MIPS/LD: Fix crashing with a discarded dynamic relocation section
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else
2907 h->esym.asym.sc = scUndefined;
2908 }
2909 else if (h->root.root.type != bfd_link_hash_defined
2910 && h->root.root.type != bfd_link_hash_defweak)
2911 h->esym.asym.sc = scAbs;
2912 else
2913 {
2914 const char *name;
2915
2916 sec = h->root.root.u.def.section;
2917 output_section = sec->output_section;
2918
2919 /* When making a shared library and symbol h is the one from
2920 the another shared library, OUTPUT_SECTION may be null. */
2921 if (output_section == NULL)
2922 h->esym.asym.sc = scUndefined;
2923 else
2924 {
2925 name = bfd_section_name (output_section->owner, output_section);
2926
2927 if (strcmp (name, ".text") == 0)
2928 h->esym.asym.sc = scText;
2929 else if (strcmp (name, ".data") == 0)
2930 h->esym.asym.sc = scData;
2931 else if (strcmp (name, ".sdata") == 0)
2932 h->esym.asym.sc = scSData;
2933 else if (strcmp (name, ".rodata") == 0
2934 || strcmp (name, ".rdata") == 0)
2935 h->esym.asym.sc = scRData;
2936 else if (strcmp (name, ".bss") == 0)
2937 h->esym.asym.sc = scBss;
2938 else if (strcmp (name, ".sbss") == 0)
2939 h->esym.asym.sc = scSBss;
2940 else if (strcmp (name, ".init") == 0)
2941 h->esym.asym.sc = scInit;
2942 else if (strcmp (name, ".fini") == 0)
2943 h->esym.asym.sc = scFini;
2944 else
2945 h->esym.asym.sc = scAbs;
2946 }
2947 }
2948
2949 h->esym.asym.reserved = 0;
2950 h->esym.asym.index = indexNil;
2951 }
2952
2953 if (h->root.root.type == bfd_link_hash_common)
2954 h->esym.asym.value = h->root.root.u.c.size;
2955 else if (h->root.root.type == bfd_link_hash_defined
2956 || h->root.root.type == bfd_link_hash_defweak)
2957 {
2958 if (h->esym.asym.sc == scCommon)
2959 h->esym.asym.sc = scBss;
2960 else if (h->esym.asym.sc == scSCommon)
2961 h->esym.asym.sc = scSBss;
2962
2963 sec = h->root.root.u.def.section;
2964 output_section = sec->output_section;
2965 if (output_section != NULL)
2966 h->esym.asym.value = (h->root.root.u.def.value
2967 + sec->output_offset
2968 + output_section->vma);
2969 else
2970 h->esym.asym.value = 0;
2971 }
2972 else
2973 {
2974 struct mips_elf_link_hash_entry *hd = h;
2975
2976 while (hd->root.root.type == bfd_link_hash_indirect)
2977 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2978
2979 if (hd->needs_lazy_stub)
2980 {
2981 BFD_ASSERT (hd->root.plt.plist != NULL);
2982 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2983 /* Set type and value for a symbol with a function stub. */
2984 h->esym.asym.st = stProc;
2985 sec = hd->root.root.u.def.section;
2986 if (sec == NULL)
2987 h->esym.asym.value = 0;
2988 else
2989 {
2990 output_section = sec->output_section;
2991 if (output_section != NULL)
2992 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2993 + sec->output_offset
2994 + output_section->vma);
2995 else
2996 h->esym.asym.value = 0;
2997 }
2998 }
2999 }
3000
3001 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3002 h->root.root.root.string,
3003 &h->esym))
3004 {
3005 einfo->failed = TRUE;
3006 return FALSE;
3007 }
3008
3009 return TRUE;
3010 }
3011
3012 /* A comparison routine used to sort .gptab entries. */
3013
3014 static int
3015 gptab_compare (const void *p1, const void *p2)
3016 {
3017 const Elf32_gptab *a1 = p1;
3018 const Elf32_gptab *a2 = p2;
3019
3020 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3021 }
3022 \f
3023 /* Functions to manage the got entry hash table. */
3024
3025 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3026 hash number. */
3027
3028 static INLINE hashval_t
3029 mips_elf_hash_bfd_vma (bfd_vma addr)
3030 {
3031 #ifdef BFD64
3032 return addr + (addr >> 32);
3033 #else
3034 return addr;
3035 #endif
3036 }
3037
3038 static hashval_t
3039 mips_elf_got_entry_hash (const void *entry_)
3040 {
3041 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3042
3043 return (entry->symndx
3044 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3045 + (entry->tls_type == GOT_TLS_LDM ? 0
3046 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3047 : entry->symndx >= 0 ? (entry->abfd->id
3048 + mips_elf_hash_bfd_vma (entry->d.addend))
3049 : entry->d.h->root.root.root.hash));
3050 }
3051
3052 static int
3053 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3054 {
3055 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3056 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3057
3058 return (e1->symndx == e2->symndx
3059 && e1->tls_type == e2->tls_type
3060 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3061 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3062 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3063 && e1->d.addend == e2->d.addend)
3064 : e2->abfd && e1->d.h == e2->d.h));
3065 }
3066
3067 static hashval_t
3068 mips_got_page_ref_hash (const void *ref_)
3069 {
3070 const struct mips_got_page_ref *ref;
3071
3072 ref = (const struct mips_got_page_ref *) ref_;
3073 return ((ref->symndx >= 0
3074 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3075 : ref->u.h->root.root.root.hash)
3076 + mips_elf_hash_bfd_vma (ref->addend));
3077 }
3078
3079 static int
3080 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3081 {
3082 const struct mips_got_page_ref *ref1, *ref2;
3083
3084 ref1 = (const struct mips_got_page_ref *) ref1_;
3085 ref2 = (const struct mips_got_page_ref *) ref2_;
3086 return (ref1->symndx == ref2->symndx
3087 && (ref1->symndx < 0
3088 ? ref1->u.h == ref2->u.h
3089 : ref1->u.abfd == ref2->u.abfd)
3090 && ref1->addend == ref2->addend);
3091 }
3092
3093 static hashval_t
3094 mips_got_page_entry_hash (const void *entry_)
3095 {
3096 const struct mips_got_page_entry *entry;
3097
3098 entry = (const struct mips_got_page_entry *) entry_;
3099 return entry->sec->id;
3100 }
3101
3102 static int
3103 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3104 {
3105 const struct mips_got_page_entry *entry1, *entry2;
3106
3107 entry1 = (const struct mips_got_page_entry *) entry1_;
3108 entry2 = (const struct mips_got_page_entry *) entry2_;
3109 return entry1->sec == entry2->sec;
3110 }
3111 \f
3112 /* Create and return a new mips_got_info structure. */
3113
3114 static struct mips_got_info *
3115 mips_elf_create_got_info (bfd *abfd)
3116 {
3117 struct mips_got_info *g;
3118
3119 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3120 if (g == NULL)
3121 return NULL;
3122
3123 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3124 mips_elf_got_entry_eq, NULL);
3125 if (g->got_entries == NULL)
3126 return NULL;
3127
3128 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3129 mips_got_page_ref_eq, NULL);
3130 if (g->got_page_refs == NULL)
3131 return NULL;
3132
3133 return g;
3134 }
3135
3136 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3137 CREATE_P and if ABFD doesn't already have a GOT. */
3138
3139 static struct mips_got_info *
3140 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3141 {
3142 struct mips_elf_obj_tdata *tdata;
3143
3144 if (!is_mips_elf (abfd))
3145 return NULL;
3146
3147 tdata = mips_elf_tdata (abfd);
3148 if (!tdata->got && create_p)
3149 tdata->got = mips_elf_create_got_info (abfd);
3150 return tdata->got;
3151 }
3152
3153 /* Record that ABFD should use output GOT G. */
3154
3155 static void
3156 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3157 {
3158 struct mips_elf_obj_tdata *tdata;
3159
3160 BFD_ASSERT (is_mips_elf (abfd));
3161 tdata = mips_elf_tdata (abfd);
3162 if (tdata->got)
3163 {
3164 /* The GOT structure itself and the hash table entries are
3165 allocated to a bfd, but the hash tables aren't. */
3166 htab_delete (tdata->got->got_entries);
3167 htab_delete (tdata->got->got_page_refs);
3168 if (tdata->got->got_page_entries)
3169 htab_delete (tdata->got->got_page_entries);
3170 }
3171 tdata->got = g;
3172 }
3173
3174 /* Return the dynamic relocation section. If it doesn't exist, try to
3175 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3176 if creation fails. */
3177
3178 static asection *
3179 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3180 {
3181 const char *dname;
3182 asection *sreloc;
3183 bfd *dynobj;
3184
3185 dname = MIPS_ELF_REL_DYN_NAME (info);
3186 dynobj = elf_hash_table (info)->dynobj;
3187 sreloc = bfd_get_linker_section (dynobj, dname);
3188 if (sreloc == NULL && create_p)
3189 {
3190 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3191 (SEC_ALLOC
3192 | SEC_LOAD
3193 | SEC_HAS_CONTENTS
3194 | SEC_IN_MEMORY
3195 | SEC_LINKER_CREATED
3196 | SEC_READONLY));
3197 if (sreloc == NULL
3198 || ! bfd_set_section_alignment (dynobj, sreloc,
3199 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3200 return NULL;
3201 }
3202 return sreloc;
3203 }
3204
3205 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3206
3207 static int
3208 mips_elf_reloc_tls_type (unsigned int r_type)
3209 {
3210 if (tls_gd_reloc_p (r_type))
3211 return GOT_TLS_GD;
3212
3213 if (tls_ldm_reloc_p (r_type))
3214 return GOT_TLS_LDM;
3215
3216 if (tls_gottprel_reloc_p (r_type))
3217 return GOT_TLS_IE;
3218
3219 return GOT_TLS_NONE;
3220 }
3221
3222 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3223
3224 static int
3225 mips_tls_got_entries (unsigned int type)
3226 {
3227 switch (type)
3228 {
3229 case GOT_TLS_GD:
3230 case GOT_TLS_LDM:
3231 return 2;
3232
3233 case GOT_TLS_IE:
3234 return 1;
3235
3236 case GOT_TLS_NONE:
3237 return 0;
3238 }
3239 abort ();
3240 }
3241
3242 /* Count the number of relocations needed for a TLS GOT entry, with
3243 access types from TLS_TYPE, and symbol H (or a local symbol if H
3244 is NULL). */
3245
3246 static int
3247 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3248 struct elf_link_hash_entry *h)
3249 {
3250 int indx = 0;
3251 bfd_boolean need_relocs = FALSE;
3252 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253
3254 if (h != NULL
3255 && h->dynindx != -1
3256 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3257 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3258 indx = h->dynindx;
3259
3260 if ((bfd_link_dll (info) || indx != 0)
3261 && (h == NULL
3262 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3263 || h->root.type != bfd_link_hash_undefweak))
3264 need_relocs = TRUE;
3265
3266 if (!need_relocs)
3267 return 0;
3268
3269 switch (tls_type)
3270 {
3271 case GOT_TLS_GD:
3272 return indx != 0 ? 2 : 1;
3273
3274 case GOT_TLS_IE:
3275 return 1;
3276
3277 case GOT_TLS_LDM:
3278 return bfd_link_dll (info) ? 1 : 0;
3279
3280 default:
3281 return 0;
3282 }
3283 }
3284
3285 /* Add the number of GOT entries and TLS relocations required by ENTRY
3286 to G. */
3287
3288 static void
3289 mips_elf_count_got_entry (struct bfd_link_info *info,
3290 struct mips_got_info *g,
3291 struct mips_got_entry *entry)
3292 {
3293 if (entry->tls_type)
3294 {
3295 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3296 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3297 entry->symndx < 0
3298 ? &entry->d.h->root : NULL);
3299 }
3300 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3301 g->local_gotno += 1;
3302 else
3303 g->global_gotno += 1;
3304 }
3305
3306 /* Output a simple dynamic relocation into SRELOC. */
3307
3308 static void
3309 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3310 asection *sreloc,
3311 unsigned long reloc_index,
3312 unsigned long indx,
3313 int r_type,
3314 bfd_vma offset)
3315 {
3316 Elf_Internal_Rela rel[3];
3317
3318 memset (rel, 0, sizeof (rel));
3319
3320 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3321 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3322
3323 if (ABI_64_P (output_bfd))
3324 {
3325 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3326 (output_bfd, &rel[0],
3327 (sreloc->contents
3328 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3329 }
3330 else
3331 bfd_elf32_swap_reloc_out
3332 (output_bfd, &rel[0],
3333 (sreloc->contents
3334 + reloc_index * sizeof (Elf32_External_Rel)));
3335 }
3336
3337 /* Initialize a set of TLS GOT entries for one symbol. */
3338
3339 static void
3340 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3341 struct mips_got_entry *entry,
3342 struct mips_elf_link_hash_entry *h,
3343 bfd_vma value)
3344 {
3345 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3346 struct mips_elf_link_hash_table *htab;
3347 int indx;
3348 asection *sreloc, *sgot;
3349 bfd_vma got_offset, got_offset2;
3350 bfd_boolean need_relocs = FALSE;
3351
3352 htab = mips_elf_hash_table (info);
3353 if (htab == NULL)
3354 return;
3355
3356 sgot = htab->root.sgot;
3357
3358 indx = 0;
3359 if (h != NULL
3360 && h->root.dynindx != -1
3361 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3362 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3363 indx = h->root.dynindx;
3364
3365 if (entry->tls_initialized)
3366 return;
3367
3368 if ((bfd_link_dll (info) || indx != 0)
3369 && (h == NULL
3370 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3371 || h->root.type != bfd_link_hash_undefweak))
3372 need_relocs = TRUE;
3373
3374 /* MINUS_ONE means the symbol is not defined in this object. It may not
3375 be defined at all; assume that the value doesn't matter in that
3376 case. Otherwise complain if we would use the value. */
3377 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3378 || h->root.root.type == bfd_link_hash_undefweak);
3379
3380 /* Emit necessary relocations. */
3381 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3382 got_offset = entry->gotidx;
3383
3384 switch (entry->tls_type)
3385 {
3386 case GOT_TLS_GD:
3387 /* General Dynamic. */
3388 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3389
3390 if (need_relocs)
3391 {
3392 mips_elf_output_dynamic_relocation
3393 (abfd, sreloc, sreloc->reloc_count++, indx,
3394 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3395 sgot->output_offset + sgot->output_section->vma + got_offset);
3396
3397 if (indx)
3398 mips_elf_output_dynamic_relocation
3399 (abfd, sreloc, sreloc->reloc_count++, indx,
3400 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3401 sgot->output_offset + sgot->output_section->vma + got_offset2);
3402 else
3403 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3404 sgot->contents + got_offset2);
3405 }
3406 else
3407 {
3408 MIPS_ELF_PUT_WORD (abfd, 1,
3409 sgot->contents + got_offset);
3410 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3411 sgot->contents + got_offset2);
3412 }
3413 break;
3414
3415 case GOT_TLS_IE:
3416 /* Initial Exec model. */
3417 if (need_relocs)
3418 {
3419 if (indx == 0)
3420 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3421 sgot->contents + got_offset);
3422 else
3423 MIPS_ELF_PUT_WORD (abfd, 0,
3424 sgot->contents + got_offset);
3425
3426 mips_elf_output_dynamic_relocation
3427 (abfd, sreloc, sreloc->reloc_count++, indx,
3428 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3429 sgot->output_offset + sgot->output_section->vma + got_offset);
3430 }
3431 else
3432 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3433 sgot->contents + got_offset);
3434 break;
3435
3436 case GOT_TLS_LDM:
3437 /* The initial offset is zero, and the LD offsets will include the
3438 bias by DTP_OFFSET. */
3439 MIPS_ELF_PUT_WORD (abfd, 0,
3440 sgot->contents + got_offset
3441 + MIPS_ELF_GOT_SIZE (abfd));
3442
3443 if (!bfd_link_dll (info))
3444 MIPS_ELF_PUT_WORD (abfd, 1,
3445 sgot->contents + got_offset);
3446 else
3447 mips_elf_output_dynamic_relocation
3448 (abfd, sreloc, sreloc->reloc_count++, indx,
3449 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3450 sgot->output_offset + sgot->output_section->vma + got_offset);
3451 break;
3452
3453 default:
3454 abort ();
3455 }
3456
3457 entry->tls_initialized = TRUE;
3458 }
3459
3460 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3461 for global symbol H. .got.plt comes before the GOT, so the offset
3462 will be negative. */
3463
3464 static bfd_vma
3465 mips_elf_gotplt_index (struct bfd_link_info *info,
3466 struct elf_link_hash_entry *h)
3467 {
3468 bfd_vma got_address, got_value;
3469 struct mips_elf_link_hash_table *htab;
3470
3471 htab = mips_elf_hash_table (info);
3472 BFD_ASSERT (htab != NULL);
3473
3474 BFD_ASSERT (h->plt.plist != NULL);
3475 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3476
3477 /* Calculate the address of the associated .got.plt entry. */
3478 got_address = (htab->root.sgotplt->output_section->vma
3479 + htab->root.sgotplt->output_offset
3480 + (h->plt.plist->gotplt_index
3481 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3482
3483 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3484 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3485 + htab->root.hgot->root.u.def.section->output_offset
3486 + htab->root.hgot->root.u.def.value);
3487
3488 return got_address - got_value;
3489 }
3490
3491 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3492 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3493 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3494 offset can be found. */
3495
3496 static bfd_vma
3497 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3498 bfd_vma value, unsigned long r_symndx,
3499 struct mips_elf_link_hash_entry *h, int r_type)
3500 {
3501 struct mips_elf_link_hash_table *htab;
3502 struct mips_got_entry *entry;
3503
3504 htab = mips_elf_hash_table (info);
3505 BFD_ASSERT (htab != NULL);
3506
3507 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3508 r_symndx, h, r_type);
3509 if (!entry)
3510 return MINUS_ONE;
3511
3512 if (entry->tls_type)
3513 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3514 return entry->gotidx;
3515 }
3516
3517 /* Return the GOT index of global symbol H in the primary GOT. */
3518
3519 static bfd_vma
3520 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3521 struct elf_link_hash_entry *h)
3522 {
3523 struct mips_elf_link_hash_table *htab;
3524 long global_got_dynindx;
3525 struct mips_got_info *g;
3526 bfd_vma got_index;
3527
3528 htab = mips_elf_hash_table (info);
3529 BFD_ASSERT (htab != NULL);
3530
3531 global_got_dynindx = 0;
3532 if (htab->global_gotsym != NULL)
3533 global_got_dynindx = htab->global_gotsym->dynindx;
3534
3535 /* Once we determine the global GOT entry with the lowest dynamic
3536 symbol table index, we must put all dynamic symbols with greater
3537 indices into the primary GOT. That makes it easy to calculate the
3538 GOT offset. */
3539 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3540 g = mips_elf_bfd_got (obfd, FALSE);
3541 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3542 * MIPS_ELF_GOT_SIZE (obfd));
3543 BFD_ASSERT (got_index < htab->root.sgot->size);
3544
3545 return got_index;
3546 }
3547
3548 /* Return the GOT index for the global symbol indicated by H, which is
3549 referenced by a relocation of type R_TYPE in IBFD. */
3550
3551 static bfd_vma
3552 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3553 struct elf_link_hash_entry *h, int r_type)
3554 {
3555 struct mips_elf_link_hash_table *htab;
3556 struct mips_got_info *g;
3557 struct mips_got_entry lookup, *entry;
3558 bfd_vma gotidx;
3559
3560 htab = mips_elf_hash_table (info);
3561 BFD_ASSERT (htab != NULL);
3562
3563 g = mips_elf_bfd_got (ibfd, FALSE);
3564 BFD_ASSERT (g);
3565
3566 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3567 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3568 return mips_elf_primary_global_got_index (obfd, info, h);
3569
3570 lookup.abfd = ibfd;
3571 lookup.symndx = -1;
3572 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3573 entry = htab_find (g->got_entries, &lookup);
3574 BFD_ASSERT (entry);
3575
3576 gotidx = entry->gotidx;
3577 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3578
3579 if (lookup.tls_type)
3580 {
3581 bfd_vma value = MINUS_ONE;
3582
3583 if ((h->root.type == bfd_link_hash_defined
3584 || h->root.type == bfd_link_hash_defweak)
3585 && h->root.u.def.section->output_section)
3586 value = (h->root.u.def.value
3587 + h->root.u.def.section->output_offset
3588 + h->root.u.def.section->output_section->vma);
3589
3590 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3591 }
3592 return gotidx;
3593 }
3594
3595 /* Find a GOT page entry that points to within 32KB of VALUE. These
3596 entries are supposed to be placed at small offsets in the GOT, i.e.,
3597 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3598 entry could be created. If OFFSETP is nonnull, use it to return the
3599 offset of the GOT entry from VALUE. */
3600
3601 static bfd_vma
3602 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3603 bfd_vma value, bfd_vma *offsetp)
3604 {
3605 bfd_vma page, got_index;
3606 struct mips_got_entry *entry;
3607
3608 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3609 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3610 NULL, R_MIPS_GOT_PAGE);
3611
3612 if (!entry)
3613 return MINUS_ONE;
3614
3615 got_index = entry->gotidx;
3616
3617 if (offsetp)
3618 *offsetp = value - entry->d.address;
3619
3620 return got_index;
3621 }
3622
3623 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3624 EXTERNAL is true if the relocation was originally against a global
3625 symbol that binds locally. */
3626
3627 static bfd_vma
3628 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3629 bfd_vma value, bfd_boolean external)
3630 {
3631 struct mips_got_entry *entry;
3632
3633 /* GOT16 relocations against local symbols are followed by a LO16
3634 relocation; those against global symbols are not. Thus if the
3635 symbol was originally local, the GOT16 relocation should load the
3636 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3637 if (! external)
3638 value = mips_elf_high (value) << 16;
3639
3640 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3641 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3642 same in all cases. */
3643 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3644 NULL, R_MIPS_GOT16);
3645 if (entry)
3646 return entry->gotidx;
3647 else
3648 return MINUS_ONE;
3649 }
3650
3651 /* Returns the offset for the entry at the INDEXth position
3652 in the GOT. */
3653
3654 static bfd_vma
3655 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3656 bfd *input_bfd, bfd_vma got_index)
3657 {
3658 struct mips_elf_link_hash_table *htab;
3659 asection *sgot;
3660 bfd_vma gp;
3661
3662 htab = mips_elf_hash_table (info);
3663 BFD_ASSERT (htab != NULL);
3664
3665 sgot = htab->root.sgot;
3666 gp = _bfd_get_gp_value (output_bfd)
3667 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3668
3669 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3670 }
3671
3672 /* Create and return a local GOT entry for VALUE, which was calculated
3673 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3674 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3675 instead. */
3676
3677 static struct mips_got_entry *
3678 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3679 bfd *ibfd, bfd_vma value,
3680 unsigned long r_symndx,
3681 struct mips_elf_link_hash_entry *h,
3682 int r_type)
3683 {
3684 struct mips_got_entry lookup, *entry;
3685 void **loc;
3686 struct mips_got_info *g;
3687 struct mips_elf_link_hash_table *htab;
3688 bfd_vma gotidx;
3689
3690 htab = mips_elf_hash_table (info);
3691 BFD_ASSERT (htab != NULL);
3692
3693 g = mips_elf_bfd_got (ibfd, FALSE);
3694 if (g == NULL)
3695 {
3696 g = mips_elf_bfd_got (abfd, FALSE);
3697 BFD_ASSERT (g != NULL);
3698 }
3699
3700 /* This function shouldn't be called for symbols that live in the global
3701 area of the GOT. */
3702 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3703
3704 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3705 if (lookup.tls_type)
3706 {
3707 lookup.abfd = ibfd;
3708 if (tls_ldm_reloc_p (r_type))
3709 {
3710 lookup.symndx = 0;
3711 lookup.d.addend = 0;
3712 }
3713 else if (h == NULL)
3714 {
3715 lookup.symndx = r_symndx;
3716 lookup.d.addend = 0;
3717 }
3718 else
3719 {
3720 lookup.symndx = -1;
3721 lookup.d.h = h;
3722 }
3723
3724 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3725 BFD_ASSERT (entry);
3726
3727 gotidx = entry->gotidx;
3728 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3729
3730 return entry;
3731 }
3732
3733 lookup.abfd = NULL;
3734 lookup.symndx = -1;
3735 lookup.d.address = value;
3736 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3737 if (!loc)
3738 return NULL;
3739
3740 entry = (struct mips_got_entry *) *loc;
3741 if (entry)
3742 return entry;
3743
3744 if (g->assigned_low_gotno > g->assigned_high_gotno)
3745 {
3746 /* We didn't allocate enough space in the GOT. */
3747 _bfd_error_handler
3748 (_("not enough GOT space for local GOT entries"));
3749 bfd_set_error (bfd_error_bad_value);
3750 return NULL;
3751 }
3752
3753 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3754 if (!entry)
3755 return NULL;
3756
3757 if (got16_reloc_p (r_type)
3758 || call16_reloc_p (r_type)
3759 || got_page_reloc_p (r_type)
3760 || got_disp_reloc_p (r_type))
3761 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3762 else
3763 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3764
3765 *entry = lookup;
3766 *loc = entry;
3767
3768 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3769
3770 /* These GOT entries need a dynamic relocation on VxWorks. */
3771 if (htab->is_vxworks)
3772 {
3773 Elf_Internal_Rela outrel;
3774 asection *s;
3775 bfd_byte *rloc;
3776 bfd_vma got_address;
3777
3778 s = mips_elf_rel_dyn_section (info, FALSE);
3779 got_address = (htab->root.sgot->output_section->vma
3780 + htab->root.sgot->output_offset
3781 + entry->gotidx);
3782
3783 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3784 outrel.r_offset = got_address;
3785 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3786 outrel.r_addend = value;
3787 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3788 }
3789
3790 return entry;
3791 }
3792
3793 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3794 The number might be exact or a worst-case estimate, depending on how
3795 much information is available to elf_backend_omit_section_dynsym at
3796 the current linking stage. */
3797
3798 static bfd_size_type
3799 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3800 {
3801 bfd_size_type count;
3802
3803 count = 0;
3804 if (bfd_link_pic (info)
3805 || elf_hash_table (info)->is_relocatable_executable)
3806 {
3807 asection *p;
3808 const struct elf_backend_data *bed;
3809
3810 bed = get_elf_backend_data (output_bfd);
3811 for (p = output_bfd->sections; p ; p = p->next)
3812 if ((p->flags & SEC_EXCLUDE) == 0
3813 && (p->flags & SEC_ALLOC) != 0
3814 && elf_hash_table (info)->dynamic_relocs
3815 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3816 ++count;
3817 }
3818 return count;
3819 }
3820
3821 /* Sort the dynamic symbol table so that symbols that need GOT entries
3822 appear towards the end. */
3823
3824 static bfd_boolean
3825 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3826 {
3827 struct mips_elf_link_hash_table *htab;
3828 struct mips_elf_hash_sort_data hsd;
3829 struct mips_got_info *g;
3830
3831 htab = mips_elf_hash_table (info);
3832 BFD_ASSERT (htab != NULL);
3833
3834 if (htab->root.dynsymcount == 0)
3835 return TRUE;
3836
3837 g = htab->got_info;
3838 if (g == NULL)
3839 return TRUE;
3840
3841 hsd.low = NULL;
3842 hsd.max_unref_got_dynindx
3843 = hsd.min_got_dynindx
3844 = (htab->root.dynsymcount - g->reloc_only_gotno);
3845 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3846 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3847 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3848 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3849 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3850
3851 /* There should have been enough room in the symbol table to
3852 accommodate both the GOT and non-GOT symbols. */
3853 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3854 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3855 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3856 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3857
3858 /* Now we know which dynamic symbol has the lowest dynamic symbol
3859 table index in the GOT. */
3860 htab->global_gotsym = hsd.low;
3861
3862 return TRUE;
3863 }
3864
3865 /* If H needs a GOT entry, assign it the highest available dynamic
3866 index. Otherwise, assign it the lowest available dynamic
3867 index. */
3868
3869 static bfd_boolean
3870 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3871 {
3872 struct mips_elf_hash_sort_data *hsd = data;
3873
3874 /* Symbols without dynamic symbol table entries aren't interesting
3875 at all. */
3876 if (h->root.dynindx == -1)
3877 return TRUE;
3878
3879 switch (h->global_got_area)
3880 {
3881 case GGA_NONE:
3882 if (h->root.forced_local)
3883 h->root.dynindx = hsd->max_local_dynindx++;
3884 else
3885 h->root.dynindx = hsd->max_non_got_dynindx++;
3886 break;
3887
3888 case GGA_NORMAL:
3889 h->root.dynindx = --hsd->min_got_dynindx;
3890 hsd->low = (struct elf_link_hash_entry *) h;
3891 break;
3892
3893 case GGA_RELOC_ONLY:
3894 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3895 hsd->low = (struct elf_link_hash_entry *) h;
3896 h->root.dynindx = hsd->max_unref_got_dynindx++;
3897 break;
3898 }
3899
3900 return TRUE;
3901 }
3902
3903 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3904 (which is owned by the caller and shouldn't be added to the
3905 hash table directly). */
3906
3907 static bfd_boolean
3908 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3909 struct mips_got_entry *lookup)
3910 {
3911 struct mips_elf_link_hash_table *htab;
3912 struct mips_got_entry *entry;
3913 struct mips_got_info *g;
3914 void **loc, **bfd_loc;
3915
3916 /* Make sure there's a slot for this entry in the master GOT. */
3917 htab = mips_elf_hash_table (info);
3918 g = htab->got_info;
3919 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3920 if (!loc)
3921 return FALSE;
3922
3923 /* Populate the entry if it isn't already. */
3924 entry = (struct mips_got_entry *) *loc;
3925 if (!entry)
3926 {
3927 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3928 if (!entry)
3929 return FALSE;
3930
3931 lookup->tls_initialized = FALSE;
3932 lookup->gotidx = -1;
3933 *entry = *lookup;
3934 *loc = entry;
3935 }
3936
3937 /* Reuse the same GOT entry for the BFD's GOT. */
3938 g = mips_elf_bfd_got (abfd, TRUE);
3939 if (!g)
3940 return FALSE;
3941
3942 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3943 if (!bfd_loc)
3944 return FALSE;
3945
3946 if (!*bfd_loc)
3947 *bfd_loc = entry;
3948 return TRUE;
3949 }
3950
3951 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3952 entry for it. FOR_CALL is true if the caller is only interested in
3953 using the GOT entry for calls. */
3954
3955 static bfd_boolean
3956 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3957 bfd *abfd, struct bfd_link_info *info,
3958 bfd_boolean for_call, int r_type)
3959 {
3960 struct mips_elf_link_hash_table *htab;
3961 struct mips_elf_link_hash_entry *hmips;
3962 struct mips_got_entry entry;
3963 unsigned char tls_type;
3964
3965 htab = mips_elf_hash_table (info);
3966 BFD_ASSERT (htab != NULL);
3967
3968 hmips = (struct mips_elf_link_hash_entry *) h;
3969 if (!for_call)
3970 hmips->got_only_for_calls = FALSE;
3971
3972 /* A global symbol in the GOT must also be in the dynamic symbol
3973 table. */
3974 if (h->dynindx == -1)
3975 {
3976 switch (ELF_ST_VISIBILITY (h->other))
3977 {
3978 case STV_INTERNAL:
3979 case STV_HIDDEN:
3980 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3981 break;
3982 }
3983 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3984 return FALSE;
3985 }
3986
3987 tls_type = mips_elf_reloc_tls_type (r_type);
3988 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3989 hmips->global_got_area = GGA_NORMAL;
3990
3991 entry.abfd = abfd;
3992 entry.symndx = -1;
3993 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3994 entry.tls_type = tls_type;
3995 return mips_elf_record_got_entry (info, abfd, &entry);
3996 }
3997
3998 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3999 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4000
4001 static bfd_boolean
4002 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4003 struct bfd_link_info *info, int r_type)
4004 {
4005 struct mips_elf_link_hash_table *htab;
4006 struct mips_got_info *g;
4007 struct mips_got_entry entry;
4008
4009 htab = mips_elf_hash_table (info);
4010 BFD_ASSERT (htab != NULL);
4011
4012 g = htab->got_info;
4013 BFD_ASSERT (g != NULL);
4014
4015 entry.abfd = abfd;
4016 entry.symndx = symndx;
4017 entry.d.addend = addend;
4018 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4019 return mips_elf_record_got_entry (info, abfd, &entry);
4020 }
4021
4022 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4023 H is the symbol's hash table entry, or null if SYMNDX is local
4024 to ABFD. */
4025
4026 static bfd_boolean
4027 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4028 long symndx, struct elf_link_hash_entry *h,
4029 bfd_signed_vma addend)
4030 {
4031 struct mips_elf_link_hash_table *htab;
4032 struct mips_got_info *g1, *g2;
4033 struct mips_got_page_ref lookup, *entry;
4034 void **loc, **bfd_loc;
4035
4036 htab = mips_elf_hash_table (info);
4037 BFD_ASSERT (htab != NULL);
4038
4039 g1 = htab->got_info;
4040 BFD_ASSERT (g1 != NULL);
4041
4042 if (h)
4043 {
4044 lookup.symndx = -1;
4045 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4046 }
4047 else
4048 {
4049 lookup.symndx = symndx;
4050 lookup.u.abfd = abfd;
4051 }
4052 lookup.addend = addend;
4053 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4054 if (loc == NULL)
4055 return FALSE;
4056
4057 entry = (struct mips_got_page_ref *) *loc;
4058 if (!entry)
4059 {
4060 entry = bfd_alloc (abfd, sizeof (*entry));
4061 if (!entry)
4062 return FALSE;
4063
4064 *entry = lookup;
4065 *loc = entry;
4066 }
4067
4068 /* Add the same entry to the BFD's GOT. */
4069 g2 = mips_elf_bfd_got (abfd, TRUE);
4070 if (!g2)
4071 return FALSE;
4072
4073 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4074 if (!bfd_loc)
4075 return FALSE;
4076
4077 if (!*bfd_loc)
4078 *bfd_loc = entry;
4079
4080 return TRUE;
4081 }
4082
4083 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4084
4085 static void
4086 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4087 unsigned int n)
4088 {
4089 asection *s;
4090 struct mips_elf_link_hash_table *htab;
4091
4092 htab = mips_elf_hash_table (info);
4093 BFD_ASSERT (htab != NULL);
4094
4095 s = mips_elf_rel_dyn_section (info, FALSE);
4096 BFD_ASSERT (s != NULL);
4097
4098 if (htab->is_vxworks)
4099 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4100 else
4101 {
4102 if (s->size == 0)
4103 {
4104 /* Make room for a null element. */
4105 s->size += MIPS_ELF_REL_SIZE (abfd);
4106 ++s->reloc_count;
4107 }
4108 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4109 }
4110 }
4111 \f
4112 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4113 mips_elf_traverse_got_arg structure. Count the number of GOT
4114 entries and TLS relocs. Set DATA->value to true if we need
4115 to resolve indirect or warning symbols and then recreate the GOT. */
4116
4117 static int
4118 mips_elf_check_recreate_got (void **entryp, void *data)
4119 {
4120 struct mips_got_entry *entry;
4121 struct mips_elf_traverse_got_arg *arg;
4122
4123 entry = (struct mips_got_entry *) *entryp;
4124 arg = (struct mips_elf_traverse_got_arg *) data;
4125 if (entry->abfd != NULL && entry->symndx == -1)
4126 {
4127 struct mips_elf_link_hash_entry *h;
4128
4129 h = entry->d.h;
4130 if (h->root.root.type == bfd_link_hash_indirect
4131 || h->root.root.type == bfd_link_hash_warning)
4132 {
4133 arg->value = TRUE;
4134 return 0;
4135 }
4136 }
4137 mips_elf_count_got_entry (arg->info, arg->g, entry);
4138 return 1;
4139 }
4140
4141 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4142 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4143 converting entries for indirect and warning symbols into entries
4144 for the target symbol. Set DATA->g to null on error. */
4145
4146 static int
4147 mips_elf_recreate_got (void **entryp, void *data)
4148 {
4149 struct mips_got_entry new_entry, *entry;
4150 struct mips_elf_traverse_got_arg *arg;
4151 void **slot;
4152
4153 entry = (struct mips_got_entry *) *entryp;
4154 arg = (struct mips_elf_traverse_got_arg *) data;
4155 if (entry->abfd != NULL
4156 && entry->symndx == -1
4157 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4158 || entry->d.h->root.root.type == bfd_link_hash_warning))
4159 {
4160 struct mips_elf_link_hash_entry *h;
4161
4162 new_entry = *entry;
4163 entry = &new_entry;
4164 h = entry->d.h;
4165 do
4166 {
4167 BFD_ASSERT (h->global_got_area == GGA_NONE);
4168 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4169 }
4170 while (h->root.root.type == bfd_link_hash_indirect
4171 || h->root.root.type == bfd_link_hash_warning);
4172 entry->d.h = h;
4173 }
4174 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4175 if (slot == NULL)
4176 {
4177 arg->g = NULL;
4178 return 0;
4179 }
4180 if (*slot == NULL)
4181 {
4182 if (entry == &new_entry)
4183 {
4184 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4185 if (!entry)
4186 {
4187 arg->g = NULL;
4188 return 0;
4189 }
4190 *entry = new_entry;
4191 }
4192 *slot = entry;
4193 mips_elf_count_got_entry (arg->info, arg->g, entry);
4194 }
4195 return 1;
4196 }
4197
4198 /* Return the maximum number of GOT page entries required for RANGE. */
4199
4200 static bfd_vma
4201 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4202 {
4203 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4204 }
4205
4206 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4207
4208 static bfd_boolean
4209 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4210 asection *sec, bfd_signed_vma addend)
4211 {
4212 struct mips_got_info *g = arg->g;
4213 struct mips_got_page_entry lookup, *entry;
4214 struct mips_got_page_range **range_ptr, *range;
4215 bfd_vma old_pages, new_pages;
4216 void **loc;
4217
4218 /* Find the mips_got_page_entry hash table entry for this section. */
4219 lookup.sec = sec;
4220 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4221 if (loc == NULL)
4222 return FALSE;
4223
4224 /* Create a mips_got_page_entry if this is the first time we've
4225 seen the section. */
4226 entry = (struct mips_got_page_entry *) *loc;
4227 if (!entry)
4228 {
4229 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4230 if (!entry)
4231 return FALSE;
4232
4233 entry->sec = sec;
4234 *loc = entry;
4235 }
4236
4237 /* Skip over ranges whose maximum extent cannot share a page entry
4238 with ADDEND. */
4239 range_ptr = &entry->ranges;
4240 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4241 range_ptr = &(*range_ptr)->next;
4242
4243 /* If we scanned to the end of the list, or found a range whose
4244 minimum extent cannot share a page entry with ADDEND, create
4245 a new singleton range. */
4246 range = *range_ptr;
4247 if (!range || addend < range->min_addend - 0xffff)
4248 {
4249 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4250 if (!range)
4251 return FALSE;
4252
4253 range->next = *range_ptr;
4254 range->min_addend = addend;
4255 range->max_addend = addend;
4256
4257 *range_ptr = range;
4258 entry->num_pages++;
4259 g->page_gotno++;
4260 return TRUE;
4261 }
4262
4263 /* Remember how many pages the old range contributed. */
4264 old_pages = mips_elf_pages_for_range (range);
4265
4266 /* Update the ranges. */
4267 if (addend < range->min_addend)
4268 range->min_addend = addend;
4269 else if (addend > range->max_addend)
4270 {
4271 if (range->next && addend >= range->next->min_addend - 0xffff)
4272 {
4273 old_pages += mips_elf_pages_for_range (range->next);
4274 range->max_addend = range->next->max_addend;
4275 range->next = range->next->next;
4276 }
4277 else
4278 range->max_addend = addend;
4279 }
4280
4281 /* Record any change in the total estimate. */
4282 new_pages = mips_elf_pages_for_range (range);
4283 if (old_pages != new_pages)
4284 {
4285 entry->num_pages += new_pages - old_pages;
4286 g->page_gotno += new_pages - old_pages;
4287 }
4288
4289 return TRUE;
4290 }
4291
4292 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4293 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4294 whether the page reference described by *REFP needs a GOT page entry,
4295 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4296
4297 static bfd_boolean
4298 mips_elf_resolve_got_page_ref (void **refp, void *data)
4299 {
4300 struct mips_got_page_ref *ref;
4301 struct mips_elf_traverse_got_arg *arg;
4302 struct mips_elf_link_hash_table *htab;
4303 asection *sec;
4304 bfd_vma addend;
4305
4306 ref = (struct mips_got_page_ref *) *refp;
4307 arg = (struct mips_elf_traverse_got_arg *) data;
4308 htab = mips_elf_hash_table (arg->info);
4309
4310 if (ref->symndx < 0)
4311 {
4312 struct mips_elf_link_hash_entry *h;
4313
4314 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4315 h = ref->u.h;
4316 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4317 return 1;
4318
4319 /* Ignore undefined symbols; we'll issue an error later if
4320 appropriate. */
4321 if (!((h->root.root.type == bfd_link_hash_defined
4322 || h->root.root.type == bfd_link_hash_defweak)
4323 && h->root.root.u.def.section))
4324 return 1;
4325
4326 sec = h->root.root.u.def.section;
4327 addend = h->root.root.u.def.value + ref->addend;
4328 }
4329 else
4330 {
4331 Elf_Internal_Sym *isym;
4332
4333 /* Read in the symbol. */
4334 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4335 ref->symndx);
4336 if (isym == NULL)
4337 {
4338 arg->g = NULL;
4339 return 0;
4340 }
4341
4342 /* Get the associated input section. */
4343 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4344 if (sec == NULL)
4345 {
4346 arg->g = NULL;
4347 return 0;
4348 }
4349
4350 /* If this is a mergable section, work out the section and offset
4351 of the merged data. For section symbols, the addend specifies
4352 of the offset _of_ the first byte in the data, otherwise it
4353 specifies the offset _from_ the first byte. */
4354 if (sec->flags & SEC_MERGE)
4355 {
4356 void *secinfo;
4357
4358 secinfo = elf_section_data (sec)->sec_info;
4359 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4360 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4361 isym->st_value + ref->addend);
4362 else
4363 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4364 isym->st_value) + ref->addend;
4365 }
4366 else
4367 addend = isym->st_value + ref->addend;
4368 }
4369 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4370 {
4371 arg->g = NULL;
4372 return 0;
4373 }
4374 return 1;
4375 }
4376
4377 /* If any entries in G->got_entries are for indirect or warning symbols,
4378 replace them with entries for the target symbol. Convert g->got_page_refs
4379 into got_page_entry structures and estimate the number of page entries
4380 that they require. */
4381
4382 static bfd_boolean
4383 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4384 struct mips_got_info *g)
4385 {
4386 struct mips_elf_traverse_got_arg tga;
4387 struct mips_got_info oldg;
4388
4389 oldg = *g;
4390
4391 tga.info = info;
4392 tga.g = g;
4393 tga.value = FALSE;
4394 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4395 if (tga.value)
4396 {
4397 *g = oldg;
4398 g->got_entries = htab_create (htab_size (oldg.got_entries),
4399 mips_elf_got_entry_hash,
4400 mips_elf_got_entry_eq, NULL);
4401 if (!g->got_entries)
4402 return FALSE;
4403
4404 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4405 if (!tga.g)
4406 return FALSE;
4407
4408 htab_delete (oldg.got_entries);
4409 }
4410
4411 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4412 mips_got_page_entry_eq, NULL);
4413 if (g->got_page_entries == NULL)
4414 return FALSE;
4415
4416 tga.info = info;
4417 tga.g = g;
4418 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4419
4420 return TRUE;
4421 }
4422
4423 /* Return true if a GOT entry for H should live in the local rather than
4424 global GOT area. */
4425
4426 static bfd_boolean
4427 mips_use_local_got_p (struct bfd_link_info *info,
4428 struct mips_elf_link_hash_entry *h)
4429 {
4430 /* Symbols that aren't in the dynamic symbol table must live in the
4431 local GOT. This includes symbols that are completely undefined
4432 and which therefore don't bind locally. We'll report undefined
4433 symbols later if appropriate. */
4434 if (h->root.dynindx == -1)
4435 return TRUE;
4436
4437 /* Symbols that bind locally can (and in the case of forced-local
4438 symbols, must) live in the local GOT. */
4439 if (h->got_only_for_calls
4440 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4441 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4442 return TRUE;
4443
4444 /* If this is an executable that must provide a definition of the symbol,
4445 either though PLTs or copy relocations, then that address should go in
4446 the local rather than global GOT. */
4447 if (bfd_link_executable (info) && h->has_static_relocs)
4448 return TRUE;
4449
4450 return FALSE;
4451 }
4452
4453 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4454 link_info structure. Decide whether the hash entry needs an entry in
4455 the global part of the primary GOT, setting global_got_area accordingly.
4456 Count the number of global symbols that are in the primary GOT only
4457 because they have relocations against them (reloc_only_gotno). */
4458
4459 static int
4460 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4461 {
4462 struct bfd_link_info *info;
4463 struct mips_elf_link_hash_table *htab;
4464 struct mips_got_info *g;
4465
4466 info = (struct bfd_link_info *) data;
4467 htab = mips_elf_hash_table (info);
4468 g = htab->got_info;
4469 if (h->global_got_area != GGA_NONE)
4470 {
4471 /* Make a final decision about whether the symbol belongs in the
4472 local or global GOT. */
4473 if (mips_use_local_got_p (info, h))
4474 /* The symbol belongs in the local GOT. We no longer need this
4475 entry if it was only used for relocations; those relocations
4476 will be against the null or section symbol instead of H. */
4477 h->global_got_area = GGA_NONE;
4478 else if (htab->is_vxworks
4479 && h->got_only_for_calls
4480 && h->root.plt.plist->mips_offset != MINUS_ONE)
4481 /* On VxWorks, calls can refer directly to the .got.plt entry;
4482 they don't need entries in the regular GOT. .got.plt entries
4483 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4484 h->global_got_area = GGA_NONE;
4485 else if (h->global_got_area == GGA_RELOC_ONLY)
4486 {
4487 g->reloc_only_gotno++;
4488 g->global_gotno++;
4489 }
4490 }
4491 return 1;
4492 }
4493 \f
4494 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4495 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4496
4497 static int
4498 mips_elf_add_got_entry (void **entryp, void *data)
4499 {
4500 struct mips_got_entry *entry;
4501 struct mips_elf_traverse_got_arg *arg;
4502 void **slot;
4503
4504 entry = (struct mips_got_entry *) *entryp;
4505 arg = (struct mips_elf_traverse_got_arg *) data;
4506 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4507 if (!slot)
4508 {
4509 arg->g = NULL;
4510 return 0;
4511 }
4512 if (!*slot)
4513 {
4514 *slot = entry;
4515 mips_elf_count_got_entry (arg->info, arg->g, entry);
4516 }
4517 return 1;
4518 }
4519
4520 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4521 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4522
4523 static int
4524 mips_elf_add_got_page_entry (void **entryp, void *data)
4525 {
4526 struct mips_got_page_entry *entry;
4527 struct mips_elf_traverse_got_arg *arg;
4528 void **slot;
4529
4530 entry = (struct mips_got_page_entry *) *entryp;
4531 arg = (struct mips_elf_traverse_got_arg *) data;
4532 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4533 if (!slot)
4534 {
4535 arg->g = NULL;
4536 return 0;
4537 }
4538 if (!*slot)
4539 {
4540 *slot = entry;
4541 arg->g->page_gotno += entry->num_pages;
4542 }
4543 return 1;
4544 }
4545
4546 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4547 this would lead to overflow, 1 if they were merged successfully,
4548 and 0 if a merge failed due to lack of memory. (These values are chosen
4549 so that nonnegative return values can be returned by a htab_traverse
4550 callback.) */
4551
4552 static int
4553 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4554 struct mips_got_info *to,
4555 struct mips_elf_got_per_bfd_arg *arg)
4556 {
4557 struct mips_elf_traverse_got_arg tga;
4558 unsigned int estimate;
4559
4560 /* Work out how many page entries we would need for the combined GOT. */
4561 estimate = arg->max_pages;
4562 if (estimate >= from->page_gotno + to->page_gotno)
4563 estimate = from->page_gotno + to->page_gotno;
4564
4565 /* And conservatively estimate how many local and TLS entries
4566 would be needed. */
4567 estimate += from->local_gotno + to->local_gotno;
4568 estimate += from->tls_gotno + to->tls_gotno;
4569
4570 /* If we're merging with the primary got, any TLS relocations will
4571 come after the full set of global entries. Otherwise estimate those
4572 conservatively as well. */
4573 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4574 estimate += arg->global_count;
4575 else
4576 estimate += from->global_gotno + to->global_gotno;
4577
4578 /* Bail out if the combined GOT might be too big. */
4579 if (estimate > arg->max_count)
4580 return -1;
4581
4582 /* Transfer the bfd's got information from FROM to TO. */
4583 tga.info = arg->info;
4584 tga.g = to;
4585 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4586 if (!tga.g)
4587 return 0;
4588
4589 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4590 if (!tga.g)
4591 return 0;
4592
4593 mips_elf_replace_bfd_got (abfd, to);
4594 return 1;
4595 }
4596
4597 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4598 as possible of the primary got, since it doesn't require explicit
4599 dynamic relocations, but don't use bfds that would reference global
4600 symbols out of the addressable range. Failing the primary got,
4601 attempt to merge with the current got, or finish the current got
4602 and then make make the new got current. */
4603
4604 static bfd_boolean
4605 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4606 struct mips_elf_got_per_bfd_arg *arg)
4607 {
4608 unsigned int estimate;
4609 int result;
4610
4611 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4612 return FALSE;
4613
4614 /* Work out the number of page, local and TLS entries. */
4615 estimate = arg->max_pages;
4616 if (estimate > g->page_gotno)
4617 estimate = g->page_gotno;
4618 estimate += g->local_gotno + g->tls_gotno;
4619
4620 /* We place TLS GOT entries after both locals and globals. The globals
4621 for the primary GOT may overflow the normal GOT size limit, so be
4622 sure not to merge a GOT which requires TLS with the primary GOT in that
4623 case. This doesn't affect non-primary GOTs. */
4624 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4625
4626 if (estimate <= arg->max_count)
4627 {
4628 /* If we don't have a primary GOT, use it as
4629 a starting point for the primary GOT. */
4630 if (!arg->primary)
4631 {
4632 arg->primary = g;
4633 return TRUE;
4634 }
4635
4636 /* Try merging with the primary GOT. */
4637 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4638 if (result >= 0)
4639 return result;
4640 }
4641
4642 /* If we can merge with the last-created got, do it. */
4643 if (arg->current)
4644 {
4645 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4646 if (result >= 0)
4647 return result;
4648 }
4649
4650 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4651 fits; if it turns out that it doesn't, we'll get relocation
4652 overflows anyway. */
4653 g->next = arg->current;
4654 arg->current = g;
4655
4656 return TRUE;
4657 }
4658
4659 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4660 to GOTIDX, duplicating the entry if it has already been assigned
4661 an index in a different GOT. */
4662
4663 static bfd_boolean
4664 mips_elf_set_gotidx (void **entryp, long gotidx)
4665 {
4666 struct mips_got_entry *entry;
4667
4668 entry = (struct mips_got_entry *) *entryp;
4669 if (entry->gotidx > 0)
4670 {
4671 struct mips_got_entry *new_entry;
4672
4673 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4674 if (!new_entry)
4675 return FALSE;
4676
4677 *new_entry = *entry;
4678 *entryp = new_entry;
4679 entry = new_entry;
4680 }
4681 entry->gotidx = gotidx;
4682 return TRUE;
4683 }
4684
4685 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4686 mips_elf_traverse_got_arg in which DATA->value is the size of one
4687 GOT entry. Set DATA->g to null on failure. */
4688
4689 static int
4690 mips_elf_initialize_tls_index (void **entryp, void *data)
4691 {
4692 struct mips_got_entry *entry;
4693 struct mips_elf_traverse_got_arg *arg;
4694
4695 /* We're only interested in TLS symbols. */
4696 entry = (struct mips_got_entry *) *entryp;
4697 if (entry->tls_type == GOT_TLS_NONE)
4698 return 1;
4699
4700 arg = (struct mips_elf_traverse_got_arg *) data;
4701 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4702 {
4703 arg->g = NULL;
4704 return 0;
4705 }
4706
4707 /* Account for the entries we've just allocated. */
4708 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4709 return 1;
4710 }
4711
4712 /* A htab_traverse callback for GOT entries, where DATA points to a
4713 mips_elf_traverse_got_arg. Set the global_got_area of each global
4714 symbol to DATA->value. */
4715
4716 static int
4717 mips_elf_set_global_got_area (void **entryp, void *data)
4718 {
4719 struct mips_got_entry *entry;
4720 struct mips_elf_traverse_got_arg *arg;
4721
4722 entry = (struct mips_got_entry *) *entryp;
4723 arg = (struct mips_elf_traverse_got_arg *) data;
4724 if (entry->abfd != NULL
4725 && entry->symndx == -1
4726 && entry->d.h->global_got_area != GGA_NONE)
4727 entry->d.h->global_got_area = arg->value;
4728 return 1;
4729 }
4730
4731 /* A htab_traverse callback for secondary GOT entries, where DATA points
4732 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4733 and record the number of relocations they require. DATA->value is
4734 the size of one GOT entry. Set DATA->g to null on failure. */
4735
4736 static int
4737 mips_elf_set_global_gotidx (void **entryp, void *data)
4738 {
4739 struct mips_got_entry *entry;
4740 struct mips_elf_traverse_got_arg *arg;
4741
4742 entry = (struct mips_got_entry *) *entryp;
4743 arg = (struct mips_elf_traverse_got_arg *) data;
4744 if (entry->abfd != NULL
4745 && entry->symndx == -1
4746 && entry->d.h->global_got_area != GGA_NONE)
4747 {
4748 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4749 {
4750 arg->g = NULL;
4751 return 0;
4752 }
4753 arg->g->assigned_low_gotno += 1;
4754
4755 if (bfd_link_pic (arg->info)
4756 || (elf_hash_table (arg->info)->dynamic_sections_created
4757 && entry->d.h->root.def_dynamic
4758 && !entry->d.h->root.def_regular))
4759 arg->g->relocs += 1;
4760 }
4761
4762 return 1;
4763 }
4764
4765 /* A htab_traverse callback for GOT entries for which DATA is the
4766 bfd_link_info. Forbid any global symbols from having traditional
4767 lazy-binding stubs. */
4768
4769 static int
4770 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4771 {
4772 struct bfd_link_info *info;
4773 struct mips_elf_link_hash_table *htab;
4774 struct mips_got_entry *entry;
4775
4776 entry = (struct mips_got_entry *) *entryp;
4777 info = (struct bfd_link_info *) data;
4778 htab = mips_elf_hash_table (info);
4779 BFD_ASSERT (htab != NULL);
4780
4781 if (entry->abfd != NULL
4782 && entry->symndx == -1
4783 && entry->d.h->needs_lazy_stub)
4784 {
4785 entry->d.h->needs_lazy_stub = FALSE;
4786 htab->lazy_stub_count--;
4787 }
4788
4789 return 1;
4790 }
4791
4792 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4793 the primary GOT. */
4794 static bfd_vma
4795 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4796 {
4797 if (!g->next)
4798 return 0;
4799
4800 g = mips_elf_bfd_got (ibfd, FALSE);
4801 if (! g)
4802 return 0;
4803
4804 BFD_ASSERT (g->next);
4805
4806 g = g->next;
4807
4808 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4809 * MIPS_ELF_GOT_SIZE (abfd);
4810 }
4811
4812 /* Turn a single GOT that is too big for 16-bit addressing into
4813 a sequence of GOTs, each one 16-bit addressable. */
4814
4815 static bfd_boolean
4816 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4817 asection *got, bfd_size_type pages)
4818 {
4819 struct mips_elf_link_hash_table *htab;
4820 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4821 struct mips_elf_traverse_got_arg tga;
4822 struct mips_got_info *g, *gg;
4823 unsigned int assign, needed_relocs;
4824 bfd *dynobj, *ibfd;
4825
4826 dynobj = elf_hash_table (info)->dynobj;
4827 htab = mips_elf_hash_table (info);
4828 BFD_ASSERT (htab != NULL);
4829
4830 g = htab->got_info;
4831
4832 got_per_bfd_arg.obfd = abfd;
4833 got_per_bfd_arg.info = info;
4834 got_per_bfd_arg.current = NULL;
4835 got_per_bfd_arg.primary = NULL;
4836 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4837 / MIPS_ELF_GOT_SIZE (abfd))
4838 - htab->reserved_gotno);
4839 got_per_bfd_arg.max_pages = pages;
4840 /* The number of globals that will be included in the primary GOT.
4841 See the calls to mips_elf_set_global_got_area below for more
4842 information. */
4843 got_per_bfd_arg.global_count = g->global_gotno;
4844
4845 /* Try to merge the GOTs of input bfds together, as long as they
4846 don't seem to exceed the maximum GOT size, choosing one of them
4847 to be the primary GOT. */
4848 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4849 {
4850 gg = mips_elf_bfd_got (ibfd, FALSE);
4851 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4852 return FALSE;
4853 }
4854
4855 /* If we do not find any suitable primary GOT, create an empty one. */
4856 if (got_per_bfd_arg.primary == NULL)
4857 g->next = mips_elf_create_got_info (abfd);
4858 else
4859 g->next = got_per_bfd_arg.primary;
4860 g->next->next = got_per_bfd_arg.current;
4861
4862 /* GG is now the master GOT, and G is the primary GOT. */
4863 gg = g;
4864 g = g->next;
4865
4866 /* Map the output bfd to the primary got. That's what we're going
4867 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4868 didn't mark in check_relocs, and we want a quick way to find it.
4869 We can't just use gg->next because we're going to reverse the
4870 list. */
4871 mips_elf_replace_bfd_got (abfd, g);
4872
4873 /* Every symbol that is referenced in a dynamic relocation must be
4874 present in the primary GOT, so arrange for them to appear after
4875 those that are actually referenced. */
4876 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4877 g->global_gotno = gg->global_gotno;
4878
4879 tga.info = info;
4880 tga.value = GGA_RELOC_ONLY;
4881 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4882 tga.value = GGA_NORMAL;
4883 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4884
4885 /* Now go through the GOTs assigning them offset ranges.
4886 [assigned_low_gotno, local_gotno[ will be set to the range of local
4887 entries in each GOT. We can then compute the end of a GOT by
4888 adding local_gotno to global_gotno. We reverse the list and make
4889 it circular since then we'll be able to quickly compute the
4890 beginning of a GOT, by computing the end of its predecessor. To
4891 avoid special cases for the primary GOT, while still preserving
4892 assertions that are valid for both single- and multi-got links,
4893 we arrange for the main got struct to have the right number of
4894 global entries, but set its local_gotno such that the initial
4895 offset of the primary GOT is zero. Remember that the primary GOT
4896 will become the last item in the circular linked list, so it
4897 points back to the master GOT. */
4898 gg->local_gotno = -g->global_gotno;
4899 gg->global_gotno = g->global_gotno;
4900 gg->tls_gotno = 0;
4901 assign = 0;
4902 gg->next = gg;
4903
4904 do
4905 {
4906 struct mips_got_info *gn;
4907
4908 assign += htab->reserved_gotno;
4909 g->assigned_low_gotno = assign;
4910 g->local_gotno += assign;
4911 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4912 g->assigned_high_gotno = g->local_gotno - 1;
4913 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4914
4915 /* Take g out of the direct list, and push it onto the reversed
4916 list that gg points to. g->next is guaranteed to be nonnull after
4917 this operation, as required by mips_elf_initialize_tls_index. */
4918 gn = g->next;
4919 g->next = gg->next;
4920 gg->next = g;
4921
4922 /* Set up any TLS entries. We always place the TLS entries after
4923 all non-TLS entries. */
4924 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4925 tga.g = g;
4926 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4927 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4928 if (!tga.g)
4929 return FALSE;
4930 BFD_ASSERT (g->tls_assigned_gotno == assign);
4931
4932 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4933 g = gn;
4934
4935 /* Forbid global symbols in every non-primary GOT from having
4936 lazy-binding stubs. */
4937 if (g)
4938 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4939 }
4940 while (g);
4941
4942 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4943
4944 needed_relocs = 0;
4945 for (g = gg->next; g && g->next != gg; g = g->next)
4946 {
4947 unsigned int save_assign;
4948
4949 /* Assign offsets to global GOT entries and count how many
4950 relocations they need. */
4951 save_assign = g->assigned_low_gotno;
4952 g->assigned_low_gotno = g->local_gotno;
4953 tga.info = info;
4954 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4955 tga.g = g;
4956 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4957 if (!tga.g)
4958 return FALSE;
4959 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4960 g->assigned_low_gotno = save_assign;
4961
4962 if (bfd_link_pic (info))
4963 {
4964 g->relocs += g->local_gotno - g->assigned_low_gotno;
4965 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4966 + g->next->global_gotno
4967 + g->next->tls_gotno
4968 + htab->reserved_gotno);
4969 }
4970 needed_relocs += g->relocs;
4971 }
4972 needed_relocs += g->relocs;
4973
4974 if (needed_relocs)
4975 mips_elf_allocate_dynamic_relocations (dynobj, info,
4976 needed_relocs);
4977
4978 return TRUE;
4979 }
4980
4981 \f
4982 /* Returns the first relocation of type r_type found, beginning with
4983 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4984
4985 static const Elf_Internal_Rela *
4986 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4987 const Elf_Internal_Rela *relocation,
4988 const Elf_Internal_Rela *relend)
4989 {
4990 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4991
4992 while (relocation < relend)
4993 {
4994 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4995 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4996 return relocation;
4997
4998 ++relocation;
4999 }
5000
5001 /* We didn't find it. */
5002 return NULL;
5003 }
5004
5005 /* Return whether an input relocation is against a local symbol. */
5006
5007 static bfd_boolean
5008 mips_elf_local_relocation_p (bfd *input_bfd,
5009 const Elf_Internal_Rela *relocation,
5010 asection **local_sections)
5011 {
5012 unsigned long r_symndx;
5013 Elf_Internal_Shdr *symtab_hdr;
5014 size_t extsymoff;
5015
5016 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5017 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5018 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5019
5020 if (r_symndx < extsymoff)
5021 return TRUE;
5022 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5023 return TRUE;
5024
5025 return FALSE;
5026 }
5027 \f
5028 /* Sign-extend VALUE, which has the indicated number of BITS. */
5029
5030 bfd_vma
5031 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5032 {
5033 if (value & ((bfd_vma) 1 << (bits - 1)))
5034 /* VALUE is negative. */
5035 value |= ((bfd_vma) - 1) << bits;
5036
5037 return value;
5038 }
5039
5040 /* Return non-zero if the indicated VALUE has overflowed the maximum
5041 range expressible by a signed number with the indicated number of
5042 BITS. */
5043
5044 static bfd_boolean
5045 mips_elf_overflow_p (bfd_vma value, int bits)
5046 {
5047 bfd_signed_vma svalue = (bfd_signed_vma) value;
5048
5049 if (svalue > (1 << (bits - 1)) - 1)
5050 /* The value is too big. */
5051 return TRUE;
5052 else if (svalue < -(1 << (bits - 1)))
5053 /* The value is too small. */
5054 return TRUE;
5055
5056 /* All is well. */
5057 return FALSE;
5058 }
5059
5060 /* Calculate the %high function. */
5061
5062 static bfd_vma
5063 mips_elf_high (bfd_vma value)
5064 {
5065 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5066 }
5067
5068 /* Calculate the %higher function. */
5069
5070 static bfd_vma
5071 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5072 {
5073 #ifdef BFD64
5074 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5075 #else
5076 abort ();
5077 return MINUS_ONE;
5078 #endif
5079 }
5080
5081 /* Calculate the %highest function. */
5082
5083 static bfd_vma
5084 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5085 {
5086 #ifdef BFD64
5087 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5088 #else
5089 abort ();
5090 return MINUS_ONE;
5091 #endif
5092 }
5093 \f
5094 /* Create the .compact_rel section. */
5095
5096 static bfd_boolean
5097 mips_elf_create_compact_rel_section
5098 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5099 {
5100 flagword flags;
5101 register asection *s;
5102
5103 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5104 {
5105 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5106 | SEC_READONLY);
5107
5108 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5109 if (s == NULL
5110 || ! bfd_set_section_alignment (abfd, s,
5111 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5112 return FALSE;
5113
5114 s->size = sizeof (Elf32_External_compact_rel);
5115 }
5116
5117 return TRUE;
5118 }
5119
5120 /* Create the .got section to hold the global offset table. */
5121
5122 static bfd_boolean
5123 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5124 {
5125 flagword flags;
5126 register asection *s;
5127 struct elf_link_hash_entry *h;
5128 struct bfd_link_hash_entry *bh;
5129 struct mips_elf_link_hash_table *htab;
5130
5131 htab = mips_elf_hash_table (info);
5132 BFD_ASSERT (htab != NULL);
5133
5134 /* This function may be called more than once. */
5135 if (htab->root.sgot)
5136 return TRUE;
5137
5138 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5139 | SEC_LINKER_CREATED);
5140
5141 /* We have to use an alignment of 2**4 here because this is hardcoded
5142 in the function stub generation and in the linker script. */
5143 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5144 if (s == NULL
5145 || ! bfd_set_section_alignment (abfd, s, 4))
5146 return FALSE;
5147 htab->root.sgot = s;
5148
5149 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5150 linker script because we don't want to define the symbol if we
5151 are not creating a global offset table. */
5152 bh = NULL;
5153 if (! (_bfd_generic_link_add_one_symbol
5154 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5155 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5156 return FALSE;
5157
5158 h = (struct elf_link_hash_entry *) bh;
5159 h->non_elf = 0;
5160 h->def_regular = 1;
5161 h->type = STT_OBJECT;
5162 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5163 elf_hash_table (info)->hgot = h;
5164
5165 if (bfd_link_pic (info)
5166 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5167 return FALSE;
5168
5169 htab->got_info = mips_elf_create_got_info (abfd);
5170 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5171 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5172
5173 /* We also need a .got.plt section when generating PLTs. */
5174 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5175 SEC_ALLOC | SEC_LOAD
5176 | SEC_HAS_CONTENTS
5177 | SEC_IN_MEMORY
5178 | SEC_LINKER_CREATED);
5179 if (s == NULL)
5180 return FALSE;
5181 htab->root.sgotplt = s;
5182
5183 return TRUE;
5184 }
5185 \f
5186 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5187 __GOTT_INDEX__ symbols. These symbols are only special for
5188 shared objects; they are not used in executables. */
5189
5190 static bfd_boolean
5191 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5192 {
5193 return (mips_elf_hash_table (info)->is_vxworks
5194 && bfd_link_pic (info)
5195 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5196 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5197 }
5198
5199 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5200 require an la25 stub. See also mips_elf_local_pic_function_p,
5201 which determines whether the destination function ever requires a
5202 stub. */
5203
5204 static bfd_boolean
5205 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5206 bfd_boolean target_is_16_bit_code_p)
5207 {
5208 /* We specifically ignore branches and jumps from EF_PIC objects,
5209 where the onus is on the compiler or programmer to perform any
5210 necessary initialization of $25. Sometimes such initialization
5211 is unnecessary; for example, -mno-shared functions do not use
5212 the incoming value of $25, and may therefore be called directly. */
5213 if (PIC_OBJECT_P (input_bfd))
5214 return FALSE;
5215
5216 switch (r_type)
5217 {
5218 case R_MIPS_26:
5219 case R_MIPS_PC16:
5220 case R_MIPS_PC21_S2:
5221 case R_MIPS_PC26_S2:
5222 case R_MICROMIPS_26_S1:
5223 case R_MICROMIPS_PC7_S1:
5224 case R_MICROMIPS_PC10_S1:
5225 case R_MICROMIPS_PC16_S1:
5226 case R_MICROMIPS_PC23_S2:
5227 return TRUE;
5228
5229 case R_MIPS16_26:
5230 return !target_is_16_bit_code_p;
5231
5232 default:
5233 return FALSE;
5234 }
5235 }
5236 \f
5237 /* Calculate the value produced by the RELOCATION (which comes from
5238 the INPUT_BFD). The ADDEND is the addend to use for this
5239 RELOCATION; RELOCATION->R_ADDEND is ignored.
5240
5241 The result of the relocation calculation is stored in VALUEP.
5242 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5243 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5244
5245 This function returns bfd_reloc_continue if the caller need take no
5246 further action regarding this relocation, bfd_reloc_notsupported if
5247 something goes dramatically wrong, bfd_reloc_overflow if an
5248 overflow occurs, and bfd_reloc_ok to indicate success. */
5249
5250 static bfd_reloc_status_type
5251 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5252 asection *input_section,
5253 struct bfd_link_info *info,
5254 const Elf_Internal_Rela *relocation,
5255 bfd_vma addend, reloc_howto_type *howto,
5256 Elf_Internal_Sym *local_syms,
5257 asection **local_sections, bfd_vma *valuep,
5258 const char **namep,
5259 bfd_boolean *cross_mode_jump_p,
5260 bfd_boolean save_addend)
5261 {
5262 /* The eventual value we will return. */
5263 bfd_vma value;
5264 /* The address of the symbol against which the relocation is
5265 occurring. */
5266 bfd_vma symbol = 0;
5267 /* The final GP value to be used for the relocatable, executable, or
5268 shared object file being produced. */
5269 bfd_vma gp;
5270 /* The place (section offset or address) of the storage unit being
5271 relocated. */
5272 bfd_vma p;
5273 /* The value of GP used to create the relocatable object. */
5274 bfd_vma gp0;
5275 /* The offset into the global offset table at which the address of
5276 the relocation entry symbol, adjusted by the addend, resides
5277 during execution. */
5278 bfd_vma g = MINUS_ONE;
5279 /* The section in which the symbol referenced by the relocation is
5280 located. */
5281 asection *sec = NULL;
5282 struct mips_elf_link_hash_entry *h = NULL;
5283 /* TRUE if the symbol referred to by this relocation is a local
5284 symbol. */
5285 bfd_boolean local_p, was_local_p;
5286 /* TRUE if the symbol referred to by this relocation is a section
5287 symbol. */
5288 bfd_boolean section_p = FALSE;
5289 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5290 bfd_boolean gp_disp_p = FALSE;
5291 /* TRUE if the symbol referred to by this relocation is
5292 "__gnu_local_gp". */
5293 bfd_boolean gnu_local_gp_p = FALSE;
5294 Elf_Internal_Shdr *symtab_hdr;
5295 size_t extsymoff;
5296 unsigned long r_symndx;
5297 int r_type;
5298 /* TRUE if overflow occurred during the calculation of the
5299 relocation value. */
5300 bfd_boolean overflowed_p;
5301 /* TRUE if this relocation refers to a MIPS16 function. */
5302 bfd_boolean target_is_16_bit_code_p = FALSE;
5303 bfd_boolean target_is_micromips_code_p = FALSE;
5304 struct mips_elf_link_hash_table *htab;
5305 bfd *dynobj;
5306 bfd_boolean resolved_to_zero;
5307
5308 dynobj = elf_hash_table (info)->dynobj;
5309 htab = mips_elf_hash_table (info);
5310 BFD_ASSERT (htab != NULL);
5311
5312 /* Parse the relocation. */
5313 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5314 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5315 p = (input_section->output_section->vma
5316 + input_section->output_offset
5317 + relocation->r_offset);
5318
5319 /* Assume that there will be no overflow. */
5320 overflowed_p = FALSE;
5321
5322 /* Figure out whether or not the symbol is local, and get the offset
5323 used in the array of hash table entries. */
5324 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5325 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5326 local_sections);
5327 was_local_p = local_p;
5328 if (! elf_bad_symtab (input_bfd))
5329 extsymoff = symtab_hdr->sh_info;
5330 else
5331 {
5332 /* The symbol table does not follow the rule that local symbols
5333 must come before globals. */
5334 extsymoff = 0;
5335 }
5336
5337 /* Figure out the value of the symbol. */
5338 if (local_p)
5339 {
5340 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5341 Elf_Internal_Sym *sym;
5342
5343 sym = local_syms + r_symndx;
5344 sec = local_sections[r_symndx];
5345
5346 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5347
5348 symbol = sec->output_section->vma + sec->output_offset;
5349 if (!section_p || (sec->flags & SEC_MERGE))
5350 symbol += sym->st_value;
5351 if ((sec->flags & SEC_MERGE) && section_p)
5352 {
5353 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5354 addend -= symbol;
5355 addend += sec->output_section->vma + sec->output_offset;
5356 }
5357
5358 /* MIPS16/microMIPS text labels should be treated as odd. */
5359 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5360 ++symbol;
5361
5362 /* Record the name of this symbol, for our caller. */
5363 *namep = bfd_elf_string_from_elf_section (input_bfd,
5364 symtab_hdr->sh_link,
5365 sym->st_name);
5366 if (*namep == NULL || **namep == '\0')
5367 *namep = bfd_section_name (input_bfd, sec);
5368
5369 /* For relocations against a section symbol and ones against no
5370 symbol (absolute relocations) infer the ISA mode from the addend. */
5371 if (section_p || r_symndx == STN_UNDEF)
5372 {
5373 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5374 target_is_micromips_code_p = (addend & 1) && micromips_p;
5375 }
5376 /* For relocations against an absolute symbol infer the ISA mode
5377 from the value of the symbol plus addend. */
5378 else if (bfd_is_abs_section (sec))
5379 {
5380 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5381 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5382 }
5383 /* Otherwise just use the regular symbol annotation available. */
5384 else
5385 {
5386 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5387 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5388 }
5389 }
5390 else
5391 {
5392 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5393
5394 /* For global symbols we look up the symbol in the hash-table. */
5395 h = ((struct mips_elf_link_hash_entry *)
5396 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5397 /* Find the real hash-table entry for this symbol. */
5398 while (h->root.root.type == bfd_link_hash_indirect
5399 || h->root.root.type == bfd_link_hash_warning)
5400 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5401
5402 /* Record the name of this symbol, for our caller. */
5403 *namep = h->root.root.root.string;
5404
5405 /* See if this is the special _gp_disp symbol. Note that such a
5406 symbol must always be a global symbol. */
5407 if (strcmp (*namep, "_gp_disp") == 0
5408 && ! NEWABI_P (input_bfd))
5409 {
5410 /* Relocations against _gp_disp are permitted only with
5411 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5412 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5413 return bfd_reloc_notsupported;
5414
5415 gp_disp_p = TRUE;
5416 }
5417 /* See if this is the special _gp symbol. Note that such a
5418 symbol must always be a global symbol. */
5419 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5420 gnu_local_gp_p = TRUE;
5421
5422
5423 /* If this symbol is defined, calculate its address. Note that
5424 _gp_disp is a magic symbol, always implicitly defined by the
5425 linker, so it's inappropriate to check to see whether or not
5426 its defined. */
5427 else if ((h->root.root.type == bfd_link_hash_defined
5428 || h->root.root.type == bfd_link_hash_defweak)
5429 && h->root.root.u.def.section)
5430 {
5431 sec = h->root.root.u.def.section;
5432 if (sec->output_section)
5433 symbol = (h->root.root.u.def.value
5434 + sec->output_section->vma
5435 + sec->output_offset);
5436 else
5437 symbol = h->root.root.u.def.value;
5438 }
5439 else if (h->root.root.type == bfd_link_hash_undefweak)
5440 /* We allow relocations against undefined weak symbols, giving
5441 it the value zero, so that you can undefined weak functions
5442 and check to see if they exist by looking at their
5443 addresses. */
5444 symbol = 0;
5445 else if (info->unresolved_syms_in_objects == RM_IGNORE
5446 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5447 symbol = 0;
5448 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5449 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5450 {
5451 /* If this is a dynamic link, we should have created a
5452 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5453 in _bfd_mips_elf_create_dynamic_sections.
5454 Otherwise, we should define the symbol with a value of 0.
5455 FIXME: It should probably get into the symbol table
5456 somehow as well. */
5457 BFD_ASSERT (! bfd_link_pic (info));
5458 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5459 symbol = 0;
5460 }
5461 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5462 {
5463 /* This is an optional symbol - an Irix specific extension to the
5464 ELF spec. Ignore it for now.
5465 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5466 than simply ignoring them, but we do not handle this for now.
5467 For information see the "64-bit ELF Object File Specification"
5468 which is available from here:
5469 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5470 symbol = 0;
5471 }
5472 else
5473 {
5474 bfd_boolean reject_undefined
5475 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5476 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5477
5478 (*info->callbacks->undefined_symbol)
5479 (info, h->root.root.root.string, input_bfd,
5480 input_section, relocation->r_offset, reject_undefined);
5481
5482 if (reject_undefined)
5483 return bfd_reloc_undefined;
5484
5485 symbol = 0;
5486 }
5487
5488 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5489 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5490 }
5491
5492 /* If this is a reference to a 16-bit function with a stub, we need
5493 to redirect the relocation to the stub unless:
5494
5495 (a) the relocation is for a MIPS16 JAL;
5496
5497 (b) the relocation is for a MIPS16 PIC call, and there are no
5498 non-MIPS16 uses of the GOT slot; or
5499
5500 (c) the section allows direct references to MIPS16 functions. */
5501 if (r_type != R_MIPS16_26
5502 && !bfd_link_relocatable (info)
5503 && ((h != NULL
5504 && h->fn_stub != NULL
5505 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5506 || (local_p
5507 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5508 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5509 && !section_allows_mips16_refs_p (input_section))
5510 {
5511 /* This is a 32- or 64-bit call to a 16-bit function. We should
5512 have already noticed that we were going to need the
5513 stub. */
5514 if (local_p)
5515 {
5516 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5517 value = 0;
5518 }
5519 else
5520 {
5521 BFD_ASSERT (h->need_fn_stub);
5522 if (h->la25_stub)
5523 {
5524 /* If a LA25 header for the stub itself exists, point to the
5525 prepended LUI/ADDIU sequence. */
5526 sec = h->la25_stub->stub_section;
5527 value = h->la25_stub->offset;
5528 }
5529 else
5530 {
5531 sec = h->fn_stub;
5532 value = 0;
5533 }
5534 }
5535
5536 symbol = sec->output_section->vma + sec->output_offset + value;
5537 /* The target is 16-bit, but the stub isn't. */
5538 target_is_16_bit_code_p = FALSE;
5539 }
5540 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5541 to a standard MIPS function, we need to redirect the call to the stub.
5542 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5543 indirect calls should use an indirect stub instead. */
5544 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5545 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5546 || (local_p
5547 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5548 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5549 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5550 {
5551 if (local_p)
5552 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5553 else
5554 {
5555 /* If both call_stub and call_fp_stub are defined, we can figure
5556 out which one to use by checking which one appears in the input
5557 file. */
5558 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5559 {
5560 asection *o;
5561
5562 sec = NULL;
5563 for (o = input_bfd->sections; o != NULL; o = o->next)
5564 {
5565 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5566 {
5567 sec = h->call_fp_stub;
5568 break;
5569 }
5570 }
5571 if (sec == NULL)
5572 sec = h->call_stub;
5573 }
5574 else if (h->call_stub != NULL)
5575 sec = h->call_stub;
5576 else
5577 sec = h->call_fp_stub;
5578 }
5579
5580 BFD_ASSERT (sec->size > 0);
5581 symbol = sec->output_section->vma + sec->output_offset;
5582 }
5583 /* If this is a direct call to a PIC function, redirect to the
5584 non-PIC stub. */
5585 else if (h != NULL && h->la25_stub
5586 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5587 target_is_16_bit_code_p))
5588 {
5589 symbol = (h->la25_stub->stub_section->output_section->vma
5590 + h->la25_stub->stub_section->output_offset
5591 + h->la25_stub->offset);
5592 if (ELF_ST_IS_MICROMIPS (h->root.other))
5593 symbol |= 1;
5594 }
5595 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5596 entry is used if a standard PLT entry has also been made. In this
5597 case the symbol will have been set by mips_elf_set_plt_sym_value
5598 to point to the standard PLT entry, so redirect to the compressed
5599 one. */
5600 else if ((mips16_branch_reloc_p (r_type)
5601 || micromips_branch_reloc_p (r_type))
5602 && !bfd_link_relocatable (info)
5603 && h != NULL
5604 && h->use_plt_entry
5605 && h->root.plt.plist->comp_offset != MINUS_ONE
5606 && h->root.plt.plist->mips_offset != MINUS_ONE)
5607 {
5608 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5609
5610 sec = htab->root.splt;
5611 symbol = (sec->output_section->vma
5612 + sec->output_offset
5613 + htab->plt_header_size
5614 + htab->plt_mips_offset
5615 + h->root.plt.plist->comp_offset
5616 + 1);
5617
5618 target_is_16_bit_code_p = !micromips_p;
5619 target_is_micromips_code_p = micromips_p;
5620 }
5621
5622 /* Make sure MIPS16 and microMIPS are not used together. */
5623 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5624 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5625 {
5626 _bfd_error_handler
5627 (_("MIPS16 and microMIPS functions cannot call each other"));
5628 return bfd_reloc_notsupported;
5629 }
5630
5631 /* Calls from 16-bit code to 32-bit code and vice versa require the
5632 mode change. However, we can ignore calls to undefined weak symbols,
5633 which should never be executed at runtime. This exception is important
5634 because the assembly writer may have "known" that any definition of the
5635 symbol would be 16-bit code, and that direct jumps were therefore
5636 acceptable. */
5637 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5638 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5639 && ((mips16_branch_reloc_p (r_type)
5640 && !target_is_16_bit_code_p)
5641 || (micromips_branch_reloc_p (r_type)
5642 && !target_is_micromips_code_p)
5643 || ((branch_reloc_p (r_type)
5644 || r_type == R_MIPS_JALR)
5645 && (target_is_16_bit_code_p
5646 || target_is_micromips_code_p))));
5647
5648 local_p = (h == NULL || mips_use_local_got_p (info, h));
5649
5650 gp0 = _bfd_get_gp_value (input_bfd);
5651 gp = _bfd_get_gp_value (abfd);
5652 if (htab->got_info)
5653 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5654
5655 if (gnu_local_gp_p)
5656 symbol = gp;
5657
5658 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5659 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5660 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5661 if (got_page_reloc_p (r_type) && !local_p)
5662 {
5663 r_type = (micromips_reloc_p (r_type)
5664 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5665 addend = 0;
5666 }
5667
5668 resolved_to_zero = (h != NULL
5669 && UNDEFWEAK_NO_DYNAMIC_RELOC (info,
5670 &h->root));
5671
5672 /* If we haven't already determined the GOT offset, and we're going
5673 to need it, get it now. */
5674 switch (r_type)
5675 {
5676 case R_MIPS16_CALL16:
5677 case R_MIPS16_GOT16:
5678 case R_MIPS_CALL16:
5679 case R_MIPS_GOT16:
5680 case R_MIPS_GOT_DISP:
5681 case R_MIPS_GOT_HI16:
5682 case R_MIPS_CALL_HI16:
5683 case R_MIPS_GOT_LO16:
5684 case R_MIPS_CALL_LO16:
5685 case R_MICROMIPS_CALL16:
5686 case R_MICROMIPS_GOT16:
5687 case R_MICROMIPS_GOT_DISP:
5688 case R_MICROMIPS_GOT_HI16:
5689 case R_MICROMIPS_CALL_HI16:
5690 case R_MICROMIPS_GOT_LO16:
5691 case R_MICROMIPS_CALL_LO16:
5692 case R_MIPS_TLS_GD:
5693 case R_MIPS_TLS_GOTTPREL:
5694 case R_MIPS_TLS_LDM:
5695 case R_MIPS16_TLS_GD:
5696 case R_MIPS16_TLS_GOTTPREL:
5697 case R_MIPS16_TLS_LDM:
5698 case R_MICROMIPS_TLS_GD:
5699 case R_MICROMIPS_TLS_GOTTPREL:
5700 case R_MICROMIPS_TLS_LDM:
5701 /* Find the index into the GOT where this value is located. */
5702 if (tls_ldm_reloc_p (r_type))
5703 {
5704 g = mips_elf_local_got_index (abfd, input_bfd, info,
5705 0, 0, NULL, r_type);
5706 if (g == MINUS_ONE)
5707 return bfd_reloc_outofrange;
5708 }
5709 else if (!local_p)
5710 {
5711 /* On VxWorks, CALL relocations should refer to the .got.plt
5712 entry, which is initialized to point at the PLT stub. */
5713 if (htab->is_vxworks
5714 && (call_hi16_reloc_p (r_type)
5715 || call_lo16_reloc_p (r_type)
5716 || call16_reloc_p (r_type)))
5717 {
5718 BFD_ASSERT (addend == 0);
5719 BFD_ASSERT (h->root.needs_plt);
5720 g = mips_elf_gotplt_index (info, &h->root);
5721 }
5722 else
5723 {
5724 BFD_ASSERT (addend == 0);
5725 g = mips_elf_global_got_index (abfd, info, input_bfd,
5726 &h->root, r_type);
5727 if (!TLS_RELOC_P (r_type)
5728 && !elf_hash_table (info)->dynamic_sections_created)
5729 /* This is a static link. We must initialize the GOT entry. */
5730 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5731 }
5732 }
5733 else if (!htab->is_vxworks
5734 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5735 /* The calculation below does not involve "g". */
5736 break;
5737 else
5738 {
5739 g = mips_elf_local_got_index (abfd, input_bfd, info,
5740 symbol + addend, r_symndx, h, r_type);
5741 if (g == MINUS_ONE)
5742 return bfd_reloc_outofrange;
5743 }
5744
5745 /* Convert GOT indices to actual offsets. */
5746 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5747 break;
5748 }
5749
5750 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5751 symbols are resolved by the loader. Add them to .rela.dyn. */
5752 if (h != NULL && is_gott_symbol (info, &h->root))
5753 {
5754 Elf_Internal_Rela outrel;
5755 bfd_byte *loc;
5756 asection *s;
5757
5758 s = mips_elf_rel_dyn_section (info, FALSE);
5759 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5760
5761 outrel.r_offset = (input_section->output_section->vma
5762 + input_section->output_offset
5763 + relocation->r_offset);
5764 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5765 outrel.r_addend = addend;
5766 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5767
5768 /* If we've written this relocation for a readonly section,
5769 we need to set DF_TEXTREL again, so that we do not delete the
5770 DT_TEXTREL tag. */
5771 if (MIPS_ELF_READONLY_SECTION (input_section))
5772 info->flags |= DF_TEXTREL;
5773
5774 *valuep = 0;
5775 return bfd_reloc_ok;
5776 }
5777
5778 /* Figure out what kind of relocation is being performed. */
5779 switch (r_type)
5780 {
5781 case R_MIPS_NONE:
5782 return bfd_reloc_continue;
5783
5784 case R_MIPS_16:
5785 if (howto->partial_inplace)
5786 addend = _bfd_mips_elf_sign_extend (addend, 16);
5787 value = symbol + addend;
5788 overflowed_p = mips_elf_overflow_p (value, 16);
5789 break;
5790
5791 case R_MIPS_32:
5792 case R_MIPS_REL32:
5793 case R_MIPS_64:
5794 if ((bfd_link_pic (info)
5795 || (htab->root.dynamic_sections_created
5796 && h != NULL
5797 && h->root.def_dynamic
5798 && !h->root.def_regular
5799 && !h->has_static_relocs))
5800 && r_symndx != STN_UNDEF
5801 && (h == NULL
5802 || h->root.root.type != bfd_link_hash_undefweak
5803 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5804 && !resolved_to_zero))
5805 && (input_section->flags & SEC_ALLOC) != 0)
5806 {
5807 /* If we're creating a shared library, then we can't know
5808 where the symbol will end up. So, we create a relocation
5809 record in the output, and leave the job up to the dynamic
5810 linker. We must do the same for executable references to
5811 shared library symbols, unless we've decided to use copy
5812 relocs or PLTs instead. */
5813 value = addend;
5814 if (!mips_elf_create_dynamic_relocation (abfd,
5815 info,
5816 relocation,
5817 h,
5818 sec,
5819 symbol,
5820 &value,
5821 input_section))
5822 return bfd_reloc_undefined;
5823 }
5824 else
5825 {
5826 if (r_type != R_MIPS_REL32)
5827 value = symbol + addend;
5828 else
5829 value = addend;
5830 }
5831 value &= howto->dst_mask;
5832 break;
5833
5834 case R_MIPS_PC32:
5835 value = symbol + addend - p;
5836 value &= howto->dst_mask;
5837 break;
5838
5839 case R_MIPS16_26:
5840 /* The calculation for R_MIPS16_26 is just the same as for an
5841 R_MIPS_26. It's only the storage of the relocated field into
5842 the output file that's different. That's handled in
5843 mips_elf_perform_relocation. So, we just fall through to the
5844 R_MIPS_26 case here. */
5845 case R_MIPS_26:
5846 case R_MICROMIPS_26_S1:
5847 {
5848 unsigned int shift;
5849
5850 /* Shift is 2, unusually, for microMIPS JALX. */
5851 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5852
5853 if (howto->partial_inplace && !section_p)
5854 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5855 else
5856 value = addend;
5857 value += symbol;
5858
5859 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5860 be the correct ISA mode selector except for weak undefined
5861 symbols. */
5862 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5863 && (*cross_mode_jump_p
5864 ? (value & 3) != (r_type == R_MIPS_26)
5865 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5866 return bfd_reloc_outofrange;
5867
5868 value >>= shift;
5869 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5870 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5871 value &= howto->dst_mask;
5872 }
5873 break;
5874
5875 case R_MIPS_TLS_DTPREL_HI16:
5876 case R_MIPS16_TLS_DTPREL_HI16:
5877 case R_MICROMIPS_TLS_DTPREL_HI16:
5878 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5879 & howto->dst_mask);
5880 break;
5881
5882 case R_MIPS_TLS_DTPREL_LO16:
5883 case R_MIPS_TLS_DTPREL32:
5884 case R_MIPS_TLS_DTPREL64:
5885 case R_MIPS16_TLS_DTPREL_LO16:
5886 case R_MICROMIPS_TLS_DTPREL_LO16:
5887 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5888 break;
5889
5890 case R_MIPS_TLS_TPREL_HI16:
5891 case R_MIPS16_TLS_TPREL_HI16:
5892 case R_MICROMIPS_TLS_TPREL_HI16:
5893 value = (mips_elf_high (addend + symbol - tprel_base (info))
5894 & howto->dst_mask);
5895 break;
5896
5897 case R_MIPS_TLS_TPREL_LO16:
5898 case R_MIPS_TLS_TPREL32:
5899 case R_MIPS_TLS_TPREL64:
5900 case R_MIPS16_TLS_TPREL_LO16:
5901 case R_MICROMIPS_TLS_TPREL_LO16:
5902 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5903 break;
5904
5905 case R_MIPS_HI16:
5906 case R_MIPS16_HI16:
5907 case R_MICROMIPS_HI16:
5908 if (!gp_disp_p)
5909 {
5910 value = mips_elf_high (addend + symbol);
5911 value &= howto->dst_mask;
5912 }
5913 else
5914 {
5915 /* For MIPS16 ABI code we generate this sequence
5916 0: li $v0,%hi(_gp_disp)
5917 4: addiupc $v1,%lo(_gp_disp)
5918 8: sll $v0,16
5919 12: addu $v0,$v1
5920 14: move $gp,$v0
5921 So the offsets of hi and lo relocs are the same, but the
5922 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5923 ADDIUPC clears the low two bits of the instruction address,
5924 so the base is ($t9 + 4) & ~3. */
5925 if (r_type == R_MIPS16_HI16)
5926 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5927 /* The microMIPS .cpload sequence uses the same assembly
5928 instructions as the traditional psABI version, but the
5929 incoming $t9 has the low bit set. */
5930 else if (r_type == R_MICROMIPS_HI16)
5931 value = mips_elf_high (addend + gp - p - 1);
5932 else
5933 value = mips_elf_high (addend + gp - p);
5934 }
5935 break;
5936
5937 case R_MIPS_LO16:
5938 case R_MIPS16_LO16:
5939 case R_MICROMIPS_LO16:
5940 case R_MICROMIPS_HI0_LO16:
5941 if (!gp_disp_p)
5942 value = (symbol + addend) & howto->dst_mask;
5943 else
5944 {
5945 /* See the comment for R_MIPS16_HI16 above for the reason
5946 for this conditional. */
5947 if (r_type == R_MIPS16_LO16)
5948 value = addend + gp - (p & ~(bfd_vma) 0x3);
5949 else if (r_type == R_MICROMIPS_LO16
5950 || r_type == R_MICROMIPS_HI0_LO16)
5951 value = addend + gp - p + 3;
5952 else
5953 value = addend + gp - p + 4;
5954 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5955 for overflow. But, on, say, IRIX5, relocations against
5956 _gp_disp are normally generated from the .cpload
5957 pseudo-op. It generates code that normally looks like
5958 this:
5959
5960 lui $gp,%hi(_gp_disp)
5961 addiu $gp,$gp,%lo(_gp_disp)
5962 addu $gp,$gp,$t9
5963
5964 Here $t9 holds the address of the function being called,
5965 as required by the MIPS ELF ABI. The R_MIPS_LO16
5966 relocation can easily overflow in this situation, but the
5967 R_MIPS_HI16 relocation will handle the overflow.
5968 Therefore, we consider this a bug in the MIPS ABI, and do
5969 not check for overflow here. */
5970 }
5971 break;
5972
5973 case R_MIPS_LITERAL:
5974 case R_MICROMIPS_LITERAL:
5975 /* Because we don't merge literal sections, we can handle this
5976 just like R_MIPS_GPREL16. In the long run, we should merge
5977 shared literals, and then we will need to additional work
5978 here. */
5979
5980 /* Fall through. */
5981
5982 case R_MIPS16_GPREL:
5983 /* The R_MIPS16_GPREL performs the same calculation as
5984 R_MIPS_GPREL16, but stores the relocated bits in a different
5985 order. We don't need to do anything special here; the
5986 differences are handled in mips_elf_perform_relocation. */
5987 case R_MIPS_GPREL16:
5988 case R_MICROMIPS_GPREL7_S2:
5989 case R_MICROMIPS_GPREL16:
5990 /* Only sign-extend the addend if it was extracted from the
5991 instruction. If the addend was separate, leave it alone,
5992 otherwise we may lose significant bits. */
5993 if (howto->partial_inplace)
5994 addend = _bfd_mips_elf_sign_extend (addend, 16);
5995 value = symbol + addend - gp;
5996 /* If the symbol was local, any earlier relocatable links will
5997 have adjusted its addend with the gp offset, so compensate
5998 for that now. Don't do it for symbols forced local in this
5999 link, though, since they won't have had the gp offset applied
6000 to them before. */
6001 if (was_local_p)
6002 value += gp0;
6003 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6004 overflowed_p = mips_elf_overflow_p (value, 16);
6005 break;
6006
6007 case R_MIPS16_GOT16:
6008 case R_MIPS16_CALL16:
6009 case R_MIPS_GOT16:
6010 case R_MIPS_CALL16:
6011 case R_MICROMIPS_GOT16:
6012 case R_MICROMIPS_CALL16:
6013 /* VxWorks does not have separate local and global semantics for
6014 R_MIPS*_GOT16; every relocation evaluates to "G". */
6015 if (!htab->is_vxworks && local_p)
6016 {
6017 value = mips_elf_got16_entry (abfd, input_bfd, info,
6018 symbol + addend, !was_local_p);
6019 if (value == MINUS_ONE)
6020 return bfd_reloc_outofrange;
6021 value
6022 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6023 overflowed_p = mips_elf_overflow_p (value, 16);
6024 break;
6025 }
6026
6027 /* Fall through. */
6028
6029 case R_MIPS_TLS_GD:
6030 case R_MIPS_TLS_GOTTPREL:
6031 case R_MIPS_TLS_LDM:
6032 case R_MIPS_GOT_DISP:
6033 case R_MIPS16_TLS_GD:
6034 case R_MIPS16_TLS_GOTTPREL:
6035 case R_MIPS16_TLS_LDM:
6036 case R_MICROMIPS_TLS_GD:
6037 case R_MICROMIPS_TLS_GOTTPREL:
6038 case R_MICROMIPS_TLS_LDM:
6039 case R_MICROMIPS_GOT_DISP:
6040 value = g;
6041 overflowed_p = mips_elf_overflow_p (value, 16);
6042 break;
6043
6044 case R_MIPS_GPREL32:
6045 value = (addend + symbol + gp0 - gp);
6046 if (!save_addend)
6047 value &= howto->dst_mask;
6048 break;
6049
6050 case R_MIPS_PC16:
6051 case R_MIPS_GNU_REL16_S2:
6052 if (howto->partial_inplace)
6053 addend = _bfd_mips_elf_sign_extend (addend, 18);
6054
6055 /* No need to exclude weak undefined symbols here as they resolve
6056 to 0 and never set `*cross_mode_jump_p', so this alignment check
6057 will never trigger for them. */
6058 if (*cross_mode_jump_p
6059 ? ((symbol + addend) & 3) != 1
6060 : ((symbol + addend) & 3) != 0)
6061 return bfd_reloc_outofrange;
6062
6063 value = symbol + addend - p;
6064 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6065 overflowed_p = mips_elf_overflow_p (value, 18);
6066 value >>= howto->rightshift;
6067 value &= howto->dst_mask;
6068 break;
6069
6070 case R_MIPS16_PC16_S1:
6071 if (howto->partial_inplace)
6072 addend = _bfd_mips_elf_sign_extend (addend, 17);
6073
6074 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6075 && (*cross_mode_jump_p
6076 ? ((symbol + addend) & 3) != 0
6077 : ((symbol + addend) & 1) == 0))
6078 return bfd_reloc_outofrange;
6079
6080 value = symbol + addend - p;
6081 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6082 overflowed_p = mips_elf_overflow_p (value, 17);
6083 value >>= howto->rightshift;
6084 value &= howto->dst_mask;
6085 break;
6086
6087 case R_MIPS_PC21_S2:
6088 if (howto->partial_inplace)
6089 addend = _bfd_mips_elf_sign_extend (addend, 23);
6090
6091 if ((symbol + addend) & 3)
6092 return bfd_reloc_outofrange;
6093
6094 value = symbol + addend - p;
6095 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6096 overflowed_p = mips_elf_overflow_p (value, 23);
6097 value >>= howto->rightshift;
6098 value &= howto->dst_mask;
6099 break;
6100
6101 case R_MIPS_PC26_S2:
6102 if (howto->partial_inplace)
6103 addend = _bfd_mips_elf_sign_extend (addend, 28);
6104
6105 if ((symbol + addend) & 3)
6106 return bfd_reloc_outofrange;
6107
6108 value = symbol + addend - p;
6109 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6110 overflowed_p = mips_elf_overflow_p (value, 28);
6111 value >>= howto->rightshift;
6112 value &= howto->dst_mask;
6113 break;
6114
6115 case R_MIPS_PC18_S3:
6116 if (howto->partial_inplace)
6117 addend = _bfd_mips_elf_sign_extend (addend, 21);
6118
6119 if ((symbol + addend) & 7)
6120 return bfd_reloc_outofrange;
6121
6122 value = symbol + addend - ((p | 7) ^ 7);
6123 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6124 overflowed_p = mips_elf_overflow_p (value, 21);
6125 value >>= howto->rightshift;
6126 value &= howto->dst_mask;
6127 break;
6128
6129 case R_MIPS_PC19_S2:
6130 if (howto->partial_inplace)
6131 addend = _bfd_mips_elf_sign_extend (addend, 21);
6132
6133 if ((symbol + addend) & 3)
6134 return bfd_reloc_outofrange;
6135
6136 value = symbol + addend - p;
6137 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6138 overflowed_p = mips_elf_overflow_p (value, 21);
6139 value >>= howto->rightshift;
6140 value &= howto->dst_mask;
6141 break;
6142
6143 case R_MIPS_PCHI16:
6144 value = mips_elf_high (symbol + addend - p);
6145 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6146 overflowed_p = mips_elf_overflow_p (value, 16);
6147 value &= howto->dst_mask;
6148 break;
6149
6150 case R_MIPS_PCLO16:
6151 if (howto->partial_inplace)
6152 addend = _bfd_mips_elf_sign_extend (addend, 16);
6153 value = symbol + addend - p;
6154 value &= howto->dst_mask;
6155 break;
6156
6157 case R_MICROMIPS_PC7_S1:
6158 if (howto->partial_inplace)
6159 addend = _bfd_mips_elf_sign_extend (addend, 8);
6160
6161 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6162 && (*cross_mode_jump_p
6163 ? ((symbol + addend + 2) & 3) != 0
6164 : ((symbol + addend + 2) & 1) == 0))
6165 return bfd_reloc_outofrange;
6166
6167 value = symbol + addend - p;
6168 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6169 overflowed_p = mips_elf_overflow_p (value, 8);
6170 value >>= howto->rightshift;
6171 value &= howto->dst_mask;
6172 break;
6173
6174 case R_MICROMIPS_PC10_S1:
6175 if (howto->partial_inplace)
6176 addend = _bfd_mips_elf_sign_extend (addend, 11);
6177
6178 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6179 && (*cross_mode_jump_p
6180 ? ((symbol + addend + 2) & 3) != 0
6181 : ((symbol + addend + 2) & 1) == 0))
6182 return bfd_reloc_outofrange;
6183
6184 value = symbol + addend - p;
6185 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6186 overflowed_p = mips_elf_overflow_p (value, 11);
6187 value >>= howto->rightshift;
6188 value &= howto->dst_mask;
6189 break;
6190
6191 case R_MICROMIPS_PC16_S1:
6192 if (howto->partial_inplace)
6193 addend = _bfd_mips_elf_sign_extend (addend, 17);
6194
6195 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6196 && (*cross_mode_jump_p
6197 ? ((symbol + addend) & 3) != 0
6198 : ((symbol + addend) & 1) == 0))
6199 return bfd_reloc_outofrange;
6200
6201 value = symbol + addend - p;
6202 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6203 overflowed_p = mips_elf_overflow_p (value, 17);
6204 value >>= howto->rightshift;
6205 value &= howto->dst_mask;
6206 break;
6207
6208 case R_MICROMIPS_PC23_S2:
6209 if (howto->partial_inplace)
6210 addend = _bfd_mips_elf_sign_extend (addend, 25);
6211 value = symbol + addend - ((p | 3) ^ 3);
6212 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6213 overflowed_p = mips_elf_overflow_p (value, 25);
6214 value >>= howto->rightshift;
6215 value &= howto->dst_mask;
6216 break;
6217
6218 case R_MIPS_GOT_HI16:
6219 case R_MIPS_CALL_HI16:
6220 case R_MICROMIPS_GOT_HI16:
6221 case R_MICROMIPS_CALL_HI16:
6222 /* We're allowed to handle these two relocations identically.
6223 The dynamic linker is allowed to handle the CALL relocations
6224 differently by creating a lazy evaluation stub. */
6225 value = g;
6226 value = mips_elf_high (value);
6227 value &= howto->dst_mask;
6228 break;
6229
6230 case R_MIPS_GOT_LO16:
6231 case R_MIPS_CALL_LO16:
6232 case R_MICROMIPS_GOT_LO16:
6233 case R_MICROMIPS_CALL_LO16:
6234 value = g & howto->dst_mask;
6235 break;
6236
6237 case R_MIPS_GOT_PAGE:
6238 case R_MICROMIPS_GOT_PAGE:
6239 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6240 if (value == MINUS_ONE)
6241 return bfd_reloc_outofrange;
6242 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6243 overflowed_p = mips_elf_overflow_p (value, 16);
6244 break;
6245
6246 case R_MIPS_GOT_OFST:
6247 case R_MICROMIPS_GOT_OFST:
6248 if (local_p)
6249 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6250 else
6251 value = addend;
6252 overflowed_p = mips_elf_overflow_p (value, 16);
6253 break;
6254
6255 case R_MIPS_SUB:
6256 case R_MICROMIPS_SUB:
6257 value = symbol - addend;
6258 value &= howto->dst_mask;
6259 break;
6260
6261 case R_MIPS_HIGHER:
6262 case R_MICROMIPS_HIGHER:
6263 value = mips_elf_higher (addend + symbol);
6264 value &= howto->dst_mask;
6265 break;
6266
6267 case R_MIPS_HIGHEST:
6268 case R_MICROMIPS_HIGHEST:
6269 value = mips_elf_highest (addend + symbol);
6270 value &= howto->dst_mask;
6271 break;
6272
6273 case R_MIPS_SCN_DISP:
6274 case R_MICROMIPS_SCN_DISP:
6275 value = symbol + addend - sec->output_offset;
6276 value &= howto->dst_mask;
6277 break;
6278
6279 case R_MIPS_JALR:
6280 case R_MICROMIPS_JALR:
6281 /* This relocation is only a hint. In some cases, we optimize
6282 it into a bal instruction. But we don't try to optimize
6283 when the symbol does not resolve locally. */
6284 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6285 return bfd_reloc_continue;
6286 /* We can't optimize cross-mode jumps either. */
6287 if (*cross_mode_jump_p)
6288 return bfd_reloc_continue;
6289 value = symbol + addend;
6290 /* Neither we can non-instruction-aligned targets. */
6291 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6292 return bfd_reloc_continue;
6293 break;
6294
6295 case R_MIPS_PJUMP:
6296 case R_MIPS_GNU_VTINHERIT:
6297 case R_MIPS_GNU_VTENTRY:
6298 /* We don't do anything with these at present. */
6299 return bfd_reloc_continue;
6300
6301 default:
6302 /* An unrecognized relocation type. */
6303 return bfd_reloc_notsupported;
6304 }
6305
6306 /* Store the VALUE for our caller. */
6307 *valuep = value;
6308 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6309 }
6310
6311 /* Obtain the field relocated by RELOCATION. */
6312
6313 static bfd_vma
6314 mips_elf_obtain_contents (reloc_howto_type *howto,
6315 const Elf_Internal_Rela *relocation,
6316 bfd *input_bfd, bfd_byte *contents)
6317 {
6318 bfd_vma x = 0;
6319 bfd_byte *location = contents + relocation->r_offset;
6320 unsigned int size = bfd_get_reloc_size (howto);
6321
6322 /* Obtain the bytes. */
6323 if (size != 0)
6324 x = bfd_get (8 * size, input_bfd, location);
6325
6326 return x;
6327 }
6328
6329 /* It has been determined that the result of the RELOCATION is the
6330 VALUE. Use HOWTO to place VALUE into the output file at the
6331 appropriate position. The SECTION is the section to which the
6332 relocation applies.
6333 CROSS_MODE_JUMP_P is true if the relocation field
6334 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6335
6336 Returns FALSE if anything goes wrong. */
6337
6338 static bfd_boolean
6339 mips_elf_perform_relocation (struct bfd_link_info *info,
6340 reloc_howto_type *howto,
6341 const Elf_Internal_Rela *relocation,
6342 bfd_vma value, bfd *input_bfd,
6343 asection *input_section, bfd_byte *contents,
6344 bfd_boolean cross_mode_jump_p)
6345 {
6346 bfd_vma x;
6347 bfd_byte *location;
6348 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6349 unsigned int size;
6350
6351 /* Figure out where the relocation is occurring. */
6352 location = contents + relocation->r_offset;
6353
6354 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6355
6356 /* Obtain the current value. */
6357 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6358
6359 /* Clear the field we are setting. */
6360 x &= ~howto->dst_mask;
6361
6362 /* Set the field. */
6363 x |= (value & howto->dst_mask);
6364
6365 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6366 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6367 {
6368 bfd_vma opcode = x >> 26;
6369
6370 if (r_type == R_MIPS16_26 ? opcode == 0x7
6371 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6372 : opcode == 0x1d)
6373 {
6374 info->callbacks->einfo
6375 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6376 input_bfd, input_section, relocation->r_offset);
6377 return TRUE;
6378 }
6379 }
6380 if (cross_mode_jump_p && jal_reloc_p (r_type))
6381 {
6382 bfd_boolean ok;
6383 bfd_vma opcode = x >> 26;
6384 bfd_vma jalx_opcode;
6385
6386 /* Check to see if the opcode is already JAL or JALX. */
6387 if (r_type == R_MIPS16_26)
6388 {
6389 ok = ((opcode == 0x6) || (opcode == 0x7));
6390 jalx_opcode = 0x7;
6391 }
6392 else if (r_type == R_MICROMIPS_26_S1)
6393 {
6394 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6395 jalx_opcode = 0x3c;
6396 }
6397 else
6398 {
6399 ok = ((opcode == 0x3) || (opcode == 0x1d));
6400 jalx_opcode = 0x1d;
6401 }
6402
6403 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6404 convert J or JALS to JALX. */
6405 if (!ok)
6406 {
6407 info->callbacks->einfo
6408 (_("%X%H: unsupported jump between ISA modes; "
6409 "consider recompiling with interlinking enabled\n"),
6410 input_bfd, input_section, relocation->r_offset);
6411 return TRUE;
6412 }
6413
6414 /* Make this the JALX opcode. */
6415 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6416 }
6417 else if (cross_mode_jump_p && b_reloc_p (r_type))
6418 {
6419 bfd_boolean ok = FALSE;
6420 bfd_vma opcode = x >> 16;
6421 bfd_vma jalx_opcode = 0;
6422 bfd_vma sign_bit = 0;
6423 bfd_vma addr;
6424 bfd_vma dest;
6425
6426 if (r_type == R_MICROMIPS_PC16_S1)
6427 {
6428 ok = opcode == 0x4060;
6429 jalx_opcode = 0x3c;
6430 sign_bit = 0x10000;
6431 value <<= 1;
6432 }
6433 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6434 {
6435 ok = opcode == 0x411;
6436 jalx_opcode = 0x1d;
6437 sign_bit = 0x20000;
6438 value <<= 2;
6439 }
6440
6441 if (ok && !bfd_link_pic (info))
6442 {
6443 addr = (input_section->output_section->vma
6444 + input_section->output_offset
6445 + relocation->r_offset
6446 + 4);
6447 dest = (addr
6448 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6449
6450 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6451 {
6452 info->callbacks->einfo
6453 (_("%X%H: cannot convert branch between ISA modes "
6454 "to JALX: relocation out of range\n"),
6455 input_bfd, input_section, relocation->r_offset);
6456 return TRUE;
6457 }
6458
6459 /* Make this the JALX opcode. */
6460 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6461 }
6462 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6463 {
6464 info->callbacks->einfo
6465 (_("%X%H: unsupported branch between ISA modes\n"),
6466 input_bfd, input_section, relocation->r_offset);
6467 return TRUE;
6468 }
6469 }
6470
6471 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6472 range. */
6473 if (!bfd_link_relocatable (info)
6474 && !cross_mode_jump_p
6475 && ((JAL_TO_BAL_P (input_bfd)
6476 && r_type == R_MIPS_26
6477 && (x >> 26) == 0x3) /* jal addr */
6478 || (JALR_TO_BAL_P (input_bfd)
6479 && r_type == R_MIPS_JALR
6480 && x == 0x0320f809) /* jalr t9 */
6481 || (JR_TO_B_P (input_bfd)
6482 && r_type == R_MIPS_JALR
6483 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6484 {
6485 bfd_vma addr;
6486 bfd_vma dest;
6487 bfd_signed_vma off;
6488
6489 addr = (input_section->output_section->vma
6490 + input_section->output_offset
6491 + relocation->r_offset
6492 + 4);
6493 if (r_type == R_MIPS_26)
6494 dest = (value << 2) | ((addr >> 28) << 28);
6495 else
6496 dest = value;
6497 off = dest - addr;
6498 if (off <= 0x1ffff && off >= -0x20000)
6499 {
6500 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6501 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6502 else
6503 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6504 }
6505 }
6506
6507 /* Put the value into the output. */
6508 size = bfd_get_reloc_size (howto);
6509 if (size != 0)
6510 bfd_put (8 * size, input_bfd, x, location);
6511
6512 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6513 location);
6514
6515 return TRUE;
6516 }
6517 \f
6518 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6519 is the original relocation, which is now being transformed into a
6520 dynamic relocation. The ADDENDP is adjusted if necessary; the
6521 caller should store the result in place of the original addend. */
6522
6523 static bfd_boolean
6524 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6525 struct bfd_link_info *info,
6526 const Elf_Internal_Rela *rel,
6527 struct mips_elf_link_hash_entry *h,
6528 asection *sec, bfd_vma symbol,
6529 bfd_vma *addendp, asection *input_section)
6530 {
6531 Elf_Internal_Rela outrel[3];
6532 asection *sreloc;
6533 bfd *dynobj;
6534 int r_type;
6535 long indx;
6536 bfd_boolean defined_p;
6537 struct mips_elf_link_hash_table *htab;
6538
6539 htab = mips_elf_hash_table (info);
6540 BFD_ASSERT (htab != NULL);
6541
6542 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6543 dynobj = elf_hash_table (info)->dynobj;
6544 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6545 BFD_ASSERT (sreloc != NULL);
6546 BFD_ASSERT (sreloc->contents != NULL);
6547 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6548 < sreloc->size);
6549
6550 outrel[0].r_offset =
6551 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6552 if (ABI_64_P (output_bfd))
6553 {
6554 outrel[1].r_offset =
6555 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6556 outrel[2].r_offset =
6557 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6558 }
6559
6560 if (outrel[0].r_offset == MINUS_ONE)
6561 /* The relocation field has been deleted. */
6562 return TRUE;
6563
6564 if (outrel[0].r_offset == MINUS_TWO)
6565 {
6566 /* The relocation field has been converted into a relative value of
6567 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6568 the field to be fully relocated, so add in the symbol's value. */
6569 *addendp += symbol;
6570 return TRUE;
6571 }
6572
6573 /* We must now calculate the dynamic symbol table index to use
6574 in the relocation. */
6575 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6576 {
6577 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6578 indx = h->root.dynindx;
6579 if (SGI_COMPAT (output_bfd))
6580 defined_p = h->root.def_regular;
6581 else
6582 /* ??? glibc's ld.so just adds the final GOT entry to the
6583 relocation field. It therefore treats relocs against
6584 defined symbols in the same way as relocs against
6585 undefined symbols. */
6586 defined_p = FALSE;
6587 }
6588 else
6589 {
6590 if (sec != NULL && bfd_is_abs_section (sec))
6591 indx = 0;
6592 else if (sec == NULL || sec->owner == NULL)
6593 {
6594 bfd_set_error (bfd_error_bad_value);
6595 return FALSE;
6596 }
6597 else
6598 {
6599 indx = elf_section_data (sec->output_section)->dynindx;
6600 if (indx == 0)
6601 {
6602 asection *osec = htab->root.text_index_section;
6603 indx = elf_section_data (osec)->dynindx;
6604 }
6605 if (indx == 0)
6606 abort ();
6607 }
6608
6609 /* Instead of generating a relocation using the section
6610 symbol, we may as well make it a fully relative
6611 relocation. We want to avoid generating relocations to
6612 local symbols because we used to generate them
6613 incorrectly, without adding the original symbol value,
6614 which is mandated by the ABI for section symbols. In
6615 order to give dynamic loaders and applications time to
6616 phase out the incorrect use, we refrain from emitting
6617 section-relative relocations. It's not like they're
6618 useful, after all. This should be a bit more efficient
6619 as well. */
6620 /* ??? Although this behavior is compatible with glibc's ld.so,
6621 the ABI says that relocations against STN_UNDEF should have
6622 a symbol value of 0. Irix rld honors this, so relocations
6623 against STN_UNDEF have no effect. */
6624 if (!SGI_COMPAT (output_bfd))
6625 indx = 0;
6626 defined_p = TRUE;
6627 }
6628
6629 /* If the relocation was previously an absolute relocation and
6630 this symbol will not be referred to by the relocation, we must
6631 adjust it by the value we give it in the dynamic symbol table.
6632 Otherwise leave the job up to the dynamic linker. */
6633 if (defined_p && r_type != R_MIPS_REL32)
6634 *addendp += symbol;
6635
6636 if (htab->is_vxworks)
6637 /* VxWorks uses non-relative relocations for this. */
6638 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6639 else
6640 /* The relocation is always an REL32 relocation because we don't
6641 know where the shared library will wind up at load-time. */
6642 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6643 R_MIPS_REL32);
6644
6645 /* For strict adherence to the ABI specification, we should
6646 generate a R_MIPS_64 relocation record by itself before the
6647 _REL32/_64 record as well, such that the addend is read in as
6648 a 64-bit value (REL32 is a 32-bit relocation, after all).
6649 However, since none of the existing ELF64 MIPS dynamic
6650 loaders seems to care, we don't waste space with these
6651 artificial relocations. If this turns out to not be true,
6652 mips_elf_allocate_dynamic_relocation() should be tweaked so
6653 as to make room for a pair of dynamic relocations per
6654 invocation if ABI_64_P, and here we should generate an
6655 additional relocation record with R_MIPS_64 by itself for a
6656 NULL symbol before this relocation record. */
6657 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6658 ABI_64_P (output_bfd)
6659 ? R_MIPS_64
6660 : R_MIPS_NONE);
6661 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6662
6663 /* Adjust the output offset of the relocation to reference the
6664 correct location in the output file. */
6665 outrel[0].r_offset += (input_section->output_section->vma
6666 + input_section->output_offset);
6667 outrel[1].r_offset += (input_section->output_section->vma
6668 + input_section->output_offset);
6669 outrel[2].r_offset += (input_section->output_section->vma
6670 + input_section->output_offset);
6671
6672 /* Put the relocation back out. We have to use the special
6673 relocation outputter in the 64-bit case since the 64-bit
6674 relocation format is non-standard. */
6675 if (ABI_64_P (output_bfd))
6676 {
6677 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6678 (output_bfd, &outrel[0],
6679 (sreloc->contents
6680 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6681 }
6682 else if (htab->is_vxworks)
6683 {
6684 /* VxWorks uses RELA rather than REL dynamic relocations. */
6685 outrel[0].r_addend = *addendp;
6686 bfd_elf32_swap_reloca_out
6687 (output_bfd, &outrel[0],
6688 (sreloc->contents
6689 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6690 }
6691 else
6692 bfd_elf32_swap_reloc_out
6693 (output_bfd, &outrel[0],
6694 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6695
6696 /* We've now added another relocation. */
6697 ++sreloc->reloc_count;
6698
6699 /* Make sure the output section is writable. The dynamic linker
6700 will be writing to it. */
6701 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6702 |= SHF_WRITE;
6703
6704 /* On IRIX5, make an entry of compact relocation info. */
6705 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6706 {
6707 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6708 bfd_byte *cr;
6709
6710 if (scpt)
6711 {
6712 Elf32_crinfo cptrel;
6713
6714 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6715 cptrel.vaddr = (rel->r_offset
6716 + input_section->output_section->vma
6717 + input_section->output_offset);
6718 if (r_type == R_MIPS_REL32)
6719 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6720 else
6721 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6722 mips_elf_set_cr_dist2to (cptrel, 0);
6723 cptrel.konst = *addendp;
6724
6725 cr = (scpt->contents
6726 + sizeof (Elf32_External_compact_rel));
6727 mips_elf_set_cr_relvaddr (cptrel, 0);
6728 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6729 ((Elf32_External_crinfo *) cr
6730 + scpt->reloc_count));
6731 ++scpt->reloc_count;
6732 }
6733 }
6734
6735 /* If we've written this relocation for a readonly section,
6736 we need to set DF_TEXTREL again, so that we do not delete the
6737 DT_TEXTREL tag. */
6738 if (MIPS_ELF_READONLY_SECTION (input_section))
6739 info->flags |= DF_TEXTREL;
6740
6741 return TRUE;
6742 }
6743 \f
6744 /* Return the MACH for a MIPS e_flags value. */
6745
6746 unsigned long
6747 _bfd_elf_mips_mach (flagword flags)
6748 {
6749 switch (flags & EF_MIPS_MACH)
6750 {
6751 case E_MIPS_MACH_3900:
6752 return bfd_mach_mips3900;
6753
6754 case E_MIPS_MACH_4010:
6755 return bfd_mach_mips4010;
6756
6757 case E_MIPS_MACH_4100:
6758 return bfd_mach_mips4100;
6759
6760 case E_MIPS_MACH_4111:
6761 return bfd_mach_mips4111;
6762
6763 case E_MIPS_MACH_4120:
6764 return bfd_mach_mips4120;
6765
6766 case E_MIPS_MACH_4650:
6767 return bfd_mach_mips4650;
6768
6769 case E_MIPS_MACH_5400:
6770 return bfd_mach_mips5400;
6771
6772 case E_MIPS_MACH_5500:
6773 return bfd_mach_mips5500;
6774
6775 case E_MIPS_MACH_5900:
6776 return bfd_mach_mips5900;
6777
6778 case E_MIPS_MACH_9000:
6779 return bfd_mach_mips9000;
6780
6781 case E_MIPS_MACH_SB1:
6782 return bfd_mach_mips_sb1;
6783
6784 case E_MIPS_MACH_LS2E:
6785 return bfd_mach_mips_loongson_2e;
6786
6787 case E_MIPS_MACH_LS2F:
6788 return bfd_mach_mips_loongson_2f;
6789
6790 case E_MIPS_MACH_LS3A:
6791 return bfd_mach_mips_loongson_3a;
6792
6793 case E_MIPS_MACH_OCTEON3:
6794 return bfd_mach_mips_octeon3;
6795
6796 case E_MIPS_MACH_OCTEON2:
6797 return bfd_mach_mips_octeon2;
6798
6799 case E_MIPS_MACH_OCTEON:
6800 return bfd_mach_mips_octeon;
6801
6802 case E_MIPS_MACH_XLR:
6803 return bfd_mach_mips_xlr;
6804
6805 case E_MIPS_MACH_IAMR2:
6806 return bfd_mach_mips_interaptiv_mr2;
6807
6808 default:
6809 switch (flags & EF_MIPS_ARCH)
6810 {
6811 default:
6812 case E_MIPS_ARCH_1:
6813 return bfd_mach_mips3000;
6814
6815 case E_MIPS_ARCH_2:
6816 return bfd_mach_mips6000;
6817
6818 case E_MIPS_ARCH_3:
6819 return bfd_mach_mips4000;
6820
6821 case E_MIPS_ARCH_4:
6822 return bfd_mach_mips8000;
6823
6824 case E_MIPS_ARCH_5:
6825 return bfd_mach_mips5;
6826
6827 case E_MIPS_ARCH_32:
6828 return bfd_mach_mipsisa32;
6829
6830 case E_MIPS_ARCH_64:
6831 return bfd_mach_mipsisa64;
6832
6833 case E_MIPS_ARCH_32R2:
6834 return bfd_mach_mipsisa32r2;
6835
6836 case E_MIPS_ARCH_64R2:
6837 return bfd_mach_mipsisa64r2;
6838
6839 case E_MIPS_ARCH_32R6:
6840 return bfd_mach_mipsisa32r6;
6841
6842 case E_MIPS_ARCH_64R6:
6843 return bfd_mach_mipsisa64r6;
6844 }
6845 }
6846
6847 return 0;
6848 }
6849
6850 /* Return printable name for ABI. */
6851
6852 static INLINE char *
6853 elf_mips_abi_name (bfd *abfd)
6854 {
6855 flagword flags;
6856
6857 flags = elf_elfheader (abfd)->e_flags;
6858 switch (flags & EF_MIPS_ABI)
6859 {
6860 case 0:
6861 if (ABI_N32_P (abfd))
6862 return "N32";
6863 else if (ABI_64_P (abfd))
6864 return "64";
6865 else
6866 return "none";
6867 case E_MIPS_ABI_O32:
6868 return "O32";
6869 case E_MIPS_ABI_O64:
6870 return "O64";
6871 case E_MIPS_ABI_EABI32:
6872 return "EABI32";
6873 case E_MIPS_ABI_EABI64:
6874 return "EABI64";
6875 default:
6876 return "unknown abi";
6877 }
6878 }
6879 \f
6880 /* MIPS ELF uses two common sections. One is the usual one, and the
6881 other is for small objects. All the small objects are kept
6882 together, and then referenced via the gp pointer, which yields
6883 faster assembler code. This is what we use for the small common
6884 section. This approach is copied from ecoff.c. */
6885 static asection mips_elf_scom_section;
6886 static asymbol mips_elf_scom_symbol;
6887 static asymbol *mips_elf_scom_symbol_ptr;
6888
6889 /* MIPS ELF also uses an acommon section, which represents an
6890 allocated common symbol which may be overridden by a
6891 definition in a shared library. */
6892 static asection mips_elf_acom_section;
6893 static asymbol mips_elf_acom_symbol;
6894 static asymbol *mips_elf_acom_symbol_ptr;
6895
6896 /* This is used for both the 32-bit and the 64-bit ABI. */
6897
6898 void
6899 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6900 {
6901 elf_symbol_type *elfsym;
6902
6903 /* Handle the special MIPS section numbers that a symbol may use. */
6904 elfsym = (elf_symbol_type *) asym;
6905 switch (elfsym->internal_elf_sym.st_shndx)
6906 {
6907 case SHN_MIPS_ACOMMON:
6908 /* This section is used in a dynamically linked executable file.
6909 It is an allocated common section. The dynamic linker can
6910 either resolve these symbols to something in a shared
6911 library, or it can just leave them here. For our purposes,
6912 we can consider these symbols to be in a new section. */
6913 if (mips_elf_acom_section.name == NULL)
6914 {
6915 /* Initialize the acommon section. */
6916 mips_elf_acom_section.name = ".acommon";
6917 mips_elf_acom_section.flags = SEC_ALLOC;
6918 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6919 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6920 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6921 mips_elf_acom_symbol.name = ".acommon";
6922 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6923 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6924 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6925 }
6926 asym->section = &mips_elf_acom_section;
6927 break;
6928
6929 case SHN_COMMON:
6930 /* Common symbols less than the GP size are automatically
6931 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6932 if (asym->value > elf_gp_size (abfd)
6933 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6934 || IRIX_COMPAT (abfd) == ict_irix6)
6935 break;
6936 /* Fall through. */
6937 case SHN_MIPS_SCOMMON:
6938 if (mips_elf_scom_section.name == NULL)
6939 {
6940 /* Initialize the small common section. */
6941 mips_elf_scom_section.name = ".scommon";
6942 mips_elf_scom_section.flags = SEC_IS_COMMON;
6943 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6944 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6945 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6946 mips_elf_scom_symbol.name = ".scommon";
6947 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6948 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6949 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6950 }
6951 asym->section = &mips_elf_scom_section;
6952 asym->value = elfsym->internal_elf_sym.st_size;
6953 break;
6954
6955 case SHN_MIPS_SUNDEFINED:
6956 asym->section = bfd_und_section_ptr;
6957 break;
6958
6959 case SHN_MIPS_TEXT:
6960 {
6961 asection *section = bfd_get_section_by_name (abfd, ".text");
6962
6963 if (section != NULL)
6964 {
6965 asym->section = section;
6966 /* MIPS_TEXT is a bit special, the address is not an offset
6967 to the base of the .text section. So subtract the section
6968 base address to make it an offset. */
6969 asym->value -= section->vma;
6970 }
6971 }
6972 break;
6973
6974 case SHN_MIPS_DATA:
6975 {
6976 asection *section = bfd_get_section_by_name (abfd, ".data");
6977
6978 if (section != NULL)
6979 {
6980 asym->section = section;
6981 /* MIPS_DATA is a bit special, the address is not an offset
6982 to the base of the .data section. So subtract the section
6983 base address to make it an offset. */
6984 asym->value -= section->vma;
6985 }
6986 }
6987 break;
6988 }
6989
6990 /* If this is an odd-valued function symbol, assume it's a MIPS16
6991 or microMIPS one. */
6992 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6993 && (asym->value & 1) != 0)
6994 {
6995 asym->value--;
6996 if (MICROMIPS_P (abfd))
6997 elfsym->internal_elf_sym.st_other
6998 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6999 else
7000 elfsym->internal_elf_sym.st_other
7001 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7002 }
7003 }
7004 \f
7005 /* Implement elf_backend_eh_frame_address_size. This differs from
7006 the default in the way it handles EABI64.
7007
7008 EABI64 was originally specified as an LP64 ABI, and that is what
7009 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7010 historically accepted the combination of -mabi=eabi and -mlong32,
7011 and this ILP32 variation has become semi-official over time.
7012 Both forms use elf32 and have pointer-sized FDE addresses.
7013
7014 If an EABI object was generated by GCC 4.0 or above, it will have
7015 an empty .gcc_compiled_longXX section, where XX is the size of longs
7016 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7017 have no special marking to distinguish them from LP64 objects.
7018
7019 We don't want users of the official LP64 ABI to be punished for the
7020 existence of the ILP32 variant, but at the same time, we don't want
7021 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7022 We therefore take the following approach:
7023
7024 - If ABFD contains a .gcc_compiled_longXX section, use it to
7025 determine the pointer size.
7026
7027 - Otherwise check the type of the first relocation. Assume that
7028 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7029
7030 - Otherwise punt.
7031
7032 The second check is enough to detect LP64 objects generated by pre-4.0
7033 compilers because, in the kind of output generated by those compilers,
7034 the first relocation will be associated with either a CIE personality
7035 routine or an FDE start address. Furthermore, the compilers never
7036 used a special (non-pointer) encoding for this ABI.
7037
7038 Checking the relocation type should also be safe because there is no
7039 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7040 did so. */
7041
7042 unsigned int
7043 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7044 {
7045 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7046 return 8;
7047 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7048 {
7049 bfd_boolean long32_p, long64_p;
7050
7051 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7052 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7053 if (long32_p && long64_p)
7054 return 0;
7055 if (long32_p)
7056 return 4;
7057 if (long64_p)
7058 return 8;
7059
7060 if (sec->reloc_count > 0
7061 && elf_section_data (sec)->relocs != NULL
7062 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7063 == R_MIPS_64))
7064 return 8;
7065
7066 return 0;
7067 }
7068 return 4;
7069 }
7070 \f
7071 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7072 relocations against two unnamed section symbols to resolve to the
7073 same address. For example, if we have code like:
7074
7075 lw $4,%got_disp(.data)($gp)
7076 lw $25,%got_disp(.text)($gp)
7077 jalr $25
7078
7079 then the linker will resolve both relocations to .data and the program
7080 will jump there rather than to .text.
7081
7082 We can work around this problem by giving names to local section symbols.
7083 This is also what the MIPSpro tools do. */
7084
7085 bfd_boolean
7086 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7087 {
7088 return SGI_COMPAT (abfd);
7089 }
7090 \f
7091 /* Work over a section just before writing it out. This routine is
7092 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7093 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7094 a better way. */
7095
7096 bfd_boolean
7097 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7098 {
7099 if (hdr->sh_type == SHT_MIPS_REGINFO
7100 && hdr->sh_size > 0)
7101 {
7102 bfd_byte buf[4];
7103
7104 BFD_ASSERT (hdr->contents == NULL);
7105
7106 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7107 {
7108 _bfd_error_handler
7109 (_("%pB: incorrect `.reginfo' section size; "
7110 "expected %" PRIu64 ", got %" PRIu64),
7111 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7112 (uint64_t) hdr->sh_size);
7113 bfd_set_error (bfd_error_bad_value);
7114 return FALSE;
7115 }
7116
7117 if (bfd_seek (abfd,
7118 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7119 SEEK_SET) != 0)
7120 return FALSE;
7121 H_PUT_32 (abfd, elf_gp (abfd), buf);
7122 if (bfd_bwrite (buf, 4, abfd) != 4)
7123 return FALSE;
7124 }
7125
7126 if (hdr->sh_type == SHT_MIPS_OPTIONS
7127 && hdr->bfd_section != NULL
7128 && mips_elf_section_data (hdr->bfd_section) != NULL
7129 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7130 {
7131 bfd_byte *contents, *l, *lend;
7132
7133 /* We stored the section contents in the tdata field in the
7134 set_section_contents routine. We save the section contents
7135 so that we don't have to read them again.
7136 At this point we know that elf_gp is set, so we can look
7137 through the section contents to see if there is an
7138 ODK_REGINFO structure. */
7139
7140 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7141 l = contents;
7142 lend = contents + hdr->sh_size;
7143 while (l + sizeof (Elf_External_Options) <= lend)
7144 {
7145 Elf_Internal_Options intopt;
7146
7147 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7148 &intopt);
7149 if (intopt.size < sizeof (Elf_External_Options))
7150 {
7151 _bfd_error_handler
7152 /* xgettext:c-format */
7153 (_("%pB: warning: bad `%s' option size %u smaller than"
7154 " its header"),
7155 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7156 break;
7157 }
7158 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7159 {
7160 bfd_byte buf[8];
7161
7162 if (bfd_seek (abfd,
7163 (hdr->sh_offset
7164 + (l - contents)
7165 + sizeof (Elf_External_Options)
7166 + (sizeof (Elf64_External_RegInfo) - 8)),
7167 SEEK_SET) != 0)
7168 return FALSE;
7169 H_PUT_64 (abfd, elf_gp (abfd), buf);
7170 if (bfd_bwrite (buf, 8, abfd) != 8)
7171 return FALSE;
7172 }
7173 else if (intopt.kind == ODK_REGINFO)
7174 {
7175 bfd_byte buf[4];
7176
7177 if (bfd_seek (abfd,
7178 (hdr->sh_offset
7179 + (l - contents)
7180 + sizeof (Elf_External_Options)
7181 + (sizeof (Elf32_External_RegInfo) - 4)),
7182 SEEK_SET) != 0)
7183 return FALSE;
7184 H_PUT_32 (abfd, elf_gp (abfd), buf);
7185 if (bfd_bwrite (buf, 4, abfd) != 4)
7186 return FALSE;
7187 }
7188 l += intopt.size;
7189 }
7190 }
7191
7192 if (hdr->bfd_section != NULL)
7193 {
7194 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7195
7196 /* .sbss is not handled specially here because the GNU/Linux
7197 prelinker can convert .sbss from NOBITS to PROGBITS and
7198 changing it back to NOBITS breaks the binary. The entry in
7199 _bfd_mips_elf_special_sections will ensure the correct flags
7200 are set on .sbss if BFD creates it without reading it from an
7201 input file, and without special handling here the flags set
7202 on it in an input file will be followed. */
7203 if (strcmp (name, ".sdata") == 0
7204 || strcmp (name, ".lit8") == 0
7205 || strcmp (name, ".lit4") == 0)
7206 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7207 else if (strcmp (name, ".srdata") == 0)
7208 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7209 else if (strcmp (name, ".compact_rel") == 0)
7210 hdr->sh_flags = 0;
7211 else if (strcmp (name, ".rtproc") == 0)
7212 {
7213 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7214 {
7215 unsigned int adjust;
7216
7217 adjust = hdr->sh_size % hdr->sh_addralign;
7218 if (adjust != 0)
7219 hdr->sh_size += hdr->sh_addralign - adjust;
7220 }
7221 }
7222 }
7223
7224 return TRUE;
7225 }
7226
7227 /* Handle a MIPS specific section when reading an object file. This
7228 is called when elfcode.h finds a section with an unknown type.
7229 This routine supports both the 32-bit and 64-bit ELF ABI.
7230
7231 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7232 how to. */
7233
7234 bfd_boolean
7235 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7236 Elf_Internal_Shdr *hdr,
7237 const char *name,
7238 int shindex)
7239 {
7240 flagword flags = 0;
7241
7242 /* There ought to be a place to keep ELF backend specific flags, but
7243 at the moment there isn't one. We just keep track of the
7244 sections by their name, instead. Fortunately, the ABI gives
7245 suggested names for all the MIPS specific sections, so we will
7246 probably get away with this. */
7247 switch (hdr->sh_type)
7248 {
7249 case SHT_MIPS_LIBLIST:
7250 if (strcmp (name, ".liblist") != 0)
7251 return FALSE;
7252 break;
7253 case SHT_MIPS_MSYM:
7254 if (strcmp (name, ".msym") != 0)
7255 return FALSE;
7256 break;
7257 case SHT_MIPS_CONFLICT:
7258 if (strcmp (name, ".conflict") != 0)
7259 return FALSE;
7260 break;
7261 case SHT_MIPS_GPTAB:
7262 if (! CONST_STRNEQ (name, ".gptab."))
7263 return FALSE;
7264 break;
7265 case SHT_MIPS_UCODE:
7266 if (strcmp (name, ".ucode") != 0)
7267 return FALSE;
7268 break;
7269 case SHT_MIPS_DEBUG:
7270 if (strcmp (name, ".mdebug") != 0)
7271 return FALSE;
7272 flags = SEC_DEBUGGING;
7273 break;
7274 case SHT_MIPS_REGINFO:
7275 if (strcmp (name, ".reginfo") != 0
7276 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7277 return FALSE;
7278 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7279 break;
7280 case SHT_MIPS_IFACE:
7281 if (strcmp (name, ".MIPS.interfaces") != 0)
7282 return FALSE;
7283 break;
7284 case SHT_MIPS_CONTENT:
7285 if (! CONST_STRNEQ (name, ".MIPS.content"))
7286 return FALSE;
7287 break;
7288 case SHT_MIPS_OPTIONS:
7289 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7290 return FALSE;
7291 break;
7292 case SHT_MIPS_ABIFLAGS:
7293 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7294 return FALSE;
7295 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7296 break;
7297 case SHT_MIPS_DWARF:
7298 if (! CONST_STRNEQ (name, ".debug_")
7299 && ! CONST_STRNEQ (name, ".zdebug_"))
7300 return FALSE;
7301 break;
7302 case SHT_MIPS_SYMBOL_LIB:
7303 if (strcmp (name, ".MIPS.symlib") != 0)
7304 return FALSE;
7305 break;
7306 case SHT_MIPS_EVENTS:
7307 if (! CONST_STRNEQ (name, ".MIPS.events")
7308 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7309 return FALSE;
7310 break;
7311 default:
7312 break;
7313 }
7314
7315 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7316 return FALSE;
7317
7318 if (flags)
7319 {
7320 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7321 (bfd_get_section_flags (abfd,
7322 hdr->bfd_section)
7323 | flags)))
7324 return FALSE;
7325 }
7326
7327 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7328 {
7329 Elf_External_ABIFlags_v0 ext;
7330
7331 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7332 &ext, 0, sizeof ext))
7333 return FALSE;
7334 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7335 &mips_elf_tdata (abfd)->abiflags);
7336 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7337 return FALSE;
7338 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7339 }
7340
7341 /* FIXME: We should record sh_info for a .gptab section. */
7342
7343 /* For a .reginfo section, set the gp value in the tdata information
7344 from the contents of this section. We need the gp value while
7345 processing relocs, so we just get it now. The .reginfo section
7346 is not used in the 64-bit MIPS ELF ABI. */
7347 if (hdr->sh_type == SHT_MIPS_REGINFO)
7348 {
7349 Elf32_External_RegInfo ext;
7350 Elf32_RegInfo s;
7351
7352 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7353 &ext, 0, sizeof ext))
7354 return FALSE;
7355 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7356 elf_gp (abfd) = s.ri_gp_value;
7357 }
7358
7359 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7360 set the gp value based on what we find. We may see both
7361 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7362 they should agree. */
7363 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7364 {
7365 bfd_byte *contents, *l, *lend;
7366
7367 contents = bfd_malloc (hdr->sh_size);
7368 if (contents == NULL)
7369 return FALSE;
7370 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7371 0, hdr->sh_size))
7372 {
7373 free (contents);
7374 return FALSE;
7375 }
7376 l = contents;
7377 lend = contents + hdr->sh_size;
7378 while (l + sizeof (Elf_External_Options) <= lend)
7379 {
7380 Elf_Internal_Options intopt;
7381
7382 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7383 &intopt);
7384 if (intopt.size < sizeof (Elf_External_Options))
7385 {
7386 _bfd_error_handler
7387 /* xgettext:c-format */
7388 (_("%pB: warning: bad `%s' option size %u smaller than"
7389 " its header"),
7390 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7391 break;
7392 }
7393 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7394 {
7395 Elf64_Internal_RegInfo intreg;
7396
7397 bfd_mips_elf64_swap_reginfo_in
7398 (abfd,
7399 ((Elf64_External_RegInfo *)
7400 (l + sizeof (Elf_External_Options))),
7401 &intreg);
7402 elf_gp (abfd) = intreg.ri_gp_value;
7403 }
7404 else if (intopt.kind == ODK_REGINFO)
7405 {
7406 Elf32_RegInfo intreg;
7407
7408 bfd_mips_elf32_swap_reginfo_in
7409 (abfd,
7410 ((Elf32_External_RegInfo *)
7411 (l + sizeof (Elf_External_Options))),
7412 &intreg);
7413 elf_gp (abfd) = intreg.ri_gp_value;
7414 }
7415 l += intopt.size;
7416 }
7417 free (contents);
7418 }
7419
7420 return TRUE;
7421 }
7422
7423 /* Set the correct type for a MIPS ELF section. We do this by the
7424 section name, which is a hack, but ought to work. This routine is
7425 used by both the 32-bit and the 64-bit ABI. */
7426
7427 bfd_boolean
7428 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7429 {
7430 const char *name = bfd_get_section_name (abfd, sec);
7431
7432 if (strcmp (name, ".liblist") == 0)
7433 {
7434 hdr->sh_type = SHT_MIPS_LIBLIST;
7435 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7436 /* The sh_link field is set in final_write_processing. */
7437 }
7438 else if (strcmp (name, ".conflict") == 0)
7439 hdr->sh_type = SHT_MIPS_CONFLICT;
7440 else if (CONST_STRNEQ (name, ".gptab."))
7441 {
7442 hdr->sh_type = SHT_MIPS_GPTAB;
7443 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7444 /* The sh_info field is set in final_write_processing. */
7445 }
7446 else if (strcmp (name, ".ucode") == 0)
7447 hdr->sh_type = SHT_MIPS_UCODE;
7448 else if (strcmp (name, ".mdebug") == 0)
7449 {
7450 hdr->sh_type = SHT_MIPS_DEBUG;
7451 /* In a shared object on IRIX 5.3, the .mdebug section has an
7452 entsize of 0. FIXME: Does this matter? */
7453 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7454 hdr->sh_entsize = 0;
7455 else
7456 hdr->sh_entsize = 1;
7457 }
7458 else if (strcmp (name, ".reginfo") == 0)
7459 {
7460 hdr->sh_type = SHT_MIPS_REGINFO;
7461 /* In a shared object on IRIX 5.3, the .reginfo section has an
7462 entsize of 0x18. FIXME: Does this matter? */
7463 if (SGI_COMPAT (abfd))
7464 {
7465 if ((abfd->flags & DYNAMIC) != 0)
7466 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7467 else
7468 hdr->sh_entsize = 1;
7469 }
7470 else
7471 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7472 }
7473 else if (SGI_COMPAT (abfd)
7474 && (strcmp (name, ".hash") == 0
7475 || strcmp (name, ".dynamic") == 0
7476 || strcmp (name, ".dynstr") == 0))
7477 {
7478 if (SGI_COMPAT (abfd))
7479 hdr->sh_entsize = 0;
7480 #if 0
7481 /* This isn't how the IRIX6 linker behaves. */
7482 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7483 #endif
7484 }
7485 else if (strcmp (name, ".got") == 0
7486 || strcmp (name, ".srdata") == 0
7487 || strcmp (name, ".sdata") == 0
7488 || strcmp (name, ".sbss") == 0
7489 || strcmp (name, ".lit4") == 0
7490 || strcmp (name, ".lit8") == 0)
7491 hdr->sh_flags |= SHF_MIPS_GPREL;
7492 else if (strcmp (name, ".MIPS.interfaces") == 0)
7493 {
7494 hdr->sh_type = SHT_MIPS_IFACE;
7495 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7496 }
7497 else if (CONST_STRNEQ (name, ".MIPS.content"))
7498 {
7499 hdr->sh_type = SHT_MIPS_CONTENT;
7500 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7501 /* The sh_info field is set in final_write_processing. */
7502 }
7503 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7504 {
7505 hdr->sh_type = SHT_MIPS_OPTIONS;
7506 hdr->sh_entsize = 1;
7507 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7508 }
7509 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7510 {
7511 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7512 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7513 }
7514 else if (CONST_STRNEQ (name, ".debug_")
7515 || CONST_STRNEQ (name, ".zdebug_"))
7516 {
7517 hdr->sh_type = SHT_MIPS_DWARF;
7518
7519 /* Irix facilities such as libexc expect a single .debug_frame
7520 per executable, the system ones have NOSTRIP set and the linker
7521 doesn't merge sections with different flags so ... */
7522 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7523 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7524 }
7525 else if (strcmp (name, ".MIPS.symlib") == 0)
7526 {
7527 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7528 /* The sh_link and sh_info fields are set in
7529 final_write_processing. */
7530 }
7531 else if (CONST_STRNEQ (name, ".MIPS.events")
7532 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7533 {
7534 hdr->sh_type = SHT_MIPS_EVENTS;
7535 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7536 /* The sh_link field is set in final_write_processing. */
7537 }
7538 else if (strcmp (name, ".msym") == 0)
7539 {
7540 hdr->sh_type = SHT_MIPS_MSYM;
7541 hdr->sh_flags |= SHF_ALLOC;
7542 hdr->sh_entsize = 8;
7543 }
7544
7545 /* The generic elf_fake_sections will set up REL_HDR using the default
7546 kind of relocations. We used to set up a second header for the
7547 non-default kind of relocations here, but only NewABI would use
7548 these, and the IRIX ld doesn't like resulting empty RELA sections.
7549 Thus we create those header only on demand now. */
7550
7551 return TRUE;
7552 }
7553
7554 /* Given a BFD section, try to locate the corresponding ELF section
7555 index. This is used by both the 32-bit and the 64-bit ABI.
7556 Actually, it's not clear to me that the 64-bit ABI supports these,
7557 but for non-PIC objects we will certainly want support for at least
7558 the .scommon section. */
7559
7560 bfd_boolean
7561 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7562 asection *sec, int *retval)
7563 {
7564 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7565 {
7566 *retval = SHN_MIPS_SCOMMON;
7567 return TRUE;
7568 }
7569 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7570 {
7571 *retval = SHN_MIPS_ACOMMON;
7572 return TRUE;
7573 }
7574 return FALSE;
7575 }
7576 \f
7577 /* Hook called by the linker routine which adds symbols from an object
7578 file. We must handle the special MIPS section numbers here. */
7579
7580 bfd_boolean
7581 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7582 Elf_Internal_Sym *sym, const char **namep,
7583 flagword *flagsp ATTRIBUTE_UNUSED,
7584 asection **secp, bfd_vma *valp)
7585 {
7586 if (SGI_COMPAT (abfd)
7587 && (abfd->flags & DYNAMIC) != 0
7588 && strcmp (*namep, "_rld_new_interface") == 0)
7589 {
7590 /* Skip IRIX5 rld entry name. */
7591 *namep = NULL;
7592 return TRUE;
7593 }
7594
7595 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7596 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7597 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7598 a magic symbol resolved by the linker, we ignore this bogus definition
7599 of _gp_disp. New ABI objects do not suffer from this problem so this
7600 is not done for them. */
7601 if (!NEWABI_P(abfd)
7602 && (sym->st_shndx == SHN_ABS)
7603 && (strcmp (*namep, "_gp_disp") == 0))
7604 {
7605 *namep = NULL;
7606 return TRUE;
7607 }
7608
7609 switch (sym->st_shndx)
7610 {
7611 case SHN_COMMON:
7612 /* Common symbols less than the GP size are automatically
7613 treated as SHN_MIPS_SCOMMON symbols. */
7614 if (sym->st_size > elf_gp_size (abfd)
7615 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7616 || IRIX_COMPAT (abfd) == ict_irix6)
7617 break;
7618 /* Fall through. */
7619 case SHN_MIPS_SCOMMON:
7620 *secp = bfd_make_section_old_way (abfd, ".scommon");
7621 (*secp)->flags |= SEC_IS_COMMON;
7622 *valp = sym->st_size;
7623 break;
7624
7625 case SHN_MIPS_TEXT:
7626 /* This section is used in a shared object. */
7627 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7628 {
7629 asymbol *elf_text_symbol;
7630 asection *elf_text_section;
7631 bfd_size_type amt = sizeof (asection);
7632
7633 elf_text_section = bfd_zalloc (abfd, amt);
7634 if (elf_text_section == NULL)
7635 return FALSE;
7636
7637 amt = sizeof (asymbol);
7638 elf_text_symbol = bfd_zalloc (abfd, amt);
7639 if (elf_text_symbol == NULL)
7640 return FALSE;
7641
7642 /* Initialize the section. */
7643
7644 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7645 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7646
7647 elf_text_section->symbol = elf_text_symbol;
7648 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7649
7650 elf_text_section->name = ".text";
7651 elf_text_section->flags = SEC_NO_FLAGS;
7652 elf_text_section->output_section = NULL;
7653 elf_text_section->owner = abfd;
7654 elf_text_symbol->name = ".text";
7655 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7656 elf_text_symbol->section = elf_text_section;
7657 }
7658 /* This code used to do *secp = bfd_und_section_ptr if
7659 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7660 so I took it out. */
7661 *secp = mips_elf_tdata (abfd)->elf_text_section;
7662 break;
7663
7664 case SHN_MIPS_ACOMMON:
7665 /* Fall through. XXX Can we treat this as allocated data? */
7666 case SHN_MIPS_DATA:
7667 /* This section is used in a shared object. */
7668 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7669 {
7670 asymbol *elf_data_symbol;
7671 asection *elf_data_section;
7672 bfd_size_type amt = sizeof (asection);
7673
7674 elf_data_section = bfd_zalloc (abfd, amt);
7675 if (elf_data_section == NULL)
7676 return FALSE;
7677
7678 amt = sizeof (asymbol);
7679 elf_data_symbol = bfd_zalloc (abfd, amt);
7680 if (elf_data_symbol == NULL)
7681 return FALSE;
7682
7683 /* Initialize the section. */
7684
7685 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7686 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7687
7688 elf_data_section->symbol = elf_data_symbol;
7689 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7690
7691 elf_data_section->name = ".data";
7692 elf_data_section->flags = SEC_NO_FLAGS;
7693 elf_data_section->output_section = NULL;
7694 elf_data_section->owner = abfd;
7695 elf_data_symbol->name = ".data";
7696 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7697 elf_data_symbol->section = elf_data_section;
7698 }
7699 /* This code used to do *secp = bfd_und_section_ptr if
7700 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7701 so I took it out. */
7702 *secp = mips_elf_tdata (abfd)->elf_data_section;
7703 break;
7704
7705 case SHN_MIPS_SUNDEFINED:
7706 *secp = bfd_und_section_ptr;
7707 break;
7708 }
7709
7710 if (SGI_COMPAT (abfd)
7711 && ! bfd_link_pic (info)
7712 && info->output_bfd->xvec == abfd->xvec
7713 && strcmp (*namep, "__rld_obj_head") == 0)
7714 {
7715 struct elf_link_hash_entry *h;
7716 struct bfd_link_hash_entry *bh;
7717
7718 /* Mark __rld_obj_head as dynamic. */
7719 bh = NULL;
7720 if (! (_bfd_generic_link_add_one_symbol
7721 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7722 get_elf_backend_data (abfd)->collect, &bh)))
7723 return FALSE;
7724
7725 h = (struct elf_link_hash_entry *) bh;
7726 h->non_elf = 0;
7727 h->def_regular = 1;
7728 h->type = STT_OBJECT;
7729
7730 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7731 return FALSE;
7732
7733 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7734 mips_elf_hash_table (info)->rld_symbol = h;
7735 }
7736
7737 /* If this is a mips16 text symbol, add 1 to the value to make it
7738 odd. This will cause something like .word SYM to come up with
7739 the right value when it is loaded into the PC. */
7740 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7741 ++*valp;
7742
7743 return TRUE;
7744 }
7745
7746 /* This hook function is called before the linker writes out a global
7747 symbol. We mark symbols as small common if appropriate. This is
7748 also where we undo the increment of the value for a mips16 symbol. */
7749
7750 int
7751 _bfd_mips_elf_link_output_symbol_hook
7752 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7753 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7754 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7755 {
7756 /* If we see a common symbol, which implies a relocatable link, then
7757 if a symbol was small common in an input file, mark it as small
7758 common in the output file. */
7759 if (sym->st_shndx == SHN_COMMON
7760 && strcmp (input_sec->name, ".scommon") == 0)
7761 sym->st_shndx = SHN_MIPS_SCOMMON;
7762
7763 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7764 sym->st_value &= ~1;
7765
7766 return 1;
7767 }
7768 \f
7769 /* Functions for the dynamic linker. */
7770
7771 /* Create dynamic sections when linking against a dynamic object. */
7772
7773 bfd_boolean
7774 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7775 {
7776 struct elf_link_hash_entry *h;
7777 struct bfd_link_hash_entry *bh;
7778 flagword flags;
7779 register asection *s;
7780 const char * const *namep;
7781 struct mips_elf_link_hash_table *htab;
7782
7783 htab = mips_elf_hash_table (info);
7784 BFD_ASSERT (htab != NULL);
7785
7786 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7787 | SEC_LINKER_CREATED | SEC_READONLY);
7788
7789 /* The psABI requires a read-only .dynamic section, but the VxWorks
7790 EABI doesn't. */
7791 if (!htab->is_vxworks)
7792 {
7793 s = bfd_get_linker_section (abfd, ".dynamic");
7794 if (s != NULL)
7795 {
7796 if (! bfd_set_section_flags (abfd, s, flags))
7797 return FALSE;
7798 }
7799 }
7800
7801 /* We need to create .got section. */
7802 if (!mips_elf_create_got_section (abfd, info))
7803 return FALSE;
7804
7805 if (! mips_elf_rel_dyn_section (info, TRUE))
7806 return FALSE;
7807
7808 /* Create .stub section. */
7809 s = bfd_make_section_anyway_with_flags (abfd,
7810 MIPS_ELF_STUB_SECTION_NAME (abfd),
7811 flags | SEC_CODE);
7812 if (s == NULL
7813 || ! bfd_set_section_alignment (abfd, s,
7814 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7815 return FALSE;
7816 htab->sstubs = s;
7817
7818 if (!mips_elf_hash_table (info)->use_rld_obj_head
7819 && bfd_link_executable (info)
7820 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7821 {
7822 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7823 flags &~ (flagword) SEC_READONLY);
7824 if (s == NULL
7825 || ! bfd_set_section_alignment (abfd, s,
7826 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7827 return FALSE;
7828 }
7829
7830 /* On IRIX5, we adjust add some additional symbols and change the
7831 alignments of several sections. There is no ABI documentation
7832 indicating that this is necessary on IRIX6, nor any evidence that
7833 the linker takes such action. */
7834 if (IRIX_COMPAT (abfd) == ict_irix5)
7835 {
7836 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7837 {
7838 bh = NULL;
7839 if (! (_bfd_generic_link_add_one_symbol
7840 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7841 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7842 return FALSE;
7843
7844 h = (struct elf_link_hash_entry *) bh;
7845 h->mark = 1;
7846 h->non_elf = 0;
7847 h->def_regular = 1;
7848 h->type = STT_SECTION;
7849
7850 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7851 return FALSE;
7852 }
7853
7854 /* We need to create a .compact_rel section. */
7855 if (SGI_COMPAT (abfd))
7856 {
7857 if (!mips_elf_create_compact_rel_section (abfd, info))
7858 return FALSE;
7859 }
7860
7861 /* Change alignments of some sections. */
7862 s = bfd_get_linker_section (abfd, ".hash");
7863 if (s != NULL)
7864 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7865
7866 s = bfd_get_linker_section (abfd, ".dynsym");
7867 if (s != NULL)
7868 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7869
7870 s = bfd_get_linker_section (abfd, ".dynstr");
7871 if (s != NULL)
7872 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7873
7874 /* ??? */
7875 s = bfd_get_section_by_name (abfd, ".reginfo");
7876 if (s != NULL)
7877 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7878
7879 s = bfd_get_linker_section (abfd, ".dynamic");
7880 if (s != NULL)
7881 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7882 }
7883
7884 if (bfd_link_executable (info))
7885 {
7886 const char *name;
7887
7888 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7889 bh = NULL;
7890 if (!(_bfd_generic_link_add_one_symbol
7891 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7892 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7893 return FALSE;
7894
7895 h = (struct elf_link_hash_entry *) bh;
7896 h->non_elf = 0;
7897 h->def_regular = 1;
7898 h->type = STT_SECTION;
7899
7900 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7901 return FALSE;
7902
7903 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7904 {
7905 /* __rld_map is a four byte word located in the .data section
7906 and is filled in by the rtld to contain a pointer to
7907 the _r_debug structure. Its symbol value will be set in
7908 _bfd_mips_elf_finish_dynamic_symbol. */
7909 s = bfd_get_linker_section (abfd, ".rld_map");
7910 BFD_ASSERT (s != NULL);
7911
7912 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7913 bh = NULL;
7914 if (!(_bfd_generic_link_add_one_symbol
7915 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7916 get_elf_backend_data (abfd)->collect, &bh)))
7917 return FALSE;
7918
7919 h = (struct elf_link_hash_entry *) bh;
7920 h->non_elf = 0;
7921 h->def_regular = 1;
7922 h->type = STT_OBJECT;
7923
7924 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7925 return FALSE;
7926 mips_elf_hash_table (info)->rld_symbol = h;
7927 }
7928 }
7929
7930 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7931 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7932 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7933 return FALSE;
7934
7935 /* Do the usual VxWorks handling. */
7936 if (htab->is_vxworks
7937 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7938 return FALSE;
7939
7940 return TRUE;
7941 }
7942 \f
7943 /* Return true if relocation REL against section SEC is a REL rather than
7944 RELA relocation. RELOCS is the first relocation in the section and
7945 ABFD is the bfd that contains SEC. */
7946
7947 static bfd_boolean
7948 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7949 const Elf_Internal_Rela *relocs,
7950 const Elf_Internal_Rela *rel)
7951 {
7952 Elf_Internal_Shdr *rel_hdr;
7953 const struct elf_backend_data *bed;
7954
7955 /* To determine which flavor of relocation this is, we depend on the
7956 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7957 rel_hdr = elf_section_data (sec)->rel.hdr;
7958 if (rel_hdr == NULL)
7959 return FALSE;
7960 bed = get_elf_backend_data (abfd);
7961 return ((size_t) (rel - relocs)
7962 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7963 }
7964
7965 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7966 HOWTO is the relocation's howto and CONTENTS points to the contents
7967 of the section that REL is against. */
7968
7969 static bfd_vma
7970 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7971 reloc_howto_type *howto, bfd_byte *contents)
7972 {
7973 bfd_byte *location;
7974 unsigned int r_type;
7975 bfd_vma addend;
7976 bfd_vma bytes;
7977
7978 r_type = ELF_R_TYPE (abfd, rel->r_info);
7979 location = contents + rel->r_offset;
7980
7981 /* Get the addend, which is stored in the input file. */
7982 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7983 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7984 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7985
7986 addend = bytes & howto->src_mask;
7987
7988 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7989 accordingly. */
7990 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7991 addend <<= 1;
7992
7993 return addend;
7994 }
7995
7996 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7997 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7998 and update *ADDEND with the final addend. Return true on success
7999 or false if the LO16 could not be found. RELEND is the exclusive
8000 upper bound on the relocations for REL's section. */
8001
8002 static bfd_boolean
8003 mips_elf_add_lo16_rel_addend (bfd *abfd,
8004 const Elf_Internal_Rela *rel,
8005 const Elf_Internal_Rela *relend,
8006 bfd_byte *contents, bfd_vma *addend)
8007 {
8008 unsigned int r_type, lo16_type;
8009 const Elf_Internal_Rela *lo16_relocation;
8010 reloc_howto_type *lo16_howto;
8011 bfd_vma l;
8012
8013 r_type = ELF_R_TYPE (abfd, rel->r_info);
8014 if (mips16_reloc_p (r_type))
8015 lo16_type = R_MIPS16_LO16;
8016 else if (micromips_reloc_p (r_type))
8017 lo16_type = R_MICROMIPS_LO16;
8018 else if (r_type == R_MIPS_PCHI16)
8019 lo16_type = R_MIPS_PCLO16;
8020 else
8021 lo16_type = R_MIPS_LO16;
8022
8023 /* The combined value is the sum of the HI16 addend, left-shifted by
8024 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8025 code does a `lui' of the HI16 value, and then an `addiu' of the
8026 LO16 value.)
8027
8028 Scan ahead to find a matching LO16 relocation.
8029
8030 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8031 be immediately following. However, for the IRIX6 ABI, the next
8032 relocation may be a composed relocation consisting of several
8033 relocations for the same address. In that case, the R_MIPS_LO16
8034 relocation may occur as one of these. We permit a similar
8035 extension in general, as that is useful for GCC.
8036
8037 In some cases GCC dead code elimination removes the LO16 but keeps
8038 the corresponding HI16. This is strictly speaking a violation of
8039 the ABI but not immediately harmful. */
8040 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8041 if (lo16_relocation == NULL)
8042 return FALSE;
8043
8044 /* Obtain the addend kept there. */
8045 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8046 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8047
8048 l <<= lo16_howto->rightshift;
8049 l = _bfd_mips_elf_sign_extend (l, 16);
8050
8051 *addend <<= 16;
8052 *addend += l;
8053 return TRUE;
8054 }
8055
8056 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8057 store the contents in *CONTENTS on success. Assume that *CONTENTS
8058 already holds the contents if it is nonull on entry. */
8059
8060 static bfd_boolean
8061 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8062 {
8063 if (*contents)
8064 return TRUE;
8065
8066 /* Get cached copy if it exists. */
8067 if (elf_section_data (sec)->this_hdr.contents != NULL)
8068 {
8069 *contents = elf_section_data (sec)->this_hdr.contents;
8070 return TRUE;
8071 }
8072
8073 return bfd_malloc_and_get_section (abfd, sec, contents);
8074 }
8075
8076 /* Make a new PLT record to keep internal data. */
8077
8078 static struct plt_entry *
8079 mips_elf_make_plt_record (bfd *abfd)
8080 {
8081 struct plt_entry *entry;
8082
8083 entry = bfd_zalloc (abfd, sizeof (*entry));
8084 if (entry == NULL)
8085 return NULL;
8086
8087 entry->stub_offset = MINUS_ONE;
8088 entry->mips_offset = MINUS_ONE;
8089 entry->comp_offset = MINUS_ONE;
8090 entry->gotplt_index = MINUS_ONE;
8091 return entry;
8092 }
8093
8094 /* Look through the relocs for a section during the first phase, and
8095 allocate space in the global offset table and record the need for
8096 standard MIPS and compressed procedure linkage table entries. */
8097
8098 bfd_boolean
8099 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8100 asection *sec, const Elf_Internal_Rela *relocs)
8101 {
8102 const char *name;
8103 bfd *dynobj;
8104 Elf_Internal_Shdr *symtab_hdr;
8105 struct elf_link_hash_entry **sym_hashes;
8106 size_t extsymoff;
8107 const Elf_Internal_Rela *rel;
8108 const Elf_Internal_Rela *rel_end;
8109 asection *sreloc;
8110 const struct elf_backend_data *bed;
8111 struct mips_elf_link_hash_table *htab;
8112 bfd_byte *contents;
8113 bfd_vma addend;
8114 reloc_howto_type *howto;
8115
8116 if (bfd_link_relocatable (info))
8117 return TRUE;
8118
8119 htab = mips_elf_hash_table (info);
8120 BFD_ASSERT (htab != NULL);
8121
8122 dynobj = elf_hash_table (info)->dynobj;
8123 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8124 sym_hashes = elf_sym_hashes (abfd);
8125 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8126
8127 bed = get_elf_backend_data (abfd);
8128 rel_end = relocs + sec->reloc_count;
8129
8130 /* Check for the mips16 stub sections. */
8131
8132 name = bfd_get_section_name (abfd, sec);
8133 if (FN_STUB_P (name))
8134 {
8135 unsigned long r_symndx;
8136
8137 /* Look at the relocation information to figure out which symbol
8138 this is for. */
8139
8140 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8141 if (r_symndx == 0)
8142 {
8143 _bfd_error_handler
8144 /* xgettext:c-format */
8145 (_("%pB: warning: cannot determine the target function for"
8146 " stub section `%s'"),
8147 abfd, name);
8148 bfd_set_error (bfd_error_bad_value);
8149 return FALSE;
8150 }
8151
8152 if (r_symndx < extsymoff
8153 || sym_hashes[r_symndx - extsymoff] == NULL)
8154 {
8155 asection *o;
8156
8157 /* This stub is for a local symbol. This stub will only be
8158 needed if there is some relocation in this BFD, other
8159 than a 16 bit function call, which refers to this symbol. */
8160 for (o = abfd->sections; o != NULL; o = o->next)
8161 {
8162 Elf_Internal_Rela *sec_relocs;
8163 const Elf_Internal_Rela *r, *rend;
8164
8165 /* We can ignore stub sections when looking for relocs. */
8166 if ((o->flags & SEC_RELOC) == 0
8167 || o->reloc_count == 0
8168 || section_allows_mips16_refs_p (o))
8169 continue;
8170
8171 sec_relocs
8172 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8173 info->keep_memory);
8174 if (sec_relocs == NULL)
8175 return FALSE;
8176
8177 rend = sec_relocs + o->reloc_count;
8178 for (r = sec_relocs; r < rend; r++)
8179 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8180 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8181 break;
8182
8183 if (elf_section_data (o)->relocs != sec_relocs)
8184 free (sec_relocs);
8185
8186 if (r < rend)
8187 break;
8188 }
8189
8190 if (o == NULL)
8191 {
8192 /* There is no non-call reloc for this stub, so we do
8193 not need it. Since this function is called before
8194 the linker maps input sections to output sections, we
8195 can easily discard it by setting the SEC_EXCLUDE
8196 flag. */
8197 sec->flags |= SEC_EXCLUDE;
8198 return TRUE;
8199 }
8200
8201 /* Record this stub in an array of local symbol stubs for
8202 this BFD. */
8203 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8204 {
8205 unsigned long symcount;
8206 asection **n;
8207 bfd_size_type amt;
8208
8209 if (elf_bad_symtab (abfd))
8210 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8211 else
8212 symcount = symtab_hdr->sh_info;
8213 amt = symcount * sizeof (asection *);
8214 n = bfd_zalloc (abfd, amt);
8215 if (n == NULL)
8216 return FALSE;
8217 mips_elf_tdata (abfd)->local_stubs = n;
8218 }
8219
8220 sec->flags |= SEC_KEEP;
8221 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8222
8223 /* We don't need to set mips16_stubs_seen in this case.
8224 That flag is used to see whether we need to look through
8225 the global symbol table for stubs. We don't need to set
8226 it here, because we just have a local stub. */
8227 }
8228 else
8229 {
8230 struct mips_elf_link_hash_entry *h;
8231
8232 h = ((struct mips_elf_link_hash_entry *)
8233 sym_hashes[r_symndx - extsymoff]);
8234
8235 while (h->root.root.type == bfd_link_hash_indirect
8236 || h->root.root.type == bfd_link_hash_warning)
8237 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8238
8239 /* H is the symbol this stub is for. */
8240
8241 /* If we already have an appropriate stub for this function, we
8242 don't need another one, so we can discard this one. Since
8243 this function is called before the linker maps input sections
8244 to output sections, we can easily discard it by setting the
8245 SEC_EXCLUDE flag. */
8246 if (h->fn_stub != NULL)
8247 {
8248 sec->flags |= SEC_EXCLUDE;
8249 return TRUE;
8250 }
8251
8252 sec->flags |= SEC_KEEP;
8253 h->fn_stub = sec;
8254 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8255 }
8256 }
8257 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8258 {
8259 unsigned long r_symndx;
8260 struct mips_elf_link_hash_entry *h;
8261 asection **loc;
8262
8263 /* Look at the relocation information to figure out which symbol
8264 this is for. */
8265
8266 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8267 if (r_symndx == 0)
8268 {
8269 _bfd_error_handler
8270 /* xgettext:c-format */
8271 (_("%pB: warning: cannot determine the target function for"
8272 " stub section `%s'"),
8273 abfd, name);
8274 bfd_set_error (bfd_error_bad_value);
8275 return FALSE;
8276 }
8277
8278 if (r_symndx < extsymoff
8279 || sym_hashes[r_symndx - extsymoff] == NULL)
8280 {
8281 asection *o;
8282
8283 /* This stub is for a local symbol. This stub will only be
8284 needed if there is some relocation (R_MIPS16_26) in this BFD
8285 that refers to this symbol. */
8286 for (o = abfd->sections; o != NULL; o = o->next)
8287 {
8288 Elf_Internal_Rela *sec_relocs;
8289 const Elf_Internal_Rela *r, *rend;
8290
8291 /* We can ignore stub sections when looking for relocs. */
8292 if ((o->flags & SEC_RELOC) == 0
8293 || o->reloc_count == 0
8294 || section_allows_mips16_refs_p (o))
8295 continue;
8296
8297 sec_relocs
8298 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8299 info->keep_memory);
8300 if (sec_relocs == NULL)
8301 return FALSE;
8302
8303 rend = sec_relocs + o->reloc_count;
8304 for (r = sec_relocs; r < rend; r++)
8305 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8306 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8307 break;
8308
8309 if (elf_section_data (o)->relocs != sec_relocs)
8310 free (sec_relocs);
8311
8312 if (r < rend)
8313 break;
8314 }
8315
8316 if (o == NULL)
8317 {
8318 /* There is no non-call reloc for this stub, so we do
8319 not need it. Since this function is called before
8320 the linker maps input sections to output sections, we
8321 can easily discard it by setting the SEC_EXCLUDE
8322 flag. */
8323 sec->flags |= SEC_EXCLUDE;
8324 return TRUE;
8325 }
8326
8327 /* Record this stub in an array of local symbol call_stubs for
8328 this BFD. */
8329 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8330 {
8331 unsigned long symcount;
8332 asection **n;
8333 bfd_size_type amt;
8334
8335 if (elf_bad_symtab (abfd))
8336 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8337 else
8338 symcount = symtab_hdr->sh_info;
8339 amt = symcount * sizeof (asection *);
8340 n = bfd_zalloc (abfd, amt);
8341 if (n == NULL)
8342 return FALSE;
8343 mips_elf_tdata (abfd)->local_call_stubs = n;
8344 }
8345
8346 sec->flags |= SEC_KEEP;
8347 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8348
8349 /* We don't need to set mips16_stubs_seen in this case.
8350 That flag is used to see whether we need to look through
8351 the global symbol table for stubs. We don't need to set
8352 it here, because we just have a local stub. */
8353 }
8354 else
8355 {
8356 h = ((struct mips_elf_link_hash_entry *)
8357 sym_hashes[r_symndx - extsymoff]);
8358
8359 /* H is the symbol this stub is for. */
8360
8361 if (CALL_FP_STUB_P (name))
8362 loc = &h->call_fp_stub;
8363 else
8364 loc = &h->call_stub;
8365
8366 /* If we already have an appropriate stub for this function, we
8367 don't need another one, so we can discard this one. Since
8368 this function is called before the linker maps input sections
8369 to output sections, we can easily discard it by setting the
8370 SEC_EXCLUDE flag. */
8371 if (*loc != NULL)
8372 {
8373 sec->flags |= SEC_EXCLUDE;
8374 return TRUE;
8375 }
8376
8377 sec->flags |= SEC_KEEP;
8378 *loc = sec;
8379 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8380 }
8381 }
8382
8383 sreloc = NULL;
8384 contents = NULL;
8385 for (rel = relocs; rel < rel_end; ++rel)
8386 {
8387 unsigned long r_symndx;
8388 unsigned int r_type;
8389 struct elf_link_hash_entry *h;
8390 bfd_boolean can_make_dynamic_p;
8391 bfd_boolean call_reloc_p;
8392 bfd_boolean constrain_symbol_p;
8393
8394 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8395 r_type = ELF_R_TYPE (abfd, rel->r_info);
8396
8397 if (r_symndx < extsymoff)
8398 h = NULL;
8399 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8400 {
8401 _bfd_error_handler
8402 /* xgettext:c-format */
8403 (_("%pB: malformed reloc detected for section %s"),
8404 abfd, name);
8405 bfd_set_error (bfd_error_bad_value);
8406 return FALSE;
8407 }
8408 else
8409 {
8410 h = sym_hashes[r_symndx - extsymoff];
8411 if (h != NULL)
8412 {
8413 while (h->root.type == bfd_link_hash_indirect
8414 || h->root.type == bfd_link_hash_warning)
8415 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8416 }
8417 }
8418
8419 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8420 relocation into a dynamic one. */
8421 can_make_dynamic_p = FALSE;
8422
8423 /* Set CALL_RELOC_P to true if the relocation is for a call,
8424 and if pointer equality therefore doesn't matter. */
8425 call_reloc_p = FALSE;
8426
8427 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8428 into account when deciding how to define the symbol.
8429 Relocations in nonallocatable sections such as .pdr and
8430 .debug* should have no effect. */
8431 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8432
8433 switch (r_type)
8434 {
8435 case R_MIPS_CALL16:
8436 case R_MIPS_CALL_HI16:
8437 case R_MIPS_CALL_LO16:
8438 case R_MIPS16_CALL16:
8439 case R_MICROMIPS_CALL16:
8440 case R_MICROMIPS_CALL_HI16:
8441 case R_MICROMIPS_CALL_LO16:
8442 call_reloc_p = TRUE;
8443 /* Fall through. */
8444
8445 case R_MIPS_GOT16:
8446 case R_MIPS_GOT_HI16:
8447 case R_MIPS_GOT_LO16:
8448 case R_MIPS_GOT_PAGE:
8449 case R_MIPS_GOT_OFST:
8450 case R_MIPS_GOT_DISP:
8451 case R_MIPS_TLS_GOTTPREL:
8452 case R_MIPS_TLS_GD:
8453 case R_MIPS_TLS_LDM:
8454 case R_MIPS16_GOT16:
8455 case R_MIPS16_TLS_GOTTPREL:
8456 case R_MIPS16_TLS_GD:
8457 case R_MIPS16_TLS_LDM:
8458 case R_MICROMIPS_GOT16:
8459 case R_MICROMIPS_GOT_HI16:
8460 case R_MICROMIPS_GOT_LO16:
8461 case R_MICROMIPS_GOT_PAGE:
8462 case R_MICROMIPS_GOT_OFST:
8463 case R_MICROMIPS_GOT_DISP:
8464 case R_MICROMIPS_TLS_GOTTPREL:
8465 case R_MICROMIPS_TLS_GD:
8466 case R_MICROMIPS_TLS_LDM:
8467 if (dynobj == NULL)
8468 elf_hash_table (info)->dynobj = dynobj = abfd;
8469 if (!mips_elf_create_got_section (dynobj, info))
8470 return FALSE;
8471 if (htab->is_vxworks && !bfd_link_pic (info))
8472 {
8473 _bfd_error_handler
8474 /* xgettext:c-format */
8475 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8476 abfd, (uint64_t) rel->r_offset);
8477 bfd_set_error (bfd_error_bad_value);
8478 return FALSE;
8479 }
8480 can_make_dynamic_p = TRUE;
8481 break;
8482
8483 case R_MIPS_NONE:
8484 case R_MIPS_JALR:
8485 case R_MICROMIPS_JALR:
8486 /* These relocations have empty fields and are purely there to
8487 provide link information. The symbol value doesn't matter. */
8488 constrain_symbol_p = FALSE;
8489 break;
8490
8491 case R_MIPS_GPREL16:
8492 case R_MIPS_GPREL32:
8493 case R_MIPS16_GPREL:
8494 case R_MICROMIPS_GPREL16:
8495 /* GP-relative relocations always resolve to a definition in a
8496 regular input file, ignoring the one-definition rule. This is
8497 important for the GP setup sequence in NewABI code, which
8498 always resolves to a local function even if other relocations
8499 against the symbol wouldn't. */
8500 constrain_symbol_p = FALSE;
8501 break;
8502
8503 case R_MIPS_32:
8504 case R_MIPS_REL32:
8505 case R_MIPS_64:
8506 /* In VxWorks executables, references to external symbols
8507 must be handled using copy relocs or PLT entries; it is not
8508 possible to convert this relocation into a dynamic one.
8509
8510 For executables that use PLTs and copy-relocs, we have a
8511 choice between converting the relocation into a dynamic
8512 one or using copy relocations or PLT entries. It is
8513 usually better to do the former, unless the relocation is
8514 against a read-only section. */
8515 if ((bfd_link_pic (info)
8516 || (h != NULL
8517 && !htab->is_vxworks
8518 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8519 && !(!info->nocopyreloc
8520 && !PIC_OBJECT_P (abfd)
8521 && MIPS_ELF_READONLY_SECTION (sec))))
8522 && (sec->flags & SEC_ALLOC) != 0)
8523 {
8524 can_make_dynamic_p = TRUE;
8525 if (dynobj == NULL)
8526 elf_hash_table (info)->dynobj = dynobj = abfd;
8527 }
8528 break;
8529
8530 case R_MIPS_26:
8531 case R_MIPS_PC16:
8532 case R_MIPS_PC21_S2:
8533 case R_MIPS_PC26_S2:
8534 case R_MIPS16_26:
8535 case R_MIPS16_PC16_S1:
8536 case R_MICROMIPS_26_S1:
8537 case R_MICROMIPS_PC7_S1:
8538 case R_MICROMIPS_PC10_S1:
8539 case R_MICROMIPS_PC16_S1:
8540 case R_MICROMIPS_PC23_S2:
8541 call_reloc_p = TRUE;
8542 break;
8543 }
8544
8545 if (h)
8546 {
8547 if (constrain_symbol_p)
8548 {
8549 if (!can_make_dynamic_p)
8550 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8551
8552 if (!call_reloc_p)
8553 h->pointer_equality_needed = 1;
8554
8555 /* We must not create a stub for a symbol that has
8556 relocations related to taking the function's address.
8557 This doesn't apply to VxWorks, where CALL relocs refer
8558 to a .got.plt entry instead of a normal .got entry. */
8559 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8560 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8561 }
8562
8563 /* Relocations against the special VxWorks __GOTT_BASE__ and
8564 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8565 room for them in .rela.dyn. */
8566 if (is_gott_symbol (info, h))
8567 {
8568 if (sreloc == NULL)
8569 {
8570 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8571 if (sreloc == NULL)
8572 return FALSE;
8573 }
8574 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8575 if (MIPS_ELF_READONLY_SECTION (sec))
8576 /* We tell the dynamic linker that there are
8577 relocations against the text segment. */
8578 info->flags |= DF_TEXTREL;
8579 }
8580 }
8581 else if (call_lo16_reloc_p (r_type)
8582 || got_lo16_reloc_p (r_type)
8583 || got_disp_reloc_p (r_type)
8584 || (got16_reloc_p (r_type) && htab->is_vxworks))
8585 {
8586 /* We may need a local GOT entry for this relocation. We
8587 don't count R_MIPS_GOT_PAGE because we can estimate the
8588 maximum number of pages needed by looking at the size of
8589 the segment. Similar comments apply to R_MIPS*_GOT16 and
8590 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8591 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8592 R_MIPS_CALL_HI16 because these are always followed by an
8593 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8594 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8595 rel->r_addend, info, r_type))
8596 return FALSE;
8597 }
8598
8599 if (h != NULL
8600 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8601 ELF_ST_IS_MIPS16 (h->other)))
8602 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8603
8604 switch (r_type)
8605 {
8606 case R_MIPS_CALL16:
8607 case R_MIPS16_CALL16:
8608 case R_MICROMIPS_CALL16:
8609 if (h == NULL)
8610 {
8611 _bfd_error_handler
8612 /* xgettext:c-format */
8613 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8614 abfd, (uint64_t) rel->r_offset);
8615 bfd_set_error (bfd_error_bad_value);
8616 return FALSE;
8617 }
8618 /* Fall through. */
8619
8620 case R_MIPS_CALL_HI16:
8621 case R_MIPS_CALL_LO16:
8622 case R_MICROMIPS_CALL_HI16:
8623 case R_MICROMIPS_CALL_LO16:
8624 if (h != NULL)
8625 {
8626 /* Make sure there is room in the regular GOT to hold the
8627 function's address. We may eliminate it in favour of
8628 a .got.plt entry later; see mips_elf_count_got_symbols. */
8629 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8630 r_type))
8631 return FALSE;
8632
8633 /* We need a stub, not a plt entry for the undefined
8634 function. But we record it as if it needs plt. See
8635 _bfd_elf_adjust_dynamic_symbol. */
8636 h->needs_plt = 1;
8637 h->type = STT_FUNC;
8638 }
8639 break;
8640
8641 case R_MIPS_GOT_PAGE:
8642 case R_MICROMIPS_GOT_PAGE:
8643 case R_MIPS16_GOT16:
8644 case R_MIPS_GOT16:
8645 case R_MIPS_GOT_HI16:
8646 case R_MIPS_GOT_LO16:
8647 case R_MICROMIPS_GOT16:
8648 case R_MICROMIPS_GOT_HI16:
8649 case R_MICROMIPS_GOT_LO16:
8650 if (!h || got_page_reloc_p (r_type))
8651 {
8652 /* This relocation needs (or may need, if h != NULL) a
8653 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8654 know for sure until we know whether the symbol is
8655 preemptible. */
8656 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8657 {
8658 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8659 return FALSE;
8660 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8661 addend = mips_elf_read_rel_addend (abfd, rel,
8662 howto, contents);
8663 if (got16_reloc_p (r_type))
8664 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8665 contents, &addend);
8666 else
8667 addend <<= howto->rightshift;
8668 }
8669 else
8670 addend = rel->r_addend;
8671 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8672 h, addend))
8673 return FALSE;
8674
8675 if (h)
8676 {
8677 struct mips_elf_link_hash_entry *hmips =
8678 (struct mips_elf_link_hash_entry *) h;
8679
8680 /* This symbol is definitely not overridable. */
8681 if (hmips->root.def_regular
8682 && ! (bfd_link_pic (info) && ! info->symbolic
8683 && ! hmips->root.forced_local))
8684 h = NULL;
8685 }
8686 }
8687 /* If this is a global, overridable symbol, GOT_PAGE will
8688 decay to GOT_DISP, so we'll need a GOT entry for it. */
8689 /* Fall through. */
8690
8691 case R_MIPS_GOT_DISP:
8692 case R_MICROMIPS_GOT_DISP:
8693 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8694 FALSE, r_type))
8695 return FALSE;
8696 break;
8697
8698 case R_MIPS_TLS_GOTTPREL:
8699 case R_MIPS16_TLS_GOTTPREL:
8700 case R_MICROMIPS_TLS_GOTTPREL:
8701 if (bfd_link_pic (info))
8702 info->flags |= DF_STATIC_TLS;
8703 /* Fall through */
8704
8705 case R_MIPS_TLS_LDM:
8706 case R_MIPS16_TLS_LDM:
8707 case R_MICROMIPS_TLS_LDM:
8708 if (tls_ldm_reloc_p (r_type))
8709 {
8710 r_symndx = STN_UNDEF;
8711 h = NULL;
8712 }
8713 /* Fall through */
8714
8715 case R_MIPS_TLS_GD:
8716 case R_MIPS16_TLS_GD:
8717 case R_MICROMIPS_TLS_GD:
8718 /* This symbol requires a global offset table entry, or two
8719 for TLS GD relocations. */
8720 if (h != NULL)
8721 {
8722 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8723 FALSE, r_type))
8724 return FALSE;
8725 }
8726 else
8727 {
8728 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8729 rel->r_addend,
8730 info, r_type))
8731 return FALSE;
8732 }
8733 break;
8734
8735 case R_MIPS_32:
8736 case R_MIPS_REL32:
8737 case R_MIPS_64:
8738 /* In VxWorks executables, references to external symbols
8739 are handled using copy relocs or PLT stubs, so there's
8740 no need to add a .rela.dyn entry for this relocation. */
8741 if (can_make_dynamic_p)
8742 {
8743 if (sreloc == NULL)
8744 {
8745 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8746 if (sreloc == NULL)
8747 return FALSE;
8748 }
8749 if (bfd_link_pic (info) && h == NULL)
8750 {
8751 /* When creating a shared object, we must copy these
8752 reloc types into the output file as R_MIPS_REL32
8753 relocs. Make room for this reloc in .rel(a).dyn. */
8754 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8755 if (MIPS_ELF_READONLY_SECTION (sec))
8756 /* We tell the dynamic linker that there are
8757 relocations against the text segment. */
8758 info->flags |= DF_TEXTREL;
8759 }
8760 else
8761 {
8762 struct mips_elf_link_hash_entry *hmips;
8763
8764 /* For a shared object, we must copy this relocation
8765 unless the symbol turns out to be undefined and
8766 weak with non-default visibility, in which case
8767 it will be left as zero.
8768
8769 We could elide R_MIPS_REL32 for locally binding symbols
8770 in shared libraries, but do not yet do so.
8771
8772 For an executable, we only need to copy this
8773 reloc if the symbol is defined in a dynamic
8774 object. */
8775 hmips = (struct mips_elf_link_hash_entry *) h;
8776 ++hmips->possibly_dynamic_relocs;
8777 if (MIPS_ELF_READONLY_SECTION (sec))
8778 /* We need it to tell the dynamic linker if there
8779 are relocations against the text segment. */
8780 hmips->readonly_reloc = TRUE;
8781 }
8782 }
8783
8784 if (SGI_COMPAT (abfd))
8785 mips_elf_hash_table (info)->compact_rel_size +=
8786 sizeof (Elf32_External_crinfo);
8787 break;
8788
8789 case R_MIPS_26:
8790 case R_MIPS_GPREL16:
8791 case R_MIPS_LITERAL:
8792 case R_MIPS_GPREL32:
8793 case R_MICROMIPS_26_S1:
8794 case R_MICROMIPS_GPREL16:
8795 case R_MICROMIPS_LITERAL:
8796 case R_MICROMIPS_GPREL7_S2:
8797 if (SGI_COMPAT (abfd))
8798 mips_elf_hash_table (info)->compact_rel_size +=
8799 sizeof (Elf32_External_crinfo);
8800 break;
8801
8802 /* This relocation describes the C++ object vtable hierarchy.
8803 Reconstruct it for later use during GC. */
8804 case R_MIPS_GNU_VTINHERIT:
8805 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8806 return FALSE;
8807 break;
8808
8809 /* This relocation describes which C++ vtable entries are actually
8810 used. Record for later use during GC. */
8811 case R_MIPS_GNU_VTENTRY:
8812 BFD_ASSERT (h != NULL);
8813 if (h != NULL
8814 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8815 return FALSE;
8816 break;
8817
8818 default:
8819 break;
8820 }
8821
8822 /* Record the need for a PLT entry. At this point we don't know
8823 yet if we are going to create a PLT in the first place, but
8824 we only record whether the relocation requires a standard MIPS
8825 or a compressed code entry anyway. If we don't make a PLT after
8826 all, then we'll just ignore these arrangements. Likewise if
8827 a PLT entry is not created because the symbol is satisfied
8828 locally. */
8829 if (h != NULL
8830 && (branch_reloc_p (r_type)
8831 || mips16_branch_reloc_p (r_type)
8832 || micromips_branch_reloc_p (r_type))
8833 && !SYMBOL_CALLS_LOCAL (info, h))
8834 {
8835 if (h->plt.plist == NULL)
8836 h->plt.plist = mips_elf_make_plt_record (abfd);
8837 if (h->plt.plist == NULL)
8838 return FALSE;
8839
8840 if (branch_reloc_p (r_type))
8841 h->plt.plist->need_mips = TRUE;
8842 else
8843 h->plt.plist->need_comp = TRUE;
8844 }
8845
8846 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8847 if there is one. We only need to handle global symbols here;
8848 we decide whether to keep or delete stubs for local symbols
8849 when processing the stub's relocations. */
8850 if (h != NULL
8851 && !mips16_call_reloc_p (r_type)
8852 && !section_allows_mips16_refs_p (sec))
8853 {
8854 struct mips_elf_link_hash_entry *mh;
8855
8856 mh = (struct mips_elf_link_hash_entry *) h;
8857 mh->need_fn_stub = TRUE;
8858 }
8859
8860 /* Refuse some position-dependent relocations when creating a
8861 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8862 not PIC, but we can create dynamic relocations and the result
8863 will be fine. Also do not refuse R_MIPS_LO16, which can be
8864 combined with R_MIPS_GOT16. */
8865 if (bfd_link_pic (info))
8866 {
8867 switch (r_type)
8868 {
8869 case R_MIPS16_HI16:
8870 case R_MIPS_HI16:
8871 case R_MIPS_HIGHER:
8872 case R_MIPS_HIGHEST:
8873 case R_MICROMIPS_HI16:
8874 case R_MICROMIPS_HIGHER:
8875 case R_MICROMIPS_HIGHEST:
8876 /* Don't refuse a high part relocation if it's against
8877 no symbol (e.g. part of a compound relocation). */
8878 if (r_symndx == STN_UNDEF)
8879 break;
8880
8881 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8882 and has a special meaning. */
8883 if (!NEWABI_P (abfd) && h != NULL
8884 && strcmp (h->root.root.string, "_gp_disp") == 0)
8885 break;
8886
8887 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8888 if (is_gott_symbol (info, h))
8889 break;
8890
8891 /* FALLTHROUGH */
8892
8893 case R_MIPS16_26:
8894 case R_MIPS_26:
8895 case R_MICROMIPS_26_S1:
8896 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8897 _bfd_error_handler
8898 /* xgettext:c-format */
8899 (_("%pB: relocation %s against `%s' can not be used"
8900 " when making a shared object; recompile with -fPIC"),
8901 abfd, howto->name,
8902 (h) ? h->root.root.string : "a local symbol");
8903 bfd_set_error (bfd_error_bad_value);
8904 return FALSE;
8905 default:
8906 break;
8907 }
8908 }
8909 }
8910
8911 return TRUE;
8912 }
8913 \f
8914 /* Allocate space for global sym dynamic relocs. */
8915
8916 static bfd_boolean
8917 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8918 {
8919 struct bfd_link_info *info = inf;
8920 bfd *dynobj;
8921 struct mips_elf_link_hash_entry *hmips;
8922 struct mips_elf_link_hash_table *htab;
8923
8924 htab = mips_elf_hash_table (info);
8925 BFD_ASSERT (htab != NULL);
8926
8927 dynobj = elf_hash_table (info)->dynobj;
8928 hmips = (struct mips_elf_link_hash_entry *) h;
8929
8930 /* VxWorks executables are handled elsewhere; we only need to
8931 allocate relocations in shared objects. */
8932 if (htab->is_vxworks && !bfd_link_pic (info))
8933 return TRUE;
8934
8935 /* Ignore indirect symbols. All relocations against such symbols
8936 will be redirected to the target symbol. */
8937 if (h->root.type == bfd_link_hash_indirect)
8938 return TRUE;
8939
8940 /* If this symbol is defined in a dynamic object, or we are creating
8941 a shared library, we will need to copy any R_MIPS_32 or
8942 R_MIPS_REL32 relocs against it into the output file. */
8943 if (! bfd_link_relocatable (info)
8944 && hmips->possibly_dynamic_relocs != 0
8945 && (h->root.type == bfd_link_hash_defweak
8946 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8947 || bfd_link_pic (info)))
8948 {
8949 bfd_boolean do_copy = TRUE;
8950
8951 if (h->root.type == bfd_link_hash_undefweak)
8952 {
8953 /* Do not copy relocations for undefined weak symbols that
8954 we are not going to export. */
8955 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8956 do_copy = FALSE;
8957
8958 /* Make sure undefined weak symbols are output as a dynamic
8959 symbol in PIEs. */
8960 else if (h->dynindx == -1 && !h->forced_local)
8961 {
8962 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8963 return FALSE;
8964 }
8965 }
8966
8967 if (do_copy)
8968 {
8969 /* Even though we don't directly need a GOT entry for this symbol,
8970 the SVR4 psABI requires it to have a dynamic symbol table
8971 index greater that DT_MIPS_GOTSYM if there are dynamic
8972 relocations against it.
8973
8974 VxWorks does not enforce the same mapping between the GOT
8975 and the symbol table, so the same requirement does not
8976 apply there. */
8977 if (!htab->is_vxworks)
8978 {
8979 if (hmips->global_got_area > GGA_RELOC_ONLY)
8980 hmips->global_got_area = GGA_RELOC_ONLY;
8981 hmips->got_only_for_calls = FALSE;
8982 }
8983
8984 mips_elf_allocate_dynamic_relocations
8985 (dynobj, info, hmips->possibly_dynamic_relocs);
8986 if (hmips->readonly_reloc)
8987 /* We tell the dynamic linker that there are relocations
8988 against the text segment. */
8989 info->flags |= DF_TEXTREL;
8990 }
8991 }
8992
8993 return TRUE;
8994 }
8995
8996 /* Adjust a symbol defined by a dynamic object and referenced by a
8997 regular object. The current definition is in some section of the
8998 dynamic object, but we're not including those sections. We have to
8999 change the definition to something the rest of the link can
9000 understand. */
9001
9002 bfd_boolean
9003 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9004 struct elf_link_hash_entry *h)
9005 {
9006 bfd *dynobj;
9007 struct mips_elf_link_hash_entry *hmips;
9008 struct mips_elf_link_hash_table *htab;
9009 asection *s, *srel;
9010
9011 htab = mips_elf_hash_table (info);
9012 BFD_ASSERT (htab != NULL);
9013
9014 dynobj = elf_hash_table (info)->dynobj;
9015 hmips = (struct mips_elf_link_hash_entry *) h;
9016
9017 /* Make sure we know what is going on here. */
9018 BFD_ASSERT (dynobj != NULL
9019 && (h->needs_plt
9020 || h->is_weakalias
9021 || (h->def_dynamic
9022 && h->ref_regular
9023 && !h->def_regular)));
9024
9025 hmips = (struct mips_elf_link_hash_entry *) h;
9026
9027 /* If there are call relocations against an externally-defined symbol,
9028 see whether we can create a MIPS lazy-binding stub for it. We can
9029 only do this if all references to the function are through call
9030 relocations, and in that case, the traditional lazy-binding stubs
9031 are much more efficient than PLT entries.
9032
9033 Traditional stubs are only available on SVR4 psABI-based systems;
9034 VxWorks always uses PLTs instead. */
9035 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9036 {
9037 if (! elf_hash_table (info)->dynamic_sections_created)
9038 return TRUE;
9039
9040 /* If this symbol is not defined in a regular file, then set
9041 the symbol to the stub location. This is required to make
9042 function pointers compare as equal between the normal
9043 executable and the shared library. */
9044 if (!h->def_regular
9045 && !bfd_is_abs_section (htab->sstubs->output_section))
9046 {
9047 hmips->needs_lazy_stub = TRUE;
9048 htab->lazy_stub_count++;
9049 return TRUE;
9050 }
9051 }
9052 /* As above, VxWorks requires PLT entries for externally-defined
9053 functions that are only accessed through call relocations.
9054
9055 Both VxWorks and non-VxWorks targets also need PLT entries if there
9056 are static-only relocations against an externally-defined function.
9057 This can technically occur for shared libraries if there are
9058 branches to the symbol, although it is unlikely that this will be
9059 used in practice due to the short ranges involved. It can occur
9060 for any relative or absolute relocation in executables; in that
9061 case, the PLT entry becomes the function's canonical address. */
9062 else if (((h->needs_plt && !hmips->no_fn_stub)
9063 || (h->type == STT_FUNC && hmips->has_static_relocs))
9064 && htab->use_plts_and_copy_relocs
9065 && !SYMBOL_CALLS_LOCAL (info, h)
9066 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9067 && h->root.type == bfd_link_hash_undefweak))
9068 {
9069 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9070 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9071
9072 /* If this is the first symbol to need a PLT entry, then make some
9073 basic setup. Also work out PLT entry sizes. We'll need them
9074 for PLT offset calculations. */
9075 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9076 {
9077 BFD_ASSERT (htab->root.sgotplt->size == 0);
9078 BFD_ASSERT (htab->plt_got_index == 0);
9079
9080 /* If we're using the PLT additions to the psABI, each PLT
9081 entry is 16 bytes and the PLT0 entry is 32 bytes.
9082 Encourage better cache usage by aligning. We do this
9083 lazily to avoid pessimizing traditional objects. */
9084 if (!htab->is_vxworks
9085 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9086 return FALSE;
9087
9088 /* Make sure that .got.plt is word-aligned. We do this lazily
9089 for the same reason as above. */
9090 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9091 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9092 return FALSE;
9093
9094 /* On non-VxWorks targets, the first two entries in .got.plt
9095 are reserved. */
9096 if (!htab->is_vxworks)
9097 htab->plt_got_index
9098 += (get_elf_backend_data (dynobj)->got_header_size
9099 / MIPS_ELF_GOT_SIZE (dynobj));
9100
9101 /* On VxWorks, also allocate room for the header's
9102 .rela.plt.unloaded entries. */
9103 if (htab->is_vxworks && !bfd_link_pic (info))
9104 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9105
9106 /* Now work out the sizes of individual PLT entries. */
9107 if (htab->is_vxworks && bfd_link_pic (info))
9108 htab->plt_mips_entry_size
9109 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9110 else if (htab->is_vxworks)
9111 htab->plt_mips_entry_size
9112 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9113 else if (newabi_p)
9114 htab->plt_mips_entry_size
9115 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9116 else if (!micromips_p)
9117 {
9118 htab->plt_mips_entry_size
9119 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9120 htab->plt_comp_entry_size
9121 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9122 }
9123 else if (htab->insn32)
9124 {
9125 htab->plt_mips_entry_size
9126 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9127 htab->plt_comp_entry_size
9128 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9129 }
9130 else
9131 {
9132 htab->plt_mips_entry_size
9133 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9134 htab->plt_comp_entry_size
9135 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9136 }
9137 }
9138
9139 if (h->plt.plist == NULL)
9140 h->plt.plist = mips_elf_make_plt_record (dynobj);
9141 if (h->plt.plist == NULL)
9142 return FALSE;
9143
9144 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9145 n32 or n64, so always use a standard entry there.
9146
9147 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9148 all MIPS16 calls will go via that stub, and there is no benefit
9149 to having a MIPS16 entry. And in the case of call_stub a
9150 standard entry actually has to be used as the stub ends with a J
9151 instruction. */
9152 if (newabi_p
9153 || htab->is_vxworks
9154 || hmips->call_stub
9155 || hmips->call_fp_stub)
9156 {
9157 h->plt.plist->need_mips = TRUE;
9158 h->plt.plist->need_comp = FALSE;
9159 }
9160
9161 /* Otherwise, if there are no direct calls to the function, we
9162 have a free choice of whether to use standard or compressed
9163 entries. Prefer microMIPS entries if the object is known to
9164 contain microMIPS code, so that it becomes possible to create
9165 pure microMIPS binaries. Prefer standard entries otherwise,
9166 because MIPS16 ones are no smaller and are usually slower. */
9167 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9168 {
9169 if (micromips_p)
9170 h->plt.plist->need_comp = TRUE;
9171 else
9172 h->plt.plist->need_mips = TRUE;
9173 }
9174
9175 if (h->plt.plist->need_mips)
9176 {
9177 h->plt.plist->mips_offset = htab->plt_mips_offset;
9178 htab->plt_mips_offset += htab->plt_mips_entry_size;
9179 }
9180 if (h->plt.plist->need_comp)
9181 {
9182 h->plt.plist->comp_offset = htab->plt_comp_offset;
9183 htab->plt_comp_offset += htab->plt_comp_entry_size;
9184 }
9185
9186 /* Reserve the corresponding .got.plt entry now too. */
9187 h->plt.plist->gotplt_index = htab->plt_got_index++;
9188
9189 /* If the output file has no definition of the symbol, set the
9190 symbol's value to the address of the stub. */
9191 if (!bfd_link_pic (info) && !h->def_regular)
9192 hmips->use_plt_entry = TRUE;
9193
9194 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9195 htab->root.srelplt->size += (htab->is_vxworks
9196 ? MIPS_ELF_RELA_SIZE (dynobj)
9197 : MIPS_ELF_REL_SIZE (dynobj));
9198
9199 /* Make room for the .rela.plt.unloaded relocations. */
9200 if (htab->is_vxworks && !bfd_link_pic (info))
9201 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9202
9203 /* All relocations against this symbol that could have been made
9204 dynamic will now refer to the PLT entry instead. */
9205 hmips->possibly_dynamic_relocs = 0;
9206
9207 return TRUE;
9208 }
9209
9210 /* If this is a weak symbol, and there is a real definition, the
9211 processor independent code will have arranged for us to see the
9212 real definition first, and we can just use the same value. */
9213 if (h->is_weakalias)
9214 {
9215 struct elf_link_hash_entry *def = weakdef (h);
9216 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9217 h->root.u.def.section = def->root.u.def.section;
9218 h->root.u.def.value = def->root.u.def.value;
9219 return TRUE;
9220 }
9221
9222 /* Otherwise, there is nothing further to do for symbols defined
9223 in regular objects. */
9224 if (h->def_regular)
9225 return TRUE;
9226
9227 /* There's also nothing more to do if we'll convert all relocations
9228 against this symbol into dynamic relocations. */
9229 if (!hmips->has_static_relocs)
9230 return TRUE;
9231
9232 /* We're now relying on copy relocations. Complain if we have
9233 some that we can't convert. */
9234 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9235 {
9236 _bfd_error_handler (_("non-dynamic relocations refer to "
9237 "dynamic symbol %s"),
9238 h->root.root.string);
9239 bfd_set_error (bfd_error_bad_value);
9240 return FALSE;
9241 }
9242
9243 /* We must allocate the symbol in our .dynbss section, which will
9244 become part of the .bss section of the executable. There will be
9245 an entry for this symbol in the .dynsym section. The dynamic
9246 object will contain position independent code, so all references
9247 from the dynamic object to this symbol will go through the global
9248 offset table. The dynamic linker will use the .dynsym entry to
9249 determine the address it must put in the global offset table, so
9250 both the dynamic object and the regular object will refer to the
9251 same memory location for the variable. */
9252
9253 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9254 {
9255 s = htab->root.sdynrelro;
9256 srel = htab->root.sreldynrelro;
9257 }
9258 else
9259 {
9260 s = htab->root.sdynbss;
9261 srel = htab->root.srelbss;
9262 }
9263 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9264 {
9265 if (htab->is_vxworks)
9266 srel->size += sizeof (Elf32_External_Rela);
9267 else
9268 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9269 h->needs_copy = 1;
9270 }
9271
9272 /* All relocations against this symbol that could have been made
9273 dynamic will now refer to the local copy instead. */
9274 hmips->possibly_dynamic_relocs = 0;
9275
9276 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9277 }
9278 \f
9279 /* This function is called after all the input files have been read,
9280 and the input sections have been assigned to output sections. We
9281 check for any mips16 stub sections that we can discard. */
9282
9283 bfd_boolean
9284 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9285 struct bfd_link_info *info)
9286 {
9287 asection *sect;
9288 struct mips_elf_link_hash_table *htab;
9289 struct mips_htab_traverse_info hti;
9290
9291 htab = mips_elf_hash_table (info);
9292 BFD_ASSERT (htab != NULL);
9293
9294 /* The .reginfo section has a fixed size. */
9295 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9296 if (sect != NULL)
9297 {
9298 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9299 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9300 }
9301
9302 /* The .MIPS.abiflags section has a fixed size. */
9303 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9304 if (sect != NULL)
9305 {
9306 bfd_set_section_size (output_bfd, sect,
9307 sizeof (Elf_External_ABIFlags_v0));
9308 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9309 }
9310
9311 hti.info = info;
9312 hti.output_bfd = output_bfd;
9313 hti.error = FALSE;
9314 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9315 mips_elf_check_symbols, &hti);
9316 if (hti.error)
9317 return FALSE;
9318
9319 return TRUE;
9320 }
9321
9322 /* If the link uses a GOT, lay it out and work out its size. */
9323
9324 static bfd_boolean
9325 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9326 {
9327 bfd *dynobj;
9328 asection *s;
9329 struct mips_got_info *g;
9330 bfd_size_type loadable_size = 0;
9331 bfd_size_type page_gotno;
9332 bfd *ibfd;
9333 struct mips_elf_traverse_got_arg tga;
9334 struct mips_elf_link_hash_table *htab;
9335
9336 htab = mips_elf_hash_table (info);
9337 BFD_ASSERT (htab != NULL);
9338
9339 s = htab->root.sgot;
9340 if (s == NULL)
9341 return TRUE;
9342
9343 dynobj = elf_hash_table (info)->dynobj;
9344 g = htab->got_info;
9345
9346 /* Allocate room for the reserved entries. VxWorks always reserves
9347 3 entries; other objects only reserve 2 entries. */
9348 BFD_ASSERT (g->assigned_low_gotno == 0);
9349 if (htab->is_vxworks)
9350 htab->reserved_gotno = 3;
9351 else
9352 htab->reserved_gotno = 2;
9353 g->local_gotno += htab->reserved_gotno;
9354 g->assigned_low_gotno = htab->reserved_gotno;
9355
9356 /* Decide which symbols need to go in the global part of the GOT and
9357 count the number of reloc-only GOT symbols. */
9358 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9359
9360 if (!mips_elf_resolve_final_got_entries (info, g))
9361 return FALSE;
9362
9363 /* Calculate the total loadable size of the output. That
9364 will give us the maximum number of GOT_PAGE entries
9365 required. */
9366 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9367 {
9368 asection *subsection;
9369
9370 for (subsection = ibfd->sections;
9371 subsection;
9372 subsection = subsection->next)
9373 {
9374 if ((subsection->flags & SEC_ALLOC) == 0)
9375 continue;
9376 loadable_size += ((subsection->size + 0xf)
9377 &~ (bfd_size_type) 0xf);
9378 }
9379 }
9380
9381 if (htab->is_vxworks)
9382 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9383 relocations against local symbols evaluate to "G", and the EABI does
9384 not include R_MIPS_GOT_PAGE. */
9385 page_gotno = 0;
9386 else
9387 /* Assume there are two loadable segments consisting of contiguous
9388 sections. Is 5 enough? */
9389 page_gotno = (loadable_size >> 16) + 5;
9390
9391 /* Choose the smaller of the two page estimates; both are intended to be
9392 conservative. */
9393 if (page_gotno > g->page_gotno)
9394 page_gotno = g->page_gotno;
9395
9396 g->local_gotno += page_gotno;
9397 g->assigned_high_gotno = g->local_gotno - 1;
9398
9399 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9400 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9401 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9402
9403 /* VxWorks does not support multiple GOTs. It initializes $gp to
9404 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9405 dynamic loader. */
9406 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9407 {
9408 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9409 return FALSE;
9410 }
9411 else
9412 {
9413 /* Record that all bfds use G. This also has the effect of freeing
9414 the per-bfd GOTs, which we no longer need. */
9415 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9416 if (mips_elf_bfd_got (ibfd, FALSE))
9417 mips_elf_replace_bfd_got (ibfd, g);
9418 mips_elf_replace_bfd_got (output_bfd, g);
9419
9420 /* Set up TLS entries. */
9421 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9422 tga.info = info;
9423 tga.g = g;
9424 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9425 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9426 if (!tga.g)
9427 return FALSE;
9428 BFD_ASSERT (g->tls_assigned_gotno
9429 == g->global_gotno + g->local_gotno + g->tls_gotno);
9430
9431 /* Each VxWorks GOT entry needs an explicit relocation. */
9432 if (htab->is_vxworks && bfd_link_pic (info))
9433 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9434
9435 /* Allocate room for the TLS relocations. */
9436 if (g->relocs)
9437 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9438 }
9439
9440 return TRUE;
9441 }
9442
9443 /* Estimate the size of the .MIPS.stubs section. */
9444
9445 static void
9446 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9447 {
9448 struct mips_elf_link_hash_table *htab;
9449 bfd_size_type dynsymcount;
9450
9451 htab = mips_elf_hash_table (info);
9452 BFD_ASSERT (htab != NULL);
9453
9454 if (htab->lazy_stub_count == 0)
9455 return;
9456
9457 /* IRIX rld assumes that a function stub isn't at the end of the .text
9458 section, so add a dummy entry to the end. */
9459 htab->lazy_stub_count++;
9460
9461 /* Get a worst-case estimate of the number of dynamic symbols needed.
9462 At this point, dynsymcount does not account for section symbols
9463 and count_section_dynsyms may overestimate the number that will
9464 be needed. */
9465 dynsymcount = (elf_hash_table (info)->dynsymcount
9466 + count_section_dynsyms (output_bfd, info));
9467
9468 /* Determine the size of one stub entry. There's no disadvantage
9469 from using microMIPS code here, so for the sake of pure-microMIPS
9470 binaries we prefer it whenever there's any microMIPS code in
9471 output produced at all. This has a benefit of stubs being
9472 shorter by 4 bytes each too, unless in the insn32 mode. */
9473 if (!MICROMIPS_P (output_bfd))
9474 htab->function_stub_size = (dynsymcount > 0x10000
9475 ? MIPS_FUNCTION_STUB_BIG_SIZE
9476 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9477 else if (htab->insn32)
9478 htab->function_stub_size = (dynsymcount > 0x10000
9479 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9480 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9481 else
9482 htab->function_stub_size = (dynsymcount > 0x10000
9483 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9484 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9485
9486 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9487 }
9488
9489 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9490 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9491 stub, allocate an entry in the stubs section. */
9492
9493 static bfd_boolean
9494 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9495 {
9496 struct mips_htab_traverse_info *hti = data;
9497 struct mips_elf_link_hash_table *htab;
9498 struct bfd_link_info *info;
9499 bfd *output_bfd;
9500
9501 info = hti->info;
9502 output_bfd = hti->output_bfd;
9503 htab = mips_elf_hash_table (info);
9504 BFD_ASSERT (htab != NULL);
9505
9506 if (h->needs_lazy_stub)
9507 {
9508 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9509 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9510 bfd_vma isa_bit = micromips_p;
9511
9512 BFD_ASSERT (htab->root.dynobj != NULL);
9513 if (h->root.plt.plist == NULL)
9514 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9515 if (h->root.plt.plist == NULL)
9516 {
9517 hti->error = TRUE;
9518 return FALSE;
9519 }
9520 h->root.root.u.def.section = htab->sstubs;
9521 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9522 h->root.plt.plist->stub_offset = htab->sstubs->size;
9523 h->root.other = other;
9524 htab->sstubs->size += htab->function_stub_size;
9525 }
9526 return TRUE;
9527 }
9528
9529 /* Allocate offsets in the stubs section to each symbol that needs one.
9530 Set the final size of the .MIPS.stub section. */
9531
9532 static bfd_boolean
9533 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9534 {
9535 bfd *output_bfd = info->output_bfd;
9536 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9537 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9538 bfd_vma isa_bit = micromips_p;
9539 struct mips_elf_link_hash_table *htab;
9540 struct mips_htab_traverse_info hti;
9541 struct elf_link_hash_entry *h;
9542 bfd *dynobj;
9543
9544 htab = mips_elf_hash_table (info);
9545 BFD_ASSERT (htab != NULL);
9546
9547 if (htab->lazy_stub_count == 0)
9548 return TRUE;
9549
9550 htab->sstubs->size = 0;
9551 hti.info = info;
9552 hti.output_bfd = output_bfd;
9553 hti.error = FALSE;
9554 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9555 if (hti.error)
9556 return FALSE;
9557 htab->sstubs->size += htab->function_stub_size;
9558 BFD_ASSERT (htab->sstubs->size
9559 == htab->lazy_stub_count * htab->function_stub_size);
9560
9561 dynobj = elf_hash_table (info)->dynobj;
9562 BFD_ASSERT (dynobj != NULL);
9563 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9564 if (h == NULL)
9565 return FALSE;
9566 h->root.u.def.value = isa_bit;
9567 h->other = other;
9568 h->type = STT_FUNC;
9569
9570 return TRUE;
9571 }
9572
9573 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9574 bfd_link_info. If H uses the address of a PLT entry as the value
9575 of the symbol, then set the entry in the symbol table now. Prefer
9576 a standard MIPS PLT entry. */
9577
9578 static bfd_boolean
9579 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9580 {
9581 struct bfd_link_info *info = data;
9582 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9583 struct mips_elf_link_hash_table *htab;
9584 unsigned int other;
9585 bfd_vma isa_bit;
9586 bfd_vma val;
9587
9588 htab = mips_elf_hash_table (info);
9589 BFD_ASSERT (htab != NULL);
9590
9591 if (h->use_plt_entry)
9592 {
9593 BFD_ASSERT (h->root.plt.plist != NULL);
9594 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9595 || h->root.plt.plist->comp_offset != MINUS_ONE);
9596
9597 val = htab->plt_header_size;
9598 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9599 {
9600 isa_bit = 0;
9601 val += h->root.plt.plist->mips_offset;
9602 other = 0;
9603 }
9604 else
9605 {
9606 isa_bit = 1;
9607 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9608 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9609 }
9610 val += isa_bit;
9611 /* For VxWorks, point at the PLT load stub rather than the lazy
9612 resolution stub; this stub will become the canonical function
9613 address. */
9614 if (htab->is_vxworks)
9615 val += 8;
9616
9617 h->root.root.u.def.section = htab->root.splt;
9618 h->root.root.u.def.value = val;
9619 h->root.other = other;
9620 }
9621
9622 return TRUE;
9623 }
9624
9625 /* Set the sizes of the dynamic sections. */
9626
9627 bfd_boolean
9628 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9629 struct bfd_link_info *info)
9630 {
9631 bfd *dynobj;
9632 asection *s, *sreldyn;
9633 bfd_boolean reltext;
9634 struct mips_elf_link_hash_table *htab;
9635
9636 htab = mips_elf_hash_table (info);
9637 BFD_ASSERT (htab != NULL);
9638 dynobj = elf_hash_table (info)->dynobj;
9639 BFD_ASSERT (dynobj != NULL);
9640
9641 if (elf_hash_table (info)->dynamic_sections_created)
9642 {
9643 /* Set the contents of the .interp section to the interpreter. */
9644 if (bfd_link_executable (info) && !info->nointerp)
9645 {
9646 s = bfd_get_linker_section (dynobj, ".interp");
9647 BFD_ASSERT (s != NULL);
9648 s->size
9649 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9650 s->contents
9651 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9652 }
9653
9654 /* Figure out the size of the PLT header if we know that we
9655 are using it. For the sake of cache alignment always use
9656 a standard header whenever any standard entries are present
9657 even if microMIPS entries are present as well. This also
9658 lets the microMIPS header rely on the value of $v0 only set
9659 by microMIPS entries, for a small size reduction.
9660
9661 Set symbol table entry values for symbols that use the
9662 address of their PLT entry now that we can calculate it.
9663
9664 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9665 haven't already in _bfd_elf_create_dynamic_sections. */
9666 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9667 {
9668 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9669 && !htab->plt_mips_offset);
9670 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9671 bfd_vma isa_bit = micromips_p;
9672 struct elf_link_hash_entry *h;
9673 bfd_vma size;
9674
9675 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9676 BFD_ASSERT (htab->root.sgotplt->size == 0);
9677 BFD_ASSERT (htab->root.splt->size == 0);
9678
9679 if (htab->is_vxworks && bfd_link_pic (info))
9680 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9681 else if (htab->is_vxworks)
9682 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9683 else if (ABI_64_P (output_bfd))
9684 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9685 else if (ABI_N32_P (output_bfd))
9686 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9687 else if (!micromips_p)
9688 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9689 else if (htab->insn32)
9690 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9691 else
9692 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9693
9694 htab->plt_header_is_comp = micromips_p;
9695 htab->plt_header_size = size;
9696 htab->root.splt->size = (size
9697 + htab->plt_mips_offset
9698 + htab->plt_comp_offset);
9699 htab->root.sgotplt->size = (htab->plt_got_index
9700 * MIPS_ELF_GOT_SIZE (dynobj));
9701
9702 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9703
9704 if (htab->root.hplt == NULL)
9705 {
9706 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9707 "_PROCEDURE_LINKAGE_TABLE_");
9708 htab->root.hplt = h;
9709 if (h == NULL)
9710 return FALSE;
9711 }
9712
9713 h = htab->root.hplt;
9714 h->root.u.def.value = isa_bit;
9715 h->other = other;
9716 h->type = STT_FUNC;
9717 }
9718 }
9719
9720 /* Allocate space for global sym dynamic relocs. */
9721 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9722
9723 mips_elf_estimate_stub_size (output_bfd, info);
9724
9725 if (!mips_elf_lay_out_got (output_bfd, info))
9726 return FALSE;
9727
9728 mips_elf_lay_out_lazy_stubs (info);
9729
9730 /* The check_relocs and adjust_dynamic_symbol entry points have
9731 determined the sizes of the various dynamic sections. Allocate
9732 memory for them. */
9733 reltext = FALSE;
9734 for (s = dynobj->sections; s != NULL; s = s->next)
9735 {
9736 const char *name;
9737
9738 /* It's OK to base decisions on the section name, because none
9739 of the dynobj section names depend upon the input files. */
9740 name = bfd_get_section_name (dynobj, s);
9741
9742 if ((s->flags & SEC_LINKER_CREATED) == 0)
9743 continue;
9744
9745 if (CONST_STRNEQ (name, ".rel"))
9746 {
9747 if (s->size != 0)
9748 {
9749 const char *outname;
9750 asection *target;
9751
9752 /* If this relocation section applies to a read only
9753 section, then we probably need a DT_TEXTREL entry.
9754 If the relocation section is .rel(a).dyn, we always
9755 assert a DT_TEXTREL entry rather than testing whether
9756 there exists a relocation to a read only section or
9757 not. */
9758 outname = bfd_get_section_name (output_bfd,
9759 s->output_section);
9760 target = bfd_get_section_by_name (output_bfd, outname + 4);
9761 if ((target != NULL
9762 && (target->flags & SEC_READONLY) != 0
9763 && (target->flags & SEC_ALLOC) != 0)
9764 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9765 reltext = TRUE;
9766
9767 /* We use the reloc_count field as a counter if we need
9768 to copy relocs into the output file. */
9769 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9770 s->reloc_count = 0;
9771
9772 /* If combreloc is enabled, elf_link_sort_relocs() will
9773 sort relocations, but in a different way than we do,
9774 and before we're done creating relocations. Also, it
9775 will move them around between input sections'
9776 relocation's contents, so our sorting would be
9777 broken, so don't let it run. */
9778 info->combreloc = 0;
9779 }
9780 }
9781 else if (bfd_link_executable (info)
9782 && ! mips_elf_hash_table (info)->use_rld_obj_head
9783 && CONST_STRNEQ (name, ".rld_map"))
9784 {
9785 /* We add a room for __rld_map. It will be filled in by the
9786 rtld to contain a pointer to the _r_debug structure. */
9787 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9788 }
9789 else if (SGI_COMPAT (output_bfd)
9790 && CONST_STRNEQ (name, ".compact_rel"))
9791 s->size += mips_elf_hash_table (info)->compact_rel_size;
9792 else if (s == htab->root.splt)
9793 {
9794 /* If the last PLT entry has a branch delay slot, allocate
9795 room for an extra nop to fill the delay slot. This is
9796 for CPUs without load interlocking. */
9797 if (! LOAD_INTERLOCKS_P (output_bfd)
9798 && ! htab->is_vxworks && s->size > 0)
9799 s->size += 4;
9800 }
9801 else if (! CONST_STRNEQ (name, ".init")
9802 && s != htab->root.sgot
9803 && s != htab->root.sgotplt
9804 && s != htab->sstubs
9805 && s != htab->root.sdynbss
9806 && s != htab->root.sdynrelro)
9807 {
9808 /* It's not one of our sections, so don't allocate space. */
9809 continue;
9810 }
9811
9812 if (s->size == 0)
9813 {
9814 s->flags |= SEC_EXCLUDE;
9815 continue;
9816 }
9817
9818 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9819 continue;
9820
9821 /* Allocate memory for the section contents. */
9822 s->contents = bfd_zalloc (dynobj, s->size);
9823 if (s->contents == NULL)
9824 {
9825 bfd_set_error (bfd_error_no_memory);
9826 return FALSE;
9827 }
9828 }
9829
9830 if (elf_hash_table (info)->dynamic_sections_created)
9831 {
9832 /* Add some entries to the .dynamic section. We fill in the
9833 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9834 must add the entries now so that we get the correct size for
9835 the .dynamic section. */
9836
9837 /* SGI object has the equivalence of DT_DEBUG in the
9838 DT_MIPS_RLD_MAP entry. This must come first because glibc
9839 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9840 may only look at the first one they see. */
9841 if (!bfd_link_pic (info)
9842 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9843 return FALSE;
9844
9845 if (bfd_link_executable (info)
9846 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9847 return FALSE;
9848
9849 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9850 used by the debugger. */
9851 if (bfd_link_executable (info)
9852 && !SGI_COMPAT (output_bfd)
9853 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9854 return FALSE;
9855
9856 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9857 info->flags |= DF_TEXTREL;
9858
9859 if ((info->flags & DF_TEXTREL) != 0)
9860 {
9861 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9862 return FALSE;
9863
9864 /* Clear the DF_TEXTREL flag. It will be set again if we
9865 write out an actual text relocation; we may not, because
9866 at this point we do not know whether e.g. any .eh_frame
9867 absolute relocations have been converted to PC-relative. */
9868 info->flags &= ~DF_TEXTREL;
9869 }
9870
9871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9872 return FALSE;
9873
9874 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9875 if (htab->is_vxworks)
9876 {
9877 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9878 use any of the DT_MIPS_* tags. */
9879 if (sreldyn && sreldyn->size > 0)
9880 {
9881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9882 return FALSE;
9883
9884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9885 return FALSE;
9886
9887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9888 return FALSE;
9889 }
9890 }
9891 else
9892 {
9893 if (sreldyn && sreldyn->size > 0
9894 && !bfd_is_abs_section (sreldyn->output_section))
9895 {
9896 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9897 return FALSE;
9898
9899 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9900 return FALSE;
9901
9902 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9903 return FALSE;
9904 }
9905
9906 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9907 return FALSE;
9908
9909 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9910 return FALSE;
9911
9912 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9913 return FALSE;
9914
9915 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9916 return FALSE;
9917
9918 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9919 return FALSE;
9920
9921 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9922 return FALSE;
9923
9924 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9925 return FALSE;
9926
9927 if (IRIX_COMPAT (dynobj) == ict_irix5
9928 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9929 return FALSE;
9930
9931 if (IRIX_COMPAT (dynobj) == ict_irix6
9932 && (bfd_get_section_by_name
9933 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9934 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9935 return FALSE;
9936 }
9937 if (htab->root.splt->size > 0)
9938 {
9939 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9940 return FALSE;
9941
9942 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9943 return FALSE;
9944
9945 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9946 return FALSE;
9947
9948 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9949 return FALSE;
9950 }
9951 if (htab->is_vxworks
9952 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9953 return FALSE;
9954 }
9955
9956 return TRUE;
9957 }
9958 \f
9959 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9960 Adjust its R_ADDEND field so that it is correct for the output file.
9961 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9962 and sections respectively; both use symbol indexes. */
9963
9964 static void
9965 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9966 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9967 asection **local_sections, Elf_Internal_Rela *rel)
9968 {
9969 unsigned int r_type, r_symndx;
9970 Elf_Internal_Sym *sym;
9971 asection *sec;
9972
9973 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9974 {
9975 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9976 if (gprel16_reloc_p (r_type)
9977 || r_type == R_MIPS_GPREL32
9978 || literal_reloc_p (r_type))
9979 {
9980 rel->r_addend += _bfd_get_gp_value (input_bfd);
9981 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9982 }
9983
9984 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9985 sym = local_syms + r_symndx;
9986
9987 /* Adjust REL's addend to account for section merging. */
9988 if (!bfd_link_relocatable (info))
9989 {
9990 sec = local_sections[r_symndx];
9991 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9992 }
9993
9994 /* This would normally be done by the rela_normal code in elflink.c. */
9995 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9996 rel->r_addend += local_sections[r_symndx]->output_offset;
9997 }
9998 }
9999
10000 /* Handle relocations against symbols from removed linkonce sections,
10001 or sections discarded by a linker script. We use this wrapper around
10002 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10003 on 64-bit ELF targets. In this case for any relocation handled, which
10004 always be the first in a triplet, the remaining two have to be processed
10005 together with the first, even if they are R_MIPS_NONE. It is the symbol
10006 index referred by the first reloc that applies to all the three and the
10007 remaining two never refer to an object symbol. And it is the final
10008 relocation (the last non-null one) that determines the output field of
10009 the whole relocation so retrieve the corresponding howto structure for
10010 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10011
10012 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10013 and therefore requires to be pasted in a loop. It also defines a block
10014 and does not protect any of its arguments, hence the extra brackets. */
10015
10016 static void
10017 mips_reloc_against_discarded_section (bfd *output_bfd,
10018 struct bfd_link_info *info,
10019 bfd *input_bfd, asection *input_section,
10020 Elf_Internal_Rela **rel,
10021 const Elf_Internal_Rela **relend,
10022 bfd_boolean rel_reloc,
10023 reloc_howto_type *howto,
10024 bfd_byte *contents)
10025 {
10026 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10027 int count = bed->s->int_rels_per_ext_rel;
10028 unsigned int r_type;
10029 int i;
10030
10031 for (i = count - 1; i > 0; i--)
10032 {
10033 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10034 if (r_type != R_MIPS_NONE)
10035 {
10036 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10037 break;
10038 }
10039 }
10040 do
10041 {
10042 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10043 (*rel), count, (*relend),
10044 howto, i, contents);
10045 }
10046 while (0);
10047 }
10048
10049 /* Relocate a MIPS ELF section. */
10050
10051 bfd_boolean
10052 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10053 bfd *input_bfd, asection *input_section,
10054 bfd_byte *contents, Elf_Internal_Rela *relocs,
10055 Elf_Internal_Sym *local_syms,
10056 asection **local_sections)
10057 {
10058 Elf_Internal_Rela *rel;
10059 const Elf_Internal_Rela *relend;
10060 bfd_vma addend = 0;
10061 bfd_boolean use_saved_addend_p = FALSE;
10062
10063 relend = relocs + input_section->reloc_count;
10064 for (rel = relocs; rel < relend; ++rel)
10065 {
10066 const char *name;
10067 bfd_vma value = 0;
10068 reloc_howto_type *howto;
10069 bfd_boolean cross_mode_jump_p = FALSE;
10070 /* TRUE if the relocation is a RELA relocation, rather than a
10071 REL relocation. */
10072 bfd_boolean rela_relocation_p = TRUE;
10073 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10074 const char *msg;
10075 unsigned long r_symndx;
10076 asection *sec;
10077 Elf_Internal_Shdr *symtab_hdr;
10078 struct elf_link_hash_entry *h;
10079 bfd_boolean rel_reloc;
10080
10081 rel_reloc = (NEWABI_P (input_bfd)
10082 && mips_elf_rel_relocation_p (input_bfd, input_section,
10083 relocs, rel));
10084 /* Find the relocation howto for this relocation. */
10085 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10086
10087 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10088 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10089 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10090 {
10091 sec = local_sections[r_symndx];
10092 h = NULL;
10093 }
10094 else
10095 {
10096 unsigned long extsymoff;
10097
10098 extsymoff = 0;
10099 if (!elf_bad_symtab (input_bfd))
10100 extsymoff = symtab_hdr->sh_info;
10101 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10102 while (h->root.type == bfd_link_hash_indirect
10103 || h->root.type == bfd_link_hash_warning)
10104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10105
10106 sec = NULL;
10107 if (h->root.type == bfd_link_hash_defined
10108 || h->root.type == bfd_link_hash_defweak)
10109 sec = h->root.u.def.section;
10110 }
10111
10112 if (sec != NULL && discarded_section (sec))
10113 {
10114 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10115 input_section, &rel, &relend,
10116 rel_reloc, howto, contents);
10117 continue;
10118 }
10119
10120 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10121 {
10122 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10123 64-bit code, but make sure all their addresses are in the
10124 lowermost or uppermost 32-bit section of the 64-bit address
10125 space. Thus, when they use an R_MIPS_64 they mean what is
10126 usually meant by R_MIPS_32, with the exception that the
10127 stored value is sign-extended to 64 bits. */
10128 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10129
10130 /* On big-endian systems, we need to lie about the position
10131 of the reloc. */
10132 if (bfd_big_endian (input_bfd))
10133 rel->r_offset += 4;
10134 }
10135
10136 if (!use_saved_addend_p)
10137 {
10138 /* If these relocations were originally of the REL variety,
10139 we must pull the addend out of the field that will be
10140 relocated. Otherwise, we simply use the contents of the
10141 RELA relocation. */
10142 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10143 relocs, rel))
10144 {
10145 rela_relocation_p = FALSE;
10146 addend = mips_elf_read_rel_addend (input_bfd, rel,
10147 howto, contents);
10148 if (hi16_reloc_p (r_type)
10149 || (got16_reloc_p (r_type)
10150 && mips_elf_local_relocation_p (input_bfd, rel,
10151 local_sections)))
10152 {
10153 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10154 contents, &addend))
10155 {
10156 if (h)
10157 name = h->root.root.string;
10158 else
10159 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10160 local_syms + r_symndx,
10161 sec);
10162 _bfd_error_handler
10163 /* xgettext:c-format */
10164 (_("%pB: can't find matching LO16 reloc against `%s'"
10165 " for %s at %#" PRIx64 " in section `%pA'"),
10166 input_bfd, name,
10167 howto->name, (uint64_t) rel->r_offset, input_section);
10168 }
10169 }
10170 else
10171 addend <<= howto->rightshift;
10172 }
10173 else
10174 addend = rel->r_addend;
10175 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10176 local_syms, local_sections, rel);
10177 }
10178
10179 if (bfd_link_relocatable (info))
10180 {
10181 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10182 && bfd_big_endian (input_bfd))
10183 rel->r_offset -= 4;
10184
10185 if (!rela_relocation_p && rel->r_addend)
10186 {
10187 addend += rel->r_addend;
10188 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10189 addend = mips_elf_high (addend);
10190 else if (r_type == R_MIPS_HIGHER)
10191 addend = mips_elf_higher (addend);
10192 else if (r_type == R_MIPS_HIGHEST)
10193 addend = mips_elf_highest (addend);
10194 else
10195 addend >>= howto->rightshift;
10196
10197 /* We use the source mask, rather than the destination
10198 mask because the place to which we are writing will be
10199 source of the addend in the final link. */
10200 addend &= howto->src_mask;
10201
10202 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10203 /* See the comment above about using R_MIPS_64 in the 32-bit
10204 ABI. Here, we need to update the addend. It would be
10205 possible to get away with just using the R_MIPS_32 reloc
10206 but for endianness. */
10207 {
10208 bfd_vma sign_bits;
10209 bfd_vma low_bits;
10210 bfd_vma high_bits;
10211
10212 if (addend & ((bfd_vma) 1 << 31))
10213 #ifdef BFD64
10214 sign_bits = ((bfd_vma) 1 << 32) - 1;
10215 #else
10216 sign_bits = -1;
10217 #endif
10218 else
10219 sign_bits = 0;
10220
10221 /* If we don't know that we have a 64-bit type,
10222 do two separate stores. */
10223 if (bfd_big_endian (input_bfd))
10224 {
10225 /* Store the sign-bits (which are most significant)
10226 first. */
10227 low_bits = sign_bits;
10228 high_bits = addend;
10229 }
10230 else
10231 {
10232 low_bits = addend;
10233 high_bits = sign_bits;
10234 }
10235 bfd_put_32 (input_bfd, low_bits,
10236 contents + rel->r_offset);
10237 bfd_put_32 (input_bfd, high_bits,
10238 contents + rel->r_offset + 4);
10239 continue;
10240 }
10241
10242 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10243 input_bfd, input_section,
10244 contents, FALSE))
10245 return FALSE;
10246 }
10247
10248 /* Go on to the next relocation. */
10249 continue;
10250 }
10251
10252 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10253 relocations for the same offset. In that case we are
10254 supposed to treat the output of each relocation as the addend
10255 for the next. */
10256 if (rel + 1 < relend
10257 && rel->r_offset == rel[1].r_offset
10258 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10259 use_saved_addend_p = TRUE;
10260 else
10261 use_saved_addend_p = FALSE;
10262
10263 /* Figure out what value we are supposed to relocate. */
10264 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10265 input_section, info, rel,
10266 addend, howto, local_syms,
10267 local_sections, &value,
10268 &name, &cross_mode_jump_p,
10269 use_saved_addend_p))
10270 {
10271 case bfd_reloc_continue:
10272 /* There's nothing to do. */
10273 continue;
10274
10275 case bfd_reloc_undefined:
10276 /* mips_elf_calculate_relocation already called the
10277 undefined_symbol callback. There's no real point in
10278 trying to perform the relocation at this point, so we
10279 just skip ahead to the next relocation. */
10280 continue;
10281
10282 case bfd_reloc_notsupported:
10283 msg = _("internal error: unsupported relocation error");
10284 info->callbacks->warning
10285 (info, msg, name, input_bfd, input_section, rel->r_offset);
10286 return FALSE;
10287
10288 case bfd_reloc_overflow:
10289 if (use_saved_addend_p)
10290 /* Ignore overflow until we reach the last relocation for
10291 a given location. */
10292 ;
10293 else
10294 {
10295 struct mips_elf_link_hash_table *htab;
10296
10297 htab = mips_elf_hash_table (info);
10298 BFD_ASSERT (htab != NULL);
10299 BFD_ASSERT (name != NULL);
10300 if (!htab->small_data_overflow_reported
10301 && (gprel16_reloc_p (howto->type)
10302 || literal_reloc_p (howto->type)))
10303 {
10304 msg = _("small-data section exceeds 64KB;"
10305 " lower small-data size limit (see option -G)");
10306
10307 htab->small_data_overflow_reported = TRUE;
10308 (*info->callbacks->einfo) ("%P: %s\n", msg);
10309 }
10310 (*info->callbacks->reloc_overflow)
10311 (info, NULL, name, howto->name, (bfd_vma) 0,
10312 input_bfd, input_section, rel->r_offset);
10313 }
10314 break;
10315
10316 case bfd_reloc_ok:
10317 break;
10318
10319 case bfd_reloc_outofrange:
10320 msg = NULL;
10321 if (jal_reloc_p (howto->type))
10322 msg = (cross_mode_jump_p
10323 ? _("cannot convert a jump to JALX "
10324 "for a non-word-aligned address")
10325 : (howto->type == R_MIPS16_26
10326 ? _("jump to a non-word-aligned address")
10327 : _("jump to a non-instruction-aligned address")));
10328 else if (b_reloc_p (howto->type))
10329 msg = (cross_mode_jump_p
10330 ? _("cannot convert a branch to JALX "
10331 "for a non-word-aligned address")
10332 : _("branch to a non-instruction-aligned address"));
10333 else if (aligned_pcrel_reloc_p (howto->type))
10334 msg = _("PC-relative load from unaligned address");
10335 if (msg)
10336 {
10337 info->callbacks->einfo
10338 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10339 break;
10340 }
10341 /* Fall through. */
10342
10343 default:
10344 abort ();
10345 break;
10346 }
10347
10348 /* If we've got another relocation for the address, keep going
10349 until we reach the last one. */
10350 if (use_saved_addend_p)
10351 {
10352 addend = value;
10353 continue;
10354 }
10355
10356 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10357 /* See the comment above about using R_MIPS_64 in the 32-bit
10358 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10359 that calculated the right value. Now, however, we
10360 sign-extend the 32-bit result to 64-bits, and store it as a
10361 64-bit value. We are especially generous here in that we
10362 go to extreme lengths to support this usage on systems with
10363 only a 32-bit VMA. */
10364 {
10365 bfd_vma sign_bits;
10366 bfd_vma low_bits;
10367 bfd_vma high_bits;
10368
10369 if (value & ((bfd_vma) 1 << 31))
10370 #ifdef BFD64
10371 sign_bits = ((bfd_vma) 1 << 32) - 1;
10372 #else
10373 sign_bits = -1;
10374 #endif
10375 else
10376 sign_bits = 0;
10377
10378 /* If we don't know that we have a 64-bit type,
10379 do two separate stores. */
10380 if (bfd_big_endian (input_bfd))
10381 {
10382 /* Undo what we did above. */
10383 rel->r_offset -= 4;
10384 /* Store the sign-bits (which are most significant)
10385 first. */
10386 low_bits = sign_bits;
10387 high_bits = value;
10388 }
10389 else
10390 {
10391 low_bits = value;
10392 high_bits = sign_bits;
10393 }
10394 bfd_put_32 (input_bfd, low_bits,
10395 contents + rel->r_offset);
10396 bfd_put_32 (input_bfd, high_bits,
10397 contents + rel->r_offset + 4);
10398 continue;
10399 }
10400
10401 /* Actually perform the relocation. */
10402 if (! mips_elf_perform_relocation (info, howto, rel, value,
10403 input_bfd, input_section,
10404 contents, cross_mode_jump_p))
10405 return FALSE;
10406 }
10407
10408 return TRUE;
10409 }
10410 \f
10411 /* A function that iterates over each entry in la25_stubs and fills
10412 in the code for each one. DATA points to a mips_htab_traverse_info. */
10413
10414 static int
10415 mips_elf_create_la25_stub (void **slot, void *data)
10416 {
10417 struct mips_htab_traverse_info *hti;
10418 struct mips_elf_link_hash_table *htab;
10419 struct mips_elf_la25_stub *stub;
10420 asection *s;
10421 bfd_byte *loc;
10422 bfd_vma offset, target, target_high, target_low;
10423
10424 stub = (struct mips_elf_la25_stub *) *slot;
10425 hti = (struct mips_htab_traverse_info *) data;
10426 htab = mips_elf_hash_table (hti->info);
10427 BFD_ASSERT (htab != NULL);
10428
10429 /* Create the section contents, if we haven't already. */
10430 s = stub->stub_section;
10431 loc = s->contents;
10432 if (loc == NULL)
10433 {
10434 loc = bfd_malloc (s->size);
10435 if (loc == NULL)
10436 {
10437 hti->error = TRUE;
10438 return FALSE;
10439 }
10440 s->contents = loc;
10441 }
10442
10443 /* Work out where in the section this stub should go. */
10444 offset = stub->offset;
10445
10446 /* Work out the target address. */
10447 target = mips_elf_get_la25_target (stub, &s);
10448 target += s->output_section->vma + s->output_offset;
10449
10450 target_high = ((target + 0x8000) >> 16) & 0xffff;
10451 target_low = (target & 0xffff);
10452
10453 if (stub->stub_section != htab->strampoline)
10454 {
10455 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10456 of the section and write the two instructions at the end. */
10457 memset (loc, 0, offset);
10458 loc += offset;
10459 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10460 {
10461 bfd_put_micromips_32 (hti->output_bfd,
10462 LA25_LUI_MICROMIPS (target_high),
10463 loc);
10464 bfd_put_micromips_32 (hti->output_bfd,
10465 LA25_ADDIU_MICROMIPS (target_low),
10466 loc + 4);
10467 }
10468 else
10469 {
10470 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10471 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10472 }
10473 }
10474 else
10475 {
10476 /* This is trampoline. */
10477 loc += offset;
10478 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10479 {
10480 bfd_put_micromips_32 (hti->output_bfd,
10481 LA25_LUI_MICROMIPS (target_high), loc);
10482 bfd_put_micromips_32 (hti->output_bfd,
10483 LA25_J_MICROMIPS (target), loc + 4);
10484 bfd_put_micromips_32 (hti->output_bfd,
10485 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10486 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10487 }
10488 else
10489 {
10490 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10491 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10492 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10493 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10494 }
10495 }
10496 return TRUE;
10497 }
10498
10499 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10500 adjust it appropriately now. */
10501
10502 static void
10503 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10504 const char *name, Elf_Internal_Sym *sym)
10505 {
10506 /* The linker script takes care of providing names and values for
10507 these, but we must place them into the right sections. */
10508 static const char* const text_section_symbols[] = {
10509 "_ftext",
10510 "_etext",
10511 "__dso_displacement",
10512 "__elf_header",
10513 "__program_header_table",
10514 NULL
10515 };
10516
10517 static const char* const data_section_symbols[] = {
10518 "_fdata",
10519 "_edata",
10520 "_end",
10521 "_fbss",
10522 NULL
10523 };
10524
10525 const char* const *p;
10526 int i;
10527
10528 for (i = 0; i < 2; ++i)
10529 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10530 *p;
10531 ++p)
10532 if (strcmp (*p, name) == 0)
10533 {
10534 /* All of these symbols are given type STT_SECTION by the
10535 IRIX6 linker. */
10536 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10537 sym->st_other = STO_PROTECTED;
10538
10539 /* The IRIX linker puts these symbols in special sections. */
10540 if (i == 0)
10541 sym->st_shndx = SHN_MIPS_TEXT;
10542 else
10543 sym->st_shndx = SHN_MIPS_DATA;
10544
10545 break;
10546 }
10547 }
10548
10549 /* Finish up dynamic symbol handling. We set the contents of various
10550 dynamic sections here. */
10551
10552 bfd_boolean
10553 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10554 struct bfd_link_info *info,
10555 struct elf_link_hash_entry *h,
10556 Elf_Internal_Sym *sym)
10557 {
10558 bfd *dynobj;
10559 asection *sgot;
10560 struct mips_got_info *g, *gg;
10561 const char *name;
10562 int idx;
10563 struct mips_elf_link_hash_table *htab;
10564 struct mips_elf_link_hash_entry *hmips;
10565
10566 htab = mips_elf_hash_table (info);
10567 BFD_ASSERT (htab != NULL);
10568 dynobj = elf_hash_table (info)->dynobj;
10569 hmips = (struct mips_elf_link_hash_entry *) h;
10570
10571 BFD_ASSERT (!htab->is_vxworks);
10572
10573 if (h->plt.plist != NULL
10574 && (h->plt.plist->mips_offset != MINUS_ONE
10575 || h->plt.plist->comp_offset != MINUS_ONE))
10576 {
10577 /* We've decided to create a PLT entry for this symbol. */
10578 bfd_byte *loc;
10579 bfd_vma header_address, got_address;
10580 bfd_vma got_address_high, got_address_low, load;
10581 bfd_vma got_index;
10582 bfd_vma isa_bit;
10583
10584 got_index = h->plt.plist->gotplt_index;
10585
10586 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10587 BFD_ASSERT (h->dynindx != -1);
10588 BFD_ASSERT (htab->root.splt != NULL);
10589 BFD_ASSERT (got_index != MINUS_ONE);
10590 BFD_ASSERT (!h->def_regular);
10591
10592 /* Calculate the address of the PLT header. */
10593 isa_bit = htab->plt_header_is_comp;
10594 header_address = (htab->root.splt->output_section->vma
10595 + htab->root.splt->output_offset + isa_bit);
10596
10597 /* Calculate the address of the .got.plt entry. */
10598 got_address = (htab->root.sgotplt->output_section->vma
10599 + htab->root.sgotplt->output_offset
10600 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10601
10602 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10603 got_address_low = got_address & 0xffff;
10604
10605 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10606 cannot be loaded in two instructions. */
10607 if (ABI_64_P (output_bfd)
10608 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10609 {
10610 _bfd_error_handler
10611 /* xgettext:c-format */
10612 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10613 "supported; consider using `-Ttext-segment=...'"),
10614 output_bfd,
10615 htab->root.sgotplt->output_section,
10616 (int64_t) got_address);
10617 bfd_set_error (bfd_error_no_error);
10618 return FALSE;
10619 }
10620
10621 /* Initially point the .got.plt entry at the PLT header. */
10622 loc = (htab->root.sgotplt->contents
10623 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10624 if (ABI_64_P (output_bfd))
10625 bfd_put_64 (output_bfd, header_address, loc);
10626 else
10627 bfd_put_32 (output_bfd, header_address, loc);
10628
10629 /* Now handle the PLT itself. First the standard entry (the order
10630 does not matter, we just have to pick one). */
10631 if (h->plt.plist->mips_offset != MINUS_ONE)
10632 {
10633 const bfd_vma *plt_entry;
10634 bfd_vma plt_offset;
10635
10636 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10637
10638 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10639
10640 /* Find out where the .plt entry should go. */
10641 loc = htab->root.splt->contents + plt_offset;
10642
10643 /* Pick the load opcode. */
10644 load = MIPS_ELF_LOAD_WORD (output_bfd);
10645
10646 /* Fill in the PLT entry itself. */
10647
10648 if (MIPSR6_P (output_bfd))
10649 plt_entry = mipsr6_exec_plt_entry;
10650 else
10651 plt_entry = mips_exec_plt_entry;
10652 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10653 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10654 loc + 4);
10655
10656 if (! LOAD_INTERLOCKS_P (output_bfd))
10657 {
10658 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10659 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10660 }
10661 else
10662 {
10663 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10664 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10665 loc + 12);
10666 }
10667 }
10668
10669 /* Now the compressed entry. They come after any standard ones. */
10670 if (h->plt.plist->comp_offset != MINUS_ONE)
10671 {
10672 bfd_vma plt_offset;
10673
10674 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10675 + h->plt.plist->comp_offset);
10676
10677 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10678
10679 /* Find out where the .plt entry should go. */
10680 loc = htab->root.splt->contents + plt_offset;
10681
10682 /* Fill in the PLT entry itself. */
10683 if (!MICROMIPS_P (output_bfd))
10684 {
10685 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10686
10687 bfd_put_16 (output_bfd, plt_entry[0], loc);
10688 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10689 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10690 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10691 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10692 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10693 bfd_put_32 (output_bfd, got_address, loc + 12);
10694 }
10695 else if (htab->insn32)
10696 {
10697 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10698
10699 bfd_put_16 (output_bfd, plt_entry[0], loc);
10700 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10701 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10702 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10703 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10704 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10705 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10706 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10707 }
10708 else
10709 {
10710 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10711 bfd_signed_vma gotpc_offset;
10712 bfd_vma loc_address;
10713
10714 BFD_ASSERT (got_address % 4 == 0);
10715
10716 loc_address = (htab->root.splt->output_section->vma
10717 + htab->root.splt->output_offset + plt_offset);
10718 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10719
10720 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10721 if (gotpc_offset + 0x1000000 >= 0x2000000)
10722 {
10723 _bfd_error_handler
10724 /* xgettext:c-format */
10725 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
10726 "beyond the range of ADDIUPC"),
10727 output_bfd,
10728 htab->root.sgotplt->output_section,
10729 (int64_t) gotpc_offset,
10730 htab->root.splt->output_section);
10731 bfd_set_error (bfd_error_no_error);
10732 return FALSE;
10733 }
10734 bfd_put_16 (output_bfd,
10735 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10736 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10737 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10738 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10739 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10740 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10741 }
10742 }
10743
10744 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10745 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10746 got_index - 2, h->dynindx,
10747 R_MIPS_JUMP_SLOT, got_address);
10748
10749 /* We distinguish between PLT entries and lazy-binding stubs by
10750 giving the former an st_other value of STO_MIPS_PLT. Set the
10751 flag and leave the value if there are any relocations in the
10752 binary where pointer equality matters. */
10753 sym->st_shndx = SHN_UNDEF;
10754 if (h->pointer_equality_needed)
10755 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10756 else
10757 {
10758 sym->st_value = 0;
10759 sym->st_other = 0;
10760 }
10761 }
10762
10763 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10764 {
10765 /* We've decided to create a lazy-binding stub. */
10766 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10767 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10768 bfd_vma stub_size = htab->function_stub_size;
10769 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10770 bfd_vma isa_bit = micromips_p;
10771 bfd_vma stub_big_size;
10772
10773 if (!micromips_p)
10774 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10775 else if (htab->insn32)
10776 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10777 else
10778 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10779
10780 /* This symbol has a stub. Set it up. */
10781
10782 BFD_ASSERT (h->dynindx != -1);
10783
10784 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10785
10786 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10787 sign extension at runtime in the stub, resulting in a negative
10788 index value. */
10789 if (h->dynindx & ~0x7fffffff)
10790 return FALSE;
10791
10792 /* Fill the stub. */
10793 if (micromips_p)
10794 {
10795 idx = 0;
10796 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10797 stub + idx);
10798 idx += 4;
10799 if (htab->insn32)
10800 {
10801 bfd_put_micromips_32 (output_bfd,
10802 STUB_MOVE32_MICROMIPS, stub + idx);
10803 idx += 4;
10804 }
10805 else
10806 {
10807 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10808 idx += 2;
10809 }
10810 if (stub_size == stub_big_size)
10811 {
10812 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10813
10814 bfd_put_micromips_32 (output_bfd,
10815 STUB_LUI_MICROMIPS (dynindx_hi),
10816 stub + idx);
10817 idx += 4;
10818 }
10819 if (htab->insn32)
10820 {
10821 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10822 stub + idx);
10823 idx += 4;
10824 }
10825 else
10826 {
10827 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10828 idx += 2;
10829 }
10830
10831 /* If a large stub is not required and sign extension is not a
10832 problem, then use legacy code in the stub. */
10833 if (stub_size == stub_big_size)
10834 bfd_put_micromips_32 (output_bfd,
10835 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10836 stub + idx);
10837 else if (h->dynindx & ~0x7fff)
10838 bfd_put_micromips_32 (output_bfd,
10839 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10840 stub + idx);
10841 else
10842 bfd_put_micromips_32 (output_bfd,
10843 STUB_LI16S_MICROMIPS (output_bfd,
10844 h->dynindx),
10845 stub + idx);
10846 }
10847 else
10848 {
10849 idx = 0;
10850 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10851 idx += 4;
10852 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10853 idx += 4;
10854 if (stub_size == stub_big_size)
10855 {
10856 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10857 stub + idx);
10858 idx += 4;
10859 }
10860 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10861 idx += 4;
10862
10863 /* If a large stub is not required and sign extension is not a
10864 problem, then use legacy code in the stub. */
10865 if (stub_size == stub_big_size)
10866 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10867 stub + idx);
10868 else if (h->dynindx & ~0x7fff)
10869 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10870 stub + idx);
10871 else
10872 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10873 stub + idx);
10874 }
10875
10876 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10877 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10878 stub, stub_size);
10879
10880 /* Mark the symbol as undefined. stub_offset != -1 occurs
10881 only for the referenced symbol. */
10882 sym->st_shndx = SHN_UNDEF;
10883
10884 /* The run-time linker uses the st_value field of the symbol
10885 to reset the global offset table entry for this external
10886 to its stub address when unlinking a shared object. */
10887 sym->st_value = (htab->sstubs->output_section->vma
10888 + htab->sstubs->output_offset
10889 + h->plt.plist->stub_offset
10890 + isa_bit);
10891 sym->st_other = other;
10892 }
10893
10894 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10895 refer to the stub, since only the stub uses the standard calling
10896 conventions. */
10897 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10898 {
10899 BFD_ASSERT (hmips->need_fn_stub);
10900 sym->st_value = (hmips->fn_stub->output_section->vma
10901 + hmips->fn_stub->output_offset);
10902 sym->st_size = hmips->fn_stub->size;
10903 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10904 }
10905
10906 BFD_ASSERT (h->dynindx != -1
10907 || h->forced_local);
10908
10909 sgot = htab->root.sgot;
10910 g = htab->got_info;
10911 BFD_ASSERT (g != NULL);
10912
10913 /* Run through the global symbol table, creating GOT entries for all
10914 the symbols that need them. */
10915 if (hmips->global_got_area != GGA_NONE)
10916 {
10917 bfd_vma offset;
10918 bfd_vma value;
10919
10920 value = sym->st_value;
10921 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10922 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10923 }
10924
10925 if (hmips->global_got_area != GGA_NONE && g->next)
10926 {
10927 struct mips_got_entry e, *p;
10928 bfd_vma entry;
10929 bfd_vma offset;
10930
10931 gg = g;
10932
10933 e.abfd = output_bfd;
10934 e.symndx = -1;
10935 e.d.h = hmips;
10936 e.tls_type = GOT_TLS_NONE;
10937
10938 for (g = g->next; g->next != gg; g = g->next)
10939 {
10940 if (g->got_entries
10941 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10942 &e)))
10943 {
10944 offset = p->gotidx;
10945 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10946 if (bfd_link_pic (info)
10947 || (elf_hash_table (info)->dynamic_sections_created
10948 && p->d.h != NULL
10949 && p->d.h->root.def_dynamic
10950 && !p->d.h->root.def_regular))
10951 {
10952 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10953 the various compatibility problems, it's easier to mock
10954 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10955 mips_elf_create_dynamic_relocation to calculate the
10956 appropriate addend. */
10957 Elf_Internal_Rela rel[3];
10958
10959 memset (rel, 0, sizeof (rel));
10960 if (ABI_64_P (output_bfd))
10961 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10962 else
10963 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10964 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10965
10966 entry = 0;
10967 if (! (mips_elf_create_dynamic_relocation
10968 (output_bfd, info, rel,
10969 e.d.h, NULL, sym->st_value, &entry, sgot)))
10970 return FALSE;
10971 }
10972 else
10973 entry = sym->st_value;
10974 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10975 }
10976 }
10977 }
10978
10979 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10980 name = h->root.root.string;
10981 if (h == elf_hash_table (info)->hdynamic
10982 || h == elf_hash_table (info)->hgot)
10983 sym->st_shndx = SHN_ABS;
10984 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10985 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10986 {
10987 sym->st_shndx = SHN_ABS;
10988 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10989 sym->st_value = 1;
10990 }
10991 else if (SGI_COMPAT (output_bfd))
10992 {
10993 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10994 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10995 {
10996 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10997 sym->st_other = STO_PROTECTED;
10998 sym->st_value = 0;
10999 sym->st_shndx = SHN_MIPS_DATA;
11000 }
11001 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11002 {
11003 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11004 sym->st_other = STO_PROTECTED;
11005 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11006 sym->st_shndx = SHN_ABS;
11007 }
11008 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11009 {
11010 if (h->type == STT_FUNC)
11011 sym->st_shndx = SHN_MIPS_TEXT;
11012 else if (h->type == STT_OBJECT)
11013 sym->st_shndx = SHN_MIPS_DATA;
11014 }
11015 }
11016
11017 /* Emit a copy reloc, if needed. */
11018 if (h->needs_copy)
11019 {
11020 asection *s;
11021 bfd_vma symval;
11022
11023 BFD_ASSERT (h->dynindx != -1);
11024 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11025
11026 s = mips_elf_rel_dyn_section (info, FALSE);
11027 symval = (h->root.u.def.section->output_section->vma
11028 + h->root.u.def.section->output_offset
11029 + h->root.u.def.value);
11030 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11031 h->dynindx, R_MIPS_COPY, symval);
11032 }
11033
11034 /* Handle the IRIX6-specific symbols. */
11035 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11036 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11037
11038 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11039 to treat compressed symbols like any other. */
11040 if (ELF_ST_IS_MIPS16 (sym->st_other))
11041 {
11042 BFD_ASSERT (sym->st_value & 1);
11043 sym->st_other -= STO_MIPS16;
11044 }
11045 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11046 {
11047 BFD_ASSERT (sym->st_value & 1);
11048 sym->st_other -= STO_MICROMIPS;
11049 }
11050
11051 return TRUE;
11052 }
11053
11054 /* Likewise, for VxWorks. */
11055
11056 bfd_boolean
11057 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11058 struct bfd_link_info *info,
11059 struct elf_link_hash_entry *h,
11060 Elf_Internal_Sym *sym)
11061 {
11062 bfd *dynobj;
11063 asection *sgot;
11064 struct mips_got_info *g;
11065 struct mips_elf_link_hash_table *htab;
11066 struct mips_elf_link_hash_entry *hmips;
11067
11068 htab = mips_elf_hash_table (info);
11069 BFD_ASSERT (htab != NULL);
11070 dynobj = elf_hash_table (info)->dynobj;
11071 hmips = (struct mips_elf_link_hash_entry *) h;
11072
11073 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11074 {
11075 bfd_byte *loc;
11076 bfd_vma plt_address, got_address, got_offset, branch_offset;
11077 Elf_Internal_Rela rel;
11078 static const bfd_vma *plt_entry;
11079 bfd_vma gotplt_index;
11080 bfd_vma plt_offset;
11081
11082 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11083 gotplt_index = h->plt.plist->gotplt_index;
11084
11085 BFD_ASSERT (h->dynindx != -1);
11086 BFD_ASSERT (htab->root.splt != NULL);
11087 BFD_ASSERT (gotplt_index != MINUS_ONE);
11088 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11089
11090 /* Calculate the address of the .plt entry. */
11091 plt_address = (htab->root.splt->output_section->vma
11092 + htab->root.splt->output_offset
11093 + plt_offset);
11094
11095 /* Calculate the address of the .got.plt entry. */
11096 got_address = (htab->root.sgotplt->output_section->vma
11097 + htab->root.sgotplt->output_offset
11098 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11099
11100 /* Calculate the offset of the .got.plt entry from
11101 _GLOBAL_OFFSET_TABLE_. */
11102 got_offset = mips_elf_gotplt_index (info, h);
11103
11104 /* Calculate the offset for the branch at the start of the PLT
11105 entry. The branch jumps to the beginning of .plt. */
11106 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11107
11108 /* Fill in the initial value of the .got.plt entry. */
11109 bfd_put_32 (output_bfd, plt_address,
11110 (htab->root.sgotplt->contents
11111 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11112
11113 /* Find out where the .plt entry should go. */
11114 loc = htab->root.splt->contents + plt_offset;
11115
11116 if (bfd_link_pic (info))
11117 {
11118 plt_entry = mips_vxworks_shared_plt_entry;
11119 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11120 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11121 }
11122 else
11123 {
11124 bfd_vma got_address_high, got_address_low;
11125
11126 plt_entry = mips_vxworks_exec_plt_entry;
11127 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11128 got_address_low = got_address & 0xffff;
11129
11130 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11131 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11132 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11133 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11134 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11135 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11136 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11137 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11138
11139 loc = (htab->srelplt2->contents
11140 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11141
11142 /* Emit a relocation for the .got.plt entry. */
11143 rel.r_offset = got_address;
11144 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11145 rel.r_addend = plt_offset;
11146 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11147
11148 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11149 loc += sizeof (Elf32_External_Rela);
11150 rel.r_offset = plt_address + 8;
11151 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11152 rel.r_addend = got_offset;
11153 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11154
11155 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11156 loc += sizeof (Elf32_External_Rela);
11157 rel.r_offset += 4;
11158 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11159 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11160 }
11161
11162 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11163 loc = (htab->root.srelplt->contents
11164 + gotplt_index * sizeof (Elf32_External_Rela));
11165 rel.r_offset = got_address;
11166 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11167 rel.r_addend = 0;
11168 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11169
11170 if (!h->def_regular)
11171 sym->st_shndx = SHN_UNDEF;
11172 }
11173
11174 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11175
11176 sgot = htab->root.sgot;
11177 g = htab->got_info;
11178 BFD_ASSERT (g != NULL);
11179
11180 /* See if this symbol has an entry in the GOT. */
11181 if (hmips->global_got_area != GGA_NONE)
11182 {
11183 bfd_vma offset;
11184 Elf_Internal_Rela outrel;
11185 bfd_byte *loc;
11186 asection *s;
11187
11188 /* Install the symbol value in the GOT. */
11189 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11190 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11191
11192 /* Add a dynamic relocation for it. */
11193 s = mips_elf_rel_dyn_section (info, FALSE);
11194 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11195 outrel.r_offset = (sgot->output_section->vma
11196 + sgot->output_offset
11197 + offset);
11198 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11199 outrel.r_addend = 0;
11200 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11201 }
11202
11203 /* Emit a copy reloc, if needed. */
11204 if (h->needs_copy)
11205 {
11206 Elf_Internal_Rela rel;
11207 asection *srel;
11208 bfd_byte *loc;
11209
11210 BFD_ASSERT (h->dynindx != -1);
11211
11212 rel.r_offset = (h->root.u.def.section->output_section->vma
11213 + h->root.u.def.section->output_offset
11214 + h->root.u.def.value);
11215 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11216 rel.r_addend = 0;
11217 if (h->root.u.def.section == htab->root.sdynrelro)
11218 srel = htab->root.sreldynrelro;
11219 else
11220 srel = htab->root.srelbss;
11221 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11222 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11223 ++srel->reloc_count;
11224 }
11225
11226 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11227 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11228 sym->st_value &= ~1;
11229
11230 return TRUE;
11231 }
11232
11233 /* Write out a plt0 entry to the beginning of .plt. */
11234
11235 static bfd_boolean
11236 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11237 {
11238 bfd_byte *loc;
11239 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11240 static const bfd_vma *plt_entry;
11241 struct mips_elf_link_hash_table *htab;
11242
11243 htab = mips_elf_hash_table (info);
11244 BFD_ASSERT (htab != NULL);
11245
11246 if (ABI_64_P (output_bfd))
11247 plt_entry = mips_n64_exec_plt0_entry;
11248 else if (ABI_N32_P (output_bfd))
11249 plt_entry = mips_n32_exec_plt0_entry;
11250 else if (!htab->plt_header_is_comp)
11251 plt_entry = mips_o32_exec_plt0_entry;
11252 else if (htab->insn32)
11253 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11254 else
11255 plt_entry = micromips_o32_exec_plt0_entry;
11256
11257 /* Calculate the value of .got.plt. */
11258 gotplt_value = (htab->root.sgotplt->output_section->vma
11259 + htab->root.sgotplt->output_offset);
11260 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11261 gotplt_value_low = gotplt_value & 0xffff;
11262
11263 /* The PLT sequence is not safe for N64 if .got.plt's address can
11264 not be loaded in two instructions. */
11265 if (ABI_64_P (output_bfd)
11266 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11267 {
11268 _bfd_error_handler
11269 /* xgettext:c-format */
11270 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11271 "supported; consider using `-Ttext-segment=...'"),
11272 output_bfd,
11273 htab->root.sgotplt->output_section,
11274 (int64_t) gotplt_value);
11275 bfd_set_error (bfd_error_no_error);
11276 return FALSE;
11277 }
11278
11279 /* Install the PLT header. */
11280 loc = htab->root.splt->contents;
11281 if (plt_entry == micromips_o32_exec_plt0_entry)
11282 {
11283 bfd_vma gotpc_offset;
11284 bfd_vma loc_address;
11285 size_t i;
11286
11287 BFD_ASSERT (gotplt_value % 4 == 0);
11288
11289 loc_address = (htab->root.splt->output_section->vma
11290 + htab->root.splt->output_offset);
11291 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11292
11293 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11294 if (gotpc_offset + 0x1000000 >= 0x2000000)
11295 {
11296 _bfd_error_handler
11297 /* xgettext:c-format */
11298 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11299 "beyond the range of ADDIUPC"),
11300 output_bfd,
11301 htab->root.sgotplt->output_section,
11302 (int64_t) gotpc_offset,
11303 htab->root.splt->output_section);
11304 bfd_set_error (bfd_error_no_error);
11305 return FALSE;
11306 }
11307 bfd_put_16 (output_bfd,
11308 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11309 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11310 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11311 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11312 }
11313 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11314 {
11315 size_t i;
11316
11317 bfd_put_16 (output_bfd, plt_entry[0], loc);
11318 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11319 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11320 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11321 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11322 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11323 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11324 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11325 }
11326 else
11327 {
11328 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11329 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11330 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11331 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11332 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11333 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11334 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11335 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11336 }
11337
11338 return TRUE;
11339 }
11340
11341 /* Install the PLT header for a VxWorks executable and finalize the
11342 contents of .rela.plt.unloaded. */
11343
11344 static void
11345 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11346 {
11347 Elf_Internal_Rela rela;
11348 bfd_byte *loc;
11349 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11350 static const bfd_vma *plt_entry;
11351 struct mips_elf_link_hash_table *htab;
11352
11353 htab = mips_elf_hash_table (info);
11354 BFD_ASSERT (htab != NULL);
11355
11356 plt_entry = mips_vxworks_exec_plt0_entry;
11357
11358 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11359 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11360 + htab->root.hgot->root.u.def.section->output_offset
11361 + htab->root.hgot->root.u.def.value);
11362
11363 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11364 got_value_low = got_value & 0xffff;
11365
11366 /* Calculate the address of the PLT header. */
11367 plt_address = (htab->root.splt->output_section->vma
11368 + htab->root.splt->output_offset);
11369
11370 /* Install the PLT header. */
11371 loc = htab->root.splt->contents;
11372 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11373 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11374 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11375 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11376 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11377 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11378
11379 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11380 loc = htab->srelplt2->contents;
11381 rela.r_offset = plt_address;
11382 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11383 rela.r_addend = 0;
11384 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11385 loc += sizeof (Elf32_External_Rela);
11386
11387 /* Output the relocation for the following addiu of
11388 %lo(_GLOBAL_OFFSET_TABLE_). */
11389 rela.r_offset += 4;
11390 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11391 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11392 loc += sizeof (Elf32_External_Rela);
11393
11394 /* Fix up the remaining relocations. They may have the wrong
11395 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11396 in which symbols were output. */
11397 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11398 {
11399 Elf_Internal_Rela rel;
11400
11401 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11402 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11403 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11404 loc += sizeof (Elf32_External_Rela);
11405
11406 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11407 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11408 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11409 loc += sizeof (Elf32_External_Rela);
11410
11411 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11412 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11413 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11414 loc += sizeof (Elf32_External_Rela);
11415 }
11416 }
11417
11418 /* Install the PLT header for a VxWorks shared library. */
11419
11420 static void
11421 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11422 {
11423 unsigned int i;
11424 struct mips_elf_link_hash_table *htab;
11425
11426 htab = mips_elf_hash_table (info);
11427 BFD_ASSERT (htab != NULL);
11428
11429 /* We just need to copy the entry byte-by-byte. */
11430 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11431 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11432 htab->root.splt->contents + i * 4);
11433 }
11434
11435 /* Finish up the dynamic sections. */
11436
11437 bfd_boolean
11438 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11439 struct bfd_link_info *info)
11440 {
11441 bfd *dynobj;
11442 asection *sdyn;
11443 asection *sgot;
11444 struct mips_got_info *gg, *g;
11445 struct mips_elf_link_hash_table *htab;
11446
11447 htab = mips_elf_hash_table (info);
11448 BFD_ASSERT (htab != NULL);
11449
11450 dynobj = elf_hash_table (info)->dynobj;
11451
11452 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11453
11454 sgot = htab->root.sgot;
11455 gg = htab->got_info;
11456
11457 if (elf_hash_table (info)->dynamic_sections_created)
11458 {
11459 bfd_byte *b;
11460 int dyn_to_skip = 0, dyn_skipped = 0;
11461
11462 BFD_ASSERT (sdyn != NULL);
11463 BFD_ASSERT (gg != NULL);
11464
11465 g = mips_elf_bfd_got (output_bfd, FALSE);
11466 BFD_ASSERT (g != NULL);
11467
11468 for (b = sdyn->contents;
11469 b < sdyn->contents + sdyn->size;
11470 b += MIPS_ELF_DYN_SIZE (dynobj))
11471 {
11472 Elf_Internal_Dyn dyn;
11473 const char *name;
11474 size_t elemsize;
11475 asection *s;
11476 bfd_boolean swap_out_p;
11477
11478 /* Read in the current dynamic entry. */
11479 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11480
11481 /* Assume that we're going to modify it and write it out. */
11482 swap_out_p = TRUE;
11483
11484 switch (dyn.d_tag)
11485 {
11486 case DT_RELENT:
11487 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11488 break;
11489
11490 case DT_RELAENT:
11491 BFD_ASSERT (htab->is_vxworks);
11492 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11493 break;
11494
11495 case DT_STRSZ:
11496 /* Rewrite DT_STRSZ. */
11497 dyn.d_un.d_val =
11498 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11499 break;
11500
11501 case DT_PLTGOT:
11502 s = htab->root.sgot;
11503 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11504 break;
11505
11506 case DT_MIPS_PLTGOT:
11507 s = htab->root.sgotplt;
11508 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11509 break;
11510
11511 case DT_MIPS_RLD_VERSION:
11512 dyn.d_un.d_val = 1; /* XXX */
11513 break;
11514
11515 case DT_MIPS_FLAGS:
11516 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11517 break;
11518
11519 case DT_MIPS_TIME_STAMP:
11520 {
11521 time_t t;
11522 time (&t);
11523 dyn.d_un.d_val = t;
11524 }
11525 break;
11526
11527 case DT_MIPS_ICHECKSUM:
11528 /* XXX FIXME: */
11529 swap_out_p = FALSE;
11530 break;
11531
11532 case DT_MIPS_IVERSION:
11533 /* XXX FIXME: */
11534 swap_out_p = FALSE;
11535 break;
11536
11537 case DT_MIPS_BASE_ADDRESS:
11538 s = output_bfd->sections;
11539 BFD_ASSERT (s != NULL);
11540 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11541 break;
11542
11543 case DT_MIPS_LOCAL_GOTNO:
11544 dyn.d_un.d_val = g->local_gotno;
11545 break;
11546
11547 case DT_MIPS_UNREFEXTNO:
11548 /* The index into the dynamic symbol table which is the
11549 entry of the first external symbol that is not
11550 referenced within the same object. */
11551 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11552 break;
11553
11554 case DT_MIPS_GOTSYM:
11555 if (htab->global_gotsym)
11556 {
11557 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11558 break;
11559 }
11560 /* In case if we don't have global got symbols we default
11561 to setting DT_MIPS_GOTSYM to the same value as
11562 DT_MIPS_SYMTABNO. */
11563 /* Fall through. */
11564
11565 case DT_MIPS_SYMTABNO:
11566 name = ".dynsym";
11567 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11568 s = bfd_get_linker_section (dynobj, name);
11569
11570 if (s != NULL)
11571 dyn.d_un.d_val = s->size / elemsize;
11572 else
11573 dyn.d_un.d_val = 0;
11574 break;
11575
11576 case DT_MIPS_HIPAGENO:
11577 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11578 break;
11579
11580 case DT_MIPS_RLD_MAP:
11581 {
11582 struct elf_link_hash_entry *h;
11583 h = mips_elf_hash_table (info)->rld_symbol;
11584 if (!h)
11585 {
11586 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11587 swap_out_p = FALSE;
11588 break;
11589 }
11590 s = h->root.u.def.section;
11591
11592 /* The MIPS_RLD_MAP tag stores the absolute address of the
11593 debug pointer. */
11594 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11595 + h->root.u.def.value);
11596 }
11597 break;
11598
11599 case DT_MIPS_RLD_MAP_REL:
11600 {
11601 struct elf_link_hash_entry *h;
11602 bfd_vma dt_addr, rld_addr;
11603 h = mips_elf_hash_table (info)->rld_symbol;
11604 if (!h)
11605 {
11606 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11607 swap_out_p = FALSE;
11608 break;
11609 }
11610 s = h->root.u.def.section;
11611
11612 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11613 pointer, relative to the address of the tag. */
11614 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11615 + (b - sdyn->contents));
11616 rld_addr = (s->output_section->vma + s->output_offset
11617 + h->root.u.def.value);
11618 dyn.d_un.d_ptr = rld_addr - dt_addr;
11619 }
11620 break;
11621
11622 case DT_MIPS_OPTIONS:
11623 s = (bfd_get_section_by_name
11624 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11625 dyn.d_un.d_ptr = s->vma;
11626 break;
11627
11628 case DT_PLTREL:
11629 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11630 if (htab->is_vxworks)
11631 dyn.d_un.d_val = DT_RELA;
11632 else
11633 dyn.d_un.d_val = DT_REL;
11634 break;
11635
11636 case DT_PLTRELSZ:
11637 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11638 dyn.d_un.d_val = htab->root.srelplt->size;
11639 break;
11640
11641 case DT_JMPREL:
11642 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11643 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11644 + htab->root.srelplt->output_offset);
11645 break;
11646
11647 case DT_TEXTREL:
11648 /* If we didn't need any text relocations after all, delete
11649 the dynamic tag. */
11650 if (!(info->flags & DF_TEXTREL))
11651 {
11652 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11653 swap_out_p = FALSE;
11654 }
11655 break;
11656
11657 case DT_FLAGS:
11658 /* If we didn't need any text relocations after all, clear
11659 DF_TEXTREL from DT_FLAGS. */
11660 if (!(info->flags & DF_TEXTREL))
11661 dyn.d_un.d_val &= ~DF_TEXTREL;
11662 else
11663 swap_out_p = FALSE;
11664 break;
11665
11666 default:
11667 swap_out_p = FALSE;
11668 if (htab->is_vxworks
11669 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11670 swap_out_p = TRUE;
11671 break;
11672 }
11673
11674 if (swap_out_p || dyn_skipped)
11675 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11676 (dynobj, &dyn, b - dyn_skipped);
11677
11678 if (dyn_to_skip)
11679 {
11680 dyn_skipped += dyn_to_skip;
11681 dyn_to_skip = 0;
11682 }
11683 }
11684
11685 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11686 if (dyn_skipped > 0)
11687 memset (b - dyn_skipped, 0, dyn_skipped);
11688 }
11689
11690 if (sgot != NULL && sgot->size > 0
11691 && !bfd_is_abs_section (sgot->output_section))
11692 {
11693 if (htab->is_vxworks)
11694 {
11695 /* The first entry of the global offset table points to the
11696 ".dynamic" section. The second is initialized by the
11697 loader and contains the shared library identifier.
11698 The third is also initialized by the loader and points
11699 to the lazy resolution stub. */
11700 MIPS_ELF_PUT_WORD (output_bfd,
11701 sdyn->output_offset + sdyn->output_section->vma,
11702 sgot->contents);
11703 MIPS_ELF_PUT_WORD (output_bfd, 0,
11704 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11705 MIPS_ELF_PUT_WORD (output_bfd, 0,
11706 sgot->contents
11707 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11708 }
11709 else
11710 {
11711 /* The first entry of the global offset table will be filled at
11712 runtime. The second entry will be used by some runtime loaders.
11713 This isn't the case of IRIX rld. */
11714 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11715 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11716 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11717 }
11718
11719 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11720 = MIPS_ELF_GOT_SIZE (output_bfd);
11721 }
11722
11723 /* Generate dynamic relocations for the non-primary gots. */
11724 if (gg != NULL && gg->next)
11725 {
11726 Elf_Internal_Rela rel[3];
11727 bfd_vma addend = 0;
11728
11729 memset (rel, 0, sizeof (rel));
11730 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11731
11732 for (g = gg->next; g->next != gg; g = g->next)
11733 {
11734 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11735 + g->next->tls_gotno;
11736
11737 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11738 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11739 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11740 sgot->contents
11741 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11742
11743 if (! bfd_link_pic (info))
11744 continue;
11745
11746 for (; got_index < g->local_gotno; got_index++)
11747 {
11748 if (got_index >= g->assigned_low_gotno
11749 && got_index <= g->assigned_high_gotno)
11750 continue;
11751
11752 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11753 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11754 if (!(mips_elf_create_dynamic_relocation
11755 (output_bfd, info, rel, NULL,
11756 bfd_abs_section_ptr,
11757 0, &addend, sgot)))
11758 return FALSE;
11759 BFD_ASSERT (addend == 0);
11760 }
11761 }
11762 }
11763
11764 /* The generation of dynamic relocations for the non-primary gots
11765 adds more dynamic relocations. We cannot count them until
11766 here. */
11767
11768 if (elf_hash_table (info)->dynamic_sections_created)
11769 {
11770 bfd_byte *b;
11771 bfd_boolean swap_out_p;
11772
11773 BFD_ASSERT (sdyn != NULL);
11774
11775 for (b = sdyn->contents;
11776 b < sdyn->contents + sdyn->size;
11777 b += MIPS_ELF_DYN_SIZE (dynobj))
11778 {
11779 Elf_Internal_Dyn dyn;
11780 asection *s;
11781
11782 /* Read in the current dynamic entry. */
11783 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11784
11785 /* Assume that we're going to modify it and write it out. */
11786 swap_out_p = TRUE;
11787
11788 switch (dyn.d_tag)
11789 {
11790 case DT_RELSZ:
11791 /* Reduce DT_RELSZ to account for any relocations we
11792 decided not to make. This is for the n64 irix rld,
11793 which doesn't seem to apply any relocations if there
11794 are trailing null entries. */
11795 s = mips_elf_rel_dyn_section (info, FALSE);
11796 dyn.d_un.d_val = (s->reloc_count
11797 * (ABI_64_P (output_bfd)
11798 ? sizeof (Elf64_Mips_External_Rel)
11799 : sizeof (Elf32_External_Rel)));
11800 /* Adjust the section size too. Tools like the prelinker
11801 can reasonably expect the values to the same. */
11802 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
11803 elf_section_data (s->output_section)->this_hdr.sh_size
11804 = dyn.d_un.d_val;
11805 break;
11806
11807 default:
11808 swap_out_p = FALSE;
11809 break;
11810 }
11811
11812 if (swap_out_p)
11813 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11814 (dynobj, &dyn, b);
11815 }
11816 }
11817
11818 {
11819 asection *s;
11820 Elf32_compact_rel cpt;
11821
11822 if (SGI_COMPAT (output_bfd))
11823 {
11824 /* Write .compact_rel section out. */
11825 s = bfd_get_linker_section (dynobj, ".compact_rel");
11826 if (s != NULL)
11827 {
11828 cpt.id1 = 1;
11829 cpt.num = s->reloc_count;
11830 cpt.id2 = 2;
11831 cpt.offset = (s->output_section->filepos
11832 + sizeof (Elf32_External_compact_rel));
11833 cpt.reserved0 = 0;
11834 cpt.reserved1 = 0;
11835 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11836 ((Elf32_External_compact_rel *)
11837 s->contents));
11838
11839 /* Clean up a dummy stub function entry in .text. */
11840 if (htab->sstubs != NULL)
11841 {
11842 file_ptr dummy_offset;
11843
11844 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11845 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11846 memset (htab->sstubs->contents + dummy_offset, 0,
11847 htab->function_stub_size);
11848 }
11849 }
11850 }
11851
11852 /* The psABI says that the dynamic relocations must be sorted in
11853 increasing order of r_symndx. The VxWorks EABI doesn't require
11854 this, and because the code below handles REL rather than RELA
11855 relocations, using it for VxWorks would be outright harmful. */
11856 if (!htab->is_vxworks)
11857 {
11858 s = mips_elf_rel_dyn_section (info, FALSE);
11859 if (s != NULL
11860 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11861 {
11862 reldyn_sorting_bfd = output_bfd;
11863
11864 if (ABI_64_P (output_bfd))
11865 qsort ((Elf64_External_Rel *) s->contents + 1,
11866 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11867 sort_dynamic_relocs_64);
11868 else
11869 qsort ((Elf32_External_Rel *) s->contents + 1,
11870 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11871 sort_dynamic_relocs);
11872 }
11873 }
11874 }
11875
11876 if (htab->root.splt && htab->root.splt->size > 0)
11877 {
11878 if (htab->is_vxworks)
11879 {
11880 if (bfd_link_pic (info))
11881 mips_vxworks_finish_shared_plt (output_bfd, info);
11882 else
11883 mips_vxworks_finish_exec_plt (output_bfd, info);
11884 }
11885 else
11886 {
11887 BFD_ASSERT (!bfd_link_pic (info));
11888 if (!mips_finish_exec_plt (output_bfd, info))
11889 return FALSE;
11890 }
11891 }
11892 return TRUE;
11893 }
11894
11895
11896 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11897
11898 static void
11899 mips_set_isa_flags (bfd *abfd)
11900 {
11901 flagword val;
11902
11903 switch (bfd_get_mach (abfd))
11904 {
11905 default:
11906 case bfd_mach_mips3000:
11907 val = E_MIPS_ARCH_1;
11908 break;
11909
11910 case bfd_mach_mips3900:
11911 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11912 break;
11913
11914 case bfd_mach_mips6000:
11915 val = E_MIPS_ARCH_2;
11916 break;
11917
11918 case bfd_mach_mips4010:
11919 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11920 break;
11921
11922 case bfd_mach_mips4000:
11923 case bfd_mach_mips4300:
11924 case bfd_mach_mips4400:
11925 case bfd_mach_mips4600:
11926 val = E_MIPS_ARCH_3;
11927 break;
11928
11929 case bfd_mach_mips4100:
11930 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11931 break;
11932
11933 case bfd_mach_mips4111:
11934 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11935 break;
11936
11937 case bfd_mach_mips4120:
11938 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11939 break;
11940
11941 case bfd_mach_mips4650:
11942 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11943 break;
11944
11945 case bfd_mach_mips5400:
11946 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11947 break;
11948
11949 case bfd_mach_mips5500:
11950 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11951 break;
11952
11953 case bfd_mach_mips5900:
11954 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11955 break;
11956
11957 case bfd_mach_mips9000:
11958 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11959 break;
11960
11961 case bfd_mach_mips5000:
11962 case bfd_mach_mips7000:
11963 case bfd_mach_mips8000:
11964 case bfd_mach_mips10000:
11965 case bfd_mach_mips12000:
11966 case bfd_mach_mips14000:
11967 case bfd_mach_mips16000:
11968 val = E_MIPS_ARCH_4;
11969 break;
11970
11971 case bfd_mach_mips5:
11972 val = E_MIPS_ARCH_5;
11973 break;
11974
11975 case bfd_mach_mips_loongson_2e:
11976 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11977 break;
11978
11979 case bfd_mach_mips_loongson_2f:
11980 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11981 break;
11982
11983 case bfd_mach_mips_sb1:
11984 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11985 break;
11986
11987 case bfd_mach_mips_loongson_3a:
11988 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11989 break;
11990
11991 case bfd_mach_mips_octeon:
11992 case bfd_mach_mips_octeonp:
11993 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11994 break;
11995
11996 case bfd_mach_mips_octeon3:
11997 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11998 break;
11999
12000 case bfd_mach_mips_xlr:
12001 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12002 break;
12003
12004 case bfd_mach_mips_octeon2:
12005 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12006 break;
12007
12008 case bfd_mach_mipsisa32:
12009 val = E_MIPS_ARCH_32;
12010 break;
12011
12012 case bfd_mach_mipsisa64:
12013 val = E_MIPS_ARCH_64;
12014 break;
12015
12016 case bfd_mach_mipsisa32r2:
12017 case bfd_mach_mipsisa32r3:
12018 case bfd_mach_mipsisa32r5:
12019 val = E_MIPS_ARCH_32R2;
12020 break;
12021
12022 case bfd_mach_mips_interaptiv_mr2:
12023 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12024 break;
12025
12026 case bfd_mach_mipsisa64r2:
12027 case bfd_mach_mipsisa64r3:
12028 case bfd_mach_mipsisa64r5:
12029 val = E_MIPS_ARCH_64R2;
12030 break;
12031
12032 case bfd_mach_mipsisa32r6:
12033 val = E_MIPS_ARCH_32R6;
12034 break;
12035
12036 case bfd_mach_mipsisa64r6:
12037 val = E_MIPS_ARCH_64R6;
12038 break;
12039 }
12040 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12041 elf_elfheader (abfd)->e_flags |= val;
12042
12043 }
12044
12045
12046 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12047 Don't do so for code sections. We want to keep ordering of HI16/LO16
12048 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12049 relocs to be sorted. */
12050
12051 bfd_boolean
12052 _bfd_mips_elf_sort_relocs_p (asection *sec)
12053 {
12054 return (sec->flags & SEC_CODE) == 0;
12055 }
12056
12057
12058 /* The final processing done just before writing out a MIPS ELF object
12059 file. This gets the MIPS architecture right based on the machine
12060 number. This is used by both the 32-bit and the 64-bit ABI. */
12061
12062 void
12063 _bfd_mips_elf_final_write_processing (bfd *abfd,
12064 bfd_boolean linker ATTRIBUTE_UNUSED)
12065 {
12066 unsigned int i;
12067 Elf_Internal_Shdr **hdrpp;
12068 const char *name;
12069 asection *sec;
12070
12071 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12072 is nonzero. This is for compatibility with old objects, which used
12073 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12074 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12075 mips_set_isa_flags (abfd);
12076
12077 /* Set the sh_info field for .gptab sections and other appropriate
12078 info for each special section. */
12079 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12080 i < elf_numsections (abfd);
12081 i++, hdrpp++)
12082 {
12083 switch ((*hdrpp)->sh_type)
12084 {
12085 case SHT_MIPS_MSYM:
12086 case SHT_MIPS_LIBLIST:
12087 sec = bfd_get_section_by_name (abfd, ".dynstr");
12088 if (sec != NULL)
12089 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12090 break;
12091
12092 case SHT_MIPS_GPTAB:
12093 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12094 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12095 BFD_ASSERT (name != NULL
12096 && CONST_STRNEQ (name, ".gptab."));
12097 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12098 BFD_ASSERT (sec != NULL);
12099 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12100 break;
12101
12102 case SHT_MIPS_CONTENT:
12103 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12104 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12105 BFD_ASSERT (name != NULL
12106 && CONST_STRNEQ (name, ".MIPS.content"));
12107 sec = bfd_get_section_by_name (abfd,
12108 name + sizeof ".MIPS.content" - 1);
12109 BFD_ASSERT (sec != NULL);
12110 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12111 break;
12112
12113 case SHT_MIPS_SYMBOL_LIB:
12114 sec = bfd_get_section_by_name (abfd, ".dynsym");
12115 if (sec != NULL)
12116 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12117 sec = bfd_get_section_by_name (abfd, ".liblist");
12118 if (sec != NULL)
12119 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12120 break;
12121
12122 case SHT_MIPS_EVENTS:
12123 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12124 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12125 BFD_ASSERT (name != NULL);
12126 if (CONST_STRNEQ (name, ".MIPS.events"))
12127 sec = bfd_get_section_by_name (abfd,
12128 name + sizeof ".MIPS.events" - 1);
12129 else
12130 {
12131 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12132 sec = bfd_get_section_by_name (abfd,
12133 (name
12134 + sizeof ".MIPS.post_rel" - 1));
12135 }
12136 BFD_ASSERT (sec != NULL);
12137 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12138 break;
12139
12140 }
12141 }
12142 }
12143 \f
12144 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12145 segments. */
12146
12147 int
12148 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12149 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12150 {
12151 asection *s;
12152 int ret = 0;
12153
12154 /* See if we need a PT_MIPS_REGINFO segment. */
12155 s = bfd_get_section_by_name (abfd, ".reginfo");
12156 if (s && (s->flags & SEC_LOAD))
12157 ++ret;
12158
12159 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12160 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12161 ++ret;
12162
12163 /* See if we need a PT_MIPS_OPTIONS segment. */
12164 if (IRIX_COMPAT (abfd) == ict_irix6
12165 && bfd_get_section_by_name (abfd,
12166 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12167 ++ret;
12168
12169 /* See if we need a PT_MIPS_RTPROC segment. */
12170 if (IRIX_COMPAT (abfd) == ict_irix5
12171 && bfd_get_section_by_name (abfd, ".dynamic")
12172 && bfd_get_section_by_name (abfd, ".mdebug"))
12173 ++ret;
12174
12175 /* Allocate a PT_NULL header in dynamic objects. See
12176 _bfd_mips_elf_modify_segment_map for details. */
12177 if (!SGI_COMPAT (abfd)
12178 && bfd_get_section_by_name (abfd, ".dynamic"))
12179 ++ret;
12180
12181 return ret;
12182 }
12183
12184 /* Modify the segment map for an IRIX5 executable. */
12185
12186 bfd_boolean
12187 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12188 struct bfd_link_info *info)
12189 {
12190 asection *s;
12191 struct elf_segment_map *m, **pm;
12192 bfd_size_type amt;
12193
12194 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12195 segment. */
12196 s = bfd_get_section_by_name (abfd, ".reginfo");
12197 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12198 {
12199 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12200 if (m->p_type == PT_MIPS_REGINFO)
12201 break;
12202 if (m == NULL)
12203 {
12204 amt = sizeof *m;
12205 m = bfd_zalloc (abfd, amt);
12206 if (m == NULL)
12207 return FALSE;
12208
12209 m->p_type = PT_MIPS_REGINFO;
12210 m->count = 1;
12211 m->sections[0] = s;
12212
12213 /* We want to put it after the PHDR and INTERP segments. */
12214 pm = &elf_seg_map (abfd);
12215 while (*pm != NULL
12216 && ((*pm)->p_type == PT_PHDR
12217 || (*pm)->p_type == PT_INTERP))
12218 pm = &(*pm)->next;
12219
12220 m->next = *pm;
12221 *pm = m;
12222 }
12223 }
12224
12225 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12226 segment. */
12227 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12228 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12229 {
12230 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12231 if (m->p_type == PT_MIPS_ABIFLAGS)
12232 break;
12233 if (m == NULL)
12234 {
12235 amt = sizeof *m;
12236 m = bfd_zalloc (abfd, amt);
12237 if (m == NULL)
12238 return FALSE;
12239
12240 m->p_type = PT_MIPS_ABIFLAGS;
12241 m->count = 1;
12242 m->sections[0] = s;
12243
12244 /* We want to put it after the PHDR and INTERP segments. */
12245 pm = &elf_seg_map (abfd);
12246 while (*pm != NULL
12247 && ((*pm)->p_type == PT_PHDR
12248 || (*pm)->p_type == PT_INTERP))
12249 pm = &(*pm)->next;
12250
12251 m->next = *pm;
12252 *pm = m;
12253 }
12254 }
12255
12256 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12257 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12258 PT_MIPS_OPTIONS segment immediately following the program header
12259 table. */
12260 if (NEWABI_P (abfd)
12261 /* On non-IRIX6 new abi, we'll have already created a segment
12262 for this section, so don't create another. I'm not sure this
12263 is not also the case for IRIX 6, but I can't test it right
12264 now. */
12265 && IRIX_COMPAT (abfd) == ict_irix6)
12266 {
12267 for (s = abfd->sections; s; s = s->next)
12268 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12269 break;
12270
12271 if (s)
12272 {
12273 struct elf_segment_map *options_segment;
12274
12275 pm = &elf_seg_map (abfd);
12276 while (*pm != NULL
12277 && ((*pm)->p_type == PT_PHDR
12278 || (*pm)->p_type == PT_INTERP))
12279 pm = &(*pm)->next;
12280
12281 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12282 {
12283 amt = sizeof (struct elf_segment_map);
12284 options_segment = bfd_zalloc (abfd, amt);
12285 options_segment->next = *pm;
12286 options_segment->p_type = PT_MIPS_OPTIONS;
12287 options_segment->p_flags = PF_R;
12288 options_segment->p_flags_valid = TRUE;
12289 options_segment->count = 1;
12290 options_segment->sections[0] = s;
12291 *pm = options_segment;
12292 }
12293 }
12294 }
12295 else
12296 {
12297 if (IRIX_COMPAT (abfd) == ict_irix5)
12298 {
12299 /* If there are .dynamic and .mdebug sections, we make a room
12300 for the RTPROC header. FIXME: Rewrite without section names. */
12301 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12302 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12303 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12304 {
12305 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12306 if (m->p_type == PT_MIPS_RTPROC)
12307 break;
12308 if (m == NULL)
12309 {
12310 amt = sizeof *m;
12311 m = bfd_zalloc (abfd, amt);
12312 if (m == NULL)
12313 return FALSE;
12314
12315 m->p_type = PT_MIPS_RTPROC;
12316
12317 s = bfd_get_section_by_name (abfd, ".rtproc");
12318 if (s == NULL)
12319 {
12320 m->count = 0;
12321 m->p_flags = 0;
12322 m->p_flags_valid = 1;
12323 }
12324 else
12325 {
12326 m->count = 1;
12327 m->sections[0] = s;
12328 }
12329
12330 /* We want to put it after the DYNAMIC segment. */
12331 pm = &elf_seg_map (abfd);
12332 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12333 pm = &(*pm)->next;
12334 if (*pm != NULL)
12335 pm = &(*pm)->next;
12336
12337 m->next = *pm;
12338 *pm = m;
12339 }
12340 }
12341 }
12342 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12343 .dynstr, .dynsym, and .hash sections, and everything in
12344 between. */
12345 for (pm = &elf_seg_map (abfd); *pm != NULL;
12346 pm = &(*pm)->next)
12347 if ((*pm)->p_type == PT_DYNAMIC)
12348 break;
12349 m = *pm;
12350 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12351 glibc's dynamic linker has traditionally derived the number of
12352 tags from the p_filesz field, and sometimes allocates stack
12353 arrays of that size. An overly-big PT_DYNAMIC segment can
12354 be actively harmful in such cases. Making PT_DYNAMIC contain
12355 other sections can also make life hard for the prelinker,
12356 which might move one of the other sections to a different
12357 PT_LOAD segment. */
12358 if (SGI_COMPAT (abfd)
12359 && m != NULL
12360 && m->count == 1
12361 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12362 {
12363 static const char *sec_names[] =
12364 {
12365 ".dynamic", ".dynstr", ".dynsym", ".hash"
12366 };
12367 bfd_vma low, high;
12368 unsigned int i, c;
12369 struct elf_segment_map *n;
12370
12371 low = ~(bfd_vma) 0;
12372 high = 0;
12373 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12374 {
12375 s = bfd_get_section_by_name (abfd, sec_names[i]);
12376 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12377 {
12378 bfd_size_type sz;
12379
12380 if (low > s->vma)
12381 low = s->vma;
12382 sz = s->size;
12383 if (high < s->vma + sz)
12384 high = s->vma + sz;
12385 }
12386 }
12387
12388 c = 0;
12389 for (s = abfd->sections; s != NULL; s = s->next)
12390 if ((s->flags & SEC_LOAD) != 0
12391 && s->vma >= low
12392 && s->vma + s->size <= high)
12393 ++c;
12394
12395 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12396 n = bfd_zalloc (abfd, amt);
12397 if (n == NULL)
12398 return FALSE;
12399 *n = *m;
12400 n->count = c;
12401
12402 i = 0;
12403 for (s = abfd->sections; s != NULL; s = s->next)
12404 {
12405 if ((s->flags & SEC_LOAD) != 0
12406 && s->vma >= low
12407 && s->vma + s->size <= high)
12408 {
12409 n->sections[i] = s;
12410 ++i;
12411 }
12412 }
12413
12414 *pm = n;
12415 }
12416 }
12417
12418 /* Allocate a spare program header in dynamic objects so that tools
12419 like the prelinker can add an extra PT_LOAD entry.
12420
12421 If the prelinker needs to make room for a new PT_LOAD entry, its
12422 standard procedure is to move the first (read-only) sections into
12423 the new (writable) segment. However, the MIPS ABI requires
12424 .dynamic to be in a read-only segment, and the section will often
12425 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12426
12427 Although the prelinker could in principle move .dynamic to a
12428 writable segment, it seems better to allocate a spare program
12429 header instead, and avoid the need to move any sections.
12430 There is a long tradition of allocating spare dynamic tags,
12431 so allocating a spare program header seems like a natural
12432 extension.
12433
12434 If INFO is NULL, we may be copying an already prelinked binary
12435 with objcopy or strip, so do not add this header. */
12436 if (info != NULL
12437 && !SGI_COMPAT (abfd)
12438 && bfd_get_section_by_name (abfd, ".dynamic"))
12439 {
12440 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12441 if ((*pm)->p_type == PT_NULL)
12442 break;
12443 if (*pm == NULL)
12444 {
12445 m = bfd_zalloc (abfd, sizeof (*m));
12446 if (m == NULL)
12447 return FALSE;
12448
12449 m->p_type = PT_NULL;
12450 *pm = m;
12451 }
12452 }
12453
12454 return TRUE;
12455 }
12456 \f
12457 /* Return the section that should be marked against GC for a given
12458 relocation. */
12459
12460 asection *
12461 _bfd_mips_elf_gc_mark_hook (asection *sec,
12462 struct bfd_link_info *info,
12463 Elf_Internal_Rela *rel,
12464 struct elf_link_hash_entry *h,
12465 Elf_Internal_Sym *sym)
12466 {
12467 /* ??? Do mips16 stub sections need to be handled special? */
12468
12469 if (h != NULL)
12470 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12471 {
12472 case R_MIPS_GNU_VTINHERIT:
12473 case R_MIPS_GNU_VTENTRY:
12474 return NULL;
12475 }
12476
12477 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12478 }
12479
12480 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12481
12482 bfd_boolean
12483 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12484 elf_gc_mark_hook_fn gc_mark_hook)
12485 {
12486 bfd *sub;
12487
12488 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12489
12490 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12491 {
12492 asection *o;
12493
12494 if (! is_mips_elf (sub))
12495 continue;
12496
12497 for (o = sub->sections; o != NULL; o = o->next)
12498 if (!o->gc_mark
12499 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12500 (bfd_get_section_name (sub, o)))
12501 {
12502 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12503 return FALSE;
12504 }
12505 }
12506
12507 return TRUE;
12508 }
12509 \f
12510 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12511 hiding the old indirect symbol. Process additional relocation
12512 information. Also called for weakdefs, in which case we just let
12513 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12514
12515 void
12516 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12517 struct elf_link_hash_entry *dir,
12518 struct elf_link_hash_entry *ind)
12519 {
12520 struct mips_elf_link_hash_entry *dirmips, *indmips;
12521
12522 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12523
12524 dirmips = (struct mips_elf_link_hash_entry *) dir;
12525 indmips = (struct mips_elf_link_hash_entry *) ind;
12526 /* Any absolute non-dynamic relocations against an indirect or weak
12527 definition will be against the target symbol. */
12528 if (indmips->has_static_relocs)
12529 dirmips->has_static_relocs = TRUE;
12530
12531 if (ind->root.type != bfd_link_hash_indirect)
12532 return;
12533
12534 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12535 if (indmips->readonly_reloc)
12536 dirmips->readonly_reloc = TRUE;
12537 if (indmips->no_fn_stub)
12538 dirmips->no_fn_stub = TRUE;
12539 if (indmips->fn_stub)
12540 {
12541 dirmips->fn_stub = indmips->fn_stub;
12542 indmips->fn_stub = NULL;
12543 }
12544 if (indmips->need_fn_stub)
12545 {
12546 dirmips->need_fn_stub = TRUE;
12547 indmips->need_fn_stub = FALSE;
12548 }
12549 if (indmips->call_stub)
12550 {
12551 dirmips->call_stub = indmips->call_stub;
12552 indmips->call_stub = NULL;
12553 }
12554 if (indmips->call_fp_stub)
12555 {
12556 dirmips->call_fp_stub = indmips->call_fp_stub;
12557 indmips->call_fp_stub = NULL;
12558 }
12559 if (indmips->global_got_area < dirmips->global_got_area)
12560 dirmips->global_got_area = indmips->global_got_area;
12561 if (indmips->global_got_area < GGA_NONE)
12562 indmips->global_got_area = GGA_NONE;
12563 if (indmips->has_nonpic_branches)
12564 dirmips->has_nonpic_branches = TRUE;
12565 }
12566 \f
12567 #define PDR_SIZE 32
12568
12569 bfd_boolean
12570 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12571 struct bfd_link_info *info)
12572 {
12573 asection *o;
12574 bfd_boolean ret = FALSE;
12575 unsigned char *tdata;
12576 size_t i, skip;
12577
12578 o = bfd_get_section_by_name (abfd, ".pdr");
12579 if (! o)
12580 return FALSE;
12581 if (o->size == 0)
12582 return FALSE;
12583 if (o->size % PDR_SIZE != 0)
12584 return FALSE;
12585 if (o->output_section != NULL
12586 && bfd_is_abs_section (o->output_section))
12587 return FALSE;
12588
12589 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12590 if (! tdata)
12591 return FALSE;
12592
12593 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12594 info->keep_memory);
12595 if (!cookie->rels)
12596 {
12597 free (tdata);
12598 return FALSE;
12599 }
12600
12601 cookie->rel = cookie->rels;
12602 cookie->relend = cookie->rels + o->reloc_count;
12603
12604 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12605 {
12606 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12607 {
12608 tdata[i] = 1;
12609 skip ++;
12610 }
12611 }
12612
12613 if (skip != 0)
12614 {
12615 mips_elf_section_data (o)->u.tdata = tdata;
12616 if (o->rawsize == 0)
12617 o->rawsize = o->size;
12618 o->size -= skip * PDR_SIZE;
12619 ret = TRUE;
12620 }
12621 else
12622 free (tdata);
12623
12624 if (! info->keep_memory)
12625 free (cookie->rels);
12626
12627 return ret;
12628 }
12629
12630 bfd_boolean
12631 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12632 {
12633 if (strcmp (sec->name, ".pdr") == 0)
12634 return TRUE;
12635 return FALSE;
12636 }
12637
12638 bfd_boolean
12639 _bfd_mips_elf_write_section (bfd *output_bfd,
12640 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12641 asection *sec, bfd_byte *contents)
12642 {
12643 bfd_byte *to, *from, *end;
12644 int i;
12645
12646 if (strcmp (sec->name, ".pdr") != 0)
12647 return FALSE;
12648
12649 if (mips_elf_section_data (sec)->u.tdata == NULL)
12650 return FALSE;
12651
12652 to = contents;
12653 end = contents + sec->size;
12654 for (from = contents, i = 0;
12655 from < end;
12656 from += PDR_SIZE, i++)
12657 {
12658 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12659 continue;
12660 if (to != from)
12661 memcpy (to, from, PDR_SIZE);
12662 to += PDR_SIZE;
12663 }
12664 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12665 sec->output_offset, sec->size);
12666 return TRUE;
12667 }
12668 \f
12669 /* microMIPS code retains local labels for linker relaxation. Omit them
12670 from output by default for clarity. */
12671
12672 bfd_boolean
12673 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12674 {
12675 return _bfd_elf_is_local_label_name (abfd, sym->name);
12676 }
12677
12678 /* MIPS ELF uses a special find_nearest_line routine in order the
12679 handle the ECOFF debugging information. */
12680
12681 struct mips_elf_find_line
12682 {
12683 struct ecoff_debug_info d;
12684 struct ecoff_find_line i;
12685 };
12686
12687 bfd_boolean
12688 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12689 asection *section, bfd_vma offset,
12690 const char **filename_ptr,
12691 const char **functionname_ptr,
12692 unsigned int *line_ptr,
12693 unsigned int *discriminator_ptr)
12694 {
12695 asection *msec;
12696
12697 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12698 filename_ptr, functionname_ptr,
12699 line_ptr, discriminator_ptr,
12700 dwarf_debug_sections,
12701 ABI_64_P (abfd) ? 8 : 0,
12702 &elf_tdata (abfd)->dwarf2_find_line_info)
12703 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12704 filename_ptr, functionname_ptr,
12705 line_ptr))
12706 {
12707 /* PR 22789: If the function name or filename was not found through
12708 the debug information, then try an ordinary lookup instead. */
12709 if ((functionname_ptr != NULL && *functionname_ptr == NULL)
12710 || (filename_ptr != NULL && *filename_ptr == NULL))
12711 {
12712 /* Do not override already discovered names. */
12713 if (functionname_ptr != NULL && *functionname_ptr != NULL)
12714 functionname_ptr = NULL;
12715
12716 if (filename_ptr != NULL && *filename_ptr != NULL)
12717 filename_ptr = NULL;
12718
12719 _bfd_elf_find_function (abfd, symbols, section, offset,
12720 filename_ptr, functionname_ptr);
12721 }
12722
12723 return TRUE;
12724 }
12725
12726 msec = bfd_get_section_by_name (abfd, ".mdebug");
12727 if (msec != NULL)
12728 {
12729 flagword origflags;
12730 struct mips_elf_find_line *fi;
12731 const struct ecoff_debug_swap * const swap =
12732 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12733
12734 /* If we are called during a link, mips_elf_final_link may have
12735 cleared the SEC_HAS_CONTENTS field. We force it back on here
12736 if appropriate (which it normally will be). */
12737 origflags = msec->flags;
12738 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12739 msec->flags |= SEC_HAS_CONTENTS;
12740
12741 fi = mips_elf_tdata (abfd)->find_line_info;
12742 if (fi == NULL)
12743 {
12744 bfd_size_type external_fdr_size;
12745 char *fraw_src;
12746 char *fraw_end;
12747 struct fdr *fdr_ptr;
12748 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12749
12750 fi = bfd_zalloc (abfd, amt);
12751 if (fi == NULL)
12752 {
12753 msec->flags = origflags;
12754 return FALSE;
12755 }
12756
12757 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12758 {
12759 msec->flags = origflags;
12760 return FALSE;
12761 }
12762
12763 /* Swap in the FDR information. */
12764 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12765 fi->d.fdr = bfd_alloc (abfd, amt);
12766 if (fi->d.fdr == NULL)
12767 {
12768 msec->flags = origflags;
12769 return FALSE;
12770 }
12771 external_fdr_size = swap->external_fdr_size;
12772 fdr_ptr = fi->d.fdr;
12773 fraw_src = (char *) fi->d.external_fdr;
12774 fraw_end = (fraw_src
12775 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12776 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12777 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12778
12779 mips_elf_tdata (abfd)->find_line_info = fi;
12780
12781 /* Note that we don't bother to ever free this information.
12782 find_nearest_line is either called all the time, as in
12783 objdump -l, so the information should be saved, or it is
12784 rarely called, as in ld error messages, so the memory
12785 wasted is unimportant. Still, it would probably be a
12786 good idea for free_cached_info to throw it away. */
12787 }
12788
12789 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12790 &fi->i, filename_ptr, functionname_ptr,
12791 line_ptr))
12792 {
12793 msec->flags = origflags;
12794 return TRUE;
12795 }
12796
12797 msec->flags = origflags;
12798 }
12799
12800 /* Fall back on the generic ELF find_nearest_line routine. */
12801
12802 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12803 filename_ptr, functionname_ptr,
12804 line_ptr, discriminator_ptr);
12805 }
12806
12807 bfd_boolean
12808 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12809 const char **filename_ptr,
12810 const char **functionname_ptr,
12811 unsigned int *line_ptr)
12812 {
12813 bfd_boolean found;
12814 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12815 functionname_ptr, line_ptr,
12816 & elf_tdata (abfd)->dwarf2_find_line_info);
12817 return found;
12818 }
12819
12820 \f
12821 /* When are writing out the .options or .MIPS.options section,
12822 remember the bytes we are writing out, so that we can install the
12823 GP value in the section_processing routine. */
12824
12825 bfd_boolean
12826 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12827 const void *location,
12828 file_ptr offset, bfd_size_type count)
12829 {
12830 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12831 {
12832 bfd_byte *c;
12833
12834 if (elf_section_data (section) == NULL)
12835 {
12836 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12837 section->used_by_bfd = bfd_zalloc (abfd, amt);
12838 if (elf_section_data (section) == NULL)
12839 return FALSE;
12840 }
12841 c = mips_elf_section_data (section)->u.tdata;
12842 if (c == NULL)
12843 {
12844 c = bfd_zalloc (abfd, section->size);
12845 if (c == NULL)
12846 return FALSE;
12847 mips_elf_section_data (section)->u.tdata = c;
12848 }
12849
12850 memcpy (c + offset, location, count);
12851 }
12852
12853 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12854 count);
12855 }
12856
12857 /* This is almost identical to bfd_generic_get_... except that some
12858 MIPS relocations need to be handled specially. Sigh. */
12859
12860 bfd_byte *
12861 _bfd_elf_mips_get_relocated_section_contents
12862 (bfd *abfd,
12863 struct bfd_link_info *link_info,
12864 struct bfd_link_order *link_order,
12865 bfd_byte *data,
12866 bfd_boolean relocatable,
12867 asymbol **symbols)
12868 {
12869 /* Get enough memory to hold the stuff */
12870 bfd *input_bfd = link_order->u.indirect.section->owner;
12871 asection *input_section = link_order->u.indirect.section;
12872 bfd_size_type sz;
12873
12874 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12875 arelent **reloc_vector = NULL;
12876 long reloc_count;
12877
12878 if (reloc_size < 0)
12879 goto error_return;
12880
12881 reloc_vector = bfd_malloc (reloc_size);
12882 if (reloc_vector == NULL && reloc_size != 0)
12883 goto error_return;
12884
12885 /* read in the section */
12886 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12887 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12888 goto error_return;
12889
12890 reloc_count = bfd_canonicalize_reloc (input_bfd,
12891 input_section,
12892 reloc_vector,
12893 symbols);
12894 if (reloc_count < 0)
12895 goto error_return;
12896
12897 if (reloc_count > 0)
12898 {
12899 arelent **parent;
12900 /* for mips */
12901 int gp_found;
12902 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12903
12904 {
12905 struct bfd_hash_entry *h;
12906 struct bfd_link_hash_entry *lh;
12907 /* Skip all this stuff if we aren't mixing formats. */
12908 if (abfd && input_bfd
12909 && abfd->xvec == input_bfd->xvec)
12910 lh = 0;
12911 else
12912 {
12913 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12914 lh = (struct bfd_link_hash_entry *) h;
12915 }
12916 lookup:
12917 if (lh)
12918 {
12919 switch (lh->type)
12920 {
12921 case bfd_link_hash_undefined:
12922 case bfd_link_hash_undefweak:
12923 case bfd_link_hash_common:
12924 gp_found = 0;
12925 break;
12926 case bfd_link_hash_defined:
12927 case bfd_link_hash_defweak:
12928 gp_found = 1;
12929 gp = lh->u.def.value;
12930 break;
12931 case bfd_link_hash_indirect:
12932 case bfd_link_hash_warning:
12933 lh = lh->u.i.link;
12934 /* @@FIXME ignoring warning for now */
12935 goto lookup;
12936 case bfd_link_hash_new:
12937 default:
12938 abort ();
12939 }
12940 }
12941 else
12942 gp_found = 0;
12943 }
12944 /* end mips */
12945 for (parent = reloc_vector; *parent != NULL; parent++)
12946 {
12947 char *error_message = NULL;
12948 bfd_reloc_status_type r;
12949
12950 /* Specific to MIPS: Deal with relocation types that require
12951 knowing the gp of the output bfd. */
12952 asymbol *sym = *(*parent)->sym_ptr_ptr;
12953
12954 /* If we've managed to find the gp and have a special
12955 function for the relocation then go ahead, else default
12956 to the generic handling. */
12957 if (gp_found
12958 && (*parent)->howto->special_function
12959 == _bfd_mips_elf32_gprel16_reloc)
12960 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12961 input_section, relocatable,
12962 data, gp);
12963 else
12964 r = bfd_perform_relocation (input_bfd, *parent, data,
12965 input_section,
12966 relocatable ? abfd : NULL,
12967 &error_message);
12968
12969 if (relocatable)
12970 {
12971 asection *os = input_section->output_section;
12972
12973 /* A partial link, so keep the relocs */
12974 os->orelocation[os->reloc_count] = *parent;
12975 os->reloc_count++;
12976 }
12977
12978 if (r != bfd_reloc_ok)
12979 {
12980 switch (r)
12981 {
12982 case bfd_reloc_undefined:
12983 (*link_info->callbacks->undefined_symbol)
12984 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12985 input_bfd, input_section, (*parent)->address, TRUE);
12986 break;
12987 case bfd_reloc_dangerous:
12988 BFD_ASSERT (error_message != NULL);
12989 (*link_info->callbacks->reloc_dangerous)
12990 (link_info, error_message,
12991 input_bfd, input_section, (*parent)->address);
12992 break;
12993 case bfd_reloc_overflow:
12994 (*link_info->callbacks->reloc_overflow)
12995 (link_info, NULL,
12996 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12997 (*parent)->howto->name, (*parent)->addend,
12998 input_bfd, input_section, (*parent)->address);
12999 break;
13000 case bfd_reloc_outofrange:
13001 default:
13002 abort ();
13003 break;
13004 }
13005
13006 }
13007 }
13008 }
13009 if (reloc_vector != NULL)
13010 free (reloc_vector);
13011 return data;
13012
13013 error_return:
13014 if (reloc_vector != NULL)
13015 free (reloc_vector);
13016 return NULL;
13017 }
13018 \f
13019 static bfd_boolean
13020 mips_elf_relax_delete_bytes (bfd *abfd,
13021 asection *sec, bfd_vma addr, int count)
13022 {
13023 Elf_Internal_Shdr *symtab_hdr;
13024 unsigned int sec_shndx;
13025 bfd_byte *contents;
13026 Elf_Internal_Rela *irel, *irelend;
13027 Elf_Internal_Sym *isym;
13028 Elf_Internal_Sym *isymend;
13029 struct elf_link_hash_entry **sym_hashes;
13030 struct elf_link_hash_entry **end_hashes;
13031 struct elf_link_hash_entry **start_hashes;
13032 unsigned int symcount;
13033
13034 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13035 contents = elf_section_data (sec)->this_hdr.contents;
13036
13037 irel = elf_section_data (sec)->relocs;
13038 irelend = irel + sec->reloc_count;
13039
13040 /* Actually delete the bytes. */
13041 memmove (contents + addr, contents + addr + count,
13042 (size_t) (sec->size - addr - count));
13043 sec->size -= count;
13044
13045 /* Adjust all the relocs. */
13046 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13047 {
13048 /* Get the new reloc address. */
13049 if (irel->r_offset > addr)
13050 irel->r_offset -= count;
13051 }
13052
13053 BFD_ASSERT (addr % 2 == 0);
13054 BFD_ASSERT (count % 2 == 0);
13055
13056 /* Adjust the local symbols defined in this section. */
13057 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13058 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13059 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13060 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13061 isym->st_value -= count;
13062
13063 /* Now adjust the global symbols defined in this section. */
13064 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13065 - symtab_hdr->sh_info);
13066 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13067 end_hashes = sym_hashes + symcount;
13068
13069 for (; sym_hashes < end_hashes; sym_hashes++)
13070 {
13071 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13072
13073 if ((sym_hash->root.type == bfd_link_hash_defined
13074 || sym_hash->root.type == bfd_link_hash_defweak)
13075 && sym_hash->root.u.def.section == sec)
13076 {
13077 bfd_vma value = sym_hash->root.u.def.value;
13078
13079 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13080 value &= MINUS_TWO;
13081 if (value > addr)
13082 sym_hash->root.u.def.value -= count;
13083 }
13084 }
13085
13086 return TRUE;
13087 }
13088
13089
13090 /* Opcodes needed for microMIPS relaxation as found in
13091 opcodes/micromips-opc.c. */
13092
13093 struct opcode_descriptor {
13094 unsigned long match;
13095 unsigned long mask;
13096 };
13097
13098 /* The $ra register aka $31. */
13099
13100 #define RA 31
13101
13102 /* 32-bit instruction format register fields. */
13103
13104 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13105 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13106
13107 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13108
13109 #define OP16_VALID_REG(r) \
13110 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13111
13112
13113 /* 32-bit and 16-bit branches. */
13114
13115 static const struct opcode_descriptor b_insns_32[] = {
13116 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13117 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13118 { 0, 0 } /* End marker for find_match(). */
13119 };
13120
13121 static const struct opcode_descriptor bc_insn_32 =
13122 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13123
13124 static const struct opcode_descriptor bz_insn_32 =
13125 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13126
13127 static const struct opcode_descriptor bzal_insn_32 =
13128 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13129
13130 static const struct opcode_descriptor beq_insn_32 =
13131 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13132
13133 static const struct opcode_descriptor b_insn_16 =
13134 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13135
13136 static const struct opcode_descriptor bz_insn_16 =
13137 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13138
13139
13140 /* 32-bit and 16-bit branch EQ and NE zero. */
13141
13142 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13143 eq and second the ne. This convention is used when replacing a
13144 32-bit BEQ/BNE with the 16-bit version. */
13145
13146 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13147
13148 static const struct opcode_descriptor bz_rs_insns_32[] = {
13149 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13150 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13151 { 0, 0 } /* End marker for find_match(). */
13152 };
13153
13154 static const struct opcode_descriptor bz_rt_insns_32[] = {
13155 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13156 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13157 { 0, 0 } /* End marker for find_match(). */
13158 };
13159
13160 static const struct opcode_descriptor bzc_insns_32[] = {
13161 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13162 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13163 { 0, 0 } /* End marker for find_match(). */
13164 };
13165
13166 static const struct opcode_descriptor bz_insns_16[] = {
13167 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13168 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13169 { 0, 0 } /* End marker for find_match(). */
13170 };
13171
13172 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13173
13174 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13175 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13176
13177
13178 /* 32-bit instructions with a delay slot. */
13179
13180 static const struct opcode_descriptor jal_insn_32_bd16 =
13181 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13182
13183 static const struct opcode_descriptor jal_insn_32_bd32 =
13184 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13185
13186 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13187 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13188
13189 static const struct opcode_descriptor j_insn_32 =
13190 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13191
13192 static const struct opcode_descriptor jalr_insn_32 =
13193 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13194
13195 /* This table can be compacted, because no opcode replacement is made. */
13196
13197 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13198 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13199
13200 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13201 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13202
13203 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13204 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13205 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13206 { 0, 0 } /* End marker for find_match(). */
13207 };
13208
13209 /* This table can be compacted, because no opcode replacement is made. */
13210
13211 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13212 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13213
13214 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13215 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13216 { 0, 0 } /* End marker for find_match(). */
13217 };
13218
13219
13220 /* 16-bit instructions with a delay slot. */
13221
13222 static const struct opcode_descriptor jalr_insn_16_bd16 =
13223 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13224
13225 static const struct opcode_descriptor jalr_insn_16_bd32 =
13226 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13227
13228 static const struct opcode_descriptor jr_insn_16 =
13229 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13230
13231 #define JR16_REG(opcode) ((opcode) & 0x1f)
13232
13233 /* This table can be compacted, because no opcode replacement is made. */
13234
13235 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13236 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13237
13238 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13239 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13240 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13241 { 0, 0 } /* End marker for find_match(). */
13242 };
13243
13244
13245 /* LUI instruction. */
13246
13247 static const struct opcode_descriptor lui_insn =
13248 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13249
13250
13251 /* ADDIU instruction. */
13252
13253 static const struct opcode_descriptor addiu_insn =
13254 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13255
13256 static const struct opcode_descriptor addiupc_insn =
13257 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13258
13259 #define ADDIUPC_REG_FIELD(r) \
13260 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13261
13262
13263 /* Relaxable instructions in a JAL delay slot: MOVE. */
13264
13265 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13266 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13267 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13268 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13269
13270 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13271 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13272
13273 static const struct opcode_descriptor move_insns_32[] = {
13274 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13275 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13276 { 0, 0 } /* End marker for find_match(). */
13277 };
13278
13279 static const struct opcode_descriptor move_insn_16 =
13280 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13281
13282
13283 /* NOP instructions. */
13284
13285 static const struct opcode_descriptor nop_insn_32 =
13286 { /* "nop", "", */ 0x00000000, 0xffffffff };
13287
13288 static const struct opcode_descriptor nop_insn_16 =
13289 { /* "nop", "", */ 0x0c00, 0xffff };
13290
13291
13292 /* Instruction match support. */
13293
13294 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13295
13296 static int
13297 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13298 {
13299 unsigned long indx;
13300
13301 for (indx = 0; insn[indx].mask != 0; indx++)
13302 if (MATCH (opcode, insn[indx]))
13303 return indx;
13304
13305 return -1;
13306 }
13307
13308
13309 /* Branch and delay slot decoding support. */
13310
13311 /* If PTR points to what *might* be a 16-bit branch or jump, then
13312 return the minimum length of its delay slot, otherwise return 0.
13313 Non-zero results are not definitive as we might be checking against
13314 the second half of another instruction. */
13315
13316 static int
13317 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13318 {
13319 unsigned long opcode;
13320 int bdsize;
13321
13322 opcode = bfd_get_16 (abfd, ptr);
13323 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13324 /* 16-bit branch/jump with a 32-bit delay slot. */
13325 bdsize = 4;
13326 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13327 || find_match (opcode, ds_insns_16_bd16) >= 0)
13328 /* 16-bit branch/jump with a 16-bit delay slot. */
13329 bdsize = 2;
13330 else
13331 /* No delay slot. */
13332 bdsize = 0;
13333
13334 return bdsize;
13335 }
13336
13337 /* If PTR points to what *might* be a 32-bit branch or jump, then
13338 return the minimum length of its delay slot, otherwise return 0.
13339 Non-zero results are not definitive as we might be checking against
13340 the second half of another instruction. */
13341
13342 static int
13343 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13344 {
13345 unsigned long opcode;
13346 int bdsize;
13347
13348 opcode = bfd_get_micromips_32 (abfd, ptr);
13349 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13350 /* 32-bit branch/jump with a 32-bit delay slot. */
13351 bdsize = 4;
13352 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13353 /* 32-bit branch/jump with a 16-bit delay slot. */
13354 bdsize = 2;
13355 else
13356 /* No delay slot. */
13357 bdsize = 0;
13358
13359 return bdsize;
13360 }
13361
13362 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13363 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13364
13365 static bfd_boolean
13366 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13367 {
13368 unsigned long opcode;
13369
13370 opcode = bfd_get_16 (abfd, ptr);
13371 if (MATCH (opcode, b_insn_16)
13372 /* B16 */
13373 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13374 /* JR16 */
13375 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13376 /* BEQZ16, BNEZ16 */
13377 || (MATCH (opcode, jalr_insn_16_bd32)
13378 /* JALR16 */
13379 && reg != JR16_REG (opcode) && reg != RA))
13380 return TRUE;
13381
13382 return FALSE;
13383 }
13384
13385 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13386 then return TRUE, otherwise FALSE. */
13387
13388 static bfd_boolean
13389 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13390 {
13391 unsigned long opcode;
13392
13393 opcode = bfd_get_micromips_32 (abfd, ptr);
13394 if (MATCH (opcode, j_insn_32)
13395 /* J */
13396 || MATCH (opcode, bc_insn_32)
13397 /* BC1F, BC1T, BC2F, BC2T */
13398 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13399 /* JAL, JALX */
13400 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13401 /* BGEZ, BGTZ, BLEZ, BLTZ */
13402 || (MATCH (opcode, bzal_insn_32)
13403 /* BGEZAL, BLTZAL */
13404 && reg != OP32_SREG (opcode) && reg != RA)
13405 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13406 /* JALR, JALR.HB, BEQ, BNE */
13407 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13408 return TRUE;
13409
13410 return FALSE;
13411 }
13412
13413 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13414 IRELEND) at OFFSET indicate that there must be a compact branch there,
13415 then return TRUE, otherwise FALSE. */
13416
13417 static bfd_boolean
13418 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13419 const Elf_Internal_Rela *internal_relocs,
13420 const Elf_Internal_Rela *irelend)
13421 {
13422 const Elf_Internal_Rela *irel;
13423 unsigned long opcode;
13424
13425 opcode = bfd_get_micromips_32 (abfd, ptr);
13426 if (find_match (opcode, bzc_insns_32) < 0)
13427 return FALSE;
13428
13429 for (irel = internal_relocs; irel < irelend; irel++)
13430 if (irel->r_offset == offset
13431 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13432 return TRUE;
13433
13434 return FALSE;
13435 }
13436
13437 /* Bitsize checking. */
13438 #define IS_BITSIZE(val, N) \
13439 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13440 - (1ULL << ((N) - 1))) == (val))
13441
13442 \f
13443 bfd_boolean
13444 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13445 struct bfd_link_info *link_info,
13446 bfd_boolean *again)
13447 {
13448 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13449 Elf_Internal_Shdr *symtab_hdr;
13450 Elf_Internal_Rela *internal_relocs;
13451 Elf_Internal_Rela *irel, *irelend;
13452 bfd_byte *contents = NULL;
13453 Elf_Internal_Sym *isymbuf = NULL;
13454
13455 /* Assume nothing changes. */
13456 *again = FALSE;
13457
13458 /* We don't have to do anything for a relocatable link, if
13459 this section does not have relocs, or if this is not a
13460 code section. */
13461
13462 if (bfd_link_relocatable (link_info)
13463 || (sec->flags & SEC_RELOC) == 0
13464 || sec->reloc_count == 0
13465 || (sec->flags & SEC_CODE) == 0)
13466 return TRUE;
13467
13468 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13469
13470 /* Get a copy of the native relocations. */
13471 internal_relocs = (_bfd_elf_link_read_relocs
13472 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13473 link_info->keep_memory));
13474 if (internal_relocs == NULL)
13475 goto error_return;
13476
13477 /* Walk through them looking for relaxing opportunities. */
13478 irelend = internal_relocs + sec->reloc_count;
13479 for (irel = internal_relocs; irel < irelend; irel++)
13480 {
13481 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13482 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13483 bfd_boolean target_is_micromips_code_p;
13484 unsigned long opcode;
13485 bfd_vma symval;
13486 bfd_vma pcrval;
13487 bfd_byte *ptr;
13488 int fndopc;
13489
13490 /* The number of bytes to delete for relaxation and from where
13491 to delete these bytes starting at irel->r_offset. */
13492 int delcnt = 0;
13493 int deloff = 0;
13494
13495 /* If this isn't something that can be relaxed, then ignore
13496 this reloc. */
13497 if (r_type != R_MICROMIPS_HI16
13498 && r_type != R_MICROMIPS_PC16_S1
13499 && r_type != R_MICROMIPS_26_S1)
13500 continue;
13501
13502 /* Get the section contents if we haven't done so already. */
13503 if (contents == NULL)
13504 {
13505 /* Get cached copy if it exists. */
13506 if (elf_section_data (sec)->this_hdr.contents != NULL)
13507 contents = elf_section_data (sec)->this_hdr.contents;
13508 /* Go get them off disk. */
13509 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13510 goto error_return;
13511 }
13512 ptr = contents + irel->r_offset;
13513
13514 /* Read this BFD's local symbols if we haven't done so already. */
13515 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13516 {
13517 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13518 if (isymbuf == NULL)
13519 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13520 symtab_hdr->sh_info, 0,
13521 NULL, NULL, NULL);
13522 if (isymbuf == NULL)
13523 goto error_return;
13524 }
13525
13526 /* Get the value of the symbol referred to by the reloc. */
13527 if (r_symndx < symtab_hdr->sh_info)
13528 {
13529 /* A local symbol. */
13530 Elf_Internal_Sym *isym;
13531 asection *sym_sec;
13532
13533 isym = isymbuf + r_symndx;
13534 if (isym->st_shndx == SHN_UNDEF)
13535 sym_sec = bfd_und_section_ptr;
13536 else if (isym->st_shndx == SHN_ABS)
13537 sym_sec = bfd_abs_section_ptr;
13538 else if (isym->st_shndx == SHN_COMMON)
13539 sym_sec = bfd_com_section_ptr;
13540 else
13541 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13542 symval = (isym->st_value
13543 + sym_sec->output_section->vma
13544 + sym_sec->output_offset);
13545 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13546 }
13547 else
13548 {
13549 unsigned long indx;
13550 struct elf_link_hash_entry *h;
13551
13552 /* An external symbol. */
13553 indx = r_symndx - symtab_hdr->sh_info;
13554 h = elf_sym_hashes (abfd)[indx];
13555 BFD_ASSERT (h != NULL);
13556
13557 if (h->root.type != bfd_link_hash_defined
13558 && h->root.type != bfd_link_hash_defweak)
13559 /* This appears to be a reference to an undefined
13560 symbol. Just ignore it -- it will be caught by the
13561 regular reloc processing. */
13562 continue;
13563
13564 symval = (h->root.u.def.value
13565 + h->root.u.def.section->output_section->vma
13566 + h->root.u.def.section->output_offset);
13567 target_is_micromips_code_p = (!h->needs_plt
13568 && ELF_ST_IS_MICROMIPS (h->other));
13569 }
13570
13571
13572 /* For simplicity of coding, we are going to modify the
13573 section contents, the section relocs, and the BFD symbol
13574 table. We must tell the rest of the code not to free up this
13575 information. It would be possible to instead create a table
13576 of changes which have to be made, as is done in coff-mips.c;
13577 that would be more work, but would require less memory when
13578 the linker is run. */
13579
13580 /* Only 32-bit instructions relaxed. */
13581 if (irel->r_offset + 4 > sec->size)
13582 continue;
13583
13584 opcode = bfd_get_micromips_32 (abfd, ptr);
13585
13586 /* This is the pc-relative distance from the instruction the
13587 relocation is applied to, to the symbol referred. */
13588 pcrval = (symval
13589 - (sec->output_section->vma + sec->output_offset)
13590 - irel->r_offset);
13591
13592 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13593 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13594 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13595
13596 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13597
13598 where pcrval has first to be adjusted to apply against the LO16
13599 location (we make the adjustment later on, when we have figured
13600 out the offset). */
13601 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13602 {
13603 bfd_boolean bzc = FALSE;
13604 unsigned long nextopc;
13605 unsigned long reg;
13606 bfd_vma offset;
13607
13608 /* Give up if the previous reloc was a HI16 against this symbol
13609 too. */
13610 if (irel > internal_relocs
13611 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13612 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13613 continue;
13614
13615 /* Or if the next reloc is not a LO16 against this symbol. */
13616 if (irel + 1 >= irelend
13617 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13618 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13619 continue;
13620
13621 /* Or if the second next reloc is a LO16 against this symbol too. */
13622 if (irel + 2 >= irelend
13623 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13624 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13625 continue;
13626
13627 /* See if the LUI instruction *might* be in a branch delay slot.
13628 We check whether what looks like a 16-bit branch or jump is
13629 actually an immediate argument to a compact branch, and let
13630 it through if so. */
13631 if (irel->r_offset >= 2
13632 && check_br16_dslot (abfd, ptr - 2)
13633 && !(irel->r_offset >= 4
13634 && (bzc = check_relocated_bzc (abfd,
13635 ptr - 4, irel->r_offset - 4,
13636 internal_relocs, irelend))))
13637 continue;
13638 if (irel->r_offset >= 4
13639 && !bzc
13640 && check_br32_dslot (abfd, ptr - 4))
13641 continue;
13642
13643 reg = OP32_SREG (opcode);
13644
13645 /* We only relax adjacent instructions or ones separated with
13646 a branch or jump that has a delay slot. The branch or jump
13647 must not fiddle with the register used to hold the address.
13648 Subtract 4 for the LUI itself. */
13649 offset = irel[1].r_offset - irel[0].r_offset;
13650 switch (offset - 4)
13651 {
13652 case 0:
13653 break;
13654 case 2:
13655 if (check_br16 (abfd, ptr + 4, reg))
13656 break;
13657 continue;
13658 case 4:
13659 if (check_br32 (abfd, ptr + 4, reg))
13660 break;
13661 continue;
13662 default:
13663 continue;
13664 }
13665
13666 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13667
13668 /* Give up unless the same register is used with both
13669 relocations. */
13670 if (OP32_SREG (nextopc) != reg)
13671 continue;
13672
13673 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13674 and rounding up to take masking of the two LSBs into account. */
13675 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13676
13677 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13678 if (IS_BITSIZE (symval, 16))
13679 {
13680 /* Fix the relocation's type. */
13681 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13682
13683 /* Instructions using R_MICROMIPS_LO16 have the base or
13684 source register in bits 20:16. This register becomes $0
13685 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13686 nextopc &= ~0x001f0000;
13687 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13688 contents + irel[1].r_offset);
13689 }
13690
13691 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13692 We add 4 to take LUI deletion into account while checking
13693 the PC-relative distance. */
13694 else if (symval % 4 == 0
13695 && IS_BITSIZE (pcrval + 4, 25)
13696 && MATCH (nextopc, addiu_insn)
13697 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13698 && OP16_VALID_REG (OP32_TREG (nextopc)))
13699 {
13700 /* Fix the relocation's type. */
13701 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13702
13703 /* Replace ADDIU with the ADDIUPC version. */
13704 nextopc = (addiupc_insn.match
13705 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13706
13707 bfd_put_micromips_32 (abfd, nextopc,
13708 contents + irel[1].r_offset);
13709 }
13710
13711 /* Can't do anything, give up, sigh... */
13712 else
13713 continue;
13714
13715 /* Fix the relocation's type. */
13716 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13717
13718 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13719 delcnt = 4;
13720 deloff = 0;
13721 }
13722
13723 /* Compact branch relaxation -- due to the multitude of macros
13724 employed by the compiler/assembler, compact branches are not
13725 always generated. Obviously, this can/will be fixed elsewhere,
13726 but there is no drawback in double checking it here. */
13727 else if (r_type == R_MICROMIPS_PC16_S1
13728 && irel->r_offset + 5 < sec->size
13729 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13730 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13731 && ((!insn32
13732 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13733 nop_insn_16) ? 2 : 0))
13734 || (irel->r_offset + 7 < sec->size
13735 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13736 ptr + 4),
13737 nop_insn_32) ? 4 : 0))))
13738 {
13739 unsigned long reg;
13740
13741 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13742
13743 /* Replace BEQZ/BNEZ with the compact version. */
13744 opcode = (bzc_insns_32[fndopc].match
13745 | BZC32_REG_FIELD (reg)
13746 | (opcode & 0xffff)); /* Addend value. */
13747
13748 bfd_put_micromips_32 (abfd, opcode, ptr);
13749
13750 /* Delete the delay slot NOP: two or four bytes from
13751 irel->offset + 4; delcnt has already been set above. */
13752 deloff = 4;
13753 }
13754
13755 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13756 to check the distance from the next instruction, so subtract 2. */
13757 else if (!insn32
13758 && r_type == R_MICROMIPS_PC16_S1
13759 && IS_BITSIZE (pcrval - 2, 11)
13760 && find_match (opcode, b_insns_32) >= 0)
13761 {
13762 /* Fix the relocation's type. */
13763 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13764
13765 /* Replace the 32-bit opcode with a 16-bit opcode. */
13766 bfd_put_16 (abfd,
13767 (b_insn_16.match
13768 | (opcode & 0x3ff)), /* Addend value. */
13769 ptr);
13770
13771 /* Delete 2 bytes from irel->r_offset + 2. */
13772 delcnt = 2;
13773 deloff = 2;
13774 }
13775
13776 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13777 to check the distance from the next instruction, so subtract 2. */
13778 else if (!insn32
13779 && r_type == R_MICROMIPS_PC16_S1
13780 && IS_BITSIZE (pcrval - 2, 8)
13781 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13782 && OP16_VALID_REG (OP32_SREG (opcode)))
13783 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13784 && OP16_VALID_REG (OP32_TREG (opcode)))))
13785 {
13786 unsigned long reg;
13787
13788 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13789
13790 /* Fix the relocation's type. */
13791 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13792
13793 /* Replace the 32-bit opcode with a 16-bit opcode. */
13794 bfd_put_16 (abfd,
13795 (bz_insns_16[fndopc].match
13796 | BZ16_REG_FIELD (reg)
13797 | (opcode & 0x7f)), /* Addend value. */
13798 ptr);
13799
13800 /* Delete 2 bytes from irel->r_offset + 2. */
13801 delcnt = 2;
13802 deloff = 2;
13803 }
13804
13805 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13806 else if (!insn32
13807 && r_type == R_MICROMIPS_26_S1
13808 && target_is_micromips_code_p
13809 && irel->r_offset + 7 < sec->size
13810 && MATCH (opcode, jal_insn_32_bd32))
13811 {
13812 unsigned long n32opc;
13813 bfd_boolean relaxed = FALSE;
13814
13815 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13816
13817 if (MATCH (n32opc, nop_insn_32))
13818 {
13819 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13820 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13821
13822 relaxed = TRUE;
13823 }
13824 else if (find_match (n32opc, move_insns_32) >= 0)
13825 {
13826 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13827 bfd_put_16 (abfd,
13828 (move_insn_16.match
13829 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13830 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13831 ptr + 4);
13832
13833 relaxed = TRUE;
13834 }
13835 /* Other 32-bit instructions relaxable to 16-bit
13836 instructions will be handled here later. */
13837
13838 if (relaxed)
13839 {
13840 /* JAL with 32-bit delay slot that is changed to a JALS
13841 with 16-bit delay slot. */
13842 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13843
13844 /* Delete 2 bytes from irel->r_offset + 6. */
13845 delcnt = 2;
13846 deloff = 6;
13847 }
13848 }
13849
13850 if (delcnt != 0)
13851 {
13852 /* Note that we've changed the relocs, section contents, etc. */
13853 elf_section_data (sec)->relocs = internal_relocs;
13854 elf_section_data (sec)->this_hdr.contents = contents;
13855 symtab_hdr->contents = (unsigned char *) isymbuf;
13856
13857 /* Delete bytes depending on the delcnt and deloff. */
13858 if (!mips_elf_relax_delete_bytes (abfd, sec,
13859 irel->r_offset + deloff, delcnt))
13860 goto error_return;
13861
13862 /* That will change things, so we should relax again.
13863 Note that this is not required, and it may be slow. */
13864 *again = TRUE;
13865 }
13866 }
13867
13868 if (isymbuf != NULL
13869 && symtab_hdr->contents != (unsigned char *) isymbuf)
13870 {
13871 if (! link_info->keep_memory)
13872 free (isymbuf);
13873 else
13874 {
13875 /* Cache the symbols for elf_link_input_bfd. */
13876 symtab_hdr->contents = (unsigned char *) isymbuf;
13877 }
13878 }
13879
13880 if (contents != NULL
13881 && elf_section_data (sec)->this_hdr.contents != contents)
13882 {
13883 if (! link_info->keep_memory)
13884 free (contents);
13885 else
13886 {
13887 /* Cache the section contents for elf_link_input_bfd. */
13888 elf_section_data (sec)->this_hdr.contents = contents;
13889 }
13890 }
13891
13892 if (internal_relocs != NULL
13893 && elf_section_data (sec)->relocs != internal_relocs)
13894 free (internal_relocs);
13895
13896 return TRUE;
13897
13898 error_return:
13899 if (isymbuf != NULL
13900 && symtab_hdr->contents != (unsigned char *) isymbuf)
13901 free (isymbuf);
13902 if (contents != NULL
13903 && elf_section_data (sec)->this_hdr.contents != contents)
13904 free (contents);
13905 if (internal_relocs != NULL
13906 && elf_section_data (sec)->relocs != internal_relocs)
13907 free (internal_relocs);
13908
13909 return FALSE;
13910 }
13911 \f
13912 /* Create a MIPS ELF linker hash table. */
13913
13914 struct bfd_link_hash_table *
13915 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13916 {
13917 struct mips_elf_link_hash_table *ret;
13918 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13919
13920 ret = bfd_zmalloc (amt);
13921 if (ret == NULL)
13922 return NULL;
13923
13924 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13925 mips_elf_link_hash_newfunc,
13926 sizeof (struct mips_elf_link_hash_entry),
13927 MIPS_ELF_DATA))
13928 {
13929 free (ret);
13930 return NULL;
13931 }
13932 ret->root.init_plt_refcount.plist = NULL;
13933 ret->root.init_plt_offset.plist = NULL;
13934
13935 return &ret->root.root;
13936 }
13937
13938 /* Likewise, but indicate that the target is VxWorks. */
13939
13940 struct bfd_link_hash_table *
13941 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13942 {
13943 struct bfd_link_hash_table *ret;
13944
13945 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13946 if (ret)
13947 {
13948 struct mips_elf_link_hash_table *htab;
13949
13950 htab = (struct mips_elf_link_hash_table *) ret;
13951 htab->use_plts_and_copy_relocs = TRUE;
13952 htab->is_vxworks = TRUE;
13953 }
13954 return ret;
13955 }
13956
13957 /* A function that the linker calls if we are allowed to use PLTs
13958 and copy relocs. */
13959
13960 void
13961 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13962 {
13963 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13964 }
13965
13966 /* A function that the linker calls to select between all or only
13967 32-bit microMIPS instructions, and between making or ignoring
13968 branch relocation checks for invalid transitions between ISA modes. */
13969
13970 void
13971 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13972 bfd_boolean ignore_branch_isa)
13973 {
13974 mips_elf_hash_table (info)->insn32 = insn32;
13975 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13976 }
13977 \f
13978 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13979
13980 struct mips_mach_extension
13981 {
13982 unsigned long extension, base;
13983 };
13984
13985
13986 /* An array describing how BFD machines relate to one another. The entries
13987 are ordered topologically with MIPS I extensions listed last. */
13988
13989 static const struct mips_mach_extension mips_mach_extensions[] =
13990 {
13991 /* MIPS64r2 extensions. */
13992 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13993 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13994 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13995 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13996 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13997
13998 /* MIPS64 extensions. */
13999 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14000 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14001 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14002
14003 /* MIPS V extensions. */
14004 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14005
14006 /* R10000 extensions. */
14007 { bfd_mach_mips12000, bfd_mach_mips10000 },
14008 { bfd_mach_mips14000, bfd_mach_mips10000 },
14009 { bfd_mach_mips16000, bfd_mach_mips10000 },
14010
14011 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14012 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14013 better to allow vr5400 and vr5500 code to be merged anyway, since
14014 many libraries will just use the core ISA. Perhaps we could add
14015 some sort of ASE flag if this ever proves a problem. */
14016 { bfd_mach_mips5500, bfd_mach_mips5400 },
14017 { bfd_mach_mips5400, bfd_mach_mips5000 },
14018
14019 /* MIPS IV extensions. */
14020 { bfd_mach_mips5, bfd_mach_mips8000 },
14021 { bfd_mach_mips10000, bfd_mach_mips8000 },
14022 { bfd_mach_mips5000, bfd_mach_mips8000 },
14023 { bfd_mach_mips7000, bfd_mach_mips8000 },
14024 { bfd_mach_mips9000, bfd_mach_mips8000 },
14025
14026 /* VR4100 extensions. */
14027 { bfd_mach_mips4120, bfd_mach_mips4100 },
14028 { bfd_mach_mips4111, bfd_mach_mips4100 },
14029
14030 /* MIPS III extensions. */
14031 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14032 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14033 { bfd_mach_mips8000, bfd_mach_mips4000 },
14034 { bfd_mach_mips4650, bfd_mach_mips4000 },
14035 { bfd_mach_mips4600, bfd_mach_mips4000 },
14036 { bfd_mach_mips4400, bfd_mach_mips4000 },
14037 { bfd_mach_mips4300, bfd_mach_mips4000 },
14038 { bfd_mach_mips4100, bfd_mach_mips4000 },
14039 { bfd_mach_mips5900, bfd_mach_mips4000 },
14040
14041 /* MIPS32r3 extensions. */
14042 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14043
14044 /* MIPS32r2 extensions. */
14045 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14046
14047 /* MIPS32 extensions. */
14048 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14049
14050 /* MIPS II extensions. */
14051 { bfd_mach_mips4000, bfd_mach_mips6000 },
14052 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14053 { bfd_mach_mips4010, bfd_mach_mips6000 },
14054
14055 /* MIPS I extensions. */
14056 { bfd_mach_mips6000, bfd_mach_mips3000 },
14057 { bfd_mach_mips3900, bfd_mach_mips3000 }
14058 };
14059
14060 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14061
14062 static bfd_boolean
14063 mips_mach_extends_p (unsigned long base, unsigned long extension)
14064 {
14065 size_t i;
14066
14067 if (extension == base)
14068 return TRUE;
14069
14070 if (base == bfd_mach_mipsisa32
14071 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14072 return TRUE;
14073
14074 if (base == bfd_mach_mipsisa32r2
14075 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14076 return TRUE;
14077
14078 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14079 if (extension == mips_mach_extensions[i].extension)
14080 {
14081 extension = mips_mach_extensions[i].base;
14082 if (extension == base)
14083 return TRUE;
14084 }
14085
14086 return FALSE;
14087 }
14088
14089 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14090
14091 static unsigned long
14092 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14093 {
14094 switch (isa_ext)
14095 {
14096 case AFL_EXT_3900: return bfd_mach_mips3900;
14097 case AFL_EXT_4010: return bfd_mach_mips4010;
14098 case AFL_EXT_4100: return bfd_mach_mips4100;
14099 case AFL_EXT_4111: return bfd_mach_mips4111;
14100 case AFL_EXT_4120: return bfd_mach_mips4120;
14101 case AFL_EXT_4650: return bfd_mach_mips4650;
14102 case AFL_EXT_5400: return bfd_mach_mips5400;
14103 case AFL_EXT_5500: return bfd_mach_mips5500;
14104 case AFL_EXT_5900: return bfd_mach_mips5900;
14105 case AFL_EXT_10000: return bfd_mach_mips10000;
14106 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14107 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14108 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14109 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14110 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14111 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14112 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14113 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14114 default: return bfd_mach_mips3000;
14115 }
14116 }
14117
14118 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14119
14120 unsigned int
14121 bfd_mips_isa_ext (bfd *abfd)
14122 {
14123 switch (bfd_get_mach (abfd))
14124 {
14125 case bfd_mach_mips3900: return AFL_EXT_3900;
14126 case bfd_mach_mips4010: return AFL_EXT_4010;
14127 case bfd_mach_mips4100: return AFL_EXT_4100;
14128 case bfd_mach_mips4111: return AFL_EXT_4111;
14129 case bfd_mach_mips4120: return AFL_EXT_4120;
14130 case bfd_mach_mips4650: return AFL_EXT_4650;
14131 case bfd_mach_mips5400: return AFL_EXT_5400;
14132 case bfd_mach_mips5500: return AFL_EXT_5500;
14133 case bfd_mach_mips5900: return AFL_EXT_5900;
14134 case bfd_mach_mips10000: return AFL_EXT_10000;
14135 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14136 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14137 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14138 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14139 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14140 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14141 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14142 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14143 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14144 case bfd_mach_mips_interaptiv_mr2:
14145 return AFL_EXT_INTERAPTIV_MR2;
14146 default: return 0;
14147 }
14148 }
14149
14150 /* Encode ISA level and revision as a single value. */
14151 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14152
14153 /* Decode a single value into level and revision. */
14154 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14155 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14156
14157 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14158
14159 static void
14160 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14161 {
14162 int new_isa = 0;
14163 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14164 {
14165 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14166 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14167 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14168 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14169 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14170 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14171 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14172 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14173 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14174 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14175 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14176 default:
14177 _bfd_error_handler
14178 /* xgettext:c-format */
14179 (_("%pB: unknown architecture %s"),
14180 abfd, bfd_printable_name (abfd));
14181 }
14182
14183 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14184 {
14185 abiflags->isa_level = ISA_LEVEL (new_isa);
14186 abiflags->isa_rev = ISA_REV (new_isa);
14187 }
14188
14189 /* Update the isa_ext if ABFD describes a further extension. */
14190 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14191 bfd_get_mach (abfd)))
14192 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14193 }
14194
14195 /* Return true if the given ELF header flags describe a 32-bit binary. */
14196
14197 static bfd_boolean
14198 mips_32bit_flags_p (flagword flags)
14199 {
14200 return ((flags & EF_MIPS_32BITMODE) != 0
14201 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14202 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14203 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14204 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14205 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14206 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14207 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14208 }
14209
14210 /* Infer the content of the ABI flags based on the elf header. */
14211
14212 static void
14213 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14214 {
14215 obj_attribute *in_attr;
14216
14217 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14218 update_mips_abiflags_isa (abfd, abiflags);
14219
14220 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14221 abiflags->gpr_size = AFL_REG_32;
14222 else
14223 abiflags->gpr_size = AFL_REG_64;
14224
14225 abiflags->cpr1_size = AFL_REG_NONE;
14226
14227 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14228 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14229
14230 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14231 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14232 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14233 && abiflags->gpr_size == AFL_REG_32))
14234 abiflags->cpr1_size = AFL_REG_32;
14235 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14236 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14237 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14238 abiflags->cpr1_size = AFL_REG_64;
14239
14240 abiflags->cpr2_size = AFL_REG_NONE;
14241
14242 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14243 abiflags->ases |= AFL_ASE_MDMX;
14244 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14245 abiflags->ases |= AFL_ASE_MIPS16;
14246 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14247 abiflags->ases |= AFL_ASE_MICROMIPS;
14248
14249 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14250 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14251 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14252 && abiflags->isa_level >= 32
14253 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14254 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14255 }
14256
14257 /* We need to use a special link routine to handle the .reginfo and
14258 the .mdebug sections. We need to merge all instances of these
14259 sections together, not write them all out sequentially. */
14260
14261 bfd_boolean
14262 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14263 {
14264 asection *o;
14265 struct bfd_link_order *p;
14266 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14267 asection *rtproc_sec, *abiflags_sec;
14268 Elf32_RegInfo reginfo;
14269 struct ecoff_debug_info debug;
14270 struct mips_htab_traverse_info hti;
14271 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14272 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14273 HDRR *symhdr = &debug.symbolic_header;
14274 void *mdebug_handle = NULL;
14275 asection *s;
14276 EXTR esym;
14277 unsigned int i;
14278 bfd_size_type amt;
14279 struct mips_elf_link_hash_table *htab;
14280
14281 static const char * const secname[] =
14282 {
14283 ".text", ".init", ".fini", ".data",
14284 ".rodata", ".sdata", ".sbss", ".bss"
14285 };
14286 static const int sc[] =
14287 {
14288 scText, scInit, scFini, scData,
14289 scRData, scSData, scSBss, scBss
14290 };
14291
14292 htab = mips_elf_hash_table (info);
14293 BFD_ASSERT (htab != NULL);
14294
14295 /* Sort the dynamic symbols so that those with GOT entries come after
14296 those without. */
14297 if (!mips_elf_sort_hash_table (abfd, info))
14298 return FALSE;
14299
14300 /* Create any scheduled LA25 stubs. */
14301 hti.info = info;
14302 hti.output_bfd = abfd;
14303 hti.error = FALSE;
14304 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14305 if (hti.error)
14306 return FALSE;
14307
14308 /* Get a value for the GP register. */
14309 if (elf_gp (abfd) == 0)
14310 {
14311 struct bfd_link_hash_entry *h;
14312
14313 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14314 if (h != NULL && h->type == bfd_link_hash_defined)
14315 elf_gp (abfd) = (h->u.def.value
14316 + h->u.def.section->output_section->vma
14317 + h->u.def.section->output_offset);
14318 else if (htab->is_vxworks
14319 && (h = bfd_link_hash_lookup (info->hash,
14320 "_GLOBAL_OFFSET_TABLE_",
14321 FALSE, FALSE, TRUE))
14322 && h->type == bfd_link_hash_defined)
14323 elf_gp (abfd) = (h->u.def.section->output_section->vma
14324 + h->u.def.section->output_offset
14325 + h->u.def.value);
14326 else if (bfd_link_relocatable (info))
14327 {
14328 bfd_vma lo = MINUS_ONE;
14329
14330 /* Find the GP-relative section with the lowest offset. */
14331 for (o = abfd->sections; o != NULL; o = o->next)
14332 if (o->vma < lo
14333 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14334 lo = o->vma;
14335
14336 /* And calculate GP relative to that. */
14337 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14338 }
14339 else
14340 {
14341 /* If the relocate_section function needs to do a reloc
14342 involving the GP value, it should make a reloc_dangerous
14343 callback to warn that GP is not defined. */
14344 }
14345 }
14346
14347 /* Go through the sections and collect the .reginfo and .mdebug
14348 information. */
14349 abiflags_sec = NULL;
14350 reginfo_sec = NULL;
14351 mdebug_sec = NULL;
14352 gptab_data_sec = NULL;
14353 gptab_bss_sec = NULL;
14354 for (o = abfd->sections; o != NULL; o = o->next)
14355 {
14356 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14357 {
14358 /* We have found the .MIPS.abiflags section in the output file.
14359 Look through all the link_orders comprising it and remove them.
14360 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14361 for (p = o->map_head.link_order; p != NULL; p = p->next)
14362 {
14363 asection *input_section;
14364
14365 if (p->type != bfd_indirect_link_order)
14366 {
14367 if (p->type == bfd_data_link_order)
14368 continue;
14369 abort ();
14370 }
14371
14372 input_section = p->u.indirect.section;
14373
14374 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14375 elf_link_input_bfd ignores this section. */
14376 input_section->flags &= ~SEC_HAS_CONTENTS;
14377 }
14378
14379 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14380 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14381
14382 /* Skip this section later on (I don't think this currently
14383 matters, but someday it might). */
14384 o->map_head.link_order = NULL;
14385
14386 abiflags_sec = o;
14387 }
14388
14389 if (strcmp (o->name, ".reginfo") == 0)
14390 {
14391 memset (&reginfo, 0, sizeof reginfo);
14392
14393 /* We have found the .reginfo section in the output file.
14394 Look through all the link_orders comprising it and merge
14395 the information together. */
14396 for (p = o->map_head.link_order; p != NULL; p = p->next)
14397 {
14398 asection *input_section;
14399 bfd *input_bfd;
14400 Elf32_External_RegInfo ext;
14401 Elf32_RegInfo sub;
14402 bfd_size_type sz;
14403
14404 if (p->type != bfd_indirect_link_order)
14405 {
14406 if (p->type == bfd_data_link_order)
14407 continue;
14408 abort ();
14409 }
14410
14411 input_section = p->u.indirect.section;
14412 input_bfd = input_section->owner;
14413
14414 sz = (input_section->size < sizeof (ext)
14415 ? input_section->size : sizeof (ext));
14416 memset (&ext, 0, sizeof (ext));
14417 if (! bfd_get_section_contents (input_bfd, input_section,
14418 &ext, 0, sz))
14419 return FALSE;
14420
14421 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14422
14423 reginfo.ri_gprmask |= sub.ri_gprmask;
14424 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14425 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14426 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14427 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14428
14429 /* ri_gp_value is set by the function
14430 `_bfd_mips_elf_section_processing' when the section is
14431 finally written out. */
14432
14433 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14434 elf_link_input_bfd ignores this section. */
14435 input_section->flags &= ~SEC_HAS_CONTENTS;
14436 }
14437
14438 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14439 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14440
14441 /* Skip this section later on (I don't think this currently
14442 matters, but someday it might). */
14443 o->map_head.link_order = NULL;
14444
14445 reginfo_sec = o;
14446 }
14447
14448 if (strcmp (o->name, ".mdebug") == 0)
14449 {
14450 struct extsym_info einfo;
14451 bfd_vma last;
14452
14453 /* We have found the .mdebug section in the output file.
14454 Look through all the link_orders comprising it and merge
14455 the information together. */
14456 symhdr->magic = swap->sym_magic;
14457 /* FIXME: What should the version stamp be? */
14458 symhdr->vstamp = 0;
14459 symhdr->ilineMax = 0;
14460 symhdr->cbLine = 0;
14461 symhdr->idnMax = 0;
14462 symhdr->ipdMax = 0;
14463 symhdr->isymMax = 0;
14464 symhdr->ioptMax = 0;
14465 symhdr->iauxMax = 0;
14466 symhdr->issMax = 0;
14467 symhdr->issExtMax = 0;
14468 symhdr->ifdMax = 0;
14469 symhdr->crfd = 0;
14470 symhdr->iextMax = 0;
14471
14472 /* We accumulate the debugging information itself in the
14473 debug_info structure. */
14474 debug.line = NULL;
14475 debug.external_dnr = NULL;
14476 debug.external_pdr = NULL;
14477 debug.external_sym = NULL;
14478 debug.external_opt = NULL;
14479 debug.external_aux = NULL;
14480 debug.ss = NULL;
14481 debug.ssext = debug.ssext_end = NULL;
14482 debug.external_fdr = NULL;
14483 debug.external_rfd = NULL;
14484 debug.external_ext = debug.external_ext_end = NULL;
14485
14486 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14487 if (mdebug_handle == NULL)
14488 return FALSE;
14489
14490 esym.jmptbl = 0;
14491 esym.cobol_main = 0;
14492 esym.weakext = 0;
14493 esym.reserved = 0;
14494 esym.ifd = ifdNil;
14495 esym.asym.iss = issNil;
14496 esym.asym.st = stLocal;
14497 esym.asym.reserved = 0;
14498 esym.asym.index = indexNil;
14499 last = 0;
14500 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14501 {
14502 esym.asym.sc = sc[i];
14503 s = bfd_get_section_by_name (abfd, secname[i]);
14504 if (s != NULL)
14505 {
14506 esym.asym.value = s->vma;
14507 last = s->vma + s->size;
14508 }
14509 else
14510 esym.asym.value = last;
14511 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14512 secname[i], &esym))
14513 return FALSE;
14514 }
14515
14516 for (p = o->map_head.link_order; p != NULL; p = p->next)
14517 {
14518 asection *input_section;
14519 bfd *input_bfd;
14520 const struct ecoff_debug_swap *input_swap;
14521 struct ecoff_debug_info input_debug;
14522 char *eraw_src;
14523 char *eraw_end;
14524
14525 if (p->type != bfd_indirect_link_order)
14526 {
14527 if (p->type == bfd_data_link_order)
14528 continue;
14529 abort ();
14530 }
14531
14532 input_section = p->u.indirect.section;
14533 input_bfd = input_section->owner;
14534
14535 if (!is_mips_elf (input_bfd))
14536 {
14537 /* I don't know what a non MIPS ELF bfd would be
14538 doing with a .mdebug section, but I don't really
14539 want to deal with it. */
14540 continue;
14541 }
14542
14543 input_swap = (get_elf_backend_data (input_bfd)
14544 ->elf_backend_ecoff_debug_swap);
14545
14546 BFD_ASSERT (p->size == input_section->size);
14547
14548 /* The ECOFF linking code expects that we have already
14549 read in the debugging information and set up an
14550 ecoff_debug_info structure, so we do that now. */
14551 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14552 &input_debug))
14553 return FALSE;
14554
14555 if (! (bfd_ecoff_debug_accumulate
14556 (mdebug_handle, abfd, &debug, swap, input_bfd,
14557 &input_debug, input_swap, info)))
14558 return FALSE;
14559
14560 /* Loop through the external symbols. For each one with
14561 interesting information, try to find the symbol in
14562 the linker global hash table and save the information
14563 for the output external symbols. */
14564 eraw_src = input_debug.external_ext;
14565 eraw_end = (eraw_src
14566 + (input_debug.symbolic_header.iextMax
14567 * input_swap->external_ext_size));
14568 for (;
14569 eraw_src < eraw_end;
14570 eraw_src += input_swap->external_ext_size)
14571 {
14572 EXTR ext;
14573 const char *name;
14574 struct mips_elf_link_hash_entry *h;
14575
14576 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14577 if (ext.asym.sc == scNil
14578 || ext.asym.sc == scUndefined
14579 || ext.asym.sc == scSUndefined)
14580 continue;
14581
14582 name = input_debug.ssext + ext.asym.iss;
14583 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14584 name, FALSE, FALSE, TRUE);
14585 if (h == NULL || h->esym.ifd != -2)
14586 continue;
14587
14588 if (ext.ifd != -1)
14589 {
14590 BFD_ASSERT (ext.ifd
14591 < input_debug.symbolic_header.ifdMax);
14592 ext.ifd = input_debug.ifdmap[ext.ifd];
14593 }
14594
14595 h->esym = ext;
14596 }
14597
14598 /* Free up the information we just read. */
14599 free (input_debug.line);
14600 free (input_debug.external_dnr);
14601 free (input_debug.external_pdr);
14602 free (input_debug.external_sym);
14603 free (input_debug.external_opt);
14604 free (input_debug.external_aux);
14605 free (input_debug.ss);
14606 free (input_debug.ssext);
14607 free (input_debug.external_fdr);
14608 free (input_debug.external_rfd);
14609 free (input_debug.external_ext);
14610
14611 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14612 elf_link_input_bfd ignores this section. */
14613 input_section->flags &= ~SEC_HAS_CONTENTS;
14614 }
14615
14616 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14617 {
14618 /* Create .rtproc section. */
14619 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14620 if (rtproc_sec == NULL)
14621 {
14622 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14623 | SEC_LINKER_CREATED | SEC_READONLY);
14624
14625 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14626 ".rtproc",
14627 flags);
14628 if (rtproc_sec == NULL
14629 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14630 return FALSE;
14631 }
14632
14633 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14634 info, rtproc_sec,
14635 &debug))
14636 return FALSE;
14637 }
14638
14639 /* Build the external symbol information. */
14640 einfo.abfd = abfd;
14641 einfo.info = info;
14642 einfo.debug = &debug;
14643 einfo.swap = swap;
14644 einfo.failed = FALSE;
14645 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14646 mips_elf_output_extsym, &einfo);
14647 if (einfo.failed)
14648 return FALSE;
14649
14650 /* Set the size of the .mdebug section. */
14651 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14652
14653 /* Skip this section later on (I don't think this currently
14654 matters, but someday it might). */
14655 o->map_head.link_order = NULL;
14656
14657 mdebug_sec = o;
14658 }
14659
14660 if (CONST_STRNEQ (o->name, ".gptab."))
14661 {
14662 const char *subname;
14663 unsigned int c;
14664 Elf32_gptab *tab;
14665 Elf32_External_gptab *ext_tab;
14666 unsigned int j;
14667
14668 /* The .gptab.sdata and .gptab.sbss sections hold
14669 information describing how the small data area would
14670 change depending upon the -G switch. These sections
14671 not used in executables files. */
14672 if (! bfd_link_relocatable (info))
14673 {
14674 for (p = o->map_head.link_order; p != NULL; p = p->next)
14675 {
14676 asection *input_section;
14677
14678 if (p->type != bfd_indirect_link_order)
14679 {
14680 if (p->type == bfd_data_link_order)
14681 continue;
14682 abort ();
14683 }
14684
14685 input_section = p->u.indirect.section;
14686
14687 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14688 elf_link_input_bfd ignores this section. */
14689 input_section->flags &= ~SEC_HAS_CONTENTS;
14690 }
14691
14692 /* Skip this section later on (I don't think this
14693 currently matters, but someday it might). */
14694 o->map_head.link_order = NULL;
14695
14696 /* Really remove the section. */
14697 bfd_section_list_remove (abfd, o);
14698 --abfd->section_count;
14699
14700 continue;
14701 }
14702
14703 /* There is one gptab for initialized data, and one for
14704 uninitialized data. */
14705 if (strcmp (o->name, ".gptab.sdata") == 0)
14706 gptab_data_sec = o;
14707 else if (strcmp (o->name, ".gptab.sbss") == 0)
14708 gptab_bss_sec = o;
14709 else
14710 {
14711 _bfd_error_handler
14712 /* xgettext:c-format */
14713 (_("%pB: illegal section name `%pA'"), abfd, o);
14714 bfd_set_error (bfd_error_nonrepresentable_section);
14715 return FALSE;
14716 }
14717
14718 /* The linker script always combines .gptab.data and
14719 .gptab.sdata into .gptab.sdata, and likewise for
14720 .gptab.bss and .gptab.sbss. It is possible that there is
14721 no .sdata or .sbss section in the output file, in which
14722 case we must change the name of the output section. */
14723 subname = o->name + sizeof ".gptab" - 1;
14724 if (bfd_get_section_by_name (abfd, subname) == NULL)
14725 {
14726 if (o == gptab_data_sec)
14727 o->name = ".gptab.data";
14728 else
14729 o->name = ".gptab.bss";
14730 subname = o->name + sizeof ".gptab" - 1;
14731 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14732 }
14733
14734 /* Set up the first entry. */
14735 c = 1;
14736 amt = c * sizeof (Elf32_gptab);
14737 tab = bfd_malloc (amt);
14738 if (tab == NULL)
14739 return FALSE;
14740 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14741 tab[0].gt_header.gt_unused = 0;
14742
14743 /* Combine the input sections. */
14744 for (p = o->map_head.link_order; p != NULL; p = p->next)
14745 {
14746 asection *input_section;
14747 bfd *input_bfd;
14748 bfd_size_type size;
14749 unsigned long last;
14750 bfd_size_type gpentry;
14751
14752 if (p->type != bfd_indirect_link_order)
14753 {
14754 if (p->type == bfd_data_link_order)
14755 continue;
14756 abort ();
14757 }
14758
14759 input_section = p->u.indirect.section;
14760 input_bfd = input_section->owner;
14761
14762 /* Combine the gptab entries for this input section one
14763 by one. We know that the input gptab entries are
14764 sorted by ascending -G value. */
14765 size = input_section->size;
14766 last = 0;
14767 for (gpentry = sizeof (Elf32_External_gptab);
14768 gpentry < size;
14769 gpentry += sizeof (Elf32_External_gptab))
14770 {
14771 Elf32_External_gptab ext_gptab;
14772 Elf32_gptab int_gptab;
14773 unsigned long val;
14774 unsigned long add;
14775 bfd_boolean exact;
14776 unsigned int look;
14777
14778 if (! (bfd_get_section_contents
14779 (input_bfd, input_section, &ext_gptab, gpentry,
14780 sizeof (Elf32_External_gptab))))
14781 {
14782 free (tab);
14783 return FALSE;
14784 }
14785
14786 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14787 &int_gptab);
14788 val = int_gptab.gt_entry.gt_g_value;
14789 add = int_gptab.gt_entry.gt_bytes - last;
14790
14791 exact = FALSE;
14792 for (look = 1; look < c; look++)
14793 {
14794 if (tab[look].gt_entry.gt_g_value >= val)
14795 tab[look].gt_entry.gt_bytes += add;
14796
14797 if (tab[look].gt_entry.gt_g_value == val)
14798 exact = TRUE;
14799 }
14800
14801 if (! exact)
14802 {
14803 Elf32_gptab *new_tab;
14804 unsigned int max;
14805
14806 /* We need a new table entry. */
14807 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14808 new_tab = bfd_realloc (tab, amt);
14809 if (new_tab == NULL)
14810 {
14811 free (tab);
14812 return FALSE;
14813 }
14814 tab = new_tab;
14815 tab[c].gt_entry.gt_g_value = val;
14816 tab[c].gt_entry.gt_bytes = add;
14817
14818 /* Merge in the size for the next smallest -G
14819 value, since that will be implied by this new
14820 value. */
14821 max = 0;
14822 for (look = 1; look < c; look++)
14823 {
14824 if (tab[look].gt_entry.gt_g_value < val
14825 && (max == 0
14826 || (tab[look].gt_entry.gt_g_value
14827 > tab[max].gt_entry.gt_g_value)))
14828 max = look;
14829 }
14830 if (max != 0)
14831 tab[c].gt_entry.gt_bytes +=
14832 tab[max].gt_entry.gt_bytes;
14833
14834 ++c;
14835 }
14836
14837 last = int_gptab.gt_entry.gt_bytes;
14838 }
14839
14840 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14841 elf_link_input_bfd ignores this section. */
14842 input_section->flags &= ~SEC_HAS_CONTENTS;
14843 }
14844
14845 /* The table must be sorted by -G value. */
14846 if (c > 2)
14847 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14848
14849 /* Swap out the table. */
14850 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14851 ext_tab = bfd_alloc (abfd, amt);
14852 if (ext_tab == NULL)
14853 {
14854 free (tab);
14855 return FALSE;
14856 }
14857
14858 for (j = 0; j < c; j++)
14859 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14860 free (tab);
14861
14862 o->size = c * sizeof (Elf32_External_gptab);
14863 o->contents = (bfd_byte *) ext_tab;
14864
14865 /* Skip this section later on (I don't think this currently
14866 matters, but someday it might). */
14867 o->map_head.link_order = NULL;
14868 }
14869 }
14870
14871 /* Invoke the regular ELF backend linker to do all the work. */
14872 if (!bfd_elf_final_link (abfd, info))
14873 return FALSE;
14874
14875 /* Now write out the computed sections. */
14876
14877 if (abiflags_sec != NULL)
14878 {
14879 Elf_External_ABIFlags_v0 ext;
14880 Elf_Internal_ABIFlags_v0 *abiflags;
14881
14882 abiflags = &mips_elf_tdata (abfd)->abiflags;
14883
14884 /* Set up the abiflags if no valid input sections were found. */
14885 if (!mips_elf_tdata (abfd)->abiflags_valid)
14886 {
14887 infer_mips_abiflags (abfd, abiflags);
14888 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14889 }
14890 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14891 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14892 return FALSE;
14893 }
14894
14895 if (reginfo_sec != NULL)
14896 {
14897 Elf32_External_RegInfo ext;
14898
14899 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14900 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14901 return FALSE;
14902 }
14903
14904 if (mdebug_sec != NULL)
14905 {
14906 BFD_ASSERT (abfd->output_has_begun);
14907 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14908 swap, info,
14909 mdebug_sec->filepos))
14910 return FALSE;
14911
14912 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14913 }
14914
14915 if (gptab_data_sec != NULL)
14916 {
14917 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14918 gptab_data_sec->contents,
14919 0, gptab_data_sec->size))
14920 return FALSE;
14921 }
14922
14923 if (gptab_bss_sec != NULL)
14924 {
14925 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14926 gptab_bss_sec->contents,
14927 0, gptab_bss_sec->size))
14928 return FALSE;
14929 }
14930
14931 if (SGI_COMPAT (abfd))
14932 {
14933 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14934 if (rtproc_sec != NULL)
14935 {
14936 if (! bfd_set_section_contents (abfd, rtproc_sec,
14937 rtproc_sec->contents,
14938 0, rtproc_sec->size))
14939 return FALSE;
14940 }
14941 }
14942
14943 return TRUE;
14944 }
14945 \f
14946 /* Merge object file header flags from IBFD into OBFD. Raise an error
14947 if there are conflicting settings. */
14948
14949 static bfd_boolean
14950 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14951 {
14952 bfd *obfd = info->output_bfd;
14953 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14954 flagword old_flags;
14955 flagword new_flags;
14956 bfd_boolean ok;
14957
14958 new_flags = elf_elfheader (ibfd)->e_flags;
14959 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14960 old_flags = elf_elfheader (obfd)->e_flags;
14961
14962 /* Check flag compatibility. */
14963
14964 new_flags &= ~EF_MIPS_NOREORDER;
14965 old_flags &= ~EF_MIPS_NOREORDER;
14966
14967 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14968 doesn't seem to matter. */
14969 new_flags &= ~EF_MIPS_XGOT;
14970 old_flags &= ~EF_MIPS_XGOT;
14971
14972 /* MIPSpro generates ucode info in n64 objects. Again, we should
14973 just be able to ignore this. */
14974 new_flags &= ~EF_MIPS_UCODE;
14975 old_flags &= ~EF_MIPS_UCODE;
14976
14977 /* DSOs should only be linked with CPIC code. */
14978 if ((ibfd->flags & DYNAMIC) != 0)
14979 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14980
14981 if (new_flags == old_flags)
14982 return TRUE;
14983
14984 ok = TRUE;
14985
14986 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14987 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14988 {
14989 _bfd_error_handler
14990 (_("%pB: warning: linking abicalls files with non-abicalls files"),
14991 ibfd);
14992 ok = TRUE;
14993 }
14994
14995 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14996 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14997 if (! (new_flags & EF_MIPS_PIC))
14998 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14999
15000 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15001 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15002
15003 /* Compare the ISAs. */
15004 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15005 {
15006 _bfd_error_handler
15007 (_("%pB: linking 32-bit code with 64-bit code"),
15008 ibfd);
15009 ok = FALSE;
15010 }
15011 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15012 {
15013 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15014 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15015 {
15016 /* Copy the architecture info from IBFD to OBFD. Also copy
15017 the 32-bit flag (if set) so that we continue to recognise
15018 OBFD as a 32-bit binary. */
15019 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15020 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15021 elf_elfheader (obfd)->e_flags
15022 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15023
15024 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15025 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15026
15027 /* Copy across the ABI flags if OBFD doesn't use them
15028 and if that was what caused us to treat IBFD as 32-bit. */
15029 if ((old_flags & EF_MIPS_ABI) == 0
15030 && mips_32bit_flags_p (new_flags)
15031 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15032 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15033 }
15034 else
15035 {
15036 /* The ISAs aren't compatible. */
15037 _bfd_error_handler
15038 /* xgettext:c-format */
15039 (_("%pB: linking %s module with previous %s modules"),
15040 ibfd,
15041 bfd_printable_name (ibfd),
15042 bfd_printable_name (obfd));
15043 ok = FALSE;
15044 }
15045 }
15046
15047 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15048 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15049
15050 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15051 does set EI_CLASS differently from any 32-bit ABI. */
15052 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15053 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15054 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15055 {
15056 /* Only error if both are set (to different values). */
15057 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15058 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15059 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15060 {
15061 _bfd_error_handler
15062 /* xgettext:c-format */
15063 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15064 ibfd,
15065 elf_mips_abi_name (ibfd),
15066 elf_mips_abi_name (obfd));
15067 ok = FALSE;
15068 }
15069 new_flags &= ~EF_MIPS_ABI;
15070 old_flags &= ~EF_MIPS_ABI;
15071 }
15072
15073 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15074 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15075 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15076 {
15077 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15078 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15079 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15080 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15081 int micro_mis = old_m16 && new_micro;
15082 int m16_mis = old_micro && new_m16;
15083
15084 if (m16_mis || micro_mis)
15085 {
15086 _bfd_error_handler
15087 /* xgettext:c-format */
15088 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15089 ibfd,
15090 m16_mis ? "MIPS16" : "microMIPS",
15091 m16_mis ? "microMIPS" : "MIPS16");
15092 ok = FALSE;
15093 }
15094
15095 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15096
15097 new_flags &= ~ EF_MIPS_ARCH_ASE;
15098 old_flags &= ~ EF_MIPS_ARCH_ASE;
15099 }
15100
15101 /* Compare NaN encodings. */
15102 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15103 {
15104 /* xgettext:c-format */
15105 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15106 ibfd,
15107 (new_flags & EF_MIPS_NAN2008
15108 ? "-mnan=2008" : "-mnan=legacy"),
15109 (old_flags & EF_MIPS_NAN2008
15110 ? "-mnan=2008" : "-mnan=legacy"));
15111 ok = FALSE;
15112 new_flags &= ~EF_MIPS_NAN2008;
15113 old_flags &= ~EF_MIPS_NAN2008;
15114 }
15115
15116 /* Compare FP64 state. */
15117 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15118 {
15119 /* xgettext:c-format */
15120 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15121 ibfd,
15122 (new_flags & EF_MIPS_FP64
15123 ? "-mfp64" : "-mfp32"),
15124 (old_flags & EF_MIPS_FP64
15125 ? "-mfp64" : "-mfp32"));
15126 ok = FALSE;
15127 new_flags &= ~EF_MIPS_FP64;
15128 old_flags &= ~EF_MIPS_FP64;
15129 }
15130
15131 /* Warn about any other mismatches */
15132 if (new_flags != old_flags)
15133 {
15134 /* xgettext:c-format */
15135 _bfd_error_handler
15136 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15137 "(%#x)"),
15138 ibfd, new_flags, old_flags);
15139 ok = FALSE;
15140 }
15141
15142 return ok;
15143 }
15144
15145 /* Merge object attributes from IBFD into OBFD. Raise an error if
15146 there are conflicting attributes. */
15147 static bfd_boolean
15148 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15149 {
15150 bfd *obfd = info->output_bfd;
15151 obj_attribute *in_attr;
15152 obj_attribute *out_attr;
15153 bfd *abi_fp_bfd;
15154 bfd *abi_msa_bfd;
15155
15156 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15157 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15158 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15159 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15160
15161 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15162 if (!abi_msa_bfd
15163 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15164 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15165
15166 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15167 {
15168 /* This is the first object. Copy the attributes. */
15169 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15170
15171 /* Use the Tag_null value to indicate the attributes have been
15172 initialized. */
15173 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15174
15175 return TRUE;
15176 }
15177
15178 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15179 non-conflicting ones. */
15180 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15181 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15182 {
15183 int out_fp, in_fp;
15184
15185 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15186 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15187 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15188 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15189 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15190 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15191 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15192 || in_fp == Val_GNU_MIPS_ABI_FP_64
15193 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15194 {
15195 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15196 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15197 }
15198 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15199 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15200 || out_fp == Val_GNU_MIPS_ABI_FP_64
15201 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15202 /* Keep the current setting. */;
15203 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15204 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15205 {
15206 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15207 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15208 }
15209 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15210 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15211 /* Keep the current setting. */;
15212 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15213 {
15214 const char *out_string, *in_string;
15215
15216 out_string = _bfd_mips_fp_abi_string (out_fp);
15217 in_string = _bfd_mips_fp_abi_string (in_fp);
15218 /* First warn about cases involving unrecognised ABIs. */
15219 if (!out_string && !in_string)
15220 /* xgettext:c-format */
15221 _bfd_error_handler
15222 (_("warning: %pB uses unknown floating point ABI %d "
15223 "(set by %pB), %pB uses unknown floating point ABI %d"),
15224 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15225 else if (!out_string)
15226 _bfd_error_handler
15227 /* xgettext:c-format */
15228 (_("warning: %pB uses unknown floating point ABI %d "
15229 "(set by %pB), %pB uses %s"),
15230 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15231 else if (!in_string)
15232 _bfd_error_handler
15233 /* xgettext:c-format */
15234 (_("warning: %pB uses %s (set by %pB), "
15235 "%pB uses unknown floating point ABI %d"),
15236 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15237 else
15238 {
15239 /* If one of the bfds is soft-float, the other must be
15240 hard-float. The exact choice of hard-float ABI isn't
15241 really relevant to the error message. */
15242 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15243 out_string = "-mhard-float";
15244 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15245 in_string = "-mhard-float";
15246 _bfd_error_handler
15247 /* xgettext:c-format */
15248 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15249 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15250 }
15251 }
15252 }
15253
15254 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15255 non-conflicting ones. */
15256 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15257 {
15258 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15259 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15260 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15261 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15262 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15263 {
15264 case Val_GNU_MIPS_ABI_MSA_128:
15265 _bfd_error_handler
15266 /* xgettext:c-format */
15267 (_("warning: %pB uses %s (set by %pB), "
15268 "%pB uses unknown MSA ABI %d"),
15269 obfd, "-mmsa", abi_msa_bfd,
15270 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15271 break;
15272
15273 default:
15274 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15275 {
15276 case Val_GNU_MIPS_ABI_MSA_128:
15277 _bfd_error_handler
15278 /* xgettext:c-format */
15279 (_("warning: %pB uses unknown MSA ABI %d "
15280 "(set by %pB), %pB uses %s"),
15281 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15282 abi_msa_bfd, ibfd, "-mmsa");
15283 break;
15284
15285 default:
15286 _bfd_error_handler
15287 /* xgettext:c-format */
15288 (_("warning: %pB uses unknown MSA ABI %d "
15289 "(set by %pB), %pB uses unknown MSA ABI %d"),
15290 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15291 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15292 break;
15293 }
15294 }
15295 }
15296
15297 /* Merge Tag_compatibility attributes and any common GNU ones. */
15298 return _bfd_elf_merge_object_attributes (ibfd, info);
15299 }
15300
15301 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15302 there are conflicting settings. */
15303
15304 static bfd_boolean
15305 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15306 {
15307 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15308 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15309 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15310
15311 /* Update the output abiflags fp_abi using the computed fp_abi. */
15312 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15313
15314 #define max(a, b) ((a) > (b) ? (a) : (b))
15315 /* Merge abiflags. */
15316 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15317 in_tdata->abiflags.isa_level);
15318 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15319 in_tdata->abiflags.isa_rev);
15320 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15321 in_tdata->abiflags.gpr_size);
15322 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15323 in_tdata->abiflags.cpr1_size);
15324 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15325 in_tdata->abiflags.cpr2_size);
15326 #undef max
15327 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15328 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15329
15330 return TRUE;
15331 }
15332
15333 /* Merge backend specific data from an object file to the output
15334 object file when linking. */
15335
15336 bfd_boolean
15337 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15338 {
15339 bfd *obfd = info->output_bfd;
15340 struct mips_elf_obj_tdata *out_tdata;
15341 struct mips_elf_obj_tdata *in_tdata;
15342 bfd_boolean null_input_bfd = TRUE;
15343 asection *sec;
15344 bfd_boolean ok;
15345
15346 /* Check if we have the same endianness. */
15347 if (! _bfd_generic_verify_endian_match (ibfd, info))
15348 {
15349 _bfd_error_handler
15350 (_("%pB: endianness incompatible with that of the selected emulation"),
15351 ibfd);
15352 return FALSE;
15353 }
15354
15355 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15356 return TRUE;
15357
15358 in_tdata = mips_elf_tdata (ibfd);
15359 out_tdata = mips_elf_tdata (obfd);
15360
15361 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15362 {
15363 _bfd_error_handler
15364 (_("%pB: ABI is incompatible with that of the selected emulation"),
15365 ibfd);
15366 return FALSE;
15367 }
15368
15369 /* Check to see if the input BFD actually contains any sections. If not,
15370 then it has no attributes, and its flags may not have been initialized
15371 either, but it cannot actually cause any incompatibility. */
15372 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15373 {
15374 /* Ignore synthetic sections and empty .text, .data and .bss sections
15375 which are automatically generated by gas. Also ignore fake
15376 (s)common sections, since merely defining a common symbol does
15377 not affect compatibility. */
15378 if ((sec->flags & SEC_IS_COMMON) == 0
15379 && strcmp (sec->name, ".reginfo")
15380 && strcmp (sec->name, ".mdebug")
15381 && (sec->size != 0
15382 || (strcmp (sec->name, ".text")
15383 && strcmp (sec->name, ".data")
15384 && strcmp (sec->name, ".bss"))))
15385 {
15386 null_input_bfd = FALSE;
15387 break;
15388 }
15389 }
15390 if (null_input_bfd)
15391 return TRUE;
15392
15393 /* Populate abiflags using existing information. */
15394 if (in_tdata->abiflags_valid)
15395 {
15396 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15397 Elf_Internal_ABIFlags_v0 in_abiflags;
15398 Elf_Internal_ABIFlags_v0 abiflags;
15399
15400 /* Set up the FP ABI attribute from the abiflags if it is not already
15401 set. */
15402 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15403 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15404
15405 infer_mips_abiflags (ibfd, &abiflags);
15406 in_abiflags = in_tdata->abiflags;
15407
15408 /* It is not possible to infer the correct ISA revision
15409 for R3 or R5 so drop down to R2 for the checks. */
15410 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15411 in_abiflags.isa_rev = 2;
15412
15413 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15414 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15415 _bfd_error_handler
15416 (_("%pB: warning: inconsistent ISA between e_flags and "
15417 ".MIPS.abiflags"), ibfd);
15418 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15419 && in_abiflags.fp_abi != abiflags.fp_abi)
15420 _bfd_error_handler
15421 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15422 ".MIPS.abiflags"), ibfd);
15423 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15424 _bfd_error_handler
15425 (_("%pB: warning: inconsistent ASEs between e_flags and "
15426 ".MIPS.abiflags"), ibfd);
15427 /* The isa_ext is allowed to be an extension of what can be inferred
15428 from e_flags. */
15429 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15430 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15431 _bfd_error_handler
15432 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15433 ".MIPS.abiflags"), ibfd);
15434 if (in_abiflags.flags2 != 0)
15435 _bfd_error_handler
15436 (_("%pB: warning: unexpected flag in the flags2 field of "
15437 ".MIPS.abiflags (0x%lx)"), ibfd,
15438 in_abiflags.flags2);
15439 }
15440 else
15441 {
15442 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15443 in_tdata->abiflags_valid = TRUE;
15444 }
15445
15446 if (!out_tdata->abiflags_valid)
15447 {
15448 /* Copy input abiflags if output abiflags are not already valid. */
15449 out_tdata->abiflags = in_tdata->abiflags;
15450 out_tdata->abiflags_valid = TRUE;
15451 }
15452
15453 if (! elf_flags_init (obfd))
15454 {
15455 elf_flags_init (obfd) = TRUE;
15456 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15457 elf_elfheader (obfd)->e_ident[EI_CLASS]
15458 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15459
15460 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15461 && (bfd_get_arch_info (obfd)->the_default
15462 || mips_mach_extends_p (bfd_get_mach (obfd),
15463 bfd_get_mach (ibfd))))
15464 {
15465 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15466 bfd_get_mach (ibfd)))
15467 return FALSE;
15468
15469 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15470 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15471 }
15472
15473 ok = TRUE;
15474 }
15475 else
15476 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15477
15478 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15479
15480 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15481
15482 if (!ok)
15483 {
15484 bfd_set_error (bfd_error_bad_value);
15485 return FALSE;
15486 }
15487
15488 return TRUE;
15489 }
15490
15491 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15492
15493 bfd_boolean
15494 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15495 {
15496 BFD_ASSERT (!elf_flags_init (abfd)
15497 || elf_elfheader (abfd)->e_flags == flags);
15498
15499 elf_elfheader (abfd)->e_flags = flags;
15500 elf_flags_init (abfd) = TRUE;
15501 return TRUE;
15502 }
15503
15504 char *
15505 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15506 {
15507 switch (dtag)
15508 {
15509 default: return "";
15510 case DT_MIPS_RLD_VERSION:
15511 return "MIPS_RLD_VERSION";
15512 case DT_MIPS_TIME_STAMP:
15513 return "MIPS_TIME_STAMP";
15514 case DT_MIPS_ICHECKSUM:
15515 return "MIPS_ICHECKSUM";
15516 case DT_MIPS_IVERSION:
15517 return "MIPS_IVERSION";
15518 case DT_MIPS_FLAGS:
15519 return "MIPS_FLAGS";
15520 case DT_MIPS_BASE_ADDRESS:
15521 return "MIPS_BASE_ADDRESS";
15522 case DT_MIPS_MSYM:
15523 return "MIPS_MSYM";
15524 case DT_MIPS_CONFLICT:
15525 return "MIPS_CONFLICT";
15526 case DT_MIPS_LIBLIST:
15527 return "MIPS_LIBLIST";
15528 case DT_MIPS_LOCAL_GOTNO:
15529 return "MIPS_LOCAL_GOTNO";
15530 case DT_MIPS_CONFLICTNO:
15531 return "MIPS_CONFLICTNO";
15532 case DT_MIPS_LIBLISTNO:
15533 return "MIPS_LIBLISTNO";
15534 case DT_MIPS_SYMTABNO:
15535 return "MIPS_SYMTABNO";
15536 case DT_MIPS_UNREFEXTNO:
15537 return "MIPS_UNREFEXTNO";
15538 case DT_MIPS_GOTSYM:
15539 return "MIPS_GOTSYM";
15540 case DT_MIPS_HIPAGENO:
15541 return "MIPS_HIPAGENO";
15542 case DT_MIPS_RLD_MAP:
15543 return "MIPS_RLD_MAP";
15544 case DT_MIPS_RLD_MAP_REL:
15545 return "MIPS_RLD_MAP_REL";
15546 case DT_MIPS_DELTA_CLASS:
15547 return "MIPS_DELTA_CLASS";
15548 case DT_MIPS_DELTA_CLASS_NO:
15549 return "MIPS_DELTA_CLASS_NO";
15550 case DT_MIPS_DELTA_INSTANCE:
15551 return "MIPS_DELTA_INSTANCE";
15552 case DT_MIPS_DELTA_INSTANCE_NO:
15553 return "MIPS_DELTA_INSTANCE_NO";
15554 case DT_MIPS_DELTA_RELOC:
15555 return "MIPS_DELTA_RELOC";
15556 case DT_MIPS_DELTA_RELOC_NO:
15557 return "MIPS_DELTA_RELOC_NO";
15558 case DT_MIPS_DELTA_SYM:
15559 return "MIPS_DELTA_SYM";
15560 case DT_MIPS_DELTA_SYM_NO:
15561 return "MIPS_DELTA_SYM_NO";
15562 case DT_MIPS_DELTA_CLASSSYM:
15563 return "MIPS_DELTA_CLASSSYM";
15564 case DT_MIPS_DELTA_CLASSSYM_NO:
15565 return "MIPS_DELTA_CLASSSYM_NO";
15566 case DT_MIPS_CXX_FLAGS:
15567 return "MIPS_CXX_FLAGS";
15568 case DT_MIPS_PIXIE_INIT:
15569 return "MIPS_PIXIE_INIT";
15570 case DT_MIPS_SYMBOL_LIB:
15571 return "MIPS_SYMBOL_LIB";
15572 case DT_MIPS_LOCALPAGE_GOTIDX:
15573 return "MIPS_LOCALPAGE_GOTIDX";
15574 case DT_MIPS_LOCAL_GOTIDX:
15575 return "MIPS_LOCAL_GOTIDX";
15576 case DT_MIPS_HIDDEN_GOTIDX:
15577 return "MIPS_HIDDEN_GOTIDX";
15578 case DT_MIPS_PROTECTED_GOTIDX:
15579 return "MIPS_PROTECTED_GOT_IDX";
15580 case DT_MIPS_OPTIONS:
15581 return "MIPS_OPTIONS";
15582 case DT_MIPS_INTERFACE:
15583 return "MIPS_INTERFACE";
15584 case DT_MIPS_DYNSTR_ALIGN:
15585 return "DT_MIPS_DYNSTR_ALIGN";
15586 case DT_MIPS_INTERFACE_SIZE:
15587 return "DT_MIPS_INTERFACE_SIZE";
15588 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15589 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15590 case DT_MIPS_PERF_SUFFIX:
15591 return "DT_MIPS_PERF_SUFFIX";
15592 case DT_MIPS_COMPACT_SIZE:
15593 return "DT_MIPS_COMPACT_SIZE";
15594 case DT_MIPS_GP_VALUE:
15595 return "DT_MIPS_GP_VALUE";
15596 case DT_MIPS_AUX_DYNAMIC:
15597 return "DT_MIPS_AUX_DYNAMIC";
15598 case DT_MIPS_PLTGOT:
15599 return "DT_MIPS_PLTGOT";
15600 case DT_MIPS_RWPLT:
15601 return "DT_MIPS_RWPLT";
15602 }
15603 }
15604
15605 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15606 not known. */
15607
15608 const char *
15609 _bfd_mips_fp_abi_string (int fp)
15610 {
15611 switch (fp)
15612 {
15613 /* These strings aren't translated because they're simply
15614 option lists. */
15615 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15616 return "-mdouble-float";
15617
15618 case Val_GNU_MIPS_ABI_FP_SINGLE:
15619 return "-msingle-float";
15620
15621 case Val_GNU_MIPS_ABI_FP_SOFT:
15622 return "-msoft-float";
15623
15624 case Val_GNU_MIPS_ABI_FP_OLD_64:
15625 return _("-mips32r2 -mfp64 (12 callee-saved)");
15626
15627 case Val_GNU_MIPS_ABI_FP_XX:
15628 return "-mfpxx";
15629
15630 case Val_GNU_MIPS_ABI_FP_64:
15631 return "-mgp32 -mfp64";
15632
15633 case Val_GNU_MIPS_ABI_FP_64A:
15634 return "-mgp32 -mfp64 -mno-odd-spreg";
15635
15636 default:
15637 return 0;
15638 }
15639 }
15640
15641 static void
15642 print_mips_ases (FILE *file, unsigned int mask)
15643 {
15644 if (mask & AFL_ASE_DSP)
15645 fputs ("\n\tDSP ASE", file);
15646 if (mask & AFL_ASE_DSPR2)
15647 fputs ("\n\tDSP R2 ASE", file);
15648 if (mask & AFL_ASE_DSPR3)
15649 fputs ("\n\tDSP R3 ASE", file);
15650 if (mask & AFL_ASE_EVA)
15651 fputs ("\n\tEnhanced VA Scheme", file);
15652 if (mask & AFL_ASE_MCU)
15653 fputs ("\n\tMCU (MicroController) ASE", file);
15654 if (mask & AFL_ASE_MDMX)
15655 fputs ("\n\tMDMX ASE", file);
15656 if (mask & AFL_ASE_MIPS3D)
15657 fputs ("\n\tMIPS-3D ASE", file);
15658 if (mask & AFL_ASE_MT)
15659 fputs ("\n\tMT ASE", file);
15660 if (mask & AFL_ASE_SMARTMIPS)
15661 fputs ("\n\tSmartMIPS ASE", file);
15662 if (mask & AFL_ASE_VIRT)
15663 fputs ("\n\tVZ ASE", file);
15664 if (mask & AFL_ASE_MSA)
15665 fputs ("\n\tMSA ASE", file);
15666 if (mask & AFL_ASE_MIPS16)
15667 fputs ("\n\tMIPS16 ASE", file);
15668 if (mask & AFL_ASE_MICROMIPS)
15669 fputs ("\n\tMICROMIPS ASE", file);
15670 if (mask & AFL_ASE_XPA)
15671 fputs ("\n\tXPA ASE", file);
15672 if (mask & AFL_ASE_MIPS16E2)
15673 fputs ("\n\tMIPS16e2 ASE", file);
15674 if (mask & AFL_ASE_CRC)
15675 fputs ("\n\tCRC ASE", file);
15676 if (mask & AFL_ASE_GINV)
15677 fputs ("\n\tGINV ASE", file);
15678 if (mask == 0)
15679 fprintf (file, "\n\t%s", _("None"));
15680 else if ((mask & ~AFL_ASE_MASK) != 0)
15681 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15682 }
15683
15684 static void
15685 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15686 {
15687 switch (isa_ext)
15688 {
15689 case 0:
15690 fputs (_("None"), file);
15691 break;
15692 case AFL_EXT_XLR:
15693 fputs ("RMI XLR", file);
15694 break;
15695 case AFL_EXT_OCTEON3:
15696 fputs ("Cavium Networks Octeon3", file);
15697 break;
15698 case AFL_EXT_OCTEON2:
15699 fputs ("Cavium Networks Octeon2", file);
15700 break;
15701 case AFL_EXT_OCTEONP:
15702 fputs ("Cavium Networks OcteonP", file);
15703 break;
15704 case AFL_EXT_LOONGSON_3A:
15705 fputs ("Loongson 3A", file);
15706 break;
15707 case AFL_EXT_OCTEON:
15708 fputs ("Cavium Networks Octeon", file);
15709 break;
15710 case AFL_EXT_5900:
15711 fputs ("Toshiba R5900", file);
15712 break;
15713 case AFL_EXT_4650:
15714 fputs ("MIPS R4650", file);
15715 break;
15716 case AFL_EXT_4010:
15717 fputs ("LSI R4010", file);
15718 break;
15719 case AFL_EXT_4100:
15720 fputs ("NEC VR4100", file);
15721 break;
15722 case AFL_EXT_3900:
15723 fputs ("Toshiba R3900", file);
15724 break;
15725 case AFL_EXT_10000:
15726 fputs ("MIPS R10000", file);
15727 break;
15728 case AFL_EXT_SB1:
15729 fputs ("Broadcom SB-1", file);
15730 break;
15731 case AFL_EXT_4111:
15732 fputs ("NEC VR4111/VR4181", file);
15733 break;
15734 case AFL_EXT_4120:
15735 fputs ("NEC VR4120", file);
15736 break;
15737 case AFL_EXT_5400:
15738 fputs ("NEC VR5400", file);
15739 break;
15740 case AFL_EXT_5500:
15741 fputs ("NEC VR5500", file);
15742 break;
15743 case AFL_EXT_LOONGSON_2E:
15744 fputs ("ST Microelectronics Loongson 2E", file);
15745 break;
15746 case AFL_EXT_LOONGSON_2F:
15747 fputs ("ST Microelectronics Loongson 2F", file);
15748 break;
15749 case AFL_EXT_INTERAPTIV_MR2:
15750 fputs ("Imagination interAptiv MR2", file);
15751 break;
15752 default:
15753 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15754 break;
15755 }
15756 }
15757
15758 static void
15759 print_mips_fp_abi_value (FILE *file, int val)
15760 {
15761 switch (val)
15762 {
15763 case Val_GNU_MIPS_ABI_FP_ANY:
15764 fprintf (file, _("Hard or soft float\n"));
15765 break;
15766 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15767 fprintf (file, _("Hard float (double precision)\n"));
15768 break;
15769 case Val_GNU_MIPS_ABI_FP_SINGLE:
15770 fprintf (file, _("Hard float (single precision)\n"));
15771 break;
15772 case Val_GNU_MIPS_ABI_FP_SOFT:
15773 fprintf (file, _("Soft float\n"));
15774 break;
15775 case Val_GNU_MIPS_ABI_FP_OLD_64:
15776 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15777 break;
15778 case Val_GNU_MIPS_ABI_FP_XX:
15779 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15780 break;
15781 case Val_GNU_MIPS_ABI_FP_64:
15782 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15783 break;
15784 case Val_GNU_MIPS_ABI_FP_64A:
15785 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15786 break;
15787 default:
15788 fprintf (file, "??? (%d)\n", val);
15789 break;
15790 }
15791 }
15792
15793 static int
15794 get_mips_reg_size (int reg_size)
15795 {
15796 return (reg_size == AFL_REG_NONE) ? 0
15797 : (reg_size == AFL_REG_32) ? 32
15798 : (reg_size == AFL_REG_64) ? 64
15799 : (reg_size == AFL_REG_128) ? 128
15800 : -1;
15801 }
15802
15803 bfd_boolean
15804 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15805 {
15806 FILE *file = ptr;
15807
15808 BFD_ASSERT (abfd != NULL && ptr != NULL);
15809
15810 /* Print normal ELF private data. */
15811 _bfd_elf_print_private_bfd_data (abfd, ptr);
15812
15813 /* xgettext:c-format */
15814 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15815
15816 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15817 fprintf (file, _(" [abi=O32]"));
15818 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15819 fprintf (file, _(" [abi=O64]"));
15820 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15821 fprintf (file, _(" [abi=EABI32]"));
15822 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15823 fprintf (file, _(" [abi=EABI64]"));
15824 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15825 fprintf (file, _(" [abi unknown]"));
15826 else if (ABI_N32_P (abfd))
15827 fprintf (file, _(" [abi=N32]"));
15828 else if (ABI_64_P (abfd))
15829 fprintf (file, _(" [abi=64]"));
15830 else
15831 fprintf (file, _(" [no abi set]"));
15832
15833 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15834 fprintf (file, " [mips1]");
15835 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15836 fprintf (file, " [mips2]");
15837 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15838 fprintf (file, " [mips3]");
15839 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15840 fprintf (file, " [mips4]");
15841 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15842 fprintf (file, " [mips5]");
15843 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15844 fprintf (file, " [mips32]");
15845 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15846 fprintf (file, " [mips64]");
15847 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15848 fprintf (file, " [mips32r2]");
15849 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15850 fprintf (file, " [mips64r2]");
15851 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15852 fprintf (file, " [mips32r6]");
15853 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15854 fprintf (file, " [mips64r6]");
15855 else
15856 fprintf (file, _(" [unknown ISA]"));
15857
15858 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15859 fprintf (file, " [mdmx]");
15860
15861 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15862 fprintf (file, " [mips16]");
15863
15864 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15865 fprintf (file, " [micromips]");
15866
15867 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15868 fprintf (file, " [nan2008]");
15869
15870 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15871 fprintf (file, " [old fp64]");
15872
15873 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15874 fprintf (file, " [32bitmode]");
15875 else
15876 fprintf (file, _(" [not 32bitmode]"));
15877
15878 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15879 fprintf (file, " [noreorder]");
15880
15881 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15882 fprintf (file, " [PIC]");
15883
15884 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15885 fprintf (file, " [CPIC]");
15886
15887 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15888 fprintf (file, " [XGOT]");
15889
15890 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15891 fprintf (file, " [UCODE]");
15892
15893 fputc ('\n', file);
15894
15895 if (mips_elf_tdata (abfd)->abiflags_valid)
15896 {
15897 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15898 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15899 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15900 if (abiflags->isa_rev > 1)
15901 fprintf (file, "r%d", abiflags->isa_rev);
15902 fprintf (file, "\nGPR size: %d",
15903 get_mips_reg_size (abiflags->gpr_size));
15904 fprintf (file, "\nCPR1 size: %d",
15905 get_mips_reg_size (abiflags->cpr1_size));
15906 fprintf (file, "\nCPR2 size: %d",
15907 get_mips_reg_size (abiflags->cpr2_size));
15908 fputs ("\nFP ABI: ", file);
15909 print_mips_fp_abi_value (file, abiflags->fp_abi);
15910 fputs ("ISA Extension: ", file);
15911 print_mips_isa_ext (file, abiflags->isa_ext);
15912 fputs ("\nASEs:", file);
15913 print_mips_ases (file, abiflags->ases);
15914 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15915 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15916 fputc ('\n', file);
15917 }
15918
15919 return TRUE;
15920 }
15921
15922 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15923 {
15924 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15925 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15926 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15927 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15928 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15929 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15930 { NULL, 0, 0, 0, 0 }
15931 };
15932
15933 /* Merge non visibility st_other attributes. Ensure that the
15934 STO_OPTIONAL flag is copied into h->other, even if this is not a
15935 definiton of the symbol. */
15936 void
15937 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15938 const Elf_Internal_Sym *isym,
15939 bfd_boolean definition,
15940 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15941 {
15942 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15943 {
15944 unsigned char other;
15945
15946 other = (definition ? isym->st_other : h->other);
15947 other &= ~ELF_ST_VISIBILITY (-1);
15948 h->other = other | ELF_ST_VISIBILITY (h->other);
15949 }
15950
15951 if (!definition
15952 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15953 h->other |= STO_OPTIONAL;
15954 }
15955
15956 /* Decide whether an undefined symbol is special and can be ignored.
15957 This is the case for OPTIONAL symbols on IRIX. */
15958 bfd_boolean
15959 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15960 {
15961 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15962 }
15963
15964 bfd_boolean
15965 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15966 {
15967 return (sym->st_shndx == SHN_COMMON
15968 || sym->st_shndx == SHN_MIPS_ACOMMON
15969 || sym->st_shndx == SHN_MIPS_SCOMMON);
15970 }
15971
15972 /* Return address for Ith PLT stub in section PLT, for relocation REL
15973 or (bfd_vma) -1 if it should not be included. */
15974
15975 bfd_vma
15976 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15977 const arelent *rel ATTRIBUTE_UNUSED)
15978 {
15979 return (plt->vma
15980 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15981 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15982 }
15983
15984 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15985 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15986 and .got.plt and also the slots may be of a different size each we walk
15987 the PLT manually fetching instructions and matching them against known
15988 patterns. To make things easier standard MIPS slots, if any, always come
15989 first. As we don't create proper ELF symbols we use the UDATA.I member
15990 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15991 with the ST_OTHER member of the ELF symbol. */
15992
15993 long
15994 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15995 long symcount ATTRIBUTE_UNUSED,
15996 asymbol **syms ATTRIBUTE_UNUSED,
15997 long dynsymcount, asymbol **dynsyms,
15998 asymbol **ret)
15999 {
16000 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16001 static const char microsuffix[] = "@micromipsplt";
16002 static const char m16suffix[] = "@mips16plt";
16003 static const char mipssuffix[] = "@plt";
16004
16005 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16006 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16007 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16008 Elf_Internal_Shdr *hdr;
16009 bfd_byte *plt_data;
16010 bfd_vma plt_offset;
16011 unsigned int other;
16012 bfd_vma entry_size;
16013 bfd_vma plt0_size;
16014 asection *relplt;
16015 bfd_vma opcode;
16016 asection *plt;
16017 asymbol *send;
16018 size_t size;
16019 char *names;
16020 long counti;
16021 arelent *p;
16022 asymbol *s;
16023 char *nend;
16024 long count;
16025 long pi;
16026 long i;
16027 long n;
16028
16029 *ret = NULL;
16030
16031 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16032 return 0;
16033
16034 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16035 if (relplt == NULL)
16036 return 0;
16037
16038 hdr = &elf_section_data (relplt)->this_hdr;
16039 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16040 return 0;
16041
16042 plt = bfd_get_section_by_name (abfd, ".plt");
16043 if (plt == NULL)
16044 return 0;
16045
16046 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16047 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16048 return -1;
16049 p = relplt->relocation;
16050
16051 /* Calculating the exact amount of space required for symbols would
16052 require two passes over the PLT, so just pessimise assuming two
16053 PLT slots per relocation. */
16054 count = relplt->size / hdr->sh_entsize;
16055 counti = count * bed->s->int_rels_per_ext_rel;
16056 size = 2 * count * sizeof (asymbol);
16057 size += count * (sizeof (mipssuffix) +
16058 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16059 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16060 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16061
16062 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16063 size += sizeof (asymbol) + sizeof (pltname);
16064
16065 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16066 return -1;
16067
16068 if (plt->size < 16)
16069 return -1;
16070
16071 s = *ret = bfd_malloc (size);
16072 if (s == NULL)
16073 return -1;
16074 send = s + 2 * count + 1;
16075
16076 names = (char *) send;
16077 nend = (char *) s + size;
16078 n = 0;
16079
16080 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16081 if (opcode == 0x3302fffe)
16082 {
16083 if (!micromips_p)
16084 return -1;
16085 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16086 other = STO_MICROMIPS;
16087 }
16088 else if (opcode == 0x0398c1d0)
16089 {
16090 if (!micromips_p)
16091 return -1;
16092 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16093 other = STO_MICROMIPS;
16094 }
16095 else
16096 {
16097 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16098 other = 0;
16099 }
16100
16101 s->the_bfd = abfd;
16102 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16103 s->section = plt;
16104 s->value = 0;
16105 s->name = names;
16106 s->udata.i = other;
16107 memcpy (names, pltname, sizeof (pltname));
16108 names += sizeof (pltname);
16109 ++s, ++n;
16110
16111 pi = 0;
16112 for (plt_offset = plt0_size;
16113 plt_offset + 8 <= plt->size && s < send;
16114 plt_offset += entry_size)
16115 {
16116 bfd_vma gotplt_addr;
16117 const char *suffix;
16118 bfd_vma gotplt_hi;
16119 bfd_vma gotplt_lo;
16120 size_t suffixlen;
16121
16122 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16123
16124 /* Check if the second word matches the expected MIPS16 instruction. */
16125 if (opcode == 0x651aeb00)
16126 {
16127 if (micromips_p)
16128 return -1;
16129 /* Truncated table??? */
16130 if (plt_offset + 16 > plt->size)
16131 break;
16132 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16133 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16134 suffixlen = sizeof (m16suffix);
16135 suffix = m16suffix;
16136 other = STO_MIPS16;
16137 }
16138 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16139 else if (opcode == 0xff220000)
16140 {
16141 if (!micromips_p)
16142 return -1;
16143 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16144 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16145 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16146 gotplt_lo <<= 2;
16147 gotplt_addr = gotplt_hi + gotplt_lo;
16148 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16149 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16150 suffixlen = sizeof (microsuffix);
16151 suffix = microsuffix;
16152 other = STO_MICROMIPS;
16153 }
16154 /* Likewise the expected microMIPS instruction (insn32 mode). */
16155 else if ((opcode & 0xffff0000) == 0xff2f0000)
16156 {
16157 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16158 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16159 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16160 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16161 gotplt_addr = gotplt_hi + gotplt_lo;
16162 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16163 suffixlen = sizeof (microsuffix);
16164 suffix = microsuffix;
16165 other = STO_MICROMIPS;
16166 }
16167 /* Otherwise assume standard MIPS code. */
16168 else
16169 {
16170 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16171 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16172 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16173 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16174 gotplt_addr = gotplt_hi + gotplt_lo;
16175 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16176 suffixlen = sizeof (mipssuffix);
16177 suffix = mipssuffix;
16178 other = 0;
16179 }
16180 /* Truncated table??? */
16181 if (plt_offset + entry_size > plt->size)
16182 break;
16183
16184 for (i = 0;
16185 i < count && p[pi].address != gotplt_addr;
16186 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16187
16188 if (i < count)
16189 {
16190 size_t namelen;
16191 size_t len;
16192
16193 *s = **p[pi].sym_ptr_ptr;
16194 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16195 we are defining a symbol, ensure one of them is set. */
16196 if ((s->flags & BSF_LOCAL) == 0)
16197 s->flags |= BSF_GLOBAL;
16198 s->flags |= BSF_SYNTHETIC;
16199 s->section = plt;
16200 s->value = plt_offset;
16201 s->name = names;
16202 s->udata.i = other;
16203
16204 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16205 namelen = len + suffixlen;
16206 if (names + namelen > nend)
16207 break;
16208
16209 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16210 names += len;
16211 memcpy (names, suffix, suffixlen);
16212 names += suffixlen;
16213
16214 ++s, ++n;
16215 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16216 }
16217 }
16218
16219 free (plt_data);
16220
16221 return n;
16222 }
16223
16224 /* Return the ABI flags associated with ABFD if available. */
16225
16226 Elf_Internal_ABIFlags_v0 *
16227 bfd_mips_elf_get_abiflags (bfd *abfd)
16228 {
16229 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16230
16231 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16232 }
16233
16234 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16235 field. Taken from `libc-abis.h' generated at GNU libc build time.
16236 Using a MIPS_ prefix as other libc targets use different values. */
16237 enum
16238 {
16239 MIPS_LIBC_ABI_DEFAULT = 0,
16240 MIPS_LIBC_ABI_MIPS_PLT,
16241 MIPS_LIBC_ABI_UNIQUE,
16242 MIPS_LIBC_ABI_MIPS_O32_FP64,
16243 MIPS_LIBC_ABI_MAX
16244 };
16245
16246 void
16247 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16248 {
16249 struct mips_elf_link_hash_table *htab;
16250 Elf_Internal_Ehdr *i_ehdrp;
16251
16252 i_ehdrp = elf_elfheader (abfd);
16253 if (link_info)
16254 {
16255 htab = mips_elf_hash_table (link_info);
16256 BFD_ASSERT (htab != NULL);
16257
16258 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16259 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16260 }
16261
16262 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16263 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16264 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16265
16266 _bfd_elf_post_process_headers (abfd, link_info);
16267 }
16268
16269 int
16270 _bfd_mips_elf_compact_eh_encoding
16271 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16272 {
16273 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16274 }
16275
16276 /* Return the opcode for can't unwind. */
16277
16278 int
16279 _bfd_mips_elf_cant_unwind_opcode
16280 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16281 {
16282 return COMPACT_EH_CANT_UNWIND_OPCODE;
16283 }
This page took 0.339207 seconds and 5 git commands to generate.