Add support for debuginfod to the binutils (disable by default, enabled via a configu...
[deliverable/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2020 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63 #include "ctf-api.h"
64
65 #include "elf/common.h"
66 #include "elf/external.h"
67 #include "elf/internal.h"
68
69
70 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
71 we can obtain the H8 reloc numbers. We need these for the
72 get_reloc_size() function. We include h8.h again after defining
73 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
74
75 #include "elf/h8.h"
76 #undef _ELF_H8_H
77
78 /* Undo the effects of #including reloc-macros.h. */
79
80 #undef START_RELOC_NUMBERS
81 #undef RELOC_NUMBER
82 #undef FAKE_RELOC
83 #undef EMPTY_RELOC
84 #undef END_RELOC_NUMBERS
85 #undef _RELOC_MACROS_H
86
87 /* The following headers use the elf/reloc-macros.h file to
88 automatically generate relocation recognition functions
89 such as elf_mips_reloc_type() */
90
91 #define RELOC_MACROS_GEN_FUNC
92
93 #include "elf/aarch64.h"
94 #include "elf/alpha.h"
95 #include "elf/arc.h"
96 #include "elf/arm.h"
97 #include "elf/avr.h"
98 #include "elf/bfin.h"
99 #include "elf/cr16.h"
100 #include "elf/cris.h"
101 #include "elf/crx.h"
102 #include "elf/csky.h"
103 #include "elf/d10v.h"
104 #include "elf/d30v.h"
105 #include "elf/dlx.h"
106 #include "elf/bpf.h"
107 #include "elf/epiphany.h"
108 #include "elf/fr30.h"
109 #include "elf/frv.h"
110 #include "elf/ft32.h"
111 #include "elf/h8.h"
112 #include "elf/hppa.h"
113 #include "elf/i386.h"
114 #include "elf/i370.h"
115 #include "elf/i860.h"
116 #include "elf/i960.h"
117 #include "elf/ia64.h"
118 #include "elf/ip2k.h"
119 #include "elf/lm32.h"
120 #include "elf/iq2000.h"
121 #include "elf/m32c.h"
122 #include "elf/m32r.h"
123 #include "elf/m68k.h"
124 #include "elf/m68hc11.h"
125 #include "elf/s12z.h"
126 #include "elf/mcore.h"
127 #include "elf/mep.h"
128 #include "elf/metag.h"
129 #include "elf/microblaze.h"
130 #include "elf/mips.h"
131 #include "elf/mmix.h"
132 #include "elf/mn10200.h"
133 #include "elf/mn10300.h"
134 #include "elf/moxie.h"
135 #include "elf/mt.h"
136 #include "elf/msp430.h"
137 #include "elf/nds32.h"
138 #include "elf/nfp.h"
139 #include "elf/nios2.h"
140 #include "elf/or1k.h"
141 #include "elf/pj.h"
142 #include "elf/ppc.h"
143 #include "elf/ppc64.h"
144 #include "elf/pru.h"
145 #include "elf/riscv.h"
146 #include "elf/rl78.h"
147 #include "elf/rx.h"
148 #include "elf/s390.h"
149 #include "elf/score.h"
150 #include "elf/sh.h"
151 #include "elf/sparc.h"
152 #include "elf/spu.h"
153 #include "elf/tic6x.h"
154 #include "elf/tilegx.h"
155 #include "elf/tilepro.h"
156 #include "elf/v850.h"
157 #include "elf/vax.h"
158 #include "elf/visium.h"
159 #include "elf/wasm32.h"
160 #include "elf/x86-64.h"
161 #include "elf/xc16x.h"
162 #include "elf/xgate.h"
163 #include "elf/xstormy16.h"
164 #include "elf/xtensa.h"
165 #include "elf/z80.h"
166
167 #include "getopt.h"
168 #include "libiberty.h"
169 #include "safe-ctype.h"
170 #include "filenames.h"
171
172 #ifndef offsetof
173 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
174 #endif
175
176 typedef struct elf_section_list
177 {
178 Elf_Internal_Shdr * hdr;
179 struct elf_section_list * next;
180 } elf_section_list;
181
182 /* Flag bits indicating particular types of dump. */
183 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
184 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
185 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
186 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
187 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
188 #define CTF_DUMP (1 << 5) /* The --ctf command line switch. */
189
190 typedef unsigned char dump_type;
191
192 /* A linked list of the section names for which dumps were requested. */
193 struct dump_list_entry
194 {
195 char * name;
196 dump_type type;
197 struct dump_list_entry * next;
198 };
199
200 typedef struct filedata
201 {
202 const char * file_name;
203 FILE * handle;
204 bfd_size_type file_size;
205 Elf_Internal_Ehdr file_header;
206 Elf_Internal_Shdr * section_headers;
207 Elf_Internal_Phdr * program_headers;
208 char * string_table;
209 unsigned long string_table_length;
210 /* A dynamic array of flags indicating for which sections a dump of
211 some kind has been requested. It is reset on a per-object file
212 basis and then initialised from the cmdline_dump_sects array,
213 the results of interpreting the -w switch, and the
214 dump_sects_byname list. */
215 dump_type * dump_sects;
216 unsigned int num_dump_sects;
217 } Filedata;
218
219 char * program_name = "readelf";
220
221 static unsigned long archive_file_offset;
222 static unsigned long archive_file_size;
223 static unsigned long dynamic_addr;
224 static bfd_size_type dynamic_size;
225 static size_t dynamic_nent;
226 static char * dynamic_strings;
227 static unsigned long dynamic_strings_length;
228 static unsigned long num_dynamic_syms;
229 static Elf_Internal_Sym * dynamic_symbols;
230 static Elf_Internal_Syminfo * dynamic_syminfo;
231 static unsigned long dynamic_syminfo_offset;
232 static unsigned int dynamic_syminfo_nent;
233 static char program_interpreter[PATH_MAX];
234 static bfd_vma dynamic_info[DT_ENCODING];
235 static bfd_vma dynamic_info_DT_GNU_HASH;
236 static bfd_vma dynamic_info_DT_MIPS_XHASH;
237 static bfd_vma version_info[16];
238 static Elf_Internal_Dyn * dynamic_section;
239 static elf_section_list * symtab_shndx_list;
240 static bfd_boolean show_name = FALSE;
241 static bfd_boolean do_dynamic = FALSE;
242 static bfd_boolean do_syms = FALSE;
243 static bfd_boolean do_dyn_syms = FALSE;
244 static bfd_boolean do_reloc = FALSE;
245 static bfd_boolean do_sections = FALSE;
246 static bfd_boolean do_section_groups = FALSE;
247 static bfd_boolean do_section_details = FALSE;
248 static bfd_boolean do_segments = FALSE;
249 static bfd_boolean do_unwind = FALSE;
250 static bfd_boolean do_using_dynamic = FALSE;
251 static bfd_boolean do_header = FALSE;
252 static bfd_boolean do_dump = FALSE;
253 static bfd_boolean do_version = FALSE;
254 static bfd_boolean do_histogram = FALSE;
255 static bfd_boolean do_debugging = FALSE;
256 static bfd_boolean do_ctf = FALSE;
257 static bfd_boolean do_arch = FALSE;
258 static bfd_boolean do_notes = FALSE;
259 static bfd_boolean do_archive_index = FALSE;
260 static bfd_boolean is_32bit_elf = FALSE;
261 static bfd_boolean decompress_dumps = FALSE;
262
263 static char *dump_ctf_parent_name;
264 static char *dump_ctf_symtab_name;
265 static char *dump_ctf_strtab_name;
266
267 struct group_list
268 {
269 struct group_list * next;
270 unsigned int section_index;
271 };
272
273 struct group
274 {
275 struct group_list * root;
276 unsigned int group_index;
277 };
278
279 static size_t group_count;
280 static struct group * section_groups;
281 static struct group ** section_headers_groups;
282
283 /* A dynamic array of flags indicating for which sections a dump
284 has been requested via command line switches. */
285 static Filedata cmdline;
286
287 static struct dump_list_entry * dump_sects_byname;
288
289 /* How to print a vma value. */
290 typedef enum print_mode
291 {
292 HEX,
293 DEC,
294 DEC_5,
295 UNSIGNED,
296 PREFIX_HEX,
297 FULL_HEX,
298 LONG_HEX
299 }
300 print_mode;
301
302 /* Versioned symbol info. */
303 enum versioned_symbol_info
304 {
305 symbol_undefined,
306 symbol_hidden,
307 symbol_public
308 };
309
310 static const char * get_symbol_version_string
311 (Filedata *, bfd_boolean, const char *, unsigned long, unsigned,
312 Elf_Internal_Sym *, enum versioned_symbol_info *, unsigned short *);
313
314 #define UNKNOWN -1
315
316 #define SECTION_NAME(X) \
317 ((X) == NULL ? _("<none>") \
318 : filedata->string_table == NULL ? _("<no-strings>") \
319 : ((X)->sh_name >= filedata->string_table_length ? _("<corrupt>") \
320 : filedata->string_table + (X)->sh_name))
321
322 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
323
324 #define GET_ELF_SYMBOLS(file, section, sym_count) \
325 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
326 : get_64bit_elf_symbols (file, section, sym_count))
327
328 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
329 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
330 already been called and verified that the string exists. */
331 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
332
333 #define REMOVE_ARCH_BITS(ADDR) \
334 do \
335 { \
336 if (filedata->file_header.e_machine == EM_ARM) \
337 (ADDR) &= ~1; \
338 } \
339 while (0)
340
341 /* Get the correct GNU hash section name. */
342 #define GNU_HASH_SECTION_NAME \
343 dynamic_info_DT_MIPS_XHASH ? ".MIPS.xhash" : ".gnu.hash"
344 \f
345 /* Print a BFD_VMA to an internal buffer, for use in error messages.
346 BFD_FMA_FMT can't be used in translated strings. */
347
348 static const char *
349 bfd_vmatoa (char *fmtch, bfd_vma value)
350 {
351 /* bfd_vmatoa is used more then once in a printf call for output.
352 Cycle through an array of buffers. */
353 static int buf_pos = 0;
354 static struct bfd_vmatoa_buf
355 {
356 char place[64];
357 } buf[4];
358 char *ret;
359 char fmt[32];
360
361 ret = buf[buf_pos++].place;
362 buf_pos %= ARRAY_SIZE (buf);
363
364 sprintf (fmt, "%%%s%s", BFD_VMA_FMT, fmtch);
365 snprintf (ret, sizeof (buf[0].place), fmt, value);
366 return ret;
367 }
368
369 /* Retrieve NMEMB structures, each SIZE bytes long from FILEDATA starting at
370 OFFSET + the offset of the current archive member, if we are examining an
371 archive. Put the retrieved data into VAR, if it is not NULL. Otherwise
372 allocate a buffer using malloc and fill that. In either case return the
373 pointer to the start of the retrieved data or NULL if something went wrong.
374 If something does go wrong and REASON is not NULL then emit an error
375 message using REASON as part of the context. */
376
377 static void *
378 get_data (void * var,
379 Filedata * filedata,
380 unsigned long offset,
381 bfd_size_type size,
382 bfd_size_type nmemb,
383 const char * reason)
384 {
385 void * mvar;
386 bfd_size_type amt = size * nmemb;
387
388 if (size == 0 || nmemb == 0)
389 return NULL;
390
391 /* If the size_t type is smaller than the bfd_size_type, eg because
392 you are building a 32-bit tool on a 64-bit host, then make sure
393 that when the sizes are cast to (size_t) no information is lost. */
394 if ((size_t) size != size
395 || (size_t) nmemb != nmemb
396 || (size_t) amt != amt)
397 {
398 if (reason)
399 error (_("Size truncation prevents reading %s"
400 " elements of size %s for %s\n"),
401 bfd_vmatoa ("u", nmemb), bfd_vmatoa ("u", size), reason);
402 return NULL;
403 }
404
405 /* Check for size overflow. */
406 if (amt / size != nmemb || (size_t) amt + 1 == 0)
407 {
408 if (reason)
409 error (_("Size overflow prevents reading %s"
410 " elements of size %s for %s\n"),
411 bfd_vmatoa ("u", nmemb), bfd_vmatoa ("u", size), reason);
412 return NULL;
413 }
414
415 /* Be kind to memory checkers (eg valgrind, address sanitizer) by not
416 attempting to allocate memory when the read is bound to fail. */
417 if (archive_file_offset > filedata->file_size
418 || offset > filedata->file_size - archive_file_offset
419 || amt > filedata->file_size - archive_file_offset - offset)
420 {
421 if (reason)
422 error (_("Reading %s bytes extends past end of file for %s\n"),
423 bfd_vmatoa ("u", amt), reason);
424 return NULL;
425 }
426
427 if (fseek (filedata->handle, archive_file_offset + offset, SEEK_SET))
428 {
429 if (reason)
430 error (_("Unable to seek to 0x%lx for %s\n"),
431 archive_file_offset + offset, reason);
432 return NULL;
433 }
434
435 mvar = var;
436 if (mvar == NULL)
437 {
438 /* + 1 so that we can '\0' terminate invalid string table sections. */
439 mvar = malloc ((size_t) amt + 1);
440
441 if (mvar == NULL)
442 {
443 if (reason)
444 error (_("Out of memory allocating %s bytes for %s\n"),
445 bfd_vmatoa ("u", amt), reason);
446 return NULL;
447 }
448
449 ((char *) mvar)[amt] = '\0';
450 }
451
452 if (fread (mvar, (size_t) size, (size_t) nmemb, filedata->handle) != nmemb)
453 {
454 if (reason)
455 error (_("Unable to read in %s bytes of %s\n"),
456 bfd_vmatoa ("u", amt), reason);
457 if (mvar != var)
458 free (mvar);
459 return NULL;
460 }
461
462 return mvar;
463 }
464
465 /* Print a VMA value in the MODE specified.
466 Returns the number of characters displayed. */
467
468 static unsigned int
469 print_vma (bfd_vma vma, print_mode mode)
470 {
471 unsigned int nc = 0;
472
473 switch (mode)
474 {
475 case FULL_HEX:
476 nc = printf ("0x");
477 /* Fall through. */
478 case LONG_HEX:
479 #ifdef BFD64
480 if (is_32bit_elf)
481 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
482 #endif
483 printf_vma (vma);
484 return nc + 16;
485
486 case DEC_5:
487 if (vma <= 99999)
488 return printf ("%5" BFD_VMA_FMT "d", vma);
489 /* Fall through. */
490 case PREFIX_HEX:
491 nc = printf ("0x");
492 /* Fall through. */
493 case HEX:
494 return nc + printf ("%" BFD_VMA_FMT "x", vma);
495
496 case DEC:
497 return printf ("%" BFD_VMA_FMT "d", vma);
498
499 case UNSIGNED:
500 return printf ("%" BFD_VMA_FMT "u", vma);
501
502 default:
503 /* FIXME: Report unrecognised mode ? */
504 return 0;
505 }
506 }
507
508 /* Display a symbol on stdout. Handles the display of control characters and
509 multibye characters (assuming the host environment supports them).
510
511 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
512
513 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
514 padding as necessary.
515
516 Returns the number of emitted characters. */
517
518 static unsigned int
519 print_symbol (signed int width, const char *symbol)
520 {
521 bfd_boolean extra_padding = FALSE;
522 signed int num_printed = 0;
523 #ifdef HAVE_MBSTATE_T
524 mbstate_t state;
525 #endif
526 unsigned int width_remaining;
527
528 if (width < 0)
529 {
530 /* Keep the width positive. This helps the code below. */
531 width = - width;
532 extra_padding = TRUE;
533 }
534 else if (width == 0)
535 return 0;
536
537 if (do_wide)
538 /* Set the remaining width to a very large value.
539 This simplifies the code below. */
540 width_remaining = INT_MAX;
541 else
542 width_remaining = width;
543
544 #ifdef HAVE_MBSTATE_T
545 /* Initialise the multibyte conversion state. */
546 memset (& state, 0, sizeof (state));
547 #endif
548
549 while (width_remaining)
550 {
551 size_t n;
552 const char c = *symbol++;
553
554 if (c == 0)
555 break;
556
557 /* Do not print control characters directly as they can affect terminal
558 settings. Such characters usually appear in the names generated
559 by the assembler for local labels. */
560 if (ISCNTRL (c))
561 {
562 if (width_remaining < 2)
563 break;
564
565 printf ("^%c", c + 0x40);
566 width_remaining -= 2;
567 num_printed += 2;
568 }
569 else if (ISPRINT (c))
570 {
571 putchar (c);
572 width_remaining --;
573 num_printed ++;
574 }
575 else
576 {
577 #ifdef HAVE_MBSTATE_T
578 wchar_t w;
579 #endif
580 /* Let printf do the hard work of displaying multibyte characters. */
581 printf ("%.1s", symbol - 1);
582 width_remaining --;
583 num_printed ++;
584
585 #ifdef HAVE_MBSTATE_T
586 /* Try to find out how many bytes made up the character that was
587 just printed. Advance the symbol pointer past the bytes that
588 were displayed. */
589 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
590 #else
591 n = 1;
592 #endif
593 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
594 symbol += (n - 1);
595 }
596 }
597
598 if (extra_padding && num_printed < width)
599 {
600 /* Fill in the remaining spaces. */
601 printf ("%-*s", width - num_printed, " ");
602 num_printed = width;
603 }
604
605 return num_printed;
606 }
607
608 /* Returns a pointer to a static buffer containing a printable version of
609 the given section's name. Like print_symbol, except that it does not try
610 to print multibyte characters, it just interprets them as hex values. */
611
612 static const char *
613 printable_section_name (Filedata * filedata, const Elf_Internal_Shdr * sec)
614 {
615 #define MAX_PRINT_SEC_NAME_LEN 128
616 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
617 const char * name = SECTION_NAME (sec);
618 char * buf = sec_name_buf;
619 char c;
620 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
621
622 while ((c = * name ++) != 0)
623 {
624 if (ISCNTRL (c))
625 {
626 if (remaining < 2)
627 break;
628
629 * buf ++ = '^';
630 * buf ++ = c + 0x40;
631 remaining -= 2;
632 }
633 else if (ISPRINT (c))
634 {
635 * buf ++ = c;
636 remaining -= 1;
637 }
638 else
639 {
640 static char hex[17] = "0123456789ABCDEF";
641
642 if (remaining < 4)
643 break;
644 * buf ++ = '<';
645 * buf ++ = hex[(c & 0xf0) >> 4];
646 * buf ++ = hex[c & 0x0f];
647 * buf ++ = '>';
648 remaining -= 4;
649 }
650
651 if (remaining == 0)
652 break;
653 }
654
655 * buf = 0;
656 return sec_name_buf;
657 }
658
659 static const char *
660 printable_section_name_from_index (Filedata * filedata, unsigned long ndx)
661 {
662 if (ndx >= filedata->file_header.e_shnum)
663 return _("<corrupt>");
664
665 return printable_section_name (filedata, filedata->section_headers + ndx);
666 }
667
668 /* Return a pointer to section NAME, or NULL if no such section exists. */
669
670 static Elf_Internal_Shdr *
671 find_section (Filedata * filedata, const char * name)
672 {
673 unsigned int i;
674
675 if (filedata->section_headers == NULL)
676 return NULL;
677
678 for (i = 0; i < filedata->file_header.e_shnum; i++)
679 if (streq (SECTION_NAME (filedata->section_headers + i), name))
680 return filedata->section_headers + i;
681
682 return NULL;
683 }
684
685 /* Return a pointer to a section containing ADDR, or NULL if no such
686 section exists. */
687
688 static Elf_Internal_Shdr *
689 find_section_by_address (Filedata * filedata, bfd_vma addr)
690 {
691 unsigned int i;
692
693 if (filedata->section_headers == NULL)
694 return NULL;
695
696 for (i = 0; i < filedata->file_header.e_shnum; i++)
697 {
698 Elf_Internal_Shdr *sec = filedata->section_headers + i;
699
700 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
701 return sec;
702 }
703
704 return NULL;
705 }
706
707 static Elf_Internal_Shdr *
708 find_section_by_type (Filedata * filedata, unsigned int type)
709 {
710 unsigned int i;
711
712 if (filedata->section_headers == NULL)
713 return NULL;
714
715 for (i = 0; i < filedata->file_header.e_shnum; i++)
716 {
717 Elf_Internal_Shdr *sec = filedata->section_headers + i;
718
719 if (sec->sh_type == type)
720 return sec;
721 }
722
723 return NULL;
724 }
725
726 /* Return a pointer to section NAME, or NULL if no such section exists,
727 restricted to the list of sections given in SET. */
728
729 static Elf_Internal_Shdr *
730 find_section_in_set (Filedata * filedata, const char * name, unsigned int * set)
731 {
732 unsigned int i;
733
734 if (filedata->section_headers == NULL)
735 return NULL;
736
737 if (set != NULL)
738 {
739 while ((i = *set++) > 0)
740 {
741 /* See PR 21156 for a reproducer. */
742 if (i >= filedata->file_header.e_shnum)
743 continue; /* FIXME: Should we issue an error message ? */
744
745 if (streq (SECTION_NAME (filedata->section_headers + i), name))
746 return filedata->section_headers + i;
747 }
748 }
749
750 return find_section (filedata, name);
751 }
752
753 /* Return TRUE if the current file is for IA-64 machine and OpenVMS ABI.
754 This OS has so many departures from the ELF standard that we test it at
755 many places. */
756
757 static inline bfd_boolean
758 is_ia64_vms (Filedata * filedata)
759 {
760 return filedata->file_header.e_machine == EM_IA_64
761 && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
762 }
763
764 /* Guess the relocation size commonly used by the specific machines. */
765
766 static bfd_boolean
767 guess_is_rela (unsigned int e_machine)
768 {
769 switch (e_machine)
770 {
771 /* Targets that use REL relocations. */
772 case EM_386:
773 case EM_IAMCU:
774 case EM_960:
775 case EM_ARM:
776 case EM_D10V:
777 case EM_CYGNUS_D10V:
778 case EM_DLX:
779 case EM_MIPS:
780 case EM_MIPS_RS3_LE:
781 case EM_CYGNUS_M32R:
782 case EM_SCORE:
783 case EM_XGATE:
784 case EM_NFP:
785 case EM_BPF:
786 return FALSE;
787
788 /* Targets that use RELA relocations. */
789 case EM_68K:
790 case EM_860:
791 case EM_AARCH64:
792 case EM_ADAPTEVA_EPIPHANY:
793 case EM_ALPHA:
794 case EM_ALTERA_NIOS2:
795 case EM_ARC:
796 case EM_ARC_COMPACT:
797 case EM_ARC_COMPACT2:
798 case EM_AVR:
799 case EM_AVR_OLD:
800 case EM_BLACKFIN:
801 case EM_CR16:
802 case EM_CRIS:
803 case EM_CRX:
804 case EM_CSKY:
805 case EM_D30V:
806 case EM_CYGNUS_D30V:
807 case EM_FR30:
808 case EM_FT32:
809 case EM_CYGNUS_FR30:
810 case EM_CYGNUS_FRV:
811 case EM_H8S:
812 case EM_H8_300:
813 case EM_H8_300H:
814 case EM_IA_64:
815 case EM_IP2K:
816 case EM_IP2K_OLD:
817 case EM_IQ2000:
818 case EM_LATTICEMICO32:
819 case EM_M32C_OLD:
820 case EM_M32C:
821 case EM_M32R:
822 case EM_MCORE:
823 case EM_CYGNUS_MEP:
824 case EM_METAG:
825 case EM_MMIX:
826 case EM_MN10200:
827 case EM_CYGNUS_MN10200:
828 case EM_MN10300:
829 case EM_CYGNUS_MN10300:
830 case EM_MOXIE:
831 case EM_MSP430:
832 case EM_MSP430_OLD:
833 case EM_MT:
834 case EM_NDS32:
835 case EM_NIOS32:
836 case EM_OR1K:
837 case EM_PPC64:
838 case EM_PPC:
839 case EM_TI_PRU:
840 case EM_RISCV:
841 case EM_RL78:
842 case EM_RX:
843 case EM_S390:
844 case EM_S390_OLD:
845 case EM_SH:
846 case EM_SPARC:
847 case EM_SPARC32PLUS:
848 case EM_SPARCV9:
849 case EM_SPU:
850 case EM_TI_C6000:
851 case EM_TILEGX:
852 case EM_TILEPRO:
853 case EM_V800:
854 case EM_V850:
855 case EM_CYGNUS_V850:
856 case EM_VAX:
857 case EM_VISIUM:
858 case EM_X86_64:
859 case EM_L1OM:
860 case EM_K1OM:
861 case EM_XSTORMY16:
862 case EM_XTENSA:
863 case EM_XTENSA_OLD:
864 case EM_MICROBLAZE:
865 case EM_MICROBLAZE_OLD:
866 case EM_WEBASSEMBLY:
867 return TRUE;
868
869 case EM_68HC05:
870 case EM_68HC08:
871 case EM_68HC11:
872 case EM_68HC16:
873 case EM_FX66:
874 case EM_ME16:
875 case EM_MMA:
876 case EM_NCPU:
877 case EM_NDR1:
878 case EM_PCP:
879 case EM_ST100:
880 case EM_ST19:
881 case EM_ST7:
882 case EM_ST9PLUS:
883 case EM_STARCORE:
884 case EM_SVX:
885 case EM_TINYJ:
886 default:
887 warn (_("Don't know about relocations on this machine architecture\n"));
888 return FALSE;
889 }
890 }
891
892 /* Load RELA type relocations from FILEDATA at REL_OFFSET extending for REL_SIZE bytes.
893 Returns TRUE upon success, FALSE otherwise. If successful then a
894 pointer to a malloc'ed buffer containing the relocs is placed in *RELASP,
895 and the number of relocs loaded is placed in *NRELASP. It is the caller's
896 responsibility to free the allocated buffer. */
897
898 static bfd_boolean
899 slurp_rela_relocs (Filedata * filedata,
900 unsigned long rel_offset,
901 unsigned long rel_size,
902 Elf_Internal_Rela ** relasp,
903 unsigned long * nrelasp)
904 {
905 Elf_Internal_Rela * relas;
906 size_t nrelas;
907 unsigned int i;
908
909 if (is_32bit_elf)
910 {
911 Elf32_External_Rela * erelas;
912
913 erelas = (Elf32_External_Rela *) get_data (NULL, filedata, rel_offset, 1,
914 rel_size, _("32-bit relocation data"));
915 if (!erelas)
916 return FALSE;
917
918 nrelas = rel_size / sizeof (Elf32_External_Rela);
919
920 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
921 sizeof (Elf_Internal_Rela));
922
923 if (relas == NULL)
924 {
925 free (erelas);
926 error (_("out of memory parsing relocs\n"));
927 return FALSE;
928 }
929
930 for (i = 0; i < nrelas; i++)
931 {
932 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
933 relas[i].r_info = BYTE_GET (erelas[i].r_info);
934 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
935 }
936
937 free (erelas);
938 }
939 else
940 {
941 Elf64_External_Rela * erelas;
942
943 erelas = (Elf64_External_Rela *) get_data (NULL, filedata, rel_offset, 1,
944 rel_size, _("64-bit relocation data"));
945 if (!erelas)
946 return FALSE;
947
948 nrelas = rel_size / sizeof (Elf64_External_Rela);
949
950 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
951 sizeof (Elf_Internal_Rela));
952
953 if (relas == NULL)
954 {
955 free (erelas);
956 error (_("out of memory parsing relocs\n"));
957 return FALSE;
958 }
959
960 for (i = 0; i < nrelas; i++)
961 {
962 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
963 relas[i].r_info = BYTE_GET (erelas[i].r_info);
964 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
965
966 /* The #ifdef BFD64 below is to prevent a compile time
967 warning. We know that if we do not have a 64 bit data
968 type that we will never execute this code anyway. */
969 #ifdef BFD64
970 if (filedata->file_header.e_machine == EM_MIPS
971 && filedata->file_header.e_ident[EI_DATA] != ELFDATA2MSB)
972 {
973 /* In little-endian objects, r_info isn't really a
974 64-bit little-endian value: it has a 32-bit
975 little-endian symbol index followed by four
976 individual byte fields. Reorder INFO
977 accordingly. */
978 bfd_vma inf = relas[i].r_info;
979 inf = (((inf & 0xffffffff) << 32)
980 | ((inf >> 56) & 0xff)
981 | ((inf >> 40) & 0xff00)
982 | ((inf >> 24) & 0xff0000)
983 | ((inf >> 8) & 0xff000000));
984 relas[i].r_info = inf;
985 }
986 #endif /* BFD64 */
987 }
988
989 free (erelas);
990 }
991
992 *relasp = relas;
993 *nrelasp = nrelas;
994 return TRUE;
995 }
996
997 /* Load REL type relocations from FILEDATA at REL_OFFSET extending for REL_SIZE bytes.
998 Returns TRUE upon success, FALSE otherwise. If successful then a
999 pointer to a malloc'ed buffer containing the relocs is placed in *RELSP,
1000 and the number of relocs loaded is placed in *NRELSP. It is the caller's
1001 responsibility to free the allocated buffer. */
1002
1003 static bfd_boolean
1004 slurp_rel_relocs (Filedata * filedata,
1005 unsigned long rel_offset,
1006 unsigned long rel_size,
1007 Elf_Internal_Rela ** relsp,
1008 unsigned long * nrelsp)
1009 {
1010 Elf_Internal_Rela * rels;
1011 size_t nrels;
1012 unsigned int i;
1013
1014 if (is_32bit_elf)
1015 {
1016 Elf32_External_Rel * erels;
1017
1018 erels = (Elf32_External_Rel *) get_data (NULL, filedata, rel_offset, 1,
1019 rel_size, _("32-bit relocation data"));
1020 if (!erels)
1021 return FALSE;
1022
1023 nrels = rel_size / sizeof (Elf32_External_Rel);
1024
1025 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
1026
1027 if (rels == NULL)
1028 {
1029 free (erels);
1030 error (_("out of memory parsing relocs\n"));
1031 return FALSE;
1032 }
1033
1034 for (i = 0; i < nrels; i++)
1035 {
1036 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1037 rels[i].r_info = BYTE_GET (erels[i].r_info);
1038 rels[i].r_addend = 0;
1039 }
1040
1041 free (erels);
1042 }
1043 else
1044 {
1045 Elf64_External_Rel * erels;
1046
1047 erels = (Elf64_External_Rel *) get_data (NULL, filedata, rel_offset, 1,
1048 rel_size, _("64-bit relocation data"));
1049 if (!erels)
1050 return FALSE;
1051
1052 nrels = rel_size / sizeof (Elf64_External_Rel);
1053
1054 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
1055
1056 if (rels == NULL)
1057 {
1058 free (erels);
1059 error (_("out of memory parsing relocs\n"));
1060 return FALSE;
1061 }
1062
1063 for (i = 0; i < nrels; i++)
1064 {
1065 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1066 rels[i].r_info = BYTE_GET (erels[i].r_info);
1067 rels[i].r_addend = 0;
1068
1069 /* The #ifdef BFD64 below is to prevent a compile time
1070 warning. We know that if we do not have a 64 bit data
1071 type that we will never execute this code anyway. */
1072 #ifdef BFD64
1073 if (filedata->file_header.e_machine == EM_MIPS
1074 && filedata->file_header.e_ident[EI_DATA] != ELFDATA2MSB)
1075 {
1076 /* In little-endian objects, r_info isn't really a
1077 64-bit little-endian value: it has a 32-bit
1078 little-endian symbol index followed by four
1079 individual byte fields. Reorder INFO
1080 accordingly. */
1081 bfd_vma inf = rels[i].r_info;
1082 inf = (((inf & 0xffffffff) << 32)
1083 | ((inf >> 56) & 0xff)
1084 | ((inf >> 40) & 0xff00)
1085 | ((inf >> 24) & 0xff0000)
1086 | ((inf >> 8) & 0xff000000));
1087 rels[i].r_info = inf;
1088 }
1089 #endif /* BFD64 */
1090 }
1091
1092 free (erels);
1093 }
1094
1095 *relsp = rels;
1096 *nrelsp = nrels;
1097 return TRUE;
1098 }
1099
1100 /* Returns the reloc type extracted from the reloc info field. */
1101
1102 static unsigned int
1103 get_reloc_type (Filedata * filedata, bfd_vma reloc_info)
1104 {
1105 if (is_32bit_elf)
1106 return ELF32_R_TYPE (reloc_info);
1107
1108 switch (filedata->file_header.e_machine)
1109 {
1110 case EM_MIPS:
1111 /* Note: We assume that reloc_info has already been adjusted for us. */
1112 return ELF64_MIPS_R_TYPE (reloc_info);
1113
1114 case EM_SPARCV9:
1115 return ELF64_R_TYPE_ID (reloc_info);
1116
1117 default:
1118 return ELF64_R_TYPE (reloc_info);
1119 }
1120 }
1121
1122 /* Return the symbol index extracted from the reloc info field. */
1123
1124 static bfd_vma
1125 get_reloc_symindex (bfd_vma reloc_info)
1126 {
1127 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1128 }
1129
1130 static inline bfd_boolean
1131 uses_msp430x_relocs (Filedata * filedata)
1132 {
1133 return
1134 filedata->file_header.e_machine == EM_MSP430 /* Paranoia. */
1135 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1136 && (((filedata->file_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1137 /* TI compiler uses ELFOSABI_NONE. */
1138 || (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1139 }
1140
1141 /* Display the contents of the relocation data found at the specified
1142 offset. */
1143
1144 static bfd_boolean
1145 dump_relocations (Filedata * filedata,
1146 unsigned long rel_offset,
1147 unsigned long rel_size,
1148 Elf_Internal_Sym * symtab,
1149 unsigned long nsyms,
1150 char * strtab,
1151 unsigned long strtablen,
1152 int is_rela,
1153 bfd_boolean is_dynsym)
1154 {
1155 unsigned long i;
1156 Elf_Internal_Rela * rels;
1157 bfd_boolean res = TRUE;
1158
1159 if (is_rela == UNKNOWN)
1160 is_rela = guess_is_rela (filedata->file_header.e_machine);
1161
1162 if (is_rela)
1163 {
1164 if (!slurp_rela_relocs (filedata, rel_offset, rel_size, &rels, &rel_size))
1165 return FALSE;
1166 }
1167 else
1168 {
1169 if (!slurp_rel_relocs (filedata, rel_offset, rel_size, &rels, &rel_size))
1170 return FALSE;
1171 }
1172
1173 if (is_32bit_elf)
1174 {
1175 if (is_rela)
1176 {
1177 if (do_wide)
1178 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1179 else
1180 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1181 }
1182 else
1183 {
1184 if (do_wide)
1185 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1186 else
1187 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1188 }
1189 }
1190 else
1191 {
1192 if (is_rela)
1193 {
1194 if (do_wide)
1195 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1196 else
1197 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1198 }
1199 else
1200 {
1201 if (do_wide)
1202 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1203 else
1204 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1205 }
1206 }
1207
1208 for (i = 0; i < rel_size; i++)
1209 {
1210 const char * rtype;
1211 bfd_vma offset;
1212 bfd_vma inf;
1213 bfd_vma symtab_index;
1214 bfd_vma type;
1215
1216 offset = rels[i].r_offset;
1217 inf = rels[i].r_info;
1218
1219 type = get_reloc_type (filedata, inf);
1220 symtab_index = get_reloc_symindex (inf);
1221
1222 if (is_32bit_elf)
1223 {
1224 printf ("%8.8lx %8.8lx ",
1225 (unsigned long) offset & 0xffffffff,
1226 (unsigned long) inf & 0xffffffff);
1227 }
1228 else
1229 {
1230 #if BFD_HOST_64BIT_LONG
1231 printf (do_wide
1232 ? "%16.16lx %16.16lx "
1233 : "%12.12lx %12.12lx ",
1234 offset, inf);
1235 #elif BFD_HOST_64BIT_LONG_LONG
1236 #ifndef __MSVCRT__
1237 printf (do_wide
1238 ? "%16.16llx %16.16llx "
1239 : "%12.12llx %12.12llx ",
1240 offset, inf);
1241 #else
1242 printf (do_wide
1243 ? "%16.16I64x %16.16I64x "
1244 : "%12.12I64x %12.12I64x ",
1245 offset, inf);
1246 #endif
1247 #else
1248 printf (do_wide
1249 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1250 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1251 _bfd_int64_high (offset),
1252 _bfd_int64_low (offset),
1253 _bfd_int64_high (inf),
1254 _bfd_int64_low (inf));
1255 #endif
1256 }
1257
1258 switch (filedata->file_header.e_machine)
1259 {
1260 default:
1261 rtype = NULL;
1262 break;
1263
1264 case EM_AARCH64:
1265 rtype = elf_aarch64_reloc_type (type);
1266 break;
1267
1268 case EM_M32R:
1269 case EM_CYGNUS_M32R:
1270 rtype = elf_m32r_reloc_type (type);
1271 break;
1272
1273 case EM_386:
1274 case EM_IAMCU:
1275 rtype = elf_i386_reloc_type (type);
1276 break;
1277
1278 case EM_68HC11:
1279 case EM_68HC12:
1280 rtype = elf_m68hc11_reloc_type (type);
1281 break;
1282
1283 case EM_S12Z:
1284 rtype = elf_s12z_reloc_type (type);
1285 break;
1286
1287 case EM_68K:
1288 rtype = elf_m68k_reloc_type (type);
1289 break;
1290
1291 case EM_960:
1292 rtype = elf_i960_reloc_type (type);
1293 break;
1294
1295 case EM_AVR:
1296 case EM_AVR_OLD:
1297 rtype = elf_avr_reloc_type (type);
1298 break;
1299
1300 case EM_OLD_SPARCV9:
1301 case EM_SPARC32PLUS:
1302 case EM_SPARCV9:
1303 case EM_SPARC:
1304 rtype = elf_sparc_reloc_type (type);
1305 break;
1306
1307 case EM_SPU:
1308 rtype = elf_spu_reloc_type (type);
1309 break;
1310
1311 case EM_V800:
1312 rtype = v800_reloc_type (type);
1313 break;
1314 case EM_V850:
1315 case EM_CYGNUS_V850:
1316 rtype = v850_reloc_type (type);
1317 break;
1318
1319 case EM_D10V:
1320 case EM_CYGNUS_D10V:
1321 rtype = elf_d10v_reloc_type (type);
1322 break;
1323
1324 case EM_D30V:
1325 case EM_CYGNUS_D30V:
1326 rtype = elf_d30v_reloc_type (type);
1327 break;
1328
1329 case EM_DLX:
1330 rtype = elf_dlx_reloc_type (type);
1331 break;
1332
1333 case EM_SH:
1334 rtype = elf_sh_reloc_type (type);
1335 break;
1336
1337 case EM_MN10300:
1338 case EM_CYGNUS_MN10300:
1339 rtype = elf_mn10300_reloc_type (type);
1340 break;
1341
1342 case EM_MN10200:
1343 case EM_CYGNUS_MN10200:
1344 rtype = elf_mn10200_reloc_type (type);
1345 break;
1346
1347 case EM_FR30:
1348 case EM_CYGNUS_FR30:
1349 rtype = elf_fr30_reloc_type (type);
1350 break;
1351
1352 case EM_CYGNUS_FRV:
1353 rtype = elf_frv_reloc_type (type);
1354 break;
1355
1356 case EM_CSKY:
1357 rtype = elf_csky_reloc_type (type);
1358 break;
1359
1360 case EM_FT32:
1361 rtype = elf_ft32_reloc_type (type);
1362 break;
1363
1364 case EM_MCORE:
1365 rtype = elf_mcore_reloc_type (type);
1366 break;
1367
1368 case EM_MMIX:
1369 rtype = elf_mmix_reloc_type (type);
1370 break;
1371
1372 case EM_MOXIE:
1373 rtype = elf_moxie_reloc_type (type);
1374 break;
1375
1376 case EM_MSP430:
1377 if (uses_msp430x_relocs (filedata))
1378 {
1379 rtype = elf_msp430x_reloc_type (type);
1380 break;
1381 }
1382 /* Fall through. */
1383 case EM_MSP430_OLD:
1384 rtype = elf_msp430_reloc_type (type);
1385 break;
1386
1387 case EM_NDS32:
1388 rtype = elf_nds32_reloc_type (type);
1389 break;
1390
1391 case EM_PPC:
1392 rtype = elf_ppc_reloc_type (type);
1393 break;
1394
1395 case EM_PPC64:
1396 rtype = elf_ppc64_reloc_type (type);
1397 break;
1398
1399 case EM_MIPS:
1400 case EM_MIPS_RS3_LE:
1401 rtype = elf_mips_reloc_type (type);
1402 break;
1403
1404 case EM_RISCV:
1405 rtype = elf_riscv_reloc_type (type);
1406 break;
1407
1408 case EM_ALPHA:
1409 rtype = elf_alpha_reloc_type (type);
1410 break;
1411
1412 case EM_ARM:
1413 rtype = elf_arm_reloc_type (type);
1414 break;
1415
1416 case EM_ARC:
1417 case EM_ARC_COMPACT:
1418 case EM_ARC_COMPACT2:
1419 rtype = elf_arc_reloc_type (type);
1420 break;
1421
1422 case EM_PARISC:
1423 rtype = elf_hppa_reloc_type (type);
1424 break;
1425
1426 case EM_H8_300:
1427 case EM_H8_300H:
1428 case EM_H8S:
1429 rtype = elf_h8_reloc_type (type);
1430 break;
1431
1432 case EM_OR1K:
1433 rtype = elf_or1k_reloc_type (type);
1434 break;
1435
1436 case EM_PJ:
1437 case EM_PJ_OLD:
1438 rtype = elf_pj_reloc_type (type);
1439 break;
1440 case EM_IA_64:
1441 rtype = elf_ia64_reloc_type (type);
1442 break;
1443
1444 case EM_CRIS:
1445 rtype = elf_cris_reloc_type (type);
1446 break;
1447
1448 case EM_860:
1449 rtype = elf_i860_reloc_type (type);
1450 break;
1451
1452 case EM_X86_64:
1453 case EM_L1OM:
1454 case EM_K1OM:
1455 rtype = elf_x86_64_reloc_type (type);
1456 break;
1457
1458 case EM_S370:
1459 rtype = i370_reloc_type (type);
1460 break;
1461
1462 case EM_S390_OLD:
1463 case EM_S390:
1464 rtype = elf_s390_reloc_type (type);
1465 break;
1466
1467 case EM_SCORE:
1468 rtype = elf_score_reloc_type (type);
1469 break;
1470
1471 case EM_XSTORMY16:
1472 rtype = elf_xstormy16_reloc_type (type);
1473 break;
1474
1475 case EM_CRX:
1476 rtype = elf_crx_reloc_type (type);
1477 break;
1478
1479 case EM_VAX:
1480 rtype = elf_vax_reloc_type (type);
1481 break;
1482
1483 case EM_VISIUM:
1484 rtype = elf_visium_reloc_type (type);
1485 break;
1486
1487 case EM_BPF:
1488 rtype = elf_bpf_reloc_type (type);
1489 break;
1490
1491 case EM_ADAPTEVA_EPIPHANY:
1492 rtype = elf_epiphany_reloc_type (type);
1493 break;
1494
1495 case EM_IP2K:
1496 case EM_IP2K_OLD:
1497 rtype = elf_ip2k_reloc_type (type);
1498 break;
1499
1500 case EM_IQ2000:
1501 rtype = elf_iq2000_reloc_type (type);
1502 break;
1503
1504 case EM_XTENSA_OLD:
1505 case EM_XTENSA:
1506 rtype = elf_xtensa_reloc_type (type);
1507 break;
1508
1509 case EM_LATTICEMICO32:
1510 rtype = elf_lm32_reloc_type (type);
1511 break;
1512
1513 case EM_M32C_OLD:
1514 case EM_M32C:
1515 rtype = elf_m32c_reloc_type (type);
1516 break;
1517
1518 case EM_MT:
1519 rtype = elf_mt_reloc_type (type);
1520 break;
1521
1522 case EM_BLACKFIN:
1523 rtype = elf_bfin_reloc_type (type);
1524 break;
1525
1526 case EM_CYGNUS_MEP:
1527 rtype = elf_mep_reloc_type (type);
1528 break;
1529
1530 case EM_CR16:
1531 rtype = elf_cr16_reloc_type (type);
1532 break;
1533
1534 case EM_MICROBLAZE:
1535 case EM_MICROBLAZE_OLD:
1536 rtype = elf_microblaze_reloc_type (type);
1537 break;
1538
1539 case EM_RL78:
1540 rtype = elf_rl78_reloc_type (type);
1541 break;
1542
1543 case EM_RX:
1544 rtype = elf_rx_reloc_type (type);
1545 break;
1546
1547 case EM_METAG:
1548 rtype = elf_metag_reloc_type (type);
1549 break;
1550
1551 case EM_XC16X:
1552 case EM_C166:
1553 rtype = elf_xc16x_reloc_type (type);
1554 break;
1555
1556 case EM_TI_C6000:
1557 rtype = elf_tic6x_reloc_type (type);
1558 break;
1559
1560 case EM_TILEGX:
1561 rtype = elf_tilegx_reloc_type (type);
1562 break;
1563
1564 case EM_TILEPRO:
1565 rtype = elf_tilepro_reloc_type (type);
1566 break;
1567
1568 case EM_WEBASSEMBLY:
1569 rtype = elf_wasm32_reloc_type (type);
1570 break;
1571
1572 case EM_XGATE:
1573 rtype = elf_xgate_reloc_type (type);
1574 break;
1575
1576 case EM_ALTERA_NIOS2:
1577 rtype = elf_nios2_reloc_type (type);
1578 break;
1579
1580 case EM_TI_PRU:
1581 rtype = elf_pru_reloc_type (type);
1582 break;
1583
1584 case EM_NFP:
1585 if (EF_NFP_MACH (filedata->file_header.e_flags) == E_NFP_MACH_3200)
1586 rtype = elf_nfp3200_reloc_type (type);
1587 else
1588 rtype = elf_nfp_reloc_type (type);
1589 break;
1590
1591 case EM_Z80:
1592 rtype = elf_z80_reloc_type (type);
1593 break;
1594 }
1595
1596 if (rtype == NULL)
1597 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1598 else
1599 printf (do_wide ? "%-22s" : "%-17.17s", rtype);
1600
1601 if (filedata->file_header.e_machine == EM_ALPHA
1602 && rtype != NULL
1603 && streq (rtype, "R_ALPHA_LITUSE")
1604 && is_rela)
1605 {
1606 switch (rels[i].r_addend)
1607 {
1608 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1609 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1610 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1611 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1612 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1613 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1614 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1615 default: rtype = NULL;
1616 }
1617
1618 if (rtype)
1619 printf (" (%s)", rtype);
1620 else
1621 {
1622 putchar (' ');
1623 printf (_("<unknown addend: %lx>"),
1624 (unsigned long) rels[i].r_addend);
1625 res = FALSE;
1626 }
1627 }
1628 else if (symtab_index)
1629 {
1630 if (symtab == NULL || symtab_index >= nsyms)
1631 {
1632 error (_(" bad symbol index: %08lx in reloc"), (unsigned long) symtab_index);
1633 res = FALSE;
1634 }
1635 else
1636 {
1637 Elf_Internal_Sym * psym;
1638 const char * version_string;
1639 enum versioned_symbol_info sym_info;
1640 unsigned short vna_other;
1641
1642 psym = symtab + symtab_index;
1643
1644 version_string
1645 = get_symbol_version_string (filedata, is_dynsym,
1646 strtab, strtablen,
1647 symtab_index,
1648 psym,
1649 &sym_info,
1650 &vna_other);
1651
1652 printf (" ");
1653
1654 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1655 {
1656 const char * name;
1657 unsigned int len;
1658 unsigned int width = is_32bit_elf ? 8 : 14;
1659
1660 /* Relocations against GNU_IFUNC symbols do not use the value
1661 of the symbol as the address to relocate against. Instead
1662 they invoke the function named by the symbol and use its
1663 result as the address for relocation.
1664
1665 To indicate this to the user, do not display the value of
1666 the symbol in the "Symbols's Value" field. Instead show
1667 its name followed by () as a hint that the symbol is
1668 invoked. */
1669
1670 if (strtab == NULL
1671 || psym->st_name == 0
1672 || psym->st_name >= strtablen)
1673 name = "??";
1674 else
1675 name = strtab + psym->st_name;
1676
1677 len = print_symbol (width, name);
1678 if (version_string)
1679 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1680 version_string);
1681 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1682 }
1683 else
1684 {
1685 print_vma (psym->st_value, LONG_HEX);
1686
1687 printf (is_32bit_elf ? " " : " ");
1688 }
1689
1690 if (psym->st_name == 0)
1691 {
1692 const char * sec_name = "<null>";
1693 char name_buf[40];
1694
1695 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1696 {
1697 if (psym->st_shndx < filedata->file_header.e_shnum)
1698 sec_name = SECTION_NAME (filedata->section_headers + psym->st_shndx);
1699 else if (psym->st_shndx == SHN_ABS)
1700 sec_name = "ABS";
1701 else if (psym->st_shndx == SHN_COMMON)
1702 sec_name = "COMMON";
1703 else if ((filedata->file_header.e_machine == EM_MIPS
1704 && psym->st_shndx == SHN_MIPS_SCOMMON)
1705 || (filedata->file_header.e_machine == EM_TI_C6000
1706 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1707 sec_name = "SCOMMON";
1708 else if (filedata->file_header.e_machine == EM_MIPS
1709 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1710 sec_name = "SUNDEF";
1711 else if ((filedata->file_header.e_machine == EM_X86_64
1712 || filedata->file_header.e_machine == EM_L1OM
1713 || filedata->file_header.e_machine == EM_K1OM)
1714 && psym->st_shndx == SHN_X86_64_LCOMMON)
1715 sec_name = "LARGE_COMMON";
1716 else if (filedata->file_header.e_machine == EM_IA_64
1717 && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1718 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1719 sec_name = "ANSI_COM";
1720 else if (is_ia64_vms (filedata)
1721 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1722 sec_name = "VMS_SYMVEC";
1723 else
1724 {
1725 sprintf (name_buf, "<section 0x%x>",
1726 (unsigned int) psym->st_shndx);
1727 sec_name = name_buf;
1728 }
1729 }
1730 print_symbol (22, sec_name);
1731 }
1732 else if (strtab == NULL)
1733 printf (_("<string table index: %3ld>"), psym->st_name);
1734 else if (psym->st_name >= strtablen)
1735 {
1736 error (_("<corrupt string table index: %3ld>"), psym->st_name);
1737 res = FALSE;
1738 }
1739 else
1740 {
1741 print_symbol (22, strtab + psym->st_name);
1742 if (version_string)
1743 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1744 version_string);
1745 }
1746
1747 if (is_rela)
1748 {
1749 bfd_vma off = rels[i].r_addend;
1750
1751 if ((bfd_signed_vma) off < 0)
1752 printf (" - %" BFD_VMA_FMT "x", - off);
1753 else
1754 printf (" + %" BFD_VMA_FMT "x", off);
1755 }
1756 }
1757 }
1758 else if (is_rela)
1759 {
1760 bfd_vma off = rels[i].r_addend;
1761
1762 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1763 if ((bfd_signed_vma) off < 0)
1764 printf ("-%" BFD_VMA_FMT "x", - off);
1765 else
1766 printf ("%" BFD_VMA_FMT "x", off);
1767 }
1768
1769 if (filedata->file_header.e_machine == EM_SPARCV9
1770 && rtype != NULL
1771 && streq (rtype, "R_SPARC_OLO10"))
1772 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1773
1774 putchar ('\n');
1775
1776 #ifdef BFD64
1777 if (! is_32bit_elf && filedata->file_header.e_machine == EM_MIPS)
1778 {
1779 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1780 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1781 const char * rtype2 = elf_mips_reloc_type (type2);
1782 const char * rtype3 = elf_mips_reloc_type (type3);
1783
1784 printf (" Type2: ");
1785
1786 if (rtype2 == NULL)
1787 printf (_("unrecognized: %-7lx"),
1788 (unsigned long) type2 & 0xffffffff);
1789 else
1790 printf ("%-17.17s", rtype2);
1791
1792 printf ("\n Type3: ");
1793
1794 if (rtype3 == NULL)
1795 printf (_("unrecognized: %-7lx"),
1796 (unsigned long) type3 & 0xffffffff);
1797 else
1798 printf ("%-17.17s", rtype3);
1799
1800 putchar ('\n');
1801 }
1802 #endif /* BFD64 */
1803 }
1804
1805 free (rels);
1806
1807 return res;
1808 }
1809
1810 static const char *
1811 get_aarch64_dynamic_type (unsigned long type)
1812 {
1813 switch (type)
1814 {
1815 case DT_AARCH64_BTI_PLT: return "AARCH64_BTI_PLT";
1816 case DT_AARCH64_PAC_PLT: return "AARCH64_PAC_PLT";
1817 case DT_AARCH64_VARIANT_PCS: return "AARCH64_VARIANT_PCS";
1818 default:
1819 return NULL;
1820 }
1821 }
1822
1823 static const char *
1824 get_mips_dynamic_type (unsigned long type)
1825 {
1826 switch (type)
1827 {
1828 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1829 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1830 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1831 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1832 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1833 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1834 case DT_MIPS_MSYM: return "MIPS_MSYM";
1835 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1836 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1837 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1838 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1839 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1840 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1841 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1842 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1843 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1844 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1845 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1846 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1847 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1848 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1849 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1850 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1851 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1852 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1853 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1854 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1855 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1856 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1857 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1858 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1859 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1860 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1861 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1862 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1863 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1864 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1865 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1866 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1867 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1868 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1869 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1870 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1871 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1872 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1873 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1874 case DT_MIPS_XHASH: return "MIPS_XHASH";
1875 default:
1876 return NULL;
1877 }
1878 }
1879
1880 static const char *
1881 get_sparc64_dynamic_type (unsigned long type)
1882 {
1883 switch (type)
1884 {
1885 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1886 default:
1887 return NULL;
1888 }
1889 }
1890
1891 static const char *
1892 get_ppc_dynamic_type (unsigned long type)
1893 {
1894 switch (type)
1895 {
1896 case DT_PPC_GOT: return "PPC_GOT";
1897 case DT_PPC_OPT: return "PPC_OPT";
1898 default:
1899 return NULL;
1900 }
1901 }
1902
1903 static const char *
1904 get_ppc64_dynamic_type (unsigned long type)
1905 {
1906 switch (type)
1907 {
1908 case DT_PPC64_GLINK: return "PPC64_GLINK";
1909 case DT_PPC64_OPD: return "PPC64_OPD";
1910 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1911 case DT_PPC64_OPT: return "PPC64_OPT";
1912 default:
1913 return NULL;
1914 }
1915 }
1916
1917 static const char *
1918 get_parisc_dynamic_type (unsigned long type)
1919 {
1920 switch (type)
1921 {
1922 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1923 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1924 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1925 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1926 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1927 case DT_HP_PREINIT: return "HP_PREINIT";
1928 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1929 case DT_HP_NEEDED: return "HP_NEEDED";
1930 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1931 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1932 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1933 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1934 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1935 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1936 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1937 case DT_HP_FILTERED: return "HP_FILTERED";
1938 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1939 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1940 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1941 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1942 case DT_PLT: return "PLT";
1943 case DT_PLT_SIZE: return "PLT_SIZE";
1944 case DT_DLT: return "DLT";
1945 case DT_DLT_SIZE: return "DLT_SIZE";
1946 default:
1947 return NULL;
1948 }
1949 }
1950
1951 static const char *
1952 get_ia64_dynamic_type (unsigned long type)
1953 {
1954 switch (type)
1955 {
1956 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1957 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1958 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1959 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1960 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1961 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1962 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1963 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1964 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1965 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1966 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1967 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1968 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1969 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1970 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1971 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1972 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1973 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1974 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1975 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1976 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1977 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1978 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1979 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1980 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1981 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1982 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1983 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1984 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1985 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1986 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1987 default:
1988 return NULL;
1989 }
1990 }
1991
1992 static const char *
1993 get_solaris_section_type (unsigned long type)
1994 {
1995 switch (type)
1996 {
1997 case 0x6fffffee: return "SUNW_ancillary";
1998 case 0x6fffffef: return "SUNW_capchain";
1999 case 0x6ffffff0: return "SUNW_capinfo";
2000 case 0x6ffffff1: return "SUNW_symsort";
2001 case 0x6ffffff2: return "SUNW_tlssort";
2002 case 0x6ffffff3: return "SUNW_LDYNSYM";
2003 case 0x6ffffff4: return "SUNW_dof";
2004 case 0x6ffffff5: return "SUNW_cap";
2005 case 0x6ffffff6: return "SUNW_SIGNATURE";
2006 case 0x6ffffff7: return "SUNW_ANNOTATE";
2007 case 0x6ffffff8: return "SUNW_DEBUGSTR";
2008 case 0x6ffffff9: return "SUNW_DEBUG";
2009 case 0x6ffffffa: return "SUNW_move";
2010 case 0x6ffffffb: return "SUNW_COMDAT";
2011 case 0x6ffffffc: return "SUNW_syminfo";
2012 case 0x6ffffffd: return "SUNW_verdef";
2013 case 0x6ffffffe: return "SUNW_verneed";
2014 case 0x6fffffff: return "SUNW_versym";
2015 case 0x70000000: return "SPARC_GOTDATA";
2016 default: return NULL;
2017 }
2018 }
2019
2020 static const char *
2021 get_alpha_dynamic_type (unsigned long type)
2022 {
2023 switch (type)
2024 {
2025 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
2026 default: return NULL;
2027 }
2028 }
2029
2030 static const char *
2031 get_score_dynamic_type (unsigned long type)
2032 {
2033 switch (type)
2034 {
2035 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
2036 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
2037 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
2038 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
2039 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
2040 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
2041 default: return NULL;
2042 }
2043 }
2044
2045 static const char *
2046 get_tic6x_dynamic_type (unsigned long type)
2047 {
2048 switch (type)
2049 {
2050 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
2051 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
2052 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
2053 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
2054 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
2055 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
2056 default: return NULL;
2057 }
2058 }
2059
2060 static const char *
2061 get_nios2_dynamic_type (unsigned long type)
2062 {
2063 switch (type)
2064 {
2065 case DT_NIOS2_GP: return "NIOS2_GP";
2066 default: return NULL;
2067 }
2068 }
2069
2070 static const char *
2071 get_solaris_dynamic_type (unsigned long type)
2072 {
2073 switch (type)
2074 {
2075 case 0x6000000d: return "SUNW_AUXILIARY";
2076 case 0x6000000e: return "SUNW_RTLDINF";
2077 case 0x6000000f: return "SUNW_FILTER";
2078 case 0x60000010: return "SUNW_CAP";
2079 case 0x60000011: return "SUNW_SYMTAB";
2080 case 0x60000012: return "SUNW_SYMSZ";
2081 case 0x60000013: return "SUNW_SORTENT";
2082 case 0x60000014: return "SUNW_SYMSORT";
2083 case 0x60000015: return "SUNW_SYMSORTSZ";
2084 case 0x60000016: return "SUNW_TLSSORT";
2085 case 0x60000017: return "SUNW_TLSSORTSZ";
2086 case 0x60000018: return "SUNW_CAPINFO";
2087 case 0x60000019: return "SUNW_STRPAD";
2088 case 0x6000001a: return "SUNW_CAPCHAIN";
2089 case 0x6000001b: return "SUNW_LDMACH";
2090 case 0x6000001d: return "SUNW_CAPCHAINENT";
2091 case 0x6000001f: return "SUNW_CAPCHAINSZ";
2092 case 0x60000021: return "SUNW_PARENT";
2093 case 0x60000023: return "SUNW_ASLR";
2094 case 0x60000025: return "SUNW_RELAX";
2095 case 0x60000029: return "SUNW_NXHEAP";
2096 case 0x6000002b: return "SUNW_NXSTACK";
2097
2098 case 0x70000001: return "SPARC_REGISTER";
2099 case 0x7ffffffd: return "AUXILIARY";
2100 case 0x7ffffffe: return "USED";
2101 case 0x7fffffff: return "FILTER";
2102
2103 default: return NULL;
2104 }
2105 }
2106
2107 static const char *
2108 get_dynamic_type (Filedata * filedata, unsigned long type)
2109 {
2110 static char buff[64];
2111
2112 switch (type)
2113 {
2114 case DT_NULL: return "NULL";
2115 case DT_NEEDED: return "NEEDED";
2116 case DT_PLTRELSZ: return "PLTRELSZ";
2117 case DT_PLTGOT: return "PLTGOT";
2118 case DT_HASH: return "HASH";
2119 case DT_STRTAB: return "STRTAB";
2120 case DT_SYMTAB: return "SYMTAB";
2121 case DT_RELA: return "RELA";
2122 case DT_RELASZ: return "RELASZ";
2123 case DT_RELAENT: return "RELAENT";
2124 case DT_STRSZ: return "STRSZ";
2125 case DT_SYMENT: return "SYMENT";
2126 case DT_INIT: return "INIT";
2127 case DT_FINI: return "FINI";
2128 case DT_SONAME: return "SONAME";
2129 case DT_RPATH: return "RPATH";
2130 case DT_SYMBOLIC: return "SYMBOLIC";
2131 case DT_REL: return "REL";
2132 case DT_RELSZ: return "RELSZ";
2133 case DT_RELENT: return "RELENT";
2134 case DT_PLTREL: return "PLTREL";
2135 case DT_DEBUG: return "DEBUG";
2136 case DT_TEXTREL: return "TEXTREL";
2137 case DT_JMPREL: return "JMPREL";
2138 case DT_BIND_NOW: return "BIND_NOW";
2139 case DT_INIT_ARRAY: return "INIT_ARRAY";
2140 case DT_FINI_ARRAY: return "FINI_ARRAY";
2141 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2142 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2143 case DT_RUNPATH: return "RUNPATH";
2144 case DT_FLAGS: return "FLAGS";
2145
2146 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2147 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2148 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2149
2150 case DT_CHECKSUM: return "CHECKSUM";
2151 case DT_PLTPADSZ: return "PLTPADSZ";
2152 case DT_MOVEENT: return "MOVEENT";
2153 case DT_MOVESZ: return "MOVESZ";
2154 case DT_FEATURE: return "FEATURE";
2155 case DT_POSFLAG_1: return "POSFLAG_1";
2156 case DT_SYMINSZ: return "SYMINSZ";
2157 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2158
2159 case DT_ADDRRNGLO: return "ADDRRNGLO";
2160 case DT_CONFIG: return "CONFIG";
2161 case DT_DEPAUDIT: return "DEPAUDIT";
2162 case DT_AUDIT: return "AUDIT";
2163 case DT_PLTPAD: return "PLTPAD";
2164 case DT_MOVETAB: return "MOVETAB";
2165 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2166
2167 case DT_VERSYM: return "VERSYM";
2168
2169 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2170 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2171 case DT_RELACOUNT: return "RELACOUNT";
2172 case DT_RELCOUNT: return "RELCOUNT";
2173 case DT_FLAGS_1: return "FLAGS_1";
2174 case DT_VERDEF: return "VERDEF";
2175 case DT_VERDEFNUM: return "VERDEFNUM";
2176 case DT_VERNEED: return "VERNEED";
2177 case DT_VERNEEDNUM: return "VERNEEDNUM";
2178
2179 case DT_AUXILIARY: return "AUXILIARY";
2180 case DT_USED: return "USED";
2181 case DT_FILTER: return "FILTER";
2182
2183 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2184 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2185 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2186 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2187 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2188 case DT_GNU_HASH: return "GNU_HASH";
2189
2190 default:
2191 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2192 {
2193 const char * result;
2194
2195 switch (filedata->file_header.e_machine)
2196 {
2197 case EM_AARCH64:
2198 result = get_aarch64_dynamic_type (type);
2199 break;
2200 case EM_MIPS:
2201 case EM_MIPS_RS3_LE:
2202 result = get_mips_dynamic_type (type);
2203 break;
2204 case EM_SPARCV9:
2205 result = get_sparc64_dynamic_type (type);
2206 break;
2207 case EM_PPC:
2208 result = get_ppc_dynamic_type (type);
2209 break;
2210 case EM_PPC64:
2211 result = get_ppc64_dynamic_type (type);
2212 break;
2213 case EM_IA_64:
2214 result = get_ia64_dynamic_type (type);
2215 break;
2216 case EM_ALPHA:
2217 result = get_alpha_dynamic_type (type);
2218 break;
2219 case EM_SCORE:
2220 result = get_score_dynamic_type (type);
2221 break;
2222 case EM_TI_C6000:
2223 result = get_tic6x_dynamic_type (type);
2224 break;
2225 case EM_ALTERA_NIOS2:
2226 result = get_nios2_dynamic_type (type);
2227 break;
2228 default:
2229 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2230 result = get_solaris_dynamic_type (type);
2231 else
2232 result = NULL;
2233 break;
2234 }
2235
2236 if (result != NULL)
2237 return result;
2238
2239 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2240 }
2241 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2242 || (filedata->file_header.e_machine == EM_PARISC
2243 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2244 {
2245 const char * result;
2246
2247 switch (filedata->file_header.e_machine)
2248 {
2249 case EM_PARISC:
2250 result = get_parisc_dynamic_type (type);
2251 break;
2252 case EM_IA_64:
2253 result = get_ia64_dynamic_type (type);
2254 break;
2255 default:
2256 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2257 result = get_solaris_dynamic_type (type);
2258 else
2259 result = NULL;
2260 break;
2261 }
2262
2263 if (result != NULL)
2264 return result;
2265
2266 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2267 type);
2268 }
2269 else
2270 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2271
2272 return buff;
2273 }
2274 }
2275
2276 static char *
2277 get_file_type (unsigned e_type)
2278 {
2279 static char buff[32];
2280
2281 switch (e_type)
2282 {
2283 case ET_NONE: return _("NONE (None)");
2284 case ET_REL: return _("REL (Relocatable file)");
2285 case ET_EXEC: return _("EXEC (Executable file)");
2286 case ET_DYN: return _("DYN (Shared object file)");
2287 case ET_CORE: return _("CORE (Core file)");
2288
2289 default:
2290 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2291 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2292 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2293 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2294 else
2295 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2296 return buff;
2297 }
2298 }
2299
2300 static char *
2301 get_machine_name (unsigned e_machine)
2302 {
2303 static char buff[64]; /* XXX */
2304
2305 switch (e_machine)
2306 {
2307 /* Please keep this switch table sorted by increasing EM_ value. */
2308 /* 0 */
2309 case EM_NONE: return _("None");
2310 case EM_M32: return "WE32100";
2311 case EM_SPARC: return "Sparc";
2312 case EM_386: return "Intel 80386";
2313 case EM_68K: return "MC68000";
2314 case EM_88K: return "MC88000";
2315 case EM_IAMCU: return "Intel MCU";
2316 case EM_860: return "Intel 80860";
2317 case EM_MIPS: return "MIPS R3000";
2318 case EM_S370: return "IBM System/370";
2319 /* 10 */
2320 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2321 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2322 case EM_PARISC: return "HPPA";
2323 case EM_VPP550: return "Fujitsu VPP500";
2324 case EM_SPARC32PLUS: return "Sparc v8+" ;
2325 case EM_960: return "Intel 80960";
2326 case EM_PPC: return "PowerPC";
2327 /* 20 */
2328 case EM_PPC64: return "PowerPC64";
2329 case EM_S390_OLD:
2330 case EM_S390: return "IBM S/390";
2331 case EM_SPU: return "SPU";
2332 /* 30 */
2333 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2334 case EM_FR20: return "Fujitsu FR20";
2335 case EM_RH32: return "TRW RH32";
2336 case EM_MCORE: return "MCORE";
2337 /* 40 */
2338 case EM_ARM: return "ARM";
2339 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2340 case EM_SH: return "Renesas / SuperH SH";
2341 case EM_SPARCV9: return "Sparc v9";
2342 case EM_TRICORE: return "Siemens Tricore";
2343 case EM_ARC: return "ARC";
2344 case EM_H8_300: return "Renesas H8/300";
2345 case EM_H8_300H: return "Renesas H8/300H";
2346 case EM_H8S: return "Renesas H8S";
2347 case EM_H8_500: return "Renesas H8/500";
2348 /* 50 */
2349 case EM_IA_64: return "Intel IA-64";
2350 case EM_MIPS_X: return "Stanford MIPS-X";
2351 case EM_COLDFIRE: return "Motorola Coldfire";
2352 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2353 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2354 case EM_PCP: return "Siemens PCP";
2355 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2356 case EM_NDR1: return "Denso NDR1 microprocesspr";
2357 case EM_STARCORE: return "Motorola Star*Core processor";
2358 case EM_ME16: return "Toyota ME16 processor";
2359 /* 60 */
2360 case EM_ST100: return "STMicroelectronics ST100 processor";
2361 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2362 case EM_X86_64: return "Advanced Micro Devices X86-64";
2363 case EM_PDSP: return "Sony DSP processor";
2364 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2365 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2366 case EM_FX66: return "Siemens FX66 microcontroller";
2367 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2368 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2369 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2370 /* 70 */
2371 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2372 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2373 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2374 case EM_SVX: return "Silicon Graphics SVx";
2375 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2376 case EM_VAX: return "Digital VAX";
2377 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2378 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2379 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2380 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2381 /* 80 */
2382 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2383 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2384 case EM_PRISM: return "Vitesse Prism";
2385 case EM_AVR_OLD:
2386 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2387 case EM_CYGNUS_FR30:
2388 case EM_FR30: return "Fujitsu FR30";
2389 case EM_CYGNUS_D10V:
2390 case EM_D10V: return "d10v";
2391 case EM_CYGNUS_D30V:
2392 case EM_D30V: return "d30v";
2393 case EM_CYGNUS_V850:
2394 case EM_V850: return "Renesas V850";
2395 case EM_CYGNUS_M32R:
2396 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2397 case EM_CYGNUS_MN10300:
2398 case EM_MN10300: return "mn10300";
2399 /* 90 */
2400 case EM_CYGNUS_MN10200:
2401 case EM_MN10200: return "mn10200";
2402 case EM_PJ: return "picoJava";
2403 case EM_OR1K: return "OpenRISC 1000";
2404 case EM_ARC_COMPACT: return "ARCompact";
2405 case EM_XTENSA_OLD:
2406 case EM_XTENSA: return "Tensilica Xtensa Processor";
2407 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2408 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2409 case EM_NS32K: return "National Semiconductor 32000 series";
2410 case EM_TPC: return "Tenor Network TPC processor";
2411 case EM_SNP1K: return "Trebia SNP 1000 processor";
2412 /* 100 */
2413 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2414 case EM_IP2K_OLD:
2415 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2416 case EM_MAX: return "MAX Processor";
2417 case EM_CR: return "National Semiconductor CompactRISC";
2418 case EM_F2MC16: return "Fujitsu F2MC16";
2419 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2420 case EM_BLACKFIN: return "Analog Devices Blackfin";
2421 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2422 case EM_SEP: return "Sharp embedded microprocessor";
2423 case EM_ARCA: return "Arca RISC microprocessor";
2424 /* 110 */
2425 case EM_UNICORE: return "Unicore";
2426 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2427 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2428 case EM_ALTERA_NIOS2: return "Altera Nios II";
2429 case EM_CRX: return "National Semiconductor CRX microprocessor";
2430 case EM_XGATE: return "Motorola XGATE embedded processor";
2431 case EM_C166:
2432 case EM_XC16X: return "Infineon Technologies xc16x";
2433 case EM_M16C: return "Renesas M16C series microprocessors";
2434 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2435 case EM_CE: return "Freescale Communication Engine RISC core";
2436 /* 120 */
2437 case EM_M32C: return "Renesas M32c";
2438 /* 130 */
2439 case EM_TSK3000: return "Altium TSK3000 core";
2440 case EM_RS08: return "Freescale RS08 embedded processor";
2441 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2442 case EM_SCORE: return "SUNPLUS S+Core";
2443 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2444 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2445 case EM_LATTICEMICO32: return "Lattice Mico32";
2446 case EM_SE_C17: return "Seiko Epson C17 family";
2447 /* 140 */
2448 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2449 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2450 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2451 case EM_TI_PRU: return "TI PRU I/O processor";
2452 /* 160 */
2453 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2454 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2455 case EM_R32C: return "Renesas R32C series microprocessors";
2456 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2457 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2458 case EM_8051: return "Intel 8051 and variants";
2459 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2460 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2461 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2462 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2463 /* 170 */
2464 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2465 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2466 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2467 case EM_RX: return "Renesas RX";
2468 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2469 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2470 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2471 case EM_CR16:
2472 case EM_MICROBLAZE:
2473 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2474 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2475 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2476 /* 180 */
2477 case EM_L1OM: return "Intel L1OM";
2478 case EM_K1OM: return "Intel K1OM";
2479 case EM_INTEL182: return "Intel (reserved)";
2480 case EM_AARCH64: return "AArch64";
2481 case EM_ARM184: return "ARM (reserved)";
2482 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor";
2483 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2484 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2485 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2486 /* 190 */
2487 case EM_CUDA: return "NVIDIA CUDA architecture";
2488 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2489 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2490 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2491 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2492 case EM_ARC_COMPACT2: return "ARCv2";
2493 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2494 case EM_RL78: return "Renesas RL78";
2495 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2496 case EM_78K0R: return "Renesas 78K0R";
2497 /* 200 */
2498 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2499 case EM_BA1: return "Beyond BA1 CPU architecture";
2500 case EM_BA2: return "Beyond BA2 CPU architecture";
2501 case EM_XCORE: return "XMOS xCORE processor family";
2502 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2503 /* 210 */
2504 case EM_KM32: return "KM211 KM32 32-bit processor";
2505 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2506 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2507 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2508 case EM_KVARC: return "KM211 KVARC processor";
2509 case EM_CDP: return "Paneve CDP architecture family";
2510 case EM_COGE: return "Cognitive Smart Memory Processor";
2511 case EM_COOL: return "Bluechip Systems CoolEngine";
2512 case EM_NORC: return "Nanoradio Optimized RISC";
2513 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2514 /* 220 */
2515 case EM_Z80: return "Zilog Z80";
2516 case EM_VISIUM: return "CDS VISIUMcore processor";
2517 case EM_FT32: return "FTDI Chip FT32";
2518 case EM_MOXIE: return "Moxie";
2519 case EM_AMDGPU: return "AMD GPU";
2520 case EM_RISCV: return "RISC-V";
2521 case EM_LANAI: return "Lanai 32-bit processor";
2522 case EM_BPF: return "Linux BPF";
2523 case EM_NFP: return "Netronome Flow Processor";
2524
2525 /* Large numbers... */
2526 case EM_MT: return "Morpho Techologies MT processor";
2527 case EM_ALPHA: return "Alpha";
2528 case EM_WEBASSEMBLY: return "Web Assembly";
2529 case EM_DLX: return "OpenDLX";
2530 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2531 case EM_IQ2000: return "Vitesse IQ2000";
2532 case EM_M32C_OLD:
2533 case EM_NIOS32: return "Altera Nios";
2534 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2535 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2536 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2537 case EM_S12Z: return "Freescale S12Z";
2538 case EM_CSKY: return "C-SKY";
2539
2540 default:
2541 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2542 return buff;
2543 }
2544 }
2545
2546 static void
2547 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2548 {
2549 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2550 other compilers don't a specific architecture type in the e_flags, and
2551 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2552 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2553 architectures.
2554
2555 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2556 but also sets a specific architecture type in the e_flags field.
2557
2558 However, when decoding the flags we don't worry if we see an
2559 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2560 ARCEM architecture type. */
2561
2562 switch (e_flags & EF_ARC_MACH_MSK)
2563 {
2564 /* We only expect these to occur for EM_ARC_COMPACT2. */
2565 case EF_ARC_CPU_ARCV2EM:
2566 strcat (buf, ", ARC EM");
2567 break;
2568 case EF_ARC_CPU_ARCV2HS:
2569 strcat (buf, ", ARC HS");
2570 break;
2571
2572 /* We only expect these to occur for EM_ARC_COMPACT. */
2573 case E_ARC_MACH_ARC600:
2574 strcat (buf, ", ARC600");
2575 break;
2576 case E_ARC_MACH_ARC601:
2577 strcat (buf, ", ARC601");
2578 break;
2579 case E_ARC_MACH_ARC700:
2580 strcat (buf, ", ARC700");
2581 break;
2582
2583 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2584 new ELF with new architecture being read by an old version of
2585 readelf, or (c) An ELF built with non-GNU compiler that does not
2586 set the architecture in the e_flags. */
2587 default:
2588 if (e_machine == EM_ARC_COMPACT)
2589 strcat (buf, ", Unknown ARCompact");
2590 else
2591 strcat (buf, ", Unknown ARC");
2592 break;
2593 }
2594
2595 switch (e_flags & EF_ARC_OSABI_MSK)
2596 {
2597 case E_ARC_OSABI_ORIG:
2598 strcat (buf, ", (ABI:legacy)");
2599 break;
2600 case E_ARC_OSABI_V2:
2601 strcat (buf, ", (ABI:v2)");
2602 break;
2603 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2604 case E_ARC_OSABI_V3:
2605 strcat (buf, ", v3 no-legacy-syscalls ABI");
2606 break;
2607 case E_ARC_OSABI_V4:
2608 strcat (buf, ", v4 ABI");
2609 break;
2610 default:
2611 strcat (buf, ", unrecognised ARC OSABI flag");
2612 break;
2613 }
2614 }
2615
2616 static void
2617 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2618 {
2619 unsigned eabi;
2620 bfd_boolean unknown = FALSE;
2621
2622 eabi = EF_ARM_EABI_VERSION (e_flags);
2623 e_flags &= ~ EF_ARM_EABIMASK;
2624
2625 /* Handle "generic" ARM flags. */
2626 if (e_flags & EF_ARM_RELEXEC)
2627 {
2628 strcat (buf, ", relocatable executable");
2629 e_flags &= ~ EF_ARM_RELEXEC;
2630 }
2631
2632 if (e_flags & EF_ARM_PIC)
2633 {
2634 strcat (buf, ", position independent");
2635 e_flags &= ~ EF_ARM_PIC;
2636 }
2637
2638 /* Now handle EABI specific flags. */
2639 switch (eabi)
2640 {
2641 default:
2642 strcat (buf, ", <unrecognized EABI>");
2643 if (e_flags)
2644 unknown = TRUE;
2645 break;
2646
2647 case EF_ARM_EABI_VER1:
2648 strcat (buf, ", Version1 EABI");
2649 while (e_flags)
2650 {
2651 unsigned flag;
2652
2653 /* Process flags one bit at a time. */
2654 flag = e_flags & - e_flags;
2655 e_flags &= ~ flag;
2656
2657 switch (flag)
2658 {
2659 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2660 strcat (buf, ", sorted symbol tables");
2661 break;
2662
2663 default:
2664 unknown = TRUE;
2665 break;
2666 }
2667 }
2668 break;
2669
2670 case EF_ARM_EABI_VER2:
2671 strcat (buf, ", Version2 EABI");
2672 while (e_flags)
2673 {
2674 unsigned flag;
2675
2676 /* Process flags one bit at a time. */
2677 flag = e_flags & - e_flags;
2678 e_flags &= ~ flag;
2679
2680 switch (flag)
2681 {
2682 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2683 strcat (buf, ", sorted symbol tables");
2684 break;
2685
2686 case EF_ARM_DYNSYMSUSESEGIDX:
2687 strcat (buf, ", dynamic symbols use segment index");
2688 break;
2689
2690 case EF_ARM_MAPSYMSFIRST:
2691 strcat (buf, ", mapping symbols precede others");
2692 break;
2693
2694 default:
2695 unknown = TRUE;
2696 break;
2697 }
2698 }
2699 break;
2700
2701 case EF_ARM_EABI_VER3:
2702 strcat (buf, ", Version3 EABI");
2703 break;
2704
2705 case EF_ARM_EABI_VER4:
2706 strcat (buf, ", Version4 EABI");
2707 while (e_flags)
2708 {
2709 unsigned flag;
2710
2711 /* Process flags one bit at a time. */
2712 flag = e_flags & - e_flags;
2713 e_flags &= ~ flag;
2714
2715 switch (flag)
2716 {
2717 case EF_ARM_BE8:
2718 strcat (buf, ", BE8");
2719 break;
2720
2721 case EF_ARM_LE8:
2722 strcat (buf, ", LE8");
2723 break;
2724
2725 default:
2726 unknown = TRUE;
2727 break;
2728 }
2729 }
2730 break;
2731
2732 case EF_ARM_EABI_VER5:
2733 strcat (buf, ", Version5 EABI");
2734 while (e_flags)
2735 {
2736 unsigned flag;
2737
2738 /* Process flags one bit at a time. */
2739 flag = e_flags & - e_flags;
2740 e_flags &= ~ flag;
2741
2742 switch (flag)
2743 {
2744 case EF_ARM_BE8:
2745 strcat (buf, ", BE8");
2746 break;
2747
2748 case EF_ARM_LE8:
2749 strcat (buf, ", LE8");
2750 break;
2751
2752 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2753 strcat (buf, ", soft-float ABI");
2754 break;
2755
2756 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2757 strcat (buf, ", hard-float ABI");
2758 break;
2759
2760 default:
2761 unknown = TRUE;
2762 break;
2763 }
2764 }
2765 break;
2766
2767 case EF_ARM_EABI_UNKNOWN:
2768 strcat (buf, ", GNU EABI");
2769 while (e_flags)
2770 {
2771 unsigned flag;
2772
2773 /* Process flags one bit at a time. */
2774 flag = e_flags & - e_flags;
2775 e_flags &= ~ flag;
2776
2777 switch (flag)
2778 {
2779 case EF_ARM_INTERWORK:
2780 strcat (buf, ", interworking enabled");
2781 break;
2782
2783 case EF_ARM_APCS_26:
2784 strcat (buf, ", uses APCS/26");
2785 break;
2786
2787 case EF_ARM_APCS_FLOAT:
2788 strcat (buf, ", uses APCS/float");
2789 break;
2790
2791 case EF_ARM_PIC:
2792 strcat (buf, ", position independent");
2793 break;
2794
2795 case EF_ARM_ALIGN8:
2796 strcat (buf, ", 8 bit structure alignment");
2797 break;
2798
2799 case EF_ARM_NEW_ABI:
2800 strcat (buf, ", uses new ABI");
2801 break;
2802
2803 case EF_ARM_OLD_ABI:
2804 strcat (buf, ", uses old ABI");
2805 break;
2806
2807 case EF_ARM_SOFT_FLOAT:
2808 strcat (buf, ", software FP");
2809 break;
2810
2811 case EF_ARM_VFP_FLOAT:
2812 strcat (buf, ", VFP");
2813 break;
2814
2815 case EF_ARM_MAVERICK_FLOAT:
2816 strcat (buf, ", Maverick FP");
2817 break;
2818
2819 default:
2820 unknown = TRUE;
2821 break;
2822 }
2823 }
2824 }
2825
2826 if (unknown)
2827 strcat (buf,_(", <unknown>"));
2828 }
2829
2830 static void
2831 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2832 {
2833 --size; /* Leave space for null terminator. */
2834
2835 switch (e_flags & EF_AVR_MACH)
2836 {
2837 case E_AVR_MACH_AVR1:
2838 strncat (buf, ", avr:1", size);
2839 break;
2840 case E_AVR_MACH_AVR2:
2841 strncat (buf, ", avr:2", size);
2842 break;
2843 case E_AVR_MACH_AVR25:
2844 strncat (buf, ", avr:25", size);
2845 break;
2846 case E_AVR_MACH_AVR3:
2847 strncat (buf, ", avr:3", size);
2848 break;
2849 case E_AVR_MACH_AVR31:
2850 strncat (buf, ", avr:31", size);
2851 break;
2852 case E_AVR_MACH_AVR35:
2853 strncat (buf, ", avr:35", size);
2854 break;
2855 case E_AVR_MACH_AVR4:
2856 strncat (buf, ", avr:4", size);
2857 break;
2858 case E_AVR_MACH_AVR5:
2859 strncat (buf, ", avr:5", size);
2860 break;
2861 case E_AVR_MACH_AVR51:
2862 strncat (buf, ", avr:51", size);
2863 break;
2864 case E_AVR_MACH_AVR6:
2865 strncat (buf, ", avr:6", size);
2866 break;
2867 case E_AVR_MACH_AVRTINY:
2868 strncat (buf, ", avr:100", size);
2869 break;
2870 case E_AVR_MACH_XMEGA1:
2871 strncat (buf, ", avr:101", size);
2872 break;
2873 case E_AVR_MACH_XMEGA2:
2874 strncat (buf, ", avr:102", size);
2875 break;
2876 case E_AVR_MACH_XMEGA3:
2877 strncat (buf, ", avr:103", size);
2878 break;
2879 case E_AVR_MACH_XMEGA4:
2880 strncat (buf, ", avr:104", size);
2881 break;
2882 case E_AVR_MACH_XMEGA5:
2883 strncat (buf, ", avr:105", size);
2884 break;
2885 case E_AVR_MACH_XMEGA6:
2886 strncat (buf, ", avr:106", size);
2887 break;
2888 case E_AVR_MACH_XMEGA7:
2889 strncat (buf, ", avr:107", size);
2890 break;
2891 default:
2892 strncat (buf, ", avr:<unknown>", size);
2893 break;
2894 }
2895
2896 size -= strlen (buf);
2897 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2898 strncat (buf, ", link-relax", size);
2899 }
2900
2901 static void
2902 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2903 {
2904 unsigned abi;
2905 unsigned arch;
2906 unsigned config;
2907 unsigned version;
2908 bfd_boolean has_fpu = FALSE;
2909 unsigned int r = 0;
2910
2911 static const char *ABI_STRINGS[] =
2912 {
2913 "ABI v0", /* use r5 as return register; only used in N1213HC */
2914 "ABI v1", /* use r0 as return register */
2915 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2916 "ABI v2fp", /* for FPU */
2917 "AABI",
2918 "ABI2 FP+"
2919 };
2920 static const char *VER_STRINGS[] =
2921 {
2922 "Andes ELF V1.3 or older",
2923 "Andes ELF V1.3.1",
2924 "Andes ELF V1.4"
2925 };
2926 static const char *ARCH_STRINGS[] =
2927 {
2928 "",
2929 "Andes Star v1.0",
2930 "Andes Star v2.0",
2931 "Andes Star v3.0",
2932 "Andes Star v3.0m"
2933 };
2934
2935 abi = EF_NDS_ABI & e_flags;
2936 arch = EF_NDS_ARCH & e_flags;
2937 config = EF_NDS_INST & e_flags;
2938 version = EF_NDS32_ELF_VERSION & e_flags;
2939
2940 memset (buf, 0, size);
2941
2942 switch (abi)
2943 {
2944 case E_NDS_ABI_V0:
2945 case E_NDS_ABI_V1:
2946 case E_NDS_ABI_V2:
2947 case E_NDS_ABI_V2FP:
2948 case E_NDS_ABI_AABI:
2949 case E_NDS_ABI_V2FP_PLUS:
2950 /* In case there are holes in the array. */
2951 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2952 break;
2953
2954 default:
2955 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2956 break;
2957 }
2958
2959 switch (version)
2960 {
2961 case E_NDS32_ELF_VER_1_2:
2962 case E_NDS32_ELF_VER_1_3:
2963 case E_NDS32_ELF_VER_1_4:
2964 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2965 break;
2966
2967 default:
2968 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2969 break;
2970 }
2971
2972 if (E_NDS_ABI_V0 == abi)
2973 {
2974 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2975 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2976 if (arch == E_NDS_ARCH_STAR_V1_0)
2977 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2978 return;
2979 }
2980
2981 switch (arch)
2982 {
2983 case E_NDS_ARCH_STAR_V1_0:
2984 case E_NDS_ARCH_STAR_V2_0:
2985 case E_NDS_ARCH_STAR_V3_0:
2986 case E_NDS_ARCH_STAR_V3_M:
2987 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2988 break;
2989
2990 default:
2991 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2992 /* ARCH version determines how the e_flags are interpreted.
2993 If it is unknown, we cannot proceed. */
2994 return;
2995 }
2996
2997 /* Newer ABI; Now handle architecture specific flags. */
2998 if (arch == E_NDS_ARCH_STAR_V1_0)
2999 {
3000 if (config & E_NDS32_HAS_MFUSR_PC_INST)
3001 r += snprintf (buf + r, size -r, ", MFUSR_PC");
3002
3003 if (!(config & E_NDS32_HAS_NO_MAC_INST))
3004 r += snprintf (buf + r, size -r, ", MAC");
3005
3006 if (config & E_NDS32_HAS_DIV_INST)
3007 r += snprintf (buf + r, size -r, ", DIV");
3008
3009 if (config & E_NDS32_HAS_16BIT_INST)
3010 r += snprintf (buf + r, size -r, ", 16b");
3011 }
3012 else
3013 {
3014 if (config & E_NDS32_HAS_MFUSR_PC_INST)
3015 {
3016 if (version <= E_NDS32_ELF_VER_1_3)
3017 r += snprintf (buf + r, size -r, ", [B8]");
3018 else
3019 r += snprintf (buf + r, size -r, ", EX9");
3020 }
3021
3022 if (config & E_NDS32_HAS_MAC_DX_INST)
3023 r += snprintf (buf + r, size -r, ", MAC_DX");
3024
3025 if (config & E_NDS32_HAS_DIV_DX_INST)
3026 r += snprintf (buf + r, size -r, ", DIV_DX");
3027
3028 if (config & E_NDS32_HAS_16BIT_INST)
3029 {
3030 if (version <= E_NDS32_ELF_VER_1_3)
3031 r += snprintf (buf + r, size -r, ", 16b");
3032 else
3033 r += snprintf (buf + r, size -r, ", IFC");
3034 }
3035 }
3036
3037 if (config & E_NDS32_HAS_EXT_INST)
3038 r += snprintf (buf + r, size -r, ", PERF1");
3039
3040 if (config & E_NDS32_HAS_EXT2_INST)
3041 r += snprintf (buf + r, size -r, ", PERF2");
3042
3043 if (config & E_NDS32_HAS_FPU_INST)
3044 {
3045 has_fpu = TRUE;
3046 r += snprintf (buf + r, size -r, ", FPU_SP");
3047 }
3048
3049 if (config & E_NDS32_HAS_FPU_DP_INST)
3050 {
3051 has_fpu = TRUE;
3052 r += snprintf (buf + r, size -r, ", FPU_DP");
3053 }
3054
3055 if (config & E_NDS32_HAS_FPU_MAC_INST)
3056 {
3057 has_fpu = TRUE;
3058 r += snprintf (buf + r, size -r, ", FPU_MAC");
3059 }
3060
3061 if (has_fpu)
3062 {
3063 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
3064 {
3065 case E_NDS32_FPU_REG_8SP_4DP:
3066 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
3067 break;
3068 case E_NDS32_FPU_REG_16SP_8DP:
3069 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
3070 break;
3071 case E_NDS32_FPU_REG_32SP_16DP:
3072 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
3073 break;
3074 case E_NDS32_FPU_REG_32SP_32DP:
3075 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
3076 break;
3077 }
3078 }
3079
3080 if (config & E_NDS32_HAS_AUDIO_INST)
3081 r += snprintf (buf + r, size -r, ", AUDIO");
3082
3083 if (config & E_NDS32_HAS_STRING_INST)
3084 r += snprintf (buf + r, size -r, ", STR");
3085
3086 if (config & E_NDS32_HAS_REDUCED_REGS)
3087 r += snprintf (buf + r, size -r, ", 16REG");
3088
3089 if (config & E_NDS32_HAS_VIDEO_INST)
3090 {
3091 if (version <= E_NDS32_ELF_VER_1_3)
3092 r += snprintf (buf + r, size -r, ", VIDEO");
3093 else
3094 r += snprintf (buf + r, size -r, ", SATURATION");
3095 }
3096
3097 if (config & E_NDS32_HAS_ENCRIPT_INST)
3098 r += snprintf (buf + r, size -r, ", ENCRP");
3099
3100 if (config & E_NDS32_HAS_L2C_INST)
3101 r += snprintf (buf + r, size -r, ", L2C");
3102 }
3103
3104 static char *
3105 get_machine_flags (Filedata * filedata, unsigned e_flags, unsigned e_machine)
3106 {
3107 static char buf[1024];
3108
3109 buf[0] = '\0';
3110
3111 if (e_flags)
3112 {
3113 switch (e_machine)
3114 {
3115 default:
3116 break;
3117
3118 case EM_ARC_COMPACT2:
3119 case EM_ARC_COMPACT:
3120 decode_ARC_machine_flags (e_flags, e_machine, buf);
3121 break;
3122
3123 case EM_ARM:
3124 decode_ARM_machine_flags (e_flags, buf);
3125 break;
3126
3127 case EM_AVR:
3128 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
3129 break;
3130
3131 case EM_BLACKFIN:
3132 if (e_flags & EF_BFIN_PIC)
3133 strcat (buf, ", PIC");
3134
3135 if (e_flags & EF_BFIN_FDPIC)
3136 strcat (buf, ", FDPIC");
3137
3138 if (e_flags & EF_BFIN_CODE_IN_L1)
3139 strcat (buf, ", code in L1");
3140
3141 if (e_flags & EF_BFIN_DATA_IN_L1)
3142 strcat (buf, ", data in L1");
3143
3144 break;
3145
3146 case EM_CYGNUS_FRV:
3147 switch (e_flags & EF_FRV_CPU_MASK)
3148 {
3149 case EF_FRV_CPU_GENERIC:
3150 break;
3151
3152 default:
3153 strcat (buf, ", fr???");
3154 break;
3155
3156 case EF_FRV_CPU_FR300:
3157 strcat (buf, ", fr300");
3158 break;
3159
3160 case EF_FRV_CPU_FR400:
3161 strcat (buf, ", fr400");
3162 break;
3163 case EF_FRV_CPU_FR405:
3164 strcat (buf, ", fr405");
3165 break;
3166
3167 case EF_FRV_CPU_FR450:
3168 strcat (buf, ", fr450");
3169 break;
3170
3171 case EF_FRV_CPU_FR500:
3172 strcat (buf, ", fr500");
3173 break;
3174 case EF_FRV_CPU_FR550:
3175 strcat (buf, ", fr550");
3176 break;
3177
3178 case EF_FRV_CPU_SIMPLE:
3179 strcat (buf, ", simple");
3180 break;
3181 case EF_FRV_CPU_TOMCAT:
3182 strcat (buf, ", tomcat");
3183 break;
3184 }
3185 break;
3186
3187 case EM_68K:
3188 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3189 strcat (buf, ", m68000");
3190 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3191 strcat (buf, ", cpu32");
3192 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3193 strcat (buf, ", fido_a");
3194 else
3195 {
3196 char const * isa = _("unknown");
3197 char const * mac = _("unknown mac");
3198 char const * additional = NULL;
3199
3200 switch (e_flags & EF_M68K_CF_ISA_MASK)
3201 {
3202 case EF_M68K_CF_ISA_A_NODIV:
3203 isa = "A";
3204 additional = ", nodiv";
3205 break;
3206 case EF_M68K_CF_ISA_A:
3207 isa = "A";
3208 break;
3209 case EF_M68K_CF_ISA_A_PLUS:
3210 isa = "A+";
3211 break;
3212 case EF_M68K_CF_ISA_B_NOUSP:
3213 isa = "B";
3214 additional = ", nousp";
3215 break;
3216 case EF_M68K_CF_ISA_B:
3217 isa = "B";
3218 break;
3219 case EF_M68K_CF_ISA_C:
3220 isa = "C";
3221 break;
3222 case EF_M68K_CF_ISA_C_NODIV:
3223 isa = "C";
3224 additional = ", nodiv";
3225 break;
3226 }
3227 strcat (buf, ", cf, isa ");
3228 strcat (buf, isa);
3229 if (additional)
3230 strcat (buf, additional);
3231 if (e_flags & EF_M68K_CF_FLOAT)
3232 strcat (buf, ", float");
3233 switch (e_flags & EF_M68K_CF_MAC_MASK)
3234 {
3235 case 0:
3236 mac = NULL;
3237 break;
3238 case EF_M68K_CF_MAC:
3239 mac = "mac";
3240 break;
3241 case EF_M68K_CF_EMAC:
3242 mac = "emac";
3243 break;
3244 case EF_M68K_CF_EMAC_B:
3245 mac = "emac_b";
3246 break;
3247 }
3248 if (mac)
3249 {
3250 strcat (buf, ", ");
3251 strcat (buf, mac);
3252 }
3253 }
3254 break;
3255
3256 case EM_CYGNUS_MEP:
3257 switch (e_flags & EF_MEP_CPU_MASK)
3258 {
3259 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3260 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3261 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3262 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3263 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3264 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3265 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3266 }
3267
3268 switch (e_flags & EF_MEP_COP_MASK)
3269 {
3270 case EF_MEP_COP_NONE: break;
3271 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3272 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3273 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3274 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3275 default: strcat (buf, _("<unknown MeP copro type>")); break;
3276 }
3277
3278 if (e_flags & EF_MEP_LIBRARY)
3279 strcat (buf, ", Built for Library");
3280
3281 if (e_flags & EF_MEP_INDEX_MASK)
3282 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3283 e_flags & EF_MEP_INDEX_MASK);
3284
3285 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3286 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3287 e_flags & ~ EF_MEP_ALL_FLAGS);
3288 break;
3289
3290 case EM_PPC:
3291 if (e_flags & EF_PPC_EMB)
3292 strcat (buf, ", emb");
3293
3294 if (e_flags & EF_PPC_RELOCATABLE)
3295 strcat (buf, _(", relocatable"));
3296
3297 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3298 strcat (buf, _(", relocatable-lib"));
3299 break;
3300
3301 case EM_PPC64:
3302 if (e_flags & EF_PPC64_ABI)
3303 {
3304 char abi[] = ", abiv0";
3305
3306 abi[6] += e_flags & EF_PPC64_ABI;
3307 strcat (buf, abi);
3308 }
3309 break;
3310
3311 case EM_V800:
3312 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3313 strcat (buf, ", RH850 ABI");
3314
3315 if (e_flags & EF_V800_850E3)
3316 strcat (buf, ", V3 architecture");
3317
3318 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3319 strcat (buf, ", FPU not used");
3320
3321 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3322 strcat (buf, ", regmode: COMMON");
3323
3324 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3325 strcat (buf, ", r4 not used");
3326
3327 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3328 strcat (buf, ", r30 not used");
3329
3330 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3331 strcat (buf, ", r5 not used");
3332
3333 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3334 strcat (buf, ", r2 not used");
3335
3336 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3337 {
3338 switch (e_flags & - e_flags)
3339 {
3340 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3341 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3342 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3343 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3344 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3345 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3346 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3347 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3348 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3349 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3350 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3351 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3352 default: break;
3353 }
3354 }
3355 break;
3356
3357 case EM_V850:
3358 case EM_CYGNUS_V850:
3359 switch (e_flags & EF_V850_ARCH)
3360 {
3361 case E_V850E3V5_ARCH:
3362 strcat (buf, ", v850e3v5");
3363 break;
3364 case E_V850E2V3_ARCH:
3365 strcat (buf, ", v850e2v3");
3366 break;
3367 case E_V850E2_ARCH:
3368 strcat (buf, ", v850e2");
3369 break;
3370 case E_V850E1_ARCH:
3371 strcat (buf, ", v850e1");
3372 break;
3373 case E_V850E_ARCH:
3374 strcat (buf, ", v850e");
3375 break;
3376 case E_V850_ARCH:
3377 strcat (buf, ", v850");
3378 break;
3379 default:
3380 strcat (buf, _(", unknown v850 architecture variant"));
3381 break;
3382 }
3383 break;
3384
3385 case EM_M32R:
3386 case EM_CYGNUS_M32R:
3387 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3388 strcat (buf, ", m32r");
3389 break;
3390
3391 case EM_MIPS:
3392 case EM_MIPS_RS3_LE:
3393 if (e_flags & EF_MIPS_NOREORDER)
3394 strcat (buf, ", noreorder");
3395
3396 if (e_flags & EF_MIPS_PIC)
3397 strcat (buf, ", pic");
3398
3399 if (e_flags & EF_MIPS_CPIC)
3400 strcat (buf, ", cpic");
3401
3402 if (e_flags & EF_MIPS_UCODE)
3403 strcat (buf, ", ugen_reserved");
3404
3405 if (e_flags & EF_MIPS_ABI2)
3406 strcat (buf, ", abi2");
3407
3408 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3409 strcat (buf, ", odk first");
3410
3411 if (e_flags & EF_MIPS_32BITMODE)
3412 strcat (buf, ", 32bitmode");
3413
3414 if (e_flags & EF_MIPS_NAN2008)
3415 strcat (buf, ", nan2008");
3416
3417 if (e_flags & EF_MIPS_FP64)
3418 strcat (buf, ", fp64");
3419
3420 switch ((e_flags & EF_MIPS_MACH))
3421 {
3422 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3423 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3424 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3425 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3426 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3427 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3428 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3429 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3430 case E_MIPS_MACH_5900: strcat (buf, ", 5900"); break;
3431 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3432 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3433 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3434 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3435 case E_MIPS_MACH_GS464: strcat (buf, ", gs464"); break;
3436 case E_MIPS_MACH_GS464E: strcat (buf, ", gs464e"); break;
3437 case E_MIPS_MACH_GS264E: strcat (buf, ", gs264e"); break;
3438 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3439 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3440 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3441 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3442 case E_MIPS_MACH_IAMR2: strcat (buf, ", interaptiv-mr2"); break;
3443 case 0:
3444 /* We simply ignore the field in this case to avoid confusion:
3445 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3446 extension. */
3447 break;
3448 default: strcat (buf, _(", unknown CPU")); break;
3449 }
3450
3451 switch ((e_flags & EF_MIPS_ABI))
3452 {
3453 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3454 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3455 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3456 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3457 case 0:
3458 /* We simply ignore the field in this case to avoid confusion:
3459 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3460 This means it is likely to be an o32 file, but not for
3461 sure. */
3462 break;
3463 default: strcat (buf, _(", unknown ABI")); break;
3464 }
3465
3466 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3467 strcat (buf, ", mdmx");
3468
3469 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3470 strcat (buf, ", mips16");
3471
3472 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3473 strcat (buf, ", micromips");
3474
3475 switch ((e_flags & EF_MIPS_ARCH))
3476 {
3477 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3478 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3479 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3480 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3481 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3482 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3483 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3484 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3485 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3486 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3487 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3488 default: strcat (buf, _(", unknown ISA")); break;
3489 }
3490 break;
3491
3492 case EM_NDS32:
3493 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3494 break;
3495
3496 case EM_NFP:
3497 switch (EF_NFP_MACH (e_flags))
3498 {
3499 case E_NFP_MACH_3200:
3500 strcat (buf, ", NFP-32xx");
3501 break;
3502 case E_NFP_MACH_6000:
3503 strcat (buf, ", NFP-6xxx");
3504 break;
3505 }
3506 break;
3507
3508 case EM_RISCV:
3509 if (e_flags & EF_RISCV_RVC)
3510 strcat (buf, ", RVC");
3511
3512 if (e_flags & EF_RISCV_RVE)
3513 strcat (buf, ", RVE");
3514
3515 switch (e_flags & EF_RISCV_FLOAT_ABI)
3516 {
3517 case EF_RISCV_FLOAT_ABI_SOFT:
3518 strcat (buf, ", soft-float ABI");
3519 break;
3520
3521 case EF_RISCV_FLOAT_ABI_SINGLE:
3522 strcat (buf, ", single-float ABI");
3523 break;
3524
3525 case EF_RISCV_FLOAT_ABI_DOUBLE:
3526 strcat (buf, ", double-float ABI");
3527 break;
3528
3529 case EF_RISCV_FLOAT_ABI_QUAD:
3530 strcat (buf, ", quad-float ABI");
3531 break;
3532 }
3533 break;
3534
3535 case EM_SH:
3536 switch ((e_flags & EF_SH_MACH_MASK))
3537 {
3538 case EF_SH1: strcat (buf, ", sh1"); break;
3539 case EF_SH2: strcat (buf, ", sh2"); break;
3540 case EF_SH3: strcat (buf, ", sh3"); break;
3541 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3542 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3543 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3544 case EF_SH3E: strcat (buf, ", sh3e"); break;
3545 case EF_SH4: strcat (buf, ", sh4"); break;
3546 case EF_SH5: strcat (buf, ", sh5"); break;
3547 case EF_SH2E: strcat (buf, ", sh2e"); break;
3548 case EF_SH4A: strcat (buf, ", sh4a"); break;
3549 case EF_SH2A: strcat (buf, ", sh2a"); break;
3550 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3551 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3552 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3553 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3554 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3555 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3556 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3557 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3558 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3559 default: strcat (buf, _(", unknown ISA")); break;
3560 }
3561
3562 if (e_flags & EF_SH_PIC)
3563 strcat (buf, ", pic");
3564
3565 if (e_flags & EF_SH_FDPIC)
3566 strcat (buf, ", fdpic");
3567 break;
3568
3569 case EM_OR1K:
3570 if (e_flags & EF_OR1K_NODELAY)
3571 strcat (buf, ", no delay");
3572 break;
3573
3574 case EM_SPARCV9:
3575 if (e_flags & EF_SPARC_32PLUS)
3576 strcat (buf, ", v8+");
3577
3578 if (e_flags & EF_SPARC_SUN_US1)
3579 strcat (buf, ", ultrasparcI");
3580
3581 if (e_flags & EF_SPARC_SUN_US3)
3582 strcat (buf, ", ultrasparcIII");
3583
3584 if (e_flags & EF_SPARC_HAL_R1)
3585 strcat (buf, ", halr1");
3586
3587 if (e_flags & EF_SPARC_LEDATA)
3588 strcat (buf, ", ledata");
3589
3590 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3591 strcat (buf, ", tso");
3592
3593 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3594 strcat (buf, ", pso");
3595
3596 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3597 strcat (buf, ", rmo");
3598 break;
3599
3600 case EM_PARISC:
3601 switch (e_flags & EF_PARISC_ARCH)
3602 {
3603 case EFA_PARISC_1_0:
3604 strcpy (buf, ", PA-RISC 1.0");
3605 break;
3606 case EFA_PARISC_1_1:
3607 strcpy (buf, ", PA-RISC 1.1");
3608 break;
3609 case EFA_PARISC_2_0:
3610 strcpy (buf, ", PA-RISC 2.0");
3611 break;
3612 default:
3613 break;
3614 }
3615 if (e_flags & EF_PARISC_TRAPNIL)
3616 strcat (buf, ", trapnil");
3617 if (e_flags & EF_PARISC_EXT)
3618 strcat (buf, ", ext");
3619 if (e_flags & EF_PARISC_LSB)
3620 strcat (buf, ", lsb");
3621 if (e_flags & EF_PARISC_WIDE)
3622 strcat (buf, ", wide");
3623 if (e_flags & EF_PARISC_NO_KABP)
3624 strcat (buf, ", no kabp");
3625 if (e_flags & EF_PARISC_LAZYSWAP)
3626 strcat (buf, ", lazyswap");
3627 break;
3628
3629 case EM_PJ:
3630 case EM_PJ_OLD:
3631 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3632 strcat (buf, ", new calling convention");
3633
3634 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3635 strcat (buf, ", gnu calling convention");
3636 break;
3637
3638 case EM_IA_64:
3639 if ((e_flags & EF_IA_64_ABI64))
3640 strcat (buf, ", 64-bit");
3641 else
3642 strcat (buf, ", 32-bit");
3643 if ((e_flags & EF_IA_64_REDUCEDFP))
3644 strcat (buf, ", reduced fp model");
3645 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3646 strcat (buf, ", no function descriptors, constant gp");
3647 else if ((e_flags & EF_IA_64_CONS_GP))
3648 strcat (buf, ", constant gp");
3649 if ((e_flags & EF_IA_64_ABSOLUTE))
3650 strcat (buf, ", absolute");
3651 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3652 {
3653 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3654 strcat (buf, ", vms_linkages");
3655 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3656 {
3657 case EF_IA_64_VMS_COMCOD_SUCCESS:
3658 break;
3659 case EF_IA_64_VMS_COMCOD_WARNING:
3660 strcat (buf, ", warning");
3661 break;
3662 case EF_IA_64_VMS_COMCOD_ERROR:
3663 strcat (buf, ", error");
3664 break;
3665 case EF_IA_64_VMS_COMCOD_ABORT:
3666 strcat (buf, ", abort");
3667 break;
3668 default:
3669 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3670 e_flags & EF_IA_64_VMS_COMCOD);
3671 strcat (buf, ", <unknown>");
3672 }
3673 }
3674 break;
3675
3676 case EM_VAX:
3677 if ((e_flags & EF_VAX_NONPIC))
3678 strcat (buf, ", non-PIC");
3679 if ((e_flags & EF_VAX_DFLOAT))
3680 strcat (buf, ", D-Float");
3681 if ((e_flags & EF_VAX_GFLOAT))
3682 strcat (buf, ", G-Float");
3683 break;
3684
3685 case EM_VISIUM:
3686 if (e_flags & EF_VISIUM_ARCH_MCM)
3687 strcat (buf, ", mcm");
3688 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3689 strcat (buf, ", mcm24");
3690 if (e_flags & EF_VISIUM_ARCH_GR6)
3691 strcat (buf, ", gr6");
3692 break;
3693
3694 case EM_RL78:
3695 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3696 {
3697 case E_FLAG_RL78_ANY_CPU: break;
3698 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3699 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3700 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3701 }
3702 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3703 strcat (buf, ", 64-bit doubles");
3704 break;
3705
3706 case EM_RX:
3707 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3708 strcat (buf, ", 64-bit doubles");
3709 if (e_flags & E_FLAG_RX_DSP)
3710 strcat (buf, ", dsp");
3711 if (e_flags & E_FLAG_RX_PID)
3712 strcat (buf, ", pid");
3713 if (e_flags & E_FLAG_RX_ABI)
3714 strcat (buf, ", RX ABI");
3715 if (e_flags & E_FLAG_RX_SINSNS_SET)
3716 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3717 ? ", uses String instructions" : ", bans String instructions");
3718 if (e_flags & E_FLAG_RX_V2)
3719 strcat (buf, ", V2");
3720 if (e_flags & E_FLAG_RX_V3)
3721 strcat (buf, ", V3");
3722 break;
3723
3724 case EM_S390:
3725 if (e_flags & EF_S390_HIGH_GPRS)
3726 strcat (buf, ", highgprs");
3727 break;
3728
3729 case EM_TI_C6000:
3730 if ((e_flags & EF_C6000_REL))
3731 strcat (buf, ", relocatable module");
3732 break;
3733
3734 case EM_MSP430:
3735 strcat (buf, _(": architecture variant: "));
3736 switch (e_flags & EF_MSP430_MACH)
3737 {
3738 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3739 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3740 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3741 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3742 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3743 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3744 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3745 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3746 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3747 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3748 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3749 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3750 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3751 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3752 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3753 default:
3754 strcat (buf, _(": unknown")); break;
3755 }
3756
3757 if (e_flags & ~ EF_MSP430_MACH)
3758 strcat (buf, _(": unknown extra flag bits also present"));
3759 break;
3760
3761 case EM_Z80:
3762 switch (e_flags & EF_Z80_MACH_MSK)
3763 {
3764 case EF_Z80_MACH_Z80: strcat (buf, ", Z80"); break;
3765 case EF_Z80_MACH_Z180: strcat (buf, ", Z180"); break;
3766 case EF_Z80_MACH_R800: strcat (buf, ", R800"); break;
3767 case EF_Z80_MACH_EZ80_Z80: strcat (buf, ", EZ80"); break;
3768 case EF_Z80_MACH_EZ80_ADL: strcat (buf, ", EZ80, ADL"); break;
3769 case EF_Z80_MACH_GBZ80: strcat (buf, ", GBZ80"); break;
3770 default:
3771 strcat (buf, _(", unknown")); break;
3772 }
3773 break;
3774 }
3775 }
3776
3777 return buf;
3778 }
3779
3780 static const char *
3781 get_osabi_name (Filedata * filedata, unsigned int osabi)
3782 {
3783 static char buff[32];
3784
3785 switch (osabi)
3786 {
3787 case ELFOSABI_NONE: return "UNIX - System V";
3788 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3789 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3790 case ELFOSABI_GNU: return "UNIX - GNU";
3791 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3792 case ELFOSABI_AIX: return "UNIX - AIX";
3793 case ELFOSABI_IRIX: return "UNIX - IRIX";
3794 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3795 case ELFOSABI_TRU64: return "UNIX - TRU64";
3796 case ELFOSABI_MODESTO: return "Novell - Modesto";
3797 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3798 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3799 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3800 case ELFOSABI_AROS: return "AROS";
3801 case ELFOSABI_FENIXOS: return "FenixOS";
3802 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3803 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3804 default:
3805 if (osabi >= 64)
3806 switch (filedata->file_header.e_machine)
3807 {
3808 case EM_ARM:
3809 switch (osabi)
3810 {
3811 case ELFOSABI_ARM: return "ARM";
3812 case ELFOSABI_ARM_FDPIC: return "ARM FDPIC";
3813 default:
3814 break;
3815 }
3816 break;
3817
3818 case EM_MSP430:
3819 case EM_MSP430_OLD:
3820 case EM_VISIUM:
3821 switch (osabi)
3822 {
3823 case ELFOSABI_STANDALONE: return _("Standalone App");
3824 default:
3825 break;
3826 }
3827 break;
3828
3829 case EM_TI_C6000:
3830 switch (osabi)
3831 {
3832 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3833 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3834 default:
3835 break;
3836 }
3837 break;
3838
3839 default:
3840 break;
3841 }
3842 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3843 return buff;
3844 }
3845 }
3846
3847 static const char *
3848 get_aarch64_segment_type (unsigned long type)
3849 {
3850 switch (type)
3851 {
3852 case PT_AARCH64_ARCHEXT: return "AARCH64_ARCHEXT";
3853 default: return NULL;
3854 }
3855 }
3856
3857 static const char *
3858 get_arm_segment_type (unsigned long type)
3859 {
3860 switch (type)
3861 {
3862 case PT_ARM_EXIDX: return "EXIDX";
3863 default: return NULL;
3864 }
3865 }
3866
3867 static const char *
3868 get_s390_segment_type (unsigned long type)
3869 {
3870 switch (type)
3871 {
3872 case PT_S390_PGSTE: return "S390_PGSTE";
3873 default: return NULL;
3874 }
3875 }
3876
3877 static const char *
3878 get_mips_segment_type (unsigned long type)
3879 {
3880 switch (type)
3881 {
3882 case PT_MIPS_REGINFO: return "REGINFO";
3883 case PT_MIPS_RTPROC: return "RTPROC";
3884 case PT_MIPS_OPTIONS: return "OPTIONS";
3885 case PT_MIPS_ABIFLAGS: return "ABIFLAGS";
3886 default: return NULL;
3887 }
3888 }
3889
3890 static const char *
3891 get_parisc_segment_type (unsigned long type)
3892 {
3893 switch (type)
3894 {
3895 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3896 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3897 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3898 default: return NULL;
3899 }
3900 }
3901
3902 static const char *
3903 get_ia64_segment_type (unsigned long type)
3904 {
3905 switch (type)
3906 {
3907 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3908 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3909 default: return NULL;
3910 }
3911 }
3912
3913 static const char *
3914 get_tic6x_segment_type (unsigned long type)
3915 {
3916 switch (type)
3917 {
3918 case PT_C6000_PHATTR: return "C6000_PHATTR";
3919 default: return NULL;
3920 }
3921 }
3922
3923 static const char *
3924 get_hpux_segment_type (unsigned long type, unsigned e_machine)
3925 {
3926 if (e_machine == EM_PARISC)
3927 switch (type)
3928 {
3929 case PT_HP_TLS: return "HP_TLS";
3930 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3931 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3932 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3933 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3934 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3935 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3936 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3937 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3938 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3939 case PT_HP_PARALLEL: return "HP_PARALLEL";
3940 case PT_HP_FASTBIND: return "HP_FASTBIND";
3941 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3942 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3943 case PT_HP_STACK: return "HP_STACK";
3944 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3945 default: return NULL;
3946 }
3947
3948 if (e_machine == EM_IA_64)
3949 switch (type)
3950 {
3951 case PT_HP_TLS: return "HP_TLS";
3952 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3953 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3954 case PT_IA_64_HP_STACK: return "HP_STACK";
3955 default: return NULL;
3956 }
3957
3958 return NULL;
3959 }
3960
3961 static const char *
3962 get_solaris_segment_type (unsigned long type)
3963 {
3964 switch (type)
3965 {
3966 case 0x6464e550: return "PT_SUNW_UNWIND";
3967 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3968 case 0x6ffffff7: return "PT_LOSUNW";
3969 case 0x6ffffffa: return "PT_SUNWBSS";
3970 case 0x6ffffffb: return "PT_SUNWSTACK";
3971 case 0x6ffffffc: return "PT_SUNWDTRACE";
3972 case 0x6ffffffd: return "PT_SUNWCAP";
3973 case 0x6fffffff: return "PT_HISUNW";
3974 default: return NULL;
3975 }
3976 }
3977
3978 static const char *
3979 get_segment_type (Filedata * filedata, unsigned long p_type)
3980 {
3981 static char buff[32];
3982
3983 switch (p_type)
3984 {
3985 case PT_NULL: return "NULL";
3986 case PT_LOAD: return "LOAD";
3987 case PT_DYNAMIC: return "DYNAMIC";
3988 case PT_INTERP: return "INTERP";
3989 case PT_NOTE: return "NOTE";
3990 case PT_SHLIB: return "SHLIB";
3991 case PT_PHDR: return "PHDR";
3992 case PT_TLS: return "TLS";
3993 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
3994 case PT_GNU_STACK: return "GNU_STACK";
3995 case PT_GNU_RELRO: return "GNU_RELRO";
3996 case PT_GNU_PROPERTY: return "GNU_PROPERTY";
3997
3998 default:
3999 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
4000 {
4001 const char * result;
4002
4003 switch (filedata->file_header.e_machine)
4004 {
4005 case EM_AARCH64:
4006 result = get_aarch64_segment_type (p_type);
4007 break;
4008 case EM_ARM:
4009 result = get_arm_segment_type (p_type);
4010 break;
4011 case EM_MIPS:
4012 case EM_MIPS_RS3_LE:
4013 result = get_mips_segment_type (p_type);
4014 break;
4015 case EM_PARISC:
4016 result = get_parisc_segment_type (p_type);
4017 break;
4018 case EM_IA_64:
4019 result = get_ia64_segment_type (p_type);
4020 break;
4021 case EM_TI_C6000:
4022 result = get_tic6x_segment_type (p_type);
4023 break;
4024 case EM_S390:
4025 case EM_S390_OLD:
4026 result = get_s390_segment_type (p_type);
4027 break;
4028 default:
4029 result = NULL;
4030 break;
4031 }
4032
4033 if (result != NULL)
4034 return result;
4035
4036 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
4037 }
4038 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
4039 {
4040 const char * result = NULL;
4041
4042 switch (filedata->file_header.e_ident[EI_OSABI])
4043 {
4044 case ELFOSABI_GNU:
4045 case ELFOSABI_FREEBSD:
4046 if (p_type >= PT_GNU_MBIND_LO && p_type <= PT_GNU_MBIND_HI)
4047 {
4048 sprintf (buff, "GNU_MBIND+%#lx", p_type - PT_GNU_MBIND_LO);
4049 result = buff;
4050 }
4051 break;
4052 case ELFOSABI_HPUX:
4053 result = get_hpux_segment_type (p_type,
4054 filedata->file_header.e_machine);
4055 break;
4056 case ELFOSABI_SOLARIS:
4057 result = get_solaris_segment_type (p_type);
4058 break;
4059 default:
4060 break;
4061 }
4062 if (result != NULL)
4063 return result;
4064
4065 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
4066 }
4067 else
4068 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
4069
4070 return buff;
4071 }
4072 }
4073
4074 static const char *
4075 get_arc_section_type_name (unsigned int sh_type)
4076 {
4077 switch (sh_type)
4078 {
4079 case SHT_ARC_ATTRIBUTES: return "ARC_ATTRIBUTES";
4080 default:
4081 break;
4082 }
4083 return NULL;
4084 }
4085
4086 static const char *
4087 get_mips_section_type_name (unsigned int sh_type)
4088 {
4089 switch (sh_type)
4090 {
4091 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
4092 case SHT_MIPS_MSYM: return "MIPS_MSYM";
4093 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
4094 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
4095 case SHT_MIPS_UCODE: return "MIPS_UCODE";
4096 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
4097 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
4098 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
4099 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
4100 case SHT_MIPS_RELD: return "MIPS_RELD";
4101 case SHT_MIPS_IFACE: return "MIPS_IFACE";
4102 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
4103 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
4104 case SHT_MIPS_SHDR: return "MIPS_SHDR";
4105 case SHT_MIPS_FDESC: return "MIPS_FDESC";
4106 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
4107 case SHT_MIPS_DENSE: return "MIPS_DENSE";
4108 case SHT_MIPS_PDESC: return "MIPS_PDESC";
4109 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
4110 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
4111 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
4112 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
4113 case SHT_MIPS_LINE: return "MIPS_LINE";
4114 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
4115 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
4116 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
4117 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
4118 case SHT_MIPS_DWARF: return "MIPS_DWARF";
4119 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
4120 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
4121 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
4122 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
4123 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
4124 case SHT_MIPS_XLATE: return "MIPS_XLATE";
4125 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
4126 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
4127 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
4128 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
4129 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
4130 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
4131 case SHT_MIPS_XHASH: return "MIPS_XHASH";
4132 default:
4133 break;
4134 }
4135 return NULL;
4136 }
4137
4138 static const char *
4139 get_parisc_section_type_name (unsigned int sh_type)
4140 {
4141 switch (sh_type)
4142 {
4143 case SHT_PARISC_EXT: return "PARISC_EXT";
4144 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
4145 case SHT_PARISC_DOC: return "PARISC_DOC";
4146 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
4147 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
4148 case SHT_PARISC_STUBS: return "PARISC_STUBS";
4149 case SHT_PARISC_DLKM: return "PARISC_DLKM";
4150 default: return NULL;
4151 }
4152 }
4153
4154 static const char *
4155 get_ia64_section_type_name (Filedata * filedata, unsigned int sh_type)
4156 {
4157 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
4158 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
4159 return get_osabi_name (filedata, (sh_type & 0x00FF0000) >> 16);
4160
4161 switch (sh_type)
4162 {
4163 case SHT_IA_64_EXT: return "IA_64_EXT";
4164 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
4165 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
4166 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
4167 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
4168 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
4169 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
4170 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
4171 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
4172 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
4173 default:
4174 break;
4175 }
4176 return NULL;
4177 }
4178
4179 static const char *
4180 get_x86_64_section_type_name (unsigned int sh_type)
4181 {
4182 switch (sh_type)
4183 {
4184 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
4185 default: return NULL;
4186 }
4187 }
4188
4189 static const char *
4190 get_aarch64_section_type_name (unsigned int sh_type)
4191 {
4192 switch (sh_type)
4193 {
4194 case SHT_AARCH64_ATTRIBUTES: return "AARCH64_ATTRIBUTES";
4195 default: return NULL;
4196 }
4197 }
4198
4199 static const char *
4200 get_arm_section_type_name (unsigned int sh_type)
4201 {
4202 switch (sh_type)
4203 {
4204 case SHT_ARM_EXIDX: return "ARM_EXIDX";
4205 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
4206 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
4207 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
4208 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
4209 default: return NULL;
4210 }
4211 }
4212
4213 static const char *
4214 get_tic6x_section_type_name (unsigned int sh_type)
4215 {
4216 switch (sh_type)
4217 {
4218 case SHT_C6000_UNWIND: return "C6000_UNWIND";
4219 case SHT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
4220 case SHT_C6000_ATTRIBUTES: return "C6000_ATTRIBUTES";
4221 case SHT_TI_ICODE: return "TI_ICODE";
4222 case SHT_TI_XREF: return "TI_XREF";
4223 case SHT_TI_HANDLER: return "TI_HANDLER";
4224 case SHT_TI_INITINFO: return "TI_INITINFO";
4225 case SHT_TI_PHATTRS: return "TI_PHATTRS";
4226 default: return NULL;
4227 }
4228 }
4229
4230 static const char *
4231 get_msp430x_section_type_name (unsigned int sh_type)
4232 {
4233 switch (sh_type)
4234 {
4235 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4236 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4237 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4238 default: return NULL;
4239 }
4240 }
4241
4242 static const char *
4243 get_nfp_section_type_name (unsigned int sh_type)
4244 {
4245 switch (sh_type)
4246 {
4247 case SHT_NFP_MECONFIG: return "NFP_MECONFIG";
4248 case SHT_NFP_INITREG: return "NFP_INITREG";
4249 case SHT_NFP_UDEBUG: return "NFP_UDEBUG";
4250 default: return NULL;
4251 }
4252 }
4253
4254 static const char *
4255 get_v850_section_type_name (unsigned int sh_type)
4256 {
4257 switch (sh_type)
4258 {
4259 case SHT_V850_SCOMMON: return "V850 Small Common";
4260 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4261 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4262 case SHT_RENESAS_IOP: return "RENESAS IOP";
4263 case SHT_RENESAS_INFO: return "RENESAS INFO";
4264 default: return NULL;
4265 }
4266 }
4267
4268 static const char *
4269 get_riscv_section_type_name (unsigned int sh_type)
4270 {
4271 switch (sh_type)
4272 {
4273 case SHT_RISCV_ATTRIBUTES: return "RISCV_ATTRIBUTES";
4274 default: return NULL;
4275 }
4276 }
4277
4278 static const char *
4279 get_section_type_name (Filedata * filedata, unsigned int sh_type)
4280 {
4281 static char buff[32];
4282 const char * result;
4283
4284 switch (sh_type)
4285 {
4286 case SHT_NULL: return "NULL";
4287 case SHT_PROGBITS: return "PROGBITS";
4288 case SHT_SYMTAB: return "SYMTAB";
4289 case SHT_STRTAB: return "STRTAB";
4290 case SHT_RELA: return "RELA";
4291 case SHT_HASH: return "HASH";
4292 case SHT_DYNAMIC: return "DYNAMIC";
4293 case SHT_NOTE: return "NOTE";
4294 case SHT_NOBITS: return "NOBITS";
4295 case SHT_REL: return "REL";
4296 case SHT_SHLIB: return "SHLIB";
4297 case SHT_DYNSYM: return "DYNSYM";
4298 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4299 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4300 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4301 case SHT_GNU_HASH: return "GNU_HASH";
4302 case SHT_GROUP: return "GROUP";
4303 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICES";
4304 case SHT_GNU_verdef: return "VERDEF";
4305 case SHT_GNU_verneed: return "VERNEED";
4306 case SHT_GNU_versym: return "VERSYM";
4307 case 0x6ffffff0: return "VERSYM";
4308 case 0x6ffffffc: return "VERDEF";
4309 case 0x7ffffffd: return "AUXILIARY";
4310 case 0x7fffffff: return "FILTER";
4311 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4312
4313 default:
4314 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4315 {
4316 switch (filedata->file_header.e_machine)
4317 {
4318 case EM_ARC:
4319 case EM_ARC_COMPACT:
4320 case EM_ARC_COMPACT2:
4321 result = get_arc_section_type_name (sh_type);
4322 break;
4323 case EM_MIPS:
4324 case EM_MIPS_RS3_LE:
4325 result = get_mips_section_type_name (sh_type);
4326 break;
4327 case EM_PARISC:
4328 result = get_parisc_section_type_name (sh_type);
4329 break;
4330 case EM_IA_64:
4331 result = get_ia64_section_type_name (filedata, sh_type);
4332 break;
4333 case EM_X86_64:
4334 case EM_L1OM:
4335 case EM_K1OM:
4336 result = get_x86_64_section_type_name (sh_type);
4337 break;
4338 case EM_AARCH64:
4339 result = get_aarch64_section_type_name (sh_type);
4340 break;
4341 case EM_ARM:
4342 result = get_arm_section_type_name (sh_type);
4343 break;
4344 case EM_TI_C6000:
4345 result = get_tic6x_section_type_name (sh_type);
4346 break;
4347 case EM_MSP430:
4348 result = get_msp430x_section_type_name (sh_type);
4349 break;
4350 case EM_NFP:
4351 result = get_nfp_section_type_name (sh_type);
4352 break;
4353 case EM_V800:
4354 case EM_V850:
4355 case EM_CYGNUS_V850:
4356 result = get_v850_section_type_name (sh_type);
4357 break;
4358 case EM_RISCV:
4359 result = get_riscv_section_type_name (sh_type);
4360 break;
4361 default:
4362 result = NULL;
4363 break;
4364 }
4365
4366 if (result != NULL)
4367 return result;
4368
4369 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4370 }
4371 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4372 {
4373 switch (filedata->file_header.e_machine)
4374 {
4375 case EM_IA_64:
4376 result = get_ia64_section_type_name (filedata, sh_type);
4377 break;
4378 default:
4379 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4380 result = get_solaris_section_type (sh_type);
4381 else
4382 {
4383 switch (sh_type)
4384 {
4385 case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
4386 case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
4387 case SHT_GNU_HASH: result = "GNU_HASH"; break;
4388 case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
4389 default:
4390 result = NULL;
4391 break;
4392 }
4393 }
4394 break;
4395 }
4396
4397 if (result != NULL)
4398 return result;
4399
4400 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4401 }
4402 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4403 {
4404 switch (filedata->file_header.e_machine)
4405 {
4406 case EM_V800:
4407 case EM_V850:
4408 case EM_CYGNUS_V850:
4409 result = get_v850_section_type_name (sh_type);
4410 break;
4411 default:
4412 result = NULL;
4413 break;
4414 }
4415
4416 if (result != NULL)
4417 return result;
4418
4419 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4420 }
4421 else
4422 /* This message is probably going to be displayed in a 15
4423 character wide field, so put the hex value first. */
4424 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4425
4426 return buff;
4427 }
4428 }
4429
4430 #define OPTION_DEBUG_DUMP 512
4431 #define OPTION_DYN_SYMS 513
4432 #define OPTION_DWARF_DEPTH 514
4433 #define OPTION_DWARF_START 515
4434 #define OPTION_DWARF_CHECK 516
4435 #define OPTION_CTF_DUMP 517
4436 #define OPTION_CTF_PARENT 518
4437 #define OPTION_CTF_SYMBOLS 519
4438 #define OPTION_CTF_STRINGS 520
4439
4440 static struct option options[] =
4441 {
4442 {"all", no_argument, 0, 'a'},
4443 {"file-header", no_argument, 0, 'h'},
4444 {"program-headers", no_argument, 0, 'l'},
4445 {"headers", no_argument, 0, 'e'},
4446 {"histogram", no_argument, 0, 'I'},
4447 {"segments", no_argument, 0, 'l'},
4448 {"sections", no_argument, 0, 'S'},
4449 {"section-headers", no_argument, 0, 'S'},
4450 {"section-groups", no_argument, 0, 'g'},
4451 {"section-details", no_argument, 0, 't'},
4452 {"full-section-name",no_argument, 0, 'N'},
4453 {"symbols", no_argument, 0, 's'},
4454 {"syms", no_argument, 0, 's'},
4455 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4456 {"relocs", no_argument, 0, 'r'},
4457 {"notes", no_argument, 0, 'n'},
4458 {"dynamic", no_argument, 0, 'd'},
4459 {"arch-specific", no_argument, 0, 'A'},
4460 {"version-info", no_argument, 0, 'V'},
4461 {"use-dynamic", no_argument, 0, 'D'},
4462 {"unwind", no_argument, 0, 'u'},
4463 {"archive-index", no_argument, 0, 'c'},
4464 {"hex-dump", required_argument, 0, 'x'},
4465 {"relocated-dump", required_argument, 0, 'R'},
4466 {"string-dump", required_argument, 0, 'p'},
4467 {"decompress", no_argument, 0, 'z'},
4468 #ifdef SUPPORT_DISASSEMBLY
4469 {"instruction-dump", required_argument, 0, 'i'},
4470 #endif
4471 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4472
4473 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4474 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4475 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4476
4477 {"ctf", required_argument, 0, OPTION_CTF_DUMP},
4478
4479 {"ctf-symbols", required_argument, 0, OPTION_CTF_SYMBOLS},
4480 {"ctf-strings", required_argument, 0, OPTION_CTF_STRINGS},
4481 {"ctf-parent", required_argument, 0, OPTION_CTF_PARENT},
4482
4483 {"version", no_argument, 0, 'v'},
4484 {"wide", no_argument, 0, 'W'},
4485 {"help", no_argument, 0, 'H'},
4486 {0, no_argument, 0, 0}
4487 };
4488
4489 static void
4490 usage (FILE * stream)
4491 {
4492 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4493 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4494 fprintf (stream, _(" Options are:\n\
4495 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4496 -h --file-header Display the ELF file header\n\
4497 -l --program-headers Display the program headers\n\
4498 --segments An alias for --program-headers\n\
4499 -S --section-headers Display the sections' header\n\
4500 --sections An alias for --section-headers\n\
4501 -g --section-groups Display the section groups\n\
4502 -t --section-details Display the section details\n\
4503 -e --headers Equivalent to: -h -l -S\n\
4504 -s --syms Display the symbol table\n\
4505 --symbols An alias for --syms\n\
4506 --dyn-syms Display the dynamic symbol table\n\
4507 -n --notes Display the core notes (if present)\n\
4508 -r --relocs Display the relocations (if present)\n\
4509 -u --unwind Display the unwind info (if present)\n\
4510 -d --dynamic Display the dynamic section (if present)\n\
4511 -V --version-info Display the version sections (if present)\n\
4512 -A --arch-specific Display architecture specific information (if any)\n\
4513 -c --archive-index Display the symbol/file index in an archive\n\
4514 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4515 -x --hex-dump=<number|name>\n\
4516 Dump the contents of section <number|name> as bytes\n\
4517 -p --string-dump=<number|name>\n\
4518 Dump the contents of section <number|name> as strings\n\
4519 -R --relocated-dump=<number|name>\n\
4520 Dump the contents of section <number|name> as relocated bytes\n\
4521 -z --decompress Decompress section before dumping it\n\
4522 -w[lLiaprmfFsoRtUuTgAckK] or\n\
4523 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4524 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4525 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4526 =addr,=cu_index,=links,=follow-links]\n\
4527 Display the contents of DWARF debug sections\n"));
4528 fprintf (stream, _("\
4529 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4530 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4531 or deeper\n"));
4532 fprintf (stream, _("\
4533 --ctf=<number|name> Display CTF info from section <number|name>\n\
4534 --ctf-parent=<number|name>\n\
4535 Use section <number|name> as the CTF parent\n\n\
4536 --ctf-symbols=<number|name>\n\
4537 Use section <number|name> as the CTF external symtab\n\n\
4538 --ctf-strings=<number|name>\n\
4539 Use section <number|name> as the CTF external strtab\n\n"));
4540
4541 #ifdef SUPPORT_DISASSEMBLY
4542 fprintf (stream, _("\
4543 -i --instruction-dump=<number|name>\n\
4544 Disassemble the contents of section <number|name>\n"));
4545 #endif
4546 fprintf (stream, _("\
4547 -I --histogram Display histogram of bucket list lengths\n\
4548 -W --wide Allow output width to exceed 80 characters\n\
4549 @<file> Read options from <file>\n\
4550 -H --help Display this information\n\
4551 -v --version Display the version number of readelf\n"));
4552
4553 if (REPORT_BUGS_TO[0] && stream == stdout)
4554 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4555
4556 exit (stream == stdout ? 0 : 1);
4557 }
4558
4559 /* Record the fact that the user wants the contents of section number
4560 SECTION to be displayed using the method(s) encoded as flags bits
4561 in TYPE. Note, TYPE can be zero if we are creating the array for
4562 the first time. */
4563
4564 static void
4565 request_dump_bynumber (Filedata * filedata, unsigned int section, dump_type type)
4566 {
4567 if (section >= filedata->num_dump_sects)
4568 {
4569 dump_type * new_dump_sects;
4570
4571 new_dump_sects = (dump_type *) calloc (section + 1,
4572 sizeof (* new_dump_sects));
4573
4574 if (new_dump_sects == NULL)
4575 error (_("Out of memory allocating dump request table.\n"));
4576 else
4577 {
4578 if (filedata->dump_sects)
4579 {
4580 /* Copy current flag settings. */
4581 memcpy (new_dump_sects, filedata->dump_sects,
4582 filedata->num_dump_sects * sizeof (* new_dump_sects));
4583
4584 free (filedata->dump_sects);
4585 }
4586
4587 filedata->dump_sects = new_dump_sects;
4588 filedata->num_dump_sects = section + 1;
4589 }
4590 }
4591
4592 if (filedata->dump_sects)
4593 filedata->dump_sects[section] |= type;
4594 }
4595
4596 /* Request a dump by section name. */
4597
4598 static void
4599 request_dump_byname (const char * section, dump_type type)
4600 {
4601 struct dump_list_entry * new_request;
4602
4603 new_request = (struct dump_list_entry *)
4604 malloc (sizeof (struct dump_list_entry));
4605 if (!new_request)
4606 error (_("Out of memory allocating dump request table.\n"));
4607
4608 new_request->name = strdup (section);
4609 if (!new_request->name)
4610 error (_("Out of memory allocating dump request table.\n"));
4611
4612 new_request->type = type;
4613
4614 new_request->next = dump_sects_byname;
4615 dump_sects_byname = new_request;
4616 }
4617
4618 static inline void
4619 request_dump (Filedata * filedata, dump_type type)
4620 {
4621 int section;
4622 char * cp;
4623
4624 do_dump++;
4625 section = strtoul (optarg, & cp, 0);
4626
4627 if (! *cp && section >= 0)
4628 request_dump_bynumber (filedata, section, type);
4629 else
4630 request_dump_byname (optarg, type);
4631 }
4632
4633 static void
4634 parse_args (Filedata * filedata, int argc, char ** argv)
4635 {
4636 int c;
4637
4638 if (argc < 2)
4639 usage (stderr);
4640
4641 while ((c = getopt_long
4642 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4643 {
4644 switch (c)
4645 {
4646 case 0:
4647 /* Long options. */
4648 break;
4649 case 'H':
4650 usage (stdout);
4651 break;
4652
4653 case 'a':
4654 do_syms = TRUE;
4655 do_reloc = TRUE;
4656 do_unwind = TRUE;
4657 do_dynamic = TRUE;
4658 do_header = TRUE;
4659 do_sections = TRUE;
4660 do_section_groups = TRUE;
4661 do_segments = TRUE;
4662 do_version = TRUE;
4663 do_histogram = TRUE;
4664 do_arch = TRUE;
4665 do_notes = TRUE;
4666 break;
4667 case 'g':
4668 do_section_groups = TRUE;
4669 break;
4670 case 't':
4671 case 'N':
4672 do_sections = TRUE;
4673 do_section_details = TRUE;
4674 break;
4675 case 'e':
4676 do_header = TRUE;
4677 do_sections = TRUE;
4678 do_segments = TRUE;
4679 break;
4680 case 'A':
4681 do_arch = TRUE;
4682 break;
4683 case 'D':
4684 do_using_dynamic = TRUE;
4685 break;
4686 case 'r':
4687 do_reloc = TRUE;
4688 break;
4689 case 'u':
4690 do_unwind = TRUE;
4691 break;
4692 case 'h':
4693 do_header = TRUE;
4694 break;
4695 case 'l':
4696 do_segments = TRUE;
4697 break;
4698 case 's':
4699 do_syms = TRUE;
4700 break;
4701 case 'S':
4702 do_sections = TRUE;
4703 break;
4704 case 'd':
4705 do_dynamic = TRUE;
4706 break;
4707 case 'I':
4708 do_histogram = TRUE;
4709 break;
4710 case 'n':
4711 do_notes = TRUE;
4712 break;
4713 case 'c':
4714 do_archive_index = TRUE;
4715 break;
4716 case 'x':
4717 request_dump (filedata, HEX_DUMP);
4718 break;
4719 case 'p':
4720 request_dump (filedata, STRING_DUMP);
4721 break;
4722 case 'R':
4723 request_dump (filedata, RELOC_DUMP);
4724 break;
4725 case 'z':
4726 decompress_dumps = TRUE;
4727 break;
4728 case 'w':
4729 do_dump = TRUE;
4730 if (optarg == 0)
4731 {
4732 do_debugging = TRUE;
4733 dwarf_select_sections_all ();
4734 }
4735 else
4736 {
4737 do_debugging = FALSE;
4738 dwarf_select_sections_by_letters (optarg);
4739 }
4740 break;
4741 case OPTION_DEBUG_DUMP:
4742 do_dump = TRUE;
4743 if (optarg == 0)
4744 do_debugging = TRUE;
4745 else
4746 {
4747 do_debugging = FALSE;
4748 dwarf_select_sections_by_names (optarg);
4749 }
4750 break;
4751 case OPTION_DWARF_DEPTH:
4752 {
4753 char *cp;
4754
4755 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4756 }
4757 break;
4758 case OPTION_DWARF_START:
4759 {
4760 char *cp;
4761
4762 dwarf_start_die = strtoul (optarg, & cp, 0);
4763 }
4764 break;
4765 case OPTION_DWARF_CHECK:
4766 dwarf_check = TRUE;
4767 break;
4768 case OPTION_CTF_DUMP:
4769 do_ctf = TRUE;
4770 request_dump (filedata, CTF_DUMP);
4771 break;
4772 case OPTION_CTF_SYMBOLS:
4773 dump_ctf_symtab_name = strdup (optarg);
4774 break;
4775 case OPTION_CTF_STRINGS:
4776 dump_ctf_strtab_name = strdup (optarg);
4777 break;
4778 case OPTION_CTF_PARENT:
4779 dump_ctf_parent_name = strdup (optarg);
4780 break;
4781 case OPTION_DYN_SYMS:
4782 do_dyn_syms = TRUE;
4783 break;
4784 #ifdef SUPPORT_DISASSEMBLY
4785 case 'i':
4786 request_dump (filedata, DISASS_DUMP);
4787 break;
4788 #endif
4789 case 'v':
4790 print_version (program_name);
4791 break;
4792 case 'V':
4793 do_version = TRUE;
4794 break;
4795 case 'W':
4796 do_wide = TRUE;
4797 break;
4798 default:
4799 /* xgettext:c-format */
4800 error (_("Invalid option '-%c'\n"), c);
4801 /* Fall through. */
4802 case '?':
4803 usage (stderr);
4804 }
4805 }
4806
4807 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4808 && !do_segments && !do_header && !do_dump && !do_version
4809 && !do_histogram && !do_debugging && !do_arch && !do_notes
4810 && !do_section_groups && !do_archive_index
4811 && !do_dyn_syms)
4812 usage (stderr);
4813 }
4814
4815 static const char *
4816 get_elf_class (unsigned int elf_class)
4817 {
4818 static char buff[32];
4819
4820 switch (elf_class)
4821 {
4822 case ELFCLASSNONE: return _("none");
4823 case ELFCLASS32: return "ELF32";
4824 case ELFCLASS64: return "ELF64";
4825 default:
4826 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4827 return buff;
4828 }
4829 }
4830
4831 static const char *
4832 get_data_encoding (unsigned int encoding)
4833 {
4834 static char buff[32];
4835
4836 switch (encoding)
4837 {
4838 case ELFDATANONE: return _("none");
4839 case ELFDATA2LSB: return _("2's complement, little endian");
4840 case ELFDATA2MSB: return _("2's complement, big endian");
4841 default:
4842 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4843 return buff;
4844 }
4845 }
4846
4847 /* Decode the data held in 'filedata->file_header'. */
4848
4849 static bfd_boolean
4850 process_file_header (Filedata * filedata)
4851 {
4852 Elf_Internal_Ehdr * header = & filedata->file_header;
4853
4854 if ( header->e_ident[EI_MAG0] != ELFMAG0
4855 || header->e_ident[EI_MAG1] != ELFMAG1
4856 || header->e_ident[EI_MAG2] != ELFMAG2
4857 || header->e_ident[EI_MAG3] != ELFMAG3)
4858 {
4859 error
4860 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4861 return FALSE;
4862 }
4863
4864 init_dwarf_regnames_by_elf_machine_code (header->e_machine);
4865
4866 if (do_header)
4867 {
4868 unsigned i;
4869
4870 printf (_("ELF Header:\n"));
4871 printf (_(" Magic: "));
4872 for (i = 0; i < EI_NIDENT; i++)
4873 printf ("%2.2x ", header->e_ident[i]);
4874 printf ("\n");
4875 printf (_(" Class: %s\n"),
4876 get_elf_class (header->e_ident[EI_CLASS]));
4877 printf (_(" Data: %s\n"),
4878 get_data_encoding (header->e_ident[EI_DATA]));
4879 printf (_(" Version: %d%s\n"),
4880 header->e_ident[EI_VERSION],
4881 (header->e_ident[EI_VERSION] == EV_CURRENT
4882 ? _(" (current)")
4883 : (header->e_ident[EI_VERSION] != EV_NONE
4884 ? _(" <unknown>")
4885 : "")));
4886 printf (_(" OS/ABI: %s\n"),
4887 get_osabi_name (filedata, header->e_ident[EI_OSABI]));
4888 printf (_(" ABI Version: %d\n"),
4889 header->e_ident[EI_ABIVERSION]);
4890 printf (_(" Type: %s\n"),
4891 get_file_type (header->e_type));
4892 printf (_(" Machine: %s\n"),
4893 get_machine_name (header->e_machine));
4894 printf (_(" Version: 0x%lx\n"),
4895 header->e_version);
4896
4897 printf (_(" Entry point address: "));
4898 print_vma (header->e_entry, PREFIX_HEX);
4899 printf (_("\n Start of program headers: "));
4900 print_vma (header->e_phoff, DEC);
4901 printf (_(" (bytes into file)\n Start of section headers: "));
4902 print_vma (header->e_shoff, DEC);
4903 printf (_(" (bytes into file)\n"));
4904
4905 printf (_(" Flags: 0x%lx%s\n"),
4906 header->e_flags,
4907 get_machine_flags (filedata, header->e_flags, header->e_machine));
4908 printf (_(" Size of this header: %u (bytes)\n"),
4909 header->e_ehsize);
4910 printf (_(" Size of program headers: %u (bytes)\n"),
4911 header->e_phentsize);
4912 printf (_(" Number of program headers: %u"),
4913 header->e_phnum);
4914 if (filedata->section_headers != NULL
4915 && header->e_phnum == PN_XNUM
4916 && filedata->section_headers[0].sh_info != 0)
4917 {
4918 header->e_phnum = filedata->section_headers[0].sh_info;
4919 printf (" (%u)", header->e_phnum);
4920 }
4921 putc ('\n', stdout);
4922 printf (_(" Size of section headers: %u (bytes)\n"),
4923 header->e_shentsize);
4924 printf (_(" Number of section headers: %u"),
4925 header->e_shnum);
4926 if (filedata->section_headers != NULL && header->e_shnum == SHN_UNDEF)
4927 {
4928 header->e_shnum = filedata->section_headers[0].sh_size;
4929 printf (" (%u)", header->e_shnum);
4930 }
4931 putc ('\n', stdout);
4932 printf (_(" Section header string table index: %u"),
4933 header->e_shstrndx);
4934 if (filedata->section_headers != NULL
4935 && header->e_shstrndx == (SHN_XINDEX & 0xffff))
4936 {
4937 header->e_shstrndx = filedata->section_headers[0].sh_link;
4938 printf (" (%u)", header->e_shstrndx);
4939 }
4940 if (header->e_shstrndx != SHN_UNDEF
4941 && header->e_shstrndx >= header->e_shnum)
4942 {
4943 header->e_shstrndx = SHN_UNDEF;
4944 printf (_(" <corrupt: out of range>"));
4945 }
4946 putc ('\n', stdout);
4947 }
4948
4949 if (filedata->section_headers != NULL)
4950 {
4951 if (header->e_phnum == PN_XNUM
4952 && filedata->section_headers[0].sh_info != 0)
4953 header->e_phnum = filedata->section_headers[0].sh_info;
4954 if (header->e_shnum == SHN_UNDEF)
4955 header->e_shnum = filedata->section_headers[0].sh_size;
4956 if (header->e_shstrndx == (SHN_XINDEX & 0xffff))
4957 header->e_shstrndx = filedata->section_headers[0].sh_link;
4958 if (header->e_shstrndx >= header->e_shnum)
4959 header->e_shstrndx = SHN_UNDEF;
4960 free (filedata->section_headers);
4961 filedata->section_headers = NULL;
4962 }
4963
4964 return TRUE;
4965 }
4966
4967 /* Read in the program headers from FILEDATA and store them in PHEADERS.
4968 Returns TRUE upon success, FALSE otherwise. Loads 32-bit headers. */
4969
4970 static bfd_boolean
4971 get_32bit_program_headers (Filedata * filedata, Elf_Internal_Phdr * pheaders)
4972 {
4973 Elf32_External_Phdr * phdrs;
4974 Elf32_External_Phdr * external;
4975 Elf_Internal_Phdr * internal;
4976 unsigned int i;
4977 unsigned int size = filedata->file_header.e_phentsize;
4978 unsigned int num = filedata->file_header.e_phnum;
4979
4980 /* PR binutils/17531: Cope with unexpected section header sizes. */
4981 if (size == 0 || num == 0)
4982 return FALSE;
4983 if (size < sizeof * phdrs)
4984 {
4985 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4986 return FALSE;
4987 }
4988 if (size > sizeof * phdrs)
4989 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4990
4991 phdrs = (Elf32_External_Phdr *) get_data (NULL, filedata, filedata->file_header.e_phoff,
4992 size, num, _("program headers"));
4993 if (phdrs == NULL)
4994 return FALSE;
4995
4996 for (i = 0, internal = pheaders, external = phdrs;
4997 i < filedata->file_header.e_phnum;
4998 i++, internal++, external++)
4999 {
5000 internal->p_type = BYTE_GET (external->p_type);
5001 internal->p_offset = BYTE_GET (external->p_offset);
5002 internal->p_vaddr = BYTE_GET (external->p_vaddr);
5003 internal->p_paddr = BYTE_GET (external->p_paddr);
5004 internal->p_filesz = BYTE_GET (external->p_filesz);
5005 internal->p_memsz = BYTE_GET (external->p_memsz);
5006 internal->p_flags = BYTE_GET (external->p_flags);
5007 internal->p_align = BYTE_GET (external->p_align);
5008 }
5009
5010 free (phdrs);
5011 return TRUE;
5012 }
5013
5014 /* Read in the program headers from FILEDATA and store them in PHEADERS.
5015 Returns TRUE upon success, FALSE otherwise. Loads 64-bit headers. */
5016
5017 static bfd_boolean
5018 get_64bit_program_headers (Filedata * filedata, Elf_Internal_Phdr * pheaders)
5019 {
5020 Elf64_External_Phdr * phdrs;
5021 Elf64_External_Phdr * external;
5022 Elf_Internal_Phdr * internal;
5023 unsigned int i;
5024 unsigned int size = filedata->file_header.e_phentsize;
5025 unsigned int num = filedata->file_header.e_phnum;
5026
5027 /* PR binutils/17531: Cope with unexpected section header sizes. */
5028 if (size == 0 || num == 0)
5029 return FALSE;
5030 if (size < sizeof * phdrs)
5031 {
5032 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
5033 return FALSE;
5034 }
5035 if (size > sizeof * phdrs)
5036 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
5037
5038 phdrs = (Elf64_External_Phdr *) get_data (NULL, filedata, filedata->file_header.e_phoff,
5039 size, num, _("program headers"));
5040 if (!phdrs)
5041 return FALSE;
5042
5043 for (i = 0, internal = pheaders, external = phdrs;
5044 i < filedata->file_header.e_phnum;
5045 i++, internal++, external++)
5046 {
5047 internal->p_type = BYTE_GET (external->p_type);
5048 internal->p_flags = BYTE_GET (external->p_flags);
5049 internal->p_offset = BYTE_GET (external->p_offset);
5050 internal->p_vaddr = BYTE_GET (external->p_vaddr);
5051 internal->p_paddr = BYTE_GET (external->p_paddr);
5052 internal->p_filesz = BYTE_GET (external->p_filesz);
5053 internal->p_memsz = BYTE_GET (external->p_memsz);
5054 internal->p_align = BYTE_GET (external->p_align);
5055 }
5056
5057 free (phdrs);
5058 return TRUE;
5059 }
5060
5061 /* Returns TRUE if the program headers were read into `program_headers'. */
5062
5063 static bfd_boolean
5064 get_program_headers (Filedata * filedata)
5065 {
5066 Elf_Internal_Phdr * phdrs;
5067
5068 /* Check cache of prior read. */
5069 if (filedata->program_headers != NULL)
5070 return TRUE;
5071
5072 /* Be kind to memory checkers by looking for
5073 e_phnum values which we know must be invalid. */
5074 if (filedata->file_header.e_phnum
5075 * (is_32bit_elf ? sizeof (Elf32_External_Phdr) : sizeof (Elf64_External_Phdr))
5076 >= filedata->file_size)
5077 {
5078 error (_("Too many program headers - %#x - the file is not that big\n"),
5079 filedata->file_header.e_phnum);
5080 return FALSE;
5081 }
5082
5083 phdrs = (Elf_Internal_Phdr *) cmalloc (filedata->file_header.e_phnum,
5084 sizeof (Elf_Internal_Phdr));
5085 if (phdrs == NULL)
5086 {
5087 error (_("Out of memory reading %u program headers\n"),
5088 filedata->file_header.e_phnum);
5089 return FALSE;
5090 }
5091
5092 if (is_32bit_elf
5093 ? get_32bit_program_headers (filedata, phdrs)
5094 : get_64bit_program_headers (filedata, phdrs))
5095 {
5096 filedata->program_headers = phdrs;
5097 return TRUE;
5098 }
5099
5100 free (phdrs);
5101 return FALSE;
5102 }
5103
5104 /* Returns TRUE if the program headers were loaded. */
5105
5106 static bfd_boolean
5107 process_program_headers (Filedata * filedata)
5108 {
5109 Elf_Internal_Phdr * segment;
5110 unsigned int i;
5111 Elf_Internal_Phdr * previous_load = NULL;
5112
5113 dynamic_addr = 0;
5114 dynamic_size = 0;
5115
5116 if (filedata->file_header.e_phnum == 0)
5117 {
5118 /* PR binutils/12467. */
5119 if (filedata->file_header.e_phoff != 0)
5120 {
5121 warn (_("possibly corrupt ELF header - it has a non-zero program"
5122 " header offset, but no program headers\n"));
5123 return FALSE;
5124 }
5125 else if (do_segments)
5126 printf (_("\nThere are no program headers in this file.\n"));
5127 return TRUE;
5128 }
5129
5130 if (do_segments && !do_header)
5131 {
5132 printf (_("\nElf file type is %s\n"), get_file_type (filedata->file_header.e_type));
5133 printf (_("Entry point 0x%s\n"), bfd_vmatoa ("x", filedata->file_header.e_entry));
5134 printf (ngettext ("There is %d program header, starting at offset %s\n",
5135 "There are %d program headers, starting at offset %s\n",
5136 filedata->file_header.e_phnum),
5137 filedata->file_header.e_phnum,
5138 bfd_vmatoa ("u", filedata->file_header.e_phoff));
5139 }
5140
5141 if (! get_program_headers (filedata))
5142 return TRUE;
5143
5144 if (do_segments)
5145 {
5146 if (filedata->file_header.e_phnum > 1)
5147 printf (_("\nProgram Headers:\n"));
5148 else
5149 printf (_("\nProgram Headers:\n"));
5150
5151 if (is_32bit_elf)
5152 printf
5153 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
5154 else if (do_wide)
5155 printf
5156 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
5157 else
5158 {
5159 printf
5160 (_(" Type Offset VirtAddr PhysAddr\n"));
5161 printf
5162 (_(" FileSiz MemSiz Flags Align\n"));
5163 }
5164 }
5165
5166 for (i = 0, segment = filedata->program_headers;
5167 i < filedata->file_header.e_phnum;
5168 i++, segment++)
5169 {
5170 if (do_segments)
5171 {
5172 printf (" %-14.14s ", get_segment_type (filedata, segment->p_type));
5173
5174 if (is_32bit_elf)
5175 {
5176 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
5177 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
5178 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
5179 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
5180 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
5181 printf ("%c%c%c ",
5182 (segment->p_flags & PF_R ? 'R' : ' '),
5183 (segment->p_flags & PF_W ? 'W' : ' '),
5184 (segment->p_flags & PF_X ? 'E' : ' '));
5185 printf ("%#lx", (unsigned long) segment->p_align);
5186 }
5187 else if (do_wide)
5188 {
5189 if ((unsigned long) segment->p_offset == segment->p_offset)
5190 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
5191 else
5192 {
5193 print_vma (segment->p_offset, FULL_HEX);
5194 putchar (' ');
5195 }
5196
5197 print_vma (segment->p_vaddr, FULL_HEX);
5198 putchar (' ');
5199 print_vma (segment->p_paddr, FULL_HEX);
5200 putchar (' ');
5201
5202 if ((unsigned long) segment->p_filesz == segment->p_filesz)
5203 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
5204 else
5205 {
5206 print_vma (segment->p_filesz, FULL_HEX);
5207 putchar (' ');
5208 }
5209
5210 if ((unsigned long) segment->p_memsz == segment->p_memsz)
5211 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
5212 else
5213 {
5214 print_vma (segment->p_memsz, FULL_HEX);
5215 }
5216
5217 printf (" %c%c%c ",
5218 (segment->p_flags & PF_R ? 'R' : ' '),
5219 (segment->p_flags & PF_W ? 'W' : ' '),
5220 (segment->p_flags & PF_X ? 'E' : ' '));
5221
5222 if ((unsigned long) segment->p_align == segment->p_align)
5223 printf ("%#lx", (unsigned long) segment->p_align);
5224 else
5225 {
5226 print_vma (segment->p_align, PREFIX_HEX);
5227 }
5228 }
5229 else
5230 {
5231 print_vma (segment->p_offset, FULL_HEX);
5232 putchar (' ');
5233 print_vma (segment->p_vaddr, FULL_HEX);
5234 putchar (' ');
5235 print_vma (segment->p_paddr, FULL_HEX);
5236 printf ("\n ");
5237 print_vma (segment->p_filesz, FULL_HEX);
5238 putchar (' ');
5239 print_vma (segment->p_memsz, FULL_HEX);
5240 printf (" %c%c%c ",
5241 (segment->p_flags & PF_R ? 'R' : ' '),
5242 (segment->p_flags & PF_W ? 'W' : ' '),
5243 (segment->p_flags & PF_X ? 'E' : ' '));
5244 print_vma (segment->p_align, PREFIX_HEX);
5245 }
5246
5247 putc ('\n', stdout);
5248 }
5249
5250 switch (segment->p_type)
5251 {
5252 case PT_LOAD:
5253 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
5254 required by the ELF standard, several programs, including the Linux
5255 kernel, make use of non-ordered segments. */
5256 if (previous_load
5257 && previous_load->p_vaddr > segment->p_vaddr)
5258 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
5259 #endif
5260 if (segment->p_memsz < segment->p_filesz)
5261 error (_("the segment's file size is larger than its memory size\n"));
5262 previous_load = segment;
5263 break;
5264
5265 case PT_PHDR:
5266 /* PR 20815 - Verify that the program header is loaded into memory. */
5267 if (i > 0 && previous_load != NULL)
5268 error (_("the PHDR segment must occur before any LOAD segment\n"));
5269 if (filedata->file_header.e_machine != EM_PARISC)
5270 {
5271 unsigned int j;
5272
5273 for (j = 1; j < filedata->file_header.e_phnum; j++)
5274 {
5275 Elf_Internal_Phdr *load = filedata->program_headers + j;
5276 if (load->p_type == PT_LOAD
5277 && load->p_offset <= segment->p_offset
5278 && (load->p_offset + load->p_filesz
5279 >= segment->p_offset + segment->p_filesz)
5280 && load->p_vaddr <= segment->p_vaddr
5281 && (load->p_vaddr + load->p_filesz
5282 >= segment->p_vaddr + segment->p_filesz))
5283 break;
5284 }
5285 if (j == filedata->file_header.e_phnum)
5286 error (_("the PHDR segment is not covered by a LOAD segment\n"));
5287 }
5288 break;
5289
5290 case PT_DYNAMIC:
5291 if (dynamic_addr)
5292 error (_("more than one dynamic segment\n"));
5293
5294 /* By default, assume that the .dynamic section is the first
5295 section in the DYNAMIC segment. */
5296 dynamic_addr = segment->p_offset;
5297 dynamic_size = segment->p_filesz;
5298
5299 /* Try to locate the .dynamic section. If there is
5300 a section header table, we can easily locate it. */
5301 if (filedata->section_headers != NULL)
5302 {
5303 Elf_Internal_Shdr * sec;
5304
5305 sec = find_section (filedata, ".dynamic");
5306 if (sec == NULL || sec->sh_size == 0)
5307 {
5308 /* A corresponding .dynamic section is expected, but on
5309 IA-64/OpenVMS it is OK for it to be missing. */
5310 if (!is_ia64_vms (filedata))
5311 error (_("no .dynamic section in the dynamic segment\n"));
5312 break;
5313 }
5314
5315 if (sec->sh_type == SHT_NOBITS)
5316 {
5317 dynamic_size = 0;
5318 break;
5319 }
5320
5321 dynamic_addr = sec->sh_offset;
5322 dynamic_size = sec->sh_size;
5323
5324 if (dynamic_addr < segment->p_offset
5325 || dynamic_addr > segment->p_offset + segment->p_filesz)
5326 warn (_("the .dynamic section is not contained"
5327 " within the dynamic segment\n"));
5328 else if (dynamic_addr > segment->p_offset)
5329 warn (_("the .dynamic section is not the first section"
5330 " in the dynamic segment.\n"));
5331 }
5332
5333 /* PR binutils/17512: Avoid corrupt dynamic section info in the
5334 segment. Check this after matching against the section headers
5335 so we don't warn on debuginfo file (which have NOBITS .dynamic
5336 sections). */
5337 if (dynamic_addr > filedata->file_size
5338 || dynamic_size > filedata->file_size - dynamic_addr)
5339 {
5340 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
5341 dynamic_addr = dynamic_size = 0;
5342 }
5343 break;
5344
5345 case PT_INTERP:
5346 if (fseek (filedata->handle, archive_file_offset + (long) segment->p_offset,
5347 SEEK_SET))
5348 error (_("Unable to find program interpreter name\n"));
5349 else
5350 {
5351 char fmt [32];
5352 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5353
5354 if (ret >= (int) sizeof (fmt) || ret < 0)
5355 error (_("Internal error: failed to create format string to display program interpreter\n"));
5356
5357 program_interpreter[0] = 0;
5358 if (fscanf (filedata->handle, fmt, program_interpreter) <= 0)
5359 error (_("Unable to read program interpreter name\n"));
5360
5361 if (do_segments)
5362 printf (_(" [Requesting program interpreter: %s]\n"),
5363 program_interpreter);
5364 }
5365 break;
5366 }
5367 }
5368
5369 if (do_segments
5370 && filedata->section_headers != NULL
5371 && filedata->string_table != NULL)
5372 {
5373 printf (_("\n Section to Segment mapping:\n"));
5374 printf (_(" Segment Sections...\n"));
5375
5376 for (i = 0; i < filedata->file_header.e_phnum; i++)
5377 {
5378 unsigned int j;
5379 Elf_Internal_Shdr * section;
5380
5381 segment = filedata->program_headers + i;
5382 section = filedata->section_headers + 1;
5383
5384 printf (" %2.2d ", i);
5385
5386 for (j = 1; j < filedata->file_header.e_shnum; j++, section++)
5387 {
5388 if (!ELF_TBSS_SPECIAL (section, segment)
5389 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5390 printf ("%s ", printable_section_name (filedata, section));
5391 }
5392
5393 putc ('\n',stdout);
5394 }
5395 }
5396
5397 return TRUE;
5398 }
5399
5400
5401 /* Find the file offset corresponding to VMA by using the program headers. */
5402
5403 static long
5404 offset_from_vma (Filedata * filedata, bfd_vma vma, bfd_size_type size)
5405 {
5406 Elf_Internal_Phdr * seg;
5407
5408 if (! get_program_headers (filedata))
5409 {
5410 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5411 return (long) vma;
5412 }
5413
5414 for (seg = filedata->program_headers;
5415 seg < filedata->program_headers + filedata->file_header.e_phnum;
5416 ++seg)
5417 {
5418 if (seg->p_type != PT_LOAD)
5419 continue;
5420
5421 if (vma >= (seg->p_vaddr & -seg->p_align)
5422 && vma + size <= seg->p_vaddr + seg->p_filesz)
5423 return vma - seg->p_vaddr + seg->p_offset;
5424 }
5425
5426 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5427 (unsigned long) vma);
5428 return (long) vma;
5429 }
5430
5431
5432 /* Allocate memory and load the sections headers into FILEDATA->filedata->section_headers.
5433 If PROBE is true, this is just a probe and we do not generate any error
5434 messages if the load fails. */
5435
5436 static bfd_boolean
5437 get_32bit_section_headers (Filedata * filedata, bfd_boolean probe)
5438 {
5439 Elf32_External_Shdr * shdrs;
5440 Elf_Internal_Shdr * internal;
5441 unsigned int i;
5442 unsigned int size = filedata->file_header.e_shentsize;
5443 unsigned int num = probe ? 1 : filedata->file_header.e_shnum;
5444
5445 /* PR binutils/17531: Cope with unexpected section header sizes. */
5446 if (size == 0 || num == 0)
5447 return FALSE;
5448 if (size < sizeof * shdrs)
5449 {
5450 if (! probe)
5451 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5452 return FALSE;
5453 }
5454 if (!probe && size > sizeof * shdrs)
5455 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5456
5457 shdrs = (Elf32_External_Shdr *) get_data (NULL, filedata, filedata->file_header.e_shoff,
5458 size, num,
5459 probe ? NULL : _("section headers"));
5460 if (shdrs == NULL)
5461 return FALSE;
5462
5463 free (filedata->section_headers);
5464 filedata->section_headers = (Elf_Internal_Shdr *)
5465 cmalloc (num, sizeof (Elf_Internal_Shdr));
5466 if (filedata->section_headers == NULL)
5467 {
5468 if (!probe)
5469 error (_("Out of memory reading %u section headers\n"), num);
5470 free (shdrs);
5471 return FALSE;
5472 }
5473
5474 for (i = 0, internal = filedata->section_headers;
5475 i < num;
5476 i++, internal++)
5477 {
5478 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5479 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5480 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5481 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5482 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5483 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5484 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5485 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5486 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5487 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5488 if (!probe && internal->sh_link > num)
5489 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5490 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5491 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5492 }
5493
5494 free (shdrs);
5495 return TRUE;
5496 }
5497
5498 /* Like get_32bit_section_headers, except that it fetches 64-bit headers. */
5499
5500 static bfd_boolean
5501 get_64bit_section_headers (Filedata * filedata, bfd_boolean probe)
5502 {
5503 Elf64_External_Shdr * shdrs;
5504 Elf_Internal_Shdr * internal;
5505 unsigned int i;
5506 unsigned int size = filedata->file_header.e_shentsize;
5507 unsigned int num = probe ? 1 : filedata->file_header.e_shnum;
5508
5509 /* PR binutils/17531: Cope with unexpected section header sizes. */
5510 if (size == 0 || num == 0)
5511 return FALSE;
5512
5513 if (size < sizeof * shdrs)
5514 {
5515 if (! probe)
5516 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5517 return FALSE;
5518 }
5519
5520 if (! probe && size > sizeof * shdrs)
5521 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5522
5523 shdrs = (Elf64_External_Shdr *) get_data (NULL, filedata,
5524 filedata->file_header.e_shoff,
5525 size, num,
5526 probe ? NULL : _("section headers"));
5527 if (shdrs == NULL)
5528 return FALSE;
5529
5530 free (filedata->section_headers);
5531 filedata->section_headers = (Elf_Internal_Shdr *)
5532 cmalloc (num, sizeof (Elf_Internal_Shdr));
5533 if (filedata->section_headers == NULL)
5534 {
5535 if (! probe)
5536 error (_("Out of memory reading %u section headers\n"), num);
5537 free (shdrs);
5538 return FALSE;
5539 }
5540
5541 for (i = 0, internal = filedata->section_headers;
5542 i < num;
5543 i++, internal++)
5544 {
5545 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5546 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5547 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5548 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5549 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5550 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5551 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5552 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5553 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5554 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5555 if (!probe && internal->sh_link > num)
5556 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5557 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5558 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5559 }
5560
5561 free (shdrs);
5562 return TRUE;
5563 }
5564
5565 static Elf_Internal_Sym *
5566 get_32bit_elf_symbols (Filedata * filedata,
5567 Elf_Internal_Shdr * section,
5568 unsigned long * num_syms_return)
5569 {
5570 unsigned long number = 0;
5571 Elf32_External_Sym * esyms = NULL;
5572 Elf_External_Sym_Shndx * shndx = NULL;
5573 Elf_Internal_Sym * isyms = NULL;
5574 Elf_Internal_Sym * psym;
5575 unsigned int j;
5576 elf_section_list * entry;
5577
5578 if (section->sh_size == 0)
5579 {
5580 if (num_syms_return != NULL)
5581 * num_syms_return = 0;
5582 return NULL;
5583 }
5584
5585 /* Run some sanity checks first. */
5586 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5587 {
5588 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5589 printable_section_name (filedata, section),
5590 (unsigned long) section->sh_entsize);
5591 goto exit_point;
5592 }
5593
5594 if (section->sh_size > filedata->file_size)
5595 {
5596 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5597 printable_section_name (filedata, section),
5598 (unsigned long) section->sh_size);
5599 goto exit_point;
5600 }
5601
5602 number = section->sh_size / section->sh_entsize;
5603
5604 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5605 {
5606 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5607 (unsigned long) section->sh_size,
5608 printable_section_name (filedata, section),
5609 (unsigned long) section->sh_entsize);
5610 goto exit_point;
5611 }
5612
5613 esyms = (Elf32_External_Sym *) get_data (NULL, filedata, section->sh_offset, 1,
5614 section->sh_size, _("symbols"));
5615 if (esyms == NULL)
5616 goto exit_point;
5617
5618 shndx = NULL;
5619 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5620 {
5621 if (entry->hdr->sh_link != (unsigned long) (section - filedata->section_headers))
5622 continue;
5623
5624 if (shndx != NULL)
5625 {
5626 error (_("Multiple symbol table index sections associated with the same symbol section\n"));
5627 free (shndx);
5628 }
5629
5630 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, filedata,
5631 entry->hdr->sh_offset,
5632 1, entry->hdr->sh_size,
5633 _("symbol table section indices"));
5634 if (shndx == NULL)
5635 goto exit_point;
5636
5637 /* PR17531: file: heap-buffer-overflow */
5638 if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5639 {
5640 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5641 printable_section_name (filedata, entry->hdr),
5642 (unsigned long) entry->hdr->sh_size,
5643 (unsigned long) section->sh_size);
5644 goto exit_point;
5645 }
5646 }
5647
5648 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5649
5650 if (isyms == NULL)
5651 {
5652 error (_("Out of memory reading %lu symbols\n"),
5653 (unsigned long) number);
5654 goto exit_point;
5655 }
5656
5657 for (j = 0, psym = isyms; j < number; j++, psym++)
5658 {
5659 psym->st_name = BYTE_GET (esyms[j].st_name);
5660 psym->st_value = BYTE_GET (esyms[j].st_value);
5661 psym->st_size = BYTE_GET (esyms[j].st_size);
5662 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5663 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5664 psym->st_shndx
5665 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5666 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5667 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5668 psym->st_info = BYTE_GET (esyms[j].st_info);
5669 psym->st_other = BYTE_GET (esyms[j].st_other);
5670 }
5671
5672 exit_point:
5673 free (shndx);
5674 free (esyms);
5675
5676 if (num_syms_return != NULL)
5677 * num_syms_return = isyms == NULL ? 0 : number;
5678
5679 return isyms;
5680 }
5681
5682 static Elf_Internal_Sym *
5683 get_64bit_elf_symbols (Filedata * filedata,
5684 Elf_Internal_Shdr * section,
5685 unsigned long * num_syms_return)
5686 {
5687 unsigned long number = 0;
5688 Elf64_External_Sym * esyms = NULL;
5689 Elf_External_Sym_Shndx * shndx = NULL;
5690 Elf_Internal_Sym * isyms = NULL;
5691 Elf_Internal_Sym * psym;
5692 unsigned int j;
5693 elf_section_list * entry;
5694
5695 if (section->sh_size == 0)
5696 {
5697 if (num_syms_return != NULL)
5698 * num_syms_return = 0;
5699 return NULL;
5700 }
5701
5702 /* Run some sanity checks first. */
5703 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5704 {
5705 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5706 printable_section_name (filedata, section),
5707 (unsigned long) section->sh_entsize);
5708 goto exit_point;
5709 }
5710
5711 if (section->sh_size > filedata->file_size)
5712 {
5713 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5714 printable_section_name (filedata, section),
5715 (unsigned long) section->sh_size);
5716 goto exit_point;
5717 }
5718
5719 number = section->sh_size / section->sh_entsize;
5720
5721 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5722 {
5723 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5724 (unsigned long) section->sh_size,
5725 printable_section_name (filedata, section),
5726 (unsigned long) section->sh_entsize);
5727 goto exit_point;
5728 }
5729
5730 esyms = (Elf64_External_Sym *) get_data (NULL, filedata, section->sh_offset, 1,
5731 section->sh_size, _("symbols"));
5732 if (!esyms)
5733 goto exit_point;
5734
5735 shndx = NULL;
5736 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5737 {
5738 if (entry->hdr->sh_link != (unsigned long) (section - filedata->section_headers))
5739 continue;
5740
5741 if (shndx != NULL)
5742 {
5743 error (_("Multiple symbol table index sections associated with the same symbol section\n"));
5744 free (shndx);
5745 }
5746
5747 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, filedata,
5748 entry->hdr->sh_offset,
5749 1, entry->hdr->sh_size,
5750 _("symbol table section indices"));
5751 if (shndx == NULL)
5752 goto exit_point;
5753
5754 /* PR17531: file: heap-buffer-overflow */
5755 if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5756 {
5757 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5758 printable_section_name (filedata, entry->hdr),
5759 (unsigned long) entry->hdr->sh_size,
5760 (unsigned long) section->sh_size);
5761 goto exit_point;
5762 }
5763 }
5764
5765 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5766
5767 if (isyms == NULL)
5768 {
5769 error (_("Out of memory reading %lu symbols\n"),
5770 (unsigned long) number);
5771 goto exit_point;
5772 }
5773
5774 for (j = 0, psym = isyms; j < number; j++, psym++)
5775 {
5776 psym->st_name = BYTE_GET (esyms[j].st_name);
5777 psym->st_info = BYTE_GET (esyms[j].st_info);
5778 psym->st_other = BYTE_GET (esyms[j].st_other);
5779 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5780
5781 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5782 psym->st_shndx
5783 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5784 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5785 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5786
5787 psym->st_value = BYTE_GET (esyms[j].st_value);
5788 psym->st_size = BYTE_GET (esyms[j].st_size);
5789 }
5790
5791 exit_point:
5792 free (shndx);
5793 free (esyms);
5794
5795 if (num_syms_return != NULL)
5796 * num_syms_return = isyms == NULL ? 0 : number;
5797
5798 return isyms;
5799 }
5800
5801 static const char *
5802 get_elf_section_flags (Filedata * filedata, bfd_vma sh_flags)
5803 {
5804 static char buff[1024];
5805 char * p = buff;
5806 unsigned int field_size = is_32bit_elf ? 8 : 16;
5807 signed int sindex;
5808 unsigned int size = sizeof (buff) - (field_size + 4 + 1);
5809 bfd_vma os_flags = 0;
5810 bfd_vma proc_flags = 0;
5811 bfd_vma unknown_flags = 0;
5812 static const struct
5813 {
5814 const char * str;
5815 unsigned int len;
5816 }
5817 flags [] =
5818 {
5819 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5820 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5821 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5822 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5823 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5824 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5825 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5826 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5827 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5828 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5829 /* IA-64 specific. */
5830 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5831 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5832 /* IA-64 OpenVMS specific. */
5833 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5834 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5835 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5836 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5837 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5838 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5839 /* Generic. */
5840 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5841 /* SPARC specific. */
5842 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5843 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5844 /* ARM specific. */
5845 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5846 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5847 /* 23 */ { STRING_COMMA_LEN ("COMDEF") },
5848 /* GNU specific. */
5849 /* 24 */ { STRING_COMMA_LEN ("GNU_MBIND") },
5850 /* VLE specific. */
5851 /* 25 */ { STRING_COMMA_LEN ("VLE") },
5852 };
5853
5854 if (do_section_details)
5855 {
5856 sprintf (buff, "[%*.*lx]: ",
5857 field_size, field_size, (unsigned long) sh_flags);
5858 p += field_size + 4;
5859 }
5860
5861 while (sh_flags)
5862 {
5863 bfd_vma flag;
5864
5865 flag = sh_flags & - sh_flags;
5866 sh_flags &= ~ flag;
5867
5868 if (do_section_details)
5869 {
5870 switch (flag)
5871 {
5872 case SHF_WRITE: sindex = 0; break;
5873 case SHF_ALLOC: sindex = 1; break;
5874 case SHF_EXECINSTR: sindex = 2; break;
5875 case SHF_MERGE: sindex = 3; break;
5876 case SHF_STRINGS: sindex = 4; break;
5877 case SHF_INFO_LINK: sindex = 5; break;
5878 case SHF_LINK_ORDER: sindex = 6; break;
5879 case SHF_OS_NONCONFORMING: sindex = 7; break;
5880 case SHF_GROUP: sindex = 8; break;
5881 case SHF_TLS: sindex = 9; break;
5882 case SHF_EXCLUDE: sindex = 18; break;
5883 case SHF_COMPRESSED: sindex = 20; break;
5884 case SHF_GNU_MBIND: sindex = 24; break;
5885
5886 default:
5887 sindex = -1;
5888 switch (filedata->file_header.e_machine)
5889 {
5890 case EM_IA_64:
5891 if (flag == SHF_IA_64_SHORT)
5892 sindex = 10;
5893 else if (flag == SHF_IA_64_NORECOV)
5894 sindex = 11;
5895 #ifdef BFD64
5896 else if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5897 switch (flag)
5898 {
5899 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5900 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5901 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5902 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5903 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5904 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5905 default: break;
5906 }
5907 #endif
5908 break;
5909
5910 case EM_386:
5911 case EM_IAMCU:
5912 case EM_X86_64:
5913 case EM_L1OM:
5914 case EM_K1OM:
5915 case EM_OLD_SPARCV9:
5916 case EM_SPARC32PLUS:
5917 case EM_SPARCV9:
5918 case EM_SPARC:
5919 if (flag == SHF_ORDERED)
5920 sindex = 19;
5921 break;
5922
5923 case EM_ARM:
5924 switch (flag)
5925 {
5926 case SHF_ENTRYSECT: sindex = 21; break;
5927 case SHF_ARM_PURECODE: sindex = 22; break;
5928 case SHF_COMDEF: sindex = 23; break;
5929 default: break;
5930 }
5931 break;
5932 case EM_PPC:
5933 if (flag == SHF_PPC_VLE)
5934 sindex = 25;
5935 break;
5936
5937 default:
5938 break;
5939 }
5940 }
5941
5942 if (sindex != -1)
5943 {
5944 if (p != buff + field_size + 4)
5945 {
5946 if (size < (10 + 2))
5947 {
5948 warn (_("Internal error: not enough buffer room for section flag info"));
5949 return _("<unknown>");
5950 }
5951 size -= 2;
5952 *p++ = ',';
5953 *p++ = ' ';
5954 }
5955
5956 size -= flags [sindex].len;
5957 p = stpcpy (p, flags [sindex].str);
5958 }
5959 else if (flag & SHF_MASKOS)
5960 os_flags |= flag;
5961 else if (flag & SHF_MASKPROC)
5962 proc_flags |= flag;
5963 else
5964 unknown_flags |= flag;
5965 }
5966 else
5967 {
5968 switch (flag)
5969 {
5970 case SHF_WRITE: *p = 'W'; break;
5971 case SHF_ALLOC: *p = 'A'; break;
5972 case SHF_EXECINSTR: *p = 'X'; break;
5973 case SHF_MERGE: *p = 'M'; break;
5974 case SHF_STRINGS: *p = 'S'; break;
5975 case SHF_INFO_LINK: *p = 'I'; break;
5976 case SHF_LINK_ORDER: *p = 'L'; break;
5977 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5978 case SHF_GROUP: *p = 'G'; break;
5979 case SHF_TLS: *p = 'T'; break;
5980 case SHF_EXCLUDE: *p = 'E'; break;
5981 case SHF_COMPRESSED: *p = 'C'; break;
5982 case SHF_GNU_MBIND: *p = 'D'; break;
5983
5984 default:
5985 if ((filedata->file_header.e_machine == EM_X86_64
5986 || filedata->file_header.e_machine == EM_L1OM
5987 || filedata->file_header.e_machine == EM_K1OM)
5988 && flag == SHF_X86_64_LARGE)
5989 *p = 'l';
5990 else if (filedata->file_header.e_machine == EM_ARM
5991 && flag == SHF_ARM_PURECODE)
5992 *p = 'y';
5993 else if (filedata->file_header.e_machine == EM_PPC
5994 && flag == SHF_PPC_VLE)
5995 *p = 'v';
5996 else if (flag & SHF_MASKOS)
5997 {
5998 *p = 'o';
5999 sh_flags &= ~ SHF_MASKOS;
6000 }
6001 else if (flag & SHF_MASKPROC)
6002 {
6003 *p = 'p';
6004 sh_flags &= ~ SHF_MASKPROC;
6005 }
6006 else
6007 *p = 'x';
6008 break;
6009 }
6010 p++;
6011 }
6012 }
6013
6014 if (do_section_details)
6015 {
6016 if (os_flags)
6017 {
6018 size -= 5 + field_size;
6019 if (p != buff + field_size + 4)
6020 {
6021 if (size < (2 + 1))
6022 {
6023 warn (_("Internal error: not enough buffer room for section flag info"));
6024 return _("<unknown>");
6025 }
6026 size -= 2;
6027 *p++ = ',';
6028 *p++ = ' ';
6029 }
6030 sprintf (p, "OS (%*.*lx)", field_size, field_size,
6031 (unsigned long) os_flags);
6032 p += 5 + field_size;
6033 }
6034 if (proc_flags)
6035 {
6036 size -= 7 + field_size;
6037 if (p != buff + field_size + 4)
6038 {
6039 if (size < (2 + 1))
6040 {
6041 warn (_("Internal error: not enough buffer room for section flag info"));
6042 return _("<unknown>");
6043 }
6044 size -= 2;
6045 *p++ = ',';
6046 *p++ = ' ';
6047 }
6048 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
6049 (unsigned long) proc_flags);
6050 p += 7 + field_size;
6051 }
6052 if (unknown_flags)
6053 {
6054 size -= 10 + field_size;
6055 if (p != buff + field_size + 4)
6056 {
6057 if (size < (2 + 1))
6058 {
6059 warn (_("Internal error: not enough buffer room for section flag info"));
6060 return _("<unknown>");
6061 }
6062 size -= 2;
6063 *p++ = ',';
6064 *p++ = ' ';
6065 }
6066 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
6067 (unsigned long) unknown_flags);
6068 p += 10 + field_size;
6069 }
6070 }
6071
6072 *p = '\0';
6073 return buff;
6074 }
6075
6076 static unsigned int
6077 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
6078 {
6079 if (is_32bit_elf)
6080 {
6081 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
6082
6083 if (size < sizeof (* echdr))
6084 {
6085 error (_("Compressed section is too small even for a compression header\n"));
6086 return 0;
6087 }
6088
6089 chdr->ch_type = BYTE_GET (echdr->ch_type);
6090 chdr->ch_size = BYTE_GET (echdr->ch_size);
6091 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
6092 return sizeof (*echdr);
6093 }
6094 else
6095 {
6096 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
6097
6098 if (size < sizeof (* echdr))
6099 {
6100 error (_("Compressed section is too small even for a compression header\n"));
6101 return 0;
6102 }
6103
6104 chdr->ch_type = BYTE_GET (echdr->ch_type);
6105 chdr->ch_size = BYTE_GET (echdr->ch_size);
6106 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
6107 return sizeof (*echdr);
6108 }
6109 }
6110
6111 static bfd_boolean
6112 process_section_headers (Filedata * filedata)
6113 {
6114 Elf_Internal_Shdr * section;
6115 unsigned int i;
6116
6117 filedata->section_headers = NULL;
6118
6119 if (filedata->file_header.e_shnum == 0)
6120 {
6121 /* PR binutils/12467. */
6122 if (filedata->file_header.e_shoff != 0)
6123 {
6124 warn (_("possibly corrupt ELF file header - it has a non-zero"
6125 " section header offset, but no section headers\n"));
6126 return FALSE;
6127 }
6128 else if (do_sections)
6129 printf (_("\nThere are no sections in this file.\n"));
6130
6131 return TRUE;
6132 }
6133
6134 if (do_sections && !do_header)
6135 printf (ngettext ("There is %d section header, "
6136 "starting at offset 0x%lx:\n",
6137 "There are %d section headers, "
6138 "starting at offset 0x%lx:\n",
6139 filedata->file_header.e_shnum),
6140 filedata->file_header.e_shnum,
6141 (unsigned long) filedata->file_header.e_shoff);
6142
6143 if (is_32bit_elf)
6144 {
6145 if (! get_32bit_section_headers (filedata, FALSE))
6146 return FALSE;
6147 }
6148 else
6149 {
6150 if (! get_64bit_section_headers (filedata, FALSE))
6151 return FALSE;
6152 }
6153
6154 /* Read in the string table, so that we have names to display. */
6155 if (filedata->file_header.e_shstrndx != SHN_UNDEF
6156 && filedata->file_header.e_shstrndx < filedata->file_header.e_shnum)
6157 {
6158 section = filedata->section_headers + filedata->file_header.e_shstrndx;
6159
6160 if (section->sh_size != 0)
6161 {
6162 filedata->string_table = (char *) get_data (NULL, filedata, section->sh_offset,
6163 1, section->sh_size,
6164 _("string table"));
6165
6166 filedata->string_table_length = filedata->string_table != NULL ? section->sh_size : 0;
6167 }
6168 }
6169
6170 /* Scan the sections for the dynamic symbol table
6171 and dynamic string table and debug sections. */
6172 dynamic_symbols = NULL;
6173 dynamic_strings = NULL;
6174 dynamic_syminfo = NULL;
6175 symtab_shndx_list = NULL;
6176
6177 eh_addr_size = is_32bit_elf ? 4 : 8;
6178 switch (filedata->file_header.e_machine)
6179 {
6180 case EM_MIPS:
6181 case EM_MIPS_RS3_LE:
6182 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
6183 FDE addresses. However, the ABI also has a semi-official ILP32
6184 variant for which the normal FDE address size rules apply.
6185
6186 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
6187 section, where XX is the size of longs in bits. Unfortunately,
6188 earlier compilers provided no way of distinguishing ILP32 objects
6189 from LP64 objects, so if there's any doubt, we should assume that
6190 the official LP64 form is being used. */
6191 if ((filedata->file_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
6192 && find_section (filedata, ".gcc_compiled_long32") == NULL)
6193 eh_addr_size = 8;
6194 break;
6195
6196 case EM_H8_300:
6197 case EM_H8_300H:
6198 switch (filedata->file_header.e_flags & EF_H8_MACH)
6199 {
6200 case E_H8_MACH_H8300:
6201 case E_H8_MACH_H8300HN:
6202 case E_H8_MACH_H8300SN:
6203 case E_H8_MACH_H8300SXN:
6204 eh_addr_size = 2;
6205 break;
6206 case E_H8_MACH_H8300H:
6207 case E_H8_MACH_H8300S:
6208 case E_H8_MACH_H8300SX:
6209 eh_addr_size = 4;
6210 break;
6211 }
6212 break;
6213
6214 case EM_M32C_OLD:
6215 case EM_M32C:
6216 switch (filedata->file_header.e_flags & EF_M32C_CPU_MASK)
6217 {
6218 case EF_M32C_CPU_M16C:
6219 eh_addr_size = 2;
6220 break;
6221 }
6222 break;
6223 }
6224
6225 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
6226 do \
6227 { \
6228 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
6229 if (section->sh_entsize != expected_entsize) \
6230 { \
6231 char buf[40]; \
6232 sprintf_vma (buf, section->sh_entsize); \
6233 /* Note: coded this way so that there is a single string for \
6234 translation. */ \
6235 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
6236 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
6237 (unsigned) expected_entsize); \
6238 section->sh_entsize = expected_entsize; \
6239 } \
6240 } \
6241 while (0)
6242
6243 #define CHECK_ENTSIZE(section, i, type) \
6244 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
6245 sizeof (Elf64_External_##type))
6246
6247 for (i = 0, section = filedata->section_headers;
6248 i < filedata->file_header.e_shnum;
6249 i++, section++)
6250 {
6251 char * name = SECTION_NAME (section);
6252
6253 if (section->sh_type == SHT_DYNSYM)
6254 {
6255 if (dynamic_symbols != NULL)
6256 {
6257 error (_("File contains multiple dynamic symbol tables\n"));
6258 continue;
6259 }
6260
6261 CHECK_ENTSIZE (section, i, Sym);
6262 dynamic_symbols = GET_ELF_SYMBOLS (filedata, section, & num_dynamic_syms);
6263 }
6264 else if (section->sh_type == SHT_STRTAB
6265 && streq (name, ".dynstr"))
6266 {
6267 if (dynamic_strings != NULL)
6268 {
6269 error (_("File contains multiple dynamic string tables\n"));
6270 continue;
6271 }
6272
6273 dynamic_strings = (char *) get_data (NULL, filedata, section->sh_offset,
6274 1, section->sh_size,
6275 _("dynamic strings"));
6276 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
6277 }
6278 else if (section->sh_type == SHT_SYMTAB_SHNDX)
6279 {
6280 elf_section_list * entry = xmalloc (sizeof * entry);
6281
6282 entry->hdr = section;
6283 entry->next = symtab_shndx_list;
6284 symtab_shndx_list = entry;
6285 }
6286 else if (section->sh_type == SHT_SYMTAB)
6287 CHECK_ENTSIZE (section, i, Sym);
6288 else if (section->sh_type == SHT_GROUP)
6289 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
6290 else if (section->sh_type == SHT_REL)
6291 CHECK_ENTSIZE (section, i, Rel);
6292 else if (section->sh_type == SHT_RELA)
6293 CHECK_ENTSIZE (section, i, Rela);
6294 else if ((do_debugging || do_debug_info || do_debug_abbrevs
6295 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
6296 || do_debug_aranges || do_debug_frames || do_debug_macinfo
6297 || do_debug_str || do_debug_loc || do_debug_ranges
6298 || do_debug_addr || do_debug_cu_index || do_debug_links)
6299 && (const_strneq (name, ".debug_")
6300 || const_strneq (name, ".zdebug_")))
6301 {
6302 if (name[1] == 'z')
6303 name += sizeof (".zdebug_") - 1;
6304 else
6305 name += sizeof (".debug_") - 1;
6306
6307 if (do_debugging
6308 || (do_debug_info && const_strneq (name, "info"))
6309 || (do_debug_info && const_strneq (name, "types"))
6310 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
6311 || (do_debug_lines && strcmp (name, "line") == 0)
6312 || (do_debug_lines && const_strneq (name, "line."))
6313 || (do_debug_pubnames && const_strneq (name, "pubnames"))
6314 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
6315 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
6316 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
6317 || (do_debug_aranges && const_strneq (name, "aranges"))
6318 || (do_debug_ranges && const_strneq (name, "ranges"))
6319 || (do_debug_ranges && const_strneq (name, "rnglists"))
6320 || (do_debug_frames && const_strneq (name, "frame"))
6321 || (do_debug_macinfo && const_strneq (name, "macinfo"))
6322 || (do_debug_macinfo && const_strneq (name, "macro"))
6323 || (do_debug_str && const_strneq (name, "str"))
6324 || (do_debug_loc && const_strneq (name, "loc"))
6325 || (do_debug_loc && const_strneq (name, "loclists"))
6326 || (do_debug_addr && const_strneq (name, "addr"))
6327 || (do_debug_cu_index && const_strneq (name, "cu_index"))
6328 || (do_debug_cu_index && const_strneq (name, "tu_index"))
6329 )
6330 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6331 }
6332 /* Linkonce section to be combined with .debug_info at link time. */
6333 else if ((do_debugging || do_debug_info)
6334 && const_strneq (name, ".gnu.linkonce.wi."))
6335 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6336 else if (do_debug_frames && streq (name, ".eh_frame"))
6337 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6338 else if (do_gdb_index && (streq (name, ".gdb_index")
6339 || streq (name, ".debug_names")))
6340 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6341 /* Trace sections for Itanium VMS. */
6342 else if ((do_debugging || do_trace_info || do_trace_abbrevs
6343 || do_trace_aranges)
6344 && const_strneq (name, ".trace_"))
6345 {
6346 name += sizeof (".trace_") - 1;
6347
6348 if (do_debugging
6349 || (do_trace_info && streq (name, "info"))
6350 || (do_trace_abbrevs && streq (name, "abbrev"))
6351 || (do_trace_aranges && streq (name, "aranges"))
6352 )
6353 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6354 }
6355 else if ((do_debugging || do_debug_links)
6356 && (const_strneq (name, ".gnu_debuglink")
6357 || const_strneq (name, ".gnu_debugaltlink")))
6358 request_dump_bynumber (filedata, i, DEBUG_DUMP);
6359 }
6360
6361 if (! do_sections)
6362 return TRUE;
6363
6364 if (filedata->file_header.e_shnum > 1)
6365 printf (_("\nSection Headers:\n"));
6366 else
6367 printf (_("\nSection Header:\n"));
6368
6369 if (is_32bit_elf)
6370 {
6371 if (do_section_details)
6372 {
6373 printf (_(" [Nr] Name\n"));
6374 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
6375 }
6376 else
6377 printf
6378 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
6379 }
6380 else if (do_wide)
6381 {
6382 if (do_section_details)
6383 {
6384 printf (_(" [Nr] Name\n"));
6385 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
6386 }
6387 else
6388 printf
6389 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
6390 }
6391 else
6392 {
6393 if (do_section_details)
6394 {
6395 printf (_(" [Nr] Name\n"));
6396 printf (_(" Type Address Offset Link\n"));
6397 printf (_(" Size EntSize Info Align\n"));
6398 }
6399 else
6400 {
6401 printf (_(" [Nr] Name Type Address Offset\n"));
6402 printf (_(" Size EntSize Flags Link Info Align\n"));
6403 }
6404 }
6405
6406 if (do_section_details)
6407 printf (_(" Flags\n"));
6408
6409 for (i = 0, section = filedata->section_headers;
6410 i < filedata->file_header.e_shnum;
6411 i++, section++)
6412 {
6413 /* Run some sanity checks on the section header. */
6414
6415 /* Check the sh_link field. */
6416 switch (section->sh_type)
6417 {
6418 case SHT_REL:
6419 case SHT_RELA:
6420 if (section->sh_link == 0
6421 && (filedata->file_header.e_type == ET_EXEC
6422 || filedata->file_header.e_type == ET_DYN))
6423 /* A dynamic relocation section where all entries use a
6424 zero symbol index need not specify a symtab section. */
6425 break;
6426 /* Fall through. */
6427 case SHT_SYMTAB_SHNDX:
6428 case SHT_GROUP:
6429 case SHT_HASH:
6430 case SHT_GNU_HASH:
6431 case SHT_GNU_versym:
6432 if (section->sh_link == 0
6433 || section->sh_link >= filedata->file_header.e_shnum
6434 || (filedata->section_headers[section->sh_link].sh_type != SHT_SYMTAB
6435 && filedata->section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6436 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6437 i, section->sh_link);
6438 break;
6439
6440 case SHT_DYNAMIC:
6441 case SHT_SYMTAB:
6442 case SHT_DYNSYM:
6443 case SHT_GNU_verneed:
6444 case SHT_GNU_verdef:
6445 case SHT_GNU_LIBLIST:
6446 if (section->sh_link == 0
6447 || section->sh_link >= filedata->file_header.e_shnum
6448 || filedata->section_headers[section->sh_link].sh_type != SHT_STRTAB)
6449 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6450 i, section->sh_link);
6451 break;
6452
6453 case SHT_INIT_ARRAY:
6454 case SHT_FINI_ARRAY:
6455 case SHT_PREINIT_ARRAY:
6456 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6457 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6458 i, section->sh_link);
6459 break;
6460
6461 default:
6462 /* FIXME: Add support for target specific section types. */
6463 #if 0 /* Currently we do not check other section types as there are too
6464 many special cases. Stab sections for example have a type
6465 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6466 section. */
6467 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6468 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6469 i, section->sh_link);
6470 #endif
6471 break;
6472 }
6473
6474 /* Check the sh_info field. */
6475 switch (section->sh_type)
6476 {
6477 case SHT_REL:
6478 case SHT_RELA:
6479 if (section->sh_info == 0
6480 && (filedata->file_header.e_type == ET_EXEC
6481 || filedata->file_header.e_type == ET_DYN))
6482 /* Dynamic relocations apply to segments, so they do not
6483 need to specify the section they relocate. */
6484 break;
6485 if (section->sh_info == 0
6486 || section->sh_info >= filedata->file_header.e_shnum
6487 || (filedata->section_headers[section->sh_info].sh_type != SHT_PROGBITS
6488 && filedata->section_headers[section->sh_info].sh_type != SHT_NOBITS
6489 && filedata->section_headers[section->sh_info].sh_type != SHT_NOTE
6490 && filedata->section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6491 && filedata->section_headers[section->sh_info].sh_type != SHT_FINI_ARRAY
6492 && filedata->section_headers[section->sh_info].sh_type != SHT_PREINIT_ARRAY
6493 /* FIXME: Are other section types valid ? */
6494 && filedata->section_headers[section->sh_info].sh_type < SHT_LOOS))
6495 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6496 i, section->sh_info);
6497 break;
6498
6499 case SHT_DYNAMIC:
6500 case SHT_HASH:
6501 case SHT_SYMTAB_SHNDX:
6502 case SHT_INIT_ARRAY:
6503 case SHT_FINI_ARRAY:
6504 case SHT_PREINIT_ARRAY:
6505 if (section->sh_info != 0)
6506 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6507 i, section->sh_info);
6508 break;
6509
6510 case SHT_GROUP:
6511 case SHT_SYMTAB:
6512 case SHT_DYNSYM:
6513 /* A symbol index - we assume that it is valid. */
6514 break;
6515
6516 default:
6517 /* FIXME: Add support for target specific section types. */
6518 if (section->sh_type == SHT_NOBITS)
6519 /* NOBITS section headers with non-zero sh_info fields can be
6520 created when a binary is stripped of everything but its debug
6521 information. The stripped sections have their headers
6522 preserved but their types set to SHT_NOBITS. So do not check
6523 this type of section. */
6524 ;
6525 else if (section->sh_flags & SHF_INFO_LINK)
6526 {
6527 if (section->sh_info < 1 || section->sh_info >= filedata->file_header.e_shnum)
6528 warn (_("[%2u]: Expected link to another section in info field"), i);
6529 }
6530 else if (section->sh_type < SHT_LOOS
6531 && (section->sh_flags & SHF_GNU_MBIND) == 0
6532 && section->sh_info != 0)
6533 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6534 i, section->sh_info);
6535 break;
6536 }
6537
6538 /* Check the sh_size field. */
6539 if (section->sh_size > filedata->file_size
6540 && section->sh_type != SHT_NOBITS
6541 && section->sh_type != SHT_NULL
6542 && section->sh_type < SHT_LOOS)
6543 warn (_("Size of section %u is larger than the entire file!\n"), i);
6544
6545 printf (" [%2u] ", i);
6546 if (do_section_details)
6547 printf ("%s\n ", printable_section_name (filedata, section));
6548 else
6549 print_symbol (-17, SECTION_NAME (section));
6550
6551 printf (do_wide ? " %-15s " : " %-15.15s ",
6552 get_section_type_name (filedata, section->sh_type));
6553
6554 if (is_32bit_elf)
6555 {
6556 const char * link_too_big = NULL;
6557
6558 print_vma (section->sh_addr, LONG_HEX);
6559
6560 printf ( " %6.6lx %6.6lx %2.2lx",
6561 (unsigned long) section->sh_offset,
6562 (unsigned long) section->sh_size,
6563 (unsigned long) section->sh_entsize);
6564
6565 if (do_section_details)
6566 fputs (" ", stdout);
6567 else
6568 printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags));
6569
6570 if (section->sh_link >= filedata->file_header.e_shnum)
6571 {
6572 link_too_big = "";
6573 /* The sh_link value is out of range. Normally this indicates
6574 an error but it can have special values in Solaris binaries. */
6575 switch (filedata->file_header.e_machine)
6576 {
6577 case EM_386:
6578 case EM_IAMCU:
6579 case EM_X86_64:
6580 case EM_L1OM:
6581 case EM_K1OM:
6582 case EM_OLD_SPARCV9:
6583 case EM_SPARC32PLUS:
6584 case EM_SPARCV9:
6585 case EM_SPARC:
6586 if (section->sh_link == (SHN_BEFORE & 0xffff))
6587 link_too_big = "BEFORE";
6588 else if (section->sh_link == (SHN_AFTER & 0xffff))
6589 link_too_big = "AFTER";
6590 break;
6591 default:
6592 break;
6593 }
6594 }
6595
6596 if (do_section_details)
6597 {
6598 if (link_too_big != NULL && * link_too_big)
6599 printf ("<%s> ", link_too_big);
6600 else
6601 printf ("%2u ", section->sh_link);
6602 printf ("%3u %2lu\n", section->sh_info,
6603 (unsigned long) section->sh_addralign);
6604 }
6605 else
6606 printf ("%2u %3u %2lu\n",
6607 section->sh_link,
6608 section->sh_info,
6609 (unsigned long) section->sh_addralign);
6610
6611 if (link_too_big && ! * link_too_big)
6612 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6613 i, section->sh_link);
6614 }
6615 else if (do_wide)
6616 {
6617 print_vma (section->sh_addr, LONG_HEX);
6618
6619 if ((long) section->sh_offset == section->sh_offset)
6620 printf (" %6.6lx", (unsigned long) section->sh_offset);
6621 else
6622 {
6623 putchar (' ');
6624 print_vma (section->sh_offset, LONG_HEX);
6625 }
6626
6627 if ((unsigned long) section->sh_size == section->sh_size)
6628 printf (" %6.6lx", (unsigned long) section->sh_size);
6629 else
6630 {
6631 putchar (' ');
6632 print_vma (section->sh_size, LONG_HEX);
6633 }
6634
6635 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6636 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6637 else
6638 {
6639 putchar (' ');
6640 print_vma (section->sh_entsize, LONG_HEX);
6641 }
6642
6643 if (do_section_details)
6644 fputs (" ", stdout);
6645 else
6646 printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags));
6647
6648 printf ("%2u %3u ", section->sh_link, section->sh_info);
6649
6650 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6651 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6652 else
6653 {
6654 print_vma (section->sh_addralign, DEC);
6655 putchar ('\n');
6656 }
6657 }
6658 else if (do_section_details)
6659 {
6660 putchar (' ');
6661 print_vma (section->sh_addr, LONG_HEX);
6662 if ((long) section->sh_offset == section->sh_offset)
6663 printf (" %16.16lx", (unsigned long) section->sh_offset);
6664 else
6665 {
6666 printf (" ");
6667 print_vma (section->sh_offset, LONG_HEX);
6668 }
6669 printf (" %u\n ", section->sh_link);
6670 print_vma (section->sh_size, LONG_HEX);
6671 putchar (' ');
6672 print_vma (section->sh_entsize, LONG_HEX);
6673
6674 printf (" %-16u %lu\n",
6675 section->sh_info,
6676 (unsigned long) section->sh_addralign);
6677 }
6678 else
6679 {
6680 putchar (' ');
6681 print_vma (section->sh_addr, LONG_HEX);
6682 if ((long) section->sh_offset == section->sh_offset)
6683 printf (" %8.8lx", (unsigned long) section->sh_offset);
6684 else
6685 {
6686 printf (" ");
6687 print_vma (section->sh_offset, LONG_HEX);
6688 }
6689 printf ("\n ");
6690 print_vma (section->sh_size, LONG_HEX);
6691 printf (" ");
6692 print_vma (section->sh_entsize, LONG_HEX);
6693
6694 printf (" %3s ", get_elf_section_flags (filedata, section->sh_flags));
6695
6696 printf (" %2u %3u %lu\n",
6697 section->sh_link,
6698 section->sh_info,
6699 (unsigned long) section->sh_addralign);
6700 }
6701
6702 if (do_section_details)
6703 {
6704 printf (" %s\n", get_elf_section_flags (filedata, section->sh_flags));
6705 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6706 {
6707 /* Minimum section size is 12 bytes for 32-bit compression
6708 header + 12 bytes for compressed data header. */
6709 unsigned char buf[24];
6710
6711 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6712 if (get_data (&buf, filedata, section->sh_offset, 1,
6713 sizeof (buf), _("compression header")))
6714 {
6715 Elf_Internal_Chdr chdr;
6716
6717 (void) get_compression_header (&chdr, buf, sizeof (buf));
6718
6719 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6720 printf (" ZLIB, ");
6721 else
6722 printf (_(" [<unknown>: 0x%x], "),
6723 chdr.ch_type);
6724 print_vma (chdr.ch_size, LONG_HEX);
6725 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6726 }
6727 }
6728 }
6729 }
6730
6731 if (!do_section_details)
6732 {
6733 /* The ordering of the letters shown here matches the ordering of the
6734 corresponding SHF_xxx values, and hence the order in which these
6735 letters will be displayed to the user. */
6736 printf (_("Key to Flags:\n\
6737 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6738 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6739 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6740 if (filedata->file_header.e_machine == EM_X86_64
6741 || filedata->file_header.e_machine == EM_L1OM
6742 || filedata->file_header.e_machine == EM_K1OM)
6743 printf (_("l (large), "));
6744 else if (filedata->file_header.e_machine == EM_ARM)
6745 printf (_("y (purecode), "));
6746 else if (filedata->file_header.e_machine == EM_PPC)
6747 printf (_("v (VLE), "));
6748 printf ("p (processor specific)\n");
6749 }
6750
6751 return TRUE;
6752 }
6753
6754 static const char *
6755 get_group_flags (unsigned int flags)
6756 {
6757 static char buff[128];
6758
6759 if (flags == 0)
6760 return "";
6761 else if (flags == GRP_COMDAT)
6762 return "COMDAT ";
6763
6764 snprintf (buff, 14, _("[0x%x: "), flags);
6765
6766 flags &= ~ GRP_COMDAT;
6767 if (flags & GRP_MASKOS)
6768 {
6769 strcat (buff, "<OS specific>");
6770 flags &= ~ GRP_MASKOS;
6771 }
6772
6773 if (flags & GRP_MASKPROC)
6774 {
6775 strcat (buff, "<PROC specific>");
6776 flags &= ~ GRP_MASKPROC;
6777 }
6778
6779 if (flags)
6780 strcat (buff, "<unknown>");
6781
6782 strcat (buff, "]");
6783 return buff;
6784 }
6785
6786 static bfd_boolean
6787 process_section_groups (Filedata * filedata)
6788 {
6789 Elf_Internal_Shdr * section;
6790 unsigned int i;
6791 struct group * group;
6792 Elf_Internal_Shdr * symtab_sec;
6793 Elf_Internal_Shdr * strtab_sec;
6794 Elf_Internal_Sym * symtab;
6795 unsigned long num_syms;
6796 char * strtab;
6797 size_t strtab_size;
6798
6799 /* Don't process section groups unless needed. */
6800 if (!do_unwind && !do_section_groups)
6801 return TRUE;
6802
6803 if (filedata->file_header.e_shnum == 0)
6804 {
6805 if (do_section_groups)
6806 printf (_("\nThere are no sections to group in this file.\n"));
6807
6808 return TRUE;
6809 }
6810
6811 if (filedata->section_headers == NULL)
6812 {
6813 error (_("Section headers are not available!\n"));
6814 /* PR 13622: This can happen with a corrupt ELF header. */
6815 return FALSE;
6816 }
6817
6818 section_headers_groups = (struct group **) calloc (filedata->file_header.e_shnum,
6819 sizeof (struct group *));
6820
6821 if (section_headers_groups == NULL)
6822 {
6823 error (_("Out of memory reading %u section group headers\n"),
6824 filedata->file_header.e_shnum);
6825 return FALSE;
6826 }
6827
6828 /* Scan the sections for the group section. */
6829 group_count = 0;
6830 for (i = 0, section = filedata->section_headers;
6831 i < filedata->file_header.e_shnum;
6832 i++, section++)
6833 if (section->sh_type == SHT_GROUP)
6834 group_count++;
6835
6836 if (group_count == 0)
6837 {
6838 if (do_section_groups)
6839 printf (_("\nThere are no section groups in this file.\n"));
6840
6841 return TRUE;
6842 }
6843
6844 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6845
6846 if (section_groups == NULL)
6847 {
6848 error (_("Out of memory reading %lu groups\n"),
6849 (unsigned long) group_count);
6850 return FALSE;
6851 }
6852
6853 symtab_sec = NULL;
6854 strtab_sec = NULL;
6855 symtab = NULL;
6856 num_syms = 0;
6857 strtab = NULL;
6858 strtab_size = 0;
6859 for (i = 0, section = filedata->section_headers, group = section_groups;
6860 i < filedata->file_header.e_shnum;
6861 i++, section++)
6862 {
6863 if (section->sh_type == SHT_GROUP)
6864 {
6865 const char * name = printable_section_name (filedata, section);
6866 const char * group_name;
6867 unsigned char * start;
6868 unsigned char * indices;
6869 unsigned int entry, j, size;
6870 Elf_Internal_Shdr * sec;
6871 Elf_Internal_Sym * sym;
6872
6873 /* Get the symbol table. */
6874 if (section->sh_link >= filedata->file_header.e_shnum
6875 || ((sec = filedata->section_headers + section->sh_link)->sh_type
6876 != SHT_SYMTAB))
6877 {
6878 error (_("Bad sh_link in group section `%s'\n"), name);
6879 continue;
6880 }
6881
6882 if (symtab_sec != sec)
6883 {
6884 symtab_sec = sec;
6885 if (symtab)
6886 free (symtab);
6887 symtab = GET_ELF_SYMBOLS (filedata, symtab_sec, & num_syms);
6888 }
6889
6890 if (symtab == NULL)
6891 {
6892 error (_("Corrupt header in group section `%s'\n"), name);
6893 continue;
6894 }
6895
6896 if (section->sh_info >= num_syms)
6897 {
6898 error (_("Bad sh_info in group section `%s'\n"), name);
6899 continue;
6900 }
6901
6902 sym = symtab + section->sh_info;
6903
6904 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6905 {
6906 if (sym->st_shndx == 0
6907 || sym->st_shndx >= filedata->file_header.e_shnum)
6908 {
6909 error (_("Bad sh_info in group section `%s'\n"), name);
6910 continue;
6911 }
6912
6913 group_name = SECTION_NAME (filedata->section_headers + sym->st_shndx);
6914 strtab_sec = NULL;
6915 if (strtab)
6916 free (strtab);
6917 strtab = NULL;
6918 strtab_size = 0;
6919 }
6920 else
6921 {
6922 /* Get the string table. */
6923 if (symtab_sec->sh_link >= filedata->file_header.e_shnum)
6924 {
6925 strtab_sec = NULL;
6926 if (strtab)
6927 free (strtab);
6928 strtab = NULL;
6929 strtab_size = 0;
6930 }
6931 else if (strtab_sec
6932 != (sec = filedata->section_headers + symtab_sec->sh_link))
6933 {
6934 strtab_sec = sec;
6935 if (strtab)
6936 free (strtab);
6937
6938 strtab = (char *) get_data (NULL, filedata, strtab_sec->sh_offset,
6939 1, strtab_sec->sh_size,
6940 _("string table"));
6941 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6942 }
6943 group_name = sym->st_name < strtab_size
6944 ? strtab + sym->st_name : _("<corrupt>");
6945 }
6946
6947 /* PR 17531: file: loop. */
6948 if (section->sh_entsize > section->sh_size)
6949 {
6950 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6951 printable_section_name (filedata, section),
6952 (unsigned long) section->sh_entsize,
6953 (unsigned long) section->sh_size);
6954 continue;
6955 }
6956
6957 start = (unsigned char *) get_data (NULL, filedata, section->sh_offset,
6958 1, section->sh_size,
6959 _("section data"));
6960 if (start == NULL)
6961 continue;
6962
6963 indices = start;
6964 size = (section->sh_size / section->sh_entsize) - 1;
6965 entry = byte_get (indices, 4);
6966 indices += 4;
6967
6968 if (do_section_groups)
6969 {
6970 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6971 get_group_flags (entry), i, name, group_name, size);
6972
6973 printf (_(" [Index] Name\n"));
6974 }
6975
6976 group->group_index = i;
6977
6978 for (j = 0; j < size; j++)
6979 {
6980 struct group_list * g;
6981
6982 entry = byte_get (indices, 4);
6983 indices += 4;
6984
6985 if (entry >= filedata->file_header.e_shnum)
6986 {
6987 static unsigned num_group_errors = 0;
6988
6989 if (num_group_errors ++ < 10)
6990 {
6991 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6992 entry, i, filedata->file_header.e_shnum - 1);
6993 if (num_group_errors == 10)
6994 warn (_("Further error messages about overlarge group section indices suppressed\n"));
6995 }
6996 continue;
6997 }
6998
6999 if (section_headers_groups [entry] != NULL)
7000 {
7001 if (entry)
7002 {
7003 static unsigned num_errs = 0;
7004
7005 if (num_errs ++ < 10)
7006 {
7007 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
7008 entry, i,
7009 section_headers_groups [entry]->group_index);
7010 if (num_errs == 10)
7011 warn (_("Further error messages about already contained group sections suppressed\n"));
7012 }
7013 continue;
7014 }
7015 else
7016 {
7017 /* Intel C/C++ compiler may put section 0 in a
7018 section group. We just warn it the first time
7019 and ignore it afterwards. */
7020 static bfd_boolean warned = FALSE;
7021 if (!warned)
7022 {
7023 error (_("section 0 in group section [%5u]\n"),
7024 section_headers_groups [entry]->group_index);
7025 warned = TRUE;
7026 }
7027 }
7028 }
7029
7030 section_headers_groups [entry] = group;
7031
7032 if (do_section_groups)
7033 {
7034 sec = filedata->section_headers + entry;
7035 printf (" [%5u] %s\n", entry, printable_section_name (filedata, sec));
7036 }
7037
7038 g = (struct group_list *) xmalloc (sizeof (struct group_list));
7039 g->section_index = entry;
7040 g->next = group->root;
7041 group->root = g;
7042 }
7043
7044 if (start)
7045 free (start);
7046
7047 group++;
7048 }
7049 }
7050
7051 if (symtab)
7052 free (symtab);
7053 if (strtab)
7054 free (strtab);
7055 return TRUE;
7056 }
7057
7058 /* Data used to display dynamic fixups. */
7059
7060 struct ia64_vms_dynfixup
7061 {
7062 bfd_vma needed_ident; /* Library ident number. */
7063 bfd_vma needed; /* Index in the dstrtab of the library name. */
7064 bfd_vma fixup_needed; /* Index of the library. */
7065 bfd_vma fixup_rela_cnt; /* Number of fixups. */
7066 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
7067 };
7068
7069 /* Data used to display dynamic relocations. */
7070
7071 struct ia64_vms_dynimgrela
7072 {
7073 bfd_vma img_rela_cnt; /* Number of relocations. */
7074 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
7075 };
7076
7077 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
7078 library). */
7079
7080 static bfd_boolean
7081 dump_ia64_vms_dynamic_fixups (Filedata * filedata,
7082 struct ia64_vms_dynfixup * fixup,
7083 const char * strtab,
7084 unsigned int strtab_sz)
7085 {
7086 Elf64_External_VMS_IMAGE_FIXUP * imfs;
7087 long i;
7088 const char * lib_name;
7089
7090 imfs = get_data (NULL, filedata, dynamic_addr + fixup->fixup_rela_off,
7091 1, fixup->fixup_rela_cnt * sizeof (*imfs),
7092 _("dynamic section image fixups"));
7093 if (!imfs)
7094 return FALSE;
7095
7096 if (fixup->needed < strtab_sz)
7097 lib_name = strtab + fixup->needed;
7098 else
7099 {
7100 warn (_("corrupt library name index of 0x%lx found in dynamic entry"),
7101 (unsigned long) fixup->needed);
7102 lib_name = "???";
7103 }
7104 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
7105 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
7106 printf
7107 (_("Seg Offset Type SymVec DataType\n"));
7108
7109 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
7110 {
7111 unsigned int type;
7112 const char *rtype;
7113
7114 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
7115 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
7116 type = BYTE_GET (imfs [i].type);
7117 rtype = elf_ia64_reloc_type (type);
7118 if (rtype == NULL)
7119 printf (" 0x%08x ", type);
7120 else
7121 printf (" %-32s ", rtype);
7122 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
7123 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
7124 }
7125
7126 free (imfs);
7127 return TRUE;
7128 }
7129
7130 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
7131
7132 static bfd_boolean
7133 dump_ia64_vms_dynamic_relocs (Filedata * filedata, struct ia64_vms_dynimgrela *imgrela)
7134 {
7135 Elf64_External_VMS_IMAGE_RELA *imrs;
7136 long i;
7137
7138 imrs = get_data (NULL, filedata, dynamic_addr + imgrela->img_rela_off,
7139 1, imgrela->img_rela_cnt * sizeof (*imrs),
7140 _("dynamic section image relocations"));
7141 if (!imrs)
7142 return FALSE;
7143
7144 printf (_("\nImage relocs\n"));
7145 printf
7146 (_("Seg Offset Type Addend Seg Sym Off\n"));
7147
7148 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
7149 {
7150 unsigned int type;
7151 const char *rtype;
7152
7153 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
7154 printf ("%08" BFD_VMA_FMT "x ",
7155 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
7156 type = BYTE_GET (imrs [i].type);
7157 rtype = elf_ia64_reloc_type (type);
7158 if (rtype == NULL)
7159 printf ("0x%08x ", type);
7160 else
7161 printf ("%-31s ", rtype);
7162 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
7163 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
7164 printf ("%08" BFD_VMA_FMT "x\n",
7165 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
7166 }
7167
7168 free (imrs);
7169 return TRUE;
7170 }
7171
7172 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
7173
7174 static bfd_boolean
7175 process_ia64_vms_dynamic_relocs (Filedata * filedata)
7176 {
7177 struct ia64_vms_dynfixup fixup;
7178 struct ia64_vms_dynimgrela imgrela;
7179 Elf_Internal_Dyn *entry;
7180 bfd_vma strtab_off = 0;
7181 bfd_vma strtab_sz = 0;
7182 char *strtab = NULL;
7183 bfd_boolean res = TRUE;
7184
7185 memset (&fixup, 0, sizeof (fixup));
7186 memset (&imgrela, 0, sizeof (imgrela));
7187
7188 /* Note: the order of the entries is specified by the OpenVMS specs. */
7189 for (entry = dynamic_section;
7190 entry < dynamic_section + dynamic_nent;
7191 entry++)
7192 {
7193 switch (entry->d_tag)
7194 {
7195 case DT_IA_64_VMS_STRTAB_OFFSET:
7196 strtab_off = entry->d_un.d_val;
7197 break;
7198 case DT_STRSZ:
7199 strtab_sz = entry->d_un.d_val;
7200 if (strtab == NULL)
7201 strtab = get_data (NULL, filedata, dynamic_addr + strtab_off,
7202 1, strtab_sz, _("dynamic string section"));
7203 break;
7204
7205 case DT_IA_64_VMS_NEEDED_IDENT:
7206 fixup.needed_ident = entry->d_un.d_val;
7207 break;
7208 case DT_NEEDED:
7209 fixup.needed = entry->d_un.d_val;
7210 break;
7211 case DT_IA_64_VMS_FIXUP_NEEDED:
7212 fixup.fixup_needed = entry->d_un.d_val;
7213 break;
7214 case DT_IA_64_VMS_FIXUP_RELA_CNT:
7215 fixup.fixup_rela_cnt = entry->d_un.d_val;
7216 break;
7217 case DT_IA_64_VMS_FIXUP_RELA_OFF:
7218 fixup.fixup_rela_off = entry->d_un.d_val;
7219 if (! dump_ia64_vms_dynamic_fixups (filedata, &fixup, strtab, strtab_sz))
7220 res = FALSE;
7221 break;
7222 case DT_IA_64_VMS_IMG_RELA_CNT:
7223 imgrela.img_rela_cnt = entry->d_un.d_val;
7224 break;
7225 case DT_IA_64_VMS_IMG_RELA_OFF:
7226 imgrela.img_rela_off = entry->d_un.d_val;
7227 if (! dump_ia64_vms_dynamic_relocs (filedata, &imgrela))
7228 res = FALSE;
7229 break;
7230
7231 default:
7232 break;
7233 }
7234 }
7235
7236 if (strtab != NULL)
7237 free (strtab);
7238
7239 return res;
7240 }
7241
7242 static struct
7243 {
7244 const char * name;
7245 int reloc;
7246 int size;
7247 int rela;
7248 }
7249 dynamic_relocations [] =
7250 {
7251 { "REL", DT_REL, DT_RELSZ, FALSE },
7252 { "RELA", DT_RELA, DT_RELASZ, TRUE },
7253 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
7254 };
7255
7256 /* Process the reloc section. */
7257
7258 static bfd_boolean
7259 process_relocs (Filedata * filedata)
7260 {
7261 unsigned long rel_size;
7262 unsigned long rel_offset;
7263
7264 if (!do_reloc)
7265 return TRUE;
7266
7267 if (do_using_dynamic)
7268 {
7269 int is_rela;
7270 const char * name;
7271 bfd_boolean has_dynamic_reloc;
7272 unsigned int i;
7273
7274 has_dynamic_reloc = FALSE;
7275
7276 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
7277 {
7278 is_rela = dynamic_relocations [i].rela;
7279 name = dynamic_relocations [i].name;
7280 rel_size = dynamic_info [dynamic_relocations [i].size];
7281 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
7282
7283 if (rel_size)
7284 has_dynamic_reloc = TRUE;
7285
7286 if (is_rela == UNKNOWN)
7287 {
7288 if (dynamic_relocations [i].reloc == DT_JMPREL)
7289 switch (dynamic_info[DT_PLTREL])
7290 {
7291 case DT_REL:
7292 is_rela = FALSE;
7293 break;
7294 case DT_RELA:
7295 is_rela = TRUE;
7296 break;
7297 }
7298 }
7299
7300 if (rel_size)
7301 {
7302 printf
7303 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
7304 name, rel_offset, rel_size);
7305
7306 dump_relocations (filedata,
7307 offset_from_vma (filedata, rel_offset, rel_size),
7308 rel_size,
7309 dynamic_symbols, num_dynamic_syms,
7310 dynamic_strings, dynamic_strings_length,
7311 is_rela, TRUE /* is_dynamic */);
7312 }
7313 }
7314
7315 if (is_ia64_vms (filedata))
7316 if (process_ia64_vms_dynamic_relocs (filedata))
7317 has_dynamic_reloc = TRUE;
7318
7319 if (! has_dynamic_reloc)
7320 printf (_("\nThere are no dynamic relocations in this file.\n"));
7321 }
7322 else
7323 {
7324 Elf_Internal_Shdr * section;
7325 unsigned long i;
7326 bfd_boolean found = FALSE;
7327
7328 for (i = 0, section = filedata->section_headers;
7329 i < filedata->file_header.e_shnum;
7330 i++, section++)
7331 {
7332 if ( section->sh_type != SHT_RELA
7333 && section->sh_type != SHT_REL)
7334 continue;
7335
7336 rel_offset = section->sh_offset;
7337 rel_size = section->sh_size;
7338
7339 if (rel_size)
7340 {
7341 Elf_Internal_Shdr * strsec;
7342 int is_rela;
7343 unsigned long num_rela;
7344
7345 printf (_("\nRelocation section "));
7346
7347 if (filedata->string_table == NULL)
7348 printf ("%d", section->sh_name);
7349 else
7350 printf ("'%s'", printable_section_name (filedata, section));
7351
7352 num_rela = rel_size / section->sh_entsize;
7353 printf (ngettext (" at offset 0x%lx contains %lu entry:\n",
7354 " at offset 0x%lx contains %lu entries:\n",
7355 num_rela),
7356 rel_offset, num_rela);
7357
7358 is_rela = section->sh_type == SHT_RELA;
7359
7360 if (section->sh_link != 0
7361 && section->sh_link < filedata->file_header.e_shnum)
7362 {
7363 Elf_Internal_Shdr * symsec;
7364 Elf_Internal_Sym * symtab;
7365 unsigned long nsyms;
7366 unsigned long strtablen = 0;
7367 char * strtab = NULL;
7368
7369 symsec = filedata->section_headers + section->sh_link;
7370 if (symsec->sh_type != SHT_SYMTAB
7371 && symsec->sh_type != SHT_DYNSYM)
7372 continue;
7373
7374 symtab = GET_ELF_SYMBOLS (filedata, symsec, & nsyms);
7375
7376 if (symtab == NULL)
7377 continue;
7378
7379 if (symsec->sh_link != 0
7380 && symsec->sh_link < filedata->file_header.e_shnum)
7381 {
7382 strsec = filedata->section_headers + symsec->sh_link;
7383
7384 strtab = (char *) get_data (NULL, filedata, strsec->sh_offset,
7385 1, strsec->sh_size,
7386 _("string table"));
7387 strtablen = strtab == NULL ? 0 : strsec->sh_size;
7388 }
7389
7390 dump_relocations (filedata, rel_offset, rel_size,
7391 symtab, nsyms, strtab, strtablen,
7392 is_rela,
7393 symsec->sh_type == SHT_DYNSYM);
7394 if (strtab)
7395 free (strtab);
7396 free (symtab);
7397 }
7398 else
7399 dump_relocations (filedata, rel_offset, rel_size,
7400 NULL, 0, NULL, 0, is_rela,
7401 FALSE /* is_dynamic */);
7402
7403 found = TRUE;
7404 }
7405 }
7406
7407 if (! found)
7408 {
7409 /* Users sometimes forget the -D option, so try to be helpful. */
7410 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
7411 {
7412 if (dynamic_info [dynamic_relocations [i].size])
7413 {
7414 printf (_("\nThere are no static relocations in this file."));
7415 printf (_("\nTo see the dynamic relocations add --use-dynamic to the command line.\n"));
7416
7417 break;
7418 }
7419 }
7420 if (i == ARRAY_SIZE (dynamic_relocations))
7421 printf (_("\nThere are no relocations in this file.\n"));
7422 }
7423 }
7424
7425 return TRUE;
7426 }
7427
7428 /* An absolute address consists of a section and an offset. If the
7429 section is NULL, the offset itself is the address, otherwise, the
7430 address equals to LOAD_ADDRESS(section) + offset. */
7431
7432 struct absaddr
7433 {
7434 unsigned short section;
7435 bfd_vma offset;
7436 };
7437
7438 /* Find the nearest symbol at or below ADDR. Returns the symbol
7439 name, if found, and the offset from the symbol to ADDR. */
7440
7441 static void
7442 find_symbol_for_address (Filedata * filedata,
7443 Elf_Internal_Sym * symtab,
7444 unsigned long nsyms,
7445 const char * strtab,
7446 unsigned long strtab_size,
7447 struct absaddr addr,
7448 const char ** symname,
7449 bfd_vma * offset)
7450 {
7451 bfd_vma dist = 0x100000;
7452 Elf_Internal_Sym * sym;
7453 Elf_Internal_Sym * beg;
7454 Elf_Internal_Sym * end;
7455 Elf_Internal_Sym * best = NULL;
7456
7457 REMOVE_ARCH_BITS (addr.offset);
7458 beg = symtab;
7459 end = symtab + nsyms;
7460
7461 while (beg < end)
7462 {
7463 bfd_vma value;
7464
7465 sym = beg + (end - beg) / 2;
7466
7467 value = sym->st_value;
7468 REMOVE_ARCH_BITS (value);
7469
7470 if (sym->st_name != 0
7471 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7472 && addr.offset >= value
7473 && addr.offset - value < dist)
7474 {
7475 best = sym;
7476 dist = addr.offset - value;
7477 if (!dist)
7478 break;
7479 }
7480
7481 if (addr.offset < value)
7482 end = sym;
7483 else
7484 beg = sym + 1;
7485 }
7486
7487 if (best)
7488 {
7489 *symname = (best->st_name >= strtab_size
7490 ? _("<corrupt>") : strtab + best->st_name);
7491 *offset = dist;
7492 return;
7493 }
7494
7495 *symname = NULL;
7496 *offset = addr.offset;
7497 }
7498
7499 static /* signed */ int
7500 symcmp (const void *p, const void *q)
7501 {
7502 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7503 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7504
7505 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7506 }
7507
7508 /* Process the unwind section. */
7509
7510 #include "unwind-ia64.h"
7511
7512 struct ia64_unw_table_entry
7513 {
7514 struct absaddr start;
7515 struct absaddr end;
7516 struct absaddr info;
7517 };
7518
7519 struct ia64_unw_aux_info
7520 {
7521 struct ia64_unw_table_entry * table; /* Unwind table. */
7522 unsigned long table_len; /* Length of unwind table. */
7523 unsigned char * info; /* Unwind info. */
7524 unsigned long info_size; /* Size of unwind info. */
7525 bfd_vma info_addr; /* Starting address of unwind info. */
7526 bfd_vma seg_base; /* Starting address of segment. */
7527 Elf_Internal_Sym * symtab; /* The symbol table. */
7528 unsigned long nsyms; /* Number of symbols. */
7529 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7530 unsigned long nfuns; /* Number of entries in funtab. */
7531 char * strtab; /* The string table. */
7532 unsigned long strtab_size; /* Size of string table. */
7533 };
7534
7535 static bfd_boolean
7536 dump_ia64_unwind (Filedata * filedata, struct ia64_unw_aux_info * aux)
7537 {
7538 struct ia64_unw_table_entry * tp;
7539 unsigned long j, nfuns;
7540 int in_body;
7541 bfd_boolean res = TRUE;
7542
7543 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7544 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7545 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7546 aux->funtab[nfuns++] = aux->symtab[j];
7547 aux->nfuns = nfuns;
7548 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7549
7550 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7551 {
7552 bfd_vma stamp;
7553 bfd_vma offset;
7554 const unsigned char * dp;
7555 const unsigned char * head;
7556 const unsigned char * end;
7557 const char * procname;
7558
7559 find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab,
7560 aux->strtab_size, tp->start, &procname, &offset);
7561
7562 fputs ("\n<", stdout);
7563
7564 if (procname)
7565 {
7566 fputs (procname, stdout);
7567
7568 if (offset)
7569 printf ("+%lx", (unsigned long) offset);
7570 }
7571
7572 fputs (">: [", stdout);
7573 print_vma (tp->start.offset, PREFIX_HEX);
7574 fputc ('-', stdout);
7575 print_vma (tp->end.offset, PREFIX_HEX);
7576 printf ("], info at +0x%lx\n",
7577 (unsigned long) (tp->info.offset - aux->seg_base));
7578
7579 /* PR 17531: file: 86232b32. */
7580 if (aux->info == NULL)
7581 continue;
7582
7583 offset = tp->info.offset;
7584 if (tp->info.section)
7585 {
7586 if (tp->info.section >= filedata->file_header.e_shnum)
7587 {
7588 warn (_("Invalid section %u in table entry %ld\n"),
7589 tp->info.section, (long) (tp - aux->table));
7590 res = FALSE;
7591 continue;
7592 }
7593 offset += filedata->section_headers[tp->info.section].sh_addr;
7594 }
7595 offset -= aux->info_addr;
7596 /* PR 17531: file: 0997b4d1. */
7597 if (offset >= aux->info_size
7598 || aux->info_size - offset < 8)
7599 {
7600 warn (_("Invalid offset %lx in table entry %ld\n"),
7601 (long) tp->info.offset, (long) (tp - aux->table));
7602 res = FALSE;
7603 continue;
7604 }
7605
7606 head = aux->info + offset;
7607 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7608
7609 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7610 (unsigned) UNW_VER (stamp),
7611 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7612 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7613 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7614 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7615
7616 if (UNW_VER (stamp) != 1)
7617 {
7618 printf (_("\tUnknown version.\n"));
7619 continue;
7620 }
7621
7622 in_body = 0;
7623 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7624 /* PR 17531: file: 16ceda89. */
7625 if (end > aux->info + aux->info_size)
7626 end = aux->info + aux->info_size;
7627 for (dp = head + 8; dp < end;)
7628 dp = unw_decode (dp, in_body, & in_body, end);
7629 }
7630
7631 free (aux->funtab);
7632
7633 return res;
7634 }
7635
7636 static bfd_boolean
7637 slurp_ia64_unwind_table (Filedata * filedata,
7638 struct ia64_unw_aux_info * aux,
7639 Elf_Internal_Shdr * sec)
7640 {
7641 unsigned long size, nrelas, i;
7642 Elf_Internal_Phdr * seg;
7643 struct ia64_unw_table_entry * tep;
7644 Elf_Internal_Shdr * relsec;
7645 Elf_Internal_Rela * rela;
7646 Elf_Internal_Rela * rp;
7647 unsigned char * table;
7648 unsigned char * tp;
7649 Elf_Internal_Sym * sym;
7650 const char * relname;
7651
7652 aux->table_len = 0;
7653
7654 /* First, find the starting address of the segment that includes
7655 this section: */
7656
7657 if (filedata->file_header.e_phnum)
7658 {
7659 if (! get_program_headers (filedata))
7660 return FALSE;
7661
7662 for (seg = filedata->program_headers;
7663 seg < filedata->program_headers + filedata->file_header.e_phnum;
7664 ++seg)
7665 {
7666 if (seg->p_type != PT_LOAD)
7667 continue;
7668
7669 if (sec->sh_addr >= seg->p_vaddr
7670 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7671 {
7672 aux->seg_base = seg->p_vaddr;
7673 break;
7674 }
7675 }
7676 }
7677
7678 /* Second, build the unwind table from the contents of the unwind section: */
7679 size = sec->sh_size;
7680 table = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1, size,
7681 _("unwind table"));
7682 if (!table)
7683 return FALSE;
7684
7685 aux->table_len = size / (3 * eh_addr_size);
7686 aux->table = (struct ia64_unw_table_entry *)
7687 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7688 tep = aux->table;
7689
7690 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7691 {
7692 tep->start.section = SHN_UNDEF;
7693 tep->end.section = SHN_UNDEF;
7694 tep->info.section = SHN_UNDEF;
7695 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7696 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7697 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7698 tep->start.offset += aux->seg_base;
7699 tep->end.offset += aux->seg_base;
7700 tep->info.offset += aux->seg_base;
7701 }
7702 free (table);
7703
7704 /* Third, apply any relocations to the unwind table: */
7705 for (relsec = filedata->section_headers;
7706 relsec < filedata->section_headers + filedata->file_header.e_shnum;
7707 ++relsec)
7708 {
7709 if (relsec->sh_type != SHT_RELA
7710 || relsec->sh_info >= filedata->file_header.e_shnum
7711 || filedata->section_headers + relsec->sh_info != sec)
7712 continue;
7713
7714 if (!slurp_rela_relocs (filedata, relsec->sh_offset, relsec->sh_size,
7715 & rela, & nrelas))
7716 {
7717 free (aux->table);
7718 aux->table = NULL;
7719 aux->table_len = 0;
7720 return FALSE;
7721 }
7722
7723 for (rp = rela; rp < rela + nrelas; ++rp)
7724 {
7725 unsigned int sym_ndx;
7726 unsigned int r_type = get_reloc_type (filedata, rp->r_info);
7727 relname = elf_ia64_reloc_type (r_type);
7728
7729 /* PR 17531: file: 9fa67536. */
7730 if (relname == NULL)
7731 {
7732 warn (_("Skipping unknown relocation type: %u\n"), r_type);
7733 continue;
7734 }
7735
7736 if (! const_strneq (relname, "R_IA64_SEGREL"))
7737 {
7738 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7739 continue;
7740 }
7741
7742 i = rp->r_offset / (3 * eh_addr_size);
7743
7744 /* PR 17531: file: 5bc8d9bf. */
7745 if (i >= aux->table_len)
7746 {
7747 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7748 continue;
7749 }
7750
7751 sym_ndx = get_reloc_symindex (rp->r_info);
7752 if (sym_ndx >= aux->nsyms)
7753 {
7754 warn (_("Skipping reloc with invalid symbol index: %u\n"),
7755 sym_ndx);
7756 continue;
7757 }
7758 sym = aux->symtab + sym_ndx;
7759
7760 switch (rp->r_offset / eh_addr_size % 3)
7761 {
7762 case 0:
7763 aux->table[i].start.section = sym->st_shndx;
7764 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7765 break;
7766 case 1:
7767 aux->table[i].end.section = sym->st_shndx;
7768 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7769 break;
7770 case 2:
7771 aux->table[i].info.section = sym->st_shndx;
7772 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7773 break;
7774 default:
7775 break;
7776 }
7777 }
7778
7779 free (rela);
7780 }
7781
7782 return TRUE;
7783 }
7784
7785 static bfd_boolean
7786 ia64_process_unwind (Filedata * filedata)
7787 {
7788 Elf_Internal_Shdr * sec;
7789 Elf_Internal_Shdr * unwsec = NULL;
7790 Elf_Internal_Shdr * strsec;
7791 unsigned long i, unwcount = 0, unwstart = 0;
7792 struct ia64_unw_aux_info aux;
7793 bfd_boolean res = TRUE;
7794
7795 memset (& aux, 0, sizeof (aux));
7796
7797 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
7798 {
7799 if (sec->sh_type == SHT_SYMTAB
7800 && sec->sh_link < filedata->file_header.e_shnum)
7801 {
7802 aux.symtab = GET_ELF_SYMBOLS (filedata, sec, & aux.nsyms);
7803
7804 strsec = filedata->section_headers + sec->sh_link;
7805 if (aux.strtab != NULL)
7806 {
7807 error (_("Multiple auxillary string tables encountered\n"));
7808 free (aux.strtab);
7809 res = FALSE;
7810 }
7811 aux.strtab = (char *) get_data (NULL, filedata, strsec->sh_offset,
7812 1, strsec->sh_size,
7813 _("string table"));
7814 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7815 }
7816 else if (sec->sh_type == SHT_IA_64_UNWIND)
7817 unwcount++;
7818 }
7819
7820 if (!unwcount)
7821 printf (_("\nThere are no unwind sections in this file.\n"));
7822
7823 while (unwcount-- > 0)
7824 {
7825 char * suffix;
7826 size_t len, len2;
7827
7828 for (i = unwstart, sec = filedata->section_headers + unwstart, unwsec = NULL;
7829 i < filedata->file_header.e_shnum; ++i, ++sec)
7830 if (sec->sh_type == SHT_IA_64_UNWIND)
7831 {
7832 unwsec = sec;
7833 break;
7834 }
7835 /* We have already counted the number of SHT_IA64_UNWIND
7836 sections so the loop above should never fail. */
7837 assert (unwsec != NULL);
7838
7839 unwstart = i + 1;
7840 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7841
7842 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7843 {
7844 /* We need to find which section group it is in. */
7845 struct group_list * g;
7846
7847 if (section_headers_groups == NULL
7848 || section_headers_groups [i] == NULL)
7849 i = filedata->file_header.e_shnum;
7850 else
7851 {
7852 g = section_headers_groups [i]->root;
7853
7854 for (; g != NULL; g = g->next)
7855 {
7856 sec = filedata->section_headers + g->section_index;
7857
7858 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7859 break;
7860 }
7861
7862 if (g == NULL)
7863 i = filedata->file_header.e_shnum;
7864 }
7865 }
7866 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7867 {
7868 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7869 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7870 suffix = SECTION_NAME (unwsec) + len;
7871 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum;
7872 ++i, ++sec)
7873 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7874 && streq (SECTION_NAME (sec) + len2, suffix))
7875 break;
7876 }
7877 else
7878 {
7879 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7880 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7881 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7882 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7883 suffix = "";
7884 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7885 suffix = SECTION_NAME (unwsec) + len;
7886 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum;
7887 ++i, ++sec)
7888 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7889 && streq (SECTION_NAME (sec) + len2, suffix))
7890 break;
7891 }
7892
7893 if (i == filedata->file_header.e_shnum)
7894 {
7895 printf (_("\nCould not find unwind info section for "));
7896
7897 if (filedata->string_table == NULL)
7898 printf ("%d", unwsec->sh_name);
7899 else
7900 printf ("'%s'", printable_section_name (filedata, unwsec));
7901 }
7902 else
7903 {
7904 aux.info_addr = sec->sh_addr;
7905 aux.info = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1,
7906 sec->sh_size,
7907 _("unwind info"));
7908 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7909
7910 printf (_("\nUnwind section "));
7911
7912 if (filedata->string_table == NULL)
7913 printf ("%d", unwsec->sh_name);
7914 else
7915 printf ("'%s'", printable_section_name (filedata, unwsec));
7916
7917 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7918 (unsigned long) unwsec->sh_offset,
7919 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7920
7921 if (slurp_ia64_unwind_table (filedata, & aux, unwsec)
7922 && aux.table_len > 0)
7923 dump_ia64_unwind (filedata, & aux);
7924
7925 if (aux.table)
7926 free ((char *) aux.table);
7927 if (aux.info)
7928 free ((char *) aux.info);
7929 aux.table = NULL;
7930 aux.info = NULL;
7931 }
7932 }
7933
7934 if (aux.symtab)
7935 free (aux.symtab);
7936 if (aux.strtab)
7937 free ((char *) aux.strtab);
7938
7939 return res;
7940 }
7941
7942 struct hppa_unw_table_entry
7943 {
7944 struct absaddr start;
7945 struct absaddr end;
7946 unsigned int Cannot_unwind:1; /* 0 */
7947 unsigned int Millicode:1; /* 1 */
7948 unsigned int Millicode_save_sr0:1; /* 2 */
7949 unsigned int Region_description:2; /* 3..4 */
7950 unsigned int reserved1:1; /* 5 */
7951 unsigned int Entry_SR:1; /* 6 */
7952 unsigned int Entry_FR:4; /* Number saved 7..10 */
7953 unsigned int Entry_GR:5; /* Number saved 11..15 */
7954 unsigned int Args_stored:1; /* 16 */
7955 unsigned int Variable_Frame:1; /* 17 */
7956 unsigned int Separate_Package_Body:1; /* 18 */
7957 unsigned int Frame_Extension_Millicode:1; /* 19 */
7958 unsigned int Stack_Overflow_Check:1; /* 20 */
7959 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
7960 unsigned int Ada_Region:1; /* 22 */
7961 unsigned int cxx_info:1; /* 23 */
7962 unsigned int cxx_try_catch:1; /* 24 */
7963 unsigned int sched_entry_seq:1; /* 25 */
7964 unsigned int reserved2:1; /* 26 */
7965 unsigned int Save_SP:1; /* 27 */
7966 unsigned int Save_RP:1; /* 28 */
7967 unsigned int Save_MRP_in_frame:1; /* 29 */
7968 unsigned int extn_ptr_defined:1; /* 30 */
7969 unsigned int Cleanup_defined:1; /* 31 */
7970
7971 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7972 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7973 unsigned int Large_frame:1; /* 2 */
7974 unsigned int Pseudo_SP_Set:1; /* 3 */
7975 unsigned int reserved4:1; /* 4 */
7976 unsigned int Total_frame_size:27; /* 5..31 */
7977 };
7978
7979 struct hppa_unw_aux_info
7980 {
7981 struct hppa_unw_table_entry * table; /* Unwind table. */
7982 unsigned long table_len; /* Length of unwind table. */
7983 bfd_vma seg_base; /* Starting address of segment. */
7984 Elf_Internal_Sym * symtab; /* The symbol table. */
7985 unsigned long nsyms; /* Number of symbols. */
7986 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7987 unsigned long nfuns; /* Number of entries in funtab. */
7988 char * strtab; /* The string table. */
7989 unsigned long strtab_size; /* Size of string table. */
7990 };
7991
7992 static bfd_boolean
7993 dump_hppa_unwind (Filedata * filedata, struct hppa_unw_aux_info * aux)
7994 {
7995 struct hppa_unw_table_entry * tp;
7996 unsigned long j, nfuns;
7997 bfd_boolean res = TRUE;
7998
7999 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
8000 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
8001 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
8002 aux->funtab[nfuns++] = aux->symtab[j];
8003 aux->nfuns = nfuns;
8004 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
8005
8006 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
8007 {
8008 bfd_vma offset;
8009 const char * procname;
8010
8011 find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab,
8012 aux->strtab_size, tp->start, &procname,
8013 &offset);
8014
8015 fputs ("\n<", stdout);
8016
8017 if (procname)
8018 {
8019 fputs (procname, stdout);
8020
8021 if (offset)
8022 printf ("+%lx", (unsigned long) offset);
8023 }
8024
8025 fputs (">: [", stdout);
8026 print_vma (tp->start.offset, PREFIX_HEX);
8027 fputc ('-', stdout);
8028 print_vma (tp->end.offset, PREFIX_HEX);
8029 printf ("]\n\t");
8030
8031 #define PF(_m) if (tp->_m) printf (#_m " ");
8032 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
8033 PF(Cannot_unwind);
8034 PF(Millicode);
8035 PF(Millicode_save_sr0);
8036 /* PV(Region_description); */
8037 PF(Entry_SR);
8038 PV(Entry_FR);
8039 PV(Entry_GR);
8040 PF(Args_stored);
8041 PF(Variable_Frame);
8042 PF(Separate_Package_Body);
8043 PF(Frame_Extension_Millicode);
8044 PF(Stack_Overflow_Check);
8045 PF(Two_Instruction_SP_Increment);
8046 PF(Ada_Region);
8047 PF(cxx_info);
8048 PF(cxx_try_catch);
8049 PF(sched_entry_seq);
8050 PF(Save_SP);
8051 PF(Save_RP);
8052 PF(Save_MRP_in_frame);
8053 PF(extn_ptr_defined);
8054 PF(Cleanup_defined);
8055 PF(MPE_XL_interrupt_marker);
8056 PF(HP_UX_interrupt_marker);
8057 PF(Large_frame);
8058 PF(Pseudo_SP_Set);
8059 PV(Total_frame_size);
8060 #undef PF
8061 #undef PV
8062 }
8063
8064 printf ("\n");
8065
8066 free (aux->funtab);
8067
8068 return res;
8069 }
8070
8071 static bfd_boolean
8072 slurp_hppa_unwind_table (Filedata * filedata,
8073 struct hppa_unw_aux_info * aux,
8074 Elf_Internal_Shdr * sec)
8075 {
8076 unsigned long size, unw_ent_size, nentries, nrelas, i;
8077 Elf_Internal_Phdr * seg;
8078 struct hppa_unw_table_entry * tep;
8079 Elf_Internal_Shdr * relsec;
8080 Elf_Internal_Rela * rela;
8081 Elf_Internal_Rela * rp;
8082 unsigned char * table;
8083 unsigned char * tp;
8084 Elf_Internal_Sym * sym;
8085 const char * relname;
8086
8087 /* First, find the starting address of the segment that includes
8088 this section. */
8089 if (filedata->file_header.e_phnum)
8090 {
8091 if (! get_program_headers (filedata))
8092 return FALSE;
8093
8094 for (seg = filedata->program_headers;
8095 seg < filedata->program_headers + filedata->file_header.e_phnum;
8096 ++seg)
8097 {
8098 if (seg->p_type != PT_LOAD)
8099 continue;
8100
8101 if (sec->sh_addr >= seg->p_vaddr
8102 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
8103 {
8104 aux->seg_base = seg->p_vaddr;
8105 break;
8106 }
8107 }
8108 }
8109
8110 /* Second, build the unwind table from the contents of the unwind
8111 section. */
8112 size = sec->sh_size;
8113 table = (unsigned char *) get_data (NULL, filedata, sec->sh_offset, 1, size,
8114 _("unwind table"));
8115 if (!table)
8116 return FALSE;
8117
8118 unw_ent_size = 16;
8119 nentries = size / unw_ent_size;
8120 size = unw_ent_size * nentries;
8121
8122 tep = aux->table = (struct hppa_unw_table_entry *)
8123 xcmalloc (nentries, sizeof (aux->table[0]));
8124
8125 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
8126 {
8127 unsigned int tmp1, tmp2;
8128
8129 tep->start.section = SHN_UNDEF;
8130 tep->end.section = SHN_UNDEF;
8131
8132 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
8133 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
8134 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
8135 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
8136
8137 tep->start.offset += aux->seg_base;
8138 tep->end.offset += aux->seg_base;
8139
8140 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
8141 tep->Millicode = (tmp1 >> 30) & 0x1;
8142 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
8143 tep->Region_description = (tmp1 >> 27) & 0x3;
8144 tep->reserved1 = (tmp1 >> 26) & 0x1;
8145 tep->Entry_SR = (tmp1 >> 25) & 0x1;
8146 tep->Entry_FR = (tmp1 >> 21) & 0xf;
8147 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
8148 tep->Args_stored = (tmp1 >> 15) & 0x1;
8149 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
8150 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
8151 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
8152 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
8153 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
8154 tep->Ada_Region = (tmp1 >> 9) & 0x1;
8155 tep->cxx_info = (tmp1 >> 8) & 0x1;
8156 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
8157 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
8158 tep->reserved2 = (tmp1 >> 5) & 0x1;
8159 tep->Save_SP = (tmp1 >> 4) & 0x1;
8160 tep->Save_RP = (tmp1 >> 3) & 0x1;
8161 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
8162 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
8163 tep->Cleanup_defined = tmp1 & 0x1;
8164
8165 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
8166 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
8167 tep->Large_frame = (tmp2 >> 29) & 0x1;
8168 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
8169 tep->reserved4 = (tmp2 >> 27) & 0x1;
8170 tep->Total_frame_size = tmp2 & 0x7ffffff;
8171 }
8172 free (table);
8173
8174 /* Third, apply any relocations to the unwind table. */
8175 for (relsec = filedata->section_headers;
8176 relsec < filedata->section_headers + filedata->file_header.e_shnum;
8177 ++relsec)
8178 {
8179 if (relsec->sh_type != SHT_RELA
8180 || relsec->sh_info >= filedata->file_header.e_shnum
8181 || filedata->section_headers + relsec->sh_info != sec)
8182 continue;
8183
8184 if (!slurp_rela_relocs (filedata, relsec->sh_offset, relsec->sh_size,
8185 & rela, & nrelas))
8186 return FALSE;
8187
8188 for (rp = rela; rp < rela + nrelas; ++rp)
8189 {
8190 unsigned int sym_ndx;
8191 unsigned int r_type = get_reloc_type (filedata, rp->r_info);
8192 relname = elf_hppa_reloc_type (r_type);
8193
8194 if (relname == NULL)
8195 {
8196 warn (_("Skipping unknown relocation type: %u\n"), r_type);
8197 continue;
8198 }
8199
8200 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
8201 if (! const_strneq (relname, "R_PARISC_SEGREL"))
8202 {
8203 warn (_("Skipping unexpected relocation type: %s\n"), relname);
8204 continue;
8205 }
8206
8207 i = rp->r_offset / unw_ent_size;
8208 if (i >= aux->table_len)
8209 {
8210 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
8211 continue;
8212 }
8213
8214 sym_ndx = get_reloc_symindex (rp->r_info);
8215 if (sym_ndx >= aux->nsyms)
8216 {
8217 warn (_("Skipping reloc with invalid symbol index: %u\n"),
8218 sym_ndx);
8219 continue;
8220 }
8221 sym = aux->symtab + sym_ndx;
8222
8223 switch ((rp->r_offset % unw_ent_size) / 4)
8224 {
8225 case 0:
8226 aux->table[i].start.section = sym->st_shndx;
8227 aux->table[i].start.offset = sym->st_value + rp->r_addend;
8228 break;
8229 case 1:
8230 aux->table[i].end.section = sym->st_shndx;
8231 aux->table[i].end.offset = sym->st_value + rp->r_addend;
8232 break;
8233 default:
8234 break;
8235 }
8236 }
8237
8238 free (rela);
8239 }
8240
8241 aux->table_len = nentries;
8242
8243 return TRUE;
8244 }
8245
8246 static bfd_boolean
8247 hppa_process_unwind (Filedata * filedata)
8248 {
8249 struct hppa_unw_aux_info aux;
8250 Elf_Internal_Shdr * unwsec = NULL;
8251 Elf_Internal_Shdr * strsec;
8252 Elf_Internal_Shdr * sec;
8253 unsigned long i;
8254 bfd_boolean res = TRUE;
8255
8256 if (filedata->string_table == NULL)
8257 return FALSE;
8258
8259 memset (& aux, 0, sizeof (aux));
8260
8261 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
8262 {
8263 if (sec->sh_type == SHT_SYMTAB
8264 && sec->sh_link < filedata->file_header.e_shnum)
8265 {
8266 aux.symtab = GET_ELF_SYMBOLS (filedata, sec, & aux.nsyms);
8267
8268 strsec = filedata->section_headers + sec->sh_link;
8269 if (aux.strtab != NULL)
8270 {
8271 error (_("Multiple auxillary string tables encountered\n"));
8272 free (aux.strtab);
8273 res = FALSE;
8274 }
8275 aux.strtab = (char *) get_data (NULL, filedata, strsec->sh_offset,
8276 1, strsec->sh_size,
8277 _("string table"));
8278 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
8279 }
8280 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
8281 unwsec = sec;
8282 }
8283
8284 if (!unwsec)
8285 printf (_("\nThere are no unwind sections in this file.\n"));
8286
8287 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
8288 {
8289 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
8290 {
8291 unsigned long num_unwind = sec->sh_size / 16;
8292
8293 printf (ngettext ("\nUnwind section '%s' at offset 0x%lx "
8294 "contains %lu entry:\n",
8295 "\nUnwind section '%s' at offset 0x%lx "
8296 "contains %lu entries:\n",
8297 num_unwind),
8298 printable_section_name (filedata, sec),
8299 (unsigned long) sec->sh_offset,
8300 num_unwind);
8301
8302 if (! slurp_hppa_unwind_table (filedata, &aux, sec))
8303 res = FALSE;
8304
8305 if (res && aux.table_len > 0)
8306 {
8307 if (! dump_hppa_unwind (filedata, &aux))
8308 res = FALSE;
8309 }
8310
8311 if (aux.table)
8312 free ((char *) aux.table);
8313 aux.table = NULL;
8314 }
8315 }
8316
8317 if (aux.symtab)
8318 free (aux.symtab);
8319 if (aux.strtab)
8320 free ((char *) aux.strtab);
8321
8322 return res;
8323 }
8324
8325 struct arm_section
8326 {
8327 unsigned char * data; /* The unwind data. */
8328 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
8329 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
8330 unsigned long nrelas; /* The number of relocations. */
8331 unsigned int rel_type; /* REL or RELA ? */
8332 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
8333 };
8334
8335 struct arm_unw_aux_info
8336 {
8337 Filedata * filedata; /* The file containing the unwind sections. */
8338 Elf_Internal_Sym * symtab; /* The file's symbol table. */
8339 unsigned long nsyms; /* Number of symbols. */
8340 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
8341 unsigned long nfuns; /* Number of these symbols. */
8342 char * strtab; /* The file's string table. */
8343 unsigned long strtab_size; /* Size of string table. */
8344 };
8345
8346 static const char *
8347 arm_print_vma_and_name (Filedata * filedata,
8348 struct arm_unw_aux_info * aux,
8349 bfd_vma fn,
8350 struct absaddr addr)
8351 {
8352 const char *procname;
8353 bfd_vma sym_offset;
8354
8355 if (addr.section == SHN_UNDEF)
8356 addr.offset = fn;
8357
8358 find_symbol_for_address (filedata, aux->funtab, aux->nfuns, aux->strtab,
8359 aux->strtab_size, addr, &procname,
8360 &sym_offset);
8361
8362 print_vma (fn, PREFIX_HEX);
8363
8364 if (procname)
8365 {
8366 fputs (" <", stdout);
8367 fputs (procname, stdout);
8368
8369 if (sym_offset)
8370 printf ("+0x%lx", (unsigned long) sym_offset);
8371 fputc ('>', stdout);
8372 }
8373
8374 return procname;
8375 }
8376
8377 static void
8378 arm_free_section (struct arm_section *arm_sec)
8379 {
8380 if (arm_sec->data != NULL)
8381 free (arm_sec->data);
8382
8383 if (arm_sec->rela != NULL)
8384 free (arm_sec->rela);
8385 }
8386
8387 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
8388 cached section and install SEC instead.
8389 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
8390 and return its valued in * WORDP, relocating if necessary.
8391 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
8392 relocation's offset in ADDR.
8393 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
8394 into the string table of the symbol associated with the reloc. If no
8395 reloc was applied store -1 there.
8396 5) Return TRUE upon success, FALSE otherwise. */
8397
8398 static bfd_boolean
8399 get_unwind_section_word (Filedata * filedata,
8400 struct arm_unw_aux_info * aux,
8401 struct arm_section * arm_sec,
8402 Elf_Internal_Shdr * sec,
8403 bfd_vma word_offset,
8404 unsigned int * wordp,
8405 struct absaddr * addr,
8406 bfd_vma * sym_name)
8407 {
8408 Elf_Internal_Rela *rp;
8409 Elf_Internal_Sym *sym;
8410 const char * relname;
8411 unsigned int word;
8412 bfd_boolean wrapped;
8413
8414 if (sec == NULL || arm_sec == NULL)
8415 return FALSE;
8416
8417 addr->section = SHN_UNDEF;
8418 addr->offset = 0;
8419
8420 if (sym_name != NULL)
8421 *sym_name = (bfd_vma) -1;
8422
8423 /* If necessary, update the section cache. */
8424 if (sec != arm_sec->sec)
8425 {
8426 Elf_Internal_Shdr *relsec;
8427
8428 arm_free_section (arm_sec);
8429
8430 arm_sec->sec = sec;
8431 arm_sec->data = get_data (NULL, aux->filedata, sec->sh_offset, 1,
8432 sec->sh_size, _("unwind data"));
8433 arm_sec->rela = NULL;
8434 arm_sec->nrelas = 0;
8435
8436 for (relsec = filedata->section_headers;
8437 relsec < filedata->section_headers + filedata->file_header.e_shnum;
8438 ++relsec)
8439 {
8440 if (relsec->sh_info >= filedata->file_header.e_shnum
8441 || filedata->section_headers + relsec->sh_info != sec
8442 /* PR 15745: Check the section type as well. */
8443 || (relsec->sh_type != SHT_REL
8444 && relsec->sh_type != SHT_RELA))
8445 continue;
8446
8447 arm_sec->rel_type = relsec->sh_type;
8448 if (relsec->sh_type == SHT_REL)
8449 {
8450 if (!slurp_rel_relocs (aux->filedata, relsec->sh_offset,
8451 relsec->sh_size,
8452 & arm_sec->rela, & arm_sec->nrelas))
8453 return FALSE;
8454 }
8455 else /* relsec->sh_type == SHT_RELA */
8456 {
8457 if (!slurp_rela_relocs (aux->filedata, relsec->sh_offset,
8458 relsec->sh_size,
8459 & arm_sec->rela, & arm_sec->nrelas))
8460 return FALSE;
8461 }
8462 break;
8463 }
8464
8465 arm_sec->next_rela = arm_sec->rela;
8466 }
8467
8468 /* If there is no unwind data we can do nothing. */
8469 if (arm_sec->data == NULL)
8470 return FALSE;
8471
8472 /* If the offset is invalid then fail. */
8473 if (/* PR 21343 *//* PR 18879 */
8474 sec->sh_size < 4
8475 || word_offset > (sec->sh_size - 4)
8476 || ((bfd_signed_vma) word_offset) < 0)
8477 return FALSE;
8478
8479 /* Get the word at the required offset. */
8480 word = byte_get (arm_sec->data + word_offset, 4);
8481
8482 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
8483 if (arm_sec->rela == NULL)
8484 {
8485 * wordp = word;
8486 return TRUE;
8487 }
8488
8489 /* Look through the relocs to find the one that applies to the provided offset. */
8490 wrapped = FALSE;
8491 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
8492 {
8493 bfd_vma prelval, offset;
8494
8495 if (rp->r_offset > word_offset && !wrapped)
8496 {
8497 rp = arm_sec->rela;
8498 wrapped = TRUE;
8499 }
8500 if (rp->r_offset > word_offset)
8501 break;
8502
8503 if (rp->r_offset & 3)
8504 {
8505 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
8506 (unsigned long) rp->r_offset);
8507 continue;
8508 }
8509
8510 if (rp->r_offset < word_offset)
8511 continue;
8512
8513 /* PR 17531: file: 027-161405-0.004 */
8514 if (aux->symtab == NULL)
8515 continue;
8516
8517 if (arm_sec->rel_type == SHT_REL)
8518 {
8519 offset = word & 0x7fffffff;
8520 if (offset & 0x40000000)
8521 offset |= ~ (bfd_vma) 0x7fffffff;
8522 }
8523 else if (arm_sec->rel_type == SHT_RELA)
8524 offset = rp->r_addend;
8525 else
8526 {
8527 error (_("Unknown section relocation type %d encountered\n"),
8528 arm_sec->rel_type);
8529 break;
8530 }
8531
8532 /* PR 17531 file: 027-1241568-0.004. */
8533 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8534 {
8535 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8536 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8537 break;
8538 }
8539
8540 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8541 offset += sym->st_value;
8542 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8543
8544 /* Check that we are processing the expected reloc type. */
8545 if (filedata->file_header.e_machine == EM_ARM)
8546 {
8547 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8548 if (relname == NULL)
8549 {
8550 warn (_("Skipping unknown ARM relocation type: %d\n"),
8551 (int) ELF32_R_TYPE (rp->r_info));
8552 continue;
8553 }
8554
8555 if (streq (relname, "R_ARM_NONE"))
8556 continue;
8557
8558 if (! streq (relname, "R_ARM_PREL31"))
8559 {
8560 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8561 continue;
8562 }
8563 }
8564 else if (filedata->file_header.e_machine == EM_TI_C6000)
8565 {
8566 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8567 if (relname == NULL)
8568 {
8569 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8570 (int) ELF32_R_TYPE (rp->r_info));
8571 continue;
8572 }
8573
8574 if (streq (relname, "R_C6000_NONE"))
8575 continue;
8576
8577 if (! streq (relname, "R_C6000_PREL31"))
8578 {
8579 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8580 continue;
8581 }
8582
8583 prelval >>= 1;
8584 }
8585 else
8586 {
8587 /* This function currently only supports ARM and TI unwinders. */
8588 warn (_("Only TI and ARM unwinders are currently supported\n"));
8589 break;
8590 }
8591
8592 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8593 addr->section = sym->st_shndx;
8594 addr->offset = offset;
8595
8596 if (sym_name)
8597 * sym_name = sym->st_name;
8598 break;
8599 }
8600
8601 *wordp = word;
8602 arm_sec->next_rela = rp;
8603
8604 return TRUE;
8605 }
8606
8607 static const char *tic6x_unwind_regnames[16] =
8608 {
8609 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8610 "A14", "A13", "A12", "A11", "A10",
8611 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8612 };
8613
8614 static void
8615 decode_tic6x_unwind_regmask (unsigned int mask)
8616 {
8617 int i;
8618
8619 for (i = 12; mask; mask >>= 1, i--)
8620 {
8621 if (mask & 1)
8622 {
8623 fputs (tic6x_unwind_regnames[i], stdout);
8624 if (mask > 1)
8625 fputs (", ", stdout);
8626 }
8627 }
8628 }
8629
8630 #define ADVANCE \
8631 if (remaining == 0 && more_words) \
8632 { \
8633 data_offset += 4; \
8634 if (! get_unwind_section_word (filedata, aux, data_arm_sec, data_sec, \
8635 data_offset, & word, & addr, NULL)) \
8636 return FALSE; \
8637 remaining = 4; \
8638 more_words--; \
8639 } \
8640
8641 #define GET_OP(OP) \
8642 ADVANCE; \
8643 if (remaining) \
8644 { \
8645 remaining--; \
8646 (OP) = word >> 24; \
8647 word <<= 8; \
8648 } \
8649 else \
8650 { \
8651 printf (_("[Truncated opcode]\n")); \
8652 return FALSE; \
8653 } \
8654 printf ("0x%02x ", OP)
8655
8656 static bfd_boolean
8657 decode_arm_unwind_bytecode (Filedata * filedata,
8658 struct arm_unw_aux_info * aux,
8659 unsigned int word,
8660 unsigned int remaining,
8661 unsigned int more_words,
8662 bfd_vma data_offset,
8663 Elf_Internal_Shdr * data_sec,
8664 struct arm_section * data_arm_sec)
8665 {
8666 struct absaddr addr;
8667 bfd_boolean res = TRUE;
8668
8669 /* Decode the unwinding instructions. */
8670 while (1)
8671 {
8672 unsigned int op, op2;
8673
8674 ADVANCE;
8675 if (remaining == 0)
8676 break;
8677 remaining--;
8678 op = word >> 24;
8679 word <<= 8;
8680
8681 printf (" 0x%02x ", op);
8682
8683 if ((op & 0xc0) == 0x00)
8684 {
8685 int offset = ((op & 0x3f) << 2) + 4;
8686
8687 printf (" vsp = vsp + %d", offset);
8688 }
8689 else if ((op & 0xc0) == 0x40)
8690 {
8691 int offset = ((op & 0x3f) << 2) + 4;
8692
8693 printf (" vsp = vsp - %d", offset);
8694 }
8695 else if ((op & 0xf0) == 0x80)
8696 {
8697 GET_OP (op2);
8698 if (op == 0x80 && op2 == 0)
8699 printf (_("Refuse to unwind"));
8700 else
8701 {
8702 unsigned int mask = ((op & 0x0f) << 8) | op2;
8703 bfd_boolean first = TRUE;
8704 int i;
8705
8706 printf ("pop {");
8707 for (i = 0; i < 12; i++)
8708 if (mask & (1 << i))
8709 {
8710 if (first)
8711 first = FALSE;
8712 else
8713 printf (", ");
8714 printf ("r%d", 4 + i);
8715 }
8716 printf ("}");
8717 }
8718 }
8719 else if ((op & 0xf0) == 0x90)
8720 {
8721 if (op == 0x9d || op == 0x9f)
8722 printf (_(" [Reserved]"));
8723 else
8724 printf (" vsp = r%d", op & 0x0f);
8725 }
8726 else if ((op & 0xf0) == 0xa0)
8727 {
8728 int end = 4 + (op & 0x07);
8729 bfd_boolean first = TRUE;
8730 int i;
8731
8732 printf (" pop {");
8733 for (i = 4; i <= end; i++)
8734 {
8735 if (first)
8736 first = FALSE;
8737 else
8738 printf (", ");
8739 printf ("r%d", i);
8740 }
8741 if (op & 0x08)
8742 {
8743 if (!first)
8744 printf (", ");
8745 printf ("r14");
8746 }
8747 printf ("}");
8748 }
8749 else if (op == 0xb0)
8750 printf (_(" finish"));
8751 else if (op == 0xb1)
8752 {
8753 GET_OP (op2);
8754 if (op2 == 0 || (op2 & 0xf0) != 0)
8755 printf (_("[Spare]"));
8756 else
8757 {
8758 unsigned int mask = op2 & 0x0f;
8759 bfd_boolean first = TRUE;
8760 int i;
8761
8762 printf ("pop {");
8763 for (i = 0; i < 12; i++)
8764 if (mask & (1 << i))
8765 {
8766 if (first)
8767 first = FALSE;
8768 else
8769 printf (", ");
8770 printf ("r%d", i);
8771 }
8772 printf ("}");
8773 }
8774 }
8775 else if (op == 0xb2)
8776 {
8777 unsigned char buf[9];
8778 unsigned int i, len;
8779 unsigned long offset;
8780
8781 for (i = 0; i < sizeof (buf); i++)
8782 {
8783 GET_OP (buf[i]);
8784 if ((buf[i] & 0x80) == 0)
8785 break;
8786 }
8787 if (i == sizeof (buf))
8788 {
8789 error (_("corrupt change to vsp"));
8790 res = FALSE;
8791 }
8792 else
8793 {
8794 offset = read_leb128 (buf, buf + i + 1, FALSE, &len, NULL);
8795 assert (len == i + 1);
8796 offset = offset * 4 + 0x204;
8797 printf ("vsp = vsp + %ld", offset);
8798 }
8799 }
8800 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8801 {
8802 unsigned int first, last;
8803
8804 GET_OP (op2);
8805 first = op2 >> 4;
8806 last = op2 & 0x0f;
8807 if (op == 0xc8)
8808 first = first + 16;
8809 printf ("pop {D%d", first);
8810 if (last)
8811 printf ("-D%d", first + last);
8812 printf ("}");
8813 }
8814 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8815 {
8816 unsigned int count = op & 0x07;
8817
8818 printf ("pop {D8");
8819 if (count)
8820 printf ("-D%d", 8 + count);
8821 printf ("}");
8822 }
8823 else if (op >= 0xc0 && op <= 0xc5)
8824 {
8825 unsigned int count = op & 0x07;
8826
8827 printf (" pop {wR10");
8828 if (count)
8829 printf ("-wR%d", 10 + count);
8830 printf ("}");
8831 }
8832 else if (op == 0xc6)
8833 {
8834 unsigned int first, last;
8835
8836 GET_OP (op2);
8837 first = op2 >> 4;
8838 last = op2 & 0x0f;
8839 printf ("pop {wR%d", first);
8840 if (last)
8841 printf ("-wR%d", first + last);
8842 printf ("}");
8843 }
8844 else if (op == 0xc7)
8845 {
8846 GET_OP (op2);
8847 if (op2 == 0 || (op2 & 0xf0) != 0)
8848 printf (_("[Spare]"));
8849 else
8850 {
8851 unsigned int mask = op2 & 0x0f;
8852 bfd_boolean first = TRUE;
8853 int i;
8854
8855 printf ("pop {");
8856 for (i = 0; i < 4; i++)
8857 if (mask & (1 << i))
8858 {
8859 if (first)
8860 first = FALSE;
8861 else
8862 printf (", ");
8863 printf ("wCGR%d", i);
8864 }
8865 printf ("}");
8866 }
8867 }
8868 else
8869 {
8870 printf (_(" [unsupported opcode]"));
8871 res = FALSE;
8872 }
8873
8874 printf ("\n");
8875 }
8876
8877 return res;
8878 }
8879
8880 static bfd_boolean
8881 decode_tic6x_unwind_bytecode (Filedata * filedata,
8882 struct arm_unw_aux_info * aux,
8883 unsigned int word,
8884 unsigned int remaining,
8885 unsigned int more_words,
8886 bfd_vma data_offset,
8887 Elf_Internal_Shdr * data_sec,
8888 struct arm_section * data_arm_sec)
8889 {
8890 struct absaddr addr;
8891
8892 /* Decode the unwinding instructions. */
8893 while (1)
8894 {
8895 unsigned int op, op2;
8896
8897 ADVANCE;
8898 if (remaining == 0)
8899 break;
8900 remaining--;
8901 op = word >> 24;
8902 word <<= 8;
8903
8904 printf (" 0x%02x ", op);
8905
8906 if ((op & 0xc0) == 0x00)
8907 {
8908 int offset = ((op & 0x3f) << 3) + 8;
8909 printf (" sp = sp + %d", offset);
8910 }
8911 else if ((op & 0xc0) == 0x80)
8912 {
8913 GET_OP (op2);
8914 if (op == 0x80 && op2 == 0)
8915 printf (_("Refuse to unwind"));
8916 else
8917 {
8918 unsigned int mask = ((op & 0x1f) << 8) | op2;
8919 if (op & 0x20)
8920 printf ("pop compact {");
8921 else
8922 printf ("pop {");
8923
8924 decode_tic6x_unwind_regmask (mask);
8925 printf("}");
8926 }
8927 }
8928 else if ((op & 0xf0) == 0xc0)
8929 {
8930 unsigned int reg;
8931 unsigned int nregs;
8932 unsigned int i;
8933 const char *name;
8934 struct
8935 {
8936 unsigned int offset;
8937 unsigned int reg;
8938 } regpos[16];
8939
8940 /* Scan entire instruction first so that GET_OP output is not
8941 interleaved with disassembly. */
8942 nregs = 0;
8943 for (i = 0; nregs < (op & 0xf); i++)
8944 {
8945 GET_OP (op2);
8946 reg = op2 >> 4;
8947 if (reg != 0xf)
8948 {
8949 regpos[nregs].offset = i * 2;
8950 regpos[nregs].reg = reg;
8951 nregs++;
8952 }
8953
8954 reg = op2 & 0xf;
8955 if (reg != 0xf)
8956 {
8957 regpos[nregs].offset = i * 2 + 1;
8958 regpos[nregs].reg = reg;
8959 nregs++;
8960 }
8961 }
8962
8963 printf (_("pop frame {"));
8964 if (nregs == 0)
8965 {
8966 printf (_("*corrupt* - no registers specified"));
8967 }
8968 else
8969 {
8970 reg = nregs - 1;
8971 for (i = i * 2; i > 0; i--)
8972 {
8973 if (regpos[reg].offset == i - 1)
8974 {
8975 name = tic6x_unwind_regnames[regpos[reg].reg];
8976 if (reg > 0)
8977 reg--;
8978 }
8979 else
8980 name = _("[pad]");
8981
8982 fputs (name, stdout);
8983 if (i > 1)
8984 printf (", ");
8985 }
8986 }
8987
8988 printf ("}");
8989 }
8990 else if (op == 0xd0)
8991 printf (" MOV FP, SP");
8992 else if (op == 0xd1)
8993 printf (" __c6xabi_pop_rts");
8994 else if (op == 0xd2)
8995 {
8996 unsigned char buf[9];
8997 unsigned int i, len;
8998 unsigned long offset;
8999
9000 for (i = 0; i < sizeof (buf); i++)
9001 {
9002 GET_OP (buf[i]);
9003 if ((buf[i] & 0x80) == 0)
9004 break;
9005 }
9006 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
9007 if (i == sizeof (buf))
9008 {
9009 warn (_("Corrupt stack pointer adjustment detected\n"));
9010 return FALSE;
9011 }
9012
9013 offset = read_leb128 (buf, buf + i + 1, FALSE, &len, NULL);
9014 assert (len == i + 1);
9015 offset = offset * 8 + 0x408;
9016 printf (_("sp = sp + %ld"), offset);
9017 }
9018 else if ((op & 0xf0) == 0xe0)
9019 {
9020 if ((op & 0x0f) == 7)
9021 printf (" RETURN");
9022 else
9023 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
9024 }
9025 else
9026 {
9027 printf (_(" [unsupported opcode]"));
9028 }
9029 putchar ('\n');
9030 }
9031
9032 return TRUE;
9033 }
9034
9035 static bfd_vma
9036 arm_expand_prel31 (Filedata * filedata, bfd_vma word, bfd_vma where)
9037 {
9038 bfd_vma offset;
9039
9040 offset = word & 0x7fffffff;
9041 if (offset & 0x40000000)
9042 offset |= ~ (bfd_vma) 0x7fffffff;
9043
9044 if (filedata->file_header.e_machine == EM_TI_C6000)
9045 offset <<= 1;
9046
9047 return offset + where;
9048 }
9049
9050 static bfd_boolean
9051 decode_arm_unwind (Filedata * filedata,
9052 struct arm_unw_aux_info * aux,
9053 unsigned int word,
9054 unsigned int remaining,
9055 bfd_vma data_offset,
9056 Elf_Internal_Shdr * data_sec,
9057 struct arm_section * data_arm_sec)
9058 {
9059 int per_index;
9060 unsigned int more_words = 0;
9061 struct absaddr addr;
9062 bfd_vma sym_name = (bfd_vma) -1;
9063 bfd_boolean res = TRUE;
9064
9065 if (remaining == 0)
9066 {
9067 /* Fetch the first word.
9068 Note - when decoding an object file the address extracted
9069 here will always be 0. So we also pass in the sym_name
9070 parameter so that we can find the symbol associated with
9071 the personality routine. */
9072 if (! get_unwind_section_word (filedata, aux, data_arm_sec, data_sec, data_offset,
9073 & word, & addr, & sym_name))
9074 return FALSE;
9075
9076 remaining = 4;
9077 }
9078 else
9079 {
9080 addr.section = SHN_UNDEF;
9081 addr.offset = 0;
9082 }
9083
9084 if ((word & 0x80000000) == 0)
9085 {
9086 /* Expand prel31 for personality routine. */
9087 bfd_vma fn;
9088 const char *procname;
9089
9090 fn = arm_expand_prel31 (filedata, word, data_sec->sh_addr + data_offset);
9091 printf (_(" Personality routine: "));
9092 if (fn == 0
9093 && addr.section == SHN_UNDEF && addr.offset == 0
9094 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
9095 {
9096 procname = aux->strtab + sym_name;
9097 print_vma (fn, PREFIX_HEX);
9098 if (procname)
9099 {
9100 fputs (" <", stdout);
9101 fputs (procname, stdout);
9102 fputc ('>', stdout);
9103 }
9104 }
9105 else
9106 procname = arm_print_vma_and_name (filedata, aux, fn, addr);
9107 fputc ('\n', stdout);
9108
9109 /* The GCC personality routines use the standard compact
9110 encoding, starting with one byte giving the number of
9111 words. */
9112 if (procname != NULL
9113 && (const_strneq (procname, "__gcc_personality_v0")
9114 || const_strneq (procname, "__gxx_personality_v0")
9115 || const_strneq (procname, "__gcj_personality_v0")
9116 || const_strneq (procname, "__gnu_objc_personality_v0")))
9117 {
9118 remaining = 0;
9119 more_words = 1;
9120 ADVANCE;
9121 if (!remaining)
9122 {
9123 printf (_(" [Truncated data]\n"));
9124 return FALSE;
9125 }
9126 more_words = word >> 24;
9127 word <<= 8;
9128 remaining--;
9129 per_index = -1;
9130 }
9131 else
9132 return TRUE;
9133 }
9134 else
9135 {
9136 /* ARM EHABI Section 6.3:
9137
9138 An exception-handling table entry for the compact model looks like:
9139
9140 31 30-28 27-24 23-0
9141 -- ----- ----- ----
9142 1 0 index Data for personalityRoutine[index] */
9143
9144 if (filedata->file_header.e_machine == EM_ARM
9145 && (word & 0x70000000))
9146 {
9147 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
9148 res = FALSE;
9149 }
9150
9151 per_index = (word >> 24) & 0x7f;
9152 printf (_(" Compact model index: %d\n"), per_index);
9153 if (per_index == 0)
9154 {
9155 more_words = 0;
9156 word <<= 8;
9157 remaining--;
9158 }
9159 else if (per_index < 3)
9160 {
9161 more_words = (word >> 16) & 0xff;
9162 word <<= 16;
9163 remaining -= 2;
9164 }
9165 }
9166
9167 switch (filedata->file_header.e_machine)
9168 {
9169 case EM_ARM:
9170 if (per_index < 3)
9171 {
9172 if (! decode_arm_unwind_bytecode (filedata, aux, word, remaining, more_words,
9173 data_offset, data_sec, data_arm_sec))
9174 res = FALSE;
9175 }
9176 else
9177 {
9178 warn (_("Unknown ARM compact model index encountered\n"));
9179 printf (_(" [reserved]\n"));
9180 res = FALSE;
9181 }
9182 break;
9183
9184 case EM_TI_C6000:
9185 if (per_index < 3)
9186 {
9187 if (! decode_tic6x_unwind_bytecode (filedata, aux, word, remaining, more_words,
9188 data_offset, data_sec, data_arm_sec))
9189 res = FALSE;
9190 }
9191 else if (per_index < 5)
9192 {
9193 if (((word >> 17) & 0x7f) == 0x7f)
9194 printf (_(" Restore stack from frame pointer\n"));
9195 else
9196 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
9197 printf (_(" Registers restored: "));
9198 if (per_index == 4)
9199 printf (" (compact) ");
9200 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
9201 putchar ('\n');
9202 printf (_(" Return register: %s\n"),
9203 tic6x_unwind_regnames[word & 0xf]);
9204 }
9205 else
9206 printf (_(" [reserved (%d)]\n"), per_index);
9207 break;
9208
9209 default:
9210 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
9211 filedata->file_header.e_machine);
9212 res = FALSE;
9213 }
9214
9215 /* Decode the descriptors. Not implemented. */
9216
9217 return res;
9218 }
9219
9220 static bfd_boolean
9221 dump_arm_unwind (Filedata * filedata,
9222 struct arm_unw_aux_info * aux,
9223 Elf_Internal_Shdr * exidx_sec)
9224 {
9225 struct arm_section exidx_arm_sec, extab_arm_sec;
9226 unsigned int i, exidx_len;
9227 unsigned long j, nfuns;
9228 bfd_boolean res = TRUE;
9229
9230 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
9231 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
9232 exidx_len = exidx_sec->sh_size / 8;
9233
9234 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
9235 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
9236 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
9237 aux->funtab[nfuns++] = aux->symtab[j];
9238 aux->nfuns = nfuns;
9239 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
9240
9241 for (i = 0; i < exidx_len; i++)
9242 {
9243 unsigned int exidx_fn, exidx_entry;
9244 struct absaddr fn_addr, entry_addr;
9245 bfd_vma fn;
9246
9247 fputc ('\n', stdout);
9248
9249 if (! get_unwind_section_word (filedata, aux, & exidx_arm_sec, exidx_sec,
9250 8 * i, & exidx_fn, & fn_addr, NULL)
9251 || ! get_unwind_section_word (filedata, aux, & exidx_arm_sec, exidx_sec,
9252 8 * i + 4, & exidx_entry, & entry_addr, NULL))
9253 {
9254 free (aux->funtab);
9255 arm_free_section (& exidx_arm_sec);
9256 arm_free_section (& extab_arm_sec);
9257 return FALSE;
9258 }
9259
9260 /* ARM EHABI, Section 5:
9261 An index table entry consists of 2 words.
9262 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
9263 if (exidx_fn & 0x80000000)
9264 {
9265 warn (_("corrupt index table entry: %x\n"), exidx_fn);
9266 res = FALSE;
9267 }
9268
9269 fn = arm_expand_prel31 (filedata, exidx_fn, exidx_sec->sh_addr + 8 * i);
9270
9271 arm_print_vma_and_name (filedata, aux, fn, fn_addr);
9272 fputs (": ", stdout);
9273
9274 if (exidx_entry == 1)
9275 {
9276 print_vma (exidx_entry, PREFIX_HEX);
9277 fputs (" [cantunwind]\n", stdout);
9278 }
9279 else if (exidx_entry & 0x80000000)
9280 {
9281 print_vma (exidx_entry, PREFIX_HEX);
9282 fputc ('\n', stdout);
9283 decode_arm_unwind (filedata, aux, exidx_entry, 4, 0, NULL, NULL);
9284 }
9285 else
9286 {
9287 bfd_vma table, table_offset = 0;
9288 Elf_Internal_Shdr *table_sec;
9289
9290 fputs ("@", stdout);
9291 table = arm_expand_prel31 (filedata, exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
9292 print_vma (table, PREFIX_HEX);
9293 printf ("\n");
9294
9295 /* Locate the matching .ARM.extab. */
9296 if (entry_addr.section != SHN_UNDEF
9297 && entry_addr.section < filedata->file_header.e_shnum)
9298 {
9299 table_sec = filedata->section_headers + entry_addr.section;
9300 table_offset = entry_addr.offset;
9301 /* PR 18879 */
9302 if (table_offset > table_sec->sh_size
9303 || ((bfd_signed_vma) table_offset) < 0)
9304 {
9305 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
9306 (unsigned long) table_offset,
9307 printable_section_name (filedata, table_sec));
9308 res = FALSE;
9309 continue;
9310 }
9311 }
9312 else
9313 {
9314 table_sec = find_section_by_address (filedata, table);
9315 if (table_sec != NULL)
9316 table_offset = table - table_sec->sh_addr;
9317 }
9318
9319 if (table_sec == NULL)
9320 {
9321 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
9322 (unsigned long) table);
9323 res = FALSE;
9324 continue;
9325 }
9326
9327 if (! decode_arm_unwind (filedata, aux, 0, 0, table_offset, table_sec,
9328 &extab_arm_sec))
9329 res = FALSE;
9330 }
9331 }
9332
9333 printf ("\n");
9334
9335 free (aux->funtab);
9336 arm_free_section (&exidx_arm_sec);
9337 arm_free_section (&extab_arm_sec);
9338
9339 return res;
9340 }
9341
9342 /* Used for both ARM and C6X unwinding tables. */
9343
9344 static bfd_boolean
9345 arm_process_unwind (Filedata * filedata)
9346 {
9347 struct arm_unw_aux_info aux;
9348 Elf_Internal_Shdr *unwsec = NULL;
9349 Elf_Internal_Shdr *strsec;
9350 Elf_Internal_Shdr *sec;
9351 unsigned long i;
9352 unsigned int sec_type;
9353 bfd_boolean res = TRUE;
9354
9355 switch (filedata->file_header.e_machine)
9356 {
9357 case EM_ARM:
9358 sec_type = SHT_ARM_EXIDX;
9359 break;
9360
9361 case EM_TI_C6000:
9362 sec_type = SHT_C6000_UNWIND;
9363 break;
9364
9365 default:
9366 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
9367 filedata->file_header.e_machine);
9368 return FALSE;
9369 }
9370
9371 if (filedata->string_table == NULL)
9372 return FALSE;
9373
9374 memset (& aux, 0, sizeof (aux));
9375 aux.filedata = filedata;
9376
9377 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
9378 {
9379 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < filedata->file_header.e_shnum)
9380 {
9381 aux.symtab = GET_ELF_SYMBOLS (filedata, sec, & aux.nsyms);
9382
9383 strsec = filedata->section_headers + sec->sh_link;
9384
9385 /* PR binutils/17531 file: 011-12666-0.004. */
9386 if (aux.strtab != NULL)
9387 {
9388 error (_("Multiple string tables found in file.\n"));
9389 free (aux.strtab);
9390 res = FALSE;
9391 }
9392 aux.strtab = get_data (NULL, filedata, strsec->sh_offset,
9393 1, strsec->sh_size, _("string table"));
9394 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
9395 }
9396 else if (sec->sh_type == sec_type)
9397 unwsec = sec;
9398 }
9399
9400 if (unwsec == NULL)
9401 printf (_("\nThere are no unwind sections in this file.\n"));
9402 else
9403 for (i = 0, sec = filedata->section_headers; i < filedata->file_header.e_shnum; ++i, ++sec)
9404 {
9405 if (sec->sh_type == sec_type)
9406 {
9407 unsigned long num_unwind = sec->sh_size / (2 * eh_addr_size);
9408 printf (ngettext ("\nUnwind section '%s' at offset 0x%lx "
9409 "contains %lu entry:\n",
9410 "\nUnwind section '%s' at offset 0x%lx "
9411 "contains %lu entries:\n",
9412 num_unwind),
9413 printable_section_name (filedata, sec),
9414 (unsigned long) sec->sh_offset,
9415 num_unwind);
9416
9417 if (! dump_arm_unwind (filedata, &aux, sec))
9418 res = FALSE;
9419 }
9420 }
9421
9422 if (aux.symtab)
9423 free (aux.symtab);
9424 if (aux.strtab)
9425 free ((char *) aux.strtab);
9426
9427 return res;
9428 }
9429
9430 static bfd_boolean
9431 process_unwind (Filedata * filedata)
9432 {
9433 struct unwind_handler
9434 {
9435 unsigned int machtype;
9436 bfd_boolean (* handler)(Filedata *);
9437 } handlers[] =
9438 {
9439 { EM_ARM, arm_process_unwind },
9440 { EM_IA_64, ia64_process_unwind },
9441 { EM_PARISC, hppa_process_unwind },
9442 { EM_TI_C6000, arm_process_unwind },
9443 { 0, NULL }
9444 };
9445 int i;
9446
9447 if (!do_unwind)
9448 return TRUE;
9449
9450 for (i = 0; handlers[i].handler != NULL; i++)
9451 if (filedata->file_header.e_machine == handlers[i].machtype)
9452 return handlers[i].handler (filedata);
9453
9454 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
9455 get_machine_name (filedata->file_header.e_machine));
9456 return TRUE;
9457 }
9458
9459 static void
9460 dynamic_section_aarch64_val (Elf_Internal_Dyn * entry)
9461 {
9462 switch (entry->d_tag)
9463 {
9464 case DT_AARCH64_BTI_PLT:
9465 case DT_AARCH64_PAC_PLT:
9466 break;
9467 default:
9468 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9469 break;
9470 }
9471 putchar ('\n');
9472 }
9473
9474 static void
9475 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
9476 {
9477 switch (entry->d_tag)
9478 {
9479 case DT_MIPS_FLAGS:
9480 if (entry->d_un.d_val == 0)
9481 printf (_("NONE"));
9482 else
9483 {
9484 static const char * opts[] =
9485 {
9486 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
9487 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
9488 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
9489 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
9490 "RLD_ORDER_SAFE"
9491 };
9492 unsigned int cnt;
9493 bfd_boolean first = TRUE;
9494
9495 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
9496 if (entry->d_un.d_val & (1 << cnt))
9497 {
9498 printf ("%s%s", first ? "" : " ", opts[cnt]);
9499 first = FALSE;
9500 }
9501 }
9502 break;
9503
9504 case DT_MIPS_IVERSION:
9505 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9506 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
9507 else
9508 {
9509 char buf[40];
9510 sprintf_vma (buf, entry->d_un.d_ptr);
9511 /* Note: coded this way so that there is a single string for translation. */
9512 printf (_("<corrupt: %s>"), buf);
9513 }
9514 break;
9515
9516 case DT_MIPS_TIME_STAMP:
9517 {
9518 char timebuf[128];
9519 struct tm * tmp;
9520 time_t atime = entry->d_un.d_val;
9521
9522 tmp = gmtime (&atime);
9523 /* PR 17531: file: 6accc532. */
9524 if (tmp == NULL)
9525 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
9526 else
9527 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
9528 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9529 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9530 printf (_("Time Stamp: %s"), timebuf);
9531 }
9532 break;
9533
9534 case DT_MIPS_RLD_VERSION:
9535 case DT_MIPS_LOCAL_GOTNO:
9536 case DT_MIPS_CONFLICTNO:
9537 case DT_MIPS_LIBLISTNO:
9538 case DT_MIPS_SYMTABNO:
9539 case DT_MIPS_UNREFEXTNO:
9540 case DT_MIPS_HIPAGENO:
9541 case DT_MIPS_DELTA_CLASS_NO:
9542 case DT_MIPS_DELTA_INSTANCE_NO:
9543 case DT_MIPS_DELTA_RELOC_NO:
9544 case DT_MIPS_DELTA_SYM_NO:
9545 case DT_MIPS_DELTA_CLASSSYM_NO:
9546 case DT_MIPS_COMPACT_SIZE:
9547 print_vma (entry->d_un.d_val, DEC);
9548 break;
9549
9550 case DT_MIPS_XHASH:
9551 dynamic_info_DT_MIPS_XHASH = entry->d_un.d_val;
9552 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
9553 /* Falls through. */
9554
9555 default:
9556 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9557 }
9558 putchar ('\n');
9559 }
9560
9561 static void
9562 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
9563 {
9564 switch (entry->d_tag)
9565 {
9566 case DT_HP_DLD_FLAGS:
9567 {
9568 static struct
9569 {
9570 long int bit;
9571 const char * str;
9572 }
9573 flags[] =
9574 {
9575 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
9576 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
9577 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
9578 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
9579 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
9580 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
9581 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
9582 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
9583 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
9584 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
9585 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
9586 { DT_HP_GST, "HP_GST" },
9587 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
9588 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
9589 { DT_HP_NODELETE, "HP_NODELETE" },
9590 { DT_HP_GROUP, "HP_GROUP" },
9591 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
9592 };
9593 bfd_boolean first = TRUE;
9594 size_t cnt;
9595 bfd_vma val = entry->d_un.d_val;
9596
9597 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
9598 if (val & flags[cnt].bit)
9599 {
9600 if (! first)
9601 putchar (' ');
9602 fputs (flags[cnt].str, stdout);
9603 first = FALSE;
9604 val ^= flags[cnt].bit;
9605 }
9606
9607 if (val != 0 || first)
9608 {
9609 if (! first)
9610 putchar (' ');
9611 print_vma (val, HEX);
9612 }
9613 }
9614 break;
9615
9616 default:
9617 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9618 break;
9619 }
9620 putchar ('\n');
9621 }
9622
9623 #ifdef BFD64
9624
9625 /* VMS vs Unix time offset and factor. */
9626
9627 #define VMS_EPOCH_OFFSET 35067168000000000LL
9628 #define VMS_GRANULARITY_FACTOR 10000000
9629
9630 /* Display a VMS time in a human readable format. */
9631
9632 static void
9633 print_vms_time (bfd_int64_t vmstime)
9634 {
9635 struct tm *tm;
9636 time_t unxtime;
9637
9638 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9639 tm = gmtime (&unxtime);
9640 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9641 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9642 tm->tm_hour, tm->tm_min, tm->tm_sec);
9643 }
9644 #endif /* BFD64 */
9645
9646 static void
9647 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9648 {
9649 switch (entry->d_tag)
9650 {
9651 case DT_IA_64_PLT_RESERVE:
9652 /* First 3 slots reserved. */
9653 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9654 printf (" -- ");
9655 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9656 break;
9657
9658 case DT_IA_64_VMS_LINKTIME:
9659 #ifdef BFD64
9660 print_vms_time (entry->d_un.d_val);
9661 #endif
9662 break;
9663
9664 case DT_IA_64_VMS_LNKFLAGS:
9665 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9666 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9667 printf (" CALL_DEBUG");
9668 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9669 printf (" NOP0BUFS");
9670 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9671 printf (" P0IMAGE");
9672 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9673 printf (" MKTHREADS");
9674 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9675 printf (" UPCALLS");
9676 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9677 printf (" IMGSTA");
9678 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9679 printf (" INITIALIZE");
9680 if (entry->d_un.d_val & VMS_LF_MAIN)
9681 printf (" MAIN");
9682 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9683 printf (" EXE_INIT");
9684 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9685 printf (" TBK_IN_IMG");
9686 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9687 printf (" DBG_IN_IMG");
9688 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9689 printf (" TBK_IN_DSF");
9690 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9691 printf (" DBG_IN_DSF");
9692 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9693 printf (" SIGNATURES");
9694 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9695 printf (" REL_SEG_OFF");
9696 break;
9697
9698 default:
9699 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9700 break;
9701 }
9702 putchar ('\n');
9703 }
9704
9705 static bfd_boolean
9706 get_32bit_dynamic_section (Filedata * filedata)
9707 {
9708 Elf32_External_Dyn * edyn;
9709 Elf32_External_Dyn * ext;
9710 Elf_Internal_Dyn * entry;
9711
9712 edyn = (Elf32_External_Dyn *) get_data (NULL, filedata, dynamic_addr, 1,
9713 dynamic_size, _("dynamic section"));
9714 if (!edyn)
9715 return FALSE;
9716
9717 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9718 might not have the luxury of section headers. Look for the DT_NULL
9719 terminator to determine the number of entries. */
9720 for (ext = edyn, dynamic_nent = 0;
9721 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9722 ext++)
9723 {
9724 dynamic_nent++;
9725 if (BYTE_GET (ext->d_tag) == DT_NULL)
9726 break;
9727 }
9728
9729 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9730 sizeof (* entry));
9731 if (dynamic_section == NULL)
9732 {
9733 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9734 (unsigned long) dynamic_nent);
9735 free (edyn);
9736 return FALSE;
9737 }
9738
9739 for (ext = edyn, entry = dynamic_section;
9740 entry < dynamic_section + dynamic_nent;
9741 ext++, entry++)
9742 {
9743 entry->d_tag = BYTE_GET (ext->d_tag);
9744 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9745 }
9746
9747 free (edyn);
9748
9749 return TRUE;
9750 }
9751
9752 static bfd_boolean
9753 get_64bit_dynamic_section (Filedata * filedata)
9754 {
9755 Elf64_External_Dyn * edyn;
9756 Elf64_External_Dyn * ext;
9757 Elf_Internal_Dyn * entry;
9758
9759 /* Read in the data. */
9760 edyn = (Elf64_External_Dyn *) get_data (NULL, filedata, dynamic_addr, 1,
9761 dynamic_size, _("dynamic section"));
9762 if (!edyn)
9763 return FALSE;
9764
9765 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9766 might not have the luxury of section headers. Look for the DT_NULL
9767 terminator to determine the number of entries. */
9768 for (ext = edyn, dynamic_nent = 0;
9769 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9770 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9771 ext++)
9772 {
9773 dynamic_nent++;
9774 if (BYTE_GET (ext->d_tag) == DT_NULL)
9775 break;
9776 }
9777
9778 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9779 sizeof (* entry));
9780 if (dynamic_section == NULL)
9781 {
9782 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9783 (unsigned long) dynamic_nent);
9784 free (edyn);
9785 return FALSE;
9786 }
9787
9788 /* Convert from external to internal formats. */
9789 for (ext = edyn, entry = dynamic_section;
9790 entry < dynamic_section + dynamic_nent;
9791 ext++, entry++)
9792 {
9793 entry->d_tag = BYTE_GET (ext->d_tag);
9794 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9795 }
9796
9797 free (edyn);
9798
9799 return TRUE;
9800 }
9801
9802 static void
9803 print_dynamic_flags (bfd_vma flags)
9804 {
9805 bfd_boolean first = TRUE;
9806
9807 while (flags)
9808 {
9809 bfd_vma flag;
9810
9811 flag = flags & - flags;
9812 flags &= ~ flag;
9813
9814 if (first)
9815 first = FALSE;
9816 else
9817 putc (' ', stdout);
9818
9819 switch (flag)
9820 {
9821 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9822 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9823 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9824 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9825 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9826 default: fputs (_("unknown"), stdout); break;
9827 }
9828 }
9829 puts ("");
9830 }
9831
9832 /* Parse and display the contents of the dynamic section. */
9833
9834 static bfd_boolean
9835 process_dynamic_section (Filedata * filedata)
9836 {
9837 Elf_Internal_Dyn * entry;
9838
9839 if (dynamic_size == 0)
9840 {
9841 if (do_dynamic)
9842 printf (_("\nThere is no dynamic section in this file.\n"));
9843
9844 return TRUE;
9845 }
9846
9847 if (is_32bit_elf)
9848 {
9849 if (! get_32bit_dynamic_section (filedata))
9850 return FALSE;
9851 }
9852 else
9853 {
9854 if (! get_64bit_dynamic_section (filedata))
9855 return FALSE;
9856 }
9857
9858 /* Find the appropriate symbol table. */
9859 if (dynamic_symbols == NULL)
9860 {
9861 for (entry = dynamic_section;
9862 entry < dynamic_section + dynamic_nent;
9863 ++entry)
9864 {
9865 Elf_Internal_Shdr section;
9866
9867 if (entry->d_tag != DT_SYMTAB)
9868 continue;
9869
9870 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9871
9872 /* Since we do not know how big the symbol table is,
9873 we default to reading in the entire file (!) and
9874 processing that. This is overkill, I know, but it
9875 should work. */
9876 section.sh_offset = offset_from_vma (filedata, entry->d_un.d_val, 0);
9877 if ((bfd_size_type) section.sh_offset > filedata->file_size)
9878 {
9879 /* See PR 21379 for a reproducer. */
9880 error (_("Invalid DT_SYMTAB entry: %lx"), (long) section.sh_offset);
9881 return FALSE;
9882 }
9883
9884 if (archive_file_offset != 0)
9885 section.sh_size = archive_file_size - section.sh_offset;
9886 else
9887 section.sh_size = filedata->file_size - section.sh_offset;
9888
9889 if (is_32bit_elf)
9890 section.sh_entsize = sizeof (Elf32_External_Sym);
9891 else
9892 section.sh_entsize = sizeof (Elf64_External_Sym);
9893 section.sh_name = filedata->string_table_length;
9894
9895 if (dynamic_symbols != NULL)
9896 {
9897 error (_("Multiple dynamic symbol table sections found\n"));
9898 free (dynamic_symbols);
9899 }
9900 dynamic_symbols = GET_ELF_SYMBOLS (filedata, &section, & num_dynamic_syms);
9901 if (num_dynamic_syms < 1)
9902 {
9903 error (_("Unable to determine the number of symbols to load\n"));
9904 continue;
9905 }
9906 }
9907 }
9908
9909 /* Similarly find a string table. */
9910 if (dynamic_strings == NULL)
9911 {
9912 for (entry = dynamic_section;
9913 entry < dynamic_section + dynamic_nent;
9914 ++entry)
9915 {
9916 unsigned long offset;
9917 long str_tab_len;
9918
9919 if (entry->d_tag != DT_STRTAB)
9920 continue;
9921
9922 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9923
9924 /* Since we do not know how big the string table is,
9925 we default to reading in the entire file (!) and
9926 processing that. This is overkill, I know, but it
9927 should work. */
9928
9929 offset = offset_from_vma (filedata, entry->d_un.d_val, 0);
9930
9931 if (archive_file_offset != 0)
9932 str_tab_len = archive_file_size - offset;
9933 else
9934 str_tab_len = filedata->file_size - offset;
9935
9936 if (str_tab_len < 1)
9937 {
9938 error
9939 (_("Unable to determine the length of the dynamic string table\n"));
9940 continue;
9941 }
9942
9943 if (dynamic_strings != NULL)
9944 {
9945 error (_("Multiple dynamic string tables found\n"));
9946 free (dynamic_strings);
9947 }
9948
9949 dynamic_strings = (char *) get_data (NULL, filedata, offset, 1,
9950 str_tab_len,
9951 _("dynamic string table"));
9952 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9953 }
9954 }
9955
9956 /* And find the syminfo section if available. */
9957 if (dynamic_syminfo == NULL)
9958 {
9959 unsigned long syminsz = 0;
9960
9961 for (entry = dynamic_section;
9962 entry < dynamic_section + dynamic_nent;
9963 ++entry)
9964 {
9965 if (entry->d_tag == DT_SYMINENT)
9966 {
9967 /* Note: these braces are necessary to avoid a syntax
9968 error from the SunOS4 C compiler. */
9969 /* PR binutils/17531: A corrupt file can trigger this test.
9970 So do not use an assert, instead generate an error message. */
9971 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9972 error (_("Bad value (%d) for SYMINENT entry\n"),
9973 (int) entry->d_un.d_val);
9974 }
9975 else if (entry->d_tag == DT_SYMINSZ)
9976 syminsz = entry->d_un.d_val;
9977 else if (entry->d_tag == DT_SYMINFO)
9978 dynamic_syminfo_offset = offset_from_vma (filedata, entry->d_un.d_val,
9979 syminsz);
9980 }
9981
9982 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9983 {
9984 Elf_External_Syminfo * extsyminfo;
9985 Elf_External_Syminfo * extsym;
9986 Elf_Internal_Syminfo * syminfo;
9987
9988 /* There is a syminfo section. Read the data. */
9989 extsyminfo = (Elf_External_Syminfo *)
9990 get_data (NULL, filedata, dynamic_syminfo_offset, 1, syminsz,
9991 _("symbol information"));
9992 if (!extsyminfo)
9993 return FALSE;
9994
9995 if (dynamic_syminfo != NULL)
9996 {
9997 error (_("Multiple dynamic symbol information sections found\n"));
9998 free (dynamic_syminfo);
9999 }
10000 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
10001 if (dynamic_syminfo == NULL)
10002 {
10003 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
10004 (unsigned long) syminsz);
10005 return FALSE;
10006 }
10007
10008 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
10009 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
10010 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
10011 ++syminfo, ++extsym)
10012 {
10013 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
10014 syminfo->si_flags = BYTE_GET (extsym->si_flags);
10015 }
10016
10017 free (extsyminfo);
10018 }
10019 }
10020
10021 if (do_dynamic && dynamic_addr)
10022 printf (ngettext ("\nDynamic section at offset 0x%lx "
10023 "contains %lu entry:\n",
10024 "\nDynamic section at offset 0x%lx "
10025 "contains %lu entries:\n",
10026 dynamic_nent),
10027 dynamic_addr, (unsigned long) dynamic_nent);
10028 if (do_dynamic)
10029 printf (_(" Tag Type Name/Value\n"));
10030
10031 for (entry = dynamic_section;
10032 entry < dynamic_section + dynamic_nent;
10033 entry++)
10034 {
10035 if (do_dynamic)
10036 {
10037 const char * dtype;
10038
10039 putchar (' ');
10040 print_vma (entry->d_tag, FULL_HEX);
10041 dtype = get_dynamic_type (filedata, entry->d_tag);
10042 printf (" (%s)%*s", dtype,
10043 ((is_32bit_elf ? 27 : 19) - (int) strlen (dtype)), " ");
10044 }
10045
10046 switch (entry->d_tag)
10047 {
10048 case DT_FLAGS:
10049 if (do_dynamic)
10050 print_dynamic_flags (entry->d_un.d_val);
10051 break;
10052
10053 case DT_AUXILIARY:
10054 case DT_FILTER:
10055 case DT_CONFIG:
10056 case DT_DEPAUDIT:
10057 case DT_AUDIT:
10058 if (do_dynamic)
10059 {
10060 switch (entry->d_tag)
10061 {
10062 case DT_AUXILIARY:
10063 printf (_("Auxiliary library"));
10064 break;
10065
10066 case DT_FILTER:
10067 printf (_("Filter library"));
10068 break;
10069
10070 case DT_CONFIG:
10071 printf (_("Configuration file"));
10072 break;
10073
10074 case DT_DEPAUDIT:
10075 printf (_("Dependency audit library"));
10076 break;
10077
10078 case DT_AUDIT:
10079 printf (_("Audit library"));
10080 break;
10081 }
10082
10083 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
10084 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
10085 else
10086 {
10087 printf (": ");
10088 print_vma (entry->d_un.d_val, PREFIX_HEX);
10089 putchar ('\n');
10090 }
10091 }
10092 break;
10093
10094 case DT_FEATURE:
10095 if (do_dynamic)
10096 {
10097 printf (_("Flags:"));
10098
10099 if (entry->d_un.d_val == 0)
10100 printf (_(" None\n"));
10101 else
10102 {
10103 unsigned long int val = entry->d_un.d_val;
10104
10105 if (val & DTF_1_PARINIT)
10106 {
10107 printf (" PARINIT");
10108 val ^= DTF_1_PARINIT;
10109 }
10110 if (val & DTF_1_CONFEXP)
10111 {
10112 printf (" CONFEXP");
10113 val ^= DTF_1_CONFEXP;
10114 }
10115 if (val != 0)
10116 printf (" %lx", val);
10117 puts ("");
10118 }
10119 }
10120 break;
10121
10122 case DT_POSFLAG_1:
10123 if (do_dynamic)
10124 {
10125 printf (_("Flags:"));
10126
10127 if (entry->d_un.d_val == 0)
10128 printf (_(" None\n"));
10129 else
10130 {
10131 unsigned long int val = entry->d_un.d_val;
10132
10133 if (val & DF_P1_LAZYLOAD)
10134 {
10135 printf (" LAZYLOAD");
10136 val ^= DF_P1_LAZYLOAD;
10137 }
10138 if (val & DF_P1_GROUPPERM)
10139 {
10140 printf (" GROUPPERM");
10141 val ^= DF_P1_GROUPPERM;
10142 }
10143 if (val != 0)
10144 printf (" %lx", val);
10145 puts ("");
10146 }
10147 }
10148 break;
10149
10150 case DT_FLAGS_1:
10151 if (do_dynamic)
10152 {
10153 printf (_("Flags:"));
10154 if (entry->d_un.d_val == 0)
10155 printf (_(" None\n"));
10156 else
10157 {
10158 unsigned long int val = entry->d_un.d_val;
10159
10160 if (val & DF_1_NOW)
10161 {
10162 printf (" NOW");
10163 val ^= DF_1_NOW;
10164 }
10165 if (val & DF_1_GLOBAL)
10166 {
10167 printf (" GLOBAL");
10168 val ^= DF_1_GLOBAL;
10169 }
10170 if (val & DF_1_GROUP)
10171 {
10172 printf (" GROUP");
10173 val ^= DF_1_GROUP;
10174 }
10175 if (val & DF_1_NODELETE)
10176 {
10177 printf (" NODELETE");
10178 val ^= DF_1_NODELETE;
10179 }
10180 if (val & DF_1_LOADFLTR)
10181 {
10182 printf (" LOADFLTR");
10183 val ^= DF_1_LOADFLTR;
10184 }
10185 if (val & DF_1_INITFIRST)
10186 {
10187 printf (" INITFIRST");
10188 val ^= DF_1_INITFIRST;
10189 }
10190 if (val & DF_1_NOOPEN)
10191 {
10192 printf (" NOOPEN");
10193 val ^= DF_1_NOOPEN;
10194 }
10195 if (val & DF_1_ORIGIN)
10196 {
10197 printf (" ORIGIN");
10198 val ^= DF_1_ORIGIN;
10199 }
10200 if (val & DF_1_DIRECT)
10201 {
10202 printf (" DIRECT");
10203 val ^= DF_1_DIRECT;
10204 }
10205 if (val & DF_1_TRANS)
10206 {
10207 printf (" TRANS");
10208 val ^= DF_1_TRANS;
10209 }
10210 if (val & DF_1_INTERPOSE)
10211 {
10212 printf (" INTERPOSE");
10213 val ^= DF_1_INTERPOSE;
10214 }
10215 if (val & DF_1_NODEFLIB)
10216 {
10217 printf (" NODEFLIB");
10218 val ^= DF_1_NODEFLIB;
10219 }
10220 if (val & DF_1_NODUMP)
10221 {
10222 printf (" NODUMP");
10223 val ^= DF_1_NODUMP;
10224 }
10225 if (val & DF_1_CONFALT)
10226 {
10227 printf (" CONFALT");
10228 val ^= DF_1_CONFALT;
10229 }
10230 if (val & DF_1_ENDFILTEE)
10231 {
10232 printf (" ENDFILTEE");
10233 val ^= DF_1_ENDFILTEE;
10234 }
10235 if (val & DF_1_DISPRELDNE)
10236 {
10237 printf (" DISPRELDNE");
10238 val ^= DF_1_DISPRELDNE;
10239 }
10240 if (val & DF_1_DISPRELPND)
10241 {
10242 printf (" DISPRELPND");
10243 val ^= DF_1_DISPRELPND;
10244 }
10245 if (val & DF_1_NODIRECT)
10246 {
10247 printf (" NODIRECT");
10248 val ^= DF_1_NODIRECT;
10249 }
10250 if (val & DF_1_IGNMULDEF)
10251 {
10252 printf (" IGNMULDEF");
10253 val ^= DF_1_IGNMULDEF;
10254 }
10255 if (val & DF_1_NOKSYMS)
10256 {
10257 printf (" NOKSYMS");
10258 val ^= DF_1_NOKSYMS;
10259 }
10260 if (val & DF_1_NOHDR)
10261 {
10262 printf (" NOHDR");
10263 val ^= DF_1_NOHDR;
10264 }
10265 if (val & DF_1_EDITED)
10266 {
10267 printf (" EDITED");
10268 val ^= DF_1_EDITED;
10269 }
10270 if (val & DF_1_NORELOC)
10271 {
10272 printf (" NORELOC");
10273 val ^= DF_1_NORELOC;
10274 }
10275 if (val & DF_1_SYMINTPOSE)
10276 {
10277 printf (" SYMINTPOSE");
10278 val ^= DF_1_SYMINTPOSE;
10279 }
10280 if (val & DF_1_GLOBAUDIT)
10281 {
10282 printf (" GLOBAUDIT");
10283 val ^= DF_1_GLOBAUDIT;
10284 }
10285 if (val & DF_1_SINGLETON)
10286 {
10287 printf (" SINGLETON");
10288 val ^= DF_1_SINGLETON;
10289 }
10290 if (val & DF_1_STUB)
10291 {
10292 printf (" STUB");
10293 val ^= DF_1_STUB;
10294 }
10295 if (val & DF_1_PIE)
10296 {
10297 printf (" PIE");
10298 val ^= DF_1_PIE;
10299 }
10300 if (val & DF_1_KMOD)
10301 {
10302 printf (" KMOD");
10303 val ^= DF_1_KMOD;
10304 }
10305 if (val & DF_1_WEAKFILTER)
10306 {
10307 printf (" WEAKFILTER");
10308 val ^= DF_1_WEAKFILTER;
10309 }
10310 if (val & DF_1_NOCOMMON)
10311 {
10312 printf (" NOCOMMON");
10313 val ^= DF_1_NOCOMMON;
10314 }
10315 if (val != 0)
10316 printf (" %lx", val);
10317 puts ("");
10318 }
10319 }
10320 break;
10321
10322 case DT_PLTREL:
10323 dynamic_info[entry->d_tag] = entry->d_un.d_val;
10324 if (do_dynamic)
10325 puts (get_dynamic_type (filedata, entry->d_un.d_val));
10326 break;
10327
10328 case DT_NULL :
10329 case DT_NEEDED :
10330 case DT_PLTGOT :
10331 case DT_HASH :
10332 case DT_STRTAB :
10333 case DT_SYMTAB :
10334 case DT_RELA :
10335 case DT_INIT :
10336 case DT_FINI :
10337 case DT_SONAME :
10338 case DT_RPATH :
10339 case DT_SYMBOLIC:
10340 case DT_REL :
10341 case DT_DEBUG :
10342 case DT_TEXTREL :
10343 case DT_JMPREL :
10344 case DT_RUNPATH :
10345 dynamic_info[entry->d_tag] = entry->d_un.d_val;
10346
10347 if (do_dynamic)
10348 {
10349 char * name;
10350
10351 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
10352 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
10353 else
10354 name = NULL;
10355
10356 if (name)
10357 {
10358 switch (entry->d_tag)
10359 {
10360 case DT_NEEDED:
10361 printf (_("Shared library: [%s]"), name);
10362
10363 if (streq (name, program_interpreter))
10364 printf (_(" program interpreter"));
10365 break;
10366
10367 case DT_SONAME:
10368 printf (_("Library soname: [%s]"), name);
10369 break;
10370
10371 case DT_RPATH:
10372 printf (_("Library rpath: [%s]"), name);
10373 break;
10374
10375 case DT_RUNPATH:
10376 printf (_("Library runpath: [%s]"), name);
10377 break;
10378
10379 default:
10380 print_vma (entry->d_un.d_val, PREFIX_HEX);
10381 break;
10382 }
10383 }
10384 else
10385 print_vma (entry->d_un.d_val, PREFIX_HEX);
10386
10387 putchar ('\n');
10388 }
10389 break;
10390
10391 case DT_PLTRELSZ:
10392 case DT_RELASZ :
10393 case DT_STRSZ :
10394 case DT_RELSZ :
10395 case DT_RELAENT :
10396 case DT_SYMENT :
10397 case DT_RELENT :
10398 dynamic_info[entry->d_tag] = entry->d_un.d_val;
10399 /* Fall through. */
10400 case DT_PLTPADSZ:
10401 case DT_MOVEENT :
10402 case DT_MOVESZ :
10403 case DT_INIT_ARRAYSZ:
10404 case DT_FINI_ARRAYSZ:
10405 case DT_GNU_CONFLICTSZ:
10406 case DT_GNU_LIBLISTSZ:
10407 if (do_dynamic)
10408 {
10409 print_vma (entry->d_un.d_val, UNSIGNED);
10410 printf (_(" (bytes)\n"));
10411 }
10412 break;
10413
10414 case DT_VERDEFNUM:
10415 case DT_VERNEEDNUM:
10416 case DT_RELACOUNT:
10417 case DT_RELCOUNT:
10418 if (do_dynamic)
10419 {
10420 print_vma (entry->d_un.d_val, UNSIGNED);
10421 putchar ('\n');
10422 }
10423 break;
10424
10425 case DT_SYMINSZ:
10426 case DT_SYMINENT:
10427 case DT_SYMINFO:
10428 case DT_USED:
10429 case DT_INIT_ARRAY:
10430 case DT_FINI_ARRAY:
10431 if (do_dynamic)
10432 {
10433 if (entry->d_tag == DT_USED
10434 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
10435 {
10436 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
10437
10438 if (*name)
10439 {
10440 printf (_("Not needed object: [%s]\n"), name);
10441 break;
10442 }
10443 }
10444
10445 print_vma (entry->d_un.d_val, PREFIX_HEX);
10446 putchar ('\n');
10447 }
10448 break;
10449
10450 case DT_BIND_NOW:
10451 /* The value of this entry is ignored. */
10452 if (do_dynamic)
10453 putchar ('\n');
10454 break;
10455
10456 case DT_GNU_PRELINKED:
10457 if (do_dynamic)
10458 {
10459 struct tm * tmp;
10460 time_t atime = entry->d_un.d_val;
10461
10462 tmp = gmtime (&atime);
10463 /* PR 17533 file: 041-1244816-0.004. */
10464 if (tmp == NULL)
10465 printf (_("<corrupt time val: %lx"),
10466 (unsigned long) atime);
10467 else
10468 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
10469 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
10470 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
10471
10472 }
10473 break;
10474
10475 case DT_GNU_HASH:
10476 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
10477 if (do_dynamic)
10478 {
10479 print_vma (entry->d_un.d_val, PREFIX_HEX);
10480 putchar ('\n');
10481 }
10482 break;
10483
10484 default:
10485 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
10486 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
10487 entry->d_un.d_val;
10488
10489 if (do_dynamic)
10490 {
10491 switch (filedata->file_header.e_machine)
10492 {
10493 case EM_AARCH64:
10494 dynamic_section_aarch64_val (entry);
10495 break;
10496 case EM_MIPS:
10497 case EM_MIPS_RS3_LE:
10498 dynamic_section_mips_val (entry);
10499 break;
10500 case EM_PARISC:
10501 dynamic_section_parisc_val (entry);
10502 break;
10503 case EM_IA_64:
10504 dynamic_section_ia64_val (entry);
10505 break;
10506 default:
10507 print_vma (entry->d_un.d_val, PREFIX_HEX);
10508 putchar ('\n');
10509 }
10510 }
10511 break;
10512 }
10513 }
10514
10515 return TRUE;
10516 }
10517
10518 static char *
10519 get_ver_flags (unsigned int flags)
10520 {
10521 static char buff[128];
10522
10523 buff[0] = 0;
10524
10525 if (flags == 0)
10526 return _("none");
10527
10528 if (flags & VER_FLG_BASE)
10529 strcat (buff, "BASE");
10530
10531 if (flags & VER_FLG_WEAK)
10532 {
10533 if (flags & VER_FLG_BASE)
10534 strcat (buff, " | ");
10535
10536 strcat (buff, "WEAK");
10537 }
10538
10539 if (flags & VER_FLG_INFO)
10540 {
10541 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
10542 strcat (buff, " | ");
10543
10544 strcat (buff, "INFO");
10545 }
10546
10547 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10548 {
10549 if (flags & (VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10550 strcat (buff, " | ");
10551
10552 strcat (buff, _("<unknown>"));
10553 }
10554
10555 return buff;
10556 }
10557
10558 /* Display the contents of the version sections. */
10559
10560 static bfd_boolean
10561 process_version_sections (Filedata * filedata)
10562 {
10563 Elf_Internal_Shdr * section;
10564 unsigned i;
10565 bfd_boolean found = FALSE;
10566
10567 if (! do_version)
10568 return TRUE;
10569
10570 for (i = 0, section = filedata->section_headers;
10571 i < filedata->file_header.e_shnum;
10572 i++, section++)
10573 {
10574 switch (section->sh_type)
10575 {
10576 case SHT_GNU_verdef:
10577 {
10578 Elf_External_Verdef * edefs;
10579 unsigned long idx;
10580 unsigned long cnt;
10581 char * endbuf;
10582
10583 found = TRUE;
10584
10585 printf (ngettext ("\nVersion definition section '%s' "
10586 "contains %u entry:\n",
10587 "\nVersion definition section '%s' "
10588 "contains %u entries:\n",
10589 section->sh_info),
10590 printable_section_name (filedata, section),
10591 section->sh_info);
10592
10593 printf (_(" Addr: 0x"));
10594 printf_vma (section->sh_addr);
10595 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10596 (unsigned long) section->sh_offset, section->sh_link,
10597 printable_section_name_from_index (filedata, section->sh_link));
10598
10599 edefs = (Elf_External_Verdef *)
10600 get_data (NULL, filedata, section->sh_offset, 1,section->sh_size,
10601 _("version definition section"));
10602 if (!edefs)
10603 break;
10604 endbuf = (char *) edefs + section->sh_size;
10605
10606 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10607 {
10608 char * vstart;
10609 Elf_External_Verdef * edef;
10610 Elf_Internal_Verdef ent;
10611 Elf_External_Verdaux * eaux;
10612 Elf_Internal_Verdaux aux;
10613 unsigned long isum;
10614 int j;
10615
10616 vstart = ((char *) edefs) + idx;
10617 if (vstart + sizeof (*edef) > endbuf)
10618 break;
10619
10620 edef = (Elf_External_Verdef *) vstart;
10621
10622 ent.vd_version = BYTE_GET (edef->vd_version);
10623 ent.vd_flags = BYTE_GET (edef->vd_flags);
10624 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
10625 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
10626 ent.vd_hash = BYTE_GET (edef->vd_hash);
10627 ent.vd_aux = BYTE_GET (edef->vd_aux);
10628 ent.vd_next = BYTE_GET (edef->vd_next);
10629
10630 printf (_(" %#06lx: Rev: %d Flags: %s"),
10631 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
10632
10633 printf (_(" Index: %d Cnt: %d "),
10634 ent.vd_ndx, ent.vd_cnt);
10635
10636 /* Check for overflow. */
10637 if (ent.vd_aux > (size_t) (endbuf - vstart))
10638 break;
10639
10640 vstart += ent.vd_aux;
10641
10642 if (vstart + sizeof (*eaux) > endbuf)
10643 break;
10644 eaux = (Elf_External_Verdaux *) vstart;
10645
10646 aux.vda_name = BYTE_GET (eaux->vda_name);
10647 aux.vda_next = BYTE_GET (eaux->vda_next);
10648
10649 if (VALID_DYNAMIC_NAME (aux.vda_name))
10650 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10651 else
10652 printf (_("Name index: %ld\n"), aux.vda_name);
10653
10654 isum = idx + ent.vd_aux;
10655
10656 for (j = 1; j < ent.vd_cnt; j++)
10657 {
10658 if (aux.vda_next < sizeof (*eaux)
10659 && !(j == ent.vd_cnt - 1 && aux.vda_next == 0))
10660 {
10661 warn (_("Invalid vda_next field of %lx\n"),
10662 aux.vda_next);
10663 j = ent.vd_cnt;
10664 break;
10665 }
10666 /* Check for overflow. */
10667 if (aux.vda_next > (size_t) (endbuf - vstart))
10668 break;
10669
10670 isum += aux.vda_next;
10671 vstart += aux.vda_next;
10672
10673 if (vstart + sizeof (*eaux) > endbuf)
10674 break;
10675 eaux = (Elf_External_Verdaux *) vstart;
10676
10677 aux.vda_name = BYTE_GET (eaux->vda_name);
10678 aux.vda_next = BYTE_GET (eaux->vda_next);
10679
10680 if (VALID_DYNAMIC_NAME (aux.vda_name))
10681 printf (_(" %#06lx: Parent %d: %s\n"),
10682 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10683 else
10684 printf (_(" %#06lx: Parent %d, name index: %ld\n"),
10685 isum, j, aux.vda_name);
10686 }
10687
10688 if (j < ent.vd_cnt)
10689 printf (_(" Version def aux past end of section\n"));
10690
10691 /* PR 17531:
10692 file: id:000001,src:000172+005151,op:splice,rep:2. */
10693 if (ent.vd_next < sizeof (*edef)
10694 && !(cnt == section->sh_info - 1 && ent.vd_next == 0))
10695 {
10696 warn (_("Invalid vd_next field of %lx\n"), ent.vd_next);
10697 cnt = section->sh_info;
10698 break;
10699 }
10700 if (ent.vd_next > (size_t) (endbuf - ((char *) edefs + idx)))
10701 break;
10702
10703 idx += ent.vd_next;
10704 }
10705
10706 if (cnt < section->sh_info)
10707 printf (_(" Version definition past end of section\n"));
10708
10709 free (edefs);
10710 }
10711 break;
10712
10713 case SHT_GNU_verneed:
10714 {
10715 Elf_External_Verneed * eneed;
10716 unsigned long idx;
10717 unsigned long cnt;
10718 char * endbuf;
10719
10720 found = TRUE;
10721
10722 printf (ngettext ("\nVersion needs section '%s' "
10723 "contains %u entry:\n",
10724 "\nVersion needs section '%s' "
10725 "contains %u entries:\n",
10726 section->sh_info),
10727 printable_section_name (filedata, section), section->sh_info);
10728
10729 printf (_(" Addr: 0x"));
10730 printf_vma (section->sh_addr);
10731 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10732 (unsigned long) section->sh_offset, section->sh_link,
10733 printable_section_name_from_index (filedata, section->sh_link));
10734
10735 eneed = (Elf_External_Verneed *) get_data (NULL, filedata,
10736 section->sh_offset, 1,
10737 section->sh_size,
10738 _("Version Needs section"));
10739 if (!eneed)
10740 break;
10741 endbuf = (char *) eneed + section->sh_size;
10742
10743 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10744 {
10745 Elf_External_Verneed * entry;
10746 Elf_Internal_Verneed ent;
10747 unsigned long isum;
10748 int j;
10749 char * vstart;
10750
10751 vstart = ((char *) eneed) + idx;
10752 if (vstart + sizeof (*entry) > endbuf)
10753 break;
10754
10755 entry = (Elf_External_Verneed *) vstart;
10756
10757 ent.vn_version = BYTE_GET (entry->vn_version);
10758 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10759 ent.vn_file = BYTE_GET (entry->vn_file);
10760 ent.vn_aux = BYTE_GET (entry->vn_aux);
10761 ent.vn_next = BYTE_GET (entry->vn_next);
10762
10763 printf (_(" %#06lx: Version: %d"), idx, ent.vn_version);
10764
10765 if (VALID_DYNAMIC_NAME (ent.vn_file))
10766 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10767 else
10768 printf (_(" File: %lx"), ent.vn_file);
10769
10770 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10771
10772 /* Check for overflow. */
10773 if (ent.vn_aux > (size_t) (endbuf - vstart))
10774 break;
10775 vstart += ent.vn_aux;
10776
10777 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10778 {
10779 Elf_External_Vernaux * eaux;
10780 Elf_Internal_Vernaux aux;
10781
10782 if (vstart + sizeof (*eaux) > endbuf)
10783 break;
10784 eaux = (Elf_External_Vernaux *) vstart;
10785
10786 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10787 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10788 aux.vna_other = BYTE_GET (eaux->vna_other);
10789 aux.vna_name = BYTE_GET (eaux->vna_name);
10790 aux.vna_next = BYTE_GET (eaux->vna_next);
10791
10792 if (VALID_DYNAMIC_NAME (aux.vna_name))
10793 printf (_(" %#06lx: Name: %s"),
10794 isum, GET_DYNAMIC_NAME (aux.vna_name));
10795 else
10796 printf (_(" %#06lx: Name index: %lx"),
10797 isum, aux.vna_name);
10798
10799 printf (_(" Flags: %s Version: %d\n"),
10800 get_ver_flags (aux.vna_flags), aux.vna_other);
10801
10802 if (aux.vna_next < sizeof (*eaux)
10803 && !(j == ent.vn_cnt - 1 && aux.vna_next == 0))
10804 {
10805 warn (_("Invalid vna_next field of %lx\n"),
10806 aux.vna_next);
10807 j = ent.vn_cnt;
10808 break;
10809 }
10810 /* Check for overflow. */
10811 if (aux.vna_next > (size_t) (endbuf - vstart))
10812 break;
10813 isum += aux.vna_next;
10814 vstart += aux.vna_next;
10815 }
10816
10817 if (j < ent.vn_cnt)
10818 warn (_("Missing Version Needs auxillary information\n"));
10819
10820 if (ent.vn_next < sizeof (*entry)
10821 && !(cnt == section->sh_info - 1 && ent.vn_next == 0))
10822 {
10823 warn (_("Invalid vn_next field of %lx\n"), ent.vn_next);
10824 cnt = section->sh_info;
10825 break;
10826 }
10827 if (ent.vn_next > (size_t) (endbuf - ((char *) eneed + idx)))
10828 break;
10829 idx += ent.vn_next;
10830 }
10831
10832 if (cnt < section->sh_info)
10833 warn (_("Missing Version Needs information\n"));
10834
10835 free (eneed);
10836 }
10837 break;
10838
10839 case SHT_GNU_versym:
10840 {
10841 Elf_Internal_Shdr * link_section;
10842 size_t total;
10843 unsigned int cnt;
10844 unsigned char * edata;
10845 unsigned short * data;
10846 char * strtab;
10847 Elf_Internal_Sym * symbols;
10848 Elf_Internal_Shdr * string_sec;
10849 unsigned long num_syms;
10850 long off;
10851
10852 if (section->sh_link >= filedata->file_header.e_shnum)
10853 break;
10854
10855 link_section = filedata->section_headers + section->sh_link;
10856 total = section->sh_size / sizeof (Elf_External_Versym);
10857
10858 if (link_section->sh_link >= filedata->file_header.e_shnum)
10859 break;
10860
10861 found = TRUE;
10862
10863 symbols = GET_ELF_SYMBOLS (filedata, link_section, & num_syms);
10864 if (symbols == NULL)
10865 break;
10866
10867 string_sec = filedata->section_headers + link_section->sh_link;
10868
10869 strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset, 1,
10870 string_sec->sh_size,
10871 _("version string table"));
10872 if (!strtab)
10873 {
10874 free (symbols);
10875 break;
10876 }
10877
10878 printf (ngettext ("\nVersion symbols section '%s' "
10879 "contains %lu entry:\n",
10880 "\nVersion symbols section '%s' "
10881 "contains %lu entries:\n",
10882 total),
10883 printable_section_name (filedata, section), (unsigned long) total);
10884
10885 printf (_(" Addr: 0x"));
10886 printf_vma (section->sh_addr);
10887 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10888 (unsigned long) section->sh_offset, section->sh_link,
10889 printable_section_name (filedata, link_section));
10890
10891 off = offset_from_vma (filedata,
10892 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10893 total * sizeof (short));
10894 edata = (unsigned char *) get_data (NULL, filedata, off, total,
10895 sizeof (short),
10896 _("version symbol data"));
10897 if (!edata)
10898 {
10899 free (strtab);
10900 free (symbols);
10901 break;
10902 }
10903
10904 data = (short unsigned int *) cmalloc (total, sizeof (short));
10905
10906 for (cnt = total; cnt --;)
10907 data[cnt] = byte_get (edata + cnt * sizeof (short),
10908 sizeof (short));
10909
10910 free (edata);
10911
10912 for (cnt = 0; cnt < total; cnt += 4)
10913 {
10914 int j, nn;
10915 char *name;
10916 char *invalid = _("*invalid*");
10917
10918 printf (" %03x:", cnt);
10919
10920 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10921 switch (data[cnt + j])
10922 {
10923 case 0:
10924 fputs (_(" 0 (*local*) "), stdout);
10925 break;
10926
10927 case 1:
10928 fputs (_(" 1 (*global*) "), stdout);
10929 break;
10930
10931 default:
10932 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10933 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10934
10935 /* If this index value is greater than the size of the symbols
10936 array, break to avoid an out-of-bounds read. */
10937 if ((unsigned long)(cnt + j) >= num_syms)
10938 {
10939 warn (_("invalid index into symbol array\n"));
10940 break;
10941 }
10942
10943 name = NULL;
10944 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10945 {
10946 Elf_Internal_Verneed ivn;
10947 unsigned long offset;
10948
10949 offset = offset_from_vma
10950 (filedata, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10951 sizeof (Elf_External_Verneed));
10952
10953 do
10954 {
10955 Elf_Internal_Vernaux ivna;
10956 Elf_External_Verneed evn;
10957 Elf_External_Vernaux evna;
10958 unsigned long a_off;
10959
10960 if (get_data (&evn, filedata, offset, sizeof (evn), 1,
10961 _("version need")) == NULL)
10962 break;
10963
10964 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10965 ivn.vn_next = BYTE_GET (evn.vn_next);
10966
10967 a_off = offset + ivn.vn_aux;
10968
10969 do
10970 {
10971 if (get_data (&evna, filedata, a_off, sizeof (evna),
10972 1, _("version need aux (2)")) == NULL)
10973 {
10974 ivna.vna_next = 0;
10975 ivna.vna_other = 0;
10976 }
10977 else
10978 {
10979 ivna.vna_next = BYTE_GET (evna.vna_next);
10980 ivna.vna_other = BYTE_GET (evna.vna_other);
10981 }
10982
10983 a_off += ivna.vna_next;
10984 }
10985 while (ivna.vna_other != data[cnt + j]
10986 && ivna.vna_next != 0);
10987
10988 if (ivna.vna_other == data[cnt + j])
10989 {
10990 ivna.vna_name = BYTE_GET (evna.vna_name);
10991
10992 if (ivna.vna_name >= string_sec->sh_size)
10993 name = invalid;
10994 else
10995 name = strtab + ivna.vna_name;
10996 break;
10997 }
10998
10999 offset += ivn.vn_next;
11000 }
11001 while (ivn.vn_next);
11002 }
11003
11004 if (data[cnt + j] != 0x8001
11005 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
11006 {
11007 Elf_Internal_Verdef ivd;
11008 Elf_External_Verdef evd;
11009 unsigned long offset;
11010
11011 offset = offset_from_vma
11012 (filedata, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
11013 sizeof evd);
11014
11015 do
11016 {
11017 if (get_data (&evd, filedata, offset, sizeof (evd), 1,
11018 _("version def")) == NULL)
11019 {
11020 ivd.vd_next = 0;
11021 /* PR 17531: file: 046-1082287-0.004. */
11022 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
11023 break;
11024 }
11025 else
11026 {
11027 ivd.vd_next = BYTE_GET (evd.vd_next);
11028 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
11029 }
11030
11031 offset += ivd.vd_next;
11032 }
11033 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
11034 && ivd.vd_next != 0);
11035
11036 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
11037 {
11038 Elf_External_Verdaux evda;
11039 Elf_Internal_Verdaux ivda;
11040
11041 ivd.vd_aux = BYTE_GET (evd.vd_aux);
11042
11043 if (get_data (&evda, filedata,
11044 offset - ivd.vd_next + ivd.vd_aux,
11045 sizeof (evda), 1,
11046 _("version def aux")) == NULL)
11047 break;
11048
11049 ivda.vda_name = BYTE_GET (evda.vda_name);
11050
11051 if (ivda.vda_name >= string_sec->sh_size)
11052 name = invalid;
11053 else if (name != NULL && name != invalid)
11054 name = _("*both*");
11055 else
11056 name = strtab + ivda.vda_name;
11057 }
11058 }
11059 if (name != NULL)
11060 nn += printf ("(%s%-*s",
11061 name,
11062 12 - (int) strlen (name),
11063 ")");
11064
11065 if (nn < 18)
11066 printf ("%*c", 18 - nn, ' ');
11067 }
11068
11069 putchar ('\n');
11070 }
11071
11072 free (data);
11073 free (strtab);
11074 free (symbols);
11075 }
11076 break;
11077
11078 default:
11079 break;
11080 }
11081 }
11082
11083 if (! found)
11084 printf (_("\nNo version information found in this file.\n"));
11085
11086 return TRUE;
11087 }
11088
11089 static const char *
11090 get_symbol_binding (Filedata * filedata, unsigned int binding)
11091 {
11092 static char buff[32];
11093
11094 switch (binding)
11095 {
11096 case STB_LOCAL: return "LOCAL";
11097 case STB_GLOBAL: return "GLOBAL";
11098 case STB_WEAK: return "WEAK";
11099 default:
11100 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
11101 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
11102 binding);
11103 else if (binding >= STB_LOOS && binding <= STB_HIOS)
11104 {
11105 if (binding == STB_GNU_UNIQUE
11106 && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_GNU)
11107 return "UNIQUE";
11108 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
11109 }
11110 else
11111 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
11112 return buff;
11113 }
11114 }
11115
11116 static const char *
11117 get_symbol_type (Filedata * filedata, unsigned int type)
11118 {
11119 static char buff[32];
11120
11121 switch (type)
11122 {
11123 case STT_NOTYPE: return "NOTYPE";
11124 case STT_OBJECT: return "OBJECT";
11125 case STT_FUNC: return "FUNC";
11126 case STT_SECTION: return "SECTION";
11127 case STT_FILE: return "FILE";
11128 case STT_COMMON: return "COMMON";
11129 case STT_TLS: return "TLS";
11130 case STT_RELC: return "RELC";
11131 case STT_SRELC: return "SRELC";
11132 default:
11133 if (type >= STT_LOPROC && type <= STT_HIPROC)
11134 {
11135 if (filedata->file_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
11136 return "THUMB_FUNC";
11137
11138 if (filedata->file_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
11139 return "REGISTER";
11140
11141 if (filedata->file_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
11142 return "PARISC_MILLI";
11143
11144 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
11145 }
11146 else if (type >= STT_LOOS && type <= STT_HIOS)
11147 {
11148 if (filedata->file_header.e_machine == EM_PARISC)
11149 {
11150 if (type == STT_HP_OPAQUE)
11151 return "HP_OPAQUE";
11152 if (type == STT_HP_STUB)
11153 return "HP_STUB";
11154 }
11155
11156 if (type == STT_GNU_IFUNC
11157 && (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_GNU
11158 || filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD))
11159 return "IFUNC";
11160
11161 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
11162 }
11163 else
11164 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
11165 return buff;
11166 }
11167 }
11168
11169 static const char *
11170 get_symbol_visibility (unsigned int visibility)
11171 {
11172 switch (visibility)
11173 {
11174 case STV_DEFAULT: return "DEFAULT";
11175 case STV_INTERNAL: return "INTERNAL";
11176 case STV_HIDDEN: return "HIDDEN";
11177 case STV_PROTECTED: return "PROTECTED";
11178 default:
11179 error (_("Unrecognized visibility value: %u"), visibility);
11180 return _("<unknown>");
11181 }
11182 }
11183
11184 static const char *
11185 get_alpha_symbol_other (unsigned int other)
11186 {
11187 switch (other)
11188 {
11189 case STO_ALPHA_NOPV: return "NOPV";
11190 case STO_ALPHA_STD_GPLOAD: return "STD GPLOAD";
11191 default:
11192 error (_("Unrecognized alpah specific other value: %u"), other);
11193 return _("<unknown>");
11194 }
11195 }
11196
11197 static const char *
11198 get_solaris_symbol_visibility (unsigned int visibility)
11199 {
11200 switch (visibility)
11201 {
11202 case 4: return "EXPORTED";
11203 case 5: return "SINGLETON";
11204 case 6: return "ELIMINATE";
11205 default: return get_symbol_visibility (visibility);
11206 }
11207 }
11208
11209 static const char *
11210 get_aarch64_symbol_other (unsigned int other)
11211 {
11212 static char buf[32];
11213
11214 if (other & STO_AARCH64_VARIANT_PCS)
11215 {
11216 other &= ~STO_AARCH64_VARIANT_PCS;
11217 if (other == 0)
11218 return "VARIANT_PCS";
11219 snprintf (buf, sizeof buf, "VARIANT_PCS | %x", other);
11220 return buf;
11221 }
11222 return NULL;
11223 }
11224
11225 static const char *
11226 get_mips_symbol_other (unsigned int other)
11227 {
11228 switch (other)
11229 {
11230 case STO_OPTIONAL: return "OPTIONAL";
11231 case STO_MIPS_PLT: return "MIPS PLT";
11232 case STO_MIPS_PIC: return "MIPS PIC";
11233 case STO_MICROMIPS: return "MICROMIPS";
11234 case STO_MICROMIPS | STO_MIPS_PIC: return "MICROMIPS, MIPS PIC";
11235 case STO_MIPS16: return "MIPS16";
11236 default: return NULL;
11237 }
11238 }
11239
11240 static const char *
11241 get_ia64_symbol_other (Filedata * filedata, unsigned int other)
11242 {
11243 if (is_ia64_vms (filedata))
11244 {
11245 static char res[32];
11246
11247 res[0] = 0;
11248
11249 /* Function types is for images and .STB files only. */
11250 switch (filedata->file_header.e_type)
11251 {
11252 case ET_DYN:
11253 case ET_EXEC:
11254 switch (VMS_ST_FUNC_TYPE (other))
11255 {
11256 case VMS_SFT_CODE_ADDR:
11257 strcat (res, " CA");
11258 break;
11259 case VMS_SFT_SYMV_IDX:
11260 strcat (res, " VEC");
11261 break;
11262 case VMS_SFT_FD:
11263 strcat (res, " FD");
11264 break;
11265 case VMS_SFT_RESERVE:
11266 strcat (res, " RSV");
11267 break;
11268 default:
11269 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
11270 VMS_ST_FUNC_TYPE (other));
11271 strcat (res, " <unknown>");
11272 break;
11273 }
11274 break;
11275 default:
11276 break;
11277 }
11278 switch (VMS_ST_LINKAGE (other))
11279 {
11280 case VMS_STL_IGNORE:
11281 strcat (res, " IGN");
11282 break;
11283 case VMS_STL_RESERVE:
11284 strcat (res, " RSV");
11285 break;
11286 case VMS_STL_STD:
11287 strcat (res, " STD");
11288 break;
11289 case VMS_STL_LNK:
11290 strcat (res, " LNK");
11291 break;
11292 default:
11293 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
11294 VMS_ST_LINKAGE (other));
11295 strcat (res, " <unknown>");
11296 break;
11297 }
11298
11299 if (res[0] != 0)
11300 return res + 1;
11301 else
11302 return res;
11303 }
11304 return NULL;
11305 }
11306
11307 static const char *
11308 get_ppc64_symbol_other (unsigned int other)
11309 {
11310 if ((other & ~STO_PPC64_LOCAL_MASK) != 0)
11311 return NULL;
11312
11313 other >>= STO_PPC64_LOCAL_BIT;
11314 if (other <= 6)
11315 {
11316 static char buf[32];
11317 if (other >= 2)
11318 other = ppc64_decode_local_entry (other);
11319 snprintf (buf, sizeof buf, _("<localentry>: %d"), other);
11320 return buf;
11321 }
11322 return NULL;
11323 }
11324
11325 static const char *
11326 get_symbol_other (Filedata * filedata, unsigned int other)
11327 {
11328 const char * result = NULL;
11329 static char buff [32];
11330
11331 if (other == 0)
11332 return "";
11333
11334 switch (filedata->file_header.e_machine)
11335 {
11336 case EM_ALPHA:
11337 result = get_alpha_symbol_other (other);
11338 break;
11339 case EM_AARCH64:
11340 result = get_aarch64_symbol_other (other);
11341 break;
11342 case EM_MIPS:
11343 result = get_mips_symbol_other (other);
11344 break;
11345 case EM_IA_64:
11346 result = get_ia64_symbol_other (filedata, other);
11347 break;
11348 case EM_PPC64:
11349 result = get_ppc64_symbol_other (other);
11350 break;
11351 default:
11352 result = NULL;
11353 break;
11354 }
11355
11356 if (result)
11357 return result;
11358
11359 snprintf (buff, sizeof buff, _("<other>: %x"), other);
11360 return buff;
11361 }
11362
11363 static const char *
11364 get_symbol_index_type (Filedata * filedata, unsigned int type)
11365 {
11366 static char buff[32];
11367
11368 switch (type)
11369 {
11370 case SHN_UNDEF: return "UND";
11371 case SHN_ABS: return "ABS";
11372 case SHN_COMMON: return "COM";
11373 default:
11374 if (type == SHN_IA_64_ANSI_COMMON
11375 && filedata->file_header.e_machine == EM_IA_64
11376 && filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
11377 return "ANSI_COM";
11378 else if ((filedata->file_header.e_machine == EM_X86_64
11379 || filedata->file_header.e_machine == EM_L1OM
11380 || filedata->file_header.e_machine == EM_K1OM)
11381 && type == SHN_X86_64_LCOMMON)
11382 return "LARGE_COM";
11383 else if ((type == SHN_MIPS_SCOMMON
11384 && filedata->file_header.e_machine == EM_MIPS)
11385 || (type == SHN_TIC6X_SCOMMON
11386 && filedata->file_header.e_machine == EM_TI_C6000))
11387 return "SCOM";
11388 else if (type == SHN_MIPS_SUNDEFINED
11389 && filedata->file_header.e_machine == EM_MIPS)
11390 return "SUND";
11391 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
11392 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
11393 else if (type >= SHN_LOOS && type <= SHN_HIOS)
11394 sprintf (buff, "OS [0x%04x]", type & 0xffff);
11395 else if (type >= SHN_LORESERVE)
11396 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
11397 else if (type >= filedata->file_header.e_shnum)
11398 sprintf (buff, _("bad section index[%3d]"), type);
11399 else
11400 sprintf (buff, "%3d", type);
11401 break;
11402 }
11403
11404 return buff;
11405 }
11406
11407 static bfd_vma *
11408 get_dynamic_data (Filedata * filedata, bfd_size_type number, unsigned int ent_size)
11409 {
11410 unsigned char * e_data;
11411 bfd_vma * i_data;
11412
11413 /* If the size_t type is smaller than the bfd_size_type, eg because
11414 you are building a 32-bit tool on a 64-bit host, then make sure
11415 that when (number) is cast to (size_t) no information is lost. */
11416 if (sizeof (size_t) < sizeof (bfd_size_type)
11417 && (bfd_size_type) ((size_t) number) != number)
11418 {
11419 error (_("Size truncation prevents reading %s elements of size %u\n"),
11420 bfd_vmatoa ("u", number), ent_size);
11421 return NULL;
11422 }
11423
11424 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
11425 attempting to allocate memory when the read is bound to fail. */
11426 if (ent_size * number > filedata->file_size)
11427 {
11428 error (_("Invalid number of dynamic entries: %s\n"),
11429 bfd_vmatoa ("u", number));
11430 return NULL;
11431 }
11432
11433 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
11434 if (e_data == NULL)
11435 {
11436 error (_("Out of memory reading %s dynamic entries\n"),
11437 bfd_vmatoa ("u", number));
11438 return NULL;
11439 }
11440
11441 if (fread (e_data, ent_size, (size_t) number, filedata->handle) != number)
11442 {
11443 error (_("Unable to read in %s bytes of dynamic data\n"),
11444 bfd_vmatoa ("u", number * ent_size));
11445 free (e_data);
11446 return NULL;
11447 }
11448
11449 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
11450 if (i_data == NULL)
11451 {
11452 error (_("Out of memory allocating space for %s dynamic entries\n"),
11453 bfd_vmatoa ("u", number));
11454 free (e_data);
11455 return NULL;
11456 }
11457
11458 while (number--)
11459 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
11460
11461 free (e_data);
11462
11463 return i_data;
11464 }
11465
11466 static void
11467 print_dynamic_symbol (Filedata * filedata, bfd_vma si, unsigned long hn)
11468 {
11469 Elf_Internal_Sym * psym;
11470 int n;
11471
11472 n = print_vma (si, DEC_5);
11473 if (n < 5)
11474 fputs (&" "[n], stdout);
11475 printf (" %3lu: ", hn);
11476
11477 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
11478 {
11479 printf (_("<No info available for dynamic symbol number %lu>\n"),
11480 (unsigned long) si);
11481 return;
11482 }
11483
11484 psym = dynamic_symbols + si;
11485 print_vma (psym->st_value, LONG_HEX);
11486 putchar (' ');
11487 print_vma (psym->st_size, DEC_5);
11488
11489 printf (" %-7s", get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)));
11490 printf (" %-6s", get_symbol_binding (filedata, ELF_ST_BIND (psym->st_info)));
11491
11492 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11493 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11494 else
11495 {
11496 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11497
11498 printf (" %-7s", get_symbol_visibility (vis));
11499 /* Check to see if any other bits in the st_other field are set.
11500 Note - displaying this information disrupts the layout of the
11501 table being generated, but for the moment this case is very
11502 rare. */
11503 if (psym->st_other ^ vis)
11504 printf (" [%s] ", get_symbol_other (filedata, psym->st_other ^ vis));
11505 }
11506
11507 printf (" %3.3s ", get_symbol_index_type (filedata, psym->st_shndx));
11508 if (VALID_DYNAMIC_NAME (psym->st_name))
11509 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
11510 else
11511 printf (_(" <corrupt: %14ld>"), psym->st_name);
11512 putchar ('\n');
11513 }
11514
11515 static const char *
11516 get_symbol_version_string (Filedata * filedata,
11517 bfd_boolean is_dynsym,
11518 const char * strtab,
11519 unsigned long int strtab_size,
11520 unsigned int si,
11521 Elf_Internal_Sym * psym,
11522 enum versioned_symbol_info * sym_info,
11523 unsigned short * vna_other)
11524 {
11525 unsigned char data[2];
11526 unsigned short vers_data;
11527 unsigned long offset;
11528 unsigned short max_vd_ndx;
11529
11530 if (!is_dynsym
11531 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
11532 return NULL;
11533
11534 offset = offset_from_vma (filedata, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
11535 sizeof data + si * sizeof (vers_data));
11536
11537 if (get_data (&data, filedata, offset + si * sizeof (vers_data),
11538 sizeof (data), 1, _("version data")) == NULL)
11539 return NULL;
11540
11541 vers_data = byte_get (data, 2);
11542
11543 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data == 0)
11544 return NULL;
11545
11546 *sym_info = (vers_data & VERSYM_HIDDEN) != 0 ? symbol_hidden : symbol_public;
11547 max_vd_ndx = 0;
11548
11549 /* Usually we'd only see verdef for defined symbols, and verneed for
11550 undefined symbols. However, symbols defined by the linker in
11551 .dynbss for variables copied from a shared library in order to
11552 avoid text relocations are defined yet have verneed. We could
11553 use a heuristic to detect the special case, for example, check
11554 for verneed first on symbols defined in SHT_NOBITS sections, but
11555 it is simpler and more reliable to just look for both verdef and
11556 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
11557
11558 if (psym->st_shndx != SHN_UNDEF
11559 && vers_data != 0x8001
11560 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
11561 {
11562 Elf_Internal_Verdef ivd;
11563 Elf_Internal_Verdaux ivda;
11564 Elf_External_Verdaux evda;
11565 unsigned long off;
11566
11567 off = offset_from_vma (filedata,
11568 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
11569 sizeof (Elf_External_Verdef));
11570
11571 do
11572 {
11573 Elf_External_Verdef evd;
11574
11575 if (get_data (&evd, filedata, off, sizeof (evd), 1,
11576 _("version def")) == NULL)
11577 {
11578 ivd.vd_ndx = 0;
11579 ivd.vd_aux = 0;
11580 ivd.vd_next = 0;
11581 ivd.vd_flags = 0;
11582 }
11583 else
11584 {
11585 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
11586 ivd.vd_aux = BYTE_GET (evd.vd_aux);
11587 ivd.vd_next = BYTE_GET (evd.vd_next);
11588 ivd.vd_flags = BYTE_GET (evd.vd_flags);
11589 }
11590
11591 if ((ivd.vd_ndx & VERSYM_VERSION) > max_vd_ndx)
11592 max_vd_ndx = ivd.vd_ndx & VERSYM_VERSION;
11593
11594 off += ivd.vd_next;
11595 }
11596 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
11597
11598 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
11599 {
11600 if (ivd.vd_ndx == 1 && ivd.vd_flags == VER_FLG_BASE)
11601 return NULL;
11602
11603 off -= ivd.vd_next;
11604 off += ivd.vd_aux;
11605
11606 if (get_data (&evda, filedata, off, sizeof (evda), 1,
11607 _("version def aux")) != NULL)
11608 {
11609 ivda.vda_name = BYTE_GET (evda.vda_name);
11610
11611 if (psym->st_name != ivda.vda_name)
11612 return (ivda.vda_name < strtab_size
11613 ? strtab + ivda.vda_name : _("<corrupt>"));
11614 }
11615 }
11616 }
11617
11618 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
11619 {
11620 Elf_External_Verneed evn;
11621 Elf_Internal_Verneed ivn;
11622 Elf_Internal_Vernaux ivna;
11623
11624 offset = offset_from_vma (filedata,
11625 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
11626 sizeof evn);
11627 do
11628 {
11629 unsigned long vna_off;
11630
11631 if (get_data (&evn, filedata, offset, sizeof (evn), 1,
11632 _("version need")) == NULL)
11633 {
11634 ivna.vna_next = 0;
11635 ivna.vna_other = 0;
11636 ivna.vna_name = 0;
11637 break;
11638 }
11639
11640 ivn.vn_aux = BYTE_GET (evn.vn_aux);
11641 ivn.vn_next = BYTE_GET (evn.vn_next);
11642
11643 vna_off = offset + ivn.vn_aux;
11644
11645 do
11646 {
11647 Elf_External_Vernaux evna;
11648
11649 if (get_data (&evna, filedata, vna_off, sizeof (evna), 1,
11650 _("version need aux (3)")) == NULL)
11651 {
11652 ivna.vna_next = 0;
11653 ivna.vna_other = 0;
11654 ivna.vna_name = 0;
11655 }
11656 else
11657 {
11658 ivna.vna_other = BYTE_GET (evna.vna_other);
11659 ivna.vna_next = BYTE_GET (evna.vna_next);
11660 ivna.vna_name = BYTE_GET (evna.vna_name);
11661 }
11662
11663 vna_off += ivna.vna_next;
11664 }
11665 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
11666
11667 if (ivna.vna_other == vers_data)
11668 break;
11669
11670 offset += ivn.vn_next;
11671 }
11672 while (ivn.vn_next != 0);
11673
11674 if (ivna.vna_other == vers_data)
11675 {
11676 *sym_info = symbol_undefined;
11677 *vna_other = ivna.vna_other;
11678 return (ivna.vna_name < strtab_size
11679 ? strtab + ivna.vna_name : _("<corrupt>"));
11680 }
11681 else if ((max_vd_ndx || (vers_data & VERSYM_VERSION) != 1)
11682 && (vers_data & VERSYM_VERSION) > max_vd_ndx)
11683 return _("<corrupt>");
11684 }
11685 return NULL;
11686 }
11687
11688 /* Dump the symbol table. */
11689 static bfd_boolean
11690 process_symbol_table (Filedata * filedata)
11691 {
11692 Elf_Internal_Shdr * section;
11693 bfd_size_type nbuckets = 0;
11694 bfd_size_type nchains = 0;
11695 bfd_vma * buckets = NULL;
11696 bfd_vma * chains = NULL;
11697 bfd_vma ngnubuckets = 0;
11698 bfd_vma * gnubuckets = NULL;
11699 bfd_vma * gnuchains = NULL;
11700 bfd_vma * mipsxlat = NULL;
11701 bfd_vma gnusymidx = 0;
11702 bfd_size_type ngnuchains = 0;
11703
11704 if (!do_syms && !do_dyn_syms && !do_histogram)
11705 return TRUE;
11706
11707 if (dynamic_info[DT_HASH]
11708 && (do_histogram
11709 || (do_using_dynamic
11710 && !do_dyn_syms
11711 && dynamic_strings != NULL)))
11712 {
11713 unsigned char nb[8];
11714 unsigned char nc[8];
11715 unsigned int hash_ent_size = 4;
11716
11717 if ((filedata->file_header.e_machine == EM_ALPHA
11718 || filedata->file_header.e_machine == EM_S390
11719 || filedata->file_header.e_machine == EM_S390_OLD)
11720 && filedata->file_header.e_ident[EI_CLASS] == ELFCLASS64)
11721 hash_ent_size = 8;
11722
11723 if (fseek (filedata->handle,
11724 (archive_file_offset
11725 + offset_from_vma (filedata, dynamic_info[DT_HASH],
11726 sizeof nb + sizeof nc)),
11727 SEEK_SET))
11728 {
11729 error (_("Unable to seek to start of dynamic information\n"));
11730 goto no_hash;
11731 }
11732
11733 if (fread (nb, hash_ent_size, 1, filedata->handle) != 1)
11734 {
11735 error (_("Failed to read in number of buckets\n"));
11736 goto no_hash;
11737 }
11738
11739 if (fread (nc, hash_ent_size, 1, filedata->handle) != 1)
11740 {
11741 error (_("Failed to read in number of chains\n"));
11742 goto no_hash;
11743 }
11744
11745 nbuckets = byte_get (nb, hash_ent_size);
11746 nchains = byte_get (nc, hash_ent_size);
11747
11748 buckets = get_dynamic_data (filedata, nbuckets, hash_ent_size);
11749 chains = get_dynamic_data (filedata, nchains, hash_ent_size);
11750
11751 no_hash:
11752 if (buckets == NULL || chains == NULL)
11753 {
11754 if (do_using_dynamic)
11755 return FALSE;
11756 free (buckets);
11757 free (chains);
11758 buckets = NULL;
11759 chains = NULL;
11760 nbuckets = 0;
11761 nchains = 0;
11762 }
11763 }
11764
11765 if (dynamic_info_DT_GNU_HASH
11766 && (do_histogram
11767 || (do_using_dynamic
11768 && !do_dyn_syms
11769 && dynamic_strings != NULL)))
11770 {
11771 unsigned char nb[16];
11772 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11773 bfd_vma buckets_vma;
11774
11775 if (fseek (filedata->handle,
11776 (archive_file_offset
11777 + offset_from_vma (filedata, dynamic_info_DT_GNU_HASH,
11778 sizeof nb)),
11779 SEEK_SET))
11780 {
11781 error (_("Unable to seek to start of dynamic information\n"));
11782 goto no_gnu_hash;
11783 }
11784
11785 if (fread (nb, 16, 1, filedata->handle) != 1)
11786 {
11787 error (_("Failed to read in number of buckets\n"));
11788 goto no_gnu_hash;
11789 }
11790
11791 ngnubuckets = byte_get (nb, 4);
11792 gnusymidx = byte_get (nb + 4, 4);
11793 bitmaskwords = byte_get (nb + 8, 4);
11794 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11795 if (is_32bit_elf)
11796 buckets_vma += bitmaskwords * 4;
11797 else
11798 buckets_vma += bitmaskwords * 8;
11799
11800 if (fseek (filedata->handle,
11801 (archive_file_offset
11802 + offset_from_vma (filedata, buckets_vma, 4)),
11803 SEEK_SET))
11804 {
11805 error (_("Unable to seek to start of dynamic information\n"));
11806 goto no_gnu_hash;
11807 }
11808
11809 gnubuckets = get_dynamic_data (filedata, ngnubuckets, 4);
11810
11811 if (gnubuckets == NULL)
11812 goto no_gnu_hash;
11813
11814 for (i = 0; i < ngnubuckets; i++)
11815 if (gnubuckets[i] != 0)
11816 {
11817 if (gnubuckets[i] < gnusymidx)
11818 return FALSE;
11819
11820 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11821 maxchain = gnubuckets[i];
11822 }
11823
11824 if (maxchain == 0xffffffff)
11825 goto no_gnu_hash;
11826
11827 maxchain -= gnusymidx;
11828
11829 if (fseek (filedata->handle,
11830 (archive_file_offset
11831 + offset_from_vma (filedata, buckets_vma
11832 + 4 * (ngnubuckets + maxchain), 4)),
11833 SEEK_SET))
11834 {
11835 error (_("Unable to seek to start of dynamic information\n"));
11836 goto no_gnu_hash;
11837 }
11838
11839 do
11840 {
11841 if (fread (nb, 4, 1, filedata->handle) != 1)
11842 {
11843 error (_("Failed to determine last chain length\n"));
11844 goto no_gnu_hash;
11845 }
11846
11847 if (maxchain + 1 == 0)
11848 goto no_gnu_hash;
11849
11850 ++maxchain;
11851 }
11852 while ((byte_get (nb, 4) & 1) == 0);
11853
11854 if (fseek (filedata->handle,
11855 (archive_file_offset
11856 + offset_from_vma (filedata, buckets_vma + 4 * ngnubuckets, 4)),
11857 SEEK_SET))
11858 {
11859 error (_("Unable to seek to start of dynamic information\n"));
11860 goto no_gnu_hash;
11861 }
11862
11863 gnuchains = get_dynamic_data (filedata, maxchain, 4);
11864 ngnuchains = maxchain;
11865
11866 if (gnuchains == NULL)
11867 goto no_gnu_hash;
11868
11869 if (dynamic_info_DT_MIPS_XHASH)
11870 {
11871 if (fseek (filedata->handle,
11872 (archive_file_offset
11873 + offset_from_vma (filedata, (buckets_vma
11874 + 4 * (ngnubuckets
11875 + maxchain)), 4)),
11876 SEEK_SET))
11877 {
11878 error (_("Unable to seek to start of dynamic information\n"));
11879 goto no_gnu_hash;
11880 }
11881
11882 mipsxlat = get_dynamic_data (filedata, maxchain, 4);
11883 }
11884
11885 no_gnu_hash:
11886 if (dynamic_info_DT_MIPS_XHASH && mipsxlat == NULL)
11887 {
11888 free (gnuchains);
11889 gnuchains = NULL;
11890 }
11891 if (gnuchains == NULL)
11892 {
11893 free (gnubuckets);
11894 gnubuckets = NULL;
11895 ngnubuckets = 0;
11896 if (do_using_dynamic)
11897 return FALSE;
11898 }
11899 }
11900
11901 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11902 && do_syms
11903 && do_using_dynamic
11904 && dynamic_strings != NULL
11905 && dynamic_symbols != NULL)
11906 {
11907 unsigned long hn;
11908
11909 if (dynamic_info[DT_HASH])
11910 {
11911 bfd_vma si;
11912 char *visited;
11913
11914 printf (_("\nSymbol table for image:\n"));
11915 if (is_32bit_elf)
11916 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11917 else
11918 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11919
11920 visited = xcmalloc (nchains, 1);
11921 memset (visited, 0, nchains);
11922 for (hn = 0; hn < nbuckets; hn++)
11923 {
11924 for (si = buckets[hn]; si > 0; si = chains[si])
11925 {
11926 print_dynamic_symbol (filedata, si, hn);
11927 if (si >= nchains || visited[si])
11928 {
11929 error (_("histogram chain is corrupt\n"));
11930 break;
11931 }
11932 visited[si] = 1;
11933 }
11934 }
11935 free (visited);
11936 }
11937
11938 if (dynamic_info_DT_GNU_HASH)
11939 {
11940 printf (_("\nSymbol table of `%s' for image:\n"),
11941 GNU_HASH_SECTION_NAME);
11942 if (is_32bit_elf)
11943 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11944 else
11945 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11946
11947 for (hn = 0; hn < ngnubuckets; ++hn)
11948 if (gnubuckets[hn] != 0)
11949 {
11950 bfd_vma si = gnubuckets[hn];
11951 bfd_vma off = si - gnusymidx;
11952
11953 do
11954 {
11955 if (dynamic_info_DT_MIPS_XHASH)
11956 print_dynamic_symbol (filedata, mipsxlat[off], hn);
11957 else
11958 print_dynamic_symbol (filedata, si, hn);
11959 si++;
11960 }
11961 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11962 }
11963 }
11964 }
11965 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11966 && filedata->section_headers != NULL)
11967 {
11968 unsigned int i;
11969
11970 for (i = 0, section = filedata->section_headers;
11971 i < filedata->file_header.e_shnum;
11972 i++, section++)
11973 {
11974 unsigned int si;
11975 char * strtab = NULL;
11976 unsigned long int strtab_size = 0;
11977 Elf_Internal_Sym * symtab;
11978 Elf_Internal_Sym * psym;
11979 unsigned long num_syms;
11980
11981 if ((section->sh_type != SHT_SYMTAB
11982 && section->sh_type != SHT_DYNSYM)
11983 || (!do_syms
11984 && section->sh_type == SHT_SYMTAB))
11985 continue;
11986
11987 if (section->sh_entsize == 0)
11988 {
11989 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11990 printable_section_name (filedata, section));
11991 continue;
11992 }
11993
11994 num_syms = section->sh_size / section->sh_entsize;
11995 printf (ngettext ("\nSymbol table '%s' contains %lu entry:\n",
11996 "\nSymbol table '%s' contains %lu entries:\n",
11997 num_syms),
11998 printable_section_name (filedata, section),
11999 num_syms);
12000
12001 if (is_32bit_elf)
12002 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
12003 else
12004 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
12005
12006 symtab = GET_ELF_SYMBOLS (filedata, section, & num_syms);
12007 if (symtab == NULL)
12008 continue;
12009
12010 if (section->sh_link == filedata->file_header.e_shstrndx)
12011 {
12012 strtab = filedata->string_table;
12013 strtab_size = filedata->string_table_length;
12014 }
12015 else if (section->sh_link < filedata->file_header.e_shnum)
12016 {
12017 Elf_Internal_Shdr * string_sec;
12018
12019 string_sec = filedata->section_headers + section->sh_link;
12020
12021 strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset,
12022 1, string_sec->sh_size,
12023 _("string table"));
12024 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
12025 }
12026
12027 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
12028 {
12029 const char *version_string;
12030 enum versioned_symbol_info sym_info;
12031 unsigned short vna_other;
12032
12033 printf ("%6d: ", si);
12034 print_vma (psym->st_value, LONG_HEX);
12035 putchar (' ');
12036 print_vma (psym->st_size, DEC_5);
12037 printf (" %-7s", get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)));
12038 printf (" %-6s", get_symbol_binding (filedata, ELF_ST_BIND (psym->st_info)));
12039 if (filedata->file_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
12040 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
12041 else
12042 {
12043 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
12044
12045 printf (" %-7s", get_symbol_visibility (vis));
12046 /* Check to see if any other bits in the st_other field are set.
12047 Note - displaying this information disrupts the layout of the
12048 table being generated, but for the moment this case is very rare. */
12049 if (psym->st_other ^ vis)
12050 printf (" [%s] ", get_symbol_other (filedata, psym->st_other ^ vis));
12051 }
12052 printf (" %4s ", get_symbol_index_type (filedata, psym->st_shndx));
12053 print_symbol (25, psym->st_name < strtab_size
12054 ? strtab + psym->st_name : _("<corrupt>"));
12055
12056 version_string
12057 = get_symbol_version_string (filedata,
12058 section->sh_type == SHT_DYNSYM,
12059 strtab, strtab_size, si,
12060 psym, &sym_info, &vna_other);
12061 if (version_string)
12062 {
12063 if (sym_info == symbol_undefined)
12064 printf ("@%s (%d)", version_string, vna_other);
12065 else
12066 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
12067 version_string);
12068 }
12069
12070 putchar ('\n');
12071
12072 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
12073 && si >= section->sh_info
12074 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
12075 && filedata->file_header.e_machine != EM_MIPS
12076 /* Solaris binaries have been found to violate this requirement as
12077 well. Not sure if this is a bug or an ABI requirement. */
12078 && filedata->file_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
12079 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
12080 si, printable_section_name (filedata, section), section->sh_info);
12081 }
12082
12083 free (symtab);
12084 if (strtab != filedata->string_table)
12085 free (strtab);
12086 }
12087 }
12088 else if (do_syms)
12089 printf
12090 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
12091
12092 if (do_histogram && buckets != NULL)
12093 {
12094 unsigned long * lengths;
12095 unsigned long * counts;
12096 unsigned long hn;
12097 bfd_vma si;
12098 unsigned long maxlength = 0;
12099 unsigned long nzero_counts = 0;
12100 unsigned long nsyms = 0;
12101 char *visited;
12102
12103 printf (ngettext ("\nHistogram for bucket list length "
12104 "(total of %lu bucket):\n",
12105 "\nHistogram for bucket list length "
12106 "(total of %lu buckets):\n",
12107 (unsigned long) nbuckets),
12108 (unsigned long) nbuckets);
12109
12110 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
12111 if (lengths == NULL)
12112 {
12113 error (_("Out of memory allocating space for histogram buckets\n"));
12114 return FALSE;
12115 }
12116 visited = xcmalloc (nchains, 1);
12117 memset (visited, 0, nchains);
12118
12119 printf (_(" Length Number %% of total Coverage\n"));
12120 for (hn = 0; hn < nbuckets; ++hn)
12121 {
12122 for (si = buckets[hn]; si > 0; si = chains[si])
12123 {
12124 ++nsyms;
12125 if (maxlength < ++lengths[hn])
12126 ++maxlength;
12127 if (si >= nchains || visited[si])
12128 {
12129 error (_("histogram chain is corrupt\n"));
12130 break;
12131 }
12132 visited[si] = 1;
12133 }
12134 }
12135 free (visited);
12136
12137 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
12138 if (counts == NULL)
12139 {
12140 free (lengths);
12141 error (_("Out of memory allocating space for histogram counts\n"));
12142 return FALSE;
12143 }
12144
12145 for (hn = 0; hn < nbuckets; ++hn)
12146 ++counts[lengths[hn]];
12147
12148 if (nbuckets > 0)
12149 {
12150 unsigned long i;
12151 printf (" 0 %-10lu (%5.1f%%)\n",
12152 counts[0], (counts[0] * 100.0) / nbuckets);
12153 for (i = 1; i <= maxlength; ++i)
12154 {
12155 nzero_counts += counts[i] * i;
12156 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
12157 i, counts[i], (counts[i] * 100.0) / nbuckets,
12158 (nzero_counts * 100.0) / nsyms);
12159 }
12160 }
12161
12162 free (counts);
12163 free (lengths);
12164 }
12165
12166 if (buckets != NULL)
12167 {
12168 free (buckets);
12169 free (chains);
12170 }
12171
12172 if (do_histogram && gnubuckets != NULL)
12173 {
12174 unsigned long * lengths;
12175 unsigned long * counts;
12176 unsigned long hn;
12177 unsigned long maxlength = 0;
12178 unsigned long nzero_counts = 0;
12179 unsigned long nsyms = 0;
12180
12181 printf (ngettext ("\nHistogram for `%s' bucket list length "
12182 "(total of %lu bucket):\n",
12183 "\nHistogram for `%s' bucket list length "
12184 "(total of %lu buckets):\n",
12185 (unsigned long) ngnubuckets),
12186 GNU_HASH_SECTION_NAME,
12187 (unsigned long) ngnubuckets);
12188
12189 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
12190 if (lengths == NULL)
12191 {
12192 error (_("Out of memory allocating space for gnu histogram buckets\n"));
12193 return FALSE;
12194 }
12195
12196 printf (_(" Length Number %% of total Coverage\n"));
12197
12198 for (hn = 0; hn < ngnubuckets; ++hn)
12199 if (gnubuckets[hn] != 0)
12200 {
12201 bfd_vma off, length = 1;
12202
12203 for (off = gnubuckets[hn] - gnusymidx;
12204 /* PR 17531 file: 010-77222-0.004. */
12205 off < ngnuchains && (gnuchains[off] & 1) == 0;
12206 ++off)
12207 ++length;
12208 lengths[hn] = length;
12209 if (length > maxlength)
12210 maxlength = length;
12211 nsyms += length;
12212 }
12213
12214 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
12215 if (counts == NULL)
12216 {
12217 free (lengths);
12218 error (_("Out of memory allocating space for gnu histogram counts\n"));
12219 return FALSE;
12220 }
12221
12222 for (hn = 0; hn < ngnubuckets; ++hn)
12223 ++counts[lengths[hn]];
12224
12225 if (ngnubuckets > 0)
12226 {
12227 unsigned long j;
12228 printf (" 0 %-10lu (%5.1f%%)\n",
12229 counts[0], (counts[0] * 100.0) / ngnubuckets);
12230 for (j = 1; j <= maxlength; ++j)
12231 {
12232 nzero_counts += counts[j] * j;
12233 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
12234 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
12235 (nzero_counts * 100.0) / nsyms);
12236 }
12237 }
12238
12239 free (counts);
12240 free (lengths);
12241 free (gnubuckets);
12242 free (gnuchains);
12243 free (mipsxlat);
12244 }
12245
12246 return TRUE;
12247 }
12248
12249 static bfd_boolean
12250 process_syminfo (Filedata * filedata ATTRIBUTE_UNUSED)
12251 {
12252 unsigned int i;
12253
12254 if (dynamic_syminfo == NULL
12255 || !do_dynamic)
12256 /* No syminfo, this is ok. */
12257 return TRUE;
12258
12259 /* There better should be a dynamic symbol section. */
12260 if (dynamic_symbols == NULL || dynamic_strings == NULL)
12261 return FALSE;
12262
12263 if (dynamic_addr)
12264 printf (ngettext ("\nDynamic info segment at offset 0x%lx "
12265 "contains %d entry:\n",
12266 "\nDynamic info segment at offset 0x%lx "
12267 "contains %d entries:\n",
12268 dynamic_syminfo_nent),
12269 dynamic_syminfo_offset, dynamic_syminfo_nent);
12270
12271 printf (_(" Num: Name BoundTo Flags\n"));
12272 for (i = 0; i < dynamic_syminfo_nent; ++i)
12273 {
12274 unsigned short int flags = dynamic_syminfo[i].si_flags;
12275
12276 printf ("%4d: ", i);
12277 if (i >= num_dynamic_syms)
12278 printf (_("<corrupt index>"));
12279 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
12280 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
12281 else
12282 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
12283 putchar (' ');
12284
12285 switch (dynamic_syminfo[i].si_boundto)
12286 {
12287 case SYMINFO_BT_SELF:
12288 fputs ("SELF ", stdout);
12289 break;
12290 case SYMINFO_BT_PARENT:
12291 fputs ("PARENT ", stdout);
12292 break;
12293 default:
12294 if (dynamic_syminfo[i].si_boundto > 0
12295 && dynamic_syminfo[i].si_boundto < dynamic_nent
12296 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
12297 {
12298 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
12299 putchar (' ' );
12300 }
12301 else
12302 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
12303 break;
12304 }
12305
12306 if (flags & SYMINFO_FLG_DIRECT)
12307 printf (" DIRECT");
12308 if (flags & SYMINFO_FLG_PASSTHRU)
12309 printf (" PASSTHRU");
12310 if (flags & SYMINFO_FLG_COPY)
12311 printf (" COPY");
12312 if (flags & SYMINFO_FLG_LAZYLOAD)
12313 printf (" LAZYLOAD");
12314
12315 puts ("");
12316 }
12317
12318 return TRUE;
12319 }
12320
12321 /* A macro which evaluates to TRUE if the region ADDR .. ADDR + NELEM
12322 is contained by the region START .. END. The types of ADDR, START
12323 and END should all be the same. Note both ADDR + NELEM and END
12324 point to just beyond the end of the regions that are being tested. */
12325 #define IN_RANGE(START,END,ADDR,NELEM) \
12326 (((ADDR) >= (START)) && ((ADDR) < (END)) && ((ADDR) + (NELEM) <= (END)))
12327
12328 /* Check to see if the given reloc needs to be handled in a target specific
12329 manner. If so then process the reloc and return TRUE otherwise return
12330 FALSE.
12331
12332 If called with reloc == NULL, then this is a signal that reloc processing
12333 for the current section has finished, and any saved state should be
12334 discarded. */
12335
12336 static bfd_boolean
12337 target_specific_reloc_handling (Filedata * filedata,
12338 Elf_Internal_Rela * reloc,
12339 unsigned char * start,
12340 unsigned char * end,
12341 Elf_Internal_Sym * symtab,
12342 unsigned long num_syms)
12343 {
12344 unsigned int reloc_type = 0;
12345 unsigned long sym_index = 0;
12346
12347 if (reloc)
12348 {
12349 reloc_type = get_reloc_type (filedata, reloc->r_info);
12350 sym_index = get_reloc_symindex (reloc->r_info);
12351 }
12352
12353 switch (filedata->file_header.e_machine)
12354 {
12355 case EM_MSP430:
12356 case EM_MSP430_OLD:
12357 {
12358 static Elf_Internal_Sym * saved_sym = NULL;
12359
12360 if (reloc == NULL)
12361 {
12362 saved_sym = NULL;
12363 return TRUE;
12364 }
12365
12366 switch (reloc_type)
12367 {
12368 case 10: /* R_MSP430_SYM_DIFF */
12369 if (uses_msp430x_relocs (filedata))
12370 break;
12371 /* Fall through. */
12372 case 21: /* R_MSP430X_SYM_DIFF */
12373 /* PR 21139. */
12374 if (sym_index >= num_syms)
12375 error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
12376 sym_index);
12377 else
12378 saved_sym = symtab + sym_index;
12379 return TRUE;
12380
12381 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
12382 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
12383 goto handle_sym_diff;
12384
12385 case 5: /* R_MSP430_16_BYTE */
12386 case 9: /* R_MSP430_8 */
12387 if (uses_msp430x_relocs (filedata))
12388 break;
12389 goto handle_sym_diff;
12390
12391 case 2: /* R_MSP430_ABS16 */
12392 case 15: /* R_MSP430X_ABS16 */
12393 if (! uses_msp430x_relocs (filedata))
12394 break;
12395 goto handle_sym_diff;
12396
12397 handle_sym_diff:
12398 if (saved_sym != NULL)
12399 {
12400 int reloc_size = reloc_type == 1 ? 4 : 2;
12401 bfd_vma value;
12402
12403 if (sym_index >= num_syms)
12404 error (_("MSP430 reloc contains invalid symbol index %lu\n"),
12405 sym_index);
12406 else
12407 {
12408 value = reloc->r_addend + (symtab[sym_index].st_value
12409 - saved_sym->st_value);
12410
12411 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
12412 byte_put (start + reloc->r_offset, value, reloc_size);
12413 else
12414 /* PR 21137 */
12415 error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
12416 (long) reloc->r_offset);
12417 }
12418
12419 saved_sym = NULL;
12420 return TRUE;
12421 }
12422 break;
12423
12424 default:
12425 if (saved_sym != NULL)
12426 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
12427 break;
12428 }
12429 break;
12430 }
12431
12432 case EM_MN10300:
12433 case EM_CYGNUS_MN10300:
12434 {
12435 static Elf_Internal_Sym * saved_sym = NULL;
12436
12437 if (reloc == NULL)
12438 {
12439 saved_sym = NULL;
12440 return TRUE;
12441 }
12442
12443 switch (reloc_type)
12444 {
12445 case 34: /* R_MN10300_ALIGN */
12446 return TRUE;
12447 case 33: /* R_MN10300_SYM_DIFF */
12448 if (sym_index >= num_syms)
12449 error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
12450 sym_index);
12451 else
12452 saved_sym = symtab + sym_index;
12453 return TRUE;
12454
12455 case 1: /* R_MN10300_32 */
12456 case 2: /* R_MN10300_16 */
12457 if (saved_sym != NULL)
12458 {
12459 int reloc_size = reloc_type == 1 ? 4 : 2;
12460 bfd_vma value;
12461
12462 if (sym_index >= num_syms)
12463 error (_("MN10300 reloc contains invalid symbol index %lu\n"),
12464 sym_index);
12465 else
12466 {
12467 value = reloc->r_addend + (symtab[sym_index].st_value
12468 - saved_sym->st_value);
12469
12470 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
12471 byte_put (start + reloc->r_offset, value, reloc_size);
12472 else
12473 error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
12474 (long) reloc->r_offset);
12475 }
12476
12477 saved_sym = NULL;
12478 return TRUE;
12479 }
12480 break;
12481 default:
12482 if (saved_sym != NULL)
12483 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
12484 break;
12485 }
12486 break;
12487 }
12488
12489 case EM_RL78:
12490 {
12491 static bfd_vma saved_sym1 = 0;
12492 static bfd_vma saved_sym2 = 0;
12493 static bfd_vma value;
12494
12495 if (reloc == NULL)
12496 {
12497 saved_sym1 = saved_sym2 = 0;
12498 return TRUE;
12499 }
12500
12501 switch (reloc_type)
12502 {
12503 case 0x80: /* R_RL78_SYM. */
12504 saved_sym1 = saved_sym2;
12505 if (sym_index >= num_syms)
12506 error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
12507 sym_index);
12508 else
12509 {
12510 saved_sym2 = symtab[sym_index].st_value;
12511 saved_sym2 += reloc->r_addend;
12512 }
12513 return TRUE;
12514
12515 case 0x83: /* R_RL78_OPsub. */
12516 value = saved_sym1 - saved_sym2;
12517 saved_sym2 = saved_sym1 = 0;
12518 return TRUE;
12519 break;
12520
12521 case 0x41: /* R_RL78_ABS32. */
12522 if (IN_RANGE (start, end, start + reloc->r_offset, 4))
12523 byte_put (start + reloc->r_offset, value, 4);
12524 else
12525 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
12526 (long) reloc->r_offset);
12527 value = 0;
12528 return TRUE;
12529
12530 case 0x43: /* R_RL78_ABS16. */
12531 if (IN_RANGE (start, end, start + reloc->r_offset, 2))
12532 byte_put (start + reloc->r_offset, value, 2);
12533 else
12534 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
12535 (long) reloc->r_offset);
12536 value = 0;
12537 return TRUE;
12538
12539 default:
12540 break;
12541 }
12542 break;
12543 }
12544 }
12545
12546 return FALSE;
12547 }
12548
12549 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
12550 DWARF debug sections. This is a target specific test. Note - we do not
12551 go through the whole including-target-headers-multiple-times route, (as
12552 we have already done with <elf/h8.h>) because this would become very
12553 messy and even then this function would have to contain target specific
12554 information (the names of the relocs instead of their numeric values).
12555 FIXME: This is not the correct way to solve this problem. The proper way
12556 is to have target specific reloc sizing and typing functions created by
12557 the reloc-macros.h header, in the same way that it already creates the
12558 reloc naming functions. */
12559
12560 static bfd_boolean
12561 is_32bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12562 {
12563 /* Please keep this table alpha-sorted for ease of visual lookup. */
12564 switch (filedata->file_header.e_machine)
12565 {
12566 case EM_386:
12567 case EM_IAMCU:
12568 return reloc_type == 1; /* R_386_32. */
12569 case EM_68K:
12570 return reloc_type == 1; /* R_68K_32. */
12571 case EM_860:
12572 return reloc_type == 1; /* R_860_32. */
12573 case EM_960:
12574 return reloc_type == 2; /* R_960_32. */
12575 case EM_AARCH64:
12576 return (reloc_type == 258
12577 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
12578 case EM_BPF:
12579 return reloc_type == 11; /* R_BPF_DATA_32 */
12580 case EM_ADAPTEVA_EPIPHANY:
12581 return reloc_type == 3;
12582 case EM_ALPHA:
12583 return reloc_type == 1; /* R_ALPHA_REFLONG. */
12584 case EM_ARC:
12585 return reloc_type == 1; /* R_ARC_32. */
12586 case EM_ARC_COMPACT:
12587 case EM_ARC_COMPACT2:
12588 return reloc_type == 4; /* R_ARC_32. */
12589 case EM_ARM:
12590 return reloc_type == 2; /* R_ARM_ABS32 */
12591 case EM_AVR_OLD:
12592 case EM_AVR:
12593 return reloc_type == 1;
12594 case EM_BLACKFIN:
12595 return reloc_type == 0x12; /* R_byte4_data. */
12596 case EM_CRIS:
12597 return reloc_type == 3; /* R_CRIS_32. */
12598 case EM_CR16:
12599 return reloc_type == 3; /* R_CR16_NUM32. */
12600 case EM_CRX:
12601 return reloc_type == 15; /* R_CRX_NUM32. */
12602 case EM_CSKY:
12603 return reloc_type == 1; /* R_CKCORE_ADDR32. */
12604 case EM_CYGNUS_FRV:
12605 return reloc_type == 1;
12606 case EM_CYGNUS_D10V:
12607 case EM_D10V:
12608 return reloc_type == 6; /* R_D10V_32. */
12609 case EM_CYGNUS_D30V:
12610 case EM_D30V:
12611 return reloc_type == 12; /* R_D30V_32_NORMAL. */
12612 case EM_DLX:
12613 return reloc_type == 3; /* R_DLX_RELOC_32. */
12614 case EM_CYGNUS_FR30:
12615 case EM_FR30:
12616 return reloc_type == 3; /* R_FR30_32. */
12617 case EM_FT32:
12618 return reloc_type == 1; /* R_FT32_32. */
12619 case EM_H8S:
12620 case EM_H8_300:
12621 case EM_H8_300H:
12622 return reloc_type == 1; /* R_H8_DIR32. */
12623 case EM_IA_64:
12624 return (reloc_type == 0x64 /* R_IA64_SECREL32MSB. */
12625 || reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
12626 || reloc_type == 0x24 /* R_IA64_DIR32MSB. */
12627 || reloc_type == 0x25 /* R_IA64_DIR32LSB. */);
12628 case EM_IP2K_OLD:
12629 case EM_IP2K:
12630 return reloc_type == 2; /* R_IP2K_32. */
12631 case EM_IQ2000:
12632 return reloc_type == 2; /* R_IQ2000_32. */
12633 case EM_LATTICEMICO32:
12634 return reloc_type == 3; /* R_LM32_32. */
12635 case EM_M32C_OLD:
12636 case EM_M32C:
12637 return reloc_type == 3; /* R_M32C_32. */
12638 case EM_M32R:
12639 return reloc_type == 34; /* R_M32R_32_RELA. */
12640 case EM_68HC11:
12641 case EM_68HC12:
12642 return reloc_type == 6; /* R_M68HC11_32. */
12643 case EM_S12Z:
12644 return reloc_type == 7 || /* R_S12Z_EXT32 */
12645 reloc_type == 6; /* R_S12Z_CW32. */
12646 case EM_MCORE:
12647 return reloc_type == 1; /* R_MCORE_ADDR32. */
12648 case EM_CYGNUS_MEP:
12649 return reloc_type == 4; /* R_MEP_32. */
12650 case EM_METAG:
12651 return reloc_type == 2; /* R_METAG_ADDR32. */
12652 case EM_MICROBLAZE:
12653 return reloc_type == 1; /* R_MICROBLAZE_32. */
12654 case EM_MIPS:
12655 return reloc_type == 2; /* R_MIPS_32. */
12656 case EM_MMIX:
12657 return reloc_type == 4; /* R_MMIX_32. */
12658 case EM_CYGNUS_MN10200:
12659 case EM_MN10200:
12660 return reloc_type == 1; /* R_MN10200_32. */
12661 case EM_CYGNUS_MN10300:
12662 case EM_MN10300:
12663 return reloc_type == 1; /* R_MN10300_32. */
12664 case EM_MOXIE:
12665 return reloc_type == 1; /* R_MOXIE_32. */
12666 case EM_MSP430_OLD:
12667 case EM_MSP430:
12668 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
12669 case EM_MT:
12670 return reloc_type == 2; /* R_MT_32. */
12671 case EM_NDS32:
12672 return reloc_type == 20; /* R_NDS32_RELA. */
12673 case EM_ALTERA_NIOS2:
12674 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
12675 case EM_NIOS32:
12676 return reloc_type == 1; /* R_NIOS_32. */
12677 case EM_OR1K:
12678 return reloc_type == 1; /* R_OR1K_32. */
12679 case EM_PARISC:
12680 return (reloc_type == 1 /* R_PARISC_DIR32. */
12681 || reloc_type == 2 /* R_PARISC_DIR21L. */
12682 || reloc_type == 41); /* R_PARISC_SECREL32. */
12683 case EM_PJ:
12684 case EM_PJ_OLD:
12685 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
12686 case EM_PPC64:
12687 return reloc_type == 1; /* R_PPC64_ADDR32. */
12688 case EM_PPC:
12689 return reloc_type == 1; /* R_PPC_ADDR32. */
12690 case EM_TI_PRU:
12691 return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
12692 case EM_RISCV:
12693 return reloc_type == 1; /* R_RISCV_32. */
12694 case EM_RL78:
12695 return reloc_type == 1; /* R_RL78_DIR32. */
12696 case EM_RX:
12697 return reloc_type == 1; /* R_RX_DIR32. */
12698 case EM_S370:
12699 return reloc_type == 1; /* R_I370_ADDR31. */
12700 case EM_S390_OLD:
12701 case EM_S390:
12702 return reloc_type == 4; /* R_S390_32. */
12703 case EM_SCORE:
12704 return reloc_type == 8; /* R_SCORE_ABS32. */
12705 case EM_SH:
12706 return reloc_type == 1; /* R_SH_DIR32. */
12707 case EM_SPARC32PLUS:
12708 case EM_SPARCV9:
12709 case EM_SPARC:
12710 return reloc_type == 3 /* R_SPARC_32. */
12711 || reloc_type == 23; /* R_SPARC_UA32. */
12712 case EM_SPU:
12713 return reloc_type == 6; /* R_SPU_ADDR32 */
12714 case EM_TI_C6000:
12715 return reloc_type == 1; /* R_C6000_ABS32. */
12716 case EM_TILEGX:
12717 return reloc_type == 2; /* R_TILEGX_32. */
12718 case EM_TILEPRO:
12719 return reloc_type == 1; /* R_TILEPRO_32. */
12720 case EM_CYGNUS_V850:
12721 case EM_V850:
12722 return reloc_type == 6; /* R_V850_ABS32. */
12723 case EM_V800:
12724 return reloc_type == 0x33; /* R_V810_WORD. */
12725 case EM_VAX:
12726 return reloc_type == 1; /* R_VAX_32. */
12727 case EM_VISIUM:
12728 return reloc_type == 3; /* R_VISIUM_32. */
12729 case EM_WEBASSEMBLY:
12730 return reloc_type == 1; /* R_WASM32_32. */
12731 case EM_X86_64:
12732 case EM_L1OM:
12733 case EM_K1OM:
12734 return reloc_type == 10; /* R_X86_64_32. */
12735 case EM_XC16X:
12736 case EM_C166:
12737 return reloc_type == 3; /* R_XC16C_ABS_32. */
12738 case EM_XGATE:
12739 return reloc_type == 4; /* R_XGATE_32. */
12740 case EM_XSTORMY16:
12741 return reloc_type == 1; /* R_XSTROMY16_32. */
12742 case EM_XTENSA_OLD:
12743 case EM_XTENSA:
12744 return reloc_type == 1; /* R_XTENSA_32. */
12745 case EM_Z80:
12746 return reloc_type == 6; /* R_Z80_32. */
12747 default:
12748 {
12749 static unsigned int prev_warn = 0;
12750
12751 /* Avoid repeating the same warning multiple times. */
12752 if (prev_warn != filedata->file_header.e_machine)
12753 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
12754 filedata->file_header.e_machine);
12755 prev_warn = filedata->file_header.e_machine;
12756 return FALSE;
12757 }
12758 }
12759 }
12760
12761 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12762 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
12763
12764 static bfd_boolean
12765 is_32bit_pcrel_reloc (Filedata * filedata, unsigned int reloc_type)
12766 {
12767 switch (filedata->file_header.e_machine)
12768 /* Please keep this table alpha-sorted for ease of visual lookup. */
12769 {
12770 case EM_386:
12771 case EM_IAMCU:
12772 return reloc_type == 2; /* R_386_PC32. */
12773 case EM_68K:
12774 return reloc_type == 4; /* R_68K_PC32. */
12775 case EM_AARCH64:
12776 return reloc_type == 261; /* R_AARCH64_PREL32 */
12777 case EM_ADAPTEVA_EPIPHANY:
12778 return reloc_type == 6;
12779 case EM_ALPHA:
12780 return reloc_type == 10; /* R_ALPHA_SREL32. */
12781 case EM_ARC_COMPACT:
12782 case EM_ARC_COMPACT2:
12783 return reloc_type == 49; /* R_ARC_32_PCREL. */
12784 case EM_ARM:
12785 return reloc_type == 3; /* R_ARM_REL32 */
12786 case EM_AVR_OLD:
12787 case EM_AVR:
12788 return reloc_type == 36; /* R_AVR_32_PCREL. */
12789 case EM_MICROBLAZE:
12790 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
12791 case EM_OR1K:
12792 return reloc_type == 9; /* R_OR1K_32_PCREL. */
12793 case EM_PARISC:
12794 return reloc_type == 9; /* R_PARISC_PCREL32. */
12795 case EM_PPC:
12796 return reloc_type == 26; /* R_PPC_REL32. */
12797 case EM_PPC64:
12798 return reloc_type == 26; /* R_PPC64_REL32. */
12799 case EM_RISCV:
12800 return reloc_type == 57; /* R_RISCV_32_PCREL. */
12801 case EM_S390_OLD:
12802 case EM_S390:
12803 return reloc_type == 5; /* R_390_PC32. */
12804 case EM_SH:
12805 return reloc_type == 2; /* R_SH_REL32. */
12806 case EM_SPARC32PLUS:
12807 case EM_SPARCV9:
12808 case EM_SPARC:
12809 return reloc_type == 6; /* R_SPARC_DISP32. */
12810 case EM_SPU:
12811 return reloc_type == 13; /* R_SPU_REL32. */
12812 case EM_TILEGX:
12813 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
12814 case EM_TILEPRO:
12815 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
12816 case EM_VISIUM:
12817 return reloc_type == 6; /* R_VISIUM_32_PCREL */
12818 case EM_X86_64:
12819 case EM_L1OM:
12820 case EM_K1OM:
12821 return reloc_type == 2; /* R_X86_64_PC32. */
12822 case EM_VAX:
12823 return reloc_type == 4; /* R_VAX_PCREL32. */
12824 case EM_XTENSA_OLD:
12825 case EM_XTENSA:
12826 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
12827 default:
12828 /* Do not abort or issue an error message here. Not all targets use
12829 pc-relative 32-bit relocs in their DWARF debug information and we
12830 have already tested for target coverage in is_32bit_abs_reloc. A
12831 more helpful warning message will be generated by apply_relocations
12832 anyway, so just return. */
12833 return FALSE;
12834 }
12835 }
12836
12837 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12838 a 64-bit absolute RELA relocation used in DWARF debug sections. */
12839
12840 static bfd_boolean
12841 is_64bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12842 {
12843 switch (filedata->file_header.e_machine)
12844 {
12845 case EM_AARCH64:
12846 return reloc_type == 257; /* R_AARCH64_ABS64. */
12847 case EM_ALPHA:
12848 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
12849 case EM_IA_64:
12850 return (reloc_type == 0x26 /* R_IA64_DIR64MSB. */
12851 || reloc_type == 0x27 /* R_IA64_DIR64LSB. */);
12852 case EM_PARISC:
12853 return reloc_type == 80; /* R_PARISC_DIR64. */
12854 case EM_PPC64:
12855 return reloc_type == 38; /* R_PPC64_ADDR64. */
12856 case EM_RISCV:
12857 return reloc_type == 2; /* R_RISCV_64. */
12858 case EM_SPARC32PLUS:
12859 case EM_SPARCV9:
12860 case EM_SPARC:
12861 return reloc_type == 32 /* R_SPARC_64. */
12862 || reloc_type == 54; /* R_SPARC_UA64. */
12863 case EM_X86_64:
12864 case EM_L1OM:
12865 case EM_K1OM:
12866 return reloc_type == 1; /* R_X86_64_64. */
12867 case EM_S390_OLD:
12868 case EM_S390:
12869 return reloc_type == 22; /* R_S390_64. */
12870 case EM_TILEGX:
12871 return reloc_type == 1; /* R_TILEGX_64. */
12872 case EM_MIPS:
12873 return reloc_type == 18; /* R_MIPS_64. */
12874 default:
12875 return FALSE;
12876 }
12877 }
12878
12879 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12880 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12881
12882 static bfd_boolean
12883 is_64bit_pcrel_reloc (Filedata * filedata, unsigned int reloc_type)
12884 {
12885 switch (filedata->file_header.e_machine)
12886 {
12887 case EM_AARCH64:
12888 return reloc_type == 260; /* R_AARCH64_PREL64. */
12889 case EM_ALPHA:
12890 return reloc_type == 11; /* R_ALPHA_SREL64. */
12891 case EM_IA_64:
12892 return (reloc_type == 0x4e /* R_IA64_PCREL64MSB. */
12893 || reloc_type == 0x4f /* R_IA64_PCREL64LSB. */);
12894 case EM_PARISC:
12895 return reloc_type == 72; /* R_PARISC_PCREL64. */
12896 case EM_PPC64:
12897 return reloc_type == 44; /* R_PPC64_REL64. */
12898 case EM_SPARC32PLUS:
12899 case EM_SPARCV9:
12900 case EM_SPARC:
12901 return reloc_type == 46; /* R_SPARC_DISP64. */
12902 case EM_X86_64:
12903 case EM_L1OM:
12904 case EM_K1OM:
12905 return reloc_type == 24; /* R_X86_64_PC64. */
12906 case EM_S390_OLD:
12907 case EM_S390:
12908 return reloc_type == 23; /* R_S390_PC64. */
12909 case EM_TILEGX:
12910 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12911 default:
12912 return FALSE;
12913 }
12914 }
12915
12916 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12917 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12918
12919 static bfd_boolean
12920 is_24bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12921 {
12922 switch (filedata->file_header.e_machine)
12923 {
12924 case EM_CYGNUS_MN10200:
12925 case EM_MN10200:
12926 return reloc_type == 4; /* R_MN10200_24. */
12927 case EM_FT32:
12928 return reloc_type == 5; /* R_FT32_20. */
12929 case EM_Z80:
12930 return reloc_type == 5; /* R_Z80_24. */
12931 default:
12932 return FALSE;
12933 }
12934 }
12935
12936 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12937 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12938
12939 static bfd_boolean
12940 is_16bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
12941 {
12942 /* Please keep this table alpha-sorted for ease of visual lookup. */
12943 switch (filedata->file_header.e_machine)
12944 {
12945 case EM_ARC:
12946 case EM_ARC_COMPACT:
12947 case EM_ARC_COMPACT2:
12948 return reloc_type == 2; /* R_ARC_16. */
12949 case EM_ADAPTEVA_EPIPHANY:
12950 return reloc_type == 5;
12951 case EM_AVR_OLD:
12952 case EM_AVR:
12953 return reloc_type == 4; /* R_AVR_16. */
12954 case EM_CYGNUS_D10V:
12955 case EM_D10V:
12956 return reloc_type == 3; /* R_D10V_16. */
12957 case EM_FT32:
12958 return reloc_type == 2; /* R_FT32_16. */
12959 case EM_H8S:
12960 case EM_H8_300:
12961 case EM_H8_300H:
12962 return reloc_type == R_H8_DIR16;
12963 case EM_IP2K_OLD:
12964 case EM_IP2K:
12965 return reloc_type == 1; /* R_IP2K_16. */
12966 case EM_M32C_OLD:
12967 case EM_M32C:
12968 return reloc_type == 1; /* R_M32C_16 */
12969 case EM_CYGNUS_MN10200:
12970 case EM_MN10200:
12971 return reloc_type == 2; /* R_MN10200_16. */
12972 case EM_CYGNUS_MN10300:
12973 case EM_MN10300:
12974 return reloc_type == 2; /* R_MN10300_16. */
12975 case EM_MSP430:
12976 if (uses_msp430x_relocs (filedata))
12977 return reloc_type == 2; /* R_MSP430_ABS16. */
12978 /* Fall through. */
12979 case EM_MSP430_OLD:
12980 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12981 case EM_NDS32:
12982 return reloc_type == 19; /* R_NDS32_RELA. */
12983 case EM_ALTERA_NIOS2:
12984 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12985 case EM_NIOS32:
12986 return reloc_type == 9; /* R_NIOS_16. */
12987 case EM_OR1K:
12988 return reloc_type == 2; /* R_OR1K_16. */
12989 case EM_RISCV:
12990 return reloc_type == 55; /* R_RISCV_SET16. */
12991 case EM_TI_PRU:
12992 return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
12993 case EM_TI_C6000:
12994 return reloc_type == 2; /* R_C6000_ABS16. */
12995 case EM_VISIUM:
12996 return reloc_type == 2; /* R_VISIUM_16. */
12997 case EM_XC16X:
12998 case EM_C166:
12999 return reloc_type == 2; /* R_XC16C_ABS_16. */
13000 case EM_XGATE:
13001 return reloc_type == 3; /* R_XGATE_16. */
13002 case EM_Z80:
13003 return reloc_type == 4; /* R_Z80_16. */
13004 default:
13005 return FALSE;
13006 }
13007 }
13008
13009 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13010 a 8-bit absolute RELA relocation used in DWARF debug sections. */
13011
13012 static bfd_boolean
13013 is_8bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
13014 {
13015 switch (filedata->file_header.e_machine)
13016 {
13017 case EM_RISCV:
13018 return reloc_type == 54; /* R_RISCV_SET8. */
13019 case EM_Z80:
13020 return reloc_type == 1; /* R_Z80_8. */
13021 default:
13022 return FALSE;
13023 }
13024 }
13025
13026 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13027 a 6-bit absolute RELA relocation used in DWARF debug sections. */
13028
13029 static bfd_boolean
13030 is_6bit_abs_reloc (Filedata * filedata, unsigned int reloc_type)
13031 {
13032 switch (filedata->file_header.e_machine)
13033 {
13034 case EM_RISCV:
13035 return reloc_type == 53; /* R_RISCV_SET6. */
13036 default:
13037 return FALSE;
13038 }
13039 }
13040
13041 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13042 a 32-bit inplace add RELA relocation used in DWARF debug sections. */
13043
13044 static bfd_boolean
13045 is_32bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
13046 {
13047 /* Please keep this table alpha-sorted for ease of visual lookup. */
13048 switch (filedata->file_header.e_machine)
13049 {
13050 case EM_RISCV:
13051 return reloc_type == 35; /* R_RISCV_ADD32. */
13052 default:
13053 return FALSE;
13054 }
13055 }
13056
13057 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13058 a 32-bit inplace sub RELA relocation used in DWARF debug sections. */
13059
13060 static bfd_boolean
13061 is_32bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
13062 {
13063 /* Please keep this table alpha-sorted for ease of visual lookup. */
13064 switch (filedata->file_header.e_machine)
13065 {
13066 case EM_RISCV:
13067 return reloc_type == 39; /* R_RISCV_SUB32. */
13068 default:
13069 return FALSE;
13070 }
13071 }
13072
13073 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13074 a 64-bit inplace add RELA relocation used in DWARF debug sections. */
13075
13076 static bfd_boolean
13077 is_64bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
13078 {
13079 /* Please keep this table alpha-sorted for ease of visual lookup. */
13080 switch (filedata->file_header.e_machine)
13081 {
13082 case EM_RISCV:
13083 return reloc_type == 36; /* R_RISCV_ADD64. */
13084 default:
13085 return FALSE;
13086 }
13087 }
13088
13089 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13090 a 64-bit inplace sub RELA relocation used in DWARF debug sections. */
13091
13092 static bfd_boolean
13093 is_64bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
13094 {
13095 /* Please keep this table alpha-sorted for ease of visual lookup. */
13096 switch (filedata->file_header.e_machine)
13097 {
13098 case EM_RISCV:
13099 return reloc_type == 40; /* R_RISCV_SUB64. */
13100 default:
13101 return FALSE;
13102 }
13103 }
13104
13105 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13106 a 16-bit inplace add RELA relocation used in DWARF debug sections. */
13107
13108 static bfd_boolean
13109 is_16bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
13110 {
13111 /* Please keep this table alpha-sorted for ease of visual lookup. */
13112 switch (filedata->file_header.e_machine)
13113 {
13114 case EM_RISCV:
13115 return reloc_type == 34; /* R_RISCV_ADD16. */
13116 default:
13117 return FALSE;
13118 }
13119 }
13120
13121 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13122 a 16-bit inplace sub RELA relocation used in DWARF debug sections. */
13123
13124 static bfd_boolean
13125 is_16bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
13126 {
13127 /* Please keep this table alpha-sorted for ease of visual lookup. */
13128 switch (filedata->file_header.e_machine)
13129 {
13130 case EM_RISCV:
13131 return reloc_type == 38; /* R_RISCV_SUB16. */
13132 default:
13133 return FALSE;
13134 }
13135 }
13136
13137 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13138 a 8-bit inplace add RELA relocation used in DWARF debug sections. */
13139
13140 static bfd_boolean
13141 is_8bit_inplace_add_reloc (Filedata * filedata, unsigned int reloc_type)
13142 {
13143 /* Please keep this table alpha-sorted for ease of visual lookup. */
13144 switch (filedata->file_header.e_machine)
13145 {
13146 case EM_RISCV:
13147 return reloc_type == 33; /* R_RISCV_ADD8. */
13148 default:
13149 return FALSE;
13150 }
13151 }
13152
13153 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13154 a 8-bit inplace sub RELA relocation used in DWARF debug sections. */
13155
13156 static bfd_boolean
13157 is_8bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
13158 {
13159 /* Please keep this table alpha-sorted for ease of visual lookup. */
13160 switch (filedata->file_header.e_machine)
13161 {
13162 case EM_RISCV:
13163 return reloc_type == 37; /* R_RISCV_SUB8. */
13164 default:
13165 return FALSE;
13166 }
13167 }
13168
13169 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
13170 a 6-bit inplace sub RELA relocation used in DWARF debug sections. */
13171
13172 static bfd_boolean
13173 is_6bit_inplace_sub_reloc (Filedata * filedata, unsigned int reloc_type)
13174 {
13175 switch (filedata->file_header.e_machine)
13176 {
13177 case EM_RISCV:
13178 return reloc_type == 52; /* R_RISCV_SUB6. */
13179 default:
13180 return FALSE;
13181 }
13182 }
13183
13184 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
13185 relocation entries (possibly formerly used for SHT_GROUP sections). */
13186
13187 static bfd_boolean
13188 is_none_reloc (Filedata * filedata, unsigned int reloc_type)
13189 {
13190 switch (filedata->file_header.e_machine)
13191 {
13192 case EM_386: /* R_386_NONE. */
13193 case EM_68K: /* R_68K_NONE. */
13194 case EM_ADAPTEVA_EPIPHANY:
13195 case EM_ALPHA: /* R_ALPHA_NONE. */
13196 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
13197 case EM_ARC: /* R_ARC_NONE. */
13198 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
13199 case EM_ARC_COMPACT: /* R_ARC_NONE. */
13200 case EM_ARM: /* R_ARM_NONE. */
13201 case EM_C166: /* R_XC16X_NONE. */
13202 case EM_CRIS: /* R_CRIS_NONE. */
13203 case EM_FT32: /* R_FT32_NONE. */
13204 case EM_IA_64: /* R_IA64_NONE. */
13205 case EM_K1OM: /* R_X86_64_NONE. */
13206 case EM_L1OM: /* R_X86_64_NONE. */
13207 case EM_M32R: /* R_M32R_NONE. */
13208 case EM_MIPS: /* R_MIPS_NONE. */
13209 case EM_MN10300: /* R_MN10300_NONE. */
13210 case EM_MOXIE: /* R_MOXIE_NONE. */
13211 case EM_NIOS32: /* R_NIOS_NONE. */
13212 case EM_OR1K: /* R_OR1K_NONE. */
13213 case EM_PARISC: /* R_PARISC_NONE. */
13214 case EM_PPC64: /* R_PPC64_NONE. */
13215 case EM_PPC: /* R_PPC_NONE. */
13216 case EM_RISCV: /* R_RISCV_NONE. */
13217 case EM_S390: /* R_390_NONE. */
13218 case EM_S390_OLD:
13219 case EM_SH: /* R_SH_NONE. */
13220 case EM_SPARC32PLUS:
13221 case EM_SPARC: /* R_SPARC_NONE. */
13222 case EM_SPARCV9:
13223 case EM_TILEGX: /* R_TILEGX_NONE. */
13224 case EM_TILEPRO: /* R_TILEPRO_NONE. */
13225 case EM_TI_C6000:/* R_C6000_NONE. */
13226 case EM_X86_64: /* R_X86_64_NONE. */
13227 case EM_XC16X:
13228 case EM_Z80: /* R_Z80_NONE. */
13229 case EM_WEBASSEMBLY: /* R_WASM32_NONE. */
13230 return reloc_type == 0;
13231
13232 case EM_AARCH64:
13233 return reloc_type == 0 || reloc_type == 256;
13234 case EM_AVR_OLD:
13235 case EM_AVR:
13236 return (reloc_type == 0 /* R_AVR_NONE. */
13237 || reloc_type == 30 /* R_AVR_DIFF8. */
13238 || reloc_type == 31 /* R_AVR_DIFF16. */
13239 || reloc_type == 32 /* R_AVR_DIFF32. */);
13240 case EM_METAG:
13241 return reloc_type == 3; /* R_METAG_NONE. */
13242 case EM_NDS32:
13243 return (reloc_type == 0 /* R_XTENSA_NONE. */
13244 || reloc_type == 204 /* R_NDS32_DIFF8. */
13245 || reloc_type == 205 /* R_NDS32_DIFF16. */
13246 || reloc_type == 206 /* R_NDS32_DIFF32. */
13247 || reloc_type == 207 /* R_NDS32_ULEB128. */);
13248 case EM_TI_PRU:
13249 return (reloc_type == 0 /* R_PRU_NONE. */
13250 || reloc_type == 65 /* R_PRU_DIFF8. */
13251 || reloc_type == 66 /* R_PRU_DIFF16. */
13252 || reloc_type == 67 /* R_PRU_DIFF32. */);
13253 case EM_XTENSA_OLD:
13254 case EM_XTENSA:
13255 return (reloc_type == 0 /* R_XTENSA_NONE. */
13256 || reloc_type == 17 /* R_XTENSA_DIFF8. */
13257 || reloc_type == 18 /* R_XTENSA_DIFF16. */
13258 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
13259 }
13260 return FALSE;
13261 }
13262
13263 /* Returns TRUE if there is a relocation against
13264 section NAME at OFFSET bytes. */
13265
13266 bfd_boolean
13267 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
13268 {
13269 Elf_Internal_Rela * relocs;
13270 Elf_Internal_Rela * rp;
13271
13272 if (dsec == NULL || dsec->reloc_info == NULL)
13273 return FALSE;
13274
13275 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
13276
13277 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
13278 if (rp->r_offset == offset)
13279 return TRUE;
13280
13281 return FALSE;
13282 }
13283
13284 /* Apply relocations to a section.
13285 Returns TRUE upon success, FALSE otherwise.
13286 If RELOCS_RETURN is non-NULL then it is set to point to the loaded relocs.
13287 It is then the caller's responsibility to free them. NUM_RELOCS_RETURN
13288 will be set to the number of relocs loaded.
13289
13290 Note: So far support has been added only for those relocations
13291 which can be found in debug sections. FIXME: Add support for
13292 more relocations ? */
13293
13294 static bfd_boolean
13295 apply_relocations (Filedata * filedata,
13296 const Elf_Internal_Shdr * section,
13297 unsigned char * start,
13298 bfd_size_type size,
13299 void ** relocs_return,
13300 unsigned long * num_relocs_return)
13301 {
13302 Elf_Internal_Shdr * relsec;
13303 unsigned char * end = start + size;
13304
13305 if (relocs_return != NULL)
13306 {
13307 * (Elf_Internal_Rela **) relocs_return = NULL;
13308 * num_relocs_return = 0;
13309 }
13310
13311 if (filedata->file_header.e_type != ET_REL)
13312 /* No relocs to apply. */
13313 return TRUE;
13314
13315 /* Find the reloc section associated with the section. */
13316 for (relsec = filedata->section_headers;
13317 relsec < filedata->section_headers + filedata->file_header.e_shnum;
13318 ++relsec)
13319 {
13320 bfd_boolean is_rela;
13321 unsigned long num_relocs;
13322 Elf_Internal_Rela * relocs;
13323 Elf_Internal_Rela * rp;
13324 Elf_Internal_Shdr * symsec;
13325 Elf_Internal_Sym * symtab;
13326 unsigned long num_syms;
13327 Elf_Internal_Sym * sym;
13328
13329 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13330 || relsec->sh_info >= filedata->file_header.e_shnum
13331 || filedata->section_headers + relsec->sh_info != section
13332 || relsec->sh_size == 0
13333 || relsec->sh_link >= filedata->file_header.e_shnum)
13334 continue;
13335
13336 is_rela = relsec->sh_type == SHT_RELA;
13337
13338 if (is_rela)
13339 {
13340 if (!slurp_rela_relocs (filedata, relsec->sh_offset,
13341 relsec->sh_size, & relocs, & num_relocs))
13342 return FALSE;
13343 }
13344 else
13345 {
13346 if (!slurp_rel_relocs (filedata, relsec->sh_offset,
13347 relsec->sh_size, & relocs, & num_relocs))
13348 return FALSE;
13349 }
13350
13351 /* SH uses RELA but uses in place value instead of the addend field. */
13352 if (filedata->file_header.e_machine == EM_SH)
13353 is_rela = FALSE;
13354
13355 symsec = filedata->section_headers + relsec->sh_link;
13356 if (symsec->sh_type != SHT_SYMTAB
13357 && symsec->sh_type != SHT_DYNSYM)
13358 return FALSE;
13359 symtab = GET_ELF_SYMBOLS (filedata, symsec, & num_syms);
13360
13361 for (rp = relocs; rp < relocs + num_relocs; ++rp)
13362 {
13363 bfd_vma addend;
13364 unsigned int reloc_type;
13365 unsigned int reloc_size;
13366 bfd_boolean reloc_inplace = FALSE;
13367 bfd_boolean reloc_subtract = FALSE;
13368 unsigned char * rloc;
13369 unsigned long sym_index;
13370
13371 reloc_type = get_reloc_type (filedata, rp->r_info);
13372
13373 if (target_specific_reloc_handling (filedata, rp, start, end, symtab, num_syms))
13374 continue;
13375 else if (is_none_reloc (filedata, reloc_type))
13376 continue;
13377 else if (is_32bit_abs_reloc (filedata, reloc_type)
13378 || is_32bit_pcrel_reloc (filedata, reloc_type))
13379 reloc_size = 4;
13380 else if (is_64bit_abs_reloc (filedata, reloc_type)
13381 || is_64bit_pcrel_reloc (filedata, reloc_type))
13382 reloc_size = 8;
13383 else if (is_24bit_abs_reloc (filedata, reloc_type))
13384 reloc_size = 3;
13385 else if (is_16bit_abs_reloc (filedata, reloc_type))
13386 reloc_size = 2;
13387 else if (is_8bit_abs_reloc (filedata, reloc_type)
13388 || is_6bit_abs_reloc (filedata, reloc_type))
13389 reloc_size = 1;
13390 else if ((reloc_subtract = is_32bit_inplace_sub_reloc (filedata,
13391 reloc_type))
13392 || is_32bit_inplace_add_reloc (filedata, reloc_type))
13393 {
13394 reloc_size = 4;
13395 reloc_inplace = TRUE;
13396 }
13397 else if ((reloc_subtract = is_64bit_inplace_sub_reloc (filedata,
13398 reloc_type))
13399 || is_64bit_inplace_add_reloc (filedata, reloc_type))
13400 {
13401 reloc_size = 8;
13402 reloc_inplace = TRUE;
13403 }
13404 else if ((reloc_subtract = is_16bit_inplace_sub_reloc (filedata,
13405 reloc_type))
13406 || is_16bit_inplace_add_reloc (filedata, reloc_type))
13407 {
13408 reloc_size = 2;
13409 reloc_inplace = TRUE;
13410 }
13411 else if ((reloc_subtract = is_8bit_inplace_sub_reloc (filedata,
13412 reloc_type))
13413 || is_8bit_inplace_add_reloc (filedata, reloc_type))
13414 {
13415 reloc_size = 1;
13416 reloc_inplace = TRUE;
13417 }
13418 else if ((reloc_subtract = is_6bit_inplace_sub_reloc (filedata,
13419 reloc_type)))
13420 {
13421 reloc_size = 1;
13422 reloc_inplace = TRUE;
13423 }
13424 else
13425 {
13426 static unsigned int prev_reloc = 0;
13427
13428 if (reloc_type != prev_reloc)
13429 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
13430 reloc_type, printable_section_name (filedata, section));
13431 prev_reloc = reloc_type;
13432 continue;
13433 }
13434
13435 rloc = start + rp->r_offset;
13436 if (!IN_RANGE (start, end, rloc, reloc_size))
13437 {
13438 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
13439 (unsigned long) rp->r_offset,
13440 printable_section_name (filedata, section));
13441 continue;
13442 }
13443
13444 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
13445 if (sym_index >= num_syms)
13446 {
13447 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
13448 sym_index, printable_section_name (filedata, section));
13449 continue;
13450 }
13451 sym = symtab + sym_index;
13452
13453 /* If the reloc has a symbol associated with it,
13454 make sure that it is of an appropriate type.
13455
13456 Relocations against symbols without type can happen.
13457 Gcc -feliminate-dwarf2-dups may generate symbols
13458 without type for debug info.
13459
13460 Icc generates relocations against function symbols
13461 instead of local labels.
13462
13463 Relocations against object symbols can happen, eg when
13464 referencing a global array. For an example of this see
13465 the _clz.o binary in libgcc.a. */
13466 if (sym != symtab
13467 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
13468 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
13469 {
13470 warn (_("skipping unexpected symbol type %s in section %s relocation %ld\n"),
13471 get_symbol_type (filedata, ELF_ST_TYPE (sym->st_info)),
13472 printable_section_name (filedata, relsec),
13473 (long int)(rp - relocs));
13474 continue;
13475 }
13476
13477 addend = 0;
13478 if (is_rela)
13479 addend += rp->r_addend;
13480 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
13481 partial_inplace. */
13482 if (!is_rela
13483 || (filedata->file_header.e_machine == EM_XTENSA
13484 && reloc_type == 1)
13485 || ((filedata->file_header.e_machine == EM_PJ
13486 || filedata->file_header.e_machine == EM_PJ_OLD)
13487 && reloc_type == 1)
13488 || ((filedata->file_header.e_machine == EM_D30V
13489 || filedata->file_header.e_machine == EM_CYGNUS_D30V)
13490 && reloc_type == 12)
13491 || reloc_inplace)
13492 {
13493 if (is_6bit_inplace_sub_reloc (filedata, reloc_type))
13494 addend += byte_get (rloc, reloc_size) & 0x3f;
13495 else
13496 addend += byte_get (rloc, reloc_size);
13497 }
13498
13499 if (is_32bit_pcrel_reloc (filedata, reloc_type)
13500 || is_64bit_pcrel_reloc (filedata, reloc_type))
13501 {
13502 /* On HPPA, all pc-relative relocations are biased by 8. */
13503 if (filedata->file_header.e_machine == EM_PARISC)
13504 addend -= 8;
13505 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
13506 reloc_size);
13507 }
13508 else if (is_6bit_abs_reloc (filedata, reloc_type)
13509 || is_6bit_inplace_sub_reloc (filedata, reloc_type))
13510 {
13511 if (reloc_subtract)
13512 addend -= sym->st_value;
13513 else
13514 addend += sym->st_value;
13515 addend = (addend & 0x3f) | (byte_get (rloc, reloc_size) & 0xc0);
13516 byte_put (rloc, addend, reloc_size);
13517 }
13518 else if (reloc_subtract)
13519 byte_put (rloc, addend - sym->st_value, reloc_size);
13520 else
13521 byte_put (rloc, addend + sym->st_value, reloc_size);
13522 }
13523
13524 free (symtab);
13525 /* Let the target specific reloc processing code know that
13526 we have finished with these relocs. */
13527 target_specific_reloc_handling (filedata, NULL, NULL, NULL, NULL, 0);
13528
13529 if (relocs_return)
13530 {
13531 * (Elf_Internal_Rela **) relocs_return = relocs;
13532 * num_relocs_return = num_relocs;
13533 }
13534 else
13535 free (relocs);
13536
13537 break;
13538 }
13539
13540 return TRUE;
13541 }
13542
13543 #ifdef SUPPORT_DISASSEMBLY
13544 static bfd_boolean
13545 disassemble_section (Elf_Internal_Shdr * section, Filedata * filedata)
13546 {
13547 printf (_("\nAssembly dump of section %s\n"), printable_section_name (filedata, section));
13548
13549 /* FIXME: XXX -- to be done --- XXX */
13550
13551 return TRUE;
13552 }
13553 #endif
13554
13555 /* Reads in the contents of SECTION from FILE, returning a pointer
13556 to a malloc'ed buffer or NULL if something went wrong. */
13557
13558 static char *
13559 get_section_contents (Elf_Internal_Shdr * section, Filedata * filedata)
13560 {
13561 bfd_size_type num_bytes = section->sh_size;
13562
13563 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
13564 {
13565 printf (_("Section '%s' has no data to dump.\n"),
13566 printable_section_name (filedata, section));
13567 return NULL;
13568 }
13569
13570 return (char *) get_data (NULL, filedata, section->sh_offset, 1, num_bytes,
13571 _("section contents"));
13572 }
13573
13574 /* Uncompresses a section that was compressed using zlib, in place. */
13575
13576 static bfd_boolean
13577 uncompress_section_contents (unsigned char ** buffer,
13578 dwarf_size_type uncompressed_size,
13579 dwarf_size_type * size)
13580 {
13581 dwarf_size_type compressed_size = *size;
13582 unsigned char * compressed_buffer = *buffer;
13583 unsigned char * uncompressed_buffer;
13584 z_stream strm;
13585 int rc;
13586
13587 /* It is possible the section consists of several compressed
13588 buffers concatenated together, so we uncompress in a loop. */
13589 /* PR 18313: The state field in the z_stream structure is supposed
13590 to be invisible to the user (ie us), but some compilers will
13591 still complain about it being used without initialisation. So
13592 we first zero the entire z_stream structure and then set the fields
13593 that we need. */
13594 memset (& strm, 0, sizeof strm);
13595 strm.avail_in = compressed_size;
13596 strm.next_in = (Bytef *) compressed_buffer;
13597 strm.avail_out = uncompressed_size;
13598 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
13599
13600 rc = inflateInit (& strm);
13601 while (strm.avail_in > 0)
13602 {
13603 if (rc != Z_OK)
13604 goto fail;
13605 strm.next_out = ((Bytef *) uncompressed_buffer
13606 + (uncompressed_size - strm.avail_out));
13607 rc = inflate (&strm, Z_FINISH);
13608 if (rc != Z_STREAM_END)
13609 goto fail;
13610 rc = inflateReset (& strm);
13611 }
13612 rc = inflateEnd (& strm);
13613 if (rc != Z_OK
13614 || strm.avail_out != 0)
13615 goto fail;
13616
13617 *buffer = uncompressed_buffer;
13618 *size = uncompressed_size;
13619 return TRUE;
13620
13621 fail:
13622 free (uncompressed_buffer);
13623 /* Indicate decompression failure. */
13624 *buffer = NULL;
13625 return FALSE;
13626 }
13627
13628 static bfd_boolean
13629 dump_section_as_strings (Elf_Internal_Shdr * section, Filedata * filedata)
13630 {
13631 Elf_Internal_Shdr * relsec;
13632 bfd_size_type num_bytes;
13633 unsigned char * data;
13634 unsigned char * end;
13635 unsigned char * real_start;
13636 unsigned char * start;
13637 bfd_boolean some_strings_shown;
13638
13639 real_start = start = (unsigned char *) get_section_contents (section, filedata);
13640 if (start == NULL)
13641 /* PR 21820: Do not fail if the section was empty. */
13642 return (section->sh_size == 0 || section->sh_type == SHT_NOBITS) ? TRUE : FALSE;
13643
13644 num_bytes = section->sh_size;
13645
13646 printf (_("\nString dump of section '%s':\n"), printable_section_name (filedata, section));
13647
13648 if (decompress_dumps)
13649 {
13650 dwarf_size_type new_size = num_bytes;
13651 dwarf_size_type uncompressed_size = 0;
13652
13653 if ((section->sh_flags & SHF_COMPRESSED) != 0)
13654 {
13655 Elf_Internal_Chdr chdr;
13656 unsigned int compression_header_size
13657 = get_compression_header (& chdr, (unsigned char *) start,
13658 num_bytes);
13659
13660 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13661 {
13662 warn (_("section '%s' has unsupported compress type: %d\n"),
13663 printable_section_name (filedata, section), chdr.ch_type);
13664 return FALSE;
13665 }
13666 uncompressed_size = chdr.ch_size;
13667 start += compression_header_size;
13668 new_size -= compression_header_size;
13669 }
13670 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
13671 {
13672 /* Read the zlib header. In this case, it should be "ZLIB"
13673 followed by the uncompressed section size, 8 bytes in
13674 big-endian order. */
13675 uncompressed_size = start[4]; uncompressed_size <<= 8;
13676 uncompressed_size += start[5]; uncompressed_size <<= 8;
13677 uncompressed_size += start[6]; uncompressed_size <<= 8;
13678 uncompressed_size += start[7]; uncompressed_size <<= 8;
13679 uncompressed_size += start[8]; uncompressed_size <<= 8;
13680 uncompressed_size += start[9]; uncompressed_size <<= 8;
13681 uncompressed_size += start[10]; uncompressed_size <<= 8;
13682 uncompressed_size += start[11];
13683 start += 12;
13684 new_size -= 12;
13685 }
13686
13687 if (uncompressed_size)
13688 {
13689 if (uncompress_section_contents (& start,
13690 uncompressed_size, & new_size))
13691 num_bytes = new_size;
13692 else
13693 {
13694 error (_("Unable to decompress section %s\n"),
13695 printable_section_name (filedata, section));
13696 return FALSE;
13697 }
13698 }
13699 else
13700 start = real_start;
13701 }
13702
13703 /* If the section being dumped has relocations against it the user might
13704 be expecting these relocations to have been applied. Check for this
13705 case and issue a warning message in order to avoid confusion.
13706 FIXME: Maybe we ought to have an option that dumps a section with
13707 relocs applied ? */
13708 for (relsec = filedata->section_headers;
13709 relsec < filedata->section_headers + filedata->file_header.e_shnum;
13710 ++relsec)
13711 {
13712 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13713 || relsec->sh_info >= filedata->file_header.e_shnum
13714 || filedata->section_headers + relsec->sh_info != section
13715 || relsec->sh_size == 0
13716 || relsec->sh_link >= filedata->file_header.e_shnum)
13717 continue;
13718
13719 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13720 break;
13721 }
13722
13723 data = start;
13724 end = start + num_bytes;
13725 some_strings_shown = FALSE;
13726
13727 while (data < end)
13728 {
13729 while (!ISPRINT (* data))
13730 if (++ data >= end)
13731 break;
13732
13733 if (data < end)
13734 {
13735 size_t maxlen = end - data;
13736
13737 #ifndef __MSVCRT__
13738 /* PR 11128: Use two separate invocations in order to work
13739 around bugs in the Solaris 8 implementation of printf. */
13740 printf (" [%6tx] ", data - start);
13741 #else
13742 printf (" [%6Ix] ", (size_t) (data - start));
13743 #endif
13744 if (maxlen > 0)
13745 {
13746 print_symbol ((int) maxlen, (const char *) data);
13747 putchar ('\n');
13748 data += strnlen ((const char *) data, maxlen);
13749 }
13750 else
13751 {
13752 printf (_("<corrupt>\n"));
13753 data = end;
13754 }
13755 some_strings_shown = TRUE;
13756 }
13757 }
13758
13759 if (! some_strings_shown)
13760 printf (_(" No strings found in this section."));
13761
13762 free (real_start);
13763
13764 putchar ('\n');
13765 return TRUE;
13766 }
13767
13768 static bfd_boolean
13769 dump_section_as_bytes (Elf_Internal_Shdr * section,
13770 Filedata * filedata,
13771 bfd_boolean relocate)
13772 {
13773 Elf_Internal_Shdr * relsec;
13774 bfd_size_type bytes;
13775 bfd_size_type section_size;
13776 bfd_vma addr;
13777 unsigned char * data;
13778 unsigned char * real_start;
13779 unsigned char * start;
13780
13781 real_start = start = (unsigned char *) get_section_contents (section, filedata);
13782 if (start == NULL)
13783 /* PR 21820: Do not fail if the section was empty. */
13784 return (section->sh_size == 0 || section->sh_type == SHT_NOBITS) ? TRUE : FALSE;
13785
13786 section_size = section->sh_size;
13787
13788 printf (_("\nHex dump of section '%s':\n"), printable_section_name (filedata, section));
13789
13790 if (decompress_dumps)
13791 {
13792 dwarf_size_type new_size = section_size;
13793 dwarf_size_type uncompressed_size = 0;
13794
13795 if ((section->sh_flags & SHF_COMPRESSED) != 0)
13796 {
13797 Elf_Internal_Chdr chdr;
13798 unsigned int compression_header_size
13799 = get_compression_header (& chdr, start, section_size);
13800
13801 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13802 {
13803 warn (_("section '%s' has unsupported compress type: %d\n"),
13804 printable_section_name (filedata, section), chdr.ch_type);
13805 return FALSE;
13806 }
13807 uncompressed_size = chdr.ch_size;
13808 start += compression_header_size;
13809 new_size -= compression_header_size;
13810 }
13811 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
13812 {
13813 /* Read the zlib header. In this case, it should be "ZLIB"
13814 followed by the uncompressed section size, 8 bytes in
13815 big-endian order. */
13816 uncompressed_size = start[4]; uncompressed_size <<= 8;
13817 uncompressed_size += start[5]; uncompressed_size <<= 8;
13818 uncompressed_size += start[6]; uncompressed_size <<= 8;
13819 uncompressed_size += start[7]; uncompressed_size <<= 8;
13820 uncompressed_size += start[8]; uncompressed_size <<= 8;
13821 uncompressed_size += start[9]; uncompressed_size <<= 8;
13822 uncompressed_size += start[10]; uncompressed_size <<= 8;
13823 uncompressed_size += start[11];
13824 start += 12;
13825 new_size -= 12;
13826 }
13827
13828 if (uncompressed_size)
13829 {
13830 if (uncompress_section_contents (& start, uncompressed_size,
13831 & new_size))
13832 {
13833 section_size = new_size;
13834 }
13835 else
13836 {
13837 error (_("Unable to decompress section %s\n"),
13838 printable_section_name (filedata, section));
13839 /* FIXME: Print the section anyway ? */
13840 return FALSE;
13841 }
13842 }
13843 else
13844 start = real_start;
13845 }
13846
13847 if (relocate)
13848 {
13849 if (! apply_relocations (filedata, section, start, section_size, NULL, NULL))
13850 return FALSE;
13851 }
13852 else
13853 {
13854 /* If the section being dumped has relocations against it the user might
13855 be expecting these relocations to have been applied. Check for this
13856 case and issue a warning message in order to avoid confusion.
13857 FIXME: Maybe we ought to have an option that dumps a section with
13858 relocs applied ? */
13859 for (relsec = filedata->section_headers;
13860 relsec < filedata->section_headers + filedata->file_header.e_shnum;
13861 ++relsec)
13862 {
13863 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13864 || relsec->sh_info >= filedata->file_header.e_shnum
13865 || filedata->section_headers + relsec->sh_info != section
13866 || relsec->sh_size == 0
13867 || relsec->sh_link >= filedata->file_header.e_shnum)
13868 continue;
13869
13870 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13871 break;
13872 }
13873 }
13874
13875 addr = section->sh_addr;
13876 bytes = section_size;
13877 data = start;
13878
13879 while (bytes)
13880 {
13881 int j;
13882 int k;
13883 int lbytes;
13884
13885 lbytes = (bytes > 16 ? 16 : bytes);
13886
13887 printf (" 0x%8.8lx ", (unsigned long) addr);
13888
13889 for (j = 0; j < 16; j++)
13890 {
13891 if (j < lbytes)
13892 printf ("%2.2x", data[j]);
13893 else
13894 printf (" ");
13895
13896 if ((j & 3) == 3)
13897 printf (" ");
13898 }
13899
13900 for (j = 0; j < lbytes; j++)
13901 {
13902 k = data[j];
13903 if (k >= ' ' && k < 0x7f)
13904 printf ("%c", k);
13905 else
13906 printf (".");
13907 }
13908
13909 putchar ('\n');
13910
13911 data += lbytes;
13912 addr += lbytes;
13913 bytes -= lbytes;
13914 }
13915
13916 free (real_start);
13917
13918 putchar ('\n');
13919 return TRUE;
13920 }
13921
13922 static ctf_sect_t *
13923 shdr_to_ctf_sect (ctf_sect_t *buf, Elf_Internal_Shdr *shdr, Filedata *filedata)
13924 {
13925 buf->cts_name = SECTION_NAME (shdr);
13926 buf->cts_size = shdr->sh_size;
13927 buf->cts_entsize = shdr->sh_entsize;
13928
13929 return buf;
13930 }
13931
13932 /* Formatting callback function passed to ctf_dump. Returns either the pointer
13933 it is passed, or a pointer to newly-allocated storage, in which case
13934 dump_ctf() will free it when it no longer needs it. */
13935
13936 static char *dump_ctf_indent_lines (ctf_sect_names_t sect ATTRIBUTE_UNUSED,
13937 char *s, void *arg)
13938 {
13939 const char *blanks = arg;
13940 char *new_s;
13941
13942 if (asprintf (&new_s, "%s%s", blanks, s) < 0)
13943 return s;
13944 return new_s;
13945 }
13946
13947 static bfd_boolean
13948 dump_section_as_ctf (Elf_Internal_Shdr * section, Filedata * filedata)
13949 {
13950 Elf_Internal_Shdr * parent_sec = NULL;
13951 Elf_Internal_Shdr * symtab_sec = NULL;
13952 Elf_Internal_Shdr * strtab_sec = NULL;
13953 void * data = NULL;
13954 void * symdata = NULL;
13955 void * strdata = NULL;
13956 void * parentdata = NULL;
13957 ctf_sect_t ctfsect, symsect, strsect, parentsect;
13958 ctf_sect_t * symsectp = NULL;
13959 ctf_sect_t * strsectp = NULL;
13960 ctf_file_t * ctf = NULL;
13961 ctf_file_t * parent = NULL;
13962
13963 const char *things[] = {"Header", "Labels", "Data objects",
13964 "Function objects", "Variables", "Types", "Strings",
13965 ""};
13966 const char **thing;
13967 int err;
13968 bfd_boolean ret = FALSE;
13969 size_t i;
13970
13971 shdr_to_ctf_sect (&ctfsect, section, filedata);
13972 data = get_section_contents (section, filedata);
13973 ctfsect.cts_data = data;
13974
13975 if (!dump_ctf_symtab_name)
13976 dump_ctf_symtab_name = strdup (".symtab");
13977
13978 if (!dump_ctf_strtab_name)
13979 dump_ctf_strtab_name = strdup (".strtab");
13980
13981 if (dump_ctf_symtab_name && dump_ctf_symtab_name[0] != 0)
13982 {
13983 if ((symtab_sec = find_section (filedata, dump_ctf_symtab_name)) == NULL)
13984 {
13985 error (_("No symbol section named %s\n"), dump_ctf_symtab_name);
13986 goto fail;
13987 }
13988 if ((symdata = (void *) get_data (NULL, filedata,
13989 symtab_sec->sh_offset, 1,
13990 symtab_sec->sh_size,
13991 _("symbols"))) == NULL)
13992 goto fail;
13993 symsectp = shdr_to_ctf_sect (&symsect, symtab_sec, filedata);
13994 symsect.cts_data = symdata;
13995 }
13996 if (dump_ctf_strtab_name && dump_ctf_symtab_name[0] != 0)
13997 {
13998 if ((strtab_sec = find_section (filedata, dump_ctf_strtab_name)) == NULL)
13999 {
14000 error (_("No string table section named %s\n"),
14001 dump_ctf_strtab_name);
14002 goto fail;
14003 }
14004 if ((strdata = (void *) get_data (NULL, filedata,
14005 strtab_sec->sh_offset, 1,
14006 strtab_sec->sh_size,
14007 _("strings"))) == NULL)
14008 goto fail;
14009 strsectp = shdr_to_ctf_sect (&strsect, strtab_sec, filedata);
14010 strsect.cts_data = strdata;
14011 }
14012 if (dump_ctf_parent_name)
14013 {
14014 if ((parent_sec = find_section (filedata, dump_ctf_parent_name)) == NULL)
14015 {
14016 error (_("No CTF parent section named %s\n"), dump_ctf_parent_name);
14017 goto fail;
14018 }
14019 if ((parentdata = (void *) get_data (NULL, filedata,
14020 parent_sec->sh_offset, 1,
14021 parent_sec->sh_size,
14022 _("CTF parent"))) == NULL)
14023 goto fail;
14024 shdr_to_ctf_sect (&parentsect, parent_sec, filedata);
14025 parentsect.cts_data = parentdata;
14026 }
14027
14028 /* Load the CTF file and dump it. */
14029
14030 if ((ctf = ctf_bufopen (&ctfsect, symsectp, strsectp, &err)) == NULL)
14031 {
14032 error (_("CTF open failure: %s\n"), ctf_errmsg (err));
14033 goto fail;
14034 }
14035
14036 if (parentdata)
14037 {
14038 if ((parent = ctf_bufopen (&parentsect, symsectp, strsectp, &err)) == NULL)
14039 {
14040 error (_("CTF open failure: %s\n"), ctf_errmsg (err));
14041 goto fail;
14042 }
14043
14044 ctf_import (ctf, parent);
14045 }
14046
14047 ret = TRUE;
14048
14049 printf (_("\nDump of CTF section '%s':\n"),
14050 printable_section_name (filedata, section));
14051
14052 for (i = 0, thing = things; *thing[0]; thing++, i++)
14053 {
14054 ctf_dump_state_t *s = NULL;
14055 char *item;
14056
14057 printf ("\n %s:\n", *thing);
14058 while ((item = ctf_dump (ctf, &s, i, dump_ctf_indent_lines,
14059 (void *) " ")) != NULL)
14060 {
14061 printf ("%s\n", item);
14062 free (item);
14063 }
14064
14065 if (ctf_errno (ctf))
14066 {
14067 error (_("Iteration failed: %s, %s\n"), *thing,
14068 ctf_errmsg (ctf_errno (ctf)));
14069 ret = FALSE;
14070 }
14071 }
14072
14073 fail:
14074 ctf_file_close (ctf);
14075 ctf_file_close (parent);
14076 free (parentdata);
14077 free (data);
14078 free (symdata);
14079 free (strdata);
14080 return ret;
14081 }
14082
14083 static bfd_boolean
14084 load_specific_debug_section (enum dwarf_section_display_enum debug,
14085 const Elf_Internal_Shdr * sec,
14086 void * data)
14087 {
14088 struct dwarf_section * section = &debug_displays [debug].section;
14089 char buf [64];
14090 Filedata * filedata = (Filedata *) data;
14091
14092 if (section->start != NULL)
14093 {
14094 /* If it is already loaded, do nothing. */
14095 if (streq (section->filename, filedata->file_name))
14096 return TRUE;
14097 free (section->start);
14098 }
14099
14100 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
14101 section->address = sec->sh_addr;
14102 section->user_data = NULL;
14103 section->filename = filedata->file_name;
14104 section->start = (unsigned char *) get_data (NULL, filedata,
14105 sec->sh_offset, 1,
14106 sec->sh_size, buf);
14107 if (section->start == NULL)
14108 section->size = 0;
14109 else
14110 {
14111 unsigned char *start = section->start;
14112 dwarf_size_type size = sec->sh_size;
14113 dwarf_size_type uncompressed_size = 0;
14114
14115 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
14116 {
14117 Elf_Internal_Chdr chdr;
14118 unsigned int compression_header_size;
14119
14120 if (size < (is_32bit_elf
14121 ? sizeof (Elf32_External_Chdr)
14122 : sizeof (Elf64_External_Chdr)))
14123 {
14124 warn (_("compressed section %s is too small to contain a compression header"),
14125 section->name);
14126 return FALSE;
14127 }
14128
14129 compression_header_size = get_compression_header (&chdr, start, size);
14130
14131 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
14132 {
14133 warn (_("section '%s' has unsupported compress type: %d\n"),
14134 section->name, chdr.ch_type);
14135 return FALSE;
14136 }
14137 uncompressed_size = chdr.ch_size;
14138 start += compression_header_size;
14139 size -= compression_header_size;
14140 }
14141 else if (size > 12 && streq ((char *) start, "ZLIB"))
14142 {
14143 /* Read the zlib header. In this case, it should be "ZLIB"
14144 followed by the uncompressed section size, 8 bytes in
14145 big-endian order. */
14146 uncompressed_size = start[4]; uncompressed_size <<= 8;
14147 uncompressed_size += start[5]; uncompressed_size <<= 8;
14148 uncompressed_size += start[6]; uncompressed_size <<= 8;
14149 uncompressed_size += start[7]; uncompressed_size <<= 8;
14150 uncompressed_size += start[8]; uncompressed_size <<= 8;
14151 uncompressed_size += start[9]; uncompressed_size <<= 8;
14152 uncompressed_size += start[10]; uncompressed_size <<= 8;
14153 uncompressed_size += start[11];
14154 start += 12;
14155 size -= 12;
14156 }
14157
14158 if (uncompressed_size)
14159 {
14160 if (uncompress_section_contents (&start, uncompressed_size,
14161 &size))
14162 {
14163 /* Free the compressed buffer, update the section buffer
14164 and the section size if uncompress is successful. */
14165 free (section->start);
14166 section->start = start;
14167 }
14168 else
14169 {
14170 error (_("Unable to decompress section %s\n"),
14171 printable_section_name (filedata, sec));
14172 return FALSE;
14173 }
14174 }
14175
14176 section->size = size;
14177 }
14178
14179 if (section->start == NULL)
14180 return FALSE;
14181
14182 if (debug_displays [debug].relocate)
14183 {
14184 if (! apply_relocations (filedata, sec, section->start, section->size,
14185 & section->reloc_info, & section->num_relocs))
14186 return FALSE;
14187 }
14188 else
14189 {
14190 section->reloc_info = NULL;
14191 section->num_relocs = 0;
14192 }
14193
14194 return TRUE;
14195 }
14196
14197 #if HAVE_LIBDEBUGINFOD
14198 /* Return a hex string representation of the build-id. */
14199 unsigned char *
14200 get_build_id (void * data)
14201 {
14202 Filedata * filedata = (Filedata *)data;
14203 Elf_Internal_Shdr * shdr;
14204 unsigned long i;
14205
14206 /* Iterate through notes to find note.gnu.build-id. */
14207 for (i = 0, shdr = filedata->section_headers;
14208 i < filedata->file_header.e_shnum && shdr != NULL;
14209 i++, shdr++)
14210 {
14211 if (shdr->sh_type != SHT_NOTE)
14212 continue;
14213
14214 char * next;
14215 char * end;
14216 size_t data_remaining;
14217 size_t min_notesz;
14218 Elf_External_Note * enote;
14219 Elf_Internal_Note inote;
14220
14221 bfd_vma offset = shdr->sh_offset;
14222 bfd_vma align = shdr->sh_addralign;
14223 bfd_vma length = shdr->sh_size;
14224
14225 enote = (Elf_External_Note *) get_section_contents (shdr, filedata);
14226 if (enote == NULL)
14227 continue;
14228
14229 if (align < 4)
14230 align = 4;
14231 else if (align != 4 && align != 8)
14232 continue;
14233
14234 end = (char *) enote + length;
14235 data_remaining = end - (char *) enote;
14236
14237 if (!is_ia64_vms (filedata))
14238 {
14239 min_notesz = offsetof (Elf_External_Note, name);
14240 if (data_remaining < min_notesz)
14241 {
14242 warn (ngettext ("debuginfod: Corrupt note: only %ld byte remains, "
14243 "not enough for a full note\n",
14244 "Corrupt note: only %ld bytes remain, "
14245 "not enough for a full note\n",
14246 data_remaining),
14247 (long) data_remaining);
14248 break;
14249 }
14250 data_remaining -= min_notesz;
14251
14252 inote.type = BYTE_GET (enote->type);
14253 inote.namesz = BYTE_GET (enote->namesz);
14254 inote.namedata = enote->name;
14255 inote.descsz = BYTE_GET (enote->descsz);
14256 inote.descdata = ((char *) enote
14257 + ELF_NOTE_DESC_OFFSET (inote.namesz, align));
14258 inote.descpos = offset + (inote.descdata - (char *) enote);
14259 next = ((char *) enote
14260 + ELF_NOTE_NEXT_OFFSET (inote.namesz, inote.descsz, align));
14261 }
14262 else
14263 {
14264 Elf64_External_VMS_Note *vms_enote;
14265
14266 /* PR binutils/15191
14267 Make sure that there is enough data to read. */
14268 min_notesz = offsetof (Elf64_External_VMS_Note, name);
14269 if (data_remaining < min_notesz)
14270 {
14271 warn (ngettext ("debuginfod: Corrupt note: only %ld byte remains, "
14272 "not enough for a full note\n",
14273 "Corrupt note: only %ld bytes remain, "
14274 "not enough for a full note\n",
14275 data_remaining),
14276 (long) data_remaining);
14277 break;
14278 }
14279 data_remaining -= min_notesz;
14280
14281 vms_enote = (Elf64_External_VMS_Note *) enote;
14282 inote.type = BYTE_GET (vms_enote->type);
14283 inote.namesz = BYTE_GET (vms_enote->namesz);
14284 inote.namedata = vms_enote->name;
14285 inote.descsz = BYTE_GET (vms_enote->descsz);
14286 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
14287 inote.descpos = offset + (inote.descdata - (char *) enote);
14288 next = inote.descdata + align_power (inote.descsz, 3);
14289 }
14290
14291 /* Skip malformed notes. */
14292 if ((size_t) (inote.descdata - inote.namedata) < inote.namesz
14293 || (size_t) (inote.descdata - inote.namedata) > data_remaining
14294 || (size_t) (next - inote.descdata) < inote.descsz
14295 || ((size_t) (next - inote.descdata)
14296 > data_remaining - (size_t) (inote.descdata - inote.namedata)))
14297 {
14298 warn (_("debuginfod: note with invalid namesz and/or descsz found\n"));
14299 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx, alignment: %u\n"),
14300 inote.type, inote.namesz, inote.descsz, (int) align);
14301 continue;
14302 }
14303
14304 /* Check if this is the build-id note. If so then convert the build-id
14305 bytes to a hex string. */
14306 if (inote.namesz > 0
14307 && const_strneq (inote.namedata, "GNU")
14308 && inote.type == NT_GNU_BUILD_ID)
14309 {
14310 unsigned long j;
14311 char * build_id;
14312
14313 build_id = malloc (inote.descsz * 2 + 1);
14314 if (build_id == NULL)
14315 return NULL;
14316
14317 for (j = 0; j < inote.descsz; ++j)
14318 sprintf (build_id + (j * 2), "%02x", inote.descdata[j] & 0xff);
14319 build_id[inote.descsz * 2] = '\0';
14320
14321 return (unsigned char *)build_id;
14322 }
14323 }
14324
14325 return NULL;
14326 }
14327 #endif /* HAVE_LIBDEBUGINFOD */
14328
14329 /* If this is not NULL, load_debug_section will only look for sections
14330 within the list of sections given here. */
14331 static unsigned int * section_subset = NULL;
14332
14333 bfd_boolean
14334 load_debug_section (enum dwarf_section_display_enum debug, void * data)
14335 {
14336 struct dwarf_section * section = &debug_displays [debug].section;
14337 Elf_Internal_Shdr * sec;
14338 Filedata * filedata = (Filedata *) data;
14339
14340 /* Without section headers we cannot find any sections. */
14341 if (filedata->section_headers == NULL)
14342 return FALSE;
14343
14344 if (filedata->string_table == NULL
14345 && filedata->file_header.e_shstrndx != SHN_UNDEF
14346 && filedata->file_header.e_shstrndx < filedata->file_header.e_shnum)
14347 {
14348 Elf_Internal_Shdr * strs;
14349
14350 /* Read in the string table, so that we have section names to scan. */
14351 strs = filedata->section_headers + filedata->file_header.e_shstrndx;
14352
14353 if (strs != NULL && strs->sh_size != 0)
14354 {
14355 filedata->string_table
14356 = (char *) get_data (NULL, filedata, strs->sh_offset,
14357 1, strs->sh_size, _("string table"));
14358
14359 filedata->string_table_length
14360 = filedata->string_table != NULL ? strs->sh_size : 0;
14361 }
14362 }
14363
14364 /* Locate the debug section. */
14365 sec = find_section_in_set (filedata, section->uncompressed_name, section_subset);
14366 if (sec != NULL)
14367 section->name = section->uncompressed_name;
14368 else
14369 {
14370 sec = find_section_in_set (filedata, section->compressed_name, section_subset);
14371 if (sec != NULL)
14372 section->name = section->compressed_name;
14373 }
14374 if (sec == NULL)
14375 return FALSE;
14376
14377 /* If we're loading from a subset of sections, and we've loaded
14378 a section matching this name before, it's likely that it's a
14379 different one. */
14380 if (section_subset != NULL)
14381 free_debug_section (debug);
14382
14383 return load_specific_debug_section (debug, sec, data);
14384 }
14385
14386 void
14387 free_debug_section (enum dwarf_section_display_enum debug)
14388 {
14389 struct dwarf_section * section = &debug_displays [debug].section;
14390
14391 if (section->start == NULL)
14392 return;
14393
14394 free ((char *) section->start);
14395 section->start = NULL;
14396 section->address = 0;
14397 section->size = 0;
14398 }
14399
14400 static bfd_boolean
14401 display_debug_section (int shndx, Elf_Internal_Shdr * section, Filedata * filedata)
14402 {
14403 char * name = SECTION_NAME (section);
14404 const char * print_name = printable_section_name (filedata, section);
14405 bfd_size_type length;
14406 bfd_boolean result = TRUE;
14407 int i;
14408
14409 length = section->sh_size;
14410 if (length == 0)
14411 {
14412 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
14413 return TRUE;
14414 }
14415 if (section->sh_type == SHT_NOBITS)
14416 {
14417 /* There is no point in dumping the contents of a debugging section
14418 which has the NOBITS type - the bits in the file will be random.
14419 This can happen when a file containing a .eh_frame section is
14420 stripped with the --only-keep-debug command line option. */
14421 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
14422 print_name);
14423 return FALSE;
14424 }
14425
14426 if (const_strneq (name, ".gnu.linkonce.wi."))
14427 name = ".debug_info";
14428
14429 /* See if we know how to display the contents of this section. */
14430 for (i = 0; i < max; i++)
14431 {
14432 enum dwarf_section_display_enum id = (enum dwarf_section_display_enum) i;
14433 struct dwarf_section_display * display = debug_displays + i;
14434 struct dwarf_section * sec = & display->section;
14435
14436 if (streq (sec->uncompressed_name, name)
14437 || (id == line && const_strneq (name, ".debug_line."))
14438 || streq (sec->compressed_name, name))
14439 {
14440 bfd_boolean secondary = (section != find_section (filedata, name));
14441
14442 if (secondary)
14443 free_debug_section (id);
14444
14445 if (i == line && const_strneq (name, ".debug_line."))
14446 sec->name = name;
14447 else if (streq (sec->uncompressed_name, name))
14448 sec->name = sec->uncompressed_name;
14449 else
14450 sec->name = sec->compressed_name;
14451
14452 if (load_specific_debug_section (id, section, filedata))
14453 {
14454 /* If this debug section is part of a CU/TU set in a .dwp file,
14455 restrict load_debug_section to the sections in that set. */
14456 section_subset = find_cu_tu_set (filedata, shndx);
14457
14458 result &= display->display (sec, filedata);
14459
14460 section_subset = NULL;
14461
14462 if (secondary || (id != info && id != abbrev))
14463 free_debug_section (id);
14464 }
14465 break;
14466 }
14467 }
14468
14469 if (i == max)
14470 {
14471 printf (_("Unrecognized debug section: %s\n"), print_name);
14472 result = FALSE;
14473 }
14474
14475 return result;
14476 }
14477
14478 /* Set DUMP_SECTS for all sections where dumps were requested
14479 based on section name. */
14480
14481 static void
14482 initialise_dumps_byname (Filedata * filedata)
14483 {
14484 struct dump_list_entry * cur;
14485
14486 for (cur = dump_sects_byname; cur; cur = cur->next)
14487 {
14488 unsigned int i;
14489 bfd_boolean any = FALSE;
14490
14491 for (i = 0; i < filedata->file_header.e_shnum; i++)
14492 if (streq (SECTION_NAME (filedata->section_headers + i), cur->name))
14493 {
14494 request_dump_bynumber (filedata, i, cur->type);
14495 any = TRUE;
14496 }
14497
14498 if (!any)
14499 warn (_("Section '%s' was not dumped because it does not exist!\n"),
14500 cur->name);
14501 }
14502 }
14503
14504 static bfd_boolean
14505 process_section_contents (Filedata * filedata)
14506 {
14507 Elf_Internal_Shdr * section;
14508 unsigned int i;
14509 bfd_boolean res = TRUE;
14510
14511 if (! do_dump)
14512 return TRUE;
14513
14514 initialise_dumps_byname (filedata);
14515
14516 for (i = 0, section = filedata->section_headers;
14517 i < filedata->file_header.e_shnum && i < filedata->num_dump_sects;
14518 i++, section++)
14519 {
14520 dump_type dump = filedata->dump_sects[i];
14521
14522 #ifdef SUPPORT_DISASSEMBLY
14523 if (dump & DISASS_DUMP)
14524 {
14525 if (! disassemble_section (section, filedata))
14526 res = FALSE;
14527 }
14528 #endif
14529 if (dump & HEX_DUMP)
14530 {
14531 if (! dump_section_as_bytes (section, filedata, FALSE))
14532 res = FALSE;
14533 }
14534
14535 if (dump & RELOC_DUMP)
14536 {
14537 if (! dump_section_as_bytes (section, filedata, TRUE))
14538 res = FALSE;
14539 }
14540
14541 if (dump & STRING_DUMP)
14542 {
14543 if (! dump_section_as_strings (section, filedata))
14544 res = FALSE;
14545 }
14546
14547 if (dump & DEBUG_DUMP)
14548 {
14549 if (! display_debug_section (i, section, filedata))
14550 res = FALSE;
14551 }
14552
14553 if (dump & CTF_DUMP)
14554 {
14555 if (! dump_section_as_ctf (section, filedata))
14556 res = FALSE;
14557 }
14558 }
14559
14560 /* Check to see if the user requested a
14561 dump of a section that does not exist. */
14562 while (i < filedata->num_dump_sects)
14563 {
14564 if (filedata->dump_sects[i])
14565 {
14566 warn (_("Section %d was not dumped because it does not exist!\n"), i);
14567 res = FALSE;
14568 }
14569 i++;
14570 }
14571
14572 return res;
14573 }
14574
14575 static void
14576 process_mips_fpe_exception (int mask)
14577 {
14578 if (mask)
14579 {
14580 bfd_boolean first = TRUE;
14581
14582 if (mask & OEX_FPU_INEX)
14583 fputs ("INEX", stdout), first = FALSE;
14584 if (mask & OEX_FPU_UFLO)
14585 printf ("%sUFLO", first ? "" : "|"), first = FALSE;
14586 if (mask & OEX_FPU_OFLO)
14587 printf ("%sOFLO", first ? "" : "|"), first = FALSE;
14588 if (mask & OEX_FPU_DIV0)
14589 printf ("%sDIV0", first ? "" : "|"), first = FALSE;
14590 if (mask & OEX_FPU_INVAL)
14591 printf ("%sINVAL", first ? "" : "|");
14592 }
14593 else
14594 fputs ("0", stdout);
14595 }
14596
14597 /* Display's the value of TAG at location P. If TAG is
14598 greater than 0 it is assumed to be an unknown tag, and
14599 a message is printed to this effect. Otherwise it is
14600 assumed that a message has already been printed.
14601
14602 If the bottom bit of TAG is set it assumed to have a
14603 string value, otherwise it is assumed to have an integer
14604 value.
14605
14606 Returns an updated P pointing to the first unread byte
14607 beyond the end of TAG's value.
14608
14609 Reads at or beyond END will not be made. */
14610
14611 static unsigned char *
14612 display_tag_value (signed int tag,
14613 unsigned char * p,
14614 const unsigned char * const end)
14615 {
14616 unsigned long val;
14617
14618 if (tag > 0)
14619 printf (" Tag_unknown_%d: ", tag);
14620
14621 if (p >= end)
14622 {
14623 warn (_("<corrupt tag>\n"));
14624 }
14625 else if (tag & 1)
14626 {
14627 /* PR 17531 file: 027-19978-0.004. */
14628 size_t maxlen = (end - p) - 1;
14629
14630 putchar ('"');
14631 if (maxlen > 0)
14632 {
14633 print_symbol ((int) maxlen, (const char *) p);
14634 p += strnlen ((char *) p, maxlen) + 1;
14635 }
14636 else
14637 {
14638 printf (_("<corrupt string tag>"));
14639 p = (unsigned char *) end;
14640 }
14641 printf ("\"\n");
14642 }
14643 else
14644 {
14645 READ_ULEB (val, p, end);
14646 printf ("%ld (0x%lx)\n", val, val);
14647 }
14648
14649 assert (p <= end);
14650 return p;
14651 }
14652
14653 /* ARC ABI attributes section. */
14654
14655 static unsigned char *
14656 display_arc_attribute (unsigned char * p,
14657 const unsigned char * const end)
14658 {
14659 unsigned int tag;
14660 unsigned int val;
14661
14662 READ_ULEB (tag, p, end);
14663
14664 switch (tag)
14665 {
14666 case Tag_ARC_PCS_config:
14667 READ_ULEB (val, p, end);
14668 printf (" Tag_ARC_PCS_config: ");
14669 switch (val)
14670 {
14671 case 0:
14672 printf (_("Absent/Non standard\n"));
14673 break;
14674 case 1:
14675 printf (_("Bare metal/mwdt\n"));
14676 break;
14677 case 2:
14678 printf (_("Bare metal/newlib\n"));
14679 break;
14680 case 3:
14681 printf (_("Linux/uclibc\n"));
14682 break;
14683 case 4:
14684 printf (_("Linux/glibc\n"));
14685 break;
14686 default:
14687 printf (_("Unknown\n"));
14688 break;
14689 }
14690 break;
14691
14692 case Tag_ARC_CPU_base:
14693 READ_ULEB (val, p, end);
14694 printf (" Tag_ARC_CPU_base: ");
14695 switch (val)
14696 {
14697 default:
14698 case TAG_CPU_NONE:
14699 printf (_("Absent\n"));
14700 break;
14701 case TAG_CPU_ARC6xx:
14702 printf ("ARC6xx\n");
14703 break;
14704 case TAG_CPU_ARC7xx:
14705 printf ("ARC7xx\n");
14706 break;
14707 case TAG_CPU_ARCEM:
14708 printf ("ARCEM\n");
14709 break;
14710 case TAG_CPU_ARCHS:
14711 printf ("ARCHS\n");
14712 break;
14713 }
14714 break;
14715
14716 case Tag_ARC_CPU_variation:
14717 READ_ULEB (val, p, end);
14718 printf (" Tag_ARC_CPU_variation: ");
14719 switch (val)
14720 {
14721 default:
14722 if (val > 0 && val < 16)
14723 printf ("Core%d\n", val);
14724 else
14725 printf ("Unknown\n");
14726 break;
14727
14728 case 0:
14729 printf (_("Absent\n"));
14730 break;
14731 }
14732 break;
14733
14734 case Tag_ARC_CPU_name:
14735 printf (" Tag_ARC_CPU_name: ");
14736 p = display_tag_value (-1, p, end);
14737 break;
14738
14739 case Tag_ARC_ABI_rf16:
14740 READ_ULEB (val, p, end);
14741 printf (" Tag_ARC_ABI_rf16: %s\n", val ? _("yes") : _("no"));
14742 break;
14743
14744 case Tag_ARC_ABI_osver:
14745 READ_ULEB (val, p, end);
14746 printf (" Tag_ARC_ABI_osver: v%d\n", val);
14747 break;
14748
14749 case Tag_ARC_ABI_pic:
14750 case Tag_ARC_ABI_sda:
14751 READ_ULEB (val, p, end);
14752 printf (tag == Tag_ARC_ABI_sda ? " Tag_ARC_ABI_sda: "
14753 : " Tag_ARC_ABI_pic: ");
14754 switch (val)
14755 {
14756 case 0:
14757 printf (_("Absent\n"));
14758 break;
14759 case 1:
14760 printf ("MWDT\n");
14761 break;
14762 case 2:
14763 printf ("GNU\n");
14764 break;
14765 default:
14766 printf (_("Unknown\n"));
14767 break;
14768 }
14769 break;
14770
14771 case Tag_ARC_ABI_tls:
14772 READ_ULEB (val, p, end);
14773 printf (" Tag_ARC_ABI_tls: %s\n", val ? "r25": "none");
14774 break;
14775
14776 case Tag_ARC_ABI_enumsize:
14777 READ_ULEB (val, p, end);
14778 printf (" Tag_ARC_ABI_enumsize: %s\n", val ? _("default") :
14779 _("smallest"));
14780 break;
14781
14782 case Tag_ARC_ABI_exceptions:
14783 READ_ULEB (val, p, end);
14784 printf (" Tag_ARC_ABI_exceptions: %s\n", val ? _("OPTFP")
14785 : _("default"));
14786 break;
14787
14788 case Tag_ARC_ABI_double_size:
14789 READ_ULEB (val, p, end);
14790 printf (" Tag_ARC_ABI_double_size: %d\n", val);
14791 break;
14792
14793 case Tag_ARC_ISA_config:
14794 printf (" Tag_ARC_ISA_config: ");
14795 p = display_tag_value (-1, p, end);
14796 break;
14797
14798 case Tag_ARC_ISA_apex:
14799 printf (" Tag_ARC_ISA_apex: ");
14800 p = display_tag_value (-1, p, end);
14801 break;
14802
14803 case Tag_ARC_ISA_mpy_option:
14804 READ_ULEB (val, p, end);
14805 printf (" Tag_ARC_ISA_mpy_option: %d\n", val);
14806 break;
14807
14808 case Tag_ARC_ATR_version:
14809 READ_ULEB (val, p, end);
14810 printf (" Tag_ARC_ATR_version: %d\n", val);
14811 break;
14812
14813 default:
14814 return display_tag_value (tag & 1, p, end);
14815 }
14816
14817 return p;
14818 }
14819
14820 /* ARM EABI attributes section. */
14821 typedef struct
14822 {
14823 unsigned int tag;
14824 const char * name;
14825 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
14826 unsigned int type;
14827 const char ** table;
14828 } arm_attr_public_tag;
14829
14830 static const char * arm_attr_tag_CPU_arch[] =
14831 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
14832 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "v8-R", "v8-M.baseline",
14833 "v8-M.mainline", "", "", "", "v8.1-M.mainline"};
14834 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
14835 static const char * arm_attr_tag_THUMB_ISA_use[] =
14836 {"No", "Thumb-1", "Thumb-2", "Yes"};
14837 static const char * arm_attr_tag_FP_arch[] =
14838 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
14839 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
14840 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
14841 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
14842 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
14843 "NEON for ARMv8.1"};
14844 static const char * arm_attr_tag_PCS_config[] =
14845 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
14846 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
14847 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
14848 {"V6", "SB", "TLS", "Unused"};
14849 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
14850 {"Absolute", "PC-relative", "SB-relative", "None"};
14851 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
14852 {"Absolute", "PC-relative", "None"};
14853 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
14854 {"None", "direct", "GOT-indirect"};
14855 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
14856 {"None", "??? 1", "2", "??? 3", "4"};
14857 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
14858 static const char * arm_attr_tag_ABI_FP_denormal[] =
14859 {"Unused", "Needed", "Sign only"};
14860 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
14861 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
14862 static const char * arm_attr_tag_ABI_FP_number_model[] =
14863 {"Unused", "Finite", "RTABI", "IEEE 754"};
14864 static const char * arm_attr_tag_ABI_enum_size[] =
14865 {"Unused", "small", "int", "forced to int"};
14866 static const char * arm_attr_tag_ABI_HardFP_use[] =
14867 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
14868 static const char * arm_attr_tag_ABI_VFP_args[] =
14869 {"AAPCS", "VFP registers", "custom", "compatible"};
14870 static const char * arm_attr_tag_ABI_WMMX_args[] =
14871 {"AAPCS", "WMMX registers", "custom"};
14872 static const char * arm_attr_tag_ABI_optimization_goals[] =
14873 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
14874 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
14875 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
14876 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
14877 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
14878 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
14879 static const char * arm_attr_tag_FP_HP_extension[] =
14880 {"Not Allowed", "Allowed"};
14881 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
14882 {"None", "IEEE 754", "Alternative Format"};
14883 static const char * arm_attr_tag_DSP_extension[] =
14884 {"Follow architecture", "Allowed"};
14885 static const char * arm_attr_tag_MPextension_use[] =
14886 {"Not Allowed", "Allowed"};
14887 static const char * arm_attr_tag_DIV_use[] =
14888 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
14889 "Allowed in v7-A with integer division extension"};
14890 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
14891 static const char * arm_attr_tag_Virtualization_use[] =
14892 {"Not Allowed", "TrustZone", "Virtualization Extensions",
14893 "TrustZone and Virtualization Extensions"};
14894 static const char * arm_attr_tag_MPextension_use_legacy[] =
14895 {"Not Allowed", "Allowed"};
14896
14897 static const char * arm_attr_tag_MVE_arch[] =
14898 {"No MVE", "MVE Integer only", "MVE Integer and FP"};
14899
14900 #define LOOKUP(id, name) \
14901 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
14902 static arm_attr_public_tag arm_attr_public_tags[] =
14903 {
14904 {4, "CPU_raw_name", 1, NULL},
14905 {5, "CPU_name", 1, NULL},
14906 LOOKUP(6, CPU_arch),
14907 {7, "CPU_arch_profile", 0, NULL},
14908 LOOKUP(8, ARM_ISA_use),
14909 LOOKUP(9, THUMB_ISA_use),
14910 LOOKUP(10, FP_arch),
14911 LOOKUP(11, WMMX_arch),
14912 LOOKUP(12, Advanced_SIMD_arch),
14913 LOOKUP(13, PCS_config),
14914 LOOKUP(14, ABI_PCS_R9_use),
14915 LOOKUP(15, ABI_PCS_RW_data),
14916 LOOKUP(16, ABI_PCS_RO_data),
14917 LOOKUP(17, ABI_PCS_GOT_use),
14918 LOOKUP(18, ABI_PCS_wchar_t),
14919 LOOKUP(19, ABI_FP_rounding),
14920 LOOKUP(20, ABI_FP_denormal),
14921 LOOKUP(21, ABI_FP_exceptions),
14922 LOOKUP(22, ABI_FP_user_exceptions),
14923 LOOKUP(23, ABI_FP_number_model),
14924 {24, "ABI_align_needed", 0, NULL},
14925 {25, "ABI_align_preserved", 0, NULL},
14926 LOOKUP(26, ABI_enum_size),
14927 LOOKUP(27, ABI_HardFP_use),
14928 LOOKUP(28, ABI_VFP_args),
14929 LOOKUP(29, ABI_WMMX_args),
14930 LOOKUP(30, ABI_optimization_goals),
14931 LOOKUP(31, ABI_FP_optimization_goals),
14932 {32, "compatibility", 0, NULL},
14933 LOOKUP(34, CPU_unaligned_access),
14934 LOOKUP(36, FP_HP_extension),
14935 LOOKUP(38, ABI_FP_16bit_format),
14936 LOOKUP(42, MPextension_use),
14937 LOOKUP(44, DIV_use),
14938 LOOKUP(46, DSP_extension),
14939 LOOKUP(48, MVE_arch),
14940 {64, "nodefaults", 0, NULL},
14941 {65, "also_compatible_with", 0, NULL},
14942 LOOKUP(66, T2EE_use),
14943 {67, "conformance", 1, NULL},
14944 LOOKUP(68, Virtualization_use),
14945 LOOKUP(70, MPextension_use_legacy)
14946 };
14947 #undef LOOKUP
14948
14949 static unsigned char *
14950 display_arm_attribute (unsigned char * p,
14951 const unsigned char * const end)
14952 {
14953 unsigned int tag;
14954 unsigned int val;
14955 arm_attr_public_tag * attr;
14956 unsigned i;
14957 unsigned int type;
14958
14959 READ_ULEB (tag, p, end);
14960 attr = NULL;
14961 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
14962 {
14963 if (arm_attr_public_tags[i].tag == tag)
14964 {
14965 attr = &arm_attr_public_tags[i];
14966 break;
14967 }
14968 }
14969
14970 if (attr)
14971 {
14972 printf (" Tag_%s: ", attr->name);
14973 switch (attr->type)
14974 {
14975 case 0:
14976 switch (tag)
14977 {
14978 case 7: /* Tag_CPU_arch_profile. */
14979 READ_ULEB (val, p, end);
14980 switch (val)
14981 {
14982 case 0: printf (_("None\n")); break;
14983 case 'A': printf (_("Application\n")); break;
14984 case 'R': printf (_("Realtime\n")); break;
14985 case 'M': printf (_("Microcontroller\n")); break;
14986 case 'S': printf (_("Application or Realtime\n")); break;
14987 default: printf ("??? (%d)\n", val); break;
14988 }
14989 break;
14990
14991 case 24: /* Tag_align_needed. */
14992 READ_ULEB (val, p, end);
14993 switch (val)
14994 {
14995 case 0: printf (_("None\n")); break;
14996 case 1: printf (_("8-byte\n")); break;
14997 case 2: printf (_("4-byte\n")); break;
14998 case 3: printf ("??? 3\n"); break;
14999 default:
15000 if (val <= 12)
15001 printf (_("8-byte and up to %d-byte extended\n"),
15002 1 << val);
15003 else
15004 printf ("??? (%d)\n", val);
15005 break;
15006 }
15007 break;
15008
15009 case 25: /* Tag_align_preserved. */
15010 READ_ULEB (val, p, end);
15011 switch (val)
15012 {
15013 case 0: printf (_("None\n")); break;
15014 case 1: printf (_("8-byte, except leaf SP\n")); break;
15015 case 2: printf (_("8-byte\n")); break;
15016 case 3: printf ("??? 3\n"); break;
15017 default:
15018 if (val <= 12)
15019 printf (_("8-byte and up to %d-byte extended\n"),
15020 1 << val);
15021 else
15022 printf ("??? (%d)\n", val);
15023 break;
15024 }
15025 break;
15026
15027 case 32: /* Tag_compatibility. */
15028 {
15029 READ_ULEB (val, p, end);
15030 printf (_("flag = %d, vendor = "), val);
15031 if (p < end - 1)
15032 {
15033 size_t maxlen = (end - p) - 1;
15034
15035 print_symbol ((int) maxlen, (const char *) p);
15036 p += strnlen ((char *) p, maxlen) + 1;
15037 }
15038 else
15039 {
15040 printf (_("<corrupt>"));
15041 p = (unsigned char *) end;
15042 }
15043 putchar ('\n');
15044 }
15045 break;
15046
15047 case 64: /* Tag_nodefaults. */
15048 /* PR 17531: file: 001-505008-0.01. */
15049 if (p < end)
15050 p++;
15051 printf (_("True\n"));
15052 break;
15053
15054 case 65: /* Tag_also_compatible_with. */
15055 READ_ULEB (val, p, end);
15056 if (val == 6 /* Tag_CPU_arch. */)
15057 {
15058 READ_ULEB (val, p, end);
15059 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
15060 printf ("??? (%d)\n", val);
15061 else
15062 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
15063 }
15064 else
15065 printf ("???\n");
15066 while (p < end && *(p++) != '\0' /* NUL terminator. */)
15067 ;
15068 break;
15069
15070 default:
15071 printf (_("<unknown: %d>\n"), tag);
15072 break;
15073 }
15074 return p;
15075
15076 case 1:
15077 return display_tag_value (-1, p, end);
15078 case 2:
15079 return display_tag_value (0, p, end);
15080
15081 default:
15082 assert (attr->type & 0x80);
15083 READ_ULEB (val, p, end);
15084 type = attr->type & 0x7f;
15085 if (val >= type)
15086 printf ("??? (%d)\n", val);
15087 else
15088 printf ("%s\n", attr->table[val]);
15089 return p;
15090 }
15091 }
15092
15093 return display_tag_value (tag, p, end);
15094 }
15095
15096 static unsigned char *
15097 display_gnu_attribute (unsigned char * p,
15098 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const),
15099 const unsigned char * const end)
15100 {
15101 unsigned int tag;
15102 unsigned int val;
15103
15104 READ_ULEB (tag, p, end);
15105
15106 /* Tag_compatibility is the only generic GNU attribute defined at
15107 present. */
15108 if (tag == 32)
15109 {
15110 READ_ULEB (val, p, end);
15111
15112 printf (_("flag = %d, vendor = "), val);
15113 if (p == end)
15114 {
15115 printf (_("<corrupt>\n"));
15116 warn (_("corrupt vendor attribute\n"));
15117 }
15118 else
15119 {
15120 if (p < end - 1)
15121 {
15122 size_t maxlen = (end - p) - 1;
15123
15124 print_symbol ((int) maxlen, (const char *) p);
15125 p += strnlen ((char *) p, maxlen) + 1;
15126 }
15127 else
15128 {
15129 printf (_("<corrupt>"));
15130 p = (unsigned char *) end;
15131 }
15132 putchar ('\n');
15133 }
15134 return p;
15135 }
15136
15137 if ((tag & 2) == 0 && display_proc_gnu_attribute)
15138 return display_proc_gnu_attribute (p, tag, end);
15139
15140 return display_tag_value (tag, p, end);
15141 }
15142
15143 static unsigned char *
15144 display_power_gnu_attribute (unsigned char * p,
15145 unsigned int tag,
15146 const unsigned char * const end)
15147 {
15148 unsigned int val;
15149
15150 if (tag == Tag_GNU_Power_ABI_FP)
15151 {
15152 printf (" Tag_GNU_Power_ABI_FP: ");
15153 if (p == end)
15154 {
15155 printf (_("<corrupt>\n"));
15156 return p;
15157 }
15158 READ_ULEB (val, p, end);
15159
15160 if (val > 15)
15161 printf ("(%#x), ", val);
15162
15163 switch (val & 3)
15164 {
15165 case 0:
15166 printf (_("unspecified hard/soft float, "));
15167 break;
15168 case 1:
15169 printf (_("hard float, "));
15170 break;
15171 case 2:
15172 printf (_("soft float, "));
15173 break;
15174 case 3:
15175 printf (_("single-precision hard float, "));
15176 break;
15177 }
15178
15179 switch (val & 0xC)
15180 {
15181 case 0:
15182 printf (_("unspecified long double\n"));
15183 break;
15184 case 4:
15185 printf (_("128-bit IBM long double\n"));
15186 break;
15187 case 8:
15188 printf (_("64-bit long double\n"));
15189 break;
15190 case 12:
15191 printf (_("128-bit IEEE long double\n"));
15192 break;
15193 }
15194 return p;
15195 }
15196
15197 if (tag == Tag_GNU_Power_ABI_Vector)
15198 {
15199 printf (" Tag_GNU_Power_ABI_Vector: ");
15200 if (p == end)
15201 {
15202 printf (_("<corrupt>\n"));
15203 return p;
15204 }
15205 READ_ULEB (val, p, end);
15206
15207 if (val > 3)
15208 printf ("(%#x), ", val);
15209
15210 switch (val & 3)
15211 {
15212 case 0:
15213 printf (_("unspecified\n"));
15214 break;
15215 case 1:
15216 printf (_("generic\n"));
15217 break;
15218 case 2:
15219 printf ("AltiVec\n");
15220 break;
15221 case 3:
15222 printf ("SPE\n");
15223 break;
15224 }
15225 return p;
15226 }
15227
15228 if (tag == Tag_GNU_Power_ABI_Struct_Return)
15229 {
15230 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
15231 if (p == end)
15232 {
15233 printf (_("<corrupt>\n"));
15234 return p;
15235 }
15236 READ_ULEB (val, p, end);
15237
15238 if (val > 2)
15239 printf ("(%#x), ", val);
15240
15241 switch (val & 3)
15242 {
15243 case 0:
15244 printf (_("unspecified\n"));
15245 break;
15246 case 1:
15247 printf ("r3/r4\n");
15248 break;
15249 case 2:
15250 printf (_("memory\n"));
15251 break;
15252 case 3:
15253 printf ("???\n");
15254 break;
15255 }
15256 return p;
15257 }
15258
15259 return display_tag_value (tag & 1, p, end);
15260 }
15261
15262 static unsigned char *
15263 display_s390_gnu_attribute (unsigned char * p,
15264 unsigned int tag,
15265 const unsigned char * const end)
15266 {
15267 unsigned int val;
15268
15269 if (tag == Tag_GNU_S390_ABI_Vector)
15270 {
15271 printf (" Tag_GNU_S390_ABI_Vector: ");
15272 READ_ULEB (val, p, end);
15273
15274 switch (val)
15275 {
15276 case 0:
15277 printf (_("any\n"));
15278 break;
15279 case 1:
15280 printf (_("software\n"));
15281 break;
15282 case 2:
15283 printf (_("hardware\n"));
15284 break;
15285 default:
15286 printf ("??? (%d)\n", val);
15287 break;
15288 }
15289 return p;
15290 }
15291
15292 return display_tag_value (tag & 1, p, end);
15293 }
15294
15295 static void
15296 display_sparc_hwcaps (unsigned int mask)
15297 {
15298 if (mask)
15299 {
15300 bfd_boolean first = TRUE;
15301
15302 if (mask & ELF_SPARC_HWCAP_MUL32)
15303 fputs ("mul32", stdout), first = FALSE;
15304 if (mask & ELF_SPARC_HWCAP_DIV32)
15305 printf ("%sdiv32", first ? "" : "|"), first = FALSE;
15306 if (mask & ELF_SPARC_HWCAP_FSMULD)
15307 printf ("%sfsmuld", first ? "" : "|"), first = FALSE;
15308 if (mask & ELF_SPARC_HWCAP_V8PLUS)
15309 printf ("%sv8plus", first ? "" : "|"), first = FALSE;
15310 if (mask & ELF_SPARC_HWCAP_POPC)
15311 printf ("%spopc", first ? "" : "|"), first = FALSE;
15312 if (mask & ELF_SPARC_HWCAP_VIS)
15313 printf ("%svis", first ? "" : "|"), first = FALSE;
15314 if (mask & ELF_SPARC_HWCAP_VIS2)
15315 printf ("%svis2", first ? "" : "|"), first = FALSE;
15316 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
15317 printf ("%sASIBlkInit", first ? "" : "|"), first = FALSE;
15318 if (mask & ELF_SPARC_HWCAP_FMAF)
15319 printf ("%sfmaf", first ? "" : "|"), first = FALSE;
15320 if (mask & ELF_SPARC_HWCAP_VIS3)
15321 printf ("%svis3", first ? "" : "|"), first = FALSE;
15322 if (mask & ELF_SPARC_HWCAP_HPC)
15323 printf ("%shpc", first ? "" : "|"), first = FALSE;
15324 if (mask & ELF_SPARC_HWCAP_RANDOM)
15325 printf ("%srandom", first ? "" : "|"), first = FALSE;
15326 if (mask & ELF_SPARC_HWCAP_TRANS)
15327 printf ("%strans", first ? "" : "|"), first = FALSE;
15328 if (mask & ELF_SPARC_HWCAP_FJFMAU)
15329 printf ("%sfjfmau", first ? "" : "|"), first = FALSE;
15330 if (mask & ELF_SPARC_HWCAP_IMA)
15331 printf ("%sima", first ? "" : "|"), first = FALSE;
15332 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
15333 printf ("%scspare", first ? "" : "|"), first = FALSE;
15334 }
15335 else
15336 fputc ('0', stdout);
15337 fputc ('\n', stdout);
15338 }
15339
15340 static void
15341 display_sparc_hwcaps2 (unsigned int mask)
15342 {
15343 if (mask)
15344 {
15345 bfd_boolean first = TRUE;
15346
15347 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
15348 fputs ("fjathplus", stdout), first = FALSE;
15349 if (mask & ELF_SPARC_HWCAP2_VIS3B)
15350 printf ("%svis3b", first ? "" : "|"), first = FALSE;
15351 if (mask & ELF_SPARC_HWCAP2_ADP)
15352 printf ("%sadp", first ? "" : "|"), first = FALSE;
15353 if (mask & ELF_SPARC_HWCAP2_SPARC5)
15354 printf ("%ssparc5", first ? "" : "|"), first = FALSE;
15355 if (mask & ELF_SPARC_HWCAP2_MWAIT)
15356 printf ("%smwait", first ? "" : "|"), first = FALSE;
15357 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
15358 printf ("%sxmpmul", first ? "" : "|"), first = FALSE;
15359 if (mask & ELF_SPARC_HWCAP2_XMONT)
15360 printf ("%sxmont2", first ? "" : "|"), first = FALSE;
15361 if (mask & ELF_SPARC_HWCAP2_NSEC)
15362 printf ("%snsec", first ? "" : "|"), first = FALSE;
15363 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
15364 printf ("%sfjathhpc", first ? "" : "|"), first = FALSE;
15365 if (mask & ELF_SPARC_HWCAP2_FJDES)
15366 printf ("%sfjdes", first ? "" : "|"), first = FALSE;
15367 if (mask & ELF_SPARC_HWCAP2_FJAES)
15368 printf ("%sfjaes", first ? "" : "|"), first = FALSE;
15369 }
15370 else
15371 fputc ('0', stdout);
15372 fputc ('\n', stdout);
15373 }
15374
15375 static unsigned char *
15376 display_sparc_gnu_attribute (unsigned char * p,
15377 unsigned int tag,
15378 const unsigned char * const end)
15379 {
15380 unsigned int val;
15381
15382 if (tag == Tag_GNU_Sparc_HWCAPS)
15383 {
15384 READ_ULEB (val, p, end);
15385 printf (" Tag_GNU_Sparc_HWCAPS: ");
15386 display_sparc_hwcaps (val);
15387 return p;
15388 }
15389 if (tag == Tag_GNU_Sparc_HWCAPS2)
15390 {
15391 READ_ULEB (val, p, end);
15392 printf (" Tag_GNU_Sparc_HWCAPS2: ");
15393 display_sparc_hwcaps2 (val);
15394 return p;
15395 }
15396
15397 return display_tag_value (tag, p, end);
15398 }
15399
15400 static void
15401 print_mips_fp_abi_value (unsigned int val)
15402 {
15403 switch (val)
15404 {
15405 case Val_GNU_MIPS_ABI_FP_ANY:
15406 printf (_("Hard or soft float\n"));
15407 break;
15408 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15409 printf (_("Hard float (double precision)\n"));
15410 break;
15411 case Val_GNU_MIPS_ABI_FP_SINGLE:
15412 printf (_("Hard float (single precision)\n"));
15413 break;
15414 case Val_GNU_MIPS_ABI_FP_SOFT:
15415 printf (_("Soft float\n"));
15416 break;
15417 case Val_GNU_MIPS_ABI_FP_OLD_64:
15418 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15419 break;
15420 case Val_GNU_MIPS_ABI_FP_XX:
15421 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
15422 break;
15423 case Val_GNU_MIPS_ABI_FP_64:
15424 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
15425 break;
15426 case Val_GNU_MIPS_ABI_FP_64A:
15427 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15428 break;
15429 case Val_GNU_MIPS_ABI_FP_NAN2008:
15430 printf (_("NaN 2008 compatibility\n"));
15431 break;
15432 default:
15433 printf ("??? (%d)\n", val);
15434 break;
15435 }
15436 }
15437
15438 static unsigned char *
15439 display_mips_gnu_attribute (unsigned char * p,
15440 unsigned int tag,
15441 const unsigned char * const end)
15442 {
15443 if (tag == Tag_GNU_MIPS_ABI_FP)
15444 {
15445 unsigned int val;
15446
15447 printf (" Tag_GNU_MIPS_ABI_FP: ");
15448 READ_ULEB (val, p, end);
15449 print_mips_fp_abi_value (val);
15450 return p;
15451 }
15452
15453 if (tag == Tag_GNU_MIPS_ABI_MSA)
15454 {
15455 unsigned int val;
15456
15457 printf (" Tag_GNU_MIPS_ABI_MSA: ");
15458 READ_ULEB (val, p, end);
15459
15460 switch (val)
15461 {
15462 case Val_GNU_MIPS_ABI_MSA_ANY:
15463 printf (_("Any MSA or not\n"));
15464 break;
15465 case Val_GNU_MIPS_ABI_MSA_128:
15466 printf (_("128-bit MSA\n"));
15467 break;
15468 default:
15469 printf ("??? (%d)\n", val);
15470 break;
15471 }
15472 return p;
15473 }
15474
15475 return display_tag_value (tag & 1, p, end);
15476 }
15477
15478 static unsigned char *
15479 display_tic6x_attribute (unsigned char * p,
15480 const unsigned char * const end)
15481 {
15482 unsigned int tag;
15483 unsigned int val;
15484
15485 READ_ULEB (tag, p, end);
15486
15487 switch (tag)
15488 {
15489 case Tag_ISA:
15490 printf (" Tag_ISA: ");
15491 READ_ULEB (val, p, end);
15492
15493 switch (val)
15494 {
15495 case C6XABI_Tag_ISA_none:
15496 printf (_("None\n"));
15497 break;
15498 case C6XABI_Tag_ISA_C62X:
15499 printf ("C62x\n");
15500 break;
15501 case C6XABI_Tag_ISA_C67X:
15502 printf ("C67x\n");
15503 break;
15504 case C6XABI_Tag_ISA_C67XP:
15505 printf ("C67x+\n");
15506 break;
15507 case C6XABI_Tag_ISA_C64X:
15508 printf ("C64x\n");
15509 break;
15510 case C6XABI_Tag_ISA_C64XP:
15511 printf ("C64x+\n");
15512 break;
15513 case C6XABI_Tag_ISA_C674X:
15514 printf ("C674x\n");
15515 break;
15516 default:
15517 printf ("??? (%d)\n", val);
15518 break;
15519 }
15520 return p;
15521
15522 case Tag_ABI_wchar_t:
15523 printf (" Tag_ABI_wchar_t: ");
15524 READ_ULEB (val, p, end);
15525 switch (val)
15526 {
15527 case 0:
15528 printf (_("Not used\n"));
15529 break;
15530 case 1:
15531 printf (_("2 bytes\n"));
15532 break;
15533 case 2:
15534 printf (_("4 bytes\n"));
15535 break;
15536 default:
15537 printf ("??? (%d)\n", val);
15538 break;
15539 }
15540 return p;
15541
15542 case Tag_ABI_stack_align_needed:
15543 printf (" Tag_ABI_stack_align_needed: ");
15544 READ_ULEB (val, p, end);
15545 switch (val)
15546 {
15547 case 0:
15548 printf (_("8-byte\n"));
15549 break;
15550 case 1:
15551 printf (_("16-byte\n"));
15552 break;
15553 default:
15554 printf ("??? (%d)\n", val);
15555 break;
15556 }
15557 return p;
15558
15559 case Tag_ABI_stack_align_preserved:
15560 READ_ULEB (val, p, end);
15561 printf (" Tag_ABI_stack_align_preserved: ");
15562 switch (val)
15563 {
15564 case 0:
15565 printf (_("8-byte\n"));
15566 break;
15567 case 1:
15568 printf (_("16-byte\n"));
15569 break;
15570 default:
15571 printf ("??? (%d)\n", val);
15572 break;
15573 }
15574 return p;
15575
15576 case Tag_ABI_DSBT:
15577 READ_ULEB (val, p, end);
15578 printf (" Tag_ABI_DSBT: ");
15579 switch (val)
15580 {
15581 case 0:
15582 printf (_("DSBT addressing not used\n"));
15583 break;
15584 case 1:
15585 printf (_("DSBT addressing used\n"));
15586 break;
15587 default:
15588 printf ("??? (%d)\n", val);
15589 break;
15590 }
15591 return p;
15592
15593 case Tag_ABI_PID:
15594 READ_ULEB (val, p, end);
15595 printf (" Tag_ABI_PID: ");
15596 switch (val)
15597 {
15598 case 0:
15599 printf (_("Data addressing position-dependent\n"));
15600 break;
15601 case 1:
15602 printf (_("Data addressing position-independent, GOT near DP\n"));
15603 break;
15604 case 2:
15605 printf (_("Data addressing position-independent, GOT far from DP\n"));
15606 break;
15607 default:
15608 printf ("??? (%d)\n", val);
15609 break;
15610 }
15611 return p;
15612
15613 case Tag_ABI_PIC:
15614 READ_ULEB (val, p, end);
15615 printf (" Tag_ABI_PIC: ");
15616 switch (val)
15617 {
15618 case 0:
15619 printf (_("Code addressing position-dependent\n"));
15620 break;
15621 case 1:
15622 printf (_("Code addressing position-independent\n"));
15623 break;
15624 default:
15625 printf ("??? (%d)\n", val);
15626 break;
15627 }
15628 return p;
15629
15630 case Tag_ABI_array_object_alignment:
15631 READ_ULEB (val, p, end);
15632 printf (" Tag_ABI_array_object_alignment: ");
15633 switch (val)
15634 {
15635 case 0:
15636 printf (_("8-byte\n"));
15637 break;
15638 case 1:
15639 printf (_("4-byte\n"));
15640 break;
15641 case 2:
15642 printf (_("16-byte\n"));
15643 break;
15644 default:
15645 printf ("??? (%d)\n", val);
15646 break;
15647 }
15648 return p;
15649
15650 case Tag_ABI_array_object_align_expected:
15651 READ_ULEB (val, p, end);
15652 printf (" Tag_ABI_array_object_align_expected: ");
15653 switch (val)
15654 {
15655 case 0:
15656 printf (_("8-byte\n"));
15657 break;
15658 case 1:
15659 printf (_("4-byte\n"));
15660 break;
15661 case 2:
15662 printf (_("16-byte\n"));
15663 break;
15664 default:
15665 printf ("??? (%d)\n", val);
15666 break;
15667 }
15668 return p;
15669
15670 case Tag_ABI_compatibility:
15671 {
15672 READ_ULEB (val, p, end);
15673 printf (" Tag_ABI_compatibility: ");
15674 printf (_("flag = %d, vendor = "), val);
15675 if (p < end - 1)
15676 {
15677 size_t maxlen = (end - p) - 1;
15678
15679 print_symbol ((int) maxlen, (const char *) p);
15680 p += strnlen ((char *) p, maxlen) + 1;
15681 }
15682 else
15683 {
15684 printf (_("<corrupt>"));
15685 p = (unsigned char *) end;
15686 }
15687 putchar ('\n');
15688 return p;
15689 }
15690
15691 case Tag_ABI_conformance:
15692 {
15693 printf (" Tag_ABI_conformance: \"");
15694 if (p < end - 1)
15695 {
15696 size_t maxlen = (end - p) - 1;
15697
15698 print_symbol ((int) maxlen, (const char *) p);
15699 p += strnlen ((char *) p, maxlen) + 1;
15700 }
15701 else
15702 {
15703 printf (_("<corrupt>"));
15704 p = (unsigned char *) end;
15705 }
15706 printf ("\"\n");
15707 return p;
15708 }
15709 }
15710
15711 return display_tag_value (tag, p, end);
15712 }
15713
15714 static void
15715 display_raw_attribute (unsigned char * p, unsigned char const * const end)
15716 {
15717 unsigned long addr = 0;
15718 size_t bytes = end - p;
15719
15720 assert (end >= p);
15721 while (bytes)
15722 {
15723 int j;
15724 int k;
15725 int lbytes = (bytes > 16 ? 16 : bytes);
15726
15727 printf (" 0x%8.8lx ", addr);
15728
15729 for (j = 0; j < 16; j++)
15730 {
15731 if (j < lbytes)
15732 printf ("%2.2x", p[j]);
15733 else
15734 printf (" ");
15735
15736 if ((j & 3) == 3)
15737 printf (" ");
15738 }
15739
15740 for (j = 0; j < lbytes; j++)
15741 {
15742 k = p[j];
15743 if (k >= ' ' && k < 0x7f)
15744 printf ("%c", k);
15745 else
15746 printf (".");
15747 }
15748
15749 putchar ('\n');
15750
15751 p += lbytes;
15752 bytes -= lbytes;
15753 addr += lbytes;
15754 }
15755
15756 putchar ('\n');
15757 }
15758
15759 static unsigned char *
15760 display_msp430x_attribute (unsigned char * p,
15761 const unsigned char * const end)
15762 {
15763 unsigned int val;
15764 unsigned int tag;
15765
15766 READ_ULEB (tag, p, end);
15767
15768 switch (tag)
15769 {
15770 case OFBA_MSPABI_Tag_ISA:
15771 printf (" Tag_ISA: ");
15772 READ_ULEB (val, p, end);
15773 switch (val)
15774 {
15775 case 0: printf (_("None\n")); break;
15776 case 1: printf (_("MSP430\n")); break;
15777 case 2: printf (_("MSP430X\n")); break;
15778 default: printf ("??? (%d)\n", val); break;
15779 }
15780 break;
15781
15782 case OFBA_MSPABI_Tag_Code_Model:
15783 printf (" Tag_Code_Model: ");
15784 READ_ULEB (val, p, end);
15785 switch (val)
15786 {
15787 case 0: printf (_("None\n")); break;
15788 case 1: printf (_("Small\n")); break;
15789 case 2: printf (_("Large\n")); break;
15790 default: printf ("??? (%d)\n", val); break;
15791 }
15792 break;
15793
15794 case OFBA_MSPABI_Tag_Data_Model:
15795 printf (" Tag_Data_Model: ");
15796 READ_ULEB (val, p, end);
15797 switch (val)
15798 {
15799 case 0: printf (_("None\n")); break;
15800 case 1: printf (_("Small\n")); break;
15801 case 2: printf (_("Large\n")); break;
15802 case 3: printf (_("Restricted Large\n")); break;
15803 default: printf ("??? (%d)\n", val); break;
15804 }
15805 break;
15806
15807 default:
15808 printf (_(" <unknown tag %d>: "), tag);
15809
15810 if (tag & 1)
15811 {
15812 putchar ('"');
15813 if (p < end - 1)
15814 {
15815 size_t maxlen = (end - p) - 1;
15816
15817 print_symbol ((int) maxlen, (const char *) p);
15818 p += strnlen ((char *) p, maxlen) + 1;
15819 }
15820 else
15821 {
15822 printf (_("<corrupt>"));
15823 p = (unsigned char *) end;
15824 }
15825 printf ("\"\n");
15826 }
15827 else
15828 {
15829 READ_ULEB (val, p, end);
15830 printf ("%d (0x%x)\n", val, val);
15831 }
15832 break;
15833 }
15834
15835 assert (p <= end);
15836 return p;
15837 }
15838
15839 static unsigned char *
15840 display_msp430_gnu_attribute (unsigned char * p,
15841 unsigned int tag,
15842 const unsigned char * const end)
15843 {
15844 if (tag == Tag_GNU_MSP430_Data_Region)
15845 {
15846 unsigned int val;
15847
15848 printf (" Tag_GNU_MSP430_Data_Region: ");
15849 READ_ULEB (val, p, end);
15850
15851 switch (val)
15852 {
15853 case Val_GNU_MSP430_Data_Region_Any:
15854 printf (_("Any Region\n"));
15855 break;
15856 case Val_GNU_MSP430_Data_Region_Lower:
15857 printf (_("Lower Region Only\n"));
15858 break;
15859 default:
15860 printf ("??? (%u)\n", val);
15861 }
15862 return p;
15863 }
15864 return display_tag_value (tag & 1, p, end);
15865 }
15866
15867 struct riscv_attr_tag_t {
15868 const char *name;
15869 unsigned int tag;
15870 };
15871
15872 static struct riscv_attr_tag_t riscv_attr_tag[] =
15873 {
15874 #define T(tag) {"Tag_RISCV_" #tag, Tag_RISCV_##tag}
15875 T(arch),
15876 T(priv_spec),
15877 T(priv_spec_minor),
15878 T(priv_spec_revision),
15879 T(unaligned_access),
15880 T(stack_align),
15881 #undef T
15882 };
15883
15884 static unsigned char *
15885 display_riscv_attribute (unsigned char *p,
15886 const unsigned char * const end)
15887 {
15888 unsigned int val;
15889 unsigned int tag;
15890 struct riscv_attr_tag_t *attr = NULL;
15891 unsigned i;
15892
15893 READ_ULEB (tag, p, end);
15894
15895 /* Find the name of attribute. */
15896 for (i = 0; i < ARRAY_SIZE (riscv_attr_tag); i++)
15897 {
15898 if (riscv_attr_tag[i].tag == tag)
15899 {
15900 attr = &riscv_attr_tag[i];
15901 break;
15902 }
15903 }
15904
15905 if (attr)
15906 printf (" %s: ", attr->name);
15907 else
15908 return display_tag_value (tag, p, end);
15909
15910 switch (tag)
15911 {
15912 case Tag_RISCV_priv_spec:
15913 case Tag_RISCV_priv_spec_minor:
15914 case Tag_RISCV_priv_spec_revision:
15915 READ_ULEB (val, p, end);
15916 printf (_("%u\n"), val);
15917 break;
15918 case Tag_RISCV_unaligned_access:
15919 READ_ULEB (val, p, end);
15920 switch (val)
15921 {
15922 case 0:
15923 printf (_("No unaligned access\n"));
15924 break;
15925 case 1:
15926 printf (_("Unaligned access\n"));
15927 break;
15928 }
15929 break;
15930 case Tag_RISCV_stack_align:
15931 READ_ULEB (val, p, end);
15932 printf (_("%u-bytes\n"), val);
15933 break;
15934 case Tag_RISCV_arch:
15935 p = display_tag_value (-1, p, end);
15936 break;
15937 default:
15938 return display_tag_value (tag, p, end);
15939 }
15940
15941 return p;
15942 }
15943
15944 static bfd_boolean
15945 process_attributes (Filedata * filedata,
15946 const char * public_name,
15947 unsigned int proc_type,
15948 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
15949 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const))
15950 {
15951 Elf_Internal_Shdr * sect;
15952 unsigned i;
15953 bfd_boolean res = TRUE;
15954
15955 /* Find the section header so that we get the size. */
15956 for (i = 0, sect = filedata->section_headers;
15957 i < filedata->file_header.e_shnum;
15958 i++, sect++)
15959 {
15960 unsigned char * contents;
15961 unsigned char * p;
15962
15963 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
15964 continue;
15965
15966 contents = (unsigned char *) get_data (NULL, filedata, sect->sh_offset, 1,
15967 sect->sh_size, _("attributes"));
15968 if (contents == NULL)
15969 {
15970 res = FALSE;
15971 continue;
15972 }
15973
15974 p = contents;
15975 /* The first character is the version of the attributes.
15976 Currently only version 1, (aka 'A') is recognised here. */
15977 if (*p != 'A')
15978 {
15979 printf (_("Unknown attributes version '%c'(%d) - expecting 'A'\n"), *p, *p);
15980 res = FALSE;
15981 }
15982 else
15983 {
15984 bfd_vma section_len;
15985
15986 section_len = sect->sh_size - 1;
15987 p++;
15988
15989 while (section_len > 0)
15990 {
15991 bfd_vma attr_len;
15992 unsigned int namelen;
15993 bfd_boolean public_section;
15994 bfd_boolean gnu_section;
15995
15996 if (section_len <= 4)
15997 {
15998 error (_("Tag section ends prematurely\n"));
15999 res = FALSE;
16000 break;
16001 }
16002 attr_len = byte_get (p, 4);
16003 p += 4;
16004
16005 if (attr_len > section_len)
16006 {
16007 error (_("Bad attribute length (%u > %u)\n"),
16008 (unsigned) attr_len, (unsigned) section_len);
16009 attr_len = section_len;
16010 res = FALSE;
16011 }
16012 /* PR 17531: file: 001-101425-0.004 */
16013 else if (attr_len < 5)
16014 {
16015 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
16016 res = FALSE;
16017 break;
16018 }
16019
16020 section_len -= attr_len;
16021 attr_len -= 4;
16022
16023 namelen = strnlen ((char *) p, attr_len) + 1;
16024 if (namelen == 0 || namelen >= attr_len)
16025 {
16026 error (_("Corrupt attribute section name\n"));
16027 res = FALSE;
16028 break;
16029 }
16030
16031 printf (_("Attribute Section: "));
16032 print_symbol (INT_MAX, (const char *) p);
16033 putchar ('\n');
16034
16035 if (public_name && streq ((char *) p, public_name))
16036 public_section = TRUE;
16037 else
16038 public_section = FALSE;
16039
16040 if (streq ((char *) p, "gnu"))
16041 gnu_section = TRUE;
16042 else
16043 gnu_section = FALSE;
16044
16045 p += namelen;
16046 attr_len -= namelen;
16047
16048 while (attr_len > 0 && p < contents + sect->sh_size)
16049 {
16050 int tag;
16051 unsigned int val;
16052 bfd_vma size;
16053 unsigned char * end;
16054
16055 /* PR binutils/17531: Safe handling of corrupt files. */
16056 if (attr_len < 6)
16057 {
16058 error (_("Unused bytes at end of section\n"));
16059 res = FALSE;
16060 section_len = 0;
16061 break;
16062 }
16063
16064 tag = *(p++);
16065 size = byte_get (p, 4);
16066 if (size > attr_len)
16067 {
16068 error (_("Bad subsection length (%u > %u)\n"),
16069 (unsigned) size, (unsigned) attr_len);
16070 res = FALSE;
16071 size = attr_len;
16072 }
16073 /* PR binutils/17531: Safe handling of corrupt files. */
16074 if (size < 6)
16075 {
16076 error (_("Bad subsection length (%u < 6)\n"),
16077 (unsigned) size);
16078 res = FALSE;
16079 section_len = 0;
16080 break;
16081 }
16082
16083 attr_len -= size;
16084 end = p + size - 1;
16085 assert (end <= contents + sect->sh_size);
16086 p += 4;
16087
16088 switch (tag)
16089 {
16090 case 1:
16091 printf (_("File Attributes\n"));
16092 break;
16093 case 2:
16094 printf (_("Section Attributes:"));
16095 goto do_numlist;
16096 case 3:
16097 printf (_("Symbol Attributes:"));
16098 /* Fall through. */
16099 do_numlist:
16100 for (;;)
16101 {
16102 READ_ULEB (val, p, end);
16103 if (val == 0)
16104 break;
16105 printf (" %d", val);
16106 }
16107 printf ("\n");
16108 break;
16109 default:
16110 printf (_("Unknown tag: %d\n"), tag);
16111 public_section = FALSE;
16112 break;
16113 }
16114
16115 if (public_section && display_pub_attribute != NULL)
16116 {
16117 while (p < end)
16118 p = display_pub_attribute (p, end);
16119 assert (p == end);
16120 }
16121 else if (gnu_section && display_proc_gnu_attribute != NULL)
16122 {
16123 while (p < end)
16124 p = display_gnu_attribute (p,
16125 display_proc_gnu_attribute,
16126 end);
16127 assert (p == end);
16128 }
16129 else if (p < end)
16130 {
16131 printf (_(" Unknown attribute:\n"));
16132 display_raw_attribute (p, end);
16133 p = end;
16134 }
16135 else
16136 attr_len = 0;
16137 }
16138 }
16139 }
16140
16141 free (contents);
16142 }
16143
16144 return res;
16145 }
16146
16147 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
16148 Print the Address, Access and Initial fields of an entry at VMA ADDR
16149 and return the VMA of the next entry, or -1 if there was a problem.
16150 Does not read from DATA_END or beyond. */
16151
16152 static bfd_vma
16153 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
16154 unsigned char * data_end)
16155 {
16156 printf (" ");
16157 print_vma (addr, LONG_HEX);
16158 printf (" ");
16159 if (addr < pltgot + 0xfff0)
16160 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
16161 else
16162 printf ("%10s", "");
16163 printf (" ");
16164 if (data == NULL)
16165 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
16166 else
16167 {
16168 bfd_vma entry;
16169 unsigned char * from = data + addr - pltgot;
16170
16171 if (from + (is_32bit_elf ? 4 : 8) > data_end)
16172 {
16173 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
16174 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
16175 return (bfd_vma) -1;
16176 }
16177 else
16178 {
16179 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
16180 print_vma (entry, LONG_HEX);
16181 }
16182 }
16183 return addr + (is_32bit_elf ? 4 : 8);
16184 }
16185
16186 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
16187 PLTGOT. Print the Address and Initial fields of an entry at VMA
16188 ADDR and return the VMA of the next entry. */
16189
16190 static bfd_vma
16191 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
16192 {
16193 printf (" ");
16194 print_vma (addr, LONG_HEX);
16195 printf (" ");
16196 if (data == NULL)
16197 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
16198 else
16199 {
16200 bfd_vma entry;
16201
16202 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
16203 print_vma (entry, LONG_HEX);
16204 }
16205 return addr + (is_32bit_elf ? 4 : 8);
16206 }
16207
16208 static void
16209 print_mips_ases (unsigned int mask)
16210 {
16211 if (mask & AFL_ASE_DSP)
16212 fputs ("\n\tDSP ASE", stdout);
16213 if (mask & AFL_ASE_DSPR2)
16214 fputs ("\n\tDSP R2 ASE", stdout);
16215 if (mask & AFL_ASE_DSPR3)
16216 fputs ("\n\tDSP R3 ASE", stdout);
16217 if (mask & AFL_ASE_EVA)
16218 fputs ("\n\tEnhanced VA Scheme", stdout);
16219 if (mask & AFL_ASE_MCU)
16220 fputs ("\n\tMCU (MicroController) ASE", stdout);
16221 if (mask & AFL_ASE_MDMX)
16222 fputs ("\n\tMDMX ASE", stdout);
16223 if (mask & AFL_ASE_MIPS3D)
16224 fputs ("\n\tMIPS-3D ASE", stdout);
16225 if (mask & AFL_ASE_MT)
16226 fputs ("\n\tMT ASE", stdout);
16227 if (mask & AFL_ASE_SMARTMIPS)
16228 fputs ("\n\tSmartMIPS ASE", stdout);
16229 if (mask & AFL_ASE_VIRT)
16230 fputs ("\n\tVZ ASE", stdout);
16231 if (mask & AFL_ASE_MSA)
16232 fputs ("\n\tMSA ASE", stdout);
16233 if (mask & AFL_ASE_MIPS16)
16234 fputs ("\n\tMIPS16 ASE", stdout);
16235 if (mask & AFL_ASE_MICROMIPS)
16236 fputs ("\n\tMICROMIPS ASE", stdout);
16237 if (mask & AFL_ASE_XPA)
16238 fputs ("\n\tXPA ASE", stdout);
16239 if (mask & AFL_ASE_MIPS16E2)
16240 fputs ("\n\tMIPS16e2 ASE", stdout);
16241 if (mask & AFL_ASE_CRC)
16242 fputs ("\n\tCRC ASE", stdout);
16243 if (mask & AFL_ASE_GINV)
16244 fputs ("\n\tGINV ASE", stdout);
16245 if (mask & AFL_ASE_LOONGSON_MMI)
16246 fputs ("\n\tLoongson MMI ASE", stdout);
16247 if (mask & AFL_ASE_LOONGSON_CAM)
16248 fputs ("\n\tLoongson CAM ASE", stdout);
16249 if (mask & AFL_ASE_LOONGSON_EXT)
16250 fputs ("\n\tLoongson EXT ASE", stdout);
16251 if (mask & AFL_ASE_LOONGSON_EXT2)
16252 fputs ("\n\tLoongson EXT2 ASE", stdout);
16253 if (mask == 0)
16254 fprintf (stdout, "\n\t%s", _("None"));
16255 else if ((mask & ~AFL_ASE_MASK) != 0)
16256 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16257 }
16258
16259 static void
16260 print_mips_isa_ext (unsigned int isa_ext)
16261 {
16262 switch (isa_ext)
16263 {
16264 case 0:
16265 fputs (_("None"), stdout);
16266 break;
16267 case AFL_EXT_XLR:
16268 fputs ("RMI XLR", stdout);
16269 break;
16270 case AFL_EXT_OCTEON3:
16271 fputs ("Cavium Networks Octeon3", stdout);
16272 break;
16273 case AFL_EXT_OCTEON2:
16274 fputs ("Cavium Networks Octeon2", stdout);
16275 break;
16276 case AFL_EXT_OCTEONP:
16277 fputs ("Cavium Networks OcteonP", stdout);
16278 break;
16279 case AFL_EXT_OCTEON:
16280 fputs ("Cavium Networks Octeon", stdout);
16281 break;
16282 case AFL_EXT_5900:
16283 fputs ("Toshiba R5900", stdout);
16284 break;
16285 case AFL_EXT_4650:
16286 fputs ("MIPS R4650", stdout);
16287 break;
16288 case AFL_EXT_4010:
16289 fputs ("LSI R4010", stdout);
16290 break;
16291 case AFL_EXT_4100:
16292 fputs ("NEC VR4100", stdout);
16293 break;
16294 case AFL_EXT_3900:
16295 fputs ("Toshiba R3900", stdout);
16296 break;
16297 case AFL_EXT_10000:
16298 fputs ("MIPS R10000", stdout);
16299 break;
16300 case AFL_EXT_SB1:
16301 fputs ("Broadcom SB-1", stdout);
16302 break;
16303 case AFL_EXT_4111:
16304 fputs ("NEC VR4111/VR4181", stdout);
16305 break;
16306 case AFL_EXT_4120:
16307 fputs ("NEC VR4120", stdout);
16308 break;
16309 case AFL_EXT_5400:
16310 fputs ("NEC VR5400", stdout);
16311 break;
16312 case AFL_EXT_5500:
16313 fputs ("NEC VR5500", stdout);
16314 break;
16315 case AFL_EXT_LOONGSON_2E:
16316 fputs ("ST Microelectronics Loongson 2E", stdout);
16317 break;
16318 case AFL_EXT_LOONGSON_2F:
16319 fputs ("ST Microelectronics Loongson 2F", stdout);
16320 break;
16321 case AFL_EXT_INTERAPTIV_MR2:
16322 fputs ("Imagination interAptiv MR2", stdout);
16323 break;
16324 default:
16325 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
16326 }
16327 }
16328
16329 static signed int
16330 get_mips_reg_size (int reg_size)
16331 {
16332 return (reg_size == AFL_REG_NONE) ? 0
16333 : (reg_size == AFL_REG_32) ? 32
16334 : (reg_size == AFL_REG_64) ? 64
16335 : (reg_size == AFL_REG_128) ? 128
16336 : -1;
16337 }
16338
16339 static bfd_boolean
16340 process_mips_specific (Filedata * filedata)
16341 {
16342 Elf_Internal_Dyn * entry;
16343 Elf_Internal_Shdr *sect = NULL;
16344 size_t liblist_offset = 0;
16345 size_t liblistno = 0;
16346 size_t conflictsno = 0;
16347 size_t options_offset = 0;
16348 size_t conflicts_offset = 0;
16349 size_t pltrelsz = 0;
16350 size_t pltrel = 0;
16351 bfd_vma pltgot = 0;
16352 bfd_vma mips_pltgot = 0;
16353 bfd_vma jmprel = 0;
16354 bfd_vma local_gotno = 0;
16355 bfd_vma gotsym = 0;
16356 bfd_vma symtabno = 0;
16357 bfd_boolean res = TRUE;
16358
16359 if (! process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL,
16360 display_mips_gnu_attribute))
16361 res = FALSE;
16362
16363 sect = find_section (filedata, ".MIPS.abiflags");
16364
16365 if (sect != NULL)
16366 {
16367 Elf_External_ABIFlags_v0 *abiflags_ext;
16368 Elf_Internal_ABIFlags_v0 abiflags_in;
16369
16370 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
16371 {
16372 error (_("Corrupt MIPS ABI Flags section.\n"));
16373 res = FALSE;
16374 }
16375 else
16376 {
16377 abiflags_ext = get_data (NULL, filedata, sect->sh_offset, 1,
16378 sect->sh_size, _("MIPS ABI Flags section"));
16379 if (abiflags_ext)
16380 {
16381 abiflags_in.version = BYTE_GET (abiflags_ext->version);
16382 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
16383 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
16384 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
16385 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
16386 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
16387 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
16388 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
16389 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
16390 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
16391 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
16392
16393 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
16394 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
16395 if (abiflags_in.isa_rev > 1)
16396 printf ("r%d", abiflags_in.isa_rev);
16397 printf ("\nGPR size: %d",
16398 get_mips_reg_size (abiflags_in.gpr_size));
16399 printf ("\nCPR1 size: %d",
16400 get_mips_reg_size (abiflags_in.cpr1_size));
16401 printf ("\nCPR2 size: %d",
16402 get_mips_reg_size (abiflags_in.cpr2_size));
16403 fputs ("\nFP ABI: ", stdout);
16404 print_mips_fp_abi_value (abiflags_in.fp_abi);
16405 fputs ("ISA Extension: ", stdout);
16406 print_mips_isa_ext (abiflags_in.isa_ext);
16407 fputs ("\nASEs:", stdout);
16408 print_mips_ases (abiflags_in.ases);
16409 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
16410 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
16411 fputc ('\n', stdout);
16412 free (abiflags_ext);
16413 }
16414 }
16415 }
16416
16417 /* We have a lot of special sections. Thanks SGI! */
16418 if (dynamic_section == NULL)
16419 {
16420 /* No dynamic information available. See if there is static GOT. */
16421 sect = find_section (filedata, ".got");
16422 if (sect != NULL)
16423 {
16424 unsigned char *data_end;
16425 unsigned char *data;
16426 bfd_vma ent, end;
16427 int addr_size;
16428
16429 pltgot = sect->sh_addr;
16430
16431 ent = pltgot;
16432 addr_size = (is_32bit_elf ? 4 : 8);
16433 end = pltgot + sect->sh_size;
16434
16435 data = (unsigned char *) get_data (NULL, filedata, sect->sh_offset,
16436 end - pltgot, 1,
16437 _("Global Offset Table data"));
16438 /* PR 12855: Null data is handled gracefully throughout. */
16439 data_end = data + (end - pltgot);
16440
16441 printf (_("\nStatic GOT:\n"));
16442 printf (_(" Canonical gp value: "));
16443 print_vma (ent + 0x7ff0, LONG_HEX);
16444 printf ("\n\n");
16445
16446 /* In a dynamic binary GOT[0] is reserved for the dynamic
16447 loader to store the lazy resolver pointer, however in
16448 a static binary it may well have been omitted and GOT
16449 reduced to a table of addresses.
16450 PR 21344: Check for the entry being fully available
16451 before fetching it. */
16452 if (data
16453 && data + ent - pltgot + addr_size <= data_end
16454 && byte_get (data + ent - pltgot, addr_size) == 0)
16455 {
16456 printf (_(" Reserved entries:\n"));
16457 printf (_(" %*s %10s %*s\n"),
16458 addr_size * 2, _("Address"), _("Access"),
16459 addr_size * 2, _("Value"));
16460 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16461 printf ("\n");
16462 if (ent == (bfd_vma) -1)
16463 goto sgot_print_fail;
16464
16465 /* Check for the MSB of GOT[1] being set, identifying a
16466 GNU object. This entry will be used by some runtime
16467 loaders, to store the module pointer. Otherwise this
16468 is an ordinary local entry.
16469 PR 21344: Check for the entry being fully available
16470 before fetching it. */
16471 if (data
16472 && data + ent - pltgot + addr_size <= data_end
16473 && (byte_get (data + ent - pltgot, addr_size)
16474 >> (addr_size * 8 - 1)) != 0)
16475 {
16476 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16477 printf ("\n");
16478 if (ent == (bfd_vma) -1)
16479 goto sgot_print_fail;
16480 }
16481 printf ("\n");
16482 }
16483
16484 if (data != NULL && ent < end)
16485 {
16486 printf (_(" Local entries:\n"));
16487 printf (" %*s %10s %*s\n",
16488 addr_size * 2, _("Address"), _("Access"),
16489 addr_size * 2, _("Value"));
16490 while (ent < end)
16491 {
16492 ent = print_mips_got_entry (data, pltgot, ent, data_end);
16493 printf ("\n");
16494 if (ent == (bfd_vma) -1)
16495 goto sgot_print_fail;
16496 }
16497 printf ("\n");
16498 }
16499
16500 sgot_print_fail:
16501 if (data)
16502 free (data);
16503 }
16504 return res;
16505 }
16506
16507 for (entry = dynamic_section;
16508 /* PR 17531 file: 012-50589-0.004. */
16509 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
16510 ++entry)
16511 switch (entry->d_tag)
16512 {
16513 case DT_MIPS_LIBLIST:
16514 liblist_offset
16515 = offset_from_vma (filedata, entry->d_un.d_val,
16516 liblistno * sizeof (Elf32_External_Lib));
16517 break;
16518 case DT_MIPS_LIBLISTNO:
16519 liblistno = entry->d_un.d_val;
16520 break;
16521 case DT_MIPS_OPTIONS:
16522 options_offset = offset_from_vma (filedata, entry->d_un.d_val, 0);
16523 break;
16524 case DT_MIPS_CONFLICT:
16525 conflicts_offset
16526 = offset_from_vma (filedata, entry->d_un.d_val,
16527 conflictsno * sizeof (Elf32_External_Conflict));
16528 break;
16529 case DT_MIPS_CONFLICTNO:
16530 conflictsno = entry->d_un.d_val;
16531 break;
16532 case DT_PLTGOT:
16533 pltgot = entry->d_un.d_ptr;
16534 break;
16535 case DT_MIPS_LOCAL_GOTNO:
16536 local_gotno = entry->d_un.d_val;
16537 break;
16538 case DT_MIPS_GOTSYM:
16539 gotsym = entry->d_un.d_val;
16540 break;
16541 case DT_MIPS_SYMTABNO:
16542 symtabno = entry->d_un.d_val;
16543 break;
16544 case DT_MIPS_PLTGOT:
16545 mips_pltgot = entry->d_un.d_ptr;
16546 break;
16547 case DT_PLTREL:
16548 pltrel = entry->d_un.d_val;
16549 break;
16550 case DT_PLTRELSZ:
16551 pltrelsz = entry->d_un.d_val;
16552 break;
16553 case DT_JMPREL:
16554 jmprel = entry->d_un.d_ptr;
16555 break;
16556 default:
16557 break;
16558 }
16559
16560 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
16561 {
16562 Elf32_External_Lib * elib;
16563 size_t cnt;
16564
16565 elib = (Elf32_External_Lib *) get_data (NULL, filedata, liblist_offset,
16566 liblistno,
16567 sizeof (Elf32_External_Lib),
16568 _("liblist section data"));
16569 if (elib)
16570 {
16571 printf (ngettext ("\nSection '.liblist' contains %lu entry:\n",
16572 "\nSection '.liblist' contains %lu entries:\n",
16573 (unsigned long) liblistno),
16574 (unsigned long) liblistno);
16575 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
16576 stdout);
16577
16578 for (cnt = 0; cnt < liblistno; ++cnt)
16579 {
16580 Elf32_Lib liblist;
16581 time_t atime;
16582 char timebuf[128];
16583 struct tm * tmp;
16584
16585 liblist.l_name = BYTE_GET (elib[cnt].l_name);
16586 atime = BYTE_GET (elib[cnt].l_time_stamp);
16587 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
16588 liblist.l_version = BYTE_GET (elib[cnt].l_version);
16589 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
16590
16591 tmp = gmtime (&atime);
16592 snprintf (timebuf, sizeof (timebuf),
16593 "%04u-%02u-%02uT%02u:%02u:%02u",
16594 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
16595 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
16596
16597 printf ("%3lu: ", (unsigned long) cnt);
16598 if (VALID_DYNAMIC_NAME (liblist.l_name))
16599 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
16600 else
16601 printf (_("<corrupt: %9ld>"), liblist.l_name);
16602 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
16603 liblist.l_version);
16604
16605 if (liblist.l_flags == 0)
16606 puts (_(" NONE"));
16607 else
16608 {
16609 static const struct
16610 {
16611 const char * name;
16612 int bit;
16613 }
16614 l_flags_vals[] =
16615 {
16616 { " EXACT_MATCH", LL_EXACT_MATCH },
16617 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
16618 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
16619 { " EXPORTS", LL_EXPORTS },
16620 { " DELAY_LOAD", LL_DELAY_LOAD },
16621 { " DELTA", LL_DELTA }
16622 };
16623 int flags = liblist.l_flags;
16624 size_t fcnt;
16625
16626 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
16627 if ((flags & l_flags_vals[fcnt].bit) != 0)
16628 {
16629 fputs (l_flags_vals[fcnt].name, stdout);
16630 flags ^= l_flags_vals[fcnt].bit;
16631 }
16632 if (flags != 0)
16633 printf (" %#x", (unsigned int) flags);
16634
16635 puts ("");
16636 }
16637 }
16638
16639 free (elib);
16640 }
16641 else
16642 res = FALSE;
16643 }
16644
16645 if (options_offset != 0)
16646 {
16647 Elf_External_Options * eopt;
16648 size_t offset;
16649 int cnt;
16650 sect = filedata->section_headers;
16651
16652 /* Find the section header so that we get the size. */
16653 sect = find_section_by_type (filedata, SHT_MIPS_OPTIONS);
16654 /* PR 17533 file: 012-277276-0.004. */
16655 if (sect == NULL)
16656 {
16657 error (_("No MIPS_OPTIONS header found\n"));
16658 return FALSE;
16659 }
16660 /* PR 24243 */
16661 if (sect->sh_size < sizeof (* eopt))
16662 {
16663 error (_("The MIPS options section is too small.\n"));
16664 return FALSE;
16665 }
16666
16667 eopt = (Elf_External_Options *) get_data (NULL, filedata, options_offset, 1,
16668 sect->sh_size, _("options"));
16669 if (eopt)
16670 {
16671 Elf_Internal_Options * iopt;
16672 Elf_Internal_Options * option;
16673 Elf_Internal_Options * iopt_end;
16674
16675 iopt = (Elf_Internal_Options *)
16676 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
16677 if (iopt == NULL)
16678 {
16679 error (_("Out of memory allocating space for MIPS options\n"));
16680 return FALSE;
16681 }
16682
16683 offset = cnt = 0;
16684 option = iopt;
16685 iopt_end = iopt + (sect->sh_size / sizeof (eopt));
16686
16687 while (offset <= sect->sh_size - sizeof (* eopt))
16688 {
16689 Elf_External_Options * eoption;
16690
16691 eoption = (Elf_External_Options *) ((char *) eopt + offset);
16692
16693 option->kind = BYTE_GET (eoption->kind);
16694 option->size = BYTE_GET (eoption->size);
16695 option->section = BYTE_GET (eoption->section);
16696 option->info = BYTE_GET (eoption->info);
16697
16698 /* PR 17531: file: ffa0fa3b. */
16699 if (option->size < sizeof (* eopt)
16700 || offset + option->size > sect->sh_size)
16701 {
16702 error (_("Invalid size (%u) for MIPS option\n"), option->size);
16703 return FALSE;
16704 }
16705 offset += option->size;
16706
16707 ++option;
16708 ++cnt;
16709 }
16710
16711 printf (ngettext ("\nSection '%s' contains %d entry:\n",
16712 "\nSection '%s' contains %d entries:\n",
16713 cnt),
16714 printable_section_name (filedata, sect), cnt);
16715
16716 option = iopt;
16717 offset = 0;
16718
16719 while (cnt-- > 0)
16720 {
16721 size_t len;
16722
16723 switch (option->kind)
16724 {
16725 case ODK_NULL:
16726 /* This shouldn't happen. */
16727 printf (" NULL %d %lx", option->section, option->info);
16728 break;
16729
16730 case ODK_REGINFO:
16731 printf (" REGINFO ");
16732 if (filedata->file_header.e_machine == EM_MIPS)
16733 {
16734 Elf32_External_RegInfo * ereg;
16735 Elf32_RegInfo reginfo;
16736
16737 /* 32bit form. */
16738 if (option + 2 > iopt_end)
16739 {
16740 printf (_("<corrupt>\n"));
16741 error (_("Truncated MIPS REGINFO option\n"));
16742 cnt = 0;
16743 break;
16744 }
16745
16746 ereg = (Elf32_External_RegInfo *) (option + 1);
16747
16748 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
16749 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
16750 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
16751 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
16752 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
16753 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
16754
16755 printf ("GPR %08lx GP 0x%lx\n",
16756 reginfo.ri_gprmask,
16757 (unsigned long) reginfo.ri_gp_value);
16758 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
16759 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
16760 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
16761 }
16762 else
16763 {
16764 /* 64 bit form. */
16765 Elf64_External_RegInfo * ereg;
16766 Elf64_Internal_RegInfo reginfo;
16767
16768 if (option + 2 > iopt_end)
16769 {
16770 printf (_("<corrupt>\n"));
16771 error (_("Truncated MIPS REGINFO option\n"));
16772 cnt = 0;
16773 break;
16774 }
16775
16776 ereg = (Elf64_External_RegInfo *) (option + 1);
16777 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
16778 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
16779 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
16780 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
16781 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
16782 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
16783
16784 printf ("GPR %08lx GP 0x",
16785 reginfo.ri_gprmask);
16786 printf_vma (reginfo.ri_gp_value);
16787 printf ("\n");
16788
16789 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
16790 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
16791 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
16792 }
16793 ++option;
16794 continue;
16795
16796 case ODK_EXCEPTIONS:
16797 fputs (" EXCEPTIONS fpe_min(", stdout);
16798 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
16799 fputs (") fpe_max(", stdout);
16800 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
16801 fputs (")", stdout);
16802
16803 if (option->info & OEX_PAGE0)
16804 fputs (" PAGE0", stdout);
16805 if (option->info & OEX_SMM)
16806 fputs (" SMM", stdout);
16807 if (option->info & OEX_FPDBUG)
16808 fputs (" FPDBUG", stdout);
16809 if (option->info & OEX_DISMISS)
16810 fputs (" DISMISS", stdout);
16811 break;
16812
16813 case ODK_PAD:
16814 fputs (" PAD ", stdout);
16815 if (option->info & OPAD_PREFIX)
16816 fputs (" PREFIX", stdout);
16817 if (option->info & OPAD_POSTFIX)
16818 fputs (" POSTFIX", stdout);
16819 if (option->info & OPAD_SYMBOL)
16820 fputs (" SYMBOL", stdout);
16821 break;
16822
16823 case ODK_HWPATCH:
16824 fputs (" HWPATCH ", stdout);
16825 if (option->info & OHW_R4KEOP)
16826 fputs (" R4KEOP", stdout);
16827 if (option->info & OHW_R8KPFETCH)
16828 fputs (" R8KPFETCH", stdout);
16829 if (option->info & OHW_R5KEOP)
16830 fputs (" R5KEOP", stdout);
16831 if (option->info & OHW_R5KCVTL)
16832 fputs (" R5KCVTL", stdout);
16833 break;
16834
16835 case ODK_FILL:
16836 fputs (" FILL ", stdout);
16837 /* XXX Print content of info word? */
16838 break;
16839
16840 case ODK_TAGS:
16841 fputs (" TAGS ", stdout);
16842 /* XXX Print content of info word? */
16843 break;
16844
16845 case ODK_HWAND:
16846 fputs (" HWAND ", stdout);
16847 if (option->info & OHWA0_R4KEOP_CHECKED)
16848 fputs (" R4KEOP_CHECKED", stdout);
16849 if (option->info & OHWA0_R4KEOP_CLEAN)
16850 fputs (" R4KEOP_CLEAN", stdout);
16851 break;
16852
16853 case ODK_HWOR:
16854 fputs (" HWOR ", stdout);
16855 if (option->info & OHWA0_R4KEOP_CHECKED)
16856 fputs (" R4KEOP_CHECKED", stdout);
16857 if (option->info & OHWA0_R4KEOP_CLEAN)
16858 fputs (" R4KEOP_CLEAN", stdout);
16859 break;
16860
16861 case ODK_GP_GROUP:
16862 printf (" GP_GROUP %#06lx self-contained %#06lx",
16863 option->info & OGP_GROUP,
16864 (option->info & OGP_SELF) >> 16);
16865 break;
16866
16867 case ODK_IDENT:
16868 printf (" IDENT %#06lx self-contained %#06lx",
16869 option->info & OGP_GROUP,
16870 (option->info & OGP_SELF) >> 16);
16871 break;
16872
16873 default:
16874 /* This shouldn't happen. */
16875 printf (" %3d ??? %d %lx",
16876 option->kind, option->section, option->info);
16877 break;
16878 }
16879
16880 len = sizeof (* eopt);
16881 while (len < option->size)
16882 {
16883 unsigned char datum = * ((unsigned char *) eopt + offset + len);
16884
16885 if (ISPRINT (datum))
16886 printf ("%c", datum);
16887 else
16888 printf ("\\%03o", datum);
16889 len ++;
16890 }
16891 fputs ("\n", stdout);
16892
16893 offset += option->size;
16894 ++option;
16895 }
16896
16897 free (eopt);
16898 }
16899 else
16900 res = FALSE;
16901 }
16902
16903 if (conflicts_offset != 0 && conflictsno != 0)
16904 {
16905 Elf32_Conflict * iconf;
16906 size_t cnt;
16907
16908 if (dynamic_symbols == NULL)
16909 {
16910 error (_("conflict list found without a dynamic symbol table\n"));
16911 return FALSE;
16912 }
16913
16914 /* PR 21345 - print a slightly more helpful error message
16915 if we are sure that the cmalloc will fail. */
16916 if (conflictsno * sizeof (* iconf) > filedata->file_size)
16917 {
16918 error (_("Overlarge number of conflicts detected: %lx\n"),
16919 (long) conflictsno);
16920 return FALSE;
16921 }
16922
16923 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
16924 if (iconf == NULL)
16925 {
16926 error (_("Out of memory allocating space for dynamic conflicts\n"));
16927 return FALSE;
16928 }
16929
16930 if (is_32bit_elf)
16931 {
16932 Elf32_External_Conflict * econf32;
16933
16934 econf32 = (Elf32_External_Conflict *)
16935 get_data (NULL, filedata, conflicts_offset, conflictsno,
16936 sizeof (* econf32), _("conflict"));
16937 if (!econf32)
16938 return FALSE;
16939
16940 for (cnt = 0; cnt < conflictsno; ++cnt)
16941 iconf[cnt] = BYTE_GET (econf32[cnt]);
16942
16943 free (econf32);
16944 }
16945 else
16946 {
16947 Elf64_External_Conflict * econf64;
16948
16949 econf64 = (Elf64_External_Conflict *)
16950 get_data (NULL, filedata, conflicts_offset, conflictsno,
16951 sizeof (* econf64), _("conflict"));
16952 if (!econf64)
16953 return FALSE;
16954
16955 for (cnt = 0; cnt < conflictsno; ++cnt)
16956 iconf[cnt] = BYTE_GET (econf64[cnt]);
16957
16958 free (econf64);
16959 }
16960
16961 printf (ngettext ("\nSection '.conflict' contains %lu entry:\n",
16962 "\nSection '.conflict' contains %lu entries:\n",
16963 (unsigned long) conflictsno),
16964 (unsigned long) conflictsno);
16965 puts (_(" Num: Index Value Name"));
16966
16967 for (cnt = 0; cnt < conflictsno; ++cnt)
16968 {
16969 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
16970
16971 if (iconf[cnt] >= num_dynamic_syms)
16972 printf (_("<corrupt symbol index>"));
16973 else
16974 {
16975 Elf_Internal_Sym * psym;
16976
16977 psym = & dynamic_symbols[iconf[cnt]];
16978 print_vma (psym->st_value, FULL_HEX);
16979 putchar (' ');
16980 if (VALID_DYNAMIC_NAME (psym->st_name))
16981 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
16982 else
16983 printf (_("<corrupt: %14ld>"), psym->st_name);
16984 }
16985 putchar ('\n');
16986 }
16987
16988 free (iconf);
16989 }
16990
16991 if (pltgot != 0 && local_gotno != 0)
16992 {
16993 bfd_vma ent, local_end, global_end;
16994 size_t i, offset;
16995 unsigned char * data;
16996 unsigned char * data_end;
16997 int addr_size;
16998
16999 ent = pltgot;
17000 addr_size = (is_32bit_elf ? 4 : 8);
17001 local_end = pltgot + local_gotno * addr_size;
17002
17003 /* PR binutils/17533 file: 012-111227-0.004 */
17004 if (symtabno < gotsym)
17005 {
17006 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
17007 (unsigned long) gotsym, (unsigned long) symtabno);
17008 return FALSE;
17009 }
17010
17011 global_end = local_end + (symtabno - gotsym) * addr_size;
17012 /* PR 17531: file: 54c91a34. */
17013 if (global_end < local_end)
17014 {
17015 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
17016 return FALSE;
17017 }
17018
17019 offset = offset_from_vma (filedata, pltgot, global_end - pltgot);
17020 data = (unsigned char *) get_data (NULL, filedata, offset,
17021 global_end - pltgot, 1,
17022 _("Global Offset Table data"));
17023 /* PR 12855: Null data is handled gracefully throughout. */
17024 data_end = data + (global_end - pltgot);
17025
17026 printf (_("\nPrimary GOT:\n"));
17027 printf (_(" Canonical gp value: "));
17028 print_vma (pltgot + 0x7ff0, LONG_HEX);
17029 printf ("\n\n");
17030
17031 printf (_(" Reserved entries:\n"));
17032 printf (_(" %*s %10s %*s Purpose\n"),
17033 addr_size * 2, _("Address"), _("Access"),
17034 addr_size * 2, _("Initial"));
17035 ent = print_mips_got_entry (data, pltgot, ent, data_end);
17036 printf (_(" Lazy resolver\n"));
17037 if (ent == (bfd_vma) -1)
17038 goto got_print_fail;
17039
17040 /* Check for the MSB of GOT[1] being set, denoting a GNU object.
17041 This entry will be used by some runtime loaders, to store the
17042 module pointer. Otherwise this is an ordinary local entry.
17043 PR 21344: Check for the entry being fully available before
17044 fetching it. */
17045 if (data
17046 && data + ent - pltgot + addr_size <= data_end
17047 && (byte_get (data + ent - pltgot, addr_size)
17048 >> (addr_size * 8 - 1)) != 0)
17049 {
17050 ent = print_mips_got_entry (data, pltgot, ent, data_end);
17051 printf (_(" Module pointer (GNU extension)\n"));
17052 if (ent == (bfd_vma) -1)
17053 goto got_print_fail;
17054 }
17055 printf ("\n");
17056
17057 if (data != NULL && ent < local_end)
17058 {
17059 printf (_(" Local entries:\n"));
17060 printf (" %*s %10s %*s\n",
17061 addr_size * 2, _("Address"), _("Access"),
17062 addr_size * 2, _("Initial"));
17063 while (ent < local_end)
17064 {
17065 ent = print_mips_got_entry (data, pltgot, ent, data_end);
17066 printf ("\n");
17067 if (ent == (bfd_vma) -1)
17068 goto got_print_fail;
17069 }
17070 printf ("\n");
17071 }
17072
17073 if (data != NULL && gotsym < symtabno)
17074 {
17075 int sym_width;
17076
17077 printf (_(" Global entries:\n"));
17078 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
17079 addr_size * 2, _("Address"),
17080 _("Access"),
17081 addr_size * 2, _("Initial"),
17082 addr_size * 2, _("Sym.Val."),
17083 _("Type"),
17084 /* Note for translators: "Ndx" = abbreviated form of "Index". */
17085 _("Ndx"), _("Name"));
17086
17087 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
17088
17089 for (i = gotsym; i < symtabno; i++)
17090 {
17091 ent = print_mips_got_entry (data, pltgot, ent, data_end);
17092 printf (" ");
17093
17094 if (dynamic_symbols == NULL)
17095 printf (_("<no dynamic symbols>"));
17096 else if (i < num_dynamic_syms)
17097 {
17098 Elf_Internal_Sym * psym = dynamic_symbols + i;
17099
17100 print_vma (psym->st_value, LONG_HEX);
17101 printf (" %-7s %3s ",
17102 get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)),
17103 get_symbol_index_type (filedata, psym->st_shndx));
17104
17105 if (VALID_DYNAMIC_NAME (psym->st_name))
17106 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
17107 else
17108 printf (_("<corrupt: %14ld>"), psym->st_name);
17109 }
17110 else
17111 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
17112 (unsigned long) i);
17113
17114 printf ("\n");
17115 if (ent == (bfd_vma) -1)
17116 break;
17117 }
17118 printf ("\n");
17119 }
17120
17121 got_print_fail:
17122 if (data)
17123 free (data);
17124 }
17125
17126 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
17127 {
17128 bfd_vma ent, end;
17129 size_t offset, rel_offset;
17130 unsigned long count, i;
17131 unsigned char * data;
17132 int addr_size, sym_width;
17133 Elf_Internal_Rela * rels;
17134
17135 rel_offset = offset_from_vma (filedata, jmprel, pltrelsz);
17136 if (pltrel == DT_RELA)
17137 {
17138 if (!slurp_rela_relocs (filedata, rel_offset, pltrelsz, &rels, &count))
17139 return FALSE;
17140 }
17141 else
17142 {
17143 if (!slurp_rel_relocs (filedata, rel_offset, pltrelsz, &rels, &count))
17144 return FALSE;
17145 }
17146
17147 ent = mips_pltgot;
17148 addr_size = (is_32bit_elf ? 4 : 8);
17149 end = mips_pltgot + (2 + count) * addr_size;
17150
17151 offset = offset_from_vma (filedata, mips_pltgot, end - mips_pltgot);
17152 data = (unsigned char *) get_data (NULL, filedata, offset, end - mips_pltgot,
17153 1, _("Procedure Linkage Table data"));
17154 if (data == NULL)
17155 return FALSE;
17156
17157 printf ("\nPLT GOT:\n\n");
17158 printf (_(" Reserved entries:\n"));
17159 printf (_(" %*s %*s Purpose\n"),
17160 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
17161 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
17162 printf (_(" PLT lazy resolver\n"));
17163 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
17164 printf (_(" Module pointer\n"));
17165 printf ("\n");
17166
17167 printf (_(" Entries:\n"));
17168 printf (" %*s %*s %*s %-7s %3s %s\n",
17169 addr_size * 2, _("Address"),
17170 addr_size * 2, _("Initial"),
17171 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
17172 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
17173 for (i = 0; i < count; i++)
17174 {
17175 unsigned long idx = get_reloc_symindex (rels[i].r_info);
17176
17177 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
17178 printf (" ");
17179
17180 if (idx >= num_dynamic_syms)
17181 printf (_("<corrupt symbol index: %lu>"), idx);
17182 else
17183 {
17184 Elf_Internal_Sym * psym = dynamic_symbols + idx;
17185
17186 print_vma (psym->st_value, LONG_HEX);
17187 printf (" %-7s %3s ",
17188 get_symbol_type (filedata, ELF_ST_TYPE (psym->st_info)),
17189 get_symbol_index_type (filedata, psym->st_shndx));
17190 if (VALID_DYNAMIC_NAME (psym->st_name))
17191 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
17192 else
17193 printf (_("<corrupt: %14ld>"), psym->st_name);
17194 }
17195 printf ("\n");
17196 }
17197 printf ("\n");
17198
17199 if (data)
17200 free (data);
17201 free (rels);
17202 }
17203
17204 return res;
17205 }
17206
17207 static bfd_boolean
17208 process_nds32_specific (Filedata * filedata)
17209 {
17210 Elf_Internal_Shdr *sect = NULL;
17211
17212 sect = find_section (filedata, ".nds32_e_flags");
17213 if (sect != NULL)
17214 {
17215 unsigned int *flag;
17216
17217 printf ("\nNDS32 elf flags section:\n");
17218 flag = get_data (NULL, filedata, sect->sh_offset, 1,
17219 sect->sh_size, _("NDS32 elf flags section"));
17220
17221 if (! flag)
17222 return FALSE;
17223
17224 switch ((*flag) & 0x3)
17225 {
17226 case 0:
17227 printf ("(VEC_SIZE):\tNo entry.\n");
17228 break;
17229 case 1:
17230 printf ("(VEC_SIZE):\t4 bytes\n");
17231 break;
17232 case 2:
17233 printf ("(VEC_SIZE):\t16 bytes\n");
17234 break;
17235 case 3:
17236 printf ("(VEC_SIZE):\treserved\n");
17237 break;
17238 }
17239 }
17240
17241 return TRUE;
17242 }
17243
17244 static bfd_boolean
17245 process_gnu_liblist (Filedata * filedata)
17246 {
17247 Elf_Internal_Shdr * section;
17248 Elf_Internal_Shdr * string_sec;
17249 Elf32_External_Lib * elib;
17250 char * strtab;
17251 size_t strtab_size;
17252 size_t cnt;
17253 unsigned long num_liblist;
17254 unsigned i;
17255 bfd_boolean res = TRUE;
17256
17257 if (! do_arch)
17258 return TRUE;
17259
17260 for (i = 0, section = filedata->section_headers;
17261 i < filedata->file_header.e_shnum;
17262 i++, section++)
17263 {
17264 switch (section->sh_type)
17265 {
17266 case SHT_GNU_LIBLIST:
17267 if (section->sh_link >= filedata->file_header.e_shnum)
17268 break;
17269
17270 elib = (Elf32_External_Lib *)
17271 get_data (NULL, filedata, section->sh_offset, 1, section->sh_size,
17272 _("liblist section data"));
17273
17274 if (elib == NULL)
17275 {
17276 res = FALSE;
17277 break;
17278 }
17279
17280 string_sec = filedata->section_headers + section->sh_link;
17281 strtab = (char *) get_data (NULL, filedata, string_sec->sh_offset, 1,
17282 string_sec->sh_size,
17283 _("liblist string table"));
17284 if (strtab == NULL
17285 || section->sh_entsize != sizeof (Elf32_External_Lib))
17286 {
17287 free (elib);
17288 free (strtab);
17289 res = FALSE;
17290 break;
17291 }
17292 strtab_size = string_sec->sh_size;
17293
17294 num_liblist = section->sh_size / sizeof (Elf32_External_Lib);
17295 printf (ngettext ("\nLibrary list section '%s' contains %lu entries:\n",
17296 "\nLibrary list section '%s' contains %lu entries:\n",
17297 num_liblist),
17298 printable_section_name (filedata, section),
17299 num_liblist);
17300
17301 puts (_(" Library Time Stamp Checksum Version Flags"));
17302
17303 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
17304 ++cnt)
17305 {
17306 Elf32_Lib liblist;
17307 time_t atime;
17308 char timebuf[128];
17309 struct tm * tmp;
17310
17311 liblist.l_name = BYTE_GET (elib[cnt].l_name);
17312 atime = BYTE_GET (elib[cnt].l_time_stamp);
17313 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
17314 liblist.l_version = BYTE_GET (elib[cnt].l_version);
17315 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
17316
17317 tmp = gmtime (&atime);
17318 snprintf (timebuf, sizeof (timebuf),
17319 "%04u-%02u-%02uT%02u:%02u:%02u",
17320 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
17321 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
17322
17323 printf ("%3lu: ", (unsigned long) cnt);
17324 if (do_wide)
17325 printf ("%-20s", liblist.l_name < strtab_size
17326 ? strtab + liblist.l_name : _("<corrupt>"));
17327 else
17328 printf ("%-20.20s", liblist.l_name < strtab_size
17329 ? strtab + liblist.l_name : _("<corrupt>"));
17330 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
17331 liblist.l_version, liblist.l_flags);
17332 }
17333
17334 free (elib);
17335 free (strtab);
17336 }
17337 }
17338
17339 return res;
17340 }
17341
17342 static const char *
17343 get_note_type (Filedata * filedata, unsigned e_type)
17344 {
17345 static char buff[64];
17346
17347 if (filedata->file_header.e_type == ET_CORE)
17348 switch (e_type)
17349 {
17350 case NT_AUXV:
17351 return _("NT_AUXV (auxiliary vector)");
17352 case NT_PRSTATUS:
17353 return _("NT_PRSTATUS (prstatus structure)");
17354 case NT_FPREGSET:
17355 return _("NT_FPREGSET (floating point registers)");
17356 case NT_PRPSINFO:
17357 return _("NT_PRPSINFO (prpsinfo structure)");
17358 case NT_TASKSTRUCT:
17359 return _("NT_TASKSTRUCT (task structure)");
17360 case NT_PRXFPREG:
17361 return _("NT_PRXFPREG (user_xfpregs structure)");
17362 case NT_PPC_VMX:
17363 return _("NT_PPC_VMX (ppc Altivec registers)");
17364 case NT_PPC_VSX:
17365 return _("NT_PPC_VSX (ppc VSX registers)");
17366 case NT_PPC_TAR:
17367 return _("NT_PPC_TAR (ppc TAR register)");
17368 case NT_PPC_PPR:
17369 return _("NT_PPC_PPR (ppc PPR register)");
17370 case NT_PPC_DSCR:
17371 return _("NT_PPC_DSCR (ppc DSCR register)");
17372 case NT_PPC_EBB:
17373 return _("NT_PPC_EBB (ppc EBB registers)");
17374 case NT_PPC_PMU:
17375 return _("NT_PPC_PMU (ppc PMU registers)");
17376 case NT_PPC_TM_CGPR:
17377 return _("NT_PPC_TM_CGPR (ppc checkpointed GPR registers)");
17378 case NT_PPC_TM_CFPR:
17379 return _("NT_PPC_TM_CFPR (ppc checkpointed floating point registers)");
17380 case NT_PPC_TM_CVMX:
17381 return _("NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)");
17382 case NT_PPC_TM_CVSX:
17383 return _("NT_PPC_TM_CVSX (ppc checkpointed VSX registers)");
17384 case NT_PPC_TM_SPR:
17385 return _("NT_PPC_TM_SPR (ppc TM special purpose registers)");
17386 case NT_PPC_TM_CTAR:
17387 return _("NT_PPC_TM_CTAR (ppc checkpointed TAR register)");
17388 case NT_PPC_TM_CPPR:
17389 return _("NT_PPC_TM_CPPR (ppc checkpointed PPR register)");
17390 case NT_PPC_TM_CDSCR:
17391 return _("NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)");
17392 case NT_386_TLS:
17393 return _("NT_386_TLS (x86 TLS information)");
17394 case NT_386_IOPERM:
17395 return _("NT_386_IOPERM (x86 I/O permissions)");
17396 case NT_X86_XSTATE:
17397 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
17398 case NT_S390_HIGH_GPRS:
17399 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
17400 case NT_S390_TIMER:
17401 return _("NT_S390_TIMER (s390 timer register)");
17402 case NT_S390_TODCMP:
17403 return _("NT_S390_TODCMP (s390 TOD comparator register)");
17404 case NT_S390_TODPREG:
17405 return _("NT_S390_TODPREG (s390 TOD programmable register)");
17406 case NT_S390_CTRS:
17407 return _("NT_S390_CTRS (s390 control registers)");
17408 case NT_S390_PREFIX:
17409 return _("NT_S390_PREFIX (s390 prefix register)");
17410 case NT_S390_LAST_BREAK:
17411 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
17412 case NT_S390_SYSTEM_CALL:
17413 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
17414 case NT_S390_TDB:
17415 return _("NT_S390_TDB (s390 transaction diagnostic block)");
17416 case NT_S390_VXRS_LOW:
17417 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
17418 case NT_S390_VXRS_HIGH:
17419 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
17420 case NT_S390_GS_CB:
17421 return _("NT_S390_GS_CB (s390 guarded-storage registers)");
17422 case NT_S390_GS_BC:
17423 return _("NT_S390_GS_BC (s390 guarded-storage broadcast control)");
17424 case NT_ARM_VFP:
17425 return _("NT_ARM_VFP (arm VFP registers)");
17426 case NT_ARM_TLS:
17427 return _("NT_ARM_TLS (AArch TLS registers)");
17428 case NT_ARM_HW_BREAK:
17429 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
17430 case NT_ARM_HW_WATCH:
17431 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
17432 case NT_PSTATUS:
17433 return _("NT_PSTATUS (pstatus structure)");
17434 case NT_FPREGS:
17435 return _("NT_FPREGS (floating point registers)");
17436 case NT_PSINFO:
17437 return _("NT_PSINFO (psinfo structure)");
17438 case NT_LWPSTATUS:
17439 return _("NT_LWPSTATUS (lwpstatus_t structure)");
17440 case NT_LWPSINFO:
17441 return _("NT_LWPSINFO (lwpsinfo_t structure)");
17442 case NT_WIN32PSTATUS:
17443 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
17444 case NT_SIGINFO:
17445 return _("NT_SIGINFO (siginfo_t data)");
17446 case NT_FILE:
17447 return _("NT_FILE (mapped files)");
17448 default:
17449 break;
17450 }
17451 else
17452 switch (e_type)
17453 {
17454 case NT_VERSION:
17455 return _("NT_VERSION (version)");
17456 case NT_ARCH:
17457 return _("NT_ARCH (architecture)");
17458 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
17459 return _("OPEN");
17460 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
17461 return _("func");
17462 default:
17463 break;
17464 }
17465
17466 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
17467 return buff;
17468 }
17469
17470 static bfd_boolean
17471 print_core_note (Elf_Internal_Note *pnote)
17472 {
17473 unsigned int addr_size = is_32bit_elf ? 4 : 8;
17474 bfd_vma count, page_size;
17475 unsigned char *descdata, *filenames, *descend;
17476
17477 if (pnote->type != NT_FILE)
17478 {
17479 if (do_wide)
17480 printf ("\n");
17481 return TRUE;
17482 }
17483
17484 #ifndef BFD64
17485 if (!is_32bit_elf)
17486 {
17487 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
17488 /* Still "successful". */
17489 return TRUE;
17490 }
17491 #endif
17492
17493 if (pnote->descsz < 2 * addr_size)
17494 {
17495 error (_(" Malformed note - too short for header\n"));
17496 return FALSE;
17497 }
17498
17499 descdata = (unsigned char *) pnote->descdata;
17500 descend = descdata + pnote->descsz;
17501
17502 if (descdata[pnote->descsz - 1] != '\0')
17503 {
17504 error (_(" Malformed note - does not end with \\0\n"));
17505 return FALSE;
17506 }
17507
17508 count = byte_get (descdata, addr_size);
17509 descdata += addr_size;
17510
17511 page_size = byte_get (descdata, addr_size);
17512 descdata += addr_size;
17513
17514 if (count > ((bfd_vma) -1 - 2 * addr_size) / (3 * addr_size)
17515 || pnote->descsz < 2 * addr_size + count * 3 * addr_size)
17516 {
17517 error (_(" Malformed note - too short for supplied file count\n"));
17518 return FALSE;
17519 }
17520
17521 printf (_(" Page size: "));
17522 print_vma (page_size, DEC);
17523 printf ("\n");
17524
17525 printf (_(" %*s%*s%*s\n"),
17526 (int) (2 + 2 * addr_size), _("Start"),
17527 (int) (4 + 2 * addr_size), _("End"),
17528 (int) (4 + 2 * addr_size), _("Page Offset"));
17529 filenames = descdata + count * 3 * addr_size;
17530 while (count-- > 0)
17531 {
17532 bfd_vma start, end, file_ofs;
17533
17534 if (filenames == descend)
17535 {
17536 error (_(" Malformed note - filenames end too early\n"));
17537 return FALSE;
17538 }
17539
17540 start = byte_get (descdata, addr_size);
17541 descdata += addr_size;
17542 end = byte_get (descdata, addr_size);
17543 descdata += addr_size;
17544 file_ofs = byte_get (descdata, addr_size);
17545 descdata += addr_size;
17546
17547 printf (" ");
17548 print_vma (start, FULL_HEX);
17549 printf (" ");
17550 print_vma (end, FULL_HEX);
17551 printf (" ");
17552 print_vma (file_ofs, FULL_HEX);
17553 printf ("\n %s\n", filenames);
17554
17555 filenames += 1 + strlen ((char *) filenames);
17556 }
17557
17558 return TRUE;
17559 }
17560
17561 static const char *
17562 get_gnu_elf_note_type (unsigned e_type)
17563 {
17564 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
17565 switch (e_type)
17566 {
17567 case NT_GNU_ABI_TAG:
17568 return _("NT_GNU_ABI_TAG (ABI version tag)");
17569 case NT_GNU_HWCAP:
17570 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
17571 case NT_GNU_BUILD_ID:
17572 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
17573 case NT_GNU_GOLD_VERSION:
17574 return _("NT_GNU_GOLD_VERSION (gold version)");
17575 case NT_GNU_PROPERTY_TYPE_0:
17576 return _("NT_GNU_PROPERTY_TYPE_0");
17577 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
17578 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
17579 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
17580 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
17581 default:
17582 {
17583 static char buff[64];
17584
17585 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
17586 return buff;
17587 }
17588 }
17589 }
17590
17591 static void
17592 decode_x86_compat_isa (unsigned int bitmask)
17593 {
17594 while (bitmask)
17595 {
17596 unsigned int bit = bitmask & (- bitmask);
17597
17598 bitmask &= ~ bit;
17599 switch (bit)
17600 {
17601 case GNU_PROPERTY_X86_COMPAT_ISA_1_486:
17602 printf ("i486");
17603 break;
17604 case GNU_PROPERTY_X86_COMPAT_ISA_1_586:
17605 printf ("586");
17606 break;
17607 case GNU_PROPERTY_X86_COMPAT_ISA_1_686:
17608 printf ("686");
17609 break;
17610 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE:
17611 printf ("SSE");
17612 break;
17613 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE2:
17614 printf ("SSE2");
17615 break;
17616 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE3:
17617 printf ("SSE3");
17618 break;
17619 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSSE3:
17620 printf ("SSSE3");
17621 break;
17622 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE4_1:
17623 printf ("SSE4_1");
17624 break;
17625 case GNU_PROPERTY_X86_COMPAT_ISA_1_SSE4_2:
17626 printf ("SSE4_2");
17627 break;
17628 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX:
17629 printf ("AVX");
17630 break;
17631 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX2:
17632 printf ("AVX2");
17633 break;
17634 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512F:
17635 printf ("AVX512F");
17636 break;
17637 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512CD:
17638 printf ("AVX512CD");
17639 break;
17640 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512ER:
17641 printf ("AVX512ER");
17642 break;
17643 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512PF:
17644 printf ("AVX512PF");
17645 break;
17646 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512VL:
17647 printf ("AVX512VL");
17648 break;
17649 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512DQ:
17650 printf ("AVX512DQ");
17651 break;
17652 case GNU_PROPERTY_X86_COMPAT_ISA_1_AVX512BW:
17653 printf ("AVX512BW");
17654 break;
17655 default:
17656 printf (_("<unknown: %x>"), bit);
17657 break;
17658 }
17659 if (bitmask)
17660 printf (", ");
17661 }
17662 }
17663
17664 static void
17665 decode_x86_isa (unsigned int bitmask)
17666 {
17667 if (!bitmask)
17668 {
17669 printf (_("<None>"));
17670 return;
17671 }
17672
17673 while (bitmask)
17674 {
17675 unsigned int bit = bitmask & (- bitmask);
17676
17677 bitmask &= ~ bit;
17678 switch (bit)
17679 {
17680 case GNU_PROPERTY_X86_ISA_1_CMOV:
17681 printf ("CMOV");
17682 break;
17683 case GNU_PROPERTY_X86_ISA_1_SSE:
17684 printf ("SSE");
17685 break;
17686 case GNU_PROPERTY_X86_ISA_1_SSE2:
17687 printf ("SSE2");
17688 break;
17689 case GNU_PROPERTY_X86_ISA_1_SSE3:
17690 printf ("SSE3");
17691 break;
17692 case GNU_PROPERTY_X86_ISA_1_SSSE3:
17693 printf ("SSSE3");
17694 break;
17695 case GNU_PROPERTY_X86_ISA_1_SSE4_1:
17696 printf ("SSE4_1");
17697 break;
17698 case GNU_PROPERTY_X86_ISA_1_SSE4_2:
17699 printf ("SSE4_2");
17700 break;
17701 case GNU_PROPERTY_X86_ISA_1_AVX:
17702 printf ("AVX");
17703 break;
17704 case GNU_PROPERTY_X86_ISA_1_AVX2:
17705 printf ("AVX2");
17706 break;
17707 case GNU_PROPERTY_X86_ISA_1_FMA:
17708 printf ("FMA");
17709 break;
17710 case GNU_PROPERTY_X86_ISA_1_AVX512F:
17711 printf ("AVX512F");
17712 break;
17713 case GNU_PROPERTY_X86_ISA_1_AVX512CD:
17714 printf ("AVX512CD");
17715 break;
17716 case GNU_PROPERTY_X86_ISA_1_AVX512ER:
17717 printf ("AVX512ER");
17718 break;
17719 case GNU_PROPERTY_X86_ISA_1_AVX512PF:
17720 printf ("AVX512PF");
17721 break;
17722 case GNU_PROPERTY_X86_ISA_1_AVX512VL:
17723 printf ("AVX512VL");
17724 break;
17725 case GNU_PROPERTY_X86_ISA_1_AVX512DQ:
17726 printf ("AVX512DQ");
17727 break;
17728 case GNU_PROPERTY_X86_ISA_1_AVX512BW:
17729 printf ("AVX512BW");
17730 break;
17731 case GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS:
17732 printf ("AVX512_4FMAPS");
17733 break;
17734 case GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW:
17735 printf ("AVX512_4VNNIW");
17736 break;
17737 case GNU_PROPERTY_X86_ISA_1_AVX512_BITALG:
17738 printf ("AVX512_BITALG");
17739 break;
17740 case GNU_PROPERTY_X86_ISA_1_AVX512_IFMA:
17741 printf ("AVX512_IFMA");
17742 break;
17743 case GNU_PROPERTY_X86_ISA_1_AVX512_VBMI:
17744 printf ("AVX512_VBMI");
17745 break;
17746 case GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2:
17747 printf ("AVX512_VBMI2");
17748 break;
17749 case GNU_PROPERTY_X86_ISA_1_AVX512_VNNI:
17750 printf ("AVX512_VNNI");
17751 break;
17752 case GNU_PROPERTY_X86_ISA_1_AVX512_BF16:
17753 printf ("AVX512_BF16");
17754 break;
17755 default:
17756 printf (_("<unknown: %x>"), bit);
17757 break;
17758 }
17759 if (bitmask)
17760 printf (", ");
17761 }
17762 }
17763
17764 static void
17765 decode_x86_feature_1 (unsigned int bitmask)
17766 {
17767 if (!bitmask)
17768 {
17769 printf (_("<None>"));
17770 return;
17771 }
17772
17773 while (bitmask)
17774 {
17775 unsigned int bit = bitmask & (- bitmask);
17776
17777 bitmask &= ~ bit;
17778 switch (bit)
17779 {
17780 case GNU_PROPERTY_X86_FEATURE_1_IBT:
17781 printf ("IBT");
17782 break;
17783 case GNU_PROPERTY_X86_FEATURE_1_SHSTK:
17784 printf ("SHSTK");
17785 break;
17786 default:
17787 printf (_("<unknown: %x>"), bit);
17788 break;
17789 }
17790 if (bitmask)
17791 printf (", ");
17792 }
17793 }
17794
17795 static void
17796 decode_x86_feature_2 (unsigned int bitmask)
17797 {
17798 if (!bitmask)
17799 {
17800 printf (_("<None>"));
17801 return;
17802 }
17803
17804 while (bitmask)
17805 {
17806 unsigned int bit = bitmask & (- bitmask);
17807
17808 bitmask &= ~ bit;
17809 switch (bit)
17810 {
17811 case GNU_PROPERTY_X86_FEATURE_2_X86:
17812 printf ("x86");
17813 break;
17814 case GNU_PROPERTY_X86_FEATURE_2_X87:
17815 printf ("x87");
17816 break;
17817 case GNU_PROPERTY_X86_FEATURE_2_MMX:
17818 printf ("MMX");
17819 break;
17820 case GNU_PROPERTY_X86_FEATURE_2_XMM:
17821 printf ("XMM");
17822 break;
17823 case GNU_PROPERTY_X86_FEATURE_2_YMM:
17824 printf ("YMM");
17825 break;
17826 case GNU_PROPERTY_X86_FEATURE_2_ZMM:
17827 printf ("ZMM");
17828 break;
17829 case GNU_PROPERTY_X86_FEATURE_2_FXSR:
17830 printf ("FXSR");
17831 break;
17832 case GNU_PROPERTY_X86_FEATURE_2_XSAVE:
17833 printf ("XSAVE");
17834 break;
17835 case GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT:
17836 printf ("XSAVEOPT");
17837 break;
17838 case GNU_PROPERTY_X86_FEATURE_2_XSAVEC:
17839 printf ("XSAVEC");
17840 break;
17841 default:
17842 printf (_("<unknown: %x>"), bit);
17843 break;
17844 }
17845 if (bitmask)
17846 printf (", ");
17847 }
17848 }
17849
17850 static void
17851 decode_aarch64_feature_1_and (unsigned int bitmask)
17852 {
17853 while (bitmask)
17854 {
17855 unsigned int bit = bitmask & (- bitmask);
17856
17857 bitmask &= ~ bit;
17858 switch (bit)
17859 {
17860 case GNU_PROPERTY_AARCH64_FEATURE_1_BTI:
17861 printf ("BTI");
17862 break;
17863
17864 case GNU_PROPERTY_AARCH64_FEATURE_1_PAC:
17865 printf ("PAC");
17866 break;
17867
17868 default:
17869 printf (_("<unknown: %x>"), bit);
17870 break;
17871 }
17872 if (bitmask)
17873 printf (", ");
17874 }
17875 }
17876
17877 static void
17878 print_gnu_property_note (Filedata * filedata, Elf_Internal_Note * pnote)
17879 {
17880 unsigned char * ptr = (unsigned char *) pnote->descdata;
17881 unsigned char * ptr_end = ptr + pnote->descsz;
17882 unsigned int size = is_32bit_elf ? 4 : 8;
17883
17884 printf (_(" Properties: "));
17885
17886 if (pnote->descsz < 8 || (pnote->descsz % size) != 0)
17887 {
17888 printf (_("<corrupt GNU_PROPERTY_TYPE, size = %#lx>\n"), pnote->descsz);
17889 return;
17890 }
17891
17892 while (ptr < ptr_end)
17893 {
17894 unsigned int j;
17895 unsigned int type;
17896 unsigned int datasz;
17897
17898 if ((size_t) (ptr_end - ptr) < 8)
17899 {
17900 printf (_("<corrupt descsz: %#lx>\n"), pnote->descsz);
17901 break;
17902 }
17903
17904 type = byte_get (ptr, 4);
17905 datasz = byte_get (ptr + 4, 4);
17906
17907 ptr += 8;
17908
17909 if (datasz > (size_t) (ptr_end - ptr))
17910 {
17911 printf (_("<corrupt type (%#x) datasz: %#x>\n"),
17912 type, datasz);
17913 break;
17914 }
17915
17916 if (type >= GNU_PROPERTY_LOPROC && type <= GNU_PROPERTY_HIPROC)
17917 {
17918 if (filedata->file_header.e_machine == EM_X86_64
17919 || filedata->file_header.e_machine == EM_IAMCU
17920 || filedata->file_header.e_machine == EM_386)
17921 {
17922 unsigned int bitmask;
17923
17924 if (datasz == 4)
17925 bitmask = byte_get (ptr, 4);
17926 else
17927 bitmask = 0;
17928
17929 switch (type)
17930 {
17931 case GNU_PROPERTY_X86_ISA_1_USED:
17932 if (datasz != 4)
17933 printf (_("x86 ISA used: <corrupt length: %#x> "),
17934 datasz);
17935 else
17936 {
17937 printf ("x86 ISA used: ");
17938 decode_x86_isa (bitmask);
17939 }
17940 goto next;
17941
17942 case GNU_PROPERTY_X86_ISA_1_NEEDED:
17943 if (datasz != 4)
17944 printf (_("x86 ISA needed: <corrupt length: %#x> "),
17945 datasz);
17946 else
17947 {
17948 printf ("x86 ISA needed: ");
17949 decode_x86_isa (bitmask);
17950 }
17951 goto next;
17952
17953 case GNU_PROPERTY_X86_FEATURE_1_AND:
17954 if (datasz != 4)
17955 printf (_("x86 feature: <corrupt length: %#x> "),
17956 datasz);
17957 else
17958 {
17959 printf ("x86 feature: ");
17960 decode_x86_feature_1 (bitmask);
17961 }
17962 goto next;
17963
17964 case GNU_PROPERTY_X86_FEATURE_2_USED:
17965 if (datasz != 4)
17966 printf (_("x86 feature used: <corrupt length: %#x> "),
17967 datasz);
17968 else
17969 {
17970 printf ("x86 feature used: ");
17971 decode_x86_feature_2 (bitmask);
17972 }
17973 goto next;
17974
17975 case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
17976 if (datasz != 4)
17977 printf (_("x86 feature needed: <corrupt length: %#x> "), datasz);
17978 else
17979 {
17980 printf ("x86 feature needed: ");
17981 decode_x86_feature_2 (bitmask);
17982 }
17983 goto next;
17984
17985 case GNU_PROPERTY_X86_COMPAT_ISA_1_USED:
17986 if (datasz != 4)
17987 printf (_("x86 ISA used: <corrupt length: %#x> "),
17988 datasz);
17989 else
17990 {
17991 printf ("x86 ISA used: ");
17992 decode_x86_compat_isa (bitmask);
17993 }
17994 goto next;
17995
17996 case GNU_PROPERTY_X86_COMPAT_ISA_1_NEEDED:
17997 if (datasz != 4)
17998 printf (_("x86 ISA needed: <corrupt length: %#x> "),
17999 datasz);
18000 else
18001 {
18002 printf ("x86 ISA needed: ");
18003 decode_x86_compat_isa (bitmask);
18004 }
18005 goto next;
18006
18007 default:
18008 break;
18009 }
18010 }
18011 else if (filedata->file_header.e_machine == EM_AARCH64)
18012 {
18013 if (type == GNU_PROPERTY_AARCH64_FEATURE_1_AND)
18014 {
18015 printf ("AArch64 feature: ");
18016 if (datasz != 4)
18017 printf (_("<corrupt length: %#x> "), datasz);
18018 else
18019 decode_aarch64_feature_1_and (byte_get (ptr, 4));
18020 goto next;
18021 }
18022 }
18023 }
18024 else
18025 {
18026 switch (type)
18027 {
18028 case GNU_PROPERTY_STACK_SIZE:
18029 printf (_("stack size: "));
18030 if (datasz != size)
18031 printf (_("<corrupt length: %#x> "), datasz);
18032 else
18033 printf ("%#lx", (unsigned long) byte_get (ptr, size));
18034 goto next;
18035
18036 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
18037 printf ("no copy on protected ");
18038 if (datasz)
18039 printf (_("<corrupt length: %#x> "), datasz);
18040 goto next;
18041
18042 default:
18043 break;
18044 }
18045 }
18046
18047 if (type < GNU_PROPERTY_LOPROC)
18048 printf (_("<unknown type %#x data: "), type);
18049 else if (type < GNU_PROPERTY_LOUSER)
18050 printf (_("<procesor-specific type %#x data: "), type);
18051 else
18052 printf (_("<application-specific type %#x data: "), type);
18053 for (j = 0; j < datasz; ++j)
18054 printf ("%02x ", ptr[j] & 0xff);
18055 printf (">");
18056
18057 next:
18058 ptr += ((datasz + (size - 1)) & ~ (size - 1));
18059 if (ptr == ptr_end)
18060 break;
18061
18062 if (do_wide)
18063 printf (", ");
18064 else
18065 printf ("\n\t");
18066 }
18067
18068 printf ("\n");
18069 }
18070
18071 static bfd_boolean
18072 print_gnu_note (Filedata * filedata, Elf_Internal_Note *pnote)
18073 {
18074 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
18075 switch (pnote->type)
18076 {
18077 case NT_GNU_BUILD_ID:
18078 {
18079 unsigned long i;
18080
18081 printf (_(" Build ID: "));
18082 for (i = 0; i < pnote->descsz; ++i)
18083 printf ("%02x", pnote->descdata[i] & 0xff);
18084 printf ("\n");
18085 }
18086 break;
18087
18088 case NT_GNU_ABI_TAG:
18089 {
18090 unsigned long os, major, minor, subminor;
18091 const char *osname;
18092
18093 /* PR 17531: file: 030-599401-0.004. */
18094 if (pnote->descsz < 16)
18095 {
18096 printf (_(" <corrupt GNU_ABI_TAG>\n"));
18097 break;
18098 }
18099
18100 os = byte_get ((unsigned char *) pnote->descdata, 4);
18101 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
18102 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
18103 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
18104
18105 switch (os)
18106 {
18107 case GNU_ABI_TAG_LINUX:
18108 osname = "Linux";
18109 break;
18110 case GNU_ABI_TAG_HURD:
18111 osname = "Hurd";
18112 break;
18113 case GNU_ABI_TAG_SOLARIS:
18114 osname = "Solaris";
18115 break;
18116 case GNU_ABI_TAG_FREEBSD:
18117 osname = "FreeBSD";
18118 break;
18119 case GNU_ABI_TAG_NETBSD:
18120 osname = "NetBSD";
18121 break;
18122 case GNU_ABI_TAG_SYLLABLE:
18123 osname = "Syllable";
18124 break;
18125 case GNU_ABI_TAG_NACL:
18126 osname = "NaCl";
18127 break;
18128 default:
18129 osname = "Unknown";
18130 break;
18131 }
18132
18133 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
18134 major, minor, subminor);
18135 }
18136 break;
18137
18138 case NT_GNU_GOLD_VERSION:
18139 {
18140 unsigned long i;
18141
18142 printf (_(" Version: "));
18143 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
18144 printf ("%c", pnote->descdata[i]);
18145 printf ("\n");
18146 }
18147 break;
18148
18149 case NT_GNU_HWCAP:
18150 {
18151 unsigned long num_entries, mask;
18152
18153 /* Hardware capabilities information. Word 0 is the number of entries.
18154 Word 1 is a bitmask of enabled entries. The rest of the descriptor
18155 is a series of entries, where each entry is a single byte followed
18156 by a nul terminated string. The byte gives the bit number to test
18157 if enabled in the bitmask. */
18158 printf (_(" Hardware Capabilities: "));
18159 if (pnote->descsz < 8)
18160 {
18161 error (_("<corrupt GNU_HWCAP>\n"));
18162 return FALSE;
18163 }
18164 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
18165 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
18166 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
18167 /* FIXME: Add code to display the entries... */
18168 }
18169 break;
18170
18171 case NT_GNU_PROPERTY_TYPE_0:
18172 print_gnu_property_note (filedata, pnote);
18173 break;
18174
18175 default:
18176 /* Handle unrecognised types. An error message should have already been
18177 created by get_gnu_elf_note_type(), so all that we need to do is to
18178 display the data. */
18179 {
18180 unsigned long i;
18181
18182 printf (_(" Description data: "));
18183 for (i = 0; i < pnote->descsz; ++i)
18184 printf ("%02x ", pnote->descdata[i] & 0xff);
18185 printf ("\n");
18186 }
18187 break;
18188 }
18189
18190 return TRUE;
18191 }
18192
18193 static const char *
18194 get_v850_elf_note_type (enum v850_notes n_type)
18195 {
18196 static char buff[64];
18197
18198 switch (n_type)
18199 {
18200 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
18201 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
18202 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
18203 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
18204 case V850_NOTE_CACHE_INFO: return _("Use of cache");
18205 case V850_NOTE_MMU_INFO: return _("Use of MMU");
18206 default:
18207 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
18208 return buff;
18209 }
18210 }
18211
18212 static bfd_boolean
18213 print_v850_note (Elf_Internal_Note * pnote)
18214 {
18215 unsigned int val;
18216
18217 if (pnote->descsz != 4)
18218 return FALSE;
18219
18220 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
18221
18222 if (val == 0)
18223 {
18224 printf (_("not set\n"));
18225 return TRUE;
18226 }
18227
18228 switch (pnote->type)
18229 {
18230 case V850_NOTE_ALIGNMENT:
18231 switch (val)
18232 {
18233 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return TRUE;
18234 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return TRUE;
18235 }
18236 break;
18237
18238 case V850_NOTE_DATA_SIZE:
18239 switch (val)
18240 {
18241 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return TRUE;
18242 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return TRUE;
18243 }
18244 break;
18245
18246 case V850_NOTE_FPU_INFO:
18247 switch (val)
18248 {
18249 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return TRUE;
18250 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return TRUE;
18251 }
18252 break;
18253
18254 case V850_NOTE_MMU_INFO:
18255 case V850_NOTE_CACHE_INFO:
18256 case V850_NOTE_SIMD_INFO:
18257 if (val == EF_RH850_SIMD)
18258 {
18259 printf (_("yes\n"));
18260 return TRUE;
18261 }
18262 break;
18263
18264 default:
18265 /* An 'unknown note type' message will already have been displayed. */
18266 break;
18267 }
18268
18269 printf (_("unknown value: %x\n"), val);
18270 return FALSE;
18271 }
18272
18273 static bfd_boolean
18274 process_netbsd_elf_note (Elf_Internal_Note * pnote)
18275 {
18276 unsigned int version;
18277
18278 switch (pnote->type)
18279 {
18280 case NT_NETBSD_IDENT:
18281 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
18282 if ((version / 10000) % 100)
18283 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
18284 version, version / 100000000, (version / 1000000) % 100,
18285 (version / 10000) % 100 > 26 ? "Z" : "",
18286 'A' + (version / 10000) % 26);
18287 else
18288 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
18289 version, version / 100000000, (version / 1000000) % 100,
18290 (version / 100) % 100);
18291 return TRUE;
18292
18293 case NT_NETBSD_MARCH:
18294 printf (" NetBSD\t\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
18295 pnote->descdata);
18296 return TRUE;
18297
18298 #ifdef NT_NETBSD_PAX
18299 case NT_NETBSD_PAX:
18300 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
18301 printf (" NetBSD\t\t0x%08lx\tPaX <%s%s%s%s%s%s>\n", pnote->descsz,
18302 ((version & NT_NETBSD_PAX_MPROTECT) ? "+mprotect" : ""),
18303 ((version & NT_NETBSD_PAX_NOMPROTECT) ? "-mprotect" : ""),
18304 ((version & NT_NETBSD_PAX_GUARD) ? "+guard" : ""),
18305 ((version & NT_NETBSD_PAX_NOGUARD) ? "-guard" : ""),
18306 ((version & NT_NETBSD_PAX_ASLR) ? "+ASLR" : ""),
18307 ((version & NT_NETBSD_PAX_NOASLR) ? "-ASLR" : ""));
18308 return TRUE;
18309 #endif
18310
18311 default:
18312 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
18313 pnote->type);
18314 return FALSE;
18315 }
18316 }
18317
18318 static const char *
18319 get_freebsd_elfcore_note_type (Filedata * filedata, unsigned e_type)
18320 {
18321 switch (e_type)
18322 {
18323 case NT_FREEBSD_THRMISC:
18324 return _("NT_THRMISC (thrmisc structure)");
18325 case NT_FREEBSD_PROCSTAT_PROC:
18326 return _("NT_PROCSTAT_PROC (proc data)");
18327 case NT_FREEBSD_PROCSTAT_FILES:
18328 return _("NT_PROCSTAT_FILES (files data)");
18329 case NT_FREEBSD_PROCSTAT_VMMAP:
18330 return _("NT_PROCSTAT_VMMAP (vmmap data)");
18331 case NT_FREEBSD_PROCSTAT_GROUPS:
18332 return _("NT_PROCSTAT_GROUPS (groups data)");
18333 case NT_FREEBSD_PROCSTAT_UMASK:
18334 return _("NT_PROCSTAT_UMASK (umask data)");
18335 case NT_FREEBSD_PROCSTAT_RLIMIT:
18336 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
18337 case NT_FREEBSD_PROCSTAT_OSREL:
18338 return _("NT_PROCSTAT_OSREL (osreldate data)");
18339 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
18340 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
18341 case NT_FREEBSD_PROCSTAT_AUXV:
18342 return _("NT_PROCSTAT_AUXV (auxv data)");
18343 case NT_FREEBSD_PTLWPINFO:
18344 return _("NT_PTLWPINFO (ptrace_lwpinfo structure)");
18345 }
18346 return get_note_type (filedata, e_type);
18347 }
18348
18349 static const char *
18350 get_netbsd_elfcore_note_type (Filedata * filedata, unsigned e_type)
18351 {
18352 static char buff[64];
18353
18354 switch (e_type)
18355 {
18356 case NT_NETBSDCORE_PROCINFO:
18357 /* NetBSD core "procinfo" structure. */
18358 return _("NetBSD procinfo structure");
18359
18360 #ifdef NT_NETBSDCORE_AUXV
18361 case NT_NETBSDCORE_AUXV:
18362 return _("NetBSD ELF auxiliary vector data");
18363 #endif
18364
18365 default:
18366 /* As of Jan 2002 there are no other machine-independent notes
18367 defined for NetBSD core files. If the note type is less
18368 than the start of the machine-dependent note types, we don't
18369 understand it. */
18370
18371 if (e_type < NT_NETBSDCORE_FIRSTMACH)
18372 {
18373 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
18374 return buff;
18375 }
18376 break;
18377 }
18378
18379 switch (filedata->file_header.e_machine)
18380 {
18381 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
18382 and PT_GETFPREGS == mach+2. */
18383
18384 case EM_OLD_ALPHA:
18385 case EM_ALPHA:
18386 case EM_SPARC:
18387 case EM_SPARC32PLUS:
18388 case EM_SPARCV9:
18389 switch (e_type)
18390 {
18391 case NT_NETBSDCORE_FIRSTMACH + 0:
18392 return _("PT_GETREGS (reg structure)");
18393 case NT_NETBSDCORE_FIRSTMACH + 2:
18394 return _("PT_GETFPREGS (fpreg structure)");
18395 default:
18396 break;
18397 }
18398 break;
18399
18400 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
18401 There's also old PT___GETREGS40 == mach + 1 for old reg
18402 structure which lacks GBR. */
18403 case EM_SH:
18404 switch (e_type)
18405 {
18406 case NT_NETBSDCORE_FIRSTMACH + 1:
18407 return _("PT___GETREGS40 (old reg structure)");
18408 case NT_NETBSDCORE_FIRSTMACH + 3:
18409 return _("PT_GETREGS (reg structure)");
18410 case NT_NETBSDCORE_FIRSTMACH + 5:
18411 return _("PT_GETFPREGS (fpreg structure)");
18412 default:
18413 break;
18414 }
18415 break;
18416
18417 /* On all other arch's, PT_GETREGS == mach+1 and
18418 PT_GETFPREGS == mach+3. */
18419 default:
18420 switch (e_type)
18421 {
18422 case NT_NETBSDCORE_FIRSTMACH + 1:
18423 return _("PT_GETREGS (reg structure)");
18424 case NT_NETBSDCORE_FIRSTMACH + 3:
18425 return _("PT_GETFPREGS (fpreg structure)");
18426 default:
18427 break;
18428 }
18429 }
18430
18431 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
18432 e_type - NT_NETBSDCORE_FIRSTMACH);
18433 return buff;
18434 }
18435
18436 static const char *
18437 get_stapsdt_note_type (unsigned e_type)
18438 {
18439 static char buff[64];
18440
18441 switch (e_type)
18442 {
18443 case NT_STAPSDT:
18444 return _("NT_STAPSDT (SystemTap probe descriptors)");
18445
18446 default:
18447 break;
18448 }
18449
18450 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
18451 return buff;
18452 }
18453
18454 static bfd_boolean
18455 print_stapsdt_note (Elf_Internal_Note *pnote)
18456 {
18457 size_t len, maxlen;
18458 unsigned long addr_size = is_32bit_elf ? 4 : 8;
18459 char *data = pnote->descdata;
18460 char *data_end = pnote->descdata + pnote->descsz;
18461 bfd_vma pc, base_addr, semaphore;
18462 char *provider, *probe, *arg_fmt;
18463
18464 if (pnote->descsz < (addr_size * 3))
18465 goto stapdt_note_too_small;
18466
18467 pc = byte_get ((unsigned char *) data, addr_size);
18468 data += addr_size;
18469
18470 base_addr = byte_get ((unsigned char *) data, addr_size);
18471 data += addr_size;
18472
18473 semaphore = byte_get ((unsigned char *) data, addr_size);
18474 data += addr_size;
18475
18476 if (data >= data_end)
18477 goto stapdt_note_too_small;
18478 maxlen = data_end - data;
18479 len = strnlen (data, maxlen);
18480 if (len < maxlen)
18481 {
18482 provider = data;
18483 data += len + 1;
18484 }
18485 else
18486 goto stapdt_note_too_small;
18487
18488 if (data >= data_end)
18489 goto stapdt_note_too_small;
18490 maxlen = data_end - data;
18491 len = strnlen (data, maxlen);
18492 if (len < maxlen)
18493 {
18494 probe = data;
18495 data += len + 1;
18496 }
18497 else
18498 goto stapdt_note_too_small;
18499
18500 if (data >= data_end)
18501 goto stapdt_note_too_small;
18502 maxlen = data_end - data;
18503 len = strnlen (data, maxlen);
18504 if (len < maxlen)
18505 {
18506 arg_fmt = data;
18507 data += len + 1;
18508 }
18509 else
18510 goto stapdt_note_too_small;
18511
18512 printf (_(" Provider: %s\n"), provider);
18513 printf (_(" Name: %s\n"), probe);
18514 printf (_(" Location: "));
18515 print_vma (pc, FULL_HEX);
18516 printf (_(", Base: "));
18517 print_vma (base_addr, FULL_HEX);
18518 printf (_(", Semaphore: "));
18519 print_vma (semaphore, FULL_HEX);
18520 printf ("\n");
18521 printf (_(" Arguments: %s\n"), arg_fmt);
18522
18523 return data == data_end;
18524
18525 stapdt_note_too_small:
18526 printf (_(" <corrupt - note is too small>\n"));
18527 error (_("corrupt stapdt note - the data size is too small\n"));
18528 return FALSE;
18529 }
18530
18531 static const char *
18532 get_ia64_vms_note_type (unsigned e_type)
18533 {
18534 static char buff[64];
18535
18536 switch (e_type)
18537 {
18538 case NT_VMS_MHD:
18539 return _("NT_VMS_MHD (module header)");
18540 case NT_VMS_LNM:
18541 return _("NT_VMS_LNM (language name)");
18542 case NT_VMS_SRC:
18543 return _("NT_VMS_SRC (source files)");
18544 case NT_VMS_TITLE:
18545 return "NT_VMS_TITLE";
18546 case NT_VMS_EIDC:
18547 return _("NT_VMS_EIDC (consistency check)");
18548 case NT_VMS_FPMODE:
18549 return _("NT_VMS_FPMODE (FP mode)");
18550 case NT_VMS_LINKTIME:
18551 return "NT_VMS_LINKTIME";
18552 case NT_VMS_IMGNAM:
18553 return _("NT_VMS_IMGNAM (image name)");
18554 case NT_VMS_IMGID:
18555 return _("NT_VMS_IMGID (image id)");
18556 case NT_VMS_LINKID:
18557 return _("NT_VMS_LINKID (link id)");
18558 case NT_VMS_IMGBID:
18559 return _("NT_VMS_IMGBID (build id)");
18560 case NT_VMS_GSTNAM:
18561 return _("NT_VMS_GSTNAM (sym table name)");
18562 case NT_VMS_ORIG_DYN:
18563 return "NT_VMS_ORIG_DYN";
18564 case NT_VMS_PATCHTIME:
18565 return "NT_VMS_PATCHTIME";
18566 default:
18567 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
18568 return buff;
18569 }
18570 }
18571
18572 static bfd_boolean
18573 print_ia64_vms_note (Elf_Internal_Note * pnote)
18574 {
18575 int maxlen = pnote->descsz;
18576
18577 if (maxlen < 2 || (unsigned long) maxlen != pnote->descsz)
18578 goto desc_size_fail;
18579
18580 switch (pnote->type)
18581 {
18582 case NT_VMS_MHD:
18583 if (maxlen <= 36)
18584 goto desc_size_fail;
18585
18586 int l = (int) strnlen (pnote->descdata + 34, maxlen - 34);
18587
18588 printf (_(" Creation date : %.17s\n"), pnote->descdata);
18589 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
18590 if (l + 34 < maxlen)
18591 {
18592 printf (_(" Module name : %s\n"), pnote->descdata + 34);
18593 if (l + 35 < maxlen)
18594 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
18595 else
18596 printf (_(" Module version : <missing>\n"));
18597 }
18598 else
18599 {
18600 printf (_(" Module name : <missing>\n"));
18601 printf (_(" Module version : <missing>\n"));
18602 }
18603 break;
18604
18605 case NT_VMS_LNM:
18606 printf (_(" Language: %.*s\n"), maxlen, pnote->descdata);
18607 break;
18608
18609 #ifdef BFD64
18610 case NT_VMS_FPMODE:
18611 printf (_(" Floating Point mode: "));
18612 if (maxlen < 8)
18613 goto desc_size_fail;
18614 /* FIXME: Generate an error if descsz > 8 ? */
18615
18616 printf ("0x%016" BFD_VMA_FMT "x\n",
18617 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
18618 break;
18619
18620 case NT_VMS_LINKTIME:
18621 printf (_(" Link time: "));
18622 if (maxlen < 8)
18623 goto desc_size_fail;
18624 /* FIXME: Generate an error if descsz > 8 ? */
18625
18626 print_vms_time
18627 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
18628 printf ("\n");
18629 break;
18630
18631 case NT_VMS_PATCHTIME:
18632 printf (_(" Patch time: "));
18633 if (maxlen < 8)
18634 goto desc_size_fail;
18635 /* FIXME: Generate an error if descsz > 8 ? */
18636
18637 print_vms_time
18638 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
18639 printf ("\n");
18640 break;
18641
18642 case NT_VMS_ORIG_DYN:
18643 if (maxlen < 34)
18644 goto desc_size_fail;
18645
18646 printf (_(" Major id: %u, minor id: %u\n"),
18647 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
18648 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
18649 printf (_(" Last modified : "));
18650 print_vms_time
18651 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
18652 printf (_("\n Link flags : "));
18653 printf ("0x%016" BFD_VMA_FMT "x\n",
18654 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
18655 printf (_(" Header flags: 0x%08x\n"),
18656 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
18657 printf (_(" Image id : %.*s\n"), maxlen - 32, pnote->descdata + 32);
18658 break;
18659 #endif
18660
18661 case NT_VMS_IMGNAM:
18662 printf (_(" Image name: %.*s\n"), maxlen, pnote->descdata);
18663 break;
18664
18665 case NT_VMS_GSTNAM:
18666 printf (_(" Global symbol table name: %.*s\n"), maxlen, pnote->descdata);
18667 break;
18668
18669 case NT_VMS_IMGID:
18670 printf (_(" Image id: %.*s\n"), maxlen, pnote->descdata);
18671 break;
18672
18673 case NT_VMS_LINKID:
18674 printf (_(" Linker id: %.*s\n"), maxlen, pnote->descdata);
18675 break;
18676
18677 default:
18678 return FALSE;
18679 }
18680
18681 return TRUE;
18682
18683 desc_size_fail:
18684 printf (_(" <corrupt - data size is too small>\n"));
18685 error (_("corrupt IA64 note: data size is too small\n"));
18686 return FALSE;
18687 }
18688
18689 /* Find the symbol associated with a build attribute that is attached
18690 to address OFFSET. If PNAME is non-NULL then store the name of
18691 the symbol (if found) in the provided pointer, Returns NULL if a
18692 symbol could not be found. */
18693
18694 static Elf_Internal_Sym *
18695 get_symbol_for_build_attribute (Filedata * filedata,
18696 unsigned long offset,
18697 bfd_boolean is_open_attr,
18698 const char ** pname)
18699 {
18700 static Filedata * saved_filedata = NULL;
18701 static char * strtab;
18702 static unsigned long strtablen;
18703 static Elf_Internal_Sym * symtab;
18704 static unsigned long nsyms;
18705 Elf_Internal_Sym * saved_sym = NULL;
18706 Elf_Internal_Sym * sym;
18707
18708 if (filedata->section_headers != NULL
18709 && (saved_filedata == NULL || filedata != saved_filedata))
18710 {
18711 Elf_Internal_Shdr * symsec;
18712
18713 /* Load the symbol and string sections. */
18714 for (symsec = filedata->section_headers;
18715 symsec < filedata->section_headers + filedata->file_header.e_shnum;
18716 symsec ++)
18717 {
18718 if (symsec->sh_type == SHT_SYMTAB)
18719 {
18720 symtab = GET_ELF_SYMBOLS (filedata, symsec, & nsyms);
18721
18722 if (symsec->sh_link < filedata->file_header.e_shnum)
18723 {
18724 Elf_Internal_Shdr * strtab_sec = filedata->section_headers + symsec->sh_link;
18725
18726 strtab = (char *) get_data (NULL, filedata, strtab_sec->sh_offset,
18727 1, strtab_sec->sh_size,
18728 _("string table"));
18729 strtablen = strtab != NULL ? strtab_sec->sh_size : 0;
18730 }
18731 }
18732 }
18733 saved_filedata = filedata;
18734 }
18735
18736 if (symtab == NULL || strtab == NULL)
18737 return NULL;
18738
18739 /* Find a symbol whose value matches offset. */
18740 for (sym = symtab; sym < symtab + nsyms; sym ++)
18741 if (sym->st_value == offset)
18742 {
18743 if (sym->st_name >= strtablen)
18744 /* Huh ? This should not happen. */
18745 continue;
18746
18747 if (strtab[sym->st_name] == 0)
18748 continue;
18749
18750 /* The AArch64 and ARM architectures define mapping symbols
18751 (eg $d, $x, $t) which we want to ignore. */
18752 if (strtab[sym->st_name] == '$'
18753 && strtab[sym->st_name + 1] != 0
18754 && strtab[sym->st_name + 2] == 0)
18755 continue;
18756
18757 if (is_open_attr)
18758 {
18759 /* For OPEN attributes we prefer GLOBAL over LOCAL symbols
18760 and FILE or OBJECT symbols over NOTYPE symbols. We skip
18761 FUNC symbols entirely. */
18762 switch (ELF_ST_TYPE (sym->st_info))
18763 {
18764 case STT_OBJECT:
18765 case STT_FILE:
18766 saved_sym = sym;
18767 if (sym->st_size)
18768 {
18769 /* If the symbol has a size associated
18770 with it then we can stop searching. */
18771 sym = symtab + nsyms;
18772 }
18773 continue;
18774
18775 case STT_FUNC:
18776 /* Ignore function symbols. */
18777 continue;
18778
18779 default:
18780 break;
18781 }
18782
18783 switch (ELF_ST_BIND (sym->st_info))
18784 {
18785 case STB_GLOBAL:
18786 if (saved_sym == NULL
18787 || ELF_ST_TYPE (saved_sym->st_info) != STT_OBJECT)
18788 saved_sym = sym;
18789 break;
18790
18791 case STB_LOCAL:
18792 if (saved_sym == NULL)
18793 saved_sym = sym;
18794 break;
18795
18796 default:
18797 break;
18798 }
18799 }
18800 else
18801 {
18802 if (ELF_ST_TYPE (sym->st_info) != STT_FUNC)
18803 continue;
18804
18805 saved_sym = sym;
18806 break;
18807 }
18808 }
18809
18810 if (saved_sym && pname)
18811 * pname = strtab + saved_sym->st_name;
18812
18813 return saved_sym;
18814 }
18815
18816 /* Returns true iff addr1 and addr2 are in the same section. */
18817
18818 static bfd_boolean
18819 same_section (Filedata * filedata, unsigned long addr1, unsigned long addr2)
18820 {
18821 Elf_Internal_Shdr * a1;
18822 Elf_Internal_Shdr * a2;
18823
18824 a1 = find_section_by_address (filedata, addr1);
18825 a2 = find_section_by_address (filedata, addr2);
18826
18827 return a1 == a2 && a1 != NULL;
18828 }
18829
18830 static bfd_boolean
18831 print_gnu_build_attribute_description (Elf_Internal_Note * pnote,
18832 Filedata * filedata)
18833 {
18834 static unsigned long global_offset = 0;
18835 static unsigned long global_end = 0;
18836 static unsigned long func_offset = 0;
18837 static unsigned long func_end = 0;
18838
18839 Elf_Internal_Sym * sym;
18840 const char * name;
18841 unsigned long start;
18842 unsigned long end;
18843 bfd_boolean is_open_attr = pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN;
18844
18845 switch (pnote->descsz)
18846 {
18847 case 0:
18848 /* A zero-length description means that the range of
18849 the previous note of the same type should be used. */
18850 if (is_open_attr)
18851 {
18852 if (global_end > global_offset)
18853 printf (_(" Applies to region from %#lx to %#lx\n"),
18854 global_offset, global_end);
18855 else
18856 printf (_(" Applies to region from %#lx\n"), global_offset);
18857 }
18858 else
18859 {
18860 if (func_end > func_offset)
18861 printf (_(" Applies to region from %#lx to %#lx\n"), func_offset, func_end);
18862 else
18863 printf (_(" Applies to region from %#lx\n"), func_offset);
18864 }
18865 return TRUE;
18866
18867 case 4:
18868 start = byte_get ((unsigned char *) pnote->descdata, 4);
18869 end = 0;
18870 break;
18871
18872 case 8:
18873 if (is_32bit_elf)
18874 {
18875 /* FIXME: We should check that version 3+ notes are being used here... */
18876 start = byte_get ((unsigned char *) pnote->descdata, 4);
18877 end = byte_get ((unsigned char *) pnote->descdata + 4, 4);
18878 }
18879 else
18880 {
18881 start = byte_get ((unsigned char *) pnote->descdata, 8);
18882 end = 0;
18883 }
18884 break;
18885
18886 case 16:
18887 start = byte_get ((unsigned char *) pnote->descdata, 8);
18888 end = byte_get ((unsigned char *) pnote->descdata + 8, 8);
18889 break;
18890
18891 default:
18892 error (_(" <invalid description size: %lx>\n"), pnote->descsz);
18893 printf (_(" <invalid descsz>"));
18894 return FALSE;
18895 }
18896
18897 name = NULL;
18898 sym = get_symbol_for_build_attribute (filedata, start, is_open_attr, & name);
18899 /* As of version 5 of the annobin plugin, filename symbols are biased by 2
18900 in order to avoid them being confused with the start address of the
18901 first function in the file... */
18902 if (sym == NULL && is_open_attr)
18903 sym = get_symbol_for_build_attribute (filedata, start + 2, is_open_attr,
18904 & name);
18905
18906 if (end == 0 && sym != NULL && sym->st_size > 0)
18907 end = start + sym->st_size;
18908
18909 if (is_open_attr)
18910 {
18911 /* FIXME: Need to properly allow for section alignment.
18912 16 is just the alignment used on x86_64. */
18913 if (global_end > 0
18914 && start > BFD_ALIGN (global_end, 16)
18915 /* Build notes are not guaranteed to be organised in order of
18916 increasing address, but we should find the all of the notes
18917 for one section in the same place. */
18918 && same_section (filedata, start, global_end))
18919 warn (_("Gap in build notes detected from %#lx to %#lx\n"),
18920 global_end + 1, start - 1);
18921
18922 printf (_(" Applies to region from %#lx"), start);
18923 global_offset = start;
18924
18925 if (end)
18926 {
18927 printf (_(" to %#lx"), end);
18928 global_end = end;
18929 }
18930 }
18931 else
18932 {
18933 printf (_(" Applies to region from %#lx"), start);
18934 func_offset = start;
18935
18936 if (end)
18937 {
18938 printf (_(" to %#lx"), end);
18939 func_end = end;
18940 }
18941 }
18942
18943 if (sym && name)
18944 printf (_(" (%s)"), name);
18945
18946 printf ("\n");
18947 return TRUE;
18948 }
18949
18950 static bfd_boolean
18951 print_gnu_build_attribute_name (Elf_Internal_Note * pnote)
18952 {
18953 static const char string_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_STRING, 0 };
18954 static const char number_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC, 0 };
18955 static const char bool_expected [3] = { GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE, GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE, 0 };
18956 char name_type;
18957 char name_attribute;
18958 const char * expected_types;
18959 const char * name = pnote->namedata;
18960 const char * text;
18961 signed int left;
18962
18963 if (name == NULL || pnote->namesz < 2)
18964 {
18965 error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz);
18966 print_symbol (-20, _(" <corrupt name>"));
18967 return FALSE;
18968 }
18969
18970 if (do_wide)
18971 left = 28;
18972 else
18973 left = 20;
18974
18975 /* Version 2 of the spec adds a "GA" prefix to the name field. */
18976 if (name[0] == 'G' && name[1] == 'A')
18977 {
18978 if (pnote->namesz < 4)
18979 {
18980 error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz);
18981 print_symbol (-20, _(" <corrupt name>"));
18982 return FALSE;
18983 }
18984
18985 printf ("GA");
18986 name += 2;
18987 left -= 2;
18988 }
18989
18990 switch ((name_type = * name))
18991 {
18992 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
18993 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
18994 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
18995 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
18996 printf ("%c", * name);
18997 left --;
18998 break;
18999 default:
19000 error (_("unrecognised attribute type in name field: %d\n"), name_type);
19001 print_symbol (-20, _("<unknown name type>"));
19002 return FALSE;
19003 }
19004
19005 ++ name;
19006 text = NULL;
19007
19008 switch ((name_attribute = * name))
19009 {
19010 case GNU_BUILD_ATTRIBUTE_VERSION:
19011 text = _("<version>");
19012 expected_types = string_expected;
19013 ++ name;
19014 break;
19015 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
19016 text = _("<stack prot>");
19017 expected_types = "!+*";
19018 ++ name;
19019 break;
19020 case GNU_BUILD_ATTRIBUTE_RELRO:
19021 text = _("<relro>");
19022 expected_types = bool_expected;
19023 ++ name;
19024 break;
19025 case GNU_BUILD_ATTRIBUTE_STACK_SIZE:
19026 text = _("<stack size>");
19027 expected_types = number_expected;
19028 ++ name;
19029 break;
19030 case GNU_BUILD_ATTRIBUTE_TOOL:
19031 text = _("<tool>");
19032 expected_types = string_expected;
19033 ++ name;
19034 break;
19035 case GNU_BUILD_ATTRIBUTE_ABI:
19036 text = _("<ABI>");
19037 expected_types = "$*";
19038 ++ name;
19039 break;
19040 case GNU_BUILD_ATTRIBUTE_PIC:
19041 text = _("<PIC>");
19042 expected_types = number_expected;
19043 ++ name;
19044 break;
19045 case GNU_BUILD_ATTRIBUTE_SHORT_ENUM:
19046 text = _("<short enum>");
19047 expected_types = bool_expected;
19048 ++ name;
19049 break;
19050 default:
19051 if (ISPRINT (* name))
19052 {
19053 int len = strnlen (name, pnote->namesz - (name - pnote->namedata)) + 1;
19054
19055 if (len > left && ! do_wide)
19056 len = left;
19057 printf ("%.*s:", len, name);
19058 left -= len;
19059 name += len;
19060 }
19061 else
19062 {
19063 static char tmpbuf [128];
19064
19065 error (_("unrecognised byte in name field: %d\n"), * name);
19066 sprintf (tmpbuf, _("<unknown:_%d>"), * name);
19067 text = tmpbuf;
19068 name ++;
19069 }
19070 expected_types = "*$!+";
19071 break;
19072 }
19073
19074 if (text)
19075 left -= printf ("%s", text);
19076
19077 if (strchr (expected_types, name_type) == NULL)
19078 warn (_("attribute does not have an expected type (%c)\n"), name_type);
19079
19080 if ((unsigned long)(name - pnote->namedata) > pnote->namesz)
19081 {
19082 error (_("corrupt name field: namesz: %lu but parsing gets to %ld\n"),
19083 (unsigned long) pnote->namesz,
19084 (long) (name - pnote->namedata));
19085 return FALSE;
19086 }
19087
19088 if (left < 1 && ! do_wide)
19089 return TRUE;
19090
19091 switch (name_type)
19092 {
19093 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
19094 {
19095 unsigned int bytes;
19096 unsigned long long val = 0;
19097 unsigned int shift = 0;
19098 char * decoded = NULL;
19099
19100 bytes = pnote->namesz - (name - pnote->namedata);
19101 if (bytes > 0)
19102 /* The -1 is because the name field is always 0 terminated, and we
19103 want to be able to ensure that the shift in the while loop below
19104 will not overflow. */
19105 -- bytes;
19106
19107 if (bytes > sizeof (val))
19108 {
19109 error (_("corrupt numeric name field: too many bytes in the value: %x\n"),
19110 bytes);
19111 bytes = sizeof (val);
19112 }
19113 /* We do not bother to warn if bytes == 0 as this can
19114 happen with some early versions of the gcc plugin. */
19115
19116 while (bytes --)
19117 {
19118 unsigned long byte = (* name ++) & 0xff;
19119
19120 val |= byte << shift;
19121 shift += 8;
19122 }
19123
19124 switch (name_attribute)
19125 {
19126 case GNU_BUILD_ATTRIBUTE_PIC:
19127 switch (val)
19128 {
19129 case 0: decoded = "static"; break;
19130 case 1: decoded = "pic"; break;
19131 case 2: decoded = "PIC"; break;
19132 case 3: decoded = "pie"; break;
19133 case 4: decoded = "PIE"; break;
19134 default: break;
19135 }
19136 break;
19137 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
19138 switch (val)
19139 {
19140 /* Based upon the SPCT_FLAG_xxx enum values in gcc/cfgexpand.c. */
19141 case 0: decoded = "off"; break;
19142 case 1: decoded = "on"; break;
19143 case 2: decoded = "all"; break;
19144 case 3: decoded = "strong"; break;
19145 case 4: decoded = "explicit"; break;
19146 default: break;
19147 }
19148 break;
19149 default:
19150 break;
19151 }
19152
19153 if (decoded != NULL)
19154 {
19155 print_symbol (-left, decoded);
19156 left = 0;
19157 }
19158 else if (val == 0)
19159 {
19160 printf ("0x0");
19161 left -= 3;
19162 }
19163 else
19164 {
19165 if (do_wide)
19166 left -= printf ("0x%llx", val);
19167 else
19168 left -= printf ("0x%-.*llx", left, val);
19169 }
19170 }
19171 break;
19172 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
19173 left -= print_symbol (- left, name);
19174 break;
19175 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
19176 left -= print_symbol (- left, "true");
19177 break;
19178 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
19179 left -= print_symbol (- left, "false");
19180 break;
19181 }
19182
19183 if (do_wide && left > 0)
19184 printf ("%-*s", left, " ");
19185
19186 return TRUE;
19187 }
19188
19189 /* Note that by the ELF standard, the name field is already null byte
19190 terminated, and namesz includes the terminating null byte.
19191 I.E. the value of namesz for the name "FSF" is 4.
19192
19193 If the value of namesz is zero, there is no name present. */
19194
19195 static bfd_boolean
19196 process_note (Elf_Internal_Note * pnote,
19197 Filedata * filedata)
19198 {
19199 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
19200 const char * nt;
19201
19202 if (pnote->namesz == 0)
19203 /* If there is no note name, then use the default set of
19204 note type strings. */
19205 nt = get_note_type (filedata, pnote->type);
19206
19207 else if (const_strneq (pnote->namedata, "GNU"))
19208 /* GNU-specific object file notes. */
19209 nt = get_gnu_elf_note_type (pnote->type);
19210
19211 else if (const_strneq (pnote->namedata, "FreeBSD"))
19212 /* FreeBSD-specific core file notes. */
19213 nt = get_freebsd_elfcore_note_type (filedata, pnote->type);
19214
19215 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
19216 /* NetBSD-specific core file notes. */
19217 nt = get_netbsd_elfcore_note_type (filedata, pnote->type);
19218
19219 else if (const_strneq (pnote->namedata, "NetBSD"))
19220 /* NetBSD-specific core file notes. */
19221 return process_netbsd_elf_note (pnote);
19222
19223 else if (const_strneq (pnote->namedata, "PaX"))
19224 /* NetBSD-specific core file notes. */
19225 return process_netbsd_elf_note (pnote);
19226
19227 else if (strneq (pnote->namedata, "SPU/", 4))
19228 {
19229 /* SPU-specific core file notes. */
19230 nt = pnote->namedata + 4;
19231 name = "SPU";
19232 }
19233
19234 else if (const_strneq (pnote->namedata, "IPF/VMS"))
19235 /* VMS/ia64-specific file notes. */
19236 nt = get_ia64_vms_note_type (pnote->type);
19237
19238 else if (const_strneq (pnote->namedata, "stapsdt"))
19239 nt = get_stapsdt_note_type (pnote->type);
19240
19241 else
19242 /* Don't recognize this note name; just use the default set of
19243 note type strings. */
19244 nt = get_note_type (filedata, pnote->type);
19245
19246 printf (" ");
19247
19248 if (((const_strneq (pnote->namedata, "GA")
19249 && strchr ("*$!+", pnote->namedata[2]) != NULL)
19250 || strchr ("*$!+", pnote->namedata[0]) != NULL)
19251 && (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
19252 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC))
19253 print_gnu_build_attribute_name (pnote);
19254 else
19255 print_symbol (-20, name);
19256
19257 if (do_wide)
19258 printf (" 0x%08lx\t%s\t", pnote->descsz, nt);
19259 else
19260 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
19261
19262 if (const_strneq (pnote->namedata, "IPF/VMS"))
19263 return print_ia64_vms_note (pnote);
19264 else if (const_strneq (pnote->namedata, "GNU"))
19265 return print_gnu_note (filedata, pnote);
19266 else if (const_strneq (pnote->namedata, "stapsdt"))
19267 return print_stapsdt_note (pnote);
19268 else if (const_strneq (pnote->namedata, "CORE"))
19269 return print_core_note (pnote);
19270 else if (((const_strneq (pnote->namedata, "GA")
19271 && strchr ("*$!+", pnote->namedata[2]) != NULL)
19272 || strchr ("*$!+", pnote->namedata[0]) != NULL)
19273 && (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
19274 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC))
19275 return print_gnu_build_attribute_description (pnote, filedata);
19276
19277 if (pnote->descsz)
19278 {
19279 unsigned long i;
19280
19281 printf (_(" description data: "));
19282 for (i = 0; i < pnote->descsz; i++)
19283 printf ("%02x ", pnote->descdata[i] & 0xff);
19284 if (!do_wide)
19285 printf ("\n");
19286 }
19287
19288 if (do_wide)
19289 printf ("\n");
19290
19291 return TRUE;
19292 }
19293
19294 static bfd_boolean
19295 process_notes_at (Filedata * filedata,
19296 Elf_Internal_Shdr * section,
19297 bfd_vma offset,
19298 bfd_vma length,
19299 bfd_vma align)
19300 {
19301 Elf_External_Note * pnotes;
19302 Elf_External_Note * external;
19303 char * end;
19304 bfd_boolean res = TRUE;
19305
19306 if (length <= 0)
19307 return FALSE;
19308
19309 if (section)
19310 {
19311 pnotes = (Elf_External_Note *) get_section_contents (section, filedata);
19312 if (pnotes)
19313 {
19314 if (! apply_relocations (filedata, section, (unsigned char *) pnotes, length, NULL, NULL))
19315 return FALSE;
19316 }
19317 }
19318 else
19319 pnotes = (Elf_External_Note *) get_data (NULL, filedata, offset, 1, length,
19320 _("notes"));
19321
19322 if (pnotes == NULL)
19323 return FALSE;
19324
19325 external = pnotes;
19326
19327 if (section)
19328 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (filedata, section));
19329 else
19330 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
19331 (unsigned long) offset, (unsigned long) length);
19332
19333 /* NB: Some note sections may have alignment value of 0 or 1. gABI
19334 specifies that notes should be aligned to 4 bytes in 32-bit
19335 objects and to 8 bytes in 64-bit objects. As a Linux extension,
19336 we also support 4 byte alignment in 64-bit objects. If section
19337 alignment is less than 4, we treate alignment as 4 bytes. */
19338 if (align < 4)
19339 align = 4;
19340 else if (align != 4 && align != 8)
19341 {
19342 warn (_("Corrupt note: alignment %ld, expecting 4 or 8\n"),
19343 (long) align);
19344 return FALSE;
19345 }
19346
19347 printf (_(" %-20s %-10s\tDescription\n"), _("Owner"), _("Data size"));
19348
19349 end = (char *) pnotes + length;
19350 while ((char *) external < end)
19351 {
19352 Elf_Internal_Note inote;
19353 size_t min_notesz;
19354 char * next;
19355 char * temp = NULL;
19356 size_t data_remaining = end - (char *) external;
19357
19358 if (!is_ia64_vms (filedata))
19359 {
19360 /* PR binutils/15191
19361 Make sure that there is enough data to read. */
19362 min_notesz = offsetof (Elf_External_Note, name);
19363 if (data_remaining < min_notesz)
19364 {
19365 warn (ngettext ("Corrupt note: only %ld byte remains, "
19366 "not enough for a full note\n",
19367 "Corrupt note: only %ld bytes remain, "
19368 "not enough for a full note\n",
19369 data_remaining),
19370 (long) data_remaining);
19371 break;
19372 }
19373 data_remaining -= min_notesz;
19374
19375 inote.type = BYTE_GET (external->type);
19376 inote.namesz = BYTE_GET (external->namesz);
19377 inote.namedata = external->name;
19378 inote.descsz = BYTE_GET (external->descsz);
19379 inote.descdata = ((char *) external
19380 + ELF_NOTE_DESC_OFFSET (inote.namesz, align));
19381 inote.descpos = offset + (inote.descdata - (char *) pnotes);
19382 next = ((char *) external
19383 + ELF_NOTE_NEXT_OFFSET (inote.namesz, inote.descsz, align));
19384 }
19385 else
19386 {
19387 Elf64_External_VMS_Note *vms_external;
19388
19389 /* PR binutils/15191
19390 Make sure that there is enough data to read. */
19391 min_notesz = offsetof (Elf64_External_VMS_Note, name);
19392 if (data_remaining < min_notesz)
19393 {
19394 warn (ngettext ("Corrupt note: only %ld byte remains, "
19395 "not enough for a full note\n",
19396 "Corrupt note: only %ld bytes remain, "
19397 "not enough for a full note\n",
19398 data_remaining),
19399 (long) data_remaining);
19400 break;
19401 }
19402 data_remaining -= min_notesz;
19403
19404 vms_external = (Elf64_External_VMS_Note *) external;
19405 inote.type = BYTE_GET (vms_external->type);
19406 inote.namesz = BYTE_GET (vms_external->namesz);
19407 inote.namedata = vms_external->name;
19408 inote.descsz = BYTE_GET (vms_external->descsz);
19409 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
19410 inote.descpos = offset + (inote.descdata - (char *) pnotes);
19411 next = inote.descdata + align_power (inote.descsz, 3);
19412 }
19413
19414 /* PR 17531: file: 3443835e. */
19415 /* PR 17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
19416 if ((size_t) (inote.descdata - inote.namedata) < inote.namesz
19417 || (size_t) (inote.descdata - inote.namedata) > data_remaining
19418 || (size_t) (next - inote.descdata) < inote.descsz
19419 || ((size_t) (next - inote.descdata)
19420 > data_remaining - (size_t) (inote.descdata - inote.namedata)))
19421 {
19422 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
19423 (unsigned long) ((char *) external - (char *) pnotes));
19424 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx, alignment: %u\n"),
19425 inote.type, inote.namesz, inote.descsz, (int) align);
19426 break;
19427 }
19428
19429 external = (Elf_External_Note *) next;
19430
19431 /* Verify that name is null terminated. It appears that at least
19432 one version of Linux (RedHat 6.0) generates corefiles that don't
19433 comply with the ELF spec by failing to include the null byte in
19434 namesz. */
19435 if (inote.namesz > 0 && inote.namedata[inote.namesz - 1] != '\0')
19436 {
19437 if ((size_t) (inote.descdata - inote.namedata) == inote.namesz)
19438 {
19439 temp = (char *) malloc (inote.namesz + 1);
19440 if (temp == NULL)
19441 {
19442 error (_("Out of memory allocating space for inote name\n"));
19443 res = FALSE;
19444 break;
19445 }
19446
19447 memcpy (temp, inote.namedata, inote.namesz);
19448 inote.namedata = temp;
19449 }
19450 inote.namedata[inote.namesz] = 0;
19451 }
19452
19453 if (! process_note (& inote, filedata))
19454 res = FALSE;
19455
19456 if (temp != NULL)
19457 {
19458 free (temp);
19459 temp = NULL;
19460 }
19461 }
19462
19463 free (pnotes);
19464
19465 return res;
19466 }
19467
19468 static bfd_boolean
19469 process_corefile_note_segments (Filedata * filedata)
19470 {
19471 Elf_Internal_Phdr * segment;
19472 unsigned int i;
19473 bfd_boolean res = TRUE;
19474
19475 if (! get_program_headers (filedata))
19476 return TRUE;
19477
19478 for (i = 0, segment = filedata->program_headers;
19479 i < filedata->file_header.e_phnum;
19480 i++, segment++)
19481 {
19482 if (segment->p_type == PT_NOTE)
19483 if (! process_notes_at (filedata, NULL,
19484 (bfd_vma) segment->p_offset,
19485 (bfd_vma) segment->p_filesz,
19486 (bfd_vma) segment->p_align))
19487 res = FALSE;
19488 }
19489
19490 return res;
19491 }
19492
19493 static bfd_boolean
19494 process_v850_notes (Filedata * filedata, bfd_vma offset, bfd_vma length)
19495 {
19496 Elf_External_Note * pnotes;
19497 Elf_External_Note * external;
19498 char * end;
19499 bfd_boolean res = TRUE;
19500
19501 if (length <= 0)
19502 return FALSE;
19503
19504 pnotes = (Elf_External_Note *) get_data (NULL, filedata, offset, 1, length,
19505 _("v850 notes"));
19506 if (pnotes == NULL)
19507 return FALSE;
19508
19509 external = pnotes;
19510 end = (char*) pnotes + length;
19511
19512 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
19513 (unsigned long) offset, (unsigned long) length);
19514
19515 while ((char *) external + sizeof (Elf_External_Note) < end)
19516 {
19517 Elf_External_Note * next;
19518 Elf_Internal_Note inote;
19519
19520 inote.type = BYTE_GET (external->type);
19521 inote.namesz = BYTE_GET (external->namesz);
19522 inote.namedata = external->name;
19523 inote.descsz = BYTE_GET (external->descsz);
19524 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
19525 inote.descpos = offset + (inote.descdata - (char *) pnotes);
19526
19527 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
19528 {
19529 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
19530 inote.descdata = inote.namedata;
19531 inote.namesz = 0;
19532 }
19533
19534 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
19535
19536 if ( ((char *) next > end)
19537 || ((char *) next < (char *) pnotes))
19538 {
19539 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
19540 (unsigned long) ((char *) external - (char *) pnotes));
19541 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
19542 inote.type, inote.namesz, inote.descsz);
19543 break;
19544 }
19545
19546 external = next;
19547
19548 /* Prevent out-of-bounds indexing. */
19549 if ( inote.namedata + inote.namesz > end
19550 || inote.namedata + inote.namesz < inote.namedata)
19551 {
19552 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
19553 (unsigned long) ((char *) external - (char *) pnotes));
19554 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
19555 inote.type, inote.namesz, inote.descsz);
19556 break;
19557 }
19558
19559 printf (" %s: ", get_v850_elf_note_type (inote.type));
19560
19561 if (! print_v850_note (& inote))
19562 {
19563 res = FALSE;
19564 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
19565 inote.namesz, inote.descsz);
19566 }
19567 }
19568
19569 free (pnotes);
19570
19571 return res;
19572 }
19573
19574 static bfd_boolean
19575 process_note_sections (Filedata * filedata)
19576 {
19577 Elf_Internal_Shdr * section;
19578 unsigned long i;
19579 unsigned int n = 0;
19580 bfd_boolean res = TRUE;
19581
19582 for (i = 0, section = filedata->section_headers;
19583 i < filedata->file_header.e_shnum && section != NULL;
19584 i++, section++)
19585 {
19586 if (section->sh_type == SHT_NOTE)
19587 {
19588 if (! process_notes_at (filedata, section,
19589 (bfd_vma) section->sh_offset,
19590 (bfd_vma) section->sh_size,
19591 (bfd_vma) section->sh_addralign))
19592 res = FALSE;
19593 n++;
19594 }
19595
19596 if (( filedata->file_header.e_machine == EM_V800
19597 || filedata->file_header.e_machine == EM_V850
19598 || filedata->file_header.e_machine == EM_CYGNUS_V850)
19599 && section->sh_type == SHT_RENESAS_INFO)
19600 {
19601 if (! process_v850_notes (filedata,
19602 (bfd_vma) section->sh_offset,
19603 (bfd_vma) section->sh_size))
19604 res = FALSE;
19605 n++;
19606 }
19607 }
19608
19609 if (n == 0)
19610 /* Try processing NOTE segments instead. */
19611 return process_corefile_note_segments (filedata);
19612
19613 return res;
19614 }
19615
19616 static bfd_boolean
19617 process_notes (Filedata * filedata)
19618 {
19619 /* If we have not been asked to display the notes then do nothing. */
19620 if (! do_notes)
19621 return TRUE;
19622
19623 if (filedata->file_header.e_type != ET_CORE)
19624 return process_note_sections (filedata);
19625
19626 /* No program headers means no NOTE segment. */
19627 if (filedata->file_header.e_phnum > 0)
19628 return process_corefile_note_segments (filedata);
19629
19630 printf (_("No note segments present in the core file.\n"));
19631 return TRUE;
19632 }
19633
19634 static unsigned char *
19635 display_public_gnu_attributes (unsigned char * start,
19636 const unsigned char * const end)
19637 {
19638 printf (_(" Unknown GNU attribute: %s\n"), start);
19639
19640 start += strnlen ((char *) start, end - start);
19641 display_raw_attribute (start, end);
19642
19643 return (unsigned char *) end;
19644 }
19645
19646 static unsigned char *
19647 display_generic_attribute (unsigned char * start,
19648 unsigned int tag,
19649 const unsigned char * const end)
19650 {
19651 if (tag == 0)
19652 return (unsigned char *) end;
19653
19654 return display_tag_value (tag, start, end);
19655 }
19656
19657 static bfd_boolean
19658 process_arch_specific (Filedata * filedata)
19659 {
19660 if (! do_arch)
19661 return TRUE;
19662
19663 switch (filedata->file_header.e_machine)
19664 {
19665 case EM_ARC:
19666 case EM_ARC_COMPACT:
19667 case EM_ARC_COMPACT2:
19668 return process_attributes (filedata, "ARC", SHT_ARC_ATTRIBUTES,
19669 display_arc_attribute,
19670 display_generic_attribute);
19671 case EM_ARM:
19672 return process_attributes (filedata, "aeabi", SHT_ARM_ATTRIBUTES,
19673 display_arm_attribute,
19674 display_generic_attribute);
19675
19676 case EM_MIPS:
19677 case EM_MIPS_RS3_LE:
19678 return process_mips_specific (filedata);
19679
19680 case EM_MSP430:
19681 return process_attributes (filedata, "mspabi", SHT_MSP430_ATTRIBUTES,
19682 display_msp430x_attribute,
19683 display_msp430_gnu_attribute);
19684
19685 case EM_RISCV:
19686 return process_attributes (filedata, "riscv", SHT_RISCV_ATTRIBUTES,
19687 display_riscv_attribute,
19688 display_generic_attribute);
19689
19690 case EM_NDS32:
19691 return process_nds32_specific (filedata);
19692
19693 case EM_PPC:
19694 case EM_PPC64:
19695 return process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL,
19696 display_power_gnu_attribute);
19697
19698 case EM_S390:
19699 case EM_S390_OLD:
19700 return process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL,
19701 display_s390_gnu_attribute);
19702
19703 case EM_SPARC:
19704 case EM_SPARC32PLUS:
19705 case EM_SPARCV9:
19706 return process_attributes (filedata, NULL, SHT_GNU_ATTRIBUTES, NULL,
19707 display_sparc_gnu_attribute);
19708
19709 case EM_TI_C6000:
19710 return process_attributes (filedata, "c6xabi", SHT_C6000_ATTRIBUTES,
19711 display_tic6x_attribute,
19712 display_generic_attribute);
19713
19714 default:
19715 return process_attributes (filedata, "gnu", SHT_GNU_ATTRIBUTES,
19716 display_public_gnu_attributes,
19717 display_generic_attribute);
19718 }
19719 }
19720
19721 static bfd_boolean
19722 get_file_header (Filedata * filedata)
19723 {
19724 /* Read in the identity array. */
19725 if (fread (filedata->file_header.e_ident, EI_NIDENT, 1, filedata->handle) != 1)
19726 return FALSE;
19727
19728 /* Determine how to read the rest of the header. */
19729 switch (filedata->file_header.e_ident[EI_DATA])
19730 {
19731 default:
19732 case ELFDATANONE:
19733 case ELFDATA2LSB:
19734 byte_get = byte_get_little_endian;
19735 byte_put = byte_put_little_endian;
19736 break;
19737 case ELFDATA2MSB:
19738 byte_get = byte_get_big_endian;
19739 byte_put = byte_put_big_endian;
19740 break;
19741 }
19742
19743 /* For now we only support 32 bit and 64 bit ELF files. */
19744 is_32bit_elf = (filedata->file_header.e_ident[EI_CLASS] != ELFCLASS64);
19745
19746 /* Read in the rest of the header. */
19747 if (is_32bit_elf)
19748 {
19749 Elf32_External_Ehdr ehdr32;
19750
19751 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, filedata->handle) != 1)
19752 return FALSE;
19753
19754 filedata->file_header.e_type = BYTE_GET (ehdr32.e_type);
19755 filedata->file_header.e_machine = BYTE_GET (ehdr32.e_machine);
19756 filedata->file_header.e_version = BYTE_GET (ehdr32.e_version);
19757 filedata->file_header.e_entry = BYTE_GET (ehdr32.e_entry);
19758 filedata->file_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
19759 filedata->file_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
19760 filedata->file_header.e_flags = BYTE_GET (ehdr32.e_flags);
19761 filedata->file_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
19762 filedata->file_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
19763 filedata->file_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
19764 filedata->file_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
19765 filedata->file_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
19766 filedata->file_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
19767 }
19768 else
19769 {
19770 Elf64_External_Ehdr ehdr64;
19771
19772 /* If we have been compiled with sizeof (bfd_vma) == 4, then
19773 we will not be able to cope with the 64bit data found in
19774 64 ELF files. Detect this now and abort before we start
19775 overwriting things. */
19776 if (sizeof (bfd_vma) < 8)
19777 {
19778 error (_("This instance of readelf has been built without support for a\n\
19779 64 bit data type and so it cannot read 64 bit ELF files.\n"));
19780 return FALSE;
19781 }
19782
19783 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, filedata->handle) != 1)
19784 return FALSE;
19785
19786 filedata->file_header.e_type = BYTE_GET (ehdr64.e_type);
19787 filedata->file_header.e_machine = BYTE_GET (ehdr64.e_machine);
19788 filedata->file_header.e_version = BYTE_GET (ehdr64.e_version);
19789 filedata->file_header.e_entry = BYTE_GET (ehdr64.e_entry);
19790 filedata->file_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
19791 filedata->file_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
19792 filedata->file_header.e_flags = BYTE_GET (ehdr64.e_flags);
19793 filedata->file_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
19794 filedata->file_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
19795 filedata->file_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
19796 filedata->file_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
19797 filedata->file_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
19798 filedata->file_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
19799 }
19800
19801 if (filedata->file_header.e_shoff)
19802 {
19803 /* There may be some extensions in the first section header. Don't
19804 bomb if we can't read it. */
19805 if (is_32bit_elf)
19806 get_32bit_section_headers (filedata, TRUE);
19807 else
19808 get_64bit_section_headers (filedata, TRUE);
19809 }
19810
19811 return TRUE;
19812 }
19813
19814 static void
19815 close_file (Filedata * filedata)
19816 {
19817 if (filedata)
19818 {
19819 if (filedata->handle)
19820 fclose (filedata->handle);
19821 free (filedata);
19822 }
19823 }
19824
19825 void
19826 close_debug_file (void * data)
19827 {
19828 close_file ((Filedata *) data);
19829 }
19830
19831 static Filedata *
19832 open_file (const char * pathname)
19833 {
19834 struct stat statbuf;
19835 Filedata * filedata = NULL;
19836
19837 if (stat (pathname, & statbuf) < 0
19838 || ! S_ISREG (statbuf.st_mode))
19839 goto fail;
19840
19841 filedata = calloc (1, sizeof * filedata);
19842 if (filedata == NULL)
19843 goto fail;
19844
19845 filedata->handle = fopen (pathname, "rb");
19846 if (filedata->handle == NULL)
19847 goto fail;
19848
19849 filedata->file_size = (bfd_size_type) statbuf.st_size;
19850 filedata->file_name = pathname;
19851
19852 if (! get_file_header (filedata))
19853 goto fail;
19854
19855 if (filedata->file_header.e_shoff)
19856 {
19857 bfd_boolean res;
19858
19859 /* Read the section headers again, this time for real. */
19860 if (is_32bit_elf)
19861 res = get_32bit_section_headers (filedata, FALSE);
19862 else
19863 res = get_64bit_section_headers (filedata, FALSE);
19864
19865 if (!res)
19866 goto fail;
19867 }
19868
19869 return filedata;
19870
19871 fail:
19872 if (filedata)
19873 {
19874 if (filedata->handle)
19875 fclose (filedata->handle);
19876 free (filedata);
19877 }
19878 return NULL;
19879 }
19880
19881 void *
19882 open_debug_file (const char * pathname)
19883 {
19884 return open_file (pathname);
19885 }
19886
19887 /* Process one ELF object file according to the command line options.
19888 This file may actually be stored in an archive. The file is
19889 positioned at the start of the ELF object. Returns TRUE if no
19890 problems were encountered, FALSE otherwise. */
19891
19892 static bfd_boolean
19893 process_object (Filedata * filedata)
19894 {
19895 bfd_boolean have_separate_files;
19896 unsigned int i;
19897 bfd_boolean res = TRUE;
19898
19899 if (! get_file_header (filedata))
19900 {
19901 error (_("%s: Failed to read file header\n"), filedata->file_name);
19902 return FALSE;
19903 }
19904
19905 /* Initialise per file variables. */
19906 for (i = ARRAY_SIZE (version_info); i--;)
19907 version_info[i] = 0;
19908
19909 for (i = ARRAY_SIZE (dynamic_info); i--;)
19910 dynamic_info[i] = 0;
19911 dynamic_info_DT_GNU_HASH = 0;
19912 dynamic_info_DT_MIPS_XHASH = 0;
19913
19914 /* Process the file. */
19915 if (show_name)
19916 printf (_("\nFile: %s\n"), filedata->file_name);
19917
19918 /* Initialise the dump_sects array from the cmdline_dump_sects array.
19919 Note we do this even if cmdline_dump_sects is empty because we
19920 must make sure that the dump_sets array is zeroed out before each
19921 object file is processed. */
19922 if (filedata->num_dump_sects > cmdline.num_dump_sects)
19923 memset (filedata->dump_sects, 0, filedata->num_dump_sects * sizeof (* filedata->dump_sects));
19924
19925 if (cmdline.num_dump_sects > 0)
19926 {
19927 if (filedata->num_dump_sects == 0)
19928 /* A sneaky way of allocating the dump_sects array. */
19929 request_dump_bynumber (filedata, cmdline.num_dump_sects, 0);
19930
19931 assert (filedata->num_dump_sects >= cmdline.num_dump_sects);
19932 memcpy (filedata->dump_sects, cmdline.dump_sects,
19933 cmdline.num_dump_sects * sizeof (* filedata->dump_sects));
19934 }
19935
19936 if (! process_file_header (filedata))
19937 return FALSE;
19938
19939 if (! process_section_headers (filedata))
19940 {
19941 /* Without loaded section headers we cannot process lots of things. */
19942 do_unwind = do_version = do_dump = do_arch = FALSE;
19943
19944 if (! do_using_dynamic)
19945 do_syms = do_dyn_syms = do_reloc = FALSE;
19946 }
19947
19948 if (! process_section_groups (filedata))
19949 /* Without loaded section groups we cannot process unwind. */
19950 do_unwind = FALSE;
19951
19952 if (process_program_headers (filedata))
19953 process_dynamic_section (filedata);
19954 else
19955 res = FALSE;
19956
19957 if (! process_relocs (filedata))
19958 res = FALSE;
19959
19960 if (! process_unwind (filedata))
19961 res = FALSE;
19962
19963 if (! process_symbol_table (filedata))
19964 res = FALSE;
19965
19966 if (! process_syminfo (filedata))
19967 res = FALSE;
19968
19969 if (! process_version_sections (filedata))
19970 res = FALSE;
19971
19972 if (filedata->file_header.e_shstrndx != SHN_UNDEF)
19973 have_separate_files = load_separate_debug_files (filedata, filedata->file_name);
19974 else
19975 have_separate_files = FALSE;
19976
19977 if (! process_section_contents (filedata))
19978 res = FALSE;
19979
19980 if (have_separate_files)
19981 {
19982 separate_info * d;
19983
19984 for (d = first_separate_info; d != NULL; d = d->next)
19985 {
19986 if (! process_section_headers (d->handle))
19987 res = FALSE;
19988 else if (! process_section_contents (d->handle))
19989 res = FALSE;
19990 }
19991
19992 /* The file handles are closed by the call to free_debug_memory() below. */
19993 }
19994
19995 if (! process_notes (filedata))
19996 res = FALSE;
19997
19998 if (! process_gnu_liblist (filedata))
19999 res = FALSE;
20000
20001 if (! process_arch_specific (filedata))
20002 res = FALSE;
20003
20004 free (filedata->program_headers);
20005 filedata->program_headers = NULL;
20006
20007 free (filedata->section_headers);
20008 filedata->section_headers = NULL;
20009
20010 free (filedata->string_table);
20011 filedata->string_table = NULL;
20012 filedata->string_table_length = 0;
20013
20014 if (dynamic_strings)
20015 {
20016 free (dynamic_strings);
20017 dynamic_strings = NULL;
20018 dynamic_strings_length = 0;
20019 }
20020
20021 if (dynamic_symbols)
20022 {
20023 free (dynamic_symbols);
20024 dynamic_symbols = NULL;
20025 num_dynamic_syms = 0;
20026 }
20027
20028 if (dynamic_syminfo)
20029 {
20030 free (dynamic_syminfo);
20031 dynamic_syminfo = NULL;
20032 }
20033
20034 if (dynamic_section)
20035 {
20036 free (dynamic_section);
20037 dynamic_section = NULL;
20038 }
20039
20040 if (section_headers_groups)
20041 {
20042 free (section_headers_groups);
20043 section_headers_groups = NULL;
20044 }
20045
20046 if (section_groups)
20047 {
20048 struct group_list * g;
20049 struct group_list * next;
20050
20051 for (i = 0; i < group_count; i++)
20052 {
20053 for (g = section_groups [i].root; g != NULL; g = next)
20054 {
20055 next = g->next;
20056 free (g);
20057 }
20058 }
20059
20060 free (section_groups);
20061 section_groups = NULL;
20062 }
20063
20064 free_debug_memory ();
20065
20066 return res;
20067 }
20068
20069 /* Process an ELF archive.
20070 On entry the file is positioned just after the ARMAG string.
20071 Returns TRUE upon success, FALSE otherwise. */
20072
20073 static bfd_boolean
20074 process_archive (Filedata * filedata, bfd_boolean is_thin_archive)
20075 {
20076 struct archive_info arch;
20077 struct archive_info nested_arch;
20078 size_t got;
20079 bfd_boolean ret = TRUE;
20080
20081 show_name = TRUE;
20082
20083 /* The ARCH structure is used to hold information about this archive. */
20084 arch.file_name = NULL;
20085 arch.file = NULL;
20086 arch.index_array = NULL;
20087 arch.sym_table = NULL;
20088 arch.longnames = NULL;
20089
20090 /* The NESTED_ARCH structure is used as a single-item cache of information
20091 about a nested archive (when members of a thin archive reside within
20092 another regular archive file). */
20093 nested_arch.file_name = NULL;
20094 nested_arch.file = NULL;
20095 nested_arch.index_array = NULL;
20096 nested_arch.sym_table = NULL;
20097 nested_arch.longnames = NULL;
20098
20099 if (setup_archive (&arch, filedata->file_name, filedata->handle,
20100 is_thin_archive, do_archive_index) != 0)
20101 {
20102 ret = FALSE;
20103 goto out;
20104 }
20105
20106 if (do_archive_index)
20107 {
20108 if (arch.sym_table == NULL)
20109 error (_("%s: unable to dump the index as none was found\n"), filedata->file_name);
20110 else
20111 {
20112 unsigned long i, l;
20113 unsigned long current_pos;
20114
20115 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
20116 filedata->file_name, (unsigned long) arch.index_num, arch.sym_size);
20117
20118 current_pos = ftell (filedata->handle);
20119
20120 for (i = l = 0; i < arch.index_num; i++)
20121 {
20122 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
20123 {
20124 char * member_name;
20125
20126 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
20127
20128 if (member_name != NULL)
20129 {
20130 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
20131
20132 if (qualified_name != NULL)
20133 {
20134 printf (_("Contents of binary %s at offset "), qualified_name);
20135 (void) print_vma (arch.index_array[i], PREFIX_HEX);
20136 putchar ('\n');
20137 free (qualified_name);
20138 }
20139 }
20140 }
20141
20142 if (l >= arch.sym_size)
20143 {
20144 error (_("%s: end of the symbol table reached before the end of the index\n"),
20145 filedata->file_name);
20146 ret = FALSE;
20147 break;
20148 }
20149 /* PR 17531: file: 0b6630b2. */
20150 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
20151 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
20152 }
20153
20154 if (arch.uses_64bit_indices)
20155 l = (l + 7) & ~ 7;
20156 else
20157 l += l & 1;
20158
20159 if (l < arch.sym_size)
20160 {
20161 error (ngettext ("%s: %ld byte remains in the symbol table, "
20162 "but without corresponding entries in "
20163 "the index table\n",
20164 "%s: %ld bytes remain in the symbol table, "
20165 "but without corresponding entries in "
20166 "the index table\n",
20167 arch.sym_size - l),
20168 filedata->file_name, arch.sym_size - l);
20169 ret = FALSE;
20170 }
20171
20172 if (fseek (filedata->handle, current_pos, SEEK_SET) != 0)
20173 {
20174 error (_("%s: failed to seek back to start of object files in the archive\n"),
20175 filedata->file_name);
20176 ret = FALSE;
20177 goto out;
20178 }
20179 }
20180
20181 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
20182 && !do_segments && !do_header && !do_dump && !do_version
20183 && !do_histogram && !do_debugging && !do_arch && !do_notes
20184 && !do_section_groups && !do_dyn_syms)
20185 {
20186 ret = TRUE; /* Archive index only. */
20187 goto out;
20188 }
20189 }
20190
20191 while (1)
20192 {
20193 char * name;
20194 size_t namelen;
20195 char * qualified_name;
20196
20197 /* Read the next archive header. */
20198 if (fseek (filedata->handle, arch.next_arhdr_offset, SEEK_SET) != 0)
20199 {
20200 error (_("%s: failed to seek to next archive header\n"), arch.file_name);
20201 return FALSE;
20202 }
20203 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, filedata->handle);
20204 if (got != sizeof arch.arhdr)
20205 {
20206 if (got == 0)
20207 break;
20208 /* PR 24049 - we cannot use filedata->file_name as this will
20209 have already been freed. */
20210 error (_("%s: failed to read archive header\n"), arch.file_name);
20211
20212 ret = FALSE;
20213 break;
20214 }
20215 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
20216 {
20217 error (_("%s: did not find a valid archive header\n"), arch.file_name);
20218 ret = FALSE;
20219 break;
20220 }
20221
20222 arch.next_arhdr_offset += sizeof arch.arhdr;
20223
20224 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
20225 if (archive_file_size & 01)
20226 ++archive_file_size;
20227
20228 name = get_archive_member_name (&arch, &nested_arch);
20229 if (name == NULL)
20230 {
20231 error (_("%s: bad archive file name\n"), arch.file_name);
20232 ret = FALSE;
20233 break;
20234 }
20235 namelen = strlen (name);
20236
20237 qualified_name = make_qualified_name (&arch, &nested_arch, name);
20238 if (qualified_name == NULL)
20239 {
20240 error (_("%s: bad archive file name\n"), arch.file_name);
20241 ret = FALSE;
20242 break;
20243 }
20244
20245 if (is_thin_archive && arch.nested_member_origin == 0)
20246 {
20247 /* This is a proxy for an external member of a thin archive. */
20248 Filedata * member_filedata;
20249 char * member_file_name = adjust_relative_path
20250 (filedata->file_name, name, namelen);
20251
20252 if (member_file_name == NULL)
20253 {
20254 ret = FALSE;
20255 break;
20256 }
20257
20258 member_filedata = open_file (member_file_name);
20259 if (member_filedata == NULL)
20260 {
20261 error (_("Input file '%s' is not readable.\n"), member_file_name);
20262 free (member_file_name);
20263 ret = FALSE;
20264 break;
20265 }
20266
20267 archive_file_offset = arch.nested_member_origin;
20268 member_filedata->file_name = qualified_name;
20269
20270 if (! process_object (member_filedata))
20271 ret = FALSE;
20272
20273 close_file (member_filedata);
20274 free (member_file_name);
20275 }
20276 else if (is_thin_archive)
20277 {
20278 Filedata thin_filedata;
20279
20280 memset (&thin_filedata, 0, sizeof (thin_filedata));
20281
20282 /* PR 15140: Allow for corrupt thin archives. */
20283 if (nested_arch.file == NULL)
20284 {
20285 error (_("%s: contains corrupt thin archive: %s\n"),
20286 qualified_name, name);
20287 ret = FALSE;
20288 break;
20289 }
20290
20291 /* This is a proxy for a member of a nested archive. */
20292 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
20293
20294 /* The nested archive file will have been opened and setup by
20295 get_archive_member_name. */
20296 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
20297 {
20298 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
20299 ret = FALSE;
20300 break;
20301 }
20302
20303 thin_filedata.handle = nested_arch.file;
20304 thin_filedata.file_name = qualified_name;
20305
20306 if (! process_object (& thin_filedata))
20307 ret = FALSE;
20308 }
20309 else
20310 {
20311 archive_file_offset = arch.next_arhdr_offset;
20312 arch.next_arhdr_offset += archive_file_size;
20313
20314 filedata->file_name = qualified_name;
20315 if (! process_object (filedata))
20316 ret = FALSE;
20317 }
20318
20319 if (filedata->dump_sects != NULL)
20320 {
20321 free (filedata->dump_sects);
20322 filedata->dump_sects = NULL;
20323 filedata->num_dump_sects = 0;
20324 }
20325
20326 free (qualified_name);
20327 }
20328
20329 out:
20330 if (nested_arch.file != NULL)
20331 fclose (nested_arch.file);
20332 release_archive (&nested_arch);
20333 release_archive (&arch);
20334
20335 return ret;
20336 }
20337
20338 static bfd_boolean
20339 process_file (char * file_name)
20340 {
20341 Filedata * filedata = NULL;
20342 struct stat statbuf;
20343 char armag[SARMAG];
20344 bfd_boolean ret = TRUE;
20345
20346 if (stat (file_name, &statbuf) < 0)
20347 {
20348 if (errno == ENOENT)
20349 error (_("'%s': No such file\n"), file_name);
20350 else
20351 error (_("Could not locate '%s'. System error message: %s\n"),
20352 file_name, strerror (errno));
20353 return FALSE;
20354 }
20355
20356 if (! S_ISREG (statbuf.st_mode))
20357 {
20358 error (_("'%s' is not an ordinary file\n"), file_name);
20359 return FALSE;
20360 }
20361
20362 filedata = calloc (1, sizeof * filedata);
20363 if (filedata == NULL)
20364 {
20365 error (_("Out of memory allocating file data structure\n"));
20366 return FALSE;
20367 }
20368
20369 filedata->file_name = file_name;
20370 filedata->handle = fopen (file_name, "rb");
20371 if (filedata->handle == NULL)
20372 {
20373 error (_("Input file '%s' is not readable.\n"), file_name);
20374 free (filedata);
20375 return FALSE;
20376 }
20377
20378 if (fread (armag, SARMAG, 1, filedata->handle) != 1)
20379 {
20380 error (_("%s: Failed to read file's magic number\n"), file_name);
20381 fclose (filedata->handle);
20382 free (filedata);
20383 return FALSE;
20384 }
20385
20386 filedata->file_size = (bfd_size_type) statbuf.st_size;
20387
20388 if (memcmp (armag, ARMAG, SARMAG) == 0)
20389 {
20390 if (! process_archive (filedata, FALSE))
20391 ret = FALSE;
20392 }
20393 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
20394 {
20395 if ( ! process_archive (filedata, TRUE))
20396 ret = FALSE;
20397 }
20398 else
20399 {
20400 if (do_archive_index)
20401 error (_("File %s is not an archive so its index cannot be displayed.\n"),
20402 file_name);
20403
20404 rewind (filedata->handle);
20405 archive_file_size = archive_file_offset = 0;
20406
20407 if (! process_object (filedata))
20408 ret = FALSE;
20409 }
20410
20411 fclose (filedata->handle);
20412 free (filedata);
20413
20414 return ret;
20415 }
20416
20417 #ifdef SUPPORT_DISASSEMBLY
20418 /* Needed by the i386 disassembler. For extra credit, someone could
20419 fix this so that we insert symbolic addresses here, esp for GOT/PLT
20420 symbols. */
20421
20422 void
20423 print_address (unsigned int addr, FILE * outfile)
20424 {
20425 fprintf (outfile,"0x%8.8x", addr);
20426 }
20427
20428 /* Needed by the i386 disassembler. */
20429
20430 void
20431 db_task_printsym (unsigned int addr)
20432 {
20433 print_address (addr, stderr);
20434 }
20435 #endif
20436
20437 int
20438 main (int argc, char ** argv)
20439 {
20440 int err;
20441
20442 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
20443 setlocale (LC_MESSAGES, "");
20444 #endif
20445 #if defined (HAVE_SETLOCALE)
20446 setlocale (LC_CTYPE, "");
20447 #endif
20448 bindtextdomain (PACKAGE, LOCALEDIR);
20449 textdomain (PACKAGE);
20450
20451 expandargv (&argc, &argv);
20452
20453 cmdline.file_name = "<cmdline>";
20454 parse_args (& cmdline, argc, argv);
20455
20456 if (optind < (argc - 1))
20457 show_name = TRUE;
20458 else if (optind >= argc)
20459 {
20460 warn (_("Nothing to do.\n"));
20461 usage (stderr);
20462 }
20463
20464 err = FALSE;
20465 while (optind < argc)
20466 if (! process_file (argv[optind++]))
20467 err = TRUE;
20468
20469 if (cmdline.dump_sects != NULL)
20470 free (cmdline.dump_sects);
20471
20472 free (dump_ctf_symtab_name);
20473 free (dump_ctf_strtab_name);
20474 free (dump_ctf_parent_name);
20475
20476 return err ? EXIT_FAILURE : EXIT_SUCCESS;
20477 }
This page took 0.554422 seconds and 4 git commands to generate.