aarch64_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
6990 {
6991 asection *s = p->sec->output_section;
6992
6993 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6994 return p->sec;
6995 }
6996 return NULL;
6997 }
6998
6999 /* Return true if we need copy relocation against EH. */
7000
7001 static bfd_boolean
7002 need_copy_relocation_p (struct elf_aarch64_link_hash_entry *eh)
7003 {
7004 struct elf_dyn_relocs *p;
7005 asection *s;
7006
7007 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7008 {
7009 /* If there is any pc-relative reference, we need to keep copy relocation
7010 to avoid propagating the relocation into runtime that current glibc
7011 does not support. */
7012 if (p->pc_count)
7013 return TRUE;
7014
7015 s = p->sec->output_section;
7016 /* Need copy relocation if it's against read-only section. */
7017 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7018 return TRUE;
7019 }
7020
7021 return FALSE;
7022 }
7023
7024 /* Adjust a symbol defined by a dynamic object and referenced by a
7025 regular object. The current definition is in some section of the
7026 dynamic object, but we're not including those sections. We have to
7027 change the definition to something the rest of the link can
7028 understand. */
7029
7030 static bfd_boolean
7031 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info,
7032 struct elf_link_hash_entry *h)
7033 {
7034 struct elf_aarch64_link_hash_table *htab;
7035 asection *s, *srel;
7036
7037 /* If this is a function, put it in the procedure linkage table. We
7038 will fill in the contents of the procedure linkage table later,
7039 when we know the address of the .got section. */
7040 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
7041 {
7042 if (h->plt.refcount <= 0
7043 || (h->type != STT_GNU_IFUNC
7044 && (SYMBOL_CALLS_LOCAL (info, h)
7045 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7046 && h->root.type == bfd_link_hash_undefweak))))
7047 {
7048 /* This case can occur if we saw a CALL26 reloc in
7049 an input file, but the symbol wasn't referred to
7050 by a dynamic object or all references were
7051 garbage collected. In which case we can end up
7052 resolving. */
7053 h->plt.offset = (bfd_vma) - 1;
7054 h->needs_plt = 0;
7055 }
7056
7057 return TRUE;
7058 }
7059 else
7060 /* Otherwise, reset to -1. */
7061 h->plt.offset = (bfd_vma) - 1;
7062
7063
7064 /* If this is a weak symbol, and there is a real definition, the
7065 processor independent code will have arranged for us to see the
7066 real definition first, and we can just use the same value. */
7067 if (h->is_weakalias)
7068 {
7069 struct elf_link_hash_entry *def = weakdef (h);
7070 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
7071 h->root.u.def.section = def->root.u.def.section;
7072 h->root.u.def.value = def->root.u.def.value;
7073 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
7074 h->non_got_ref = def->non_got_ref;
7075 return TRUE;
7076 }
7077
7078 /* If we are creating a shared library, we must presume that the
7079 only references to the symbol are via the global offset table.
7080 For such cases we need not do anything here; the relocations will
7081 be handled correctly by relocate_section. */
7082 if (bfd_link_pic (info))
7083 return TRUE;
7084
7085 /* If there are no references to this symbol that do not use the
7086 GOT, we don't need to generate a copy reloc. */
7087 if (!h->non_got_ref)
7088 return TRUE;
7089
7090 /* If -z nocopyreloc was given, we won't generate them either. */
7091 if (info->nocopyreloc)
7092 {
7093 h->non_got_ref = 0;
7094 return TRUE;
7095 }
7096
7097 if (ELIMINATE_COPY_RELOCS)
7098 {
7099 struct elf_aarch64_link_hash_entry *eh;
7100 /* If we don't find any dynamic relocs in read-only sections, then
7101 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
7102 eh = (struct elf_aarch64_link_hash_entry *) h;
7103 if (!need_copy_relocation_p (eh))
7104 {
7105 h->non_got_ref = 0;
7106 return TRUE;
7107 }
7108 }
7109
7110 /* We must allocate the symbol in our .dynbss section, which will
7111 become part of the .bss section of the executable. There will be
7112 an entry for this symbol in the .dynsym section. The dynamic
7113 object will contain position independent code, so all references
7114 from the dynamic object to this symbol will go through the global
7115 offset table. The dynamic linker will use the .dynsym entry to
7116 determine the address it must put in the global offset table, so
7117 both the dynamic object and the regular object will refer to the
7118 same memory location for the variable. */
7119
7120 htab = elf_aarch64_hash_table (info);
7121
7122 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker
7123 to copy the initial value out of the dynamic object and into the
7124 runtime process image. */
7125 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
7126 {
7127 s = htab->root.sdynrelro;
7128 srel = htab->root.sreldynrelro;
7129 }
7130 else
7131 {
7132 s = htab->root.sdynbss;
7133 srel = htab->root.srelbss;
7134 }
7135 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
7136 {
7137 srel->size += RELOC_SIZE (htab);
7138 h->needs_copy = 1;
7139 }
7140
7141 return _bfd_elf_adjust_dynamic_copy (info, h, s);
7142
7143 }
7144
7145 static bfd_boolean
7146 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number)
7147 {
7148 struct elf_aarch64_local_symbol *locals;
7149 locals = elf_aarch64_locals (abfd);
7150 if (locals == NULL)
7151 {
7152 locals = (struct elf_aarch64_local_symbol *)
7153 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol));
7154 if (locals == NULL)
7155 return FALSE;
7156 elf_aarch64_locals (abfd) = locals;
7157 }
7158 return TRUE;
7159 }
7160
7161 /* Create the .got section to hold the global offset table. */
7162
7163 static bfd_boolean
7164 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
7165 {
7166 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7167 flagword flags;
7168 asection *s;
7169 struct elf_link_hash_entry *h;
7170 struct elf_link_hash_table *htab = elf_hash_table (info);
7171
7172 /* This function may be called more than once. */
7173 if (htab->sgot != NULL)
7174 return TRUE;
7175
7176 flags = bed->dynamic_sec_flags;
7177
7178 s = bfd_make_section_anyway_with_flags (abfd,
7179 (bed->rela_plts_and_copies_p
7180 ? ".rela.got" : ".rel.got"),
7181 (bed->dynamic_sec_flags
7182 | SEC_READONLY));
7183 if (s == NULL
7184 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7185 return FALSE;
7186 htab->srelgot = s;
7187
7188 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
7189 if (s == NULL
7190 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
7191 return FALSE;
7192 htab->sgot = s;
7193 htab->sgot->size += GOT_ENTRY_SIZE;
7194
7195 if (bed->want_got_sym)
7196 {
7197 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
7198 (or .got.plt) section. We don't do this in the linker script
7199 because we don't want to define the symbol if we are not creating
7200 a global offset table. */
7201 h = _bfd_elf_define_linkage_sym (abfd, info, s,
7202 "_GLOBAL_OFFSET_TABLE_");
7203 elf_hash_table (info)->hgot = h;
7204 if (h == NULL)
7205 return FALSE;
7206 }
7207
7208 if (bed->want_got_plt)
7209 {
7210 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
7211 if (s == NULL
7212 || !bfd_set_section_alignment (abfd, s,
7213 bed->s->log_file_align))
7214 return FALSE;
7215 htab->sgotplt = s;
7216 }
7217
7218 /* The first bit of the global offset table is the header. */
7219 s->size += bed->got_header_size;
7220
7221 return TRUE;
7222 }
7223
7224 /* Look through the relocs for a section during the first phase. */
7225
7226 static bfd_boolean
7227 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info,
7228 asection *sec, const Elf_Internal_Rela *relocs)
7229 {
7230 Elf_Internal_Shdr *symtab_hdr;
7231 struct elf_link_hash_entry **sym_hashes;
7232 const Elf_Internal_Rela *rel;
7233 const Elf_Internal_Rela *rel_end;
7234 asection *sreloc;
7235
7236 struct elf_aarch64_link_hash_table *htab;
7237
7238 if (bfd_link_relocatable (info))
7239 return TRUE;
7240
7241 BFD_ASSERT (is_aarch64_elf (abfd));
7242
7243 htab = elf_aarch64_hash_table (info);
7244 sreloc = NULL;
7245
7246 symtab_hdr = &elf_symtab_hdr (abfd);
7247 sym_hashes = elf_sym_hashes (abfd);
7248
7249 rel_end = relocs + sec->reloc_count;
7250 for (rel = relocs; rel < rel_end; rel++)
7251 {
7252 struct elf_link_hash_entry *h;
7253 unsigned int r_symndx;
7254 unsigned int r_type;
7255 bfd_reloc_code_real_type bfd_r_type;
7256 Elf_Internal_Sym *isym;
7257
7258 r_symndx = ELFNN_R_SYM (rel->r_info);
7259 r_type = ELFNN_R_TYPE (rel->r_info);
7260
7261 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7262 {
7263 /* xgettext:c-format */
7264 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
7265 return FALSE;
7266 }
7267
7268 if (r_symndx < symtab_hdr->sh_info)
7269 {
7270 /* A local symbol. */
7271 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7272 abfd, r_symndx);
7273 if (isym == NULL)
7274 return FALSE;
7275
7276 /* Check relocation against local STT_GNU_IFUNC symbol. */
7277 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
7278 {
7279 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel,
7280 TRUE);
7281 if (h == NULL)
7282 return FALSE;
7283
7284 /* Fake a STT_GNU_IFUNC symbol. */
7285 h->type = STT_GNU_IFUNC;
7286 h->def_regular = 1;
7287 h->ref_regular = 1;
7288 h->forced_local = 1;
7289 h->root.type = bfd_link_hash_defined;
7290 }
7291 else
7292 h = NULL;
7293 }
7294 else
7295 {
7296 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7297 while (h->root.type == bfd_link_hash_indirect
7298 || h->root.type == bfd_link_hash_warning)
7299 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7300 }
7301
7302 /* Could be done earlier, if h were already available. */
7303 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx);
7304
7305 if (h != NULL)
7306 {
7307 /* If a relocation refers to _GLOBAL_OFFSET_TABLE_, create the .got.
7308 This shows up in particular in an R_AARCH64_PREL64 in large model
7309 when calculating the pc-relative address to .got section which is
7310 used to initialize the gp register. */
7311 if (h->root.root.string
7312 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
7313 {
7314 if (htab->root.dynobj == NULL)
7315 htab->root.dynobj = abfd;
7316
7317 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7318 return FALSE;
7319
7320 BFD_ASSERT (h == htab->root.hgot);
7321 }
7322
7323 /* Create the ifunc sections for static executables. If we
7324 never see an indirect function symbol nor we are building
7325 a static executable, those sections will be empty and
7326 won't appear in output. */
7327 switch (bfd_r_type)
7328 {
7329 default:
7330 break;
7331
7332 case BFD_RELOC_AARCH64_ADD_LO12:
7333 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7334 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7335 case BFD_RELOC_AARCH64_CALL26:
7336 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7337 case BFD_RELOC_AARCH64_JUMP26:
7338 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7339 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7340 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7341 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7342 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7343 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7344 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7345 case BFD_RELOC_AARCH64_NN:
7346 if (htab->root.dynobj == NULL)
7347 htab->root.dynobj = abfd;
7348 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info))
7349 return FALSE;
7350 break;
7351 }
7352
7353 /* It is referenced by a non-shared object. */
7354 h->ref_regular = 1;
7355 }
7356
7357 switch (bfd_r_type)
7358 {
7359 case BFD_RELOC_AARCH64_16:
7360 #if ARCH_SIZE == 64
7361 case BFD_RELOC_AARCH64_32:
7362 #endif
7363 if (bfd_link_pic (info) && (sec->flags & SEC_ALLOC) != 0)
7364 {
7365 if (h != NULL
7366 /* This is an absolute symbol. It represents a value instead
7367 of an address. */
7368 && (bfd_is_abs_symbol (&h->root)
7369 /* This is an undefined symbol. */
7370 || h->root.type == bfd_link_hash_undefined))
7371 break;
7372
7373 /* For local symbols, defined global symbols in a non-ABS section,
7374 it is assumed that the value is an address. */
7375 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7376 _bfd_error_handler
7377 /* xgettext:c-format */
7378 (_("%pB: relocation %s against `%s' can not be used when making "
7379 "a shared object"),
7380 abfd, elfNN_aarch64_howto_table[howto_index].name,
7381 (h) ? h->root.root.string : "a local symbol");
7382 bfd_set_error (bfd_error_bad_value);
7383 return FALSE;
7384 }
7385 else
7386 break;
7387
7388 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7389 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7390 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7391 case BFD_RELOC_AARCH64_MOVW_G3:
7392 if (bfd_link_pic (info))
7393 {
7394 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7395 _bfd_error_handler
7396 /* xgettext:c-format */
7397 (_("%pB: relocation %s against `%s' can not be used when making "
7398 "a shared object; recompile with -fPIC"),
7399 abfd, elfNN_aarch64_howto_table[howto_index].name,
7400 (h) ? h->root.root.string : "a local symbol");
7401 bfd_set_error (bfd_error_bad_value);
7402 return FALSE;
7403 }
7404 /* Fall through. */
7405
7406 case BFD_RELOC_AARCH64_16_PCREL:
7407 case BFD_RELOC_AARCH64_32_PCREL:
7408 case BFD_RELOC_AARCH64_64_PCREL:
7409 case BFD_RELOC_AARCH64_ADD_LO12:
7410 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
7411 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
7412 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7413 case BFD_RELOC_AARCH64_LDST128_LO12:
7414 case BFD_RELOC_AARCH64_LDST16_LO12:
7415 case BFD_RELOC_AARCH64_LDST32_LO12:
7416 case BFD_RELOC_AARCH64_LDST64_LO12:
7417 case BFD_RELOC_AARCH64_LDST8_LO12:
7418 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7419 if (h == NULL || bfd_link_pic (info))
7420 break;
7421 /* Fall through. */
7422
7423 case BFD_RELOC_AARCH64_NN:
7424
7425 /* We don't need to handle relocs into sections not going into
7426 the "real" output. */
7427 if ((sec->flags & SEC_ALLOC) == 0)
7428 break;
7429
7430 if (h != NULL)
7431 {
7432 if (!bfd_link_pic (info))
7433 h->non_got_ref = 1;
7434
7435 h->plt.refcount += 1;
7436 h->pointer_equality_needed = 1;
7437 }
7438
7439 /* No need to do anything if we're not creating a shared
7440 object. */
7441 if (!(bfd_link_pic (info)
7442 /* If on the other hand, we are creating an executable, we
7443 may need to keep relocations for symbols satisfied by a
7444 dynamic library if we manage to avoid copy relocs for the
7445 symbol.
7446
7447 NOTE: Currently, there is no support of copy relocs
7448 elimination on pc-relative relocation types, because there is
7449 no dynamic relocation support for them in glibc. We still
7450 record the dynamic symbol reference for them. This is
7451 because one symbol may be referenced by both absolute
7452 relocation (for example, BFD_RELOC_AARCH64_NN) and
7453 pc-relative relocation. We need full symbol reference
7454 information to make correct decision later in
7455 elfNN_aarch64_adjust_dynamic_symbol. */
7456 || (ELIMINATE_COPY_RELOCS
7457 && !bfd_link_pic (info)
7458 && h != NULL
7459 && (h->root.type == bfd_link_hash_defweak
7460 || !h->def_regular))))
7461 break;
7462
7463 {
7464 struct elf_dyn_relocs *p;
7465 struct elf_dyn_relocs **head;
7466 int howto_index = bfd_r_type - BFD_RELOC_AARCH64_RELOC_START;
7467
7468 /* We must copy these reloc types into the output file.
7469 Create a reloc section in dynobj and make room for
7470 this reloc. */
7471 if (sreloc == NULL)
7472 {
7473 if (htab->root.dynobj == NULL)
7474 htab->root.dynobj = abfd;
7475
7476 sreloc = _bfd_elf_make_dynamic_reloc_section
7477 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE);
7478
7479 if (sreloc == NULL)
7480 return FALSE;
7481 }
7482
7483 /* If this is a global symbol, we count the number of
7484 relocations we need for this symbol. */
7485 if (h != NULL)
7486 {
7487 struct elf_aarch64_link_hash_entry *eh;
7488 eh = (struct elf_aarch64_link_hash_entry *) h;
7489 head = &eh->dyn_relocs;
7490 }
7491 else
7492 {
7493 /* Track dynamic relocs needed for local syms too.
7494 We really need local syms available to do this
7495 easily. Oh well. */
7496
7497 asection *s;
7498 void **vpp;
7499
7500 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
7501 abfd, r_symndx);
7502 if (isym == NULL)
7503 return FALSE;
7504
7505 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
7506 if (s == NULL)
7507 s = sec;
7508
7509 /* Beware of type punned pointers vs strict aliasing
7510 rules. */
7511 vpp = &(elf_section_data (s)->local_dynrel);
7512 head = (struct elf_dyn_relocs **) vpp;
7513 }
7514
7515 p = *head;
7516 if (p == NULL || p->sec != sec)
7517 {
7518 bfd_size_type amt = sizeof *p;
7519 p = ((struct elf_dyn_relocs *)
7520 bfd_zalloc (htab->root.dynobj, amt));
7521 if (p == NULL)
7522 return FALSE;
7523 p->next = *head;
7524 *head = p;
7525 p->sec = sec;
7526 }
7527
7528 p->count += 1;
7529
7530 if (elfNN_aarch64_howto_table[howto_index].pc_relative)
7531 p->pc_count += 1;
7532 }
7533 break;
7534
7535 /* RR: We probably want to keep a consistency check that
7536 there are no dangling GOT_PAGE relocs. */
7537 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
7538 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
7539 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
7540 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
7541 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
7542 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
7543 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
7544 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7545 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7546 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
7547 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
7548 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
7549 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
7550 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
7551 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
7552 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7553 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7554 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
7555 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
7556 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
7557 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
7558 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
7559 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7560 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
7561 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7562 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
7563 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
7564 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
7565 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
7566 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
7567 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
7568 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
7569 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7570 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
7571 {
7572 unsigned got_type;
7573 unsigned old_got_type;
7574
7575 got_type = aarch64_reloc_got_type (bfd_r_type);
7576
7577 if (h)
7578 {
7579 h->got.refcount += 1;
7580 old_got_type = elf_aarch64_hash_entry (h)->got_type;
7581 }
7582 else
7583 {
7584 struct elf_aarch64_local_symbol *locals;
7585
7586 if (!elfNN_aarch64_allocate_local_symbols
7587 (abfd, symtab_hdr->sh_info))
7588 return FALSE;
7589
7590 locals = elf_aarch64_locals (abfd);
7591 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7592 locals[r_symndx].got_refcount += 1;
7593 old_got_type = locals[r_symndx].got_type;
7594 }
7595
7596 /* If a variable is accessed with both general dynamic TLS
7597 methods, two slots may be created. */
7598 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type))
7599 got_type |= old_got_type;
7600
7601 /* We will already have issued an error message if there
7602 is a TLS/non-TLS mismatch, based on the symbol type.
7603 So just combine any TLS types needed. */
7604 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
7605 && got_type != GOT_NORMAL)
7606 got_type |= old_got_type;
7607
7608 /* If the symbol is accessed by both IE and GD methods, we
7609 are able to relax. Turn off the GD flag, without
7610 messing up with any other kind of TLS types that may be
7611 involved. */
7612 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type))
7613 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD);
7614
7615 if (old_got_type != got_type)
7616 {
7617 if (h != NULL)
7618 elf_aarch64_hash_entry (h)->got_type = got_type;
7619 else
7620 {
7621 struct elf_aarch64_local_symbol *locals;
7622 locals = elf_aarch64_locals (abfd);
7623 BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
7624 locals[r_symndx].got_type = got_type;
7625 }
7626 }
7627
7628 if (htab->root.dynobj == NULL)
7629 htab->root.dynobj = abfd;
7630 if (! aarch64_elf_create_got_section (htab->root.dynobj, info))
7631 return FALSE;
7632 break;
7633 }
7634
7635 case BFD_RELOC_AARCH64_CALL26:
7636 case BFD_RELOC_AARCH64_JUMP26:
7637 /* If this is a local symbol then we resolve it
7638 directly without creating a PLT entry. */
7639 if (h == NULL)
7640 continue;
7641
7642 h->needs_plt = 1;
7643 if (h->plt.refcount <= 0)
7644 h->plt.refcount = 1;
7645 else
7646 h->plt.refcount += 1;
7647 break;
7648
7649 default:
7650 break;
7651 }
7652 }
7653
7654 return TRUE;
7655 }
7656
7657 /* Treat mapping symbols as special target symbols. */
7658
7659 static bfd_boolean
7660 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED,
7661 asymbol *sym)
7662 {
7663 return bfd_is_aarch64_special_symbol_name (sym->name,
7664 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY);
7665 }
7666
7667 /* This is a copy of elf_find_function () from elf.c except that
7668 AArch64 mapping symbols are ignored when looking for function names. */
7669
7670 static bfd_boolean
7671 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
7672 asymbol **symbols,
7673 asection *section,
7674 bfd_vma offset,
7675 const char **filename_ptr,
7676 const char **functionname_ptr)
7677 {
7678 const char *filename = NULL;
7679 asymbol *func = NULL;
7680 bfd_vma low_func = 0;
7681 asymbol **p;
7682
7683 for (p = symbols; *p != NULL; p++)
7684 {
7685 elf_symbol_type *q;
7686
7687 q = (elf_symbol_type *) * p;
7688
7689 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7690 {
7691 default:
7692 break;
7693 case STT_FILE:
7694 filename = bfd_asymbol_name (&q->symbol);
7695 break;
7696 case STT_FUNC:
7697 case STT_NOTYPE:
7698 /* Skip mapping symbols. */
7699 if ((q->symbol.flags & BSF_LOCAL)
7700 && (bfd_is_aarch64_special_symbol_name
7701 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY)))
7702 continue;
7703 /* Fall through. */
7704 if (bfd_get_section (&q->symbol) == section
7705 && q->symbol.value >= low_func && q->symbol.value <= offset)
7706 {
7707 func = (asymbol *) q;
7708 low_func = q->symbol.value;
7709 }
7710 break;
7711 }
7712 }
7713
7714 if (func == NULL)
7715 return FALSE;
7716
7717 if (filename_ptr)
7718 *filename_ptr = filename;
7719 if (functionname_ptr)
7720 *functionname_ptr = bfd_asymbol_name (func);
7721
7722 return TRUE;
7723 }
7724
7725
7726 /* Find the nearest line to a particular section and offset, for error
7727 reporting. This code is a duplicate of the code in elf.c, except
7728 that it uses aarch64_elf_find_function. */
7729
7730 static bfd_boolean
7731 elfNN_aarch64_find_nearest_line (bfd *abfd,
7732 asymbol **symbols,
7733 asection *section,
7734 bfd_vma offset,
7735 const char **filename_ptr,
7736 const char **functionname_ptr,
7737 unsigned int *line_ptr,
7738 unsigned int *discriminator_ptr)
7739 {
7740 bfd_boolean found = FALSE;
7741
7742 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
7743 filename_ptr, functionname_ptr,
7744 line_ptr, discriminator_ptr,
7745 dwarf_debug_sections, 0,
7746 &elf_tdata (abfd)->dwarf2_find_line_info))
7747 {
7748 if (!*functionname_ptr)
7749 aarch64_elf_find_function (abfd, symbols, section, offset,
7750 *filename_ptr ? NULL : filename_ptr,
7751 functionname_ptr);
7752
7753 return TRUE;
7754 }
7755
7756 /* Skip _bfd_dwarf1_find_nearest_line since no known AArch64
7757 toolchain uses DWARF1. */
7758
7759 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7760 &found, filename_ptr,
7761 functionname_ptr, line_ptr,
7762 &elf_tdata (abfd)->line_info))
7763 return FALSE;
7764
7765 if (found && (*functionname_ptr || *line_ptr))
7766 return TRUE;
7767
7768 if (symbols == NULL)
7769 return FALSE;
7770
7771 if (!aarch64_elf_find_function (abfd, symbols, section, offset,
7772 filename_ptr, functionname_ptr))
7773 return FALSE;
7774
7775 *line_ptr = 0;
7776 return TRUE;
7777 }
7778
7779 static bfd_boolean
7780 elfNN_aarch64_find_inliner_info (bfd *abfd,
7781 const char **filename_ptr,
7782 const char **functionname_ptr,
7783 unsigned int *line_ptr)
7784 {
7785 bfd_boolean found;
7786 found = _bfd_dwarf2_find_inliner_info
7787 (abfd, filename_ptr,
7788 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info);
7789 return found;
7790 }
7791
7792
7793 static void
7794 elfNN_aarch64_post_process_headers (bfd *abfd,
7795 struct bfd_link_info *link_info)
7796 {
7797 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
7798
7799 i_ehdrp = elf_elfheader (abfd);
7800 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION;
7801
7802 _bfd_elf_post_process_headers (abfd, link_info);
7803 }
7804
7805 static enum elf_reloc_type_class
7806 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
7807 const asection *rel_sec ATTRIBUTE_UNUSED,
7808 const Elf_Internal_Rela *rela)
7809 {
7810 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info);
7811
7812 if (htab->root.dynsym != NULL
7813 && htab->root.dynsym->contents != NULL)
7814 {
7815 /* Check relocation against STT_GNU_IFUNC symbol if there are
7816 dynamic symbols. */
7817 bfd *abfd = info->output_bfd;
7818 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7819 unsigned long r_symndx = ELFNN_R_SYM (rela->r_info);
7820 if (r_symndx != STN_UNDEF)
7821 {
7822 Elf_Internal_Sym sym;
7823 if (!bed->s->swap_symbol_in (abfd,
7824 (htab->root.dynsym->contents
7825 + r_symndx * bed->s->sizeof_sym),
7826 0, &sym))
7827 {
7828 /* xgettext:c-format */
7829 _bfd_error_handler (_("%pB symbol number %lu references"
7830 " nonexistent SHT_SYMTAB_SHNDX section"),
7831 abfd, r_symndx);
7832 /* Ideally an error class should be returned here. */
7833 }
7834 else if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
7835 return reloc_class_ifunc;
7836 }
7837 }
7838
7839 switch ((int) ELFNN_R_TYPE (rela->r_info))
7840 {
7841 case AARCH64_R (IRELATIVE):
7842 return reloc_class_ifunc;
7843 case AARCH64_R (RELATIVE):
7844 return reloc_class_relative;
7845 case AARCH64_R (JUMP_SLOT):
7846 return reloc_class_plt;
7847 case AARCH64_R (COPY):
7848 return reloc_class_copy;
7849 default:
7850 return reloc_class_normal;
7851 }
7852 }
7853
7854 /* Handle an AArch64 specific section when reading an object file. This is
7855 called when bfd_section_from_shdr finds a section with an unknown
7856 type. */
7857
7858 static bfd_boolean
7859 elfNN_aarch64_section_from_shdr (bfd *abfd,
7860 Elf_Internal_Shdr *hdr,
7861 const char *name, int shindex)
7862 {
7863 /* There ought to be a place to keep ELF backend specific flags, but
7864 at the moment there isn't one. We just keep track of the
7865 sections by their name, instead. Fortunately, the ABI gives
7866 names for all the AArch64 specific sections, so we will probably get
7867 away with this. */
7868 switch (hdr->sh_type)
7869 {
7870 case SHT_AARCH64_ATTRIBUTES:
7871 break;
7872
7873 default:
7874 return FALSE;
7875 }
7876
7877 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7878 return FALSE;
7879
7880 return TRUE;
7881 }
7882
7883 /* A structure used to record a list of sections, independently
7884 of the next and prev fields in the asection structure. */
7885 typedef struct section_list
7886 {
7887 asection *sec;
7888 struct section_list *next;
7889 struct section_list *prev;
7890 }
7891 section_list;
7892
7893 /* Unfortunately we need to keep a list of sections for which
7894 an _aarch64_elf_section_data structure has been allocated. This
7895 is because it is possible for functions like elfNN_aarch64_write_section
7896 to be called on a section which has had an elf_data_structure
7897 allocated for it (and so the used_by_bfd field is valid) but
7898 for which the AArch64 extended version of this structure - the
7899 _aarch64_elf_section_data structure - has not been allocated. */
7900 static section_list *sections_with_aarch64_elf_section_data = NULL;
7901
7902 static void
7903 record_section_with_aarch64_elf_section_data (asection *sec)
7904 {
7905 struct section_list *entry;
7906
7907 entry = bfd_malloc (sizeof (*entry));
7908 if (entry == NULL)
7909 return;
7910 entry->sec = sec;
7911 entry->next = sections_with_aarch64_elf_section_data;
7912 entry->prev = NULL;
7913 if (entry->next != NULL)
7914 entry->next->prev = entry;
7915 sections_with_aarch64_elf_section_data = entry;
7916 }
7917
7918 static struct section_list *
7919 find_aarch64_elf_section_entry (asection *sec)
7920 {
7921 struct section_list *entry;
7922 static struct section_list *last_entry = NULL;
7923
7924 /* This is a short cut for the typical case where the sections are added
7925 to the sections_with_aarch64_elf_section_data list in forward order and
7926 then looked up here in backwards order. This makes a real difference
7927 to the ld-srec/sec64k.exp linker test. */
7928 entry = sections_with_aarch64_elf_section_data;
7929 if (last_entry != NULL)
7930 {
7931 if (last_entry->sec == sec)
7932 entry = last_entry;
7933 else if (last_entry->next != NULL && last_entry->next->sec == sec)
7934 entry = last_entry->next;
7935 }
7936
7937 for (; entry; entry = entry->next)
7938 if (entry->sec == sec)
7939 break;
7940
7941 if (entry)
7942 /* Record the entry prior to this one - it is the entry we are
7943 most likely to want to locate next time. Also this way if we
7944 have been called from
7945 unrecord_section_with_aarch64_elf_section_data () we will not
7946 be caching a pointer that is about to be freed. */
7947 last_entry = entry->prev;
7948
7949 return entry;
7950 }
7951
7952 static void
7953 unrecord_section_with_aarch64_elf_section_data (asection *sec)
7954 {
7955 struct section_list *entry;
7956
7957 entry = find_aarch64_elf_section_entry (sec);
7958
7959 if (entry)
7960 {
7961 if (entry->prev != NULL)
7962 entry->prev->next = entry->next;
7963 if (entry->next != NULL)
7964 entry->next->prev = entry->prev;
7965 if (entry == sections_with_aarch64_elf_section_data)
7966 sections_with_aarch64_elf_section_data = entry->next;
7967 free (entry);
7968 }
7969 }
7970
7971
7972 typedef struct
7973 {
7974 void *finfo;
7975 struct bfd_link_info *info;
7976 asection *sec;
7977 int sec_shndx;
7978 int (*func) (void *, const char *, Elf_Internal_Sym *,
7979 asection *, struct elf_link_hash_entry *);
7980 } output_arch_syminfo;
7981
7982 enum map_symbol_type
7983 {
7984 AARCH64_MAP_INSN,
7985 AARCH64_MAP_DATA
7986 };
7987
7988
7989 /* Output a single mapping symbol. */
7990
7991 static bfd_boolean
7992 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi,
7993 enum map_symbol_type type, bfd_vma offset)
7994 {
7995 static const char *names[2] = { "$x", "$d" };
7996 Elf_Internal_Sym sym;
7997
7998 sym.st_value = (osi->sec->output_section->vma
7999 + osi->sec->output_offset + offset);
8000 sym.st_size = 0;
8001 sym.st_other = 0;
8002 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
8003 sym.st_shndx = osi->sec_shndx;
8004 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
8005 }
8006
8007 /* Output a single local symbol for a generated stub. */
8008
8009 static bfd_boolean
8010 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name,
8011 bfd_vma offset, bfd_vma size)
8012 {
8013 Elf_Internal_Sym sym;
8014
8015 sym.st_value = (osi->sec->output_section->vma
8016 + osi->sec->output_offset + offset);
8017 sym.st_size = size;
8018 sym.st_other = 0;
8019 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
8020 sym.st_shndx = osi->sec_shndx;
8021 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
8022 }
8023
8024 static bfd_boolean
8025 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8026 {
8027 struct elf_aarch64_stub_hash_entry *stub_entry;
8028 asection *stub_sec;
8029 bfd_vma addr;
8030 char *stub_name;
8031 output_arch_syminfo *osi;
8032
8033 /* Massage our args to the form they really have. */
8034 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry;
8035 osi = (output_arch_syminfo *) in_arg;
8036
8037 stub_sec = stub_entry->stub_sec;
8038
8039 /* Ensure this stub is attached to the current section being
8040 processed. */
8041 if (stub_sec != osi->sec)
8042 return TRUE;
8043
8044 addr = (bfd_vma) stub_entry->stub_offset;
8045
8046 stub_name = stub_entry->output_name;
8047
8048 switch (stub_entry->stub_type)
8049 {
8050 case aarch64_stub_adrp_branch:
8051 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8052 sizeof (aarch64_adrp_branch_stub)))
8053 return FALSE;
8054 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8055 return FALSE;
8056 break;
8057 case aarch64_stub_long_branch:
8058 if (!elfNN_aarch64_output_stub_sym
8059 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub)))
8060 return FALSE;
8061 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8062 return FALSE;
8063 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16))
8064 return FALSE;
8065 break;
8066 case aarch64_stub_erratum_835769_veneer:
8067 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8068 sizeof (aarch64_erratum_835769_stub)))
8069 return FALSE;
8070 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8071 return FALSE;
8072 break;
8073 case aarch64_stub_erratum_843419_veneer:
8074 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr,
8075 sizeof (aarch64_erratum_843419_stub)))
8076 return FALSE;
8077 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr))
8078 return FALSE;
8079 break;
8080
8081 default:
8082 abort ();
8083 }
8084
8085 return TRUE;
8086 }
8087
8088 /* Output mapping symbols for linker generated sections. */
8089
8090 static bfd_boolean
8091 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd,
8092 struct bfd_link_info *info,
8093 void *finfo,
8094 int (*func) (void *, const char *,
8095 Elf_Internal_Sym *,
8096 asection *,
8097 struct elf_link_hash_entry
8098 *))
8099 {
8100 output_arch_syminfo osi;
8101 struct elf_aarch64_link_hash_table *htab;
8102
8103 htab = elf_aarch64_hash_table (info);
8104
8105 osi.finfo = finfo;
8106 osi.info = info;
8107 osi.func = func;
8108
8109 /* Long calls stubs. */
8110 if (htab->stub_bfd && htab->stub_bfd->sections)
8111 {
8112 asection *stub_sec;
8113
8114 for (stub_sec = htab->stub_bfd->sections;
8115 stub_sec != NULL; stub_sec = stub_sec->next)
8116 {
8117 /* Ignore non-stub sections. */
8118 if (!strstr (stub_sec->name, STUB_SUFFIX))
8119 continue;
8120
8121 osi.sec = stub_sec;
8122
8123 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8124 (output_bfd, osi.sec->output_section);
8125
8126 /* The first instruction in a stub is always a branch. */
8127 if (!elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0))
8128 return FALSE;
8129
8130 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub,
8131 &osi);
8132 }
8133 }
8134
8135 /* Finally, output mapping symbols for the PLT. */
8136 if (!htab->root.splt || htab->root.splt->size == 0)
8137 return TRUE;
8138
8139 osi.sec_shndx = _bfd_elf_section_from_bfd_section
8140 (output_bfd, htab->root.splt->output_section);
8141 osi.sec = htab->root.splt;
8142
8143 elfNN_aarch64_output_map_sym (&osi, AARCH64_MAP_INSN, 0);
8144
8145 return TRUE;
8146
8147 }
8148
8149 /* Allocate target specific section data. */
8150
8151 static bfd_boolean
8152 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec)
8153 {
8154 if (!sec->used_by_bfd)
8155 {
8156 _aarch64_elf_section_data *sdata;
8157 bfd_size_type amt = sizeof (*sdata);
8158
8159 sdata = bfd_zalloc (abfd, amt);
8160 if (sdata == NULL)
8161 return FALSE;
8162 sec->used_by_bfd = sdata;
8163 }
8164
8165 record_section_with_aarch64_elf_section_data (sec);
8166
8167 return _bfd_elf_new_section_hook (abfd, sec);
8168 }
8169
8170
8171 static void
8172 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED,
8173 asection *sec,
8174 void *ignore ATTRIBUTE_UNUSED)
8175 {
8176 unrecord_section_with_aarch64_elf_section_data (sec);
8177 }
8178
8179 static bfd_boolean
8180 elfNN_aarch64_close_and_cleanup (bfd *abfd)
8181 {
8182 if (abfd->sections)
8183 bfd_map_over_sections (abfd,
8184 unrecord_section_via_map_over_sections, NULL);
8185
8186 return _bfd_elf_close_and_cleanup (abfd);
8187 }
8188
8189 static bfd_boolean
8190 elfNN_aarch64_bfd_free_cached_info (bfd *abfd)
8191 {
8192 if (abfd->sections)
8193 bfd_map_over_sections (abfd,
8194 unrecord_section_via_map_over_sections, NULL);
8195
8196 return _bfd_free_cached_info (abfd);
8197 }
8198
8199 /* Create dynamic sections. This is different from the ARM backend in that
8200 the got, plt, gotplt and their relocation sections are all created in the
8201 standard part of the bfd elf backend. */
8202
8203 static bfd_boolean
8204 elfNN_aarch64_create_dynamic_sections (bfd *dynobj,
8205 struct bfd_link_info *info)
8206 {
8207 /* We need to create .got section. */
8208 if (!aarch64_elf_create_got_section (dynobj, info))
8209 return FALSE;
8210
8211 return _bfd_elf_create_dynamic_sections (dynobj, info);
8212 }
8213
8214
8215 /* Allocate space in .plt, .got and associated reloc sections for
8216 dynamic relocs. */
8217
8218 static bfd_boolean
8219 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8220 {
8221 struct bfd_link_info *info;
8222 struct elf_aarch64_link_hash_table *htab;
8223 struct elf_aarch64_link_hash_entry *eh;
8224 struct elf_dyn_relocs *p;
8225
8226 /* An example of a bfd_link_hash_indirect symbol is versioned
8227 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8228 -> __gxx_personality_v0(bfd_link_hash_defined)
8229
8230 There is no need to process bfd_link_hash_indirect symbols here
8231 because we will also be presented with the concrete instance of
8232 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8233 called to copy all relevant data from the generic to the concrete
8234 symbol instance. */
8235 if (h->root.type == bfd_link_hash_indirect)
8236 return TRUE;
8237
8238 if (h->root.type == bfd_link_hash_warning)
8239 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8240
8241 info = (struct bfd_link_info *) inf;
8242 htab = elf_aarch64_hash_table (info);
8243
8244 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8245 here if it is defined and referenced in a non-shared object. */
8246 if (h->type == STT_GNU_IFUNC
8247 && h->def_regular)
8248 return TRUE;
8249 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
8250 {
8251 /* Make sure this symbol is output as a dynamic symbol.
8252 Undefined weak syms won't yet be marked as dynamic. */
8253 if (h->dynindx == -1 && !h->forced_local
8254 && h->root.type == bfd_link_hash_undefweak)
8255 {
8256 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8257 return FALSE;
8258 }
8259
8260 if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8261 {
8262 asection *s = htab->root.splt;
8263
8264 /* If this is the first .plt entry, make room for the special
8265 first entry. */
8266 if (s->size == 0)
8267 s->size += htab->plt_header_size;
8268
8269 h->plt.offset = s->size;
8270
8271 /* If this symbol is not defined in a regular file, and we are
8272 not generating a shared library, then set the symbol to this
8273 location in the .plt. This is required to make function
8274 pointers compare as equal between the normal executable and
8275 the shared library. */
8276 if (!bfd_link_pic (info) && !h->def_regular)
8277 {
8278 h->root.u.def.section = s;
8279 h->root.u.def.value = h->plt.offset;
8280 }
8281
8282 /* Make room for this entry. For now we only create the
8283 small model PLT entries. We later need to find a way
8284 of relaxing into these from the large model PLT entries. */
8285 s->size += PLT_SMALL_ENTRY_SIZE;
8286
8287 /* We also need to make an entry in the .got.plt section, which
8288 will be placed in the .got section by the linker script. */
8289 htab->root.sgotplt->size += GOT_ENTRY_SIZE;
8290
8291 /* We also need to make an entry in the .rela.plt section. */
8292 htab->root.srelplt->size += RELOC_SIZE (htab);
8293
8294 /* We need to ensure that all GOT entries that serve the PLT
8295 are consecutive with the special GOT slots [0] [1] and
8296 [2]. Any addtional relocations, such as
8297 R_AARCH64_TLSDESC, must be placed after the PLT related
8298 entries. We abuse the reloc_count such that during
8299 sizing we adjust reloc_count to indicate the number of
8300 PLT related reserved entries. In subsequent phases when
8301 filling in the contents of the reloc entries, PLT related
8302 entries are placed by computing their PLT index (0
8303 .. reloc_count). While other none PLT relocs are placed
8304 at the slot indicated by reloc_count and reloc_count is
8305 updated. */
8306
8307 htab->root.srelplt->reloc_count++;
8308 }
8309 else
8310 {
8311 h->plt.offset = (bfd_vma) - 1;
8312 h->needs_plt = 0;
8313 }
8314 }
8315 else
8316 {
8317 h->plt.offset = (bfd_vma) - 1;
8318 h->needs_plt = 0;
8319 }
8320
8321 eh = (struct elf_aarch64_link_hash_entry *) h;
8322 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8323
8324 if (h->got.refcount > 0)
8325 {
8326 bfd_boolean dyn;
8327 unsigned got_type = elf_aarch64_hash_entry (h)->got_type;
8328
8329 h->got.offset = (bfd_vma) - 1;
8330
8331 dyn = htab->root.dynamic_sections_created;
8332
8333 /* Make sure this symbol is output as a dynamic symbol.
8334 Undefined weak syms won't yet be marked as dynamic. */
8335 if (dyn && h->dynindx == -1 && !h->forced_local
8336 && h->root.type == bfd_link_hash_undefweak)
8337 {
8338 if (!bfd_elf_link_record_dynamic_symbol (info, h))
8339 return FALSE;
8340 }
8341
8342 if (got_type == GOT_UNKNOWN)
8343 {
8344 }
8345 else if (got_type == GOT_NORMAL)
8346 {
8347 h->got.offset = htab->root.sgot->size;
8348 htab->root.sgot->size += GOT_ENTRY_SIZE;
8349 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8350 || h->root.type != bfd_link_hash_undefweak)
8351 && (bfd_link_pic (info)
8352 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8353 /* Undefined weak symbol in static PIE resolves to 0 without
8354 any dynamic relocations. */
8355 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8356 {
8357 htab->root.srelgot->size += RELOC_SIZE (htab);
8358 }
8359 }
8360 else
8361 {
8362 int indx;
8363 if (got_type & GOT_TLSDESC_GD)
8364 {
8365 eh->tlsdesc_got_jump_table_offset =
8366 (htab->root.sgotplt->size
8367 - aarch64_compute_jump_table_size (htab));
8368 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8369 h->got.offset = (bfd_vma) - 2;
8370 }
8371
8372 if (got_type & GOT_TLS_GD)
8373 {
8374 h->got.offset = htab->root.sgot->size;
8375 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8376 }
8377
8378 if (got_type & GOT_TLS_IE)
8379 {
8380 h->got.offset = htab->root.sgot->size;
8381 htab->root.sgot->size += GOT_ENTRY_SIZE;
8382 }
8383
8384 indx = h && h->dynindx != -1 ? h->dynindx : 0;
8385 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8386 || h->root.type != bfd_link_hash_undefweak)
8387 && (!bfd_link_executable (info)
8388 || indx != 0
8389 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8390 {
8391 if (got_type & GOT_TLSDESC_GD)
8392 {
8393 htab->root.srelplt->size += RELOC_SIZE (htab);
8394 /* Note reloc_count not incremented here! We have
8395 already adjusted reloc_count for this relocation
8396 type. */
8397
8398 /* TLSDESC PLT is now needed, but not yet determined. */
8399 htab->tlsdesc_plt = (bfd_vma) - 1;
8400 }
8401
8402 if (got_type & GOT_TLS_GD)
8403 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8404
8405 if (got_type & GOT_TLS_IE)
8406 htab->root.srelgot->size += RELOC_SIZE (htab);
8407 }
8408 }
8409 }
8410 else
8411 {
8412 h->got.offset = (bfd_vma) - 1;
8413 }
8414
8415 if (eh->dyn_relocs == NULL)
8416 return TRUE;
8417
8418 /* In the shared -Bsymbolic case, discard space allocated for
8419 dynamic pc-relative relocs against symbols which turn out to be
8420 defined in regular objects. For the normal shared case, discard
8421 space for pc-relative relocs that have become local due to symbol
8422 visibility changes. */
8423
8424 if (bfd_link_pic (info))
8425 {
8426 /* Relocs that use pc_count are those that appear on a call
8427 insn, or certain REL relocs that can generated via assembly.
8428 We want calls to protected symbols to resolve directly to the
8429 function rather than going via the plt. If people want
8430 function pointer comparisons to work as expected then they
8431 should avoid writing weird assembly. */
8432 if (SYMBOL_CALLS_LOCAL (info, h))
8433 {
8434 struct elf_dyn_relocs **pp;
8435
8436 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;)
8437 {
8438 p->count -= p->pc_count;
8439 p->pc_count = 0;
8440 if (p->count == 0)
8441 *pp = p->next;
8442 else
8443 pp = &p->next;
8444 }
8445 }
8446
8447 /* Also discard relocs on undefined weak syms with non-default
8448 visibility. */
8449 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
8450 {
8451 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8452 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8453 eh->dyn_relocs = NULL;
8454
8455 /* Make sure undefined weak symbols are output as a dynamic
8456 symbol in PIEs. */
8457 else if (h->dynindx == -1
8458 && !h->forced_local
8459 && h->root.type == bfd_link_hash_undefweak
8460 && !bfd_elf_link_record_dynamic_symbol (info, h))
8461 return FALSE;
8462 }
8463
8464 }
8465 else if (ELIMINATE_COPY_RELOCS)
8466 {
8467 /* For the non-shared case, discard space for relocs against
8468 symbols which turn out to need copy relocs or are not
8469 dynamic. */
8470
8471 if (!h->non_got_ref
8472 && ((h->def_dynamic
8473 && !h->def_regular)
8474 || (htab->root.dynamic_sections_created
8475 && (h->root.type == bfd_link_hash_undefweak
8476 || h->root.type == bfd_link_hash_undefined))))
8477 {
8478 /* Make sure this symbol is output as a dynamic symbol.
8479 Undefined weak syms won't yet be marked as dynamic. */
8480 if (h->dynindx == -1
8481 && !h->forced_local
8482 && h->root.type == bfd_link_hash_undefweak
8483 && !bfd_elf_link_record_dynamic_symbol (info, h))
8484 return FALSE;
8485
8486 /* If that succeeded, we know we'll be keeping all the
8487 relocs. */
8488 if (h->dynindx != -1)
8489 goto keep;
8490 }
8491
8492 eh->dyn_relocs = NULL;
8493
8494 keep:;
8495 }
8496
8497 /* Finally, allocate space. */
8498 for (p = eh->dyn_relocs; p != NULL; p = p->next)
8499 {
8500 asection *sreloc;
8501
8502 sreloc = elf_section_data (p->sec)->sreloc;
8503
8504 BFD_ASSERT (sreloc != NULL);
8505
8506 sreloc->size += p->count * RELOC_SIZE (htab);
8507 }
8508
8509 return TRUE;
8510 }
8511
8512 /* Allocate space in .plt, .got and associated reloc sections for
8513 ifunc dynamic relocs. */
8514
8515 static bfd_boolean
8516 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h,
8517 void *inf)
8518 {
8519 struct bfd_link_info *info;
8520 struct elf_aarch64_link_hash_table *htab;
8521 struct elf_aarch64_link_hash_entry *eh;
8522
8523 /* An example of a bfd_link_hash_indirect symbol is versioned
8524 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
8525 -> __gxx_personality_v0(bfd_link_hash_defined)
8526
8527 There is no need to process bfd_link_hash_indirect symbols here
8528 because we will also be presented with the concrete instance of
8529 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been
8530 called to copy all relevant data from the generic to the concrete
8531 symbol instance. */
8532 if (h->root.type == bfd_link_hash_indirect)
8533 return TRUE;
8534
8535 if (h->root.type == bfd_link_hash_warning)
8536 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8537
8538 info = (struct bfd_link_info *) inf;
8539 htab = elf_aarch64_hash_table (info);
8540
8541 eh = (struct elf_aarch64_link_hash_entry *) h;
8542
8543 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
8544 here if it is defined and referenced in a non-shared object. */
8545 if (h->type == STT_GNU_IFUNC
8546 && h->def_regular)
8547 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
8548 &eh->dyn_relocs,
8549 NULL,
8550 htab->plt_entry_size,
8551 htab->plt_header_size,
8552 GOT_ENTRY_SIZE,
8553 FALSE);
8554 return TRUE;
8555 }
8556
8557 /* Allocate space in .plt, .got and associated reloc sections for
8558 local dynamic relocs. */
8559
8560 static bfd_boolean
8561 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf)
8562 {
8563 struct elf_link_hash_entry *h
8564 = (struct elf_link_hash_entry *) *slot;
8565
8566 if (h->type != STT_GNU_IFUNC
8567 || !h->def_regular
8568 || !h->ref_regular
8569 || !h->forced_local
8570 || h->root.type != bfd_link_hash_defined)
8571 abort ();
8572
8573 return elfNN_aarch64_allocate_dynrelocs (h, inf);
8574 }
8575
8576 /* Allocate space in .plt, .got and associated reloc sections for
8577 local ifunc dynamic relocs. */
8578
8579 static bfd_boolean
8580 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf)
8581 {
8582 struct elf_link_hash_entry *h
8583 = (struct elf_link_hash_entry *) *slot;
8584
8585 if (h->type != STT_GNU_IFUNC
8586 || !h->def_regular
8587 || !h->ref_regular
8588 || !h->forced_local
8589 || h->root.type != bfd_link_hash_defined)
8590 abort ();
8591
8592 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf);
8593 }
8594
8595 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
8596 read-only sections. */
8597
8598 static bfd_boolean
8599 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
8600 {
8601 asection *sec;
8602
8603 if (h->root.type == bfd_link_hash_indirect)
8604 return TRUE;
8605
8606 sec = readonly_dynrelocs (h);
8607 if (sec != NULL)
8608 {
8609 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
8610
8611 info->flags |= DF_TEXTREL;
8612 info->callbacks->minfo
8613 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
8614 sec->owner, h->root.root.string, sec);
8615
8616 /* Not an error, just cut short the traversal. */
8617 return FALSE;
8618 }
8619 return TRUE;
8620 }
8621
8622 /* This is the most important function of all . Innocuosly named
8623 though ! */
8624
8625 static bfd_boolean
8626 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
8627 struct bfd_link_info *info)
8628 {
8629 struct elf_aarch64_link_hash_table *htab;
8630 bfd *dynobj;
8631 asection *s;
8632 bfd_boolean relocs;
8633 bfd *ibfd;
8634
8635 htab = elf_aarch64_hash_table ((info));
8636 dynobj = htab->root.dynobj;
8637
8638 BFD_ASSERT (dynobj != NULL);
8639
8640 if (htab->root.dynamic_sections_created)
8641 {
8642 if (bfd_link_executable (info) && !info->nointerp)
8643 {
8644 s = bfd_get_linker_section (dynobj, ".interp");
8645 if (s == NULL)
8646 abort ();
8647 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8648 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8649 }
8650 }
8651
8652 /* Set up .got offsets for local syms, and space for local dynamic
8653 relocs. */
8654 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8655 {
8656 struct elf_aarch64_local_symbol *locals = NULL;
8657 Elf_Internal_Shdr *symtab_hdr;
8658 asection *srel;
8659 unsigned int i;
8660
8661 if (!is_aarch64_elf (ibfd))
8662 continue;
8663
8664 for (s = ibfd->sections; s != NULL; s = s->next)
8665 {
8666 struct elf_dyn_relocs *p;
8667
8668 for (p = (struct elf_dyn_relocs *)
8669 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
8670 {
8671 if (!bfd_is_abs_section (p->sec)
8672 && bfd_is_abs_section (p->sec->output_section))
8673 {
8674 /* Input section has been discarded, either because
8675 it is a copy of a linkonce section or due to
8676 linker script /DISCARD/, so we'll be discarding
8677 the relocs too. */
8678 }
8679 else if (p->count != 0)
8680 {
8681 srel = elf_section_data (p->sec)->sreloc;
8682 srel->size += p->count * RELOC_SIZE (htab);
8683 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
8684 info->flags |= DF_TEXTREL;
8685 }
8686 }
8687 }
8688
8689 locals = elf_aarch64_locals (ibfd);
8690 if (!locals)
8691 continue;
8692
8693 symtab_hdr = &elf_symtab_hdr (ibfd);
8694 srel = htab->root.srelgot;
8695 for (i = 0; i < symtab_hdr->sh_info; i++)
8696 {
8697 locals[i].got_offset = (bfd_vma) - 1;
8698 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1;
8699 if (locals[i].got_refcount > 0)
8700 {
8701 unsigned got_type = locals[i].got_type;
8702 if (got_type & GOT_TLSDESC_GD)
8703 {
8704 locals[i].tlsdesc_got_jump_table_offset =
8705 (htab->root.sgotplt->size
8706 - aarch64_compute_jump_table_size (htab));
8707 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2;
8708 locals[i].got_offset = (bfd_vma) - 2;
8709 }
8710
8711 if (got_type & GOT_TLS_GD)
8712 {
8713 locals[i].got_offset = htab->root.sgot->size;
8714 htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
8715 }
8716
8717 if (got_type & GOT_TLS_IE
8718 || got_type & GOT_NORMAL)
8719 {
8720 locals[i].got_offset = htab->root.sgot->size;
8721 htab->root.sgot->size += GOT_ENTRY_SIZE;
8722 }
8723
8724 if (got_type == GOT_UNKNOWN)
8725 {
8726 }
8727
8728 if (bfd_link_pic (info))
8729 {
8730 if (got_type & GOT_TLSDESC_GD)
8731 {
8732 htab->root.srelplt->size += RELOC_SIZE (htab);
8733 /* Note RELOC_COUNT not incremented here! */
8734 htab->tlsdesc_plt = (bfd_vma) - 1;
8735 }
8736
8737 if (got_type & GOT_TLS_GD)
8738 htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
8739
8740 if (got_type & GOT_TLS_IE
8741 || got_type & GOT_NORMAL)
8742 htab->root.srelgot->size += RELOC_SIZE (htab);
8743 }
8744 }
8745 else
8746 {
8747 locals[i].got_refcount = (bfd_vma) - 1;
8748 }
8749 }
8750 }
8751
8752
8753 /* Allocate global sym .plt and .got entries, and space for global
8754 sym dynamic relocs. */
8755 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs,
8756 info);
8757
8758 /* Allocate global ifunc sym .plt and .got entries, and space for global
8759 ifunc sym dynamic relocs. */
8760 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs,
8761 info);
8762
8763 /* Allocate .plt and .got entries, and space for local symbols. */
8764 htab_traverse (htab->loc_hash_table,
8765 elfNN_aarch64_allocate_local_dynrelocs,
8766 info);
8767
8768 /* Allocate .plt and .got entries, and space for local ifunc symbols. */
8769 htab_traverse (htab->loc_hash_table,
8770 elfNN_aarch64_allocate_local_ifunc_dynrelocs,
8771 info);
8772
8773 /* For every jump slot reserved in the sgotplt, reloc_count is
8774 incremented. However, when we reserve space for TLS descriptors,
8775 it's not incremented, so in order to compute the space reserved
8776 for them, it suffices to multiply the reloc count by the jump
8777 slot size. */
8778
8779 if (htab->root.srelplt)
8780 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab);
8781
8782 if (htab->tlsdesc_plt)
8783 {
8784 if (htab->root.splt->size == 0)
8785 htab->root.splt->size += PLT_ENTRY_SIZE;
8786
8787 htab->tlsdesc_plt = htab->root.splt->size;
8788 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE;
8789
8790 /* If we're not using lazy TLS relocations, don't generate the
8791 GOT entry required. */
8792 if (!(info->flags & DF_BIND_NOW))
8793 {
8794 htab->dt_tlsdesc_got = htab->root.sgot->size;
8795 htab->root.sgot->size += GOT_ENTRY_SIZE;
8796 }
8797 }
8798
8799 /* Init mapping symbols information to use later to distingush between
8800 code and data while scanning for errata. */
8801 if (htab->fix_erratum_835769 || htab->fix_erratum_843419)
8802 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8803 {
8804 if (!is_aarch64_elf (ibfd))
8805 continue;
8806 bfd_elfNN_aarch64_init_maps (ibfd);
8807 }
8808
8809 /* We now have determined the sizes of the various dynamic sections.
8810 Allocate memory for them. */
8811 relocs = FALSE;
8812 for (s = dynobj->sections; s != NULL; s = s->next)
8813 {
8814 if ((s->flags & SEC_LINKER_CREATED) == 0)
8815 continue;
8816
8817 if (s == htab->root.splt
8818 || s == htab->root.sgot
8819 || s == htab->root.sgotplt
8820 || s == htab->root.iplt
8821 || s == htab->root.igotplt
8822 || s == htab->root.sdynbss
8823 || s == htab->root.sdynrelro)
8824 {
8825 /* Strip this section if we don't need it; see the
8826 comment below. */
8827 }
8828 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
8829 {
8830 if (s->size != 0 && s != htab->root.srelplt)
8831 relocs = TRUE;
8832
8833 /* We use the reloc_count field as a counter if we need
8834 to copy relocs into the output file. */
8835 if (s != htab->root.srelplt)
8836 s->reloc_count = 0;
8837 }
8838 else
8839 {
8840 /* It's not one of our sections, so don't allocate space. */
8841 continue;
8842 }
8843
8844 if (s->size == 0)
8845 {
8846 /* If we don't need this section, strip it from the
8847 output file. This is mostly to handle .rela.bss and
8848 .rela.plt. We must create both sections in
8849 create_dynamic_sections, because they must be created
8850 before the linker maps input sections to output
8851 sections. The linker does that before
8852 adjust_dynamic_symbol is called, and it is that
8853 function which decides whether anything needs to go
8854 into these sections. */
8855 s->flags |= SEC_EXCLUDE;
8856 continue;
8857 }
8858
8859 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8860 continue;
8861
8862 /* Allocate memory for the section contents. We use bfd_zalloc
8863 here in case unused entries are not reclaimed before the
8864 section's contents are written out. This should not happen,
8865 but this way if it does, we get a R_AARCH64_NONE reloc instead
8866 of garbage. */
8867 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8868 if (s->contents == NULL)
8869 return FALSE;
8870 }
8871
8872 if (htab->root.dynamic_sections_created)
8873 {
8874 /* Add some entries to the .dynamic section. We fill in the
8875 values later, in elfNN_aarch64_finish_dynamic_sections, but we
8876 must add the entries now so that we get the correct size for
8877 the .dynamic section. The DT_DEBUG entry is filled in by the
8878 dynamic linker and used by the debugger. */
8879 #define add_dynamic_entry(TAG, VAL) \
8880 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8881
8882 if (bfd_link_executable (info))
8883 {
8884 if (!add_dynamic_entry (DT_DEBUG, 0))
8885 return FALSE;
8886 }
8887
8888 if (htab->root.splt->size != 0)
8889 {
8890 if (!add_dynamic_entry (DT_PLTGOT, 0)
8891 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8892 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
8893 || !add_dynamic_entry (DT_JMPREL, 0))
8894 return FALSE;
8895
8896 if (htab->tlsdesc_plt
8897 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
8898 || !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
8899 return FALSE;
8900 }
8901
8902 if (relocs)
8903 {
8904 if (!add_dynamic_entry (DT_RELA, 0)
8905 || !add_dynamic_entry (DT_RELASZ, 0)
8906 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8907 return FALSE;
8908
8909 /* If any dynamic relocs apply to a read-only section,
8910 then we need a DT_TEXTREL entry. */
8911 if ((info->flags & DF_TEXTREL) == 0)
8912 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
8913
8914 if ((info->flags & DF_TEXTREL) != 0)
8915 {
8916 if (!add_dynamic_entry (DT_TEXTREL, 0))
8917 return FALSE;
8918 }
8919 }
8920 }
8921 #undef add_dynamic_entry
8922
8923 return TRUE;
8924 }
8925
8926 static inline void
8927 elf_aarch64_update_plt_entry (bfd *output_bfd,
8928 bfd_reloc_code_real_type r_type,
8929 bfd_byte *plt_entry, bfd_vma value)
8930 {
8931 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type);
8932
8933 /* FIXME: We should check the return value from this function call. */
8934 (void) _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
8935 }
8936
8937 static void
8938 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h,
8939 struct elf_aarch64_link_hash_table
8940 *htab, bfd *output_bfd,
8941 struct bfd_link_info *info)
8942 {
8943 bfd_byte *plt_entry;
8944 bfd_vma plt_index;
8945 bfd_vma got_offset;
8946 bfd_vma gotplt_entry_address;
8947 bfd_vma plt_entry_address;
8948 Elf_Internal_Rela rela;
8949 bfd_byte *loc;
8950 asection *plt, *gotplt, *relplt;
8951
8952 /* When building a static executable, use .iplt, .igot.plt and
8953 .rela.iplt sections for STT_GNU_IFUNC symbols. */
8954 if (htab->root.splt != NULL)
8955 {
8956 plt = htab->root.splt;
8957 gotplt = htab->root.sgotplt;
8958 relplt = htab->root.srelplt;
8959 }
8960 else
8961 {
8962 plt = htab->root.iplt;
8963 gotplt = htab->root.igotplt;
8964 relplt = htab->root.irelplt;
8965 }
8966
8967 /* Get the index in the procedure linkage table which
8968 corresponds to this symbol. This is the index of this symbol
8969 in all the symbols for which we are making plt entries. The
8970 first entry in the procedure linkage table is reserved.
8971
8972 Get the offset into the .got table of the entry that
8973 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
8974 bytes. The first three are reserved for the dynamic linker.
8975
8976 For static executables, we don't reserve anything. */
8977
8978 if (plt == htab->root.splt)
8979 {
8980 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
8981 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
8982 }
8983 else
8984 {
8985 plt_index = h->plt.offset / htab->plt_entry_size;
8986 got_offset = plt_index * GOT_ENTRY_SIZE;
8987 }
8988
8989 plt_entry = plt->contents + h->plt.offset;
8990 plt_entry_address = plt->output_section->vma
8991 + plt->output_offset + h->plt.offset;
8992 gotplt_entry_address = gotplt->output_section->vma +
8993 gotplt->output_offset + got_offset;
8994
8995 /* Copy in the boiler-plate for the PLTn entry. */
8996 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
8997
8998 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
8999 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9000 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9001 plt_entry,
9002 PG (gotplt_entry_address) -
9003 PG (plt_entry_address));
9004
9005 /* Fill in the lo12 bits for the load from the pltgot. */
9006 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9007 plt_entry + 4,
9008 PG_OFFSET (gotplt_entry_address));
9009
9010 /* Fill in the lo12 bits for the add from the pltgot entry. */
9011 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9012 plt_entry + 8,
9013 PG_OFFSET (gotplt_entry_address));
9014
9015 /* All the GOTPLT Entries are essentially initialized to PLT0. */
9016 bfd_put_NN (output_bfd,
9017 plt->output_section->vma + plt->output_offset,
9018 gotplt->contents + got_offset);
9019
9020 rela.r_offset = gotplt_entry_address;
9021
9022 if (h->dynindx == -1
9023 || ((bfd_link_executable (info)
9024 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9025 && h->def_regular
9026 && h->type == STT_GNU_IFUNC))
9027 {
9028 /* If an STT_GNU_IFUNC symbol is locally defined, generate
9029 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */
9030 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE));
9031 rela.r_addend = (h->root.u.def.value
9032 + h->root.u.def.section->output_section->vma
9033 + h->root.u.def.section->output_offset);
9034 }
9035 else
9036 {
9037 /* Fill in the entry in the .rela.plt section. */
9038 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT));
9039 rela.r_addend = 0;
9040 }
9041
9042 /* Compute the relocation entry to used based on PLT index and do
9043 not adjust reloc_count. The reloc_count has already been adjusted
9044 to account for this entry. */
9045 loc = relplt->contents + plt_index * RELOC_SIZE (htab);
9046 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9047 }
9048
9049 /* Size sections even though they're not dynamic. We use it to setup
9050 _TLS_MODULE_BASE_, if needed. */
9051
9052 static bfd_boolean
9053 elfNN_aarch64_always_size_sections (bfd *output_bfd,
9054 struct bfd_link_info *info)
9055 {
9056 asection *tls_sec;
9057
9058 if (bfd_link_relocatable (info))
9059 return TRUE;
9060
9061 tls_sec = elf_hash_table (info)->tls_sec;
9062
9063 if (tls_sec)
9064 {
9065 struct elf_link_hash_entry *tlsbase;
9066
9067 tlsbase = elf_link_hash_lookup (elf_hash_table (info),
9068 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
9069
9070 if (tlsbase)
9071 {
9072 struct bfd_link_hash_entry *h = NULL;
9073 const struct elf_backend_data *bed =
9074 get_elf_backend_data (output_bfd);
9075
9076 if (!(_bfd_generic_link_add_one_symbol
9077 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
9078 tls_sec, 0, NULL, FALSE, bed->collect, &h)))
9079 return FALSE;
9080
9081 tlsbase->type = STT_TLS;
9082 tlsbase = (struct elf_link_hash_entry *) h;
9083 tlsbase->def_regular = 1;
9084 tlsbase->other = STV_HIDDEN;
9085 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
9086 }
9087 }
9088
9089 return TRUE;
9090 }
9091
9092 /* Finish up dynamic symbol handling. We set the contents of various
9093 dynamic sections here. */
9094
9095 static bfd_boolean
9096 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd,
9097 struct bfd_link_info *info,
9098 struct elf_link_hash_entry *h,
9099 Elf_Internal_Sym *sym)
9100 {
9101 struct elf_aarch64_link_hash_table *htab;
9102 htab = elf_aarch64_hash_table (info);
9103
9104 if (h->plt.offset != (bfd_vma) - 1)
9105 {
9106 asection *plt, *gotplt, *relplt;
9107
9108 /* This symbol has an entry in the procedure linkage table. Set
9109 it up. */
9110
9111 /* When building a static executable, use .iplt, .igot.plt and
9112 .rela.iplt sections for STT_GNU_IFUNC symbols. */
9113 if (htab->root.splt != NULL)
9114 {
9115 plt = htab->root.splt;
9116 gotplt = htab->root.sgotplt;
9117 relplt = htab->root.srelplt;
9118 }
9119 else
9120 {
9121 plt = htab->root.iplt;
9122 gotplt = htab->root.igotplt;
9123 relplt = htab->root.irelplt;
9124 }
9125
9126 /* This symbol has an entry in the procedure linkage table. Set
9127 it up. */
9128 if ((h->dynindx == -1
9129 && !((h->forced_local || bfd_link_executable (info))
9130 && h->def_regular
9131 && h->type == STT_GNU_IFUNC))
9132 || plt == NULL
9133 || gotplt == NULL
9134 || relplt == NULL)
9135 return FALSE;
9136
9137 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info);
9138 if (!h->def_regular)
9139 {
9140 /* Mark the symbol as undefined, rather than as defined in
9141 the .plt section. */
9142 sym->st_shndx = SHN_UNDEF;
9143 /* If the symbol is weak we need to clear the value.
9144 Otherwise, the PLT entry would provide a definition for
9145 the symbol even if the symbol wasn't defined anywhere,
9146 and so the symbol would never be NULL. Leave the value if
9147 there were any relocations where pointer equality matters
9148 (this is a clue for the dynamic linker, to make function
9149 pointer comparisons work between an application and shared
9150 library). */
9151 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
9152 sym->st_value = 0;
9153 }
9154 }
9155
9156 if (h->got.offset != (bfd_vma) - 1
9157 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL
9158 /* Undefined weak symbol in static PIE resolves to 0 without
9159 any dynamic relocations. */
9160 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9161 {
9162 Elf_Internal_Rela rela;
9163 bfd_byte *loc;
9164
9165 /* This symbol has an entry in the global offset table. Set it
9166 up. */
9167 if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
9168 abort ();
9169
9170 rela.r_offset = (htab->root.sgot->output_section->vma
9171 + htab->root.sgot->output_offset
9172 + (h->got.offset & ~(bfd_vma) 1));
9173
9174 if (h->def_regular
9175 && h->type == STT_GNU_IFUNC)
9176 {
9177 if (bfd_link_pic (info))
9178 {
9179 /* Generate R_AARCH64_GLOB_DAT. */
9180 goto do_glob_dat;
9181 }
9182 else
9183 {
9184 asection *plt;
9185
9186 if (!h->pointer_equality_needed)
9187 abort ();
9188
9189 /* For non-shared object, we can't use .got.plt, which
9190 contains the real function address if we need pointer
9191 equality. We load the GOT entry with the PLT entry. */
9192 plt = htab->root.splt ? htab->root.splt : htab->root.iplt;
9193 bfd_put_NN (output_bfd, (plt->output_section->vma
9194 + plt->output_offset
9195 + h->plt.offset),
9196 htab->root.sgot->contents
9197 + (h->got.offset & ~(bfd_vma) 1));
9198 return TRUE;
9199 }
9200 }
9201 else if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
9202 {
9203 if (!(h->def_regular || ELF_COMMON_DEF_P (h)))
9204 return FALSE;
9205
9206 BFD_ASSERT ((h->got.offset & 1) != 0);
9207 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE));
9208 rela.r_addend = (h->root.u.def.value
9209 + h->root.u.def.section->output_section->vma
9210 + h->root.u.def.section->output_offset);
9211 }
9212 else
9213 {
9214 do_glob_dat:
9215 BFD_ASSERT ((h->got.offset & 1) == 0);
9216 bfd_put_NN (output_bfd, (bfd_vma) 0,
9217 htab->root.sgot->contents + h->got.offset);
9218 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT));
9219 rela.r_addend = 0;
9220 }
9221
9222 loc = htab->root.srelgot->contents;
9223 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
9224 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9225 }
9226
9227 if (h->needs_copy)
9228 {
9229 Elf_Internal_Rela rela;
9230 asection *s;
9231 bfd_byte *loc;
9232
9233 /* This symbol needs a copy reloc. Set it up. */
9234 if (h->dynindx == -1
9235 || (h->root.type != bfd_link_hash_defined
9236 && h->root.type != bfd_link_hash_defweak)
9237 || htab->root.srelbss == NULL)
9238 abort ();
9239
9240 rela.r_offset = (h->root.u.def.value
9241 + h->root.u.def.section->output_section->vma
9242 + h->root.u.def.section->output_offset);
9243 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY));
9244 rela.r_addend = 0;
9245 if (h->root.u.def.section == htab->root.sdynrelro)
9246 s = htab->root.sreldynrelro;
9247 else
9248 s = htab->root.srelbss;
9249 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9250 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
9251 }
9252
9253 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
9254 be NULL for local symbols. */
9255 if (sym != NULL
9256 && (h == elf_hash_table (info)->hdynamic
9257 || h == elf_hash_table (info)->hgot))
9258 sym->st_shndx = SHN_ABS;
9259
9260 return TRUE;
9261 }
9262
9263 /* Finish up local dynamic symbol handling. We set the contents of
9264 various dynamic sections here. */
9265
9266 static bfd_boolean
9267 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf)
9268 {
9269 struct elf_link_hash_entry *h
9270 = (struct elf_link_hash_entry *) *slot;
9271 struct bfd_link_info *info
9272 = (struct bfd_link_info *) inf;
9273
9274 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd,
9275 info, h, NULL);
9276 }
9277
9278 static void
9279 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
9280 struct elf_aarch64_link_hash_table
9281 *htab)
9282 {
9283 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between
9284 small and large plts and at the minute just generates
9285 the small PLT. */
9286
9287 /* PLT0 of the small PLT looks like this in ELF64 -
9288 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack.
9289 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT
9290 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the
9291 // symbol resolver
9292 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the
9293 // GOTPLT entry for this.
9294 br x17
9295 PLT0 will be slightly different in ELF32 due to different got entry
9296 size. */
9297 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */
9298 bfd_vma plt_base;
9299
9300
9301 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry,
9302 PLT_ENTRY_SIZE);
9303 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
9304 PLT_ENTRY_SIZE;
9305
9306 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma
9307 + htab->root.sgotplt->output_offset
9308 + GOT_ENTRY_SIZE * 2);
9309
9310 plt_base = htab->root.splt->output_section->vma +
9311 htab->root.splt->output_offset;
9312
9313 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8.
9314 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */
9315 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9316 htab->root.splt->contents + 4,
9317 PG (plt_got_2nd_ent) - PG (plt_base + 4));
9318
9319 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12,
9320 htab->root.splt->contents + 8,
9321 PG_OFFSET (plt_got_2nd_ent));
9322
9323 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12,
9324 htab->root.splt->contents + 12,
9325 PG_OFFSET (plt_got_2nd_ent));
9326 }
9327
9328 static bfd_boolean
9329 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd,
9330 struct bfd_link_info *info)
9331 {
9332 struct elf_aarch64_link_hash_table *htab;
9333 bfd *dynobj;
9334 asection *sdyn;
9335
9336 htab = elf_aarch64_hash_table (info);
9337 dynobj = htab->root.dynobj;
9338 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
9339
9340 if (htab->root.dynamic_sections_created)
9341 {
9342 ElfNN_External_Dyn *dyncon, *dynconend;
9343
9344 if (sdyn == NULL || htab->root.sgot == NULL)
9345 abort ();
9346
9347 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
9348 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
9349 for (; dyncon < dynconend; dyncon++)
9350 {
9351 Elf_Internal_Dyn dyn;
9352 asection *s;
9353
9354 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
9355
9356 switch (dyn.d_tag)
9357 {
9358 default:
9359 continue;
9360
9361 case DT_PLTGOT:
9362 s = htab->root.sgotplt;
9363 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9364 break;
9365
9366 case DT_JMPREL:
9367 s = htab->root.srelplt;
9368 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
9369 break;
9370
9371 case DT_PLTRELSZ:
9372 s = htab->root.srelplt;
9373 dyn.d_un.d_val = s->size;
9374 break;
9375
9376 case DT_TLSDESC_PLT:
9377 s = htab->root.splt;
9378 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9379 + htab->tlsdesc_plt;
9380 break;
9381
9382 case DT_TLSDESC_GOT:
9383 s = htab->root.sgot;
9384 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
9385 + htab->dt_tlsdesc_got;
9386 break;
9387 }
9388
9389 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
9390 }
9391
9392 }
9393
9394 /* Fill in the special first entry in the procedure linkage table. */
9395 if (htab->root.splt && htab->root.splt->size > 0)
9396 {
9397 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab);
9398
9399 elf_section_data (htab->root.splt->output_section)->
9400 this_hdr.sh_entsize = htab->plt_entry_size;
9401
9402
9403 if (htab->tlsdesc_plt)
9404 {
9405 bfd_put_NN (output_bfd, (bfd_vma) 0,
9406 htab->root.sgot->contents + htab->dt_tlsdesc_got);
9407
9408 memcpy (htab->root.splt->contents + htab->tlsdesc_plt,
9409 elfNN_aarch64_tlsdesc_small_plt_entry,
9410 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry));
9411
9412 {
9413 bfd_vma adrp1_addr =
9414 htab->root.splt->output_section->vma
9415 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4;
9416
9417 bfd_vma adrp2_addr = adrp1_addr + 4;
9418
9419 bfd_vma got_addr =
9420 htab->root.sgot->output_section->vma
9421 + htab->root.sgot->output_offset;
9422
9423 bfd_vma pltgot_addr =
9424 htab->root.sgotplt->output_section->vma
9425 + htab->root.sgotplt->output_offset;
9426
9427 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got;
9428
9429 bfd_byte *plt_entry =
9430 htab->root.splt->contents + htab->tlsdesc_plt;
9431
9432 /* adrp x2, DT_TLSDESC_GOT */
9433 elf_aarch64_update_plt_entry (output_bfd,
9434 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9435 plt_entry + 4,
9436 (PG (dt_tlsdesc_got)
9437 - PG (adrp1_addr)));
9438
9439 /* adrp x3, 0 */
9440 elf_aarch64_update_plt_entry (output_bfd,
9441 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
9442 plt_entry + 8,
9443 (PG (pltgot_addr)
9444 - PG (adrp2_addr)));
9445
9446 /* ldr x2, [x2, #0] */
9447 elf_aarch64_update_plt_entry (output_bfd,
9448 BFD_RELOC_AARCH64_LDSTNN_LO12,
9449 plt_entry + 12,
9450 PG_OFFSET (dt_tlsdesc_got));
9451
9452 /* add x3, x3, 0 */
9453 elf_aarch64_update_plt_entry (output_bfd,
9454 BFD_RELOC_AARCH64_ADD_LO12,
9455 plt_entry + 16,
9456 PG_OFFSET (pltgot_addr));
9457 }
9458 }
9459 }
9460
9461 if (htab->root.sgotplt)
9462 {
9463 if (bfd_is_abs_section (htab->root.sgotplt->output_section))
9464 {
9465 _bfd_error_handler
9466 (_("discarded output section: `%pA'"), htab->root.sgotplt);
9467 return FALSE;
9468 }
9469
9470 /* Fill in the first three entries in the global offset table. */
9471 if (htab->root.sgotplt->size > 0)
9472 {
9473 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
9474
9475 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
9476 bfd_put_NN (output_bfd,
9477 (bfd_vma) 0,
9478 htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
9479 bfd_put_NN (output_bfd,
9480 (bfd_vma) 0,
9481 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
9482 }
9483
9484 if (htab->root.sgot)
9485 {
9486 if (htab->root.sgot->size > 0)
9487 {
9488 bfd_vma addr =
9489 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
9490 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
9491 }
9492 }
9493
9494 elf_section_data (htab->root.sgotplt->output_section)->
9495 this_hdr.sh_entsize = GOT_ENTRY_SIZE;
9496 }
9497
9498 if (htab->root.sgot && htab->root.sgot->size > 0)
9499 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
9500 = GOT_ENTRY_SIZE;
9501
9502 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
9503 htab_traverse (htab->loc_hash_table,
9504 elfNN_aarch64_finish_local_dynamic_symbol,
9505 info);
9506
9507 return TRUE;
9508 }
9509
9510 /* Return address for Ith PLT stub in section PLT, for relocation REL
9511 or (bfd_vma) -1 if it should not be included. */
9512
9513 static bfd_vma
9514 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt,
9515 const arelent *rel ATTRIBUTE_UNUSED)
9516 {
9517 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
9518 }
9519
9520 /* Returns TRUE if NAME is an AArch64 mapping symbol.
9521 The ARM ELF standard defines $x (for A64 code) and $d (for data).
9522 It also allows a period initiated suffix to be added to the symbol, ie:
9523 "$[adtx]\.[:sym_char]+". */
9524
9525 static bfd_boolean
9526 is_aarch64_mapping_symbol (const char * name)
9527 {
9528 return name != NULL /* Paranoia. */
9529 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
9530 the mapping symbols could have acquired a prefix.
9531 We do not support this here, since such symbols no
9532 longer conform to the ARM ELF ABI. */
9533 && (name[1] == 'd' || name[1] == 'x')
9534 && (name[2] == 0 || name[2] == '.');
9535 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
9536 any characters that follow the period are legal characters for the body
9537 of a symbol's name. For now we just assume that this is the case. */
9538 }
9539
9540 /* Make sure that mapping symbols in object files are not removed via the
9541 "strip --strip-unneeded" tool. These symbols might needed in order to
9542 correctly generate linked files. Once an object file has been linked,
9543 it should be safe to remove them. */
9544
9545 static void
9546 elfNN_aarch64_backend_symbol_processing (bfd *abfd, asymbol *sym)
9547 {
9548 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
9549 && sym->section != bfd_abs_section_ptr
9550 && is_aarch64_mapping_symbol (sym->name))
9551 sym->flags |= BSF_KEEP;
9552 }
9553
9554
9555 /* We use this so we can override certain functions
9556 (though currently we don't). */
9557
9558 const struct elf_size_info elfNN_aarch64_size_info =
9559 {
9560 sizeof (ElfNN_External_Ehdr),
9561 sizeof (ElfNN_External_Phdr),
9562 sizeof (ElfNN_External_Shdr),
9563 sizeof (ElfNN_External_Rel),
9564 sizeof (ElfNN_External_Rela),
9565 sizeof (ElfNN_External_Sym),
9566 sizeof (ElfNN_External_Dyn),
9567 sizeof (Elf_External_Note),
9568 4, /* Hash table entry size. */
9569 1, /* Internal relocs per external relocs. */
9570 ARCH_SIZE, /* Arch size. */
9571 LOG_FILE_ALIGN, /* Log_file_align. */
9572 ELFCLASSNN, EV_CURRENT,
9573 bfd_elfNN_write_out_phdrs,
9574 bfd_elfNN_write_shdrs_and_ehdr,
9575 bfd_elfNN_checksum_contents,
9576 bfd_elfNN_write_relocs,
9577 bfd_elfNN_swap_symbol_in,
9578 bfd_elfNN_swap_symbol_out,
9579 bfd_elfNN_slurp_reloc_table,
9580 bfd_elfNN_slurp_symbol_table,
9581 bfd_elfNN_swap_dyn_in,
9582 bfd_elfNN_swap_dyn_out,
9583 bfd_elfNN_swap_reloc_in,
9584 bfd_elfNN_swap_reloc_out,
9585 bfd_elfNN_swap_reloca_in,
9586 bfd_elfNN_swap_reloca_out
9587 };
9588
9589 #define ELF_ARCH bfd_arch_aarch64
9590 #define ELF_MACHINE_CODE EM_AARCH64
9591 #define ELF_MAXPAGESIZE 0x10000
9592 #define ELF_MINPAGESIZE 0x1000
9593 #define ELF_COMMONPAGESIZE 0x1000
9594
9595 #define bfd_elfNN_close_and_cleanup \
9596 elfNN_aarch64_close_and_cleanup
9597
9598 #define bfd_elfNN_bfd_free_cached_info \
9599 elfNN_aarch64_bfd_free_cached_info
9600
9601 #define bfd_elfNN_bfd_is_target_special_symbol \
9602 elfNN_aarch64_is_target_special_symbol
9603
9604 #define bfd_elfNN_bfd_link_hash_table_create \
9605 elfNN_aarch64_link_hash_table_create
9606
9607 #define bfd_elfNN_bfd_merge_private_bfd_data \
9608 elfNN_aarch64_merge_private_bfd_data
9609
9610 #define bfd_elfNN_bfd_print_private_bfd_data \
9611 elfNN_aarch64_print_private_bfd_data
9612
9613 #define bfd_elfNN_bfd_reloc_type_lookup \
9614 elfNN_aarch64_reloc_type_lookup
9615
9616 #define bfd_elfNN_bfd_reloc_name_lookup \
9617 elfNN_aarch64_reloc_name_lookup
9618
9619 #define bfd_elfNN_bfd_set_private_flags \
9620 elfNN_aarch64_set_private_flags
9621
9622 #define bfd_elfNN_find_inliner_info \
9623 elfNN_aarch64_find_inliner_info
9624
9625 #define bfd_elfNN_find_nearest_line \
9626 elfNN_aarch64_find_nearest_line
9627
9628 #define bfd_elfNN_mkobject \
9629 elfNN_aarch64_mkobject
9630
9631 #define bfd_elfNN_new_section_hook \
9632 elfNN_aarch64_new_section_hook
9633
9634 #define elf_backend_adjust_dynamic_symbol \
9635 elfNN_aarch64_adjust_dynamic_symbol
9636
9637 #define elf_backend_always_size_sections \
9638 elfNN_aarch64_always_size_sections
9639
9640 #define elf_backend_check_relocs \
9641 elfNN_aarch64_check_relocs
9642
9643 #define elf_backend_copy_indirect_symbol \
9644 elfNN_aarch64_copy_indirect_symbol
9645
9646 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
9647 to them in our hash. */
9648 #define elf_backend_create_dynamic_sections \
9649 elfNN_aarch64_create_dynamic_sections
9650
9651 #define elf_backend_init_index_section \
9652 _bfd_elf_init_2_index_sections
9653
9654 #define elf_backend_finish_dynamic_sections \
9655 elfNN_aarch64_finish_dynamic_sections
9656
9657 #define elf_backend_finish_dynamic_symbol \
9658 elfNN_aarch64_finish_dynamic_symbol
9659
9660 #define elf_backend_object_p \
9661 elfNN_aarch64_object_p
9662
9663 #define elf_backend_output_arch_local_syms \
9664 elfNN_aarch64_output_arch_local_syms
9665
9666 #define elf_backend_plt_sym_val \
9667 elfNN_aarch64_plt_sym_val
9668
9669 #define elf_backend_post_process_headers \
9670 elfNN_aarch64_post_process_headers
9671
9672 #define elf_backend_relocate_section \
9673 elfNN_aarch64_relocate_section
9674
9675 #define elf_backend_reloc_type_class \
9676 elfNN_aarch64_reloc_type_class
9677
9678 #define elf_backend_section_from_shdr \
9679 elfNN_aarch64_section_from_shdr
9680
9681 #define elf_backend_size_dynamic_sections \
9682 elfNN_aarch64_size_dynamic_sections
9683
9684 #define elf_backend_size_info \
9685 elfNN_aarch64_size_info
9686
9687 #define elf_backend_write_section \
9688 elfNN_aarch64_write_section
9689
9690 #define elf_backend_symbol_processing \
9691 elfNN_aarch64_backend_symbol_processing
9692
9693 #define elf_backend_can_refcount 1
9694 #define elf_backend_can_gc_sections 1
9695 #define elf_backend_plt_readonly 1
9696 #define elf_backend_want_got_plt 1
9697 #define elf_backend_want_plt_sym 0
9698 #define elf_backend_want_dynrelro 1
9699 #define elf_backend_may_use_rel_p 0
9700 #define elf_backend_may_use_rela_p 1
9701 #define elf_backend_default_use_rela_p 1
9702 #define elf_backend_rela_normal 1
9703 #define elf_backend_dtrel_excludes_plt 1
9704 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
9705 #define elf_backend_default_execstack 0
9706 #define elf_backend_extern_protected_data 1
9707 #define elf_backend_hash_symbol elf_aarch64_hash_symbol
9708
9709 #undef elf_backend_obj_attrs_section
9710 #define elf_backend_obj_attrs_section ".ARM.attributes"
9711
9712 #include "elfNN-target.h"
9713
9714 /* CloudABI support. */
9715
9716 #undef TARGET_LITTLE_SYM
9717 #define TARGET_LITTLE_SYM aarch64_elfNN_le_cloudabi_vec
9718 #undef TARGET_LITTLE_NAME
9719 #define TARGET_LITTLE_NAME "elfNN-littleaarch64-cloudabi"
9720 #undef TARGET_BIG_SYM
9721 #define TARGET_BIG_SYM aarch64_elfNN_be_cloudabi_vec
9722 #undef TARGET_BIG_NAME
9723 #define TARGET_BIG_NAME "elfNN-bigaarch64-cloudabi"
9724
9725 #undef ELF_OSABI
9726 #define ELF_OSABI ELFOSABI_CLOUDABI
9727
9728 #undef elfNN_bed
9729 #define elfNN_bed elfNN_aarch64_cloudabi_bed
9730
9731 #include "elfNN-target.h"
This page took 0.226827 seconds and 5 git commands to generate.