gdb: fix vfork with multiple threads
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2021 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
228
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table. If the element is to
237 be included, the <<add_archive_element>> linker callback
238 routine must be called with the element as an argument, and
239 the element's symbols must be added to the linker hash table
240 just as though the element had itself been passed to the
241 <<_bfd_link_add_symbols>> function.
242
243 When the a.out <<_bfd_link_add_symbols>> function receives an
244 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 passing <<aout_link_check_archive_element>> as the function
246 argument. <<aout_link_check_archive_element>> calls
247 <<aout_link_check_ar_symbols>>. If the latter decides to add
248 the element (an element is only added if it provides a real,
249 non-common, definition for a previously undefined or common
250 symbol) it calls the <<add_archive_element>> callback and then
251 <<aout_link_check_archive_element>> calls
252 <<aout_link_add_symbols>> to actually add the symbols to the
253 linker hash table - possibly those of a substitute BFD, if the
254 <<add_archive_element>> callback avails itself of that option.
255
256 The ECOFF back end is unusual in that it does not normally
257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 archives already contain a hash table of symbols. The ECOFF
259 back end searches the archive itself to avoid the overhead of
260 creating a new hash table.
261
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 Performing the final link
266
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 When all the input files have been processed, the linker calls
270 the <<_bfd_final_link>> entry point of the output BFD. This
271 routine is responsible for producing the final output file,
272 which has several aspects. It must relocate the contents of
273 the input sections and copy the data into the output sections.
274 It must build an output symbol table including any local
275 symbols from the input files and the global symbols from the
276 hash table. When producing relocatable output, it must
277 modify the input relocs and write them into the output file.
278 There may also be object format dependent work to be done.
279
280 The linker will also call the <<write_object_contents>> entry
281 point when the BFD is closed. The two entry points must work
282 together in order to produce the correct output file.
283
284 The details of how this works are inevitably dependent upon
285 the specific object file format. The a.out
286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 Information provided by the linker
298
299 Before the linker calls the <<_bfd_final_link>> entry point,
300 it sets up some data structures for the function to use.
301
302 The <<input_bfds>> field of the <<bfd_link_info>> structure
303 will point to a list of all the input files included in the
304 link. These files are linked through the <<link.next>> field
305 of the <<bfd>> structure.
306
307 Each section in the output file will have a list of
308 <<link_order>> structures attached to the <<map_head.link_order>>
309 field (the <<link_order>> structure is defined in
310 <<bfdlink.h>>). These structures describe how to create the
311 contents of the output section in terms of the contents of
312 various input sections, fill constants, and, eventually, other
313 types of information. They also describe relocs that must be
314 created by the BFD backend, but do not correspond to any input
315 file; this is used to support -Ur, which builds constructors
316 while generating a relocatable object file.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocatable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files.
381
382 The <<strip>> field of the <<bfd_link_info>> structure
383 controls which symbols are written out. The possible values
384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
385 then the <<keep_hash>> field of the <<bfd_link_info>>
386 structure is a hash table of symbols to keep; each symbol
387 should be looked up in this hash table, and only symbols which
388 are present should be included in the output file.
389
390 If the <<strip>> field of the <<bfd_link_info>> structure
391 permits local symbols to be written out, the <<discard>> field
392 is used to further controls which local symbols are included
393 in the output file. If the value is <<discard_l>>, then all
394 local symbols which begin with a certain prefix are discarded;
395 this is controlled by the <<bfd_is_local_label_name>> entry point.
396
397 The a.out backend handles symbols by calling
398 <<aout_link_write_symbols>> on each input BFD and then
399 traversing the global hash table with the function
400 <<aout_link_write_other_symbol>>. It builds a string table
401 while writing out the symbols, which is written to the output
402 file at the end of <<NAME(aout,final_link)>>.
403 */
404
405 static bool generic_link_add_object_symbols
406 (bfd *, struct bfd_link_info *);
407 static bool generic_link_check_archive_element
408 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
409 bool *);
410 static bool generic_link_add_symbol_list
411 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **);
412 static bool generic_add_output_symbol
413 (bfd *, size_t *psymalloc, asymbol *);
414 static bool default_data_link_order
415 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
416 static bool default_indirect_link_order
417 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
418 bool);
419
420 /* The link hash table structure is defined in bfdlink.h. It provides
421 a base hash table which the backend specific hash tables are built
422 upon. */
423
424 /* Routine to create an entry in the link hash table. */
425
426 struct bfd_hash_entry *
427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
428 struct bfd_hash_table *table,
429 const char *string)
430 {
431 /* Allocate the structure if it has not already been allocated by a
432 subclass. */
433 if (entry == NULL)
434 {
435 entry = (struct bfd_hash_entry *)
436 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
437 if (entry == NULL)
438 return entry;
439 }
440
441 /* Call the allocation method of the superclass. */
442 entry = bfd_hash_newfunc (entry, table, string);
443 if (entry)
444 {
445 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
446
447 /* Initialize the local fields. */
448 memset ((char *) &h->root + sizeof (h->root), 0,
449 sizeof (*h) - sizeof (h->root));
450 }
451
452 return entry;
453 }
454
455 /* Initialize a link hash table. The BFD argument is the one
456 responsible for creating this table. */
457
458 bool
459 _bfd_link_hash_table_init
460 (struct bfd_link_hash_table *table,
461 bfd *abfd ATTRIBUTE_UNUSED,
462 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
463 struct bfd_hash_table *,
464 const char *),
465 unsigned int entsize)
466 {
467 bool ret;
468
469 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
470 table->undefs = NULL;
471 table->undefs_tail = NULL;
472 table->type = bfd_link_generic_hash_table;
473
474 ret = bfd_hash_table_init (&table->table, newfunc, entsize);
475 if (ret)
476 {
477 /* Arrange for destruction of this hash table on closing ABFD. */
478 table->hash_table_free = _bfd_generic_link_hash_table_free;
479 abfd->link.hash = table;
480 abfd->is_linker_output = true;
481 }
482 return ret;
483 }
484
485 /* Look up a symbol in a link hash table. If follow is TRUE, we
486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
487 the real symbol.
488
489 .{* Return TRUE if the symbol described by a linker hash entry H
490 . is going to be absolute. Linker-script defined symbols can be
491 . converted from absolute to section-relative ones late in the
492 . link. Use this macro to correctly determine whether the symbol
493 . will actually end up absolute in output. *}
494 .#define bfd_is_abs_symbol(H) \
495 . (((H)->type == bfd_link_hash_defined \
496 . || (H)->type == bfd_link_hash_defweak) \
497 . && bfd_is_abs_section ((H)->u.def.section) \
498 . && !(H)->rel_from_abs)
499 .
500 */
501
502 struct bfd_link_hash_entry *
503 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
504 const char *string,
505 bool create,
506 bool copy,
507 bool follow)
508 {
509 struct bfd_link_hash_entry *ret;
510
511 if (table == NULL || string == NULL)
512 return NULL;
513
514 ret = ((struct bfd_link_hash_entry *)
515 bfd_hash_lookup (&table->table, string, create, copy));
516
517 if (follow && ret != NULL)
518 {
519 while (ret->type == bfd_link_hash_indirect
520 || ret->type == bfd_link_hash_warning)
521 ret = ret->u.i.link;
522 }
523
524 return ret;
525 }
526
527 /* Look up a symbol in the main linker hash table if the symbol might
528 be wrapped. This should only be used for references to an
529 undefined symbol, not for definitions of a symbol. */
530
531 struct bfd_link_hash_entry *
532 bfd_wrapped_link_hash_lookup (bfd *abfd,
533 struct bfd_link_info *info,
534 const char *string,
535 bool create,
536 bool copy,
537 bool follow)
538 {
539 size_t amt;
540
541 if (info->wrap_hash != NULL)
542 {
543 const char *l;
544 char prefix = '\0';
545
546 l = string;
547 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
548 {
549 prefix = *l;
550 ++l;
551 }
552
553 #undef WRAP
554 #define WRAP "__wrap_"
555
556 if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
557 {
558 char *n;
559 struct bfd_link_hash_entry *h;
560
561 /* This symbol is being wrapped. We want to replace all
562 references to SYM with references to __wrap_SYM. */
563
564 amt = strlen (l) + sizeof WRAP + 1;
565 n = (char *) bfd_malloc (amt);
566 if (n == NULL)
567 return NULL;
568
569 n[0] = prefix;
570 n[1] = '\0';
571 strcat (n, WRAP);
572 strcat (n, l);
573 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
574 free (n);
575 return h;
576 }
577
578 #undef REAL
579 #define REAL "__real_"
580
581 if (*l == '_'
582 && startswith (l, REAL)
583 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
584 false, false) != NULL)
585 {
586 char *n;
587 struct bfd_link_hash_entry *h;
588
589 /* This is a reference to __real_SYM, where SYM is being
590 wrapped. We want to replace all references to __real_SYM
591 with references to SYM. */
592
593 amt = strlen (l + sizeof REAL - 1) + 2;
594 n = (char *) bfd_malloc (amt);
595 if (n == NULL)
596 return NULL;
597
598 n[0] = prefix;
599 n[1] = '\0';
600 strcat (n, l + sizeof REAL - 1);
601 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
602 free (n);
603 return h;
604 }
605
606 #undef REAL
607 }
608
609 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
610 }
611
612 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
613 and the remainder is found in wrap_hash, return the real symbol. */
614
615 struct bfd_link_hash_entry *
616 unwrap_hash_lookup (struct bfd_link_info *info,
617 bfd *input_bfd,
618 struct bfd_link_hash_entry *h)
619 {
620 const char *l = h->root.string;
621
622 if (*l == bfd_get_symbol_leading_char (input_bfd)
623 || *l == info->wrap_char)
624 ++l;
625
626 if (startswith (l, WRAP))
627 {
628 l += sizeof WRAP - 1;
629
630 if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
631 {
632 char save = 0;
633 if (l - (sizeof WRAP - 1) != h->root.string)
634 {
635 --l;
636 save = *l;
637 *(char *) l = *h->root.string;
638 }
639 h = bfd_link_hash_lookup (info->hash, l, false, false, false);
640 if (save)
641 *(char *) l = save;
642 }
643 }
644 return h;
645 }
646 #undef WRAP
647
648 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
649 in the treatment of warning symbols. When warning symbols are
650 created they replace the real symbol, so you don't get to see the
651 real symbol in a bfd_hash_traverse. This traversal calls func with
652 the real symbol. */
653
654 void
655 bfd_link_hash_traverse
656 (struct bfd_link_hash_table *htab,
657 bool (*func) (struct bfd_link_hash_entry *, void *),
658 void *info)
659 {
660 unsigned int i;
661
662 htab->table.frozen = 1;
663 for (i = 0; i < htab->table.size; i++)
664 {
665 struct bfd_link_hash_entry *p;
666
667 p = (struct bfd_link_hash_entry *) htab->table.table[i];
668 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
669 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
670 goto out;
671 }
672 out:
673 htab->table.frozen = 0;
674 }
675
676 /* Add a symbol to the linker hash table undefs list. */
677
678 void
679 bfd_link_add_undef (struct bfd_link_hash_table *table,
680 struct bfd_link_hash_entry *h)
681 {
682 BFD_ASSERT (h->u.undef.next == NULL);
683 if (table->undefs_tail != NULL)
684 table->undefs_tail->u.undef.next = h;
685 if (table->undefs == NULL)
686 table->undefs = h;
687 table->undefs_tail = h;
688 }
689
690 /* The undefs list was designed so that in normal use we don't need to
691 remove entries. However, if symbols on the list are changed from
692 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
693 bfd_link_hash_new for some reason, then they must be removed from the
694 list. Failure to do so might result in the linker attempting to add
695 the symbol to the list again at a later stage. */
696
697 void
698 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
699 {
700 struct bfd_link_hash_entry **pun;
701
702 pun = &table->undefs;
703 while (*pun != NULL)
704 {
705 struct bfd_link_hash_entry *h = *pun;
706
707 if (h->type == bfd_link_hash_new
708 || h->type == bfd_link_hash_undefweak)
709 {
710 *pun = h->u.undef.next;
711 h->u.undef.next = NULL;
712 if (h == table->undefs_tail)
713 {
714 if (pun == &table->undefs)
715 table->undefs_tail = NULL;
716 else
717 /* pun points at an u.undef.next field. Go back to
718 the start of the link_hash_entry. */
719 table->undefs_tail = (struct bfd_link_hash_entry *)
720 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
721 break;
722 }
723 }
724 else
725 pun = &h->u.undef.next;
726 }
727 }
728 \f
729 /* Routine to create an entry in a generic link hash table. */
730
731 struct bfd_hash_entry *
732 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
733 struct bfd_hash_table *table,
734 const char *string)
735 {
736 /* Allocate the structure if it has not already been allocated by a
737 subclass. */
738 if (entry == NULL)
739 {
740 entry = (struct bfd_hash_entry *)
741 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
742 if (entry == NULL)
743 return entry;
744 }
745
746 /* Call the allocation method of the superclass. */
747 entry = _bfd_link_hash_newfunc (entry, table, string);
748 if (entry)
749 {
750 struct generic_link_hash_entry *ret;
751
752 /* Set local fields. */
753 ret = (struct generic_link_hash_entry *) entry;
754 ret->written = false;
755 ret->sym = NULL;
756 }
757
758 return entry;
759 }
760
761 /* Create a generic link hash table. */
762
763 struct bfd_link_hash_table *
764 _bfd_generic_link_hash_table_create (bfd *abfd)
765 {
766 struct generic_link_hash_table *ret;
767 size_t amt = sizeof (struct generic_link_hash_table);
768
769 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
770 if (ret == NULL)
771 return NULL;
772 if (! _bfd_link_hash_table_init (&ret->root, abfd,
773 _bfd_generic_link_hash_newfunc,
774 sizeof (struct generic_link_hash_entry)))
775 {
776 free (ret);
777 return NULL;
778 }
779 return &ret->root;
780 }
781
782 void
783 _bfd_generic_link_hash_table_free (bfd *obfd)
784 {
785 struct generic_link_hash_table *ret;
786
787 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
788 ret = (struct generic_link_hash_table *) obfd->link.hash;
789 bfd_hash_table_free (&ret->root.table);
790 free (ret);
791 obfd->link.hash = NULL;
792 obfd->is_linker_output = false;
793 }
794
795 /* Grab the symbols for an object file when doing a generic link. We
796 store the symbols in the outsymbols field. We need to keep them
797 around for the entire link to ensure that we only read them once.
798 If we read them multiple times, we might wind up with relocs and
799 the hash table pointing to different instances of the symbol
800 structure. */
801
802 bool
803 bfd_generic_link_read_symbols (bfd *abfd)
804 {
805 if (bfd_get_outsymbols (abfd) == NULL)
806 {
807 long symsize;
808 long symcount;
809
810 symsize = bfd_get_symtab_upper_bound (abfd);
811 if (symsize < 0)
812 return false;
813 abfd->outsymbols = bfd_alloc (abfd, symsize);
814 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
815 return false;
816 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
817 if (symcount < 0)
818 return false;
819 abfd->symcount = symcount;
820 }
821
822 return true;
823 }
824 \f
825 /* Indicate that we are only retrieving symbol values from this
826 section. We want the symbols to act as though the values in the
827 file are absolute. */
828
829 void
830 _bfd_generic_link_just_syms (asection *sec,
831 struct bfd_link_info *info ATTRIBUTE_UNUSED)
832 {
833 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
834 sec->output_section = bfd_abs_section_ptr;
835 sec->output_offset = sec->vma;
836 }
837
838 /* Copy the symbol type and other attributes for a linker script
839 assignment from HSRC to HDEST.
840 The default implementation does nothing. */
841 void
842 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
843 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
844 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
845 {
846 }
847
848 /* Generic function to add symbols from an object file to the
849 global hash table. */
850
851 bool
852 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
853 {
854 bool ret;
855
856 switch (bfd_get_format (abfd))
857 {
858 case bfd_object:
859 ret = generic_link_add_object_symbols (abfd, info);
860 break;
861 case bfd_archive:
862 ret = (_bfd_generic_link_add_archive_symbols
863 (abfd, info, generic_link_check_archive_element));
864 break;
865 default:
866 bfd_set_error (bfd_error_wrong_format);
867 ret = false;
868 }
869
870 return ret;
871 }
872
873 /* Add symbols from an object file to the global hash table. */
874
875 static bool
876 generic_link_add_object_symbols (bfd *abfd,
877 struct bfd_link_info *info)
878 {
879 bfd_size_type symcount;
880 struct bfd_symbol **outsyms;
881
882 if (!bfd_generic_link_read_symbols (abfd))
883 return false;
884 symcount = _bfd_generic_link_get_symcount (abfd);
885 outsyms = _bfd_generic_link_get_symbols (abfd);
886 return generic_link_add_symbol_list (abfd, info, symcount, outsyms);
887 }
888 \f
889 /* Generic function to add symbols from an archive file to the global
890 hash file. This function presumes that the archive symbol table
891 has already been read in (this is normally done by the
892 bfd_check_format entry point). It looks through the archive symbol
893 table for symbols that are undefined or common in the linker global
894 symbol hash table. When one is found, the CHECKFN argument is used
895 to see if an object file should be included. This allows targets
896 to customize common symbol behaviour. CHECKFN should set *PNEEDED
897 to TRUE if the object file should be included, and must also call
898 the bfd_link_info add_archive_element callback function and handle
899 adding the symbols to the global hash table. CHECKFN must notice
900 if the callback indicates a substitute BFD, and arrange to add
901 those symbols instead if it does so. CHECKFN should only return
902 FALSE if some sort of error occurs. */
903
904 bool
905 _bfd_generic_link_add_archive_symbols
906 (bfd *abfd,
907 struct bfd_link_info *info,
908 bool (*checkfn) (bfd *, struct bfd_link_info *,
909 struct bfd_link_hash_entry *, const char *, bool *))
910 {
911 bool loop;
912 bfd_size_type amt;
913 unsigned char *included;
914
915 if (! bfd_has_map (abfd))
916 {
917 /* An empty archive is a special case. */
918 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
919 return true;
920 bfd_set_error (bfd_error_no_armap);
921 return false;
922 }
923
924 amt = bfd_ardata (abfd)->symdef_count;
925 if (amt == 0)
926 return true;
927 amt *= sizeof (*included);
928 included = (unsigned char *) bfd_zmalloc (amt);
929 if (included == NULL)
930 return false;
931
932 do
933 {
934 carsym *arsyms;
935 carsym *arsym_end;
936 carsym *arsym;
937 unsigned int indx;
938 file_ptr last_ar_offset = -1;
939 bool needed = false;
940 bfd *element = NULL;
941
942 loop = false;
943 arsyms = bfd_ardata (abfd)->symdefs;
944 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
945 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
946 {
947 struct bfd_link_hash_entry *h;
948 struct bfd_link_hash_entry *undefs_tail;
949
950 if (included[indx])
951 continue;
952 if (needed && arsym->file_offset == last_ar_offset)
953 {
954 included[indx] = 1;
955 continue;
956 }
957
958 if (arsym->name == NULL)
959 goto error_return;
960
961 h = bfd_link_hash_lookup (info->hash, arsym->name,
962 false, false, true);
963
964 if (h == NULL
965 && info->pei386_auto_import
966 && startswith (arsym->name, "__imp_"))
967 h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
968 false, false, true);
969 if (h == NULL)
970 continue;
971
972 if (h->type != bfd_link_hash_undefined
973 && h->type != bfd_link_hash_common)
974 {
975 if (h->type != bfd_link_hash_undefweak)
976 /* Symbol must be defined. Don't check it again. */
977 included[indx] = 1;
978 continue;
979 }
980
981 if (last_ar_offset != arsym->file_offset)
982 {
983 last_ar_offset = arsym->file_offset;
984 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
985 if (element == NULL
986 || !bfd_check_format (element, bfd_object))
987 goto error_return;
988 }
989
990 undefs_tail = info->hash->undefs_tail;
991
992 /* CHECKFN will see if this element should be included, and
993 go ahead and include it if appropriate. */
994 if (! (*checkfn) (element, info, h, arsym->name, &needed))
995 goto error_return;
996
997 if (needed)
998 {
999 unsigned int mark;
1000
1001 /* Look backward to mark all symbols from this object file
1002 which we have already seen in this pass. */
1003 mark = indx;
1004 do
1005 {
1006 included[mark] = 1;
1007 if (mark == 0)
1008 break;
1009 --mark;
1010 }
1011 while (arsyms[mark].file_offset == last_ar_offset);
1012
1013 if (undefs_tail != info->hash->undefs_tail)
1014 loop = true;
1015 }
1016 }
1017 } while (loop);
1018
1019 free (included);
1020 return true;
1021
1022 error_return:
1023 free (included);
1024 return false;
1025 }
1026 \f
1027 /* See if we should include an archive element. */
1028
1029 static bool
1030 generic_link_check_archive_element (bfd *abfd,
1031 struct bfd_link_info *info,
1032 struct bfd_link_hash_entry *h,
1033 const char *name ATTRIBUTE_UNUSED,
1034 bool *pneeded)
1035 {
1036 asymbol **pp, **ppend;
1037
1038 *pneeded = false;
1039
1040 if (!bfd_generic_link_read_symbols (abfd))
1041 return false;
1042
1043 pp = _bfd_generic_link_get_symbols (abfd);
1044 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1045 for (; pp < ppend; pp++)
1046 {
1047 asymbol *p;
1048
1049 p = *pp;
1050
1051 /* We are only interested in globally visible symbols. */
1052 if (! bfd_is_com_section (p->section)
1053 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1054 continue;
1055
1056 /* We are only interested if we know something about this
1057 symbol, and it is undefined or common. An undefined weak
1058 symbol (type bfd_link_hash_undefweak) is not considered to be
1059 a reference when pulling files out of an archive. See the
1060 SVR4 ABI, p. 4-27. */
1061 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
1062 false, true);
1063 if (h == NULL
1064 || (h->type != bfd_link_hash_undefined
1065 && h->type != bfd_link_hash_common))
1066 continue;
1067
1068 /* P is a symbol we are looking for. */
1069
1070 if (! bfd_is_com_section (p->section)
1071 || (h->type == bfd_link_hash_undefined
1072 && h->u.undef.abfd == NULL))
1073 {
1074 /* P is not a common symbol, or an undefined reference was
1075 created from outside BFD such as from a linker -u option.
1076 This object file defines the symbol, so pull it in. */
1077 *pneeded = true;
1078 if (!(*info->callbacks
1079 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1080 &abfd))
1081 return false;
1082 /* Potentially, the add_archive_element hook may have set a
1083 substitute BFD for us. */
1084 return bfd_link_add_symbols (abfd, info);
1085 }
1086
1087 /* P is a common symbol. */
1088
1089 if (h->type == bfd_link_hash_undefined)
1090 {
1091 bfd *symbfd;
1092 bfd_vma size;
1093 unsigned int power;
1094
1095 /* Turn the symbol into a common symbol but do not link in
1096 the object file. This is how a.out works. Object
1097 formats that require different semantics must implement
1098 this function differently. This symbol is already on the
1099 undefs list. We add the section to a common section
1100 attached to symbfd to ensure that it is in a BFD which
1101 will be linked in. */
1102 symbfd = h->u.undef.abfd;
1103 h->type = bfd_link_hash_common;
1104 h->u.c.p = (struct bfd_link_hash_common_entry *)
1105 bfd_hash_allocate (&info->hash->table,
1106 sizeof (struct bfd_link_hash_common_entry));
1107 if (h->u.c.p == NULL)
1108 return false;
1109
1110 size = bfd_asymbol_value (p);
1111 h->u.c.size = size;
1112
1113 power = bfd_log2 (size);
1114 if (power > 4)
1115 power = 4;
1116 h->u.c.p->alignment_power = power;
1117
1118 if (p->section == bfd_com_section_ptr)
1119 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1120 else
1121 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1122 p->section->name);
1123 h->u.c.p->section->flags |= SEC_ALLOC;
1124 }
1125 else
1126 {
1127 /* Adjust the size of the common symbol if necessary. This
1128 is how a.out works. Object formats that require
1129 different semantics must implement this function
1130 differently. */
1131 if (bfd_asymbol_value (p) > h->u.c.size)
1132 h->u.c.size = bfd_asymbol_value (p);
1133 }
1134 }
1135
1136 /* This archive element is not needed. */
1137 return true;
1138 }
1139
1140 /* Add the symbols from an object file to the global hash table. ABFD
1141 is the object file. INFO is the linker information. SYMBOL_COUNT
1142 is the number of symbols. SYMBOLS is the list of symbols. */
1143
1144 static bool
1145 generic_link_add_symbol_list (bfd *abfd,
1146 struct bfd_link_info *info,
1147 bfd_size_type symbol_count,
1148 asymbol **symbols)
1149 {
1150 asymbol **pp, **ppend;
1151
1152 pp = symbols;
1153 ppend = symbols + symbol_count;
1154 for (; pp < ppend; pp++)
1155 {
1156 asymbol *p;
1157
1158 p = *pp;
1159
1160 if ((p->flags & (BSF_INDIRECT
1161 | BSF_WARNING
1162 | BSF_GLOBAL
1163 | BSF_CONSTRUCTOR
1164 | BSF_WEAK)) != 0
1165 || bfd_is_und_section (bfd_asymbol_section (p))
1166 || bfd_is_com_section (bfd_asymbol_section (p))
1167 || bfd_is_ind_section (bfd_asymbol_section (p)))
1168 {
1169 const char *name;
1170 const char *string;
1171 struct generic_link_hash_entry *h;
1172 struct bfd_link_hash_entry *bh;
1173
1174 string = name = bfd_asymbol_name (p);
1175 if (((p->flags & BSF_INDIRECT) != 0
1176 || bfd_is_ind_section (p->section))
1177 && pp + 1 < ppend)
1178 {
1179 pp++;
1180 string = bfd_asymbol_name (*pp);
1181 }
1182 else if ((p->flags & BSF_WARNING) != 0
1183 && pp + 1 < ppend)
1184 {
1185 /* The name of P is actually the warning string, and the
1186 next symbol is the one to warn about. */
1187 pp++;
1188 name = bfd_asymbol_name (*pp);
1189 }
1190
1191 bh = NULL;
1192 if (! (_bfd_generic_link_add_one_symbol
1193 (info, abfd, name, p->flags, bfd_asymbol_section (p),
1194 p->value, string, false, false, &bh)))
1195 return false;
1196 h = (struct generic_link_hash_entry *) bh;
1197
1198 /* If this is a constructor symbol, and the linker didn't do
1199 anything with it, then we want to just pass the symbol
1200 through to the output file. This will happen when
1201 linking with -r. */
1202 if ((p->flags & BSF_CONSTRUCTOR) != 0
1203 && (h == NULL || h->root.type == bfd_link_hash_new))
1204 {
1205 p->udata.p = NULL;
1206 continue;
1207 }
1208
1209 /* Save the BFD symbol so that we don't lose any backend
1210 specific information that may be attached to it. We only
1211 want this one if it gives more information than the
1212 existing one; we don't want to replace a defined symbol
1213 with an undefined one. This routine may be called with a
1214 hash table other than the generic hash table, so we only
1215 do this if we are certain that the hash table is a
1216 generic one. */
1217 if (info->output_bfd->xvec == abfd->xvec)
1218 {
1219 if (h->sym == NULL
1220 || (! bfd_is_und_section (bfd_asymbol_section (p))
1221 && (! bfd_is_com_section (bfd_asymbol_section (p))
1222 || bfd_is_und_section (bfd_asymbol_section (h->sym)))))
1223 {
1224 h->sym = p;
1225 /* BSF_OLD_COMMON is a hack to support COFF reloc
1226 reading, and it should go away when the COFF
1227 linker is switched to the new version. */
1228 if (bfd_is_com_section (bfd_asymbol_section (p)))
1229 p->flags |= BSF_OLD_COMMON;
1230 }
1231 }
1232
1233 /* Store a back pointer from the symbol to the hash
1234 table entry for the benefit of relaxation code until
1235 it gets rewritten to not use asymbol structures.
1236 Setting this is also used to check whether these
1237 symbols were set up by the generic linker. */
1238 p->udata.p = h;
1239 }
1240 }
1241
1242 return true;
1243 }
1244 \f
1245 /* We use a state table to deal with adding symbols from an object
1246 file. The first index into the state table describes the symbol
1247 from the object file. The second index into the state table is the
1248 type of the symbol in the hash table. */
1249
1250 /* The symbol from the object file is turned into one of these row
1251 values. */
1252
1253 enum link_row
1254 {
1255 UNDEF_ROW, /* Undefined. */
1256 UNDEFW_ROW, /* Weak undefined. */
1257 DEF_ROW, /* Defined. */
1258 DEFW_ROW, /* Weak defined. */
1259 COMMON_ROW, /* Common. */
1260 INDR_ROW, /* Indirect. */
1261 WARN_ROW, /* Warning. */
1262 SET_ROW /* Member of set. */
1263 };
1264
1265 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1266 #undef FAIL
1267
1268 /* The actions to take in the state table. */
1269
1270 enum link_action
1271 {
1272 FAIL, /* Abort. */
1273 UND, /* Mark symbol undefined. */
1274 WEAK, /* Mark symbol weak undefined. */
1275 DEF, /* Mark symbol defined. */
1276 DEFW, /* Mark symbol weak defined. */
1277 COM, /* Mark symbol common. */
1278 REF, /* Mark defined symbol referenced. */
1279 CREF, /* Possibly warn about common reference to defined symbol. */
1280 CDEF, /* Define existing common symbol. */
1281 NOACT, /* No action. */
1282 BIG, /* Mark symbol common using largest size. */
1283 MDEF, /* Multiple definition error. */
1284 MIND, /* Multiple indirect symbols. */
1285 IND, /* Make indirect symbol. */
1286 CIND, /* Make indirect symbol from existing common symbol. */
1287 SET, /* Add value to set. */
1288 MWARN, /* Make warning symbol. */
1289 WARN, /* Warn if referenced, else MWARN. */
1290 CYCLE, /* Repeat with symbol pointed to. */
1291 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1292 WARNC /* Issue warning and then CYCLE. */
1293 };
1294
1295 /* The state table itself. The first index is a link_row and the
1296 second index is a bfd_link_hash_type. */
1297
1298 static const enum link_action link_action[8][8] =
1299 {
1300 /* current\prev new undef undefw def defw com indr warn */
1301 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1302 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1303 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MIND, CYCLE },
1304 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1305 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1306 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1307 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT },
1308 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1309 };
1310
1311 /* Most of the entries in the LINK_ACTION table are straightforward,
1312 but a few are somewhat subtle.
1313
1314 A reference to an indirect symbol (UNDEF_ROW/indr or
1315 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1316 symbol and to the symbol the indirect symbol points to.
1317
1318 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1319 causes the warning to be issued.
1320
1321 A common definition of an indirect symbol (COMMON_ROW/indr) is
1322 treated as a multiple definition error. Likewise for an indirect
1323 definition of a common symbol (INDR_ROW/com).
1324
1325 An indirect definition of a warning (INDR_ROW/warn) does not cause
1326 the warning to be issued.
1327
1328 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1329 warning is created for the symbol the indirect symbol points to.
1330
1331 Adding an entry to a set does not count as a reference to a set,
1332 and no warning is issued (SET_ROW/warn). */
1333
1334 /* Return the BFD in which a hash entry has been defined, if known. */
1335
1336 static bfd *
1337 hash_entry_bfd (struct bfd_link_hash_entry *h)
1338 {
1339 while (h->type == bfd_link_hash_warning)
1340 h = h->u.i.link;
1341 switch (h->type)
1342 {
1343 default:
1344 return NULL;
1345 case bfd_link_hash_undefined:
1346 case bfd_link_hash_undefweak:
1347 return h->u.undef.abfd;
1348 case bfd_link_hash_defined:
1349 case bfd_link_hash_defweak:
1350 return h->u.def.section->owner;
1351 case bfd_link_hash_common:
1352 return h->u.c.p->section->owner;
1353 }
1354 /*NOTREACHED*/
1355 }
1356
1357 /* Add a symbol to the global hash table.
1358 ABFD is the BFD the symbol comes from.
1359 NAME is the name of the symbol.
1360 FLAGS is the BSF_* bits associated with the symbol.
1361 SECTION is the section in which the symbol is defined; this may be
1362 bfd_und_section_ptr or bfd_com_section_ptr.
1363 VALUE is the value of the symbol, relative to the section.
1364 STRING is used for either an indirect symbol, in which case it is
1365 the name of the symbol to indirect to, or a warning symbol, in
1366 which case it is the warning string.
1367 COPY is TRUE if NAME or STRING must be copied into locally
1368 allocated memory if they need to be saved.
1369 COLLECT is TRUE if we should automatically collect gcc constructor
1370 or destructor names as collect2 does.
1371 HASHP, if not NULL, is a place to store the created hash table
1372 entry; if *HASHP is not NULL, the caller has already looked up
1373 the hash table entry, and stored it in *HASHP. */
1374
1375 bool
1376 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1377 bfd *abfd,
1378 const char *name,
1379 flagword flags,
1380 asection *section,
1381 bfd_vma value,
1382 const char *string,
1383 bool copy,
1384 bool collect,
1385 struct bfd_link_hash_entry **hashp)
1386 {
1387 enum link_row row;
1388 struct bfd_link_hash_entry *h;
1389 struct bfd_link_hash_entry *inh = NULL;
1390 bool cycle;
1391
1392 BFD_ASSERT (section != NULL);
1393
1394 if (bfd_is_ind_section (section)
1395 || (flags & BSF_INDIRECT) != 0)
1396 {
1397 row = INDR_ROW;
1398 /* Create the indirect symbol here. This is for the benefit of
1399 the plugin "notice" function.
1400 STRING is the name of the symbol we want to indirect to. */
1401 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, true,
1402 copy, false);
1403 if (inh == NULL)
1404 return false;
1405 }
1406 else if ((flags & BSF_WARNING) != 0)
1407 row = WARN_ROW;
1408 else if ((flags & BSF_CONSTRUCTOR) != 0)
1409 row = SET_ROW;
1410 else if (bfd_is_und_section (section))
1411 {
1412 if ((flags & BSF_WEAK) != 0)
1413 row = UNDEFW_ROW;
1414 else
1415 row = UNDEF_ROW;
1416 }
1417 else if ((flags & BSF_WEAK) != 0)
1418 row = DEFW_ROW;
1419 else if (bfd_is_com_section (section))
1420 {
1421 row = COMMON_ROW;
1422 if (!bfd_link_relocatable (info)
1423 && name[0] == '_'
1424 && name[1] == '_'
1425 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1426 _bfd_error_handler
1427 (_("%pB: plugin needed to handle lto object"), abfd);
1428 }
1429 else
1430 row = DEF_ROW;
1431
1432 if (hashp != NULL && *hashp != NULL)
1433 h = *hashp;
1434 else
1435 {
1436 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1437 h = bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false);
1438 else
1439 h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1440 if (h == NULL)
1441 {
1442 if (hashp != NULL)
1443 *hashp = NULL;
1444 return false;
1445 }
1446 }
1447
1448 if (info->notice_all
1449 || (info->notice_hash != NULL
1450 && bfd_hash_lookup (info->notice_hash, name, false, false) != NULL))
1451 {
1452 if (! (*info->callbacks->notice) (info, h, inh,
1453 abfd, section, value, flags))
1454 return false;
1455 }
1456
1457 if (hashp != NULL)
1458 *hashp = h;
1459
1460 do
1461 {
1462 enum link_action action;
1463 int prev;
1464
1465 prev = h->type;
1466 /* Treat symbols defined by early linker script pass as undefined. */
1467 if (h->ldscript_def)
1468 prev = bfd_link_hash_undefined;
1469 cycle = false;
1470 action = link_action[(int) row][prev];
1471 switch (action)
1472 {
1473 case FAIL:
1474 abort ();
1475
1476 case NOACT:
1477 /* Do nothing. */
1478 break;
1479
1480 case UND:
1481 /* Make a new undefined symbol. */
1482 h->type = bfd_link_hash_undefined;
1483 h->u.undef.abfd = abfd;
1484 bfd_link_add_undef (info->hash, h);
1485 break;
1486
1487 case WEAK:
1488 /* Make a new weak undefined symbol. */
1489 h->type = bfd_link_hash_undefweak;
1490 h->u.undef.abfd = abfd;
1491 break;
1492
1493 case CDEF:
1494 /* We have found a definition for a symbol which was
1495 previously common. */
1496 BFD_ASSERT (h->type == bfd_link_hash_common);
1497 (*info->callbacks->multiple_common) (info, h, abfd,
1498 bfd_link_hash_defined, 0);
1499 /* Fall through. */
1500 case DEF:
1501 case DEFW:
1502 {
1503 enum bfd_link_hash_type oldtype;
1504
1505 /* Define a symbol. */
1506 oldtype = h->type;
1507 if (action == DEFW)
1508 h->type = bfd_link_hash_defweak;
1509 else
1510 h->type = bfd_link_hash_defined;
1511 h->u.def.section = section;
1512 h->u.def.value = value;
1513 h->linker_def = 0;
1514 h->ldscript_def = 0;
1515
1516 /* If we have been asked to, we act like collect2 and
1517 identify all functions that might be global
1518 constructors and destructors and pass them up in a
1519 callback. We only do this for certain object file
1520 types, since many object file types can handle this
1521 automatically. */
1522 if (collect && name[0] == '_')
1523 {
1524 const char *s;
1525
1526 /* A constructor or destructor name starts like this:
1527 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1528 the second are the same character (we accept any
1529 character there, in case a new object file format
1530 comes along with even worse naming restrictions). */
1531
1532 #define CONS_PREFIX "GLOBAL_"
1533 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1534
1535 s = name + 1;
1536 while (*s == '_')
1537 ++s;
1538 if (s[0] == 'G' && startswith (s, CONS_PREFIX))
1539 {
1540 char c;
1541
1542 c = s[CONS_PREFIX_LEN + 1];
1543 if ((c == 'I' || c == 'D')
1544 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1545 {
1546 /* If this is a definition of a symbol which
1547 was previously weakly defined, we are in
1548 trouble. We have already added a
1549 constructor entry for the weak defined
1550 symbol, and now we are trying to add one
1551 for the new symbol. Fortunately, this case
1552 should never arise in practice. */
1553 if (oldtype == bfd_link_hash_defweak)
1554 abort ();
1555
1556 (*info->callbacks->constructor) (info, c == 'I',
1557 h->root.string, abfd,
1558 section, value);
1559 }
1560 }
1561 }
1562 }
1563
1564 break;
1565
1566 case COM:
1567 /* We have found a common definition for a symbol. */
1568 if (h->type == bfd_link_hash_new)
1569 bfd_link_add_undef (info->hash, h);
1570 h->type = bfd_link_hash_common;
1571 h->u.c.p = (struct bfd_link_hash_common_entry *)
1572 bfd_hash_allocate (&info->hash->table,
1573 sizeof (struct bfd_link_hash_common_entry));
1574 if (h->u.c.p == NULL)
1575 return false;
1576
1577 h->u.c.size = value;
1578
1579 /* Select a default alignment based on the size. This may
1580 be overridden by the caller. */
1581 {
1582 unsigned int power;
1583
1584 power = bfd_log2 (value);
1585 if (power > 4)
1586 power = 4;
1587 h->u.c.p->alignment_power = power;
1588 }
1589
1590 /* The section of a common symbol is only used if the common
1591 symbol is actually allocated. It basically provides a
1592 hook for the linker script to decide which output section
1593 the common symbols should be put in. In most cases, the
1594 section of a common symbol will be bfd_com_section_ptr,
1595 the code here will choose a common symbol section named
1596 "COMMON", and the linker script will contain *(COMMON) in
1597 the appropriate place. A few targets use separate common
1598 sections for small symbols, and they require special
1599 handling. */
1600 if (section == bfd_com_section_ptr)
1601 {
1602 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1603 h->u.c.p->section->flags |= SEC_ALLOC;
1604 }
1605 else if (section->owner != abfd)
1606 {
1607 h->u.c.p->section = bfd_make_section_old_way (abfd,
1608 section->name);
1609 h->u.c.p->section->flags |= SEC_ALLOC;
1610 }
1611 else
1612 h->u.c.p->section = section;
1613 h->linker_def = 0;
1614 h->ldscript_def = 0;
1615 break;
1616
1617 case REF:
1618 /* A reference to a defined symbol. */
1619 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1620 h->u.undef.next = h;
1621 break;
1622
1623 case BIG:
1624 /* We have found a common definition for a symbol which
1625 already had a common definition. Use the maximum of the
1626 two sizes, and use the section required by the larger symbol. */
1627 BFD_ASSERT (h->type == bfd_link_hash_common);
1628 (*info->callbacks->multiple_common) (info, h, abfd,
1629 bfd_link_hash_common, value);
1630 if (value > h->u.c.size)
1631 {
1632 unsigned int power;
1633
1634 h->u.c.size = value;
1635
1636 /* Select a default alignment based on the size. This may
1637 be overridden by the caller. */
1638 power = bfd_log2 (value);
1639 if (power > 4)
1640 power = 4;
1641 h->u.c.p->alignment_power = power;
1642
1643 /* Some systems have special treatment for small commons,
1644 hence we want to select the section used by the larger
1645 symbol. This makes sure the symbol does not go in a
1646 small common section if it is now too large. */
1647 if (section == bfd_com_section_ptr)
1648 {
1649 h->u.c.p->section
1650 = bfd_make_section_old_way (abfd, "COMMON");
1651 h->u.c.p->section->flags |= SEC_ALLOC;
1652 }
1653 else if (section->owner != abfd)
1654 {
1655 h->u.c.p->section
1656 = bfd_make_section_old_way (abfd, section->name);
1657 h->u.c.p->section->flags |= SEC_ALLOC;
1658 }
1659 else
1660 h->u.c.p->section = section;
1661 }
1662 break;
1663
1664 case CREF:
1665 /* We have found a common definition for a symbol which
1666 was already defined. */
1667 (*info->callbacks->multiple_common) (info, h, abfd,
1668 bfd_link_hash_common, value);
1669 break;
1670
1671 case MIND:
1672 /* Multiple indirect symbols. This is OK if they both point
1673 to the same symbol. */
1674 if (h->u.i.link->type == bfd_link_hash_defweak)
1675 {
1676 /* It is also OK to redefine a symbol that indirects to
1677 a weak definition. So for sym@ver -> sym@@ver where
1678 sym@@ver is weak and we have a new strong sym@ver,
1679 redefine sym@@ver. Of course if there exists
1680 sym -> sym@@ver then this also redefines sym. */
1681 h = h->u.i.link;
1682 cycle = true;
1683 break;
1684 }
1685 if (strcmp (h->u.i.link->root.string, string) == 0)
1686 break;
1687 /* Fall through. */
1688 case MDEF:
1689 /* Handle a multiple definition. */
1690 (*info->callbacks->multiple_definition) (info, h,
1691 abfd, section, value);
1692 break;
1693
1694 case CIND:
1695 /* Create an indirect symbol from an existing common symbol. */
1696 BFD_ASSERT (h->type == bfd_link_hash_common);
1697 (*info->callbacks->multiple_common) (info, h, abfd,
1698 bfd_link_hash_indirect, 0);
1699 /* Fall through. */
1700 case IND:
1701 if (inh->type == bfd_link_hash_indirect
1702 && inh->u.i.link == h)
1703 {
1704 _bfd_error_handler
1705 /* xgettext:c-format */
1706 (_("%pB: indirect symbol `%s' to `%s' is a loop"),
1707 abfd, name, string);
1708 bfd_set_error (bfd_error_invalid_operation);
1709 return false;
1710 }
1711 if (inh->type == bfd_link_hash_new)
1712 {
1713 inh->type = bfd_link_hash_undefined;
1714 inh->u.undef.abfd = abfd;
1715 bfd_link_add_undef (info->hash, inh);
1716 }
1717
1718 /* If the indirect symbol has been referenced, we need to
1719 push the reference down to the symbol we are referencing. */
1720 if (h->type != bfd_link_hash_new)
1721 {
1722 /* ??? If inh->type == bfd_link_hash_undefweak this
1723 converts inh to bfd_link_hash_undefined. */
1724 row = UNDEF_ROW;
1725 cycle = true;
1726 }
1727
1728 h->type = bfd_link_hash_indirect;
1729 h->u.i.link = inh;
1730 /* Not setting h = h->u.i.link here means that when cycle is
1731 set above we'll always go to REFC, and then cycle again
1732 to the indirected symbol. This means that any successful
1733 change of an existing symbol to indirect counts as a
1734 reference. ??? That may not be correct when the existing
1735 symbol was defweak. */
1736 break;
1737
1738 case SET:
1739 /* Add an entry to a set. */
1740 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1741 abfd, section, value);
1742 break;
1743
1744 case WARNC:
1745 /* Issue a warning and cycle, except when the reference is
1746 in LTO IR. */
1747 if (h->u.i.warning != NULL
1748 && (abfd->flags & BFD_PLUGIN) == 0)
1749 {
1750 (*info->callbacks->warning) (info, h->u.i.warning,
1751 h->root.string, abfd, NULL, 0);
1752 /* Only issue a warning once. */
1753 h->u.i.warning = NULL;
1754 }
1755 /* Fall through. */
1756 case CYCLE:
1757 /* Try again with the referenced symbol. */
1758 h = h->u.i.link;
1759 cycle = true;
1760 break;
1761
1762 case REFC:
1763 /* A reference to an indirect symbol. */
1764 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1765 h->u.undef.next = h;
1766 h = h->u.i.link;
1767 cycle = true;
1768 break;
1769
1770 case WARN:
1771 /* Warn if this symbol has been referenced already from non-IR,
1772 otherwise add a warning. */
1773 if ((!info->lto_plugin_active
1774 && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1775 || h->non_ir_ref_regular
1776 || h->non_ir_ref_dynamic)
1777 {
1778 (*info->callbacks->warning) (info, string, h->root.string,
1779 hash_entry_bfd (h), NULL, 0);
1780 break;
1781 }
1782 /* Fall through. */
1783 case MWARN:
1784 /* Make a warning symbol. */
1785 {
1786 struct bfd_link_hash_entry *sub;
1787
1788 /* STRING is the warning to give. */
1789 sub = ((struct bfd_link_hash_entry *)
1790 ((*info->hash->table.newfunc)
1791 (NULL, &info->hash->table, h->root.string)));
1792 if (sub == NULL)
1793 return false;
1794 *sub = *h;
1795 sub->type = bfd_link_hash_warning;
1796 sub->u.i.link = h;
1797 if (! copy)
1798 sub->u.i.warning = string;
1799 else
1800 {
1801 char *w;
1802 size_t len = strlen (string) + 1;
1803
1804 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1805 if (w == NULL)
1806 return false;
1807 memcpy (w, string, len);
1808 sub->u.i.warning = w;
1809 }
1810
1811 bfd_hash_replace (&info->hash->table,
1812 (struct bfd_hash_entry *) h,
1813 (struct bfd_hash_entry *) sub);
1814 if (hashp != NULL)
1815 *hashp = sub;
1816 }
1817 break;
1818 }
1819 }
1820 while (cycle);
1821
1822 return true;
1823 }
1824 \f
1825 /* Generic final link routine. */
1826
1827 bool
1828 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1829 {
1830 bfd *sub;
1831 asection *o;
1832 struct bfd_link_order *p;
1833 size_t outsymalloc;
1834 struct generic_write_global_symbol_info wginfo;
1835
1836 abfd->outsymbols = NULL;
1837 abfd->symcount = 0;
1838 outsymalloc = 0;
1839
1840 /* Mark all sections which will be included in the output file. */
1841 for (o = abfd->sections; o != NULL; o = o->next)
1842 for (p = o->map_head.link_order; p != NULL; p = p->next)
1843 if (p->type == bfd_indirect_link_order)
1844 p->u.indirect.section->linker_mark = true;
1845
1846 /* Build the output symbol table. */
1847 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1848 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1849 return false;
1850
1851 /* Accumulate the global symbols. */
1852 wginfo.info = info;
1853 wginfo.output_bfd = abfd;
1854 wginfo.psymalloc = &outsymalloc;
1855 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1856 _bfd_generic_link_write_global_symbol,
1857 &wginfo);
1858
1859 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1860 shouldn't really need one, since we have SYMCOUNT, but some old
1861 code still expects one. */
1862 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1863 return false;
1864
1865 if (bfd_link_relocatable (info))
1866 {
1867 /* Allocate space for the output relocs for each section. */
1868 for (o = abfd->sections; o != NULL; o = o->next)
1869 {
1870 o->reloc_count = 0;
1871 for (p = o->map_head.link_order; p != NULL; p = p->next)
1872 {
1873 if (p->type == bfd_section_reloc_link_order
1874 || p->type == bfd_symbol_reloc_link_order)
1875 ++o->reloc_count;
1876 else if (p->type == bfd_indirect_link_order)
1877 {
1878 asection *input_section;
1879 bfd *input_bfd;
1880 long relsize;
1881 arelent **relocs;
1882 asymbol **symbols;
1883 long reloc_count;
1884
1885 input_section = p->u.indirect.section;
1886 input_bfd = input_section->owner;
1887 relsize = bfd_get_reloc_upper_bound (input_bfd,
1888 input_section);
1889 if (relsize < 0)
1890 return false;
1891 relocs = (arelent **) bfd_malloc (relsize);
1892 if (!relocs && relsize != 0)
1893 return false;
1894 symbols = _bfd_generic_link_get_symbols (input_bfd);
1895 reloc_count = bfd_canonicalize_reloc (input_bfd,
1896 input_section,
1897 relocs,
1898 symbols);
1899 free (relocs);
1900 if (reloc_count < 0)
1901 return false;
1902 BFD_ASSERT ((unsigned long) reloc_count
1903 == input_section->reloc_count);
1904 o->reloc_count += reloc_count;
1905 }
1906 }
1907 if (o->reloc_count > 0)
1908 {
1909 bfd_size_type amt;
1910
1911 amt = o->reloc_count;
1912 amt *= sizeof (arelent *);
1913 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1914 if (!o->orelocation)
1915 return false;
1916 o->flags |= SEC_RELOC;
1917 /* Reset the count so that it can be used as an index
1918 when putting in the output relocs. */
1919 o->reloc_count = 0;
1920 }
1921 }
1922 }
1923
1924 /* Handle all the link order information for the sections. */
1925 for (o = abfd->sections; o != NULL; o = o->next)
1926 {
1927 for (p = o->map_head.link_order; p != NULL; p = p->next)
1928 {
1929 switch (p->type)
1930 {
1931 case bfd_section_reloc_link_order:
1932 case bfd_symbol_reloc_link_order:
1933 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1934 return false;
1935 break;
1936 case bfd_indirect_link_order:
1937 if (! default_indirect_link_order (abfd, info, o, p, true))
1938 return false;
1939 break;
1940 default:
1941 if (! _bfd_default_link_order (abfd, info, o, p))
1942 return false;
1943 break;
1944 }
1945 }
1946 }
1947
1948 return true;
1949 }
1950
1951 /* Add an output symbol to the output BFD. */
1952
1953 static bool
1954 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1955 {
1956 if (bfd_get_symcount (output_bfd) >= *psymalloc)
1957 {
1958 asymbol **newsyms;
1959 bfd_size_type amt;
1960
1961 if (*psymalloc == 0)
1962 *psymalloc = 124;
1963 else
1964 *psymalloc *= 2;
1965 amt = *psymalloc;
1966 amt *= sizeof (asymbol *);
1967 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
1968 if (newsyms == NULL)
1969 return false;
1970 output_bfd->outsymbols = newsyms;
1971 }
1972
1973 output_bfd->outsymbols[output_bfd->symcount] = sym;
1974 if (sym != NULL)
1975 ++output_bfd->symcount;
1976
1977 return true;
1978 }
1979
1980 /* Handle the symbols for an input BFD. */
1981
1982 bool
1983 _bfd_generic_link_output_symbols (bfd *output_bfd,
1984 bfd *input_bfd,
1985 struct bfd_link_info *info,
1986 size_t *psymalloc)
1987 {
1988 asymbol **sym_ptr;
1989 asymbol **sym_end;
1990
1991 if (!bfd_generic_link_read_symbols (input_bfd))
1992 return false;
1993
1994 /* Create a filename symbol if we are supposed to. */
1995 if (info->create_object_symbols_section != NULL)
1996 {
1997 asection *sec;
1998
1999 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
2000 {
2001 if (sec->output_section == info->create_object_symbols_section)
2002 {
2003 asymbol *newsym;
2004
2005 newsym = bfd_make_empty_symbol (input_bfd);
2006 if (!newsym)
2007 return false;
2008 newsym->name = bfd_get_filename (input_bfd);
2009 newsym->value = 0;
2010 newsym->flags = BSF_LOCAL | BSF_FILE;
2011 newsym->section = sec;
2012
2013 if (! generic_add_output_symbol (output_bfd, psymalloc,
2014 newsym))
2015 return false;
2016
2017 break;
2018 }
2019 }
2020 }
2021
2022 /* Adjust the values of the globally visible symbols, and write out
2023 local symbols. */
2024 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2025 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2026 for (; sym_ptr < sym_end; sym_ptr++)
2027 {
2028 asymbol *sym;
2029 struct generic_link_hash_entry *h;
2030 bool output;
2031
2032 h = NULL;
2033 sym = *sym_ptr;
2034 if ((sym->flags & (BSF_INDIRECT
2035 | BSF_WARNING
2036 | BSF_GLOBAL
2037 | BSF_CONSTRUCTOR
2038 | BSF_WEAK)) != 0
2039 || bfd_is_und_section (bfd_asymbol_section (sym))
2040 || bfd_is_com_section (bfd_asymbol_section (sym))
2041 || bfd_is_ind_section (bfd_asymbol_section (sym)))
2042 {
2043 if (sym->udata.p != NULL)
2044 h = (struct generic_link_hash_entry *) sym->udata.p;
2045 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2046 {
2047 /* This case normally means that the main linker code
2048 deliberately ignored this constructor symbol. We
2049 should just pass it through. This will screw up if
2050 the constructor symbol is from a different,
2051 non-generic, object file format, but the case will
2052 only arise when linking with -r, which will probably
2053 fail anyhow, since there will be no way to represent
2054 the relocs in the output format being used. */
2055 h = NULL;
2056 }
2057 else if (bfd_is_und_section (bfd_asymbol_section (sym)))
2058 h = ((struct generic_link_hash_entry *)
2059 bfd_wrapped_link_hash_lookup (output_bfd, info,
2060 bfd_asymbol_name (sym),
2061 false, false, true));
2062 else
2063 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2064 bfd_asymbol_name (sym),
2065 false, false, true);
2066
2067 if (h != NULL)
2068 {
2069 /* Force all references to this symbol to point to
2070 the same area in memory. It is possible that
2071 this routine will be called with a hash table
2072 other than a generic hash table, so we double
2073 check that. */
2074 if (info->output_bfd->xvec == input_bfd->xvec)
2075 {
2076 if (h->sym != NULL)
2077 *sym_ptr = sym = h->sym;
2078 }
2079
2080 switch (h->root.type)
2081 {
2082 default:
2083 case bfd_link_hash_new:
2084 abort ();
2085 case bfd_link_hash_undefined:
2086 break;
2087 case bfd_link_hash_undefweak:
2088 sym->flags |= BSF_WEAK;
2089 break;
2090 case bfd_link_hash_indirect:
2091 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2092 /* fall through */
2093 case bfd_link_hash_defined:
2094 sym->flags |= BSF_GLOBAL;
2095 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2096 sym->value = h->root.u.def.value;
2097 sym->section = h->root.u.def.section;
2098 break;
2099 case bfd_link_hash_defweak:
2100 sym->flags |= BSF_WEAK;
2101 sym->flags &=~ BSF_CONSTRUCTOR;
2102 sym->value = h->root.u.def.value;
2103 sym->section = h->root.u.def.section;
2104 break;
2105 case bfd_link_hash_common:
2106 sym->value = h->root.u.c.size;
2107 sym->flags |= BSF_GLOBAL;
2108 if (! bfd_is_com_section (sym->section))
2109 {
2110 BFD_ASSERT (bfd_is_und_section (sym->section));
2111 sym->section = bfd_com_section_ptr;
2112 }
2113 /* We do not set the section of the symbol to
2114 h->root.u.c.p->section. That value was saved so
2115 that we would know where to allocate the symbol
2116 if it was defined. In this case the type is
2117 still bfd_link_hash_common, so we did not define
2118 it, so we do not want to use that section. */
2119 break;
2120 }
2121 }
2122 }
2123
2124 if ((sym->flags & BSF_KEEP) == 0
2125 && (info->strip == strip_all
2126 || (info->strip == strip_some
2127 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2128 false, false) == NULL)))
2129 output = false;
2130 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0)
2131 {
2132 /* If this symbol is marked as occurring now, rather
2133 than at the end, output it now. This is used for
2134 COFF C_EXT FCN symbols. FIXME: There must be a
2135 better way. */
2136 if (bfd_asymbol_bfd (sym) == input_bfd
2137 && (sym->flags & BSF_NOT_AT_END) != 0)
2138 output = true;
2139 else
2140 output = false;
2141 }
2142 else if ((sym->flags & BSF_KEEP) != 0)
2143 output = true;
2144 else if (bfd_is_ind_section (sym->section))
2145 output = false;
2146 else if ((sym->flags & BSF_DEBUGGING) != 0)
2147 {
2148 if (info->strip == strip_none)
2149 output = true;
2150 else
2151 output = false;
2152 }
2153 else if (bfd_is_und_section (sym->section)
2154 || bfd_is_com_section (sym->section))
2155 output = false;
2156 else if ((sym->flags & BSF_LOCAL) != 0)
2157 {
2158 if ((sym->flags & BSF_WARNING) != 0)
2159 output = false;
2160 else
2161 {
2162 switch (info->discard)
2163 {
2164 default:
2165 case discard_all:
2166 output = false;
2167 break;
2168 case discard_sec_merge:
2169 output = true;
2170 if (bfd_link_relocatable (info)
2171 || ! (sym->section->flags & SEC_MERGE))
2172 break;
2173 /* FALLTHROUGH */
2174 case discard_l:
2175 if (bfd_is_local_label (input_bfd, sym))
2176 output = false;
2177 else
2178 output = true;
2179 break;
2180 case discard_none:
2181 output = true;
2182 break;
2183 }
2184 }
2185 }
2186 else if ((sym->flags & BSF_CONSTRUCTOR))
2187 {
2188 if (info->strip != strip_all)
2189 output = true;
2190 else
2191 output = false;
2192 }
2193 else if (sym->flags == 0
2194 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2195 /* LTO doesn't set symbol information. We get here with the
2196 generic linker for a symbol that was "common" but no longer
2197 needs to be global. */
2198 output = false;
2199 else
2200 abort ();
2201
2202 /* If this symbol is in a section which is not being included
2203 in the output file, then we don't want to output the
2204 symbol. */
2205 if (!bfd_is_abs_section (sym->section)
2206 && bfd_section_removed_from_list (output_bfd,
2207 sym->section->output_section))
2208 output = false;
2209
2210 if (output)
2211 {
2212 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2213 return false;
2214 if (h != NULL)
2215 h->written = true;
2216 }
2217 }
2218
2219 return true;
2220 }
2221
2222 /* Set the section and value of a generic BFD symbol based on a linker
2223 hash table entry. */
2224
2225 static void
2226 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2227 {
2228 switch (h->type)
2229 {
2230 default:
2231 abort ();
2232 break;
2233 case bfd_link_hash_new:
2234 /* This can happen when a constructor symbol is seen but we are
2235 not building constructors. */
2236 if (sym->section != NULL)
2237 {
2238 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2239 }
2240 else
2241 {
2242 sym->flags |= BSF_CONSTRUCTOR;
2243 sym->section = bfd_abs_section_ptr;
2244 sym->value = 0;
2245 }
2246 break;
2247 case bfd_link_hash_undefined:
2248 sym->section = bfd_und_section_ptr;
2249 sym->value = 0;
2250 break;
2251 case bfd_link_hash_undefweak:
2252 sym->section = bfd_und_section_ptr;
2253 sym->value = 0;
2254 sym->flags |= BSF_WEAK;
2255 break;
2256 case bfd_link_hash_defined:
2257 sym->section = h->u.def.section;
2258 sym->value = h->u.def.value;
2259 break;
2260 case bfd_link_hash_defweak:
2261 sym->flags |= BSF_WEAK;
2262 sym->section = h->u.def.section;
2263 sym->value = h->u.def.value;
2264 break;
2265 case bfd_link_hash_common:
2266 sym->value = h->u.c.size;
2267 if (sym->section == NULL)
2268 sym->section = bfd_com_section_ptr;
2269 else if (! bfd_is_com_section (sym->section))
2270 {
2271 BFD_ASSERT (bfd_is_und_section (sym->section));
2272 sym->section = bfd_com_section_ptr;
2273 }
2274 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2275 break;
2276 case bfd_link_hash_indirect:
2277 case bfd_link_hash_warning:
2278 /* FIXME: What should we do here? */
2279 break;
2280 }
2281 }
2282
2283 /* Write out a global symbol, if it hasn't already been written out.
2284 This is called for each symbol in the hash table. */
2285
2286 bool
2287 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2288 void *data)
2289 {
2290 struct generic_write_global_symbol_info *wginfo =
2291 (struct generic_write_global_symbol_info *) data;
2292 asymbol *sym;
2293
2294 if (h->written)
2295 return true;
2296
2297 h->written = true;
2298
2299 if (wginfo->info->strip == strip_all
2300 || (wginfo->info->strip == strip_some
2301 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2302 false, false) == NULL))
2303 return true;
2304
2305 if (h->sym != NULL)
2306 sym = h->sym;
2307 else
2308 {
2309 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2310 if (!sym)
2311 return false;
2312 sym->name = h->root.root.string;
2313 sym->flags = 0;
2314 }
2315
2316 set_symbol_from_hash (sym, &h->root);
2317
2318 sym->flags |= BSF_GLOBAL;
2319
2320 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2321 sym))
2322 {
2323 /* FIXME: No way to return failure. */
2324 abort ();
2325 }
2326
2327 return true;
2328 }
2329
2330 /* Create a relocation. */
2331
2332 bool
2333 _bfd_generic_reloc_link_order (bfd *abfd,
2334 struct bfd_link_info *info,
2335 asection *sec,
2336 struct bfd_link_order *link_order)
2337 {
2338 arelent *r;
2339
2340 if (! bfd_link_relocatable (info))
2341 abort ();
2342 if (sec->orelocation == NULL)
2343 abort ();
2344
2345 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2346 if (r == NULL)
2347 return false;
2348
2349 r->address = link_order->offset;
2350 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2351 if (r->howto == 0)
2352 {
2353 bfd_set_error (bfd_error_bad_value);
2354 return false;
2355 }
2356
2357 /* Get the symbol to use for the relocation. */
2358 if (link_order->type == bfd_section_reloc_link_order)
2359 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2360 else
2361 {
2362 struct generic_link_hash_entry *h;
2363
2364 h = ((struct generic_link_hash_entry *)
2365 bfd_wrapped_link_hash_lookup (abfd, info,
2366 link_order->u.reloc.p->u.name,
2367 false, false, true));
2368 if (h == NULL
2369 || ! h->written)
2370 {
2371 (*info->callbacks->unattached_reloc)
2372 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2373 bfd_set_error (bfd_error_bad_value);
2374 return false;
2375 }
2376 r->sym_ptr_ptr = &h->sym;
2377 }
2378
2379 /* If this is an inplace reloc, write the addend to the object file.
2380 Otherwise, store it in the reloc addend. */
2381 if (! r->howto->partial_inplace)
2382 r->addend = link_order->u.reloc.p->addend;
2383 else
2384 {
2385 bfd_size_type size;
2386 bfd_reloc_status_type rstat;
2387 bfd_byte *buf;
2388 bool ok;
2389 file_ptr loc;
2390
2391 size = bfd_get_reloc_size (r->howto);
2392 buf = (bfd_byte *) bfd_zmalloc (size);
2393 if (buf == NULL && size != 0)
2394 return false;
2395 rstat = _bfd_relocate_contents (r->howto, abfd,
2396 (bfd_vma) link_order->u.reloc.p->addend,
2397 buf);
2398 switch (rstat)
2399 {
2400 case bfd_reloc_ok:
2401 break;
2402 default:
2403 case bfd_reloc_outofrange:
2404 abort ();
2405 case bfd_reloc_overflow:
2406 (*info->callbacks->reloc_overflow)
2407 (info, NULL,
2408 (link_order->type == bfd_section_reloc_link_order
2409 ? bfd_section_name (link_order->u.reloc.p->u.section)
2410 : link_order->u.reloc.p->u.name),
2411 r->howto->name, link_order->u.reloc.p->addend,
2412 NULL, NULL, 0);
2413 break;
2414 }
2415 loc = link_order->offset * bfd_octets_per_byte (abfd, sec);
2416 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2417 free (buf);
2418 if (! ok)
2419 return false;
2420
2421 r->addend = 0;
2422 }
2423
2424 sec->orelocation[sec->reloc_count] = r;
2425 ++sec->reloc_count;
2426
2427 return true;
2428 }
2429 \f
2430 /* Allocate a new link_order for a section. */
2431
2432 struct bfd_link_order *
2433 bfd_new_link_order (bfd *abfd, asection *section)
2434 {
2435 size_t amt = sizeof (struct bfd_link_order);
2436 struct bfd_link_order *new_lo;
2437
2438 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2439 if (!new_lo)
2440 return NULL;
2441
2442 new_lo->type = bfd_undefined_link_order;
2443
2444 if (section->map_tail.link_order != NULL)
2445 section->map_tail.link_order->next = new_lo;
2446 else
2447 section->map_head.link_order = new_lo;
2448 section->map_tail.link_order = new_lo;
2449
2450 return new_lo;
2451 }
2452
2453 /* Default link order processing routine. Note that we can not handle
2454 the reloc_link_order types here, since they depend upon the details
2455 of how the particular backends generates relocs. */
2456
2457 bool
2458 _bfd_default_link_order (bfd *abfd,
2459 struct bfd_link_info *info,
2460 asection *sec,
2461 struct bfd_link_order *link_order)
2462 {
2463 switch (link_order->type)
2464 {
2465 case bfd_undefined_link_order:
2466 case bfd_section_reloc_link_order:
2467 case bfd_symbol_reloc_link_order:
2468 default:
2469 abort ();
2470 case bfd_indirect_link_order:
2471 return default_indirect_link_order (abfd, info, sec, link_order,
2472 false);
2473 case bfd_data_link_order:
2474 return default_data_link_order (abfd, info, sec, link_order);
2475 }
2476 }
2477
2478 /* Default routine to handle a bfd_data_link_order. */
2479
2480 static bool
2481 default_data_link_order (bfd *abfd,
2482 struct bfd_link_info *info,
2483 asection *sec,
2484 struct bfd_link_order *link_order)
2485 {
2486 bfd_size_type size;
2487 size_t fill_size;
2488 bfd_byte *fill;
2489 file_ptr loc;
2490 bool result;
2491
2492 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2493
2494 size = link_order->size;
2495 if (size == 0)
2496 return true;
2497
2498 fill = link_order->u.data.contents;
2499 fill_size = link_order->u.data.size;
2500 if (fill_size == 0)
2501 {
2502 fill = abfd->arch_info->fill (size, info->big_endian,
2503 (sec->flags & SEC_CODE) != 0);
2504 if (fill == NULL)
2505 return false;
2506 }
2507 else if (fill_size < size)
2508 {
2509 bfd_byte *p;
2510 fill = (bfd_byte *) bfd_malloc (size);
2511 if (fill == NULL)
2512 return false;
2513 p = fill;
2514 if (fill_size == 1)
2515 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2516 else
2517 {
2518 do
2519 {
2520 memcpy (p, link_order->u.data.contents, fill_size);
2521 p += fill_size;
2522 size -= fill_size;
2523 }
2524 while (size >= fill_size);
2525 if (size != 0)
2526 memcpy (p, link_order->u.data.contents, (size_t) size);
2527 size = link_order->size;
2528 }
2529 }
2530
2531 loc = link_order->offset * bfd_octets_per_byte (abfd, sec);
2532 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2533
2534 if (fill != link_order->u.data.contents)
2535 free (fill);
2536 return result;
2537 }
2538
2539 /* Default routine to handle a bfd_indirect_link_order. */
2540
2541 static bool
2542 default_indirect_link_order (bfd *output_bfd,
2543 struct bfd_link_info *info,
2544 asection *output_section,
2545 struct bfd_link_order *link_order,
2546 bool generic_linker)
2547 {
2548 asection *input_section;
2549 bfd *input_bfd;
2550 bfd_byte *contents = NULL;
2551 bfd_byte *new_contents;
2552 bfd_size_type sec_size;
2553 file_ptr loc;
2554
2555 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2556
2557 input_section = link_order->u.indirect.section;
2558 input_bfd = input_section->owner;
2559 if (input_section->size == 0)
2560 return true;
2561
2562 BFD_ASSERT (input_section->output_section == output_section);
2563 BFD_ASSERT (input_section->output_offset == link_order->offset);
2564 BFD_ASSERT (input_section->size == link_order->size);
2565
2566 if (bfd_link_relocatable (info)
2567 && input_section->reloc_count > 0
2568 && output_section->orelocation == NULL)
2569 {
2570 /* Space has not been allocated for the output relocations.
2571 This can happen when we are called by a specific backend
2572 because somebody is attempting to link together different
2573 types of object files. Handling this case correctly is
2574 difficult, and sometimes impossible. */
2575 _bfd_error_handler
2576 /* xgettext:c-format */
2577 (_("attempt to do relocatable link with %s input and %s output"),
2578 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2579 bfd_set_error (bfd_error_wrong_format);
2580 return false;
2581 }
2582
2583 if (! generic_linker)
2584 {
2585 asymbol **sympp;
2586 asymbol **symppend;
2587
2588 /* Get the canonical symbols. The generic linker will always
2589 have retrieved them by this point, but we are being called by
2590 a specific linker, presumably because we are linking
2591 different types of object files together. */
2592 if (!bfd_generic_link_read_symbols (input_bfd))
2593 return false;
2594
2595 /* Since we have been called by a specific linker, rather than
2596 the generic linker, the values of the symbols will not be
2597 right. They will be the values as seen in the input file,
2598 not the values of the final link. We need to fix them up
2599 before we can relocate the section. */
2600 sympp = _bfd_generic_link_get_symbols (input_bfd);
2601 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2602 for (; sympp < symppend; sympp++)
2603 {
2604 asymbol *sym;
2605 struct bfd_link_hash_entry *h;
2606
2607 sym = *sympp;
2608
2609 if ((sym->flags & (BSF_INDIRECT
2610 | BSF_WARNING
2611 | BSF_GLOBAL
2612 | BSF_CONSTRUCTOR
2613 | BSF_WEAK)) != 0
2614 || bfd_is_und_section (bfd_asymbol_section (sym))
2615 || bfd_is_com_section (bfd_asymbol_section (sym))
2616 || bfd_is_ind_section (bfd_asymbol_section (sym)))
2617 {
2618 /* sym->udata may have been set by
2619 generic_link_add_symbol_list. */
2620 if (sym->udata.p != NULL)
2621 h = (struct bfd_link_hash_entry *) sym->udata.p;
2622 else if (bfd_is_und_section (bfd_asymbol_section (sym)))
2623 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2624 bfd_asymbol_name (sym),
2625 false, false, true);
2626 else
2627 h = bfd_link_hash_lookup (info->hash,
2628 bfd_asymbol_name (sym),
2629 false, false, true);
2630 if (h != NULL)
2631 set_symbol_from_hash (sym, h);
2632 }
2633 }
2634 }
2635
2636 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2637 && input_section->size != 0)
2638 {
2639 /* Group section contents are set by bfd_elf_set_group_contents. */
2640 if (!output_bfd->output_has_begun)
2641 {
2642 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2643 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2644 goto error_return;
2645 }
2646 new_contents = output_section->contents;
2647 BFD_ASSERT (new_contents != NULL);
2648 BFD_ASSERT (input_section->output_offset == 0);
2649 }
2650 else
2651 {
2652 /* Get and relocate the section contents. */
2653 sec_size = (input_section->rawsize > input_section->size
2654 ? input_section->rawsize
2655 : input_section->size);
2656 contents = (bfd_byte *) bfd_malloc (sec_size);
2657 if (contents == NULL && sec_size != 0)
2658 goto error_return;
2659 new_contents = (bfd_get_relocated_section_contents
2660 (output_bfd, info, link_order, contents,
2661 bfd_link_relocatable (info),
2662 _bfd_generic_link_get_symbols (input_bfd)));
2663 if (!new_contents)
2664 goto error_return;
2665 }
2666
2667 /* Output the section contents. */
2668 loc = (input_section->output_offset
2669 * bfd_octets_per_byte (output_bfd, output_section));
2670 if (! bfd_set_section_contents (output_bfd, output_section,
2671 new_contents, loc, input_section->size))
2672 goto error_return;
2673
2674 free (contents);
2675 return true;
2676
2677 error_return:
2678 free (contents);
2679 return false;
2680 }
2681
2682 /* A little routine to count the number of relocs in a link_order
2683 list. */
2684
2685 unsigned int
2686 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2687 {
2688 register unsigned int c;
2689 register struct bfd_link_order *l;
2690
2691 c = 0;
2692 for (l = link_order; l != NULL; l = l->next)
2693 {
2694 if (l->type == bfd_section_reloc_link_order
2695 || l->type == bfd_symbol_reloc_link_order)
2696 ++c;
2697 }
2698
2699 return c;
2700 }
2701
2702 /*
2703 FUNCTION
2704 bfd_link_split_section
2705
2706 SYNOPSIS
2707 bool bfd_link_split_section (bfd *abfd, asection *sec);
2708
2709 DESCRIPTION
2710 Return nonzero if @var{sec} should be split during a
2711 reloceatable or final link.
2712
2713 .#define bfd_link_split_section(abfd, sec) \
2714 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2715 .
2716
2717 */
2718
2719 bool
2720 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2721 asection *sec ATTRIBUTE_UNUSED)
2722 {
2723 return false;
2724 }
2725
2726 /*
2727 FUNCTION
2728 bfd_section_already_linked
2729
2730 SYNOPSIS
2731 bool bfd_section_already_linked (bfd *abfd,
2732 asection *sec,
2733 struct bfd_link_info *info);
2734
2735 DESCRIPTION
2736 Check if @var{data} has been already linked during a reloceatable
2737 or final link. Return TRUE if it has.
2738
2739 .#define bfd_section_already_linked(abfd, sec, info) \
2740 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2741 .
2742
2743 */
2744
2745 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2746 once into the output. This routine checks each section, and
2747 arrange to discard it if a section of the same name has already
2748 been linked. This code assumes that all relevant sections have the
2749 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2750 section name. bfd_section_already_linked is called via
2751 bfd_map_over_sections. */
2752
2753 /* The hash table. */
2754
2755 static struct bfd_hash_table _bfd_section_already_linked_table;
2756
2757 /* Support routines for the hash table used by section_already_linked,
2758 initialize the table, traverse, lookup, fill in an entry and remove
2759 the table. */
2760
2761 void
2762 bfd_section_already_linked_table_traverse
2763 (bool (*func) (struct bfd_section_already_linked_hash_entry *, void *),
2764 void *info)
2765 {
2766 bfd_hash_traverse (&_bfd_section_already_linked_table,
2767 (bool (*) (struct bfd_hash_entry *, void *)) func,
2768 info);
2769 }
2770
2771 struct bfd_section_already_linked_hash_entry *
2772 bfd_section_already_linked_table_lookup (const char *name)
2773 {
2774 return ((struct bfd_section_already_linked_hash_entry *)
2775 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2776 true, false));
2777 }
2778
2779 bool
2780 bfd_section_already_linked_table_insert
2781 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2782 asection *sec)
2783 {
2784 struct bfd_section_already_linked *l;
2785
2786 /* Allocate the memory from the same obstack as the hash table is
2787 kept in. */
2788 l = (struct bfd_section_already_linked *)
2789 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2790 if (l == NULL)
2791 return false;
2792 l->sec = sec;
2793 l->next = already_linked_list->entry;
2794 already_linked_list->entry = l;
2795 return true;
2796 }
2797
2798 static struct bfd_hash_entry *
2799 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2800 struct bfd_hash_table *table,
2801 const char *string ATTRIBUTE_UNUSED)
2802 {
2803 struct bfd_section_already_linked_hash_entry *ret =
2804 (struct bfd_section_already_linked_hash_entry *)
2805 bfd_hash_allocate (table, sizeof *ret);
2806
2807 if (ret == NULL)
2808 return NULL;
2809
2810 ret->entry = NULL;
2811
2812 return &ret->root;
2813 }
2814
2815 bool
2816 bfd_section_already_linked_table_init (void)
2817 {
2818 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2819 already_linked_newfunc,
2820 sizeof (struct bfd_section_already_linked_hash_entry),
2821 42);
2822 }
2823
2824 void
2825 bfd_section_already_linked_table_free (void)
2826 {
2827 bfd_hash_table_free (&_bfd_section_already_linked_table);
2828 }
2829
2830 /* Report warnings as appropriate for duplicate section SEC.
2831 Return FALSE if we decide to keep SEC after all. */
2832
2833 bool
2834 _bfd_handle_already_linked (asection *sec,
2835 struct bfd_section_already_linked *l,
2836 struct bfd_link_info *info)
2837 {
2838 switch (sec->flags & SEC_LINK_DUPLICATES)
2839 {
2840 default:
2841 abort ();
2842
2843 case SEC_LINK_DUPLICATES_DISCARD:
2844 /* If we found an LTO IR match for this comdat group on
2845 the first pass, replace it with the LTO output on the
2846 second pass. We can't simply choose real object
2847 files over IR because the first pass may contain a
2848 mix of LTO and normal objects and we must keep the
2849 first match, be it IR or real. */
2850 if (sec->owner->lto_output
2851 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2852 {
2853 l->sec = sec;
2854 return false;
2855 }
2856 break;
2857
2858 case SEC_LINK_DUPLICATES_ONE_ONLY:
2859 info->callbacks->einfo
2860 /* xgettext:c-format */
2861 (_("%pB: ignoring duplicate section `%pA'\n"),
2862 sec->owner, sec);
2863 break;
2864
2865 case SEC_LINK_DUPLICATES_SAME_SIZE:
2866 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2867 ;
2868 else if (sec->size != l->sec->size)
2869 info->callbacks->einfo
2870 /* xgettext:c-format */
2871 (_("%pB: duplicate section `%pA' has different size\n"),
2872 sec->owner, sec);
2873 break;
2874
2875 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2876 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2877 ;
2878 else if (sec->size != l->sec->size)
2879 info->callbacks->einfo
2880 /* xgettext:c-format */
2881 (_("%pB: duplicate section `%pA' has different size\n"),
2882 sec->owner, sec);
2883 else if (sec->size != 0)
2884 {
2885 bfd_byte *sec_contents, *l_sec_contents = NULL;
2886
2887 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2888 info->callbacks->einfo
2889 /* xgettext:c-format */
2890 (_("%pB: could not read contents of section `%pA'\n"),
2891 sec->owner, sec);
2892 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2893 &l_sec_contents))
2894 info->callbacks->einfo
2895 /* xgettext:c-format */
2896 (_("%pB: could not read contents of section `%pA'\n"),
2897 l->sec->owner, l->sec);
2898 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2899 info->callbacks->einfo
2900 /* xgettext:c-format */
2901 (_("%pB: duplicate section `%pA' has different contents\n"),
2902 sec->owner, sec);
2903
2904 free (sec_contents);
2905 free (l_sec_contents);
2906 }
2907 break;
2908 }
2909
2910 /* Set the output_section field so that lang_add_section
2911 does not create a lang_input_section structure for this
2912 section. Since there might be a symbol in the section
2913 being discarded, we must retain a pointer to the section
2914 which we are really going to use. */
2915 sec->output_section = bfd_abs_section_ptr;
2916 sec->kept_section = l->sec;
2917 return true;
2918 }
2919
2920 /* This is used on non-ELF inputs. */
2921
2922 bool
2923 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2924 asection *sec,
2925 struct bfd_link_info *info)
2926 {
2927 const char *name;
2928 struct bfd_section_already_linked *l;
2929 struct bfd_section_already_linked_hash_entry *already_linked_list;
2930
2931 if ((sec->flags & SEC_LINK_ONCE) == 0)
2932 return false;
2933
2934 /* The generic linker doesn't handle section groups. */
2935 if ((sec->flags & SEC_GROUP) != 0)
2936 return false;
2937
2938 /* FIXME: When doing a relocatable link, we may have trouble
2939 copying relocations in other sections that refer to local symbols
2940 in the section being discarded. Those relocations will have to
2941 be converted somehow; as of this writing I'm not sure that any of
2942 the backends handle that correctly.
2943
2944 It is tempting to instead not discard link once sections when
2945 doing a relocatable link (technically, they should be discarded
2946 whenever we are building constructors). However, that fails,
2947 because the linker winds up combining all the link once sections
2948 into a single large link once section, which defeats the purpose
2949 of having link once sections in the first place. */
2950
2951 name = bfd_section_name (sec);
2952
2953 already_linked_list = bfd_section_already_linked_table_lookup (name);
2954
2955 l = already_linked_list->entry;
2956 if (l != NULL)
2957 {
2958 /* The section has already been linked. See if we should
2959 issue a warning. */
2960 return _bfd_handle_already_linked (sec, l, info);
2961 }
2962
2963 /* This is the first section with this name. Record it. */
2964 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
2965 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
2966 return false;
2967 }
2968
2969 /* Choose a neighbouring section to S in OBFD that will be output, or
2970 the absolute section if ADDR is out of bounds of the neighbours. */
2971
2972 asection *
2973 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
2974 {
2975 asection *next, *prev, *best;
2976
2977 /* Find preceding kept section. */
2978 for (prev = s->prev; prev != NULL; prev = prev->prev)
2979 if ((prev->flags & SEC_EXCLUDE) == 0
2980 && !bfd_section_removed_from_list (obfd, prev))
2981 break;
2982
2983 /* Find following kept section. Start at prev->next because
2984 other sections may have been added after S was removed. */
2985 if (s->prev != NULL)
2986 next = s->prev->next;
2987 else
2988 next = s->owner->sections;
2989 for (; next != NULL; next = next->next)
2990 if ((next->flags & SEC_EXCLUDE) == 0
2991 && !bfd_section_removed_from_list (obfd, next))
2992 break;
2993
2994 /* Choose better of two sections, based on flags. The idea
2995 is to choose a section that will be in the same segment
2996 as S would have been if it was kept. */
2997 best = next;
2998 if (prev == NULL)
2999 {
3000 if (next == NULL)
3001 best = bfd_abs_section_ptr;
3002 }
3003 else if (next == NULL)
3004 best = prev;
3005 else if (((prev->flags ^ next->flags)
3006 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
3007 {
3008 if (((next->flags ^ s->flags)
3009 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3010 /* We prefer to choose a loaded section. Section S
3011 doesn't have SEC_LOAD set (it being excluded, that
3012 part of the flag processing didn't happen) so we
3013 can't compare that flag to those of NEXT and PREV. */
3014 || ((prev->flags & SEC_LOAD) != 0
3015 && (next->flags & SEC_LOAD) == 0))
3016 best = prev;
3017 }
3018 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3019 {
3020 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3021 best = prev;
3022 }
3023 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3024 {
3025 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3026 best = prev;
3027 }
3028 else
3029 {
3030 /* Flags we care about are the same. Prefer the following
3031 section if that will result in a positive valued sym. */
3032 if (addr < next->vma)
3033 best = prev;
3034 }
3035
3036 return best;
3037 }
3038
3039 /* Convert symbols in excluded output sections to use a kept section. */
3040
3041 static bool
3042 fix_syms (struct bfd_link_hash_entry *h, void *data)
3043 {
3044 bfd *obfd = (bfd *) data;
3045
3046 if (h->type == bfd_link_hash_defined
3047 || h->type == bfd_link_hash_defweak)
3048 {
3049 asection *s = h->u.def.section;
3050 if (s != NULL
3051 && s->output_section != NULL
3052 && (s->output_section->flags & SEC_EXCLUDE) != 0
3053 && bfd_section_removed_from_list (obfd, s->output_section))
3054 {
3055 asection *op;
3056
3057 h->u.def.value += s->output_offset + s->output_section->vma;
3058 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3059 h->u.def.value -= op->vma;
3060 h->u.def.section = op;
3061 }
3062 }
3063
3064 return true;
3065 }
3066
3067 void
3068 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3069 {
3070 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3071 }
3072
3073 /*
3074 FUNCTION
3075 bfd_generic_define_common_symbol
3076
3077 SYNOPSIS
3078 bool bfd_generic_define_common_symbol
3079 (bfd *output_bfd, struct bfd_link_info *info,
3080 struct bfd_link_hash_entry *h);
3081
3082 DESCRIPTION
3083 Convert common symbol @var{h} into a defined symbol.
3084 Return TRUE on success and FALSE on failure.
3085
3086 .#define bfd_define_common_symbol(output_bfd, info, h) \
3087 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3088 .
3089 */
3090
3091 bool
3092 bfd_generic_define_common_symbol (bfd *output_bfd,
3093 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3094 struct bfd_link_hash_entry *h)
3095 {
3096 unsigned int power_of_two;
3097 bfd_vma alignment, size;
3098 asection *section;
3099
3100 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3101
3102 size = h->u.c.size;
3103 power_of_two = h->u.c.p->alignment_power;
3104 section = h->u.c.p->section;
3105
3106 /* Increase the size of the section to align the common symbol.
3107 The alignment must be a power of two. But if the section does
3108 not have any alignment requirement then do not increase the
3109 alignment unnecessarily. */
3110 if (power_of_two)
3111 alignment = bfd_octets_per_byte (output_bfd, section) << power_of_two;
3112 else
3113 alignment = 1;
3114 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3115 section->size += alignment - 1;
3116 section->size &= -alignment;
3117
3118 /* Adjust the section's overall alignment if necessary. */
3119 if (power_of_two > section->alignment_power)
3120 section->alignment_power = power_of_two;
3121
3122 /* Change the symbol from common to defined. */
3123 h->type = bfd_link_hash_defined;
3124 h->u.def.section = section;
3125 h->u.def.value = section->size;
3126
3127 /* Increase the size of the section. */
3128 section->size += size;
3129
3130 /* Make sure the section is allocated in memory, and make sure that
3131 it is no longer a common section. */
3132 section->flags |= SEC_ALLOC;
3133 section->flags &= ~(SEC_IS_COMMON | SEC_HAS_CONTENTS);
3134 return true;
3135 }
3136
3137 /*
3138 FUNCTION
3139 _bfd_generic_link_hide_symbol
3140
3141 SYNOPSIS
3142 void _bfd_generic_link_hide_symbol
3143 (bfd *output_bfd, struct bfd_link_info *info,
3144 struct bfd_link_hash_entry *h);
3145
3146 DESCRIPTION
3147 Hide symbol @var{h}.
3148 This is an internal function. It should not be called from
3149 outside the BFD library.
3150
3151 .#define bfd_link_hide_symbol(output_bfd, info, h) \
3152 . BFD_SEND (output_bfd, _bfd_link_hide_symbol, (output_bfd, info, h))
3153 .
3154 */
3155
3156 void
3157 _bfd_generic_link_hide_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3158 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3159 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3160 {
3161 }
3162
3163 /*
3164 FUNCTION
3165 bfd_generic_define_start_stop
3166
3167 SYNOPSIS
3168 struct bfd_link_hash_entry *bfd_generic_define_start_stop
3169 (struct bfd_link_info *info,
3170 const char *symbol, asection *sec);
3171
3172 DESCRIPTION
3173 Define a __start, __stop, .startof. or .sizeof. symbol.
3174 Return the symbol or NULL if no such undefined symbol exists.
3175
3176 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \
3177 . BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec))
3178 .
3179 */
3180
3181 struct bfd_link_hash_entry *
3182 bfd_generic_define_start_stop (struct bfd_link_info *info,
3183 const char *symbol, asection *sec)
3184 {
3185 struct bfd_link_hash_entry *h;
3186
3187 h = bfd_link_hash_lookup (info->hash, symbol, false, false, true);
3188 if (h != NULL
3189 && !h->ldscript_def
3190 && (h->type == bfd_link_hash_undefined
3191 || h->type == bfd_link_hash_undefweak))
3192 {
3193 h->type = bfd_link_hash_defined;
3194 h->u.def.section = sec;
3195 h->u.def.value = 0;
3196 return h;
3197 }
3198 return NULL;
3199 }
3200
3201 /*
3202 FUNCTION
3203 bfd_find_version_for_sym
3204
3205 SYNOPSIS
3206 struct bfd_elf_version_tree * bfd_find_version_for_sym
3207 (struct bfd_elf_version_tree *verdefs,
3208 const char *sym_name, bool *hide);
3209
3210 DESCRIPTION
3211 Search an elf version script tree for symbol versioning
3212 info and export / don't-export status for a given symbol.
3213 Return non-NULL on success and NULL on failure; also sets
3214 the output @samp{hide} boolean parameter.
3215
3216 */
3217
3218 struct bfd_elf_version_tree *
3219 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3220 const char *sym_name,
3221 bool *hide)
3222 {
3223 struct bfd_elf_version_tree *t;
3224 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3225 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3226
3227 local_ver = NULL;
3228 global_ver = NULL;
3229 star_local_ver = NULL;
3230 star_global_ver = NULL;
3231 exist_ver = NULL;
3232 for (t = verdefs; t != NULL; t = t->next)
3233 {
3234 if (t->globals.list != NULL)
3235 {
3236 struct bfd_elf_version_expr *d = NULL;
3237
3238 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3239 {
3240 if (d->literal || strcmp (d->pattern, "*") != 0)
3241 global_ver = t;
3242 else
3243 star_global_ver = t;
3244 if (d->symver)
3245 exist_ver = t;
3246 d->script = 1;
3247 /* If the match is a wildcard pattern, keep looking for
3248 a more explicit, perhaps even local, match. */
3249 if (d->literal)
3250 break;
3251 }
3252
3253 if (d != NULL)
3254 break;
3255 }
3256
3257 if (t->locals.list != NULL)
3258 {
3259 struct bfd_elf_version_expr *d = NULL;
3260
3261 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3262 {
3263 if (d->literal || strcmp (d->pattern, "*") != 0)
3264 local_ver = t;
3265 else
3266 star_local_ver = t;
3267 /* If the match is a wildcard pattern, keep looking for
3268 a more explicit, perhaps even global, match. */
3269 if (d->literal)
3270 {
3271 /* An exact match overrides a global wildcard. */
3272 global_ver = NULL;
3273 star_global_ver = NULL;
3274 break;
3275 }
3276 }
3277
3278 if (d != NULL)
3279 break;
3280 }
3281 }
3282
3283 if (global_ver == NULL && local_ver == NULL)
3284 global_ver = star_global_ver;
3285
3286 if (global_ver != NULL)
3287 {
3288 /* If we already have a versioned symbol that matches the
3289 node for this symbol, then we don't want to create a
3290 duplicate from the unversioned symbol. Instead hide the
3291 unversioned symbol. */
3292 *hide = exist_ver == global_ver;
3293 return global_ver;
3294 }
3295
3296 if (local_ver == NULL)
3297 local_ver = star_local_ver;
3298
3299 if (local_ver != NULL)
3300 {
3301 *hide = true;
3302 return local_ver;
3303 }
3304
3305 return NULL;
3306 }
3307
3308 /*
3309 FUNCTION
3310 bfd_hide_sym_by_version
3311
3312 SYNOPSIS
3313 bool bfd_hide_sym_by_version
3314 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3315
3316 DESCRIPTION
3317 Search an elf version script tree for symbol versioning
3318 info for a given symbol. Return TRUE if the symbol is hidden.
3319
3320 */
3321
3322 bool
3323 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3324 const char *sym_name)
3325 {
3326 bool hidden = false;
3327 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3328 return hidden;
3329 }
3330
3331 /*
3332 FUNCTION
3333 bfd_link_check_relocs
3334
3335 SYNOPSIS
3336 bool bfd_link_check_relocs
3337 (bfd *abfd, struct bfd_link_info *info);
3338
3339 DESCRIPTION
3340 Checks the relocs in ABFD for validity.
3341 Does not execute the relocs.
3342 Return TRUE if everything is OK, FALSE otherwise.
3343 This is the external entry point to this code.
3344 */
3345
3346 bool
3347 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3348 {
3349 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3350 }
3351
3352 /*
3353 FUNCTION
3354 _bfd_generic_link_check_relocs
3355
3356 SYNOPSIS
3357 bool _bfd_generic_link_check_relocs
3358 (bfd *abfd, struct bfd_link_info *info);
3359
3360 DESCRIPTION
3361 Stub function for targets that do not implement reloc checking.
3362 Return TRUE.
3363 This is an internal function. It should not be called from
3364 outside the BFD library.
3365 */
3366
3367 bool
3368 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3369 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3370 {
3371 return true;
3372 }
3373
3374 /*
3375 FUNCTION
3376 bfd_merge_private_bfd_data
3377
3378 SYNOPSIS
3379 bool bfd_merge_private_bfd_data
3380 (bfd *ibfd, struct bfd_link_info *info);
3381
3382 DESCRIPTION
3383 Merge private BFD information from the BFD @var{ibfd} to the
3384 the output file BFD when linking. Return <<TRUE>> on success,
3385 <<FALSE>> on error. Possible error returns are:
3386
3387 o <<bfd_error_no_memory>> -
3388 Not enough memory exists to create private data for @var{obfd}.
3389
3390 .#define bfd_merge_private_bfd_data(ibfd, info) \
3391 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
3392 . (ibfd, info))
3393 */
3394
3395 /*
3396 INTERNAL_FUNCTION
3397 _bfd_generic_verify_endian_match
3398
3399 SYNOPSIS
3400 bool _bfd_generic_verify_endian_match
3401 (bfd *ibfd, struct bfd_link_info *info);
3402
3403 DESCRIPTION
3404 Can be used from / for bfd_merge_private_bfd_data to check that
3405 endianness matches between input and output file. Returns
3406 TRUE for a match, otherwise returns FALSE and emits an error.
3407 */
3408
3409 bool
3410 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info)
3411 {
3412 bfd *obfd = info->output_bfd;
3413
3414 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
3415 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
3416 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
3417 {
3418 if (bfd_big_endian (ibfd))
3419 _bfd_error_handler (_("%pB: compiled for a big endian system "
3420 "and target is little endian"), ibfd);
3421 else
3422 _bfd_error_handler (_("%pB: compiled for a little endian system "
3423 "and target is big endian"), ibfd);
3424 bfd_set_error (bfd_error_wrong_format);
3425 return false;
3426 }
3427
3428 return true;
3429 }
3430
3431 int
3432 _bfd_nolink_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
3433 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3434 {
3435 return 0;
3436 }
3437
3438 bool
3439 _bfd_nolink_bfd_relax_section (bfd *abfd,
3440 asection *section ATTRIBUTE_UNUSED,
3441 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3442 bool *again ATTRIBUTE_UNUSED)
3443 {
3444 return _bfd_bool_bfd_false_error (abfd);
3445 }
3446
3447 bfd_byte *
3448 _bfd_nolink_bfd_get_relocated_section_contents
3449 (bfd *abfd,
3450 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3451 struct bfd_link_order *link_order ATTRIBUTE_UNUSED,
3452 bfd_byte *data ATTRIBUTE_UNUSED,
3453 bool relocatable ATTRIBUTE_UNUSED,
3454 asymbol **symbols ATTRIBUTE_UNUSED)
3455 {
3456 return (bfd_byte *) _bfd_ptr_bfd_null_error (abfd);
3457 }
3458
3459 bool
3460 _bfd_nolink_bfd_lookup_section_flags
3461 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3462 struct flag_info *flaginfo ATTRIBUTE_UNUSED,
3463 asection *section)
3464 {
3465 return _bfd_bool_bfd_false_error (section->owner);
3466 }
3467
3468 bool
3469 _bfd_nolink_bfd_is_group_section (bfd *abfd,
3470 const asection *sec ATTRIBUTE_UNUSED)
3471 {
3472 return _bfd_bool_bfd_false_error (abfd);
3473 }
3474
3475 const char *
3476 _bfd_nolink_bfd_group_name (bfd *abfd,
3477 const asection *sec ATTRIBUTE_UNUSED)
3478 {
3479 return _bfd_ptr_bfd_null_error (abfd);
3480 }
3481
3482 bool
3483 _bfd_nolink_bfd_discard_group (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3484 {
3485 return _bfd_bool_bfd_false_error (abfd);
3486 }
3487
3488 struct bfd_link_hash_table *
3489 _bfd_nolink_bfd_link_hash_table_create (bfd *abfd)
3490 {
3491 return (struct bfd_link_hash_table *) _bfd_ptr_bfd_null_error (abfd);
3492 }
3493
3494 void
3495 _bfd_nolink_bfd_link_just_syms (asection *sec ATTRIBUTE_UNUSED,
3496 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3497 {
3498 }
3499
3500 void
3501 _bfd_nolink_bfd_copy_link_hash_symbol_type
3502 (bfd *abfd ATTRIBUTE_UNUSED,
3503 struct bfd_link_hash_entry *from ATTRIBUTE_UNUSED,
3504 struct bfd_link_hash_entry *to ATTRIBUTE_UNUSED)
3505 {
3506 }
3507
3508 bool
3509 _bfd_nolink_bfd_link_split_section (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3510 {
3511 return _bfd_bool_bfd_false_error (abfd);
3512 }
3513
3514 bool
3515 _bfd_nolink_section_already_linked (bfd *abfd,
3516 asection *sec ATTRIBUTE_UNUSED,
3517 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3518 {
3519 return _bfd_bool_bfd_false_error (abfd);
3520 }
3521
3522 bool
3523 _bfd_nolink_bfd_define_common_symbol
3524 (bfd *abfd,
3525 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3526 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3527 {
3528 return _bfd_bool_bfd_false_error (abfd);
3529 }
3530
3531 struct bfd_link_hash_entry *
3532 _bfd_nolink_bfd_define_start_stop (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3533 const char *name ATTRIBUTE_UNUSED,
3534 asection *sec)
3535 {
3536 return (struct bfd_link_hash_entry *) _bfd_ptr_bfd_null_error (sec->owner);
3537 }
This page took 0.121152 seconds and 4 git commands to generate.