gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993-2020 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "bfdlink.h"
26 #include "genlink.h"
27
28 /*
29 SECTION
30 Linker Functions
31
32 @cindex Linker
33 The linker uses three special entry points in the BFD target
34 vector. It is not necessary to write special routines for
35 these entry points when creating a new BFD back end, since
36 generic versions are provided. However, writing them can
37 speed up linking and make it use significantly less runtime
38 memory.
39
40 The first routine creates a hash table used by the other
41 routines. The second routine adds the symbols from an object
42 file to the hash table. The third routine takes all the
43 object files and links them together to create the output
44 file. These routines are designed so that the linker proper
45 does not need to know anything about the symbols in the object
46 files that it is linking. The linker merely arranges the
47 sections as directed by the linker script and lets BFD handle
48 the details of symbols and relocs.
49
50 The second routine and third routines are passed a pointer to
51 a <<struct bfd_link_info>> structure (defined in
52 <<bfdlink.h>>) which holds information relevant to the link,
53 including the linker hash table (which was created by the
54 first routine) and a set of callback functions to the linker
55 proper.
56
57 The generic linker routines are in <<linker.c>>, and use the
58 header file <<genlink.h>>. As of this writing, the only back
59 ends which have implemented versions of these routines are
60 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
61 routines are used as examples throughout this section.
62
63 @menu
64 @* Creating a Linker Hash Table::
65 @* Adding Symbols to the Hash Table::
66 @* Performing the Final Link::
67 @end menu
68
69 INODE
70 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
71 SUBSECTION
72 Creating a linker hash table
73
74 @cindex _bfd_link_hash_table_create in target vector
75 @cindex target vector (_bfd_link_hash_table_create)
76 The linker routines must create a hash table, which must be
77 derived from <<struct bfd_link_hash_table>> described in
78 <<bfdlink.c>>. @xref{Hash Tables}, for information on how to
79 create a derived hash table. This entry point is called using
80 the target vector of the linker output file.
81
82 The <<_bfd_link_hash_table_create>> entry point must allocate
83 and initialize an instance of the desired hash table. If the
84 back end does not require any additional information to be
85 stored with the entries in the hash table, the entry point may
86 simply create a <<struct bfd_link_hash_table>>. Most likely,
87 however, some additional information will be needed.
88
89 For example, with each entry in the hash table the a.out
90 linker keeps the index the symbol has in the final output file
91 (this index number is used so that when doing a relocatable
92 link the symbol index used in the output file can be quickly
93 filled in when copying over a reloc). The a.out linker code
94 defines the required structures and functions for a hash table
95 derived from <<struct bfd_link_hash_table>>. The a.out linker
96 hash table is created by the function
97 <<NAME(aout,link_hash_table_create)>>; it simply allocates
98 space for the hash table, initializes it, and returns a
99 pointer to it.
100
101 When writing the linker routines for a new back end, you will
102 generally not know exactly which fields will be required until
103 you have finished. You should simply create a new hash table
104 which defines no additional fields, and then simply add fields
105 as they become necessary.
106
107 INODE
108 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
109 SUBSECTION
110 Adding symbols to the hash table
111
112 @cindex _bfd_link_add_symbols in target vector
113 @cindex target vector (_bfd_link_add_symbols)
114 The linker proper will call the <<_bfd_link_add_symbols>>
115 entry point for each object file or archive which is to be
116 linked (typically these are the files named on the command
117 line, but some may also come from the linker script). The
118 entry point is responsible for examining the file. For an
119 object file, BFD must add any relevant symbol information to
120 the hash table. For an archive, BFD must determine which
121 elements of the archive should be used and adding them to the
122 link.
123
124 The a.out version of this entry point is
125 <<NAME(aout,link_add_symbols)>>.
126
127 @menu
128 @* Differing file formats::
129 @* Adding symbols from an object file::
130 @* Adding symbols from an archive::
131 @end menu
132
133 INODE
134 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
135 SUBSUBSECTION
136 Differing file formats
137
138 Normally all the files involved in a link will be of the same
139 format, but it is also possible to link together different
140 format object files, and the back end must support that. The
141 <<_bfd_link_add_symbols>> entry point is called via the target
142 vector of the file to be added. This has an important
143 consequence: the function may not assume that the hash table
144 is the type created by the corresponding
145 <<_bfd_link_hash_table_create>> vector. All the
146 <<_bfd_link_add_symbols>> function can assume about the hash
147 table is that it is derived from <<struct
148 bfd_link_hash_table>>.
149
150 Sometimes the <<_bfd_link_add_symbols>> function must store
151 some information in the hash table entry to be used by the
152 <<_bfd_final_link>> function. In such a case the output bfd
153 xvec must be checked to make sure that the hash table was
154 created by an object file of the same format.
155
156 The <<_bfd_final_link>> routine must be prepared to handle a
157 hash entry without any extra information added by the
158 <<_bfd_link_add_symbols>> function. A hash entry without
159 extra information will also occur when the linker script
160 directs the linker to create a symbol. Note that, regardless
161 of how a hash table entry is added, all the fields will be
162 initialized to some sort of null value by the hash table entry
163 initialization function.
164
165 See <<ecoff_link_add_externals>> for an example of how to
166 check the output bfd before saving information (in this
167 case, the ECOFF external symbol debugging information) in a
168 hash table entry.
169
170 INODE
171 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
172 SUBSUBSECTION
173 Adding symbols from an object file
174
175 When the <<_bfd_link_add_symbols>> routine is passed an object
176 file, it must add all externally visible symbols in that
177 object file to the hash table. The actual work of adding the
178 symbol to the hash table is normally handled by the function
179 <<_bfd_generic_link_add_one_symbol>>. The
180 <<_bfd_link_add_symbols>> routine is responsible for reading
181 all the symbols from the object file and passing the correct
182 information to <<_bfd_generic_link_add_one_symbol>>.
183
184 The <<_bfd_link_add_symbols>> routine should not use
185 <<bfd_canonicalize_symtab>> to read the symbols. The point of
186 providing this routine is to avoid the overhead of converting
187 the symbols into generic <<asymbol>> structures.
188
189 @findex _bfd_generic_link_add_one_symbol
190 <<_bfd_generic_link_add_one_symbol>> handles the details of
191 combining common symbols, warning about multiple definitions,
192 and so forth. It takes arguments which describe the symbol to
193 add, notably symbol flags, a section, and an offset. The
194 symbol flags include such things as <<BSF_WEAK>> or
195 <<BSF_INDIRECT>>. The section is a section in the object
196 file, or something like <<bfd_und_section_ptr>> for an undefined
197 symbol or <<bfd_com_section_ptr>> for a common symbol.
198
199 If the <<_bfd_final_link>> routine is also going to need to
200 read the symbol information, the <<_bfd_link_add_symbols>>
201 routine should save it somewhere attached to the object file
202 BFD. However, the information should only be saved if the
203 <<keep_memory>> field of the <<info>> argument is TRUE, so
204 that the <<-no-keep-memory>> linker switch is effective.
205
206 The a.out function which adds symbols from an object file is
207 <<aout_link_add_object_symbols>>, and most of the interesting
208 work is in <<aout_link_add_symbols>>. The latter saves
209 pointers to the hash tables entries created by
210 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
211 so that the <<_bfd_final_link>> routine does not have to call
212 the hash table lookup routine to locate the entry.
213
214 INODE
215 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
216 SUBSUBSECTION
217 Adding symbols from an archive
218
219 When the <<_bfd_link_add_symbols>> routine is passed an
220 archive, it must look through the symbols defined by the
221 archive and decide which elements of the archive should be
222 included in the link. For each such element it must call the
223 <<add_archive_element>> linker callback, and it must add the
224 symbols from the object file to the linker hash table. (The
225 callback may in fact indicate that a replacement BFD should be
226 used, in which case the symbols from that BFD should be added
227 to the linker hash table instead.)
228
229 @findex _bfd_generic_link_add_archive_symbols
230 In most cases the work of looking through the symbols in the
231 archive should be done by the
232 <<_bfd_generic_link_add_archive_symbols>> function.
233 <<_bfd_generic_link_add_archive_symbols>> is passed a function
234 to call to make the final decision about adding an archive
235 element to the link and to do the actual work of adding the
236 symbols to the linker hash table. If the element is to
237 be included, the <<add_archive_element>> linker callback
238 routine must be called with the element as an argument, and
239 the element's symbols must be added to the linker hash table
240 just as though the element had itself been passed to the
241 <<_bfd_link_add_symbols>> function.
242
243 When the a.out <<_bfd_link_add_symbols>> function receives an
244 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
245 passing <<aout_link_check_archive_element>> as the function
246 argument. <<aout_link_check_archive_element>> calls
247 <<aout_link_check_ar_symbols>>. If the latter decides to add
248 the element (an element is only added if it provides a real,
249 non-common, definition for a previously undefined or common
250 symbol) it calls the <<add_archive_element>> callback and then
251 <<aout_link_check_archive_element>> calls
252 <<aout_link_add_symbols>> to actually add the symbols to the
253 linker hash table - possibly those of a substitute BFD, if the
254 <<add_archive_element>> callback avails itself of that option.
255
256 The ECOFF back end is unusual in that it does not normally
257 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
258 archives already contain a hash table of symbols. The ECOFF
259 back end searches the archive itself to avoid the overhead of
260 creating a new hash table.
261
262 INODE
263 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
264 SUBSECTION
265 Performing the final link
266
267 @cindex _bfd_link_final_link in target vector
268 @cindex target vector (_bfd_final_link)
269 When all the input files have been processed, the linker calls
270 the <<_bfd_final_link>> entry point of the output BFD. This
271 routine is responsible for producing the final output file,
272 which has several aspects. It must relocate the contents of
273 the input sections and copy the data into the output sections.
274 It must build an output symbol table including any local
275 symbols from the input files and the global symbols from the
276 hash table. When producing relocatable output, it must
277 modify the input relocs and write them into the output file.
278 There may also be object format dependent work to be done.
279
280 The linker will also call the <<write_object_contents>> entry
281 point when the BFD is closed. The two entry points must work
282 together in order to produce the correct output file.
283
284 The details of how this works are inevitably dependent upon
285 the specific object file format. The a.out
286 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
287
288 @menu
289 @* Information provided by the linker::
290 @* Relocating the section contents::
291 @* Writing the symbol table::
292 @end menu
293
294 INODE
295 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
296 SUBSUBSECTION
297 Information provided by the linker
298
299 Before the linker calls the <<_bfd_final_link>> entry point,
300 it sets up some data structures for the function to use.
301
302 The <<input_bfds>> field of the <<bfd_link_info>> structure
303 will point to a list of all the input files included in the
304 link. These files are linked through the <<link.next>> field
305 of the <<bfd>> structure.
306
307 Each section in the output file will have a list of
308 <<link_order>> structures attached to the <<map_head.link_order>>
309 field (the <<link_order>> structure is defined in
310 <<bfdlink.h>>). These structures describe how to create the
311 contents of the output section in terms of the contents of
312 various input sections, fill constants, and, eventually, other
313 types of information. They also describe relocs that must be
314 created by the BFD backend, but do not correspond to any input
315 file; this is used to support -Ur, which builds constructors
316 while generating a relocatable object file.
317
318 INODE
319 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
320 SUBSUBSECTION
321 Relocating the section contents
322
323 The <<_bfd_final_link>> function should look through the
324 <<link_order>> structures attached to each section of the
325 output file. Each <<link_order>> structure should either be
326 handled specially, or it should be passed to the function
327 <<_bfd_default_link_order>> which will do the right thing
328 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
329
330 For efficiency, a <<link_order>> of type
331 <<bfd_indirect_link_order>> whose associated section belongs
332 to a BFD of the same format as the output BFD must be handled
333 specially. This type of <<link_order>> describes part of an
334 output section in terms of a section belonging to one of the
335 input files. The <<_bfd_final_link>> function should read the
336 contents of the section and any associated relocs, apply the
337 relocs to the section contents, and write out the modified
338 section contents. If performing a relocatable link, the
339 relocs themselves must also be modified and written out.
340
341 @findex _bfd_relocate_contents
342 @findex _bfd_final_link_relocate
343 The functions <<_bfd_relocate_contents>> and
344 <<_bfd_final_link_relocate>> provide some general support for
345 performing the actual relocations, notably overflow checking.
346 Their arguments include information about the symbol the
347 relocation is against and a <<reloc_howto_type>> argument
348 which describes the relocation to perform. These functions
349 are defined in <<reloc.c>>.
350
351 The a.out function which handles reading, relocating, and
352 writing section contents is <<aout_link_input_section>>. The
353 actual relocation is done in <<aout_link_input_section_std>>
354 and <<aout_link_input_section_ext>>.
355
356 INODE
357 Writing the symbol table, , Relocating the section contents, Performing the Final Link
358 SUBSUBSECTION
359 Writing the symbol table
360
361 The <<_bfd_final_link>> function must gather all the symbols
362 in the input files and write them out. It must also write out
363 all the symbols in the global hash table. This must be
364 controlled by the <<strip>> and <<discard>> fields of the
365 <<bfd_link_info>> structure.
366
367 The local symbols of the input files will not have been
368 entered into the linker hash table. The <<_bfd_final_link>>
369 routine must consider each input file and include the symbols
370 in the output file. It may be convenient to do this when
371 looking through the <<link_order>> structures, or it may be
372 done by stepping through the <<input_bfds>> list.
373
374 The <<_bfd_final_link>> routine must also traverse the global
375 hash table to gather all the externally visible symbols. It
376 is possible that most of the externally visible symbols may be
377 written out when considering the symbols of each input file,
378 but it is still necessary to traverse the hash table since the
379 linker script may have defined some symbols that are not in
380 any of the input files.
381
382 The <<strip>> field of the <<bfd_link_info>> structure
383 controls which symbols are written out. The possible values
384 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
385 then the <<keep_hash>> field of the <<bfd_link_info>>
386 structure is a hash table of symbols to keep; each symbol
387 should be looked up in this hash table, and only symbols which
388 are present should be included in the output file.
389
390 If the <<strip>> field of the <<bfd_link_info>> structure
391 permits local symbols to be written out, the <<discard>> field
392 is used to further controls which local symbols are included
393 in the output file. If the value is <<discard_l>>, then all
394 local symbols which begin with a certain prefix are discarded;
395 this is controlled by the <<bfd_is_local_label_name>> entry point.
396
397 The a.out backend handles symbols by calling
398 <<aout_link_write_symbols>> on each input BFD and then
399 traversing the global hash table with the function
400 <<aout_link_write_other_symbol>>. It builds a string table
401 while writing out the symbols, which is written to the output
402 file at the end of <<NAME(aout,final_link)>>.
403 */
404
405 static bfd_boolean generic_link_add_object_symbols
406 (bfd *, struct bfd_link_info *);
407 static bfd_boolean generic_link_check_archive_element
408 (bfd *, struct bfd_link_info *, struct bfd_link_hash_entry *, const char *,
409 bfd_boolean *);
410 static bfd_boolean generic_link_add_symbol_list
411 (bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **);
412 static bfd_boolean generic_add_output_symbol
413 (bfd *, size_t *psymalloc, asymbol *);
414 static bfd_boolean default_data_link_order
415 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *);
416 static bfd_boolean default_indirect_link_order
417 (bfd *, struct bfd_link_info *, asection *, struct bfd_link_order *,
418 bfd_boolean);
419
420 /* The link hash table structure is defined in bfdlink.h. It provides
421 a base hash table which the backend specific hash tables are built
422 upon. */
423
424 /* Routine to create an entry in the link hash table. */
425
426 struct bfd_hash_entry *
427 _bfd_link_hash_newfunc (struct bfd_hash_entry *entry,
428 struct bfd_hash_table *table,
429 const char *string)
430 {
431 /* Allocate the structure if it has not already been allocated by a
432 subclass. */
433 if (entry == NULL)
434 {
435 entry = (struct bfd_hash_entry *)
436 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry));
437 if (entry == NULL)
438 return entry;
439 }
440
441 /* Call the allocation method of the superclass. */
442 entry = bfd_hash_newfunc (entry, table, string);
443 if (entry)
444 {
445 struct bfd_link_hash_entry *h = (struct bfd_link_hash_entry *) entry;
446
447 /* Initialize the local fields. */
448 memset ((char *) &h->root + sizeof (h->root), 0,
449 sizeof (*h) - sizeof (h->root));
450 }
451
452 return entry;
453 }
454
455 /* Initialize a link hash table. The BFD argument is the one
456 responsible for creating this table. */
457
458 bfd_boolean
459 _bfd_link_hash_table_init
460 (struct bfd_link_hash_table *table,
461 bfd *abfd ATTRIBUTE_UNUSED,
462 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
463 struct bfd_hash_table *,
464 const char *),
465 unsigned int entsize)
466 {
467 bfd_boolean ret;
468
469 BFD_ASSERT (!abfd->is_linker_output && !abfd->link.hash);
470 table->undefs = NULL;
471 table->undefs_tail = NULL;
472 table->type = bfd_link_generic_hash_table;
473
474 ret = bfd_hash_table_init (&table->table, newfunc, entsize);
475 if (ret)
476 {
477 /* Arrange for destruction of this hash table on closing ABFD. */
478 table->hash_table_free = _bfd_generic_link_hash_table_free;
479 abfd->link.hash = table;
480 abfd->is_linker_output = TRUE;
481 }
482 return ret;
483 }
484
485 /* Look up a symbol in a link hash table. If follow is TRUE, we
486 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
487 the real symbol.
488
489 .{* Return TRUE if the symbol described by a linker hash entry H
490 . is going to be absolute. Linker-script defined symbols can be
491 . converted from absolute to section-relative ones late in the
492 . link. Use this macro to correctly determine whether the symbol
493 . will actually end up absolute in output. *}
494 .#define bfd_is_abs_symbol(H) \
495 . (((H)->type == bfd_link_hash_defined \
496 . || (H)->type == bfd_link_hash_defweak) \
497 . && bfd_is_abs_section ((H)->u.def.section) \
498 . && !(H)->rel_from_abs)
499 .
500 */
501
502 struct bfd_link_hash_entry *
503 bfd_link_hash_lookup (struct bfd_link_hash_table *table,
504 const char *string,
505 bfd_boolean create,
506 bfd_boolean copy,
507 bfd_boolean follow)
508 {
509 struct bfd_link_hash_entry *ret;
510
511 if (table == NULL || string == NULL)
512 return NULL;
513
514 ret = ((struct bfd_link_hash_entry *)
515 bfd_hash_lookup (&table->table, string, create, copy));
516
517 if (follow && ret != NULL)
518 {
519 while (ret->type == bfd_link_hash_indirect
520 || ret->type == bfd_link_hash_warning)
521 ret = ret->u.i.link;
522 }
523
524 return ret;
525 }
526
527 /* Look up a symbol in the main linker hash table if the symbol might
528 be wrapped. This should only be used for references to an
529 undefined symbol, not for definitions of a symbol. */
530
531 struct bfd_link_hash_entry *
532 bfd_wrapped_link_hash_lookup (bfd *abfd,
533 struct bfd_link_info *info,
534 const char *string,
535 bfd_boolean create,
536 bfd_boolean copy,
537 bfd_boolean follow)
538 {
539 size_t amt;
540
541 if (info->wrap_hash != NULL)
542 {
543 const char *l;
544 char prefix = '\0';
545
546 l = string;
547 if (*l == bfd_get_symbol_leading_char (abfd) || *l == info->wrap_char)
548 {
549 prefix = *l;
550 ++l;
551 }
552
553 #undef WRAP
554 #define WRAP "__wrap_"
555
556 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
557 {
558 char *n;
559 struct bfd_link_hash_entry *h;
560
561 /* This symbol is being wrapped. We want to replace all
562 references to SYM with references to __wrap_SYM. */
563
564 amt = strlen (l) + sizeof WRAP + 1;
565 n = (char *) bfd_malloc (amt);
566 if (n == NULL)
567 return NULL;
568
569 n[0] = prefix;
570 n[1] = '\0';
571 strcat (n, WRAP);
572 strcat (n, l);
573 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
574 free (n);
575 return h;
576 }
577
578 #undef REAL
579 #define REAL "__real_"
580
581 if (*l == '_'
582 && CONST_STRNEQ (l, REAL)
583 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
584 FALSE, FALSE) != NULL)
585 {
586 char *n;
587 struct bfd_link_hash_entry *h;
588
589 /* This is a reference to __real_SYM, where SYM is being
590 wrapped. We want to replace all references to __real_SYM
591 with references to SYM. */
592
593 amt = strlen (l + sizeof REAL - 1) + 2;
594 n = (char *) bfd_malloc (amt);
595 if (n == NULL)
596 return NULL;
597
598 n[0] = prefix;
599 n[1] = '\0';
600 strcat (n, l + sizeof REAL - 1);
601 h = bfd_link_hash_lookup (info->hash, n, create, TRUE, follow);
602 free (n);
603 return h;
604 }
605
606 #undef REAL
607 }
608
609 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
610 }
611
612 /* If H is a wrapped symbol, ie. the symbol name starts with "__wrap_"
613 and the remainder is found in wrap_hash, return the real symbol. */
614
615 struct bfd_link_hash_entry *
616 unwrap_hash_lookup (struct bfd_link_info *info,
617 bfd *input_bfd,
618 struct bfd_link_hash_entry *h)
619 {
620 const char *l = h->root.string;
621
622 if (*l == bfd_get_symbol_leading_char (input_bfd)
623 || *l == info->wrap_char)
624 ++l;
625
626 if (CONST_STRNEQ (l, WRAP))
627 {
628 l += sizeof WRAP - 1;
629
630 if (bfd_hash_lookup (info->wrap_hash, l, FALSE, FALSE) != NULL)
631 {
632 char save = 0;
633 if (l - (sizeof WRAP - 1) != h->root.string)
634 {
635 --l;
636 save = *l;
637 *(char *) l = *h->root.string;
638 }
639 h = bfd_link_hash_lookup (info->hash, l, FALSE, FALSE, FALSE);
640 if (save)
641 *(char *) l = save;
642 }
643 }
644 return h;
645 }
646 #undef WRAP
647
648 /* Traverse a generic link hash table. Differs from bfd_hash_traverse
649 in the treatment of warning symbols. When warning symbols are
650 created they replace the real symbol, so you don't get to see the
651 real symbol in a bfd_hash_traverse. This traversal calls func with
652 the real symbol. */
653
654 void
655 bfd_link_hash_traverse
656 (struct bfd_link_hash_table *htab,
657 bfd_boolean (*func) (struct bfd_link_hash_entry *, void *),
658 void *info)
659 {
660 unsigned int i;
661
662 htab->table.frozen = 1;
663 for (i = 0; i < htab->table.size; i++)
664 {
665 struct bfd_link_hash_entry *p;
666
667 p = (struct bfd_link_hash_entry *) htab->table.table[i];
668 for (; p != NULL; p = (struct bfd_link_hash_entry *) p->root.next)
669 if (!(*func) (p->type == bfd_link_hash_warning ? p->u.i.link : p, info))
670 goto out;
671 }
672 out:
673 htab->table.frozen = 0;
674 }
675
676 /* Add a symbol to the linker hash table undefs list. */
677
678 void
679 bfd_link_add_undef (struct bfd_link_hash_table *table,
680 struct bfd_link_hash_entry *h)
681 {
682 BFD_ASSERT (h->u.undef.next == NULL);
683 if (table->undefs_tail != NULL)
684 table->undefs_tail->u.undef.next = h;
685 if (table->undefs == NULL)
686 table->undefs = h;
687 table->undefs_tail = h;
688 }
689
690 /* The undefs list was designed so that in normal use we don't need to
691 remove entries. However, if symbols on the list are changed from
692 bfd_link_hash_undefined to either bfd_link_hash_undefweak or
693 bfd_link_hash_new for some reason, then they must be removed from the
694 list. Failure to do so might result in the linker attempting to add
695 the symbol to the list again at a later stage. */
696
697 void
698 bfd_link_repair_undef_list (struct bfd_link_hash_table *table)
699 {
700 struct bfd_link_hash_entry **pun;
701
702 pun = &table->undefs;
703 while (*pun != NULL)
704 {
705 struct bfd_link_hash_entry *h = *pun;
706
707 if (h->type == bfd_link_hash_new
708 || h->type == bfd_link_hash_undefweak)
709 {
710 *pun = h->u.undef.next;
711 h->u.undef.next = NULL;
712 if (h == table->undefs_tail)
713 {
714 if (pun == &table->undefs)
715 table->undefs_tail = NULL;
716 else
717 /* pun points at an u.undef.next field. Go back to
718 the start of the link_hash_entry. */
719 table->undefs_tail = (struct bfd_link_hash_entry *)
720 ((char *) pun - ((char *) &h->u.undef.next - (char *) h));
721 break;
722 }
723 }
724 else
725 pun = &h->u.undef.next;
726 }
727 }
728 \f
729 /* Routine to create an entry in a generic link hash table. */
730
731 struct bfd_hash_entry *
732 _bfd_generic_link_hash_newfunc (struct bfd_hash_entry *entry,
733 struct bfd_hash_table *table,
734 const char *string)
735 {
736 /* Allocate the structure if it has not already been allocated by a
737 subclass. */
738 if (entry == NULL)
739 {
740 entry = (struct bfd_hash_entry *)
741 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry));
742 if (entry == NULL)
743 return entry;
744 }
745
746 /* Call the allocation method of the superclass. */
747 entry = _bfd_link_hash_newfunc (entry, table, string);
748 if (entry)
749 {
750 struct generic_link_hash_entry *ret;
751
752 /* Set local fields. */
753 ret = (struct generic_link_hash_entry *) entry;
754 ret->written = FALSE;
755 ret->sym = NULL;
756 }
757
758 return entry;
759 }
760
761 /* Create a generic link hash table. */
762
763 struct bfd_link_hash_table *
764 _bfd_generic_link_hash_table_create (bfd *abfd)
765 {
766 struct generic_link_hash_table *ret;
767 size_t amt = sizeof (struct generic_link_hash_table);
768
769 ret = (struct generic_link_hash_table *) bfd_malloc (amt);
770 if (ret == NULL)
771 return NULL;
772 if (! _bfd_link_hash_table_init (&ret->root, abfd,
773 _bfd_generic_link_hash_newfunc,
774 sizeof (struct generic_link_hash_entry)))
775 {
776 free (ret);
777 return NULL;
778 }
779 return &ret->root;
780 }
781
782 void
783 _bfd_generic_link_hash_table_free (bfd *obfd)
784 {
785 struct generic_link_hash_table *ret;
786
787 BFD_ASSERT (obfd->is_linker_output && obfd->link.hash);
788 ret = (struct generic_link_hash_table *) obfd->link.hash;
789 bfd_hash_table_free (&ret->root.table);
790 free (ret);
791 obfd->link.hash = NULL;
792 obfd->is_linker_output = FALSE;
793 }
794
795 /* Grab the symbols for an object file when doing a generic link. We
796 store the symbols in the outsymbols field. We need to keep them
797 around for the entire link to ensure that we only read them once.
798 If we read them multiple times, we might wind up with relocs and
799 the hash table pointing to different instances of the symbol
800 structure. */
801
802 bfd_boolean
803 bfd_generic_link_read_symbols (bfd *abfd)
804 {
805 if (bfd_get_outsymbols (abfd) == NULL)
806 {
807 long symsize;
808 long symcount;
809
810 symsize = bfd_get_symtab_upper_bound (abfd);
811 if (symsize < 0)
812 return FALSE;
813 abfd->outsymbols = bfd_alloc (abfd, symsize);
814 if (bfd_get_outsymbols (abfd) == NULL && symsize != 0)
815 return FALSE;
816 symcount = bfd_canonicalize_symtab (abfd, bfd_get_outsymbols (abfd));
817 if (symcount < 0)
818 return FALSE;
819 abfd->symcount = symcount;
820 }
821
822 return TRUE;
823 }
824 \f
825 /* Indicate that we are only retrieving symbol values from this
826 section. We want the symbols to act as though the values in the
827 file are absolute. */
828
829 void
830 _bfd_generic_link_just_syms (asection *sec,
831 struct bfd_link_info *info ATTRIBUTE_UNUSED)
832 {
833 sec->sec_info_type = SEC_INFO_TYPE_JUST_SYMS;
834 sec->output_section = bfd_abs_section_ptr;
835 sec->output_offset = sec->vma;
836 }
837
838 /* Copy the symbol type and other attributes for a linker script
839 assignment from HSRC to HDEST.
840 The default implementation does nothing. */
841 void
842 _bfd_generic_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
843 struct bfd_link_hash_entry *hdest ATTRIBUTE_UNUSED,
844 struct bfd_link_hash_entry *hsrc ATTRIBUTE_UNUSED)
845 {
846 }
847
848 /* Generic function to add symbols from an object file to the
849 global hash table. */
850
851 bfd_boolean
852 _bfd_generic_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
853 {
854 bfd_boolean ret;
855
856 switch (bfd_get_format (abfd))
857 {
858 case bfd_object:
859 ret = generic_link_add_object_symbols (abfd, info);
860 break;
861 case bfd_archive:
862 ret = (_bfd_generic_link_add_archive_symbols
863 (abfd, info, generic_link_check_archive_element));
864 break;
865 default:
866 bfd_set_error (bfd_error_wrong_format);
867 ret = FALSE;
868 }
869
870 return ret;
871 }
872
873 /* Add symbols from an object file to the global hash table. */
874
875 static bfd_boolean
876 generic_link_add_object_symbols (bfd *abfd,
877 struct bfd_link_info *info)
878 {
879 bfd_size_type symcount;
880 struct bfd_symbol **outsyms;
881
882 if (!bfd_generic_link_read_symbols (abfd))
883 return FALSE;
884 symcount = _bfd_generic_link_get_symcount (abfd);
885 outsyms = _bfd_generic_link_get_symbols (abfd);
886 return generic_link_add_symbol_list (abfd, info, symcount, outsyms);
887 }
888 \f
889 /* Generic function to add symbols from an archive file to the global
890 hash file. This function presumes that the archive symbol table
891 has already been read in (this is normally done by the
892 bfd_check_format entry point). It looks through the archive symbol
893 table for symbols that are undefined or common in the linker global
894 symbol hash table. When one is found, the CHECKFN argument is used
895 to see if an object file should be included. This allows targets
896 to customize common symbol behaviour. CHECKFN should set *PNEEDED
897 to TRUE if the object file should be included, and must also call
898 the bfd_link_info add_archive_element callback function and handle
899 adding the symbols to the global hash table. CHECKFN must notice
900 if the callback indicates a substitute BFD, and arrange to add
901 those symbols instead if it does so. CHECKFN should only return
902 FALSE if some sort of error occurs. */
903
904 bfd_boolean
905 _bfd_generic_link_add_archive_symbols
906 (bfd *abfd,
907 struct bfd_link_info *info,
908 bfd_boolean (*checkfn) (bfd *, struct bfd_link_info *,
909 struct bfd_link_hash_entry *, const char *,
910 bfd_boolean *))
911 {
912 bfd_boolean loop;
913 bfd_size_type amt;
914 unsigned char *included;
915
916 if (! bfd_has_map (abfd))
917 {
918 /* An empty archive is a special case. */
919 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
920 return TRUE;
921 bfd_set_error (bfd_error_no_armap);
922 return FALSE;
923 }
924
925 amt = bfd_ardata (abfd)->symdef_count;
926 if (amt == 0)
927 return TRUE;
928 amt *= sizeof (*included);
929 included = (unsigned char *) bfd_zmalloc (amt);
930 if (included == NULL)
931 return FALSE;
932
933 do
934 {
935 carsym *arsyms;
936 carsym *arsym_end;
937 carsym *arsym;
938 unsigned int indx;
939 file_ptr last_ar_offset = -1;
940 bfd_boolean needed = FALSE;
941 bfd *element = NULL;
942
943 loop = FALSE;
944 arsyms = bfd_ardata (abfd)->symdefs;
945 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
946 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
947 {
948 struct bfd_link_hash_entry *h;
949 struct bfd_link_hash_entry *undefs_tail;
950
951 if (included[indx])
952 continue;
953 if (needed && arsym->file_offset == last_ar_offset)
954 {
955 included[indx] = 1;
956 continue;
957 }
958
959 if (arsym->name == NULL)
960 goto error_return;
961
962 h = bfd_link_hash_lookup (info->hash, arsym->name,
963 FALSE, FALSE, TRUE);
964
965 if (h == NULL
966 && info->pei386_auto_import
967 && CONST_STRNEQ (arsym->name, "__imp_"))
968 h = bfd_link_hash_lookup (info->hash, arsym->name + 6,
969 FALSE, FALSE, TRUE);
970 if (h == NULL)
971 continue;
972
973 if (h->type != bfd_link_hash_undefined
974 && h->type != bfd_link_hash_common)
975 {
976 if (h->type != bfd_link_hash_undefweak)
977 /* Symbol must be defined. Don't check it again. */
978 included[indx] = 1;
979 continue;
980 }
981
982 if (last_ar_offset != arsym->file_offset)
983 {
984 last_ar_offset = arsym->file_offset;
985 element = _bfd_get_elt_at_filepos (abfd, last_ar_offset);
986 if (element == NULL
987 || !bfd_check_format (element, bfd_object))
988 goto error_return;
989 }
990
991 undefs_tail = info->hash->undefs_tail;
992
993 /* CHECKFN will see if this element should be included, and
994 go ahead and include it if appropriate. */
995 if (! (*checkfn) (element, info, h, arsym->name, &needed))
996 goto error_return;
997
998 if (needed)
999 {
1000 unsigned int mark;
1001
1002 /* Look backward to mark all symbols from this object file
1003 which we have already seen in this pass. */
1004 mark = indx;
1005 do
1006 {
1007 included[mark] = 1;
1008 if (mark == 0)
1009 break;
1010 --mark;
1011 }
1012 while (arsyms[mark].file_offset == last_ar_offset);
1013
1014 if (undefs_tail != info->hash->undefs_tail)
1015 loop = TRUE;
1016 }
1017 }
1018 } while (loop);
1019
1020 free (included);
1021 return TRUE;
1022
1023 error_return:
1024 free (included);
1025 return FALSE;
1026 }
1027 \f
1028 /* See if we should include an archive element. */
1029
1030 static bfd_boolean
1031 generic_link_check_archive_element (bfd *abfd,
1032 struct bfd_link_info *info,
1033 struct bfd_link_hash_entry *h,
1034 const char *name ATTRIBUTE_UNUSED,
1035 bfd_boolean *pneeded)
1036 {
1037 asymbol **pp, **ppend;
1038
1039 *pneeded = FALSE;
1040
1041 if (!bfd_generic_link_read_symbols (abfd))
1042 return FALSE;
1043
1044 pp = _bfd_generic_link_get_symbols (abfd);
1045 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1046 for (; pp < ppend; pp++)
1047 {
1048 asymbol *p;
1049
1050 p = *pp;
1051
1052 /* We are only interested in globally visible symbols. */
1053 if (! bfd_is_com_section (p->section)
1054 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1055 continue;
1056
1057 /* We are only interested if we know something about this
1058 symbol, and it is undefined or common. An undefined weak
1059 symbol (type bfd_link_hash_undefweak) is not considered to be
1060 a reference when pulling files out of an archive. See the
1061 SVR4 ABI, p. 4-27. */
1062 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), FALSE,
1063 FALSE, TRUE);
1064 if (h == NULL
1065 || (h->type != bfd_link_hash_undefined
1066 && h->type != bfd_link_hash_common))
1067 continue;
1068
1069 /* P is a symbol we are looking for. */
1070
1071 if (! bfd_is_com_section (p->section)
1072 || (h->type == bfd_link_hash_undefined
1073 && h->u.undef.abfd == NULL))
1074 {
1075 /* P is not a common symbol, or an undefined reference was
1076 created from outside BFD such as from a linker -u option.
1077 This object file defines the symbol, so pull it in. */
1078 *pneeded = TRUE;
1079 if (!(*info->callbacks
1080 ->add_archive_element) (info, abfd, bfd_asymbol_name (p),
1081 &abfd))
1082 return FALSE;
1083 /* Potentially, the add_archive_element hook may have set a
1084 substitute BFD for us. */
1085 return bfd_link_add_symbols (abfd, info);
1086 }
1087
1088 /* P is a common symbol. */
1089
1090 if (h->type == bfd_link_hash_undefined)
1091 {
1092 bfd *symbfd;
1093 bfd_vma size;
1094 unsigned int power;
1095
1096 /* Turn the symbol into a common symbol but do not link in
1097 the object file. This is how a.out works. Object
1098 formats that require different semantics must implement
1099 this function differently. This symbol is already on the
1100 undefs list. We add the section to a common section
1101 attached to symbfd to ensure that it is in a BFD which
1102 will be linked in. */
1103 symbfd = h->u.undef.abfd;
1104 h->type = bfd_link_hash_common;
1105 h->u.c.p = (struct bfd_link_hash_common_entry *)
1106 bfd_hash_allocate (&info->hash->table,
1107 sizeof (struct bfd_link_hash_common_entry));
1108 if (h->u.c.p == NULL)
1109 return FALSE;
1110
1111 size = bfd_asymbol_value (p);
1112 h->u.c.size = size;
1113
1114 power = bfd_log2 (size);
1115 if (power > 4)
1116 power = 4;
1117 h->u.c.p->alignment_power = power;
1118
1119 if (p->section == bfd_com_section_ptr)
1120 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1121 else
1122 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1123 p->section->name);
1124 h->u.c.p->section->flags |= SEC_ALLOC;
1125 }
1126 else
1127 {
1128 /* Adjust the size of the common symbol if necessary. This
1129 is how a.out works. Object formats that require
1130 different semantics must implement this function
1131 differently. */
1132 if (bfd_asymbol_value (p) > h->u.c.size)
1133 h->u.c.size = bfd_asymbol_value (p);
1134 }
1135 }
1136
1137 /* This archive element is not needed. */
1138 return TRUE;
1139 }
1140
1141 /* Add the symbols from an object file to the global hash table. ABFD
1142 is the object file. INFO is the linker information. SYMBOL_COUNT
1143 is the number of symbols. SYMBOLS is the list of symbols. */
1144
1145 static bfd_boolean
1146 generic_link_add_symbol_list (bfd *abfd,
1147 struct bfd_link_info *info,
1148 bfd_size_type symbol_count,
1149 asymbol **symbols)
1150 {
1151 asymbol **pp, **ppend;
1152
1153 pp = symbols;
1154 ppend = symbols + symbol_count;
1155 for (; pp < ppend; pp++)
1156 {
1157 asymbol *p;
1158
1159 p = *pp;
1160
1161 if ((p->flags & (BSF_INDIRECT
1162 | BSF_WARNING
1163 | BSF_GLOBAL
1164 | BSF_CONSTRUCTOR
1165 | BSF_WEAK)) != 0
1166 || bfd_is_und_section (bfd_asymbol_section (p))
1167 || bfd_is_com_section (bfd_asymbol_section (p))
1168 || bfd_is_ind_section (bfd_asymbol_section (p)))
1169 {
1170 const char *name;
1171 const char *string;
1172 struct generic_link_hash_entry *h;
1173 struct bfd_link_hash_entry *bh;
1174
1175 string = name = bfd_asymbol_name (p);
1176 if (((p->flags & BSF_INDIRECT) != 0
1177 || bfd_is_ind_section (p->section))
1178 && pp + 1 < ppend)
1179 {
1180 pp++;
1181 string = bfd_asymbol_name (*pp);
1182 }
1183 else if ((p->flags & BSF_WARNING) != 0
1184 && pp + 1 < ppend)
1185 {
1186 /* The name of P is actually the warning string, and the
1187 next symbol is the one to warn about. */
1188 pp++;
1189 name = bfd_asymbol_name (*pp);
1190 }
1191
1192 bh = NULL;
1193 if (! (_bfd_generic_link_add_one_symbol
1194 (info, abfd, name, p->flags, bfd_asymbol_section (p),
1195 p->value, string, FALSE, FALSE, &bh)))
1196 return FALSE;
1197 h = (struct generic_link_hash_entry *) bh;
1198
1199 /* If this is a constructor symbol, and the linker didn't do
1200 anything with it, then we want to just pass the symbol
1201 through to the output file. This will happen when
1202 linking with -r. */
1203 if ((p->flags & BSF_CONSTRUCTOR) != 0
1204 && (h == NULL || h->root.type == bfd_link_hash_new))
1205 {
1206 p->udata.p = NULL;
1207 continue;
1208 }
1209
1210 /* Save the BFD symbol so that we don't lose any backend
1211 specific information that may be attached to it. We only
1212 want this one if it gives more information than the
1213 existing one; we don't want to replace a defined symbol
1214 with an undefined one. This routine may be called with a
1215 hash table other than the generic hash table, so we only
1216 do this if we are certain that the hash table is a
1217 generic one. */
1218 if (info->output_bfd->xvec == abfd->xvec)
1219 {
1220 if (h->sym == NULL
1221 || (! bfd_is_und_section (bfd_asymbol_section (p))
1222 && (! bfd_is_com_section (bfd_asymbol_section (p))
1223 || bfd_is_und_section (bfd_asymbol_section (h->sym)))))
1224 {
1225 h->sym = p;
1226 /* BSF_OLD_COMMON is a hack to support COFF reloc
1227 reading, and it should go away when the COFF
1228 linker is switched to the new version. */
1229 if (bfd_is_com_section (bfd_asymbol_section (p)))
1230 p->flags |= BSF_OLD_COMMON;
1231 }
1232 }
1233
1234 /* Store a back pointer from the symbol to the hash
1235 table entry for the benefit of relaxation code until
1236 it gets rewritten to not use asymbol structures.
1237 Setting this is also used to check whether these
1238 symbols were set up by the generic linker. */
1239 p->udata.p = h;
1240 }
1241 }
1242
1243 return TRUE;
1244 }
1245 \f
1246 /* We use a state table to deal with adding symbols from an object
1247 file. The first index into the state table describes the symbol
1248 from the object file. The second index into the state table is the
1249 type of the symbol in the hash table. */
1250
1251 /* The symbol from the object file is turned into one of these row
1252 values. */
1253
1254 enum link_row
1255 {
1256 UNDEF_ROW, /* Undefined. */
1257 UNDEFW_ROW, /* Weak undefined. */
1258 DEF_ROW, /* Defined. */
1259 DEFW_ROW, /* Weak defined. */
1260 COMMON_ROW, /* Common. */
1261 INDR_ROW, /* Indirect. */
1262 WARN_ROW, /* Warning. */
1263 SET_ROW /* Member of set. */
1264 };
1265
1266 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1267 #undef FAIL
1268
1269 /* The actions to take in the state table. */
1270
1271 enum link_action
1272 {
1273 FAIL, /* Abort. */
1274 UND, /* Mark symbol undefined. */
1275 WEAK, /* Mark symbol weak undefined. */
1276 DEF, /* Mark symbol defined. */
1277 DEFW, /* Mark symbol weak defined. */
1278 COM, /* Mark symbol common. */
1279 REF, /* Mark defined symbol referenced. */
1280 CREF, /* Possibly warn about common reference to defined symbol. */
1281 CDEF, /* Define existing common symbol. */
1282 NOACT, /* No action. */
1283 BIG, /* Mark symbol common using largest size. */
1284 MDEF, /* Multiple definition error. */
1285 MIND, /* Multiple indirect symbols. */
1286 IND, /* Make indirect symbol. */
1287 CIND, /* Make indirect symbol from existing common symbol. */
1288 SET, /* Add value to set. */
1289 MWARN, /* Make warning symbol. */
1290 WARN, /* Warn if referenced, else MWARN. */
1291 CYCLE, /* Repeat with symbol pointed to. */
1292 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1293 WARNC /* Issue warning and then CYCLE. */
1294 };
1295
1296 /* The state table itself. The first index is a link_row and the
1297 second index is a bfd_link_hash_type. */
1298
1299 static const enum link_action link_action[8][8] =
1300 {
1301 /* current\prev new undef undefw def defw com indr warn */
1302 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1303 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1304 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1305 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1306 /* COMMON_ROW */ {COM, COM, COM, CREF, COM, BIG, REFC, WARNC },
1307 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1308 /* WARN_ROW */ {MWARN, WARN, WARN, WARN, WARN, WARN, WARN, NOACT },
1309 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1310 };
1311
1312 /* Most of the entries in the LINK_ACTION table are straightforward,
1313 but a few are somewhat subtle.
1314
1315 A reference to an indirect symbol (UNDEF_ROW/indr or
1316 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1317 symbol and to the symbol the indirect symbol points to.
1318
1319 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1320 causes the warning to be issued.
1321
1322 A common definition of an indirect symbol (COMMON_ROW/indr) is
1323 treated as a multiple definition error. Likewise for an indirect
1324 definition of a common symbol (INDR_ROW/com).
1325
1326 An indirect definition of a warning (INDR_ROW/warn) does not cause
1327 the warning to be issued.
1328
1329 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1330 warning is created for the symbol the indirect symbol points to.
1331
1332 Adding an entry to a set does not count as a reference to a set,
1333 and no warning is issued (SET_ROW/warn). */
1334
1335 /* Return the BFD in which a hash entry has been defined, if known. */
1336
1337 static bfd *
1338 hash_entry_bfd (struct bfd_link_hash_entry *h)
1339 {
1340 while (h->type == bfd_link_hash_warning)
1341 h = h->u.i.link;
1342 switch (h->type)
1343 {
1344 default:
1345 return NULL;
1346 case bfd_link_hash_undefined:
1347 case bfd_link_hash_undefweak:
1348 return h->u.undef.abfd;
1349 case bfd_link_hash_defined:
1350 case bfd_link_hash_defweak:
1351 return h->u.def.section->owner;
1352 case bfd_link_hash_common:
1353 return h->u.c.p->section->owner;
1354 }
1355 /*NOTREACHED*/
1356 }
1357
1358 /* Add a symbol to the global hash table.
1359 ABFD is the BFD the symbol comes from.
1360 NAME is the name of the symbol.
1361 FLAGS is the BSF_* bits associated with the symbol.
1362 SECTION is the section in which the symbol is defined; this may be
1363 bfd_und_section_ptr or bfd_com_section_ptr.
1364 VALUE is the value of the symbol, relative to the section.
1365 STRING is used for either an indirect symbol, in which case it is
1366 the name of the symbol to indirect to, or a warning symbol, in
1367 which case it is the warning string.
1368 COPY is TRUE if NAME or STRING must be copied into locally
1369 allocated memory if they need to be saved.
1370 COLLECT is TRUE if we should automatically collect gcc constructor
1371 or destructor names as collect2 does.
1372 HASHP, if not NULL, is a place to store the created hash table
1373 entry; if *HASHP is not NULL, the caller has already looked up
1374 the hash table entry, and stored it in *HASHP. */
1375
1376 bfd_boolean
1377 _bfd_generic_link_add_one_symbol (struct bfd_link_info *info,
1378 bfd *abfd,
1379 const char *name,
1380 flagword flags,
1381 asection *section,
1382 bfd_vma value,
1383 const char *string,
1384 bfd_boolean copy,
1385 bfd_boolean collect,
1386 struct bfd_link_hash_entry **hashp)
1387 {
1388 enum link_row row;
1389 struct bfd_link_hash_entry *h;
1390 struct bfd_link_hash_entry *inh = NULL;
1391 bfd_boolean cycle;
1392
1393 BFD_ASSERT (section != NULL);
1394
1395 if (bfd_is_ind_section (section)
1396 || (flags & BSF_INDIRECT) != 0)
1397 {
1398 row = INDR_ROW;
1399 /* Create the indirect symbol here. This is for the benefit of
1400 the plugin "notice" function.
1401 STRING is the name of the symbol we want to indirect to. */
1402 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, TRUE,
1403 copy, FALSE);
1404 if (inh == NULL)
1405 return FALSE;
1406 }
1407 else if ((flags & BSF_WARNING) != 0)
1408 row = WARN_ROW;
1409 else if ((flags & BSF_CONSTRUCTOR) != 0)
1410 row = SET_ROW;
1411 else if (bfd_is_und_section (section))
1412 {
1413 if ((flags & BSF_WEAK) != 0)
1414 row = UNDEFW_ROW;
1415 else
1416 row = UNDEF_ROW;
1417 }
1418 else if ((flags & BSF_WEAK) != 0)
1419 row = DEFW_ROW;
1420 else if (bfd_is_com_section (section))
1421 {
1422 row = COMMON_ROW;
1423 if (!bfd_link_relocatable (info)
1424 && name[0] == '_'
1425 && name[1] == '_'
1426 && strcmp (name + (name[2] == '_'), "__gnu_lto_slim") == 0)
1427 _bfd_error_handler
1428 (_("%pB: plugin needed to handle lto object"), abfd);
1429 }
1430 else
1431 row = DEF_ROW;
1432
1433 if (hashp != NULL && *hashp != NULL)
1434 h = *hashp;
1435 else
1436 {
1437 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1438 h = bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, copy, FALSE);
1439 else
1440 h = bfd_link_hash_lookup (info->hash, name, TRUE, copy, FALSE);
1441 if (h == NULL)
1442 {
1443 if (hashp != NULL)
1444 *hashp = NULL;
1445 return FALSE;
1446 }
1447 }
1448
1449 if (info->notice_all
1450 || (info->notice_hash != NULL
1451 && bfd_hash_lookup (info->notice_hash, name, FALSE, FALSE) != NULL))
1452 {
1453 if (! (*info->callbacks->notice) (info, h, inh,
1454 abfd, section, value, flags))
1455 return FALSE;
1456 }
1457
1458 if (hashp != NULL)
1459 *hashp = h;
1460
1461 do
1462 {
1463 enum link_action action;
1464 int prev;
1465
1466 prev = h->type;
1467 /* Treat symbols defined by early linker script pass as undefined. */
1468 if (h->ldscript_def)
1469 prev = bfd_link_hash_undefined;
1470 cycle = FALSE;
1471 action = link_action[(int) row][prev];
1472 switch (action)
1473 {
1474 case FAIL:
1475 abort ();
1476
1477 case NOACT:
1478 /* Do nothing. */
1479 break;
1480
1481 case UND:
1482 /* Make a new undefined symbol. */
1483 h->type = bfd_link_hash_undefined;
1484 h->u.undef.abfd = abfd;
1485 bfd_link_add_undef (info->hash, h);
1486 break;
1487
1488 case WEAK:
1489 /* Make a new weak undefined symbol. */
1490 h->type = bfd_link_hash_undefweak;
1491 h->u.undef.abfd = abfd;
1492 break;
1493
1494 case CDEF:
1495 /* We have found a definition for a symbol which was
1496 previously common. */
1497 BFD_ASSERT (h->type == bfd_link_hash_common);
1498 (*info->callbacks->multiple_common) (info, h, abfd,
1499 bfd_link_hash_defined, 0);
1500 /* Fall through. */
1501 case DEF:
1502 case DEFW:
1503 {
1504 enum bfd_link_hash_type oldtype;
1505
1506 /* Define a symbol. */
1507 oldtype = h->type;
1508 if (action == DEFW)
1509 h->type = bfd_link_hash_defweak;
1510 else
1511 h->type = bfd_link_hash_defined;
1512 h->u.def.section = section;
1513 h->u.def.value = value;
1514 h->linker_def = 0;
1515 h->ldscript_def = 0;
1516
1517 /* If we have been asked to, we act like collect2 and
1518 identify all functions that might be global
1519 constructors and destructors and pass them up in a
1520 callback. We only do this for certain object file
1521 types, since many object file types can handle this
1522 automatically. */
1523 if (collect && name[0] == '_')
1524 {
1525 const char *s;
1526
1527 /* A constructor or destructor name starts like this:
1528 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1529 the second are the same character (we accept any
1530 character there, in case a new object file format
1531 comes along with even worse naming restrictions). */
1532
1533 #define CONS_PREFIX "GLOBAL_"
1534 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1535
1536 s = name + 1;
1537 while (*s == '_')
1538 ++s;
1539 if (s[0] == 'G' && CONST_STRNEQ (s, CONS_PREFIX))
1540 {
1541 char c;
1542
1543 c = s[CONS_PREFIX_LEN + 1];
1544 if ((c == 'I' || c == 'D')
1545 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1546 {
1547 /* If this is a definition of a symbol which
1548 was previously weakly defined, we are in
1549 trouble. We have already added a
1550 constructor entry for the weak defined
1551 symbol, and now we are trying to add one
1552 for the new symbol. Fortunately, this case
1553 should never arise in practice. */
1554 if (oldtype == bfd_link_hash_defweak)
1555 abort ();
1556
1557 (*info->callbacks->constructor) (info, c == 'I',
1558 h->root.string, abfd,
1559 section, value);
1560 }
1561 }
1562 }
1563 }
1564
1565 break;
1566
1567 case COM:
1568 /* We have found a common definition for a symbol. */
1569 if (h->type == bfd_link_hash_new)
1570 bfd_link_add_undef (info->hash, h);
1571 h->type = bfd_link_hash_common;
1572 h->u.c.p = (struct bfd_link_hash_common_entry *)
1573 bfd_hash_allocate (&info->hash->table,
1574 sizeof (struct bfd_link_hash_common_entry));
1575 if (h->u.c.p == NULL)
1576 return FALSE;
1577
1578 h->u.c.size = value;
1579
1580 /* Select a default alignment based on the size. This may
1581 be overridden by the caller. */
1582 {
1583 unsigned int power;
1584
1585 power = bfd_log2 (value);
1586 if (power > 4)
1587 power = 4;
1588 h->u.c.p->alignment_power = power;
1589 }
1590
1591 /* The section of a common symbol is only used if the common
1592 symbol is actually allocated. It basically provides a
1593 hook for the linker script to decide which output section
1594 the common symbols should be put in. In most cases, the
1595 section of a common symbol will be bfd_com_section_ptr,
1596 the code here will choose a common symbol section named
1597 "COMMON", and the linker script will contain *(COMMON) in
1598 the appropriate place. A few targets use separate common
1599 sections for small symbols, and they require special
1600 handling. */
1601 if (section == bfd_com_section_ptr)
1602 {
1603 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1604 h->u.c.p->section->flags |= SEC_ALLOC;
1605 }
1606 else if (section->owner != abfd)
1607 {
1608 h->u.c.p->section = bfd_make_section_old_way (abfd,
1609 section->name);
1610 h->u.c.p->section->flags |= SEC_ALLOC;
1611 }
1612 else
1613 h->u.c.p->section = section;
1614 h->linker_def = 0;
1615 h->ldscript_def = 0;
1616 break;
1617
1618 case REF:
1619 /* A reference to a defined symbol. */
1620 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1621 h->u.undef.next = h;
1622 break;
1623
1624 case BIG:
1625 /* We have found a common definition for a symbol which
1626 already had a common definition. Use the maximum of the
1627 two sizes, and use the section required by the larger symbol. */
1628 BFD_ASSERT (h->type == bfd_link_hash_common);
1629 (*info->callbacks->multiple_common) (info, h, abfd,
1630 bfd_link_hash_common, value);
1631 if (value > h->u.c.size)
1632 {
1633 unsigned int power;
1634
1635 h->u.c.size = value;
1636
1637 /* Select a default alignment based on the size. This may
1638 be overridden by the caller. */
1639 power = bfd_log2 (value);
1640 if (power > 4)
1641 power = 4;
1642 h->u.c.p->alignment_power = power;
1643
1644 /* Some systems have special treatment for small commons,
1645 hence we want to select the section used by the larger
1646 symbol. This makes sure the symbol does not go in a
1647 small common section if it is now too large. */
1648 if (section == bfd_com_section_ptr)
1649 {
1650 h->u.c.p->section
1651 = bfd_make_section_old_way (abfd, "COMMON");
1652 h->u.c.p->section->flags |= SEC_ALLOC;
1653 }
1654 else if (section->owner != abfd)
1655 {
1656 h->u.c.p->section
1657 = bfd_make_section_old_way (abfd, section->name);
1658 h->u.c.p->section->flags |= SEC_ALLOC;
1659 }
1660 else
1661 h->u.c.p->section = section;
1662 }
1663 break;
1664
1665 case CREF:
1666 /* We have found a common definition for a symbol which
1667 was already defined. */
1668 (*info->callbacks->multiple_common) (info, h, abfd,
1669 bfd_link_hash_common, value);
1670 break;
1671
1672 case MIND:
1673 /* Multiple indirect symbols. This is OK if they both point
1674 to the same symbol. */
1675 if (strcmp (h->u.i.link->root.string, string) == 0)
1676 break;
1677 /* Fall through. */
1678 case MDEF:
1679 /* Handle a multiple definition. */
1680 (*info->callbacks->multiple_definition) (info, h,
1681 abfd, section, value);
1682 break;
1683
1684 case CIND:
1685 /* Create an indirect symbol from an existing common symbol. */
1686 BFD_ASSERT (h->type == bfd_link_hash_common);
1687 (*info->callbacks->multiple_common) (info, h, abfd,
1688 bfd_link_hash_indirect, 0);
1689 /* Fall through. */
1690 case IND:
1691 if (inh->type == bfd_link_hash_indirect
1692 && inh->u.i.link == h)
1693 {
1694 _bfd_error_handler
1695 /* xgettext:c-format */
1696 (_("%pB: indirect symbol `%s' to `%s' is a loop"),
1697 abfd, name, string);
1698 bfd_set_error (bfd_error_invalid_operation);
1699 return FALSE;
1700 }
1701 if (inh->type == bfd_link_hash_new)
1702 {
1703 inh->type = bfd_link_hash_undefined;
1704 inh->u.undef.abfd = abfd;
1705 bfd_link_add_undef (info->hash, inh);
1706 }
1707
1708 /* If the indirect symbol has been referenced, we need to
1709 push the reference down to the symbol we are referencing. */
1710 if (h->type != bfd_link_hash_new)
1711 {
1712 /* ??? If inh->type == bfd_link_hash_undefweak this
1713 converts inh to bfd_link_hash_undefined. */
1714 row = UNDEF_ROW;
1715 cycle = TRUE;
1716 }
1717
1718 h->type = bfd_link_hash_indirect;
1719 h->u.i.link = inh;
1720 /* Not setting h = h->u.i.link here means that when cycle is
1721 set above we'll always go to REFC, and then cycle again
1722 to the indirected symbol. This means that any successful
1723 change of an existing symbol to indirect counts as a
1724 reference. ??? That may not be correct when the existing
1725 symbol was defweak. */
1726 break;
1727
1728 case SET:
1729 /* Add an entry to a set. */
1730 (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1731 abfd, section, value);
1732 break;
1733
1734 case WARNC:
1735 /* Issue a warning and cycle, except when the reference is
1736 in LTO IR. */
1737 if (h->u.i.warning != NULL
1738 && (abfd->flags & BFD_PLUGIN) == 0)
1739 {
1740 (*info->callbacks->warning) (info, h->u.i.warning,
1741 h->root.string, abfd, NULL, 0);
1742 /* Only issue a warning once. */
1743 h->u.i.warning = NULL;
1744 }
1745 /* Fall through. */
1746 case CYCLE:
1747 /* Try again with the referenced symbol. */
1748 h = h->u.i.link;
1749 cycle = TRUE;
1750 break;
1751
1752 case REFC:
1753 /* A reference to an indirect symbol. */
1754 if (h->u.undef.next == NULL && info->hash->undefs_tail != h)
1755 h->u.undef.next = h;
1756 h = h->u.i.link;
1757 cycle = TRUE;
1758 break;
1759
1760 case WARN:
1761 /* Warn if this symbol has been referenced already from non-IR,
1762 otherwise add a warning. */
1763 if ((!info->lto_plugin_active
1764 && (h->u.undef.next != NULL || info->hash->undefs_tail == h))
1765 || h->non_ir_ref_regular
1766 || h->non_ir_ref_dynamic)
1767 {
1768 (*info->callbacks->warning) (info, string, h->root.string,
1769 hash_entry_bfd (h), NULL, 0);
1770 break;
1771 }
1772 /* Fall through. */
1773 case MWARN:
1774 /* Make a warning symbol. */
1775 {
1776 struct bfd_link_hash_entry *sub;
1777
1778 /* STRING is the warning to give. */
1779 sub = ((struct bfd_link_hash_entry *)
1780 ((*info->hash->table.newfunc)
1781 (NULL, &info->hash->table, h->root.string)));
1782 if (sub == NULL)
1783 return FALSE;
1784 *sub = *h;
1785 sub->type = bfd_link_hash_warning;
1786 sub->u.i.link = h;
1787 if (! copy)
1788 sub->u.i.warning = string;
1789 else
1790 {
1791 char *w;
1792 size_t len = strlen (string) + 1;
1793
1794 w = (char *) bfd_hash_allocate (&info->hash->table, len);
1795 if (w == NULL)
1796 return FALSE;
1797 memcpy (w, string, len);
1798 sub->u.i.warning = w;
1799 }
1800
1801 bfd_hash_replace (&info->hash->table,
1802 (struct bfd_hash_entry *) h,
1803 (struct bfd_hash_entry *) sub);
1804 if (hashp != NULL)
1805 *hashp = sub;
1806 }
1807 break;
1808 }
1809 }
1810 while (cycle);
1811
1812 return TRUE;
1813 }
1814 \f
1815 /* Generic final link routine. */
1816
1817 bfd_boolean
1818 _bfd_generic_final_link (bfd *abfd, struct bfd_link_info *info)
1819 {
1820 bfd *sub;
1821 asection *o;
1822 struct bfd_link_order *p;
1823 size_t outsymalloc;
1824 struct generic_write_global_symbol_info wginfo;
1825
1826 abfd->outsymbols = NULL;
1827 abfd->symcount = 0;
1828 outsymalloc = 0;
1829
1830 /* Mark all sections which will be included in the output file. */
1831 for (o = abfd->sections; o != NULL; o = o->next)
1832 for (p = o->map_head.link_order; p != NULL; p = p->next)
1833 if (p->type == bfd_indirect_link_order)
1834 p->u.indirect.section->linker_mark = TRUE;
1835
1836 /* Build the output symbol table. */
1837 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
1838 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1839 return FALSE;
1840
1841 /* Accumulate the global symbols. */
1842 wginfo.info = info;
1843 wginfo.output_bfd = abfd;
1844 wginfo.psymalloc = &outsymalloc;
1845 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1846 _bfd_generic_link_write_global_symbol,
1847 &wginfo);
1848
1849 /* Make sure we have a trailing NULL pointer on OUTSYMBOLS. We
1850 shouldn't really need one, since we have SYMCOUNT, but some old
1851 code still expects one. */
1852 if (! generic_add_output_symbol (abfd, &outsymalloc, NULL))
1853 return FALSE;
1854
1855 if (bfd_link_relocatable (info))
1856 {
1857 /* Allocate space for the output relocs for each section. */
1858 for (o = abfd->sections; o != NULL; o = o->next)
1859 {
1860 o->reloc_count = 0;
1861 for (p = o->map_head.link_order; p != NULL; p = p->next)
1862 {
1863 if (p->type == bfd_section_reloc_link_order
1864 || p->type == bfd_symbol_reloc_link_order)
1865 ++o->reloc_count;
1866 else if (p->type == bfd_indirect_link_order)
1867 {
1868 asection *input_section;
1869 bfd *input_bfd;
1870 long relsize;
1871 arelent **relocs;
1872 asymbol **symbols;
1873 long reloc_count;
1874
1875 input_section = p->u.indirect.section;
1876 input_bfd = input_section->owner;
1877 relsize = bfd_get_reloc_upper_bound (input_bfd,
1878 input_section);
1879 if (relsize < 0)
1880 return FALSE;
1881 relocs = (arelent **) bfd_malloc (relsize);
1882 if (!relocs && relsize != 0)
1883 return FALSE;
1884 symbols = _bfd_generic_link_get_symbols (input_bfd);
1885 reloc_count = bfd_canonicalize_reloc (input_bfd,
1886 input_section,
1887 relocs,
1888 symbols);
1889 free (relocs);
1890 if (reloc_count < 0)
1891 return FALSE;
1892 BFD_ASSERT ((unsigned long) reloc_count
1893 == input_section->reloc_count);
1894 o->reloc_count += reloc_count;
1895 }
1896 }
1897 if (o->reloc_count > 0)
1898 {
1899 bfd_size_type amt;
1900
1901 amt = o->reloc_count;
1902 amt *= sizeof (arelent *);
1903 o->orelocation = (struct reloc_cache_entry **) bfd_alloc (abfd, amt);
1904 if (!o->orelocation)
1905 return FALSE;
1906 o->flags |= SEC_RELOC;
1907 /* Reset the count so that it can be used as an index
1908 when putting in the output relocs. */
1909 o->reloc_count = 0;
1910 }
1911 }
1912 }
1913
1914 /* Handle all the link order information for the sections. */
1915 for (o = abfd->sections; o != NULL; o = o->next)
1916 {
1917 for (p = o->map_head.link_order; p != NULL; p = p->next)
1918 {
1919 switch (p->type)
1920 {
1921 case bfd_section_reloc_link_order:
1922 case bfd_symbol_reloc_link_order:
1923 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
1924 return FALSE;
1925 break;
1926 case bfd_indirect_link_order:
1927 if (! default_indirect_link_order (abfd, info, o, p, TRUE))
1928 return FALSE;
1929 break;
1930 default:
1931 if (! _bfd_default_link_order (abfd, info, o, p))
1932 return FALSE;
1933 break;
1934 }
1935 }
1936 }
1937
1938 return TRUE;
1939 }
1940
1941 /* Add an output symbol to the output BFD. */
1942
1943 static bfd_boolean
1944 generic_add_output_symbol (bfd *output_bfd, size_t *psymalloc, asymbol *sym)
1945 {
1946 if (bfd_get_symcount (output_bfd) >= *psymalloc)
1947 {
1948 asymbol **newsyms;
1949 bfd_size_type amt;
1950
1951 if (*psymalloc == 0)
1952 *psymalloc = 124;
1953 else
1954 *psymalloc *= 2;
1955 amt = *psymalloc;
1956 amt *= sizeof (asymbol *);
1957 newsyms = (asymbol **) bfd_realloc (bfd_get_outsymbols (output_bfd), amt);
1958 if (newsyms == NULL)
1959 return FALSE;
1960 output_bfd->outsymbols = newsyms;
1961 }
1962
1963 output_bfd->outsymbols[output_bfd->symcount] = sym;
1964 if (sym != NULL)
1965 ++output_bfd->symcount;
1966
1967 return TRUE;
1968 }
1969
1970 /* Handle the symbols for an input BFD. */
1971
1972 bfd_boolean
1973 _bfd_generic_link_output_symbols (bfd *output_bfd,
1974 bfd *input_bfd,
1975 struct bfd_link_info *info,
1976 size_t *psymalloc)
1977 {
1978 asymbol **sym_ptr;
1979 asymbol **sym_end;
1980
1981 if (!bfd_generic_link_read_symbols (input_bfd))
1982 return FALSE;
1983
1984 /* Create a filename symbol if we are supposed to. */
1985 if (info->create_object_symbols_section != NULL)
1986 {
1987 asection *sec;
1988
1989 for (sec = input_bfd->sections; sec != NULL; sec = sec->next)
1990 {
1991 if (sec->output_section == info->create_object_symbols_section)
1992 {
1993 asymbol *newsym;
1994
1995 newsym = bfd_make_empty_symbol (input_bfd);
1996 if (!newsym)
1997 return FALSE;
1998 newsym->name = bfd_get_filename (input_bfd);
1999 newsym->value = 0;
2000 newsym->flags = BSF_LOCAL | BSF_FILE;
2001 newsym->section = sec;
2002
2003 if (! generic_add_output_symbol (output_bfd, psymalloc,
2004 newsym))
2005 return FALSE;
2006
2007 break;
2008 }
2009 }
2010 }
2011
2012 /* Adjust the values of the globally visible symbols, and write out
2013 local symbols. */
2014 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2015 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2016 for (; sym_ptr < sym_end; sym_ptr++)
2017 {
2018 asymbol *sym;
2019 struct generic_link_hash_entry *h;
2020 bfd_boolean output;
2021
2022 h = NULL;
2023 sym = *sym_ptr;
2024 if ((sym->flags & (BSF_INDIRECT
2025 | BSF_WARNING
2026 | BSF_GLOBAL
2027 | BSF_CONSTRUCTOR
2028 | BSF_WEAK)) != 0
2029 || bfd_is_und_section (bfd_asymbol_section (sym))
2030 || bfd_is_com_section (bfd_asymbol_section (sym))
2031 || bfd_is_ind_section (bfd_asymbol_section (sym)))
2032 {
2033 if (sym->udata.p != NULL)
2034 h = (struct generic_link_hash_entry *) sym->udata.p;
2035 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2036 {
2037 /* This case normally means that the main linker code
2038 deliberately ignored this constructor symbol. We
2039 should just pass it through. This will screw up if
2040 the constructor symbol is from a different,
2041 non-generic, object file format, but the case will
2042 only arise when linking with -r, which will probably
2043 fail anyhow, since there will be no way to represent
2044 the relocs in the output format being used. */
2045 h = NULL;
2046 }
2047 else if (bfd_is_und_section (bfd_asymbol_section (sym)))
2048 h = ((struct generic_link_hash_entry *)
2049 bfd_wrapped_link_hash_lookup (output_bfd, info,
2050 bfd_asymbol_name (sym),
2051 FALSE, FALSE, TRUE));
2052 else
2053 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2054 bfd_asymbol_name (sym),
2055 FALSE, FALSE, TRUE);
2056
2057 if (h != NULL)
2058 {
2059 /* Force all references to this symbol to point to
2060 the same area in memory. It is possible that
2061 this routine will be called with a hash table
2062 other than a generic hash table, so we double
2063 check that. */
2064 if (info->output_bfd->xvec == input_bfd->xvec)
2065 {
2066 if (h->sym != NULL)
2067 *sym_ptr = sym = h->sym;
2068 }
2069
2070 switch (h->root.type)
2071 {
2072 default:
2073 case bfd_link_hash_new:
2074 abort ();
2075 case bfd_link_hash_undefined:
2076 break;
2077 case bfd_link_hash_undefweak:
2078 sym->flags |= BSF_WEAK;
2079 break;
2080 case bfd_link_hash_indirect:
2081 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2082 /* fall through */
2083 case bfd_link_hash_defined:
2084 sym->flags |= BSF_GLOBAL;
2085 sym->flags &=~ (BSF_WEAK | BSF_CONSTRUCTOR);
2086 sym->value = h->root.u.def.value;
2087 sym->section = h->root.u.def.section;
2088 break;
2089 case bfd_link_hash_defweak:
2090 sym->flags |= BSF_WEAK;
2091 sym->flags &=~ BSF_CONSTRUCTOR;
2092 sym->value = h->root.u.def.value;
2093 sym->section = h->root.u.def.section;
2094 break;
2095 case bfd_link_hash_common:
2096 sym->value = h->root.u.c.size;
2097 sym->flags |= BSF_GLOBAL;
2098 if (! bfd_is_com_section (sym->section))
2099 {
2100 BFD_ASSERT (bfd_is_und_section (sym->section));
2101 sym->section = bfd_com_section_ptr;
2102 }
2103 /* We do not set the section of the symbol to
2104 h->root.u.c.p->section. That value was saved so
2105 that we would know where to allocate the symbol
2106 if it was defined. In this case the type is
2107 still bfd_link_hash_common, so we did not define
2108 it, so we do not want to use that section. */
2109 break;
2110 }
2111 }
2112 }
2113
2114 if ((sym->flags & BSF_KEEP) == 0
2115 && (info->strip == strip_all
2116 || (info->strip == strip_some
2117 && bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2118 FALSE, FALSE) == NULL)))
2119 output = FALSE;
2120 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0)
2121 {
2122 /* If this symbol is marked as occurring now, rather
2123 than at the end, output it now. This is used for
2124 COFF C_EXT FCN symbols. FIXME: There must be a
2125 better way. */
2126 if (bfd_asymbol_bfd (sym) == input_bfd
2127 && (sym->flags & BSF_NOT_AT_END) != 0)
2128 output = TRUE;
2129 else
2130 output = FALSE;
2131 }
2132 else if ((sym->flags & BSF_KEEP) != 0)
2133 output = TRUE;
2134 else if (bfd_is_ind_section (sym->section))
2135 output = FALSE;
2136 else if ((sym->flags & BSF_DEBUGGING) != 0)
2137 {
2138 if (info->strip == strip_none)
2139 output = TRUE;
2140 else
2141 output = FALSE;
2142 }
2143 else if (bfd_is_und_section (sym->section)
2144 || bfd_is_com_section (sym->section))
2145 output = FALSE;
2146 else if ((sym->flags & BSF_LOCAL) != 0)
2147 {
2148 if ((sym->flags & BSF_WARNING) != 0)
2149 output = FALSE;
2150 else
2151 {
2152 switch (info->discard)
2153 {
2154 default:
2155 case discard_all:
2156 output = FALSE;
2157 break;
2158 case discard_sec_merge:
2159 output = TRUE;
2160 if (bfd_link_relocatable (info)
2161 || ! (sym->section->flags & SEC_MERGE))
2162 break;
2163 /* FALLTHROUGH */
2164 case discard_l:
2165 if (bfd_is_local_label (input_bfd, sym))
2166 output = FALSE;
2167 else
2168 output = TRUE;
2169 break;
2170 case discard_none:
2171 output = TRUE;
2172 break;
2173 }
2174 }
2175 }
2176 else if ((sym->flags & BSF_CONSTRUCTOR))
2177 {
2178 if (info->strip != strip_all)
2179 output = TRUE;
2180 else
2181 output = FALSE;
2182 }
2183 else if (sym->flags == 0
2184 && (sym->section->owner->flags & BFD_PLUGIN) != 0)
2185 /* LTO doesn't set symbol information. We get here with the
2186 generic linker for a symbol that was "common" but no longer
2187 needs to be global. */
2188 output = FALSE;
2189 else
2190 abort ();
2191
2192 /* If this symbol is in a section which is not being included
2193 in the output file, then we don't want to output the
2194 symbol. */
2195 if (!bfd_is_abs_section (sym->section)
2196 && bfd_section_removed_from_list (output_bfd,
2197 sym->section->output_section))
2198 output = FALSE;
2199
2200 if (output)
2201 {
2202 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2203 return FALSE;
2204 if (h != NULL)
2205 h->written = TRUE;
2206 }
2207 }
2208
2209 return TRUE;
2210 }
2211
2212 /* Set the section and value of a generic BFD symbol based on a linker
2213 hash table entry. */
2214
2215 static void
2216 set_symbol_from_hash (asymbol *sym, struct bfd_link_hash_entry *h)
2217 {
2218 switch (h->type)
2219 {
2220 default:
2221 abort ();
2222 break;
2223 case bfd_link_hash_new:
2224 /* This can happen when a constructor symbol is seen but we are
2225 not building constructors. */
2226 if (sym->section != NULL)
2227 {
2228 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2229 }
2230 else
2231 {
2232 sym->flags |= BSF_CONSTRUCTOR;
2233 sym->section = bfd_abs_section_ptr;
2234 sym->value = 0;
2235 }
2236 break;
2237 case bfd_link_hash_undefined:
2238 sym->section = bfd_und_section_ptr;
2239 sym->value = 0;
2240 break;
2241 case bfd_link_hash_undefweak:
2242 sym->section = bfd_und_section_ptr;
2243 sym->value = 0;
2244 sym->flags |= BSF_WEAK;
2245 break;
2246 case bfd_link_hash_defined:
2247 sym->section = h->u.def.section;
2248 sym->value = h->u.def.value;
2249 break;
2250 case bfd_link_hash_defweak:
2251 sym->flags |= BSF_WEAK;
2252 sym->section = h->u.def.section;
2253 sym->value = h->u.def.value;
2254 break;
2255 case bfd_link_hash_common:
2256 sym->value = h->u.c.size;
2257 if (sym->section == NULL)
2258 sym->section = bfd_com_section_ptr;
2259 else if (! bfd_is_com_section (sym->section))
2260 {
2261 BFD_ASSERT (bfd_is_und_section (sym->section));
2262 sym->section = bfd_com_section_ptr;
2263 }
2264 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2265 break;
2266 case bfd_link_hash_indirect:
2267 case bfd_link_hash_warning:
2268 /* FIXME: What should we do here? */
2269 break;
2270 }
2271 }
2272
2273 /* Write out a global symbol, if it hasn't already been written out.
2274 This is called for each symbol in the hash table. */
2275
2276 bfd_boolean
2277 _bfd_generic_link_write_global_symbol (struct generic_link_hash_entry *h,
2278 void *data)
2279 {
2280 struct generic_write_global_symbol_info *wginfo =
2281 (struct generic_write_global_symbol_info *) data;
2282 asymbol *sym;
2283
2284 if (h->written)
2285 return TRUE;
2286
2287 h->written = TRUE;
2288
2289 if (wginfo->info->strip == strip_all
2290 || (wginfo->info->strip == strip_some
2291 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2292 FALSE, FALSE) == NULL))
2293 return TRUE;
2294
2295 if (h->sym != NULL)
2296 sym = h->sym;
2297 else
2298 {
2299 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2300 if (!sym)
2301 return FALSE;
2302 sym->name = h->root.root.string;
2303 sym->flags = 0;
2304 }
2305
2306 set_symbol_from_hash (sym, &h->root);
2307
2308 sym->flags |= BSF_GLOBAL;
2309
2310 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2311 sym))
2312 {
2313 /* FIXME: No way to return failure. */
2314 abort ();
2315 }
2316
2317 return TRUE;
2318 }
2319
2320 /* Create a relocation. */
2321
2322 bfd_boolean
2323 _bfd_generic_reloc_link_order (bfd *abfd,
2324 struct bfd_link_info *info,
2325 asection *sec,
2326 struct bfd_link_order *link_order)
2327 {
2328 arelent *r;
2329
2330 if (! bfd_link_relocatable (info))
2331 abort ();
2332 if (sec->orelocation == NULL)
2333 abort ();
2334
2335 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2336 if (r == NULL)
2337 return FALSE;
2338
2339 r->address = link_order->offset;
2340 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2341 if (r->howto == 0)
2342 {
2343 bfd_set_error (bfd_error_bad_value);
2344 return FALSE;
2345 }
2346
2347 /* Get the symbol to use for the relocation. */
2348 if (link_order->type == bfd_section_reloc_link_order)
2349 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2350 else
2351 {
2352 struct generic_link_hash_entry *h;
2353
2354 h = ((struct generic_link_hash_entry *)
2355 bfd_wrapped_link_hash_lookup (abfd, info,
2356 link_order->u.reloc.p->u.name,
2357 FALSE, FALSE, TRUE));
2358 if (h == NULL
2359 || ! h->written)
2360 {
2361 (*info->callbacks->unattached_reloc)
2362 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
2363 bfd_set_error (bfd_error_bad_value);
2364 return FALSE;
2365 }
2366 r->sym_ptr_ptr = &h->sym;
2367 }
2368
2369 /* If this is an inplace reloc, write the addend to the object file.
2370 Otherwise, store it in the reloc addend. */
2371 if (! r->howto->partial_inplace)
2372 r->addend = link_order->u.reloc.p->addend;
2373 else
2374 {
2375 bfd_size_type size;
2376 bfd_reloc_status_type rstat;
2377 bfd_byte *buf;
2378 bfd_boolean ok;
2379 file_ptr loc;
2380
2381 size = bfd_get_reloc_size (r->howto);
2382 buf = (bfd_byte *) bfd_zmalloc (size);
2383 if (buf == NULL && size != 0)
2384 return FALSE;
2385 rstat = _bfd_relocate_contents (r->howto, abfd,
2386 (bfd_vma) link_order->u.reloc.p->addend,
2387 buf);
2388 switch (rstat)
2389 {
2390 case bfd_reloc_ok:
2391 break;
2392 default:
2393 case bfd_reloc_outofrange:
2394 abort ();
2395 case bfd_reloc_overflow:
2396 (*info->callbacks->reloc_overflow)
2397 (info, NULL,
2398 (link_order->type == bfd_section_reloc_link_order
2399 ? bfd_section_name (link_order->u.reloc.p->u.section)
2400 : link_order->u.reloc.p->u.name),
2401 r->howto->name, link_order->u.reloc.p->addend,
2402 NULL, NULL, 0);
2403 break;
2404 }
2405 loc = link_order->offset * bfd_octets_per_byte (abfd, sec);
2406 ok = bfd_set_section_contents (abfd, sec, buf, loc, size);
2407 free (buf);
2408 if (! ok)
2409 return FALSE;
2410
2411 r->addend = 0;
2412 }
2413
2414 sec->orelocation[sec->reloc_count] = r;
2415 ++sec->reloc_count;
2416
2417 return TRUE;
2418 }
2419 \f
2420 /* Allocate a new link_order for a section. */
2421
2422 struct bfd_link_order *
2423 bfd_new_link_order (bfd *abfd, asection *section)
2424 {
2425 size_t amt = sizeof (struct bfd_link_order);
2426 struct bfd_link_order *new_lo;
2427
2428 new_lo = (struct bfd_link_order *) bfd_zalloc (abfd, amt);
2429 if (!new_lo)
2430 return NULL;
2431
2432 new_lo->type = bfd_undefined_link_order;
2433
2434 if (section->map_tail.link_order != NULL)
2435 section->map_tail.link_order->next = new_lo;
2436 else
2437 section->map_head.link_order = new_lo;
2438 section->map_tail.link_order = new_lo;
2439
2440 return new_lo;
2441 }
2442
2443 /* Default link order processing routine. Note that we can not handle
2444 the reloc_link_order types here, since they depend upon the details
2445 of how the particular backends generates relocs. */
2446
2447 bfd_boolean
2448 _bfd_default_link_order (bfd *abfd,
2449 struct bfd_link_info *info,
2450 asection *sec,
2451 struct bfd_link_order *link_order)
2452 {
2453 switch (link_order->type)
2454 {
2455 case bfd_undefined_link_order:
2456 case bfd_section_reloc_link_order:
2457 case bfd_symbol_reloc_link_order:
2458 default:
2459 abort ();
2460 case bfd_indirect_link_order:
2461 return default_indirect_link_order (abfd, info, sec, link_order,
2462 FALSE);
2463 case bfd_data_link_order:
2464 return default_data_link_order (abfd, info, sec, link_order);
2465 }
2466 }
2467
2468 /* Default routine to handle a bfd_data_link_order. */
2469
2470 static bfd_boolean
2471 default_data_link_order (bfd *abfd,
2472 struct bfd_link_info *info,
2473 asection *sec,
2474 struct bfd_link_order *link_order)
2475 {
2476 bfd_size_type size;
2477 size_t fill_size;
2478 bfd_byte *fill;
2479 file_ptr loc;
2480 bfd_boolean result;
2481
2482 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2483
2484 size = link_order->size;
2485 if (size == 0)
2486 return TRUE;
2487
2488 fill = link_order->u.data.contents;
2489 fill_size = link_order->u.data.size;
2490 if (fill_size == 0)
2491 {
2492 fill = abfd->arch_info->fill (size, info->big_endian,
2493 (sec->flags & SEC_CODE) != 0);
2494 if (fill == NULL)
2495 return FALSE;
2496 }
2497 else if (fill_size < size)
2498 {
2499 bfd_byte *p;
2500 fill = (bfd_byte *) bfd_malloc (size);
2501 if (fill == NULL)
2502 return FALSE;
2503 p = fill;
2504 if (fill_size == 1)
2505 memset (p, (int) link_order->u.data.contents[0], (size_t) size);
2506 else
2507 {
2508 do
2509 {
2510 memcpy (p, link_order->u.data.contents, fill_size);
2511 p += fill_size;
2512 size -= fill_size;
2513 }
2514 while (size >= fill_size);
2515 if (size != 0)
2516 memcpy (p, link_order->u.data.contents, (size_t) size);
2517 size = link_order->size;
2518 }
2519 }
2520
2521 loc = link_order->offset * bfd_octets_per_byte (abfd, sec);
2522 result = bfd_set_section_contents (abfd, sec, fill, loc, size);
2523
2524 if (fill != link_order->u.data.contents)
2525 free (fill);
2526 return result;
2527 }
2528
2529 /* Default routine to handle a bfd_indirect_link_order. */
2530
2531 static bfd_boolean
2532 default_indirect_link_order (bfd *output_bfd,
2533 struct bfd_link_info *info,
2534 asection *output_section,
2535 struct bfd_link_order *link_order,
2536 bfd_boolean generic_linker)
2537 {
2538 asection *input_section;
2539 bfd *input_bfd;
2540 bfd_byte *contents = NULL;
2541 bfd_byte *new_contents;
2542 bfd_size_type sec_size;
2543 file_ptr loc;
2544
2545 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2546
2547 input_section = link_order->u.indirect.section;
2548 input_bfd = input_section->owner;
2549 if (input_section->size == 0)
2550 return TRUE;
2551
2552 BFD_ASSERT (input_section->output_section == output_section);
2553 BFD_ASSERT (input_section->output_offset == link_order->offset);
2554 BFD_ASSERT (input_section->size == link_order->size);
2555
2556 if (bfd_link_relocatable (info)
2557 && input_section->reloc_count > 0
2558 && output_section->orelocation == NULL)
2559 {
2560 /* Space has not been allocated for the output relocations.
2561 This can happen when we are called by a specific backend
2562 because somebody is attempting to link together different
2563 types of object files. Handling this case correctly is
2564 difficult, and sometimes impossible. */
2565 _bfd_error_handler
2566 /* xgettext:c-format */
2567 (_("attempt to do relocatable link with %s input and %s output"),
2568 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2569 bfd_set_error (bfd_error_wrong_format);
2570 return FALSE;
2571 }
2572
2573 if (! generic_linker)
2574 {
2575 asymbol **sympp;
2576 asymbol **symppend;
2577
2578 /* Get the canonical symbols. The generic linker will always
2579 have retrieved them by this point, but we are being called by
2580 a specific linker, presumably because we are linking
2581 different types of object files together. */
2582 if (!bfd_generic_link_read_symbols (input_bfd))
2583 return FALSE;
2584
2585 /* Since we have been called by a specific linker, rather than
2586 the generic linker, the values of the symbols will not be
2587 right. They will be the values as seen in the input file,
2588 not the values of the final link. We need to fix them up
2589 before we can relocate the section. */
2590 sympp = _bfd_generic_link_get_symbols (input_bfd);
2591 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2592 for (; sympp < symppend; sympp++)
2593 {
2594 asymbol *sym;
2595 struct bfd_link_hash_entry *h;
2596
2597 sym = *sympp;
2598
2599 if ((sym->flags & (BSF_INDIRECT
2600 | BSF_WARNING
2601 | BSF_GLOBAL
2602 | BSF_CONSTRUCTOR
2603 | BSF_WEAK)) != 0
2604 || bfd_is_und_section (bfd_asymbol_section (sym))
2605 || bfd_is_com_section (bfd_asymbol_section (sym))
2606 || bfd_is_ind_section (bfd_asymbol_section (sym)))
2607 {
2608 /* sym->udata may have been set by
2609 generic_link_add_symbol_list. */
2610 if (sym->udata.p != NULL)
2611 h = (struct bfd_link_hash_entry *) sym->udata.p;
2612 else if (bfd_is_und_section (bfd_asymbol_section (sym)))
2613 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2614 bfd_asymbol_name (sym),
2615 FALSE, FALSE, TRUE);
2616 else
2617 h = bfd_link_hash_lookup (info->hash,
2618 bfd_asymbol_name (sym),
2619 FALSE, FALSE, TRUE);
2620 if (h != NULL)
2621 set_symbol_from_hash (sym, h);
2622 }
2623 }
2624 }
2625
2626 if ((output_section->flags & (SEC_GROUP | SEC_LINKER_CREATED)) == SEC_GROUP
2627 && input_section->size != 0)
2628 {
2629 /* Group section contents are set by bfd_elf_set_group_contents. */
2630 if (!output_bfd->output_has_begun)
2631 {
2632 /* FIXME: This hack ensures bfd_elf_set_group_contents is called. */
2633 if (!bfd_set_section_contents (output_bfd, output_section, "", 0, 1))
2634 goto error_return;
2635 }
2636 new_contents = output_section->contents;
2637 BFD_ASSERT (new_contents != NULL);
2638 BFD_ASSERT (input_section->output_offset == 0);
2639 }
2640 else
2641 {
2642 /* Get and relocate the section contents. */
2643 sec_size = (input_section->rawsize > input_section->size
2644 ? input_section->rawsize
2645 : input_section->size);
2646 contents = (bfd_byte *) bfd_malloc (sec_size);
2647 if (contents == NULL && sec_size != 0)
2648 goto error_return;
2649 new_contents = (bfd_get_relocated_section_contents
2650 (output_bfd, info, link_order, contents,
2651 bfd_link_relocatable (info),
2652 _bfd_generic_link_get_symbols (input_bfd)));
2653 if (!new_contents)
2654 goto error_return;
2655 }
2656
2657 /* Output the section contents. */
2658 loc = (input_section->output_offset
2659 * bfd_octets_per_byte (output_bfd, output_section));
2660 if (! bfd_set_section_contents (output_bfd, output_section,
2661 new_contents, loc, input_section->size))
2662 goto error_return;
2663
2664 free (contents);
2665 return TRUE;
2666
2667 error_return:
2668 free (contents);
2669 return FALSE;
2670 }
2671
2672 /* A little routine to count the number of relocs in a link_order
2673 list. */
2674
2675 unsigned int
2676 _bfd_count_link_order_relocs (struct bfd_link_order *link_order)
2677 {
2678 register unsigned int c;
2679 register struct bfd_link_order *l;
2680
2681 c = 0;
2682 for (l = link_order; l != NULL; l = l->next)
2683 {
2684 if (l->type == bfd_section_reloc_link_order
2685 || l->type == bfd_symbol_reloc_link_order)
2686 ++c;
2687 }
2688
2689 return c;
2690 }
2691
2692 /*
2693 FUNCTION
2694 bfd_link_split_section
2695
2696 SYNOPSIS
2697 bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec);
2698
2699 DESCRIPTION
2700 Return nonzero if @var{sec} should be split during a
2701 reloceatable or final link.
2702
2703 .#define bfd_link_split_section(abfd, sec) \
2704 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2705 .
2706
2707 */
2708
2709 bfd_boolean
2710 _bfd_generic_link_split_section (bfd *abfd ATTRIBUTE_UNUSED,
2711 asection *sec ATTRIBUTE_UNUSED)
2712 {
2713 return FALSE;
2714 }
2715
2716 /*
2717 FUNCTION
2718 bfd_section_already_linked
2719
2720 SYNOPSIS
2721 bfd_boolean bfd_section_already_linked (bfd *abfd,
2722 asection *sec,
2723 struct bfd_link_info *info);
2724
2725 DESCRIPTION
2726 Check if @var{data} has been already linked during a reloceatable
2727 or final link. Return TRUE if it has.
2728
2729 .#define bfd_section_already_linked(abfd, sec, info) \
2730 . BFD_SEND (abfd, _section_already_linked, (abfd, sec, info))
2731 .
2732
2733 */
2734
2735 /* Sections marked with the SEC_LINK_ONCE flag should only be linked
2736 once into the output. This routine checks each section, and
2737 arrange to discard it if a section of the same name has already
2738 been linked. This code assumes that all relevant sections have the
2739 SEC_LINK_ONCE flag set; that is, it does not depend solely upon the
2740 section name. bfd_section_already_linked is called via
2741 bfd_map_over_sections. */
2742
2743 /* The hash table. */
2744
2745 static struct bfd_hash_table _bfd_section_already_linked_table;
2746
2747 /* Support routines for the hash table used by section_already_linked,
2748 initialize the table, traverse, lookup, fill in an entry and remove
2749 the table. */
2750
2751 void
2752 bfd_section_already_linked_table_traverse
2753 (bfd_boolean (*func) (struct bfd_section_already_linked_hash_entry *,
2754 void *), void *info)
2755 {
2756 bfd_hash_traverse (&_bfd_section_already_linked_table,
2757 (bfd_boolean (*) (struct bfd_hash_entry *,
2758 void *)) func,
2759 info);
2760 }
2761
2762 struct bfd_section_already_linked_hash_entry *
2763 bfd_section_already_linked_table_lookup (const char *name)
2764 {
2765 return ((struct bfd_section_already_linked_hash_entry *)
2766 bfd_hash_lookup (&_bfd_section_already_linked_table, name,
2767 TRUE, FALSE));
2768 }
2769
2770 bfd_boolean
2771 bfd_section_already_linked_table_insert
2772 (struct bfd_section_already_linked_hash_entry *already_linked_list,
2773 asection *sec)
2774 {
2775 struct bfd_section_already_linked *l;
2776
2777 /* Allocate the memory from the same obstack as the hash table is
2778 kept in. */
2779 l = (struct bfd_section_already_linked *)
2780 bfd_hash_allocate (&_bfd_section_already_linked_table, sizeof *l);
2781 if (l == NULL)
2782 return FALSE;
2783 l->sec = sec;
2784 l->next = already_linked_list->entry;
2785 already_linked_list->entry = l;
2786 return TRUE;
2787 }
2788
2789 static struct bfd_hash_entry *
2790 already_linked_newfunc (struct bfd_hash_entry *entry ATTRIBUTE_UNUSED,
2791 struct bfd_hash_table *table,
2792 const char *string ATTRIBUTE_UNUSED)
2793 {
2794 struct bfd_section_already_linked_hash_entry *ret =
2795 (struct bfd_section_already_linked_hash_entry *)
2796 bfd_hash_allocate (table, sizeof *ret);
2797
2798 if (ret == NULL)
2799 return NULL;
2800
2801 ret->entry = NULL;
2802
2803 return &ret->root;
2804 }
2805
2806 bfd_boolean
2807 bfd_section_already_linked_table_init (void)
2808 {
2809 return bfd_hash_table_init_n (&_bfd_section_already_linked_table,
2810 already_linked_newfunc,
2811 sizeof (struct bfd_section_already_linked_hash_entry),
2812 42);
2813 }
2814
2815 void
2816 bfd_section_already_linked_table_free (void)
2817 {
2818 bfd_hash_table_free (&_bfd_section_already_linked_table);
2819 }
2820
2821 /* Report warnings as appropriate for duplicate section SEC.
2822 Return FALSE if we decide to keep SEC after all. */
2823
2824 bfd_boolean
2825 _bfd_handle_already_linked (asection *sec,
2826 struct bfd_section_already_linked *l,
2827 struct bfd_link_info *info)
2828 {
2829 switch (sec->flags & SEC_LINK_DUPLICATES)
2830 {
2831 default:
2832 abort ();
2833
2834 case SEC_LINK_DUPLICATES_DISCARD:
2835 /* If we found an LTO IR match for this comdat group on
2836 the first pass, replace it with the LTO output on the
2837 second pass. We can't simply choose real object
2838 files over IR because the first pass may contain a
2839 mix of LTO and normal objects and we must keep the
2840 first match, be it IR or real. */
2841 if (sec->owner->lto_output
2842 && (l->sec->owner->flags & BFD_PLUGIN) != 0)
2843 {
2844 l->sec = sec;
2845 return FALSE;
2846 }
2847 break;
2848
2849 case SEC_LINK_DUPLICATES_ONE_ONLY:
2850 info->callbacks->einfo
2851 /* xgettext:c-format */
2852 (_("%pB: ignoring duplicate section `%pA'\n"),
2853 sec->owner, sec);
2854 break;
2855
2856 case SEC_LINK_DUPLICATES_SAME_SIZE:
2857 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2858 ;
2859 else if (sec->size != l->sec->size)
2860 info->callbacks->einfo
2861 /* xgettext:c-format */
2862 (_("%pB: duplicate section `%pA' has different size\n"),
2863 sec->owner, sec);
2864 break;
2865
2866 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
2867 if ((l->sec->owner->flags & BFD_PLUGIN) != 0)
2868 ;
2869 else if (sec->size != l->sec->size)
2870 info->callbacks->einfo
2871 /* xgettext:c-format */
2872 (_("%pB: duplicate section `%pA' has different size\n"),
2873 sec->owner, sec);
2874 else if (sec->size != 0)
2875 {
2876 bfd_byte *sec_contents, *l_sec_contents = NULL;
2877
2878 if (!bfd_malloc_and_get_section (sec->owner, sec, &sec_contents))
2879 info->callbacks->einfo
2880 /* xgettext:c-format */
2881 (_("%pB: could not read contents of section `%pA'\n"),
2882 sec->owner, sec);
2883 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
2884 &l_sec_contents))
2885 info->callbacks->einfo
2886 /* xgettext:c-format */
2887 (_("%pB: could not read contents of section `%pA'\n"),
2888 l->sec->owner, l->sec);
2889 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
2890 info->callbacks->einfo
2891 /* xgettext:c-format */
2892 (_("%pB: duplicate section `%pA' has different contents\n"),
2893 sec->owner, sec);
2894
2895 free (sec_contents);
2896 free (l_sec_contents);
2897 }
2898 break;
2899 }
2900
2901 /* Set the output_section field so that lang_add_section
2902 does not create a lang_input_section structure for this
2903 section. Since there might be a symbol in the section
2904 being discarded, we must retain a pointer to the section
2905 which we are really going to use. */
2906 sec->output_section = bfd_abs_section_ptr;
2907 sec->kept_section = l->sec;
2908 return TRUE;
2909 }
2910
2911 /* This is used on non-ELF inputs. */
2912
2913 bfd_boolean
2914 _bfd_generic_section_already_linked (bfd *abfd ATTRIBUTE_UNUSED,
2915 asection *sec,
2916 struct bfd_link_info *info)
2917 {
2918 const char *name;
2919 struct bfd_section_already_linked *l;
2920 struct bfd_section_already_linked_hash_entry *already_linked_list;
2921
2922 if ((sec->flags & SEC_LINK_ONCE) == 0)
2923 return FALSE;
2924
2925 /* The generic linker doesn't handle section groups. */
2926 if ((sec->flags & SEC_GROUP) != 0)
2927 return FALSE;
2928
2929 /* FIXME: When doing a relocatable link, we may have trouble
2930 copying relocations in other sections that refer to local symbols
2931 in the section being discarded. Those relocations will have to
2932 be converted somehow; as of this writing I'm not sure that any of
2933 the backends handle that correctly.
2934
2935 It is tempting to instead not discard link once sections when
2936 doing a relocatable link (technically, they should be discarded
2937 whenever we are building constructors). However, that fails,
2938 because the linker winds up combining all the link once sections
2939 into a single large link once section, which defeats the purpose
2940 of having link once sections in the first place. */
2941
2942 name = bfd_section_name (sec);
2943
2944 already_linked_list = bfd_section_already_linked_table_lookup (name);
2945
2946 l = already_linked_list->entry;
2947 if (l != NULL)
2948 {
2949 /* The section has already been linked. See if we should
2950 issue a warning. */
2951 return _bfd_handle_already_linked (sec, l, info);
2952 }
2953
2954 /* This is the first section with this name. Record it. */
2955 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
2956 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
2957 return FALSE;
2958 }
2959
2960 /* Choose a neighbouring section to S in OBFD that will be output, or
2961 the absolute section if ADDR is out of bounds of the neighbours. */
2962
2963 asection *
2964 _bfd_nearby_section (bfd *obfd, asection *s, bfd_vma addr)
2965 {
2966 asection *next, *prev, *best;
2967
2968 /* Find preceding kept section. */
2969 for (prev = s->prev; prev != NULL; prev = prev->prev)
2970 if ((prev->flags & SEC_EXCLUDE) == 0
2971 && !bfd_section_removed_from_list (obfd, prev))
2972 break;
2973
2974 /* Find following kept section. Start at prev->next because
2975 other sections may have been added after S was removed. */
2976 if (s->prev != NULL)
2977 next = s->prev->next;
2978 else
2979 next = s->owner->sections;
2980 for (; next != NULL; next = next->next)
2981 if ((next->flags & SEC_EXCLUDE) == 0
2982 && !bfd_section_removed_from_list (obfd, next))
2983 break;
2984
2985 /* Choose better of two sections, based on flags. The idea
2986 is to choose a section that will be in the same segment
2987 as S would have been if it was kept. */
2988 best = next;
2989 if (prev == NULL)
2990 {
2991 if (next == NULL)
2992 best = bfd_abs_section_ptr;
2993 }
2994 else if (next == NULL)
2995 best = prev;
2996 else if (((prev->flags ^ next->flags)
2997 & (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_LOAD)) != 0)
2998 {
2999 if (((next->flags ^ s->flags)
3000 & (SEC_ALLOC | SEC_THREAD_LOCAL)) != 0
3001 /* We prefer to choose a loaded section. Section S
3002 doesn't have SEC_LOAD set (it being excluded, that
3003 part of the flag processing didn't happen) so we
3004 can't compare that flag to those of NEXT and PREV. */
3005 || ((prev->flags & SEC_LOAD) != 0
3006 && (next->flags & SEC_LOAD) == 0))
3007 best = prev;
3008 }
3009 else if (((prev->flags ^ next->flags) & SEC_READONLY) != 0)
3010 {
3011 if (((next->flags ^ s->flags) & SEC_READONLY) != 0)
3012 best = prev;
3013 }
3014 else if (((prev->flags ^ next->flags) & SEC_CODE) != 0)
3015 {
3016 if (((next->flags ^ s->flags) & SEC_CODE) != 0)
3017 best = prev;
3018 }
3019 else
3020 {
3021 /* Flags we care about are the same. Prefer the following
3022 section if that will result in a positive valued sym. */
3023 if (addr < next->vma)
3024 best = prev;
3025 }
3026
3027 return best;
3028 }
3029
3030 /* Convert symbols in excluded output sections to use a kept section. */
3031
3032 static bfd_boolean
3033 fix_syms (struct bfd_link_hash_entry *h, void *data)
3034 {
3035 bfd *obfd = (bfd *) data;
3036
3037 if (h->type == bfd_link_hash_defined
3038 || h->type == bfd_link_hash_defweak)
3039 {
3040 asection *s = h->u.def.section;
3041 if (s != NULL
3042 && s->output_section != NULL
3043 && (s->output_section->flags & SEC_EXCLUDE) != 0
3044 && bfd_section_removed_from_list (obfd, s->output_section))
3045 {
3046 asection *op;
3047
3048 h->u.def.value += s->output_offset + s->output_section->vma;
3049 op = _bfd_nearby_section (obfd, s->output_section, h->u.def.value);
3050 h->u.def.value -= op->vma;
3051 h->u.def.section = op;
3052 }
3053 }
3054
3055 return TRUE;
3056 }
3057
3058 void
3059 _bfd_fix_excluded_sec_syms (bfd *obfd, struct bfd_link_info *info)
3060 {
3061 bfd_link_hash_traverse (info->hash, fix_syms, obfd);
3062 }
3063
3064 /*
3065 FUNCTION
3066 bfd_generic_define_common_symbol
3067
3068 SYNOPSIS
3069 bfd_boolean bfd_generic_define_common_symbol
3070 (bfd *output_bfd, struct bfd_link_info *info,
3071 struct bfd_link_hash_entry *h);
3072
3073 DESCRIPTION
3074 Convert common symbol @var{h} into a defined symbol.
3075 Return TRUE on success and FALSE on failure.
3076
3077 .#define bfd_define_common_symbol(output_bfd, info, h) \
3078 . BFD_SEND (output_bfd, _bfd_define_common_symbol, (output_bfd, info, h))
3079 .
3080 */
3081
3082 bfd_boolean
3083 bfd_generic_define_common_symbol (bfd *output_bfd,
3084 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3085 struct bfd_link_hash_entry *h)
3086 {
3087 unsigned int power_of_two;
3088 bfd_vma alignment, size;
3089 asection *section;
3090
3091 BFD_ASSERT (h != NULL && h->type == bfd_link_hash_common);
3092
3093 size = h->u.c.size;
3094 power_of_two = h->u.c.p->alignment_power;
3095 section = h->u.c.p->section;
3096
3097 /* Increase the size of the section to align the common symbol.
3098 The alignment must be a power of two. */
3099 alignment = bfd_octets_per_byte (output_bfd, section) << power_of_two;
3100 BFD_ASSERT (alignment != 0 && (alignment & -alignment) == alignment);
3101 section->size += alignment - 1;
3102 section->size &= -alignment;
3103
3104 /* Adjust the section's overall alignment if necessary. */
3105 if (power_of_two > section->alignment_power)
3106 section->alignment_power = power_of_two;
3107
3108 /* Change the symbol from common to defined. */
3109 h->type = bfd_link_hash_defined;
3110 h->u.def.section = section;
3111 h->u.def.value = section->size;
3112
3113 /* Increase the size of the section. */
3114 section->size += size;
3115
3116 /* Make sure the section is allocated in memory, and make sure that
3117 it is no longer a common section. */
3118 section->flags |= SEC_ALLOC;
3119 section->flags &= ~(SEC_IS_COMMON | SEC_HAS_CONTENTS);
3120 return TRUE;
3121 }
3122
3123 /*
3124 FUNCTION
3125 _bfd_generic_link_hide_symbol
3126
3127 SYNOPSIS
3128 void _bfd_generic_link_hide_symbol
3129 (bfd *output_bfd, struct bfd_link_info *info,
3130 struct bfd_link_hash_entry *h);
3131
3132 DESCRIPTION
3133 Hide symbol @var{h}.
3134 This is an internal function. It should not be called from
3135 outside the BFD library.
3136
3137 .#define bfd_link_hide_symbol(output_bfd, info, h) \
3138 . BFD_SEND (output_bfd, _bfd_link_hide_symbol, (output_bfd, info, h))
3139 .
3140 */
3141
3142 void
3143 _bfd_generic_link_hide_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3144 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3145 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3146 {
3147 }
3148
3149 /*
3150 FUNCTION
3151 bfd_generic_define_start_stop
3152
3153 SYNOPSIS
3154 struct bfd_link_hash_entry *bfd_generic_define_start_stop
3155 (struct bfd_link_info *info,
3156 const char *symbol, asection *sec);
3157
3158 DESCRIPTION
3159 Define a __start, __stop, .startof. or .sizeof. symbol.
3160 Return the symbol or NULL if no such undefined symbol exists.
3161
3162 .#define bfd_define_start_stop(output_bfd, info, symbol, sec) \
3163 . BFD_SEND (output_bfd, _bfd_define_start_stop, (info, symbol, sec))
3164 .
3165 */
3166
3167 struct bfd_link_hash_entry *
3168 bfd_generic_define_start_stop (struct bfd_link_info *info,
3169 const char *symbol, asection *sec)
3170 {
3171 struct bfd_link_hash_entry *h;
3172
3173 h = bfd_link_hash_lookup (info->hash, symbol, FALSE, FALSE, TRUE);
3174 if (h != NULL
3175 && (h->type == bfd_link_hash_undefined
3176 || h->type == bfd_link_hash_undefweak))
3177 {
3178 h->type = bfd_link_hash_defined;
3179 h->u.def.section = sec;
3180 h->u.def.value = 0;
3181 return h;
3182 }
3183 return NULL;
3184 }
3185
3186 /*
3187 FUNCTION
3188 bfd_find_version_for_sym
3189
3190 SYNOPSIS
3191 struct bfd_elf_version_tree * bfd_find_version_for_sym
3192 (struct bfd_elf_version_tree *verdefs,
3193 const char *sym_name, bfd_boolean *hide);
3194
3195 DESCRIPTION
3196 Search an elf version script tree for symbol versioning
3197 info and export / don't-export status for a given symbol.
3198 Return non-NULL on success and NULL on failure; also sets
3199 the output @samp{hide} boolean parameter.
3200
3201 */
3202
3203 struct bfd_elf_version_tree *
3204 bfd_find_version_for_sym (struct bfd_elf_version_tree *verdefs,
3205 const char *sym_name,
3206 bfd_boolean *hide)
3207 {
3208 struct bfd_elf_version_tree *t;
3209 struct bfd_elf_version_tree *local_ver, *global_ver, *exist_ver;
3210 struct bfd_elf_version_tree *star_local_ver, *star_global_ver;
3211
3212 local_ver = NULL;
3213 global_ver = NULL;
3214 star_local_ver = NULL;
3215 star_global_ver = NULL;
3216 exist_ver = NULL;
3217 for (t = verdefs; t != NULL; t = t->next)
3218 {
3219 if (t->globals.list != NULL)
3220 {
3221 struct bfd_elf_version_expr *d = NULL;
3222
3223 while ((d = (*t->match) (&t->globals, d, sym_name)) != NULL)
3224 {
3225 if (d->literal || strcmp (d->pattern, "*") != 0)
3226 global_ver = t;
3227 else
3228 star_global_ver = t;
3229 if (d->symver)
3230 exist_ver = t;
3231 d->script = 1;
3232 /* If the match is a wildcard pattern, keep looking for
3233 a more explicit, perhaps even local, match. */
3234 if (d->literal)
3235 break;
3236 }
3237
3238 if (d != NULL)
3239 break;
3240 }
3241
3242 if (t->locals.list != NULL)
3243 {
3244 struct bfd_elf_version_expr *d = NULL;
3245
3246 while ((d = (*t->match) (&t->locals, d, sym_name)) != NULL)
3247 {
3248 if (d->literal || strcmp (d->pattern, "*") != 0)
3249 local_ver = t;
3250 else
3251 star_local_ver = t;
3252 /* If the match is a wildcard pattern, keep looking for
3253 a more explicit, perhaps even global, match. */
3254 if (d->literal)
3255 {
3256 /* An exact match overrides a global wildcard. */
3257 global_ver = NULL;
3258 star_global_ver = NULL;
3259 break;
3260 }
3261 }
3262
3263 if (d != NULL)
3264 break;
3265 }
3266 }
3267
3268 if (global_ver == NULL && local_ver == NULL)
3269 global_ver = star_global_ver;
3270
3271 if (global_ver != NULL)
3272 {
3273 /* If we already have a versioned symbol that matches the
3274 node for this symbol, then we don't want to create a
3275 duplicate from the unversioned symbol. Instead hide the
3276 unversioned symbol. */
3277 *hide = exist_ver == global_ver;
3278 return global_ver;
3279 }
3280
3281 if (local_ver == NULL)
3282 local_ver = star_local_ver;
3283
3284 if (local_ver != NULL)
3285 {
3286 *hide = TRUE;
3287 return local_ver;
3288 }
3289
3290 return NULL;
3291 }
3292
3293 /*
3294 FUNCTION
3295 bfd_hide_sym_by_version
3296
3297 SYNOPSIS
3298 bfd_boolean bfd_hide_sym_by_version
3299 (struct bfd_elf_version_tree *verdefs, const char *sym_name);
3300
3301 DESCRIPTION
3302 Search an elf version script tree for symbol versioning
3303 info for a given symbol. Return TRUE if the symbol is hidden.
3304
3305 */
3306
3307 bfd_boolean
3308 bfd_hide_sym_by_version (struct bfd_elf_version_tree *verdefs,
3309 const char *sym_name)
3310 {
3311 bfd_boolean hidden = FALSE;
3312 bfd_find_version_for_sym (verdefs, sym_name, &hidden);
3313 return hidden;
3314 }
3315
3316 /*
3317 FUNCTION
3318 bfd_link_check_relocs
3319
3320 SYNOPSIS
3321 bfd_boolean bfd_link_check_relocs
3322 (bfd *abfd, struct bfd_link_info *info);
3323
3324 DESCRIPTION
3325 Checks the relocs in ABFD for validity.
3326 Does not execute the relocs.
3327 Return TRUE if everything is OK, FALSE otherwise.
3328 This is the external entry point to this code.
3329 */
3330
3331 bfd_boolean
3332 bfd_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3333 {
3334 return BFD_SEND (abfd, _bfd_link_check_relocs, (abfd, info));
3335 }
3336
3337 /*
3338 FUNCTION
3339 _bfd_generic_link_check_relocs
3340
3341 SYNOPSIS
3342 bfd_boolean _bfd_generic_link_check_relocs
3343 (bfd *abfd, struct bfd_link_info *info);
3344
3345 DESCRIPTION
3346 Stub function for targets that do not implement reloc checking.
3347 Return TRUE.
3348 This is an internal function. It should not be called from
3349 outside the BFD library.
3350 */
3351
3352 bfd_boolean
3353 _bfd_generic_link_check_relocs (bfd *abfd ATTRIBUTE_UNUSED,
3354 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3355 {
3356 return TRUE;
3357 }
3358
3359 /*
3360 FUNCTION
3361 bfd_merge_private_bfd_data
3362
3363 SYNOPSIS
3364 bfd_boolean bfd_merge_private_bfd_data
3365 (bfd *ibfd, struct bfd_link_info *info);
3366
3367 DESCRIPTION
3368 Merge private BFD information from the BFD @var{ibfd} to the
3369 the output file BFD when linking. Return <<TRUE>> on success,
3370 <<FALSE>> on error. Possible error returns are:
3371
3372 o <<bfd_error_no_memory>> -
3373 Not enough memory exists to create private data for @var{obfd}.
3374
3375 .#define bfd_merge_private_bfd_data(ibfd, info) \
3376 . BFD_SEND ((info)->output_bfd, _bfd_merge_private_bfd_data, \
3377 . (ibfd, info))
3378 */
3379
3380 /*
3381 INTERNAL_FUNCTION
3382 _bfd_generic_verify_endian_match
3383
3384 SYNOPSIS
3385 bfd_boolean _bfd_generic_verify_endian_match
3386 (bfd *ibfd, struct bfd_link_info *info);
3387
3388 DESCRIPTION
3389 Can be used from / for bfd_merge_private_bfd_data to check that
3390 endianness matches between input and output file. Returns
3391 TRUE for a match, otherwise returns FALSE and emits an error.
3392 */
3393
3394 bfd_boolean
3395 _bfd_generic_verify_endian_match (bfd *ibfd, struct bfd_link_info *info)
3396 {
3397 bfd *obfd = info->output_bfd;
3398
3399 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
3400 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
3401 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
3402 {
3403 if (bfd_big_endian (ibfd))
3404 _bfd_error_handler (_("%pB: compiled for a big endian system "
3405 "and target is little endian"), ibfd);
3406 else
3407 _bfd_error_handler (_("%pB: compiled for a little endian system "
3408 "and target is big endian"), ibfd);
3409 bfd_set_error (bfd_error_wrong_format);
3410 return FALSE;
3411 }
3412
3413 return TRUE;
3414 }
3415
3416 int
3417 _bfd_nolink_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
3418 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3419 {
3420 return 0;
3421 }
3422
3423 bfd_boolean
3424 _bfd_nolink_bfd_relax_section (bfd *abfd,
3425 asection *section ATTRIBUTE_UNUSED,
3426 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3427 bfd_boolean *again ATTRIBUTE_UNUSED)
3428 {
3429 return _bfd_bool_bfd_false_error (abfd);
3430 }
3431
3432 bfd_byte *
3433 _bfd_nolink_bfd_get_relocated_section_contents
3434 (bfd *abfd,
3435 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
3436 struct bfd_link_order *link_order ATTRIBUTE_UNUSED,
3437 bfd_byte *data ATTRIBUTE_UNUSED,
3438 bfd_boolean relocatable ATTRIBUTE_UNUSED,
3439 asymbol **symbols ATTRIBUTE_UNUSED)
3440 {
3441 return (bfd_byte *) _bfd_ptr_bfd_null_error (abfd);
3442 }
3443
3444 bfd_boolean
3445 _bfd_nolink_bfd_lookup_section_flags
3446 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3447 struct flag_info *flaginfo ATTRIBUTE_UNUSED,
3448 asection *section)
3449 {
3450 return _bfd_bool_bfd_false_error (section->owner);
3451 }
3452
3453 bfd_boolean
3454 _bfd_nolink_bfd_is_group_section (bfd *abfd,
3455 const asection *sec ATTRIBUTE_UNUSED)
3456 {
3457 return _bfd_bool_bfd_false_error (abfd);
3458 }
3459
3460 const char *
3461 _bfd_nolink_bfd_group_name (bfd *abfd,
3462 const asection *sec ATTRIBUTE_UNUSED)
3463 {
3464 return _bfd_ptr_bfd_null_error (abfd);
3465 }
3466
3467 bfd_boolean
3468 _bfd_nolink_bfd_discard_group (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3469 {
3470 return _bfd_bool_bfd_false_error (abfd);
3471 }
3472
3473 struct bfd_link_hash_table *
3474 _bfd_nolink_bfd_link_hash_table_create (bfd *abfd)
3475 {
3476 return (struct bfd_link_hash_table *) _bfd_ptr_bfd_null_error (abfd);
3477 }
3478
3479 void
3480 _bfd_nolink_bfd_link_just_syms (asection *sec ATTRIBUTE_UNUSED,
3481 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3482 {
3483 }
3484
3485 void
3486 _bfd_nolink_bfd_copy_link_hash_symbol_type
3487 (bfd *abfd ATTRIBUTE_UNUSED,
3488 struct bfd_link_hash_entry *from ATTRIBUTE_UNUSED,
3489 struct bfd_link_hash_entry *to ATTRIBUTE_UNUSED)
3490 {
3491 }
3492
3493 bfd_boolean
3494 _bfd_nolink_bfd_link_split_section (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
3495 {
3496 return _bfd_bool_bfd_false_error (abfd);
3497 }
3498
3499 bfd_boolean
3500 _bfd_nolink_section_already_linked (bfd *abfd,
3501 asection *sec ATTRIBUTE_UNUSED,
3502 struct bfd_link_info *info ATTRIBUTE_UNUSED)
3503 {
3504 return _bfd_bool_bfd_false_error (abfd);
3505 }
3506
3507 bfd_boolean
3508 _bfd_nolink_bfd_define_common_symbol
3509 (bfd *abfd,
3510 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3511 struct bfd_link_hash_entry *h ATTRIBUTE_UNUSED)
3512 {
3513 return _bfd_bool_bfd_false_error (abfd);
3514 }
3515
3516 struct bfd_link_hash_entry *
3517 _bfd_nolink_bfd_define_start_stop (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3518 const char *name ATTRIBUTE_UNUSED,
3519 asection *sec)
3520 {
3521 return (struct bfd_link_hash_entry *) _bfd_ptr_bfd_null_error (sec->owner);
3522 }
This page took 0.106125 seconds and 4 git commands to generate.