accb6342038a5de8ea520fd19451fa96dce5bf77
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
103
104 /*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111 typedef struct
112 {
113 const insn_template *start;
114 const insn_template *end;
115 }
116 templates;
117
118 /* 386 operand encoding bytes: see 386 book for details of this. */
119 typedef struct
120 {
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124 }
125 modrm_byte;
126
127 /* x86-64 extension prefix. */
128 typedef int rex_byte;
129
130 /* 386 opcode byte to code indirect addressing. */
131 typedef struct
132 {
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136 }
137 sib_byte;
138
139 /* x86 arch names, types and features */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
146 unsigned int skip; /* show_arch should skip this. */
147 }
148 arch_entry;
149
150 /* Used to turn off indicated flags. */
151 typedef struct
152 {
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156 }
157 noarch_entry;
158
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
167 #ifdef TE_PE
168 static void pe_directive_secrel (int);
169 #endif
170 static void signed_cons (int);
171 static char *output_invalid (int c);
172 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS *);
179 static int i386_intel_parse_name (const char *, expressionS *);
180 static const reg_entry *parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static void optimize_imm (void);
186 static void optimize_disp (void);
187 static const insn_template *match_template (char);
188 static int check_string (void);
189 static int process_suffix (void);
190 static int check_byte_reg (void);
191 static int check_long_reg (void);
192 static int check_qword_reg (void);
193 static int check_word_reg (void);
194 static int finalize_imm (void);
195 static int process_operands (void);
196 static const seg_entry *build_modrm_byte (void);
197 static void output_insn (void);
198 static void output_imm (fragS *, offsetT);
199 static void output_disp (fragS *, offsetT);
200 #ifndef I386COFF
201 static void s_bss (int);
202 #endif
203 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204 static void handle_large_common (int small ATTRIBUTE_UNUSED);
205
206 /* GNU_PROPERTY_X86_ISA_1_USED. */
207 static unsigned int x86_isa_1_used;
208 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
209 static unsigned int x86_feature_2_used;
210 /* Generate x86 used ISA and feature properties. */
211 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
212 #endif
213
214 static const char *default_arch = DEFAULT_ARCH;
215
216 /* This struct describes rounding control and SAE in the instruction. */
217 struct RC_Operation
218 {
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228 };
229
230 static struct RC_Operation rc_op;
231
232 /* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235 struct Mask_Operation
236 {
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241 };
242
243 static struct Mask_Operation mask_op;
244
245 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247 struct Broadcast_Operation
248 {
249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
254
255 /* Number of bytes to broadcast. */
256 int bytes;
257 };
258
259 static struct Broadcast_Operation broadcast_op;
260
261 /* VEX prefix. */
262 typedef struct
263 {
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269 } vex_prefix;
270
271 /* 'md_assemble ()' gathers together information and puts it into a
272 i386_insn. */
273
274 union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
281 enum i386_error
282 {
283 operand_size_mismatch,
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
291 unsupported,
292 invalid_vsib_address,
293 invalid_vector_register_set,
294 unsupported_vector_index_register,
295 unsupported_broadcast,
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
303 };
304
305 struct _i386_insn
306 {
307 /* TM holds the template for the insn were currently assembling. */
308 insn_template tm;
309
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
312 char suffix;
313
314 /* OPERANDS gives the number of given operands. */
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
319 operands. */
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
323 use OP[i] for the corresponding operand. */
324 i386_operand_type types[MAX_OPERANDS];
325
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
329
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332 #define Operand_PCrel 1
333 #define Operand_Mem 2
334
335 /* Relocation type for operand */
336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
337
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
345 explicit segment overrides are given. */
346 const seg_entry *seg[2];
347
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
371 /* RM and SIB are the modrm byte and the sib byte where the
372 addressing modes of this insn are encoded. */
373 modrm_byte rm;
374 rex_byte rex;
375 rex_byte vrex;
376 sib_byte sib;
377 vex_prefix vex;
378
379 /* Masking attributes. */
380 struct Mask_Operation *mask;
381
382 /* Rounding control and SAE attributes. */
383 struct RC_Operation *rounding;
384
385 /* Broadcasting attributes. */
386 struct Broadcast_Operation *broadcast;
387
388 /* Compressed disp8*N attribute. */
389 unsigned int memshift;
390
391 /* Prefer load or store in encoding. */
392 enum
393 {
394 dir_encoding_default = 0,
395 dir_encoding_load,
396 dir_encoding_store,
397 dir_encoding_swap
398 } dir_encoding;
399
400 /* Prefer 8bit or 32bit displacement in encoding. */
401 enum
402 {
403 disp_encoding_default = 0,
404 disp_encoding_8bit,
405 disp_encoding_32bit
406 } disp_encoding;
407
408 /* Prefer the REX byte in encoding. */
409 bfd_boolean rex_encoding;
410
411 /* Disable instruction size optimization. */
412 bfd_boolean no_optimize;
413
414 /* How to encode vector instructions. */
415 enum
416 {
417 vex_encoding_default = 0,
418 vex_encoding_vex2,
419 vex_encoding_vex3,
420 vex_encoding_evex
421 } vec_encoding;
422
423 /* REP prefix. */
424 const char *rep_prefix;
425
426 /* HLE prefix. */
427 const char *hle_prefix;
428
429 /* Have BND prefix. */
430 const char *bnd_prefix;
431
432 /* Have NOTRACK prefix. */
433 const char *notrack_prefix;
434
435 /* Error message. */
436 enum i386_error error;
437 };
438
439 typedef struct _i386_insn i386_insn;
440
441 /* Link RC type with corresponding string, that'll be looked for in
442 asm. */
443 struct RC_name
444 {
445 enum rc_type type;
446 const char *name;
447 unsigned int len;
448 };
449
450 static const struct RC_name RC_NamesTable[] =
451 {
452 { rne, STRING_COMMA_LEN ("rn-sae") },
453 { rd, STRING_COMMA_LEN ("rd-sae") },
454 { ru, STRING_COMMA_LEN ("ru-sae") },
455 { rz, STRING_COMMA_LEN ("rz-sae") },
456 { saeonly, STRING_COMMA_LEN ("sae") },
457 };
458
459 /* List of chars besides those in app.c:symbol_chars that can start an
460 operand. Used to prevent the scrubber eating vital white-space. */
461 const char extra_symbol_chars[] = "*%-([{}"
462 #ifdef LEX_AT
463 "@"
464 #endif
465 #ifdef LEX_QM
466 "?"
467 #endif
468 ;
469
470 #if (defined (TE_I386AIX) \
471 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
472 && !defined (TE_GNU) \
473 && !defined (TE_LINUX) \
474 && !defined (TE_NACL) \
475 && !defined (TE_FreeBSD) \
476 && !defined (TE_DragonFly) \
477 && !defined (TE_NetBSD)))
478 /* This array holds the chars that always start a comment. If the
479 pre-processor is disabled, these aren't very useful. The option
480 --divide will remove '/' from this list. */
481 const char *i386_comment_chars = "#/";
482 #define SVR4_COMMENT_CHARS 1
483 #define PREFIX_SEPARATOR '\\'
484
485 #else
486 const char *i386_comment_chars = "#";
487 #define PREFIX_SEPARATOR '/'
488 #endif
489
490 /* This array holds the chars that only start a comment at the beginning of
491 a line. If the line seems to have the form '# 123 filename'
492 .line and .file directives will appear in the pre-processed output.
493 Note that input_file.c hand checks for '#' at the beginning of the
494 first line of the input file. This is because the compiler outputs
495 #NO_APP at the beginning of its output.
496 Also note that comments started like this one will always work if
497 '/' isn't otherwise defined. */
498 const char line_comment_chars[] = "#/";
499
500 const char line_separator_chars[] = ";";
501
502 /* Chars that can be used to separate mant from exp in floating point
503 nums. */
504 const char EXP_CHARS[] = "eE";
505
506 /* Chars that mean this number is a floating point constant
507 As in 0f12.456
508 or 0d1.2345e12. */
509 const char FLT_CHARS[] = "fFdDxX";
510
511 /* Tables for lexical analysis. */
512 static char mnemonic_chars[256];
513 static char register_chars[256];
514 static char operand_chars[256];
515 static char identifier_chars[256];
516 static char digit_chars[256];
517
518 /* Lexical macros. */
519 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
520 #define is_operand_char(x) (operand_chars[(unsigned char) x])
521 #define is_register_char(x) (register_chars[(unsigned char) x])
522 #define is_space_char(x) ((x) == ' ')
523 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
524 #define is_digit_char(x) (digit_chars[(unsigned char) x])
525
526 /* All non-digit non-letter characters that may occur in an operand. */
527 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
528
529 /* md_assemble() always leaves the strings it's passed unaltered. To
530 effect this we maintain a stack of saved characters that we've smashed
531 with '\0's (indicating end of strings for various sub-fields of the
532 assembler instruction). */
533 static char save_stack[32];
534 static char *save_stack_p;
535 #define END_STRING_AND_SAVE(s) \
536 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
537 #define RESTORE_END_STRING(s) \
538 do { *(s) = *--save_stack_p; } while (0)
539
540 /* The instruction we're assembling. */
541 static i386_insn i;
542
543 /* Possible templates for current insn. */
544 static const templates *current_templates;
545
546 /* Per instruction expressionS buffers: max displacements & immediates. */
547 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
548 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
549
550 /* Current operand we are working on. */
551 static int this_operand = -1;
552
553 /* We support four different modes. FLAG_CODE variable is used to distinguish
554 these. */
555
556 enum flag_code {
557 CODE_32BIT,
558 CODE_16BIT,
559 CODE_64BIT };
560
561 static enum flag_code flag_code;
562 static unsigned int object_64bit;
563 static unsigned int disallow_64bit_reloc;
564 static int use_rela_relocations = 0;
565
566 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
567 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
568 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
569
570 /* The ELF ABI to use. */
571 enum x86_elf_abi
572 {
573 I386_ABI,
574 X86_64_ABI,
575 X86_64_X32_ABI
576 };
577
578 static enum x86_elf_abi x86_elf_abi = I386_ABI;
579 #endif
580
581 #if defined (TE_PE) || defined (TE_PEP)
582 /* Use big object file format. */
583 static int use_big_obj = 0;
584 #endif
585
586 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
587 /* 1 if generating code for a shared library. */
588 static int shared = 0;
589 #endif
590
591 /* 1 for intel syntax,
592 0 if att syntax. */
593 static int intel_syntax = 0;
594
595 /* 1 for Intel64 ISA,
596 0 if AMD64 ISA. */
597 static int intel64;
598
599 /* 1 for intel mnemonic,
600 0 if att mnemonic. */
601 static int intel_mnemonic = !SYSV386_COMPAT;
602
603 /* 1 if pseudo registers are permitted. */
604 static int allow_pseudo_reg = 0;
605
606 /* 1 if register prefix % not required. */
607 static int allow_naked_reg = 0;
608
609 /* 1 if the assembler should add BND prefix for all control-transferring
610 instructions supporting it, even if this prefix wasn't specified
611 explicitly. */
612 static int add_bnd_prefix = 0;
613
614 /* 1 if pseudo index register, eiz/riz, is allowed . */
615 static int allow_index_reg = 0;
616
617 /* 1 if the assembler should ignore LOCK prefix, even if it was
618 specified explicitly. */
619 static int omit_lock_prefix = 0;
620
621 /* 1 if the assembler should encode lfence, mfence, and sfence as
622 "lock addl $0, (%{re}sp)". */
623 static int avoid_fence = 0;
624
625 /* 1 if the assembler should generate relax relocations. */
626
627 static int generate_relax_relocations
628 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
629
630 static enum check_kind
631 {
632 check_none = 0,
633 check_warning,
634 check_error
635 }
636 sse_check, operand_check = check_warning;
637
638 /* Optimization:
639 1. Clear the REX_W bit with register operand if possible.
640 2. Above plus use 128bit vector instruction to clear the full vector
641 register.
642 */
643 static int optimize = 0;
644
645 /* Optimization:
646 1. Clear the REX_W bit with register operand if possible.
647 2. Above plus use 128bit vector instruction to clear the full vector
648 register.
649 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
650 "testb $imm7,%r8".
651 */
652 static int optimize_for_space = 0;
653
654 /* Register prefix used for error message. */
655 static const char *register_prefix = "%";
656
657 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
658 leave, push, and pop instructions so that gcc has the same stack
659 frame as in 32 bit mode. */
660 static char stackop_size = '\0';
661
662 /* Non-zero to optimize code alignment. */
663 int optimize_align_code = 1;
664
665 /* Non-zero to quieten some warnings. */
666 static int quiet_warnings = 0;
667
668 /* CPU name. */
669 static const char *cpu_arch_name = NULL;
670 static char *cpu_sub_arch_name = NULL;
671
672 /* CPU feature flags. */
673 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
674
675 /* If we have selected a cpu we are generating instructions for. */
676 static int cpu_arch_tune_set = 0;
677
678 /* Cpu we are generating instructions for. */
679 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
680
681 /* CPU feature flags of cpu we are generating instructions for. */
682 static i386_cpu_flags cpu_arch_tune_flags;
683
684 /* CPU instruction set architecture used. */
685 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
686
687 /* CPU feature flags of instruction set architecture used. */
688 i386_cpu_flags cpu_arch_isa_flags;
689
690 /* If set, conditional jumps are not automatically promoted to handle
691 larger than a byte offset. */
692 static unsigned int no_cond_jump_promotion = 0;
693
694 /* Encode SSE instructions with VEX prefix. */
695 static unsigned int sse2avx;
696
697 /* Encode scalar AVX instructions with specific vector length. */
698 static enum
699 {
700 vex128 = 0,
701 vex256
702 } avxscalar;
703
704 /* Encode VEX WIG instructions with specific vex.w. */
705 static enum
706 {
707 vexw0 = 0,
708 vexw1
709 } vexwig;
710
711 /* Encode scalar EVEX LIG instructions with specific vector length. */
712 static enum
713 {
714 evexl128 = 0,
715 evexl256,
716 evexl512
717 } evexlig;
718
719 /* Encode EVEX WIG instructions with specific evex.w. */
720 static enum
721 {
722 evexw0 = 0,
723 evexw1
724 } evexwig;
725
726 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
727 static enum rc_type evexrcig = rne;
728
729 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
730 static symbolS *GOT_symbol;
731
732 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
733 unsigned int x86_dwarf2_return_column;
734
735 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
736 int x86_cie_data_alignment;
737
738 /* Interface to relax_segment.
739 There are 3 major relax states for 386 jump insns because the
740 different types of jumps add different sizes to frags when we're
741 figuring out what sort of jump to choose to reach a given label. */
742
743 /* Types. */
744 #define UNCOND_JUMP 0
745 #define COND_JUMP 1
746 #define COND_JUMP86 2
747
748 /* Sizes. */
749 #define CODE16 1
750 #define SMALL 0
751 #define SMALL16 (SMALL | CODE16)
752 #define BIG 2
753 #define BIG16 (BIG | CODE16)
754
755 #ifndef INLINE
756 #ifdef __GNUC__
757 #define INLINE __inline__
758 #else
759 #define INLINE
760 #endif
761 #endif
762
763 #define ENCODE_RELAX_STATE(type, size) \
764 ((relax_substateT) (((type) << 2) | (size)))
765 #define TYPE_FROM_RELAX_STATE(s) \
766 ((s) >> 2)
767 #define DISP_SIZE_FROM_RELAX_STATE(s) \
768 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
769
770 /* This table is used by relax_frag to promote short jumps to long
771 ones where necessary. SMALL (short) jumps may be promoted to BIG
772 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
773 don't allow a short jump in a 32 bit code segment to be promoted to
774 a 16 bit offset jump because it's slower (requires data size
775 prefix), and doesn't work, unless the destination is in the bottom
776 64k of the code segment (The top 16 bits of eip are zeroed). */
777
778 const relax_typeS md_relax_table[] =
779 {
780 /* The fields are:
781 1) most positive reach of this state,
782 2) most negative reach of this state,
783 3) how many bytes this mode will have in the variable part of the frag
784 4) which index into the table to try if we can't fit into this one. */
785
786 /* UNCOND_JUMP states. */
787 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
788 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
789 /* dword jmp adds 4 bytes to frag:
790 0 extra opcode bytes, 4 displacement bytes. */
791 {0, 0, 4, 0},
792 /* word jmp adds 2 byte2 to frag:
793 0 extra opcode bytes, 2 displacement bytes. */
794 {0, 0, 2, 0},
795
796 /* COND_JUMP states. */
797 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
798 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
799 /* dword conditionals adds 5 bytes to frag:
800 1 extra opcode byte, 4 displacement bytes. */
801 {0, 0, 5, 0},
802 /* word conditionals add 3 bytes to frag:
803 1 extra opcode byte, 2 displacement bytes. */
804 {0, 0, 3, 0},
805
806 /* COND_JUMP86 states. */
807 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
808 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
809 /* dword conditionals adds 5 bytes to frag:
810 1 extra opcode byte, 4 displacement bytes. */
811 {0, 0, 5, 0},
812 /* word conditionals add 4 bytes to frag:
813 1 displacement byte and a 3 byte long branch insn. */
814 {0, 0, 4, 0}
815 };
816
817 static const arch_entry cpu_arch[] =
818 {
819 /* Do not replace the first two entries - i386_target_format()
820 relies on them being there in this order. */
821 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
822 CPU_GENERIC32_FLAGS, 0 },
823 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
824 CPU_GENERIC64_FLAGS, 0 },
825 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
826 CPU_NONE_FLAGS, 0 },
827 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
828 CPU_I186_FLAGS, 0 },
829 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
830 CPU_I286_FLAGS, 0 },
831 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
832 CPU_I386_FLAGS, 0 },
833 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
834 CPU_I486_FLAGS, 0 },
835 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
836 CPU_I586_FLAGS, 0 },
837 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
838 CPU_I686_FLAGS, 0 },
839 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
840 CPU_I586_FLAGS, 0 },
841 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
842 CPU_PENTIUMPRO_FLAGS, 0 },
843 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
844 CPU_P2_FLAGS, 0 },
845 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
846 CPU_P3_FLAGS, 0 },
847 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
848 CPU_P4_FLAGS, 0 },
849 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
850 CPU_CORE_FLAGS, 0 },
851 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
852 CPU_NOCONA_FLAGS, 0 },
853 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
854 CPU_CORE_FLAGS, 1 },
855 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
856 CPU_CORE_FLAGS, 0 },
857 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
858 CPU_CORE2_FLAGS, 1 },
859 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
860 CPU_CORE2_FLAGS, 0 },
861 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
862 CPU_COREI7_FLAGS, 0 },
863 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
864 CPU_L1OM_FLAGS, 0 },
865 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
866 CPU_K1OM_FLAGS, 0 },
867 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
868 CPU_IAMCU_FLAGS, 0 },
869 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
870 CPU_K6_FLAGS, 0 },
871 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
872 CPU_K6_2_FLAGS, 0 },
873 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
874 CPU_ATHLON_FLAGS, 0 },
875 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
876 CPU_K8_FLAGS, 1 },
877 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
878 CPU_K8_FLAGS, 0 },
879 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
880 CPU_K8_FLAGS, 0 },
881 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
882 CPU_AMDFAM10_FLAGS, 0 },
883 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
884 CPU_BDVER1_FLAGS, 0 },
885 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
886 CPU_BDVER2_FLAGS, 0 },
887 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
888 CPU_BDVER3_FLAGS, 0 },
889 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
890 CPU_BDVER4_FLAGS, 0 },
891 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
892 CPU_ZNVER1_FLAGS, 0 },
893 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
894 CPU_ZNVER2_FLAGS, 0 },
895 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
896 CPU_BTVER1_FLAGS, 0 },
897 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
898 CPU_BTVER2_FLAGS, 0 },
899 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
900 CPU_8087_FLAGS, 0 },
901 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
902 CPU_287_FLAGS, 0 },
903 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
904 CPU_387_FLAGS, 0 },
905 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
906 CPU_687_FLAGS, 0 },
907 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
908 CPU_CMOV_FLAGS, 0 },
909 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
910 CPU_FXSR_FLAGS, 0 },
911 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
912 CPU_MMX_FLAGS, 0 },
913 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
914 CPU_SSE_FLAGS, 0 },
915 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
916 CPU_SSE2_FLAGS, 0 },
917 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
918 CPU_SSE3_FLAGS, 0 },
919 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
920 CPU_SSSE3_FLAGS, 0 },
921 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
922 CPU_SSE4_1_FLAGS, 0 },
923 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
924 CPU_SSE4_2_FLAGS, 0 },
925 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
926 CPU_SSE4_2_FLAGS, 0 },
927 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
928 CPU_AVX_FLAGS, 0 },
929 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
930 CPU_AVX2_FLAGS, 0 },
931 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
932 CPU_AVX512F_FLAGS, 0 },
933 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
934 CPU_AVX512CD_FLAGS, 0 },
935 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
936 CPU_AVX512ER_FLAGS, 0 },
937 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
938 CPU_AVX512PF_FLAGS, 0 },
939 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
940 CPU_AVX512DQ_FLAGS, 0 },
941 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
942 CPU_AVX512BW_FLAGS, 0 },
943 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
944 CPU_AVX512VL_FLAGS, 0 },
945 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
946 CPU_VMX_FLAGS, 0 },
947 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
948 CPU_VMFUNC_FLAGS, 0 },
949 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
950 CPU_SMX_FLAGS, 0 },
951 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
952 CPU_XSAVE_FLAGS, 0 },
953 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
954 CPU_XSAVEOPT_FLAGS, 0 },
955 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
956 CPU_XSAVEC_FLAGS, 0 },
957 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
958 CPU_XSAVES_FLAGS, 0 },
959 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
960 CPU_AES_FLAGS, 0 },
961 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
962 CPU_PCLMUL_FLAGS, 0 },
963 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
964 CPU_PCLMUL_FLAGS, 1 },
965 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
966 CPU_FSGSBASE_FLAGS, 0 },
967 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
968 CPU_RDRND_FLAGS, 0 },
969 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
970 CPU_F16C_FLAGS, 0 },
971 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
972 CPU_BMI2_FLAGS, 0 },
973 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
974 CPU_FMA_FLAGS, 0 },
975 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
976 CPU_FMA4_FLAGS, 0 },
977 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
978 CPU_XOP_FLAGS, 0 },
979 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
980 CPU_LWP_FLAGS, 0 },
981 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
982 CPU_MOVBE_FLAGS, 0 },
983 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
984 CPU_CX16_FLAGS, 0 },
985 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
986 CPU_EPT_FLAGS, 0 },
987 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
988 CPU_LZCNT_FLAGS, 0 },
989 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
990 CPU_HLE_FLAGS, 0 },
991 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
992 CPU_RTM_FLAGS, 0 },
993 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
994 CPU_INVPCID_FLAGS, 0 },
995 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
996 CPU_CLFLUSH_FLAGS, 0 },
997 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
998 CPU_NOP_FLAGS, 0 },
999 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1000 CPU_SYSCALL_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1002 CPU_RDTSCP_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1004 CPU_3DNOW_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1006 CPU_3DNOWA_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1008 CPU_PADLOCK_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1010 CPU_SVME_FLAGS, 1 },
1011 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1012 CPU_SVME_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1014 CPU_SSE4A_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1016 CPU_ABM_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1018 CPU_BMI_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1020 CPU_TBM_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1022 CPU_ADX_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1024 CPU_RDSEED_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1026 CPU_PRFCHW_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1028 CPU_SMAP_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1030 CPU_MPX_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1032 CPU_SHA_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1034 CPU_CLFLUSHOPT_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1036 CPU_PREFETCHWT1_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1038 CPU_SE1_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1040 CPU_CLWB_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1042 CPU_AVX512IFMA_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1044 CPU_AVX512VBMI_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1046 CPU_AVX512_4FMAPS_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1048 CPU_AVX512_4VNNIW_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1050 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1052 CPU_AVX512_VBMI2_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1054 CPU_AVX512_VNNI_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1056 CPU_AVX512_BITALG_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1058 CPU_CLZERO_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1060 CPU_MWAITX_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1062 CPU_OSPKE_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1064 CPU_RDPID_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1066 CPU_PTWRITE_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1068 CPU_IBT_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1070 CPU_SHSTK_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1072 CPU_GFNI_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1074 CPU_VAES_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1076 CPU_VPCLMULQDQ_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1078 CPU_WBNOINVD_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1080 CPU_PCONFIG_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1082 CPU_WAITPKG_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1084 CPU_CLDEMOTE_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1086 CPU_MOVDIRI_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1088 CPU_MOVDIR64B_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1090 CPU_AVX512_BF16_FLAGS, 0 },
1091 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1092 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1094 CPU_ENQCMD_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1096 CPU_RDPRU_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1098 CPU_MCOMMIT_FLAGS, 0 },
1099 };
1100
1101 static const noarch_entry cpu_noarch[] =
1102 {
1103 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1104 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1105 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1106 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1107 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1108 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1109 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1110 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1111 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1112 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1113 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1114 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1115 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1116 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1117 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1118 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1125 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1126 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1127 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1128 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1129 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1130 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1131 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1132 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1133 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1134 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1135 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1136 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1137 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1138 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1139 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1140 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1141 };
1142
1143 #ifdef I386COFF
1144 /* Like s_lcomm_internal in gas/read.c but the alignment string
1145 is allowed to be optional. */
1146
1147 static symbolS *
1148 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1149 {
1150 addressT align = 0;
1151
1152 SKIP_WHITESPACE ();
1153
1154 if (needs_align
1155 && *input_line_pointer == ',')
1156 {
1157 align = parse_align (needs_align - 1);
1158
1159 if (align == (addressT) -1)
1160 return NULL;
1161 }
1162 else
1163 {
1164 if (size >= 8)
1165 align = 3;
1166 else if (size >= 4)
1167 align = 2;
1168 else if (size >= 2)
1169 align = 1;
1170 else
1171 align = 0;
1172 }
1173
1174 bss_alloc (symbolP, size, align);
1175 return symbolP;
1176 }
1177
1178 static void
1179 pe_lcomm (int needs_align)
1180 {
1181 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1182 }
1183 #endif
1184
1185 const pseudo_typeS md_pseudo_table[] =
1186 {
1187 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1188 {"align", s_align_bytes, 0},
1189 #else
1190 {"align", s_align_ptwo, 0},
1191 #endif
1192 {"arch", set_cpu_arch, 0},
1193 #ifndef I386COFF
1194 {"bss", s_bss, 0},
1195 #else
1196 {"lcomm", pe_lcomm, 1},
1197 #endif
1198 {"ffloat", float_cons, 'f'},
1199 {"dfloat", float_cons, 'd'},
1200 {"tfloat", float_cons, 'x'},
1201 {"value", cons, 2},
1202 {"slong", signed_cons, 4},
1203 {"noopt", s_ignore, 0},
1204 {"optim", s_ignore, 0},
1205 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1206 {"code16", set_code_flag, CODE_16BIT},
1207 {"code32", set_code_flag, CODE_32BIT},
1208 #ifdef BFD64
1209 {"code64", set_code_flag, CODE_64BIT},
1210 #endif
1211 {"intel_syntax", set_intel_syntax, 1},
1212 {"att_syntax", set_intel_syntax, 0},
1213 {"intel_mnemonic", set_intel_mnemonic, 1},
1214 {"att_mnemonic", set_intel_mnemonic, 0},
1215 {"allow_index_reg", set_allow_index_reg, 1},
1216 {"disallow_index_reg", set_allow_index_reg, 0},
1217 {"sse_check", set_check, 0},
1218 {"operand_check", set_check, 1},
1219 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1220 {"largecomm", handle_large_common, 0},
1221 #else
1222 {"file", dwarf2_directive_file, 0},
1223 {"loc", dwarf2_directive_loc, 0},
1224 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1225 #endif
1226 #ifdef TE_PE
1227 {"secrel32", pe_directive_secrel, 0},
1228 #endif
1229 {0, 0, 0}
1230 };
1231
1232 /* For interface with expression (). */
1233 extern char *input_line_pointer;
1234
1235 /* Hash table for instruction mnemonic lookup. */
1236 static struct hash_control *op_hash;
1237
1238 /* Hash table for register lookup. */
1239 static struct hash_control *reg_hash;
1240 \f
1241 /* Various efficient no-op patterns for aligning code labels.
1242 Note: Don't try to assemble the instructions in the comments.
1243 0L and 0w are not legal. */
1244 static const unsigned char f32_1[] =
1245 {0x90}; /* nop */
1246 static const unsigned char f32_2[] =
1247 {0x66,0x90}; /* xchg %ax,%ax */
1248 static const unsigned char f32_3[] =
1249 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1250 static const unsigned char f32_4[] =
1251 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1252 static const unsigned char f32_6[] =
1253 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1254 static const unsigned char f32_7[] =
1255 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1256 static const unsigned char f16_3[] =
1257 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1258 static const unsigned char f16_4[] =
1259 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1260 static const unsigned char jump_disp8[] =
1261 {0xeb}; /* jmp disp8 */
1262 static const unsigned char jump32_disp32[] =
1263 {0xe9}; /* jmp disp32 */
1264 static const unsigned char jump16_disp32[] =
1265 {0x66,0xe9}; /* jmp disp32 */
1266 /* 32-bit NOPs patterns. */
1267 static const unsigned char *const f32_patt[] = {
1268 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1269 };
1270 /* 16-bit NOPs patterns. */
1271 static const unsigned char *const f16_patt[] = {
1272 f32_1, f32_2, f16_3, f16_4
1273 };
1274 /* nopl (%[re]ax) */
1275 static const unsigned char alt_3[] =
1276 {0x0f,0x1f,0x00};
1277 /* nopl 0(%[re]ax) */
1278 static const unsigned char alt_4[] =
1279 {0x0f,0x1f,0x40,0x00};
1280 /* nopl 0(%[re]ax,%[re]ax,1) */
1281 static const unsigned char alt_5[] =
1282 {0x0f,0x1f,0x44,0x00,0x00};
1283 /* nopw 0(%[re]ax,%[re]ax,1) */
1284 static const unsigned char alt_6[] =
1285 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1286 /* nopl 0L(%[re]ax) */
1287 static const unsigned char alt_7[] =
1288 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1289 /* nopl 0L(%[re]ax,%[re]ax,1) */
1290 static const unsigned char alt_8[] =
1291 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1292 /* nopw 0L(%[re]ax,%[re]ax,1) */
1293 static const unsigned char alt_9[] =
1294 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1295 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1296 static const unsigned char alt_10[] =
1297 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1298 /* data16 nopw %cs:0L(%eax,%eax,1) */
1299 static const unsigned char alt_11[] =
1300 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1301 /* 32-bit and 64-bit NOPs patterns. */
1302 static const unsigned char *const alt_patt[] = {
1303 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1304 alt_9, alt_10, alt_11
1305 };
1306
1307 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1308 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1309
1310 static void
1311 i386_output_nops (char *where, const unsigned char *const *patt,
1312 int count, int max_single_nop_size)
1313
1314 {
1315 /* Place the longer NOP first. */
1316 int last;
1317 int offset;
1318 const unsigned char *nops;
1319
1320 if (max_single_nop_size < 1)
1321 {
1322 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1323 max_single_nop_size);
1324 return;
1325 }
1326
1327 nops = patt[max_single_nop_size - 1];
1328
1329 /* Use the smaller one if the requsted one isn't available. */
1330 if (nops == NULL)
1331 {
1332 max_single_nop_size--;
1333 nops = patt[max_single_nop_size - 1];
1334 }
1335
1336 last = count % max_single_nop_size;
1337
1338 count -= last;
1339 for (offset = 0; offset < count; offset += max_single_nop_size)
1340 memcpy (where + offset, nops, max_single_nop_size);
1341
1342 if (last)
1343 {
1344 nops = patt[last - 1];
1345 if (nops == NULL)
1346 {
1347 /* Use the smaller one plus one-byte NOP if the needed one
1348 isn't available. */
1349 last--;
1350 nops = patt[last - 1];
1351 memcpy (where + offset, nops, last);
1352 where[offset + last] = *patt[0];
1353 }
1354 else
1355 memcpy (where + offset, nops, last);
1356 }
1357 }
1358
1359 static INLINE int
1360 fits_in_imm7 (offsetT num)
1361 {
1362 return (num & 0x7f) == num;
1363 }
1364
1365 static INLINE int
1366 fits_in_imm31 (offsetT num)
1367 {
1368 return (num & 0x7fffffff) == num;
1369 }
1370
1371 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1372 single NOP instruction LIMIT. */
1373
1374 void
1375 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1376 {
1377 const unsigned char *const *patt = NULL;
1378 int max_single_nop_size;
1379 /* Maximum number of NOPs before switching to jump over NOPs. */
1380 int max_number_of_nops;
1381
1382 switch (fragP->fr_type)
1383 {
1384 case rs_fill_nop:
1385 case rs_align_code:
1386 break;
1387 default:
1388 return;
1389 }
1390
1391 /* We need to decide which NOP sequence to use for 32bit and
1392 64bit. When -mtune= is used:
1393
1394 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1395 PROCESSOR_GENERIC32, f32_patt will be used.
1396 2. For the rest, alt_patt will be used.
1397
1398 When -mtune= isn't used, alt_patt will be used if
1399 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1400 be used.
1401
1402 When -march= or .arch is used, we can't use anything beyond
1403 cpu_arch_isa_flags. */
1404
1405 if (flag_code == CODE_16BIT)
1406 {
1407 patt = f16_patt;
1408 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1409 /* Limit number of NOPs to 2 in 16-bit mode. */
1410 max_number_of_nops = 2;
1411 }
1412 else
1413 {
1414 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1415 {
1416 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1417 switch (cpu_arch_tune)
1418 {
1419 case PROCESSOR_UNKNOWN:
1420 /* We use cpu_arch_isa_flags to check if we SHOULD
1421 optimize with nops. */
1422 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1423 patt = alt_patt;
1424 else
1425 patt = f32_patt;
1426 break;
1427 case PROCESSOR_PENTIUM4:
1428 case PROCESSOR_NOCONA:
1429 case PROCESSOR_CORE:
1430 case PROCESSOR_CORE2:
1431 case PROCESSOR_COREI7:
1432 case PROCESSOR_L1OM:
1433 case PROCESSOR_K1OM:
1434 case PROCESSOR_GENERIC64:
1435 case PROCESSOR_K6:
1436 case PROCESSOR_ATHLON:
1437 case PROCESSOR_K8:
1438 case PROCESSOR_AMDFAM10:
1439 case PROCESSOR_BD:
1440 case PROCESSOR_ZNVER:
1441 case PROCESSOR_BT:
1442 patt = alt_patt;
1443 break;
1444 case PROCESSOR_I386:
1445 case PROCESSOR_I486:
1446 case PROCESSOR_PENTIUM:
1447 case PROCESSOR_PENTIUMPRO:
1448 case PROCESSOR_IAMCU:
1449 case PROCESSOR_GENERIC32:
1450 patt = f32_patt;
1451 break;
1452 }
1453 }
1454 else
1455 {
1456 switch (fragP->tc_frag_data.tune)
1457 {
1458 case PROCESSOR_UNKNOWN:
1459 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1460 PROCESSOR_UNKNOWN. */
1461 abort ();
1462 break;
1463
1464 case PROCESSOR_I386:
1465 case PROCESSOR_I486:
1466 case PROCESSOR_PENTIUM:
1467 case PROCESSOR_IAMCU:
1468 case PROCESSOR_K6:
1469 case PROCESSOR_ATHLON:
1470 case PROCESSOR_K8:
1471 case PROCESSOR_AMDFAM10:
1472 case PROCESSOR_BD:
1473 case PROCESSOR_ZNVER:
1474 case PROCESSOR_BT:
1475 case PROCESSOR_GENERIC32:
1476 /* We use cpu_arch_isa_flags to check if we CAN optimize
1477 with nops. */
1478 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1479 patt = alt_patt;
1480 else
1481 patt = f32_patt;
1482 break;
1483 case PROCESSOR_PENTIUMPRO:
1484 case PROCESSOR_PENTIUM4:
1485 case PROCESSOR_NOCONA:
1486 case PROCESSOR_CORE:
1487 case PROCESSOR_CORE2:
1488 case PROCESSOR_COREI7:
1489 case PROCESSOR_L1OM:
1490 case PROCESSOR_K1OM:
1491 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1492 patt = alt_patt;
1493 else
1494 patt = f32_patt;
1495 break;
1496 case PROCESSOR_GENERIC64:
1497 patt = alt_patt;
1498 break;
1499 }
1500 }
1501
1502 if (patt == f32_patt)
1503 {
1504 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1505 /* Limit number of NOPs to 2 for older processors. */
1506 max_number_of_nops = 2;
1507 }
1508 else
1509 {
1510 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1511 /* Limit number of NOPs to 7 for newer processors. */
1512 max_number_of_nops = 7;
1513 }
1514 }
1515
1516 if (limit == 0)
1517 limit = max_single_nop_size;
1518
1519 if (fragP->fr_type == rs_fill_nop)
1520 {
1521 /* Output NOPs for .nop directive. */
1522 if (limit > max_single_nop_size)
1523 {
1524 as_bad_where (fragP->fr_file, fragP->fr_line,
1525 _("invalid single nop size: %d "
1526 "(expect within [0, %d])"),
1527 limit, max_single_nop_size);
1528 return;
1529 }
1530 }
1531 else
1532 fragP->fr_var = count;
1533
1534 if ((count / max_single_nop_size) > max_number_of_nops)
1535 {
1536 /* Generate jump over NOPs. */
1537 offsetT disp = count - 2;
1538 if (fits_in_imm7 (disp))
1539 {
1540 /* Use "jmp disp8" if possible. */
1541 count = disp;
1542 where[0] = jump_disp8[0];
1543 where[1] = count;
1544 where += 2;
1545 }
1546 else
1547 {
1548 unsigned int size_of_jump;
1549
1550 if (flag_code == CODE_16BIT)
1551 {
1552 where[0] = jump16_disp32[0];
1553 where[1] = jump16_disp32[1];
1554 size_of_jump = 2;
1555 }
1556 else
1557 {
1558 where[0] = jump32_disp32[0];
1559 size_of_jump = 1;
1560 }
1561
1562 count -= size_of_jump + 4;
1563 if (!fits_in_imm31 (count))
1564 {
1565 as_bad_where (fragP->fr_file, fragP->fr_line,
1566 _("jump over nop padding out of range"));
1567 return;
1568 }
1569
1570 md_number_to_chars (where + size_of_jump, count, 4);
1571 where += size_of_jump + 4;
1572 }
1573 }
1574
1575 /* Generate multiple NOPs. */
1576 i386_output_nops (where, patt, count, limit);
1577 }
1578
1579 static INLINE int
1580 operand_type_all_zero (const union i386_operand_type *x)
1581 {
1582 switch (ARRAY_SIZE(x->array))
1583 {
1584 case 3:
1585 if (x->array[2])
1586 return 0;
1587 /* Fall through. */
1588 case 2:
1589 if (x->array[1])
1590 return 0;
1591 /* Fall through. */
1592 case 1:
1593 return !x->array[0];
1594 default:
1595 abort ();
1596 }
1597 }
1598
1599 static INLINE void
1600 operand_type_set (union i386_operand_type *x, unsigned int v)
1601 {
1602 switch (ARRAY_SIZE(x->array))
1603 {
1604 case 3:
1605 x->array[2] = v;
1606 /* Fall through. */
1607 case 2:
1608 x->array[1] = v;
1609 /* Fall through. */
1610 case 1:
1611 x->array[0] = v;
1612 /* Fall through. */
1613 break;
1614 default:
1615 abort ();
1616 }
1617
1618 x->bitfield.class = ClassNone;
1619 x->bitfield.instance = InstanceNone;
1620 }
1621
1622 static INLINE int
1623 operand_type_equal (const union i386_operand_type *x,
1624 const union i386_operand_type *y)
1625 {
1626 switch (ARRAY_SIZE(x->array))
1627 {
1628 case 3:
1629 if (x->array[2] != y->array[2])
1630 return 0;
1631 /* Fall through. */
1632 case 2:
1633 if (x->array[1] != y->array[1])
1634 return 0;
1635 /* Fall through. */
1636 case 1:
1637 return x->array[0] == y->array[0];
1638 break;
1639 default:
1640 abort ();
1641 }
1642 }
1643
1644 static INLINE int
1645 cpu_flags_all_zero (const union i386_cpu_flags *x)
1646 {
1647 switch (ARRAY_SIZE(x->array))
1648 {
1649 case 4:
1650 if (x->array[3])
1651 return 0;
1652 /* Fall through. */
1653 case 3:
1654 if (x->array[2])
1655 return 0;
1656 /* Fall through. */
1657 case 2:
1658 if (x->array[1])
1659 return 0;
1660 /* Fall through. */
1661 case 1:
1662 return !x->array[0];
1663 default:
1664 abort ();
1665 }
1666 }
1667
1668 static INLINE int
1669 cpu_flags_equal (const union i386_cpu_flags *x,
1670 const union i386_cpu_flags *y)
1671 {
1672 switch (ARRAY_SIZE(x->array))
1673 {
1674 case 4:
1675 if (x->array[3] != y->array[3])
1676 return 0;
1677 /* Fall through. */
1678 case 3:
1679 if (x->array[2] != y->array[2])
1680 return 0;
1681 /* Fall through. */
1682 case 2:
1683 if (x->array[1] != y->array[1])
1684 return 0;
1685 /* Fall through. */
1686 case 1:
1687 return x->array[0] == y->array[0];
1688 break;
1689 default:
1690 abort ();
1691 }
1692 }
1693
1694 static INLINE int
1695 cpu_flags_check_cpu64 (i386_cpu_flags f)
1696 {
1697 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1698 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1699 }
1700
1701 static INLINE i386_cpu_flags
1702 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1703 {
1704 switch (ARRAY_SIZE (x.array))
1705 {
1706 case 4:
1707 x.array [3] &= y.array [3];
1708 /* Fall through. */
1709 case 3:
1710 x.array [2] &= y.array [2];
1711 /* Fall through. */
1712 case 2:
1713 x.array [1] &= y.array [1];
1714 /* Fall through. */
1715 case 1:
1716 x.array [0] &= y.array [0];
1717 break;
1718 default:
1719 abort ();
1720 }
1721 return x;
1722 }
1723
1724 static INLINE i386_cpu_flags
1725 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1726 {
1727 switch (ARRAY_SIZE (x.array))
1728 {
1729 case 4:
1730 x.array [3] |= y.array [3];
1731 /* Fall through. */
1732 case 3:
1733 x.array [2] |= y.array [2];
1734 /* Fall through. */
1735 case 2:
1736 x.array [1] |= y.array [1];
1737 /* Fall through. */
1738 case 1:
1739 x.array [0] |= y.array [0];
1740 break;
1741 default:
1742 abort ();
1743 }
1744 return x;
1745 }
1746
1747 static INLINE i386_cpu_flags
1748 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1749 {
1750 switch (ARRAY_SIZE (x.array))
1751 {
1752 case 4:
1753 x.array [3] &= ~y.array [3];
1754 /* Fall through. */
1755 case 3:
1756 x.array [2] &= ~y.array [2];
1757 /* Fall through. */
1758 case 2:
1759 x.array [1] &= ~y.array [1];
1760 /* Fall through. */
1761 case 1:
1762 x.array [0] &= ~y.array [0];
1763 break;
1764 default:
1765 abort ();
1766 }
1767 return x;
1768 }
1769
1770 #define CPU_FLAGS_ARCH_MATCH 0x1
1771 #define CPU_FLAGS_64BIT_MATCH 0x2
1772
1773 #define CPU_FLAGS_PERFECT_MATCH \
1774 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1775
1776 /* Return CPU flags match bits. */
1777
1778 static int
1779 cpu_flags_match (const insn_template *t)
1780 {
1781 i386_cpu_flags x = t->cpu_flags;
1782 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1783
1784 x.bitfield.cpu64 = 0;
1785 x.bitfield.cpuno64 = 0;
1786
1787 if (cpu_flags_all_zero (&x))
1788 {
1789 /* This instruction is available on all archs. */
1790 match |= CPU_FLAGS_ARCH_MATCH;
1791 }
1792 else
1793 {
1794 /* This instruction is available only on some archs. */
1795 i386_cpu_flags cpu = cpu_arch_flags;
1796
1797 /* AVX512VL is no standalone feature - match it and then strip it. */
1798 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1799 return match;
1800 x.bitfield.cpuavx512vl = 0;
1801
1802 cpu = cpu_flags_and (x, cpu);
1803 if (!cpu_flags_all_zero (&cpu))
1804 {
1805 if (x.bitfield.cpuavx)
1806 {
1807 /* We need to check a few extra flags with AVX. */
1808 if (cpu.bitfield.cpuavx
1809 && (!t->opcode_modifier.sse2avx || sse2avx)
1810 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1811 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1812 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1813 match |= CPU_FLAGS_ARCH_MATCH;
1814 }
1815 else if (x.bitfield.cpuavx512f)
1816 {
1817 /* We need to check a few extra flags with AVX512F. */
1818 if (cpu.bitfield.cpuavx512f
1819 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1820 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1821 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1822 match |= CPU_FLAGS_ARCH_MATCH;
1823 }
1824 else
1825 match |= CPU_FLAGS_ARCH_MATCH;
1826 }
1827 }
1828 return match;
1829 }
1830
1831 static INLINE i386_operand_type
1832 operand_type_and (i386_operand_type x, i386_operand_type y)
1833 {
1834 if (x.bitfield.class != y.bitfield.class)
1835 x.bitfield.class = ClassNone;
1836 if (x.bitfield.instance != y.bitfield.instance)
1837 x.bitfield.instance = InstanceNone;
1838
1839 switch (ARRAY_SIZE (x.array))
1840 {
1841 case 3:
1842 x.array [2] &= y.array [2];
1843 /* Fall through. */
1844 case 2:
1845 x.array [1] &= y.array [1];
1846 /* Fall through. */
1847 case 1:
1848 x.array [0] &= y.array [0];
1849 break;
1850 default:
1851 abort ();
1852 }
1853 return x;
1854 }
1855
1856 static INLINE i386_operand_type
1857 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1858 {
1859 gas_assert (y.bitfield.class == ClassNone);
1860 gas_assert (y.bitfield.instance == InstanceNone);
1861
1862 switch (ARRAY_SIZE (x.array))
1863 {
1864 case 3:
1865 x.array [2] &= ~y.array [2];
1866 /* Fall through. */
1867 case 2:
1868 x.array [1] &= ~y.array [1];
1869 /* Fall through. */
1870 case 1:
1871 x.array [0] &= ~y.array [0];
1872 break;
1873 default:
1874 abort ();
1875 }
1876 return x;
1877 }
1878
1879 static INLINE i386_operand_type
1880 operand_type_or (i386_operand_type x, i386_operand_type y)
1881 {
1882 gas_assert (x.bitfield.class == ClassNone ||
1883 y.bitfield.class == ClassNone ||
1884 x.bitfield.class == y.bitfield.class);
1885 gas_assert (x.bitfield.instance == InstanceNone ||
1886 y.bitfield.instance == InstanceNone ||
1887 x.bitfield.instance == y.bitfield.instance);
1888
1889 switch (ARRAY_SIZE (x.array))
1890 {
1891 case 3:
1892 x.array [2] |= y.array [2];
1893 /* Fall through. */
1894 case 2:
1895 x.array [1] |= y.array [1];
1896 /* Fall through. */
1897 case 1:
1898 x.array [0] |= y.array [0];
1899 break;
1900 default:
1901 abort ();
1902 }
1903 return x;
1904 }
1905
1906 static INLINE i386_operand_type
1907 operand_type_xor (i386_operand_type x, i386_operand_type y)
1908 {
1909 gas_assert (y.bitfield.class == ClassNone);
1910 gas_assert (y.bitfield.instance == InstanceNone);
1911
1912 switch (ARRAY_SIZE (x.array))
1913 {
1914 case 3:
1915 x.array [2] ^= y.array [2];
1916 /* Fall through. */
1917 case 2:
1918 x.array [1] ^= y.array [1];
1919 /* Fall through. */
1920 case 1:
1921 x.array [0] ^= y.array [0];
1922 break;
1923 default:
1924 abort ();
1925 }
1926 return x;
1927 }
1928
1929 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1930 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1931 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1932 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1933 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
1934 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
1935 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1936 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1937 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1938 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1939 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1940 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1941 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1942 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1943 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1944 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1945 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1946
1947 enum operand_type
1948 {
1949 reg,
1950 imm,
1951 disp,
1952 anymem
1953 };
1954
1955 static INLINE int
1956 operand_type_check (i386_operand_type t, enum operand_type c)
1957 {
1958 switch (c)
1959 {
1960 case reg:
1961 return t.bitfield.class == Reg;
1962
1963 case imm:
1964 return (t.bitfield.imm8
1965 || t.bitfield.imm8s
1966 || t.bitfield.imm16
1967 || t.bitfield.imm32
1968 || t.bitfield.imm32s
1969 || t.bitfield.imm64);
1970
1971 case disp:
1972 return (t.bitfield.disp8
1973 || t.bitfield.disp16
1974 || t.bitfield.disp32
1975 || t.bitfield.disp32s
1976 || t.bitfield.disp64);
1977
1978 case anymem:
1979 return (t.bitfield.disp8
1980 || t.bitfield.disp16
1981 || t.bitfield.disp32
1982 || t.bitfield.disp32s
1983 || t.bitfield.disp64
1984 || t.bitfield.baseindex);
1985
1986 default:
1987 abort ();
1988 }
1989
1990 return 0;
1991 }
1992
1993 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1994 between operand GIVEN and opeand WANTED for instruction template T. */
1995
1996 static INLINE int
1997 match_operand_size (const insn_template *t, unsigned int wanted,
1998 unsigned int given)
1999 {
2000 return !((i.types[given].bitfield.byte
2001 && !t->operand_types[wanted].bitfield.byte)
2002 || (i.types[given].bitfield.word
2003 && !t->operand_types[wanted].bitfield.word)
2004 || (i.types[given].bitfield.dword
2005 && !t->operand_types[wanted].bitfield.dword)
2006 || (i.types[given].bitfield.qword
2007 && !t->operand_types[wanted].bitfield.qword)
2008 || (i.types[given].bitfield.tbyte
2009 && !t->operand_types[wanted].bitfield.tbyte));
2010 }
2011
2012 /* Return 1 if there is no conflict in SIMD register between operand
2013 GIVEN and opeand WANTED for instruction template T. */
2014
2015 static INLINE int
2016 match_simd_size (const insn_template *t, unsigned int wanted,
2017 unsigned int given)
2018 {
2019 return !((i.types[given].bitfield.xmmword
2020 && !t->operand_types[wanted].bitfield.xmmword)
2021 || (i.types[given].bitfield.ymmword
2022 && !t->operand_types[wanted].bitfield.ymmword)
2023 || (i.types[given].bitfield.zmmword
2024 && !t->operand_types[wanted].bitfield.zmmword));
2025 }
2026
2027 /* Return 1 if there is no conflict in any size between operand GIVEN
2028 and opeand WANTED for instruction template T. */
2029
2030 static INLINE int
2031 match_mem_size (const insn_template *t, unsigned int wanted,
2032 unsigned int given)
2033 {
2034 return (match_operand_size (t, wanted, given)
2035 && !((i.types[given].bitfield.unspecified
2036 && !i.broadcast
2037 && !t->operand_types[wanted].bitfield.unspecified)
2038 || (i.types[given].bitfield.fword
2039 && !t->operand_types[wanted].bitfield.fword)
2040 /* For scalar opcode templates to allow register and memory
2041 operands at the same time, some special casing is needed
2042 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2043 down-conversion vpmov*. */
2044 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2045 && !t->opcode_modifier.broadcast
2046 && (t->operand_types[wanted].bitfield.byte
2047 || t->operand_types[wanted].bitfield.word
2048 || t->operand_types[wanted].bitfield.dword
2049 || t->operand_types[wanted].bitfield.qword))
2050 ? (i.types[given].bitfield.xmmword
2051 || i.types[given].bitfield.ymmword
2052 || i.types[given].bitfield.zmmword)
2053 : !match_simd_size(t, wanted, given))));
2054 }
2055
2056 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2057 operands for instruction template T, and it has MATCH_REVERSE set if there
2058 is no size conflict on any operands for the template with operands reversed
2059 (and the template allows for reversing in the first place). */
2060
2061 #define MATCH_STRAIGHT 1
2062 #define MATCH_REVERSE 2
2063
2064 static INLINE unsigned int
2065 operand_size_match (const insn_template *t)
2066 {
2067 unsigned int j, match = MATCH_STRAIGHT;
2068
2069 /* Don't check non-absolute jump instructions. */
2070 if (t->opcode_modifier.jump
2071 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2072 return match;
2073
2074 /* Check memory and accumulator operand size. */
2075 for (j = 0; j < i.operands; j++)
2076 {
2077 if (i.types[j].bitfield.class != Reg
2078 && i.types[j].bitfield.class != RegSIMD
2079 && t->opcode_modifier.anysize)
2080 continue;
2081
2082 if (t->operand_types[j].bitfield.class == Reg
2083 && !match_operand_size (t, j, j))
2084 {
2085 match = 0;
2086 break;
2087 }
2088
2089 if (t->operand_types[j].bitfield.class == RegSIMD
2090 && !match_simd_size (t, j, j))
2091 {
2092 match = 0;
2093 break;
2094 }
2095
2096 if (t->operand_types[j].bitfield.instance == Accum
2097 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2098 {
2099 match = 0;
2100 break;
2101 }
2102
2103 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2104 {
2105 match = 0;
2106 break;
2107 }
2108 }
2109
2110 if (!t->opcode_modifier.d)
2111 {
2112 mismatch:
2113 if (!match)
2114 i.error = operand_size_mismatch;
2115 return match;
2116 }
2117
2118 /* Check reverse. */
2119 gas_assert (i.operands >= 2 && i.operands <= 3);
2120
2121 for (j = 0; j < i.operands; j++)
2122 {
2123 unsigned int given = i.operands - j - 1;
2124
2125 if (t->operand_types[j].bitfield.class == Reg
2126 && !match_operand_size (t, j, given))
2127 goto mismatch;
2128
2129 if (t->operand_types[j].bitfield.class == RegSIMD
2130 && !match_simd_size (t, j, given))
2131 goto mismatch;
2132
2133 if (t->operand_types[j].bitfield.instance == Accum
2134 && (!match_operand_size (t, j, given)
2135 || !match_simd_size (t, j, given)))
2136 goto mismatch;
2137
2138 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2139 goto mismatch;
2140 }
2141
2142 return match | MATCH_REVERSE;
2143 }
2144
2145 static INLINE int
2146 operand_type_match (i386_operand_type overlap,
2147 i386_operand_type given)
2148 {
2149 i386_operand_type temp = overlap;
2150
2151 temp.bitfield.unspecified = 0;
2152 temp.bitfield.byte = 0;
2153 temp.bitfield.word = 0;
2154 temp.bitfield.dword = 0;
2155 temp.bitfield.fword = 0;
2156 temp.bitfield.qword = 0;
2157 temp.bitfield.tbyte = 0;
2158 temp.bitfield.xmmword = 0;
2159 temp.bitfield.ymmword = 0;
2160 temp.bitfield.zmmword = 0;
2161 if (operand_type_all_zero (&temp))
2162 goto mismatch;
2163
2164 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2165 return 1;
2166
2167 mismatch:
2168 i.error = operand_type_mismatch;
2169 return 0;
2170 }
2171
2172 /* If given types g0 and g1 are registers they must be of the same type
2173 unless the expected operand type register overlap is null.
2174 Memory operand size of certain SIMD instructions is also being checked
2175 here. */
2176
2177 static INLINE int
2178 operand_type_register_match (i386_operand_type g0,
2179 i386_operand_type t0,
2180 i386_operand_type g1,
2181 i386_operand_type t1)
2182 {
2183 if (g0.bitfield.class != Reg
2184 && g0.bitfield.class != RegSIMD
2185 && (!operand_type_check (g0, anymem)
2186 || g0.bitfield.unspecified
2187 || t0.bitfield.class != RegSIMD))
2188 return 1;
2189
2190 if (g1.bitfield.class != Reg
2191 && g1.bitfield.class != RegSIMD
2192 && (!operand_type_check (g1, anymem)
2193 || g1.bitfield.unspecified
2194 || t1.bitfield.class != RegSIMD))
2195 return 1;
2196
2197 if (g0.bitfield.byte == g1.bitfield.byte
2198 && g0.bitfield.word == g1.bitfield.word
2199 && g0.bitfield.dword == g1.bitfield.dword
2200 && g0.bitfield.qword == g1.bitfield.qword
2201 && g0.bitfield.xmmword == g1.bitfield.xmmword
2202 && g0.bitfield.ymmword == g1.bitfield.ymmword
2203 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2204 return 1;
2205
2206 if (!(t0.bitfield.byte & t1.bitfield.byte)
2207 && !(t0.bitfield.word & t1.bitfield.word)
2208 && !(t0.bitfield.dword & t1.bitfield.dword)
2209 && !(t0.bitfield.qword & t1.bitfield.qword)
2210 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2211 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2212 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2213 return 1;
2214
2215 i.error = register_type_mismatch;
2216
2217 return 0;
2218 }
2219
2220 static INLINE unsigned int
2221 register_number (const reg_entry *r)
2222 {
2223 unsigned int nr = r->reg_num;
2224
2225 if (r->reg_flags & RegRex)
2226 nr += 8;
2227
2228 if (r->reg_flags & RegVRex)
2229 nr += 16;
2230
2231 return nr;
2232 }
2233
2234 static INLINE unsigned int
2235 mode_from_disp_size (i386_operand_type t)
2236 {
2237 if (t.bitfield.disp8)
2238 return 1;
2239 else if (t.bitfield.disp16
2240 || t.bitfield.disp32
2241 || t.bitfield.disp32s)
2242 return 2;
2243 else
2244 return 0;
2245 }
2246
2247 static INLINE int
2248 fits_in_signed_byte (addressT num)
2249 {
2250 return num + 0x80 <= 0xff;
2251 }
2252
2253 static INLINE int
2254 fits_in_unsigned_byte (addressT num)
2255 {
2256 return num <= 0xff;
2257 }
2258
2259 static INLINE int
2260 fits_in_unsigned_word (addressT num)
2261 {
2262 return num <= 0xffff;
2263 }
2264
2265 static INLINE int
2266 fits_in_signed_word (addressT num)
2267 {
2268 return num + 0x8000 <= 0xffff;
2269 }
2270
2271 static INLINE int
2272 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2273 {
2274 #ifndef BFD64
2275 return 1;
2276 #else
2277 return num + 0x80000000 <= 0xffffffff;
2278 #endif
2279 } /* fits_in_signed_long() */
2280
2281 static INLINE int
2282 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2283 {
2284 #ifndef BFD64
2285 return 1;
2286 #else
2287 return num <= 0xffffffff;
2288 #endif
2289 } /* fits_in_unsigned_long() */
2290
2291 static INLINE int
2292 fits_in_disp8 (offsetT num)
2293 {
2294 int shift = i.memshift;
2295 unsigned int mask;
2296
2297 if (shift == -1)
2298 abort ();
2299
2300 mask = (1 << shift) - 1;
2301
2302 /* Return 0 if NUM isn't properly aligned. */
2303 if ((num & mask))
2304 return 0;
2305
2306 /* Check if NUM will fit in 8bit after shift. */
2307 return fits_in_signed_byte (num >> shift);
2308 }
2309
2310 static INLINE int
2311 fits_in_imm4 (offsetT num)
2312 {
2313 return (num & 0xf) == num;
2314 }
2315
2316 static i386_operand_type
2317 smallest_imm_type (offsetT num)
2318 {
2319 i386_operand_type t;
2320
2321 operand_type_set (&t, 0);
2322 t.bitfield.imm64 = 1;
2323
2324 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2325 {
2326 /* This code is disabled on the 486 because all the Imm1 forms
2327 in the opcode table are slower on the i486. They're the
2328 versions with the implicitly specified single-position
2329 displacement, which has another syntax if you really want to
2330 use that form. */
2331 t.bitfield.imm1 = 1;
2332 t.bitfield.imm8 = 1;
2333 t.bitfield.imm8s = 1;
2334 t.bitfield.imm16 = 1;
2335 t.bitfield.imm32 = 1;
2336 t.bitfield.imm32s = 1;
2337 }
2338 else if (fits_in_signed_byte (num))
2339 {
2340 t.bitfield.imm8 = 1;
2341 t.bitfield.imm8s = 1;
2342 t.bitfield.imm16 = 1;
2343 t.bitfield.imm32 = 1;
2344 t.bitfield.imm32s = 1;
2345 }
2346 else if (fits_in_unsigned_byte (num))
2347 {
2348 t.bitfield.imm8 = 1;
2349 t.bitfield.imm16 = 1;
2350 t.bitfield.imm32 = 1;
2351 t.bitfield.imm32s = 1;
2352 }
2353 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2354 {
2355 t.bitfield.imm16 = 1;
2356 t.bitfield.imm32 = 1;
2357 t.bitfield.imm32s = 1;
2358 }
2359 else if (fits_in_signed_long (num))
2360 {
2361 t.bitfield.imm32 = 1;
2362 t.bitfield.imm32s = 1;
2363 }
2364 else if (fits_in_unsigned_long (num))
2365 t.bitfield.imm32 = 1;
2366
2367 return t;
2368 }
2369
2370 static offsetT
2371 offset_in_range (offsetT val, int size)
2372 {
2373 addressT mask;
2374
2375 switch (size)
2376 {
2377 case 1: mask = ((addressT) 1 << 8) - 1; break;
2378 case 2: mask = ((addressT) 1 << 16) - 1; break;
2379 case 4: mask = ((addressT) 2 << 31) - 1; break;
2380 #ifdef BFD64
2381 case 8: mask = ((addressT) 2 << 63) - 1; break;
2382 #endif
2383 default: abort ();
2384 }
2385
2386 #ifdef BFD64
2387 /* If BFD64, sign extend val for 32bit address mode. */
2388 if (flag_code != CODE_64BIT
2389 || i.prefix[ADDR_PREFIX])
2390 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2391 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2392 #endif
2393
2394 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2395 {
2396 char buf1[40], buf2[40];
2397
2398 sprint_value (buf1, val);
2399 sprint_value (buf2, val & mask);
2400 as_warn (_("%s shortened to %s"), buf1, buf2);
2401 }
2402 return val & mask;
2403 }
2404
2405 enum PREFIX_GROUP
2406 {
2407 PREFIX_EXIST = 0,
2408 PREFIX_LOCK,
2409 PREFIX_REP,
2410 PREFIX_DS,
2411 PREFIX_OTHER
2412 };
2413
2414 /* Returns
2415 a. PREFIX_EXIST if attempting to add a prefix where one from the
2416 same class already exists.
2417 b. PREFIX_LOCK if lock prefix is added.
2418 c. PREFIX_REP if rep/repne prefix is added.
2419 d. PREFIX_DS if ds prefix is added.
2420 e. PREFIX_OTHER if other prefix is added.
2421 */
2422
2423 static enum PREFIX_GROUP
2424 add_prefix (unsigned int prefix)
2425 {
2426 enum PREFIX_GROUP ret = PREFIX_OTHER;
2427 unsigned int q;
2428
2429 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2430 && flag_code == CODE_64BIT)
2431 {
2432 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2433 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2434 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2435 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2436 ret = PREFIX_EXIST;
2437 q = REX_PREFIX;
2438 }
2439 else
2440 {
2441 switch (prefix)
2442 {
2443 default:
2444 abort ();
2445
2446 case DS_PREFIX_OPCODE:
2447 ret = PREFIX_DS;
2448 /* Fall through. */
2449 case CS_PREFIX_OPCODE:
2450 case ES_PREFIX_OPCODE:
2451 case FS_PREFIX_OPCODE:
2452 case GS_PREFIX_OPCODE:
2453 case SS_PREFIX_OPCODE:
2454 q = SEG_PREFIX;
2455 break;
2456
2457 case REPNE_PREFIX_OPCODE:
2458 case REPE_PREFIX_OPCODE:
2459 q = REP_PREFIX;
2460 ret = PREFIX_REP;
2461 break;
2462
2463 case LOCK_PREFIX_OPCODE:
2464 q = LOCK_PREFIX;
2465 ret = PREFIX_LOCK;
2466 break;
2467
2468 case FWAIT_OPCODE:
2469 q = WAIT_PREFIX;
2470 break;
2471
2472 case ADDR_PREFIX_OPCODE:
2473 q = ADDR_PREFIX;
2474 break;
2475
2476 case DATA_PREFIX_OPCODE:
2477 q = DATA_PREFIX;
2478 break;
2479 }
2480 if (i.prefix[q] != 0)
2481 ret = PREFIX_EXIST;
2482 }
2483
2484 if (ret)
2485 {
2486 if (!i.prefix[q])
2487 ++i.prefixes;
2488 i.prefix[q] |= prefix;
2489 }
2490 else
2491 as_bad (_("same type of prefix used twice"));
2492
2493 return ret;
2494 }
2495
2496 static void
2497 update_code_flag (int value, int check)
2498 {
2499 PRINTF_LIKE ((*as_error));
2500
2501 flag_code = (enum flag_code) value;
2502 if (flag_code == CODE_64BIT)
2503 {
2504 cpu_arch_flags.bitfield.cpu64 = 1;
2505 cpu_arch_flags.bitfield.cpuno64 = 0;
2506 }
2507 else
2508 {
2509 cpu_arch_flags.bitfield.cpu64 = 0;
2510 cpu_arch_flags.bitfield.cpuno64 = 1;
2511 }
2512 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2513 {
2514 if (check)
2515 as_error = as_fatal;
2516 else
2517 as_error = as_bad;
2518 (*as_error) (_("64bit mode not supported on `%s'."),
2519 cpu_arch_name ? cpu_arch_name : default_arch);
2520 }
2521 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2522 {
2523 if (check)
2524 as_error = as_fatal;
2525 else
2526 as_error = as_bad;
2527 (*as_error) (_("32bit mode not supported on `%s'."),
2528 cpu_arch_name ? cpu_arch_name : default_arch);
2529 }
2530 stackop_size = '\0';
2531 }
2532
2533 static void
2534 set_code_flag (int value)
2535 {
2536 update_code_flag (value, 0);
2537 }
2538
2539 static void
2540 set_16bit_gcc_code_flag (int new_code_flag)
2541 {
2542 flag_code = (enum flag_code) new_code_flag;
2543 if (flag_code != CODE_16BIT)
2544 abort ();
2545 cpu_arch_flags.bitfield.cpu64 = 0;
2546 cpu_arch_flags.bitfield.cpuno64 = 1;
2547 stackop_size = LONG_MNEM_SUFFIX;
2548 }
2549
2550 static void
2551 set_intel_syntax (int syntax_flag)
2552 {
2553 /* Find out if register prefixing is specified. */
2554 int ask_naked_reg = 0;
2555
2556 SKIP_WHITESPACE ();
2557 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2558 {
2559 char *string;
2560 int e = get_symbol_name (&string);
2561
2562 if (strcmp (string, "prefix") == 0)
2563 ask_naked_reg = 1;
2564 else if (strcmp (string, "noprefix") == 0)
2565 ask_naked_reg = -1;
2566 else
2567 as_bad (_("bad argument to syntax directive."));
2568 (void) restore_line_pointer (e);
2569 }
2570 demand_empty_rest_of_line ();
2571
2572 intel_syntax = syntax_flag;
2573
2574 if (ask_naked_reg == 0)
2575 allow_naked_reg = (intel_syntax
2576 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2577 else
2578 allow_naked_reg = (ask_naked_reg < 0);
2579
2580 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2581
2582 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2583 identifier_chars['$'] = intel_syntax ? '$' : 0;
2584 register_prefix = allow_naked_reg ? "" : "%";
2585 }
2586
2587 static void
2588 set_intel_mnemonic (int mnemonic_flag)
2589 {
2590 intel_mnemonic = mnemonic_flag;
2591 }
2592
2593 static void
2594 set_allow_index_reg (int flag)
2595 {
2596 allow_index_reg = flag;
2597 }
2598
2599 static void
2600 set_check (int what)
2601 {
2602 enum check_kind *kind;
2603 const char *str;
2604
2605 if (what)
2606 {
2607 kind = &operand_check;
2608 str = "operand";
2609 }
2610 else
2611 {
2612 kind = &sse_check;
2613 str = "sse";
2614 }
2615
2616 SKIP_WHITESPACE ();
2617
2618 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2619 {
2620 char *string;
2621 int e = get_symbol_name (&string);
2622
2623 if (strcmp (string, "none") == 0)
2624 *kind = check_none;
2625 else if (strcmp (string, "warning") == 0)
2626 *kind = check_warning;
2627 else if (strcmp (string, "error") == 0)
2628 *kind = check_error;
2629 else
2630 as_bad (_("bad argument to %s_check directive."), str);
2631 (void) restore_line_pointer (e);
2632 }
2633 else
2634 as_bad (_("missing argument for %s_check directive"), str);
2635
2636 demand_empty_rest_of_line ();
2637 }
2638
2639 static void
2640 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2641 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2642 {
2643 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2644 static const char *arch;
2645
2646 /* Intel LIOM is only supported on ELF. */
2647 if (!IS_ELF)
2648 return;
2649
2650 if (!arch)
2651 {
2652 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2653 use default_arch. */
2654 arch = cpu_arch_name;
2655 if (!arch)
2656 arch = default_arch;
2657 }
2658
2659 /* If we are targeting Intel MCU, we must enable it. */
2660 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2661 || new_flag.bitfield.cpuiamcu)
2662 return;
2663
2664 /* If we are targeting Intel L1OM, we must enable it. */
2665 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2666 || new_flag.bitfield.cpul1om)
2667 return;
2668
2669 /* If we are targeting Intel K1OM, we must enable it. */
2670 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2671 || new_flag.bitfield.cpuk1om)
2672 return;
2673
2674 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2675 #endif
2676 }
2677
2678 static void
2679 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2680 {
2681 SKIP_WHITESPACE ();
2682
2683 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2684 {
2685 char *string;
2686 int e = get_symbol_name (&string);
2687 unsigned int j;
2688 i386_cpu_flags flags;
2689
2690 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2691 {
2692 if (strcmp (string, cpu_arch[j].name) == 0)
2693 {
2694 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2695
2696 if (*string != '.')
2697 {
2698 cpu_arch_name = cpu_arch[j].name;
2699 cpu_sub_arch_name = NULL;
2700 cpu_arch_flags = cpu_arch[j].flags;
2701 if (flag_code == CODE_64BIT)
2702 {
2703 cpu_arch_flags.bitfield.cpu64 = 1;
2704 cpu_arch_flags.bitfield.cpuno64 = 0;
2705 }
2706 else
2707 {
2708 cpu_arch_flags.bitfield.cpu64 = 0;
2709 cpu_arch_flags.bitfield.cpuno64 = 1;
2710 }
2711 cpu_arch_isa = cpu_arch[j].type;
2712 cpu_arch_isa_flags = cpu_arch[j].flags;
2713 if (!cpu_arch_tune_set)
2714 {
2715 cpu_arch_tune = cpu_arch_isa;
2716 cpu_arch_tune_flags = cpu_arch_isa_flags;
2717 }
2718 break;
2719 }
2720
2721 flags = cpu_flags_or (cpu_arch_flags,
2722 cpu_arch[j].flags);
2723
2724 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2725 {
2726 if (cpu_sub_arch_name)
2727 {
2728 char *name = cpu_sub_arch_name;
2729 cpu_sub_arch_name = concat (name,
2730 cpu_arch[j].name,
2731 (const char *) NULL);
2732 free (name);
2733 }
2734 else
2735 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2736 cpu_arch_flags = flags;
2737 cpu_arch_isa_flags = flags;
2738 }
2739 else
2740 cpu_arch_isa_flags
2741 = cpu_flags_or (cpu_arch_isa_flags,
2742 cpu_arch[j].flags);
2743 (void) restore_line_pointer (e);
2744 demand_empty_rest_of_line ();
2745 return;
2746 }
2747 }
2748
2749 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2750 {
2751 /* Disable an ISA extension. */
2752 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2753 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2754 {
2755 flags = cpu_flags_and_not (cpu_arch_flags,
2756 cpu_noarch[j].flags);
2757 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2758 {
2759 if (cpu_sub_arch_name)
2760 {
2761 char *name = cpu_sub_arch_name;
2762 cpu_sub_arch_name = concat (name, string,
2763 (const char *) NULL);
2764 free (name);
2765 }
2766 else
2767 cpu_sub_arch_name = xstrdup (string);
2768 cpu_arch_flags = flags;
2769 cpu_arch_isa_flags = flags;
2770 }
2771 (void) restore_line_pointer (e);
2772 demand_empty_rest_of_line ();
2773 return;
2774 }
2775
2776 j = ARRAY_SIZE (cpu_arch);
2777 }
2778
2779 if (j >= ARRAY_SIZE (cpu_arch))
2780 as_bad (_("no such architecture: `%s'"), string);
2781
2782 *input_line_pointer = e;
2783 }
2784 else
2785 as_bad (_("missing cpu architecture"));
2786
2787 no_cond_jump_promotion = 0;
2788 if (*input_line_pointer == ','
2789 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2790 {
2791 char *string;
2792 char e;
2793
2794 ++input_line_pointer;
2795 e = get_symbol_name (&string);
2796
2797 if (strcmp (string, "nojumps") == 0)
2798 no_cond_jump_promotion = 1;
2799 else if (strcmp (string, "jumps") == 0)
2800 ;
2801 else
2802 as_bad (_("no such architecture modifier: `%s'"), string);
2803
2804 (void) restore_line_pointer (e);
2805 }
2806
2807 demand_empty_rest_of_line ();
2808 }
2809
2810 enum bfd_architecture
2811 i386_arch (void)
2812 {
2813 if (cpu_arch_isa == PROCESSOR_L1OM)
2814 {
2815 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2816 || flag_code != CODE_64BIT)
2817 as_fatal (_("Intel L1OM is 64bit ELF only"));
2818 return bfd_arch_l1om;
2819 }
2820 else if (cpu_arch_isa == PROCESSOR_K1OM)
2821 {
2822 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2823 || flag_code != CODE_64BIT)
2824 as_fatal (_("Intel K1OM is 64bit ELF only"));
2825 return bfd_arch_k1om;
2826 }
2827 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2828 {
2829 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2830 || flag_code == CODE_64BIT)
2831 as_fatal (_("Intel MCU is 32bit ELF only"));
2832 return bfd_arch_iamcu;
2833 }
2834 else
2835 return bfd_arch_i386;
2836 }
2837
2838 unsigned long
2839 i386_mach (void)
2840 {
2841 if (!strncmp (default_arch, "x86_64", 6))
2842 {
2843 if (cpu_arch_isa == PROCESSOR_L1OM)
2844 {
2845 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2846 || default_arch[6] != '\0')
2847 as_fatal (_("Intel L1OM is 64bit ELF only"));
2848 return bfd_mach_l1om;
2849 }
2850 else if (cpu_arch_isa == PROCESSOR_K1OM)
2851 {
2852 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2853 || default_arch[6] != '\0')
2854 as_fatal (_("Intel K1OM is 64bit ELF only"));
2855 return bfd_mach_k1om;
2856 }
2857 else if (default_arch[6] == '\0')
2858 return bfd_mach_x86_64;
2859 else
2860 return bfd_mach_x64_32;
2861 }
2862 else if (!strcmp (default_arch, "i386")
2863 || !strcmp (default_arch, "iamcu"))
2864 {
2865 if (cpu_arch_isa == PROCESSOR_IAMCU)
2866 {
2867 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2868 as_fatal (_("Intel MCU is 32bit ELF only"));
2869 return bfd_mach_i386_iamcu;
2870 }
2871 else
2872 return bfd_mach_i386_i386;
2873 }
2874 else
2875 as_fatal (_("unknown architecture"));
2876 }
2877 \f
2878 void
2879 md_begin (void)
2880 {
2881 const char *hash_err;
2882
2883 /* Support pseudo prefixes like {disp32}. */
2884 lex_type ['{'] = LEX_BEGIN_NAME;
2885
2886 /* Initialize op_hash hash table. */
2887 op_hash = hash_new ();
2888
2889 {
2890 const insn_template *optab;
2891 templates *core_optab;
2892
2893 /* Setup for loop. */
2894 optab = i386_optab;
2895 core_optab = XNEW (templates);
2896 core_optab->start = optab;
2897
2898 while (1)
2899 {
2900 ++optab;
2901 if (optab->name == NULL
2902 || strcmp (optab->name, (optab - 1)->name) != 0)
2903 {
2904 /* different name --> ship out current template list;
2905 add to hash table; & begin anew. */
2906 core_optab->end = optab;
2907 hash_err = hash_insert (op_hash,
2908 (optab - 1)->name,
2909 (void *) core_optab);
2910 if (hash_err)
2911 {
2912 as_fatal (_("can't hash %s: %s"),
2913 (optab - 1)->name,
2914 hash_err);
2915 }
2916 if (optab->name == NULL)
2917 break;
2918 core_optab = XNEW (templates);
2919 core_optab->start = optab;
2920 }
2921 }
2922 }
2923
2924 /* Initialize reg_hash hash table. */
2925 reg_hash = hash_new ();
2926 {
2927 const reg_entry *regtab;
2928 unsigned int regtab_size = i386_regtab_size;
2929
2930 for (regtab = i386_regtab; regtab_size--; regtab++)
2931 {
2932 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2933 if (hash_err)
2934 as_fatal (_("can't hash %s: %s"),
2935 regtab->reg_name,
2936 hash_err);
2937 }
2938 }
2939
2940 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2941 {
2942 int c;
2943 char *p;
2944
2945 for (c = 0; c < 256; c++)
2946 {
2947 if (ISDIGIT (c))
2948 {
2949 digit_chars[c] = c;
2950 mnemonic_chars[c] = c;
2951 register_chars[c] = c;
2952 operand_chars[c] = c;
2953 }
2954 else if (ISLOWER (c))
2955 {
2956 mnemonic_chars[c] = c;
2957 register_chars[c] = c;
2958 operand_chars[c] = c;
2959 }
2960 else if (ISUPPER (c))
2961 {
2962 mnemonic_chars[c] = TOLOWER (c);
2963 register_chars[c] = mnemonic_chars[c];
2964 operand_chars[c] = c;
2965 }
2966 else if (c == '{' || c == '}')
2967 {
2968 mnemonic_chars[c] = c;
2969 operand_chars[c] = c;
2970 }
2971
2972 if (ISALPHA (c) || ISDIGIT (c))
2973 identifier_chars[c] = c;
2974 else if (c >= 128)
2975 {
2976 identifier_chars[c] = c;
2977 operand_chars[c] = c;
2978 }
2979 }
2980
2981 #ifdef LEX_AT
2982 identifier_chars['@'] = '@';
2983 #endif
2984 #ifdef LEX_QM
2985 identifier_chars['?'] = '?';
2986 operand_chars['?'] = '?';
2987 #endif
2988 digit_chars['-'] = '-';
2989 mnemonic_chars['_'] = '_';
2990 mnemonic_chars['-'] = '-';
2991 mnemonic_chars['.'] = '.';
2992 identifier_chars['_'] = '_';
2993 identifier_chars['.'] = '.';
2994
2995 for (p = operand_special_chars; *p != '\0'; p++)
2996 operand_chars[(unsigned char) *p] = *p;
2997 }
2998
2999 if (flag_code == CODE_64BIT)
3000 {
3001 #if defined (OBJ_COFF) && defined (TE_PE)
3002 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3003 ? 32 : 16);
3004 #else
3005 x86_dwarf2_return_column = 16;
3006 #endif
3007 x86_cie_data_alignment = -8;
3008 }
3009 else
3010 {
3011 x86_dwarf2_return_column = 8;
3012 x86_cie_data_alignment = -4;
3013 }
3014 }
3015
3016 void
3017 i386_print_statistics (FILE *file)
3018 {
3019 hash_print_statistics (file, "i386 opcode", op_hash);
3020 hash_print_statistics (file, "i386 register", reg_hash);
3021 }
3022 \f
3023 #ifdef DEBUG386
3024
3025 /* Debugging routines for md_assemble. */
3026 static void pte (insn_template *);
3027 static void pt (i386_operand_type);
3028 static void pe (expressionS *);
3029 static void ps (symbolS *);
3030
3031 static void
3032 pi (const char *line, i386_insn *x)
3033 {
3034 unsigned int j;
3035
3036 fprintf (stdout, "%s: template ", line);
3037 pte (&x->tm);
3038 fprintf (stdout, " address: base %s index %s scale %x\n",
3039 x->base_reg ? x->base_reg->reg_name : "none",
3040 x->index_reg ? x->index_reg->reg_name : "none",
3041 x->log2_scale_factor);
3042 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3043 x->rm.mode, x->rm.reg, x->rm.regmem);
3044 fprintf (stdout, " sib: base %x index %x scale %x\n",
3045 x->sib.base, x->sib.index, x->sib.scale);
3046 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3047 (x->rex & REX_W) != 0,
3048 (x->rex & REX_R) != 0,
3049 (x->rex & REX_X) != 0,
3050 (x->rex & REX_B) != 0);
3051 for (j = 0; j < x->operands; j++)
3052 {
3053 fprintf (stdout, " #%d: ", j + 1);
3054 pt (x->types[j]);
3055 fprintf (stdout, "\n");
3056 if (x->types[j].bitfield.class == Reg
3057 || x->types[j].bitfield.class == RegMMX
3058 || x->types[j].bitfield.class == RegSIMD
3059 || x->types[j].bitfield.class == SReg
3060 || x->types[j].bitfield.class == RegCR
3061 || x->types[j].bitfield.class == RegDR
3062 || x->types[j].bitfield.class == RegTR)
3063 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3064 if (operand_type_check (x->types[j], imm))
3065 pe (x->op[j].imms);
3066 if (operand_type_check (x->types[j], disp))
3067 pe (x->op[j].disps);
3068 }
3069 }
3070
3071 static void
3072 pte (insn_template *t)
3073 {
3074 unsigned int j;
3075 fprintf (stdout, " %d operands ", t->operands);
3076 fprintf (stdout, "opcode %x ", t->base_opcode);
3077 if (t->extension_opcode != None)
3078 fprintf (stdout, "ext %x ", t->extension_opcode);
3079 if (t->opcode_modifier.d)
3080 fprintf (stdout, "D");
3081 if (t->opcode_modifier.w)
3082 fprintf (stdout, "W");
3083 fprintf (stdout, "\n");
3084 for (j = 0; j < t->operands; j++)
3085 {
3086 fprintf (stdout, " #%d type ", j + 1);
3087 pt (t->operand_types[j]);
3088 fprintf (stdout, "\n");
3089 }
3090 }
3091
3092 static void
3093 pe (expressionS *e)
3094 {
3095 fprintf (stdout, " operation %d\n", e->X_op);
3096 fprintf (stdout, " add_number %ld (%lx)\n",
3097 (long) e->X_add_number, (long) e->X_add_number);
3098 if (e->X_add_symbol)
3099 {
3100 fprintf (stdout, " add_symbol ");
3101 ps (e->X_add_symbol);
3102 fprintf (stdout, "\n");
3103 }
3104 if (e->X_op_symbol)
3105 {
3106 fprintf (stdout, " op_symbol ");
3107 ps (e->X_op_symbol);
3108 fprintf (stdout, "\n");
3109 }
3110 }
3111
3112 static void
3113 ps (symbolS *s)
3114 {
3115 fprintf (stdout, "%s type %s%s",
3116 S_GET_NAME (s),
3117 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3118 segment_name (S_GET_SEGMENT (s)));
3119 }
3120
3121 static struct type_name
3122 {
3123 i386_operand_type mask;
3124 const char *name;
3125 }
3126 const type_names[] =
3127 {
3128 { OPERAND_TYPE_REG8, "r8" },
3129 { OPERAND_TYPE_REG16, "r16" },
3130 { OPERAND_TYPE_REG32, "r32" },
3131 { OPERAND_TYPE_REG64, "r64" },
3132 { OPERAND_TYPE_ACC8, "acc8" },
3133 { OPERAND_TYPE_ACC16, "acc16" },
3134 { OPERAND_TYPE_ACC32, "acc32" },
3135 { OPERAND_TYPE_ACC64, "acc64" },
3136 { OPERAND_TYPE_IMM8, "i8" },
3137 { OPERAND_TYPE_IMM8, "i8s" },
3138 { OPERAND_TYPE_IMM16, "i16" },
3139 { OPERAND_TYPE_IMM32, "i32" },
3140 { OPERAND_TYPE_IMM32S, "i32s" },
3141 { OPERAND_TYPE_IMM64, "i64" },
3142 { OPERAND_TYPE_IMM1, "i1" },
3143 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3144 { OPERAND_TYPE_DISP8, "d8" },
3145 { OPERAND_TYPE_DISP16, "d16" },
3146 { OPERAND_TYPE_DISP32, "d32" },
3147 { OPERAND_TYPE_DISP32S, "d32s" },
3148 { OPERAND_TYPE_DISP64, "d64" },
3149 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3150 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3151 { OPERAND_TYPE_CONTROL, "control reg" },
3152 { OPERAND_TYPE_TEST, "test reg" },
3153 { OPERAND_TYPE_DEBUG, "debug reg" },
3154 { OPERAND_TYPE_FLOATREG, "FReg" },
3155 { OPERAND_TYPE_FLOATACC, "FAcc" },
3156 { OPERAND_TYPE_SREG, "SReg" },
3157 { OPERAND_TYPE_REGMMX, "rMMX" },
3158 { OPERAND_TYPE_REGXMM, "rXMM" },
3159 { OPERAND_TYPE_REGYMM, "rYMM" },
3160 { OPERAND_TYPE_REGZMM, "rZMM" },
3161 { OPERAND_TYPE_REGMASK, "Mask reg" },
3162 };
3163
3164 static void
3165 pt (i386_operand_type t)
3166 {
3167 unsigned int j;
3168 i386_operand_type a;
3169
3170 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3171 {
3172 a = operand_type_and (t, type_names[j].mask);
3173 if (operand_type_equal (&a, &type_names[j].mask))
3174 fprintf (stdout, "%s, ", type_names[j].name);
3175 }
3176 fflush (stdout);
3177 }
3178
3179 #endif /* DEBUG386 */
3180 \f
3181 static bfd_reloc_code_real_type
3182 reloc (unsigned int size,
3183 int pcrel,
3184 int sign,
3185 bfd_reloc_code_real_type other)
3186 {
3187 if (other != NO_RELOC)
3188 {
3189 reloc_howto_type *rel;
3190
3191 if (size == 8)
3192 switch (other)
3193 {
3194 case BFD_RELOC_X86_64_GOT32:
3195 return BFD_RELOC_X86_64_GOT64;
3196 break;
3197 case BFD_RELOC_X86_64_GOTPLT64:
3198 return BFD_RELOC_X86_64_GOTPLT64;
3199 break;
3200 case BFD_RELOC_X86_64_PLTOFF64:
3201 return BFD_RELOC_X86_64_PLTOFF64;
3202 break;
3203 case BFD_RELOC_X86_64_GOTPC32:
3204 other = BFD_RELOC_X86_64_GOTPC64;
3205 break;
3206 case BFD_RELOC_X86_64_GOTPCREL:
3207 other = BFD_RELOC_X86_64_GOTPCREL64;
3208 break;
3209 case BFD_RELOC_X86_64_TPOFF32:
3210 other = BFD_RELOC_X86_64_TPOFF64;
3211 break;
3212 case BFD_RELOC_X86_64_DTPOFF32:
3213 other = BFD_RELOC_X86_64_DTPOFF64;
3214 break;
3215 default:
3216 break;
3217 }
3218
3219 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3220 if (other == BFD_RELOC_SIZE32)
3221 {
3222 if (size == 8)
3223 other = BFD_RELOC_SIZE64;
3224 if (pcrel)
3225 {
3226 as_bad (_("there are no pc-relative size relocations"));
3227 return NO_RELOC;
3228 }
3229 }
3230 #endif
3231
3232 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3233 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3234 sign = -1;
3235
3236 rel = bfd_reloc_type_lookup (stdoutput, other);
3237 if (!rel)
3238 as_bad (_("unknown relocation (%u)"), other);
3239 else if (size != bfd_get_reloc_size (rel))
3240 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3241 bfd_get_reloc_size (rel),
3242 size);
3243 else if (pcrel && !rel->pc_relative)
3244 as_bad (_("non-pc-relative relocation for pc-relative field"));
3245 else if ((rel->complain_on_overflow == complain_overflow_signed
3246 && !sign)
3247 || (rel->complain_on_overflow == complain_overflow_unsigned
3248 && sign > 0))
3249 as_bad (_("relocated field and relocation type differ in signedness"));
3250 else
3251 return other;
3252 return NO_RELOC;
3253 }
3254
3255 if (pcrel)
3256 {
3257 if (!sign)
3258 as_bad (_("there are no unsigned pc-relative relocations"));
3259 switch (size)
3260 {
3261 case 1: return BFD_RELOC_8_PCREL;
3262 case 2: return BFD_RELOC_16_PCREL;
3263 case 4: return BFD_RELOC_32_PCREL;
3264 case 8: return BFD_RELOC_64_PCREL;
3265 }
3266 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3267 }
3268 else
3269 {
3270 if (sign > 0)
3271 switch (size)
3272 {
3273 case 4: return BFD_RELOC_X86_64_32S;
3274 }
3275 else
3276 switch (size)
3277 {
3278 case 1: return BFD_RELOC_8;
3279 case 2: return BFD_RELOC_16;
3280 case 4: return BFD_RELOC_32;
3281 case 8: return BFD_RELOC_64;
3282 }
3283 as_bad (_("cannot do %s %u byte relocation"),
3284 sign > 0 ? "signed" : "unsigned", size);
3285 }
3286
3287 return NO_RELOC;
3288 }
3289
3290 /* Here we decide which fixups can be adjusted to make them relative to
3291 the beginning of the section instead of the symbol. Basically we need
3292 to make sure that the dynamic relocations are done correctly, so in
3293 some cases we force the original symbol to be used. */
3294
3295 int
3296 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3297 {
3298 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3299 if (!IS_ELF)
3300 return 1;
3301
3302 /* Don't adjust pc-relative references to merge sections in 64-bit
3303 mode. */
3304 if (use_rela_relocations
3305 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3306 && fixP->fx_pcrel)
3307 return 0;
3308
3309 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3310 and changed later by validate_fix. */
3311 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3312 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3313 return 0;
3314
3315 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3316 for size relocations. */
3317 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3318 || fixP->fx_r_type == BFD_RELOC_SIZE64
3319 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3320 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3321 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3322 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3323 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3324 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3325 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3326 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3327 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3328 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3329 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3330 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3331 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3332 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3333 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3334 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3335 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3336 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3337 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3338 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3339 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3340 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3341 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3342 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3343 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3344 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3345 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3346 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3347 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3348 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3349 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3350 return 0;
3351 #endif
3352 return 1;
3353 }
3354
3355 static int
3356 intel_float_operand (const char *mnemonic)
3357 {
3358 /* Note that the value returned is meaningful only for opcodes with (memory)
3359 operands, hence the code here is free to improperly handle opcodes that
3360 have no operands (for better performance and smaller code). */
3361
3362 if (mnemonic[0] != 'f')
3363 return 0; /* non-math */
3364
3365 switch (mnemonic[1])
3366 {
3367 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3368 the fs segment override prefix not currently handled because no
3369 call path can make opcodes without operands get here */
3370 case 'i':
3371 return 2 /* integer op */;
3372 case 'l':
3373 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3374 return 3; /* fldcw/fldenv */
3375 break;
3376 case 'n':
3377 if (mnemonic[2] != 'o' /* fnop */)
3378 return 3; /* non-waiting control op */
3379 break;
3380 case 'r':
3381 if (mnemonic[2] == 's')
3382 return 3; /* frstor/frstpm */
3383 break;
3384 case 's':
3385 if (mnemonic[2] == 'a')
3386 return 3; /* fsave */
3387 if (mnemonic[2] == 't')
3388 {
3389 switch (mnemonic[3])
3390 {
3391 case 'c': /* fstcw */
3392 case 'd': /* fstdw */
3393 case 'e': /* fstenv */
3394 case 's': /* fsts[gw] */
3395 return 3;
3396 }
3397 }
3398 break;
3399 case 'x':
3400 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3401 return 0; /* fxsave/fxrstor are not really math ops */
3402 break;
3403 }
3404
3405 return 1;
3406 }
3407
3408 /* Build the VEX prefix. */
3409
3410 static void
3411 build_vex_prefix (const insn_template *t)
3412 {
3413 unsigned int register_specifier;
3414 unsigned int implied_prefix;
3415 unsigned int vector_length;
3416 unsigned int w;
3417
3418 /* Check register specifier. */
3419 if (i.vex.register_specifier)
3420 {
3421 register_specifier =
3422 ~register_number (i.vex.register_specifier) & 0xf;
3423 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3424 }
3425 else
3426 register_specifier = 0xf;
3427
3428 /* Use 2-byte VEX prefix by swapping destination and source operand
3429 if there are more than 1 register operand. */
3430 if (i.reg_operands > 1
3431 && i.vec_encoding != vex_encoding_vex3
3432 && i.dir_encoding == dir_encoding_default
3433 && i.operands == i.reg_operands
3434 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3435 && i.tm.opcode_modifier.vexopcode == VEX0F
3436 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3437 && i.rex == REX_B)
3438 {
3439 unsigned int xchg = i.operands - 1;
3440 union i386_op temp_op;
3441 i386_operand_type temp_type;
3442
3443 temp_type = i.types[xchg];
3444 i.types[xchg] = i.types[0];
3445 i.types[0] = temp_type;
3446 temp_op = i.op[xchg];
3447 i.op[xchg] = i.op[0];
3448 i.op[0] = temp_op;
3449
3450 gas_assert (i.rm.mode == 3);
3451
3452 i.rex = REX_R;
3453 xchg = i.rm.regmem;
3454 i.rm.regmem = i.rm.reg;
3455 i.rm.reg = xchg;
3456
3457 if (i.tm.opcode_modifier.d)
3458 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3459 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3460 else /* Use the next insn. */
3461 i.tm = t[1];
3462 }
3463
3464 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3465 are no memory operands and at least 3 register ones. */
3466 if (i.reg_operands >= 3
3467 && i.vec_encoding != vex_encoding_vex3
3468 && i.reg_operands == i.operands - i.imm_operands
3469 && i.tm.opcode_modifier.vex
3470 && i.tm.opcode_modifier.commutative
3471 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3472 && i.rex == REX_B
3473 && i.vex.register_specifier
3474 && !(i.vex.register_specifier->reg_flags & RegRex))
3475 {
3476 unsigned int xchg = i.operands - i.reg_operands;
3477 union i386_op temp_op;
3478 i386_operand_type temp_type;
3479
3480 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3481 gas_assert (!i.tm.opcode_modifier.sae);
3482 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3483 &i.types[i.operands - 3]));
3484 gas_assert (i.rm.mode == 3);
3485
3486 temp_type = i.types[xchg];
3487 i.types[xchg] = i.types[xchg + 1];
3488 i.types[xchg + 1] = temp_type;
3489 temp_op = i.op[xchg];
3490 i.op[xchg] = i.op[xchg + 1];
3491 i.op[xchg + 1] = temp_op;
3492
3493 i.rex = 0;
3494 xchg = i.rm.regmem | 8;
3495 i.rm.regmem = ~register_specifier & 0xf;
3496 gas_assert (!(i.rm.regmem & 8));
3497 i.vex.register_specifier += xchg - i.rm.regmem;
3498 register_specifier = ~xchg & 0xf;
3499 }
3500
3501 if (i.tm.opcode_modifier.vex == VEXScalar)
3502 vector_length = avxscalar;
3503 else if (i.tm.opcode_modifier.vex == VEX256)
3504 vector_length = 1;
3505 else
3506 {
3507 unsigned int op;
3508
3509 /* Determine vector length from the last multi-length vector
3510 operand. */
3511 vector_length = 0;
3512 for (op = t->operands; op--;)
3513 if (t->operand_types[op].bitfield.xmmword
3514 && t->operand_types[op].bitfield.ymmword
3515 && i.types[op].bitfield.ymmword)
3516 {
3517 vector_length = 1;
3518 break;
3519 }
3520 }
3521
3522 switch ((i.tm.base_opcode >> 8) & 0xff)
3523 {
3524 case 0:
3525 implied_prefix = 0;
3526 break;
3527 case DATA_PREFIX_OPCODE:
3528 implied_prefix = 1;
3529 break;
3530 case REPE_PREFIX_OPCODE:
3531 implied_prefix = 2;
3532 break;
3533 case REPNE_PREFIX_OPCODE:
3534 implied_prefix = 3;
3535 break;
3536 default:
3537 abort ();
3538 }
3539
3540 /* Check the REX.W bit and VEXW. */
3541 if (i.tm.opcode_modifier.vexw == VEXWIG)
3542 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3543 else if (i.tm.opcode_modifier.vexw)
3544 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3545 else
3546 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3547
3548 /* Use 2-byte VEX prefix if possible. */
3549 if (w == 0
3550 && i.vec_encoding != vex_encoding_vex3
3551 && i.tm.opcode_modifier.vexopcode == VEX0F
3552 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3553 {
3554 /* 2-byte VEX prefix. */
3555 unsigned int r;
3556
3557 i.vex.length = 2;
3558 i.vex.bytes[0] = 0xc5;
3559
3560 /* Check the REX.R bit. */
3561 r = (i.rex & REX_R) ? 0 : 1;
3562 i.vex.bytes[1] = (r << 7
3563 | register_specifier << 3
3564 | vector_length << 2
3565 | implied_prefix);
3566 }
3567 else
3568 {
3569 /* 3-byte VEX prefix. */
3570 unsigned int m;
3571
3572 i.vex.length = 3;
3573
3574 switch (i.tm.opcode_modifier.vexopcode)
3575 {
3576 case VEX0F:
3577 m = 0x1;
3578 i.vex.bytes[0] = 0xc4;
3579 break;
3580 case VEX0F38:
3581 m = 0x2;
3582 i.vex.bytes[0] = 0xc4;
3583 break;
3584 case VEX0F3A:
3585 m = 0x3;
3586 i.vex.bytes[0] = 0xc4;
3587 break;
3588 case XOP08:
3589 m = 0x8;
3590 i.vex.bytes[0] = 0x8f;
3591 break;
3592 case XOP09:
3593 m = 0x9;
3594 i.vex.bytes[0] = 0x8f;
3595 break;
3596 case XOP0A:
3597 m = 0xa;
3598 i.vex.bytes[0] = 0x8f;
3599 break;
3600 default:
3601 abort ();
3602 }
3603
3604 /* The high 3 bits of the second VEX byte are 1's compliment
3605 of RXB bits from REX. */
3606 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3607
3608 i.vex.bytes[2] = (w << 7
3609 | register_specifier << 3
3610 | vector_length << 2
3611 | implied_prefix);
3612 }
3613 }
3614
3615 static INLINE bfd_boolean
3616 is_evex_encoding (const insn_template *t)
3617 {
3618 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3619 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3620 || t->opcode_modifier.sae;
3621 }
3622
3623 static INLINE bfd_boolean
3624 is_any_vex_encoding (const insn_template *t)
3625 {
3626 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3627 || is_evex_encoding (t);
3628 }
3629
3630 /* Build the EVEX prefix. */
3631
3632 static void
3633 build_evex_prefix (void)
3634 {
3635 unsigned int register_specifier;
3636 unsigned int implied_prefix;
3637 unsigned int m, w;
3638 rex_byte vrex_used = 0;
3639
3640 /* Check register specifier. */
3641 if (i.vex.register_specifier)
3642 {
3643 gas_assert ((i.vrex & REX_X) == 0);
3644
3645 register_specifier = i.vex.register_specifier->reg_num;
3646 if ((i.vex.register_specifier->reg_flags & RegRex))
3647 register_specifier += 8;
3648 /* The upper 16 registers are encoded in the fourth byte of the
3649 EVEX prefix. */
3650 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3651 i.vex.bytes[3] = 0x8;
3652 register_specifier = ~register_specifier & 0xf;
3653 }
3654 else
3655 {
3656 register_specifier = 0xf;
3657
3658 /* Encode upper 16 vector index register in the fourth byte of
3659 the EVEX prefix. */
3660 if (!(i.vrex & REX_X))
3661 i.vex.bytes[3] = 0x8;
3662 else
3663 vrex_used |= REX_X;
3664 }
3665
3666 switch ((i.tm.base_opcode >> 8) & 0xff)
3667 {
3668 case 0:
3669 implied_prefix = 0;
3670 break;
3671 case DATA_PREFIX_OPCODE:
3672 implied_prefix = 1;
3673 break;
3674 case REPE_PREFIX_OPCODE:
3675 implied_prefix = 2;
3676 break;
3677 case REPNE_PREFIX_OPCODE:
3678 implied_prefix = 3;
3679 break;
3680 default:
3681 abort ();
3682 }
3683
3684 /* 4 byte EVEX prefix. */
3685 i.vex.length = 4;
3686 i.vex.bytes[0] = 0x62;
3687
3688 /* mmmm bits. */
3689 switch (i.tm.opcode_modifier.vexopcode)
3690 {
3691 case VEX0F:
3692 m = 1;
3693 break;
3694 case VEX0F38:
3695 m = 2;
3696 break;
3697 case VEX0F3A:
3698 m = 3;
3699 break;
3700 default:
3701 abort ();
3702 break;
3703 }
3704
3705 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3706 bits from REX. */
3707 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3708
3709 /* The fifth bit of the second EVEX byte is 1's compliment of the
3710 REX_R bit in VREX. */
3711 if (!(i.vrex & REX_R))
3712 i.vex.bytes[1] |= 0x10;
3713 else
3714 vrex_used |= REX_R;
3715
3716 if ((i.reg_operands + i.imm_operands) == i.operands)
3717 {
3718 /* When all operands are registers, the REX_X bit in REX is not
3719 used. We reuse it to encode the upper 16 registers, which is
3720 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3721 as 1's compliment. */
3722 if ((i.vrex & REX_B))
3723 {
3724 vrex_used |= REX_B;
3725 i.vex.bytes[1] &= ~0x40;
3726 }
3727 }
3728
3729 /* EVEX instructions shouldn't need the REX prefix. */
3730 i.vrex &= ~vrex_used;
3731 gas_assert (i.vrex == 0);
3732
3733 /* Check the REX.W bit and VEXW. */
3734 if (i.tm.opcode_modifier.vexw == VEXWIG)
3735 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3736 else if (i.tm.opcode_modifier.vexw)
3737 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3738 else
3739 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3740
3741 /* Encode the U bit. */
3742 implied_prefix |= 0x4;
3743
3744 /* The third byte of the EVEX prefix. */
3745 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3746
3747 /* The fourth byte of the EVEX prefix. */
3748 /* The zeroing-masking bit. */
3749 if (i.mask && i.mask->zeroing)
3750 i.vex.bytes[3] |= 0x80;
3751
3752 /* Don't always set the broadcast bit if there is no RC. */
3753 if (!i.rounding)
3754 {
3755 /* Encode the vector length. */
3756 unsigned int vec_length;
3757
3758 if (!i.tm.opcode_modifier.evex
3759 || i.tm.opcode_modifier.evex == EVEXDYN)
3760 {
3761 unsigned int op;
3762
3763 /* Determine vector length from the last multi-length vector
3764 operand. */
3765 vec_length = 0;
3766 for (op = i.operands; op--;)
3767 if (i.tm.operand_types[op].bitfield.xmmword
3768 + i.tm.operand_types[op].bitfield.ymmword
3769 + i.tm.operand_types[op].bitfield.zmmword > 1)
3770 {
3771 if (i.types[op].bitfield.zmmword)
3772 {
3773 i.tm.opcode_modifier.evex = EVEX512;
3774 break;
3775 }
3776 else if (i.types[op].bitfield.ymmword)
3777 {
3778 i.tm.opcode_modifier.evex = EVEX256;
3779 break;
3780 }
3781 else if (i.types[op].bitfield.xmmword)
3782 {
3783 i.tm.opcode_modifier.evex = EVEX128;
3784 break;
3785 }
3786 else if (i.broadcast && (int) op == i.broadcast->operand)
3787 {
3788 switch (i.broadcast->bytes)
3789 {
3790 case 64:
3791 i.tm.opcode_modifier.evex = EVEX512;
3792 break;
3793 case 32:
3794 i.tm.opcode_modifier.evex = EVEX256;
3795 break;
3796 case 16:
3797 i.tm.opcode_modifier.evex = EVEX128;
3798 break;
3799 default:
3800 abort ();
3801 }
3802 break;
3803 }
3804 }
3805
3806 if (op >= MAX_OPERANDS)
3807 abort ();
3808 }
3809
3810 switch (i.tm.opcode_modifier.evex)
3811 {
3812 case EVEXLIG: /* LL' is ignored */
3813 vec_length = evexlig << 5;
3814 break;
3815 case EVEX128:
3816 vec_length = 0 << 5;
3817 break;
3818 case EVEX256:
3819 vec_length = 1 << 5;
3820 break;
3821 case EVEX512:
3822 vec_length = 2 << 5;
3823 break;
3824 default:
3825 abort ();
3826 break;
3827 }
3828 i.vex.bytes[3] |= vec_length;
3829 /* Encode the broadcast bit. */
3830 if (i.broadcast)
3831 i.vex.bytes[3] |= 0x10;
3832 }
3833 else
3834 {
3835 if (i.rounding->type != saeonly)
3836 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3837 else
3838 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3839 }
3840
3841 if (i.mask && i.mask->mask)
3842 i.vex.bytes[3] |= i.mask->mask->reg_num;
3843 }
3844
3845 static void
3846 process_immext (void)
3847 {
3848 expressionS *exp;
3849
3850 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3851 which is coded in the same place as an 8-bit immediate field
3852 would be. Here we fake an 8-bit immediate operand from the
3853 opcode suffix stored in tm.extension_opcode.
3854
3855 AVX instructions also use this encoding, for some of
3856 3 argument instructions. */
3857
3858 gas_assert (i.imm_operands <= 1
3859 && (i.operands <= 2
3860 || (is_any_vex_encoding (&i.tm)
3861 && i.operands <= 4)));
3862
3863 exp = &im_expressions[i.imm_operands++];
3864 i.op[i.operands].imms = exp;
3865 i.types[i.operands] = imm8;
3866 i.operands++;
3867 exp->X_op = O_constant;
3868 exp->X_add_number = i.tm.extension_opcode;
3869 i.tm.extension_opcode = None;
3870 }
3871
3872
3873 static int
3874 check_hle (void)
3875 {
3876 switch (i.tm.opcode_modifier.hleprefixok)
3877 {
3878 default:
3879 abort ();
3880 case HLEPrefixNone:
3881 as_bad (_("invalid instruction `%s' after `%s'"),
3882 i.tm.name, i.hle_prefix);
3883 return 0;
3884 case HLEPrefixLock:
3885 if (i.prefix[LOCK_PREFIX])
3886 return 1;
3887 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3888 return 0;
3889 case HLEPrefixAny:
3890 return 1;
3891 case HLEPrefixRelease:
3892 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3893 {
3894 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3895 i.tm.name);
3896 return 0;
3897 }
3898 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3899 {
3900 as_bad (_("memory destination needed for instruction `%s'"
3901 " after `xrelease'"), i.tm.name);
3902 return 0;
3903 }
3904 return 1;
3905 }
3906 }
3907
3908 /* Try the shortest encoding by shortening operand size. */
3909
3910 static void
3911 optimize_encoding (void)
3912 {
3913 unsigned int j;
3914
3915 if (optimize_for_space
3916 && i.reg_operands == 1
3917 && i.imm_operands == 1
3918 && !i.types[1].bitfield.byte
3919 && i.op[0].imms->X_op == O_constant
3920 && fits_in_imm7 (i.op[0].imms->X_add_number)
3921 && ((i.tm.base_opcode == 0xa8
3922 && i.tm.extension_opcode == None)
3923 || (i.tm.base_opcode == 0xf6
3924 && i.tm.extension_opcode == 0x0)))
3925 {
3926 /* Optimize: -Os:
3927 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3928 */
3929 unsigned int base_regnum = i.op[1].regs->reg_num;
3930 if (flag_code == CODE_64BIT || base_regnum < 4)
3931 {
3932 i.types[1].bitfield.byte = 1;
3933 /* Ignore the suffix. */
3934 i.suffix = 0;
3935 if (base_regnum >= 4
3936 && !(i.op[1].regs->reg_flags & RegRex))
3937 {
3938 /* Handle SP, BP, SI and DI registers. */
3939 if (i.types[1].bitfield.word)
3940 j = 16;
3941 else if (i.types[1].bitfield.dword)
3942 j = 32;
3943 else
3944 j = 48;
3945 i.op[1].regs -= j;
3946 }
3947 }
3948 }
3949 else if (flag_code == CODE_64BIT
3950 && ((i.types[1].bitfield.qword
3951 && i.reg_operands == 1
3952 && i.imm_operands == 1
3953 && i.op[0].imms->X_op == O_constant
3954 && ((i.tm.base_opcode == 0xb8
3955 && i.tm.extension_opcode == None
3956 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3957 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3958 && (((i.tm.base_opcode == 0x24
3959 || i.tm.base_opcode == 0xa8)
3960 && i.tm.extension_opcode == None)
3961 || (i.tm.base_opcode == 0x80
3962 && i.tm.extension_opcode == 0x4)
3963 || ((i.tm.base_opcode == 0xf6
3964 || (i.tm.base_opcode | 1) == 0xc7)
3965 && i.tm.extension_opcode == 0x0)))
3966 || (fits_in_imm7 (i.op[0].imms->X_add_number)
3967 && i.tm.base_opcode == 0x83
3968 && i.tm.extension_opcode == 0x4)))
3969 || (i.types[0].bitfield.qword
3970 && ((i.reg_operands == 2
3971 && i.op[0].regs == i.op[1].regs
3972 && ((i.tm.base_opcode == 0x30
3973 || i.tm.base_opcode == 0x28)
3974 && i.tm.extension_opcode == None))
3975 || (i.reg_operands == 1
3976 && i.operands == 1
3977 && i.tm.base_opcode == 0x30
3978 && i.tm.extension_opcode == None)))))
3979 {
3980 /* Optimize: -O:
3981 andq $imm31, %r64 -> andl $imm31, %r32
3982 andq $imm7, %r64 -> andl $imm7, %r32
3983 testq $imm31, %r64 -> testl $imm31, %r32
3984 xorq %r64, %r64 -> xorl %r32, %r32
3985 subq %r64, %r64 -> subl %r32, %r32
3986 movq $imm31, %r64 -> movl $imm31, %r32
3987 movq $imm32, %r64 -> movl $imm32, %r32
3988 */
3989 i.tm.opcode_modifier.norex64 = 1;
3990 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
3991 {
3992 /* Handle
3993 movq $imm31, %r64 -> movl $imm31, %r32
3994 movq $imm32, %r64 -> movl $imm32, %r32
3995 */
3996 i.tm.operand_types[0].bitfield.imm32 = 1;
3997 i.tm.operand_types[0].bitfield.imm32s = 0;
3998 i.tm.operand_types[0].bitfield.imm64 = 0;
3999 i.types[0].bitfield.imm32 = 1;
4000 i.types[0].bitfield.imm32s = 0;
4001 i.types[0].bitfield.imm64 = 0;
4002 i.types[1].bitfield.dword = 1;
4003 i.types[1].bitfield.qword = 0;
4004 if ((i.tm.base_opcode | 1) == 0xc7)
4005 {
4006 /* Handle
4007 movq $imm31, %r64 -> movl $imm31, %r32
4008 */
4009 i.tm.base_opcode = 0xb8;
4010 i.tm.extension_opcode = None;
4011 i.tm.opcode_modifier.w = 0;
4012 i.tm.opcode_modifier.shortform = 1;
4013 i.tm.opcode_modifier.modrm = 0;
4014 }
4015 }
4016 }
4017 else if (optimize > 1
4018 && !optimize_for_space
4019 && i.reg_operands == 2
4020 && i.op[0].regs == i.op[1].regs
4021 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4022 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4023 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4024 {
4025 /* Optimize: -O2:
4026 andb %rN, %rN -> testb %rN, %rN
4027 andw %rN, %rN -> testw %rN, %rN
4028 andq %rN, %rN -> testq %rN, %rN
4029 orb %rN, %rN -> testb %rN, %rN
4030 orw %rN, %rN -> testw %rN, %rN
4031 orq %rN, %rN -> testq %rN, %rN
4032
4033 and outside of 64-bit mode
4034
4035 andl %rN, %rN -> testl %rN, %rN
4036 orl %rN, %rN -> testl %rN, %rN
4037 */
4038 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4039 }
4040 else if (i.reg_operands == 3
4041 && i.op[0].regs == i.op[1].regs
4042 && !i.types[2].bitfield.xmmword
4043 && (i.tm.opcode_modifier.vex
4044 || ((!i.mask || i.mask->zeroing)
4045 && !i.rounding
4046 && is_evex_encoding (&i.tm)
4047 && (i.vec_encoding != vex_encoding_evex
4048 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4049 || i.tm.cpu_flags.bitfield.cpuavx512vl
4050 || (i.tm.operand_types[2].bitfield.zmmword
4051 && i.types[2].bitfield.ymmword))))
4052 && ((i.tm.base_opcode == 0x55
4053 || i.tm.base_opcode == 0x6655
4054 || i.tm.base_opcode == 0x66df
4055 || i.tm.base_opcode == 0x57
4056 || i.tm.base_opcode == 0x6657
4057 || i.tm.base_opcode == 0x66ef
4058 || i.tm.base_opcode == 0x66f8
4059 || i.tm.base_opcode == 0x66f9
4060 || i.tm.base_opcode == 0x66fa
4061 || i.tm.base_opcode == 0x66fb
4062 || i.tm.base_opcode == 0x42
4063 || i.tm.base_opcode == 0x6642
4064 || i.tm.base_opcode == 0x47
4065 || i.tm.base_opcode == 0x6647)
4066 && i.tm.extension_opcode == None))
4067 {
4068 /* Optimize: -O1:
4069 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4070 vpsubq and vpsubw:
4071 EVEX VOP %zmmM, %zmmM, %zmmN
4072 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4073 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4074 EVEX VOP %ymmM, %ymmM, %ymmN
4075 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4076 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4077 VEX VOP %ymmM, %ymmM, %ymmN
4078 -> VEX VOP %xmmM, %xmmM, %xmmN
4079 VOP, one of vpandn and vpxor:
4080 VEX VOP %ymmM, %ymmM, %ymmN
4081 -> VEX VOP %xmmM, %xmmM, %xmmN
4082 VOP, one of vpandnd and vpandnq:
4083 EVEX VOP %zmmM, %zmmM, %zmmN
4084 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4085 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4086 EVEX VOP %ymmM, %ymmM, %ymmN
4087 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4088 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4089 VOP, one of vpxord and vpxorq:
4090 EVEX VOP %zmmM, %zmmM, %zmmN
4091 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4092 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4093 EVEX VOP %ymmM, %ymmM, %ymmN
4094 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4095 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4096 VOP, one of kxord and kxorq:
4097 VEX VOP %kM, %kM, %kN
4098 -> VEX kxorw %kM, %kM, %kN
4099 VOP, one of kandnd and kandnq:
4100 VEX VOP %kM, %kM, %kN
4101 -> VEX kandnw %kM, %kM, %kN
4102 */
4103 if (is_evex_encoding (&i.tm))
4104 {
4105 if (i.vec_encoding != vex_encoding_evex)
4106 {
4107 i.tm.opcode_modifier.vex = VEX128;
4108 i.tm.opcode_modifier.vexw = VEXW0;
4109 i.tm.opcode_modifier.evex = 0;
4110 }
4111 else if (optimize > 1)
4112 i.tm.opcode_modifier.evex = EVEX128;
4113 else
4114 return;
4115 }
4116 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4117 {
4118 i.tm.base_opcode &= 0xff;
4119 i.tm.opcode_modifier.vexw = VEXW0;
4120 }
4121 else
4122 i.tm.opcode_modifier.vex = VEX128;
4123
4124 if (i.tm.opcode_modifier.vex)
4125 for (j = 0; j < 3; j++)
4126 {
4127 i.types[j].bitfield.xmmword = 1;
4128 i.types[j].bitfield.ymmword = 0;
4129 }
4130 }
4131 else if (i.vec_encoding != vex_encoding_evex
4132 && !i.types[0].bitfield.zmmword
4133 && !i.types[1].bitfield.zmmword
4134 && !i.mask
4135 && !i.broadcast
4136 && is_evex_encoding (&i.tm)
4137 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4138 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4139 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4140 || (i.tm.base_opcode & ~4) == 0x66db
4141 || (i.tm.base_opcode & ~4) == 0x66eb)
4142 && i.tm.extension_opcode == None)
4143 {
4144 /* Optimize: -O1:
4145 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4146 vmovdqu32 and vmovdqu64:
4147 EVEX VOP %xmmM, %xmmN
4148 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4149 EVEX VOP %ymmM, %ymmN
4150 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4151 EVEX VOP %xmmM, mem
4152 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4153 EVEX VOP %ymmM, mem
4154 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4155 EVEX VOP mem, %xmmN
4156 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4157 EVEX VOP mem, %ymmN
4158 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4159 VOP, one of vpand, vpandn, vpor, vpxor:
4160 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4161 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4162 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4163 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4164 EVEX VOP{d,q} mem, %xmmM, %xmmN
4165 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4166 EVEX VOP{d,q} mem, %ymmM, %ymmN
4167 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4168 */
4169 for (j = 0; j < i.operands; j++)
4170 if (operand_type_check (i.types[j], disp)
4171 && i.op[j].disps->X_op == O_constant)
4172 {
4173 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4174 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4175 bytes, we choose EVEX Disp8 over VEX Disp32. */
4176 int evex_disp8, vex_disp8;
4177 unsigned int memshift = i.memshift;
4178 offsetT n = i.op[j].disps->X_add_number;
4179
4180 evex_disp8 = fits_in_disp8 (n);
4181 i.memshift = 0;
4182 vex_disp8 = fits_in_disp8 (n);
4183 if (evex_disp8 != vex_disp8)
4184 {
4185 i.memshift = memshift;
4186 return;
4187 }
4188
4189 i.types[j].bitfield.disp8 = vex_disp8;
4190 break;
4191 }
4192 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4193 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4194 i.tm.opcode_modifier.vex
4195 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4196 i.tm.opcode_modifier.vexw = VEXW0;
4197 /* VPAND, VPOR, and VPXOR are commutative. */
4198 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4199 i.tm.opcode_modifier.commutative = 1;
4200 i.tm.opcode_modifier.evex = 0;
4201 i.tm.opcode_modifier.masking = 0;
4202 i.tm.opcode_modifier.broadcast = 0;
4203 i.tm.opcode_modifier.disp8memshift = 0;
4204 i.memshift = 0;
4205 if (j < i.operands)
4206 i.types[j].bitfield.disp8
4207 = fits_in_disp8 (i.op[j].disps->X_add_number);
4208 }
4209 }
4210
4211 /* This is the guts of the machine-dependent assembler. LINE points to a
4212 machine dependent instruction. This function is supposed to emit
4213 the frags/bytes it assembles to. */
4214
4215 void
4216 md_assemble (char *line)
4217 {
4218 unsigned int j;
4219 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4220 const insn_template *t;
4221
4222 /* Initialize globals. */
4223 memset (&i, '\0', sizeof (i));
4224 for (j = 0; j < MAX_OPERANDS; j++)
4225 i.reloc[j] = NO_RELOC;
4226 memset (disp_expressions, '\0', sizeof (disp_expressions));
4227 memset (im_expressions, '\0', sizeof (im_expressions));
4228 save_stack_p = save_stack;
4229
4230 /* First parse an instruction mnemonic & call i386_operand for the operands.
4231 We assume that the scrubber has arranged it so that line[0] is the valid
4232 start of a (possibly prefixed) mnemonic. */
4233
4234 line = parse_insn (line, mnemonic);
4235 if (line == NULL)
4236 return;
4237 mnem_suffix = i.suffix;
4238
4239 line = parse_operands (line, mnemonic);
4240 this_operand = -1;
4241 xfree (i.memop1_string);
4242 i.memop1_string = NULL;
4243 if (line == NULL)
4244 return;
4245
4246 /* Now we've parsed the mnemonic into a set of templates, and have the
4247 operands at hand. */
4248
4249 /* All intel opcodes have reversed operands except for "bound" and
4250 "enter". We also don't reverse intersegment "jmp" and "call"
4251 instructions with 2 immediate operands so that the immediate segment
4252 precedes the offset, as it does when in AT&T mode. */
4253 if (intel_syntax
4254 && i.operands > 1
4255 && (strcmp (mnemonic, "bound") != 0)
4256 && (strcmp (mnemonic, "invlpga") != 0)
4257 && !(operand_type_check (i.types[0], imm)
4258 && operand_type_check (i.types[1], imm)))
4259 swap_operands ();
4260
4261 /* The order of the immediates should be reversed
4262 for 2 immediates extrq and insertq instructions */
4263 if (i.imm_operands == 2
4264 && (strcmp (mnemonic, "extrq") == 0
4265 || strcmp (mnemonic, "insertq") == 0))
4266 swap_2_operands (0, 1);
4267
4268 if (i.imm_operands)
4269 optimize_imm ();
4270
4271 /* Don't optimize displacement for movabs since it only takes 64bit
4272 displacement. */
4273 if (i.disp_operands
4274 && i.disp_encoding != disp_encoding_32bit
4275 && (flag_code != CODE_64BIT
4276 || strcmp (mnemonic, "movabs") != 0))
4277 optimize_disp ();
4278
4279 /* Next, we find a template that matches the given insn,
4280 making sure the overlap of the given operands types is consistent
4281 with the template operand types. */
4282
4283 if (!(t = match_template (mnem_suffix)))
4284 return;
4285
4286 if (sse_check != check_none
4287 && !i.tm.opcode_modifier.noavx
4288 && !i.tm.cpu_flags.bitfield.cpuavx
4289 && !i.tm.cpu_flags.bitfield.cpuavx512f
4290 && (i.tm.cpu_flags.bitfield.cpusse
4291 || i.tm.cpu_flags.bitfield.cpusse2
4292 || i.tm.cpu_flags.bitfield.cpusse3
4293 || i.tm.cpu_flags.bitfield.cpussse3
4294 || i.tm.cpu_flags.bitfield.cpusse4_1
4295 || i.tm.cpu_flags.bitfield.cpusse4_2
4296 || i.tm.cpu_flags.bitfield.cpusse4a
4297 || i.tm.cpu_flags.bitfield.cpupclmul
4298 || i.tm.cpu_flags.bitfield.cpuaes
4299 || i.tm.cpu_flags.bitfield.cpusha
4300 || i.tm.cpu_flags.bitfield.cpugfni))
4301 {
4302 (sse_check == check_warning
4303 ? as_warn
4304 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4305 }
4306
4307 /* Zap movzx and movsx suffix. The suffix has been set from
4308 "word ptr" or "byte ptr" on the source operand in Intel syntax
4309 or extracted from mnemonic in AT&T syntax. But we'll use
4310 the destination register to choose the suffix for encoding. */
4311 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4312 {
4313 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4314 there is no suffix, the default will be byte extension. */
4315 if (i.reg_operands != 2
4316 && !i.suffix
4317 && intel_syntax)
4318 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4319
4320 i.suffix = 0;
4321 }
4322
4323 if (i.tm.opcode_modifier.fwait)
4324 if (!add_prefix (FWAIT_OPCODE))
4325 return;
4326
4327 /* Check if REP prefix is OK. */
4328 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4329 {
4330 as_bad (_("invalid instruction `%s' after `%s'"),
4331 i.tm.name, i.rep_prefix);
4332 return;
4333 }
4334
4335 /* Check for lock without a lockable instruction. Destination operand
4336 must be memory unless it is xchg (0x86). */
4337 if (i.prefix[LOCK_PREFIX]
4338 && (!i.tm.opcode_modifier.islockable
4339 || i.mem_operands == 0
4340 || (i.tm.base_opcode != 0x86
4341 && !(i.flags[i.operands - 1] & Operand_Mem))))
4342 {
4343 as_bad (_("expecting lockable instruction after `lock'"));
4344 return;
4345 }
4346
4347 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4348 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4349 {
4350 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4351 return;
4352 }
4353
4354 /* Check if HLE prefix is OK. */
4355 if (i.hle_prefix && !check_hle ())
4356 return;
4357
4358 /* Check BND prefix. */
4359 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4360 as_bad (_("expecting valid branch instruction after `bnd'"));
4361
4362 /* Check NOTRACK prefix. */
4363 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4364 as_bad (_("expecting indirect branch instruction after `notrack'"));
4365
4366 if (i.tm.cpu_flags.bitfield.cpumpx)
4367 {
4368 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4369 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4370 else if (flag_code != CODE_16BIT
4371 ? i.prefix[ADDR_PREFIX]
4372 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4373 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4374 }
4375
4376 /* Insert BND prefix. */
4377 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4378 {
4379 if (!i.prefix[BND_PREFIX])
4380 add_prefix (BND_PREFIX_OPCODE);
4381 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4382 {
4383 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4384 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4385 }
4386 }
4387
4388 /* Check string instruction segment overrides. */
4389 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4390 {
4391 gas_assert (i.mem_operands);
4392 if (!check_string ())
4393 return;
4394 i.disp_operands = 0;
4395 }
4396
4397 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4398 optimize_encoding ();
4399
4400 if (!process_suffix ())
4401 return;
4402
4403 /* Update operand types. */
4404 for (j = 0; j < i.operands; j++)
4405 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4406
4407 /* Make still unresolved immediate matches conform to size of immediate
4408 given in i.suffix. */
4409 if (!finalize_imm ())
4410 return;
4411
4412 if (i.types[0].bitfield.imm1)
4413 i.imm_operands = 0; /* kludge for shift insns. */
4414
4415 /* We only need to check those implicit registers for instructions
4416 with 3 operands or less. */
4417 if (i.operands <= 3)
4418 for (j = 0; j < i.operands; j++)
4419 if (i.types[j].bitfield.instance != InstanceNone
4420 && !i.types[j].bitfield.xmmword)
4421 i.reg_operands--;
4422
4423 /* ImmExt should be processed after SSE2AVX. */
4424 if (!i.tm.opcode_modifier.sse2avx
4425 && i.tm.opcode_modifier.immext)
4426 process_immext ();
4427
4428 /* For insns with operands there are more diddles to do to the opcode. */
4429 if (i.operands)
4430 {
4431 if (!process_operands ())
4432 return;
4433 }
4434 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4435 {
4436 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4437 as_warn (_("translating to `%sp'"), i.tm.name);
4438 }
4439
4440 if (is_any_vex_encoding (&i.tm))
4441 {
4442 if (!cpu_arch_flags.bitfield.cpui286)
4443 {
4444 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4445 i.tm.name);
4446 return;
4447 }
4448
4449 if (i.tm.opcode_modifier.vex)
4450 build_vex_prefix (t);
4451 else
4452 build_evex_prefix ();
4453 }
4454
4455 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4456 instructions may define INT_OPCODE as well, so avoid this corner
4457 case for those instructions that use MODRM. */
4458 if (i.tm.base_opcode == INT_OPCODE
4459 && !i.tm.opcode_modifier.modrm
4460 && i.op[0].imms->X_add_number == 3)
4461 {
4462 i.tm.base_opcode = INT3_OPCODE;
4463 i.imm_operands = 0;
4464 }
4465
4466 if ((i.tm.opcode_modifier.jump == JUMP
4467 || i.tm.opcode_modifier.jump == JUMP_BYTE
4468 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4469 && i.op[0].disps->X_op == O_constant)
4470 {
4471 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4472 the absolute address given by the constant. Since ix86 jumps and
4473 calls are pc relative, we need to generate a reloc. */
4474 i.op[0].disps->X_add_symbol = &abs_symbol;
4475 i.op[0].disps->X_op = O_symbol;
4476 }
4477
4478 if (i.tm.opcode_modifier.rex64)
4479 i.rex |= REX_W;
4480
4481 /* For 8 bit registers we need an empty rex prefix. Also if the
4482 instruction already has a prefix, we need to convert old
4483 registers to new ones. */
4484
4485 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4486 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4487 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4488 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4489 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4490 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4491 && i.rex != 0))
4492 {
4493 int x;
4494
4495 i.rex |= REX_OPCODE;
4496 for (x = 0; x < 2; x++)
4497 {
4498 /* Look for 8 bit operand that uses old registers. */
4499 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4500 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4501 {
4502 /* In case it is "hi" register, give up. */
4503 if (i.op[x].regs->reg_num > 3)
4504 as_bad (_("can't encode register '%s%s' in an "
4505 "instruction requiring REX prefix."),
4506 register_prefix, i.op[x].regs->reg_name);
4507
4508 /* Otherwise it is equivalent to the extended register.
4509 Since the encoding doesn't change this is merely
4510 cosmetic cleanup for debug output. */
4511
4512 i.op[x].regs = i.op[x].regs + 8;
4513 }
4514 }
4515 }
4516
4517 if (i.rex == 0 && i.rex_encoding)
4518 {
4519 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4520 that uses legacy register. If it is "hi" register, don't add
4521 the REX_OPCODE byte. */
4522 int x;
4523 for (x = 0; x < 2; x++)
4524 if (i.types[x].bitfield.class == Reg
4525 && i.types[x].bitfield.byte
4526 && (i.op[x].regs->reg_flags & RegRex64) == 0
4527 && i.op[x].regs->reg_num > 3)
4528 {
4529 i.rex_encoding = FALSE;
4530 break;
4531 }
4532
4533 if (i.rex_encoding)
4534 i.rex = REX_OPCODE;
4535 }
4536
4537 if (i.rex != 0)
4538 add_prefix (REX_OPCODE | i.rex);
4539
4540 /* We are ready to output the insn. */
4541 output_insn ();
4542 }
4543
4544 static char *
4545 parse_insn (char *line, char *mnemonic)
4546 {
4547 char *l = line;
4548 char *token_start = l;
4549 char *mnem_p;
4550 int supported;
4551 const insn_template *t;
4552 char *dot_p = NULL;
4553
4554 while (1)
4555 {
4556 mnem_p = mnemonic;
4557 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4558 {
4559 if (*mnem_p == '.')
4560 dot_p = mnem_p;
4561 mnem_p++;
4562 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4563 {
4564 as_bad (_("no such instruction: `%s'"), token_start);
4565 return NULL;
4566 }
4567 l++;
4568 }
4569 if (!is_space_char (*l)
4570 && *l != END_OF_INSN
4571 && (intel_syntax
4572 || (*l != PREFIX_SEPARATOR
4573 && *l != ',')))
4574 {
4575 as_bad (_("invalid character %s in mnemonic"),
4576 output_invalid (*l));
4577 return NULL;
4578 }
4579 if (token_start == l)
4580 {
4581 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4582 as_bad (_("expecting prefix; got nothing"));
4583 else
4584 as_bad (_("expecting mnemonic; got nothing"));
4585 return NULL;
4586 }
4587
4588 /* Look up instruction (or prefix) via hash table. */
4589 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4590
4591 if (*l != END_OF_INSN
4592 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4593 && current_templates
4594 && current_templates->start->opcode_modifier.isprefix)
4595 {
4596 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4597 {
4598 as_bad ((flag_code != CODE_64BIT
4599 ? _("`%s' is only supported in 64-bit mode")
4600 : _("`%s' is not supported in 64-bit mode")),
4601 current_templates->start->name);
4602 return NULL;
4603 }
4604 /* If we are in 16-bit mode, do not allow addr16 or data16.
4605 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4606 if ((current_templates->start->opcode_modifier.size == SIZE16
4607 || current_templates->start->opcode_modifier.size == SIZE32)
4608 && flag_code != CODE_64BIT
4609 && ((current_templates->start->opcode_modifier.size == SIZE32)
4610 ^ (flag_code == CODE_16BIT)))
4611 {
4612 as_bad (_("redundant %s prefix"),
4613 current_templates->start->name);
4614 return NULL;
4615 }
4616 if (current_templates->start->opcode_length == 0)
4617 {
4618 /* Handle pseudo prefixes. */
4619 switch (current_templates->start->base_opcode)
4620 {
4621 case 0x0:
4622 /* {disp8} */
4623 i.disp_encoding = disp_encoding_8bit;
4624 break;
4625 case 0x1:
4626 /* {disp32} */
4627 i.disp_encoding = disp_encoding_32bit;
4628 break;
4629 case 0x2:
4630 /* {load} */
4631 i.dir_encoding = dir_encoding_load;
4632 break;
4633 case 0x3:
4634 /* {store} */
4635 i.dir_encoding = dir_encoding_store;
4636 break;
4637 case 0x4:
4638 /* {vex2} */
4639 i.vec_encoding = vex_encoding_vex2;
4640 break;
4641 case 0x5:
4642 /* {vex3} */
4643 i.vec_encoding = vex_encoding_vex3;
4644 break;
4645 case 0x6:
4646 /* {evex} */
4647 i.vec_encoding = vex_encoding_evex;
4648 break;
4649 case 0x7:
4650 /* {rex} */
4651 i.rex_encoding = TRUE;
4652 break;
4653 case 0x8:
4654 /* {nooptimize} */
4655 i.no_optimize = TRUE;
4656 break;
4657 default:
4658 abort ();
4659 }
4660 }
4661 else
4662 {
4663 /* Add prefix, checking for repeated prefixes. */
4664 switch (add_prefix (current_templates->start->base_opcode))
4665 {
4666 case PREFIX_EXIST:
4667 return NULL;
4668 case PREFIX_DS:
4669 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4670 i.notrack_prefix = current_templates->start->name;
4671 break;
4672 case PREFIX_REP:
4673 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4674 i.hle_prefix = current_templates->start->name;
4675 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4676 i.bnd_prefix = current_templates->start->name;
4677 else
4678 i.rep_prefix = current_templates->start->name;
4679 break;
4680 default:
4681 break;
4682 }
4683 }
4684 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4685 token_start = ++l;
4686 }
4687 else
4688 break;
4689 }
4690
4691 if (!current_templates)
4692 {
4693 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4694 Check if we should swap operand or force 32bit displacement in
4695 encoding. */
4696 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4697 i.dir_encoding = dir_encoding_swap;
4698 else if (mnem_p - 3 == dot_p
4699 && dot_p[1] == 'd'
4700 && dot_p[2] == '8')
4701 i.disp_encoding = disp_encoding_8bit;
4702 else if (mnem_p - 4 == dot_p
4703 && dot_p[1] == 'd'
4704 && dot_p[2] == '3'
4705 && dot_p[3] == '2')
4706 i.disp_encoding = disp_encoding_32bit;
4707 else
4708 goto check_suffix;
4709 mnem_p = dot_p;
4710 *dot_p = '\0';
4711 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4712 }
4713
4714 if (!current_templates)
4715 {
4716 check_suffix:
4717 if (mnem_p > mnemonic)
4718 {
4719 /* See if we can get a match by trimming off a suffix. */
4720 switch (mnem_p[-1])
4721 {
4722 case WORD_MNEM_SUFFIX:
4723 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4724 i.suffix = SHORT_MNEM_SUFFIX;
4725 else
4726 /* Fall through. */
4727 case BYTE_MNEM_SUFFIX:
4728 case QWORD_MNEM_SUFFIX:
4729 i.suffix = mnem_p[-1];
4730 mnem_p[-1] = '\0';
4731 current_templates = (const templates *) hash_find (op_hash,
4732 mnemonic);
4733 break;
4734 case SHORT_MNEM_SUFFIX:
4735 case LONG_MNEM_SUFFIX:
4736 if (!intel_syntax)
4737 {
4738 i.suffix = mnem_p[-1];
4739 mnem_p[-1] = '\0';
4740 current_templates = (const templates *) hash_find (op_hash,
4741 mnemonic);
4742 }
4743 break;
4744
4745 /* Intel Syntax. */
4746 case 'd':
4747 if (intel_syntax)
4748 {
4749 if (intel_float_operand (mnemonic) == 1)
4750 i.suffix = SHORT_MNEM_SUFFIX;
4751 else
4752 i.suffix = LONG_MNEM_SUFFIX;
4753 mnem_p[-1] = '\0';
4754 current_templates = (const templates *) hash_find (op_hash,
4755 mnemonic);
4756 }
4757 break;
4758 }
4759 }
4760
4761 if (!current_templates)
4762 {
4763 as_bad (_("no such instruction: `%s'"), token_start);
4764 return NULL;
4765 }
4766 }
4767
4768 if (current_templates->start->opcode_modifier.jump == JUMP
4769 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4770 {
4771 /* Check for a branch hint. We allow ",pt" and ",pn" for
4772 predict taken and predict not taken respectively.
4773 I'm not sure that branch hints actually do anything on loop
4774 and jcxz insns (JumpByte) for current Pentium4 chips. They
4775 may work in the future and it doesn't hurt to accept them
4776 now. */
4777 if (l[0] == ',' && l[1] == 'p')
4778 {
4779 if (l[2] == 't')
4780 {
4781 if (!add_prefix (DS_PREFIX_OPCODE))
4782 return NULL;
4783 l += 3;
4784 }
4785 else if (l[2] == 'n')
4786 {
4787 if (!add_prefix (CS_PREFIX_OPCODE))
4788 return NULL;
4789 l += 3;
4790 }
4791 }
4792 }
4793 /* Any other comma loses. */
4794 if (*l == ',')
4795 {
4796 as_bad (_("invalid character %s in mnemonic"),
4797 output_invalid (*l));
4798 return NULL;
4799 }
4800
4801 /* Check if instruction is supported on specified architecture. */
4802 supported = 0;
4803 for (t = current_templates->start; t < current_templates->end; ++t)
4804 {
4805 supported |= cpu_flags_match (t);
4806 if (supported == CPU_FLAGS_PERFECT_MATCH)
4807 {
4808 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4809 as_warn (_("use .code16 to ensure correct addressing mode"));
4810
4811 return l;
4812 }
4813 }
4814
4815 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4816 as_bad (flag_code == CODE_64BIT
4817 ? _("`%s' is not supported in 64-bit mode")
4818 : _("`%s' is only supported in 64-bit mode"),
4819 current_templates->start->name);
4820 else
4821 as_bad (_("`%s' is not supported on `%s%s'"),
4822 current_templates->start->name,
4823 cpu_arch_name ? cpu_arch_name : default_arch,
4824 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4825
4826 return NULL;
4827 }
4828
4829 static char *
4830 parse_operands (char *l, const char *mnemonic)
4831 {
4832 char *token_start;
4833
4834 /* 1 if operand is pending after ','. */
4835 unsigned int expecting_operand = 0;
4836
4837 /* Non-zero if operand parens not balanced. */
4838 unsigned int paren_not_balanced;
4839
4840 while (*l != END_OF_INSN)
4841 {
4842 /* Skip optional white space before operand. */
4843 if (is_space_char (*l))
4844 ++l;
4845 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4846 {
4847 as_bad (_("invalid character %s before operand %d"),
4848 output_invalid (*l),
4849 i.operands + 1);
4850 return NULL;
4851 }
4852 token_start = l; /* After white space. */
4853 paren_not_balanced = 0;
4854 while (paren_not_balanced || *l != ',')
4855 {
4856 if (*l == END_OF_INSN)
4857 {
4858 if (paren_not_balanced)
4859 {
4860 if (!intel_syntax)
4861 as_bad (_("unbalanced parenthesis in operand %d."),
4862 i.operands + 1);
4863 else
4864 as_bad (_("unbalanced brackets in operand %d."),
4865 i.operands + 1);
4866 return NULL;
4867 }
4868 else
4869 break; /* we are done */
4870 }
4871 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4872 {
4873 as_bad (_("invalid character %s in operand %d"),
4874 output_invalid (*l),
4875 i.operands + 1);
4876 return NULL;
4877 }
4878 if (!intel_syntax)
4879 {
4880 if (*l == '(')
4881 ++paren_not_balanced;
4882 if (*l == ')')
4883 --paren_not_balanced;
4884 }
4885 else
4886 {
4887 if (*l == '[')
4888 ++paren_not_balanced;
4889 if (*l == ']')
4890 --paren_not_balanced;
4891 }
4892 l++;
4893 }
4894 if (l != token_start)
4895 { /* Yes, we've read in another operand. */
4896 unsigned int operand_ok;
4897 this_operand = i.operands++;
4898 if (i.operands > MAX_OPERANDS)
4899 {
4900 as_bad (_("spurious operands; (%d operands/instruction max)"),
4901 MAX_OPERANDS);
4902 return NULL;
4903 }
4904 i.types[this_operand].bitfield.unspecified = 1;
4905 /* Now parse operand adding info to 'i' as we go along. */
4906 END_STRING_AND_SAVE (l);
4907
4908 if (i.mem_operands > 1)
4909 {
4910 as_bad (_("too many memory references for `%s'"),
4911 mnemonic);
4912 return 0;
4913 }
4914
4915 if (intel_syntax)
4916 operand_ok =
4917 i386_intel_operand (token_start,
4918 intel_float_operand (mnemonic));
4919 else
4920 operand_ok = i386_att_operand (token_start);
4921
4922 RESTORE_END_STRING (l);
4923 if (!operand_ok)
4924 return NULL;
4925 }
4926 else
4927 {
4928 if (expecting_operand)
4929 {
4930 expecting_operand_after_comma:
4931 as_bad (_("expecting operand after ','; got nothing"));
4932 return NULL;
4933 }
4934 if (*l == ',')
4935 {
4936 as_bad (_("expecting operand before ','; got nothing"));
4937 return NULL;
4938 }
4939 }
4940
4941 /* Now *l must be either ',' or END_OF_INSN. */
4942 if (*l == ',')
4943 {
4944 if (*++l == END_OF_INSN)
4945 {
4946 /* Just skip it, if it's \n complain. */
4947 goto expecting_operand_after_comma;
4948 }
4949 expecting_operand = 1;
4950 }
4951 }
4952 return l;
4953 }
4954
4955 static void
4956 swap_2_operands (int xchg1, int xchg2)
4957 {
4958 union i386_op temp_op;
4959 i386_operand_type temp_type;
4960 unsigned int temp_flags;
4961 enum bfd_reloc_code_real temp_reloc;
4962
4963 temp_type = i.types[xchg2];
4964 i.types[xchg2] = i.types[xchg1];
4965 i.types[xchg1] = temp_type;
4966
4967 temp_flags = i.flags[xchg2];
4968 i.flags[xchg2] = i.flags[xchg1];
4969 i.flags[xchg1] = temp_flags;
4970
4971 temp_op = i.op[xchg2];
4972 i.op[xchg2] = i.op[xchg1];
4973 i.op[xchg1] = temp_op;
4974
4975 temp_reloc = i.reloc[xchg2];
4976 i.reloc[xchg2] = i.reloc[xchg1];
4977 i.reloc[xchg1] = temp_reloc;
4978
4979 if (i.mask)
4980 {
4981 if (i.mask->operand == xchg1)
4982 i.mask->operand = xchg2;
4983 else if (i.mask->operand == xchg2)
4984 i.mask->operand = xchg1;
4985 }
4986 if (i.broadcast)
4987 {
4988 if (i.broadcast->operand == xchg1)
4989 i.broadcast->operand = xchg2;
4990 else if (i.broadcast->operand == xchg2)
4991 i.broadcast->operand = xchg1;
4992 }
4993 if (i.rounding)
4994 {
4995 if (i.rounding->operand == xchg1)
4996 i.rounding->operand = xchg2;
4997 else if (i.rounding->operand == xchg2)
4998 i.rounding->operand = xchg1;
4999 }
5000 }
5001
5002 static void
5003 swap_operands (void)
5004 {
5005 switch (i.operands)
5006 {
5007 case 5:
5008 case 4:
5009 swap_2_operands (1, i.operands - 2);
5010 /* Fall through. */
5011 case 3:
5012 case 2:
5013 swap_2_operands (0, i.operands - 1);
5014 break;
5015 default:
5016 abort ();
5017 }
5018
5019 if (i.mem_operands == 2)
5020 {
5021 const seg_entry *temp_seg;
5022 temp_seg = i.seg[0];
5023 i.seg[0] = i.seg[1];
5024 i.seg[1] = temp_seg;
5025 }
5026 }
5027
5028 /* Try to ensure constant immediates are represented in the smallest
5029 opcode possible. */
5030 static void
5031 optimize_imm (void)
5032 {
5033 char guess_suffix = 0;
5034 int op;
5035
5036 if (i.suffix)
5037 guess_suffix = i.suffix;
5038 else if (i.reg_operands)
5039 {
5040 /* Figure out a suffix from the last register operand specified.
5041 We can't do this properly yet, i.e. excluding special register
5042 instances, but the following works for instructions with
5043 immediates. In any case, we can't set i.suffix yet. */
5044 for (op = i.operands; --op >= 0;)
5045 if (i.types[op].bitfield.class != Reg)
5046 continue;
5047 else if (i.types[op].bitfield.byte)
5048 {
5049 guess_suffix = BYTE_MNEM_SUFFIX;
5050 break;
5051 }
5052 else if (i.types[op].bitfield.word)
5053 {
5054 guess_suffix = WORD_MNEM_SUFFIX;
5055 break;
5056 }
5057 else if (i.types[op].bitfield.dword)
5058 {
5059 guess_suffix = LONG_MNEM_SUFFIX;
5060 break;
5061 }
5062 else if (i.types[op].bitfield.qword)
5063 {
5064 guess_suffix = QWORD_MNEM_SUFFIX;
5065 break;
5066 }
5067 }
5068 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5069 guess_suffix = WORD_MNEM_SUFFIX;
5070
5071 for (op = i.operands; --op >= 0;)
5072 if (operand_type_check (i.types[op], imm))
5073 {
5074 switch (i.op[op].imms->X_op)
5075 {
5076 case O_constant:
5077 /* If a suffix is given, this operand may be shortened. */
5078 switch (guess_suffix)
5079 {
5080 case LONG_MNEM_SUFFIX:
5081 i.types[op].bitfield.imm32 = 1;
5082 i.types[op].bitfield.imm64 = 1;
5083 break;
5084 case WORD_MNEM_SUFFIX:
5085 i.types[op].bitfield.imm16 = 1;
5086 i.types[op].bitfield.imm32 = 1;
5087 i.types[op].bitfield.imm32s = 1;
5088 i.types[op].bitfield.imm64 = 1;
5089 break;
5090 case BYTE_MNEM_SUFFIX:
5091 i.types[op].bitfield.imm8 = 1;
5092 i.types[op].bitfield.imm8s = 1;
5093 i.types[op].bitfield.imm16 = 1;
5094 i.types[op].bitfield.imm32 = 1;
5095 i.types[op].bitfield.imm32s = 1;
5096 i.types[op].bitfield.imm64 = 1;
5097 break;
5098 }
5099
5100 /* If this operand is at most 16 bits, convert it
5101 to a signed 16 bit number before trying to see
5102 whether it will fit in an even smaller size.
5103 This allows a 16-bit operand such as $0xffe0 to
5104 be recognised as within Imm8S range. */
5105 if ((i.types[op].bitfield.imm16)
5106 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5107 {
5108 i.op[op].imms->X_add_number =
5109 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5110 }
5111 #ifdef BFD64
5112 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5113 if ((i.types[op].bitfield.imm32)
5114 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5115 == 0))
5116 {
5117 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5118 ^ ((offsetT) 1 << 31))
5119 - ((offsetT) 1 << 31));
5120 }
5121 #endif
5122 i.types[op]
5123 = operand_type_or (i.types[op],
5124 smallest_imm_type (i.op[op].imms->X_add_number));
5125
5126 /* We must avoid matching of Imm32 templates when 64bit
5127 only immediate is available. */
5128 if (guess_suffix == QWORD_MNEM_SUFFIX)
5129 i.types[op].bitfield.imm32 = 0;
5130 break;
5131
5132 case O_absent:
5133 case O_register:
5134 abort ();
5135
5136 /* Symbols and expressions. */
5137 default:
5138 /* Convert symbolic operand to proper sizes for matching, but don't
5139 prevent matching a set of insns that only supports sizes other
5140 than those matching the insn suffix. */
5141 {
5142 i386_operand_type mask, allowed;
5143 const insn_template *t;
5144
5145 operand_type_set (&mask, 0);
5146 operand_type_set (&allowed, 0);
5147
5148 for (t = current_templates->start;
5149 t < current_templates->end;
5150 ++t)
5151 {
5152 allowed = operand_type_or (allowed, t->operand_types[op]);
5153 allowed = operand_type_and (allowed, anyimm);
5154 }
5155 switch (guess_suffix)
5156 {
5157 case QWORD_MNEM_SUFFIX:
5158 mask.bitfield.imm64 = 1;
5159 mask.bitfield.imm32s = 1;
5160 break;
5161 case LONG_MNEM_SUFFIX:
5162 mask.bitfield.imm32 = 1;
5163 break;
5164 case WORD_MNEM_SUFFIX:
5165 mask.bitfield.imm16 = 1;
5166 break;
5167 case BYTE_MNEM_SUFFIX:
5168 mask.bitfield.imm8 = 1;
5169 break;
5170 default:
5171 break;
5172 }
5173 allowed = operand_type_and (mask, allowed);
5174 if (!operand_type_all_zero (&allowed))
5175 i.types[op] = operand_type_and (i.types[op], mask);
5176 }
5177 break;
5178 }
5179 }
5180 }
5181
5182 /* Try to use the smallest displacement type too. */
5183 static void
5184 optimize_disp (void)
5185 {
5186 int op;
5187
5188 for (op = i.operands; --op >= 0;)
5189 if (operand_type_check (i.types[op], disp))
5190 {
5191 if (i.op[op].disps->X_op == O_constant)
5192 {
5193 offsetT op_disp = i.op[op].disps->X_add_number;
5194
5195 if (i.types[op].bitfield.disp16
5196 && (op_disp & ~(offsetT) 0xffff) == 0)
5197 {
5198 /* If this operand is at most 16 bits, convert
5199 to a signed 16 bit number and don't use 64bit
5200 displacement. */
5201 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5202 i.types[op].bitfield.disp64 = 0;
5203 }
5204 #ifdef BFD64
5205 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5206 if (i.types[op].bitfield.disp32
5207 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5208 {
5209 /* If this operand is at most 32 bits, convert
5210 to a signed 32 bit number and don't use 64bit
5211 displacement. */
5212 op_disp &= (((offsetT) 2 << 31) - 1);
5213 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5214 i.types[op].bitfield.disp64 = 0;
5215 }
5216 #endif
5217 if (!op_disp && i.types[op].bitfield.baseindex)
5218 {
5219 i.types[op].bitfield.disp8 = 0;
5220 i.types[op].bitfield.disp16 = 0;
5221 i.types[op].bitfield.disp32 = 0;
5222 i.types[op].bitfield.disp32s = 0;
5223 i.types[op].bitfield.disp64 = 0;
5224 i.op[op].disps = 0;
5225 i.disp_operands--;
5226 }
5227 else if (flag_code == CODE_64BIT)
5228 {
5229 if (fits_in_signed_long (op_disp))
5230 {
5231 i.types[op].bitfield.disp64 = 0;
5232 i.types[op].bitfield.disp32s = 1;
5233 }
5234 if (i.prefix[ADDR_PREFIX]
5235 && fits_in_unsigned_long (op_disp))
5236 i.types[op].bitfield.disp32 = 1;
5237 }
5238 if ((i.types[op].bitfield.disp32
5239 || i.types[op].bitfield.disp32s
5240 || i.types[op].bitfield.disp16)
5241 && fits_in_disp8 (op_disp))
5242 i.types[op].bitfield.disp8 = 1;
5243 }
5244 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5245 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5246 {
5247 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5248 i.op[op].disps, 0, i.reloc[op]);
5249 i.types[op].bitfield.disp8 = 0;
5250 i.types[op].bitfield.disp16 = 0;
5251 i.types[op].bitfield.disp32 = 0;
5252 i.types[op].bitfield.disp32s = 0;
5253 i.types[op].bitfield.disp64 = 0;
5254 }
5255 else
5256 /* We only support 64bit displacement on constants. */
5257 i.types[op].bitfield.disp64 = 0;
5258 }
5259 }
5260
5261 /* Return 1 if there is a match in broadcast bytes between operand
5262 GIVEN and instruction template T. */
5263
5264 static INLINE int
5265 match_broadcast_size (const insn_template *t, unsigned int given)
5266 {
5267 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5268 && i.types[given].bitfield.byte)
5269 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5270 && i.types[given].bitfield.word)
5271 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5272 && i.types[given].bitfield.dword)
5273 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5274 && i.types[given].bitfield.qword));
5275 }
5276
5277 /* Check if operands are valid for the instruction. */
5278
5279 static int
5280 check_VecOperands (const insn_template *t)
5281 {
5282 unsigned int op;
5283 i386_cpu_flags cpu;
5284 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5285
5286 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5287 any one operand are implicity requiring AVX512VL support if the actual
5288 operand size is YMMword or XMMword. Since this function runs after
5289 template matching, there's no need to check for YMMword/XMMword in
5290 the template. */
5291 cpu = cpu_flags_and (t->cpu_flags, avx512);
5292 if (!cpu_flags_all_zero (&cpu)
5293 && !t->cpu_flags.bitfield.cpuavx512vl
5294 && !cpu_arch_flags.bitfield.cpuavx512vl)
5295 {
5296 for (op = 0; op < t->operands; ++op)
5297 {
5298 if (t->operand_types[op].bitfield.zmmword
5299 && (i.types[op].bitfield.ymmword
5300 || i.types[op].bitfield.xmmword))
5301 {
5302 i.error = unsupported;
5303 return 1;
5304 }
5305 }
5306 }
5307
5308 /* Without VSIB byte, we can't have a vector register for index. */
5309 if (!t->opcode_modifier.vecsib
5310 && i.index_reg
5311 && (i.index_reg->reg_type.bitfield.xmmword
5312 || i.index_reg->reg_type.bitfield.ymmword
5313 || i.index_reg->reg_type.bitfield.zmmword))
5314 {
5315 i.error = unsupported_vector_index_register;
5316 return 1;
5317 }
5318
5319 /* Check if default mask is allowed. */
5320 if (t->opcode_modifier.nodefmask
5321 && (!i.mask || i.mask->mask->reg_num == 0))
5322 {
5323 i.error = no_default_mask;
5324 return 1;
5325 }
5326
5327 /* For VSIB byte, we need a vector register for index, and all vector
5328 registers must be distinct. */
5329 if (t->opcode_modifier.vecsib)
5330 {
5331 if (!i.index_reg
5332 || !((t->opcode_modifier.vecsib == VecSIB128
5333 && i.index_reg->reg_type.bitfield.xmmword)
5334 || (t->opcode_modifier.vecsib == VecSIB256
5335 && i.index_reg->reg_type.bitfield.ymmword)
5336 || (t->opcode_modifier.vecsib == VecSIB512
5337 && i.index_reg->reg_type.bitfield.zmmword)))
5338 {
5339 i.error = invalid_vsib_address;
5340 return 1;
5341 }
5342
5343 gas_assert (i.reg_operands == 2 || i.mask);
5344 if (i.reg_operands == 2 && !i.mask)
5345 {
5346 gas_assert (i.types[0].bitfield.class == RegSIMD);
5347 gas_assert (i.types[0].bitfield.xmmword
5348 || i.types[0].bitfield.ymmword);
5349 gas_assert (i.types[2].bitfield.class == RegSIMD);
5350 gas_assert (i.types[2].bitfield.xmmword
5351 || i.types[2].bitfield.ymmword);
5352 if (operand_check == check_none)
5353 return 0;
5354 if (register_number (i.op[0].regs)
5355 != register_number (i.index_reg)
5356 && register_number (i.op[2].regs)
5357 != register_number (i.index_reg)
5358 && register_number (i.op[0].regs)
5359 != register_number (i.op[2].regs))
5360 return 0;
5361 if (operand_check == check_error)
5362 {
5363 i.error = invalid_vector_register_set;
5364 return 1;
5365 }
5366 as_warn (_("mask, index, and destination registers should be distinct"));
5367 }
5368 else if (i.reg_operands == 1 && i.mask)
5369 {
5370 if (i.types[1].bitfield.class == RegSIMD
5371 && (i.types[1].bitfield.xmmword
5372 || i.types[1].bitfield.ymmword
5373 || i.types[1].bitfield.zmmword)
5374 && (register_number (i.op[1].regs)
5375 == register_number (i.index_reg)))
5376 {
5377 if (operand_check == check_error)
5378 {
5379 i.error = invalid_vector_register_set;
5380 return 1;
5381 }
5382 if (operand_check != check_none)
5383 as_warn (_("index and destination registers should be distinct"));
5384 }
5385 }
5386 }
5387
5388 /* Check if broadcast is supported by the instruction and is applied
5389 to the memory operand. */
5390 if (i.broadcast)
5391 {
5392 i386_operand_type type, overlap;
5393
5394 /* Check if specified broadcast is supported in this instruction,
5395 and its broadcast bytes match the memory operand. */
5396 op = i.broadcast->operand;
5397 if (!t->opcode_modifier.broadcast
5398 || !(i.flags[op] & Operand_Mem)
5399 || (!i.types[op].bitfield.unspecified
5400 && !match_broadcast_size (t, op)))
5401 {
5402 bad_broadcast:
5403 i.error = unsupported_broadcast;
5404 return 1;
5405 }
5406
5407 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5408 * i.broadcast->type);
5409 operand_type_set (&type, 0);
5410 switch (i.broadcast->bytes)
5411 {
5412 case 2:
5413 type.bitfield.word = 1;
5414 break;
5415 case 4:
5416 type.bitfield.dword = 1;
5417 break;
5418 case 8:
5419 type.bitfield.qword = 1;
5420 break;
5421 case 16:
5422 type.bitfield.xmmword = 1;
5423 break;
5424 case 32:
5425 type.bitfield.ymmword = 1;
5426 break;
5427 case 64:
5428 type.bitfield.zmmword = 1;
5429 break;
5430 default:
5431 goto bad_broadcast;
5432 }
5433
5434 overlap = operand_type_and (type, t->operand_types[op]);
5435 if (operand_type_all_zero (&overlap))
5436 goto bad_broadcast;
5437
5438 if (t->opcode_modifier.checkregsize)
5439 {
5440 unsigned int j;
5441
5442 type.bitfield.baseindex = 1;
5443 for (j = 0; j < i.operands; ++j)
5444 {
5445 if (j != op
5446 && !operand_type_register_match(i.types[j],
5447 t->operand_types[j],
5448 type,
5449 t->operand_types[op]))
5450 goto bad_broadcast;
5451 }
5452 }
5453 }
5454 /* If broadcast is supported in this instruction, we need to check if
5455 operand of one-element size isn't specified without broadcast. */
5456 else if (t->opcode_modifier.broadcast && i.mem_operands)
5457 {
5458 /* Find memory operand. */
5459 for (op = 0; op < i.operands; op++)
5460 if (i.flags[op] & Operand_Mem)
5461 break;
5462 gas_assert (op < i.operands);
5463 /* Check size of the memory operand. */
5464 if (match_broadcast_size (t, op))
5465 {
5466 i.error = broadcast_needed;
5467 return 1;
5468 }
5469 }
5470 else
5471 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5472
5473 /* Check if requested masking is supported. */
5474 if (i.mask)
5475 {
5476 switch (t->opcode_modifier.masking)
5477 {
5478 case BOTH_MASKING:
5479 break;
5480 case MERGING_MASKING:
5481 if (i.mask->zeroing)
5482 {
5483 case 0:
5484 i.error = unsupported_masking;
5485 return 1;
5486 }
5487 break;
5488 case DYNAMIC_MASKING:
5489 /* Memory destinations allow only merging masking. */
5490 if (i.mask->zeroing && i.mem_operands)
5491 {
5492 /* Find memory operand. */
5493 for (op = 0; op < i.operands; op++)
5494 if (i.flags[op] & Operand_Mem)
5495 break;
5496 gas_assert (op < i.operands);
5497 if (op == i.operands - 1)
5498 {
5499 i.error = unsupported_masking;
5500 return 1;
5501 }
5502 }
5503 break;
5504 default:
5505 abort ();
5506 }
5507 }
5508
5509 /* Check if masking is applied to dest operand. */
5510 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5511 {
5512 i.error = mask_not_on_destination;
5513 return 1;
5514 }
5515
5516 /* Check RC/SAE. */
5517 if (i.rounding)
5518 {
5519 if (!t->opcode_modifier.sae
5520 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5521 {
5522 i.error = unsupported_rc_sae;
5523 return 1;
5524 }
5525 /* If the instruction has several immediate operands and one of
5526 them is rounding, the rounding operand should be the last
5527 immediate operand. */
5528 if (i.imm_operands > 1
5529 && i.rounding->operand != (int) (i.imm_operands - 1))
5530 {
5531 i.error = rc_sae_operand_not_last_imm;
5532 return 1;
5533 }
5534 }
5535
5536 /* Check vector Disp8 operand. */
5537 if (t->opcode_modifier.disp8memshift
5538 && i.disp_encoding != disp_encoding_32bit)
5539 {
5540 if (i.broadcast)
5541 i.memshift = t->opcode_modifier.broadcast - 1;
5542 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5543 i.memshift = t->opcode_modifier.disp8memshift;
5544 else
5545 {
5546 const i386_operand_type *type = NULL;
5547
5548 i.memshift = 0;
5549 for (op = 0; op < i.operands; op++)
5550 if (i.flags[op] & Operand_Mem)
5551 {
5552 if (t->opcode_modifier.evex == EVEXLIG)
5553 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5554 else if (t->operand_types[op].bitfield.xmmword
5555 + t->operand_types[op].bitfield.ymmword
5556 + t->operand_types[op].bitfield.zmmword <= 1)
5557 type = &t->operand_types[op];
5558 else if (!i.types[op].bitfield.unspecified)
5559 type = &i.types[op];
5560 }
5561 else if (i.types[op].bitfield.class == RegSIMD
5562 && t->opcode_modifier.evex != EVEXLIG)
5563 {
5564 if (i.types[op].bitfield.zmmword)
5565 i.memshift = 6;
5566 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5567 i.memshift = 5;
5568 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5569 i.memshift = 4;
5570 }
5571
5572 if (type)
5573 {
5574 if (type->bitfield.zmmword)
5575 i.memshift = 6;
5576 else if (type->bitfield.ymmword)
5577 i.memshift = 5;
5578 else if (type->bitfield.xmmword)
5579 i.memshift = 4;
5580 }
5581
5582 /* For the check in fits_in_disp8(). */
5583 if (i.memshift == 0)
5584 i.memshift = -1;
5585 }
5586
5587 for (op = 0; op < i.operands; op++)
5588 if (operand_type_check (i.types[op], disp)
5589 && i.op[op].disps->X_op == O_constant)
5590 {
5591 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5592 {
5593 i.types[op].bitfield.disp8 = 1;
5594 return 0;
5595 }
5596 i.types[op].bitfield.disp8 = 0;
5597 }
5598 }
5599
5600 i.memshift = 0;
5601
5602 return 0;
5603 }
5604
5605 /* Check if operands are valid for the instruction. Update VEX
5606 operand types. */
5607
5608 static int
5609 VEX_check_operands (const insn_template *t)
5610 {
5611 if (i.vec_encoding == vex_encoding_evex)
5612 {
5613 /* This instruction must be encoded with EVEX prefix. */
5614 if (!is_evex_encoding (t))
5615 {
5616 i.error = unsupported;
5617 return 1;
5618 }
5619 return 0;
5620 }
5621
5622 if (!t->opcode_modifier.vex)
5623 {
5624 /* This instruction template doesn't have VEX prefix. */
5625 if (i.vec_encoding != vex_encoding_default)
5626 {
5627 i.error = unsupported;
5628 return 1;
5629 }
5630 return 0;
5631 }
5632
5633 /* Check the special Imm4 cases; must be the first operand. */
5634 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5635 {
5636 if (i.op[0].imms->X_op != O_constant
5637 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5638 {
5639 i.error = bad_imm4;
5640 return 1;
5641 }
5642
5643 /* Turn off Imm<N> so that update_imm won't complain. */
5644 operand_type_set (&i.types[0], 0);
5645 }
5646
5647 return 0;
5648 }
5649
5650 static const insn_template *
5651 match_template (char mnem_suffix)
5652 {
5653 /* Points to template once we've found it. */
5654 const insn_template *t;
5655 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5656 i386_operand_type overlap4;
5657 unsigned int found_reverse_match;
5658 i386_opcode_modifier suffix_check;
5659 i386_operand_type operand_types [MAX_OPERANDS];
5660 int addr_prefix_disp;
5661 unsigned int j;
5662 unsigned int found_cpu_match, size_match;
5663 unsigned int check_register;
5664 enum i386_error specific_error = 0;
5665
5666 #if MAX_OPERANDS != 5
5667 # error "MAX_OPERANDS must be 5."
5668 #endif
5669
5670 found_reverse_match = 0;
5671 addr_prefix_disp = -1;
5672
5673 /* Prepare for mnemonic suffix check. */
5674 memset (&suffix_check, 0, sizeof (suffix_check));
5675 switch (mnem_suffix)
5676 {
5677 case BYTE_MNEM_SUFFIX:
5678 suffix_check.no_bsuf = 1;
5679 break;
5680 case WORD_MNEM_SUFFIX:
5681 suffix_check.no_wsuf = 1;
5682 break;
5683 case SHORT_MNEM_SUFFIX:
5684 suffix_check.no_ssuf = 1;
5685 break;
5686 case LONG_MNEM_SUFFIX:
5687 suffix_check.no_lsuf = 1;
5688 break;
5689 case QWORD_MNEM_SUFFIX:
5690 suffix_check.no_qsuf = 1;
5691 break;
5692 default:
5693 /* NB: In Intel syntax, normally we can check for memory operand
5694 size when there is no mnemonic suffix. But jmp and call have
5695 2 different encodings with Dword memory operand size, one with
5696 No_ldSuf and the other without. i.suffix is set to
5697 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5698 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5699 suffix_check.no_ldsuf = 1;
5700 }
5701
5702 /* Must have right number of operands. */
5703 i.error = number_of_operands_mismatch;
5704
5705 for (t = current_templates->start; t < current_templates->end; t++)
5706 {
5707 addr_prefix_disp = -1;
5708 found_reverse_match = 0;
5709
5710 if (i.operands != t->operands)
5711 continue;
5712
5713 /* Check processor support. */
5714 i.error = unsupported;
5715 found_cpu_match = (cpu_flags_match (t)
5716 == CPU_FLAGS_PERFECT_MATCH);
5717 if (!found_cpu_match)
5718 continue;
5719
5720 /* Check AT&T mnemonic. */
5721 i.error = unsupported_with_intel_mnemonic;
5722 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5723 continue;
5724
5725 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5726 i.error = unsupported_syntax;
5727 if ((intel_syntax && t->opcode_modifier.attsyntax)
5728 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5729 || (intel64 && t->opcode_modifier.amd64)
5730 || (!intel64 && t->opcode_modifier.intel64))
5731 continue;
5732
5733 /* Check the suffix. */
5734 i.error = invalid_instruction_suffix;
5735 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5736 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5737 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5738 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5739 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5740 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5741 continue;
5742
5743 size_match = operand_size_match (t);
5744 if (!size_match)
5745 continue;
5746
5747 /* This is intentionally not
5748
5749 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5750
5751 as the case of a missing * on the operand is accepted (perhaps with
5752 a warning, issued further down). */
5753 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5754 {
5755 i.error = operand_type_mismatch;
5756 continue;
5757 }
5758
5759 for (j = 0; j < MAX_OPERANDS; j++)
5760 operand_types[j] = t->operand_types[j];
5761
5762 /* In general, don't allow 64-bit operands in 32-bit mode. */
5763 if (i.suffix == QWORD_MNEM_SUFFIX
5764 && flag_code != CODE_64BIT
5765 && (intel_syntax
5766 ? (!t->opcode_modifier.ignoresize
5767 && !t->opcode_modifier.broadcast
5768 && !intel_float_operand (t->name))
5769 : intel_float_operand (t->name) != 2)
5770 && ((operand_types[0].bitfield.class != RegMMX
5771 && operand_types[0].bitfield.class != RegSIMD)
5772 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5773 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5774 && (t->base_opcode != 0x0fc7
5775 || t->extension_opcode != 1 /* cmpxchg8b */))
5776 continue;
5777
5778 /* In general, don't allow 32-bit operands on pre-386. */
5779 else if (i.suffix == LONG_MNEM_SUFFIX
5780 && !cpu_arch_flags.bitfield.cpui386
5781 && (intel_syntax
5782 ? (!t->opcode_modifier.ignoresize
5783 && !intel_float_operand (t->name))
5784 : intel_float_operand (t->name) != 2)
5785 && ((operand_types[0].bitfield.class != RegMMX
5786 && operand_types[0].bitfield.class != RegSIMD)
5787 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5788 && operand_types[t->operands > 1].bitfield.class
5789 != RegSIMD)))
5790 continue;
5791
5792 /* Do not verify operands when there are none. */
5793 else
5794 {
5795 if (!t->operands)
5796 /* We've found a match; break out of loop. */
5797 break;
5798 }
5799
5800 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5801 into Disp32/Disp16/Disp32 operand. */
5802 if (i.prefix[ADDR_PREFIX] != 0)
5803 {
5804 /* There should be only one Disp operand. */
5805 switch (flag_code)
5806 {
5807 case CODE_16BIT:
5808 for (j = 0; j < MAX_OPERANDS; j++)
5809 {
5810 if (operand_types[j].bitfield.disp16)
5811 {
5812 addr_prefix_disp = j;
5813 operand_types[j].bitfield.disp32 = 1;
5814 operand_types[j].bitfield.disp16 = 0;
5815 break;
5816 }
5817 }
5818 break;
5819 case CODE_32BIT:
5820 for (j = 0; j < MAX_OPERANDS; j++)
5821 {
5822 if (operand_types[j].bitfield.disp32)
5823 {
5824 addr_prefix_disp = j;
5825 operand_types[j].bitfield.disp32 = 0;
5826 operand_types[j].bitfield.disp16 = 1;
5827 break;
5828 }
5829 }
5830 break;
5831 case CODE_64BIT:
5832 for (j = 0; j < MAX_OPERANDS; j++)
5833 {
5834 if (operand_types[j].bitfield.disp64)
5835 {
5836 addr_prefix_disp = j;
5837 operand_types[j].bitfield.disp64 = 0;
5838 operand_types[j].bitfield.disp32 = 1;
5839 break;
5840 }
5841 }
5842 break;
5843 }
5844 }
5845
5846 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5847 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5848 continue;
5849
5850 /* We check register size if needed. */
5851 if (t->opcode_modifier.checkregsize)
5852 {
5853 check_register = (1 << t->operands) - 1;
5854 if (i.broadcast)
5855 check_register &= ~(1 << i.broadcast->operand);
5856 }
5857 else
5858 check_register = 0;
5859
5860 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5861 switch (t->operands)
5862 {
5863 case 1:
5864 if (!operand_type_match (overlap0, i.types[0]))
5865 continue;
5866 break;
5867 case 2:
5868 /* xchg %eax, %eax is a special case. It is an alias for nop
5869 only in 32bit mode and we can use opcode 0x90. In 64bit
5870 mode, we can't use 0x90 for xchg %eax, %eax since it should
5871 zero-extend %eax to %rax. */
5872 if (flag_code == CODE_64BIT
5873 && t->base_opcode == 0x90
5874 && i.types[0].bitfield.instance == Accum
5875 && i.types[0].bitfield.dword
5876 && i.types[1].bitfield.instance == Accum
5877 && i.types[1].bitfield.dword)
5878 continue;
5879 /* xrelease mov %eax, <disp> is another special case. It must not
5880 match the accumulator-only encoding of mov. */
5881 if (flag_code != CODE_64BIT
5882 && i.hle_prefix
5883 && t->base_opcode == 0xa0
5884 && i.types[0].bitfield.instance == Accum
5885 && (i.flags[1] & Operand_Mem))
5886 continue;
5887 /* Fall through. */
5888
5889 case 3:
5890 if (!(size_match & MATCH_STRAIGHT))
5891 goto check_reverse;
5892 /* Reverse direction of operands if swapping is possible in the first
5893 place (operands need to be symmetric) and
5894 - the load form is requested, and the template is a store form,
5895 - the store form is requested, and the template is a load form,
5896 - the non-default (swapped) form is requested. */
5897 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5898 if (t->opcode_modifier.d && i.reg_operands == i.operands
5899 && !operand_type_all_zero (&overlap1))
5900 switch (i.dir_encoding)
5901 {
5902 case dir_encoding_load:
5903 if (operand_type_check (operand_types[i.operands - 1], anymem)
5904 || t->opcode_modifier.regmem)
5905 goto check_reverse;
5906 break;
5907
5908 case dir_encoding_store:
5909 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5910 && !t->opcode_modifier.regmem)
5911 goto check_reverse;
5912 break;
5913
5914 case dir_encoding_swap:
5915 goto check_reverse;
5916
5917 case dir_encoding_default:
5918 break;
5919 }
5920 /* If we want store form, we skip the current load. */
5921 if ((i.dir_encoding == dir_encoding_store
5922 || i.dir_encoding == dir_encoding_swap)
5923 && i.mem_operands == 0
5924 && t->opcode_modifier.load)
5925 continue;
5926 /* Fall through. */
5927 case 4:
5928 case 5:
5929 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5930 if (!operand_type_match (overlap0, i.types[0])
5931 || !operand_type_match (overlap1, i.types[1])
5932 || ((check_register & 3) == 3
5933 && !operand_type_register_match (i.types[0],
5934 operand_types[0],
5935 i.types[1],
5936 operand_types[1])))
5937 {
5938 /* Check if other direction is valid ... */
5939 if (!t->opcode_modifier.d)
5940 continue;
5941
5942 check_reverse:
5943 if (!(size_match & MATCH_REVERSE))
5944 continue;
5945 /* Try reversing direction of operands. */
5946 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5947 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5948 if (!operand_type_match (overlap0, i.types[0])
5949 || !operand_type_match (overlap1, i.types[i.operands - 1])
5950 || (check_register
5951 && !operand_type_register_match (i.types[0],
5952 operand_types[i.operands - 1],
5953 i.types[i.operands - 1],
5954 operand_types[0])))
5955 {
5956 /* Does not match either direction. */
5957 continue;
5958 }
5959 /* found_reverse_match holds which of D or FloatR
5960 we've found. */
5961 if (!t->opcode_modifier.d)
5962 found_reverse_match = 0;
5963 else if (operand_types[0].bitfield.tbyte)
5964 found_reverse_match = Opcode_FloatD;
5965 else if (operand_types[0].bitfield.xmmword
5966 || operand_types[i.operands - 1].bitfield.xmmword
5967 || operand_types[0].bitfield.class == RegMMX
5968 || operand_types[i.operands - 1].bitfield.class == RegMMX
5969 || is_any_vex_encoding(t))
5970 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
5971 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
5972 else
5973 found_reverse_match = Opcode_D;
5974 if (t->opcode_modifier.floatr)
5975 found_reverse_match |= Opcode_FloatR;
5976 }
5977 else
5978 {
5979 /* Found a forward 2 operand match here. */
5980 switch (t->operands)
5981 {
5982 case 5:
5983 overlap4 = operand_type_and (i.types[4],
5984 operand_types[4]);
5985 /* Fall through. */
5986 case 4:
5987 overlap3 = operand_type_and (i.types[3],
5988 operand_types[3]);
5989 /* Fall through. */
5990 case 3:
5991 overlap2 = operand_type_and (i.types[2],
5992 operand_types[2]);
5993 break;
5994 }
5995
5996 switch (t->operands)
5997 {
5998 case 5:
5999 if (!operand_type_match (overlap4, i.types[4])
6000 || !operand_type_register_match (i.types[3],
6001 operand_types[3],
6002 i.types[4],
6003 operand_types[4]))
6004 continue;
6005 /* Fall through. */
6006 case 4:
6007 if (!operand_type_match (overlap3, i.types[3])
6008 || ((check_register & 0xa) == 0xa
6009 && !operand_type_register_match (i.types[1],
6010 operand_types[1],
6011 i.types[3],
6012 operand_types[3]))
6013 || ((check_register & 0xc) == 0xc
6014 && !operand_type_register_match (i.types[2],
6015 operand_types[2],
6016 i.types[3],
6017 operand_types[3])))
6018 continue;
6019 /* Fall through. */
6020 case 3:
6021 /* Here we make use of the fact that there are no
6022 reverse match 3 operand instructions. */
6023 if (!operand_type_match (overlap2, i.types[2])
6024 || ((check_register & 5) == 5
6025 && !operand_type_register_match (i.types[0],
6026 operand_types[0],
6027 i.types[2],
6028 operand_types[2]))
6029 || ((check_register & 6) == 6
6030 && !operand_type_register_match (i.types[1],
6031 operand_types[1],
6032 i.types[2],
6033 operand_types[2])))
6034 continue;
6035 break;
6036 }
6037 }
6038 /* Found either forward/reverse 2, 3 or 4 operand match here:
6039 slip through to break. */
6040 }
6041 if (!found_cpu_match)
6042 continue;
6043
6044 /* Check if vector and VEX operands are valid. */
6045 if (check_VecOperands (t) || VEX_check_operands (t))
6046 {
6047 specific_error = i.error;
6048 continue;
6049 }
6050
6051 /* We've found a match; break out of loop. */
6052 break;
6053 }
6054
6055 if (t == current_templates->end)
6056 {
6057 /* We found no match. */
6058 const char *err_msg;
6059 switch (specific_error ? specific_error : i.error)
6060 {
6061 default:
6062 abort ();
6063 case operand_size_mismatch:
6064 err_msg = _("operand size mismatch");
6065 break;
6066 case operand_type_mismatch:
6067 err_msg = _("operand type mismatch");
6068 break;
6069 case register_type_mismatch:
6070 err_msg = _("register type mismatch");
6071 break;
6072 case number_of_operands_mismatch:
6073 err_msg = _("number of operands mismatch");
6074 break;
6075 case invalid_instruction_suffix:
6076 err_msg = _("invalid instruction suffix");
6077 break;
6078 case bad_imm4:
6079 err_msg = _("constant doesn't fit in 4 bits");
6080 break;
6081 case unsupported_with_intel_mnemonic:
6082 err_msg = _("unsupported with Intel mnemonic");
6083 break;
6084 case unsupported_syntax:
6085 err_msg = _("unsupported syntax");
6086 break;
6087 case unsupported:
6088 as_bad (_("unsupported instruction `%s'"),
6089 current_templates->start->name);
6090 return NULL;
6091 case invalid_vsib_address:
6092 err_msg = _("invalid VSIB address");
6093 break;
6094 case invalid_vector_register_set:
6095 err_msg = _("mask, index, and destination registers must be distinct");
6096 break;
6097 case unsupported_vector_index_register:
6098 err_msg = _("unsupported vector index register");
6099 break;
6100 case unsupported_broadcast:
6101 err_msg = _("unsupported broadcast");
6102 break;
6103 case broadcast_needed:
6104 err_msg = _("broadcast is needed for operand of such type");
6105 break;
6106 case unsupported_masking:
6107 err_msg = _("unsupported masking");
6108 break;
6109 case mask_not_on_destination:
6110 err_msg = _("mask not on destination operand");
6111 break;
6112 case no_default_mask:
6113 err_msg = _("default mask isn't allowed");
6114 break;
6115 case unsupported_rc_sae:
6116 err_msg = _("unsupported static rounding/sae");
6117 break;
6118 case rc_sae_operand_not_last_imm:
6119 if (intel_syntax)
6120 err_msg = _("RC/SAE operand must precede immediate operands");
6121 else
6122 err_msg = _("RC/SAE operand must follow immediate operands");
6123 break;
6124 case invalid_register_operand:
6125 err_msg = _("invalid register operand");
6126 break;
6127 }
6128 as_bad (_("%s for `%s'"), err_msg,
6129 current_templates->start->name);
6130 return NULL;
6131 }
6132
6133 if (!quiet_warnings)
6134 {
6135 if (!intel_syntax
6136 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6137 as_warn (_("indirect %s without `*'"), t->name);
6138
6139 if (t->opcode_modifier.isprefix
6140 && t->opcode_modifier.ignoresize)
6141 {
6142 /* Warn them that a data or address size prefix doesn't
6143 affect assembly of the next line of code. */
6144 as_warn (_("stand-alone `%s' prefix"), t->name);
6145 }
6146 }
6147
6148 /* Copy the template we found. */
6149 i.tm = *t;
6150
6151 if (addr_prefix_disp != -1)
6152 i.tm.operand_types[addr_prefix_disp]
6153 = operand_types[addr_prefix_disp];
6154
6155 if (found_reverse_match)
6156 {
6157 /* If we found a reverse match we must alter the opcode direction
6158 bit and clear/flip the regmem modifier one. found_reverse_match
6159 holds bits to change (different for int & float insns). */
6160
6161 i.tm.base_opcode ^= found_reverse_match;
6162
6163 i.tm.operand_types[0] = operand_types[i.operands - 1];
6164 i.tm.operand_types[i.operands - 1] = operand_types[0];
6165
6166 /* Certain SIMD insns have their load forms specified in the opcode
6167 table, and hence we need to _set_ RegMem instead of clearing it.
6168 We need to avoid setting the bit though on insns like KMOVW. */
6169 i.tm.opcode_modifier.regmem
6170 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6171 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6172 && !i.tm.opcode_modifier.regmem;
6173 }
6174
6175 return t;
6176 }
6177
6178 static int
6179 check_string (void)
6180 {
6181 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6182 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6183
6184 if (i.seg[op] != NULL && i.seg[op] != &es)
6185 {
6186 as_bad (_("`%s' operand %u must use `%ses' segment"),
6187 i.tm.name,
6188 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6189 register_prefix);
6190 return 0;
6191 }
6192
6193 /* There's only ever one segment override allowed per instruction.
6194 This instruction possibly has a legal segment override on the
6195 second operand, so copy the segment to where non-string
6196 instructions store it, allowing common code. */
6197 i.seg[op] = i.seg[1];
6198
6199 return 1;
6200 }
6201
6202 static int
6203 process_suffix (void)
6204 {
6205 /* If matched instruction specifies an explicit instruction mnemonic
6206 suffix, use it. */
6207 if (i.tm.opcode_modifier.size == SIZE16)
6208 i.suffix = WORD_MNEM_SUFFIX;
6209 else if (i.tm.opcode_modifier.size == SIZE32)
6210 i.suffix = LONG_MNEM_SUFFIX;
6211 else if (i.tm.opcode_modifier.size == SIZE64)
6212 i.suffix = QWORD_MNEM_SUFFIX;
6213 else if (i.reg_operands
6214 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
6215 {
6216 /* If there's no instruction mnemonic suffix we try to invent one
6217 based on GPR operands. */
6218 if (!i.suffix)
6219 {
6220 /* We take i.suffix from the last register operand specified,
6221 Destination register type is more significant than source
6222 register type. crc32 in SSE4.2 prefers source register
6223 type. */
6224 if (i.tm.base_opcode == 0xf20f38f0
6225 && i.types[0].bitfield.class == Reg)
6226 {
6227 if (i.types[0].bitfield.byte)
6228 i.suffix = BYTE_MNEM_SUFFIX;
6229 else if (i.types[0].bitfield.word)
6230 i.suffix = WORD_MNEM_SUFFIX;
6231 else if (i.types[0].bitfield.dword)
6232 i.suffix = LONG_MNEM_SUFFIX;
6233 else if (i.types[0].bitfield.qword)
6234 i.suffix = QWORD_MNEM_SUFFIX;
6235 }
6236
6237 if (!i.suffix)
6238 {
6239 int op;
6240
6241 if (i.tm.base_opcode == 0xf20f38f0)
6242 {
6243 /* We have to know the operand size for crc32. */
6244 as_bad (_("ambiguous memory operand size for `%s`"),
6245 i.tm.name);
6246 return 0;
6247 }
6248
6249 for (op = i.operands; --op >= 0;)
6250 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6251 || i.tm.operand_types[op].bitfield.instance == Accum)
6252 {
6253 if (i.types[op].bitfield.class != Reg)
6254 continue;
6255 if (i.types[op].bitfield.byte)
6256 i.suffix = BYTE_MNEM_SUFFIX;
6257 else if (i.types[op].bitfield.word)
6258 i.suffix = WORD_MNEM_SUFFIX;
6259 else if (i.types[op].bitfield.dword)
6260 i.suffix = LONG_MNEM_SUFFIX;
6261 else if (i.types[op].bitfield.qword)
6262 i.suffix = QWORD_MNEM_SUFFIX;
6263 else
6264 continue;
6265 break;
6266 }
6267 }
6268 }
6269 else if (i.suffix == BYTE_MNEM_SUFFIX)
6270 {
6271 if (intel_syntax
6272 && i.tm.opcode_modifier.ignoresize
6273 && i.tm.opcode_modifier.no_bsuf)
6274 i.suffix = 0;
6275 else if (!check_byte_reg ())
6276 return 0;
6277 }
6278 else if (i.suffix == LONG_MNEM_SUFFIX)
6279 {
6280 if (intel_syntax
6281 && i.tm.opcode_modifier.ignoresize
6282 && i.tm.opcode_modifier.no_lsuf
6283 && !i.tm.opcode_modifier.todword
6284 && !i.tm.opcode_modifier.toqword)
6285 i.suffix = 0;
6286 else if (!check_long_reg ())
6287 return 0;
6288 }
6289 else if (i.suffix == QWORD_MNEM_SUFFIX)
6290 {
6291 if (intel_syntax
6292 && i.tm.opcode_modifier.ignoresize
6293 && i.tm.opcode_modifier.no_qsuf
6294 && !i.tm.opcode_modifier.todword
6295 && !i.tm.opcode_modifier.toqword)
6296 i.suffix = 0;
6297 else if (!check_qword_reg ())
6298 return 0;
6299 }
6300 else if (i.suffix == WORD_MNEM_SUFFIX)
6301 {
6302 if (intel_syntax
6303 && i.tm.opcode_modifier.ignoresize
6304 && i.tm.opcode_modifier.no_wsuf)
6305 i.suffix = 0;
6306 else if (!check_word_reg ())
6307 return 0;
6308 }
6309 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6310 /* Do nothing if the instruction is going to ignore the prefix. */
6311 ;
6312 else
6313 abort ();
6314 }
6315 else if (i.tm.opcode_modifier.defaultsize
6316 && !i.suffix
6317 /* exclude fldenv/frstor/fsave/fstenv */
6318 && i.tm.opcode_modifier.no_ssuf
6319 /* exclude sysret */
6320 && i.tm.base_opcode != 0x0f07)
6321 {
6322 i.suffix = stackop_size;
6323 if (stackop_size == LONG_MNEM_SUFFIX)
6324 {
6325 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6326 .code16gcc directive to support 16-bit mode with
6327 32-bit address. For IRET without a suffix, generate
6328 16-bit IRET (opcode 0xcf) to return from an interrupt
6329 handler. */
6330 if (i.tm.base_opcode == 0xcf)
6331 {
6332 i.suffix = WORD_MNEM_SUFFIX;
6333 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6334 }
6335 /* Warn about changed behavior for segment register push/pop. */
6336 else if ((i.tm.base_opcode | 1) == 0x07)
6337 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6338 i.tm.name);
6339 }
6340 }
6341 else if (intel_syntax
6342 && !i.suffix
6343 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6344 || i.tm.opcode_modifier.jump == JUMP_BYTE
6345 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6346 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6347 && i.tm.extension_opcode <= 3)))
6348 {
6349 switch (flag_code)
6350 {
6351 case CODE_64BIT:
6352 if (!i.tm.opcode_modifier.no_qsuf)
6353 {
6354 i.suffix = QWORD_MNEM_SUFFIX;
6355 break;
6356 }
6357 /* Fall through. */
6358 case CODE_32BIT:
6359 if (!i.tm.opcode_modifier.no_lsuf)
6360 i.suffix = LONG_MNEM_SUFFIX;
6361 break;
6362 case CODE_16BIT:
6363 if (!i.tm.opcode_modifier.no_wsuf)
6364 i.suffix = WORD_MNEM_SUFFIX;
6365 break;
6366 }
6367 }
6368
6369 if (!i.suffix)
6370 {
6371 if (!intel_syntax)
6372 {
6373 if (i.tm.opcode_modifier.w)
6374 {
6375 as_bad (_("no instruction mnemonic suffix given and "
6376 "no register operands; can't size instruction"));
6377 return 0;
6378 }
6379 }
6380 else
6381 {
6382 unsigned int suffixes;
6383
6384 suffixes = !i.tm.opcode_modifier.no_bsuf;
6385 if (!i.tm.opcode_modifier.no_wsuf)
6386 suffixes |= 1 << 1;
6387 if (!i.tm.opcode_modifier.no_lsuf)
6388 suffixes |= 1 << 2;
6389 if (!i.tm.opcode_modifier.no_ldsuf)
6390 suffixes |= 1 << 3;
6391 if (!i.tm.opcode_modifier.no_ssuf)
6392 suffixes |= 1 << 4;
6393 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6394 suffixes |= 1 << 5;
6395
6396 /* There are more than suffix matches. */
6397 if (i.tm.opcode_modifier.w
6398 || ((suffixes & (suffixes - 1))
6399 && !i.tm.opcode_modifier.defaultsize
6400 && !i.tm.opcode_modifier.ignoresize))
6401 {
6402 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6403 return 0;
6404 }
6405 }
6406 }
6407
6408 /* Change the opcode based on the operand size given by i.suffix. */
6409 switch (i.suffix)
6410 {
6411 /* Size floating point instruction. */
6412 case LONG_MNEM_SUFFIX:
6413 if (i.tm.opcode_modifier.floatmf)
6414 {
6415 i.tm.base_opcode ^= 4;
6416 break;
6417 }
6418 /* fall through */
6419 case WORD_MNEM_SUFFIX:
6420 case QWORD_MNEM_SUFFIX:
6421 /* It's not a byte, select word/dword operation. */
6422 if (i.tm.opcode_modifier.w)
6423 {
6424 if (i.tm.opcode_modifier.shortform)
6425 i.tm.base_opcode |= 8;
6426 else
6427 i.tm.base_opcode |= 1;
6428 }
6429 /* fall through */
6430 case SHORT_MNEM_SUFFIX:
6431 /* Now select between word & dword operations via the operand
6432 size prefix, except for instructions that will ignore this
6433 prefix anyway. */
6434 if (i.reg_operands > 0
6435 && i.types[0].bitfield.class == Reg
6436 && i.tm.opcode_modifier.addrprefixopreg
6437 && (i.tm.operand_types[0].bitfield.instance == Accum
6438 || i.operands == 1))
6439 {
6440 /* The address size override prefix changes the size of the
6441 first operand. */
6442 if ((flag_code == CODE_32BIT
6443 && i.op[0].regs->reg_type.bitfield.word)
6444 || (flag_code != CODE_32BIT
6445 && i.op[0].regs->reg_type.bitfield.dword))
6446 if (!add_prefix (ADDR_PREFIX_OPCODE))
6447 return 0;
6448 }
6449 else if (i.suffix != QWORD_MNEM_SUFFIX
6450 && !i.tm.opcode_modifier.ignoresize
6451 && !i.tm.opcode_modifier.floatmf
6452 && !is_any_vex_encoding (&i.tm)
6453 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6454 || (flag_code == CODE_64BIT
6455 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6456 {
6457 unsigned int prefix = DATA_PREFIX_OPCODE;
6458
6459 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6460 prefix = ADDR_PREFIX_OPCODE;
6461
6462 if (!add_prefix (prefix))
6463 return 0;
6464 }
6465
6466 /* Set mode64 for an operand. */
6467 if (i.suffix == QWORD_MNEM_SUFFIX
6468 && flag_code == CODE_64BIT
6469 && !i.tm.opcode_modifier.norex64
6470 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6471 need rex64. */
6472 && ! (i.operands == 2
6473 && i.tm.base_opcode == 0x90
6474 && i.tm.extension_opcode == None
6475 && i.types[0].bitfield.instance == Accum
6476 && i.types[0].bitfield.qword
6477 && i.types[1].bitfield.instance == Accum
6478 && i.types[1].bitfield.qword))
6479 i.rex |= REX_W;
6480
6481 break;
6482 }
6483
6484 if (i.reg_operands != 0
6485 && i.operands > 1
6486 && i.tm.opcode_modifier.addrprefixopreg
6487 && i.tm.operand_types[0].bitfield.instance != Accum)
6488 {
6489 /* Check invalid register operand when the address size override
6490 prefix changes the size of register operands. */
6491 unsigned int op;
6492 enum { need_word, need_dword, need_qword } need;
6493
6494 if (flag_code == CODE_32BIT)
6495 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6496 else
6497 {
6498 if (i.prefix[ADDR_PREFIX])
6499 need = need_dword;
6500 else
6501 need = flag_code == CODE_64BIT ? need_qword : need_word;
6502 }
6503
6504 for (op = 0; op < i.operands; op++)
6505 if (i.types[op].bitfield.class == Reg
6506 && ((need == need_word
6507 && !i.op[op].regs->reg_type.bitfield.word)
6508 || (need == need_dword
6509 && !i.op[op].regs->reg_type.bitfield.dword)
6510 || (need == need_qword
6511 && !i.op[op].regs->reg_type.bitfield.qword)))
6512 {
6513 as_bad (_("invalid register operand size for `%s'"),
6514 i.tm.name);
6515 return 0;
6516 }
6517 }
6518
6519 return 1;
6520 }
6521
6522 static int
6523 check_byte_reg (void)
6524 {
6525 int op;
6526
6527 for (op = i.operands; --op >= 0;)
6528 {
6529 /* Skip non-register operands. */
6530 if (i.types[op].bitfield.class != Reg)
6531 continue;
6532
6533 /* If this is an eight bit register, it's OK. If it's the 16 or
6534 32 bit version of an eight bit register, we will just use the
6535 low portion, and that's OK too. */
6536 if (i.types[op].bitfield.byte)
6537 continue;
6538
6539 /* I/O port address operands are OK too. */
6540 if (i.tm.operand_types[op].bitfield.instance == RegD
6541 && i.tm.operand_types[op].bitfield.word)
6542 continue;
6543
6544 /* crc32 doesn't generate this warning. */
6545 if (i.tm.base_opcode == 0xf20f38f0)
6546 continue;
6547
6548 if ((i.types[op].bitfield.word
6549 || i.types[op].bitfield.dword
6550 || i.types[op].bitfield.qword)
6551 && i.op[op].regs->reg_num < 4
6552 /* Prohibit these changes in 64bit mode, since the lowering
6553 would be more complicated. */
6554 && flag_code != CODE_64BIT)
6555 {
6556 #if REGISTER_WARNINGS
6557 if (!quiet_warnings)
6558 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6559 register_prefix,
6560 (i.op[op].regs + (i.types[op].bitfield.word
6561 ? REGNAM_AL - REGNAM_AX
6562 : REGNAM_AL - REGNAM_EAX))->reg_name,
6563 register_prefix,
6564 i.op[op].regs->reg_name,
6565 i.suffix);
6566 #endif
6567 continue;
6568 }
6569 /* Any other register is bad. */
6570 if (i.types[op].bitfield.class == Reg
6571 || i.types[op].bitfield.class == RegMMX
6572 || i.types[op].bitfield.class == RegSIMD
6573 || i.types[op].bitfield.class == SReg
6574 || i.types[op].bitfield.class == RegCR
6575 || i.types[op].bitfield.class == RegDR
6576 || i.types[op].bitfield.class == RegTR)
6577 {
6578 as_bad (_("`%s%s' not allowed with `%s%c'"),
6579 register_prefix,
6580 i.op[op].regs->reg_name,
6581 i.tm.name,
6582 i.suffix);
6583 return 0;
6584 }
6585 }
6586 return 1;
6587 }
6588
6589 static int
6590 check_long_reg (void)
6591 {
6592 int op;
6593
6594 for (op = i.operands; --op >= 0;)
6595 /* Skip non-register operands. */
6596 if (i.types[op].bitfield.class != Reg)
6597 continue;
6598 /* Reject eight bit registers, except where the template requires
6599 them. (eg. movzb) */
6600 else if (i.types[op].bitfield.byte
6601 && (i.tm.operand_types[op].bitfield.class == Reg
6602 || i.tm.operand_types[op].bitfield.instance == Accum)
6603 && (i.tm.operand_types[op].bitfield.word
6604 || i.tm.operand_types[op].bitfield.dword))
6605 {
6606 as_bad (_("`%s%s' not allowed with `%s%c'"),
6607 register_prefix,
6608 i.op[op].regs->reg_name,
6609 i.tm.name,
6610 i.suffix);
6611 return 0;
6612 }
6613 /* Warn if the e prefix on a general reg is missing. */
6614 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6615 && i.types[op].bitfield.word
6616 && (i.tm.operand_types[op].bitfield.class == Reg
6617 || i.tm.operand_types[op].bitfield.instance == Accum)
6618 && i.tm.operand_types[op].bitfield.dword)
6619 {
6620 /* Prohibit these changes in the 64bit mode, since the
6621 lowering is more complicated. */
6622 if (flag_code == CODE_64BIT)
6623 {
6624 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6625 register_prefix, i.op[op].regs->reg_name,
6626 i.suffix);
6627 return 0;
6628 }
6629 #if REGISTER_WARNINGS
6630 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6631 register_prefix,
6632 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6633 register_prefix, i.op[op].regs->reg_name, i.suffix);
6634 #endif
6635 }
6636 /* Warn if the r prefix on a general reg is present. */
6637 else if (i.types[op].bitfield.qword
6638 && (i.tm.operand_types[op].bitfield.class == Reg
6639 || i.tm.operand_types[op].bitfield.instance == Accum)
6640 && i.tm.operand_types[op].bitfield.dword)
6641 {
6642 if (intel_syntax
6643 && i.tm.opcode_modifier.toqword
6644 && i.types[0].bitfield.class != RegSIMD)
6645 {
6646 /* Convert to QWORD. We want REX byte. */
6647 i.suffix = QWORD_MNEM_SUFFIX;
6648 }
6649 else
6650 {
6651 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6652 register_prefix, i.op[op].regs->reg_name,
6653 i.suffix);
6654 return 0;
6655 }
6656 }
6657 return 1;
6658 }
6659
6660 static int
6661 check_qword_reg (void)
6662 {
6663 int op;
6664
6665 for (op = i.operands; --op >= 0; )
6666 /* Skip non-register operands. */
6667 if (i.types[op].bitfield.class != Reg)
6668 continue;
6669 /* Reject eight bit registers, except where the template requires
6670 them. (eg. movzb) */
6671 else if (i.types[op].bitfield.byte
6672 && (i.tm.operand_types[op].bitfield.class == Reg
6673 || i.tm.operand_types[op].bitfield.instance == Accum)
6674 && (i.tm.operand_types[op].bitfield.word
6675 || i.tm.operand_types[op].bitfield.dword))
6676 {
6677 as_bad (_("`%s%s' not allowed with `%s%c'"),
6678 register_prefix,
6679 i.op[op].regs->reg_name,
6680 i.tm.name,
6681 i.suffix);
6682 return 0;
6683 }
6684 /* Warn if the r prefix on a general reg is missing. */
6685 else if ((i.types[op].bitfield.word
6686 || i.types[op].bitfield.dword)
6687 && (i.tm.operand_types[op].bitfield.class == Reg
6688 || i.tm.operand_types[op].bitfield.instance == Accum)
6689 && i.tm.operand_types[op].bitfield.qword)
6690 {
6691 /* Prohibit these changes in the 64bit mode, since the
6692 lowering is more complicated. */
6693 if (intel_syntax
6694 && i.tm.opcode_modifier.todword
6695 && i.types[0].bitfield.class != RegSIMD)
6696 {
6697 /* Convert to DWORD. We don't want REX byte. */
6698 i.suffix = LONG_MNEM_SUFFIX;
6699 }
6700 else
6701 {
6702 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6703 register_prefix, i.op[op].regs->reg_name,
6704 i.suffix);
6705 return 0;
6706 }
6707 }
6708 return 1;
6709 }
6710
6711 static int
6712 check_word_reg (void)
6713 {
6714 int op;
6715 for (op = i.operands; --op >= 0;)
6716 /* Skip non-register operands. */
6717 if (i.types[op].bitfield.class != Reg)
6718 continue;
6719 /* Reject eight bit registers, except where the template requires
6720 them. (eg. movzb) */
6721 else if (i.types[op].bitfield.byte
6722 && (i.tm.operand_types[op].bitfield.class == Reg
6723 || i.tm.operand_types[op].bitfield.instance == Accum)
6724 && (i.tm.operand_types[op].bitfield.word
6725 || i.tm.operand_types[op].bitfield.dword))
6726 {
6727 as_bad (_("`%s%s' not allowed with `%s%c'"),
6728 register_prefix,
6729 i.op[op].regs->reg_name,
6730 i.tm.name,
6731 i.suffix);
6732 return 0;
6733 }
6734 /* Warn if the e or r prefix on a general reg is present. */
6735 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6736 && (i.types[op].bitfield.dword
6737 || i.types[op].bitfield.qword)
6738 && (i.tm.operand_types[op].bitfield.class == Reg
6739 || i.tm.operand_types[op].bitfield.instance == Accum)
6740 && i.tm.operand_types[op].bitfield.word)
6741 {
6742 /* Prohibit these changes in the 64bit mode, since the
6743 lowering is more complicated. */
6744 if (flag_code == CODE_64BIT)
6745 {
6746 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6747 register_prefix, i.op[op].regs->reg_name,
6748 i.suffix);
6749 return 0;
6750 }
6751 #if REGISTER_WARNINGS
6752 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6753 register_prefix,
6754 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6755 register_prefix, i.op[op].regs->reg_name, i.suffix);
6756 #endif
6757 }
6758 return 1;
6759 }
6760
6761 static int
6762 update_imm (unsigned int j)
6763 {
6764 i386_operand_type overlap = i.types[j];
6765 if ((overlap.bitfield.imm8
6766 || overlap.bitfield.imm8s
6767 || overlap.bitfield.imm16
6768 || overlap.bitfield.imm32
6769 || overlap.bitfield.imm32s
6770 || overlap.bitfield.imm64)
6771 && !operand_type_equal (&overlap, &imm8)
6772 && !operand_type_equal (&overlap, &imm8s)
6773 && !operand_type_equal (&overlap, &imm16)
6774 && !operand_type_equal (&overlap, &imm32)
6775 && !operand_type_equal (&overlap, &imm32s)
6776 && !operand_type_equal (&overlap, &imm64))
6777 {
6778 if (i.suffix)
6779 {
6780 i386_operand_type temp;
6781
6782 operand_type_set (&temp, 0);
6783 if (i.suffix == BYTE_MNEM_SUFFIX)
6784 {
6785 temp.bitfield.imm8 = overlap.bitfield.imm8;
6786 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6787 }
6788 else if (i.suffix == WORD_MNEM_SUFFIX)
6789 temp.bitfield.imm16 = overlap.bitfield.imm16;
6790 else if (i.suffix == QWORD_MNEM_SUFFIX)
6791 {
6792 temp.bitfield.imm64 = overlap.bitfield.imm64;
6793 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6794 }
6795 else
6796 temp.bitfield.imm32 = overlap.bitfield.imm32;
6797 overlap = temp;
6798 }
6799 else if (operand_type_equal (&overlap, &imm16_32_32s)
6800 || operand_type_equal (&overlap, &imm16_32)
6801 || operand_type_equal (&overlap, &imm16_32s))
6802 {
6803 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6804 overlap = imm16;
6805 else
6806 overlap = imm32s;
6807 }
6808 if (!operand_type_equal (&overlap, &imm8)
6809 && !operand_type_equal (&overlap, &imm8s)
6810 && !operand_type_equal (&overlap, &imm16)
6811 && !operand_type_equal (&overlap, &imm32)
6812 && !operand_type_equal (&overlap, &imm32s)
6813 && !operand_type_equal (&overlap, &imm64))
6814 {
6815 as_bad (_("no instruction mnemonic suffix given; "
6816 "can't determine immediate size"));
6817 return 0;
6818 }
6819 }
6820 i.types[j] = overlap;
6821
6822 return 1;
6823 }
6824
6825 static int
6826 finalize_imm (void)
6827 {
6828 unsigned int j, n;
6829
6830 /* Update the first 2 immediate operands. */
6831 n = i.operands > 2 ? 2 : i.operands;
6832 if (n)
6833 {
6834 for (j = 0; j < n; j++)
6835 if (update_imm (j) == 0)
6836 return 0;
6837
6838 /* The 3rd operand can't be immediate operand. */
6839 gas_assert (operand_type_check (i.types[2], imm) == 0);
6840 }
6841
6842 return 1;
6843 }
6844
6845 static int
6846 process_operands (void)
6847 {
6848 /* Default segment register this instruction will use for memory
6849 accesses. 0 means unknown. This is only for optimizing out
6850 unnecessary segment overrides. */
6851 const seg_entry *default_seg = 0;
6852
6853 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6854 {
6855 unsigned int dupl = i.operands;
6856 unsigned int dest = dupl - 1;
6857 unsigned int j;
6858
6859 /* The destination must be an xmm register. */
6860 gas_assert (i.reg_operands
6861 && MAX_OPERANDS > dupl
6862 && operand_type_equal (&i.types[dest], &regxmm));
6863
6864 if (i.tm.operand_types[0].bitfield.instance == Accum
6865 && i.tm.operand_types[0].bitfield.xmmword)
6866 {
6867 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6868 {
6869 /* Keep xmm0 for instructions with VEX prefix and 3
6870 sources. */
6871 i.tm.operand_types[0].bitfield.instance = InstanceNone;
6872 i.tm.operand_types[0].bitfield.class = RegSIMD;
6873 goto duplicate;
6874 }
6875 else
6876 {
6877 /* We remove the first xmm0 and keep the number of
6878 operands unchanged, which in fact duplicates the
6879 destination. */
6880 for (j = 1; j < i.operands; j++)
6881 {
6882 i.op[j - 1] = i.op[j];
6883 i.types[j - 1] = i.types[j];
6884 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6885 i.flags[j - 1] = i.flags[j];
6886 }
6887 }
6888 }
6889 else if (i.tm.opcode_modifier.implicit1stxmm0)
6890 {
6891 gas_assert ((MAX_OPERANDS - 1) > dupl
6892 && (i.tm.opcode_modifier.vexsources
6893 == VEX3SOURCES));
6894
6895 /* Add the implicit xmm0 for instructions with VEX prefix
6896 and 3 sources. */
6897 for (j = i.operands; j > 0; j--)
6898 {
6899 i.op[j] = i.op[j - 1];
6900 i.types[j] = i.types[j - 1];
6901 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6902 i.flags[j] = i.flags[j - 1];
6903 }
6904 i.op[0].regs
6905 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6906 i.types[0] = regxmm;
6907 i.tm.operand_types[0] = regxmm;
6908
6909 i.operands += 2;
6910 i.reg_operands += 2;
6911 i.tm.operands += 2;
6912
6913 dupl++;
6914 dest++;
6915 i.op[dupl] = i.op[dest];
6916 i.types[dupl] = i.types[dest];
6917 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6918 i.flags[dupl] = i.flags[dest];
6919 }
6920 else
6921 {
6922 duplicate:
6923 i.operands++;
6924 i.reg_operands++;
6925 i.tm.operands++;
6926
6927 i.op[dupl] = i.op[dest];
6928 i.types[dupl] = i.types[dest];
6929 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6930 i.flags[dupl] = i.flags[dest];
6931 }
6932
6933 if (i.tm.opcode_modifier.immext)
6934 process_immext ();
6935 }
6936 else if (i.tm.operand_types[0].bitfield.instance == Accum
6937 && i.tm.operand_types[0].bitfield.xmmword)
6938 {
6939 unsigned int j;
6940
6941 for (j = 1; j < i.operands; j++)
6942 {
6943 i.op[j - 1] = i.op[j];
6944 i.types[j - 1] = i.types[j];
6945
6946 /* We need to adjust fields in i.tm since they are used by
6947 build_modrm_byte. */
6948 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6949
6950 i.flags[j - 1] = i.flags[j];
6951 }
6952
6953 i.operands--;
6954 i.reg_operands--;
6955 i.tm.operands--;
6956 }
6957 else if (i.tm.opcode_modifier.implicitquadgroup)
6958 {
6959 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6960
6961 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6962 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
6963 regnum = register_number (i.op[1].regs);
6964 first_reg_in_group = regnum & ~3;
6965 last_reg_in_group = first_reg_in_group + 3;
6966 if (regnum != first_reg_in_group)
6967 as_warn (_("source register `%s%s' implicitly denotes"
6968 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6969 register_prefix, i.op[1].regs->reg_name,
6970 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6971 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6972 i.tm.name);
6973 }
6974 else if (i.tm.opcode_modifier.regkludge)
6975 {
6976 /* The imul $imm, %reg instruction is converted into
6977 imul $imm, %reg, %reg, and the clr %reg instruction
6978 is converted into xor %reg, %reg. */
6979
6980 unsigned int first_reg_op;
6981
6982 if (operand_type_check (i.types[0], reg))
6983 first_reg_op = 0;
6984 else
6985 first_reg_op = 1;
6986 /* Pretend we saw the extra register operand. */
6987 gas_assert (i.reg_operands == 1
6988 && i.op[first_reg_op + 1].regs == 0);
6989 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6990 i.types[first_reg_op + 1] = i.types[first_reg_op];
6991 i.operands++;
6992 i.reg_operands++;
6993 }
6994
6995 if (i.tm.opcode_modifier.modrm)
6996 {
6997 /* The opcode is completed (modulo i.tm.extension_opcode which
6998 must be put into the modrm byte). Now, we make the modrm and
6999 index base bytes based on all the info we've collected. */
7000
7001 default_seg = build_modrm_byte ();
7002 }
7003 else if (i.types[0].bitfield.class == SReg)
7004 {
7005 if (flag_code != CODE_64BIT
7006 ? i.tm.base_opcode == POP_SEG_SHORT
7007 && i.op[0].regs->reg_num == 1
7008 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7009 && i.op[0].regs->reg_num < 4)
7010 {
7011 as_bad (_("you can't `%s %s%s'"),
7012 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7013 return 0;
7014 }
7015 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7016 {
7017 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7018 i.tm.opcode_length = 2;
7019 }
7020 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7021 }
7022 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7023 {
7024 default_seg = &ds;
7025 }
7026 else if (i.tm.opcode_modifier.isstring)
7027 {
7028 /* For the string instructions that allow a segment override
7029 on one of their operands, the default segment is ds. */
7030 default_seg = &ds;
7031 }
7032 else if (i.tm.opcode_modifier.shortform)
7033 {
7034 /* The register or float register operand is in operand
7035 0 or 1. */
7036 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7037
7038 /* Register goes in low 3 bits of opcode. */
7039 i.tm.base_opcode |= i.op[op].regs->reg_num;
7040 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7041 i.rex |= REX_B;
7042 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7043 {
7044 /* Warn about some common errors, but press on regardless.
7045 The first case can be generated by gcc (<= 2.8.1). */
7046 if (i.operands == 2)
7047 {
7048 /* Reversed arguments on faddp, fsubp, etc. */
7049 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7050 register_prefix, i.op[!intel_syntax].regs->reg_name,
7051 register_prefix, i.op[intel_syntax].regs->reg_name);
7052 }
7053 else
7054 {
7055 /* Extraneous `l' suffix on fp insn. */
7056 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7057 register_prefix, i.op[0].regs->reg_name);
7058 }
7059 }
7060 }
7061
7062 if (i.tm.base_opcode == 0x8d /* lea */
7063 && i.seg[0]
7064 && !quiet_warnings)
7065 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7066
7067 /* If a segment was explicitly specified, and the specified segment
7068 is not the default, use an opcode prefix to select it. If we
7069 never figured out what the default segment is, then default_seg
7070 will be zero at this point, and the specified segment prefix will
7071 always be used. */
7072 if ((i.seg[0]) && (i.seg[0] != default_seg))
7073 {
7074 if (!add_prefix (i.seg[0]->seg_prefix))
7075 return 0;
7076 }
7077 return 1;
7078 }
7079
7080 static const seg_entry *
7081 build_modrm_byte (void)
7082 {
7083 const seg_entry *default_seg = 0;
7084 unsigned int source, dest;
7085 int vex_3_sources;
7086
7087 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7088 if (vex_3_sources)
7089 {
7090 unsigned int nds, reg_slot;
7091 expressionS *exp;
7092
7093 dest = i.operands - 1;
7094 nds = dest - 1;
7095
7096 /* There are 2 kinds of instructions:
7097 1. 5 operands: 4 register operands or 3 register operands
7098 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7099 VexW0 or VexW1. The destination must be either XMM, YMM or
7100 ZMM register.
7101 2. 4 operands: 4 register operands or 3 register operands
7102 plus 1 memory operand, with VexXDS. */
7103 gas_assert ((i.reg_operands == 4
7104 || (i.reg_operands == 3 && i.mem_operands == 1))
7105 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7106 && i.tm.opcode_modifier.vexw
7107 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7108
7109 /* If VexW1 is set, the first non-immediate operand is the source and
7110 the second non-immediate one is encoded in the immediate operand. */
7111 if (i.tm.opcode_modifier.vexw == VEXW1)
7112 {
7113 source = i.imm_operands;
7114 reg_slot = i.imm_operands + 1;
7115 }
7116 else
7117 {
7118 source = i.imm_operands + 1;
7119 reg_slot = i.imm_operands;
7120 }
7121
7122 if (i.imm_operands == 0)
7123 {
7124 /* When there is no immediate operand, generate an 8bit
7125 immediate operand to encode the first operand. */
7126 exp = &im_expressions[i.imm_operands++];
7127 i.op[i.operands].imms = exp;
7128 i.types[i.operands] = imm8;
7129 i.operands++;
7130
7131 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7132 exp->X_op = O_constant;
7133 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7134 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7135 }
7136 else
7137 {
7138 gas_assert (i.imm_operands == 1);
7139 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7140 gas_assert (!i.tm.opcode_modifier.immext);
7141
7142 /* Turn on Imm8 again so that output_imm will generate it. */
7143 i.types[0].bitfield.imm8 = 1;
7144
7145 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7146 i.op[0].imms->X_add_number
7147 |= register_number (i.op[reg_slot].regs) << 4;
7148 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7149 }
7150
7151 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7152 i.vex.register_specifier = i.op[nds].regs;
7153 }
7154 else
7155 source = dest = 0;
7156
7157 /* i.reg_operands MUST be the number of real register operands;
7158 implicit registers do not count. If there are 3 register
7159 operands, it must be a instruction with VexNDS. For a
7160 instruction with VexNDD, the destination register is encoded
7161 in VEX prefix. If there are 4 register operands, it must be
7162 a instruction with VEX prefix and 3 sources. */
7163 if (i.mem_operands == 0
7164 && ((i.reg_operands == 2
7165 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7166 || (i.reg_operands == 3
7167 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7168 || (i.reg_operands == 4 && vex_3_sources)))
7169 {
7170 switch (i.operands)
7171 {
7172 case 2:
7173 source = 0;
7174 break;
7175 case 3:
7176 /* When there are 3 operands, one of them may be immediate,
7177 which may be the first or the last operand. Otherwise,
7178 the first operand must be shift count register (cl) or it
7179 is an instruction with VexNDS. */
7180 gas_assert (i.imm_operands == 1
7181 || (i.imm_operands == 0
7182 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7183 || (i.types[0].bitfield.instance == RegC
7184 && i.types[0].bitfield.byte))));
7185 if (operand_type_check (i.types[0], imm)
7186 || (i.types[0].bitfield.instance == RegC
7187 && i.types[0].bitfield.byte))
7188 source = 1;
7189 else
7190 source = 0;
7191 break;
7192 case 4:
7193 /* When there are 4 operands, the first two must be 8bit
7194 immediate operands. The source operand will be the 3rd
7195 one.
7196
7197 For instructions with VexNDS, if the first operand
7198 an imm8, the source operand is the 2nd one. If the last
7199 operand is imm8, the source operand is the first one. */
7200 gas_assert ((i.imm_operands == 2
7201 && i.types[0].bitfield.imm8
7202 && i.types[1].bitfield.imm8)
7203 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7204 && i.imm_operands == 1
7205 && (i.types[0].bitfield.imm8
7206 || i.types[i.operands - 1].bitfield.imm8
7207 || i.rounding)));
7208 if (i.imm_operands == 2)
7209 source = 2;
7210 else
7211 {
7212 if (i.types[0].bitfield.imm8)
7213 source = 1;
7214 else
7215 source = 0;
7216 }
7217 break;
7218 case 5:
7219 if (is_evex_encoding (&i.tm))
7220 {
7221 /* For EVEX instructions, when there are 5 operands, the
7222 first one must be immediate operand. If the second one
7223 is immediate operand, the source operand is the 3th
7224 one. If the last one is immediate operand, the source
7225 operand is the 2nd one. */
7226 gas_assert (i.imm_operands == 2
7227 && i.tm.opcode_modifier.sae
7228 && operand_type_check (i.types[0], imm));
7229 if (operand_type_check (i.types[1], imm))
7230 source = 2;
7231 else if (operand_type_check (i.types[4], imm))
7232 source = 1;
7233 else
7234 abort ();
7235 }
7236 break;
7237 default:
7238 abort ();
7239 }
7240
7241 if (!vex_3_sources)
7242 {
7243 dest = source + 1;
7244
7245 /* RC/SAE operand could be between DEST and SRC. That happens
7246 when one operand is GPR and the other one is XMM/YMM/ZMM
7247 register. */
7248 if (i.rounding && i.rounding->operand == (int) dest)
7249 dest++;
7250
7251 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7252 {
7253 /* For instructions with VexNDS, the register-only source
7254 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7255 register. It is encoded in VEX prefix. */
7256
7257 i386_operand_type op;
7258 unsigned int vvvv;
7259
7260 /* Check register-only source operand when two source
7261 operands are swapped. */
7262 if (!i.tm.operand_types[source].bitfield.baseindex
7263 && i.tm.operand_types[dest].bitfield.baseindex)
7264 {
7265 vvvv = source;
7266 source = dest;
7267 }
7268 else
7269 vvvv = dest;
7270
7271 op = i.tm.operand_types[vvvv];
7272 if ((dest + 1) >= i.operands
7273 || ((op.bitfield.class != Reg
7274 || (!op.bitfield.dword && !op.bitfield.qword))
7275 && op.bitfield.class != RegSIMD
7276 && !operand_type_equal (&op, &regmask)))
7277 abort ();
7278 i.vex.register_specifier = i.op[vvvv].regs;
7279 dest++;
7280 }
7281 }
7282
7283 i.rm.mode = 3;
7284 /* One of the register operands will be encoded in the i.rm.reg
7285 field, the other in the combined i.rm.mode and i.rm.regmem
7286 fields. If no form of this instruction supports a memory
7287 destination operand, then we assume the source operand may
7288 sometimes be a memory operand and so we need to store the
7289 destination in the i.rm.reg field. */
7290 if (!i.tm.opcode_modifier.regmem
7291 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7292 {
7293 i.rm.reg = i.op[dest].regs->reg_num;
7294 i.rm.regmem = i.op[source].regs->reg_num;
7295 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7296 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7297 i.has_regmmx = TRUE;
7298 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7299 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7300 {
7301 if (i.types[dest].bitfield.zmmword
7302 || i.types[source].bitfield.zmmword)
7303 i.has_regzmm = TRUE;
7304 else if (i.types[dest].bitfield.ymmword
7305 || i.types[source].bitfield.ymmword)
7306 i.has_regymm = TRUE;
7307 else
7308 i.has_regxmm = TRUE;
7309 }
7310 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7311 i.rex |= REX_R;
7312 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7313 i.vrex |= REX_R;
7314 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7315 i.rex |= REX_B;
7316 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7317 i.vrex |= REX_B;
7318 }
7319 else
7320 {
7321 i.rm.reg = i.op[source].regs->reg_num;
7322 i.rm.regmem = i.op[dest].regs->reg_num;
7323 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7324 i.rex |= REX_B;
7325 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7326 i.vrex |= REX_B;
7327 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7328 i.rex |= REX_R;
7329 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7330 i.vrex |= REX_R;
7331 }
7332 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7333 {
7334 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7335 abort ();
7336 i.rex &= ~REX_R;
7337 add_prefix (LOCK_PREFIX_OPCODE);
7338 }
7339 }
7340 else
7341 { /* If it's not 2 reg operands... */
7342 unsigned int mem;
7343
7344 if (i.mem_operands)
7345 {
7346 unsigned int fake_zero_displacement = 0;
7347 unsigned int op;
7348
7349 for (op = 0; op < i.operands; op++)
7350 if (i.flags[op] & Operand_Mem)
7351 break;
7352 gas_assert (op < i.operands);
7353
7354 if (i.tm.opcode_modifier.vecsib)
7355 {
7356 if (i.index_reg->reg_num == RegIZ)
7357 abort ();
7358
7359 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7360 if (!i.base_reg)
7361 {
7362 i.sib.base = NO_BASE_REGISTER;
7363 i.sib.scale = i.log2_scale_factor;
7364 i.types[op].bitfield.disp8 = 0;
7365 i.types[op].bitfield.disp16 = 0;
7366 i.types[op].bitfield.disp64 = 0;
7367 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7368 {
7369 /* Must be 32 bit */
7370 i.types[op].bitfield.disp32 = 1;
7371 i.types[op].bitfield.disp32s = 0;
7372 }
7373 else
7374 {
7375 i.types[op].bitfield.disp32 = 0;
7376 i.types[op].bitfield.disp32s = 1;
7377 }
7378 }
7379 i.sib.index = i.index_reg->reg_num;
7380 if ((i.index_reg->reg_flags & RegRex) != 0)
7381 i.rex |= REX_X;
7382 if ((i.index_reg->reg_flags & RegVRex) != 0)
7383 i.vrex |= REX_X;
7384 }
7385
7386 default_seg = &ds;
7387
7388 if (i.base_reg == 0)
7389 {
7390 i.rm.mode = 0;
7391 if (!i.disp_operands)
7392 fake_zero_displacement = 1;
7393 if (i.index_reg == 0)
7394 {
7395 i386_operand_type newdisp;
7396
7397 gas_assert (!i.tm.opcode_modifier.vecsib);
7398 /* Operand is just <disp> */
7399 if (flag_code == CODE_64BIT)
7400 {
7401 /* 64bit mode overwrites the 32bit absolute
7402 addressing by RIP relative addressing and
7403 absolute addressing is encoded by one of the
7404 redundant SIB forms. */
7405 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7406 i.sib.base = NO_BASE_REGISTER;
7407 i.sib.index = NO_INDEX_REGISTER;
7408 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7409 }
7410 else if ((flag_code == CODE_16BIT)
7411 ^ (i.prefix[ADDR_PREFIX] != 0))
7412 {
7413 i.rm.regmem = NO_BASE_REGISTER_16;
7414 newdisp = disp16;
7415 }
7416 else
7417 {
7418 i.rm.regmem = NO_BASE_REGISTER;
7419 newdisp = disp32;
7420 }
7421 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7422 i.types[op] = operand_type_or (i.types[op], newdisp);
7423 }
7424 else if (!i.tm.opcode_modifier.vecsib)
7425 {
7426 /* !i.base_reg && i.index_reg */
7427 if (i.index_reg->reg_num == RegIZ)
7428 i.sib.index = NO_INDEX_REGISTER;
7429 else
7430 i.sib.index = i.index_reg->reg_num;
7431 i.sib.base = NO_BASE_REGISTER;
7432 i.sib.scale = i.log2_scale_factor;
7433 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7434 i.types[op].bitfield.disp8 = 0;
7435 i.types[op].bitfield.disp16 = 0;
7436 i.types[op].bitfield.disp64 = 0;
7437 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7438 {
7439 /* Must be 32 bit */
7440 i.types[op].bitfield.disp32 = 1;
7441 i.types[op].bitfield.disp32s = 0;
7442 }
7443 else
7444 {
7445 i.types[op].bitfield.disp32 = 0;
7446 i.types[op].bitfield.disp32s = 1;
7447 }
7448 if ((i.index_reg->reg_flags & RegRex) != 0)
7449 i.rex |= REX_X;
7450 }
7451 }
7452 /* RIP addressing for 64bit mode. */
7453 else if (i.base_reg->reg_num == RegIP)
7454 {
7455 gas_assert (!i.tm.opcode_modifier.vecsib);
7456 i.rm.regmem = NO_BASE_REGISTER;
7457 i.types[op].bitfield.disp8 = 0;
7458 i.types[op].bitfield.disp16 = 0;
7459 i.types[op].bitfield.disp32 = 0;
7460 i.types[op].bitfield.disp32s = 1;
7461 i.types[op].bitfield.disp64 = 0;
7462 i.flags[op] |= Operand_PCrel;
7463 if (! i.disp_operands)
7464 fake_zero_displacement = 1;
7465 }
7466 else if (i.base_reg->reg_type.bitfield.word)
7467 {
7468 gas_assert (!i.tm.opcode_modifier.vecsib);
7469 switch (i.base_reg->reg_num)
7470 {
7471 case 3: /* (%bx) */
7472 if (i.index_reg == 0)
7473 i.rm.regmem = 7;
7474 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7475 i.rm.regmem = i.index_reg->reg_num - 6;
7476 break;
7477 case 5: /* (%bp) */
7478 default_seg = &ss;
7479 if (i.index_reg == 0)
7480 {
7481 i.rm.regmem = 6;
7482 if (operand_type_check (i.types[op], disp) == 0)
7483 {
7484 /* fake (%bp) into 0(%bp) */
7485 i.types[op].bitfield.disp8 = 1;
7486 fake_zero_displacement = 1;
7487 }
7488 }
7489 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7490 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7491 break;
7492 default: /* (%si) -> 4 or (%di) -> 5 */
7493 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7494 }
7495 i.rm.mode = mode_from_disp_size (i.types[op]);
7496 }
7497 else /* i.base_reg and 32/64 bit mode */
7498 {
7499 if (flag_code == CODE_64BIT
7500 && operand_type_check (i.types[op], disp))
7501 {
7502 i.types[op].bitfield.disp16 = 0;
7503 i.types[op].bitfield.disp64 = 0;
7504 if (i.prefix[ADDR_PREFIX] == 0)
7505 {
7506 i.types[op].bitfield.disp32 = 0;
7507 i.types[op].bitfield.disp32s = 1;
7508 }
7509 else
7510 {
7511 i.types[op].bitfield.disp32 = 1;
7512 i.types[op].bitfield.disp32s = 0;
7513 }
7514 }
7515
7516 if (!i.tm.opcode_modifier.vecsib)
7517 i.rm.regmem = i.base_reg->reg_num;
7518 if ((i.base_reg->reg_flags & RegRex) != 0)
7519 i.rex |= REX_B;
7520 i.sib.base = i.base_reg->reg_num;
7521 /* x86-64 ignores REX prefix bit here to avoid decoder
7522 complications. */
7523 if (!(i.base_reg->reg_flags & RegRex)
7524 && (i.base_reg->reg_num == EBP_REG_NUM
7525 || i.base_reg->reg_num == ESP_REG_NUM))
7526 default_seg = &ss;
7527 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7528 {
7529 fake_zero_displacement = 1;
7530 i.types[op].bitfield.disp8 = 1;
7531 }
7532 i.sib.scale = i.log2_scale_factor;
7533 if (i.index_reg == 0)
7534 {
7535 gas_assert (!i.tm.opcode_modifier.vecsib);
7536 /* <disp>(%esp) becomes two byte modrm with no index
7537 register. We've already stored the code for esp
7538 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7539 Any base register besides %esp will not use the
7540 extra modrm byte. */
7541 i.sib.index = NO_INDEX_REGISTER;
7542 }
7543 else if (!i.tm.opcode_modifier.vecsib)
7544 {
7545 if (i.index_reg->reg_num == RegIZ)
7546 i.sib.index = NO_INDEX_REGISTER;
7547 else
7548 i.sib.index = i.index_reg->reg_num;
7549 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7550 if ((i.index_reg->reg_flags & RegRex) != 0)
7551 i.rex |= REX_X;
7552 }
7553
7554 if (i.disp_operands
7555 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7556 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7557 i.rm.mode = 0;
7558 else
7559 {
7560 if (!fake_zero_displacement
7561 && !i.disp_operands
7562 && i.disp_encoding)
7563 {
7564 fake_zero_displacement = 1;
7565 if (i.disp_encoding == disp_encoding_8bit)
7566 i.types[op].bitfield.disp8 = 1;
7567 else
7568 i.types[op].bitfield.disp32 = 1;
7569 }
7570 i.rm.mode = mode_from_disp_size (i.types[op]);
7571 }
7572 }
7573
7574 if (fake_zero_displacement)
7575 {
7576 /* Fakes a zero displacement assuming that i.types[op]
7577 holds the correct displacement size. */
7578 expressionS *exp;
7579
7580 gas_assert (i.op[op].disps == 0);
7581 exp = &disp_expressions[i.disp_operands++];
7582 i.op[op].disps = exp;
7583 exp->X_op = O_constant;
7584 exp->X_add_number = 0;
7585 exp->X_add_symbol = (symbolS *) 0;
7586 exp->X_op_symbol = (symbolS *) 0;
7587 }
7588
7589 mem = op;
7590 }
7591 else
7592 mem = ~0;
7593
7594 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7595 {
7596 if (operand_type_check (i.types[0], imm))
7597 i.vex.register_specifier = NULL;
7598 else
7599 {
7600 /* VEX.vvvv encodes one of the sources when the first
7601 operand is not an immediate. */
7602 if (i.tm.opcode_modifier.vexw == VEXW0)
7603 i.vex.register_specifier = i.op[0].regs;
7604 else
7605 i.vex.register_specifier = i.op[1].regs;
7606 }
7607
7608 /* Destination is a XMM register encoded in the ModRM.reg
7609 and VEX.R bit. */
7610 i.rm.reg = i.op[2].regs->reg_num;
7611 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7612 i.rex |= REX_R;
7613
7614 /* ModRM.rm and VEX.B encodes the other source. */
7615 if (!i.mem_operands)
7616 {
7617 i.rm.mode = 3;
7618
7619 if (i.tm.opcode_modifier.vexw == VEXW0)
7620 i.rm.regmem = i.op[1].regs->reg_num;
7621 else
7622 i.rm.regmem = i.op[0].regs->reg_num;
7623
7624 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7625 i.rex |= REX_B;
7626 }
7627 }
7628 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7629 {
7630 i.vex.register_specifier = i.op[2].regs;
7631 if (!i.mem_operands)
7632 {
7633 i.rm.mode = 3;
7634 i.rm.regmem = i.op[1].regs->reg_num;
7635 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7636 i.rex |= REX_B;
7637 }
7638 }
7639 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7640 (if any) based on i.tm.extension_opcode. Again, we must be
7641 careful to make sure that segment/control/debug/test/MMX
7642 registers are coded into the i.rm.reg field. */
7643 else if (i.reg_operands)
7644 {
7645 unsigned int op;
7646 unsigned int vex_reg = ~0;
7647
7648 for (op = 0; op < i.operands; op++)
7649 {
7650 if (i.types[op].bitfield.class == Reg
7651 || i.types[op].bitfield.class == RegBND
7652 || i.types[op].bitfield.class == RegMask
7653 || i.types[op].bitfield.class == SReg
7654 || i.types[op].bitfield.class == RegCR
7655 || i.types[op].bitfield.class == RegDR
7656 || i.types[op].bitfield.class == RegTR)
7657 break;
7658 if (i.types[op].bitfield.class == RegSIMD)
7659 {
7660 if (i.types[op].bitfield.zmmword)
7661 i.has_regzmm = TRUE;
7662 else if (i.types[op].bitfield.ymmword)
7663 i.has_regymm = TRUE;
7664 else
7665 i.has_regxmm = TRUE;
7666 break;
7667 }
7668 if (i.types[op].bitfield.class == RegMMX)
7669 {
7670 i.has_regmmx = TRUE;
7671 break;
7672 }
7673 }
7674
7675 if (vex_3_sources)
7676 op = dest;
7677 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7678 {
7679 /* For instructions with VexNDS, the register-only
7680 source operand is encoded in VEX prefix. */
7681 gas_assert (mem != (unsigned int) ~0);
7682
7683 if (op > mem)
7684 {
7685 vex_reg = op++;
7686 gas_assert (op < i.operands);
7687 }
7688 else
7689 {
7690 /* Check register-only source operand when two source
7691 operands are swapped. */
7692 if (!i.tm.operand_types[op].bitfield.baseindex
7693 && i.tm.operand_types[op + 1].bitfield.baseindex)
7694 {
7695 vex_reg = op;
7696 op += 2;
7697 gas_assert (mem == (vex_reg + 1)
7698 && op < i.operands);
7699 }
7700 else
7701 {
7702 vex_reg = op + 1;
7703 gas_assert (vex_reg < i.operands);
7704 }
7705 }
7706 }
7707 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7708 {
7709 /* For instructions with VexNDD, the register destination
7710 is encoded in VEX prefix. */
7711 if (i.mem_operands == 0)
7712 {
7713 /* There is no memory operand. */
7714 gas_assert ((op + 2) == i.operands);
7715 vex_reg = op + 1;
7716 }
7717 else
7718 {
7719 /* There are only 2 non-immediate operands. */
7720 gas_assert (op < i.imm_operands + 2
7721 && i.operands == i.imm_operands + 2);
7722 vex_reg = i.imm_operands + 1;
7723 }
7724 }
7725 else
7726 gas_assert (op < i.operands);
7727
7728 if (vex_reg != (unsigned int) ~0)
7729 {
7730 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7731
7732 if ((type->bitfield.class != Reg
7733 || (!type->bitfield.dword && !type->bitfield.qword))
7734 && type->bitfield.class != RegSIMD
7735 && !operand_type_equal (type, &regmask))
7736 abort ();
7737
7738 i.vex.register_specifier = i.op[vex_reg].regs;
7739 }
7740
7741 /* Don't set OP operand twice. */
7742 if (vex_reg != op)
7743 {
7744 /* If there is an extension opcode to put here, the
7745 register number must be put into the regmem field. */
7746 if (i.tm.extension_opcode != None)
7747 {
7748 i.rm.regmem = i.op[op].regs->reg_num;
7749 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7750 i.rex |= REX_B;
7751 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7752 i.vrex |= REX_B;
7753 }
7754 else
7755 {
7756 i.rm.reg = i.op[op].regs->reg_num;
7757 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7758 i.rex |= REX_R;
7759 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7760 i.vrex |= REX_R;
7761 }
7762 }
7763
7764 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7765 must set it to 3 to indicate this is a register operand
7766 in the regmem field. */
7767 if (!i.mem_operands)
7768 i.rm.mode = 3;
7769 }
7770
7771 /* Fill in i.rm.reg field with extension opcode (if any). */
7772 if (i.tm.extension_opcode != None)
7773 i.rm.reg = i.tm.extension_opcode;
7774 }
7775 return default_seg;
7776 }
7777
7778 static void
7779 output_branch (void)
7780 {
7781 char *p;
7782 int size;
7783 int code16;
7784 int prefix;
7785 relax_substateT subtype;
7786 symbolS *sym;
7787 offsetT off;
7788
7789 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7790 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7791
7792 prefix = 0;
7793 if (i.prefix[DATA_PREFIX] != 0)
7794 {
7795 prefix = 1;
7796 i.prefixes -= 1;
7797 code16 ^= CODE16;
7798 }
7799 /* Pentium4 branch hints. */
7800 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7801 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7802 {
7803 prefix++;
7804 i.prefixes--;
7805 }
7806 if (i.prefix[REX_PREFIX] != 0)
7807 {
7808 prefix++;
7809 i.prefixes--;
7810 }
7811
7812 /* BND prefixed jump. */
7813 if (i.prefix[BND_PREFIX] != 0)
7814 {
7815 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7816 i.prefixes -= 1;
7817 }
7818
7819 if (i.prefixes != 0 && !intel_syntax)
7820 as_warn (_("skipping prefixes on this instruction"));
7821
7822 /* It's always a symbol; End frag & setup for relax.
7823 Make sure there is enough room in this frag for the largest
7824 instruction we may generate in md_convert_frag. This is 2
7825 bytes for the opcode and room for the prefix and largest
7826 displacement. */
7827 frag_grow (prefix + 2 + 4);
7828 /* Prefix and 1 opcode byte go in fr_fix. */
7829 p = frag_more (prefix + 1);
7830 if (i.prefix[DATA_PREFIX] != 0)
7831 *p++ = DATA_PREFIX_OPCODE;
7832 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7833 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7834 *p++ = i.prefix[SEG_PREFIX];
7835 if (i.prefix[REX_PREFIX] != 0)
7836 *p++ = i.prefix[REX_PREFIX];
7837 *p = i.tm.base_opcode;
7838
7839 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7840 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7841 else if (cpu_arch_flags.bitfield.cpui386)
7842 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7843 else
7844 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7845 subtype |= code16;
7846
7847 sym = i.op[0].disps->X_add_symbol;
7848 off = i.op[0].disps->X_add_number;
7849
7850 if (i.op[0].disps->X_op != O_constant
7851 && i.op[0].disps->X_op != O_symbol)
7852 {
7853 /* Handle complex expressions. */
7854 sym = make_expr_symbol (i.op[0].disps);
7855 off = 0;
7856 }
7857
7858 /* 1 possible extra opcode + 4 byte displacement go in var part.
7859 Pass reloc in fr_var. */
7860 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7861 }
7862
7863 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7864 /* Return TRUE iff PLT32 relocation should be used for branching to
7865 symbol S. */
7866
7867 static bfd_boolean
7868 need_plt32_p (symbolS *s)
7869 {
7870 /* PLT32 relocation is ELF only. */
7871 if (!IS_ELF)
7872 return FALSE;
7873
7874 #ifdef TE_SOLARIS
7875 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7876 krtld support it. */
7877 return FALSE;
7878 #endif
7879
7880 /* Since there is no need to prepare for PLT branch on x86-64, we
7881 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7882 be used as a marker for 32-bit PC-relative branches. */
7883 if (!object_64bit)
7884 return FALSE;
7885
7886 /* Weak or undefined symbol need PLT32 relocation. */
7887 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7888 return TRUE;
7889
7890 /* Non-global symbol doesn't need PLT32 relocation. */
7891 if (! S_IS_EXTERNAL (s))
7892 return FALSE;
7893
7894 /* Other global symbols need PLT32 relocation. NB: Symbol with
7895 non-default visibilities are treated as normal global symbol
7896 so that PLT32 relocation can be used as a marker for 32-bit
7897 PC-relative branches. It is useful for linker relaxation. */
7898 return TRUE;
7899 }
7900 #endif
7901
7902 static void
7903 output_jump (void)
7904 {
7905 char *p;
7906 int size;
7907 fixS *fixP;
7908 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7909
7910 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
7911 {
7912 /* This is a loop or jecxz type instruction. */
7913 size = 1;
7914 if (i.prefix[ADDR_PREFIX] != 0)
7915 {
7916 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7917 i.prefixes -= 1;
7918 }
7919 /* Pentium4 branch hints. */
7920 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7921 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7922 {
7923 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7924 i.prefixes--;
7925 }
7926 }
7927 else
7928 {
7929 int code16;
7930
7931 code16 = 0;
7932 if (flag_code == CODE_16BIT)
7933 code16 = CODE16;
7934
7935 if (i.prefix[DATA_PREFIX] != 0)
7936 {
7937 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7938 i.prefixes -= 1;
7939 code16 ^= CODE16;
7940 }
7941
7942 size = 4;
7943 if (code16)
7944 size = 2;
7945 }
7946
7947 if (i.prefix[REX_PREFIX] != 0)
7948 {
7949 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7950 i.prefixes -= 1;
7951 }
7952
7953 /* BND prefixed jump. */
7954 if (i.prefix[BND_PREFIX] != 0)
7955 {
7956 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7957 i.prefixes -= 1;
7958 }
7959
7960 if (i.prefixes != 0 && !intel_syntax)
7961 as_warn (_("skipping prefixes on this instruction"));
7962
7963 p = frag_more (i.tm.opcode_length + size);
7964 switch (i.tm.opcode_length)
7965 {
7966 case 2:
7967 *p++ = i.tm.base_opcode >> 8;
7968 /* Fall through. */
7969 case 1:
7970 *p++ = i.tm.base_opcode;
7971 break;
7972 default:
7973 abort ();
7974 }
7975
7976 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7977 if (size == 4
7978 && jump_reloc == NO_RELOC
7979 && need_plt32_p (i.op[0].disps->X_add_symbol))
7980 jump_reloc = BFD_RELOC_X86_64_PLT32;
7981 #endif
7982
7983 jump_reloc = reloc (size, 1, 1, jump_reloc);
7984
7985 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7986 i.op[0].disps, 1, jump_reloc);
7987
7988 /* All jumps handled here are signed, but don't use a signed limit
7989 check for 32 and 16 bit jumps as we want to allow wrap around at
7990 4G and 64k respectively. */
7991 if (size == 1)
7992 fixP->fx_signed = 1;
7993 }
7994
7995 static void
7996 output_interseg_jump (void)
7997 {
7998 char *p;
7999 int size;
8000 int prefix;
8001 int code16;
8002
8003 code16 = 0;
8004 if (flag_code == CODE_16BIT)
8005 code16 = CODE16;
8006
8007 prefix = 0;
8008 if (i.prefix[DATA_PREFIX] != 0)
8009 {
8010 prefix = 1;
8011 i.prefixes -= 1;
8012 code16 ^= CODE16;
8013 }
8014 if (i.prefix[REX_PREFIX] != 0)
8015 {
8016 prefix++;
8017 i.prefixes -= 1;
8018 }
8019
8020 size = 4;
8021 if (code16)
8022 size = 2;
8023
8024 if (i.prefixes != 0 && !intel_syntax)
8025 as_warn (_("skipping prefixes on this instruction"));
8026
8027 /* 1 opcode; 2 segment; offset */
8028 p = frag_more (prefix + 1 + 2 + size);
8029
8030 if (i.prefix[DATA_PREFIX] != 0)
8031 *p++ = DATA_PREFIX_OPCODE;
8032
8033 if (i.prefix[REX_PREFIX] != 0)
8034 *p++ = i.prefix[REX_PREFIX];
8035
8036 *p++ = i.tm.base_opcode;
8037 if (i.op[1].imms->X_op == O_constant)
8038 {
8039 offsetT n = i.op[1].imms->X_add_number;
8040
8041 if (size == 2
8042 && !fits_in_unsigned_word (n)
8043 && !fits_in_signed_word (n))
8044 {
8045 as_bad (_("16-bit jump out of range"));
8046 return;
8047 }
8048 md_number_to_chars (p, n, size);
8049 }
8050 else
8051 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8052 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8053 if (i.op[0].imms->X_op != O_constant)
8054 as_bad (_("can't handle non absolute segment in `%s'"),
8055 i.tm.name);
8056 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8057 }
8058
8059 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8060 void
8061 x86_cleanup (void)
8062 {
8063 char *p;
8064 asection *seg = now_seg;
8065 subsegT subseg = now_subseg;
8066 asection *sec;
8067 unsigned int alignment, align_size_1;
8068 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8069 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8070 unsigned int padding;
8071
8072 if (!IS_ELF || !x86_used_note)
8073 return;
8074
8075 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8076
8077 /* The .note.gnu.property section layout:
8078
8079 Field Length Contents
8080 ---- ---- ----
8081 n_namsz 4 4
8082 n_descsz 4 The note descriptor size
8083 n_type 4 NT_GNU_PROPERTY_TYPE_0
8084 n_name 4 "GNU"
8085 n_desc n_descsz The program property array
8086 .... .... ....
8087 */
8088
8089 /* Create the .note.gnu.property section. */
8090 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8091 bfd_set_section_flags (sec,
8092 (SEC_ALLOC
8093 | SEC_LOAD
8094 | SEC_DATA
8095 | SEC_HAS_CONTENTS
8096 | SEC_READONLY));
8097
8098 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8099 {
8100 align_size_1 = 7;
8101 alignment = 3;
8102 }
8103 else
8104 {
8105 align_size_1 = 3;
8106 alignment = 2;
8107 }
8108
8109 bfd_set_section_alignment (sec, alignment);
8110 elf_section_type (sec) = SHT_NOTE;
8111
8112 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8113 + 4-byte data */
8114 isa_1_descsz_raw = 4 + 4 + 4;
8115 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8116 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8117
8118 feature_2_descsz_raw = isa_1_descsz;
8119 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8120 + 4-byte data */
8121 feature_2_descsz_raw += 4 + 4 + 4;
8122 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8123 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8124 & ~align_size_1);
8125
8126 descsz = feature_2_descsz;
8127 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8128 p = frag_more (4 + 4 + 4 + 4 + descsz);
8129
8130 /* Write n_namsz. */
8131 md_number_to_chars (p, (valueT) 4, 4);
8132
8133 /* Write n_descsz. */
8134 md_number_to_chars (p + 4, (valueT) descsz, 4);
8135
8136 /* Write n_type. */
8137 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8138
8139 /* Write n_name. */
8140 memcpy (p + 4 * 3, "GNU", 4);
8141
8142 /* Write 4-byte type. */
8143 md_number_to_chars (p + 4 * 4,
8144 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8145
8146 /* Write 4-byte data size. */
8147 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8148
8149 /* Write 4-byte data. */
8150 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8151
8152 /* Zero out paddings. */
8153 padding = isa_1_descsz - isa_1_descsz_raw;
8154 if (padding)
8155 memset (p + 4 * 7, 0, padding);
8156
8157 /* Write 4-byte type. */
8158 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8159 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8160
8161 /* Write 4-byte data size. */
8162 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8163
8164 /* Write 4-byte data. */
8165 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8166 (valueT) x86_feature_2_used, 4);
8167
8168 /* Zero out paddings. */
8169 padding = feature_2_descsz - feature_2_descsz_raw;
8170 if (padding)
8171 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8172
8173 /* We probably can't restore the current segment, for there likely
8174 isn't one yet... */
8175 if (seg && subseg)
8176 subseg_set (seg, subseg);
8177 }
8178 #endif
8179
8180 static unsigned int
8181 encoding_length (const fragS *start_frag, offsetT start_off,
8182 const char *frag_now_ptr)
8183 {
8184 unsigned int len = 0;
8185
8186 if (start_frag != frag_now)
8187 {
8188 const fragS *fr = start_frag;
8189
8190 do {
8191 len += fr->fr_fix;
8192 fr = fr->fr_next;
8193 } while (fr && fr != frag_now);
8194 }
8195
8196 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8197 }
8198
8199 static void
8200 output_insn (void)
8201 {
8202 fragS *insn_start_frag;
8203 offsetT insn_start_off;
8204
8205 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8206 if (IS_ELF && x86_used_note)
8207 {
8208 if (i.tm.cpu_flags.bitfield.cpucmov)
8209 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8210 if (i.tm.cpu_flags.bitfield.cpusse)
8211 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8212 if (i.tm.cpu_flags.bitfield.cpusse2)
8213 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8214 if (i.tm.cpu_flags.bitfield.cpusse3)
8215 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8216 if (i.tm.cpu_flags.bitfield.cpussse3)
8217 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8218 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8219 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8220 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8221 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8222 if (i.tm.cpu_flags.bitfield.cpuavx)
8223 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8224 if (i.tm.cpu_flags.bitfield.cpuavx2)
8225 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8226 if (i.tm.cpu_flags.bitfield.cpufma)
8227 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8228 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8229 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8230 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8231 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8232 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8233 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8234 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8235 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8236 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8237 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8238 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8239 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8240 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8241 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8242 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8243 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8244 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8245 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8246 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8247 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8248 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8249 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8250 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8251 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8252 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8253 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8254 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8255 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8256 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8257 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8258
8259 if (i.tm.cpu_flags.bitfield.cpu8087
8260 || i.tm.cpu_flags.bitfield.cpu287
8261 || i.tm.cpu_flags.bitfield.cpu387
8262 || i.tm.cpu_flags.bitfield.cpu687
8263 || i.tm.cpu_flags.bitfield.cpufisttp)
8264 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8265 if (i.has_regmmx
8266 || i.tm.base_opcode == 0xf77 /* emms */
8267 || i.tm.base_opcode == 0xf0e /* femms */)
8268 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8269 if (i.has_regxmm)
8270 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8271 if (i.has_regymm)
8272 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8273 if (i.has_regzmm)
8274 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8275 if (i.tm.cpu_flags.bitfield.cpufxsr)
8276 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8277 if (i.tm.cpu_flags.bitfield.cpuxsave)
8278 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8279 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8280 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8281 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8282 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8283 }
8284 #endif
8285
8286 /* Tie dwarf2 debug info to the address at the start of the insn.
8287 We can't do this after the insn has been output as the current
8288 frag may have been closed off. eg. by frag_var. */
8289 dwarf2_emit_insn (0);
8290
8291 insn_start_frag = frag_now;
8292 insn_start_off = frag_now_fix ();
8293
8294 /* Output jumps. */
8295 if (i.tm.opcode_modifier.jump == JUMP)
8296 output_branch ();
8297 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8298 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8299 output_jump ();
8300 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8301 output_interseg_jump ();
8302 else
8303 {
8304 /* Output normal instructions here. */
8305 char *p;
8306 unsigned char *q;
8307 unsigned int j;
8308 unsigned int prefix;
8309
8310 if (avoid_fence
8311 && (i.tm.base_opcode == 0xfaee8
8312 || i.tm.base_opcode == 0xfaef0
8313 || i.tm.base_opcode == 0xfaef8))
8314 {
8315 /* Encode lfence, mfence, and sfence as
8316 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8317 offsetT val = 0x240483f0ULL;
8318 p = frag_more (5);
8319 md_number_to_chars (p, val, 5);
8320 return;
8321 }
8322
8323 /* Some processors fail on LOCK prefix. This options makes
8324 assembler ignore LOCK prefix and serves as a workaround. */
8325 if (omit_lock_prefix)
8326 {
8327 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8328 return;
8329 i.prefix[LOCK_PREFIX] = 0;
8330 }
8331
8332 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8333 don't need the explicit prefix. */
8334 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8335 {
8336 switch (i.tm.opcode_length)
8337 {
8338 case 3:
8339 if (i.tm.base_opcode & 0xff000000)
8340 {
8341 prefix = (i.tm.base_opcode >> 24) & 0xff;
8342 if (!i.tm.cpu_flags.bitfield.cpupadlock
8343 || prefix != REPE_PREFIX_OPCODE
8344 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8345 add_prefix (prefix);
8346 }
8347 break;
8348 case 2:
8349 if ((i.tm.base_opcode & 0xff0000) != 0)
8350 {
8351 prefix = (i.tm.base_opcode >> 16) & 0xff;
8352 add_prefix (prefix);
8353 }
8354 break;
8355 case 1:
8356 break;
8357 case 0:
8358 /* Check for pseudo prefixes. */
8359 as_bad_where (insn_start_frag->fr_file,
8360 insn_start_frag->fr_line,
8361 _("pseudo prefix without instruction"));
8362 return;
8363 default:
8364 abort ();
8365 }
8366
8367 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8368 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8369 R_X86_64_GOTTPOFF relocation so that linker can safely
8370 perform IE->LE optimization. */
8371 if (x86_elf_abi == X86_64_X32_ABI
8372 && i.operands == 2
8373 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8374 && i.prefix[REX_PREFIX] == 0)
8375 add_prefix (REX_OPCODE);
8376 #endif
8377
8378 /* The prefix bytes. */
8379 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8380 if (*q)
8381 FRAG_APPEND_1_CHAR (*q);
8382 }
8383 else
8384 {
8385 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8386 if (*q)
8387 switch (j)
8388 {
8389 case REX_PREFIX:
8390 /* REX byte is encoded in VEX prefix. */
8391 break;
8392 case SEG_PREFIX:
8393 case ADDR_PREFIX:
8394 FRAG_APPEND_1_CHAR (*q);
8395 break;
8396 default:
8397 /* There should be no other prefixes for instructions
8398 with VEX prefix. */
8399 abort ();
8400 }
8401
8402 /* For EVEX instructions i.vrex should become 0 after
8403 build_evex_prefix. For VEX instructions upper 16 registers
8404 aren't available, so VREX should be 0. */
8405 if (i.vrex)
8406 abort ();
8407 /* Now the VEX prefix. */
8408 p = frag_more (i.vex.length);
8409 for (j = 0; j < i.vex.length; j++)
8410 p[j] = i.vex.bytes[j];
8411 }
8412
8413 /* Now the opcode; be careful about word order here! */
8414 if (i.tm.opcode_length == 1)
8415 {
8416 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8417 }
8418 else
8419 {
8420 switch (i.tm.opcode_length)
8421 {
8422 case 4:
8423 p = frag_more (4);
8424 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8425 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8426 break;
8427 case 3:
8428 p = frag_more (3);
8429 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8430 break;
8431 case 2:
8432 p = frag_more (2);
8433 break;
8434 default:
8435 abort ();
8436 break;
8437 }
8438
8439 /* Put out high byte first: can't use md_number_to_chars! */
8440 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8441 *p = i.tm.base_opcode & 0xff;
8442 }
8443
8444 /* Now the modrm byte and sib byte (if present). */
8445 if (i.tm.opcode_modifier.modrm)
8446 {
8447 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8448 | i.rm.reg << 3
8449 | i.rm.mode << 6));
8450 /* If i.rm.regmem == ESP (4)
8451 && i.rm.mode != (Register mode)
8452 && not 16 bit
8453 ==> need second modrm byte. */
8454 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8455 && i.rm.mode != 3
8456 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8457 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8458 | i.sib.index << 3
8459 | i.sib.scale << 6));
8460 }
8461
8462 if (i.disp_operands)
8463 output_disp (insn_start_frag, insn_start_off);
8464
8465 if (i.imm_operands)
8466 output_imm (insn_start_frag, insn_start_off);
8467
8468 /*
8469 * frag_now_fix () returning plain abs_section_offset when we're in the
8470 * absolute section, and abs_section_offset not getting updated as data
8471 * gets added to the frag breaks the logic below.
8472 */
8473 if (now_seg != absolute_section)
8474 {
8475 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8476 if (j > 15)
8477 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8478 j);
8479 }
8480 }
8481
8482 #ifdef DEBUG386
8483 if (flag_debug)
8484 {
8485 pi ("" /*line*/, &i);
8486 }
8487 #endif /* DEBUG386 */
8488 }
8489
8490 /* Return the size of the displacement operand N. */
8491
8492 static int
8493 disp_size (unsigned int n)
8494 {
8495 int size = 4;
8496
8497 if (i.types[n].bitfield.disp64)
8498 size = 8;
8499 else if (i.types[n].bitfield.disp8)
8500 size = 1;
8501 else if (i.types[n].bitfield.disp16)
8502 size = 2;
8503 return size;
8504 }
8505
8506 /* Return the size of the immediate operand N. */
8507
8508 static int
8509 imm_size (unsigned int n)
8510 {
8511 int size = 4;
8512 if (i.types[n].bitfield.imm64)
8513 size = 8;
8514 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8515 size = 1;
8516 else if (i.types[n].bitfield.imm16)
8517 size = 2;
8518 return size;
8519 }
8520
8521 static void
8522 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8523 {
8524 char *p;
8525 unsigned int n;
8526
8527 for (n = 0; n < i.operands; n++)
8528 {
8529 if (operand_type_check (i.types[n], disp))
8530 {
8531 if (i.op[n].disps->X_op == O_constant)
8532 {
8533 int size = disp_size (n);
8534 offsetT val = i.op[n].disps->X_add_number;
8535
8536 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8537 size);
8538 p = frag_more (size);
8539 md_number_to_chars (p, val, size);
8540 }
8541 else
8542 {
8543 enum bfd_reloc_code_real reloc_type;
8544 int size = disp_size (n);
8545 int sign = i.types[n].bitfield.disp32s;
8546 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8547 fixS *fixP;
8548
8549 /* We can't have 8 bit displacement here. */
8550 gas_assert (!i.types[n].bitfield.disp8);
8551
8552 /* The PC relative address is computed relative
8553 to the instruction boundary, so in case immediate
8554 fields follows, we need to adjust the value. */
8555 if (pcrel && i.imm_operands)
8556 {
8557 unsigned int n1;
8558 int sz = 0;
8559
8560 for (n1 = 0; n1 < i.operands; n1++)
8561 if (operand_type_check (i.types[n1], imm))
8562 {
8563 /* Only one immediate is allowed for PC
8564 relative address. */
8565 gas_assert (sz == 0);
8566 sz = imm_size (n1);
8567 i.op[n].disps->X_add_number -= sz;
8568 }
8569 /* We should find the immediate. */
8570 gas_assert (sz != 0);
8571 }
8572
8573 p = frag_more (size);
8574 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8575 if (GOT_symbol
8576 && GOT_symbol == i.op[n].disps->X_add_symbol
8577 && (((reloc_type == BFD_RELOC_32
8578 || reloc_type == BFD_RELOC_X86_64_32S
8579 || (reloc_type == BFD_RELOC_64
8580 && object_64bit))
8581 && (i.op[n].disps->X_op == O_symbol
8582 || (i.op[n].disps->X_op == O_add
8583 && ((symbol_get_value_expression
8584 (i.op[n].disps->X_op_symbol)->X_op)
8585 == O_subtract))))
8586 || reloc_type == BFD_RELOC_32_PCREL))
8587 {
8588 if (!object_64bit)
8589 {
8590 reloc_type = BFD_RELOC_386_GOTPC;
8591 i.op[n].imms->X_add_number +=
8592 encoding_length (insn_start_frag, insn_start_off, p);
8593 }
8594 else if (reloc_type == BFD_RELOC_64)
8595 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8596 else
8597 /* Don't do the adjustment for x86-64, as there
8598 the pcrel addressing is relative to the _next_
8599 insn, and that is taken care of in other code. */
8600 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8601 }
8602 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8603 size, i.op[n].disps, pcrel,
8604 reloc_type);
8605 /* Check for "call/jmp *mem", "mov mem, %reg",
8606 "test %reg, mem" and "binop mem, %reg" where binop
8607 is one of adc, add, and, cmp, or, sbb, sub, xor
8608 instructions without data prefix. Always generate
8609 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8610 if (i.prefix[DATA_PREFIX] == 0
8611 && (generate_relax_relocations
8612 || (!object_64bit
8613 && i.rm.mode == 0
8614 && i.rm.regmem == 5))
8615 && (i.rm.mode == 2
8616 || (i.rm.mode == 0 && i.rm.regmem == 5))
8617 && ((i.operands == 1
8618 && i.tm.base_opcode == 0xff
8619 && (i.rm.reg == 2 || i.rm.reg == 4))
8620 || (i.operands == 2
8621 && (i.tm.base_opcode == 0x8b
8622 || i.tm.base_opcode == 0x85
8623 || (i.tm.base_opcode & 0xc7) == 0x03))))
8624 {
8625 if (object_64bit)
8626 {
8627 fixP->fx_tcbit = i.rex != 0;
8628 if (i.base_reg
8629 && (i.base_reg->reg_num == RegIP))
8630 fixP->fx_tcbit2 = 1;
8631 }
8632 else
8633 fixP->fx_tcbit2 = 1;
8634 }
8635 }
8636 }
8637 }
8638 }
8639
8640 static void
8641 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8642 {
8643 char *p;
8644 unsigned int n;
8645
8646 for (n = 0; n < i.operands; n++)
8647 {
8648 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8649 if (i.rounding && (int) n == i.rounding->operand)
8650 continue;
8651
8652 if (operand_type_check (i.types[n], imm))
8653 {
8654 if (i.op[n].imms->X_op == O_constant)
8655 {
8656 int size = imm_size (n);
8657 offsetT val;
8658
8659 val = offset_in_range (i.op[n].imms->X_add_number,
8660 size);
8661 p = frag_more (size);
8662 md_number_to_chars (p, val, size);
8663 }
8664 else
8665 {
8666 /* Not absolute_section.
8667 Need a 32-bit fixup (don't support 8bit
8668 non-absolute imms). Try to support other
8669 sizes ... */
8670 enum bfd_reloc_code_real reloc_type;
8671 int size = imm_size (n);
8672 int sign;
8673
8674 if (i.types[n].bitfield.imm32s
8675 && (i.suffix == QWORD_MNEM_SUFFIX
8676 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8677 sign = 1;
8678 else
8679 sign = 0;
8680
8681 p = frag_more (size);
8682 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8683
8684 /* This is tough to explain. We end up with this one if we
8685 * have operands that look like
8686 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8687 * obtain the absolute address of the GOT, and it is strongly
8688 * preferable from a performance point of view to avoid using
8689 * a runtime relocation for this. The actual sequence of
8690 * instructions often look something like:
8691 *
8692 * call .L66
8693 * .L66:
8694 * popl %ebx
8695 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8696 *
8697 * The call and pop essentially return the absolute address
8698 * of the label .L66 and store it in %ebx. The linker itself
8699 * will ultimately change the first operand of the addl so
8700 * that %ebx points to the GOT, but to keep things simple, the
8701 * .o file must have this operand set so that it generates not
8702 * the absolute address of .L66, but the absolute address of
8703 * itself. This allows the linker itself simply treat a GOTPC
8704 * relocation as asking for a pcrel offset to the GOT to be
8705 * added in, and the addend of the relocation is stored in the
8706 * operand field for the instruction itself.
8707 *
8708 * Our job here is to fix the operand so that it would add
8709 * the correct offset so that %ebx would point to itself. The
8710 * thing that is tricky is that .-.L66 will point to the
8711 * beginning of the instruction, so we need to further modify
8712 * the operand so that it will point to itself. There are
8713 * other cases where you have something like:
8714 *
8715 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8716 *
8717 * and here no correction would be required. Internally in
8718 * the assembler we treat operands of this form as not being
8719 * pcrel since the '.' is explicitly mentioned, and I wonder
8720 * whether it would simplify matters to do it this way. Who
8721 * knows. In earlier versions of the PIC patches, the
8722 * pcrel_adjust field was used to store the correction, but
8723 * since the expression is not pcrel, I felt it would be
8724 * confusing to do it this way. */
8725
8726 if ((reloc_type == BFD_RELOC_32
8727 || reloc_type == BFD_RELOC_X86_64_32S
8728 || reloc_type == BFD_RELOC_64)
8729 && GOT_symbol
8730 && GOT_symbol == i.op[n].imms->X_add_symbol
8731 && (i.op[n].imms->X_op == O_symbol
8732 || (i.op[n].imms->X_op == O_add
8733 && ((symbol_get_value_expression
8734 (i.op[n].imms->X_op_symbol)->X_op)
8735 == O_subtract))))
8736 {
8737 if (!object_64bit)
8738 reloc_type = BFD_RELOC_386_GOTPC;
8739 else if (size == 4)
8740 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8741 else if (size == 8)
8742 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8743 i.op[n].imms->X_add_number +=
8744 encoding_length (insn_start_frag, insn_start_off, p);
8745 }
8746 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8747 i.op[n].imms, 0, reloc_type);
8748 }
8749 }
8750 }
8751 }
8752 \f
8753 /* x86_cons_fix_new is called via the expression parsing code when a
8754 reloc is needed. We use this hook to get the correct .got reloc. */
8755 static int cons_sign = -1;
8756
8757 void
8758 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8759 expressionS *exp, bfd_reloc_code_real_type r)
8760 {
8761 r = reloc (len, 0, cons_sign, r);
8762
8763 #ifdef TE_PE
8764 if (exp->X_op == O_secrel)
8765 {
8766 exp->X_op = O_symbol;
8767 r = BFD_RELOC_32_SECREL;
8768 }
8769 #endif
8770
8771 fix_new_exp (frag, off, len, exp, 0, r);
8772 }
8773
8774 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8775 purpose of the `.dc.a' internal pseudo-op. */
8776
8777 int
8778 x86_address_bytes (void)
8779 {
8780 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8781 return 4;
8782 return stdoutput->arch_info->bits_per_address / 8;
8783 }
8784
8785 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8786 || defined (LEX_AT)
8787 # define lex_got(reloc, adjust, types) NULL
8788 #else
8789 /* Parse operands of the form
8790 <symbol>@GOTOFF+<nnn>
8791 and similar .plt or .got references.
8792
8793 If we find one, set up the correct relocation in RELOC and copy the
8794 input string, minus the `@GOTOFF' into a malloc'd buffer for
8795 parsing by the calling routine. Return this buffer, and if ADJUST
8796 is non-null set it to the length of the string we removed from the
8797 input line. Otherwise return NULL. */
8798 static char *
8799 lex_got (enum bfd_reloc_code_real *rel,
8800 int *adjust,
8801 i386_operand_type *types)
8802 {
8803 /* Some of the relocations depend on the size of what field is to
8804 be relocated. But in our callers i386_immediate and i386_displacement
8805 we don't yet know the operand size (this will be set by insn
8806 matching). Hence we record the word32 relocation here,
8807 and adjust the reloc according to the real size in reloc(). */
8808 static const struct {
8809 const char *str;
8810 int len;
8811 const enum bfd_reloc_code_real rel[2];
8812 const i386_operand_type types64;
8813 } gotrel[] = {
8814 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8815 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8816 BFD_RELOC_SIZE32 },
8817 OPERAND_TYPE_IMM32_64 },
8818 #endif
8819 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8820 BFD_RELOC_X86_64_PLTOFF64 },
8821 OPERAND_TYPE_IMM64 },
8822 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8823 BFD_RELOC_X86_64_PLT32 },
8824 OPERAND_TYPE_IMM32_32S_DISP32 },
8825 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8826 BFD_RELOC_X86_64_GOTPLT64 },
8827 OPERAND_TYPE_IMM64_DISP64 },
8828 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8829 BFD_RELOC_X86_64_GOTOFF64 },
8830 OPERAND_TYPE_IMM64_DISP64 },
8831 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8832 BFD_RELOC_X86_64_GOTPCREL },
8833 OPERAND_TYPE_IMM32_32S_DISP32 },
8834 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8835 BFD_RELOC_X86_64_TLSGD },
8836 OPERAND_TYPE_IMM32_32S_DISP32 },
8837 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8838 _dummy_first_bfd_reloc_code_real },
8839 OPERAND_TYPE_NONE },
8840 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8841 BFD_RELOC_X86_64_TLSLD },
8842 OPERAND_TYPE_IMM32_32S_DISP32 },
8843 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8844 BFD_RELOC_X86_64_GOTTPOFF },
8845 OPERAND_TYPE_IMM32_32S_DISP32 },
8846 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8847 BFD_RELOC_X86_64_TPOFF32 },
8848 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8849 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8850 _dummy_first_bfd_reloc_code_real },
8851 OPERAND_TYPE_NONE },
8852 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8853 BFD_RELOC_X86_64_DTPOFF32 },
8854 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8855 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8856 _dummy_first_bfd_reloc_code_real },
8857 OPERAND_TYPE_NONE },
8858 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8859 _dummy_first_bfd_reloc_code_real },
8860 OPERAND_TYPE_NONE },
8861 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8862 BFD_RELOC_X86_64_GOT32 },
8863 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8864 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8865 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8866 OPERAND_TYPE_IMM32_32S_DISP32 },
8867 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8868 BFD_RELOC_X86_64_TLSDESC_CALL },
8869 OPERAND_TYPE_IMM32_32S_DISP32 },
8870 };
8871 char *cp;
8872 unsigned int j;
8873
8874 #if defined (OBJ_MAYBE_ELF)
8875 if (!IS_ELF)
8876 return NULL;
8877 #endif
8878
8879 for (cp = input_line_pointer; *cp != '@'; cp++)
8880 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8881 return NULL;
8882
8883 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8884 {
8885 int len = gotrel[j].len;
8886 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8887 {
8888 if (gotrel[j].rel[object_64bit] != 0)
8889 {
8890 int first, second;
8891 char *tmpbuf, *past_reloc;
8892
8893 *rel = gotrel[j].rel[object_64bit];
8894
8895 if (types)
8896 {
8897 if (flag_code != CODE_64BIT)
8898 {
8899 types->bitfield.imm32 = 1;
8900 types->bitfield.disp32 = 1;
8901 }
8902 else
8903 *types = gotrel[j].types64;
8904 }
8905
8906 if (j != 0 && GOT_symbol == NULL)
8907 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8908
8909 /* The length of the first part of our input line. */
8910 first = cp - input_line_pointer;
8911
8912 /* The second part goes from after the reloc token until
8913 (and including) an end_of_line char or comma. */
8914 past_reloc = cp + 1 + len;
8915 cp = past_reloc;
8916 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8917 ++cp;
8918 second = cp + 1 - past_reloc;
8919
8920 /* Allocate and copy string. The trailing NUL shouldn't
8921 be necessary, but be safe. */
8922 tmpbuf = XNEWVEC (char, first + second + 2);
8923 memcpy (tmpbuf, input_line_pointer, first);
8924 if (second != 0 && *past_reloc != ' ')
8925 /* Replace the relocation token with ' ', so that
8926 errors like foo@GOTOFF1 will be detected. */
8927 tmpbuf[first++] = ' ';
8928 else
8929 /* Increment length by 1 if the relocation token is
8930 removed. */
8931 len++;
8932 if (adjust)
8933 *adjust = len;
8934 memcpy (tmpbuf + first, past_reloc, second);
8935 tmpbuf[first + second] = '\0';
8936 return tmpbuf;
8937 }
8938
8939 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8940 gotrel[j].str, 1 << (5 + object_64bit));
8941 return NULL;
8942 }
8943 }
8944
8945 /* Might be a symbol version string. Don't as_bad here. */
8946 return NULL;
8947 }
8948 #endif
8949
8950 #ifdef TE_PE
8951 #ifdef lex_got
8952 #undef lex_got
8953 #endif
8954 /* Parse operands of the form
8955 <symbol>@SECREL32+<nnn>
8956
8957 If we find one, set up the correct relocation in RELOC and copy the
8958 input string, minus the `@SECREL32' into a malloc'd buffer for
8959 parsing by the calling routine. Return this buffer, and if ADJUST
8960 is non-null set it to the length of the string we removed from the
8961 input line. Otherwise return NULL.
8962
8963 This function is copied from the ELF version above adjusted for PE targets. */
8964
8965 static char *
8966 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8967 int *adjust ATTRIBUTE_UNUSED,
8968 i386_operand_type *types)
8969 {
8970 static const struct
8971 {
8972 const char *str;
8973 int len;
8974 const enum bfd_reloc_code_real rel[2];
8975 const i386_operand_type types64;
8976 }
8977 gotrel[] =
8978 {
8979 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8980 BFD_RELOC_32_SECREL },
8981 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8982 };
8983
8984 char *cp;
8985 unsigned j;
8986
8987 for (cp = input_line_pointer; *cp != '@'; cp++)
8988 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8989 return NULL;
8990
8991 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8992 {
8993 int len = gotrel[j].len;
8994
8995 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8996 {
8997 if (gotrel[j].rel[object_64bit] != 0)
8998 {
8999 int first, second;
9000 char *tmpbuf, *past_reloc;
9001
9002 *rel = gotrel[j].rel[object_64bit];
9003 if (adjust)
9004 *adjust = len;
9005
9006 if (types)
9007 {
9008 if (flag_code != CODE_64BIT)
9009 {
9010 types->bitfield.imm32 = 1;
9011 types->bitfield.disp32 = 1;
9012 }
9013 else
9014 *types = gotrel[j].types64;
9015 }
9016
9017 /* The length of the first part of our input line. */
9018 first = cp - input_line_pointer;
9019
9020 /* The second part goes from after the reloc token until
9021 (and including) an end_of_line char or comma. */
9022 past_reloc = cp + 1 + len;
9023 cp = past_reloc;
9024 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9025 ++cp;
9026 second = cp + 1 - past_reloc;
9027
9028 /* Allocate and copy string. The trailing NUL shouldn't
9029 be necessary, but be safe. */
9030 tmpbuf = XNEWVEC (char, first + second + 2);
9031 memcpy (tmpbuf, input_line_pointer, first);
9032 if (second != 0 && *past_reloc != ' ')
9033 /* Replace the relocation token with ' ', so that
9034 errors like foo@SECLREL321 will be detected. */
9035 tmpbuf[first++] = ' ';
9036 memcpy (tmpbuf + first, past_reloc, second);
9037 tmpbuf[first + second] = '\0';
9038 return tmpbuf;
9039 }
9040
9041 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9042 gotrel[j].str, 1 << (5 + object_64bit));
9043 return NULL;
9044 }
9045 }
9046
9047 /* Might be a symbol version string. Don't as_bad here. */
9048 return NULL;
9049 }
9050
9051 #endif /* TE_PE */
9052
9053 bfd_reloc_code_real_type
9054 x86_cons (expressionS *exp, int size)
9055 {
9056 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9057
9058 intel_syntax = -intel_syntax;
9059
9060 exp->X_md = 0;
9061 if (size == 4 || (object_64bit && size == 8))
9062 {
9063 /* Handle @GOTOFF and the like in an expression. */
9064 char *save;
9065 char *gotfree_input_line;
9066 int adjust = 0;
9067
9068 save = input_line_pointer;
9069 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9070 if (gotfree_input_line)
9071 input_line_pointer = gotfree_input_line;
9072
9073 expression (exp);
9074
9075 if (gotfree_input_line)
9076 {
9077 /* expression () has merrily parsed up to the end of line,
9078 or a comma - in the wrong buffer. Transfer how far
9079 input_line_pointer has moved to the right buffer. */
9080 input_line_pointer = (save
9081 + (input_line_pointer - gotfree_input_line)
9082 + adjust);
9083 free (gotfree_input_line);
9084 if (exp->X_op == O_constant
9085 || exp->X_op == O_absent
9086 || exp->X_op == O_illegal
9087 || exp->X_op == O_register
9088 || exp->X_op == O_big)
9089 {
9090 char c = *input_line_pointer;
9091 *input_line_pointer = 0;
9092 as_bad (_("missing or invalid expression `%s'"), save);
9093 *input_line_pointer = c;
9094 }
9095 else if ((got_reloc == BFD_RELOC_386_PLT32
9096 || got_reloc == BFD_RELOC_X86_64_PLT32)
9097 && exp->X_op != O_symbol)
9098 {
9099 char c = *input_line_pointer;
9100 *input_line_pointer = 0;
9101 as_bad (_("invalid PLT expression `%s'"), save);
9102 *input_line_pointer = c;
9103 }
9104 }
9105 }
9106 else
9107 expression (exp);
9108
9109 intel_syntax = -intel_syntax;
9110
9111 if (intel_syntax)
9112 i386_intel_simplify (exp);
9113
9114 return got_reloc;
9115 }
9116
9117 static void
9118 signed_cons (int size)
9119 {
9120 if (flag_code == CODE_64BIT)
9121 cons_sign = 1;
9122 cons (size);
9123 cons_sign = -1;
9124 }
9125
9126 #ifdef TE_PE
9127 static void
9128 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9129 {
9130 expressionS exp;
9131
9132 do
9133 {
9134 expression (&exp);
9135 if (exp.X_op == O_symbol)
9136 exp.X_op = O_secrel;
9137
9138 emit_expr (&exp, 4);
9139 }
9140 while (*input_line_pointer++ == ',');
9141
9142 input_line_pointer--;
9143 demand_empty_rest_of_line ();
9144 }
9145 #endif
9146
9147 /* Handle Vector operations. */
9148
9149 static char *
9150 check_VecOperations (char *op_string, char *op_end)
9151 {
9152 const reg_entry *mask;
9153 const char *saved;
9154 char *end_op;
9155
9156 while (*op_string
9157 && (op_end == NULL || op_string < op_end))
9158 {
9159 saved = op_string;
9160 if (*op_string == '{')
9161 {
9162 op_string++;
9163
9164 /* Check broadcasts. */
9165 if (strncmp (op_string, "1to", 3) == 0)
9166 {
9167 int bcst_type;
9168
9169 if (i.broadcast)
9170 goto duplicated_vec_op;
9171
9172 op_string += 3;
9173 if (*op_string == '8')
9174 bcst_type = 8;
9175 else if (*op_string == '4')
9176 bcst_type = 4;
9177 else if (*op_string == '2')
9178 bcst_type = 2;
9179 else if (*op_string == '1'
9180 && *(op_string+1) == '6')
9181 {
9182 bcst_type = 16;
9183 op_string++;
9184 }
9185 else
9186 {
9187 as_bad (_("Unsupported broadcast: `%s'"), saved);
9188 return NULL;
9189 }
9190 op_string++;
9191
9192 broadcast_op.type = bcst_type;
9193 broadcast_op.operand = this_operand;
9194 broadcast_op.bytes = 0;
9195 i.broadcast = &broadcast_op;
9196 }
9197 /* Check masking operation. */
9198 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9199 {
9200 /* k0 can't be used for write mask. */
9201 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9202 {
9203 as_bad (_("`%s%s' can't be used for write mask"),
9204 register_prefix, mask->reg_name);
9205 return NULL;
9206 }
9207
9208 if (!i.mask)
9209 {
9210 mask_op.mask = mask;
9211 mask_op.zeroing = 0;
9212 mask_op.operand = this_operand;
9213 i.mask = &mask_op;
9214 }
9215 else
9216 {
9217 if (i.mask->mask)
9218 goto duplicated_vec_op;
9219
9220 i.mask->mask = mask;
9221
9222 /* Only "{z}" is allowed here. No need to check
9223 zeroing mask explicitly. */
9224 if (i.mask->operand != this_operand)
9225 {
9226 as_bad (_("invalid write mask `%s'"), saved);
9227 return NULL;
9228 }
9229 }
9230
9231 op_string = end_op;
9232 }
9233 /* Check zeroing-flag for masking operation. */
9234 else if (*op_string == 'z')
9235 {
9236 if (!i.mask)
9237 {
9238 mask_op.mask = NULL;
9239 mask_op.zeroing = 1;
9240 mask_op.operand = this_operand;
9241 i.mask = &mask_op;
9242 }
9243 else
9244 {
9245 if (i.mask->zeroing)
9246 {
9247 duplicated_vec_op:
9248 as_bad (_("duplicated `%s'"), saved);
9249 return NULL;
9250 }
9251
9252 i.mask->zeroing = 1;
9253
9254 /* Only "{%k}" is allowed here. No need to check mask
9255 register explicitly. */
9256 if (i.mask->operand != this_operand)
9257 {
9258 as_bad (_("invalid zeroing-masking `%s'"),
9259 saved);
9260 return NULL;
9261 }
9262 }
9263
9264 op_string++;
9265 }
9266 else
9267 goto unknown_vec_op;
9268
9269 if (*op_string != '}')
9270 {
9271 as_bad (_("missing `}' in `%s'"), saved);
9272 return NULL;
9273 }
9274 op_string++;
9275
9276 /* Strip whitespace since the addition of pseudo prefixes
9277 changed how the scrubber treats '{'. */
9278 if (is_space_char (*op_string))
9279 ++op_string;
9280
9281 continue;
9282 }
9283 unknown_vec_op:
9284 /* We don't know this one. */
9285 as_bad (_("unknown vector operation: `%s'"), saved);
9286 return NULL;
9287 }
9288
9289 if (i.mask && i.mask->zeroing && !i.mask->mask)
9290 {
9291 as_bad (_("zeroing-masking only allowed with write mask"));
9292 return NULL;
9293 }
9294
9295 return op_string;
9296 }
9297
9298 static int
9299 i386_immediate (char *imm_start)
9300 {
9301 char *save_input_line_pointer;
9302 char *gotfree_input_line;
9303 segT exp_seg = 0;
9304 expressionS *exp;
9305 i386_operand_type types;
9306
9307 operand_type_set (&types, ~0);
9308
9309 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9310 {
9311 as_bad (_("at most %d immediate operands are allowed"),
9312 MAX_IMMEDIATE_OPERANDS);
9313 return 0;
9314 }
9315
9316 exp = &im_expressions[i.imm_operands++];
9317 i.op[this_operand].imms = exp;
9318
9319 if (is_space_char (*imm_start))
9320 ++imm_start;
9321
9322 save_input_line_pointer = input_line_pointer;
9323 input_line_pointer = imm_start;
9324
9325 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9326 if (gotfree_input_line)
9327 input_line_pointer = gotfree_input_line;
9328
9329 exp_seg = expression (exp);
9330
9331 SKIP_WHITESPACE ();
9332
9333 /* Handle vector operations. */
9334 if (*input_line_pointer == '{')
9335 {
9336 input_line_pointer = check_VecOperations (input_line_pointer,
9337 NULL);
9338 if (input_line_pointer == NULL)
9339 return 0;
9340 }
9341
9342 if (*input_line_pointer)
9343 as_bad (_("junk `%s' after expression"), input_line_pointer);
9344
9345 input_line_pointer = save_input_line_pointer;
9346 if (gotfree_input_line)
9347 {
9348 free (gotfree_input_line);
9349
9350 if (exp->X_op == O_constant || exp->X_op == O_register)
9351 exp->X_op = O_illegal;
9352 }
9353
9354 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9355 }
9356
9357 static int
9358 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9359 i386_operand_type types, const char *imm_start)
9360 {
9361 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9362 {
9363 if (imm_start)
9364 as_bad (_("missing or invalid immediate expression `%s'"),
9365 imm_start);
9366 return 0;
9367 }
9368 else if (exp->X_op == O_constant)
9369 {
9370 /* Size it properly later. */
9371 i.types[this_operand].bitfield.imm64 = 1;
9372 /* If not 64bit, sign extend val. */
9373 if (flag_code != CODE_64BIT
9374 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9375 exp->X_add_number
9376 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9377 }
9378 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9379 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9380 && exp_seg != absolute_section
9381 && exp_seg != text_section
9382 && exp_seg != data_section
9383 && exp_seg != bss_section
9384 && exp_seg != undefined_section
9385 && !bfd_is_com_section (exp_seg))
9386 {
9387 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9388 return 0;
9389 }
9390 #endif
9391 else if (!intel_syntax && exp_seg == reg_section)
9392 {
9393 if (imm_start)
9394 as_bad (_("illegal immediate register operand %s"), imm_start);
9395 return 0;
9396 }
9397 else
9398 {
9399 /* This is an address. The size of the address will be
9400 determined later, depending on destination register,
9401 suffix, or the default for the section. */
9402 i.types[this_operand].bitfield.imm8 = 1;
9403 i.types[this_operand].bitfield.imm16 = 1;
9404 i.types[this_operand].bitfield.imm32 = 1;
9405 i.types[this_operand].bitfield.imm32s = 1;
9406 i.types[this_operand].bitfield.imm64 = 1;
9407 i.types[this_operand] = operand_type_and (i.types[this_operand],
9408 types);
9409 }
9410
9411 return 1;
9412 }
9413
9414 static char *
9415 i386_scale (char *scale)
9416 {
9417 offsetT val;
9418 char *save = input_line_pointer;
9419
9420 input_line_pointer = scale;
9421 val = get_absolute_expression ();
9422
9423 switch (val)
9424 {
9425 case 1:
9426 i.log2_scale_factor = 0;
9427 break;
9428 case 2:
9429 i.log2_scale_factor = 1;
9430 break;
9431 case 4:
9432 i.log2_scale_factor = 2;
9433 break;
9434 case 8:
9435 i.log2_scale_factor = 3;
9436 break;
9437 default:
9438 {
9439 char sep = *input_line_pointer;
9440
9441 *input_line_pointer = '\0';
9442 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9443 scale);
9444 *input_line_pointer = sep;
9445 input_line_pointer = save;
9446 return NULL;
9447 }
9448 }
9449 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9450 {
9451 as_warn (_("scale factor of %d without an index register"),
9452 1 << i.log2_scale_factor);
9453 i.log2_scale_factor = 0;
9454 }
9455 scale = input_line_pointer;
9456 input_line_pointer = save;
9457 return scale;
9458 }
9459
9460 static int
9461 i386_displacement (char *disp_start, char *disp_end)
9462 {
9463 expressionS *exp;
9464 segT exp_seg = 0;
9465 char *save_input_line_pointer;
9466 char *gotfree_input_line;
9467 int override;
9468 i386_operand_type bigdisp, types = anydisp;
9469 int ret;
9470
9471 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9472 {
9473 as_bad (_("at most %d displacement operands are allowed"),
9474 MAX_MEMORY_OPERANDS);
9475 return 0;
9476 }
9477
9478 operand_type_set (&bigdisp, 0);
9479 if (i.jumpabsolute
9480 || (current_templates->start->opcode_modifier.jump != JUMP
9481 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
9482 {
9483 bigdisp.bitfield.disp32 = 1;
9484 override = (i.prefix[ADDR_PREFIX] != 0);
9485 if (flag_code == CODE_64BIT)
9486 {
9487 if (!override)
9488 {
9489 bigdisp.bitfield.disp32s = 1;
9490 bigdisp.bitfield.disp64 = 1;
9491 }
9492 }
9493 else if ((flag_code == CODE_16BIT) ^ override)
9494 {
9495 bigdisp.bitfield.disp32 = 0;
9496 bigdisp.bitfield.disp16 = 1;
9497 }
9498 }
9499 else
9500 {
9501 /* For PC-relative branches, the width of the displacement
9502 is dependent upon data size, not address size. */
9503 override = (i.prefix[DATA_PREFIX] != 0);
9504 if (flag_code == CODE_64BIT)
9505 {
9506 if (override || i.suffix == WORD_MNEM_SUFFIX)
9507 bigdisp.bitfield.disp16 = 1;
9508 else
9509 {
9510 bigdisp.bitfield.disp32 = 1;
9511 bigdisp.bitfield.disp32s = 1;
9512 }
9513 }
9514 else
9515 {
9516 if (!override)
9517 override = (i.suffix == (flag_code != CODE_16BIT
9518 ? WORD_MNEM_SUFFIX
9519 : LONG_MNEM_SUFFIX));
9520 bigdisp.bitfield.disp32 = 1;
9521 if ((flag_code == CODE_16BIT) ^ override)
9522 {
9523 bigdisp.bitfield.disp32 = 0;
9524 bigdisp.bitfield.disp16 = 1;
9525 }
9526 }
9527 }
9528 i.types[this_operand] = operand_type_or (i.types[this_operand],
9529 bigdisp);
9530
9531 exp = &disp_expressions[i.disp_operands];
9532 i.op[this_operand].disps = exp;
9533 i.disp_operands++;
9534 save_input_line_pointer = input_line_pointer;
9535 input_line_pointer = disp_start;
9536 END_STRING_AND_SAVE (disp_end);
9537
9538 #ifndef GCC_ASM_O_HACK
9539 #define GCC_ASM_O_HACK 0
9540 #endif
9541 #if GCC_ASM_O_HACK
9542 END_STRING_AND_SAVE (disp_end + 1);
9543 if (i.types[this_operand].bitfield.baseIndex
9544 && displacement_string_end[-1] == '+')
9545 {
9546 /* This hack is to avoid a warning when using the "o"
9547 constraint within gcc asm statements.
9548 For instance:
9549
9550 #define _set_tssldt_desc(n,addr,limit,type) \
9551 __asm__ __volatile__ ( \
9552 "movw %w2,%0\n\t" \
9553 "movw %w1,2+%0\n\t" \
9554 "rorl $16,%1\n\t" \
9555 "movb %b1,4+%0\n\t" \
9556 "movb %4,5+%0\n\t" \
9557 "movb $0,6+%0\n\t" \
9558 "movb %h1,7+%0\n\t" \
9559 "rorl $16,%1" \
9560 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9561
9562 This works great except that the output assembler ends
9563 up looking a bit weird if it turns out that there is
9564 no offset. You end up producing code that looks like:
9565
9566 #APP
9567 movw $235,(%eax)
9568 movw %dx,2+(%eax)
9569 rorl $16,%edx
9570 movb %dl,4+(%eax)
9571 movb $137,5+(%eax)
9572 movb $0,6+(%eax)
9573 movb %dh,7+(%eax)
9574 rorl $16,%edx
9575 #NO_APP
9576
9577 So here we provide the missing zero. */
9578
9579 *displacement_string_end = '0';
9580 }
9581 #endif
9582 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9583 if (gotfree_input_line)
9584 input_line_pointer = gotfree_input_line;
9585
9586 exp_seg = expression (exp);
9587
9588 SKIP_WHITESPACE ();
9589 if (*input_line_pointer)
9590 as_bad (_("junk `%s' after expression"), input_line_pointer);
9591 #if GCC_ASM_O_HACK
9592 RESTORE_END_STRING (disp_end + 1);
9593 #endif
9594 input_line_pointer = save_input_line_pointer;
9595 if (gotfree_input_line)
9596 {
9597 free (gotfree_input_line);
9598
9599 if (exp->X_op == O_constant || exp->X_op == O_register)
9600 exp->X_op = O_illegal;
9601 }
9602
9603 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9604
9605 RESTORE_END_STRING (disp_end);
9606
9607 return ret;
9608 }
9609
9610 static int
9611 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9612 i386_operand_type types, const char *disp_start)
9613 {
9614 i386_operand_type bigdisp;
9615 int ret = 1;
9616
9617 /* We do this to make sure that the section symbol is in
9618 the symbol table. We will ultimately change the relocation
9619 to be relative to the beginning of the section. */
9620 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9621 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9622 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9623 {
9624 if (exp->X_op != O_symbol)
9625 goto inv_disp;
9626
9627 if (S_IS_LOCAL (exp->X_add_symbol)
9628 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9629 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9630 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9631 exp->X_op = O_subtract;
9632 exp->X_op_symbol = GOT_symbol;
9633 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9634 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9635 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9636 i.reloc[this_operand] = BFD_RELOC_64;
9637 else
9638 i.reloc[this_operand] = BFD_RELOC_32;
9639 }
9640
9641 else if (exp->X_op == O_absent
9642 || exp->X_op == O_illegal
9643 || exp->X_op == O_big)
9644 {
9645 inv_disp:
9646 as_bad (_("missing or invalid displacement expression `%s'"),
9647 disp_start);
9648 ret = 0;
9649 }
9650
9651 else if (flag_code == CODE_64BIT
9652 && !i.prefix[ADDR_PREFIX]
9653 && exp->X_op == O_constant)
9654 {
9655 /* Since displacement is signed extended to 64bit, don't allow
9656 disp32 and turn off disp32s if they are out of range. */
9657 i.types[this_operand].bitfield.disp32 = 0;
9658 if (!fits_in_signed_long (exp->X_add_number))
9659 {
9660 i.types[this_operand].bitfield.disp32s = 0;
9661 if (i.types[this_operand].bitfield.baseindex)
9662 {
9663 as_bad (_("0x%lx out range of signed 32bit displacement"),
9664 (long) exp->X_add_number);
9665 ret = 0;
9666 }
9667 }
9668 }
9669
9670 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9671 else if (exp->X_op != O_constant
9672 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9673 && exp_seg != absolute_section
9674 && exp_seg != text_section
9675 && exp_seg != data_section
9676 && exp_seg != bss_section
9677 && exp_seg != undefined_section
9678 && !bfd_is_com_section (exp_seg))
9679 {
9680 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9681 ret = 0;
9682 }
9683 #endif
9684
9685 /* Check if this is a displacement only operand. */
9686 bigdisp = i.types[this_operand];
9687 bigdisp.bitfield.disp8 = 0;
9688 bigdisp.bitfield.disp16 = 0;
9689 bigdisp.bitfield.disp32 = 0;
9690 bigdisp.bitfield.disp32s = 0;
9691 bigdisp.bitfield.disp64 = 0;
9692 if (operand_type_all_zero (&bigdisp))
9693 i.types[this_operand] = operand_type_and (i.types[this_operand],
9694 types);
9695
9696 return ret;
9697 }
9698
9699 /* Return the active addressing mode, taking address override and
9700 registers forming the address into consideration. Update the
9701 address override prefix if necessary. */
9702
9703 static enum flag_code
9704 i386_addressing_mode (void)
9705 {
9706 enum flag_code addr_mode;
9707
9708 if (i.prefix[ADDR_PREFIX])
9709 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9710 else
9711 {
9712 addr_mode = flag_code;
9713
9714 #if INFER_ADDR_PREFIX
9715 if (i.mem_operands == 0)
9716 {
9717 /* Infer address prefix from the first memory operand. */
9718 const reg_entry *addr_reg = i.base_reg;
9719
9720 if (addr_reg == NULL)
9721 addr_reg = i.index_reg;
9722
9723 if (addr_reg)
9724 {
9725 if (addr_reg->reg_type.bitfield.dword)
9726 addr_mode = CODE_32BIT;
9727 else if (flag_code != CODE_64BIT
9728 && addr_reg->reg_type.bitfield.word)
9729 addr_mode = CODE_16BIT;
9730
9731 if (addr_mode != flag_code)
9732 {
9733 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9734 i.prefixes += 1;
9735 /* Change the size of any displacement too. At most one
9736 of Disp16 or Disp32 is set.
9737 FIXME. There doesn't seem to be any real need for
9738 separate Disp16 and Disp32 flags. The same goes for
9739 Imm16 and Imm32. Removing them would probably clean
9740 up the code quite a lot. */
9741 if (flag_code != CODE_64BIT
9742 && (i.types[this_operand].bitfield.disp16
9743 || i.types[this_operand].bitfield.disp32))
9744 i.types[this_operand]
9745 = operand_type_xor (i.types[this_operand], disp16_32);
9746 }
9747 }
9748 }
9749 #endif
9750 }
9751
9752 return addr_mode;
9753 }
9754
9755 /* Make sure the memory operand we've been dealt is valid.
9756 Return 1 on success, 0 on a failure. */
9757
9758 static int
9759 i386_index_check (const char *operand_string)
9760 {
9761 const char *kind = "base/index";
9762 enum flag_code addr_mode = i386_addressing_mode ();
9763
9764 if (current_templates->start->opcode_modifier.isstring
9765 && !current_templates->start->cpu_flags.bitfield.cpupadlock
9766 && (current_templates->end[-1].opcode_modifier.isstring
9767 || i.mem_operands))
9768 {
9769 /* Memory operands of string insns are special in that they only allow
9770 a single register (rDI, rSI, or rBX) as their memory address. */
9771 const reg_entry *expected_reg;
9772 static const char *di_si[][2] =
9773 {
9774 { "esi", "edi" },
9775 { "si", "di" },
9776 { "rsi", "rdi" }
9777 };
9778 static const char *bx[] = { "ebx", "bx", "rbx" };
9779
9780 kind = "string address";
9781
9782 if (current_templates->start->opcode_modifier.repprefixok)
9783 {
9784 int es_op = current_templates->end[-1].opcode_modifier.isstring
9785 - IS_STRING_ES_OP0;
9786 int op = 0;
9787
9788 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
9789 || ((!i.mem_operands != !intel_syntax)
9790 && current_templates->end[-1].operand_types[1]
9791 .bitfield.baseindex))
9792 op = 1;
9793 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
9794 }
9795 else
9796 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9797
9798 if (i.base_reg != expected_reg
9799 || i.index_reg
9800 || operand_type_check (i.types[this_operand], disp))
9801 {
9802 /* The second memory operand must have the same size as
9803 the first one. */
9804 if (i.mem_operands
9805 && i.base_reg
9806 && !((addr_mode == CODE_64BIT
9807 && i.base_reg->reg_type.bitfield.qword)
9808 || (addr_mode == CODE_32BIT
9809 ? i.base_reg->reg_type.bitfield.dword
9810 : i.base_reg->reg_type.bitfield.word)))
9811 goto bad_address;
9812
9813 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9814 operand_string,
9815 intel_syntax ? '[' : '(',
9816 register_prefix,
9817 expected_reg->reg_name,
9818 intel_syntax ? ']' : ')');
9819 return 1;
9820 }
9821 else
9822 return 1;
9823
9824 bad_address:
9825 as_bad (_("`%s' is not a valid %s expression"),
9826 operand_string, kind);
9827 return 0;
9828 }
9829 else
9830 {
9831 if (addr_mode != CODE_16BIT)
9832 {
9833 /* 32-bit/64-bit checks. */
9834 if ((i.base_reg
9835 && ((addr_mode == CODE_64BIT
9836 ? !i.base_reg->reg_type.bitfield.qword
9837 : !i.base_reg->reg_type.bitfield.dword)
9838 || (i.index_reg && i.base_reg->reg_num == RegIP)
9839 || i.base_reg->reg_num == RegIZ))
9840 || (i.index_reg
9841 && !i.index_reg->reg_type.bitfield.xmmword
9842 && !i.index_reg->reg_type.bitfield.ymmword
9843 && !i.index_reg->reg_type.bitfield.zmmword
9844 && ((addr_mode == CODE_64BIT
9845 ? !i.index_reg->reg_type.bitfield.qword
9846 : !i.index_reg->reg_type.bitfield.dword)
9847 || !i.index_reg->reg_type.bitfield.baseindex)))
9848 goto bad_address;
9849
9850 /* bndmk, bndldx, and bndstx have special restrictions. */
9851 if (current_templates->start->base_opcode == 0xf30f1b
9852 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9853 {
9854 /* They cannot use RIP-relative addressing. */
9855 if (i.base_reg && i.base_reg->reg_num == RegIP)
9856 {
9857 as_bad (_("`%s' cannot be used here"), operand_string);
9858 return 0;
9859 }
9860
9861 /* bndldx and bndstx ignore their scale factor. */
9862 if (current_templates->start->base_opcode != 0xf30f1b
9863 && i.log2_scale_factor)
9864 as_warn (_("register scaling is being ignored here"));
9865 }
9866 }
9867 else
9868 {
9869 /* 16-bit checks. */
9870 if ((i.base_reg
9871 && (!i.base_reg->reg_type.bitfield.word
9872 || !i.base_reg->reg_type.bitfield.baseindex))
9873 || (i.index_reg
9874 && (!i.index_reg->reg_type.bitfield.word
9875 || !i.index_reg->reg_type.bitfield.baseindex
9876 || !(i.base_reg
9877 && i.base_reg->reg_num < 6
9878 && i.index_reg->reg_num >= 6
9879 && i.log2_scale_factor == 0))))
9880 goto bad_address;
9881 }
9882 }
9883 return 1;
9884 }
9885
9886 /* Handle vector immediates. */
9887
9888 static int
9889 RC_SAE_immediate (const char *imm_start)
9890 {
9891 unsigned int match_found, j;
9892 const char *pstr = imm_start;
9893 expressionS *exp;
9894
9895 if (*pstr != '{')
9896 return 0;
9897
9898 pstr++;
9899 match_found = 0;
9900 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9901 {
9902 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9903 {
9904 if (!i.rounding)
9905 {
9906 rc_op.type = RC_NamesTable[j].type;
9907 rc_op.operand = this_operand;
9908 i.rounding = &rc_op;
9909 }
9910 else
9911 {
9912 as_bad (_("duplicated `%s'"), imm_start);
9913 return 0;
9914 }
9915 pstr += RC_NamesTable[j].len;
9916 match_found = 1;
9917 break;
9918 }
9919 }
9920 if (!match_found)
9921 return 0;
9922
9923 if (*pstr++ != '}')
9924 {
9925 as_bad (_("Missing '}': '%s'"), imm_start);
9926 return 0;
9927 }
9928 /* RC/SAE immediate string should contain nothing more. */;
9929 if (*pstr != 0)
9930 {
9931 as_bad (_("Junk after '}': '%s'"), imm_start);
9932 return 0;
9933 }
9934
9935 exp = &im_expressions[i.imm_operands++];
9936 i.op[this_operand].imms = exp;
9937
9938 exp->X_op = O_constant;
9939 exp->X_add_number = 0;
9940 exp->X_add_symbol = (symbolS *) 0;
9941 exp->X_op_symbol = (symbolS *) 0;
9942
9943 i.types[this_operand].bitfield.imm8 = 1;
9944 return 1;
9945 }
9946
9947 /* Only string instructions can have a second memory operand, so
9948 reduce current_templates to just those if it contains any. */
9949 static int
9950 maybe_adjust_templates (void)
9951 {
9952 const insn_template *t;
9953
9954 gas_assert (i.mem_operands == 1);
9955
9956 for (t = current_templates->start; t < current_templates->end; ++t)
9957 if (t->opcode_modifier.isstring)
9958 break;
9959
9960 if (t < current_templates->end)
9961 {
9962 static templates aux_templates;
9963 bfd_boolean recheck;
9964
9965 aux_templates.start = t;
9966 for (; t < current_templates->end; ++t)
9967 if (!t->opcode_modifier.isstring)
9968 break;
9969 aux_templates.end = t;
9970
9971 /* Determine whether to re-check the first memory operand. */
9972 recheck = (aux_templates.start != current_templates->start
9973 || t != current_templates->end);
9974
9975 current_templates = &aux_templates;
9976
9977 if (recheck)
9978 {
9979 i.mem_operands = 0;
9980 if (i.memop1_string != NULL
9981 && i386_index_check (i.memop1_string) == 0)
9982 return 0;
9983 i.mem_operands = 1;
9984 }
9985 }
9986
9987 return 1;
9988 }
9989
9990 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9991 on error. */
9992
9993 static int
9994 i386_att_operand (char *operand_string)
9995 {
9996 const reg_entry *r;
9997 char *end_op;
9998 char *op_string = operand_string;
9999
10000 if (is_space_char (*op_string))
10001 ++op_string;
10002
10003 /* We check for an absolute prefix (differentiating,
10004 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10005 if (*op_string == ABSOLUTE_PREFIX)
10006 {
10007 ++op_string;
10008 if (is_space_char (*op_string))
10009 ++op_string;
10010 i.jumpabsolute = TRUE;
10011 }
10012
10013 /* Check if operand is a register. */
10014 if ((r = parse_register (op_string, &end_op)) != NULL)
10015 {
10016 i386_operand_type temp;
10017
10018 /* Check for a segment override by searching for ':' after a
10019 segment register. */
10020 op_string = end_op;
10021 if (is_space_char (*op_string))
10022 ++op_string;
10023 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10024 {
10025 switch (r->reg_num)
10026 {
10027 case 0:
10028 i.seg[i.mem_operands] = &es;
10029 break;
10030 case 1:
10031 i.seg[i.mem_operands] = &cs;
10032 break;
10033 case 2:
10034 i.seg[i.mem_operands] = &ss;
10035 break;
10036 case 3:
10037 i.seg[i.mem_operands] = &ds;
10038 break;
10039 case 4:
10040 i.seg[i.mem_operands] = &fs;
10041 break;
10042 case 5:
10043 i.seg[i.mem_operands] = &gs;
10044 break;
10045 }
10046
10047 /* Skip the ':' and whitespace. */
10048 ++op_string;
10049 if (is_space_char (*op_string))
10050 ++op_string;
10051
10052 if (!is_digit_char (*op_string)
10053 && !is_identifier_char (*op_string)
10054 && *op_string != '('
10055 && *op_string != ABSOLUTE_PREFIX)
10056 {
10057 as_bad (_("bad memory operand `%s'"), op_string);
10058 return 0;
10059 }
10060 /* Handle case of %es:*foo. */
10061 if (*op_string == ABSOLUTE_PREFIX)
10062 {
10063 ++op_string;
10064 if (is_space_char (*op_string))
10065 ++op_string;
10066 i.jumpabsolute = TRUE;
10067 }
10068 goto do_memory_reference;
10069 }
10070
10071 /* Handle vector operations. */
10072 if (*op_string == '{')
10073 {
10074 op_string = check_VecOperations (op_string, NULL);
10075 if (op_string == NULL)
10076 return 0;
10077 }
10078
10079 if (*op_string)
10080 {
10081 as_bad (_("junk `%s' after register"), op_string);
10082 return 0;
10083 }
10084 temp = r->reg_type;
10085 temp.bitfield.baseindex = 0;
10086 i.types[this_operand] = operand_type_or (i.types[this_operand],
10087 temp);
10088 i.types[this_operand].bitfield.unspecified = 0;
10089 i.op[this_operand].regs = r;
10090 i.reg_operands++;
10091 }
10092 else if (*op_string == REGISTER_PREFIX)
10093 {
10094 as_bad (_("bad register name `%s'"), op_string);
10095 return 0;
10096 }
10097 else if (*op_string == IMMEDIATE_PREFIX)
10098 {
10099 ++op_string;
10100 if (i.jumpabsolute)
10101 {
10102 as_bad (_("immediate operand illegal with absolute jump"));
10103 return 0;
10104 }
10105 if (!i386_immediate (op_string))
10106 return 0;
10107 }
10108 else if (RC_SAE_immediate (operand_string))
10109 {
10110 /* If it is a RC or SAE immediate, do nothing. */
10111 ;
10112 }
10113 else if (is_digit_char (*op_string)
10114 || is_identifier_char (*op_string)
10115 || *op_string == '"'
10116 || *op_string == '(')
10117 {
10118 /* This is a memory reference of some sort. */
10119 char *base_string;
10120
10121 /* Start and end of displacement string expression (if found). */
10122 char *displacement_string_start;
10123 char *displacement_string_end;
10124 char *vop_start;
10125
10126 do_memory_reference:
10127 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10128 return 0;
10129 if ((i.mem_operands == 1
10130 && !current_templates->start->opcode_modifier.isstring)
10131 || i.mem_operands == 2)
10132 {
10133 as_bad (_("too many memory references for `%s'"),
10134 current_templates->start->name);
10135 return 0;
10136 }
10137
10138 /* Check for base index form. We detect the base index form by
10139 looking for an ')' at the end of the operand, searching
10140 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10141 after the '('. */
10142 base_string = op_string + strlen (op_string);
10143
10144 /* Handle vector operations. */
10145 vop_start = strchr (op_string, '{');
10146 if (vop_start && vop_start < base_string)
10147 {
10148 if (check_VecOperations (vop_start, base_string) == NULL)
10149 return 0;
10150 base_string = vop_start;
10151 }
10152
10153 --base_string;
10154 if (is_space_char (*base_string))
10155 --base_string;
10156
10157 /* If we only have a displacement, set-up for it to be parsed later. */
10158 displacement_string_start = op_string;
10159 displacement_string_end = base_string + 1;
10160
10161 if (*base_string == ')')
10162 {
10163 char *temp_string;
10164 unsigned int parens_balanced = 1;
10165 /* We've already checked that the number of left & right ()'s are
10166 equal, so this loop will not be infinite. */
10167 do
10168 {
10169 base_string--;
10170 if (*base_string == ')')
10171 parens_balanced++;
10172 if (*base_string == '(')
10173 parens_balanced--;
10174 }
10175 while (parens_balanced);
10176
10177 temp_string = base_string;
10178
10179 /* Skip past '(' and whitespace. */
10180 ++base_string;
10181 if (is_space_char (*base_string))
10182 ++base_string;
10183
10184 if (*base_string == ','
10185 || ((i.base_reg = parse_register (base_string, &end_op))
10186 != NULL))
10187 {
10188 displacement_string_end = temp_string;
10189
10190 i.types[this_operand].bitfield.baseindex = 1;
10191
10192 if (i.base_reg)
10193 {
10194 base_string = end_op;
10195 if (is_space_char (*base_string))
10196 ++base_string;
10197 }
10198
10199 /* There may be an index reg or scale factor here. */
10200 if (*base_string == ',')
10201 {
10202 ++base_string;
10203 if (is_space_char (*base_string))
10204 ++base_string;
10205
10206 if ((i.index_reg = parse_register (base_string, &end_op))
10207 != NULL)
10208 {
10209 base_string = end_op;
10210 if (is_space_char (*base_string))
10211 ++base_string;
10212 if (*base_string == ',')
10213 {
10214 ++base_string;
10215 if (is_space_char (*base_string))
10216 ++base_string;
10217 }
10218 else if (*base_string != ')')
10219 {
10220 as_bad (_("expecting `,' or `)' "
10221 "after index register in `%s'"),
10222 operand_string);
10223 return 0;
10224 }
10225 }
10226 else if (*base_string == REGISTER_PREFIX)
10227 {
10228 end_op = strchr (base_string, ',');
10229 if (end_op)
10230 *end_op = '\0';
10231 as_bad (_("bad register name `%s'"), base_string);
10232 return 0;
10233 }
10234
10235 /* Check for scale factor. */
10236 if (*base_string != ')')
10237 {
10238 char *end_scale = i386_scale (base_string);
10239
10240 if (!end_scale)
10241 return 0;
10242
10243 base_string = end_scale;
10244 if (is_space_char (*base_string))
10245 ++base_string;
10246 if (*base_string != ')')
10247 {
10248 as_bad (_("expecting `)' "
10249 "after scale factor in `%s'"),
10250 operand_string);
10251 return 0;
10252 }
10253 }
10254 else if (!i.index_reg)
10255 {
10256 as_bad (_("expecting index register or scale factor "
10257 "after `,'; got '%c'"),
10258 *base_string);
10259 return 0;
10260 }
10261 }
10262 else if (*base_string != ')')
10263 {
10264 as_bad (_("expecting `,' or `)' "
10265 "after base register in `%s'"),
10266 operand_string);
10267 return 0;
10268 }
10269 }
10270 else if (*base_string == REGISTER_PREFIX)
10271 {
10272 end_op = strchr (base_string, ',');
10273 if (end_op)
10274 *end_op = '\0';
10275 as_bad (_("bad register name `%s'"), base_string);
10276 return 0;
10277 }
10278 }
10279
10280 /* If there's an expression beginning the operand, parse it,
10281 assuming displacement_string_start and
10282 displacement_string_end are meaningful. */
10283 if (displacement_string_start != displacement_string_end)
10284 {
10285 if (!i386_displacement (displacement_string_start,
10286 displacement_string_end))
10287 return 0;
10288 }
10289
10290 /* Special case for (%dx) while doing input/output op. */
10291 if (i.base_reg
10292 && i.base_reg->reg_type.bitfield.instance == RegD
10293 && i.base_reg->reg_type.bitfield.word
10294 && i.index_reg == 0
10295 && i.log2_scale_factor == 0
10296 && i.seg[i.mem_operands] == 0
10297 && !operand_type_check (i.types[this_operand], disp))
10298 {
10299 i.types[this_operand] = i.base_reg->reg_type;
10300 return 1;
10301 }
10302
10303 if (i386_index_check (operand_string) == 0)
10304 return 0;
10305 i.flags[this_operand] |= Operand_Mem;
10306 if (i.mem_operands == 0)
10307 i.memop1_string = xstrdup (operand_string);
10308 i.mem_operands++;
10309 }
10310 else
10311 {
10312 /* It's not a memory operand; argh! */
10313 as_bad (_("invalid char %s beginning operand %d `%s'"),
10314 output_invalid (*op_string),
10315 this_operand + 1,
10316 op_string);
10317 return 0;
10318 }
10319 return 1; /* Normal return. */
10320 }
10321 \f
10322 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10323 that an rs_machine_dependent frag may reach. */
10324
10325 unsigned int
10326 i386_frag_max_var (fragS *frag)
10327 {
10328 /* The only relaxable frags are for jumps.
10329 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10330 gas_assert (frag->fr_type == rs_machine_dependent);
10331 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10332 }
10333
10334 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10335 static int
10336 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10337 {
10338 /* STT_GNU_IFUNC symbol must go through PLT. */
10339 if ((symbol_get_bfdsym (fr_symbol)->flags
10340 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10341 return 0;
10342
10343 if (!S_IS_EXTERNAL (fr_symbol))
10344 /* Symbol may be weak or local. */
10345 return !S_IS_WEAK (fr_symbol);
10346
10347 /* Global symbols with non-default visibility can't be preempted. */
10348 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10349 return 1;
10350
10351 if (fr_var != NO_RELOC)
10352 switch ((enum bfd_reloc_code_real) fr_var)
10353 {
10354 case BFD_RELOC_386_PLT32:
10355 case BFD_RELOC_X86_64_PLT32:
10356 /* Symbol with PLT relocation may be preempted. */
10357 return 0;
10358 default:
10359 abort ();
10360 }
10361
10362 /* Global symbols with default visibility in a shared library may be
10363 preempted by another definition. */
10364 return !shared;
10365 }
10366 #endif
10367
10368 /* md_estimate_size_before_relax()
10369
10370 Called just before relax() for rs_machine_dependent frags. The x86
10371 assembler uses these frags to handle variable size jump
10372 instructions.
10373
10374 Any symbol that is now undefined will not become defined.
10375 Return the correct fr_subtype in the frag.
10376 Return the initial "guess for variable size of frag" to caller.
10377 The guess is actually the growth beyond the fixed part. Whatever
10378 we do to grow the fixed or variable part contributes to our
10379 returned value. */
10380
10381 int
10382 md_estimate_size_before_relax (fragS *fragP, segT segment)
10383 {
10384 /* We've already got fragP->fr_subtype right; all we have to do is
10385 check for un-relaxable symbols. On an ELF system, we can't relax
10386 an externally visible symbol, because it may be overridden by a
10387 shared library. */
10388 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10389 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10390 || (IS_ELF
10391 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10392 fragP->fr_var))
10393 #endif
10394 #if defined (OBJ_COFF) && defined (TE_PE)
10395 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10396 && S_IS_WEAK (fragP->fr_symbol))
10397 #endif
10398 )
10399 {
10400 /* Symbol is undefined in this segment, or we need to keep a
10401 reloc so that weak symbols can be overridden. */
10402 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10403 enum bfd_reloc_code_real reloc_type;
10404 unsigned char *opcode;
10405 int old_fr_fix;
10406
10407 if (fragP->fr_var != NO_RELOC)
10408 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10409 else if (size == 2)
10410 reloc_type = BFD_RELOC_16_PCREL;
10411 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10412 else if (need_plt32_p (fragP->fr_symbol))
10413 reloc_type = BFD_RELOC_X86_64_PLT32;
10414 #endif
10415 else
10416 reloc_type = BFD_RELOC_32_PCREL;
10417
10418 old_fr_fix = fragP->fr_fix;
10419 opcode = (unsigned char *) fragP->fr_opcode;
10420
10421 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10422 {
10423 case UNCOND_JUMP:
10424 /* Make jmp (0xeb) a (d)word displacement jump. */
10425 opcode[0] = 0xe9;
10426 fragP->fr_fix += size;
10427 fix_new (fragP, old_fr_fix, size,
10428 fragP->fr_symbol,
10429 fragP->fr_offset, 1,
10430 reloc_type);
10431 break;
10432
10433 case COND_JUMP86:
10434 if (size == 2
10435 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10436 {
10437 /* Negate the condition, and branch past an
10438 unconditional jump. */
10439 opcode[0] ^= 1;
10440 opcode[1] = 3;
10441 /* Insert an unconditional jump. */
10442 opcode[2] = 0xe9;
10443 /* We added two extra opcode bytes, and have a two byte
10444 offset. */
10445 fragP->fr_fix += 2 + 2;
10446 fix_new (fragP, old_fr_fix + 2, 2,
10447 fragP->fr_symbol,
10448 fragP->fr_offset, 1,
10449 reloc_type);
10450 break;
10451 }
10452 /* Fall through. */
10453
10454 case COND_JUMP:
10455 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10456 {
10457 fixS *fixP;
10458
10459 fragP->fr_fix += 1;
10460 fixP = fix_new (fragP, old_fr_fix, 1,
10461 fragP->fr_symbol,
10462 fragP->fr_offset, 1,
10463 BFD_RELOC_8_PCREL);
10464 fixP->fx_signed = 1;
10465 break;
10466 }
10467
10468 /* This changes the byte-displacement jump 0x7N
10469 to the (d)word-displacement jump 0x0f,0x8N. */
10470 opcode[1] = opcode[0] + 0x10;
10471 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10472 /* We've added an opcode byte. */
10473 fragP->fr_fix += 1 + size;
10474 fix_new (fragP, old_fr_fix + 1, size,
10475 fragP->fr_symbol,
10476 fragP->fr_offset, 1,
10477 reloc_type);
10478 break;
10479
10480 default:
10481 BAD_CASE (fragP->fr_subtype);
10482 break;
10483 }
10484 frag_wane (fragP);
10485 return fragP->fr_fix - old_fr_fix;
10486 }
10487
10488 /* Guess size depending on current relax state. Initially the relax
10489 state will correspond to a short jump and we return 1, because
10490 the variable part of the frag (the branch offset) is one byte
10491 long. However, we can relax a section more than once and in that
10492 case we must either set fr_subtype back to the unrelaxed state,
10493 or return the value for the appropriate branch. */
10494 return md_relax_table[fragP->fr_subtype].rlx_length;
10495 }
10496
10497 /* Called after relax() is finished.
10498
10499 In: Address of frag.
10500 fr_type == rs_machine_dependent.
10501 fr_subtype is what the address relaxed to.
10502
10503 Out: Any fixSs and constants are set up.
10504 Caller will turn frag into a ".space 0". */
10505
10506 void
10507 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10508 fragS *fragP)
10509 {
10510 unsigned char *opcode;
10511 unsigned char *where_to_put_displacement = NULL;
10512 offsetT target_address;
10513 offsetT opcode_address;
10514 unsigned int extension = 0;
10515 offsetT displacement_from_opcode_start;
10516
10517 opcode = (unsigned char *) fragP->fr_opcode;
10518
10519 /* Address we want to reach in file space. */
10520 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10521
10522 /* Address opcode resides at in file space. */
10523 opcode_address = fragP->fr_address + fragP->fr_fix;
10524
10525 /* Displacement from opcode start to fill into instruction. */
10526 displacement_from_opcode_start = target_address - opcode_address;
10527
10528 if ((fragP->fr_subtype & BIG) == 0)
10529 {
10530 /* Don't have to change opcode. */
10531 extension = 1; /* 1 opcode + 1 displacement */
10532 where_to_put_displacement = &opcode[1];
10533 }
10534 else
10535 {
10536 if (no_cond_jump_promotion
10537 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10538 as_warn_where (fragP->fr_file, fragP->fr_line,
10539 _("long jump required"));
10540
10541 switch (fragP->fr_subtype)
10542 {
10543 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10544 extension = 4; /* 1 opcode + 4 displacement */
10545 opcode[0] = 0xe9;
10546 where_to_put_displacement = &opcode[1];
10547 break;
10548
10549 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10550 extension = 2; /* 1 opcode + 2 displacement */
10551 opcode[0] = 0xe9;
10552 where_to_put_displacement = &opcode[1];
10553 break;
10554
10555 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10556 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10557 extension = 5; /* 2 opcode + 4 displacement */
10558 opcode[1] = opcode[0] + 0x10;
10559 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10560 where_to_put_displacement = &opcode[2];
10561 break;
10562
10563 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10564 extension = 3; /* 2 opcode + 2 displacement */
10565 opcode[1] = opcode[0] + 0x10;
10566 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10567 where_to_put_displacement = &opcode[2];
10568 break;
10569
10570 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10571 extension = 4;
10572 opcode[0] ^= 1;
10573 opcode[1] = 3;
10574 opcode[2] = 0xe9;
10575 where_to_put_displacement = &opcode[3];
10576 break;
10577
10578 default:
10579 BAD_CASE (fragP->fr_subtype);
10580 break;
10581 }
10582 }
10583
10584 /* If size if less then four we are sure that the operand fits,
10585 but if it's 4, then it could be that the displacement is larger
10586 then -/+ 2GB. */
10587 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10588 && object_64bit
10589 && ((addressT) (displacement_from_opcode_start - extension
10590 + ((addressT) 1 << 31))
10591 > (((addressT) 2 << 31) - 1)))
10592 {
10593 as_bad_where (fragP->fr_file, fragP->fr_line,
10594 _("jump target out of range"));
10595 /* Make us emit 0. */
10596 displacement_from_opcode_start = extension;
10597 }
10598 /* Now put displacement after opcode. */
10599 md_number_to_chars ((char *) where_to_put_displacement,
10600 (valueT) (displacement_from_opcode_start - extension),
10601 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10602 fragP->fr_fix += extension;
10603 }
10604 \f
10605 /* Apply a fixup (fixP) to segment data, once it has been determined
10606 by our caller that we have all the info we need to fix it up.
10607
10608 Parameter valP is the pointer to the value of the bits.
10609
10610 On the 386, immediates, displacements, and data pointers are all in
10611 the same (little-endian) format, so we don't need to care about which
10612 we are handling. */
10613
10614 void
10615 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10616 {
10617 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10618 valueT value = *valP;
10619
10620 #if !defined (TE_Mach)
10621 if (fixP->fx_pcrel)
10622 {
10623 switch (fixP->fx_r_type)
10624 {
10625 default:
10626 break;
10627
10628 case BFD_RELOC_64:
10629 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10630 break;
10631 case BFD_RELOC_32:
10632 case BFD_RELOC_X86_64_32S:
10633 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10634 break;
10635 case BFD_RELOC_16:
10636 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10637 break;
10638 case BFD_RELOC_8:
10639 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10640 break;
10641 }
10642 }
10643
10644 if (fixP->fx_addsy != NULL
10645 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10646 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10647 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10648 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10649 && !use_rela_relocations)
10650 {
10651 /* This is a hack. There should be a better way to handle this.
10652 This covers for the fact that bfd_install_relocation will
10653 subtract the current location (for partial_inplace, PC relative
10654 relocations); see more below. */
10655 #ifndef OBJ_AOUT
10656 if (IS_ELF
10657 #ifdef TE_PE
10658 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10659 #endif
10660 )
10661 value += fixP->fx_where + fixP->fx_frag->fr_address;
10662 #endif
10663 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10664 if (IS_ELF)
10665 {
10666 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10667
10668 if ((sym_seg == seg
10669 || (symbol_section_p (fixP->fx_addsy)
10670 && sym_seg != absolute_section))
10671 && !generic_force_reloc (fixP))
10672 {
10673 /* Yes, we add the values in twice. This is because
10674 bfd_install_relocation subtracts them out again. I think
10675 bfd_install_relocation is broken, but I don't dare change
10676 it. FIXME. */
10677 value += fixP->fx_where + fixP->fx_frag->fr_address;
10678 }
10679 }
10680 #endif
10681 #if defined (OBJ_COFF) && defined (TE_PE)
10682 /* For some reason, the PE format does not store a
10683 section address offset for a PC relative symbol. */
10684 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10685 || S_IS_WEAK (fixP->fx_addsy))
10686 value += md_pcrel_from (fixP);
10687 #endif
10688 }
10689 #if defined (OBJ_COFF) && defined (TE_PE)
10690 if (fixP->fx_addsy != NULL
10691 && S_IS_WEAK (fixP->fx_addsy)
10692 /* PR 16858: Do not modify weak function references. */
10693 && ! fixP->fx_pcrel)
10694 {
10695 #if !defined (TE_PEP)
10696 /* For x86 PE weak function symbols are neither PC-relative
10697 nor do they set S_IS_FUNCTION. So the only reliable way
10698 to detect them is to check the flags of their containing
10699 section. */
10700 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10701 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10702 ;
10703 else
10704 #endif
10705 value -= S_GET_VALUE (fixP->fx_addsy);
10706 }
10707 #endif
10708
10709 /* Fix a few things - the dynamic linker expects certain values here,
10710 and we must not disappoint it. */
10711 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10712 if (IS_ELF && fixP->fx_addsy)
10713 switch (fixP->fx_r_type)
10714 {
10715 case BFD_RELOC_386_PLT32:
10716 case BFD_RELOC_X86_64_PLT32:
10717 /* Make the jump instruction point to the address of the operand.
10718 At runtime we merely add the offset to the actual PLT entry.
10719 NB: Subtract the offset size only for jump instructions. */
10720 if (fixP->fx_pcrel)
10721 value = -4;
10722 break;
10723
10724 case BFD_RELOC_386_TLS_GD:
10725 case BFD_RELOC_386_TLS_LDM:
10726 case BFD_RELOC_386_TLS_IE_32:
10727 case BFD_RELOC_386_TLS_IE:
10728 case BFD_RELOC_386_TLS_GOTIE:
10729 case BFD_RELOC_386_TLS_GOTDESC:
10730 case BFD_RELOC_X86_64_TLSGD:
10731 case BFD_RELOC_X86_64_TLSLD:
10732 case BFD_RELOC_X86_64_GOTTPOFF:
10733 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10734 value = 0; /* Fully resolved at runtime. No addend. */
10735 /* Fallthrough */
10736 case BFD_RELOC_386_TLS_LE:
10737 case BFD_RELOC_386_TLS_LDO_32:
10738 case BFD_RELOC_386_TLS_LE_32:
10739 case BFD_RELOC_X86_64_DTPOFF32:
10740 case BFD_RELOC_X86_64_DTPOFF64:
10741 case BFD_RELOC_X86_64_TPOFF32:
10742 case BFD_RELOC_X86_64_TPOFF64:
10743 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10744 break;
10745
10746 case BFD_RELOC_386_TLS_DESC_CALL:
10747 case BFD_RELOC_X86_64_TLSDESC_CALL:
10748 value = 0; /* Fully resolved at runtime. No addend. */
10749 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10750 fixP->fx_done = 0;
10751 return;
10752
10753 case BFD_RELOC_VTABLE_INHERIT:
10754 case BFD_RELOC_VTABLE_ENTRY:
10755 fixP->fx_done = 0;
10756 return;
10757
10758 default:
10759 break;
10760 }
10761 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10762 *valP = value;
10763 #endif /* !defined (TE_Mach) */
10764
10765 /* Are we finished with this relocation now? */
10766 if (fixP->fx_addsy == NULL)
10767 fixP->fx_done = 1;
10768 #if defined (OBJ_COFF) && defined (TE_PE)
10769 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10770 {
10771 fixP->fx_done = 0;
10772 /* Remember value for tc_gen_reloc. */
10773 fixP->fx_addnumber = value;
10774 /* Clear out the frag for now. */
10775 value = 0;
10776 }
10777 #endif
10778 else if (use_rela_relocations)
10779 {
10780 fixP->fx_no_overflow = 1;
10781 /* Remember value for tc_gen_reloc. */
10782 fixP->fx_addnumber = value;
10783 value = 0;
10784 }
10785
10786 md_number_to_chars (p, value, fixP->fx_size);
10787 }
10788 \f
10789 const char *
10790 md_atof (int type, char *litP, int *sizeP)
10791 {
10792 /* This outputs the LITTLENUMs in REVERSE order;
10793 in accord with the bigendian 386. */
10794 return ieee_md_atof (type, litP, sizeP, FALSE);
10795 }
10796 \f
10797 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10798
10799 static char *
10800 output_invalid (int c)
10801 {
10802 if (ISPRINT (c))
10803 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10804 "'%c'", c);
10805 else
10806 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10807 "(0x%x)", (unsigned char) c);
10808 return output_invalid_buf;
10809 }
10810
10811 /* REG_STRING starts *before* REGISTER_PREFIX. */
10812
10813 static const reg_entry *
10814 parse_real_register (char *reg_string, char **end_op)
10815 {
10816 char *s = reg_string;
10817 char *p;
10818 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10819 const reg_entry *r;
10820
10821 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10822 if (*s == REGISTER_PREFIX)
10823 ++s;
10824
10825 if (is_space_char (*s))
10826 ++s;
10827
10828 p = reg_name_given;
10829 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10830 {
10831 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10832 return (const reg_entry *) NULL;
10833 s++;
10834 }
10835
10836 /* For naked regs, make sure that we are not dealing with an identifier.
10837 This prevents confusing an identifier like `eax_var' with register
10838 `eax'. */
10839 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10840 return (const reg_entry *) NULL;
10841
10842 *end_op = s;
10843
10844 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10845
10846 /* Handle floating point regs, allowing spaces in the (i) part. */
10847 if (r == i386_regtab /* %st is first entry of table */)
10848 {
10849 if (!cpu_arch_flags.bitfield.cpu8087
10850 && !cpu_arch_flags.bitfield.cpu287
10851 && !cpu_arch_flags.bitfield.cpu387)
10852 return (const reg_entry *) NULL;
10853
10854 if (is_space_char (*s))
10855 ++s;
10856 if (*s == '(')
10857 {
10858 ++s;
10859 if (is_space_char (*s))
10860 ++s;
10861 if (*s >= '0' && *s <= '7')
10862 {
10863 int fpr = *s - '0';
10864 ++s;
10865 if (is_space_char (*s))
10866 ++s;
10867 if (*s == ')')
10868 {
10869 *end_op = s + 1;
10870 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10871 know (r);
10872 return r + fpr;
10873 }
10874 }
10875 /* We have "%st(" then garbage. */
10876 return (const reg_entry *) NULL;
10877 }
10878 }
10879
10880 if (r == NULL || allow_pseudo_reg)
10881 return r;
10882
10883 if (operand_type_all_zero (&r->reg_type))
10884 return (const reg_entry *) NULL;
10885
10886 if ((r->reg_type.bitfield.dword
10887 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
10888 || r->reg_type.bitfield.class == RegCR
10889 || r->reg_type.bitfield.class == RegDR
10890 || r->reg_type.bitfield.class == RegTR)
10891 && !cpu_arch_flags.bitfield.cpui386)
10892 return (const reg_entry *) NULL;
10893
10894 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
10895 return (const reg_entry *) NULL;
10896
10897 if (!cpu_arch_flags.bitfield.cpuavx512f)
10898 {
10899 if (r->reg_type.bitfield.zmmword
10900 || r->reg_type.bitfield.class == RegMask)
10901 return (const reg_entry *) NULL;
10902
10903 if (!cpu_arch_flags.bitfield.cpuavx)
10904 {
10905 if (r->reg_type.bitfield.ymmword)
10906 return (const reg_entry *) NULL;
10907
10908 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10909 return (const reg_entry *) NULL;
10910 }
10911 }
10912
10913 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
10914 return (const reg_entry *) NULL;
10915
10916 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10917 if (!allow_index_reg && r->reg_num == RegIZ)
10918 return (const reg_entry *) NULL;
10919
10920 /* Upper 16 vector registers are only available with VREX in 64bit
10921 mode, and require EVEX encoding. */
10922 if (r->reg_flags & RegVRex)
10923 {
10924 if (!cpu_arch_flags.bitfield.cpuavx512f
10925 || flag_code != CODE_64BIT)
10926 return (const reg_entry *) NULL;
10927
10928 i.vec_encoding = vex_encoding_evex;
10929 }
10930
10931 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10932 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
10933 && flag_code != CODE_64BIT)
10934 return (const reg_entry *) NULL;
10935
10936 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
10937 && !intel_syntax)
10938 return (const reg_entry *) NULL;
10939
10940 return r;
10941 }
10942
10943 /* REG_STRING starts *before* REGISTER_PREFIX. */
10944
10945 static const reg_entry *
10946 parse_register (char *reg_string, char **end_op)
10947 {
10948 const reg_entry *r;
10949
10950 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10951 r = parse_real_register (reg_string, end_op);
10952 else
10953 r = NULL;
10954 if (!r)
10955 {
10956 char *save = input_line_pointer;
10957 char c;
10958 symbolS *symbolP;
10959
10960 input_line_pointer = reg_string;
10961 c = get_symbol_name (&reg_string);
10962 symbolP = symbol_find (reg_string);
10963 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10964 {
10965 const expressionS *e = symbol_get_value_expression (symbolP);
10966
10967 know (e->X_op == O_register);
10968 know (e->X_add_number >= 0
10969 && (valueT) e->X_add_number < i386_regtab_size);
10970 r = i386_regtab + e->X_add_number;
10971 if ((r->reg_flags & RegVRex))
10972 i.vec_encoding = vex_encoding_evex;
10973 *end_op = input_line_pointer;
10974 }
10975 *input_line_pointer = c;
10976 input_line_pointer = save;
10977 }
10978 return r;
10979 }
10980
10981 int
10982 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10983 {
10984 const reg_entry *r;
10985 char *end = input_line_pointer;
10986
10987 *end = *nextcharP;
10988 r = parse_register (name, &input_line_pointer);
10989 if (r && end <= input_line_pointer)
10990 {
10991 *nextcharP = *input_line_pointer;
10992 *input_line_pointer = 0;
10993 e->X_op = O_register;
10994 e->X_add_number = r - i386_regtab;
10995 return 1;
10996 }
10997 input_line_pointer = end;
10998 *end = 0;
10999 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11000 }
11001
11002 void
11003 md_operand (expressionS *e)
11004 {
11005 char *end;
11006 const reg_entry *r;
11007
11008 switch (*input_line_pointer)
11009 {
11010 case REGISTER_PREFIX:
11011 r = parse_real_register (input_line_pointer, &end);
11012 if (r)
11013 {
11014 e->X_op = O_register;
11015 e->X_add_number = r - i386_regtab;
11016 input_line_pointer = end;
11017 }
11018 break;
11019
11020 case '[':
11021 gas_assert (intel_syntax);
11022 end = input_line_pointer++;
11023 expression (e);
11024 if (*input_line_pointer == ']')
11025 {
11026 ++input_line_pointer;
11027 e->X_op_symbol = make_expr_symbol (e);
11028 e->X_add_symbol = NULL;
11029 e->X_add_number = 0;
11030 e->X_op = O_index;
11031 }
11032 else
11033 {
11034 e->X_op = O_absent;
11035 input_line_pointer = end;
11036 }
11037 break;
11038 }
11039 }
11040
11041 \f
11042 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11043 const char *md_shortopts = "kVQ:sqnO::";
11044 #else
11045 const char *md_shortopts = "qnO::";
11046 #endif
11047
11048 #define OPTION_32 (OPTION_MD_BASE + 0)
11049 #define OPTION_64 (OPTION_MD_BASE + 1)
11050 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11051 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11052 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11053 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11054 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11055 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11056 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11057 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11058 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11059 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11060 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11061 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11062 #define OPTION_X32 (OPTION_MD_BASE + 14)
11063 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11064 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11065 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11066 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11067 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11068 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11069 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11070 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11071 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
11072 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
11073 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
11074 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
11075
11076 struct option md_longopts[] =
11077 {
11078 {"32", no_argument, NULL, OPTION_32},
11079 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11080 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11081 {"64", no_argument, NULL, OPTION_64},
11082 #endif
11083 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11084 {"x32", no_argument, NULL, OPTION_X32},
11085 {"mshared", no_argument, NULL, OPTION_MSHARED},
11086 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
11087 #endif
11088 {"divide", no_argument, NULL, OPTION_DIVIDE},
11089 {"march", required_argument, NULL, OPTION_MARCH},
11090 {"mtune", required_argument, NULL, OPTION_MTUNE},
11091 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11092 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11093 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11094 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
11095 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
11096 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
11097 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
11098 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
11099 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
11100 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
11101 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11102 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
11103 # if defined (TE_PE) || defined (TE_PEP)
11104 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11105 #endif
11106 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
11107 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
11108 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
11109 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
11110 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11111 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
11112 {NULL, no_argument, NULL, 0}
11113 };
11114 size_t md_longopts_size = sizeof (md_longopts);
11115
11116 int
11117 md_parse_option (int c, const char *arg)
11118 {
11119 unsigned int j;
11120 char *arch, *next, *saved;
11121
11122 switch (c)
11123 {
11124 case 'n':
11125 optimize_align_code = 0;
11126 break;
11127
11128 case 'q':
11129 quiet_warnings = 1;
11130 break;
11131
11132 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11133 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11134 should be emitted or not. FIXME: Not implemented. */
11135 case 'Q':
11136 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
11137 return 0;
11138 break;
11139
11140 /* -V: SVR4 argument to print version ID. */
11141 case 'V':
11142 print_version_id ();
11143 break;
11144
11145 /* -k: Ignore for FreeBSD compatibility. */
11146 case 'k':
11147 break;
11148
11149 case 's':
11150 /* -s: On i386 Solaris, this tells the native assembler to use
11151 .stab instead of .stab.excl. We always use .stab anyhow. */
11152 break;
11153
11154 case OPTION_MSHARED:
11155 shared = 1;
11156 break;
11157
11158 case OPTION_X86_USED_NOTE:
11159 if (strcasecmp (arg, "yes") == 0)
11160 x86_used_note = 1;
11161 else if (strcasecmp (arg, "no") == 0)
11162 x86_used_note = 0;
11163 else
11164 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11165 break;
11166
11167
11168 #endif
11169 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11170 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11171 case OPTION_64:
11172 {
11173 const char **list, **l;
11174
11175 list = bfd_target_list ();
11176 for (l = list; *l != NULL; l++)
11177 if (CONST_STRNEQ (*l, "elf64-x86-64")
11178 || strcmp (*l, "coff-x86-64") == 0
11179 || strcmp (*l, "pe-x86-64") == 0
11180 || strcmp (*l, "pei-x86-64") == 0
11181 || strcmp (*l, "mach-o-x86-64") == 0)
11182 {
11183 default_arch = "x86_64";
11184 break;
11185 }
11186 if (*l == NULL)
11187 as_fatal (_("no compiled in support for x86_64"));
11188 free (list);
11189 }
11190 break;
11191 #endif
11192
11193 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11194 case OPTION_X32:
11195 if (IS_ELF)
11196 {
11197 const char **list, **l;
11198
11199 list = bfd_target_list ();
11200 for (l = list; *l != NULL; l++)
11201 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11202 {
11203 default_arch = "x86_64:32";
11204 break;
11205 }
11206 if (*l == NULL)
11207 as_fatal (_("no compiled in support for 32bit x86_64"));
11208 free (list);
11209 }
11210 else
11211 as_fatal (_("32bit x86_64 is only supported for ELF"));
11212 break;
11213 #endif
11214
11215 case OPTION_32:
11216 default_arch = "i386";
11217 break;
11218
11219 case OPTION_DIVIDE:
11220 #ifdef SVR4_COMMENT_CHARS
11221 {
11222 char *n, *t;
11223 const char *s;
11224
11225 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11226 t = n;
11227 for (s = i386_comment_chars; *s != '\0'; s++)
11228 if (*s != '/')
11229 *t++ = *s;
11230 *t = '\0';
11231 i386_comment_chars = n;
11232 }
11233 #endif
11234 break;
11235
11236 case OPTION_MARCH:
11237 saved = xstrdup (arg);
11238 arch = saved;
11239 /* Allow -march=+nosse. */
11240 if (*arch == '+')
11241 arch++;
11242 do
11243 {
11244 if (*arch == '.')
11245 as_fatal (_("invalid -march= option: `%s'"), arg);
11246 next = strchr (arch, '+');
11247 if (next)
11248 *next++ = '\0';
11249 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11250 {
11251 if (strcmp (arch, cpu_arch [j].name) == 0)
11252 {
11253 /* Processor. */
11254 if (! cpu_arch[j].flags.bitfield.cpui386)
11255 continue;
11256
11257 cpu_arch_name = cpu_arch[j].name;
11258 cpu_sub_arch_name = NULL;
11259 cpu_arch_flags = cpu_arch[j].flags;
11260 cpu_arch_isa = cpu_arch[j].type;
11261 cpu_arch_isa_flags = cpu_arch[j].flags;
11262 if (!cpu_arch_tune_set)
11263 {
11264 cpu_arch_tune = cpu_arch_isa;
11265 cpu_arch_tune_flags = cpu_arch_isa_flags;
11266 }
11267 break;
11268 }
11269 else if (*cpu_arch [j].name == '.'
11270 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11271 {
11272 /* ISA extension. */
11273 i386_cpu_flags flags;
11274
11275 flags = cpu_flags_or (cpu_arch_flags,
11276 cpu_arch[j].flags);
11277
11278 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11279 {
11280 if (cpu_sub_arch_name)
11281 {
11282 char *name = cpu_sub_arch_name;
11283 cpu_sub_arch_name = concat (name,
11284 cpu_arch[j].name,
11285 (const char *) NULL);
11286 free (name);
11287 }
11288 else
11289 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11290 cpu_arch_flags = flags;
11291 cpu_arch_isa_flags = flags;
11292 }
11293 else
11294 cpu_arch_isa_flags
11295 = cpu_flags_or (cpu_arch_isa_flags,
11296 cpu_arch[j].flags);
11297 break;
11298 }
11299 }
11300
11301 if (j >= ARRAY_SIZE (cpu_arch))
11302 {
11303 /* Disable an ISA extension. */
11304 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11305 if (strcmp (arch, cpu_noarch [j].name) == 0)
11306 {
11307 i386_cpu_flags flags;
11308
11309 flags = cpu_flags_and_not (cpu_arch_flags,
11310 cpu_noarch[j].flags);
11311 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11312 {
11313 if (cpu_sub_arch_name)
11314 {
11315 char *name = cpu_sub_arch_name;
11316 cpu_sub_arch_name = concat (arch,
11317 (const char *) NULL);
11318 free (name);
11319 }
11320 else
11321 cpu_sub_arch_name = xstrdup (arch);
11322 cpu_arch_flags = flags;
11323 cpu_arch_isa_flags = flags;
11324 }
11325 break;
11326 }
11327
11328 if (j >= ARRAY_SIZE (cpu_noarch))
11329 j = ARRAY_SIZE (cpu_arch);
11330 }
11331
11332 if (j >= ARRAY_SIZE (cpu_arch))
11333 as_fatal (_("invalid -march= option: `%s'"), arg);
11334
11335 arch = next;
11336 }
11337 while (next != NULL);
11338 free (saved);
11339 break;
11340
11341 case OPTION_MTUNE:
11342 if (*arg == '.')
11343 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11344 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11345 {
11346 if (strcmp (arg, cpu_arch [j].name) == 0)
11347 {
11348 cpu_arch_tune_set = 1;
11349 cpu_arch_tune = cpu_arch [j].type;
11350 cpu_arch_tune_flags = cpu_arch[j].flags;
11351 break;
11352 }
11353 }
11354 if (j >= ARRAY_SIZE (cpu_arch))
11355 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11356 break;
11357
11358 case OPTION_MMNEMONIC:
11359 if (strcasecmp (arg, "att") == 0)
11360 intel_mnemonic = 0;
11361 else if (strcasecmp (arg, "intel") == 0)
11362 intel_mnemonic = 1;
11363 else
11364 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11365 break;
11366
11367 case OPTION_MSYNTAX:
11368 if (strcasecmp (arg, "att") == 0)
11369 intel_syntax = 0;
11370 else if (strcasecmp (arg, "intel") == 0)
11371 intel_syntax = 1;
11372 else
11373 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11374 break;
11375
11376 case OPTION_MINDEX_REG:
11377 allow_index_reg = 1;
11378 break;
11379
11380 case OPTION_MNAKED_REG:
11381 allow_naked_reg = 1;
11382 break;
11383
11384 case OPTION_MSSE2AVX:
11385 sse2avx = 1;
11386 break;
11387
11388 case OPTION_MSSE_CHECK:
11389 if (strcasecmp (arg, "error") == 0)
11390 sse_check = check_error;
11391 else if (strcasecmp (arg, "warning") == 0)
11392 sse_check = check_warning;
11393 else if (strcasecmp (arg, "none") == 0)
11394 sse_check = check_none;
11395 else
11396 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11397 break;
11398
11399 case OPTION_MOPERAND_CHECK:
11400 if (strcasecmp (arg, "error") == 0)
11401 operand_check = check_error;
11402 else if (strcasecmp (arg, "warning") == 0)
11403 operand_check = check_warning;
11404 else if (strcasecmp (arg, "none") == 0)
11405 operand_check = check_none;
11406 else
11407 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11408 break;
11409
11410 case OPTION_MAVXSCALAR:
11411 if (strcasecmp (arg, "128") == 0)
11412 avxscalar = vex128;
11413 else if (strcasecmp (arg, "256") == 0)
11414 avxscalar = vex256;
11415 else
11416 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11417 break;
11418
11419 case OPTION_MVEXWIG:
11420 if (strcmp (arg, "0") == 0)
11421 vexwig = vexw0;
11422 else if (strcmp (arg, "1") == 0)
11423 vexwig = vexw1;
11424 else
11425 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11426 break;
11427
11428 case OPTION_MADD_BND_PREFIX:
11429 add_bnd_prefix = 1;
11430 break;
11431
11432 case OPTION_MEVEXLIG:
11433 if (strcmp (arg, "128") == 0)
11434 evexlig = evexl128;
11435 else if (strcmp (arg, "256") == 0)
11436 evexlig = evexl256;
11437 else if (strcmp (arg, "512") == 0)
11438 evexlig = evexl512;
11439 else
11440 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11441 break;
11442
11443 case OPTION_MEVEXRCIG:
11444 if (strcmp (arg, "rne") == 0)
11445 evexrcig = rne;
11446 else if (strcmp (arg, "rd") == 0)
11447 evexrcig = rd;
11448 else if (strcmp (arg, "ru") == 0)
11449 evexrcig = ru;
11450 else if (strcmp (arg, "rz") == 0)
11451 evexrcig = rz;
11452 else
11453 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11454 break;
11455
11456 case OPTION_MEVEXWIG:
11457 if (strcmp (arg, "0") == 0)
11458 evexwig = evexw0;
11459 else if (strcmp (arg, "1") == 0)
11460 evexwig = evexw1;
11461 else
11462 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11463 break;
11464
11465 # if defined (TE_PE) || defined (TE_PEP)
11466 case OPTION_MBIG_OBJ:
11467 use_big_obj = 1;
11468 break;
11469 #endif
11470
11471 case OPTION_MOMIT_LOCK_PREFIX:
11472 if (strcasecmp (arg, "yes") == 0)
11473 omit_lock_prefix = 1;
11474 else if (strcasecmp (arg, "no") == 0)
11475 omit_lock_prefix = 0;
11476 else
11477 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11478 break;
11479
11480 case OPTION_MFENCE_AS_LOCK_ADD:
11481 if (strcasecmp (arg, "yes") == 0)
11482 avoid_fence = 1;
11483 else if (strcasecmp (arg, "no") == 0)
11484 avoid_fence = 0;
11485 else
11486 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11487 break;
11488
11489 case OPTION_MRELAX_RELOCATIONS:
11490 if (strcasecmp (arg, "yes") == 0)
11491 generate_relax_relocations = 1;
11492 else if (strcasecmp (arg, "no") == 0)
11493 generate_relax_relocations = 0;
11494 else
11495 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11496 break;
11497
11498 case OPTION_MAMD64:
11499 intel64 = 0;
11500 break;
11501
11502 case OPTION_MINTEL64:
11503 intel64 = 1;
11504 break;
11505
11506 case 'O':
11507 if (arg == NULL)
11508 {
11509 optimize = 1;
11510 /* Turn off -Os. */
11511 optimize_for_space = 0;
11512 }
11513 else if (*arg == 's')
11514 {
11515 optimize_for_space = 1;
11516 /* Turn on all encoding optimizations. */
11517 optimize = INT_MAX;
11518 }
11519 else
11520 {
11521 optimize = atoi (arg);
11522 /* Turn off -Os. */
11523 optimize_for_space = 0;
11524 }
11525 break;
11526
11527 default:
11528 return 0;
11529 }
11530 return 1;
11531 }
11532
11533 #define MESSAGE_TEMPLATE \
11534 " "
11535
11536 static char *
11537 output_message (FILE *stream, char *p, char *message, char *start,
11538 int *left_p, const char *name, int len)
11539 {
11540 int size = sizeof (MESSAGE_TEMPLATE);
11541 int left = *left_p;
11542
11543 /* Reserve 2 spaces for ", " or ",\0" */
11544 left -= len + 2;
11545
11546 /* Check if there is any room. */
11547 if (left >= 0)
11548 {
11549 if (p != start)
11550 {
11551 *p++ = ',';
11552 *p++ = ' ';
11553 }
11554 p = mempcpy (p, name, len);
11555 }
11556 else
11557 {
11558 /* Output the current message now and start a new one. */
11559 *p++ = ',';
11560 *p = '\0';
11561 fprintf (stream, "%s\n", message);
11562 p = start;
11563 left = size - (start - message) - len - 2;
11564
11565 gas_assert (left >= 0);
11566
11567 p = mempcpy (p, name, len);
11568 }
11569
11570 *left_p = left;
11571 return p;
11572 }
11573
11574 static void
11575 show_arch (FILE *stream, int ext, int check)
11576 {
11577 static char message[] = MESSAGE_TEMPLATE;
11578 char *start = message + 27;
11579 char *p;
11580 int size = sizeof (MESSAGE_TEMPLATE);
11581 int left;
11582 const char *name;
11583 int len;
11584 unsigned int j;
11585
11586 p = start;
11587 left = size - (start - message);
11588 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11589 {
11590 /* Should it be skipped? */
11591 if (cpu_arch [j].skip)
11592 continue;
11593
11594 name = cpu_arch [j].name;
11595 len = cpu_arch [j].len;
11596 if (*name == '.')
11597 {
11598 /* It is an extension. Skip if we aren't asked to show it. */
11599 if (ext)
11600 {
11601 name++;
11602 len--;
11603 }
11604 else
11605 continue;
11606 }
11607 else if (ext)
11608 {
11609 /* It is an processor. Skip if we show only extension. */
11610 continue;
11611 }
11612 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11613 {
11614 /* It is an impossible processor - skip. */
11615 continue;
11616 }
11617
11618 p = output_message (stream, p, message, start, &left, name, len);
11619 }
11620
11621 /* Display disabled extensions. */
11622 if (ext)
11623 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11624 {
11625 name = cpu_noarch [j].name;
11626 len = cpu_noarch [j].len;
11627 p = output_message (stream, p, message, start, &left, name,
11628 len);
11629 }
11630
11631 *p = '\0';
11632 fprintf (stream, "%s\n", message);
11633 }
11634
11635 void
11636 md_show_usage (FILE *stream)
11637 {
11638 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11639 fprintf (stream, _("\
11640 -Qy, -Qn ignored\n\
11641 -V print assembler version number\n\
11642 -k ignored\n"));
11643 #endif
11644 fprintf (stream, _("\
11645 -n Do not optimize code alignment\n\
11646 -q quieten some warnings\n"));
11647 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11648 fprintf (stream, _("\
11649 -s ignored\n"));
11650 #endif
11651 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11652 || defined (TE_PE) || defined (TE_PEP))
11653 fprintf (stream, _("\
11654 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11655 #endif
11656 #ifdef SVR4_COMMENT_CHARS
11657 fprintf (stream, _("\
11658 --divide do not treat `/' as a comment character\n"));
11659 #else
11660 fprintf (stream, _("\
11661 --divide ignored\n"));
11662 #endif
11663 fprintf (stream, _("\
11664 -march=CPU[,+EXTENSION...]\n\
11665 generate code for CPU and EXTENSION, CPU is one of:\n"));
11666 show_arch (stream, 0, 1);
11667 fprintf (stream, _("\
11668 EXTENSION is combination of:\n"));
11669 show_arch (stream, 1, 0);
11670 fprintf (stream, _("\
11671 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11672 show_arch (stream, 0, 0);
11673 fprintf (stream, _("\
11674 -msse2avx encode SSE instructions with VEX prefix\n"));
11675 fprintf (stream, _("\
11676 -msse-check=[none|error|warning] (default: warning)\n\
11677 check SSE instructions\n"));
11678 fprintf (stream, _("\
11679 -moperand-check=[none|error|warning] (default: warning)\n\
11680 check operand combinations for validity\n"));
11681 fprintf (stream, _("\
11682 -mavxscalar=[128|256] (default: 128)\n\
11683 encode scalar AVX instructions with specific vector\n\
11684 length\n"));
11685 fprintf (stream, _("\
11686 -mvexwig=[0|1] (default: 0)\n\
11687 encode VEX instructions with specific VEX.W value\n\
11688 for VEX.W bit ignored instructions\n"));
11689 fprintf (stream, _("\
11690 -mevexlig=[128|256|512] (default: 128)\n\
11691 encode scalar EVEX instructions with specific vector\n\
11692 length\n"));
11693 fprintf (stream, _("\
11694 -mevexwig=[0|1] (default: 0)\n\
11695 encode EVEX instructions with specific EVEX.W value\n\
11696 for EVEX.W bit ignored instructions\n"));
11697 fprintf (stream, _("\
11698 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11699 encode EVEX instructions with specific EVEX.RC value\n\
11700 for SAE-only ignored instructions\n"));
11701 fprintf (stream, _("\
11702 -mmnemonic=[att|intel] "));
11703 if (SYSV386_COMPAT)
11704 fprintf (stream, _("(default: att)\n"));
11705 else
11706 fprintf (stream, _("(default: intel)\n"));
11707 fprintf (stream, _("\
11708 use AT&T/Intel mnemonic\n"));
11709 fprintf (stream, _("\
11710 -msyntax=[att|intel] (default: att)\n\
11711 use AT&T/Intel syntax\n"));
11712 fprintf (stream, _("\
11713 -mindex-reg support pseudo index registers\n"));
11714 fprintf (stream, _("\
11715 -mnaked-reg don't require `%%' prefix for registers\n"));
11716 fprintf (stream, _("\
11717 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11718 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11719 fprintf (stream, _("\
11720 -mshared disable branch optimization for shared code\n"));
11721 fprintf (stream, _("\
11722 -mx86-used-note=[no|yes] "));
11723 if (DEFAULT_X86_USED_NOTE)
11724 fprintf (stream, _("(default: yes)\n"));
11725 else
11726 fprintf (stream, _("(default: no)\n"));
11727 fprintf (stream, _("\
11728 generate x86 used ISA and feature properties\n"));
11729 #endif
11730 #if defined (TE_PE) || defined (TE_PEP)
11731 fprintf (stream, _("\
11732 -mbig-obj generate big object files\n"));
11733 #endif
11734 fprintf (stream, _("\
11735 -momit-lock-prefix=[no|yes] (default: no)\n\
11736 strip all lock prefixes\n"));
11737 fprintf (stream, _("\
11738 -mfence-as-lock-add=[no|yes] (default: no)\n\
11739 encode lfence, mfence and sfence as\n\
11740 lock addl $0x0, (%%{re}sp)\n"));
11741 fprintf (stream, _("\
11742 -mrelax-relocations=[no|yes] "));
11743 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11744 fprintf (stream, _("(default: yes)\n"));
11745 else
11746 fprintf (stream, _("(default: no)\n"));
11747 fprintf (stream, _("\
11748 generate relax relocations\n"));
11749 fprintf (stream, _("\
11750 -mamd64 accept only AMD64 ISA [default]\n"));
11751 fprintf (stream, _("\
11752 -mintel64 accept only Intel64 ISA\n"));
11753 }
11754
11755 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11756 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11757 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11758
11759 /* Pick the target format to use. */
11760
11761 const char *
11762 i386_target_format (void)
11763 {
11764 if (!strncmp (default_arch, "x86_64", 6))
11765 {
11766 update_code_flag (CODE_64BIT, 1);
11767 if (default_arch[6] == '\0')
11768 x86_elf_abi = X86_64_ABI;
11769 else
11770 x86_elf_abi = X86_64_X32_ABI;
11771 }
11772 else if (!strcmp (default_arch, "i386"))
11773 update_code_flag (CODE_32BIT, 1);
11774 else if (!strcmp (default_arch, "iamcu"))
11775 {
11776 update_code_flag (CODE_32BIT, 1);
11777 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11778 {
11779 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11780 cpu_arch_name = "iamcu";
11781 cpu_sub_arch_name = NULL;
11782 cpu_arch_flags = iamcu_flags;
11783 cpu_arch_isa = PROCESSOR_IAMCU;
11784 cpu_arch_isa_flags = iamcu_flags;
11785 if (!cpu_arch_tune_set)
11786 {
11787 cpu_arch_tune = cpu_arch_isa;
11788 cpu_arch_tune_flags = cpu_arch_isa_flags;
11789 }
11790 }
11791 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11792 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11793 cpu_arch_name);
11794 }
11795 else
11796 as_fatal (_("unknown architecture"));
11797
11798 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11799 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11800 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11801 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11802
11803 switch (OUTPUT_FLAVOR)
11804 {
11805 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11806 case bfd_target_aout_flavour:
11807 return AOUT_TARGET_FORMAT;
11808 #endif
11809 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11810 # if defined (TE_PE) || defined (TE_PEP)
11811 case bfd_target_coff_flavour:
11812 if (flag_code == CODE_64BIT)
11813 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11814 else
11815 return "pe-i386";
11816 # elif defined (TE_GO32)
11817 case bfd_target_coff_flavour:
11818 return "coff-go32";
11819 # else
11820 case bfd_target_coff_flavour:
11821 return "coff-i386";
11822 # endif
11823 #endif
11824 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11825 case bfd_target_elf_flavour:
11826 {
11827 const char *format;
11828
11829 switch (x86_elf_abi)
11830 {
11831 default:
11832 format = ELF_TARGET_FORMAT;
11833 break;
11834 case X86_64_ABI:
11835 use_rela_relocations = 1;
11836 object_64bit = 1;
11837 format = ELF_TARGET_FORMAT64;
11838 break;
11839 case X86_64_X32_ABI:
11840 use_rela_relocations = 1;
11841 object_64bit = 1;
11842 disallow_64bit_reloc = 1;
11843 format = ELF_TARGET_FORMAT32;
11844 break;
11845 }
11846 if (cpu_arch_isa == PROCESSOR_L1OM)
11847 {
11848 if (x86_elf_abi != X86_64_ABI)
11849 as_fatal (_("Intel L1OM is 64bit only"));
11850 return ELF_TARGET_L1OM_FORMAT;
11851 }
11852 else if (cpu_arch_isa == PROCESSOR_K1OM)
11853 {
11854 if (x86_elf_abi != X86_64_ABI)
11855 as_fatal (_("Intel K1OM is 64bit only"));
11856 return ELF_TARGET_K1OM_FORMAT;
11857 }
11858 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11859 {
11860 if (x86_elf_abi != I386_ABI)
11861 as_fatal (_("Intel MCU is 32bit only"));
11862 return ELF_TARGET_IAMCU_FORMAT;
11863 }
11864 else
11865 return format;
11866 }
11867 #endif
11868 #if defined (OBJ_MACH_O)
11869 case bfd_target_mach_o_flavour:
11870 if (flag_code == CODE_64BIT)
11871 {
11872 use_rela_relocations = 1;
11873 object_64bit = 1;
11874 return "mach-o-x86-64";
11875 }
11876 else
11877 return "mach-o-i386";
11878 #endif
11879 default:
11880 abort ();
11881 return NULL;
11882 }
11883 }
11884
11885 #endif /* OBJ_MAYBE_ more than one */
11886 \f
11887 symbolS *
11888 md_undefined_symbol (char *name)
11889 {
11890 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11891 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11892 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11893 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11894 {
11895 if (!GOT_symbol)
11896 {
11897 if (symbol_find (name))
11898 as_bad (_("GOT already in symbol table"));
11899 GOT_symbol = symbol_new (name, undefined_section,
11900 (valueT) 0, &zero_address_frag);
11901 };
11902 return GOT_symbol;
11903 }
11904 return 0;
11905 }
11906
11907 /* Round up a section size to the appropriate boundary. */
11908
11909 valueT
11910 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11911 {
11912 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11913 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11914 {
11915 /* For a.out, force the section size to be aligned. If we don't do
11916 this, BFD will align it for us, but it will not write out the
11917 final bytes of the section. This may be a bug in BFD, but it is
11918 easier to fix it here since that is how the other a.out targets
11919 work. */
11920 int align;
11921
11922 align = bfd_section_alignment (segment);
11923 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11924 }
11925 #endif
11926
11927 return size;
11928 }
11929
11930 /* On the i386, PC-relative offsets are relative to the start of the
11931 next instruction. That is, the address of the offset, plus its
11932 size, since the offset is always the last part of the insn. */
11933
11934 long
11935 md_pcrel_from (fixS *fixP)
11936 {
11937 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11938 }
11939
11940 #ifndef I386COFF
11941
11942 static void
11943 s_bss (int ignore ATTRIBUTE_UNUSED)
11944 {
11945 int temp;
11946
11947 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11948 if (IS_ELF)
11949 obj_elf_section_change_hook ();
11950 #endif
11951 temp = get_absolute_expression ();
11952 subseg_set (bss_section, (subsegT) temp);
11953 demand_empty_rest_of_line ();
11954 }
11955
11956 #endif
11957
11958 void
11959 i386_validate_fix (fixS *fixp)
11960 {
11961 if (fixp->fx_subsy)
11962 {
11963 if (fixp->fx_subsy == GOT_symbol)
11964 {
11965 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11966 {
11967 if (!object_64bit)
11968 abort ();
11969 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11970 if (fixp->fx_tcbit2)
11971 fixp->fx_r_type = (fixp->fx_tcbit
11972 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11973 : BFD_RELOC_X86_64_GOTPCRELX);
11974 else
11975 #endif
11976 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11977 }
11978 else
11979 {
11980 if (!object_64bit)
11981 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11982 else
11983 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11984 }
11985 fixp->fx_subsy = 0;
11986 }
11987 }
11988 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11989 else if (!object_64bit)
11990 {
11991 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11992 && fixp->fx_tcbit2)
11993 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11994 }
11995 #endif
11996 }
11997
11998 arelent *
11999 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
12000 {
12001 arelent *rel;
12002 bfd_reloc_code_real_type code;
12003
12004 switch (fixp->fx_r_type)
12005 {
12006 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12007 case BFD_RELOC_SIZE32:
12008 case BFD_RELOC_SIZE64:
12009 if (S_IS_DEFINED (fixp->fx_addsy)
12010 && !S_IS_EXTERNAL (fixp->fx_addsy))
12011 {
12012 /* Resolve size relocation against local symbol to size of
12013 the symbol plus addend. */
12014 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12015 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12016 && !fits_in_unsigned_long (value))
12017 as_bad_where (fixp->fx_file, fixp->fx_line,
12018 _("symbol size computation overflow"));
12019 fixp->fx_addsy = NULL;
12020 fixp->fx_subsy = NULL;
12021 md_apply_fix (fixp, (valueT *) &value, NULL);
12022 return NULL;
12023 }
12024 #endif
12025 /* Fall through. */
12026
12027 case BFD_RELOC_X86_64_PLT32:
12028 case BFD_RELOC_X86_64_GOT32:
12029 case BFD_RELOC_X86_64_GOTPCREL:
12030 case BFD_RELOC_X86_64_GOTPCRELX:
12031 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12032 case BFD_RELOC_386_PLT32:
12033 case BFD_RELOC_386_GOT32:
12034 case BFD_RELOC_386_GOT32X:
12035 case BFD_RELOC_386_GOTOFF:
12036 case BFD_RELOC_386_GOTPC:
12037 case BFD_RELOC_386_TLS_GD:
12038 case BFD_RELOC_386_TLS_LDM:
12039 case BFD_RELOC_386_TLS_LDO_32:
12040 case BFD_RELOC_386_TLS_IE_32:
12041 case BFD_RELOC_386_TLS_IE:
12042 case BFD_RELOC_386_TLS_GOTIE:
12043 case BFD_RELOC_386_TLS_LE_32:
12044 case BFD_RELOC_386_TLS_LE:
12045 case BFD_RELOC_386_TLS_GOTDESC:
12046 case BFD_RELOC_386_TLS_DESC_CALL:
12047 case BFD_RELOC_X86_64_TLSGD:
12048 case BFD_RELOC_X86_64_TLSLD:
12049 case BFD_RELOC_X86_64_DTPOFF32:
12050 case BFD_RELOC_X86_64_DTPOFF64:
12051 case BFD_RELOC_X86_64_GOTTPOFF:
12052 case BFD_RELOC_X86_64_TPOFF32:
12053 case BFD_RELOC_X86_64_TPOFF64:
12054 case BFD_RELOC_X86_64_GOTOFF64:
12055 case BFD_RELOC_X86_64_GOTPC32:
12056 case BFD_RELOC_X86_64_GOT64:
12057 case BFD_RELOC_X86_64_GOTPCREL64:
12058 case BFD_RELOC_X86_64_GOTPC64:
12059 case BFD_RELOC_X86_64_GOTPLT64:
12060 case BFD_RELOC_X86_64_PLTOFF64:
12061 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12062 case BFD_RELOC_X86_64_TLSDESC_CALL:
12063 case BFD_RELOC_RVA:
12064 case BFD_RELOC_VTABLE_ENTRY:
12065 case BFD_RELOC_VTABLE_INHERIT:
12066 #ifdef TE_PE
12067 case BFD_RELOC_32_SECREL:
12068 #endif
12069 code = fixp->fx_r_type;
12070 break;
12071 case BFD_RELOC_X86_64_32S:
12072 if (!fixp->fx_pcrel)
12073 {
12074 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12075 code = fixp->fx_r_type;
12076 break;
12077 }
12078 /* Fall through. */
12079 default:
12080 if (fixp->fx_pcrel)
12081 {
12082 switch (fixp->fx_size)
12083 {
12084 default:
12085 as_bad_where (fixp->fx_file, fixp->fx_line,
12086 _("can not do %d byte pc-relative relocation"),
12087 fixp->fx_size);
12088 code = BFD_RELOC_32_PCREL;
12089 break;
12090 case 1: code = BFD_RELOC_8_PCREL; break;
12091 case 2: code = BFD_RELOC_16_PCREL; break;
12092 case 4: code = BFD_RELOC_32_PCREL; break;
12093 #ifdef BFD64
12094 case 8: code = BFD_RELOC_64_PCREL; break;
12095 #endif
12096 }
12097 }
12098 else
12099 {
12100 switch (fixp->fx_size)
12101 {
12102 default:
12103 as_bad_where (fixp->fx_file, fixp->fx_line,
12104 _("can not do %d byte relocation"),
12105 fixp->fx_size);
12106 code = BFD_RELOC_32;
12107 break;
12108 case 1: code = BFD_RELOC_8; break;
12109 case 2: code = BFD_RELOC_16; break;
12110 case 4: code = BFD_RELOC_32; break;
12111 #ifdef BFD64
12112 case 8: code = BFD_RELOC_64; break;
12113 #endif
12114 }
12115 }
12116 break;
12117 }
12118
12119 if ((code == BFD_RELOC_32
12120 || code == BFD_RELOC_32_PCREL
12121 || code == BFD_RELOC_X86_64_32S)
12122 && GOT_symbol
12123 && fixp->fx_addsy == GOT_symbol)
12124 {
12125 if (!object_64bit)
12126 code = BFD_RELOC_386_GOTPC;
12127 else
12128 code = BFD_RELOC_X86_64_GOTPC32;
12129 }
12130 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12131 && GOT_symbol
12132 && fixp->fx_addsy == GOT_symbol)
12133 {
12134 code = BFD_RELOC_X86_64_GOTPC64;
12135 }
12136
12137 rel = XNEW (arelent);
12138 rel->sym_ptr_ptr = XNEW (asymbol *);
12139 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12140
12141 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
12142
12143 if (!use_rela_relocations)
12144 {
12145 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12146 vtable entry to be used in the relocation's section offset. */
12147 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12148 rel->address = fixp->fx_offset;
12149 #if defined (OBJ_COFF) && defined (TE_PE)
12150 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12151 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12152 else
12153 #endif
12154 rel->addend = 0;
12155 }
12156 /* Use the rela in 64bit mode. */
12157 else
12158 {
12159 if (disallow_64bit_reloc)
12160 switch (code)
12161 {
12162 case BFD_RELOC_X86_64_DTPOFF64:
12163 case BFD_RELOC_X86_64_TPOFF64:
12164 case BFD_RELOC_64_PCREL:
12165 case BFD_RELOC_X86_64_GOTOFF64:
12166 case BFD_RELOC_X86_64_GOT64:
12167 case BFD_RELOC_X86_64_GOTPCREL64:
12168 case BFD_RELOC_X86_64_GOTPC64:
12169 case BFD_RELOC_X86_64_GOTPLT64:
12170 case BFD_RELOC_X86_64_PLTOFF64:
12171 as_bad_where (fixp->fx_file, fixp->fx_line,
12172 _("cannot represent relocation type %s in x32 mode"),
12173 bfd_get_reloc_code_name (code));
12174 break;
12175 default:
12176 break;
12177 }
12178
12179 if (!fixp->fx_pcrel)
12180 rel->addend = fixp->fx_offset;
12181 else
12182 switch (code)
12183 {
12184 case BFD_RELOC_X86_64_PLT32:
12185 case BFD_RELOC_X86_64_GOT32:
12186 case BFD_RELOC_X86_64_GOTPCREL:
12187 case BFD_RELOC_X86_64_GOTPCRELX:
12188 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12189 case BFD_RELOC_X86_64_TLSGD:
12190 case BFD_RELOC_X86_64_TLSLD:
12191 case BFD_RELOC_X86_64_GOTTPOFF:
12192 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12193 case BFD_RELOC_X86_64_TLSDESC_CALL:
12194 rel->addend = fixp->fx_offset - fixp->fx_size;
12195 break;
12196 default:
12197 rel->addend = (section->vma
12198 - fixp->fx_size
12199 + fixp->fx_addnumber
12200 + md_pcrel_from (fixp));
12201 break;
12202 }
12203 }
12204
12205 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12206 if (rel->howto == NULL)
12207 {
12208 as_bad_where (fixp->fx_file, fixp->fx_line,
12209 _("cannot represent relocation type %s"),
12210 bfd_get_reloc_code_name (code));
12211 /* Set howto to a garbage value so that we can keep going. */
12212 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12213 gas_assert (rel->howto != NULL);
12214 }
12215
12216 return rel;
12217 }
12218
12219 #include "tc-i386-intel.c"
12220
12221 void
12222 tc_x86_parse_to_dw2regnum (expressionS *exp)
12223 {
12224 int saved_naked_reg;
12225 char saved_register_dot;
12226
12227 saved_naked_reg = allow_naked_reg;
12228 allow_naked_reg = 1;
12229 saved_register_dot = register_chars['.'];
12230 register_chars['.'] = '.';
12231 allow_pseudo_reg = 1;
12232 expression_and_evaluate (exp);
12233 allow_pseudo_reg = 0;
12234 register_chars['.'] = saved_register_dot;
12235 allow_naked_reg = saved_naked_reg;
12236
12237 if (exp->X_op == O_register && exp->X_add_number >= 0)
12238 {
12239 if ((addressT) exp->X_add_number < i386_regtab_size)
12240 {
12241 exp->X_op = O_constant;
12242 exp->X_add_number = i386_regtab[exp->X_add_number]
12243 .dw2_regnum[flag_code >> 1];
12244 }
12245 else
12246 exp->X_op = O_illegal;
12247 }
12248 }
12249
12250 void
12251 tc_x86_frame_initial_instructions (void)
12252 {
12253 static unsigned int sp_regno[2];
12254
12255 if (!sp_regno[flag_code >> 1])
12256 {
12257 char *saved_input = input_line_pointer;
12258 char sp[][4] = {"esp", "rsp"};
12259 expressionS exp;
12260
12261 input_line_pointer = sp[flag_code >> 1];
12262 tc_x86_parse_to_dw2regnum (&exp);
12263 gas_assert (exp.X_op == O_constant);
12264 sp_regno[flag_code >> 1] = exp.X_add_number;
12265 input_line_pointer = saved_input;
12266 }
12267
12268 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12269 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12270 }
12271
12272 int
12273 x86_dwarf2_addr_size (void)
12274 {
12275 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12276 if (x86_elf_abi == X86_64_X32_ABI)
12277 return 4;
12278 #endif
12279 return bfd_arch_bits_per_address (stdoutput) / 8;
12280 }
12281
12282 int
12283 i386_elf_section_type (const char *str, size_t len)
12284 {
12285 if (flag_code == CODE_64BIT
12286 && len == sizeof ("unwind") - 1
12287 && strncmp (str, "unwind", 6) == 0)
12288 return SHT_X86_64_UNWIND;
12289
12290 return -1;
12291 }
12292
12293 #ifdef TE_SOLARIS
12294 void
12295 i386_solaris_fix_up_eh_frame (segT sec)
12296 {
12297 if (flag_code == CODE_64BIT)
12298 elf_section_type (sec) = SHT_X86_64_UNWIND;
12299 }
12300 #endif
12301
12302 #ifdef TE_PE
12303 void
12304 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12305 {
12306 expressionS exp;
12307
12308 exp.X_op = O_secrel;
12309 exp.X_add_symbol = symbol;
12310 exp.X_add_number = 0;
12311 emit_expr (&exp, size);
12312 }
12313 #endif
12314
12315 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12316 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12317
12318 bfd_vma
12319 x86_64_section_letter (int letter, const char **ptr_msg)
12320 {
12321 if (flag_code == CODE_64BIT)
12322 {
12323 if (letter == 'l')
12324 return SHF_X86_64_LARGE;
12325
12326 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12327 }
12328 else
12329 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12330 return -1;
12331 }
12332
12333 bfd_vma
12334 x86_64_section_word (char *str, size_t len)
12335 {
12336 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12337 return SHF_X86_64_LARGE;
12338
12339 return -1;
12340 }
12341
12342 static void
12343 handle_large_common (int small ATTRIBUTE_UNUSED)
12344 {
12345 if (flag_code != CODE_64BIT)
12346 {
12347 s_comm_internal (0, elf_common_parse);
12348 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12349 }
12350 else
12351 {
12352 static segT lbss_section;
12353 asection *saved_com_section_ptr = elf_com_section_ptr;
12354 asection *saved_bss_section = bss_section;
12355
12356 if (lbss_section == NULL)
12357 {
12358 flagword applicable;
12359 segT seg = now_seg;
12360 subsegT subseg = now_subseg;
12361
12362 /* The .lbss section is for local .largecomm symbols. */
12363 lbss_section = subseg_new (".lbss", 0);
12364 applicable = bfd_applicable_section_flags (stdoutput);
12365 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
12366 seg_info (lbss_section)->bss = 1;
12367
12368 subseg_set (seg, subseg);
12369 }
12370
12371 elf_com_section_ptr = &_bfd_elf_large_com_section;
12372 bss_section = lbss_section;
12373
12374 s_comm_internal (0, elf_common_parse);
12375
12376 elf_com_section_ptr = saved_com_section_ptr;
12377 bss_section = saved_bss_section;
12378 }
12379 }
12380 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.274246 seconds and 3 git commands to generate.