x86: convert RegSIMD and RegMMX from bitfield to enumerator
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2019 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
103
104 /*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111 typedef struct
112 {
113 const insn_template *start;
114 const insn_template *end;
115 }
116 templates;
117
118 /* 386 operand encoding bytes: see 386 book for details of this. */
119 typedef struct
120 {
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124 }
125 modrm_byte;
126
127 /* x86-64 extension prefix. */
128 typedef int rex_byte;
129
130 /* 386 opcode byte to code indirect addressing. */
131 typedef struct
132 {
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136 }
137 sib_byte;
138
139 /* x86 arch names, types and features */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
146 unsigned int skip; /* show_arch should skip this. */
147 }
148 arch_entry;
149
150 /* Used to turn off indicated flags. */
151 typedef struct
152 {
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156 }
157 noarch_entry;
158
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
167 #ifdef TE_PE
168 static void pe_directive_secrel (int);
169 #endif
170 static void signed_cons (int);
171 static char *output_invalid (int c);
172 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS *);
179 static int i386_intel_parse_name (const char *, expressionS *);
180 static const reg_entry *parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static void optimize_imm (void);
186 static void optimize_disp (void);
187 static const insn_template *match_template (char);
188 static int check_string (void);
189 static int process_suffix (void);
190 static int check_byte_reg (void);
191 static int check_long_reg (void);
192 static int check_qword_reg (void);
193 static int check_word_reg (void);
194 static int finalize_imm (void);
195 static int process_operands (void);
196 static const seg_entry *build_modrm_byte (void);
197 static void output_insn (void);
198 static void output_imm (fragS *, offsetT);
199 static void output_disp (fragS *, offsetT);
200 #ifndef I386COFF
201 static void s_bss (int);
202 #endif
203 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
204 static void handle_large_common (int small ATTRIBUTE_UNUSED);
205
206 /* GNU_PROPERTY_X86_ISA_1_USED. */
207 static unsigned int x86_isa_1_used;
208 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
209 static unsigned int x86_feature_2_used;
210 /* Generate x86 used ISA and feature properties. */
211 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
212 #endif
213
214 static const char *default_arch = DEFAULT_ARCH;
215
216 /* This struct describes rounding control and SAE in the instruction. */
217 struct RC_Operation
218 {
219 enum rc_type
220 {
221 rne = 0,
222 rd,
223 ru,
224 rz,
225 saeonly
226 } type;
227 int operand;
228 };
229
230 static struct RC_Operation rc_op;
231
232 /* The struct describes masking, applied to OPERAND in the instruction.
233 MASK is a pointer to the corresponding mask register. ZEROING tells
234 whether merging or zeroing mask is used. */
235 struct Mask_Operation
236 {
237 const reg_entry *mask;
238 unsigned int zeroing;
239 /* The operand where this operation is associated. */
240 int operand;
241 };
242
243 static struct Mask_Operation mask_op;
244
245 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
246 broadcast factor. */
247 struct Broadcast_Operation
248 {
249 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
250 int type;
251
252 /* Index of broadcasted operand. */
253 int operand;
254
255 /* Number of bytes to broadcast. */
256 int bytes;
257 };
258
259 static struct Broadcast_Operation broadcast_op;
260
261 /* VEX prefix. */
262 typedef struct
263 {
264 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
265 unsigned char bytes[4];
266 unsigned int length;
267 /* Destination or source register specifier. */
268 const reg_entry *register_specifier;
269 } vex_prefix;
270
271 /* 'md_assemble ()' gathers together information and puts it into a
272 i386_insn. */
273
274 union i386_op
275 {
276 expressionS *disps;
277 expressionS *imms;
278 const reg_entry *regs;
279 };
280
281 enum i386_error
282 {
283 operand_size_mismatch,
284 operand_type_mismatch,
285 register_type_mismatch,
286 number_of_operands_mismatch,
287 invalid_instruction_suffix,
288 bad_imm4,
289 unsupported_with_intel_mnemonic,
290 unsupported_syntax,
291 unsupported,
292 invalid_vsib_address,
293 invalid_vector_register_set,
294 unsupported_vector_index_register,
295 unsupported_broadcast,
296 broadcast_needed,
297 unsupported_masking,
298 mask_not_on_destination,
299 no_default_mask,
300 unsupported_rc_sae,
301 rc_sae_operand_not_last_imm,
302 invalid_register_operand,
303 };
304
305 struct _i386_insn
306 {
307 /* TM holds the template for the insn were currently assembling. */
308 insn_template tm;
309
310 /* SUFFIX holds the instruction size suffix for byte, word, dword
311 or qword, if given. */
312 char suffix;
313
314 /* OPERANDS gives the number of given operands. */
315 unsigned int operands;
316
317 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
318 of given register, displacement, memory operands and immediate
319 operands. */
320 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
321
322 /* TYPES [i] is the type (see above #defines) which tells us how to
323 use OP[i] for the corresponding operand. */
324 i386_operand_type types[MAX_OPERANDS];
325
326 /* Displacement expression, immediate expression, or register for each
327 operand. */
328 union i386_op op[MAX_OPERANDS];
329
330 /* Flags for operands. */
331 unsigned int flags[MAX_OPERANDS];
332 #define Operand_PCrel 1
333 #define Operand_Mem 2
334
335 /* Relocation type for operand */
336 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
337
338 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
339 the base index byte below. */
340 const reg_entry *base_reg;
341 const reg_entry *index_reg;
342 unsigned int log2_scale_factor;
343
344 /* SEG gives the seg_entries of this insn. They are zero unless
345 explicit segment overrides are given. */
346 const seg_entry *seg[2];
347
348 /* Copied first memory operand string, for re-checking. */
349 char *memop1_string;
350
351 /* PREFIX holds all the given prefix opcodes (usually null).
352 PREFIXES is the number of prefix opcodes. */
353 unsigned int prefixes;
354 unsigned char prefix[MAX_PREFIXES];
355
356 /* Has MMX register operands. */
357 bfd_boolean has_regmmx;
358
359 /* Has XMM register operands. */
360 bfd_boolean has_regxmm;
361
362 /* Has YMM register operands. */
363 bfd_boolean has_regymm;
364
365 /* Has ZMM register operands. */
366 bfd_boolean has_regzmm;
367
368 /* RM and SIB are the modrm byte and the sib byte where the
369 addressing modes of this insn are encoded. */
370 modrm_byte rm;
371 rex_byte rex;
372 rex_byte vrex;
373 sib_byte sib;
374 vex_prefix vex;
375
376 /* Masking attributes. */
377 struct Mask_Operation *mask;
378
379 /* Rounding control and SAE attributes. */
380 struct RC_Operation *rounding;
381
382 /* Broadcasting attributes. */
383 struct Broadcast_Operation *broadcast;
384
385 /* Compressed disp8*N attribute. */
386 unsigned int memshift;
387
388 /* Prefer load or store in encoding. */
389 enum
390 {
391 dir_encoding_default = 0,
392 dir_encoding_load,
393 dir_encoding_store,
394 dir_encoding_swap
395 } dir_encoding;
396
397 /* Prefer 8bit or 32bit displacement in encoding. */
398 enum
399 {
400 disp_encoding_default = 0,
401 disp_encoding_8bit,
402 disp_encoding_32bit
403 } disp_encoding;
404
405 /* Prefer the REX byte in encoding. */
406 bfd_boolean rex_encoding;
407
408 /* Disable instruction size optimization. */
409 bfd_boolean no_optimize;
410
411 /* How to encode vector instructions. */
412 enum
413 {
414 vex_encoding_default = 0,
415 vex_encoding_vex2,
416 vex_encoding_vex3,
417 vex_encoding_evex
418 } vec_encoding;
419
420 /* REP prefix. */
421 const char *rep_prefix;
422
423 /* HLE prefix. */
424 const char *hle_prefix;
425
426 /* Have BND prefix. */
427 const char *bnd_prefix;
428
429 /* Have NOTRACK prefix. */
430 const char *notrack_prefix;
431
432 /* Error message. */
433 enum i386_error error;
434 };
435
436 typedef struct _i386_insn i386_insn;
437
438 /* Link RC type with corresponding string, that'll be looked for in
439 asm. */
440 struct RC_name
441 {
442 enum rc_type type;
443 const char *name;
444 unsigned int len;
445 };
446
447 static const struct RC_name RC_NamesTable[] =
448 {
449 { rne, STRING_COMMA_LEN ("rn-sae") },
450 { rd, STRING_COMMA_LEN ("rd-sae") },
451 { ru, STRING_COMMA_LEN ("ru-sae") },
452 { rz, STRING_COMMA_LEN ("rz-sae") },
453 { saeonly, STRING_COMMA_LEN ("sae") },
454 };
455
456 /* List of chars besides those in app.c:symbol_chars that can start an
457 operand. Used to prevent the scrubber eating vital white-space. */
458 const char extra_symbol_chars[] = "*%-([{}"
459 #ifdef LEX_AT
460 "@"
461 #endif
462 #ifdef LEX_QM
463 "?"
464 #endif
465 ;
466
467 #if (defined (TE_I386AIX) \
468 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
469 && !defined (TE_GNU) \
470 && !defined (TE_LINUX) \
471 && !defined (TE_NACL) \
472 && !defined (TE_FreeBSD) \
473 && !defined (TE_DragonFly) \
474 && !defined (TE_NetBSD)))
475 /* This array holds the chars that always start a comment. If the
476 pre-processor is disabled, these aren't very useful. The option
477 --divide will remove '/' from this list. */
478 const char *i386_comment_chars = "#/";
479 #define SVR4_COMMENT_CHARS 1
480 #define PREFIX_SEPARATOR '\\'
481
482 #else
483 const char *i386_comment_chars = "#";
484 #define PREFIX_SEPARATOR '/'
485 #endif
486
487 /* This array holds the chars that only start a comment at the beginning of
488 a line. If the line seems to have the form '# 123 filename'
489 .line and .file directives will appear in the pre-processed output.
490 Note that input_file.c hand checks for '#' at the beginning of the
491 first line of the input file. This is because the compiler outputs
492 #NO_APP at the beginning of its output.
493 Also note that comments started like this one will always work if
494 '/' isn't otherwise defined. */
495 const char line_comment_chars[] = "#/";
496
497 const char line_separator_chars[] = ";";
498
499 /* Chars that can be used to separate mant from exp in floating point
500 nums. */
501 const char EXP_CHARS[] = "eE";
502
503 /* Chars that mean this number is a floating point constant
504 As in 0f12.456
505 or 0d1.2345e12. */
506 const char FLT_CHARS[] = "fFdDxX";
507
508 /* Tables for lexical analysis. */
509 static char mnemonic_chars[256];
510 static char register_chars[256];
511 static char operand_chars[256];
512 static char identifier_chars[256];
513 static char digit_chars[256];
514
515 /* Lexical macros. */
516 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
517 #define is_operand_char(x) (operand_chars[(unsigned char) x])
518 #define is_register_char(x) (register_chars[(unsigned char) x])
519 #define is_space_char(x) ((x) == ' ')
520 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
521 #define is_digit_char(x) (digit_chars[(unsigned char) x])
522
523 /* All non-digit non-letter characters that may occur in an operand. */
524 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
525
526 /* md_assemble() always leaves the strings it's passed unaltered. To
527 effect this we maintain a stack of saved characters that we've smashed
528 with '\0's (indicating end of strings for various sub-fields of the
529 assembler instruction). */
530 static char save_stack[32];
531 static char *save_stack_p;
532 #define END_STRING_AND_SAVE(s) \
533 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
534 #define RESTORE_END_STRING(s) \
535 do { *(s) = *--save_stack_p; } while (0)
536
537 /* The instruction we're assembling. */
538 static i386_insn i;
539
540 /* Possible templates for current insn. */
541 static const templates *current_templates;
542
543 /* Per instruction expressionS buffers: max displacements & immediates. */
544 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
545 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
546
547 /* Current operand we are working on. */
548 static int this_operand = -1;
549
550 /* We support four different modes. FLAG_CODE variable is used to distinguish
551 these. */
552
553 enum flag_code {
554 CODE_32BIT,
555 CODE_16BIT,
556 CODE_64BIT };
557
558 static enum flag_code flag_code;
559 static unsigned int object_64bit;
560 static unsigned int disallow_64bit_reloc;
561 static int use_rela_relocations = 0;
562
563 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
564 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
565 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
566
567 /* The ELF ABI to use. */
568 enum x86_elf_abi
569 {
570 I386_ABI,
571 X86_64_ABI,
572 X86_64_X32_ABI
573 };
574
575 static enum x86_elf_abi x86_elf_abi = I386_ABI;
576 #endif
577
578 #if defined (TE_PE) || defined (TE_PEP)
579 /* Use big object file format. */
580 static int use_big_obj = 0;
581 #endif
582
583 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
584 /* 1 if generating code for a shared library. */
585 static int shared = 0;
586 #endif
587
588 /* 1 for intel syntax,
589 0 if att syntax. */
590 static int intel_syntax = 0;
591
592 /* 1 for Intel64 ISA,
593 0 if AMD64 ISA. */
594 static int intel64;
595
596 /* 1 for intel mnemonic,
597 0 if att mnemonic. */
598 static int intel_mnemonic = !SYSV386_COMPAT;
599
600 /* 1 if pseudo registers are permitted. */
601 static int allow_pseudo_reg = 0;
602
603 /* 1 if register prefix % not required. */
604 static int allow_naked_reg = 0;
605
606 /* 1 if the assembler should add BND prefix for all control-transferring
607 instructions supporting it, even if this prefix wasn't specified
608 explicitly. */
609 static int add_bnd_prefix = 0;
610
611 /* 1 if pseudo index register, eiz/riz, is allowed . */
612 static int allow_index_reg = 0;
613
614 /* 1 if the assembler should ignore LOCK prefix, even if it was
615 specified explicitly. */
616 static int omit_lock_prefix = 0;
617
618 /* 1 if the assembler should encode lfence, mfence, and sfence as
619 "lock addl $0, (%{re}sp)". */
620 static int avoid_fence = 0;
621
622 /* 1 if the assembler should generate relax relocations. */
623
624 static int generate_relax_relocations
625 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
626
627 static enum check_kind
628 {
629 check_none = 0,
630 check_warning,
631 check_error
632 }
633 sse_check, operand_check = check_warning;
634
635 /* Optimization:
636 1. Clear the REX_W bit with register operand if possible.
637 2. Above plus use 128bit vector instruction to clear the full vector
638 register.
639 */
640 static int optimize = 0;
641
642 /* Optimization:
643 1. Clear the REX_W bit with register operand if possible.
644 2. Above plus use 128bit vector instruction to clear the full vector
645 register.
646 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
647 "testb $imm7,%r8".
648 */
649 static int optimize_for_space = 0;
650
651 /* Register prefix used for error message. */
652 static const char *register_prefix = "%";
653
654 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
655 leave, push, and pop instructions so that gcc has the same stack
656 frame as in 32 bit mode. */
657 static char stackop_size = '\0';
658
659 /* Non-zero to optimize code alignment. */
660 int optimize_align_code = 1;
661
662 /* Non-zero to quieten some warnings. */
663 static int quiet_warnings = 0;
664
665 /* CPU name. */
666 static const char *cpu_arch_name = NULL;
667 static char *cpu_sub_arch_name = NULL;
668
669 /* CPU feature flags. */
670 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
671
672 /* If we have selected a cpu we are generating instructions for. */
673 static int cpu_arch_tune_set = 0;
674
675 /* Cpu we are generating instructions for. */
676 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
677
678 /* CPU feature flags of cpu we are generating instructions for. */
679 static i386_cpu_flags cpu_arch_tune_flags;
680
681 /* CPU instruction set architecture used. */
682 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
683
684 /* CPU feature flags of instruction set architecture used. */
685 i386_cpu_flags cpu_arch_isa_flags;
686
687 /* If set, conditional jumps are not automatically promoted to handle
688 larger than a byte offset. */
689 static unsigned int no_cond_jump_promotion = 0;
690
691 /* Encode SSE instructions with VEX prefix. */
692 static unsigned int sse2avx;
693
694 /* Encode scalar AVX instructions with specific vector length. */
695 static enum
696 {
697 vex128 = 0,
698 vex256
699 } avxscalar;
700
701 /* Encode VEX WIG instructions with specific vex.w. */
702 static enum
703 {
704 vexw0 = 0,
705 vexw1
706 } vexwig;
707
708 /* Encode scalar EVEX LIG instructions with specific vector length. */
709 static enum
710 {
711 evexl128 = 0,
712 evexl256,
713 evexl512
714 } evexlig;
715
716 /* Encode EVEX WIG instructions with specific evex.w. */
717 static enum
718 {
719 evexw0 = 0,
720 evexw1
721 } evexwig;
722
723 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
724 static enum rc_type evexrcig = rne;
725
726 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
727 static symbolS *GOT_symbol;
728
729 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
730 unsigned int x86_dwarf2_return_column;
731
732 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
733 int x86_cie_data_alignment;
734
735 /* Interface to relax_segment.
736 There are 3 major relax states for 386 jump insns because the
737 different types of jumps add different sizes to frags when we're
738 figuring out what sort of jump to choose to reach a given label. */
739
740 /* Types. */
741 #define UNCOND_JUMP 0
742 #define COND_JUMP 1
743 #define COND_JUMP86 2
744
745 /* Sizes. */
746 #define CODE16 1
747 #define SMALL 0
748 #define SMALL16 (SMALL | CODE16)
749 #define BIG 2
750 #define BIG16 (BIG | CODE16)
751
752 #ifndef INLINE
753 #ifdef __GNUC__
754 #define INLINE __inline__
755 #else
756 #define INLINE
757 #endif
758 #endif
759
760 #define ENCODE_RELAX_STATE(type, size) \
761 ((relax_substateT) (((type) << 2) | (size)))
762 #define TYPE_FROM_RELAX_STATE(s) \
763 ((s) >> 2)
764 #define DISP_SIZE_FROM_RELAX_STATE(s) \
765 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
766
767 /* This table is used by relax_frag to promote short jumps to long
768 ones where necessary. SMALL (short) jumps may be promoted to BIG
769 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
770 don't allow a short jump in a 32 bit code segment to be promoted to
771 a 16 bit offset jump because it's slower (requires data size
772 prefix), and doesn't work, unless the destination is in the bottom
773 64k of the code segment (The top 16 bits of eip are zeroed). */
774
775 const relax_typeS md_relax_table[] =
776 {
777 /* The fields are:
778 1) most positive reach of this state,
779 2) most negative reach of this state,
780 3) how many bytes this mode will have in the variable part of the frag
781 4) which index into the table to try if we can't fit into this one. */
782
783 /* UNCOND_JUMP states. */
784 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
785 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
786 /* dword jmp adds 4 bytes to frag:
787 0 extra opcode bytes, 4 displacement bytes. */
788 {0, 0, 4, 0},
789 /* word jmp adds 2 byte2 to frag:
790 0 extra opcode bytes, 2 displacement bytes. */
791 {0, 0, 2, 0},
792
793 /* COND_JUMP states. */
794 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
795 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
796 /* dword conditionals adds 5 bytes to frag:
797 1 extra opcode byte, 4 displacement bytes. */
798 {0, 0, 5, 0},
799 /* word conditionals add 3 bytes to frag:
800 1 extra opcode byte, 2 displacement bytes. */
801 {0, 0, 3, 0},
802
803 /* COND_JUMP86 states. */
804 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
805 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
806 /* dword conditionals adds 5 bytes to frag:
807 1 extra opcode byte, 4 displacement bytes. */
808 {0, 0, 5, 0},
809 /* word conditionals add 4 bytes to frag:
810 1 displacement byte and a 3 byte long branch insn. */
811 {0, 0, 4, 0}
812 };
813
814 static const arch_entry cpu_arch[] =
815 {
816 /* Do not replace the first two entries - i386_target_format()
817 relies on them being there in this order. */
818 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
819 CPU_GENERIC32_FLAGS, 0 },
820 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
821 CPU_GENERIC64_FLAGS, 0 },
822 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
823 CPU_NONE_FLAGS, 0 },
824 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
825 CPU_I186_FLAGS, 0 },
826 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
827 CPU_I286_FLAGS, 0 },
828 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
829 CPU_I386_FLAGS, 0 },
830 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
831 CPU_I486_FLAGS, 0 },
832 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
833 CPU_I586_FLAGS, 0 },
834 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
835 CPU_I686_FLAGS, 0 },
836 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
837 CPU_I586_FLAGS, 0 },
838 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
839 CPU_PENTIUMPRO_FLAGS, 0 },
840 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
841 CPU_P2_FLAGS, 0 },
842 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
843 CPU_P3_FLAGS, 0 },
844 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
845 CPU_P4_FLAGS, 0 },
846 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
847 CPU_CORE_FLAGS, 0 },
848 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
849 CPU_NOCONA_FLAGS, 0 },
850 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
851 CPU_CORE_FLAGS, 1 },
852 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
853 CPU_CORE_FLAGS, 0 },
854 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
855 CPU_CORE2_FLAGS, 1 },
856 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
857 CPU_CORE2_FLAGS, 0 },
858 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
859 CPU_COREI7_FLAGS, 0 },
860 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
861 CPU_L1OM_FLAGS, 0 },
862 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
863 CPU_K1OM_FLAGS, 0 },
864 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
865 CPU_IAMCU_FLAGS, 0 },
866 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
867 CPU_K6_FLAGS, 0 },
868 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
869 CPU_K6_2_FLAGS, 0 },
870 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
871 CPU_ATHLON_FLAGS, 0 },
872 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
873 CPU_K8_FLAGS, 1 },
874 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
875 CPU_K8_FLAGS, 0 },
876 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
877 CPU_K8_FLAGS, 0 },
878 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
879 CPU_AMDFAM10_FLAGS, 0 },
880 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
881 CPU_BDVER1_FLAGS, 0 },
882 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
883 CPU_BDVER2_FLAGS, 0 },
884 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
885 CPU_BDVER3_FLAGS, 0 },
886 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
887 CPU_BDVER4_FLAGS, 0 },
888 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
889 CPU_ZNVER1_FLAGS, 0 },
890 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
891 CPU_ZNVER2_FLAGS, 0 },
892 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
893 CPU_BTVER1_FLAGS, 0 },
894 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
895 CPU_BTVER2_FLAGS, 0 },
896 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
897 CPU_8087_FLAGS, 0 },
898 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
899 CPU_287_FLAGS, 0 },
900 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
901 CPU_387_FLAGS, 0 },
902 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
903 CPU_687_FLAGS, 0 },
904 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
905 CPU_CMOV_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
907 CPU_FXSR_FLAGS, 0 },
908 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
909 CPU_MMX_FLAGS, 0 },
910 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
911 CPU_SSE_FLAGS, 0 },
912 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
913 CPU_SSE2_FLAGS, 0 },
914 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
915 CPU_SSE3_FLAGS, 0 },
916 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
917 CPU_SSSE3_FLAGS, 0 },
918 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
919 CPU_SSE4_1_FLAGS, 0 },
920 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
921 CPU_SSE4_2_FLAGS, 0 },
922 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
923 CPU_SSE4_2_FLAGS, 0 },
924 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
925 CPU_AVX_FLAGS, 0 },
926 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
927 CPU_AVX2_FLAGS, 0 },
928 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
929 CPU_AVX512F_FLAGS, 0 },
930 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
931 CPU_AVX512CD_FLAGS, 0 },
932 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
933 CPU_AVX512ER_FLAGS, 0 },
934 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
935 CPU_AVX512PF_FLAGS, 0 },
936 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
937 CPU_AVX512DQ_FLAGS, 0 },
938 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
939 CPU_AVX512BW_FLAGS, 0 },
940 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
941 CPU_AVX512VL_FLAGS, 0 },
942 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
943 CPU_VMX_FLAGS, 0 },
944 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
945 CPU_VMFUNC_FLAGS, 0 },
946 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
947 CPU_SMX_FLAGS, 0 },
948 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
949 CPU_XSAVE_FLAGS, 0 },
950 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
951 CPU_XSAVEOPT_FLAGS, 0 },
952 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
953 CPU_XSAVEC_FLAGS, 0 },
954 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
955 CPU_XSAVES_FLAGS, 0 },
956 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
957 CPU_AES_FLAGS, 0 },
958 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
959 CPU_PCLMUL_FLAGS, 0 },
960 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
961 CPU_PCLMUL_FLAGS, 1 },
962 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
963 CPU_FSGSBASE_FLAGS, 0 },
964 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
965 CPU_RDRND_FLAGS, 0 },
966 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
967 CPU_F16C_FLAGS, 0 },
968 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
969 CPU_BMI2_FLAGS, 0 },
970 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
971 CPU_FMA_FLAGS, 0 },
972 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
973 CPU_FMA4_FLAGS, 0 },
974 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
975 CPU_XOP_FLAGS, 0 },
976 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
977 CPU_LWP_FLAGS, 0 },
978 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
979 CPU_MOVBE_FLAGS, 0 },
980 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
981 CPU_CX16_FLAGS, 0 },
982 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
983 CPU_EPT_FLAGS, 0 },
984 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
985 CPU_LZCNT_FLAGS, 0 },
986 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
987 CPU_HLE_FLAGS, 0 },
988 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
989 CPU_RTM_FLAGS, 0 },
990 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
991 CPU_INVPCID_FLAGS, 0 },
992 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
993 CPU_CLFLUSH_FLAGS, 0 },
994 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
995 CPU_NOP_FLAGS, 0 },
996 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
997 CPU_SYSCALL_FLAGS, 0 },
998 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
999 CPU_RDTSCP_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1001 CPU_3DNOW_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1003 CPU_3DNOWA_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1005 CPU_PADLOCK_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1007 CPU_SVME_FLAGS, 1 },
1008 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1009 CPU_SVME_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1011 CPU_SSE4A_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1013 CPU_ABM_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1015 CPU_BMI_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1017 CPU_TBM_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1019 CPU_ADX_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1021 CPU_RDSEED_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1023 CPU_PRFCHW_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1025 CPU_SMAP_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1027 CPU_MPX_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1029 CPU_SHA_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1031 CPU_CLFLUSHOPT_FLAGS, 0 },
1032 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1033 CPU_PREFETCHWT1_FLAGS, 0 },
1034 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1035 CPU_SE1_FLAGS, 0 },
1036 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1037 CPU_CLWB_FLAGS, 0 },
1038 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1039 CPU_AVX512IFMA_FLAGS, 0 },
1040 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1041 CPU_AVX512VBMI_FLAGS, 0 },
1042 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1043 CPU_AVX512_4FMAPS_FLAGS, 0 },
1044 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1045 CPU_AVX512_4VNNIW_FLAGS, 0 },
1046 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1047 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1048 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1049 CPU_AVX512_VBMI2_FLAGS, 0 },
1050 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1051 CPU_AVX512_VNNI_FLAGS, 0 },
1052 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1053 CPU_AVX512_BITALG_FLAGS, 0 },
1054 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1055 CPU_CLZERO_FLAGS, 0 },
1056 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1057 CPU_MWAITX_FLAGS, 0 },
1058 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1059 CPU_OSPKE_FLAGS, 0 },
1060 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1061 CPU_RDPID_FLAGS, 0 },
1062 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1063 CPU_PTWRITE_FLAGS, 0 },
1064 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1065 CPU_IBT_FLAGS, 0 },
1066 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1067 CPU_SHSTK_FLAGS, 0 },
1068 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1069 CPU_GFNI_FLAGS, 0 },
1070 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1071 CPU_VAES_FLAGS, 0 },
1072 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1073 CPU_VPCLMULQDQ_FLAGS, 0 },
1074 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1075 CPU_WBNOINVD_FLAGS, 0 },
1076 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1077 CPU_PCONFIG_FLAGS, 0 },
1078 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1079 CPU_WAITPKG_FLAGS, 0 },
1080 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1081 CPU_CLDEMOTE_FLAGS, 0 },
1082 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1083 CPU_MOVDIRI_FLAGS, 0 },
1084 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1085 CPU_MOVDIR64B_FLAGS, 0 },
1086 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1087 CPU_AVX512_BF16_FLAGS, 0 },
1088 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1089 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1090 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1091 CPU_ENQCMD_FLAGS, 0 },
1092 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1093 CPU_RDPRU_FLAGS, 0 },
1094 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1095 CPU_MCOMMIT_FLAGS, 0 },
1096 };
1097
1098 static const noarch_entry cpu_noarch[] =
1099 {
1100 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1101 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1102 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1103 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1104 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1105 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1106 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1107 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1108 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1109 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1110 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1111 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1112 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1113 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1114 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1115 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1116 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1117 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1118 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1119 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1120 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1121 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1122 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1123 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1124 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1125 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1126 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1127 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1128 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1129 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1130 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1131 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1132 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1133 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1134 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1135 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1136 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1137 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1138 };
1139
1140 #ifdef I386COFF
1141 /* Like s_lcomm_internal in gas/read.c but the alignment string
1142 is allowed to be optional. */
1143
1144 static symbolS *
1145 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1146 {
1147 addressT align = 0;
1148
1149 SKIP_WHITESPACE ();
1150
1151 if (needs_align
1152 && *input_line_pointer == ',')
1153 {
1154 align = parse_align (needs_align - 1);
1155
1156 if (align == (addressT) -1)
1157 return NULL;
1158 }
1159 else
1160 {
1161 if (size >= 8)
1162 align = 3;
1163 else if (size >= 4)
1164 align = 2;
1165 else if (size >= 2)
1166 align = 1;
1167 else
1168 align = 0;
1169 }
1170
1171 bss_alloc (symbolP, size, align);
1172 return symbolP;
1173 }
1174
1175 static void
1176 pe_lcomm (int needs_align)
1177 {
1178 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1179 }
1180 #endif
1181
1182 const pseudo_typeS md_pseudo_table[] =
1183 {
1184 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1185 {"align", s_align_bytes, 0},
1186 #else
1187 {"align", s_align_ptwo, 0},
1188 #endif
1189 {"arch", set_cpu_arch, 0},
1190 #ifndef I386COFF
1191 {"bss", s_bss, 0},
1192 #else
1193 {"lcomm", pe_lcomm, 1},
1194 #endif
1195 {"ffloat", float_cons, 'f'},
1196 {"dfloat", float_cons, 'd'},
1197 {"tfloat", float_cons, 'x'},
1198 {"value", cons, 2},
1199 {"slong", signed_cons, 4},
1200 {"noopt", s_ignore, 0},
1201 {"optim", s_ignore, 0},
1202 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1203 {"code16", set_code_flag, CODE_16BIT},
1204 {"code32", set_code_flag, CODE_32BIT},
1205 #ifdef BFD64
1206 {"code64", set_code_flag, CODE_64BIT},
1207 #endif
1208 {"intel_syntax", set_intel_syntax, 1},
1209 {"att_syntax", set_intel_syntax, 0},
1210 {"intel_mnemonic", set_intel_mnemonic, 1},
1211 {"att_mnemonic", set_intel_mnemonic, 0},
1212 {"allow_index_reg", set_allow_index_reg, 1},
1213 {"disallow_index_reg", set_allow_index_reg, 0},
1214 {"sse_check", set_check, 0},
1215 {"operand_check", set_check, 1},
1216 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1217 {"largecomm", handle_large_common, 0},
1218 #else
1219 {"file", dwarf2_directive_file, 0},
1220 {"loc", dwarf2_directive_loc, 0},
1221 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1222 #endif
1223 #ifdef TE_PE
1224 {"secrel32", pe_directive_secrel, 0},
1225 #endif
1226 {0, 0, 0}
1227 };
1228
1229 /* For interface with expression (). */
1230 extern char *input_line_pointer;
1231
1232 /* Hash table for instruction mnemonic lookup. */
1233 static struct hash_control *op_hash;
1234
1235 /* Hash table for register lookup. */
1236 static struct hash_control *reg_hash;
1237 \f
1238 /* Various efficient no-op patterns for aligning code labels.
1239 Note: Don't try to assemble the instructions in the comments.
1240 0L and 0w are not legal. */
1241 static const unsigned char f32_1[] =
1242 {0x90}; /* nop */
1243 static const unsigned char f32_2[] =
1244 {0x66,0x90}; /* xchg %ax,%ax */
1245 static const unsigned char f32_3[] =
1246 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1247 static const unsigned char f32_4[] =
1248 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1249 static const unsigned char f32_6[] =
1250 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1251 static const unsigned char f32_7[] =
1252 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1253 static const unsigned char f16_3[] =
1254 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1255 static const unsigned char f16_4[] =
1256 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1257 static const unsigned char jump_disp8[] =
1258 {0xeb}; /* jmp disp8 */
1259 static const unsigned char jump32_disp32[] =
1260 {0xe9}; /* jmp disp32 */
1261 static const unsigned char jump16_disp32[] =
1262 {0x66,0xe9}; /* jmp disp32 */
1263 /* 32-bit NOPs patterns. */
1264 static const unsigned char *const f32_patt[] = {
1265 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1266 };
1267 /* 16-bit NOPs patterns. */
1268 static const unsigned char *const f16_patt[] = {
1269 f32_1, f32_2, f16_3, f16_4
1270 };
1271 /* nopl (%[re]ax) */
1272 static const unsigned char alt_3[] =
1273 {0x0f,0x1f,0x00};
1274 /* nopl 0(%[re]ax) */
1275 static const unsigned char alt_4[] =
1276 {0x0f,0x1f,0x40,0x00};
1277 /* nopl 0(%[re]ax,%[re]ax,1) */
1278 static const unsigned char alt_5[] =
1279 {0x0f,0x1f,0x44,0x00,0x00};
1280 /* nopw 0(%[re]ax,%[re]ax,1) */
1281 static const unsigned char alt_6[] =
1282 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1283 /* nopl 0L(%[re]ax) */
1284 static const unsigned char alt_7[] =
1285 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1286 /* nopl 0L(%[re]ax,%[re]ax,1) */
1287 static const unsigned char alt_8[] =
1288 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1289 /* nopw 0L(%[re]ax,%[re]ax,1) */
1290 static const unsigned char alt_9[] =
1291 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1292 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1293 static const unsigned char alt_10[] =
1294 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1295 /* data16 nopw %cs:0L(%eax,%eax,1) */
1296 static const unsigned char alt_11[] =
1297 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1298 /* 32-bit and 64-bit NOPs patterns. */
1299 static const unsigned char *const alt_patt[] = {
1300 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1301 alt_9, alt_10, alt_11
1302 };
1303
1304 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1305 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1306
1307 static void
1308 i386_output_nops (char *where, const unsigned char *const *patt,
1309 int count, int max_single_nop_size)
1310
1311 {
1312 /* Place the longer NOP first. */
1313 int last;
1314 int offset;
1315 const unsigned char *nops;
1316
1317 if (max_single_nop_size < 1)
1318 {
1319 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1320 max_single_nop_size);
1321 return;
1322 }
1323
1324 nops = patt[max_single_nop_size - 1];
1325
1326 /* Use the smaller one if the requsted one isn't available. */
1327 if (nops == NULL)
1328 {
1329 max_single_nop_size--;
1330 nops = patt[max_single_nop_size - 1];
1331 }
1332
1333 last = count % max_single_nop_size;
1334
1335 count -= last;
1336 for (offset = 0; offset < count; offset += max_single_nop_size)
1337 memcpy (where + offset, nops, max_single_nop_size);
1338
1339 if (last)
1340 {
1341 nops = patt[last - 1];
1342 if (nops == NULL)
1343 {
1344 /* Use the smaller one plus one-byte NOP if the needed one
1345 isn't available. */
1346 last--;
1347 nops = patt[last - 1];
1348 memcpy (where + offset, nops, last);
1349 where[offset + last] = *patt[0];
1350 }
1351 else
1352 memcpy (where + offset, nops, last);
1353 }
1354 }
1355
1356 static INLINE int
1357 fits_in_imm7 (offsetT num)
1358 {
1359 return (num & 0x7f) == num;
1360 }
1361
1362 static INLINE int
1363 fits_in_imm31 (offsetT num)
1364 {
1365 return (num & 0x7fffffff) == num;
1366 }
1367
1368 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1369 single NOP instruction LIMIT. */
1370
1371 void
1372 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1373 {
1374 const unsigned char *const *patt = NULL;
1375 int max_single_nop_size;
1376 /* Maximum number of NOPs before switching to jump over NOPs. */
1377 int max_number_of_nops;
1378
1379 switch (fragP->fr_type)
1380 {
1381 case rs_fill_nop:
1382 case rs_align_code:
1383 break;
1384 default:
1385 return;
1386 }
1387
1388 /* We need to decide which NOP sequence to use for 32bit and
1389 64bit. When -mtune= is used:
1390
1391 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1392 PROCESSOR_GENERIC32, f32_patt will be used.
1393 2. For the rest, alt_patt will be used.
1394
1395 When -mtune= isn't used, alt_patt will be used if
1396 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1397 be used.
1398
1399 When -march= or .arch is used, we can't use anything beyond
1400 cpu_arch_isa_flags. */
1401
1402 if (flag_code == CODE_16BIT)
1403 {
1404 patt = f16_patt;
1405 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1406 /* Limit number of NOPs to 2 in 16-bit mode. */
1407 max_number_of_nops = 2;
1408 }
1409 else
1410 {
1411 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1412 {
1413 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1414 switch (cpu_arch_tune)
1415 {
1416 case PROCESSOR_UNKNOWN:
1417 /* We use cpu_arch_isa_flags to check if we SHOULD
1418 optimize with nops. */
1419 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1420 patt = alt_patt;
1421 else
1422 patt = f32_patt;
1423 break;
1424 case PROCESSOR_PENTIUM4:
1425 case PROCESSOR_NOCONA:
1426 case PROCESSOR_CORE:
1427 case PROCESSOR_CORE2:
1428 case PROCESSOR_COREI7:
1429 case PROCESSOR_L1OM:
1430 case PROCESSOR_K1OM:
1431 case PROCESSOR_GENERIC64:
1432 case PROCESSOR_K6:
1433 case PROCESSOR_ATHLON:
1434 case PROCESSOR_K8:
1435 case PROCESSOR_AMDFAM10:
1436 case PROCESSOR_BD:
1437 case PROCESSOR_ZNVER:
1438 case PROCESSOR_BT:
1439 patt = alt_patt;
1440 break;
1441 case PROCESSOR_I386:
1442 case PROCESSOR_I486:
1443 case PROCESSOR_PENTIUM:
1444 case PROCESSOR_PENTIUMPRO:
1445 case PROCESSOR_IAMCU:
1446 case PROCESSOR_GENERIC32:
1447 patt = f32_patt;
1448 break;
1449 }
1450 }
1451 else
1452 {
1453 switch (fragP->tc_frag_data.tune)
1454 {
1455 case PROCESSOR_UNKNOWN:
1456 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1457 PROCESSOR_UNKNOWN. */
1458 abort ();
1459 break;
1460
1461 case PROCESSOR_I386:
1462 case PROCESSOR_I486:
1463 case PROCESSOR_PENTIUM:
1464 case PROCESSOR_IAMCU:
1465 case PROCESSOR_K6:
1466 case PROCESSOR_ATHLON:
1467 case PROCESSOR_K8:
1468 case PROCESSOR_AMDFAM10:
1469 case PROCESSOR_BD:
1470 case PROCESSOR_ZNVER:
1471 case PROCESSOR_BT:
1472 case PROCESSOR_GENERIC32:
1473 /* We use cpu_arch_isa_flags to check if we CAN optimize
1474 with nops. */
1475 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1476 patt = alt_patt;
1477 else
1478 patt = f32_patt;
1479 break;
1480 case PROCESSOR_PENTIUMPRO:
1481 case PROCESSOR_PENTIUM4:
1482 case PROCESSOR_NOCONA:
1483 case PROCESSOR_CORE:
1484 case PROCESSOR_CORE2:
1485 case PROCESSOR_COREI7:
1486 case PROCESSOR_L1OM:
1487 case PROCESSOR_K1OM:
1488 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1489 patt = alt_patt;
1490 else
1491 patt = f32_patt;
1492 break;
1493 case PROCESSOR_GENERIC64:
1494 patt = alt_patt;
1495 break;
1496 }
1497 }
1498
1499 if (patt == f32_patt)
1500 {
1501 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1502 /* Limit number of NOPs to 2 for older processors. */
1503 max_number_of_nops = 2;
1504 }
1505 else
1506 {
1507 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1508 /* Limit number of NOPs to 7 for newer processors. */
1509 max_number_of_nops = 7;
1510 }
1511 }
1512
1513 if (limit == 0)
1514 limit = max_single_nop_size;
1515
1516 if (fragP->fr_type == rs_fill_nop)
1517 {
1518 /* Output NOPs for .nop directive. */
1519 if (limit > max_single_nop_size)
1520 {
1521 as_bad_where (fragP->fr_file, fragP->fr_line,
1522 _("invalid single nop size: %d "
1523 "(expect within [0, %d])"),
1524 limit, max_single_nop_size);
1525 return;
1526 }
1527 }
1528 else
1529 fragP->fr_var = count;
1530
1531 if ((count / max_single_nop_size) > max_number_of_nops)
1532 {
1533 /* Generate jump over NOPs. */
1534 offsetT disp = count - 2;
1535 if (fits_in_imm7 (disp))
1536 {
1537 /* Use "jmp disp8" if possible. */
1538 count = disp;
1539 where[0] = jump_disp8[0];
1540 where[1] = count;
1541 where += 2;
1542 }
1543 else
1544 {
1545 unsigned int size_of_jump;
1546
1547 if (flag_code == CODE_16BIT)
1548 {
1549 where[0] = jump16_disp32[0];
1550 where[1] = jump16_disp32[1];
1551 size_of_jump = 2;
1552 }
1553 else
1554 {
1555 where[0] = jump32_disp32[0];
1556 size_of_jump = 1;
1557 }
1558
1559 count -= size_of_jump + 4;
1560 if (!fits_in_imm31 (count))
1561 {
1562 as_bad_where (fragP->fr_file, fragP->fr_line,
1563 _("jump over nop padding out of range"));
1564 return;
1565 }
1566
1567 md_number_to_chars (where + size_of_jump, count, 4);
1568 where += size_of_jump + 4;
1569 }
1570 }
1571
1572 /* Generate multiple NOPs. */
1573 i386_output_nops (where, patt, count, limit);
1574 }
1575
1576 static INLINE int
1577 operand_type_all_zero (const union i386_operand_type *x)
1578 {
1579 switch (ARRAY_SIZE(x->array))
1580 {
1581 case 3:
1582 if (x->array[2])
1583 return 0;
1584 /* Fall through. */
1585 case 2:
1586 if (x->array[1])
1587 return 0;
1588 /* Fall through. */
1589 case 1:
1590 return !x->array[0];
1591 default:
1592 abort ();
1593 }
1594 }
1595
1596 static INLINE void
1597 operand_type_set (union i386_operand_type *x, unsigned int v)
1598 {
1599 switch (ARRAY_SIZE(x->array))
1600 {
1601 case 3:
1602 x->array[2] = v;
1603 /* Fall through. */
1604 case 2:
1605 x->array[1] = v;
1606 /* Fall through. */
1607 case 1:
1608 x->array[0] = v;
1609 /* Fall through. */
1610 break;
1611 default:
1612 abort ();
1613 }
1614
1615 x->bitfield.class = ClassNone;
1616 }
1617
1618 static INLINE int
1619 operand_type_equal (const union i386_operand_type *x,
1620 const union i386_operand_type *y)
1621 {
1622 switch (ARRAY_SIZE(x->array))
1623 {
1624 case 3:
1625 if (x->array[2] != y->array[2])
1626 return 0;
1627 /* Fall through. */
1628 case 2:
1629 if (x->array[1] != y->array[1])
1630 return 0;
1631 /* Fall through. */
1632 case 1:
1633 return x->array[0] == y->array[0];
1634 break;
1635 default:
1636 abort ();
1637 }
1638 }
1639
1640 static INLINE int
1641 cpu_flags_all_zero (const union i386_cpu_flags *x)
1642 {
1643 switch (ARRAY_SIZE(x->array))
1644 {
1645 case 4:
1646 if (x->array[3])
1647 return 0;
1648 /* Fall through. */
1649 case 3:
1650 if (x->array[2])
1651 return 0;
1652 /* Fall through. */
1653 case 2:
1654 if (x->array[1])
1655 return 0;
1656 /* Fall through. */
1657 case 1:
1658 return !x->array[0];
1659 default:
1660 abort ();
1661 }
1662 }
1663
1664 static INLINE int
1665 cpu_flags_equal (const union i386_cpu_flags *x,
1666 const union i386_cpu_flags *y)
1667 {
1668 switch (ARRAY_SIZE(x->array))
1669 {
1670 case 4:
1671 if (x->array[3] != y->array[3])
1672 return 0;
1673 /* Fall through. */
1674 case 3:
1675 if (x->array[2] != y->array[2])
1676 return 0;
1677 /* Fall through. */
1678 case 2:
1679 if (x->array[1] != y->array[1])
1680 return 0;
1681 /* Fall through. */
1682 case 1:
1683 return x->array[0] == y->array[0];
1684 break;
1685 default:
1686 abort ();
1687 }
1688 }
1689
1690 static INLINE int
1691 cpu_flags_check_cpu64 (i386_cpu_flags f)
1692 {
1693 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1694 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1695 }
1696
1697 static INLINE i386_cpu_flags
1698 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1699 {
1700 switch (ARRAY_SIZE (x.array))
1701 {
1702 case 4:
1703 x.array [3] &= y.array [3];
1704 /* Fall through. */
1705 case 3:
1706 x.array [2] &= y.array [2];
1707 /* Fall through. */
1708 case 2:
1709 x.array [1] &= y.array [1];
1710 /* Fall through. */
1711 case 1:
1712 x.array [0] &= y.array [0];
1713 break;
1714 default:
1715 abort ();
1716 }
1717 return x;
1718 }
1719
1720 static INLINE i386_cpu_flags
1721 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1722 {
1723 switch (ARRAY_SIZE (x.array))
1724 {
1725 case 4:
1726 x.array [3] |= y.array [3];
1727 /* Fall through. */
1728 case 3:
1729 x.array [2] |= y.array [2];
1730 /* Fall through. */
1731 case 2:
1732 x.array [1] |= y.array [1];
1733 /* Fall through. */
1734 case 1:
1735 x.array [0] |= y.array [0];
1736 break;
1737 default:
1738 abort ();
1739 }
1740 return x;
1741 }
1742
1743 static INLINE i386_cpu_flags
1744 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1745 {
1746 switch (ARRAY_SIZE (x.array))
1747 {
1748 case 4:
1749 x.array [3] &= ~y.array [3];
1750 /* Fall through. */
1751 case 3:
1752 x.array [2] &= ~y.array [2];
1753 /* Fall through. */
1754 case 2:
1755 x.array [1] &= ~y.array [1];
1756 /* Fall through. */
1757 case 1:
1758 x.array [0] &= ~y.array [0];
1759 break;
1760 default:
1761 abort ();
1762 }
1763 return x;
1764 }
1765
1766 #define CPU_FLAGS_ARCH_MATCH 0x1
1767 #define CPU_FLAGS_64BIT_MATCH 0x2
1768
1769 #define CPU_FLAGS_PERFECT_MATCH \
1770 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1771
1772 /* Return CPU flags match bits. */
1773
1774 static int
1775 cpu_flags_match (const insn_template *t)
1776 {
1777 i386_cpu_flags x = t->cpu_flags;
1778 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1779
1780 x.bitfield.cpu64 = 0;
1781 x.bitfield.cpuno64 = 0;
1782
1783 if (cpu_flags_all_zero (&x))
1784 {
1785 /* This instruction is available on all archs. */
1786 match |= CPU_FLAGS_ARCH_MATCH;
1787 }
1788 else
1789 {
1790 /* This instruction is available only on some archs. */
1791 i386_cpu_flags cpu = cpu_arch_flags;
1792
1793 /* AVX512VL is no standalone feature - match it and then strip it. */
1794 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1795 return match;
1796 x.bitfield.cpuavx512vl = 0;
1797
1798 cpu = cpu_flags_and (x, cpu);
1799 if (!cpu_flags_all_zero (&cpu))
1800 {
1801 if (x.bitfield.cpuavx)
1802 {
1803 /* We need to check a few extra flags with AVX. */
1804 if (cpu.bitfield.cpuavx
1805 && (!t->opcode_modifier.sse2avx || sse2avx)
1806 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1807 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1808 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1809 match |= CPU_FLAGS_ARCH_MATCH;
1810 }
1811 else if (x.bitfield.cpuavx512f)
1812 {
1813 /* We need to check a few extra flags with AVX512F. */
1814 if (cpu.bitfield.cpuavx512f
1815 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1816 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1817 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1818 match |= CPU_FLAGS_ARCH_MATCH;
1819 }
1820 else
1821 match |= CPU_FLAGS_ARCH_MATCH;
1822 }
1823 }
1824 return match;
1825 }
1826
1827 static INLINE i386_operand_type
1828 operand_type_and (i386_operand_type x, i386_operand_type y)
1829 {
1830 if (x.bitfield.class != y.bitfield.class)
1831 x.bitfield.class = ClassNone;
1832
1833 switch (ARRAY_SIZE (x.array))
1834 {
1835 case 3:
1836 x.array [2] &= y.array [2];
1837 /* Fall through. */
1838 case 2:
1839 x.array [1] &= y.array [1];
1840 /* Fall through. */
1841 case 1:
1842 x.array [0] &= y.array [0];
1843 break;
1844 default:
1845 abort ();
1846 }
1847 return x;
1848 }
1849
1850 static INLINE i386_operand_type
1851 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1852 {
1853 gas_assert (y.bitfield.class == ClassNone);
1854
1855 switch (ARRAY_SIZE (x.array))
1856 {
1857 case 3:
1858 x.array [2] &= ~y.array [2];
1859 /* Fall through. */
1860 case 2:
1861 x.array [1] &= ~y.array [1];
1862 /* Fall through. */
1863 case 1:
1864 x.array [0] &= ~y.array [0];
1865 break;
1866 default:
1867 abort ();
1868 }
1869 return x;
1870 }
1871
1872 static INLINE i386_operand_type
1873 operand_type_or (i386_operand_type x, i386_operand_type y)
1874 {
1875 gas_assert (x.bitfield.class == ClassNone ||
1876 y.bitfield.class == ClassNone ||
1877 x.bitfield.class == y.bitfield.class);
1878
1879 switch (ARRAY_SIZE (x.array))
1880 {
1881 case 3:
1882 x.array [2] |= y.array [2];
1883 /* Fall through. */
1884 case 2:
1885 x.array [1] |= y.array [1];
1886 /* Fall through. */
1887 case 1:
1888 x.array [0] |= y.array [0];
1889 break;
1890 default:
1891 abort ();
1892 }
1893 return x;
1894 }
1895
1896 static INLINE i386_operand_type
1897 operand_type_xor (i386_operand_type x, i386_operand_type y)
1898 {
1899 gas_assert (y.bitfield.class == ClassNone);
1900
1901 switch (ARRAY_SIZE (x.array))
1902 {
1903 case 3:
1904 x.array [2] ^= y.array [2];
1905 /* Fall through. */
1906 case 2:
1907 x.array [1] ^= y.array [1];
1908 /* Fall through. */
1909 case 1:
1910 x.array [0] ^= y.array [0];
1911 break;
1912 default:
1913 abort ();
1914 }
1915 return x;
1916 }
1917
1918 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1919 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1920 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1921 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1922 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
1923 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
1924 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1925 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1926 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1927 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1928 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1929 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1930 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1931 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1932 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1933 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1934 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1935
1936 enum operand_type
1937 {
1938 reg,
1939 imm,
1940 disp,
1941 anymem
1942 };
1943
1944 static INLINE int
1945 operand_type_check (i386_operand_type t, enum operand_type c)
1946 {
1947 switch (c)
1948 {
1949 case reg:
1950 return t.bitfield.class == Reg;
1951
1952 case imm:
1953 return (t.bitfield.imm8
1954 || t.bitfield.imm8s
1955 || t.bitfield.imm16
1956 || t.bitfield.imm32
1957 || t.bitfield.imm32s
1958 || t.bitfield.imm64);
1959
1960 case disp:
1961 return (t.bitfield.disp8
1962 || t.bitfield.disp16
1963 || t.bitfield.disp32
1964 || t.bitfield.disp32s
1965 || t.bitfield.disp64);
1966
1967 case anymem:
1968 return (t.bitfield.disp8
1969 || t.bitfield.disp16
1970 || t.bitfield.disp32
1971 || t.bitfield.disp32s
1972 || t.bitfield.disp64
1973 || t.bitfield.baseindex);
1974
1975 default:
1976 abort ();
1977 }
1978
1979 return 0;
1980 }
1981
1982 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1983 between operand GIVEN and opeand WANTED for instruction template T. */
1984
1985 static INLINE int
1986 match_operand_size (const insn_template *t, unsigned int wanted,
1987 unsigned int given)
1988 {
1989 return !((i.types[given].bitfield.byte
1990 && !t->operand_types[wanted].bitfield.byte)
1991 || (i.types[given].bitfield.word
1992 && !t->operand_types[wanted].bitfield.word)
1993 || (i.types[given].bitfield.dword
1994 && !t->operand_types[wanted].bitfield.dword)
1995 || (i.types[given].bitfield.qword
1996 && !t->operand_types[wanted].bitfield.qword)
1997 || (i.types[given].bitfield.tbyte
1998 && !t->operand_types[wanted].bitfield.tbyte));
1999 }
2000
2001 /* Return 1 if there is no conflict in SIMD register between operand
2002 GIVEN and opeand WANTED for instruction template T. */
2003
2004 static INLINE int
2005 match_simd_size (const insn_template *t, unsigned int wanted,
2006 unsigned int given)
2007 {
2008 return !((i.types[given].bitfield.xmmword
2009 && !t->operand_types[wanted].bitfield.xmmword)
2010 || (i.types[given].bitfield.ymmword
2011 && !t->operand_types[wanted].bitfield.ymmword)
2012 || (i.types[given].bitfield.zmmword
2013 && !t->operand_types[wanted].bitfield.zmmword));
2014 }
2015
2016 /* Return 1 if there is no conflict in any size between operand GIVEN
2017 and opeand WANTED for instruction template T. */
2018
2019 static INLINE int
2020 match_mem_size (const insn_template *t, unsigned int wanted,
2021 unsigned int given)
2022 {
2023 return (match_operand_size (t, wanted, given)
2024 && !((i.types[given].bitfield.unspecified
2025 && !i.broadcast
2026 && !t->operand_types[wanted].bitfield.unspecified)
2027 || (i.types[given].bitfield.fword
2028 && !t->operand_types[wanted].bitfield.fword)
2029 /* For scalar opcode templates to allow register and memory
2030 operands at the same time, some special casing is needed
2031 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2032 down-conversion vpmov*. */
2033 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2034 && !t->opcode_modifier.broadcast
2035 && (t->operand_types[wanted].bitfield.byte
2036 || t->operand_types[wanted].bitfield.word
2037 || t->operand_types[wanted].bitfield.dword
2038 || t->operand_types[wanted].bitfield.qword))
2039 ? (i.types[given].bitfield.xmmword
2040 || i.types[given].bitfield.ymmword
2041 || i.types[given].bitfield.zmmword)
2042 : !match_simd_size(t, wanted, given))));
2043 }
2044
2045 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2046 operands for instruction template T, and it has MATCH_REVERSE set if there
2047 is no size conflict on any operands for the template with operands reversed
2048 (and the template allows for reversing in the first place). */
2049
2050 #define MATCH_STRAIGHT 1
2051 #define MATCH_REVERSE 2
2052
2053 static INLINE unsigned int
2054 operand_size_match (const insn_template *t)
2055 {
2056 unsigned int j, match = MATCH_STRAIGHT;
2057
2058 /* Don't check jump instructions. */
2059 if (t->opcode_modifier.jump
2060 || t->opcode_modifier.jumpbyte
2061 || t->opcode_modifier.jumpdword
2062 || t->opcode_modifier.jumpintersegment)
2063 return match;
2064
2065 /* Check memory and accumulator operand size. */
2066 for (j = 0; j < i.operands; j++)
2067 {
2068 if (i.types[j].bitfield.class != Reg
2069 && i.types[j].bitfield.class != RegSIMD
2070 && t->operand_types[j].bitfield.anysize)
2071 continue;
2072
2073 if (t->operand_types[j].bitfield.class == Reg
2074 && !match_operand_size (t, j, j))
2075 {
2076 match = 0;
2077 break;
2078 }
2079
2080 if (t->operand_types[j].bitfield.class == RegSIMD
2081 && !match_simd_size (t, j, j))
2082 {
2083 match = 0;
2084 break;
2085 }
2086
2087 if (t->operand_types[j].bitfield.acc
2088 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2089 {
2090 match = 0;
2091 break;
2092 }
2093
2094 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2095 {
2096 match = 0;
2097 break;
2098 }
2099 }
2100
2101 if (!t->opcode_modifier.d)
2102 {
2103 mismatch:
2104 if (!match)
2105 i.error = operand_size_mismatch;
2106 return match;
2107 }
2108
2109 /* Check reverse. */
2110 gas_assert (i.operands >= 2 && i.operands <= 3);
2111
2112 for (j = 0; j < i.operands; j++)
2113 {
2114 unsigned int given = i.operands - j - 1;
2115
2116 if (t->operand_types[j].bitfield.class == Reg
2117 && !match_operand_size (t, j, given))
2118 goto mismatch;
2119
2120 if (t->operand_types[j].bitfield.class == RegSIMD
2121 && !match_simd_size (t, j, given))
2122 goto mismatch;
2123
2124 if (t->operand_types[j].bitfield.acc
2125 && (!match_operand_size (t, j, given)
2126 || !match_simd_size (t, j, given)))
2127 goto mismatch;
2128
2129 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2130 goto mismatch;
2131 }
2132
2133 return match | MATCH_REVERSE;
2134 }
2135
2136 static INLINE int
2137 operand_type_match (i386_operand_type overlap,
2138 i386_operand_type given)
2139 {
2140 i386_operand_type temp = overlap;
2141
2142 temp.bitfield.jumpabsolute = 0;
2143 temp.bitfield.unspecified = 0;
2144 temp.bitfield.byte = 0;
2145 temp.bitfield.word = 0;
2146 temp.bitfield.dword = 0;
2147 temp.bitfield.fword = 0;
2148 temp.bitfield.qword = 0;
2149 temp.bitfield.tbyte = 0;
2150 temp.bitfield.xmmword = 0;
2151 temp.bitfield.ymmword = 0;
2152 temp.bitfield.zmmword = 0;
2153 if (operand_type_all_zero (&temp))
2154 goto mismatch;
2155
2156 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2157 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2158 return 1;
2159
2160 mismatch:
2161 i.error = operand_type_mismatch;
2162 return 0;
2163 }
2164
2165 /* If given types g0 and g1 are registers they must be of the same type
2166 unless the expected operand type register overlap is null.
2167 Memory operand size of certain SIMD instructions is also being checked
2168 here. */
2169
2170 static INLINE int
2171 operand_type_register_match (i386_operand_type g0,
2172 i386_operand_type t0,
2173 i386_operand_type g1,
2174 i386_operand_type t1)
2175 {
2176 if (g0.bitfield.class != Reg
2177 && g0.bitfield.class != RegSIMD
2178 && (!operand_type_check (g0, anymem)
2179 || g0.bitfield.unspecified
2180 || t0.bitfield.class != RegSIMD))
2181 return 1;
2182
2183 if (g1.bitfield.class != Reg
2184 && g1.bitfield.class != RegSIMD
2185 && (!operand_type_check (g1, anymem)
2186 || g1.bitfield.unspecified
2187 || t1.bitfield.class != RegSIMD))
2188 return 1;
2189
2190 if (g0.bitfield.byte == g1.bitfield.byte
2191 && g0.bitfield.word == g1.bitfield.word
2192 && g0.bitfield.dword == g1.bitfield.dword
2193 && g0.bitfield.qword == g1.bitfield.qword
2194 && g0.bitfield.xmmword == g1.bitfield.xmmword
2195 && g0.bitfield.ymmword == g1.bitfield.ymmword
2196 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2197 return 1;
2198
2199 if (!(t0.bitfield.byte & t1.bitfield.byte)
2200 && !(t0.bitfield.word & t1.bitfield.word)
2201 && !(t0.bitfield.dword & t1.bitfield.dword)
2202 && !(t0.bitfield.qword & t1.bitfield.qword)
2203 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2204 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2205 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2206 return 1;
2207
2208 i.error = register_type_mismatch;
2209
2210 return 0;
2211 }
2212
2213 static INLINE unsigned int
2214 register_number (const reg_entry *r)
2215 {
2216 unsigned int nr = r->reg_num;
2217
2218 if (r->reg_flags & RegRex)
2219 nr += 8;
2220
2221 if (r->reg_flags & RegVRex)
2222 nr += 16;
2223
2224 return nr;
2225 }
2226
2227 static INLINE unsigned int
2228 mode_from_disp_size (i386_operand_type t)
2229 {
2230 if (t.bitfield.disp8)
2231 return 1;
2232 else if (t.bitfield.disp16
2233 || t.bitfield.disp32
2234 || t.bitfield.disp32s)
2235 return 2;
2236 else
2237 return 0;
2238 }
2239
2240 static INLINE int
2241 fits_in_signed_byte (addressT num)
2242 {
2243 return num + 0x80 <= 0xff;
2244 }
2245
2246 static INLINE int
2247 fits_in_unsigned_byte (addressT num)
2248 {
2249 return num <= 0xff;
2250 }
2251
2252 static INLINE int
2253 fits_in_unsigned_word (addressT num)
2254 {
2255 return num <= 0xffff;
2256 }
2257
2258 static INLINE int
2259 fits_in_signed_word (addressT num)
2260 {
2261 return num + 0x8000 <= 0xffff;
2262 }
2263
2264 static INLINE int
2265 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2266 {
2267 #ifndef BFD64
2268 return 1;
2269 #else
2270 return num + 0x80000000 <= 0xffffffff;
2271 #endif
2272 } /* fits_in_signed_long() */
2273
2274 static INLINE int
2275 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2276 {
2277 #ifndef BFD64
2278 return 1;
2279 #else
2280 return num <= 0xffffffff;
2281 #endif
2282 } /* fits_in_unsigned_long() */
2283
2284 static INLINE int
2285 fits_in_disp8 (offsetT num)
2286 {
2287 int shift = i.memshift;
2288 unsigned int mask;
2289
2290 if (shift == -1)
2291 abort ();
2292
2293 mask = (1 << shift) - 1;
2294
2295 /* Return 0 if NUM isn't properly aligned. */
2296 if ((num & mask))
2297 return 0;
2298
2299 /* Check if NUM will fit in 8bit after shift. */
2300 return fits_in_signed_byte (num >> shift);
2301 }
2302
2303 static INLINE int
2304 fits_in_imm4 (offsetT num)
2305 {
2306 return (num & 0xf) == num;
2307 }
2308
2309 static i386_operand_type
2310 smallest_imm_type (offsetT num)
2311 {
2312 i386_operand_type t;
2313
2314 operand_type_set (&t, 0);
2315 t.bitfield.imm64 = 1;
2316
2317 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2318 {
2319 /* This code is disabled on the 486 because all the Imm1 forms
2320 in the opcode table are slower on the i486. They're the
2321 versions with the implicitly specified single-position
2322 displacement, which has another syntax if you really want to
2323 use that form. */
2324 t.bitfield.imm1 = 1;
2325 t.bitfield.imm8 = 1;
2326 t.bitfield.imm8s = 1;
2327 t.bitfield.imm16 = 1;
2328 t.bitfield.imm32 = 1;
2329 t.bitfield.imm32s = 1;
2330 }
2331 else if (fits_in_signed_byte (num))
2332 {
2333 t.bitfield.imm8 = 1;
2334 t.bitfield.imm8s = 1;
2335 t.bitfield.imm16 = 1;
2336 t.bitfield.imm32 = 1;
2337 t.bitfield.imm32s = 1;
2338 }
2339 else if (fits_in_unsigned_byte (num))
2340 {
2341 t.bitfield.imm8 = 1;
2342 t.bitfield.imm16 = 1;
2343 t.bitfield.imm32 = 1;
2344 t.bitfield.imm32s = 1;
2345 }
2346 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2347 {
2348 t.bitfield.imm16 = 1;
2349 t.bitfield.imm32 = 1;
2350 t.bitfield.imm32s = 1;
2351 }
2352 else if (fits_in_signed_long (num))
2353 {
2354 t.bitfield.imm32 = 1;
2355 t.bitfield.imm32s = 1;
2356 }
2357 else if (fits_in_unsigned_long (num))
2358 t.bitfield.imm32 = 1;
2359
2360 return t;
2361 }
2362
2363 static offsetT
2364 offset_in_range (offsetT val, int size)
2365 {
2366 addressT mask;
2367
2368 switch (size)
2369 {
2370 case 1: mask = ((addressT) 1 << 8) - 1; break;
2371 case 2: mask = ((addressT) 1 << 16) - 1; break;
2372 case 4: mask = ((addressT) 2 << 31) - 1; break;
2373 #ifdef BFD64
2374 case 8: mask = ((addressT) 2 << 63) - 1; break;
2375 #endif
2376 default: abort ();
2377 }
2378
2379 #ifdef BFD64
2380 /* If BFD64, sign extend val for 32bit address mode. */
2381 if (flag_code != CODE_64BIT
2382 || i.prefix[ADDR_PREFIX])
2383 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2384 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2385 #endif
2386
2387 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2388 {
2389 char buf1[40], buf2[40];
2390
2391 sprint_value (buf1, val);
2392 sprint_value (buf2, val & mask);
2393 as_warn (_("%s shortened to %s"), buf1, buf2);
2394 }
2395 return val & mask;
2396 }
2397
2398 enum PREFIX_GROUP
2399 {
2400 PREFIX_EXIST = 0,
2401 PREFIX_LOCK,
2402 PREFIX_REP,
2403 PREFIX_DS,
2404 PREFIX_OTHER
2405 };
2406
2407 /* Returns
2408 a. PREFIX_EXIST if attempting to add a prefix where one from the
2409 same class already exists.
2410 b. PREFIX_LOCK if lock prefix is added.
2411 c. PREFIX_REP if rep/repne prefix is added.
2412 d. PREFIX_DS if ds prefix is added.
2413 e. PREFIX_OTHER if other prefix is added.
2414 */
2415
2416 static enum PREFIX_GROUP
2417 add_prefix (unsigned int prefix)
2418 {
2419 enum PREFIX_GROUP ret = PREFIX_OTHER;
2420 unsigned int q;
2421
2422 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2423 && flag_code == CODE_64BIT)
2424 {
2425 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2426 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2427 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2428 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2429 ret = PREFIX_EXIST;
2430 q = REX_PREFIX;
2431 }
2432 else
2433 {
2434 switch (prefix)
2435 {
2436 default:
2437 abort ();
2438
2439 case DS_PREFIX_OPCODE:
2440 ret = PREFIX_DS;
2441 /* Fall through. */
2442 case CS_PREFIX_OPCODE:
2443 case ES_PREFIX_OPCODE:
2444 case FS_PREFIX_OPCODE:
2445 case GS_PREFIX_OPCODE:
2446 case SS_PREFIX_OPCODE:
2447 q = SEG_PREFIX;
2448 break;
2449
2450 case REPNE_PREFIX_OPCODE:
2451 case REPE_PREFIX_OPCODE:
2452 q = REP_PREFIX;
2453 ret = PREFIX_REP;
2454 break;
2455
2456 case LOCK_PREFIX_OPCODE:
2457 q = LOCK_PREFIX;
2458 ret = PREFIX_LOCK;
2459 break;
2460
2461 case FWAIT_OPCODE:
2462 q = WAIT_PREFIX;
2463 break;
2464
2465 case ADDR_PREFIX_OPCODE:
2466 q = ADDR_PREFIX;
2467 break;
2468
2469 case DATA_PREFIX_OPCODE:
2470 q = DATA_PREFIX;
2471 break;
2472 }
2473 if (i.prefix[q] != 0)
2474 ret = PREFIX_EXIST;
2475 }
2476
2477 if (ret)
2478 {
2479 if (!i.prefix[q])
2480 ++i.prefixes;
2481 i.prefix[q] |= prefix;
2482 }
2483 else
2484 as_bad (_("same type of prefix used twice"));
2485
2486 return ret;
2487 }
2488
2489 static void
2490 update_code_flag (int value, int check)
2491 {
2492 PRINTF_LIKE ((*as_error));
2493
2494 flag_code = (enum flag_code) value;
2495 if (flag_code == CODE_64BIT)
2496 {
2497 cpu_arch_flags.bitfield.cpu64 = 1;
2498 cpu_arch_flags.bitfield.cpuno64 = 0;
2499 }
2500 else
2501 {
2502 cpu_arch_flags.bitfield.cpu64 = 0;
2503 cpu_arch_flags.bitfield.cpuno64 = 1;
2504 }
2505 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2506 {
2507 if (check)
2508 as_error = as_fatal;
2509 else
2510 as_error = as_bad;
2511 (*as_error) (_("64bit mode not supported on `%s'."),
2512 cpu_arch_name ? cpu_arch_name : default_arch);
2513 }
2514 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2515 {
2516 if (check)
2517 as_error = as_fatal;
2518 else
2519 as_error = as_bad;
2520 (*as_error) (_("32bit mode not supported on `%s'."),
2521 cpu_arch_name ? cpu_arch_name : default_arch);
2522 }
2523 stackop_size = '\0';
2524 }
2525
2526 static void
2527 set_code_flag (int value)
2528 {
2529 update_code_flag (value, 0);
2530 }
2531
2532 static void
2533 set_16bit_gcc_code_flag (int new_code_flag)
2534 {
2535 flag_code = (enum flag_code) new_code_flag;
2536 if (flag_code != CODE_16BIT)
2537 abort ();
2538 cpu_arch_flags.bitfield.cpu64 = 0;
2539 cpu_arch_flags.bitfield.cpuno64 = 1;
2540 stackop_size = LONG_MNEM_SUFFIX;
2541 }
2542
2543 static void
2544 set_intel_syntax (int syntax_flag)
2545 {
2546 /* Find out if register prefixing is specified. */
2547 int ask_naked_reg = 0;
2548
2549 SKIP_WHITESPACE ();
2550 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2551 {
2552 char *string;
2553 int e = get_symbol_name (&string);
2554
2555 if (strcmp (string, "prefix") == 0)
2556 ask_naked_reg = 1;
2557 else if (strcmp (string, "noprefix") == 0)
2558 ask_naked_reg = -1;
2559 else
2560 as_bad (_("bad argument to syntax directive."));
2561 (void) restore_line_pointer (e);
2562 }
2563 demand_empty_rest_of_line ();
2564
2565 intel_syntax = syntax_flag;
2566
2567 if (ask_naked_reg == 0)
2568 allow_naked_reg = (intel_syntax
2569 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2570 else
2571 allow_naked_reg = (ask_naked_reg < 0);
2572
2573 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2574
2575 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2576 identifier_chars['$'] = intel_syntax ? '$' : 0;
2577 register_prefix = allow_naked_reg ? "" : "%";
2578 }
2579
2580 static void
2581 set_intel_mnemonic (int mnemonic_flag)
2582 {
2583 intel_mnemonic = mnemonic_flag;
2584 }
2585
2586 static void
2587 set_allow_index_reg (int flag)
2588 {
2589 allow_index_reg = flag;
2590 }
2591
2592 static void
2593 set_check (int what)
2594 {
2595 enum check_kind *kind;
2596 const char *str;
2597
2598 if (what)
2599 {
2600 kind = &operand_check;
2601 str = "operand";
2602 }
2603 else
2604 {
2605 kind = &sse_check;
2606 str = "sse";
2607 }
2608
2609 SKIP_WHITESPACE ();
2610
2611 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2612 {
2613 char *string;
2614 int e = get_symbol_name (&string);
2615
2616 if (strcmp (string, "none") == 0)
2617 *kind = check_none;
2618 else if (strcmp (string, "warning") == 0)
2619 *kind = check_warning;
2620 else if (strcmp (string, "error") == 0)
2621 *kind = check_error;
2622 else
2623 as_bad (_("bad argument to %s_check directive."), str);
2624 (void) restore_line_pointer (e);
2625 }
2626 else
2627 as_bad (_("missing argument for %s_check directive"), str);
2628
2629 demand_empty_rest_of_line ();
2630 }
2631
2632 static void
2633 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2634 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2635 {
2636 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2637 static const char *arch;
2638
2639 /* Intel LIOM is only supported on ELF. */
2640 if (!IS_ELF)
2641 return;
2642
2643 if (!arch)
2644 {
2645 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2646 use default_arch. */
2647 arch = cpu_arch_name;
2648 if (!arch)
2649 arch = default_arch;
2650 }
2651
2652 /* If we are targeting Intel MCU, we must enable it. */
2653 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2654 || new_flag.bitfield.cpuiamcu)
2655 return;
2656
2657 /* If we are targeting Intel L1OM, we must enable it. */
2658 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2659 || new_flag.bitfield.cpul1om)
2660 return;
2661
2662 /* If we are targeting Intel K1OM, we must enable it. */
2663 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2664 || new_flag.bitfield.cpuk1om)
2665 return;
2666
2667 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2668 #endif
2669 }
2670
2671 static void
2672 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2673 {
2674 SKIP_WHITESPACE ();
2675
2676 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2677 {
2678 char *string;
2679 int e = get_symbol_name (&string);
2680 unsigned int j;
2681 i386_cpu_flags flags;
2682
2683 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2684 {
2685 if (strcmp (string, cpu_arch[j].name) == 0)
2686 {
2687 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2688
2689 if (*string != '.')
2690 {
2691 cpu_arch_name = cpu_arch[j].name;
2692 cpu_sub_arch_name = NULL;
2693 cpu_arch_flags = cpu_arch[j].flags;
2694 if (flag_code == CODE_64BIT)
2695 {
2696 cpu_arch_flags.bitfield.cpu64 = 1;
2697 cpu_arch_flags.bitfield.cpuno64 = 0;
2698 }
2699 else
2700 {
2701 cpu_arch_flags.bitfield.cpu64 = 0;
2702 cpu_arch_flags.bitfield.cpuno64 = 1;
2703 }
2704 cpu_arch_isa = cpu_arch[j].type;
2705 cpu_arch_isa_flags = cpu_arch[j].flags;
2706 if (!cpu_arch_tune_set)
2707 {
2708 cpu_arch_tune = cpu_arch_isa;
2709 cpu_arch_tune_flags = cpu_arch_isa_flags;
2710 }
2711 break;
2712 }
2713
2714 flags = cpu_flags_or (cpu_arch_flags,
2715 cpu_arch[j].flags);
2716
2717 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2718 {
2719 if (cpu_sub_arch_name)
2720 {
2721 char *name = cpu_sub_arch_name;
2722 cpu_sub_arch_name = concat (name,
2723 cpu_arch[j].name,
2724 (const char *) NULL);
2725 free (name);
2726 }
2727 else
2728 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2729 cpu_arch_flags = flags;
2730 cpu_arch_isa_flags = flags;
2731 }
2732 else
2733 cpu_arch_isa_flags
2734 = cpu_flags_or (cpu_arch_isa_flags,
2735 cpu_arch[j].flags);
2736 (void) restore_line_pointer (e);
2737 demand_empty_rest_of_line ();
2738 return;
2739 }
2740 }
2741
2742 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2743 {
2744 /* Disable an ISA extension. */
2745 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2746 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2747 {
2748 flags = cpu_flags_and_not (cpu_arch_flags,
2749 cpu_noarch[j].flags);
2750 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2751 {
2752 if (cpu_sub_arch_name)
2753 {
2754 char *name = cpu_sub_arch_name;
2755 cpu_sub_arch_name = concat (name, string,
2756 (const char *) NULL);
2757 free (name);
2758 }
2759 else
2760 cpu_sub_arch_name = xstrdup (string);
2761 cpu_arch_flags = flags;
2762 cpu_arch_isa_flags = flags;
2763 }
2764 (void) restore_line_pointer (e);
2765 demand_empty_rest_of_line ();
2766 return;
2767 }
2768
2769 j = ARRAY_SIZE (cpu_arch);
2770 }
2771
2772 if (j >= ARRAY_SIZE (cpu_arch))
2773 as_bad (_("no such architecture: `%s'"), string);
2774
2775 *input_line_pointer = e;
2776 }
2777 else
2778 as_bad (_("missing cpu architecture"));
2779
2780 no_cond_jump_promotion = 0;
2781 if (*input_line_pointer == ','
2782 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2783 {
2784 char *string;
2785 char e;
2786
2787 ++input_line_pointer;
2788 e = get_symbol_name (&string);
2789
2790 if (strcmp (string, "nojumps") == 0)
2791 no_cond_jump_promotion = 1;
2792 else if (strcmp (string, "jumps") == 0)
2793 ;
2794 else
2795 as_bad (_("no such architecture modifier: `%s'"), string);
2796
2797 (void) restore_line_pointer (e);
2798 }
2799
2800 demand_empty_rest_of_line ();
2801 }
2802
2803 enum bfd_architecture
2804 i386_arch (void)
2805 {
2806 if (cpu_arch_isa == PROCESSOR_L1OM)
2807 {
2808 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2809 || flag_code != CODE_64BIT)
2810 as_fatal (_("Intel L1OM is 64bit ELF only"));
2811 return bfd_arch_l1om;
2812 }
2813 else if (cpu_arch_isa == PROCESSOR_K1OM)
2814 {
2815 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2816 || flag_code != CODE_64BIT)
2817 as_fatal (_("Intel K1OM is 64bit ELF only"));
2818 return bfd_arch_k1om;
2819 }
2820 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2821 {
2822 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2823 || flag_code == CODE_64BIT)
2824 as_fatal (_("Intel MCU is 32bit ELF only"));
2825 return bfd_arch_iamcu;
2826 }
2827 else
2828 return bfd_arch_i386;
2829 }
2830
2831 unsigned long
2832 i386_mach (void)
2833 {
2834 if (!strncmp (default_arch, "x86_64", 6))
2835 {
2836 if (cpu_arch_isa == PROCESSOR_L1OM)
2837 {
2838 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2839 || default_arch[6] != '\0')
2840 as_fatal (_("Intel L1OM is 64bit ELF only"));
2841 return bfd_mach_l1om;
2842 }
2843 else if (cpu_arch_isa == PROCESSOR_K1OM)
2844 {
2845 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2846 || default_arch[6] != '\0')
2847 as_fatal (_("Intel K1OM is 64bit ELF only"));
2848 return bfd_mach_k1om;
2849 }
2850 else if (default_arch[6] == '\0')
2851 return bfd_mach_x86_64;
2852 else
2853 return bfd_mach_x64_32;
2854 }
2855 else if (!strcmp (default_arch, "i386")
2856 || !strcmp (default_arch, "iamcu"))
2857 {
2858 if (cpu_arch_isa == PROCESSOR_IAMCU)
2859 {
2860 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2861 as_fatal (_("Intel MCU is 32bit ELF only"));
2862 return bfd_mach_i386_iamcu;
2863 }
2864 else
2865 return bfd_mach_i386_i386;
2866 }
2867 else
2868 as_fatal (_("unknown architecture"));
2869 }
2870 \f
2871 void
2872 md_begin (void)
2873 {
2874 const char *hash_err;
2875
2876 /* Support pseudo prefixes like {disp32}. */
2877 lex_type ['{'] = LEX_BEGIN_NAME;
2878
2879 /* Initialize op_hash hash table. */
2880 op_hash = hash_new ();
2881
2882 {
2883 const insn_template *optab;
2884 templates *core_optab;
2885
2886 /* Setup for loop. */
2887 optab = i386_optab;
2888 core_optab = XNEW (templates);
2889 core_optab->start = optab;
2890
2891 while (1)
2892 {
2893 ++optab;
2894 if (optab->name == NULL
2895 || strcmp (optab->name, (optab - 1)->name) != 0)
2896 {
2897 /* different name --> ship out current template list;
2898 add to hash table; & begin anew. */
2899 core_optab->end = optab;
2900 hash_err = hash_insert (op_hash,
2901 (optab - 1)->name,
2902 (void *) core_optab);
2903 if (hash_err)
2904 {
2905 as_fatal (_("can't hash %s: %s"),
2906 (optab - 1)->name,
2907 hash_err);
2908 }
2909 if (optab->name == NULL)
2910 break;
2911 core_optab = XNEW (templates);
2912 core_optab->start = optab;
2913 }
2914 }
2915 }
2916
2917 /* Initialize reg_hash hash table. */
2918 reg_hash = hash_new ();
2919 {
2920 const reg_entry *regtab;
2921 unsigned int regtab_size = i386_regtab_size;
2922
2923 for (regtab = i386_regtab; regtab_size--; regtab++)
2924 {
2925 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2926 if (hash_err)
2927 as_fatal (_("can't hash %s: %s"),
2928 regtab->reg_name,
2929 hash_err);
2930 }
2931 }
2932
2933 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2934 {
2935 int c;
2936 char *p;
2937
2938 for (c = 0; c < 256; c++)
2939 {
2940 if (ISDIGIT (c))
2941 {
2942 digit_chars[c] = c;
2943 mnemonic_chars[c] = c;
2944 register_chars[c] = c;
2945 operand_chars[c] = c;
2946 }
2947 else if (ISLOWER (c))
2948 {
2949 mnemonic_chars[c] = c;
2950 register_chars[c] = c;
2951 operand_chars[c] = c;
2952 }
2953 else if (ISUPPER (c))
2954 {
2955 mnemonic_chars[c] = TOLOWER (c);
2956 register_chars[c] = mnemonic_chars[c];
2957 operand_chars[c] = c;
2958 }
2959 else if (c == '{' || c == '}')
2960 {
2961 mnemonic_chars[c] = c;
2962 operand_chars[c] = c;
2963 }
2964
2965 if (ISALPHA (c) || ISDIGIT (c))
2966 identifier_chars[c] = c;
2967 else if (c >= 128)
2968 {
2969 identifier_chars[c] = c;
2970 operand_chars[c] = c;
2971 }
2972 }
2973
2974 #ifdef LEX_AT
2975 identifier_chars['@'] = '@';
2976 #endif
2977 #ifdef LEX_QM
2978 identifier_chars['?'] = '?';
2979 operand_chars['?'] = '?';
2980 #endif
2981 digit_chars['-'] = '-';
2982 mnemonic_chars['_'] = '_';
2983 mnemonic_chars['-'] = '-';
2984 mnemonic_chars['.'] = '.';
2985 identifier_chars['_'] = '_';
2986 identifier_chars['.'] = '.';
2987
2988 for (p = operand_special_chars; *p != '\0'; p++)
2989 operand_chars[(unsigned char) *p] = *p;
2990 }
2991
2992 if (flag_code == CODE_64BIT)
2993 {
2994 #if defined (OBJ_COFF) && defined (TE_PE)
2995 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2996 ? 32 : 16);
2997 #else
2998 x86_dwarf2_return_column = 16;
2999 #endif
3000 x86_cie_data_alignment = -8;
3001 }
3002 else
3003 {
3004 x86_dwarf2_return_column = 8;
3005 x86_cie_data_alignment = -4;
3006 }
3007 }
3008
3009 void
3010 i386_print_statistics (FILE *file)
3011 {
3012 hash_print_statistics (file, "i386 opcode", op_hash);
3013 hash_print_statistics (file, "i386 register", reg_hash);
3014 }
3015 \f
3016 #ifdef DEBUG386
3017
3018 /* Debugging routines for md_assemble. */
3019 static void pte (insn_template *);
3020 static void pt (i386_operand_type);
3021 static void pe (expressionS *);
3022 static void ps (symbolS *);
3023
3024 static void
3025 pi (const char *line, i386_insn *x)
3026 {
3027 unsigned int j;
3028
3029 fprintf (stdout, "%s: template ", line);
3030 pte (&x->tm);
3031 fprintf (stdout, " address: base %s index %s scale %x\n",
3032 x->base_reg ? x->base_reg->reg_name : "none",
3033 x->index_reg ? x->index_reg->reg_name : "none",
3034 x->log2_scale_factor);
3035 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3036 x->rm.mode, x->rm.reg, x->rm.regmem);
3037 fprintf (stdout, " sib: base %x index %x scale %x\n",
3038 x->sib.base, x->sib.index, x->sib.scale);
3039 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3040 (x->rex & REX_W) != 0,
3041 (x->rex & REX_R) != 0,
3042 (x->rex & REX_X) != 0,
3043 (x->rex & REX_B) != 0);
3044 for (j = 0; j < x->operands; j++)
3045 {
3046 fprintf (stdout, " #%d: ", j + 1);
3047 pt (x->types[j]);
3048 fprintf (stdout, "\n");
3049 if (x->types[j].bitfield.class == Reg
3050 || x->types[j].bitfield.class == RegMMX
3051 || x->types[j].bitfield.class == RegSIMD
3052 || x->types[j].bitfield.class == SReg
3053 || x->types[j].bitfield.class == RegCR
3054 || x->types[j].bitfield.class == RegDR
3055 || x->types[j].bitfield.class == RegTR)
3056 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3057 if (operand_type_check (x->types[j], imm))
3058 pe (x->op[j].imms);
3059 if (operand_type_check (x->types[j], disp))
3060 pe (x->op[j].disps);
3061 }
3062 }
3063
3064 static void
3065 pte (insn_template *t)
3066 {
3067 unsigned int j;
3068 fprintf (stdout, " %d operands ", t->operands);
3069 fprintf (stdout, "opcode %x ", t->base_opcode);
3070 if (t->extension_opcode != None)
3071 fprintf (stdout, "ext %x ", t->extension_opcode);
3072 if (t->opcode_modifier.d)
3073 fprintf (stdout, "D");
3074 if (t->opcode_modifier.w)
3075 fprintf (stdout, "W");
3076 fprintf (stdout, "\n");
3077 for (j = 0; j < t->operands; j++)
3078 {
3079 fprintf (stdout, " #%d type ", j + 1);
3080 pt (t->operand_types[j]);
3081 fprintf (stdout, "\n");
3082 }
3083 }
3084
3085 static void
3086 pe (expressionS *e)
3087 {
3088 fprintf (stdout, " operation %d\n", e->X_op);
3089 fprintf (stdout, " add_number %ld (%lx)\n",
3090 (long) e->X_add_number, (long) e->X_add_number);
3091 if (e->X_add_symbol)
3092 {
3093 fprintf (stdout, " add_symbol ");
3094 ps (e->X_add_symbol);
3095 fprintf (stdout, "\n");
3096 }
3097 if (e->X_op_symbol)
3098 {
3099 fprintf (stdout, " op_symbol ");
3100 ps (e->X_op_symbol);
3101 fprintf (stdout, "\n");
3102 }
3103 }
3104
3105 static void
3106 ps (symbolS *s)
3107 {
3108 fprintf (stdout, "%s type %s%s",
3109 S_GET_NAME (s),
3110 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3111 segment_name (S_GET_SEGMENT (s)));
3112 }
3113
3114 static struct type_name
3115 {
3116 i386_operand_type mask;
3117 const char *name;
3118 }
3119 const type_names[] =
3120 {
3121 { OPERAND_TYPE_REG8, "r8" },
3122 { OPERAND_TYPE_REG16, "r16" },
3123 { OPERAND_TYPE_REG32, "r32" },
3124 { OPERAND_TYPE_REG64, "r64" },
3125 { OPERAND_TYPE_ACC8, "acc8" },
3126 { OPERAND_TYPE_ACC16, "acc16" },
3127 { OPERAND_TYPE_ACC32, "acc32" },
3128 { OPERAND_TYPE_ACC64, "acc64" },
3129 { OPERAND_TYPE_IMM8, "i8" },
3130 { OPERAND_TYPE_IMM8, "i8s" },
3131 { OPERAND_TYPE_IMM16, "i16" },
3132 { OPERAND_TYPE_IMM32, "i32" },
3133 { OPERAND_TYPE_IMM32S, "i32s" },
3134 { OPERAND_TYPE_IMM64, "i64" },
3135 { OPERAND_TYPE_IMM1, "i1" },
3136 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3137 { OPERAND_TYPE_DISP8, "d8" },
3138 { OPERAND_TYPE_DISP16, "d16" },
3139 { OPERAND_TYPE_DISP32, "d32" },
3140 { OPERAND_TYPE_DISP32S, "d32s" },
3141 { OPERAND_TYPE_DISP64, "d64" },
3142 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3143 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3144 { OPERAND_TYPE_CONTROL, "control reg" },
3145 { OPERAND_TYPE_TEST, "test reg" },
3146 { OPERAND_TYPE_DEBUG, "debug reg" },
3147 { OPERAND_TYPE_FLOATREG, "FReg" },
3148 { OPERAND_TYPE_FLOATACC, "FAcc" },
3149 { OPERAND_TYPE_SREG, "SReg" },
3150 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3151 { OPERAND_TYPE_REGMMX, "rMMX" },
3152 { OPERAND_TYPE_REGXMM, "rXMM" },
3153 { OPERAND_TYPE_REGYMM, "rYMM" },
3154 { OPERAND_TYPE_REGZMM, "rZMM" },
3155 { OPERAND_TYPE_REGMASK, "Mask reg" },
3156 { OPERAND_TYPE_ESSEG, "es" },
3157 };
3158
3159 static void
3160 pt (i386_operand_type t)
3161 {
3162 unsigned int j;
3163 i386_operand_type a;
3164
3165 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3166 {
3167 a = operand_type_and (t, type_names[j].mask);
3168 if (operand_type_equal (&a, &type_names[j].mask))
3169 fprintf (stdout, "%s, ", type_names[j].name);
3170 }
3171 fflush (stdout);
3172 }
3173
3174 #endif /* DEBUG386 */
3175 \f
3176 static bfd_reloc_code_real_type
3177 reloc (unsigned int size,
3178 int pcrel,
3179 int sign,
3180 bfd_reloc_code_real_type other)
3181 {
3182 if (other != NO_RELOC)
3183 {
3184 reloc_howto_type *rel;
3185
3186 if (size == 8)
3187 switch (other)
3188 {
3189 case BFD_RELOC_X86_64_GOT32:
3190 return BFD_RELOC_X86_64_GOT64;
3191 break;
3192 case BFD_RELOC_X86_64_GOTPLT64:
3193 return BFD_RELOC_X86_64_GOTPLT64;
3194 break;
3195 case BFD_RELOC_X86_64_PLTOFF64:
3196 return BFD_RELOC_X86_64_PLTOFF64;
3197 break;
3198 case BFD_RELOC_X86_64_GOTPC32:
3199 other = BFD_RELOC_X86_64_GOTPC64;
3200 break;
3201 case BFD_RELOC_X86_64_GOTPCREL:
3202 other = BFD_RELOC_X86_64_GOTPCREL64;
3203 break;
3204 case BFD_RELOC_X86_64_TPOFF32:
3205 other = BFD_RELOC_X86_64_TPOFF64;
3206 break;
3207 case BFD_RELOC_X86_64_DTPOFF32:
3208 other = BFD_RELOC_X86_64_DTPOFF64;
3209 break;
3210 default:
3211 break;
3212 }
3213
3214 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3215 if (other == BFD_RELOC_SIZE32)
3216 {
3217 if (size == 8)
3218 other = BFD_RELOC_SIZE64;
3219 if (pcrel)
3220 {
3221 as_bad (_("there are no pc-relative size relocations"));
3222 return NO_RELOC;
3223 }
3224 }
3225 #endif
3226
3227 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3228 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3229 sign = -1;
3230
3231 rel = bfd_reloc_type_lookup (stdoutput, other);
3232 if (!rel)
3233 as_bad (_("unknown relocation (%u)"), other);
3234 else if (size != bfd_get_reloc_size (rel))
3235 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3236 bfd_get_reloc_size (rel),
3237 size);
3238 else if (pcrel && !rel->pc_relative)
3239 as_bad (_("non-pc-relative relocation for pc-relative field"));
3240 else if ((rel->complain_on_overflow == complain_overflow_signed
3241 && !sign)
3242 || (rel->complain_on_overflow == complain_overflow_unsigned
3243 && sign > 0))
3244 as_bad (_("relocated field and relocation type differ in signedness"));
3245 else
3246 return other;
3247 return NO_RELOC;
3248 }
3249
3250 if (pcrel)
3251 {
3252 if (!sign)
3253 as_bad (_("there are no unsigned pc-relative relocations"));
3254 switch (size)
3255 {
3256 case 1: return BFD_RELOC_8_PCREL;
3257 case 2: return BFD_RELOC_16_PCREL;
3258 case 4: return BFD_RELOC_32_PCREL;
3259 case 8: return BFD_RELOC_64_PCREL;
3260 }
3261 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3262 }
3263 else
3264 {
3265 if (sign > 0)
3266 switch (size)
3267 {
3268 case 4: return BFD_RELOC_X86_64_32S;
3269 }
3270 else
3271 switch (size)
3272 {
3273 case 1: return BFD_RELOC_8;
3274 case 2: return BFD_RELOC_16;
3275 case 4: return BFD_RELOC_32;
3276 case 8: return BFD_RELOC_64;
3277 }
3278 as_bad (_("cannot do %s %u byte relocation"),
3279 sign > 0 ? "signed" : "unsigned", size);
3280 }
3281
3282 return NO_RELOC;
3283 }
3284
3285 /* Here we decide which fixups can be adjusted to make them relative to
3286 the beginning of the section instead of the symbol. Basically we need
3287 to make sure that the dynamic relocations are done correctly, so in
3288 some cases we force the original symbol to be used. */
3289
3290 int
3291 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3292 {
3293 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3294 if (!IS_ELF)
3295 return 1;
3296
3297 /* Don't adjust pc-relative references to merge sections in 64-bit
3298 mode. */
3299 if (use_rela_relocations
3300 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3301 && fixP->fx_pcrel)
3302 return 0;
3303
3304 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3305 and changed later by validate_fix. */
3306 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3307 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3308 return 0;
3309
3310 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3311 for size relocations. */
3312 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3313 || fixP->fx_r_type == BFD_RELOC_SIZE64
3314 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3315 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3316 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3317 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3318 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3319 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3320 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3321 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3322 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3323 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3324 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3325 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3326 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3327 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3328 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3329 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3330 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3331 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3332 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3333 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3334 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3335 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3336 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3337 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3338 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3339 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3340 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3341 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3342 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3343 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3344 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3345 return 0;
3346 #endif
3347 return 1;
3348 }
3349
3350 static int
3351 intel_float_operand (const char *mnemonic)
3352 {
3353 /* Note that the value returned is meaningful only for opcodes with (memory)
3354 operands, hence the code here is free to improperly handle opcodes that
3355 have no operands (for better performance and smaller code). */
3356
3357 if (mnemonic[0] != 'f')
3358 return 0; /* non-math */
3359
3360 switch (mnemonic[1])
3361 {
3362 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3363 the fs segment override prefix not currently handled because no
3364 call path can make opcodes without operands get here */
3365 case 'i':
3366 return 2 /* integer op */;
3367 case 'l':
3368 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3369 return 3; /* fldcw/fldenv */
3370 break;
3371 case 'n':
3372 if (mnemonic[2] != 'o' /* fnop */)
3373 return 3; /* non-waiting control op */
3374 break;
3375 case 'r':
3376 if (mnemonic[2] == 's')
3377 return 3; /* frstor/frstpm */
3378 break;
3379 case 's':
3380 if (mnemonic[2] == 'a')
3381 return 3; /* fsave */
3382 if (mnemonic[2] == 't')
3383 {
3384 switch (mnemonic[3])
3385 {
3386 case 'c': /* fstcw */
3387 case 'd': /* fstdw */
3388 case 'e': /* fstenv */
3389 case 's': /* fsts[gw] */
3390 return 3;
3391 }
3392 }
3393 break;
3394 case 'x':
3395 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3396 return 0; /* fxsave/fxrstor are not really math ops */
3397 break;
3398 }
3399
3400 return 1;
3401 }
3402
3403 /* Build the VEX prefix. */
3404
3405 static void
3406 build_vex_prefix (const insn_template *t)
3407 {
3408 unsigned int register_specifier;
3409 unsigned int implied_prefix;
3410 unsigned int vector_length;
3411 unsigned int w;
3412
3413 /* Check register specifier. */
3414 if (i.vex.register_specifier)
3415 {
3416 register_specifier =
3417 ~register_number (i.vex.register_specifier) & 0xf;
3418 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3419 }
3420 else
3421 register_specifier = 0xf;
3422
3423 /* Use 2-byte VEX prefix by swapping destination and source operand
3424 if there are more than 1 register operand. */
3425 if (i.reg_operands > 1
3426 && i.vec_encoding != vex_encoding_vex3
3427 && i.dir_encoding == dir_encoding_default
3428 && i.operands == i.reg_operands
3429 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3430 && i.tm.opcode_modifier.vexopcode == VEX0F
3431 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3432 && i.rex == REX_B)
3433 {
3434 unsigned int xchg = i.operands - 1;
3435 union i386_op temp_op;
3436 i386_operand_type temp_type;
3437
3438 temp_type = i.types[xchg];
3439 i.types[xchg] = i.types[0];
3440 i.types[0] = temp_type;
3441 temp_op = i.op[xchg];
3442 i.op[xchg] = i.op[0];
3443 i.op[0] = temp_op;
3444
3445 gas_assert (i.rm.mode == 3);
3446
3447 i.rex = REX_R;
3448 xchg = i.rm.regmem;
3449 i.rm.regmem = i.rm.reg;
3450 i.rm.reg = xchg;
3451
3452 if (i.tm.opcode_modifier.d)
3453 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3454 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3455 else /* Use the next insn. */
3456 i.tm = t[1];
3457 }
3458
3459 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3460 are no memory operands and at least 3 register ones. */
3461 if (i.reg_operands >= 3
3462 && i.vec_encoding != vex_encoding_vex3
3463 && i.reg_operands == i.operands - i.imm_operands
3464 && i.tm.opcode_modifier.vex
3465 && i.tm.opcode_modifier.commutative
3466 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3467 && i.rex == REX_B
3468 && i.vex.register_specifier
3469 && !(i.vex.register_specifier->reg_flags & RegRex))
3470 {
3471 unsigned int xchg = i.operands - i.reg_operands;
3472 union i386_op temp_op;
3473 i386_operand_type temp_type;
3474
3475 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3476 gas_assert (!i.tm.opcode_modifier.sae);
3477 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3478 &i.types[i.operands - 3]));
3479 gas_assert (i.rm.mode == 3);
3480
3481 temp_type = i.types[xchg];
3482 i.types[xchg] = i.types[xchg + 1];
3483 i.types[xchg + 1] = temp_type;
3484 temp_op = i.op[xchg];
3485 i.op[xchg] = i.op[xchg + 1];
3486 i.op[xchg + 1] = temp_op;
3487
3488 i.rex = 0;
3489 xchg = i.rm.regmem | 8;
3490 i.rm.regmem = ~register_specifier & 0xf;
3491 gas_assert (!(i.rm.regmem & 8));
3492 i.vex.register_specifier += xchg - i.rm.regmem;
3493 register_specifier = ~xchg & 0xf;
3494 }
3495
3496 if (i.tm.opcode_modifier.vex == VEXScalar)
3497 vector_length = avxscalar;
3498 else if (i.tm.opcode_modifier.vex == VEX256)
3499 vector_length = 1;
3500 else
3501 {
3502 unsigned int op;
3503
3504 /* Determine vector length from the last multi-length vector
3505 operand. */
3506 vector_length = 0;
3507 for (op = t->operands; op--;)
3508 if (t->operand_types[op].bitfield.xmmword
3509 && t->operand_types[op].bitfield.ymmword
3510 && i.types[op].bitfield.ymmword)
3511 {
3512 vector_length = 1;
3513 break;
3514 }
3515 }
3516
3517 switch ((i.tm.base_opcode >> 8) & 0xff)
3518 {
3519 case 0:
3520 implied_prefix = 0;
3521 break;
3522 case DATA_PREFIX_OPCODE:
3523 implied_prefix = 1;
3524 break;
3525 case REPE_PREFIX_OPCODE:
3526 implied_prefix = 2;
3527 break;
3528 case REPNE_PREFIX_OPCODE:
3529 implied_prefix = 3;
3530 break;
3531 default:
3532 abort ();
3533 }
3534
3535 /* Check the REX.W bit and VEXW. */
3536 if (i.tm.opcode_modifier.vexw == VEXWIG)
3537 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3538 else if (i.tm.opcode_modifier.vexw)
3539 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3540 else
3541 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3542
3543 /* Use 2-byte VEX prefix if possible. */
3544 if (w == 0
3545 && i.vec_encoding != vex_encoding_vex3
3546 && i.tm.opcode_modifier.vexopcode == VEX0F
3547 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3548 {
3549 /* 2-byte VEX prefix. */
3550 unsigned int r;
3551
3552 i.vex.length = 2;
3553 i.vex.bytes[0] = 0xc5;
3554
3555 /* Check the REX.R bit. */
3556 r = (i.rex & REX_R) ? 0 : 1;
3557 i.vex.bytes[1] = (r << 7
3558 | register_specifier << 3
3559 | vector_length << 2
3560 | implied_prefix);
3561 }
3562 else
3563 {
3564 /* 3-byte VEX prefix. */
3565 unsigned int m;
3566
3567 i.vex.length = 3;
3568
3569 switch (i.tm.opcode_modifier.vexopcode)
3570 {
3571 case VEX0F:
3572 m = 0x1;
3573 i.vex.bytes[0] = 0xc4;
3574 break;
3575 case VEX0F38:
3576 m = 0x2;
3577 i.vex.bytes[0] = 0xc4;
3578 break;
3579 case VEX0F3A:
3580 m = 0x3;
3581 i.vex.bytes[0] = 0xc4;
3582 break;
3583 case XOP08:
3584 m = 0x8;
3585 i.vex.bytes[0] = 0x8f;
3586 break;
3587 case XOP09:
3588 m = 0x9;
3589 i.vex.bytes[0] = 0x8f;
3590 break;
3591 case XOP0A:
3592 m = 0xa;
3593 i.vex.bytes[0] = 0x8f;
3594 break;
3595 default:
3596 abort ();
3597 }
3598
3599 /* The high 3 bits of the second VEX byte are 1's compliment
3600 of RXB bits from REX. */
3601 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3602
3603 i.vex.bytes[2] = (w << 7
3604 | register_specifier << 3
3605 | vector_length << 2
3606 | implied_prefix);
3607 }
3608 }
3609
3610 static INLINE bfd_boolean
3611 is_evex_encoding (const insn_template *t)
3612 {
3613 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3614 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3615 || t->opcode_modifier.sae;
3616 }
3617
3618 static INLINE bfd_boolean
3619 is_any_vex_encoding (const insn_template *t)
3620 {
3621 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3622 || is_evex_encoding (t);
3623 }
3624
3625 /* Build the EVEX prefix. */
3626
3627 static void
3628 build_evex_prefix (void)
3629 {
3630 unsigned int register_specifier;
3631 unsigned int implied_prefix;
3632 unsigned int m, w;
3633 rex_byte vrex_used = 0;
3634
3635 /* Check register specifier. */
3636 if (i.vex.register_specifier)
3637 {
3638 gas_assert ((i.vrex & REX_X) == 0);
3639
3640 register_specifier = i.vex.register_specifier->reg_num;
3641 if ((i.vex.register_specifier->reg_flags & RegRex))
3642 register_specifier += 8;
3643 /* The upper 16 registers are encoded in the fourth byte of the
3644 EVEX prefix. */
3645 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3646 i.vex.bytes[3] = 0x8;
3647 register_specifier = ~register_specifier & 0xf;
3648 }
3649 else
3650 {
3651 register_specifier = 0xf;
3652
3653 /* Encode upper 16 vector index register in the fourth byte of
3654 the EVEX prefix. */
3655 if (!(i.vrex & REX_X))
3656 i.vex.bytes[3] = 0x8;
3657 else
3658 vrex_used |= REX_X;
3659 }
3660
3661 switch ((i.tm.base_opcode >> 8) & 0xff)
3662 {
3663 case 0:
3664 implied_prefix = 0;
3665 break;
3666 case DATA_PREFIX_OPCODE:
3667 implied_prefix = 1;
3668 break;
3669 case REPE_PREFIX_OPCODE:
3670 implied_prefix = 2;
3671 break;
3672 case REPNE_PREFIX_OPCODE:
3673 implied_prefix = 3;
3674 break;
3675 default:
3676 abort ();
3677 }
3678
3679 /* 4 byte EVEX prefix. */
3680 i.vex.length = 4;
3681 i.vex.bytes[0] = 0x62;
3682
3683 /* mmmm bits. */
3684 switch (i.tm.opcode_modifier.vexopcode)
3685 {
3686 case VEX0F:
3687 m = 1;
3688 break;
3689 case VEX0F38:
3690 m = 2;
3691 break;
3692 case VEX0F3A:
3693 m = 3;
3694 break;
3695 default:
3696 abort ();
3697 break;
3698 }
3699
3700 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3701 bits from REX. */
3702 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3703
3704 /* The fifth bit of the second EVEX byte is 1's compliment of the
3705 REX_R bit in VREX. */
3706 if (!(i.vrex & REX_R))
3707 i.vex.bytes[1] |= 0x10;
3708 else
3709 vrex_used |= REX_R;
3710
3711 if ((i.reg_operands + i.imm_operands) == i.operands)
3712 {
3713 /* When all operands are registers, the REX_X bit in REX is not
3714 used. We reuse it to encode the upper 16 registers, which is
3715 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3716 as 1's compliment. */
3717 if ((i.vrex & REX_B))
3718 {
3719 vrex_used |= REX_B;
3720 i.vex.bytes[1] &= ~0x40;
3721 }
3722 }
3723
3724 /* EVEX instructions shouldn't need the REX prefix. */
3725 i.vrex &= ~vrex_used;
3726 gas_assert (i.vrex == 0);
3727
3728 /* Check the REX.W bit and VEXW. */
3729 if (i.tm.opcode_modifier.vexw == VEXWIG)
3730 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3731 else if (i.tm.opcode_modifier.vexw)
3732 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3733 else
3734 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3735
3736 /* Encode the U bit. */
3737 implied_prefix |= 0x4;
3738
3739 /* The third byte of the EVEX prefix. */
3740 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3741
3742 /* The fourth byte of the EVEX prefix. */
3743 /* The zeroing-masking bit. */
3744 if (i.mask && i.mask->zeroing)
3745 i.vex.bytes[3] |= 0x80;
3746
3747 /* Don't always set the broadcast bit if there is no RC. */
3748 if (!i.rounding)
3749 {
3750 /* Encode the vector length. */
3751 unsigned int vec_length;
3752
3753 if (!i.tm.opcode_modifier.evex
3754 || i.tm.opcode_modifier.evex == EVEXDYN)
3755 {
3756 unsigned int op;
3757
3758 /* Determine vector length from the last multi-length vector
3759 operand. */
3760 vec_length = 0;
3761 for (op = i.operands; op--;)
3762 if (i.tm.operand_types[op].bitfield.xmmword
3763 + i.tm.operand_types[op].bitfield.ymmword
3764 + i.tm.operand_types[op].bitfield.zmmword > 1)
3765 {
3766 if (i.types[op].bitfield.zmmword)
3767 {
3768 i.tm.opcode_modifier.evex = EVEX512;
3769 break;
3770 }
3771 else if (i.types[op].bitfield.ymmword)
3772 {
3773 i.tm.opcode_modifier.evex = EVEX256;
3774 break;
3775 }
3776 else if (i.types[op].bitfield.xmmword)
3777 {
3778 i.tm.opcode_modifier.evex = EVEX128;
3779 break;
3780 }
3781 else if (i.broadcast && (int) op == i.broadcast->operand)
3782 {
3783 switch (i.broadcast->bytes)
3784 {
3785 case 64:
3786 i.tm.opcode_modifier.evex = EVEX512;
3787 break;
3788 case 32:
3789 i.tm.opcode_modifier.evex = EVEX256;
3790 break;
3791 case 16:
3792 i.tm.opcode_modifier.evex = EVEX128;
3793 break;
3794 default:
3795 abort ();
3796 }
3797 break;
3798 }
3799 }
3800
3801 if (op >= MAX_OPERANDS)
3802 abort ();
3803 }
3804
3805 switch (i.tm.opcode_modifier.evex)
3806 {
3807 case EVEXLIG: /* LL' is ignored */
3808 vec_length = evexlig << 5;
3809 break;
3810 case EVEX128:
3811 vec_length = 0 << 5;
3812 break;
3813 case EVEX256:
3814 vec_length = 1 << 5;
3815 break;
3816 case EVEX512:
3817 vec_length = 2 << 5;
3818 break;
3819 default:
3820 abort ();
3821 break;
3822 }
3823 i.vex.bytes[3] |= vec_length;
3824 /* Encode the broadcast bit. */
3825 if (i.broadcast)
3826 i.vex.bytes[3] |= 0x10;
3827 }
3828 else
3829 {
3830 if (i.rounding->type != saeonly)
3831 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3832 else
3833 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3834 }
3835
3836 if (i.mask && i.mask->mask)
3837 i.vex.bytes[3] |= i.mask->mask->reg_num;
3838 }
3839
3840 static void
3841 process_immext (void)
3842 {
3843 expressionS *exp;
3844
3845 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3846 && i.operands > 0)
3847 {
3848 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3849 with an opcode suffix which is coded in the same place as an
3850 8-bit immediate field would be.
3851 Here we check those operands and remove them afterwards. */
3852 unsigned int x;
3853
3854 for (x = 0; x < i.operands; x++)
3855 if (register_number (i.op[x].regs) != x)
3856 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3857 register_prefix, i.op[x].regs->reg_name, x + 1,
3858 i.tm.name);
3859
3860 i.operands = 0;
3861 }
3862
3863 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3864 {
3865 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3866 suffix which is coded in the same place as an 8-bit immediate
3867 field would be.
3868 Here we check those operands and remove them afterwards. */
3869 unsigned int x;
3870
3871 if (i.operands != 3)
3872 abort();
3873
3874 for (x = 0; x < 2; x++)
3875 if (register_number (i.op[x].regs) != x)
3876 goto bad_register_operand;
3877
3878 /* Check for third operand for mwaitx/monitorx insn. */
3879 if (register_number (i.op[x].regs)
3880 != (x + (i.tm.extension_opcode == 0xfb)))
3881 {
3882 bad_register_operand:
3883 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3884 register_prefix, i.op[x].regs->reg_name, x+1,
3885 i.tm.name);
3886 }
3887
3888 i.operands = 0;
3889 }
3890
3891 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3892 which is coded in the same place as an 8-bit immediate field
3893 would be. Here we fake an 8-bit immediate operand from the
3894 opcode suffix stored in tm.extension_opcode.
3895
3896 AVX instructions also use this encoding, for some of
3897 3 argument instructions. */
3898
3899 gas_assert (i.imm_operands <= 1
3900 && (i.operands <= 2
3901 || (is_any_vex_encoding (&i.tm)
3902 && i.operands <= 4)));
3903
3904 exp = &im_expressions[i.imm_operands++];
3905 i.op[i.operands].imms = exp;
3906 i.types[i.operands] = imm8;
3907 i.operands++;
3908 exp->X_op = O_constant;
3909 exp->X_add_number = i.tm.extension_opcode;
3910 i.tm.extension_opcode = None;
3911 }
3912
3913
3914 static int
3915 check_hle (void)
3916 {
3917 switch (i.tm.opcode_modifier.hleprefixok)
3918 {
3919 default:
3920 abort ();
3921 case HLEPrefixNone:
3922 as_bad (_("invalid instruction `%s' after `%s'"),
3923 i.tm.name, i.hle_prefix);
3924 return 0;
3925 case HLEPrefixLock:
3926 if (i.prefix[LOCK_PREFIX])
3927 return 1;
3928 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3929 return 0;
3930 case HLEPrefixAny:
3931 return 1;
3932 case HLEPrefixRelease:
3933 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3934 {
3935 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3936 i.tm.name);
3937 return 0;
3938 }
3939 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3940 {
3941 as_bad (_("memory destination needed for instruction `%s'"
3942 " after `xrelease'"), i.tm.name);
3943 return 0;
3944 }
3945 return 1;
3946 }
3947 }
3948
3949 /* Try the shortest encoding by shortening operand size. */
3950
3951 static void
3952 optimize_encoding (void)
3953 {
3954 unsigned int j;
3955
3956 if (optimize_for_space
3957 && i.reg_operands == 1
3958 && i.imm_operands == 1
3959 && !i.types[1].bitfield.byte
3960 && i.op[0].imms->X_op == O_constant
3961 && fits_in_imm7 (i.op[0].imms->X_add_number)
3962 && ((i.tm.base_opcode == 0xa8
3963 && i.tm.extension_opcode == None)
3964 || (i.tm.base_opcode == 0xf6
3965 && i.tm.extension_opcode == 0x0)))
3966 {
3967 /* Optimize: -Os:
3968 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3969 */
3970 unsigned int base_regnum = i.op[1].regs->reg_num;
3971 if (flag_code == CODE_64BIT || base_regnum < 4)
3972 {
3973 i.types[1].bitfield.byte = 1;
3974 /* Ignore the suffix. */
3975 i.suffix = 0;
3976 if (base_regnum >= 4
3977 && !(i.op[1].regs->reg_flags & RegRex))
3978 {
3979 /* Handle SP, BP, SI and DI registers. */
3980 if (i.types[1].bitfield.word)
3981 j = 16;
3982 else if (i.types[1].bitfield.dword)
3983 j = 32;
3984 else
3985 j = 48;
3986 i.op[1].regs -= j;
3987 }
3988 }
3989 }
3990 else if (flag_code == CODE_64BIT
3991 && ((i.types[1].bitfield.qword
3992 && i.reg_operands == 1
3993 && i.imm_operands == 1
3994 && i.op[0].imms->X_op == O_constant
3995 && ((i.tm.base_opcode == 0xb8
3996 && i.tm.extension_opcode == None
3997 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3998 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3999 && (((i.tm.base_opcode == 0x24
4000 || i.tm.base_opcode == 0xa8)
4001 && i.tm.extension_opcode == None)
4002 || (i.tm.base_opcode == 0x80
4003 && i.tm.extension_opcode == 0x4)
4004 || ((i.tm.base_opcode == 0xf6
4005 || (i.tm.base_opcode | 1) == 0xc7)
4006 && i.tm.extension_opcode == 0x0)))
4007 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4008 && i.tm.base_opcode == 0x83
4009 && i.tm.extension_opcode == 0x4)))
4010 || (i.types[0].bitfield.qword
4011 && ((i.reg_operands == 2
4012 && i.op[0].regs == i.op[1].regs
4013 && ((i.tm.base_opcode == 0x30
4014 || i.tm.base_opcode == 0x28)
4015 && i.tm.extension_opcode == None))
4016 || (i.reg_operands == 1
4017 && i.operands == 1
4018 && i.tm.base_opcode == 0x30
4019 && i.tm.extension_opcode == None)))))
4020 {
4021 /* Optimize: -O:
4022 andq $imm31, %r64 -> andl $imm31, %r32
4023 andq $imm7, %r64 -> andl $imm7, %r32
4024 testq $imm31, %r64 -> testl $imm31, %r32
4025 xorq %r64, %r64 -> xorl %r32, %r32
4026 subq %r64, %r64 -> subl %r32, %r32
4027 movq $imm31, %r64 -> movl $imm31, %r32
4028 movq $imm32, %r64 -> movl $imm32, %r32
4029 */
4030 i.tm.opcode_modifier.norex64 = 1;
4031 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4032 {
4033 /* Handle
4034 movq $imm31, %r64 -> movl $imm31, %r32
4035 movq $imm32, %r64 -> movl $imm32, %r32
4036 */
4037 i.tm.operand_types[0].bitfield.imm32 = 1;
4038 i.tm.operand_types[0].bitfield.imm32s = 0;
4039 i.tm.operand_types[0].bitfield.imm64 = 0;
4040 i.types[0].bitfield.imm32 = 1;
4041 i.types[0].bitfield.imm32s = 0;
4042 i.types[0].bitfield.imm64 = 0;
4043 i.types[1].bitfield.dword = 1;
4044 i.types[1].bitfield.qword = 0;
4045 if ((i.tm.base_opcode | 1) == 0xc7)
4046 {
4047 /* Handle
4048 movq $imm31, %r64 -> movl $imm31, %r32
4049 */
4050 i.tm.base_opcode = 0xb8;
4051 i.tm.extension_opcode = None;
4052 i.tm.opcode_modifier.w = 0;
4053 i.tm.opcode_modifier.shortform = 1;
4054 i.tm.opcode_modifier.modrm = 0;
4055 }
4056 }
4057 }
4058 else if (optimize > 1
4059 && !optimize_for_space
4060 && i.reg_operands == 2
4061 && i.op[0].regs == i.op[1].regs
4062 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4063 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4064 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4065 {
4066 /* Optimize: -O2:
4067 andb %rN, %rN -> testb %rN, %rN
4068 andw %rN, %rN -> testw %rN, %rN
4069 andq %rN, %rN -> testq %rN, %rN
4070 orb %rN, %rN -> testb %rN, %rN
4071 orw %rN, %rN -> testw %rN, %rN
4072 orq %rN, %rN -> testq %rN, %rN
4073
4074 and outside of 64-bit mode
4075
4076 andl %rN, %rN -> testl %rN, %rN
4077 orl %rN, %rN -> testl %rN, %rN
4078 */
4079 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4080 }
4081 else if (i.reg_operands == 3
4082 && i.op[0].regs == i.op[1].regs
4083 && !i.types[2].bitfield.xmmword
4084 && (i.tm.opcode_modifier.vex
4085 || ((!i.mask || i.mask->zeroing)
4086 && !i.rounding
4087 && is_evex_encoding (&i.tm)
4088 && (i.vec_encoding != vex_encoding_evex
4089 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4090 || i.tm.cpu_flags.bitfield.cpuavx512vl
4091 || (i.tm.operand_types[2].bitfield.zmmword
4092 && i.types[2].bitfield.ymmword))))
4093 && ((i.tm.base_opcode == 0x55
4094 || i.tm.base_opcode == 0x6655
4095 || i.tm.base_opcode == 0x66df
4096 || i.tm.base_opcode == 0x57
4097 || i.tm.base_opcode == 0x6657
4098 || i.tm.base_opcode == 0x66ef
4099 || i.tm.base_opcode == 0x66f8
4100 || i.tm.base_opcode == 0x66f9
4101 || i.tm.base_opcode == 0x66fa
4102 || i.tm.base_opcode == 0x66fb
4103 || i.tm.base_opcode == 0x42
4104 || i.tm.base_opcode == 0x6642
4105 || i.tm.base_opcode == 0x47
4106 || i.tm.base_opcode == 0x6647)
4107 && i.tm.extension_opcode == None))
4108 {
4109 /* Optimize: -O1:
4110 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4111 vpsubq and vpsubw:
4112 EVEX VOP %zmmM, %zmmM, %zmmN
4113 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4114 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4115 EVEX VOP %ymmM, %ymmM, %ymmN
4116 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4117 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4118 VEX VOP %ymmM, %ymmM, %ymmN
4119 -> VEX VOP %xmmM, %xmmM, %xmmN
4120 VOP, one of vpandn and vpxor:
4121 VEX VOP %ymmM, %ymmM, %ymmN
4122 -> VEX VOP %xmmM, %xmmM, %xmmN
4123 VOP, one of vpandnd and vpandnq:
4124 EVEX VOP %zmmM, %zmmM, %zmmN
4125 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4126 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4127 EVEX VOP %ymmM, %ymmM, %ymmN
4128 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4129 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4130 VOP, one of vpxord and vpxorq:
4131 EVEX VOP %zmmM, %zmmM, %zmmN
4132 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4133 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4134 EVEX VOP %ymmM, %ymmM, %ymmN
4135 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4136 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4137 VOP, one of kxord and kxorq:
4138 VEX VOP %kM, %kM, %kN
4139 -> VEX kxorw %kM, %kM, %kN
4140 VOP, one of kandnd and kandnq:
4141 VEX VOP %kM, %kM, %kN
4142 -> VEX kandnw %kM, %kM, %kN
4143 */
4144 if (is_evex_encoding (&i.tm))
4145 {
4146 if (i.vec_encoding != vex_encoding_evex)
4147 {
4148 i.tm.opcode_modifier.vex = VEX128;
4149 i.tm.opcode_modifier.vexw = VEXW0;
4150 i.tm.opcode_modifier.evex = 0;
4151 }
4152 else if (optimize > 1)
4153 i.tm.opcode_modifier.evex = EVEX128;
4154 else
4155 return;
4156 }
4157 else if (i.tm.operand_types[0].bitfield.regmask)
4158 {
4159 i.tm.base_opcode &= 0xff;
4160 i.tm.opcode_modifier.vexw = VEXW0;
4161 }
4162 else
4163 i.tm.opcode_modifier.vex = VEX128;
4164
4165 if (i.tm.opcode_modifier.vex)
4166 for (j = 0; j < 3; j++)
4167 {
4168 i.types[j].bitfield.xmmword = 1;
4169 i.types[j].bitfield.ymmword = 0;
4170 }
4171 }
4172 else if (i.vec_encoding != vex_encoding_evex
4173 && !i.types[0].bitfield.zmmword
4174 && !i.types[1].bitfield.zmmword
4175 && !i.mask
4176 && !i.broadcast
4177 && is_evex_encoding (&i.tm)
4178 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4179 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4180 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4181 || (i.tm.base_opcode & ~4) == 0x66db
4182 || (i.tm.base_opcode & ~4) == 0x66eb)
4183 && i.tm.extension_opcode == None)
4184 {
4185 /* Optimize: -O1:
4186 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4187 vmovdqu32 and vmovdqu64:
4188 EVEX VOP %xmmM, %xmmN
4189 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4190 EVEX VOP %ymmM, %ymmN
4191 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4192 EVEX VOP %xmmM, mem
4193 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4194 EVEX VOP %ymmM, mem
4195 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4196 EVEX VOP mem, %xmmN
4197 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4198 EVEX VOP mem, %ymmN
4199 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4200 VOP, one of vpand, vpandn, vpor, vpxor:
4201 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4202 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4203 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4204 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4205 EVEX VOP{d,q} mem, %xmmM, %xmmN
4206 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4207 EVEX VOP{d,q} mem, %ymmM, %ymmN
4208 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4209 */
4210 for (j = 0; j < i.operands; j++)
4211 if (operand_type_check (i.types[j], disp)
4212 && i.op[j].disps->X_op == O_constant)
4213 {
4214 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4215 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4216 bytes, we choose EVEX Disp8 over VEX Disp32. */
4217 int evex_disp8, vex_disp8;
4218 unsigned int memshift = i.memshift;
4219 offsetT n = i.op[j].disps->X_add_number;
4220
4221 evex_disp8 = fits_in_disp8 (n);
4222 i.memshift = 0;
4223 vex_disp8 = fits_in_disp8 (n);
4224 if (evex_disp8 != vex_disp8)
4225 {
4226 i.memshift = memshift;
4227 return;
4228 }
4229
4230 i.types[j].bitfield.disp8 = vex_disp8;
4231 break;
4232 }
4233 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4234 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4235 i.tm.opcode_modifier.vex
4236 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4237 i.tm.opcode_modifier.vexw = VEXW0;
4238 /* VPAND, VPOR, and VPXOR are commutative. */
4239 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4240 i.tm.opcode_modifier.commutative = 1;
4241 i.tm.opcode_modifier.evex = 0;
4242 i.tm.opcode_modifier.masking = 0;
4243 i.tm.opcode_modifier.broadcast = 0;
4244 i.tm.opcode_modifier.disp8memshift = 0;
4245 i.memshift = 0;
4246 if (j < i.operands)
4247 i.types[j].bitfield.disp8
4248 = fits_in_disp8 (i.op[j].disps->X_add_number);
4249 }
4250 }
4251
4252 /* This is the guts of the machine-dependent assembler. LINE points to a
4253 machine dependent instruction. This function is supposed to emit
4254 the frags/bytes it assembles to. */
4255
4256 void
4257 md_assemble (char *line)
4258 {
4259 unsigned int j;
4260 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4261 const insn_template *t;
4262
4263 /* Initialize globals. */
4264 memset (&i, '\0', sizeof (i));
4265 for (j = 0; j < MAX_OPERANDS; j++)
4266 i.reloc[j] = NO_RELOC;
4267 memset (disp_expressions, '\0', sizeof (disp_expressions));
4268 memset (im_expressions, '\0', sizeof (im_expressions));
4269 save_stack_p = save_stack;
4270
4271 /* First parse an instruction mnemonic & call i386_operand for the operands.
4272 We assume that the scrubber has arranged it so that line[0] is the valid
4273 start of a (possibly prefixed) mnemonic. */
4274
4275 line = parse_insn (line, mnemonic);
4276 if (line == NULL)
4277 return;
4278 mnem_suffix = i.suffix;
4279
4280 line = parse_operands (line, mnemonic);
4281 this_operand = -1;
4282 xfree (i.memop1_string);
4283 i.memop1_string = NULL;
4284 if (line == NULL)
4285 return;
4286
4287 /* Now we've parsed the mnemonic into a set of templates, and have the
4288 operands at hand. */
4289
4290 /* All intel opcodes have reversed operands except for "bound" and
4291 "enter". We also don't reverse intersegment "jmp" and "call"
4292 instructions with 2 immediate operands so that the immediate segment
4293 precedes the offset, as it does when in AT&T mode. */
4294 if (intel_syntax
4295 && i.operands > 1
4296 && (strcmp (mnemonic, "bound") != 0)
4297 && (strcmp (mnemonic, "invlpga") != 0)
4298 && !(operand_type_check (i.types[0], imm)
4299 && operand_type_check (i.types[1], imm)))
4300 swap_operands ();
4301
4302 /* The order of the immediates should be reversed
4303 for 2 immediates extrq and insertq instructions */
4304 if (i.imm_operands == 2
4305 && (strcmp (mnemonic, "extrq") == 0
4306 || strcmp (mnemonic, "insertq") == 0))
4307 swap_2_operands (0, 1);
4308
4309 if (i.imm_operands)
4310 optimize_imm ();
4311
4312 /* Don't optimize displacement for movabs since it only takes 64bit
4313 displacement. */
4314 if (i.disp_operands
4315 && i.disp_encoding != disp_encoding_32bit
4316 && (flag_code != CODE_64BIT
4317 || strcmp (mnemonic, "movabs") != 0))
4318 optimize_disp ();
4319
4320 /* Next, we find a template that matches the given insn,
4321 making sure the overlap of the given operands types is consistent
4322 with the template operand types. */
4323
4324 if (!(t = match_template (mnem_suffix)))
4325 return;
4326
4327 if (sse_check != check_none
4328 && !i.tm.opcode_modifier.noavx
4329 && !i.tm.cpu_flags.bitfield.cpuavx
4330 && (i.tm.cpu_flags.bitfield.cpusse
4331 || i.tm.cpu_flags.bitfield.cpusse2
4332 || i.tm.cpu_flags.bitfield.cpusse3
4333 || i.tm.cpu_flags.bitfield.cpussse3
4334 || i.tm.cpu_flags.bitfield.cpusse4_1
4335 || i.tm.cpu_flags.bitfield.cpusse4_2
4336 || i.tm.cpu_flags.bitfield.cpupclmul
4337 || i.tm.cpu_flags.bitfield.cpuaes
4338 || i.tm.cpu_flags.bitfield.cpugfni))
4339 {
4340 (sse_check == check_warning
4341 ? as_warn
4342 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4343 }
4344
4345 /* Zap movzx and movsx suffix. The suffix has been set from
4346 "word ptr" or "byte ptr" on the source operand in Intel syntax
4347 or extracted from mnemonic in AT&T syntax. But we'll use
4348 the destination register to choose the suffix for encoding. */
4349 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4350 {
4351 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4352 there is no suffix, the default will be byte extension. */
4353 if (i.reg_operands != 2
4354 && !i.suffix
4355 && intel_syntax)
4356 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4357
4358 i.suffix = 0;
4359 }
4360
4361 if (i.tm.opcode_modifier.fwait)
4362 if (!add_prefix (FWAIT_OPCODE))
4363 return;
4364
4365 /* Check if REP prefix is OK. */
4366 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4367 {
4368 as_bad (_("invalid instruction `%s' after `%s'"),
4369 i.tm.name, i.rep_prefix);
4370 return;
4371 }
4372
4373 /* Check for lock without a lockable instruction. Destination operand
4374 must be memory unless it is xchg (0x86). */
4375 if (i.prefix[LOCK_PREFIX]
4376 && (!i.tm.opcode_modifier.islockable
4377 || i.mem_operands == 0
4378 || (i.tm.base_opcode != 0x86
4379 && !(i.flags[i.operands - 1] & Operand_Mem))))
4380 {
4381 as_bad (_("expecting lockable instruction after `lock'"));
4382 return;
4383 }
4384
4385 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4386 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4387 {
4388 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4389 return;
4390 }
4391
4392 /* Check if HLE prefix is OK. */
4393 if (i.hle_prefix && !check_hle ())
4394 return;
4395
4396 /* Check BND prefix. */
4397 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4398 as_bad (_("expecting valid branch instruction after `bnd'"));
4399
4400 /* Check NOTRACK prefix. */
4401 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4402 as_bad (_("expecting indirect branch instruction after `notrack'"));
4403
4404 if (i.tm.cpu_flags.bitfield.cpumpx)
4405 {
4406 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4407 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4408 else if (flag_code != CODE_16BIT
4409 ? i.prefix[ADDR_PREFIX]
4410 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4411 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4412 }
4413
4414 /* Insert BND prefix. */
4415 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4416 {
4417 if (!i.prefix[BND_PREFIX])
4418 add_prefix (BND_PREFIX_OPCODE);
4419 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4420 {
4421 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4422 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4423 }
4424 }
4425
4426 /* Check string instruction segment overrides. */
4427 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4428 {
4429 if (!check_string ())
4430 return;
4431 i.disp_operands = 0;
4432 }
4433
4434 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4435 optimize_encoding ();
4436
4437 if (!process_suffix ())
4438 return;
4439
4440 /* Update operand types. */
4441 for (j = 0; j < i.operands; j++)
4442 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4443
4444 /* Make still unresolved immediate matches conform to size of immediate
4445 given in i.suffix. */
4446 if (!finalize_imm ())
4447 return;
4448
4449 if (i.types[0].bitfield.imm1)
4450 i.imm_operands = 0; /* kludge for shift insns. */
4451
4452 /* We only need to check those implicit registers for instructions
4453 with 3 operands or less. */
4454 if (i.operands <= 3)
4455 for (j = 0; j < i.operands; j++)
4456 if (i.types[j].bitfield.inoutportreg
4457 || i.types[j].bitfield.shiftcount
4458 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4459 i.reg_operands--;
4460
4461 /* ImmExt should be processed after SSE2AVX. */
4462 if (!i.tm.opcode_modifier.sse2avx
4463 && i.tm.opcode_modifier.immext)
4464 process_immext ();
4465
4466 /* For insns with operands there are more diddles to do to the opcode. */
4467 if (i.operands)
4468 {
4469 if (!process_operands ())
4470 return;
4471 }
4472 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4473 {
4474 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4475 as_warn (_("translating to `%sp'"), i.tm.name);
4476 }
4477
4478 if (is_any_vex_encoding (&i.tm))
4479 {
4480 if (!cpu_arch_flags.bitfield.cpui286)
4481 {
4482 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4483 i.tm.name);
4484 return;
4485 }
4486
4487 if (i.tm.opcode_modifier.vex)
4488 build_vex_prefix (t);
4489 else
4490 build_evex_prefix ();
4491 }
4492
4493 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4494 instructions may define INT_OPCODE as well, so avoid this corner
4495 case for those instructions that use MODRM. */
4496 if (i.tm.base_opcode == INT_OPCODE
4497 && !i.tm.opcode_modifier.modrm
4498 && i.op[0].imms->X_add_number == 3)
4499 {
4500 i.tm.base_opcode = INT3_OPCODE;
4501 i.imm_operands = 0;
4502 }
4503
4504 if ((i.tm.opcode_modifier.jump
4505 || i.tm.opcode_modifier.jumpbyte
4506 || i.tm.opcode_modifier.jumpdword)
4507 && i.op[0].disps->X_op == O_constant)
4508 {
4509 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4510 the absolute address given by the constant. Since ix86 jumps and
4511 calls are pc relative, we need to generate a reloc. */
4512 i.op[0].disps->X_add_symbol = &abs_symbol;
4513 i.op[0].disps->X_op = O_symbol;
4514 }
4515
4516 if (i.tm.opcode_modifier.rex64)
4517 i.rex |= REX_W;
4518
4519 /* For 8 bit registers we need an empty rex prefix. Also if the
4520 instruction already has a prefix, we need to convert old
4521 registers to new ones. */
4522
4523 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4524 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4525 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4526 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4527 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4528 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4529 && i.rex != 0))
4530 {
4531 int x;
4532
4533 i.rex |= REX_OPCODE;
4534 for (x = 0; x < 2; x++)
4535 {
4536 /* Look for 8 bit operand that uses old registers. */
4537 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4538 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4539 {
4540 /* In case it is "hi" register, give up. */
4541 if (i.op[x].regs->reg_num > 3)
4542 as_bad (_("can't encode register '%s%s' in an "
4543 "instruction requiring REX prefix."),
4544 register_prefix, i.op[x].regs->reg_name);
4545
4546 /* Otherwise it is equivalent to the extended register.
4547 Since the encoding doesn't change this is merely
4548 cosmetic cleanup for debug output. */
4549
4550 i.op[x].regs = i.op[x].regs + 8;
4551 }
4552 }
4553 }
4554
4555 if (i.rex == 0 && i.rex_encoding)
4556 {
4557 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4558 that uses legacy register. If it is "hi" register, don't add
4559 the REX_OPCODE byte. */
4560 int x;
4561 for (x = 0; x < 2; x++)
4562 if (i.types[x].bitfield.class == Reg
4563 && i.types[x].bitfield.byte
4564 && (i.op[x].regs->reg_flags & RegRex64) == 0
4565 && i.op[x].regs->reg_num > 3)
4566 {
4567 i.rex_encoding = FALSE;
4568 break;
4569 }
4570
4571 if (i.rex_encoding)
4572 i.rex = REX_OPCODE;
4573 }
4574
4575 if (i.rex != 0)
4576 add_prefix (REX_OPCODE | i.rex);
4577
4578 /* We are ready to output the insn. */
4579 output_insn ();
4580 }
4581
4582 static char *
4583 parse_insn (char *line, char *mnemonic)
4584 {
4585 char *l = line;
4586 char *token_start = l;
4587 char *mnem_p;
4588 int supported;
4589 const insn_template *t;
4590 char *dot_p = NULL;
4591
4592 while (1)
4593 {
4594 mnem_p = mnemonic;
4595 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4596 {
4597 if (*mnem_p == '.')
4598 dot_p = mnem_p;
4599 mnem_p++;
4600 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4601 {
4602 as_bad (_("no such instruction: `%s'"), token_start);
4603 return NULL;
4604 }
4605 l++;
4606 }
4607 if (!is_space_char (*l)
4608 && *l != END_OF_INSN
4609 && (intel_syntax
4610 || (*l != PREFIX_SEPARATOR
4611 && *l != ',')))
4612 {
4613 as_bad (_("invalid character %s in mnemonic"),
4614 output_invalid (*l));
4615 return NULL;
4616 }
4617 if (token_start == l)
4618 {
4619 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4620 as_bad (_("expecting prefix; got nothing"));
4621 else
4622 as_bad (_("expecting mnemonic; got nothing"));
4623 return NULL;
4624 }
4625
4626 /* Look up instruction (or prefix) via hash table. */
4627 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4628
4629 if (*l != END_OF_INSN
4630 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4631 && current_templates
4632 && current_templates->start->opcode_modifier.isprefix)
4633 {
4634 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4635 {
4636 as_bad ((flag_code != CODE_64BIT
4637 ? _("`%s' is only supported in 64-bit mode")
4638 : _("`%s' is not supported in 64-bit mode")),
4639 current_templates->start->name);
4640 return NULL;
4641 }
4642 /* If we are in 16-bit mode, do not allow addr16 or data16.
4643 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4644 if ((current_templates->start->opcode_modifier.size == SIZE16
4645 || current_templates->start->opcode_modifier.size == SIZE32)
4646 && flag_code != CODE_64BIT
4647 && ((current_templates->start->opcode_modifier.size == SIZE32)
4648 ^ (flag_code == CODE_16BIT)))
4649 {
4650 as_bad (_("redundant %s prefix"),
4651 current_templates->start->name);
4652 return NULL;
4653 }
4654 if (current_templates->start->opcode_length == 0)
4655 {
4656 /* Handle pseudo prefixes. */
4657 switch (current_templates->start->base_opcode)
4658 {
4659 case 0x0:
4660 /* {disp8} */
4661 i.disp_encoding = disp_encoding_8bit;
4662 break;
4663 case 0x1:
4664 /* {disp32} */
4665 i.disp_encoding = disp_encoding_32bit;
4666 break;
4667 case 0x2:
4668 /* {load} */
4669 i.dir_encoding = dir_encoding_load;
4670 break;
4671 case 0x3:
4672 /* {store} */
4673 i.dir_encoding = dir_encoding_store;
4674 break;
4675 case 0x4:
4676 /* {vex2} */
4677 i.vec_encoding = vex_encoding_vex2;
4678 break;
4679 case 0x5:
4680 /* {vex3} */
4681 i.vec_encoding = vex_encoding_vex3;
4682 break;
4683 case 0x6:
4684 /* {evex} */
4685 i.vec_encoding = vex_encoding_evex;
4686 break;
4687 case 0x7:
4688 /* {rex} */
4689 i.rex_encoding = TRUE;
4690 break;
4691 case 0x8:
4692 /* {nooptimize} */
4693 i.no_optimize = TRUE;
4694 break;
4695 default:
4696 abort ();
4697 }
4698 }
4699 else
4700 {
4701 /* Add prefix, checking for repeated prefixes. */
4702 switch (add_prefix (current_templates->start->base_opcode))
4703 {
4704 case PREFIX_EXIST:
4705 return NULL;
4706 case PREFIX_DS:
4707 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4708 i.notrack_prefix = current_templates->start->name;
4709 break;
4710 case PREFIX_REP:
4711 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4712 i.hle_prefix = current_templates->start->name;
4713 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4714 i.bnd_prefix = current_templates->start->name;
4715 else
4716 i.rep_prefix = current_templates->start->name;
4717 break;
4718 default:
4719 break;
4720 }
4721 }
4722 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4723 token_start = ++l;
4724 }
4725 else
4726 break;
4727 }
4728
4729 if (!current_templates)
4730 {
4731 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4732 Check if we should swap operand or force 32bit displacement in
4733 encoding. */
4734 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4735 i.dir_encoding = dir_encoding_swap;
4736 else if (mnem_p - 3 == dot_p
4737 && dot_p[1] == 'd'
4738 && dot_p[2] == '8')
4739 i.disp_encoding = disp_encoding_8bit;
4740 else if (mnem_p - 4 == dot_p
4741 && dot_p[1] == 'd'
4742 && dot_p[2] == '3'
4743 && dot_p[3] == '2')
4744 i.disp_encoding = disp_encoding_32bit;
4745 else
4746 goto check_suffix;
4747 mnem_p = dot_p;
4748 *dot_p = '\0';
4749 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4750 }
4751
4752 if (!current_templates)
4753 {
4754 check_suffix:
4755 if (mnem_p > mnemonic)
4756 {
4757 /* See if we can get a match by trimming off a suffix. */
4758 switch (mnem_p[-1])
4759 {
4760 case WORD_MNEM_SUFFIX:
4761 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4762 i.suffix = SHORT_MNEM_SUFFIX;
4763 else
4764 /* Fall through. */
4765 case BYTE_MNEM_SUFFIX:
4766 case QWORD_MNEM_SUFFIX:
4767 i.suffix = mnem_p[-1];
4768 mnem_p[-1] = '\0';
4769 current_templates = (const templates *) hash_find (op_hash,
4770 mnemonic);
4771 break;
4772 case SHORT_MNEM_SUFFIX:
4773 case LONG_MNEM_SUFFIX:
4774 if (!intel_syntax)
4775 {
4776 i.suffix = mnem_p[-1];
4777 mnem_p[-1] = '\0';
4778 current_templates = (const templates *) hash_find (op_hash,
4779 mnemonic);
4780 }
4781 break;
4782
4783 /* Intel Syntax. */
4784 case 'd':
4785 if (intel_syntax)
4786 {
4787 if (intel_float_operand (mnemonic) == 1)
4788 i.suffix = SHORT_MNEM_SUFFIX;
4789 else
4790 i.suffix = LONG_MNEM_SUFFIX;
4791 mnem_p[-1] = '\0';
4792 current_templates = (const templates *) hash_find (op_hash,
4793 mnemonic);
4794 }
4795 break;
4796 }
4797 }
4798
4799 if (!current_templates)
4800 {
4801 as_bad (_("no such instruction: `%s'"), token_start);
4802 return NULL;
4803 }
4804 }
4805
4806 if (current_templates->start->opcode_modifier.jump
4807 || current_templates->start->opcode_modifier.jumpbyte)
4808 {
4809 /* Check for a branch hint. We allow ",pt" and ",pn" for
4810 predict taken and predict not taken respectively.
4811 I'm not sure that branch hints actually do anything on loop
4812 and jcxz insns (JumpByte) for current Pentium4 chips. They
4813 may work in the future and it doesn't hurt to accept them
4814 now. */
4815 if (l[0] == ',' && l[1] == 'p')
4816 {
4817 if (l[2] == 't')
4818 {
4819 if (!add_prefix (DS_PREFIX_OPCODE))
4820 return NULL;
4821 l += 3;
4822 }
4823 else if (l[2] == 'n')
4824 {
4825 if (!add_prefix (CS_PREFIX_OPCODE))
4826 return NULL;
4827 l += 3;
4828 }
4829 }
4830 }
4831 /* Any other comma loses. */
4832 if (*l == ',')
4833 {
4834 as_bad (_("invalid character %s in mnemonic"),
4835 output_invalid (*l));
4836 return NULL;
4837 }
4838
4839 /* Check if instruction is supported on specified architecture. */
4840 supported = 0;
4841 for (t = current_templates->start; t < current_templates->end; ++t)
4842 {
4843 supported |= cpu_flags_match (t);
4844 if (supported == CPU_FLAGS_PERFECT_MATCH)
4845 {
4846 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4847 as_warn (_("use .code16 to ensure correct addressing mode"));
4848
4849 return l;
4850 }
4851 }
4852
4853 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4854 as_bad (flag_code == CODE_64BIT
4855 ? _("`%s' is not supported in 64-bit mode")
4856 : _("`%s' is only supported in 64-bit mode"),
4857 current_templates->start->name);
4858 else
4859 as_bad (_("`%s' is not supported on `%s%s'"),
4860 current_templates->start->name,
4861 cpu_arch_name ? cpu_arch_name : default_arch,
4862 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4863
4864 return NULL;
4865 }
4866
4867 static char *
4868 parse_operands (char *l, const char *mnemonic)
4869 {
4870 char *token_start;
4871
4872 /* 1 if operand is pending after ','. */
4873 unsigned int expecting_operand = 0;
4874
4875 /* Non-zero if operand parens not balanced. */
4876 unsigned int paren_not_balanced;
4877
4878 while (*l != END_OF_INSN)
4879 {
4880 /* Skip optional white space before operand. */
4881 if (is_space_char (*l))
4882 ++l;
4883 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4884 {
4885 as_bad (_("invalid character %s before operand %d"),
4886 output_invalid (*l),
4887 i.operands + 1);
4888 return NULL;
4889 }
4890 token_start = l; /* After white space. */
4891 paren_not_balanced = 0;
4892 while (paren_not_balanced || *l != ',')
4893 {
4894 if (*l == END_OF_INSN)
4895 {
4896 if (paren_not_balanced)
4897 {
4898 if (!intel_syntax)
4899 as_bad (_("unbalanced parenthesis in operand %d."),
4900 i.operands + 1);
4901 else
4902 as_bad (_("unbalanced brackets in operand %d."),
4903 i.operands + 1);
4904 return NULL;
4905 }
4906 else
4907 break; /* we are done */
4908 }
4909 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4910 {
4911 as_bad (_("invalid character %s in operand %d"),
4912 output_invalid (*l),
4913 i.operands + 1);
4914 return NULL;
4915 }
4916 if (!intel_syntax)
4917 {
4918 if (*l == '(')
4919 ++paren_not_balanced;
4920 if (*l == ')')
4921 --paren_not_balanced;
4922 }
4923 else
4924 {
4925 if (*l == '[')
4926 ++paren_not_balanced;
4927 if (*l == ']')
4928 --paren_not_balanced;
4929 }
4930 l++;
4931 }
4932 if (l != token_start)
4933 { /* Yes, we've read in another operand. */
4934 unsigned int operand_ok;
4935 this_operand = i.operands++;
4936 if (i.operands > MAX_OPERANDS)
4937 {
4938 as_bad (_("spurious operands; (%d operands/instruction max)"),
4939 MAX_OPERANDS);
4940 return NULL;
4941 }
4942 i.types[this_operand].bitfield.unspecified = 1;
4943 /* Now parse operand adding info to 'i' as we go along. */
4944 END_STRING_AND_SAVE (l);
4945
4946 if (i.mem_operands > 1)
4947 {
4948 as_bad (_("too many memory references for `%s'"),
4949 mnemonic);
4950 return 0;
4951 }
4952
4953 if (intel_syntax)
4954 operand_ok =
4955 i386_intel_operand (token_start,
4956 intel_float_operand (mnemonic));
4957 else
4958 operand_ok = i386_att_operand (token_start);
4959
4960 RESTORE_END_STRING (l);
4961 if (!operand_ok)
4962 return NULL;
4963 }
4964 else
4965 {
4966 if (expecting_operand)
4967 {
4968 expecting_operand_after_comma:
4969 as_bad (_("expecting operand after ','; got nothing"));
4970 return NULL;
4971 }
4972 if (*l == ',')
4973 {
4974 as_bad (_("expecting operand before ','; got nothing"));
4975 return NULL;
4976 }
4977 }
4978
4979 /* Now *l must be either ',' or END_OF_INSN. */
4980 if (*l == ',')
4981 {
4982 if (*++l == END_OF_INSN)
4983 {
4984 /* Just skip it, if it's \n complain. */
4985 goto expecting_operand_after_comma;
4986 }
4987 expecting_operand = 1;
4988 }
4989 }
4990 return l;
4991 }
4992
4993 static void
4994 swap_2_operands (int xchg1, int xchg2)
4995 {
4996 union i386_op temp_op;
4997 i386_operand_type temp_type;
4998 unsigned int temp_flags;
4999 enum bfd_reloc_code_real temp_reloc;
5000
5001 temp_type = i.types[xchg2];
5002 i.types[xchg2] = i.types[xchg1];
5003 i.types[xchg1] = temp_type;
5004
5005 temp_flags = i.flags[xchg2];
5006 i.flags[xchg2] = i.flags[xchg1];
5007 i.flags[xchg1] = temp_flags;
5008
5009 temp_op = i.op[xchg2];
5010 i.op[xchg2] = i.op[xchg1];
5011 i.op[xchg1] = temp_op;
5012
5013 temp_reloc = i.reloc[xchg2];
5014 i.reloc[xchg2] = i.reloc[xchg1];
5015 i.reloc[xchg1] = temp_reloc;
5016
5017 if (i.mask)
5018 {
5019 if (i.mask->operand == xchg1)
5020 i.mask->operand = xchg2;
5021 else if (i.mask->operand == xchg2)
5022 i.mask->operand = xchg1;
5023 }
5024 if (i.broadcast)
5025 {
5026 if (i.broadcast->operand == xchg1)
5027 i.broadcast->operand = xchg2;
5028 else if (i.broadcast->operand == xchg2)
5029 i.broadcast->operand = xchg1;
5030 }
5031 if (i.rounding)
5032 {
5033 if (i.rounding->operand == xchg1)
5034 i.rounding->operand = xchg2;
5035 else if (i.rounding->operand == xchg2)
5036 i.rounding->operand = xchg1;
5037 }
5038 }
5039
5040 static void
5041 swap_operands (void)
5042 {
5043 switch (i.operands)
5044 {
5045 case 5:
5046 case 4:
5047 swap_2_operands (1, i.operands - 2);
5048 /* Fall through. */
5049 case 3:
5050 case 2:
5051 swap_2_operands (0, i.operands - 1);
5052 break;
5053 default:
5054 abort ();
5055 }
5056
5057 if (i.mem_operands == 2)
5058 {
5059 const seg_entry *temp_seg;
5060 temp_seg = i.seg[0];
5061 i.seg[0] = i.seg[1];
5062 i.seg[1] = temp_seg;
5063 }
5064 }
5065
5066 /* Try to ensure constant immediates are represented in the smallest
5067 opcode possible. */
5068 static void
5069 optimize_imm (void)
5070 {
5071 char guess_suffix = 0;
5072 int op;
5073
5074 if (i.suffix)
5075 guess_suffix = i.suffix;
5076 else if (i.reg_operands)
5077 {
5078 /* Figure out a suffix from the last register operand specified.
5079 We can't do this properly yet, ie. excluding InOutPortReg,
5080 but the following works for instructions with immediates.
5081 In any case, we can't set i.suffix yet. */
5082 for (op = i.operands; --op >= 0;)
5083 if (i.types[op].bitfield.class != Reg)
5084 continue;
5085 else if (i.types[op].bitfield.byte)
5086 {
5087 guess_suffix = BYTE_MNEM_SUFFIX;
5088 break;
5089 }
5090 else if (i.types[op].bitfield.word)
5091 {
5092 guess_suffix = WORD_MNEM_SUFFIX;
5093 break;
5094 }
5095 else if (i.types[op].bitfield.dword)
5096 {
5097 guess_suffix = LONG_MNEM_SUFFIX;
5098 break;
5099 }
5100 else if (i.types[op].bitfield.qword)
5101 {
5102 guess_suffix = QWORD_MNEM_SUFFIX;
5103 break;
5104 }
5105 }
5106 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5107 guess_suffix = WORD_MNEM_SUFFIX;
5108
5109 for (op = i.operands; --op >= 0;)
5110 if (operand_type_check (i.types[op], imm))
5111 {
5112 switch (i.op[op].imms->X_op)
5113 {
5114 case O_constant:
5115 /* If a suffix is given, this operand may be shortened. */
5116 switch (guess_suffix)
5117 {
5118 case LONG_MNEM_SUFFIX:
5119 i.types[op].bitfield.imm32 = 1;
5120 i.types[op].bitfield.imm64 = 1;
5121 break;
5122 case WORD_MNEM_SUFFIX:
5123 i.types[op].bitfield.imm16 = 1;
5124 i.types[op].bitfield.imm32 = 1;
5125 i.types[op].bitfield.imm32s = 1;
5126 i.types[op].bitfield.imm64 = 1;
5127 break;
5128 case BYTE_MNEM_SUFFIX:
5129 i.types[op].bitfield.imm8 = 1;
5130 i.types[op].bitfield.imm8s = 1;
5131 i.types[op].bitfield.imm16 = 1;
5132 i.types[op].bitfield.imm32 = 1;
5133 i.types[op].bitfield.imm32s = 1;
5134 i.types[op].bitfield.imm64 = 1;
5135 break;
5136 }
5137
5138 /* If this operand is at most 16 bits, convert it
5139 to a signed 16 bit number before trying to see
5140 whether it will fit in an even smaller size.
5141 This allows a 16-bit operand such as $0xffe0 to
5142 be recognised as within Imm8S range. */
5143 if ((i.types[op].bitfield.imm16)
5144 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5145 {
5146 i.op[op].imms->X_add_number =
5147 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5148 }
5149 #ifdef BFD64
5150 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5151 if ((i.types[op].bitfield.imm32)
5152 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5153 == 0))
5154 {
5155 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5156 ^ ((offsetT) 1 << 31))
5157 - ((offsetT) 1 << 31));
5158 }
5159 #endif
5160 i.types[op]
5161 = operand_type_or (i.types[op],
5162 smallest_imm_type (i.op[op].imms->X_add_number));
5163
5164 /* We must avoid matching of Imm32 templates when 64bit
5165 only immediate is available. */
5166 if (guess_suffix == QWORD_MNEM_SUFFIX)
5167 i.types[op].bitfield.imm32 = 0;
5168 break;
5169
5170 case O_absent:
5171 case O_register:
5172 abort ();
5173
5174 /* Symbols and expressions. */
5175 default:
5176 /* Convert symbolic operand to proper sizes for matching, but don't
5177 prevent matching a set of insns that only supports sizes other
5178 than those matching the insn suffix. */
5179 {
5180 i386_operand_type mask, allowed;
5181 const insn_template *t;
5182
5183 operand_type_set (&mask, 0);
5184 operand_type_set (&allowed, 0);
5185
5186 for (t = current_templates->start;
5187 t < current_templates->end;
5188 ++t)
5189 {
5190 allowed = operand_type_or (allowed, t->operand_types[op]);
5191 allowed = operand_type_and (allowed, anyimm);
5192 }
5193 switch (guess_suffix)
5194 {
5195 case QWORD_MNEM_SUFFIX:
5196 mask.bitfield.imm64 = 1;
5197 mask.bitfield.imm32s = 1;
5198 break;
5199 case LONG_MNEM_SUFFIX:
5200 mask.bitfield.imm32 = 1;
5201 break;
5202 case WORD_MNEM_SUFFIX:
5203 mask.bitfield.imm16 = 1;
5204 break;
5205 case BYTE_MNEM_SUFFIX:
5206 mask.bitfield.imm8 = 1;
5207 break;
5208 default:
5209 break;
5210 }
5211 allowed = operand_type_and (mask, allowed);
5212 if (!operand_type_all_zero (&allowed))
5213 i.types[op] = operand_type_and (i.types[op], mask);
5214 }
5215 break;
5216 }
5217 }
5218 }
5219
5220 /* Try to use the smallest displacement type too. */
5221 static void
5222 optimize_disp (void)
5223 {
5224 int op;
5225
5226 for (op = i.operands; --op >= 0;)
5227 if (operand_type_check (i.types[op], disp))
5228 {
5229 if (i.op[op].disps->X_op == O_constant)
5230 {
5231 offsetT op_disp = i.op[op].disps->X_add_number;
5232
5233 if (i.types[op].bitfield.disp16
5234 && (op_disp & ~(offsetT) 0xffff) == 0)
5235 {
5236 /* If this operand is at most 16 bits, convert
5237 to a signed 16 bit number and don't use 64bit
5238 displacement. */
5239 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5240 i.types[op].bitfield.disp64 = 0;
5241 }
5242 #ifdef BFD64
5243 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5244 if (i.types[op].bitfield.disp32
5245 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5246 {
5247 /* If this operand is at most 32 bits, convert
5248 to a signed 32 bit number and don't use 64bit
5249 displacement. */
5250 op_disp &= (((offsetT) 2 << 31) - 1);
5251 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5252 i.types[op].bitfield.disp64 = 0;
5253 }
5254 #endif
5255 if (!op_disp && i.types[op].bitfield.baseindex)
5256 {
5257 i.types[op].bitfield.disp8 = 0;
5258 i.types[op].bitfield.disp16 = 0;
5259 i.types[op].bitfield.disp32 = 0;
5260 i.types[op].bitfield.disp32s = 0;
5261 i.types[op].bitfield.disp64 = 0;
5262 i.op[op].disps = 0;
5263 i.disp_operands--;
5264 }
5265 else if (flag_code == CODE_64BIT)
5266 {
5267 if (fits_in_signed_long (op_disp))
5268 {
5269 i.types[op].bitfield.disp64 = 0;
5270 i.types[op].bitfield.disp32s = 1;
5271 }
5272 if (i.prefix[ADDR_PREFIX]
5273 && fits_in_unsigned_long (op_disp))
5274 i.types[op].bitfield.disp32 = 1;
5275 }
5276 if ((i.types[op].bitfield.disp32
5277 || i.types[op].bitfield.disp32s
5278 || i.types[op].bitfield.disp16)
5279 && fits_in_disp8 (op_disp))
5280 i.types[op].bitfield.disp8 = 1;
5281 }
5282 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5283 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5284 {
5285 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5286 i.op[op].disps, 0, i.reloc[op]);
5287 i.types[op].bitfield.disp8 = 0;
5288 i.types[op].bitfield.disp16 = 0;
5289 i.types[op].bitfield.disp32 = 0;
5290 i.types[op].bitfield.disp32s = 0;
5291 i.types[op].bitfield.disp64 = 0;
5292 }
5293 else
5294 /* We only support 64bit displacement on constants. */
5295 i.types[op].bitfield.disp64 = 0;
5296 }
5297 }
5298
5299 /* Return 1 if there is a match in broadcast bytes between operand
5300 GIVEN and instruction template T. */
5301
5302 static INLINE int
5303 match_broadcast_size (const insn_template *t, unsigned int given)
5304 {
5305 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5306 && i.types[given].bitfield.byte)
5307 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5308 && i.types[given].bitfield.word)
5309 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5310 && i.types[given].bitfield.dword)
5311 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5312 && i.types[given].bitfield.qword));
5313 }
5314
5315 /* Check if operands are valid for the instruction. */
5316
5317 static int
5318 check_VecOperands (const insn_template *t)
5319 {
5320 unsigned int op;
5321 i386_cpu_flags cpu;
5322 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5323
5324 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5325 any one operand are implicity requiring AVX512VL support if the actual
5326 operand size is YMMword or XMMword. Since this function runs after
5327 template matching, there's no need to check for YMMword/XMMword in
5328 the template. */
5329 cpu = cpu_flags_and (t->cpu_flags, avx512);
5330 if (!cpu_flags_all_zero (&cpu)
5331 && !t->cpu_flags.bitfield.cpuavx512vl
5332 && !cpu_arch_flags.bitfield.cpuavx512vl)
5333 {
5334 for (op = 0; op < t->operands; ++op)
5335 {
5336 if (t->operand_types[op].bitfield.zmmword
5337 && (i.types[op].bitfield.ymmword
5338 || i.types[op].bitfield.xmmword))
5339 {
5340 i.error = unsupported;
5341 return 1;
5342 }
5343 }
5344 }
5345
5346 /* Without VSIB byte, we can't have a vector register for index. */
5347 if (!t->opcode_modifier.vecsib
5348 && i.index_reg
5349 && (i.index_reg->reg_type.bitfield.xmmword
5350 || i.index_reg->reg_type.bitfield.ymmword
5351 || i.index_reg->reg_type.bitfield.zmmword))
5352 {
5353 i.error = unsupported_vector_index_register;
5354 return 1;
5355 }
5356
5357 /* Check if default mask is allowed. */
5358 if (t->opcode_modifier.nodefmask
5359 && (!i.mask || i.mask->mask->reg_num == 0))
5360 {
5361 i.error = no_default_mask;
5362 return 1;
5363 }
5364
5365 /* For VSIB byte, we need a vector register for index, and all vector
5366 registers must be distinct. */
5367 if (t->opcode_modifier.vecsib)
5368 {
5369 if (!i.index_reg
5370 || !((t->opcode_modifier.vecsib == VecSIB128
5371 && i.index_reg->reg_type.bitfield.xmmword)
5372 || (t->opcode_modifier.vecsib == VecSIB256
5373 && i.index_reg->reg_type.bitfield.ymmword)
5374 || (t->opcode_modifier.vecsib == VecSIB512
5375 && i.index_reg->reg_type.bitfield.zmmword)))
5376 {
5377 i.error = invalid_vsib_address;
5378 return 1;
5379 }
5380
5381 gas_assert (i.reg_operands == 2 || i.mask);
5382 if (i.reg_operands == 2 && !i.mask)
5383 {
5384 gas_assert (i.types[0].bitfield.class == RegSIMD);
5385 gas_assert (i.types[0].bitfield.xmmword
5386 || i.types[0].bitfield.ymmword);
5387 gas_assert (i.types[2].bitfield.class == RegSIMD);
5388 gas_assert (i.types[2].bitfield.xmmword
5389 || i.types[2].bitfield.ymmword);
5390 if (operand_check == check_none)
5391 return 0;
5392 if (register_number (i.op[0].regs)
5393 != register_number (i.index_reg)
5394 && register_number (i.op[2].regs)
5395 != register_number (i.index_reg)
5396 && register_number (i.op[0].regs)
5397 != register_number (i.op[2].regs))
5398 return 0;
5399 if (operand_check == check_error)
5400 {
5401 i.error = invalid_vector_register_set;
5402 return 1;
5403 }
5404 as_warn (_("mask, index, and destination registers should be distinct"));
5405 }
5406 else if (i.reg_operands == 1 && i.mask)
5407 {
5408 if (i.types[1].bitfield.class == RegSIMD
5409 && (i.types[1].bitfield.xmmword
5410 || i.types[1].bitfield.ymmword
5411 || i.types[1].bitfield.zmmword)
5412 && (register_number (i.op[1].regs)
5413 == register_number (i.index_reg)))
5414 {
5415 if (operand_check == check_error)
5416 {
5417 i.error = invalid_vector_register_set;
5418 return 1;
5419 }
5420 if (operand_check != check_none)
5421 as_warn (_("index and destination registers should be distinct"));
5422 }
5423 }
5424 }
5425
5426 /* Check if broadcast is supported by the instruction and is applied
5427 to the memory operand. */
5428 if (i.broadcast)
5429 {
5430 i386_operand_type type, overlap;
5431
5432 /* Check if specified broadcast is supported in this instruction,
5433 and its broadcast bytes match the memory operand. */
5434 op = i.broadcast->operand;
5435 if (!t->opcode_modifier.broadcast
5436 || !(i.flags[op] & Operand_Mem)
5437 || (!i.types[op].bitfield.unspecified
5438 && !match_broadcast_size (t, op)))
5439 {
5440 bad_broadcast:
5441 i.error = unsupported_broadcast;
5442 return 1;
5443 }
5444
5445 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5446 * i.broadcast->type);
5447 operand_type_set (&type, 0);
5448 switch (i.broadcast->bytes)
5449 {
5450 case 2:
5451 type.bitfield.word = 1;
5452 break;
5453 case 4:
5454 type.bitfield.dword = 1;
5455 break;
5456 case 8:
5457 type.bitfield.qword = 1;
5458 break;
5459 case 16:
5460 type.bitfield.xmmword = 1;
5461 break;
5462 case 32:
5463 type.bitfield.ymmword = 1;
5464 break;
5465 case 64:
5466 type.bitfield.zmmword = 1;
5467 break;
5468 default:
5469 goto bad_broadcast;
5470 }
5471
5472 overlap = operand_type_and (type, t->operand_types[op]);
5473 if (operand_type_all_zero (&overlap))
5474 goto bad_broadcast;
5475
5476 if (t->opcode_modifier.checkregsize)
5477 {
5478 unsigned int j;
5479
5480 type.bitfield.baseindex = 1;
5481 for (j = 0; j < i.operands; ++j)
5482 {
5483 if (j != op
5484 && !operand_type_register_match(i.types[j],
5485 t->operand_types[j],
5486 type,
5487 t->operand_types[op]))
5488 goto bad_broadcast;
5489 }
5490 }
5491 }
5492 /* If broadcast is supported in this instruction, we need to check if
5493 operand of one-element size isn't specified without broadcast. */
5494 else if (t->opcode_modifier.broadcast && i.mem_operands)
5495 {
5496 /* Find memory operand. */
5497 for (op = 0; op < i.operands; op++)
5498 if (i.flags[op] & Operand_Mem)
5499 break;
5500 gas_assert (op < i.operands);
5501 /* Check size of the memory operand. */
5502 if (match_broadcast_size (t, op))
5503 {
5504 i.error = broadcast_needed;
5505 return 1;
5506 }
5507 }
5508 else
5509 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5510
5511 /* Check if requested masking is supported. */
5512 if (i.mask)
5513 {
5514 switch (t->opcode_modifier.masking)
5515 {
5516 case BOTH_MASKING:
5517 break;
5518 case MERGING_MASKING:
5519 if (i.mask->zeroing)
5520 {
5521 case 0:
5522 i.error = unsupported_masking;
5523 return 1;
5524 }
5525 break;
5526 case DYNAMIC_MASKING:
5527 /* Memory destinations allow only merging masking. */
5528 if (i.mask->zeroing && i.mem_operands)
5529 {
5530 /* Find memory operand. */
5531 for (op = 0; op < i.operands; op++)
5532 if (i.flags[op] & Operand_Mem)
5533 break;
5534 gas_assert (op < i.operands);
5535 if (op == i.operands - 1)
5536 {
5537 i.error = unsupported_masking;
5538 return 1;
5539 }
5540 }
5541 break;
5542 default:
5543 abort ();
5544 }
5545 }
5546
5547 /* Check if masking is applied to dest operand. */
5548 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5549 {
5550 i.error = mask_not_on_destination;
5551 return 1;
5552 }
5553
5554 /* Check RC/SAE. */
5555 if (i.rounding)
5556 {
5557 if (!t->opcode_modifier.sae
5558 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5559 {
5560 i.error = unsupported_rc_sae;
5561 return 1;
5562 }
5563 /* If the instruction has several immediate operands and one of
5564 them is rounding, the rounding operand should be the last
5565 immediate operand. */
5566 if (i.imm_operands > 1
5567 && i.rounding->operand != (int) (i.imm_operands - 1))
5568 {
5569 i.error = rc_sae_operand_not_last_imm;
5570 return 1;
5571 }
5572 }
5573
5574 /* Check vector Disp8 operand. */
5575 if (t->opcode_modifier.disp8memshift
5576 && i.disp_encoding != disp_encoding_32bit)
5577 {
5578 if (i.broadcast)
5579 i.memshift = t->opcode_modifier.broadcast - 1;
5580 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5581 i.memshift = t->opcode_modifier.disp8memshift;
5582 else
5583 {
5584 const i386_operand_type *type = NULL;
5585
5586 i.memshift = 0;
5587 for (op = 0; op < i.operands; op++)
5588 if (i.flags[op] & Operand_Mem)
5589 {
5590 if (t->opcode_modifier.evex == EVEXLIG)
5591 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5592 else if (t->operand_types[op].bitfield.xmmword
5593 + t->operand_types[op].bitfield.ymmword
5594 + t->operand_types[op].bitfield.zmmword <= 1)
5595 type = &t->operand_types[op];
5596 else if (!i.types[op].bitfield.unspecified)
5597 type = &i.types[op];
5598 }
5599 else if (i.types[op].bitfield.class == RegSIMD
5600 && t->opcode_modifier.evex != EVEXLIG)
5601 {
5602 if (i.types[op].bitfield.zmmword)
5603 i.memshift = 6;
5604 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5605 i.memshift = 5;
5606 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5607 i.memshift = 4;
5608 }
5609
5610 if (type)
5611 {
5612 if (type->bitfield.zmmword)
5613 i.memshift = 6;
5614 else if (type->bitfield.ymmword)
5615 i.memshift = 5;
5616 else if (type->bitfield.xmmword)
5617 i.memshift = 4;
5618 }
5619
5620 /* For the check in fits_in_disp8(). */
5621 if (i.memshift == 0)
5622 i.memshift = -1;
5623 }
5624
5625 for (op = 0; op < i.operands; op++)
5626 if (operand_type_check (i.types[op], disp)
5627 && i.op[op].disps->X_op == O_constant)
5628 {
5629 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5630 {
5631 i.types[op].bitfield.disp8 = 1;
5632 return 0;
5633 }
5634 i.types[op].bitfield.disp8 = 0;
5635 }
5636 }
5637
5638 i.memshift = 0;
5639
5640 return 0;
5641 }
5642
5643 /* Check if operands are valid for the instruction. Update VEX
5644 operand types. */
5645
5646 static int
5647 VEX_check_operands (const insn_template *t)
5648 {
5649 if (i.vec_encoding == vex_encoding_evex)
5650 {
5651 /* This instruction must be encoded with EVEX prefix. */
5652 if (!is_evex_encoding (t))
5653 {
5654 i.error = unsupported;
5655 return 1;
5656 }
5657 return 0;
5658 }
5659
5660 if (!t->opcode_modifier.vex)
5661 {
5662 /* This instruction template doesn't have VEX prefix. */
5663 if (i.vec_encoding != vex_encoding_default)
5664 {
5665 i.error = unsupported;
5666 return 1;
5667 }
5668 return 0;
5669 }
5670
5671 /* Check the special Imm4 cases; must be the first operand. */
5672 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5673 {
5674 if (i.op[0].imms->X_op != O_constant
5675 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5676 {
5677 i.error = bad_imm4;
5678 return 1;
5679 }
5680
5681 /* Turn off Imm<N> so that update_imm won't complain. */
5682 operand_type_set (&i.types[0], 0);
5683 }
5684
5685 return 0;
5686 }
5687
5688 static const insn_template *
5689 match_template (char mnem_suffix)
5690 {
5691 /* Points to template once we've found it. */
5692 const insn_template *t;
5693 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5694 i386_operand_type overlap4;
5695 unsigned int found_reverse_match;
5696 i386_opcode_modifier suffix_check, mnemsuf_check;
5697 i386_operand_type operand_types [MAX_OPERANDS];
5698 int addr_prefix_disp;
5699 unsigned int j;
5700 unsigned int found_cpu_match, size_match;
5701 unsigned int check_register;
5702 enum i386_error specific_error = 0;
5703
5704 #if MAX_OPERANDS != 5
5705 # error "MAX_OPERANDS must be 5."
5706 #endif
5707
5708 found_reverse_match = 0;
5709 addr_prefix_disp = -1;
5710
5711 memset (&suffix_check, 0, sizeof (suffix_check));
5712 if (intel_syntax && i.broadcast)
5713 /* nothing */;
5714 else if (i.suffix == BYTE_MNEM_SUFFIX)
5715 suffix_check.no_bsuf = 1;
5716 else if (i.suffix == WORD_MNEM_SUFFIX)
5717 suffix_check.no_wsuf = 1;
5718 else if (i.suffix == SHORT_MNEM_SUFFIX)
5719 suffix_check.no_ssuf = 1;
5720 else if (i.suffix == LONG_MNEM_SUFFIX)
5721 suffix_check.no_lsuf = 1;
5722 else if (i.suffix == QWORD_MNEM_SUFFIX)
5723 suffix_check.no_qsuf = 1;
5724 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5725 suffix_check.no_ldsuf = 1;
5726
5727 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5728 if (intel_syntax)
5729 {
5730 switch (mnem_suffix)
5731 {
5732 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5733 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5734 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5735 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5736 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5737 }
5738 }
5739
5740 /* Must have right number of operands. */
5741 i.error = number_of_operands_mismatch;
5742
5743 for (t = current_templates->start; t < current_templates->end; t++)
5744 {
5745 addr_prefix_disp = -1;
5746 found_reverse_match = 0;
5747
5748 if (i.operands != t->operands)
5749 continue;
5750
5751 /* Check processor support. */
5752 i.error = unsupported;
5753 found_cpu_match = (cpu_flags_match (t)
5754 == CPU_FLAGS_PERFECT_MATCH);
5755 if (!found_cpu_match)
5756 continue;
5757
5758 /* Check AT&T mnemonic. */
5759 i.error = unsupported_with_intel_mnemonic;
5760 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5761 continue;
5762
5763 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5764 i.error = unsupported_syntax;
5765 if ((intel_syntax && t->opcode_modifier.attsyntax)
5766 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5767 || (intel64 && t->opcode_modifier.amd64)
5768 || (!intel64 && t->opcode_modifier.intel64))
5769 continue;
5770
5771 /* Check the suffix, except for some instructions in intel mode. */
5772 i.error = invalid_instruction_suffix;
5773 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5774 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5775 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5776 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5777 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5778 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5779 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5780 continue;
5781 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5782 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5783 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5784 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5785 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5786 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5787 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5788 continue;
5789
5790 size_match = operand_size_match (t);
5791 if (!size_match)
5792 continue;
5793
5794 for (j = 0; j < MAX_OPERANDS; j++)
5795 operand_types[j] = t->operand_types[j];
5796
5797 /* In general, don't allow 64-bit operands in 32-bit mode. */
5798 if (i.suffix == QWORD_MNEM_SUFFIX
5799 && flag_code != CODE_64BIT
5800 && (intel_syntax
5801 ? (!t->opcode_modifier.ignoresize
5802 && !t->opcode_modifier.broadcast
5803 && !intel_float_operand (t->name))
5804 : intel_float_operand (t->name) != 2)
5805 && ((operand_types[0].bitfield.class != RegMMX
5806 && operand_types[0].bitfield.class != RegSIMD)
5807 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5808 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5809 && (t->base_opcode != 0x0fc7
5810 || t->extension_opcode != 1 /* cmpxchg8b */))
5811 continue;
5812
5813 /* In general, don't allow 32-bit operands on pre-386. */
5814 else if (i.suffix == LONG_MNEM_SUFFIX
5815 && !cpu_arch_flags.bitfield.cpui386
5816 && (intel_syntax
5817 ? (!t->opcode_modifier.ignoresize
5818 && !intel_float_operand (t->name))
5819 : intel_float_operand (t->name) != 2)
5820 && ((operand_types[0].bitfield.class != RegMMX
5821 && operand_types[0].bitfield.class != RegSIMD)
5822 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5823 && operand_types[t->operands > 1].bitfield.class
5824 != RegSIMD)))
5825 continue;
5826
5827 /* Do not verify operands when there are none. */
5828 else
5829 {
5830 if (!t->operands)
5831 /* We've found a match; break out of loop. */
5832 break;
5833 }
5834
5835 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5836 into Disp32/Disp16/Disp32 operand. */
5837 if (i.prefix[ADDR_PREFIX] != 0)
5838 {
5839 /* There should be only one Disp operand. */
5840 switch (flag_code)
5841 {
5842 case CODE_16BIT:
5843 for (j = 0; j < MAX_OPERANDS; j++)
5844 {
5845 if (operand_types[j].bitfield.disp16)
5846 {
5847 addr_prefix_disp = j;
5848 operand_types[j].bitfield.disp32 = 1;
5849 operand_types[j].bitfield.disp16 = 0;
5850 break;
5851 }
5852 }
5853 break;
5854 case CODE_32BIT:
5855 for (j = 0; j < MAX_OPERANDS; j++)
5856 {
5857 if (operand_types[j].bitfield.disp32)
5858 {
5859 addr_prefix_disp = j;
5860 operand_types[j].bitfield.disp32 = 0;
5861 operand_types[j].bitfield.disp16 = 1;
5862 break;
5863 }
5864 }
5865 break;
5866 case CODE_64BIT:
5867 for (j = 0; j < MAX_OPERANDS; j++)
5868 {
5869 if (operand_types[j].bitfield.disp64)
5870 {
5871 addr_prefix_disp = j;
5872 operand_types[j].bitfield.disp64 = 0;
5873 operand_types[j].bitfield.disp32 = 1;
5874 break;
5875 }
5876 }
5877 break;
5878 }
5879 }
5880
5881 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5882 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5883 continue;
5884
5885 /* We check register size if needed. */
5886 if (t->opcode_modifier.checkregsize)
5887 {
5888 check_register = (1 << t->operands) - 1;
5889 if (i.broadcast)
5890 check_register &= ~(1 << i.broadcast->operand);
5891 }
5892 else
5893 check_register = 0;
5894
5895 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5896 switch (t->operands)
5897 {
5898 case 1:
5899 if (!operand_type_match (overlap0, i.types[0]))
5900 continue;
5901 break;
5902 case 2:
5903 /* xchg %eax, %eax is a special case. It is an alias for nop
5904 only in 32bit mode and we can use opcode 0x90. In 64bit
5905 mode, we can't use 0x90 for xchg %eax, %eax since it should
5906 zero-extend %eax to %rax. */
5907 if (flag_code == CODE_64BIT
5908 && t->base_opcode == 0x90
5909 && i.types[0].bitfield.acc && i.types[0].bitfield.dword
5910 && i.types[1].bitfield.acc && i.types[1].bitfield.dword)
5911 continue;
5912 /* xrelease mov %eax, <disp> is another special case. It must not
5913 match the accumulator-only encoding of mov. */
5914 if (flag_code != CODE_64BIT
5915 && i.hle_prefix
5916 && t->base_opcode == 0xa0
5917 && i.types[0].bitfield.acc
5918 && (i.flags[1] & Operand_Mem))
5919 continue;
5920 /* Fall through. */
5921
5922 case 3:
5923 if (!(size_match & MATCH_STRAIGHT))
5924 goto check_reverse;
5925 /* Reverse direction of operands if swapping is possible in the first
5926 place (operands need to be symmetric) and
5927 - the load form is requested, and the template is a store form,
5928 - the store form is requested, and the template is a load form,
5929 - the non-default (swapped) form is requested. */
5930 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5931 if (t->opcode_modifier.d && i.reg_operands == i.operands
5932 && !operand_type_all_zero (&overlap1))
5933 switch (i.dir_encoding)
5934 {
5935 case dir_encoding_load:
5936 if (operand_type_check (operand_types[i.operands - 1], anymem)
5937 || t->opcode_modifier.regmem)
5938 goto check_reverse;
5939 break;
5940
5941 case dir_encoding_store:
5942 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5943 && !t->opcode_modifier.regmem)
5944 goto check_reverse;
5945 break;
5946
5947 case dir_encoding_swap:
5948 goto check_reverse;
5949
5950 case dir_encoding_default:
5951 break;
5952 }
5953 /* If we want store form, we skip the current load. */
5954 if ((i.dir_encoding == dir_encoding_store
5955 || i.dir_encoding == dir_encoding_swap)
5956 && i.mem_operands == 0
5957 && t->opcode_modifier.load)
5958 continue;
5959 /* Fall through. */
5960 case 4:
5961 case 5:
5962 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5963 if (!operand_type_match (overlap0, i.types[0])
5964 || !operand_type_match (overlap1, i.types[1])
5965 || ((check_register & 3) == 3
5966 && !operand_type_register_match (i.types[0],
5967 operand_types[0],
5968 i.types[1],
5969 operand_types[1])))
5970 {
5971 /* Check if other direction is valid ... */
5972 if (!t->opcode_modifier.d)
5973 continue;
5974
5975 check_reverse:
5976 if (!(size_match & MATCH_REVERSE))
5977 continue;
5978 /* Try reversing direction of operands. */
5979 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
5980 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
5981 if (!operand_type_match (overlap0, i.types[0])
5982 || !operand_type_match (overlap1, i.types[i.operands - 1])
5983 || (check_register
5984 && !operand_type_register_match (i.types[0],
5985 operand_types[i.operands - 1],
5986 i.types[i.operands - 1],
5987 operand_types[0])))
5988 {
5989 /* Does not match either direction. */
5990 continue;
5991 }
5992 /* found_reverse_match holds which of D or FloatR
5993 we've found. */
5994 if (!t->opcode_modifier.d)
5995 found_reverse_match = 0;
5996 else if (operand_types[0].bitfield.tbyte)
5997 found_reverse_match = Opcode_FloatD;
5998 else if (operand_types[0].bitfield.xmmword
5999 || operand_types[i.operands - 1].bitfield.xmmword
6000 || operand_types[0].bitfield.class == RegMMX
6001 || operand_types[i.operands - 1].bitfield.class == RegMMX
6002 || is_any_vex_encoding(t))
6003 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6004 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6005 else
6006 found_reverse_match = Opcode_D;
6007 if (t->opcode_modifier.floatr)
6008 found_reverse_match |= Opcode_FloatR;
6009 }
6010 else
6011 {
6012 /* Found a forward 2 operand match here. */
6013 switch (t->operands)
6014 {
6015 case 5:
6016 overlap4 = operand_type_and (i.types[4],
6017 operand_types[4]);
6018 /* Fall through. */
6019 case 4:
6020 overlap3 = operand_type_and (i.types[3],
6021 operand_types[3]);
6022 /* Fall through. */
6023 case 3:
6024 overlap2 = operand_type_and (i.types[2],
6025 operand_types[2]);
6026 break;
6027 }
6028
6029 switch (t->operands)
6030 {
6031 case 5:
6032 if (!operand_type_match (overlap4, i.types[4])
6033 || !operand_type_register_match (i.types[3],
6034 operand_types[3],
6035 i.types[4],
6036 operand_types[4]))
6037 continue;
6038 /* Fall through. */
6039 case 4:
6040 if (!operand_type_match (overlap3, i.types[3])
6041 || ((check_register & 0xa) == 0xa
6042 && !operand_type_register_match (i.types[1],
6043 operand_types[1],
6044 i.types[3],
6045 operand_types[3]))
6046 || ((check_register & 0xc) == 0xc
6047 && !operand_type_register_match (i.types[2],
6048 operand_types[2],
6049 i.types[3],
6050 operand_types[3])))
6051 continue;
6052 /* Fall through. */
6053 case 3:
6054 /* Here we make use of the fact that there are no
6055 reverse match 3 operand instructions. */
6056 if (!operand_type_match (overlap2, i.types[2])
6057 || ((check_register & 5) == 5
6058 && !operand_type_register_match (i.types[0],
6059 operand_types[0],
6060 i.types[2],
6061 operand_types[2]))
6062 || ((check_register & 6) == 6
6063 && !operand_type_register_match (i.types[1],
6064 operand_types[1],
6065 i.types[2],
6066 operand_types[2])))
6067 continue;
6068 break;
6069 }
6070 }
6071 /* Found either forward/reverse 2, 3 or 4 operand match here:
6072 slip through to break. */
6073 }
6074 if (!found_cpu_match)
6075 continue;
6076
6077 /* Check if vector and VEX operands are valid. */
6078 if (check_VecOperands (t) || VEX_check_operands (t))
6079 {
6080 specific_error = i.error;
6081 continue;
6082 }
6083
6084 /* We've found a match; break out of loop. */
6085 break;
6086 }
6087
6088 if (t == current_templates->end)
6089 {
6090 /* We found no match. */
6091 const char *err_msg;
6092 switch (specific_error ? specific_error : i.error)
6093 {
6094 default:
6095 abort ();
6096 case operand_size_mismatch:
6097 err_msg = _("operand size mismatch");
6098 break;
6099 case operand_type_mismatch:
6100 err_msg = _("operand type mismatch");
6101 break;
6102 case register_type_mismatch:
6103 err_msg = _("register type mismatch");
6104 break;
6105 case number_of_operands_mismatch:
6106 err_msg = _("number of operands mismatch");
6107 break;
6108 case invalid_instruction_suffix:
6109 err_msg = _("invalid instruction suffix");
6110 break;
6111 case bad_imm4:
6112 err_msg = _("constant doesn't fit in 4 bits");
6113 break;
6114 case unsupported_with_intel_mnemonic:
6115 err_msg = _("unsupported with Intel mnemonic");
6116 break;
6117 case unsupported_syntax:
6118 err_msg = _("unsupported syntax");
6119 break;
6120 case unsupported:
6121 as_bad (_("unsupported instruction `%s'"),
6122 current_templates->start->name);
6123 return NULL;
6124 case invalid_vsib_address:
6125 err_msg = _("invalid VSIB address");
6126 break;
6127 case invalid_vector_register_set:
6128 err_msg = _("mask, index, and destination registers must be distinct");
6129 break;
6130 case unsupported_vector_index_register:
6131 err_msg = _("unsupported vector index register");
6132 break;
6133 case unsupported_broadcast:
6134 err_msg = _("unsupported broadcast");
6135 break;
6136 case broadcast_needed:
6137 err_msg = _("broadcast is needed for operand of such type");
6138 break;
6139 case unsupported_masking:
6140 err_msg = _("unsupported masking");
6141 break;
6142 case mask_not_on_destination:
6143 err_msg = _("mask not on destination operand");
6144 break;
6145 case no_default_mask:
6146 err_msg = _("default mask isn't allowed");
6147 break;
6148 case unsupported_rc_sae:
6149 err_msg = _("unsupported static rounding/sae");
6150 break;
6151 case rc_sae_operand_not_last_imm:
6152 if (intel_syntax)
6153 err_msg = _("RC/SAE operand must precede immediate operands");
6154 else
6155 err_msg = _("RC/SAE operand must follow immediate operands");
6156 break;
6157 case invalid_register_operand:
6158 err_msg = _("invalid register operand");
6159 break;
6160 }
6161 as_bad (_("%s for `%s'"), err_msg,
6162 current_templates->start->name);
6163 return NULL;
6164 }
6165
6166 if (!quiet_warnings)
6167 {
6168 if (!intel_syntax
6169 && (i.types[0].bitfield.jumpabsolute
6170 != operand_types[0].bitfield.jumpabsolute))
6171 {
6172 as_warn (_("indirect %s without `*'"), t->name);
6173 }
6174
6175 if (t->opcode_modifier.isprefix
6176 && t->opcode_modifier.ignoresize)
6177 {
6178 /* Warn them that a data or address size prefix doesn't
6179 affect assembly of the next line of code. */
6180 as_warn (_("stand-alone `%s' prefix"), t->name);
6181 }
6182 }
6183
6184 /* Copy the template we found. */
6185 i.tm = *t;
6186
6187 if (addr_prefix_disp != -1)
6188 i.tm.operand_types[addr_prefix_disp]
6189 = operand_types[addr_prefix_disp];
6190
6191 if (found_reverse_match)
6192 {
6193 /* If we found a reverse match we must alter the opcode direction
6194 bit and clear/flip the regmem modifier one. found_reverse_match
6195 holds bits to change (different for int & float insns). */
6196
6197 i.tm.base_opcode ^= found_reverse_match;
6198
6199 i.tm.operand_types[0] = operand_types[i.operands - 1];
6200 i.tm.operand_types[i.operands - 1] = operand_types[0];
6201
6202 /* Certain SIMD insns have their load forms specified in the opcode
6203 table, and hence we need to _set_ RegMem instead of clearing it.
6204 We need to avoid setting the bit though on insns like KMOVW. */
6205 i.tm.opcode_modifier.regmem
6206 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6207 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6208 && !i.tm.opcode_modifier.regmem;
6209 }
6210
6211 return t;
6212 }
6213
6214 static int
6215 check_string (void)
6216 {
6217 unsigned int mem_op = i.flags[0] & Operand_Mem ? 0 : 1;
6218
6219 if (i.tm.operand_types[mem_op].bitfield.esseg)
6220 {
6221 if (i.seg[0] != NULL && i.seg[0] != &es)
6222 {
6223 as_bad (_("`%s' operand %d must use `%ses' segment"),
6224 i.tm.name,
6225 intel_syntax ? i.tm.operands - mem_op : mem_op + 1,
6226 register_prefix);
6227 return 0;
6228 }
6229 /* There's only ever one segment override allowed per instruction.
6230 This instruction possibly has a legal segment override on the
6231 second operand, so copy the segment to where non-string
6232 instructions store it, allowing common code. */
6233 i.seg[0] = i.seg[1];
6234 }
6235 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
6236 {
6237 if (i.seg[1] != NULL && i.seg[1] != &es)
6238 {
6239 as_bad (_("`%s' operand %d must use `%ses' segment"),
6240 i.tm.name,
6241 intel_syntax ? i.tm.operands - mem_op - 1 : mem_op + 2,
6242 register_prefix);
6243 return 0;
6244 }
6245 }
6246 return 1;
6247 }
6248
6249 static int
6250 process_suffix (void)
6251 {
6252 /* If matched instruction specifies an explicit instruction mnemonic
6253 suffix, use it. */
6254 if (i.tm.opcode_modifier.size == SIZE16)
6255 i.suffix = WORD_MNEM_SUFFIX;
6256 else if (i.tm.opcode_modifier.size == SIZE32)
6257 i.suffix = LONG_MNEM_SUFFIX;
6258 else if (i.tm.opcode_modifier.size == SIZE64)
6259 i.suffix = QWORD_MNEM_SUFFIX;
6260 else if (i.reg_operands)
6261 {
6262 /* If there's no instruction mnemonic suffix we try to invent one
6263 based on register operands. */
6264 if (!i.suffix)
6265 {
6266 /* We take i.suffix from the last register operand specified,
6267 Destination register type is more significant than source
6268 register type. crc32 in SSE4.2 prefers source register
6269 type. */
6270 if (i.tm.base_opcode == 0xf20f38f0
6271 && i.types[0].bitfield.class == Reg)
6272 {
6273 if (i.types[0].bitfield.byte)
6274 i.suffix = BYTE_MNEM_SUFFIX;
6275 else if (i.types[0].bitfield.word)
6276 i.suffix = WORD_MNEM_SUFFIX;
6277 else if (i.types[0].bitfield.dword)
6278 i.suffix = LONG_MNEM_SUFFIX;
6279 else if (i.types[0].bitfield.qword)
6280 i.suffix = QWORD_MNEM_SUFFIX;
6281 }
6282
6283 if (!i.suffix)
6284 {
6285 int op;
6286
6287 if (i.tm.base_opcode == 0xf20f38f0)
6288 {
6289 /* We have to know the operand size for crc32. */
6290 as_bad (_("ambiguous memory operand size for `%s`"),
6291 i.tm.name);
6292 return 0;
6293 }
6294
6295 for (op = i.operands; --op >= 0;)
6296 if (!i.tm.operand_types[op].bitfield.inoutportreg
6297 && !i.tm.operand_types[op].bitfield.shiftcount)
6298 {
6299 if (i.types[op].bitfield.class != Reg)
6300 continue;
6301 if (i.types[op].bitfield.byte)
6302 i.suffix = BYTE_MNEM_SUFFIX;
6303 else if (i.types[op].bitfield.word)
6304 i.suffix = WORD_MNEM_SUFFIX;
6305 else if (i.types[op].bitfield.dword)
6306 i.suffix = LONG_MNEM_SUFFIX;
6307 else if (i.types[op].bitfield.qword)
6308 i.suffix = QWORD_MNEM_SUFFIX;
6309 else
6310 continue;
6311 break;
6312 }
6313 }
6314 }
6315 else if (i.suffix == BYTE_MNEM_SUFFIX)
6316 {
6317 if (intel_syntax
6318 && i.tm.opcode_modifier.ignoresize
6319 && i.tm.opcode_modifier.no_bsuf)
6320 i.suffix = 0;
6321 else if (!check_byte_reg ())
6322 return 0;
6323 }
6324 else if (i.suffix == LONG_MNEM_SUFFIX)
6325 {
6326 if (intel_syntax
6327 && i.tm.opcode_modifier.ignoresize
6328 && i.tm.opcode_modifier.no_lsuf
6329 && !i.tm.opcode_modifier.todword
6330 && !i.tm.opcode_modifier.toqword)
6331 i.suffix = 0;
6332 else if (!check_long_reg ())
6333 return 0;
6334 }
6335 else if (i.suffix == QWORD_MNEM_SUFFIX)
6336 {
6337 if (intel_syntax
6338 && i.tm.opcode_modifier.ignoresize
6339 && i.tm.opcode_modifier.no_qsuf
6340 && !i.tm.opcode_modifier.todword
6341 && !i.tm.opcode_modifier.toqword)
6342 i.suffix = 0;
6343 else if (!check_qword_reg ())
6344 return 0;
6345 }
6346 else if (i.suffix == WORD_MNEM_SUFFIX)
6347 {
6348 if (intel_syntax
6349 && i.tm.opcode_modifier.ignoresize
6350 && i.tm.opcode_modifier.no_wsuf)
6351 i.suffix = 0;
6352 else if (!check_word_reg ())
6353 return 0;
6354 }
6355 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6356 /* Do nothing if the instruction is going to ignore the prefix. */
6357 ;
6358 else
6359 abort ();
6360 }
6361 else if (i.tm.opcode_modifier.defaultsize
6362 && !i.suffix
6363 /* exclude fldenv/frstor/fsave/fstenv */
6364 && i.tm.opcode_modifier.no_ssuf)
6365 {
6366 if (stackop_size == LONG_MNEM_SUFFIX
6367 && i.tm.base_opcode == 0xcf)
6368 {
6369 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6370 .code16gcc directive to support 16-bit mode with
6371 32-bit address. For IRET without a suffix, generate
6372 16-bit IRET (opcode 0xcf) to return from an interrupt
6373 handler. */
6374 i.suffix = WORD_MNEM_SUFFIX;
6375 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6376 }
6377 else
6378 i.suffix = stackop_size;
6379 }
6380 else if (intel_syntax
6381 && !i.suffix
6382 && (i.tm.operand_types[0].bitfield.jumpabsolute
6383 || i.tm.opcode_modifier.jumpbyte
6384 || i.tm.opcode_modifier.jumpintersegment
6385 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6386 && i.tm.extension_opcode <= 3)))
6387 {
6388 switch (flag_code)
6389 {
6390 case CODE_64BIT:
6391 if (!i.tm.opcode_modifier.no_qsuf)
6392 {
6393 i.suffix = QWORD_MNEM_SUFFIX;
6394 break;
6395 }
6396 /* Fall through. */
6397 case CODE_32BIT:
6398 if (!i.tm.opcode_modifier.no_lsuf)
6399 i.suffix = LONG_MNEM_SUFFIX;
6400 break;
6401 case CODE_16BIT:
6402 if (!i.tm.opcode_modifier.no_wsuf)
6403 i.suffix = WORD_MNEM_SUFFIX;
6404 break;
6405 }
6406 }
6407
6408 if (!i.suffix)
6409 {
6410 if (!intel_syntax)
6411 {
6412 if (i.tm.opcode_modifier.w)
6413 {
6414 as_bad (_("no instruction mnemonic suffix given and "
6415 "no register operands; can't size instruction"));
6416 return 0;
6417 }
6418 }
6419 else
6420 {
6421 unsigned int suffixes;
6422
6423 suffixes = !i.tm.opcode_modifier.no_bsuf;
6424 if (!i.tm.opcode_modifier.no_wsuf)
6425 suffixes |= 1 << 1;
6426 if (!i.tm.opcode_modifier.no_lsuf)
6427 suffixes |= 1 << 2;
6428 if (!i.tm.opcode_modifier.no_ldsuf)
6429 suffixes |= 1 << 3;
6430 if (!i.tm.opcode_modifier.no_ssuf)
6431 suffixes |= 1 << 4;
6432 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6433 suffixes |= 1 << 5;
6434
6435 /* There are more than suffix matches. */
6436 if (i.tm.opcode_modifier.w
6437 || ((suffixes & (suffixes - 1))
6438 && !i.tm.opcode_modifier.defaultsize
6439 && !i.tm.opcode_modifier.ignoresize))
6440 {
6441 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6442 return 0;
6443 }
6444 }
6445 }
6446
6447 /* Change the opcode based on the operand size given by i.suffix. */
6448 switch (i.suffix)
6449 {
6450 /* Size floating point instruction. */
6451 case LONG_MNEM_SUFFIX:
6452 if (i.tm.opcode_modifier.floatmf)
6453 {
6454 i.tm.base_opcode ^= 4;
6455 break;
6456 }
6457 /* fall through */
6458 case WORD_MNEM_SUFFIX:
6459 case QWORD_MNEM_SUFFIX:
6460 /* It's not a byte, select word/dword operation. */
6461 if (i.tm.opcode_modifier.w)
6462 {
6463 if (i.tm.opcode_modifier.shortform)
6464 i.tm.base_opcode |= 8;
6465 else
6466 i.tm.base_opcode |= 1;
6467 }
6468 /* fall through */
6469 case SHORT_MNEM_SUFFIX:
6470 /* Now select between word & dword operations via the operand
6471 size prefix, except for instructions that will ignore this
6472 prefix anyway. */
6473 if (i.reg_operands > 0
6474 && i.types[0].bitfield.class == Reg
6475 && i.tm.opcode_modifier.addrprefixopreg
6476 && (i.tm.opcode_modifier.immext
6477 || i.operands == 1))
6478 {
6479 /* The address size override prefix changes the size of the
6480 first operand. */
6481 if ((flag_code == CODE_32BIT
6482 && i.op[0].regs->reg_type.bitfield.word)
6483 || (flag_code != CODE_32BIT
6484 && i.op[0].regs->reg_type.bitfield.dword))
6485 if (!add_prefix (ADDR_PREFIX_OPCODE))
6486 return 0;
6487 }
6488 else if (i.suffix != QWORD_MNEM_SUFFIX
6489 && !i.tm.opcode_modifier.ignoresize
6490 && !i.tm.opcode_modifier.floatmf
6491 && !is_any_vex_encoding (&i.tm)
6492 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6493 || (flag_code == CODE_64BIT
6494 && i.tm.opcode_modifier.jumpbyte)))
6495 {
6496 unsigned int prefix = DATA_PREFIX_OPCODE;
6497
6498 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6499 prefix = ADDR_PREFIX_OPCODE;
6500
6501 if (!add_prefix (prefix))
6502 return 0;
6503 }
6504
6505 /* Set mode64 for an operand. */
6506 if (i.suffix == QWORD_MNEM_SUFFIX
6507 && flag_code == CODE_64BIT
6508 && !i.tm.opcode_modifier.norex64
6509 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6510 need rex64. */
6511 && ! (i.operands == 2
6512 && i.tm.base_opcode == 0x90
6513 && i.tm.extension_opcode == None
6514 && i.types[0].bitfield.acc && i.types[0].bitfield.qword
6515 && i.types[1].bitfield.acc && i.types[1].bitfield.qword))
6516 i.rex |= REX_W;
6517
6518 break;
6519 }
6520
6521 if (i.reg_operands != 0
6522 && i.operands > 1
6523 && i.tm.opcode_modifier.addrprefixopreg
6524 && !i.tm.opcode_modifier.immext)
6525 {
6526 /* Check invalid register operand when the address size override
6527 prefix changes the size of register operands. */
6528 unsigned int op;
6529 enum { need_word, need_dword, need_qword } need;
6530
6531 if (flag_code == CODE_32BIT)
6532 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6533 else
6534 {
6535 if (i.prefix[ADDR_PREFIX])
6536 need = need_dword;
6537 else
6538 need = flag_code == CODE_64BIT ? need_qword : need_word;
6539 }
6540
6541 for (op = 0; op < i.operands; op++)
6542 if (i.types[op].bitfield.class == Reg
6543 && ((need == need_word
6544 && !i.op[op].regs->reg_type.bitfield.word)
6545 || (need == need_dword
6546 && !i.op[op].regs->reg_type.bitfield.dword)
6547 || (need == need_qword
6548 && !i.op[op].regs->reg_type.bitfield.qword)))
6549 {
6550 as_bad (_("invalid register operand size for `%s'"),
6551 i.tm.name);
6552 return 0;
6553 }
6554 }
6555
6556 return 1;
6557 }
6558
6559 static int
6560 check_byte_reg (void)
6561 {
6562 int op;
6563
6564 for (op = i.operands; --op >= 0;)
6565 {
6566 /* Skip non-register operands. */
6567 if (i.types[op].bitfield.class != Reg)
6568 continue;
6569
6570 /* If this is an eight bit register, it's OK. If it's the 16 or
6571 32 bit version of an eight bit register, we will just use the
6572 low portion, and that's OK too. */
6573 if (i.types[op].bitfield.byte)
6574 continue;
6575
6576 /* I/O port address operands are OK too. */
6577 if (i.tm.operand_types[op].bitfield.inoutportreg)
6578 continue;
6579
6580 /* crc32 doesn't generate this warning. */
6581 if (i.tm.base_opcode == 0xf20f38f0)
6582 continue;
6583
6584 if ((i.types[op].bitfield.word
6585 || i.types[op].bitfield.dword
6586 || i.types[op].bitfield.qword)
6587 && i.op[op].regs->reg_num < 4
6588 /* Prohibit these changes in 64bit mode, since the lowering
6589 would be more complicated. */
6590 && flag_code != CODE_64BIT)
6591 {
6592 #if REGISTER_WARNINGS
6593 if (!quiet_warnings)
6594 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6595 register_prefix,
6596 (i.op[op].regs + (i.types[op].bitfield.word
6597 ? REGNAM_AL - REGNAM_AX
6598 : REGNAM_AL - REGNAM_EAX))->reg_name,
6599 register_prefix,
6600 i.op[op].regs->reg_name,
6601 i.suffix);
6602 #endif
6603 continue;
6604 }
6605 /* Any other register is bad. */
6606 if (i.types[op].bitfield.class == Reg
6607 || i.types[op].bitfield.class == RegMMX
6608 || i.types[op].bitfield.class == RegSIMD
6609 || i.types[op].bitfield.class == SReg
6610 || i.types[op].bitfield.class == RegCR
6611 || i.types[op].bitfield.class == RegDR
6612 || i.types[op].bitfield.class == RegTR)
6613 {
6614 as_bad (_("`%s%s' not allowed with `%s%c'"),
6615 register_prefix,
6616 i.op[op].regs->reg_name,
6617 i.tm.name,
6618 i.suffix);
6619 return 0;
6620 }
6621 }
6622 return 1;
6623 }
6624
6625 static int
6626 check_long_reg (void)
6627 {
6628 int op;
6629
6630 for (op = i.operands; --op >= 0;)
6631 /* Skip non-register operands. */
6632 if (i.types[op].bitfield.class != Reg)
6633 continue;
6634 /* Reject eight bit registers, except where the template requires
6635 them. (eg. movzb) */
6636 else if (i.types[op].bitfield.byte
6637 && (i.tm.operand_types[op].bitfield.class == Reg
6638 || i.tm.operand_types[op].bitfield.acc)
6639 && (i.tm.operand_types[op].bitfield.word
6640 || i.tm.operand_types[op].bitfield.dword))
6641 {
6642 as_bad (_("`%s%s' not allowed with `%s%c'"),
6643 register_prefix,
6644 i.op[op].regs->reg_name,
6645 i.tm.name,
6646 i.suffix);
6647 return 0;
6648 }
6649 /* Warn if the e prefix on a general reg is missing. */
6650 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6651 && i.types[op].bitfield.word
6652 && (i.tm.operand_types[op].bitfield.class == Reg
6653 || i.tm.operand_types[op].bitfield.acc)
6654 && i.tm.operand_types[op].bitfield.dword)
6655 {
6656 /* Prohibit these changes in the 64bit mode, since the
6657 lowering is more complicated. */
6658 if (flag_code == CODE_64BIT)
6659 {
6660 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6661 register_prefix, i.op[op].regs->reg_name,
6662 i.suffix);
6663 return 0;
6664 }
6665 #if REGISTER_WARNINGS
6666 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6667 register_prefix,
6668 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6669 register_prefix, i.op[op].regs->reg_name, i.suffix);
6670 #endif
6671 }
6672 /* Warn if the r prefix on a general reg is present. */
6673 else if (i.types[op].bitfield.qword
6674 && (i.tm.operand_types[op].bitfield.class == Reg
6675 || i.tm.operand_types[op].bitfield.acc)
6676 && i.tm.operand_types[op].bitfield.dword)
6677 {
6678 if (intel_syntax
6679 && i.tm.opcode_modifier.toqword
6680 && i.types[0].bitfield.class != RegSIMD)
6681 {
6682 /* Convert to QWORD. We want REX byte. */
6683 i.suffix = QWORD_MNEM_SUFFIX;
6684 }
6685 else
6686 {
6687 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6688 register_prefix, i.op[op].regs->reg_name,
6689 i.suffix);
6690 return 0;
6691 }
6692 }
6693 return 1;
6694 }
6695
6696 static int
6697 check_qword_reg (void)
6698 {
6699 int op;
6700
6701 for (op = i.operands; --op >= 0; )
6702 /* Skip non-register operands. */
6703 if (i.types[op].bitfield.class != Reg)
6704 continue;
6705 /* Reject eight bit registers, except where the template requires
6706 them. (eg. movzb) */
6707 else if (i.types[op].bitfield.byte
6708 && (i.tm.operand_types[op].bitfield.class == Reg
6709 || i.tm.operand_types[op].bitfield.acc)
6710 && (i.tm.operand_types[op].bitfield.word
6711 || i.tm.operand_types[op].bitfield.dword))
6712 {
6713 as_bad (_("`%s%s' not allowed with `%s%c'"),
6714 register_prefix,
6715 i.op[op].regs->reg_name,
6716 i.tm.name,
6717 i.suffix);
6718 return 0;
6719 }
6720 /* Warn if the r prefix on a general reg is missing. */
6721 else if ((i.types[op].bitfield.word
6722 || i.types[op].bitfield.dword)
6723 && (i.tm.operand_types[op].bitfield.class == Reg
6724 || i.tm.operand_types[op].bitfield.acc)
6725 && i.tm.operand_types[op].bitfield.qword)
6726 {
6727 /* Prohibit these changes in the 64bit mode, since the
6728 lowering is more complicated. */
6729 if (intel_syntax
6730 && i.tm.opcode_modifier.todword
6731 && i.types[0].bitfield.class != RegSIMD)
6732 {
6733 /* Convert to DWORD. We don't want REX byte. */
6734 i.suffix = LONG_MNEM_SUFFIX;
6735 }
6736 else
6737 {
6738 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6739 register_prefix, i.op[op].regs->reg_name,
6740 i.suffix);
6741 return 0;
6742 }
6743 }
6744 return 1;
6745 }
6746
6747 static int
6748 check_word_reg (void)
6749 {
6750 int op;
6751 for (op = i.operands; --op >= 0;)
6752 /* Skip non-register operands. */
6753 if (i.types[op].bitfield.class != Reg)
6754 continue;
6755 /* Reject eight bit registers, except where the template requires
6756 them. (eg. movzb) */
6757 else if (i.types[op].bitfield.byte
6758 && (i.tm.operand_types[op].bitfield.class == Reg
6759 || i.tm.operand_types[op].bitfield.acc)
6760 && (i.tm.operand_types[op].bitfield.word
6761 || i.tm.operand_types[op].bitfield.dword))
6762 {
6763 as_bad (_("`%s%s' not allowed with `%s%c'"),
6764 register_prefix,
6765 i.op[op].regs->reg_name,
6766 i.tm.name,
6767 i.suffix);
6768 return 0;
6769 }
6770 /* Warn if the e or r prefix on a general reg is present. */
6771 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6772 && (i.types[op].bitfield.dword
6773 || i.types[op].bitfield.qword)
6774 && (i.tm.operand_types[op].bitfield.class == Reg
6775 || i.tm.operand_types[op].bitfield.acc)
6776 && i.tm.operand_types[op].bitfield.word)
6777 {
6778 /* Prohibit these changes in the 64bit mode, since the
6779 lowering is more complicated. */
6780 if (flag_code == CODE_64BIT)
6781 {
6782 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6783 register_prefix, i.op[op].regs->reg_name,
6784 i.suffix);
6785 return 0;
6786 }
6787 #if REGISTER_WARNINGS
6788 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6789 register_prefix,
6790 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6791 register_prefix, i.op[op].regs->reg_name, i.suffix);
6792 #endif
6793 }
6794 return 1;
6795 }
6796
6797 static int
6798 update_imm (unsigned int j)
6799 {
6800 i386_operand_type overlap = i.types[j];
6801 if ((overlap.bitfield.imm8
6802 || overlap.bitfield.imm8s
6803 || overlap.bitfield.imm16
6804 || overlap.bitfield.imm32
6805 || overlap.bitfield.imm32s
6806 || overlap.bitfield.imm64)
6807 && !operand_type_equal (&overlap, &imm8)
6808 && !operand_type_equal (&overlap, &imm8s)
6809 && !operand_type_equal (&overlap, &imm16)
6810 && !operand_type_equal (&overlap, &imm32)
6811 && !operand_type_equal (&overlap, &imm32s)
6812 && !operand_type_equal (&overlap, &imm64))
6813 {
6814 if (i.suffix)
6815 {
6816 i386_operand_type temp;
6817
6818 operand_type_set (&temp, 0);
6819 if (i.suffix == BYTE_MNEM_SUFFIX)
6820 {
6821 temp.bitfield.imm8 = overlap.bitfield.imm8;
6822 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6823 }
6824 else if (i.suffix == WORD_MNEM_SUFFIX)
6825 temp.bitfield.imm16 = overlap.bitfield.imm16;
6826 else if (i.suffix == QWORD_MNEM_SUFFIX)
6827 {
6828 temp.bitfield.imm64 = overlap.bitfield.imm64;
6829 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6830 }
6831 else
6832 temp.bitfield.imm32 = overlap.bitfield.imm32;
6833 overlap = temp;
6834 }
6835 else if (operand_type_equal (&overlap, &imm16_32_32s)
6836 || operand_type_equal (&overlap, &imm16_32)
6837 || operand_type_equal (&overlap, &imm16_32s))
6838 {
6839 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6840 overlap = imm16;
6841 else
6842 overlap = imm32s;
6843 }
6844 if (!operand_type_equal (&overlap, &imm8)
6845 && !operand_type_equal (&overlap, &imm8s)
6846 && !operand_type_equal (&overlap, &imm16)
6847 && !operand_type_equal (&overlap, &imm32)
6848 && !operand_type_equal (&overlap, &imm32s)
6849 && !operand_type_equal (&overlap, &imm64))
6850 {
6851 as_bad (_("no instruction mnemonic suffix given; "
6852 "can't determine immediate size"));
6853 return 0;
6854 }
6855 }
6856 i.types[j] = overlap;
6857
6858 return 1;
6859 }
6860
6861 static int
6862 finalize_imm (void)
6863 {
6864 unsigned int j, n;
6865
6866 /* Update the first 2 immediate operands. */
6867 n = i.operands > 2 ? 2 : i.operands;
6868 if (n)
6869 {
6870 for (j = 0; j < n; j++)
6871 if (update_imm (j) == 0)
6872 return 0;
6873
6874 /* The 3rd operand can't be immediate operand. */
6875 gas_assert (operand_type_check (i.types[2], imm) == 0);
6876 }
6877
6878 return 1;
6879 }
6880
6881 static int
6882 process_operands (void)
6883 {
6884 /* Default segment register this instruction will use for memory
6885 accesses. 0 means unknown. This is only for optimizing out
6886 unnecessary segment overrides. */
6887 const seg_entry *default_seg = 0;
6888
6889 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6890 {
6891 unsigned int dupl = i.operands;
6892 unsigned int dest = dupl - 1;
6893 unsigned int j;
6894
6895 /* The destination must be an xmm register. */
6896 gas_assert (i.reg_operands
6897 && MAX_OPERANDS > dupl
6898 && operand_type_equal (&i.types[dest], &regxmm));
6899
6900 if (i.tm.operand_types[0].bitfield.acc
6901 && i.tm.operand_types[0].bitfield.xmmword)
6902 {
6903 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6904 {
6905 /* Keep xmm0 for instructions with VEX prefix and 3
6906 sources. */
6907 i.tm.operand_types[0].bitfield.acc = 0;
6908 i.tm.operand_types[0].bitfield.class = RegSIMD;
6909 goto duplicate;
6910 }
6911 else
6912 {
6913 /* We remove the first xmm0 and keep the number of
6914 operands unchanged, which in fact duplicates the
6915 destination. */
6916 for (j = 1; j < i.operands; j++)
6917 {
6918 i.op[j - 1] = i.op[j];
6919 i.types[j - 1] = i.types[j];
6920 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6921 i.flags[j - 1] = i.flags[j];
6922 }
6923 }
6924 }
6925 else if (i.tm.opcode_modifier.implicit1stxmm0)
6926 {
6927 gas_assert ((MAX_OPERANDS - 1) > dupl
6928 && (i.tm.opcode_modifier.vexsources
6929 == VEX3SOURCES));
6930
6931 /* Add the implicit xmm0 for instructions with VEX prefix
6932 and 3 sources. */
6933 for (j = i.operands; j > 0; j--)
6934 {
6935 i.op[j] = i.op[j - 1];
6936 i.types[j] = i.types[j - 1];
6937 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6938 i.flags[j] = i.flags[j - 1];
6939 }
6940 i.op[0].regs
6941 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6942 i.types[0] = regxmm;
6943 i.tm.operand_types[0] = regxmm;
6944
6945 i.operands += 2;
6946 i.reg_operands += 2;
6947 i.tm.operands += 2;
6948
6949 dupl++;
6950 dest++;
6951 i.op[dupl] = i.op[dest];
6952 i.types[dupl] = i.types[dest];
6953 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6954 i.flags[dupl] = i.flags[dest];
6955 }
6956 else
6957 {
6958 duplicate:
6959 i.operands++;
6960 i.reg_operands++;
6961 i.tm.operands++;
6962
6963 i.op[dupl] = i.op[dest];
6964 i.types[dupl] = i.types[dest];
6965 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6966 i.flags[dupl] = i.flags[dest];
6967 }
6968
6969 if (i.tm.opcode_modifier.immext)
6970 process_immext ();
6971 }
6972 else if (i.tm.operand_types[0].bitfield.acc
6973 && i.tm.operand_types[0].bitfield.xmmword)
6974 {
6975 unsigned int j;
6976
6977 for (j = 1; j < i.operands; j++)
6978 {
6979 i.op[j - 1] = i.op[j];
6980 i.types[j - 1] = i.types[j];
6981
6982 /* We need to adjust fields in i.tm since they are used by
6983 build_modrm_byte. */
6984 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6985
6986 i.flags[j - 1] = i.flags[j];
6987 }
6988
6989 i.operands--;
6990 i.reg_operands--;
6991 i.tm.operands--;
6992 }
6993 else if (i.tm.opcode_modifier.implicitquadgroup)
6994 {
6995 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6996
6997 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6998 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
6999 regnum = register_number (i.op[1].regs);
7000 first_reg_in_group = regnum & ~3;
7001 last_reg_in_group = first_reg_in_group + 3;
7002 if (regnum != first_reg_in_group)
7003 as_warn (_("source register `%s%s' implicitly denotes"
7004 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7005 register_prefix, i.op[1].regs->reg_name,
7006 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7007 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7008 i.tm.name);
7009 }
7010 else if (i.tm.opcode_modifier.regkludge)
7011 {
7012 /* The imul $imm, %reg instruction is converted into
7013 imul $imm, %reg, %reg, and the clr %reg instruction
7014 is converted into xor %reg, %reg. */
7015
7016 unsigned int first_reg_op;
7017
7018 if (operand_type_check (i.types[0], reg))
7019 first_reg_op = 0;
7020 else
7021 first_reg_op = 1;
7022 /* Pretend we saw the extra register operand. */
7023 gas_assert (i.reg_operands == 1
7024 && i.op[first_reg_op + 1].regs == 0);
7025 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7026 i.types[first_reg_op + 1] = i.types[first_reg_op];
7027 i.operands++;
7028 i.reg_operands++;
7029 }
7030
7031 if (i.tm.opcode_modifier.modrm)
7032 {
7033 /* The opcode is completed (modulo i.tm.extension_opcode which
7034 must be put into the modrm byte). Now, we make the modrm and
7035 index base bytes based on all the info we've collected. */
7036
7037 default_seg = build_modrm_byte ();
7038 }
7039 else if (i.types[0].bitfield.class == SReg)
7040 {
7041 if (flag_code != CODE_64BIT
7042 ? i.tm.base_opcode == POP_SEG_SHORT
7043 && i.op[0].regs->reg_num == 1
7044 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7045 && i.op[0].regs->reg_num < 4)
7046 {
7047 as_bad (_("you can't `%s %s%s'"),
7048 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7049 return 0;
7050 }
7051 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7052 {
7053 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7054 i.tm.opcode_length = 2;
7055 }
7056 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7057 }
7058 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7059 {
7060 default_seg = &ds;
7061 }
7062 else if (i.tm.opcode_modifier.isstring)
7063 {
7064 /* For the string instructions that allow a segment override
7065 on one of their operands, the default segment is ds. */
7066 default_seg = &ds;
7067 }
7068 else if (i.tm.opcode_modifier.shortform)
7069 {
7070 /* The register or float register operand is in operand
7071 0 or 1. */
7072 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7073
7074 /* Register goes in low 3 bits of opcode. */
7075 i.tm.base_opcode |= i.op[op].regs->reg_num;
7076 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7077 i.rex |= REX_B;
7078 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7079 {
7080 /* Warn about some common errors, but press on regardless.
7081 The first case can be generated by gcc (<= 2.8.1). */
7082 if (i.operands == 2)
7083 {
7084 /* Reversed arguments on faddp, fsubp, etc. */
7085 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7086 register_prefix, i.op[!intel_syntax].regs->reg_name,
7087 register_prefix, i.op[intel_syntax].regs->reg_name);
7088 }
7089 else
7090 {
7091 /* Extraneous `l' suffix on fp insn. */
7092 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7093 register_prefix, i.op[0].regs->reg_name);
7094 }
7095 }
7096 }
7097
7098 if (i.tm.base_opcode == 0x8d /* lea */
7099 && i.seg[0]
7100 && !quiet_warnings)
7101 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7102
7103 /* If a segment was explicitly specified, and the specified segment
7104 is not the default, use an opcode prefix to select it. If we
7105 never figured out what the default segment is, then default_seg
7106 will be zero at this point, and the specified segment prefix will
7107 always be used. */
7108 if ((i.seg[0]) && (i.seg[0] != default_seg))
7109 {
7110 if (!add_prefix (i.seg[0]->seg_prefix))
7111 return 0;
7112 }
7113 return 1;
7114 }
7115
7116 static const seg_entry *
7117 build_modrm_byte (void)
7118 {
7119 const seg_entry *default_seg = 0;
7120 unsigned int source, dest;
7121 int vex_3_sources;
7122
7123 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7124 if (vex_3_sources)
7125 {
7126 unsigned int nds, reg_slot;
7127 expressionS *exp;
7128
7129 dest = i.operands - 1;
7130 nds = dest - 1;
7131
7132 /* There are 2 kinds of instructions:
7133 1. 5 operands: 4 register operands or 3 register operands
7134 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7135 VexW0 or VexW1. The destination must be either XMM, YMM or
7136 ZMM register.
7137 2. 4 operands: 4 register operands or 3 register operands
7138 plus 1 memory operand, with VexXDS. */
7139 gas_assert ((i.reg_operands == 4
7140 || (i.reg_operands == 3 && i.mem_operands == 1))
7141 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7142 && i.tm.opcode_modifier.vexw
7143 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7144
7145 /* If VexW1 is set, the first non-immediate operand is the source and
7146 the second non-immediate one is encoded in the immediate operand. */
7147 if (i.tm.opcode_modifier.vexw == VEXW1)
7148 {
7149 source = i.imm_operands;
7150 reg_slot = i.imm_operands + 1;
7151 }
7152 else
7153 {
7154 source = i.imm_operands + 1;
7155 reg_slot = i.imm_operands;
7156 }
7157
7158 if (i.imm_operands == 0)
7159 {
7160 /* When there is no immediate operand, generate an 8bit
7161 immediate operand to encode the first operand. */
7162 exp = &im_expressions[i.imm_operands++];
7163 i.op[i.operands].imms = exp;
7164 i.types[i.operands] = imm8;
7165 i.operands++;
7166
7167 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7168 exp->X_op = O_constant;
7169 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7170 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7171 }
7172 else
7173 {
7174 gas_assert (i.imm_operands == 1);
7175 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7176 gas_assert (!i.tm.opcode_modifier.immext);
7177
7178 /* Turn on Imm8 again so that output_imm will generate it. */
7179 i.types[0].bitfield.imm8 = 1;
7180
7181 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7182 i.op[0].imms->X_add_number
7183 |= register_number (i.op[reg_slot].regs) << 4;
7184 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7185 }
7186
7187 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7188 i.vex.register_specifier = i.op[nds].regs;
7189 }
7190 else
7191 source = dest = 0;
7192
7193 /* i.reg_operands MUST be the number of real register operands;
7194 implicit registers do not count. If there are 3 register
7195 operands, it must be a instruction with VexNDS. For a
7196 instruction with VexNDD, the destination register is encoded
7197 in VEX prefix. If there are 4 register operands, it must be
7198 a instruction with VEX prefix and 3 sources. */
7199 if (i.mem_operands == 0
7200 && ((i.reg_operands == 2
7201 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7202 || (i.reg_operands == 3
7203 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7204 || (i.reg_operands == 4 && vex_3_sources)))
7205 {
7206 switch (i.operands)
7207 {
7208 case 2:
7209 source = 0;
7210 break;
7211 case 3:
7212 /* When there are 3 operands, one of them may be immediate,
7213 which may be the first or the last operand. Otherwise,
7214 the first operand must be shift count register (cl) or it
7215 is an instruction with VexNDS. */
7216 gas_assert (i.imm_operands == 1
7217 || (i.imm_operands == 0
7218 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7219 || i.types[0].bitfield.shiftcount)));
7220 if (operand_type_check (i.types[0], imm)
7221 || i.types[0].bitfield.shiftcount)
7222 source = 1;
7223 else
7224 source = 0;
7225 break;
7226 case 4:
7227 /* When there are 4 operands, the first two must be 8bit
7228 immediate operands. The source operand will be the 3rd
7229 one.
7230
7231 For instructions with VexNDS, if the first operand
7232 an imm8, the source operand is the 2nd one. If the last
7233 operand is imm8, the source operand is the first one. */
7234 gas_assert ((i.imm_operands == 2
7235 && i.types[0].bitfield.imm8
7236 && i.types[1].bitfield.imm8)
7237 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7238 && i.imm_operands == 1
7239 && (i.types[0].bitfield.imm8
7240 || i.types[i.operands - 1].bitfield.imm8
7241 || i.rounding)));
7242 if (i.imm_operands == 2)
7243 source = 2;
7244 else
7245 {
7246 if (i.types[0].bitfield.imm8)
7247 source = 1;
7248 else
7249 source = 0;
7250 }
7251 break;
7252 case 5:
7253 if (is_evex_encoding (&i.tm))
7254 {
7255 /* For EVEX instructions, when there are 5 operands, the
7256 first one must be immediate operand. If the second one
7257 is immediate operand, the source operand is the 3th
7258 one. If the last one is immediate operand, the source
7259 operand is the 2nd one. */
7260 gas_assert (i.imm_operands == 2
7261 && i.tm.opcode_modifier.sae
7262 && operand_type_check (i.types[0], imm));
7263 if (operand_type_check (i.types[1], imm))
7264 source = 2;
7265 else if (operand_type_check (i.types[4], imm))
7266 source = 1;
7267 else
7268 abort ();
7269 }
7270 break;
7271 default:
7272 abort ();
7273 }
7274
7275 if (!vex_3_sources)
7276 {
7277 dest = source + 1;
7278
7279 /* RC/SAE operand could be between DEST and SRC. That happens
7280 when one operand is GPR and the other one is XMM/YMM/ZMM
7281 register. */
7282 if (i.rounding && i.rounding->operand == (int) dest)
7283 dest++;
7284
7285 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7286 {
7287 /* For instructions with VexNDS, the register-only source
7288 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7289 register. It is encoded in VEX prefix. */
7290
7291 i386_operand_type op;
7292 unsigned int vvvv;
7293
7294 /* Check register-only source operand when two source
7295 operands are swapped. */
7296 if (!i.tm.operand_types[source].bitfield.baseindex
7297 && i.tm.operand_types[dest].bitfield.baseindex)
7298 {
7299 vvvv = source;
7300 source = dest;
7301 }
7302 else
7303 vvvv = dest;
7304
7305 op = i.tm.operand_types[vvvv];
7306 if ((dest + 1) >= i.operands
7307 || ((op.bitfield.class != Reg
7308 || (!op.bitfield.dword && !op.bitfield.qword))
7309 && op.bitfield.class != RegSIMD
7310 && !operand_type_equal (&op, &regmask)))
7311 abort ();
7312 i.vex.register_specifier = i.op[vvvv].regs;
7313 dest++;
7314 }
7315 }
7316
7317 i.rm.mode = 3;
7318 /* One of the register operands will be encoded in the i.rm.reg
7319 field, the other in the combined i.rm.mode and i.rm.regmem
7320 fields. If no form of this instruction supports a memory
7321 destination operand, then we assume the source operand may
7322 sometimes be a memory operand and so we need to store the
7323 destination in the i.rm.reg field. */
7324 if (!i.tm.opcode_modifier.regmem
7325 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7326 {
7327 i.rm.reg = i.op[dest].regs->reg_num;
7328 i.rm.regmem = i.op[source].regs->reg_num;
7329 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7330 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7331 i.has_regmmx = TRUE;
7332 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7333 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7334 {
7335 if (i.types[dest].bitfield.zmmword
7336 || i.types[source].bitfield.zmmword)
7337 i.has_regzmm = TRUE;
7338 else if (i.types[dest].bitfield.ymmword
7339 || i.types[source].bitfield.ymmword)
7340 i.has_regymm = TRUE;
7341 else
7342 i.has_regxmm = TRUE;
7343 }
7344 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7345 i.rex |= REX_R;
7346 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7347 i.vrex |= REX_R;
7348 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7349 i.rex |= REX_B;
7350 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7351 i.vrex |= REX_B;
7352 }
7353 else
7354 {
7355 i.rm.reg = i.op[source].regs->reg_num;
7356 i.rm.regmem = i.op[dest].regs->reg_num;
7357 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7358 i.rex |= REX_B;
7359 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7360 i.vrex |= REX_B;
7361 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7362 i.rex |= REX_R;
7363 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7364 i.vrex |= REX_R;
7365 }
7366 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7367 {
7368 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7369 abort ();
7370 i.rex &= ~REX_R;
7371 add_prefix (LOCK_PREFIX_OPCODE);
7372 }
7373 }
7374 else
7375 { /* If it's not 2 reg operands... */
7376 unsigned int mem;
7377
7378 if (i.mem_operands)
7379 {
7380 unsigned int fake_zero_displacement = 0;
7381 unsigned int op;
7382
7383 for (op = 0; op < i.operands; op++)
7384 if (i.flags[op] & Operand_Mem)
7385 break;
7386 gas_assert (op < i.operands);
7387
7388 if (i.tm.opcode_modifier.vecsib)
7389 {
7390 if (i.index_reg->reg_num == RegIZ)
7391 abort ();
7392
7393 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7394 if (!i.base_reg)
7395 {
7396 i.sib.base = NO_BASE_REGISTER;
7397 i.sib.scale = i.log2_scale_factor;
7398 i.types[op].bitfield.disp8 = 0;
7399 i.types[op].bitfield.disp16 = 0;
7400 i.types[op].bitfield.disp64 = 0;
7401 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7402 {
7403 /* Must be 32 bit */
7404 i.types[op].bitfield.disp32 = 1;
7405 i.types[op].bitfield.disp32s = 0;
7406 }
7407 else
7408 {
7409 i.types[op].bitfield.disp32 = 0;
7410 i.types[op].bitfield.disp32s = 1;
7411 }
7412 }
7413 i.sib.index = i.index_reg->reg_num;
7414 if ((i.index_reg->reg_flags & RegRex) != 0)
7415 i.rex |= REX_X;
7416 if ((i.index_reg->reg_flags & RegVRex) != 0)
7417 i.vrex |= REX_X;
7418 }
7419
7420 default_seg = &ds;
7421
7422 if (i.base_reg == 0)
7423 {
7424 i.rm.mode = 0;
7425 if (!i.disp_operands)
7426 fake_zero_displacement = 1;
7427 if (i.index_reg == 0)
7428 {
7429 i386_operand_type newdisp;
7430
7431 gas_assert (!i.tm.opcode_modifier.vecsib);
7432 /* Operand is just <disp> */
7433 if (flag_code == CODE_64BIT)
7434 {
7435 /* 64bit mode overwrites the 32bit absolute
7436 addressing by RIP relative addressing and
7437 absolute addressing is encoded by one of the
7438 redundant SIB forms. */
7439 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7440 i.sib.base = NO_BASE_REGISTER;
7441 i.sib.index = NO_INDEX_REGISTER;
7442 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7443 }
7444 else if ((flag_code == CODE_16BIT)
7445 ^ (i.prefix[ADDR_PREFIX] != 0))
7446 {
7447 i.rm.regmem = NO_BASE_REGISTER_16;
7448 newdisp = disp16;
7449 }
7450 else
7451 {
7452 i.rm.regmem = NO_BASE_REGISTER;
7453 newdisp = disp32;
7454 }
7455 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7456 i.types[op] = operand_type_or (i.types[op], newdisp);
7457 }
7458 else if (!i.tm.opcode_modifier.vecsib)
7459 {
7460 /* !i.base_reg && i.index_reg */
7461 if (i.index_reg->reg_num == RegIZ)
7462 i.sib.index = NO_INDEX_REGISTER;
7463 else
7464 i.sib.index = i.index_reg->reg_num;
7465 i.sib.base = NO_BASE_REGISTER;
7466 i.sib.scale = i.log2_scale_factor;
7467 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7468 i.types[op].bitfield.disp8 = 0;
7469 i.types[op].bitfield.disp16 = 0;
7470 i.types[op].bitfield.disp64 = 0;
7471 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7472 {
7473 /* Must be 32 bit */
7474 i.types[op].bitfield.disp32 = 1;
7475 i.types[op].bitfield.disp32s = 0;
7476 }
7477 else
7478 {
7479 i.types[op].bitfield.disp32 = 0;
7480 i.types[op].bitfield.disp32s = 1;
7481 }
7482 if ((i.index_reg->reg_flags & RegRex) != 0)
7483 i.rex |= REX_X;
7484 }
7485 }
7486 /* RIP addressing for 64bit mode. */
7487 else if (i.base_reg->reg_num == RegIP)
7488 {
7489 gas_assert (!i.tm.opcode_modifier.vecsib);
7490 i.rm.regmem = NO_BASE_REGISTER;
7491 i.types[op].bitfield.disp8 = 0;
7492 i.types[op].bitfield.disp16 = 0;
7493 i.types[op].bitfield.disp32 = 0;
7494 i.types[op].bitfield.disp32s = 1;
7495 i.types[op].bitfield.disp64 = 0;
7496 i.flags[op] |= Operand_PCrel;
7497 if (! i.disp_operands)
7498 fake_zero_displacement = 1;
7499 }
7500 else if (i.base_reg->reg_type.bitfield.word)
7501 {
7502 gas_assert (!i.tm.opcode_modifier.vecsib);
7503 switch (i.base_reg->reg_num)
7504 {
7505 case 3: /* (%bx) */
7506 if (i.index_reg == 0)
7507 i.rm.regmem = 7;
7508 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7509 i.rm.regmem = i.index_reg->reg_num - 6;
7510 break;
7511 case 5: /* (%bp) */
7512 default_seg = &ss;
7513 if (i.index_reg == 0)
7514 {
7515 i.rm.regmem = 6;
7516 if (operand_type_check (i.types[op], disp) == 0)
7517 {
7518 /* fake (%bp) into 0(%bp) */
7519 i.types[op].bitfield.disp8 = 1;
7520 fake_zero_displacement = 1;
7521 }
7522 }
7523 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7524 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7525 break;
7526 default: /* (%si) -> 4 or (%di) -> 5 */
7527 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7528 }
7529 i.rm.mode = mode_from_disp_size (i.types[op]);
7530 }
7531 else /* i.base_reg and 32/64 bit mode */
7532 {
7533 if (flag_code == CODE_64BIT
7534 && operand_type_check (i.types[op], disp))
7535 {
7536 i.types[op].bitfield.disp16 = 0;
7537 i.types[op].bitfield.disp64 = 0;
7538 if (i.prefix[ADDR_PREFIX] == 0)
7539 {
7540 i.types[op].bitfield.disp32 = 0;
7541 i.types[op].bitfield.disp32s = 1;
7542 }
7543 else
7544 {
7545 i.types[op].bitfield.disp32 = 1;
7546 i.types[op].bitfield.disp32s = 0;
7547 }
7548 }
7549
7550 if (!i.tm.opcode_modifier.vecsib)
7551 i.rm.regmem = i.base_reg->reg_num;
7552 if ((i.base_reg->reg_flags & RegRex) != 0)
7553 i.rex |= REX_B;
7554 i.sib.base = i.base_reg->reg_num;
7555 /* x86-64 ignores REX prefix bit here to avoid decoder
7556 complications. */
7557 if (!(i.base_reg->reg_flags & RegRex)
7558 && (i.base_reg->reg_num == EBP_REG_NUM
7559 || i.base_reg->reg_num == ESP_REG_NUM))
7560 default_seg = &ss;
7561 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7562 {
7563 fake_zero_displacement = 1;
7564 i.types[op].bitfield.disp8 = 1;
7565 }
7566 i.sib.scale = i.log2_scale_factor;
7567 if (i.index_reg == 0)
7568 {
7569 gas_assert (!i.tm.opcode_modifier.vecsib);
7570 /* <disp>(%esp) becomes two byte modrm with no index
7571 register. We've already stored the code for esp
7572 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7573 Any base register besides %esp will not use the
7574 extra modrm byte. */
7575 i.sib.index = NO_INDEX_REGISTER;
7576 }
7577 else if (!i.tm.opcode_modifier.vecsib)
7578 {
7579 if (i.index_reg->reg_num == RegIZ)
7580 i.sib.index = NO_INDEX_REGISTER;
7581 else
7582 i.sib.index = i.index_reg->reg_num;
7583 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7584 if ((i.index_reg->reg_flags & RegRex) != 0)
7585 i.rex |= REX_X;
7586 }
7587
7588 if (i.disp_operands
7589 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7590 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7591 i.rm.mode = 0;
7592 else
7593 {
7594 if (!fake_zero_displacement
7595 && !i.disp_operands
7596 && i.disp_encoding)
7597 {
7598 fake_zero_displacement = 1;
7599 if (i.disp_encoding == disp_encoding_8bit)
7600 i.types[op].bitfield.disp8 = 1;
7601 else
7602 i.types[op].bitfield.disp32 = 1;
7603 }
7604 i.rm.mode = mode_from_disp_size (i.types[op]);
7605 }
7606 }
7607
7608 if (fake_zero_displacement)
7609 {
7610 /* Fakes a zero displacement assuming that i.types[op]
7611 holds the correct displacement size. */
7612 expressionS *exp;
7613
7614 gas_assert (i.op[op].disps == 0);
7615 exp = &disp_expressions[i.disp_operands++];
7616 i.op[op].disps = exp;
7617 exp->X_op = O_constant;
7618 exp->X_add_number = 0;
7619 exp->X_add_symbol = (symbolS *) 0;
7620 exp->X_op_symbol = (symbolS *) 0;
7621 }
7622
7623 mem = op;
7624 }
7625 else
7626 mem = ~0;
7627
7628 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7629 {
7630 if (operand_type_check (i.types[0], imm))
7631 i.vex.register_specifier = NULL;
7632 else
7633 {
7634 /* VEX.vvvv encodes one of the sources when the first
7635 operand is not an immediate. */
7636 if (i.tm.opcode_modifier.vexw == VEXW0)
7637 i.vex.register_specifier = i.op[0].regs;
7638 else
7639 i.vex.register_specifier = i.op[1].regs;
7640 }
7641
7642 /* Destination is a XMM register encoded in the ModRM.reg
7643 and VEX.R bit. */
7644 i.rm.reg = i.op[2].regs->reg_num;
7645 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7646 i.rex |= REX_R;
7647
7648 /* ModRM.rm and VEX.B encodes the other source. */
7649 if (!i.mem_operands)
7650 {
7651 i.rm.mode = 3;
7652
7653 if (i.tm.opcode_modifier.vexw == VEXW0)
7654 i.rm.regmem = i.op[1].regs->reg_num;
7655 else
7656 i.rm.regmem = i.op[0].regs->reg_num;
7657
7658 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7659 i.rex |= REX_B;
7660 }
7661 }
7662 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7663 {
7664 i.vex.register_specifier = i.op[2].regs;
7665 if (!i.mem_operands)
7666 {
7667 i.rm.mode = 3;
7668 i.rm.regmem = i.op[1].regs->reg_num;
7669 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7670 i.rex |= REX_B;
7671 }
7672 }
7673 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7674 (if any) based on i.tm.extension_opcode. Again, we must be
7675 careful to make sure that segment/control/debug/test/MMX
7676 registers are coded into the i.rm.reg field. */
7677 else if (i.reg_operands)
7678 {
7679 unsigned int op;
7680 unsigned int vex_reg = ~0;
7681
7682 for (op = 0; op < i.operands; op++)
7683 {
7684 if (i.types[op].bitfield.class == Reg
7685 || i.types[op].bitfield.regbnd
7686 || i.types[op].bitfield.regmask
7687 || i.types[op].bitfield.class == SReg
7688 || i.types[op].bitfield.class == RegCR
7689 || i.types[op].bitfield.class == RegDR
7690 || i.types[op].bitfield.class == RegTR)
7691 break;
7692 if (i.types[op].bitfield.class == RegSIMD)
7693 {
7694 if (i.types[op].bitfield.zmmword)
7695 i.has_regzmm = TRUE;
7696 else if (i.types[op].bitfield.ymmword)
7697 i.has_regymm = TRUE;
7698 else
7699 i.has_regxmm = TRUE;
7700 break;
7701 }
7702 if (i.types[op].bitfield.class == RegMMX)
7703 {
7704 i.has_regmmx = TRUE;
7705 break;
7706 }
7707 }
7708
7709 if (vex_3_sources)
7710 op = dest;
7711 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7712 {
7713 /* For instructions with VexNDS, the register-only
7714 source operand is encoded in VEX prefix. */
7715 gas_assert (mem != (unsigned int) ~0);
7716
7717 if (op > mem)
7718 {
7719 vex_reg = op++;
7720 gas_assert (op < i.operands);
7721 }
7722 else
7723 {
7724 /* Check register-only source operand when two source
7725 operands are swapped. */
7726 if (!i.tm.operand_types[op].bitfield.baseindex
7727 && i.tm.operand_types[op + 1].bitfield.baseindex)
7728 {
7729 vex_reg = op;
7730 op += 2;
7731 gas_assert (mem == (vex_reg + 1)
7732 && op < i.operands);
7733 }
7734 else
7735 {
7736 vex_reg = op + 1;
7737 gas_assert (vex_reg < i.operands);
7738 }
7739 }
7740 }
7741 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7742 {
7743 /* For instructions with VexNDD, the register destination
7744 is encoded in VEX prefix. */
7745 if (i.mem_operands == 0)
7746 {
7747 /* There is no memory operand. */
7748 gas_assert ((op + 2) == i.operands);
7749 vex_reg = op + 1;
7750 }
7751 else
7752 {
7753 /* There are only 2 non-immediate operands. */
7754 gas_assert (op < i.imm_operands + 2
7755 && i.operands == i.imm_operands + 2);
7756 vex_reg = i.imm_operands + 1;
7757 }
7758 }
7759 else
7760 gas_assert (op < i.operands);
7761
7762 if (vex_reg != (unsigned int) ~0)
7763 {
7764 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7765
7766 if ((type->bitfield.class != Reg
7767 || (!type->bitfield.dword && !type->bitfield.qword))
7768 && type->bitfield.class != RegSIMD
7769 && !operand_type_equal (type, &regmask))
7770 abort ();
7771
7772 i.vex.register_specifier = i.op[vex_reg].regs;
7773 }
7774
7775 /* Don't set OP operand twice. */
7776 if (vex_reg != op)
7777 {
7778 /* If there is an extension opcode to put here, the
7779 register number must be put into the regmem field. */
7780 if (i.tm.extension_opcode != None)
7781 {
7782 i.rm.regmem = i.op[op].regs->reg_num;
7783 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7784 i.rex |= REX_B;
7785 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7786 i.vrex |= REX_B;
7787 }
7788 else
7789 {
7790 i.rm.reg = i.op[op].regs->reg_num;
7791 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7792 i.rex |= REX_R;
7793 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7794 i.vrex |= REX_R;
7795 }
7796 }
7797
7798 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7799 must set it to 3 to indicate this is a register operand
7800 in the regmem field. */
7801 if (!i.mem_operands)
7802 i.rm.mode = 3;
7803 }
7804
7805 /* Fill in i.rm.reg field with extension opcode (if any). */
7806 if (i.tm.extension_opcode != None)
7807 i.rm.reg = i.tm.extension_opcode;
7808 }
7809 return default_seg;
7810 }
7811
7812 static void
7813 output_branch (void)
7814 {
7815 char *p;
7816 int size;
7817 int code16;
7818 int prefix;
7819 relax_substateT subtype;
7820 symbolS *sym;
7821 offsetT off;
7822
7823 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7824 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7825
7826 prefix = 0;
7827 if (i.prefix[DATA_PREFIX] != 0)
7828 {
7829 prefix = 1;
7830 i.prefixes -= 1;
7831 code16 ^= CODE16;
7832 }
7833 /* Pentium4 branch hints. */
7834 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7835 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7836 {
7837 prefix++;
7838 i.prefixes--;
7839 }
7840 if (i.prefix[REX_PREFIX] != 0)
7841 {
7842 prefix++;
7843 i.prefixes--;
7844 }
7845
7846 /* BND prefixed jump. */
7847 if (i.prefix[BND_PREFIX] != 0)
7848 {
7849 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7850 i.prefixes -= 1;
7851 }
7852
7853 if (i.prefixes != 0 && !intel_syntax)
7854 as_warn (_("skipping prefixes on this instruction"));
7855
7856 /* It's always a symbol; End frag & setup for relax.
7857 Make sure there is enough room in this frag for the largest
7858 instruction we may generate in md_convert_frag. This is 2
7859 bytes for the opcode and room for the prefix and largest
7860 displacement. */
7861 frag_grow (prefix + 2 + 4);
7862 /* Prefix and 1 opcode byte go in fr_fix. */
7863 p = frag_more (prefix + 1);
7864 if (i.prefix[DATA_PREFIX] != 0)
7865 *p++ = DATA_PREFIX_OPCODE;
7866 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7867 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7868 *p++ = i.prefix[SEG_PREFIX];
7869 if (i.prefix[REX_PREFIX] != 0)
7870 *p++ = i.prefix[REX_PREFIX];
7871 *p = i.tm.base_opcode;
7872
7873 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7874 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7875 else if (cpu_arch_flags.bitfield.cpui386)
7876 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7877 else
7878 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7879 subtype |= code16;
7880
7881 sym = i.op[0].disps->X_add_symbol;
7882 off = i.op[0].disps->X_add_number;
7883
7884 if (i.op[0].disps->X_op != O_constant
7885 && i.op[0].disps->X_op != O_symbol)
7886 {
7887 /* Handle complex expressions. */
7888 sym = make_expr_symbol (i.op[0].disps);
7889 off = 0;
7890 }
7891
7892 /* 1 possible extra opcode + 4 byte displacement go in var part.
7893 Pass reloc in fr_var. */
7894 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7895 }
7896
7897 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7898 /* Return TRUE iff PLT32 relocation should be used for branching to
7899 symbol S. */
7900
7901 static bfd_boolean
7902 need_plt32_p (symbolS *s)
7903 {
7904 /* PLT32 relocation is ELF only. */
7905 if (!IS_ELF)
7906 return FALSE;
7907
7908 #ifdef TE_SOLARIS
7909 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7910 krtld support it. */
7911 return FALSE;
7912 #endif
7913
7914 /* Since there is no need to prepare for PLT branch on x86-64, we
7915 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7916 be used as a marker for 32-bit PC-relative branches. */
7917 if (!object_64bit)
7918 return FALSE;
7919
7920 /* Weak or undefined symbol need PLT32 relocation. */
7921 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7922 return TRUE;
7923
7924 /* Non-global symbol doesn't need PLT32 relocation. */
7925 if (! S_IS_EXTERNAL (s))
7926 return FALSE;
7927
7928 /* Other global symbols need PLT32 relocation. NB: Symbol with
7929 non-default visibilities are treated as normal global symbol
7930 so that PLT32 relocation can be used as a marker for 32-bit
7931 PC-relative branches. It is useful for linker relaxation. */
7932 return TRUE;
7933 }
7934 #endif
7935
7936 static void
7937 output_jump (void)
7938 {
7939 char *p;
7940 int size;
7941 fixS *fixP;
7942 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7943
7944 if (i.tm.opcode_modifier.jumpbyte)
7945 {
7946 /* This is a loop or jecxz type instruction. */
7947 size = 1;
7948 if (i.prefix[ADDR_PREFIX] != 0)
7949 {
7950 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7951 i.prefixes -= 1;
7952 }
7953 /* Pentium4 branch hints. */
7954 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7955 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7956 {
7957 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7958 i.prefixes--;
7959 }
7960 }
7961 else
7962 {
7963 int code16;
7964
7965 code16 = 0;
7966 if (flag_code == CODE_16BIT)
7967 code16 = CODE16;
7968
7969 if (i.prefix[DATA_PREFIX] != 0)
7970 {
7971 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7972 i.prefixes -= 1;
7973 code16 ^= CODE16;
7974 }
7975
7976 size = 4;
7977 if (code16)
7978 size = 2;
7979 }
7980
7981 if (i.prefix[REX_PREFIX] != 0)
7982 {
7983 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7984 i.prefixes -= 1;
7985 }
7986
7987 /* BND prefixed jump. */
7988 if (i.prefix[BND_PREFIX] != 0)
7989 {
7990 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7991 i.prefixes -= 1;
7992 }
7993
7994 if (i.prefixes != 0 && !intel_syntax)
7995 as_warn (_("skipping prefixes on this instruction"));
7996
7997 p = frag_more (i.tm.opcode_length + size);
7998 switch (i.tm.opcode_length)
7999 {
8000 case 2:
8001 *p++ = i.tm.base_opcode >> 8;
8002 /* Fall through. */
8003 case 1:
8004 *p++ = i.tm.base_opcode;
8005 break;
8006 default:
8007 abort ();
8008 }
8009
8010 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8011 if (size == 4
8012 && jump_reloc == NO_RELOC
8013 && need_plt32_p (i.op[0].disps->X_add_symbol))
8014 jump_reloc = BFD_RELOC_X86_64_PLT32;
8015 #endif
8016
8017 jump_reloc = reloc (size, 1, 1, jump_reloc);
8018
8019 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8020 i.op[0].disps, 1, jump_reloc);
8021
8022 /* All jumps handled here are signed, but don't use a signed limit
8023 check for 32 and 16 bit jumps as we want to allow wrap around at
8024 4G and 64k respectively. */
8025 if (size == 1)
8026 fixP->fx_signed = 1;
8027 }
8028
8029 static void
8030 output_interseg_jump (void)
8031 {
8032 char *p;
8033 int size;
8034 int prefix;
8035 int code16;
8036
8037 code16 = 0;
8038 if (flag_code == CODE_16BIT)
8039 code16 = CODE16;
8040
8041 prefix = 0;
8042 if (i.prefix[DATA_PREFIX] != 0)
8043 {
8044 prefix = 1;
8045 i.prefixes -= 1;
8046 code16 ^= CODE16;
8047 }
8048 if (i.prefix[REX_PREFIX] != 0)
8049 {
8050 prefix++;
8051 i.prefixes -= 1;
8052 }
8053
8054 size = 4;
8055 if (code16)
8056 size = 2;
8057
8058 if (i.prefixes != 0 && !intel_syntax)
8059 as_warn (_("skipping prefixes on this instruction"));
8060
8061 /* 1 opcode; 2 segment; offset */
8062 p = frag_more (prefix + 1 + 2 + size);
8063
8064 if (i.prefix[DATA_PREFIX] != 0)
8065 *p++ = DATA_PREFIX_OPCODE;
8066
8067 if (i.prefix[REX_PREFIX] != 0)
8068 *p++ = i.prefix[REX_PREFIX];
8069
8070 *p++ = i.tm.base_opcode;
8071 if (i.op[1].imms->X_op == O_constant)
8072 {
8073 offsetT n = i.op[1].imms->X_add_number;
8074
8075 if (size == 2
8076 && !fits_in_unsigned_word (n)
8077 && !fits_in_signed_word (n))
8078 {
8079 as_bad (_("16-bit jump out of range"));
8080 return;
8081 }
8082 md_number_to_chars (p, n, size);
8083 }
8084 else
8085 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8086 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8087 if (i.op[0].imms->X_op != O_constant)
8088 as_bad (_("can't handle non absolute segment in `%s'"),
8089 i.tm.name);
8090 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8091 }
8092
8093 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8094 void
8095 x86_cleanup (void)
8096 {
8097 char *p;
8098 asection *seg = now_seg;
8099 subsegT subseg = now_subseg;
8100 asection *sec;
8101 unsigned int alignment, align_size_1;
8102 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8103 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8104 unsigned int padding;
8105
8106 if (!IS_ELF || !x86_used_note)
8107 return;
8108
8109 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8110
8111 /* The .note.gnu.property section layout:
8112
8113 Field Length Contents
8114 ---- ---- ----
8115 n_namsz 4 4
8116 n_descsz 4 The note descriptor size
8117 n_type 4 NT_GNU_PROPERTY_TYPE_0
8118 n_name 4 "GNU"
8119 n_desc n_descsz The program property array
8120 .... .... ....
8121 */
8122
8123 /* Create the .note.gnu.property section. */
8124 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8125 bfd_set_section_flags (sec,
8126 (SEC_ALLOC
8127 | SEC_LOAD
8128 | SEC_DATA
8129 | SEC_HAS_CONTENTS
8130 | SEC_READONLY));
8131
8132 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8133 {
8134 align_size_1 = 7;
8135 alignment = 3;
8136 }
8137 else
8138 {
8139 align_size_1 = 3;
8140 alignment = 2;
8141 }
8142
8143 bfd_set_section_alignment (sec, alignment);
8144 elf_section_type (sec) = SHT_NOTE;
8145
8146 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8147 + 4-byte data */
8148 isa_1_descsz_raw = 4 + 4 + 4;
8149 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8150 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8151
8152 feature_2_descsz_raw = isa_1_descsz;
8153 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8154 + 4-byte data */
8155 feature_2_descsz_raw += 4 + 4 + 4;
8156 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8157 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8158 & ~align_size_1);
8159
8160 descsz = feature_2_descsz;
8161 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8162 p = frag_more (4 + 4 + 4 + 4 + descsz);
8163
8164 /* Write n_namsz. */
8165 md_number_to_chars (p, (valueT) 4, 4);
8166
8167 /* Write n_descsz. */
8168 md_number_to_chars (p + 4, (valueT) descsz, 4);
8169
8170 /* Write n_type. */
8171 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8172
8173 /* Write n_name. */
8174 memcpy (p + 4 * 3, "GNU", 4);
8175
8176 /* Write 4-byte type. */
8177 md_number_to_chars (p + 4 * 4,
8178 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8179
8180 /* Write 4-byte data size. */
8181 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8182
8183 /* Write 4-byte data. */
8184 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8185
8186 /* Zero out paddings. */
8187 padding = isa_1_descsz - isa_1_descsz_raw;
8188 if (padding)
8189 memset (p + 4 * 7, 0, padding);
8190
8191 /* Write 4-byte type. */
8192 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8193 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8194
8195 /* Write 4-byte data size. */
8196 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8197
8198 /* Write 4-byte data. */
8199 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8200 (valueT) x86_feature_2_used, 4);
8201
8202 /* Zero out paddings. */
8203 padding = feature_2_descsz - feature_2_descsz_raw;
8204 if (padding)
8205 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8206
8207 /* We probably can't restore the current segment, for there likely
8208 isn't one yet... */
8209 if (seg && subseg)
8210 subseg_set (seg, subseg);
8211 }
8212 #endif
8213
8214 static unsigned int
8215 encoding_length (const fragS *start_frag, offsetT start_off,
8216 const char *frag_now_ptr)
8217 {
8218 unsigned int len = 0;
8219
8220 if (start_frag != frag_now)
8221 {
8222 const fragS *fr = start_frag;
8223
8224 do {
8225 len += fr->fr_fix;
8226 fr = fr->fr_next;
8227 } while (fr && fr != frag_now);
8228 }
8229
8230 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8231 }
8232
8233 static void
8234 output_insn (void)
8235 {
8236 fragS *insn_start_frag;
8237 offsetT insn_start_off;
8238
8239 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8240 if (IS_ELF && x86_used_note)
8241 {
8242 if (i.tm.cpu_flags.bitfield.cpucmov)
8243 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8244 if (i.tm.cpu_flags.bitfield.cpusse)
8245 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8246 if (i.tm.cpu_flags.bitfield.cpusse2)
8247 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8248 if (i.tm.cpu_flags.bitfield.cpusse3)
8249 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8250 if (i.tm.cpu_flags.bitfield.cpussse3)
8251 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8252 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8253 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8254 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8255 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8256 if (i.tm.cpu_flags.bitfield.cpuavx)
8257 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8258 if (i.tm.cpu_flags.bitfield.cpuavx2)
8259 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8260 if (i.tm.cpu_flags.bitfield.cpufma)
8261 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8262 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8263 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8264 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8265 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8266 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8267 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8268 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8269 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8270 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8271 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8272 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8273 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8274 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8275 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8276 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8277 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8278 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8279 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8280 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8281 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8282 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8283 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8284 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8285 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8286 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8287 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8288 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8289 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8290 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8291 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8292
8293 if (i.tm.cpu_flags.bitfield.cpu8087
8294 || i.tm.cpu_flags.bitfield.cpu287
8295 || i.tm.cpu_flags.bitfield.cpu387
8296 || i.tm.cpu_flags.bitfield.cpu687
8297 || i.tm.cpu_flags.bitfield.cpufisttp)
8298 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8299 /* Don't set GNU_PROPERTY_X86_FEATURE_2_MMX for prefetchtXXX nor
8300 Xfence instructions. */
8301 if (i.tm.base_opcode != 0xf18
8302 && i.tm.base_opcode != 0xf0d
8303 && i.tm.base_opcode != 0xfaef8
8304 && (i.has_regmmx
8305 || i.tm.cpu_flags.bitfield.cpummx
8306 || i.tm.cpu_flags.bitfield.cpua3dnow
8307 || i.tm.cpu_flags.bitfield.cpua3dnowa))
8308 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8309 if (i.has_regxmm)
8310 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8311 if (i.has_regymm)
8312 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8313 if (i.has_regzmm)
8314 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8315 if (i.tm.cpu_flags.bitfield.cpufxsr)
8316 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8317 if (i.tm.cpu_flags.bitfield.cpuxsave)
8318 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8319 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8320 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8321 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8322 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8323 }
8324 #endif
8325
8326 /* Tie dwarf2 debug info to the address at the start of the insn.
8327 We can't do this after the insn has been output as the current
8328 frag may have been closed off. eg. by frag_var. */
8329 dwarf2_emit_insn (0);
8330
8331 insn_start_frag = frag_now;
8332 insn_start_off = frag_now_fix ();
8333
8334 /* Output jumps. */
8335 if (i.tm.opcode_modifier.jump)
8336 output_branch ();
8337 else if (i.tm.opcode_modifier.jumpbyte
8338 || i.tm.opcode_modifier.jumpdword)
8339 output_jump ();
8340 else if (i.tm.opcode_modifier.jumpintersegment)
8341 output_interseg_jump ();
8342 else
8343 {
8344 /* Output normal instructions here. */
8345 char *p;
8346 unsigned char *q;
8347 unsigned int j;
8348 unsigned int prefix;
8349
8350 if (avoid_fence
8351 && (i.tm.base_opcode == 0xfaee8
8352 || i.tm.base_opcode == 0xfaef0
8353 || i.tm.base_opcode == 0xfaef8))
8354 {
8355 /* Encode lfence, mfence, and sfence as
8356 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8357 offsetT val = 0x240483f0ULL;
8358 p = frag_more (5);
8359 md_number_to_chars (p, val, 5);
8360 return;
8361 }
8362
8363 /* Some processors fail on LOCK prefix. This options makes
8364 assembler ignore LOCK prefix and serves as a workaround. */
8365 if (omit_lock_prefix)
8366 {
8367 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8368 return;
8369 i.prefix[LOCK_PREFIX] = 0;
8370 }
8371
8372 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8373 don't need the explicit prefix. */
8374 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8375 {
8376 switch (i.tm.opcode_length)
8377 {
8378 case 3:
8379 if (i.tm.base_opcode & 0xff000000)
8380 {
8381 prefix = (i.tm.base_opcode >> 24) & 0xff;
8382 if (!i.tm.cpu_flags.bitfield.cpupadlock
8383 || prefix != REPE_PREFIX_OPCODE
8384 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8385 add_prefix (prefix);
8386 }
8387 break;
8388 case 2:
8389 if ((i.tm.base_opcode & 0xff0000) != 0)
8390 {
8391 prefix = (i.tm.base_opcode >> 16) & 0xff;
8392 add_prefix (prefix);
8393 }
8394 break;
8395 case 1:
8396 break;
8397 case 0:
8398 /* Check for pseudo prefixes. */
8399 as_bad_where (insn_start_frag->fr_file,
8400 insn_start_frag->fr_line,
8401 _("pseudo prefix without instruction"));
8402 return;
8403 default:
8404 abort ();
8405 }
8406
8407 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8408 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8409 R_X86_64_GOTTPOFF relocation so that linker can safely
8410 perform IE->LE optimization. */
8411 if (x86_elf_abi == X86_64_X32_ABI
8412 && i.operands == 2
8413 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8414 && i.prefix[REX_PREFIX] == 0)
8415 add_prefix (REX_OPCODE);
8416 #endif
8417
8418 /* The prefix bytes. */
8419 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8420 if (*q)
8421 FRAG_APPEND_1_CHAR (*q);
8422 }
8423 else
8424 {
8425 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8426 if (*q)
8427 switch (j)
8428 {
8429 case REX_PREFIX:
8430 /* REX byte is encoded in VEX prefix. */
8431 break;
8432 case SEG_PREFIX:
8433 case ADDR_PREFIX:
8434 FRAG_APPEND_1_CHAR (*q);
8435 break;
8436 default:
8437 /* There should be no other prefixes for instructions
8438 with VEX prefix. */
8439 abort ();
8440 }
8441
8442 /* For EVEX instructions i.vrex should become 0 after
8443 build_evex_prefix. For VEX instructions upper 16 registers
8444 aren't available, so VREX should be 0. */
8445 if (i.vrex)
8446 abort ();
8447 /* Now the VEX prefix. */
8448 p = frag_more (i.vex.length);
8449 for (j = 0; j < i.vex.length; j++)
8450 p[j] = i.vex.bytes[j];
8451 }
8452
8453 /* Now the opcode; be careful about word order here! */
8454 if (i.tm.opcode_length == 1)
8455 {
8456 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8457 }
8458 else
8459 {
8460 switch (i.tm.opcode_length)
8461 {
8462 case 4:
8463 p = frag_more (4);
8464 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8465 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8466 break;
8467 case 3:
8468 p = frag_more (3);
8469 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8470 break;
8471 case 2:
8472 p = frag_more (2);
8473 break;
8474 default:
8475 abort ();
8476 break;
8477 }
8478
8479 /* Put out high byte first: can't use md_number_to_chars! */
8480 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8481 *p = i.tm.base_opcode & 0xff;
8482 }
8483
8484 /* Now the modrm byte and sib byte (if present). */
8485 if (i.tm.opcode_modifier.modrm)
8486 {
8487 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8488 | i.rm.reg << 3
8489 | i.rm.mode << 6));
8490 /* If i.rm.regmem == ESP (4)
8491 && i.rm.mode != (Register mode)
8492 && not 16 bit
8493 ==> need second modrm byte. */
8494 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8495 && i.rm.mode != 3
8496 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8497 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8498 | i.sib.index << 3
8499 | i.sib.scale << 6));
8500 }
8501
8502 if (i.disp_operands)
8503 output_disp (insn_start_frag, insn_start_off);
8504
8505 if (i.imm_operands)
8506 output_imm (insn_start_frag, insn_start_off);
8507
8508 /*
8509 * frag_now_fix () returning plain abs_section_offset when we're in the
8510 * absolute section, and abs_section_offset not getting updated as data
8511 * gets added to the frag breaks the logic below.
8512 */
8513 if (now_seg != absolute_section)
8514 {
8515 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8516 if (j > 15)
8517 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8518 j);
8519 }
8520 }
8521
8522 #ifdef DEBUG386
8523 if (flag_debug)
8524 {
8525 pi ("" /*line*/, &i);
8526 }
8527 #endif /* DEBUG386 */
8528 }
8529
8530 /* Return the size of the displacement operand N. */
8531
8532 static int
8533 disp_size (unsigned int n)
8534 {
8535 int size = 4;
8536
8537 if (i.types[n].bitfield.disp64)
8538 size = 8;
8539 else if (i.types[n].bitfield.disp8)
8540 size = 1;
8541 else if (i.types[n].bitfield.disp16)
8542 size = 2;
8543 return size;
8544 }
8545
8546 /* Return the size of the immediate operand N. */
8547
8548 static int
8549 imm_size (unsigned int n)
8550 {
8551 int size = 4;
8552 if (i.types[n].bitfield.imm64)
8553 size = 8;
8554 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8555 size = 1;
8556 else if (i.types[n].bitfield.imm16)
8557 size = 2;
8558 return size;
8559 }
8560
8561 static void
8562 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8563 {
8564 char *p;
8565 unsigned int n;
8566
8567 for (n = 0; n < i.operands; n++)
8568 {
8569 if (operand_type_check (i.types[n], disp))
8570 {
8571 if (i.op[n].disps->X_op == O_constant)
8572 {
8573 int size = disp_size (n);
8574 offsetT val = i.op[n].disps->X_add_number;
8575
8576 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8577 size);
8578 p = frag_more (size);
8579 md_number_to_chars (p, val, size);
8580 }
8581 else
8582 {
8583 enum bfd_reloc_code_real reloc_type;
8584 int size = disp_size (n);
8585 int sign = i.types[n].bitfield.disp32s;
8586 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8587 fixS *fixP;
8588
8589 /* We can't have 8 bit displacement here. */
8590 gas_assert (!i.types[n].bitfield.disp8);
8591
8592 /* The PC relative address is computed relative
8593 to the instruction boundary, so in case immediate
8594 fields follows, we need to adjust the value. */
8595 if (pcrel && i.imm_operands)
8596 {
8597 unsigned int n1;
8598 int sz = 0;
8599
8600 for (n1 = 0; n1 < i.operands; n1++)
8601 if (operand_type_check (i.types[n1], imm))
8602 {
8603 /* Only one immediate is allowed for PC
8604 relative address. */
8605 gas_assert (sz == 0);
8606 sz = imm_size (n1);
8607 i.op[n].disps->X_add_number -= sz;
8608 }
8609 /* We should find the immediate. */
8610 gas_assert (sz != 0);
8611 }
8612
8613 p = frag_more (size);
8614 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8615 if (GOT_symbol
8616 && GOT_symbol == i.op[n].disps->X_add_symbol
8617 && (((reloc_type == BFD_RELOC_32
8618 || reloc_type == BFD_RELOC_X86_64_32S
8619 || (reloc_type == BFD_RELOC_64
8620 && object_64bit))
8621 && (i.op[n].disps->X_op == O_symbol
8622 || (i.op[n].disps->X_op == O_add
8623 && ((symbol_get_value_expression
8624 (i.op[n].disps->X_op_symbol)->X_op)
8625 == O_subtract))))
8626 || reloc_type == BFD_RELOC_32_PCREL))
8627 {
8628 if (!object_64bit)
8629 {
8630 reloc_type = BFD_RELOC_386_GOTPC;
8631 i.op[n].imms->X_add_number +=
8632 encoding_length (insn_start_frag, insn_start_off, p);
8633 }
8634 else if (reloc_type == BFD_RELOC_64)
8635 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8636 else
8637 /* Don't do the adjustment for x86-64, as there
8638 the pcrel addressing is relative to the _next_
8639 insn, and that is taken care of in other code. */
8640 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8641 }
8642 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8643 size, i.op[n].disps, pcrel,
8644 reloc_type);
8645 /* Check for "call/jmp *mem", "mov mem, %reg",
8646 "test %reg, mem" and "binop mem, %reg" where binop
8647 is one of adc, add, and, cmp, or, sbb, sub, xor
8648 instructions without data prefix. Always generate
8649 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
8650 if (i.prefix[DATA_PREFIX] == 0
8651 && (generate_relax_relocations
8652 || (!object_64bit
8653 && i.rm.mode == 0
8654 && i.rm.regmem == 5))
8655 && (i.rm.mode == 2
8656 || (i.rm.mode == 0 && i.rm.regmem == 5))
8657 && ((i.operands == 1
8658 && i.tm.base_opcode == 0xff
8659 && (i.rm.reg == 2 || i.rm.reg == 4))
8660 || (i.operands == 2
8661 && (i.tm.base_opcode == 0x8b
8662 || i.tm.base_opcode == 0x85
8663 || (i.tm.base_opcode & 0xc7) == 0x03))))
8664 {
8665 if (object_64bit)
8666 {
8667 fixP->fx_tcbit = i.rex != 0;
8668 if (i.base_reg
8669 && (i.base_reg->reg_num == RegIP))
8670 fixP->fx_tcbit2 = 1;
8671 }
8672 else
8673 fixP->fx_tcbit2 = 1;
8674 }
8675 }
8676 }
8677 }
8678 }
8679
8680 static void
8681 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8682 {
8683 char *p;
8684 unsigned int n;
8685
8686 for (n = 0; n < i.operands; n++)
8687 {
8688 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8689 if (i.rounding && (int) n == i.rounding->operand)
8690 continue;
8691
8692 if (operand_type_check (i.types[n], imm))
8693 {
8694 if (i.op[n].imms->X_op == O_constant)
8695 {
8696 int size = imm_size (n);
8697 offsetT val;
8698
8699 val = offset_in_range (i.op[n].imms->X_add_number,
8700 size);
8701 p = frag_more (size);
8702 md_number_to_chars (p, val, size);
8703 }
8704 else
8705 {
8706 /* Not absolute_section.
8707 Need a 32-bit fixup (don't support 8bit
8708 non-absolute imms). Try to support other
8709 sizes ... */
8710 enum bfd_reloc_code_real reloc_type;
8711 int size = imm_size (n);
8712 int sign;
8713
8714 if (i.types[n].bitfield.imm32s
8715 && (i.suffix == QWORD_MNEM_SUFFIX
8716 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8717 sign = 1;
8718 else
8719 sign = 0;
8720
8721 p = frag_more (size);
8722 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8723
8724 /* This is tough to explain. We end up with this one if we
8725 * have operands that look like
8726 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8727 * obtain the absolute address of the GOT, and it is strongly
8728 * preferable from a performance point of view to avoid using
8729 * a runtime relocation for this. The actual sequence of
8730 * instructions often look something like:
8731 *
8732 * call .L66
8733 * .L66:
8734 * popl %ebx
8735 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8736 *
8737 * The call and pop essentially return the absolute address
8738 * of the label .L66 and store it in %ebx. The linker itself
8739 * will ultimately change the first operand of the addl so
8740 * that %ebx points to the GOT, but to keep things simple, the
8741 * .o file must have this operand set so that it generates not
8742 * the absolute address of .L66, but the absolute address of
8743 * itself. This allows the linker itself simply treat a GOTPC
8744 * relocation as asking for a pcrel offset to the GOT to be
8745 * added in, and the addend of the relocation is stored in the
8746 * operand field for the instruction itself.
8747 *
8748 * Our job here is to fix the operand so that it would add
8749 * the correct offset so that %ebx would point to itself. The
8750 * thing that is tricky is that .-.L66 will point to the
8751 * beginning of the instruction, so we need to further modify
8752 * the operand so that it will point to itself. There are
8753 * other cases where you have something like:
8754 *
8755 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8756 *
8757 * and here no correction would be required. Internally in
8758 * the assembler we treat operands of this form as not being
8759 * pcrel since the '.' is explicitly mentioned, and I wonder
8760 * whether it would simplify matters to do it this way. Who
8761 * knows. In earlier versions of the PIC patches, the
8762 * pcrel_adjust field was used to store the correction, but
8763 * since the expression is not pcrel, I felt it would be
8764 * confusing to do it this way. */
8765
8766 if ((reloc_type == BFD_RELOC_32
8767 || reloc_type == BFD_RELOC_X86_64_32S
8768 || reloc_type == BFD_RELOC_64)
8769 && GOT_symbol
8770 && GOT_symbol == i.op[n].imms->X_add_symbol
8771 && (i.op[n].imms->X_op == O_symbol
8772 || (i.op[n].imms->X_op == O_add
8773 && ((symbol_get_value_expression
8774 (i.op[n].imms->X_op_symbol)->X_op)
8775 == O_subtract))))
8776 {
8777 if (!object_64bit)
8778 reloc_type = BFD_RELOC_386_GOTPC;
8779 else if (size == 4)
8780 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8781 else if (size == 8)
8782 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8783 i.op[n].imms->X_add_number +=
8784 encoding_length (insn_start_frag, insn_start_off, p);
8785 }
8786 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8787 i.op[n].imms, 0, reloc_type);
8788 }
8789 }
8790 }
8791 }
8792 \f
8793 /* x86_cons_fix_new is called via the expression parsing code when a
8794 reloc is needed. We use this hook to get the correct .got reloc. */
8795 static int cons_sign = -1;
8796
8797 void
8798 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8799 expressionS *exp, bfd_reloc_code_real_type r)
8800 {
8801 r = reloc (len, 0, cons_sign, r);
8802
8803 #ifdef TE_PE
8804 if (exp->X_op == O_secrel)
8805 {
8806 exp->X_op = O_symbol;
8807 r = BFD_RELOC_32_SECREL;
8808 }
8809 #endif
8810
8811 fix_new_exp (frag, off, len, exp, 0, r);
8812 }
8813
8814 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8815 purpose of the `.dc.a' internal pseudo-op. */
8816
8817 int
8818 x86_address_bytes (void)
8819 {
8820 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8821 return 4;
8822 return stdoutput->arch_info->bits_per_address / 8;
8823 }
8824
8825 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8826 || defined (LEX_AT)
8827 # define lex_got(reloc, adjust, types) NULL
8828 #else
8829 /* Parse operands of the form
8830 <symbol>@GOTOFF+<nnn>
8831 and similar .plt or .got references.
8832
8833 If we find one, set up the correct relocation in RELOC and copy the
8834 input string, minus the `@GOTOFF' into a malloc'd buffer for
8835 parsing by the calling routine. Return this buffer, and if ADJUST
8836 is non-null set it to the length of the string we removed from the
8837 input line. Otherwise return NULL. */
8838 static char *
8839 lex_got (enum bfd_reloc_code_real *rel,
8840 int *adjust,
8841 i386_operand_type *types)
8842 {
8843 /* Some of the relocations depend on the size of what field is to
8844 be relocated. But in our callers i386_immediate and i386_displacement
8845 we don't yet know the operand size (this will be set by insn
8846 matching). Hence we record the word32 relocation here,
8847 and adjust the reloc according to the real size in reloc(). */
8848 static const struct {
8849 const char *str;
8850 int len;
8851 const enum bfd_reloc_code_real rel[2];
8852 const i386_operand_type types64;
8853 } gotrel[] = {
8854 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8855 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8856 BFD_RELOC_SIZE32 },
8857 OPERAND_TYPE_IMM32_64 },
8858 #endif
8859 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8860 BFD_RELOC_X86_64_PLTOFF64 },
8861 OPERAND_TYPE_IMM64 },
8862 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8863 BFD_RELOC_X86_64_PLT32 },
8864 OPERAND_TYPE_IMM32_32S_DISP32 },
8865 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8866 BFD_RELOC_X86_64_GOTPLT64 },
8867 OPERAND_TYPE_IMM64_DISP64 },
8868 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8869 BFD_RELOC_X86_64_GOTOFF64 },
8870 OPERAND_TYPE_IMM64_DISP64 },
8871 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8872 BFD_RELOC_X86_64_GOTPCREL },
8873 OPERAND_TYPE_IMM32_32S_DISP32 },
8874 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8875 BFD_RELOC_X86_64_TLSGD },
8876 OPERAND_TYPE_IMM32_32S_DISP32 },
8877 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8878 _dummy_first_bfd_reloc_code_real },
8879 OPERAND_TYPE_NONE },
8880 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8881 BFD_RELOC_X86_64_TLSLD },
8882 OPERAND_TYPE_IMM32_32S_DISP32 },
8883 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8884 BFD_RELOC_X86_64_GOTTPOFF },
8885 OPERAND_TYPE_IMM32_32S_DISP32 },
8886 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8887 BFD_RELOC_X86_64_TPOFF32 },
8888 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8889 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8890 _dummy_first_bfd_reloc_code_real },
8891 OPERAND_TYPE_NONE },
8892 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8893 BFD_RELOC_X86_64_DTPOFF32 },
8894 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8895 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8896 _dummy_first_bfd_reloc_code_real },
8897 OPERAND_TYPE_NONE },
8898 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8899 _dummy_first_bfd_reloc_code_real },
8900 OPERAND_TYPE_NONE },
8901 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8902 BFD_RELOC_X86_64_GOT32 },
8903 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8904 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8905 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8906 OPERAND_TYPE_IMM32_32S_DISP32 },
8907 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8908 BFD_RELOC_X86_64_TLSDESC_CALL },
8909 OPERAND_TYPE_IMM32_32S_DISP32 },
8910 };
8911 char *cp;
8912 unsigned int j;
8913
8914 #if defined (OBJ_MAYBE_ELF)
8915 if (!IS_ELF)
8916 return NULL;
8917 #endif
8918
8919 for (cp = input_line_pointer; *cp != '@'; cp++)
8920 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8921 return NULL;
8922
8923 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8924 {
8925 int len = gotrel[j].len;
8926 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8927 {
8928 if (gotrel[j].rel[object_64bit] != 0)
8929 {
8930 int first, second;
8931 char *tmpbuf, *past_reloc;
8932
8933 *rel = gotrel[j].rel[object_64bit];
8934
8935 if (types)
8936 {
8937 if (flag_code != CODE_64BIT)
8938 {
8939 types->bitfield.imm32 = 1;
8940 types->bitfield.disp32 = 1;
8941 }
8942 else
8943 *types = gotrel[j].types64;
8944 }
8945
8946 if (j != 0 && GOT_symbol == NULL)
8947 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8948
8949 /* The length of the first part of our input line. */
8950 first = cp - input_line_pointer;
8951
8952 /* The second part goes from after the reloc token until
8953 (and including) an end_of_line char or comma. */
8954 past_reloc = cp + 1 + len;
8955 cp = past_reloc;
8956 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8957 ++cp;
8958 second = cp + 1 - past_reloc;
8959
8960 /* Allocate and copy string. The trailing NUL shouldn't
8961 be necessary, but be safe. */
8962 tmpbuf = XNEWVEC (char, first + second + 2);
8963 memcpy (tmpbuf, input_line_pointer, first);
8964 if (second != 0 && *past_reloc != ' ')
8965 /* Replace the relocation token with ' ', so that
8966 errors like foo@GOTOFF1 will be detected. */
8967 tmpbuf[first++] = ' ';
8968 else
8969 /* Increment length by 1 if the relocation token is
8970 removed. */
8971 len++;
8972 if (adjust)
8973 *adjust = len;
8974 memcpy (tmpbuf + first, past_reloc, second);
8975 tmpbuf[first + second] = '\0';
8976 return tmpbuf;
8977 }
8978
8979 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8980 gotrel[j].str, 1 << (5 + object_64bit));
8981 return NULL;
8982 }
8983 }
8984
8985 /* Might be a symbol version string. Don't as_bad here. */
8986 return NULL;
8987 }
8988 #endif
8989
8990 #ifdef TE_PE
8991 #ifdef lex_got
8992 #undef lex_got
8993 #endif
8994 /* Parse operands of the form
8995 <symbol>@SECREL32+<nnn>
8996
8997 If we find one, set up the correct relocation in RELOC and copy the
8998 input string, minus the `@SECREL32' into a malloc'd buffer for
8999 parsing by the calling routine. Return this buffer, and if ADJUST
9000 is non-null set it to the length of the string we removed from the
9001 input line. Otherwise return NULL.
9002
9003 This function is copied from the ELF version above adjusted for PE targets. */
9004
9005 static char *
9006 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9007 int *adjust ATTRIBUTE_UNUSED,
9008 i386_operand_type *types)
9009 {
9010 static const struct
9011 {
9012 const char *str;
9013 int len;
9014 const enum bfd_reloc_code_real rel[2];
9015 const i386_operand_type types64;
9016 }
9017 gotrel[] =
9018 {
9019 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9020 BFD_RELOC_32_SECREL },
9021 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9022 };
9023
9024 char *cp;
9025 unsigned j;
9026
9027 for (cp = input_line_pointer; *cp != '@'; cp++)
9028 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9029 return NULL;
9030
9031 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9032 {
9033 int len = gotrel[j].len;
9034
9035 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9036 {
9037 if (gotrel[j].rel[object_64bit] != 0)
9038 {
9039 int first, second;
9040 char *tmpbuf, *past_reloc;
9041
9042 *rel = gotrel[j].rel[object_64bit];
9043 if (adjust)
9044 *adjust = len;
9045
9046 if (types)
9047 {
9048 if (flag_code != CODE_64BIT)
9049 {
9050 types->bitfield.imm32 = 1;
9051 types->bitfield.disp32 = 1;
9052 }
9053 else
9054 *types = gotrel[j].types64;
9055 }
9056
9057 /* The length of the first part of our input line. */
9058 first = cp - input_line_pointer;
9059
9060 /* The second part goes from after the reloc token until
9061 (and including) an end_of_line char or comma. */
9062 past_reloc = cp + 1 + len;
9063 cp = past_reloc;
9064 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9065 ++cp;
9066 second = cp + 1 - past_reloc;
9067
9068 /* Allocate and copy string. The trailing NUL shouldn't
9069 be necessary, but be safe. */
9070 tmpbuf = XNEWVEC (char, first + second + 2);
9071 memcpy (tmpbuf, input_line_pointer, first);
9072 if (second != 0 && *past_reloc != ' ')
9073 /* Replace the relocation token with ' ', so that
9074 errors like foo@SECLREL321 will be detected. */
9075 tmpbuf[first++] = ' ';
9076 memcpy (tmpbuf + first, past_reloc, second);
9077 tmpbuf[first + second] = '\0';
9078 return tmpbuf;
9079 }
9080
9081 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9082 gotrel[j].str, 1 << (5 + object_64bit));
9083 return NULL;
9084 }
9085 }
9086
9087 /* Might be a symbol version string. Don't as_bad here. */
9088 return NULL;
9089 }
9090
9091 #endif /* TE_PE */
9092
9093 bfd_reloc_code_real_type
9094 x86_cons (expressionS *exp, int size)
9095 {
9096 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9097
9098 intel_syntax = -intel_syntax;
9099
9100 exp->X_md = 0;
9101 if (size == 4 || (object_64bit && size == 8))
9102 {
9103 /* Handle @GOTOFF and the like in an expression. */
9104 char *save;
9105 char *gotfree_input_line;
9106 int adjust = 0;
9107
9108 save = input_line_pointer;
9109 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9110 if (gotfree_input_line)
9111 input_line_pointer = gotfree_input_line;
9112
9113 expression (exp);
9114
9115 if (gotfree_input_line)
9116 {
9117 /* expression () has merrily parsed up to the end of line,
9118 or a comma - in the wrong buffer. Transfer how far
9119 input_line_pointer has moved to the right buffer. */
9120 input_line_pointer = (save
9121 + (input_line_pointer - gotfree_input_line)
9122 + adjust);
9123 free (gotfree_input_line);
9124 if (exp->X_op == O_constant
9125 || exp->X_op == O_absent
9126 || exp->X_op == O_illegal
9127 || exp->X_op == O_register
9128 || exp->X_op == O_big)
9129 {
9130 char c = *input_line_pointer;
9131 *input_line_pointer = 0;
9132 as_bad (_("missing or invalid expression `%s'"), save);
9133 *input_line_pointer = c;
9134 }
9135 else if ((got_reloc == BFD_RELOC_386_PLT32
9136 || got_reloc == BFD_RELOC_X86_64_PLT32)
9137 && exp->X_op != O_symbol)
9138 {
9139 char c = *input_line_pointer;
9140 *input_line_pointer = 0;
9141 as_bad (_("invalid PLT expression `%s'"), save);
9142 *input_line_pointer = c;
9143 }
9144 }
9145 }
9146 else
9147 expression (exp);
9148
9149 intel_syntax = -intel_syntax;
9150
9151 if (intel_syntax)
9152 i386_intel_simplify (exp);
9153
9154 return got_reloc;
9155 }
9156
9157 static void
9158 signed_cons (int size)
9159 {
9160 if (flag_code == CODE_64BIT)
9161 cons_sign = 1;
9162 cons (size);
9163 cons_sign = -1;
9164 }
9165
9166 #ifdef TE_PE
9167 static void
9168 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9169 {
9170 expressionS exp;
9171
9172 do
9173 {
9174 expression (&exp);
9175 if (exp.X_op == O_symbol)
9176 exp.X_op = O_secrel;
9177
9178 emit_expr (&exp, 4);
9179 }
9180 while (*input_line_pointer++ == ',');
9181
9182 input_line_pointer--;
9183 demand_empty_rest_of_line ();
9184 }
9185 #endif
9186
9187 /* Handle Vector operations. */
9188
9189 static char *
9190 check_VecOperations (char *op_string, char *op_end)
9191 {
9192 const reg_entry *mask;
9193 const char *saved;
9194 char *end_op;
9195
9196 while (*op_string
9197 && (op_end == NULL || op_string < op_end))
9198 {
9199 saved = op_string;
9200 if (*op_string == '{')
9201 {
9202 op_string++;
9203
9204 /* Check broadcasts. */
9205 if (strncmp (op_string, "1to", 3) == 0)
9206 {
9207 int bcst_type;
9208
9209 if (i.broadcast)
9210 goto duplicated_vec_op;
9211
9212 op_string += 3;
9213 if (*op_string == '8')
9214 bcst_type = 8;
9215 else if (*op_string == '4')
9216 bcst_type = 4;
9217 else if (*op_string == '2')
9218 bcst_type = 2;
9219 else if (*op_string == '1'
9220 && *(op_string+1) == '6')
9221 {
9222 bcst_type = 16;
9223 op_string++;
9224 }
9225 else
9226 {
9227 as_bad (_("Unsupported broadcast: `%s'"), saved);
9228 return NULL;
9229 }
9230 op_string++;
9231
9232 broadcast_op.type = bcst_type;
9233 broadcast_op.operand = this_operand;
9234 broadcast_op.bytes = 0;
9235 i.broadcast = &broadcast_op;
9236 }
9237 /* Check masking operation. */
9238 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9239 {
9240 /* k0 can't be used for write mask. */
9241 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
9242 {
9243 as_bad (_("`%s%s' can't be used for write mask"),
9244 register_prefix, mask->reg_name);
9245 return NULL;
9246 }
9247
9248 if (!i.mask)
9249 {
9250 mask_op.mask = mask;
9251 mask_op.zeroing = 0;
9252 mask_op.operand = this_operand;
9253 i.mask = &mask_op;
9254 }
9255 else
9256 {
9257 if (i.mask->mask)
9258 goto duplicated_vec_op;
9259
9260 i.mask->mask = mask;
9261
9262 /* Only "{z}" is allowed here. No need to check
9263 zeroing mask explicitly. */
9264 if (i.mask->operand != this_operand)
9265 {
9266 as_bad (_("invalid write mask `%s'"), saved);
9267 return NULL;
9268 }
9269 }
9270
9271 op_string = end_op;
9272 }
9273 /* Check zeroing-flag for masking operation. */
9274 else if (*op_string == 'z')
9275 {
9276 if (!i.mask)
9277 {
9278 mask_op.mask = NULL;
9279 mask_op.zeroing = 1;
9280 mask_op.operand = this_operand;
9281 i.mask = &mask_op;
9282 }
9283 else
9284 {
9285 if (i.mask->zeroing)
9286 {
9287 duplicated_vec_op:
9288 as_bad (_("duplicated `%s'"), saved);
9289 return NULL;
9290 }
9291
9292 i.mask->zeroing = 1;
9293
9294 /* Only "{%k}" is allowed here. No need to check mask
9295 register explicitly. */
9296 if (i.mask->operand != this_operand)
9297 {
9298 as_bad (_("invalid zeroing-masking `%s'"),
9299 saved);
9300 return NULL;
9301 }
9302 }
9303
9304 op_string++;
9305 }
9306 else
9307 goto unknown_vec_op;
9308
9309 if (*op_string != '}')
9310 {
9311 as_bad (_("missing `}' in `%s'"), saved);
9312 return NULL;
9313 }
9314 op_string++;
9315
9316 /* Strip whitespace since the addition of pseudo prefixes
9317 changed how the scrubber treats '{'. */
9318 if (is_space_char (*op_string))
9319 ++op_string;
9320
9321 continue;
9322 }
9323 unknown_vec_op:
9324 /* We don't know this one. */
9325 as_bad (_("unknown vector operation: `%s'"), saved);
9326 return NULL;
9327 }
9328
9329 if (i.mask && i.mask->zeroing && !i.mask->mask)
9330 {
9331 as_bad (_("zeroing-masking only allowed with write mask"));
9332 return NULL;
9333 }
9334
9335 return op_string;
9336 }
9337
9338 static int
9339 i386_immediate (char *imm_start)
9340 {
9341 char *save_input_line_pointer;
9342 char *gotfree_input_line;
9343 segT exp_seg = 0;
9344 expressionS *exp;
9345 i386_operand_type types;
9346
9347 operand_type_set (&types, ~0);
9348
9349 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9350 {
9351 as_bad (_("at most %d immediate operands are allowed"),
9352 MAX_IMMEDIATE_OPERANDS);
9353 return 0;
9354 }
9355
9356 exp = &im_expressions[i.imm_operands++];
9357 i.op[this_operand].imms = exp;
9358
9359 if (is_space_char (*imm_start))
9360 ++imm_start;
9361
9362 save_input_line_pointer = input_line_pointer;
9363 input_line_pointer = imm_start;
9364
9365 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9366 if (gotfree_input_line)
9367 input_line_pointer = gotfree_input_line;
9368
9369 exp_seg = expression (exp);
9370
9371 SKIP_WHITESPACE ();
9372
9373 /* Handle vector operations. */
9374 if (*input_line_pointer == '{')
9375 {
9376 input_line_pointer = check_VecOperations (input_line_pointer,
9377 NULL);
9378 if (input_line_pointer == NULL)
9379 return 0;
9380 }
9381
9382 if (*input_line_pointer)
9383 as_bad (_("junk `%s' after expression"), input_line_pointer);
9384
9385 input_line_pointer = save_input_line_pointer;
9386 if (gotfree_input_line)
9387 {
9388 free (gotfree_input_line);
9389
9390 if (exp->X_op == O_constant || exp->X_op == O_register)
9391 exp->X_op = O_illegal;
9392 }
9393
9394 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9395 }
9396
9397 static int
9398 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9399 i386_operand_type types, const char *imm_start)
9400 {
9401 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9402 {
9403 if (imm_start)
9404 as_bad (_("missing or invalid immediate expression `%s'"),
9405 imm_start);
9406 return 0;
9407 }
9408 else if (exp->X_op == O_constant)
9409 {
9410 /* Size it properly later. */
9411 i.types[this_operand].bitfield.imm64 = 1;
9412 /* If not 64bit, sign extend val. */
9413 if (flag_code != CODE_64BIT
9414 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9415 exp->X_add_number
9416 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9417 }
9418 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9419 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9420 && exp_seg != absolute_section
9421 && exp_seg != text_section
9422 && exp_seg != data_section
9423 && exp_seg != bss_section
9424 && exp_seg != undefined_section
9425 && !bfd_is_com_section (exp_seg))
9426 {
9427 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9428 return 0;
9429 }
9430 #endif
9431 else if (!intel_syntax && exp_seg == reg_section)
9432 {
9433 if (imm_start)
9434 as_bad (_("illegal immediate register operand %s"), imm_start);
9435 return 0;
9436 }
9437 else
9438 {
9439 /* This is an address. The size of the address will be
9440 determined later, depending on destination register,
9441 suffix, or the default for the section. */
9442 i.types[this_operand].bitfield.imm8 = 1;
9443 i.types[this_operand].bitfield.imm16 = 1;
9444 i.types[this_operand].bitfield.imm32 = 1;
9445 i.types[this_operand].bitfield.imm32s = 1;
9446 i.types[this_operand].bitfield.imm64 = 1;
9447 i.types[this_operand] = operand_type_and (i.types[this_operand],
9448 types);
9449 }
9450
9451 return 1;
9452 }
9453
9454 static char *
9455 i386_scale (char *scale)
9456 {
9457 offsetT val;
9458 char *save = input_line_pointer;
9459
9460 input_line_pointer = scale;
9461 val = get_absolute_expression ();
9462
9463 switch (val)
9464 {
9465 case 1:
9466 i.log2_scale_factor = 0;
9467 break;
9468 case 2:
9469 i.log2_scale_factor = 1;
9470 break;
9471 case 4:
9472 i.log2_scale_factor = 2;
9473 break;
9474 case 8:
9475 i.log2_scale_factor = 3;
9476 break;
9477 default:
9478 {
9479 char sep = *input_line_pointer;
9480
9481 *input_line_pointer = '\0';
9482 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9483 scale);
9484 *input_line_pointer = sep;
9485 input_line_pointer = save;
9486 return NULL;
9487 }
9488 }
9489 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9490 {
9491 as_warn (_("scale factor of %d without an index register"),
9492 1 << i.log2_scale_factor);
9493 i.log2_scale_factor = 0;
9494 }
9495 scale = input_line_pointer;
9496 input_line_pointer = save;
9497 return scale;
9498 }
9499
9500 static int
9501 i386_displacement (char *disp_start, char *disp_end)
9502 {
9503 expressionS *exp;
9504 segT exp_seg = 0;
9505 char *save_input_line_pointer;
9506 char *gotfree_input_line;
9507 int override;
9508 i386_operand_type bigdisp, types = anydisp;
9509 int ret;
9510
9511 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9512 {
9513 as_bad (_("at most %d displacement operands are allowed"),
9514 MAX_MEMORY_OPERANDS);
9515 return 0;
9516 }
9517
9518 operand_type_set (&bigdisp, 0);
9519 if ((i.types[this_operand].bitfield.jumpabsolute)
9520 || (!current_templates->start->opcode_modifier.jump
9521 && !current_templates->start->opcode_modifier.jumpdword))
9522 {
9523 bigdisp.bitfield.disp32 = 1;
9524 override = (i.prefix[ADDR_PREFIX] != 0);
9525 if (flag_code == CODE_64BIT)
9526 {
9527 if (!override)
9528 {
9529 bigdisp.bitfield.disp32s = 1;
9530 bigdisp.bitfield.disp64 = 1;
9531 }
9532 }
9533 else if ((flag_code == CODE_16BIT) ^ override)
9534 {
9535 bigdisp.bitfield.disp32 = 0;
9536 bigdisp.bitfield.disp16 = 1;
9537 }
9538 }
9539 else
9540 {
9541 /* For PC-relative branches, the width of the displacement
9542 is dependent upon data size, not address size. */
9543 override = (i.prefix[DATA_PREFIX] != 0);
9544 if (flag_code == CODE_64BIT)
9545 {
9546 if (override || i.suffix == WORD_MNEM_SUFFIX)
9547 bigdisp.bitfield.disp16 = 1;
9548 else
9549 {
9550 bigdisp.bitfield.disp32 = 1;
9551 bigdisp.bitfield.disp32s = 1;
9552 }
9553 }
9554 else
9555 {
9556 if (!override)
9557 override = (i.suffix == (flag_code != CODE_16BIT
9558 ? WORD_MNEM_SUFFIX
9559 : LONG_MNEM_SUFFIX));
9560 bigdisp.bitfield.disp32 = 1;
9561 if ((flag_code == CODE_16BIT) ^ override)
9562 {
9563 bigdisp.bitfield.disp32 = 0;
9564 bigdisp.bitfield.disp16 = 1;
9565 }
9566 }
9567 }
9568 i.types[this_operand] = operand_type_or (i.types[this_operand],
9569 bigdisp);
9570
9571 exp = &disp_expressions[i.disp_operands];
9572 i.op[this_operand].disps = exp;
9573 i.disp_operands++;
9574 save_input_line_pointer = input_line_pointer;
9575 input_line_pointer = disp_start;
9576 END_STRING_AND_SAVE (disp_end);
9577
9578 #ifndef GCC_ASM_O_HACK
9579 #define GCC_ASM_O_HACK 0
9580 #endif
9581 #if GCC_ASM_O_HACK
9582 END_STRING_AND_SAVE (disp_end + 1);
9583 if (i.types[this_operand].bitfield.baseIndex
9584 && displacement_string_end[-1] == '+')
9585 {
9586 /* This hack is to avoid a warning when using the "o"
9587 constraint within gcc asm statements.
9588 For instance:
9589
9590 #define _set_tssldt_desc(n,addr,limit,type) \
9591 __asm__ __volatile__ ( \
9592 "movw %w2,%0\n\t" \
9593 "movw %w1,2+%0\n\t" \
9594 "rorl $16,%1\n\t" \
9595 "movb %b1,4+%0\n\t" \
9596 "movb %4,5+%0\n\t" \
9597 "movb $0,6+%0\n\t" \
9598 "movb %h1,7+%0\n\t" \
9599 "rorl $16,%1" \
9600 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9601
9602 This works great except that the output assembler ends
9603 up looking a bit weird if it turns out that there is
9604 no offset. You end up producing code that looks like:
9605
9606 #APP
9607 movw $235,(%eax)
9608 movw %dx,2+(%eax)
9609 rorl $16,%edx
9610 movb %dl,4+(%eax)
9611 movb $137,5+(%eax)
9612 movb $0,6+(%eax)
9613 movb %dh,7+(%eax)
9614 rorl $16,%edx
9615 #NO_APP
9616
9617 So here we provide the missing zero. */
9618
9619 *displacement_string_end = '0';
9620 }
9621 #endif
9622 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9623 if (gotfree_input_line)
9624 input_line_pointer = gotfree_input_line;
9625
9626 exp_seg = expression (exp);
9627
9628 SKIP_WHITESPACE ();
9629 if (*input_line_pointer)
9630 as_bad (_("junk `%s' after expression"), input_line_pointer);
9631 #if GCC_ASM_O_HACK
9632 RESTORE_END_STRING (disp_end + 1);
9633 #endif
9634 input_line_pointer = save_input_line_pointer;
9635 if (gotfree_input_line)
9636 {
9637 free (gotfree_input_line);
9638
9639 if (exp->X_op == O_constant || exp->X_op == O_register)
9640 exp->X_op = O_illegal;
9641 }
9642
9643 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9644
9645 RESTORE_END_STRING (disp_end);
9646
9647 return ret;
9648 }
9649
9650 static int
9651 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9652 i386_operand_type types, const char *disp_start)
9653 {
9654 i386_operand_type bigdisp;
9655 int ret = 1;
9656
9657 /* We do this to make sure that the section symbol is in
9658 the symbol table. We will ultimately change the relocation
9659 to be relative to the beginning of the section. */
9660 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9661 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9662 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9663 {
9664 if (exp->X_op != O_symbol)
9665 goto inv_disp;
9666
9667 if (S_IS_LOCAL (exp->X_add_symbol)
9668 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9669 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9670 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9671 exp->X_op = O_subtract;
9672 exp->X_op_symbol = GOT_symbol;
9673 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9674 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9675 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9676 i.reloc[this_operand] = BFD_RELOC_64;
9677 else
9678 i.reloc[this_operand] = BFD_RELOC_32;
9679 }
9680
9681 else if (exp->X_op == O_absent
9682 || exp->X_op == O_illegal
9683 || exp->X_op == O_big)
9684 {
9685 inv_disp:
9686 as_bad (_("missing or invalid displacement expression `%s'"),
9687 disp_start);
9688 ret = 0;
9689 }
9690
9691 else if (flag_code == CODE_64BIT
9692 && !i.prefix[ADDR_PREFIX]
9693 && exp->X_op == O_constant)
9694 {
9695 /* Since displacement is signed extended to 64bit, don't allow
9696 disp32 and turn off disp32s if they are out of range. */
9697 i.types[this_operand].bitfield.disp32 = 0;
9698 if (!fits_in_signed_long (exp->X_add_number))
9699 {
9700 i.types[this_operand].bitfield.disp32s = 0;
9701 if (i.types[this_operand].bitfield.baseindex)
9702 {
9703 as_bad (_("0x%lx out range of signed 32bit displacement"),
9704 (long) exp->X_add_number);
9705 ret = 0;
9706 }
9707 }
9708 }
9709
9710 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9711 else if (exp->X_op != O_constant
9712 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9713 && exp_seg != absolute_section
9714 && exp_seg != text_section
9715 && exp_seg != data_section
9716 && exp_seg != bss_section
9717 && exp_seg != undefined_section
9718 && !bfd_is_com_section (exp_seg))
9719 {
9720 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9721 ret = 0;
9722 }
9723 #endif
9724
9725 /* Check if this is a displacement only operand. */
9726 bigdisp = i.types[this_operand];
9727 bigdisp.bitfield.disp8 = 0;
9728 bigdisp.bitfield.disp16 = 0;
9729 bigdisp.bitfield.disp32 = 0;
9730 bigdisp.bitfield.disp32s = 0;
9731 bigdisp.bitfield.disp64 = 0;
9732 if (operand_type_all_zero (&bigdisp))
9733 i.types[this_operand] = operand_type_and (i.types[this_operand],
9734 types);
9735
9736 return ret;
9737 }
9738
9739 /* Return the active addressing mode, taking address override and
9740 registers forming the address into consideration. Update the
9741 address override prefix if necessary. */
9742
9743 static enum flag_code
9744 i386_addressing_mode (void)
9745 {
9746 enum flag_code addr_mode;
9747
9748 if (i.prefix[ADDR_PREFIX])
9749 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9750 else
9751 {
9752 addr_mode = flag_code;
9753
9754 #if INFER_ADDR_PREFIX
9755 if (i.mem_operands == 0)
9756 {
9757 /* Infer address prefix from the first memory operand. */
9758 const reg_entry *addr_reg = i.base_reg;
9759
9760 if (addr_reg == NULL)
9761 addr_reg = i.index_reg;
9762
9763 if (addr_reg)
9764 {
9765 if (addr_reg->reg_type.bitfield.dword)
9766 addr_mode = CODE_32BIT;
9767 else if (flag_code != CODE_64BIT
9768 && addr_reg->reg_type.bitfield.word)
9769 addr_mode = CODE_16BIT;
9770
9771 if (addr_mode != flag_code)
9772 {
9773 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9774 i.prefixes += 1;
9775 /* Change the size of any displacement too. At most one
9776 of Disp16 or Disp32 is set.
9777 FIXME. There doesn't seem to be any real need for
9778 separate Disp16 and Disp32 flags. The same goes for
9779 Imm16 and Imm32. Removing them would probably clean
9780 up the code quite a lot. */
9781 if (flag_code != CODE_64BIT
9782 && (i.types[this_operand].bitfield.disp16
9783 || i.types[this_operand].bitfield.disp32))
9784 i.types[this_operand]
9785 = operand_type_xor (i.types[this_operand], disp16_32);
9786 }
9787 }
9788 }
9789 #endif
9790 }
9791
9792 return addr_mode;
9793 }
9794
9795 /* Make sure the memory operand we've been dealt is valid.
9796 Return 1 on success, 0 on a failure. */
9797
9798 static int
9799 i386_index_check (const char *operand_string)
9800 {
9801 const char *kind = "base/index";
9802 enum flag_code addr_mode = i386_addressing_mode ();
9803
9804 if (current_templates->start->opcode_modifier.isstring
9805 && !current_templates->start->cpu_flags.bitfield.cpupadlock
9806 && (current_templates->end[-1].opcode_modifier.isstring
9807 || i.mem_operands))
9808 {
9809 /* Memory operands of string insns are special in that they only allow
9810 a single register (rDI, rSI, or rBX) as their memory address. */
9811 const reg_entry *expected_reg;
9812 static const char *di_si[][2] =
9813 {
9814 { "esi", "edi" },
9815 { "si", "di" },
9816 { "rsi", "rdi" }
9817 };
9818 static const char *bx[] = { "ebx", "bx", "rbx" };
9819
9820 kind = "string address";
9821
9822 if (current_templates->start->opcode_modifier.repprefixok)
9823 {
9824 i386_operand_type type = current_templates->end[-1].operand_types[0];
9825
9826 if (!type.bitfield.baseindex
9827 || ((!i.mem_operands != !intel_syntax)
9828 && current_templates->end[-1].operand_types[1]
9829 .bitfield.baseindex))
9830 type = current_templates->end[-1].operand_types[1];
9831 expected_reg = hash_find (reg_hash,
9832 di_si[addr_mode][type.bitfield.esseg]);
9833
9834 }
9835 else
9836 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9837
9838 if (i.base_reg != expected_reg
9839 || i.index_reg
9840 || operand_type_check (i.types[this_operand], disp))
9841 {
9842 /* The second memory operand must have the same size as
9843 the first one. */
9844 if (i.mem_operands
9845 && i.base_reg
9846 && !((addr_mode == CODE_64BIT
9847 && i.base_reg->reg_type.bitfield.qword)
9848 || (addr_mode == CODE_32BIT
9849 ? i.base_reg->reg_type.bitfield.dword
9850 : i.base_reg->reg_type.bitfield.word)))
9851 goto bad_address;
9852
9853 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9854 operand_string,
9855 intel_syntax ? '[' : '(',
9856 register_prefix,
9857 expected_reg->reg_name,
9858 intel_syntax ? ']' : ')');
9859 return 1;
9860 }
9861 else
9862 return 1;
9863
9864 bad_address:
9865 as_bad (_("`%s' is not a valid %s expression"),
9866 operand_string, kind);
9867 return 0;
9868 }
9869 else
9870 {
9871 if (addr_mode != CODE_16BIT)
9872 {
9873 /* 32-bit/64-bit checks. */
9874 if ((i.base_reg
9875 && ((addr_mode == CODE_64BIT
9876 ? !i.base_reg->reg_type.bitfield.qword
9877 : !i.base_reg->reg_type.bitfield.dword)
9878 || (i.index_reg && i.base_reg->reg_num == RegIP)
9879 || i.base_reg->reg_num == RegIZ))
9880 || (i.index_reg
9881 && !i.index_reg->reg_type.bitfield.xmmword
9882 && !i.index_reg->reg_type.bitfield.ymmword
9883 && !i.index_reg->reg_type.bitfield.zmmword
9884 && ((addr_mode == CODE_64BIT
9885 ? !i.index_reg->reg_type.bitfield.qword
9886 : !i.index_reg->reg_type.bitfield.dword)
9887 || !i.index_reg->reg_type.bitfield.baseindex)))
9888 goto bad_address;
9889
9890 /* bndmk, bndldx, and bndstx have special restrictions. */
9891 if (current_templates->start->base_opcode == 0xf30f1b
9892 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9893 {
9894 /* They cannot use RIP-relative addressing. */
9895 if (i.base_reg && i.base_reg->reg_num == RegIP)
9896 {
9897 as_bad (_("`%s' cannot be used here"), operand_string);
9898 return 0;
9899 }
9900
9901 /* bndldx and bndstx ignore their scale factor. */
9902 if (current_templates->start->base_opcode != 0xf30f1b
9903 && i.log2_scale_factor)
9904 as_warn (_("register scaling is being ignored here"));
9905 }
9906 }
9907 else
9908 {
9909 /* 16-bit checks. */
9910 if ((i.base_reg
9911 && (!i.base_reg->reg_type.bitfield.word
9912 || !i.base_reg->reg_type.bitfield.baseindex))
9913 || (i.index_reg
9914 && (!i.index_reg->reg_type.bitfield.word
9915 || !i.index_reg->reg_type.bitfield.baseindex
9916 || !(i.base_reg
9917 && i.base_reg->reg_num < 6
9918 && i.index_reg->reg_num >= 6
9919 && i.log2_scale_factor == 0))))
9920 goto bad_address;
9921 }
9922 }
9923 return 1;
9924 }
9925
9926 /* Handle vector immediates. */
9927
9928 static int
9929 RC_SAE_immediate (const char *imm_start)
9930 {
9931 unsigned int match_found, j;
9932 const char *pstr = imm_start;
9933 expressionS *exp;
9934
9935 if (*pstr != '{')
9936 return 0;
9937
9938 pstr++;
9939 match_found = 0;
9940 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9941 {
9942 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9943 {
9944 if (!i.rounding)
9945 {
9946 rc_op.type = RC_NamesTable[j].type;
9947 rc_op.operand = this_operand;
9948 i.rounding = &rc_op;
9949 }
9950 else
9951 {
9952 as_bad (_("duplicated `%s'"), imm_start);
9953 return 0;
9954 }
9955 pstr += RC_NamesTable[j].len;
9956 match_found = 1;
9957 break;
9958 }
9959 }
9960 if (!match_found)
9961 return 0;
9962
9963 if (*pstr++ != '}')
9964 {
9965 as_bad (_("Missing '}': '%s'"), imm_start);
9966 return 0;
9967 }
9968 /* RC/SAE immediate string should contain nothing more. */;
9969 if (*pstr != 0)
9970 {
9971 as_bad (_("Junk after '}': '%s'"), imm_start);
9972 return 0;
9973 }
9974
9975 exp = &im_expressions[i.imm_operands++];
9976 i.op[this_operand].imms = exp;
9977
9978 exp->X_op = O_constant;
9979 exp->X_add_number = 0;
9980 exp->X_add_symbol = (symbolS *) 0;
9981 exp->X_op_symbol = (symbolS *) 0;
9982
9983 i.types[this_operand].bitfield.imm8 = 1;
9984 return 1;
9985 }
9986
9987 /* Only string instructions can have a second memory operand, so
9988 reduce current_templates to just those if it contains any. */
9989 static int
9990 maybe_adjust_templates (void)
9991 {
9992 const insn_template *t;
9993
9994 gas_assert (i.mem_operands == 1);
9995
9996 for (t = current_templates->start; t < current_templates->end; ++t)
9997 if (t->opcode_modifier.isstring)
9998 break;
9999
10000 if (t < current_templates->end)
10001 {
10002 static templates aux_templates;
10003 bfd_boolean recheck;
10004
10005 aux_templates.start = t;
10006 for (; t < current_templates->end; ++t)
10007 if (!t->opcode_modifier.isstring)
10008 break;
10009 aux_templates.end = t;
10010
10011 /* Determine whether to re-check the first memory operand. */
10012 recheck = (aux_templates.start != current_templates->start
10013 || t != current_templates->end);
10014
10015 current_templates = &aux_templates;
10016
10017 if (recheck)
10018 {
10019 i.mem_operands = 0;
10020 if (i.memop1_string != NULL
10021 && i386_index_check (i.memop1_string) == 0)
10022 return 0;
10023 i.mem_operands = 1;
10024 }
10025 }
10026
10027 return 1;
10028 }
10029
10030 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10031 on error. */
10032
10033 static int
10034 i386_att_operand (char *operand_string)
10035 {
10036 const reg_entry *r;
10037 char *end_op;
10038 char *op_string = operand_string;
10039
10040 if (is_space_char (*op_string))
10041 ++op_string;
10042
10043 /* We check for an absolute prefix (differentiating,
10044 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10045 if (*op_string == ABSOLUTE_PREFIX)
10046 {
10047 ++op_string;
10048 if (is_space_char (*op_string))
10049 ++op_string;
10050 i.types[this_operand].bitfield.jumpabsolute = 1;
10051 }
10052
10053 /* Check if operand is a register. */
10054 if ((r = parse_register (op_string, &end_op)) != NULL)
10055 {
10056 i386_operand_type temp;
10057
10058 /* Check for a segment override by searching for ':' after a
10059 segment register. */
10060 op_string = end_op;
10061 if (is_space_char (*op_string))
10062 ++op_string;
10063 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10064 {
10065 switch (r->reg_num)
10066 {
10067 case 0:
10068 i.seg[i.mem_operands] = &es;
10069 break;
10070 case 1:
10071 i.seg[i.mem_operands] = &cs;
10072 break;
10073 case 2:
10074 i.seg[i.mem_operands] = &ss;
10075 break;
10076 case 3:
10077 i.seg[i.mem_operands] = &ds;
10078 break;
10079 case 4:
10080 i.seg[i.mem_operands] = &fs;
10081 break;
10082 case 5:
10083 i.seg[i.mem_operands] = &gs;
10084 break;
10085 }
10086
10087 /* Skip the ':' and whitespace. */
10088 ++op_string;
10089 if (is_space_char (*op_string))
10090 ++op_string;
10091
10092 if (!is_digit_char (*op_string)
10093 && !is_identifier_char (*op_string)
10094 && *op_string != '('
10095 && *op_string != ABSOLUTE_PREFIX)
10096 {
10097 as_bad (_("bad memory operand `%s'"), op_string);
10098 return 0;
10099 }
10100 /* Handle case of %es:*foo. */
10101 if (*op_string == ABSOLUTE_PREFIX)
10102 {
10103 ++op_string;
10104 if (is_space_char (*op_string))
10105 ++op_string;
10106 i.types[this_operand].bitfield.jumpabsolute = 1;
10107 }
10108 goto do_memory_reference;
10109 }
10110
10111 /* Handle vector operations. */
10112 if (*op_string == '{')
10113 {
10114 op_string = check_VecOperations (op_string, NULL);
10115 if (op_string == NULL)
10116 return 0;
10117 }
10118
10119 if (*op_string)
10120 {
10121 as_bad (_("junk `%s' after register"), op_string);
10122 return 0;
10123 }
10124 temp = r->reg_type;
10125 temp.bitfield.baseindex = 0;
10126 i.types[this_operand] = operand_type_or (i.types[this_operand],
10127 temp);
10128 i.types[this_operand].bitfield.unspecified = 0;
10129 i.op[this_operand].regs = r;
10130 i.reg_operands++;
10131 }
10132 else if (*op_string == REGISTER_PREFIX)
10133 {
10134 as_bad (_("bad register name `%s'"), op_string);
10135 return 0;
10136 }
10137 else if (*op_string == IMMEDIATE_PREFIX)
10138 {
10139 ++op_string;
10140 if (i.types[this_operand].bitfield.jumpabsolute)
10141 {
10142 as_bad (_("immediate operand illegal with absolute jump"));
10143 return 0;
10144 }
10145 if (!i386_immediate (op_string))
10146 return 0;
10147 }
10148 else if (RC_SAE_immediate (operand_string))
10149 {
10150 /* If it is a RC or SAE immediate, do nothing. */
10151 ;
10152 }
10153 else if (is_digit_char (*op_string)
10154 || is_identifier_char (*op_string)
10155 || *op_string == '"'
10156 || *op_string == '(')
10157 {
10158 /* This is a memory reference of some sort. */
10159 char *base_string;
10160
10161 /* Start and end of displacement string expression (if found). */
10162 char *displacement_string_start;
10163 char *displacement_string_end;
10164 char *vop_start;
10165
10166 do_memory_reference:
10167 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10168 return 0;
10169 if ((i.mem_operands == 1
10170 && !current_templates->start->opcode_modifier.isstring)
10171 || i.mem_operands == 2)
10172 {
10173 as_bad (_("too many memory references for `%s'"),
10174 current_templates->start->name);
10175 return 0;
10176 }
10177
10178 /* Check for base index form. We detect the base index form by
10179 looking for an ')' at the end of the operand, searching
10180 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10181 after the '('. */
10182 base_string = op_string + strlen (op_string);
10183
10184 /* Handle vector operations. */
10185 vop_start = strchr (op_string, '{');
10186 if (vop_start && vop_start < base_string)
10187 {
10188 if (check_VecOperations (vop_start, base_string) == NULL)
10189 return 0;
10190 base_string = vop_start;
10191 }
10192
10193 --base_string;
10194 if (is_space_char (*base_string))
10195 --base_string;
10196
10197 /* If we only have a displacement, set-up for it to be parsed later. */
10198 displacement_string_start = op_string;
10199 displacement_string_end = base_string + 1;
10200
10201 if (*base_string == ')')
10202 {
10203 char *temp_string;
10204 unsigned int parens_balanced = 1;
10205 /* We've already checked that the number of left & right ()'s are
10206 equal, so this loop will not be infinite. */
10207 do
10208 {
10209 base_string--;
10210 if (*base_string == ')')
10211 parens_balanced++;
10212 if (*base_string == '(')
10213 parens_balanced--;
10214 }
10215 while (parens_balanced);
10216
10217 temp_string = base_string;
10218
10219 /* Skip past '(' and whitespace. */
10220 ++base_string;
10221 if (is_space_char (*base_string))
10222 ++base_string;
10223
10224 if (*base_string == ','
10225 || ((i.base_reg = parse_register (base_string, &end_op))
10226 != NULL))
10227 {
10228 displacement_string_end = temp_string;
10229
10230 i.types[this_operand].bitfield.baseindex = 1;
10231
10232 if (i.base_reg)
10233 {
10234 base_string = end_op;
10235 if (is_space_char (*base_string))
10236 ++base_string;
10237 }
10238
10239 /* There may be an index reg or scale factor here. */
10240 if (*base_string == ',')
10241 {
10242 ++base_string;
10243 if (is_space_char (*base_string))
10244 ++base_string;
10245
10246 if ((i.index_reg = parse_register (base_string, &end_op))
10247 != NULL)
10248 {
10249 base_string = end_op;
10250 if (is_space_char (*base_string))
10251 ++base_string;
10252 if (*base_string == ',')
10253 {
10254 ++base_string;
10255 if (is_space_char (*base_string))
10256 ++base_string;
10257 }
10258 else if (*base_string != ')')
10259 {
10260 as_bad (_("expecting `,' or `)' "
10261 "after index register in `%s'"),
10262 operand_string);
10263 return 0;
10264 }
10265 }
10266 else if (*base_string == REGISTER_PREFIX)
10267 {
10268 end_op = strchr (base_string, ',');
10269 if (end_op)
10270 *end_op = '\0';
10271 as_bad (_("bad register name `%s'"), base_string);
10272 return 0;
10273 }
10274
10275 /* Check for scale factor. */
10276 if (*base_string != ')')
10277 {
10278 char *end_scale = i386_scale (base_string);
10279
10280 if (!end_scale)
10281 return 0;
10282
10283 base_string = end_scale;
10284 if (is_space_char (*base_string))
10285 ++base_string;
10286 if (*base_string != ')')
10287 {
10288 as_bad (_("expecting `)' "
10289 "after scale factor in `%s'"),
10290 operand_string);
10291 return 0;
10292 }
10293 }
10294 else if (!i.index_reg)
10295 {
10296 as_bad (_("expecting index register or scale factor "
10297 "after `,'; got '%c'"),
10298 *base_string);
10299 return 0;
10300 }
10301 }
10302 else if (*base_string != ')')
10303 {
10304 as_bad (_("expecting `,' or `)' "
10305 "after base register in `%s'"),
10306 operand_string);
10307 return 0;
10308 }
10309 }
10310 else if (*base_string == REGISTER_PREFIX)
10311 {
10312 end_op = strchr (base_string, ',');
10313 if (end_op)
10314 *end_op = '\0';
10315 as_bad (_("bad register name `%s'"), base_string);
10316 return 0;
10317 }
10318 }
10319
10320 /* If there's an expression beginning the operand, parse it,
10321 assuming displacement_string_start and
10322 displacement_string_end are meaningful. */
10323 if (displacement_string_start != displacement_string_end)
10324 {
10325 if (!i386_displacement (displacement_string_start,
10326 displacement_string_end))
10327 return 0;
10328 }
10329
10330 /* Special case for (%dx) while doing input/output op. */
10331 if (i.base_reg
10332 && i.base_reg->reg_type.bitfield.inoutportreg
10333 && i.index_reg == 0
10334 && i.log2_scale_factor == 0
10335 && i.seg[i.mem_operands] == 0
10336 && !operand_type_check (i.types[this_operand], disp))
10337 {
10338 i.types[this_operand] = i.base_reg->reg_type;
10339 return 1;
10340 }
10341
10342 if (i386_index_check (operand_string) == 0)
10343 return 0;
10344 i.flags[this_operand] |= Operand_Mem;
10345 if (i.mem_operands == 0)
10346 i.memop1_string = xstrdup (operand_string);
10347 i.mem_operands++;
10348 }
10349 else
10350 {
10351 /* It's not a memory operand; argh! */
10352 as_bad (_("invalid char %s beginning operand %d `%s'"),
10353 output_invalid (*op_string),
10354 this_operand + 1,
10355 op_string);
10356 return 0;
10357 }
10358 return 1; /* Normal return. */
10359 }
10360 \f
10361 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10362 that an rs_machine_dependent frag may reach. */
10363
10364 unsigned int
10365 i386_frag_max_var (fragS *frag)
10366 {
10367 /* The only relaxable frags are for jumps.
10368 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10369 gas_assert (frag->fr_type == rs_machine_dependent);
10370 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10371 }
10372
10373 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10374 static int
10375 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10376 {
10377 /* STT_GNU_IFUNC symbol must go through PLT. */
10378 if ((symbol_get_bfdsym (fr_symbol)->flags
10379 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10380 return 0;
10381
10382 if (!S_IS_EXTERNAL (fr_symbol))
10383 /* Symbol may be weak or local. */
10384 return !S_IS_WEAK (fr_symbol);
10385
10386 /* Global symbols with non-default visibility can't be preempted. */
10387 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10388 return 1;
10389
10390 if (fr_var != NO_RELOC)
10391 switch ((enum bfd_reloc_code_real) fr_var)
10392 {
10393 case BFD_RELOC_386_PLT32:
10394 case BFD_RELOC_X86_64_PLT32:
10395 /* Symbol with PLT relocation may be preempted. */
10396 return 0;
10397 default:
10398 abort ();
10399 }
10400
10401 /* Global symbols with default visibility in a shared library may be
10402 preempted by another definition. */
10403 return !shared;
10404 }
10405 #endif
10406
10407 /* md_estimate_size_before_relax()
10408
10409 Called just before relax() for rs_machine_dependent frags. The x86
10410 assembler uses these frags to handle variable size jump
10411 instructions.
10412
10413 Any symbol that is now undefined will not become defined.
10414 Return the correct fr_subtype in the frag.
10415 Return the initial "guess for variable size of frag" to caller.
10416 The guess is actually the growth beyond the fixed part. Whatever
10417 we do to grow the fixed or variable part contributes to our
10418 returned value. */
10419
10420 int
10421 md_estimate_size_before_relax (fragS *fragP, segT segment)
10422 {
10423 /* We've already got fragP->fr_subtype right; all we have to do is
10424 check for un-relaxable symbols. On an ELF system, we can't relax
10425 an externally visible symbol, because it may be overridden by a
10426 shared library. */
10427 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
10428 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10429 || (IS_ELF
10430 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
10431 fragP->fr_var))
10432 #endif
10433 #if defined (OBJ_COFF) && defined (TE_PE)
10434 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
10435 && S_IS_WEAK (fragP->fr_symbol))
10436 #endif
10437 )
10438 {
10439 /* Symbol is undefined in this segment, or we need to keep a
10440 reloc so that weak symbols can be overridden. */
10441 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
10442 enum bfd_reloc_code_real reloc_type;
10443 unsigned char *opcode;
10444 int old_fr_fix;
10445
10446 if (fragP->fr_var != NO_RELOC)
10447 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
10448 else if (size == 2)
10449 reloc_type = BFD_RELOC_16_PCREL;
10450 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10451 else if (need_plt32_p (fragP->fr_symbol))
10452 reloc_type = BFD_RELOC_X86_64_PLT32;
10453 #endif
10454 else
10455 reloc_type = BFD_RELOC_32_PCREL;
10456
10457 old_fr_fix = fragP->fr_fix;
10458 opcode = (unsigned char *) fragP->fr_opcode;
10459
10460 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
10461 {
10462 case UNCOND_JUMP:
10463 /* Make jmp (0xeb) a (d)word displacement jump. */
10464 opcode[0] = 0xe9;
10465 fragP->fr_fix += size;
10466 fix_new (fragP, old_fr_fix, size,
10467 fragP->fr_symbol,
10468 fragP->fr_offset, 1,
10469 reloc_type);
10470 break;
10471
10472 case COND_JUMP86:
10473 if (size == 2
10474 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
10475 {
10476 /* Negate the condition, and branch past an
10477 unconditional jump. */
10478 opcode[0] ^= 1;
10479 opcode[1] = 3;
10480 /* Insert an unconditional jump. */
10481 opcode[2] = 0xe9;
10482 /* We added two extra opcode bytes, and have a two byte
10483 offset. */
10484 fragP->fr_fix += 2 + 2;
10485 fix_new (fragP, old_fr_fix + 2, 2,
10486 fragP->fr_symbol,
10487 fragP->fr_offset, 1,
10488 reloc_type);
10489 break;
10490 }
10491 /* Fall through. */
10492
10493 case COND_JUMP:
10494 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
10495 {
10496 fixS *fixP;
10497
10498 fragP->fr_fix += 1;
10499 fixP = fix_new (fragP, old_fr_fix, 1,
10500 fragP->fr_symbol,
10501 fragP->fr_offset, 1,
10502 BFD_RELOC_8_PCREL);
10503 fixP->fx_signed = 1;
10504 break;
10505 }
10506
10507 /* This changes the byte-displacement jump 0x7N
10508 to the (d)word-displacement jump 0x0f,0x8N. */
10509 opcode[1] = opcode[0] + 0x10;
10510 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10511 /* We've added an opcode byte. */
10512 fragP->fr_fix += 1 + size;
10513 fix_new (fragP, old_fr_fix + 1, size,
10514 fragP->fr_symbol,
10515 fragP->fr_offset, 1,
10516 reloc_type);
10517 break;
10518
10519 default:
10520 BAD_CASE (fragP->fr_subtype);
10521 break;
10522 }
10523 frag_wane (fragP);
10524 return fragP->fr_fix - old_fr_fix;
10525 }
10526
10527 /* Guess size depending on current relax state. Initially the relax
10528 state will correspond to a short jump and we return 1, because
10529 the variable part of the frag (the branch offset) is one byte
10530 long. However, we can relax a section more than once and in that
10531 case we must either set fr_subtype back to the unrelaxed state,
10532 or return the value for the appropriate branch. */
10533 return md_relax_table[fragP->fr_subtype].rlx_length;
10534 }
10535
10536 /* Called after relax() is finished.
10537
10538 In: Address of frag.
10539 fr_type == rs_machine_dependent.
10540 fr_subtype is what the address relaxed to.
10541
10542 Out: Any fixSs and constants are set up.
10543 Caller will turn frag into a ".space 0". */
10544
10545 void
10546 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10547 fragS *fragP)
10548 {
10549 unsigned char *opcode;
10550 unsigned char *where_to_put_displacement = NULL;
10551 offsetT target_address;
10552 offsetT opcode_address;
10553 unsigned int extension = 0;
10554 offsetT displacement_from_opcode_start;
10555
10556 opcode = (unsigned char *) fragP->fr_opcode;
10557
10558 /* Address we want to reach in file space. */
10559 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10560
10561 /* Address opcode resides at in file space. */
10562 opcode_address = fragP->fr_address + fragP->fr_fix;
10563
10564 /* Displacement from opcode start to fill into instruction. */
10565 displacement_from_opcode_start = target_address - opcode_address;
10566
10567 if ((fragP->fr_subtype & BIG) == 0)
10568 {
10569 /* Don't have to change opcode. */
10570 extension = 1; /* 1 opcode + 1 displacement */
10571 where_to_put_displacement = &opcode[1];
10572 }
10573 else
10574 {
10575 if (no_cond_jump_promotion
10576 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10577 as_warn_where (fragP->fr_file, fragP->fr_line,
10578 _("long jump required"));
10579
10580 switch (fragP->fr_subtype)
10581 {
10582 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10583 extension = 4; /* 1 opcode + 4 displacement */
10584 opcode[0] = 0xe9;
10585 where_to_put_displacement = &opcode[1];
10586 break;
10587
10588 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10589 extension = 2; /* 1 opcode + 2 displacement */
10590 opcode[0] = 0xe9;
10591 where_to_put_displacement = &opcode[1];
10592 break;
10593
10594 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10595 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10596 extension = 5; /* 2 opcode + 4 displacement */
10597 opcode[1] = opcode[0] + 0x10;
10598 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10599 where_to_put_displacement = &opcode[2];
10600 break;
10601
10602 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10603 extension = 3; /* 2 opcode + 2 displacement */
10604 opcode[1] = opcode[0] + 0x10;
10605 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10606 where_to_put_displacement = &opcode[2];
10607 break;
10608
10609 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10610 extension = 4;
10611 opcode[0] ^= 1;
10612 opcode[1] = 3;
10613 opcode[2] = 0xe9;
10614 where_to_put_displacement = &opcode[3];
10615 break;
10616
10617 default:
10618 BAD_CASE (fragP->fr_subtype);
10619 break;
10620 }
10621 }
10622
10623 /* If size if less then four we are sure that the operand fits,
10624 but if it's 4, then it could be that the displacement is larger
10625 then -/+ 2GB. */
10626 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10627 && object_64bit
10628 && ((addressT) (displacement_from_opcode_start - extension
10629 + ((addressT) 1 << 31))
10630 > (((addressT) 2 << 31) - 1)))
10631 {
10632 as_bad_where (fragP->fr_file, fragP->fr_line,
10633 _("jump target out of range"));
10634 /* Make us emit 0. */
10635 displacement_from_opcode_start = extension;
10636 }
10637 /* Now put displacement after opcode. */
10638 md_number_to_chars ((char *) where_to_put_displacement,
10639 (valueT) (displacement_from_opcode_start - extension),
10640 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10641 fragP->fr_fix += extension;
10642 }
10643 \f
10644 /* Apply a fixup (fixP) to segment data, once it has been determined
10645 by our caller that we have all the info we need to fix it up.
10646
10647 Parameter valP is the pointer to the value of the bits.
10648
10649 On the 386, immediates, displacements, and data pointers are all in
10650 the same (little-endian) format, so we don't need to care about which
10651 we are handling. */
10652
10653 void
10654 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10655 {
10656 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10657 valueT value = *valP;
10658
10659 #if !defined (TE_Mach)
10660 if (fixP->fx_pcrel)
10661 {
10662 switch (fixP->fx_r_type)
10663 {
10664 default:
10665 break;
10666
10667 case BFD_RELOC_64:
10668 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10669 break;
10670 case BFD_RELOC_32:
10671 case BFD_RELOC_X86_64_32S:
10672 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10673 break;
10674 case BFD_RELOC_16:
10675 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10676 break;
10677 case BFD_RELOC_8:
10678 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10679 break;
10680 }
10681 }
10682
10683 if (fixP->fx_addsy != NULL
10684 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10685 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10686 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10687 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10688 && !use_rela_relocations)
10689 {
10690 /* This is a hack. There should be a better way to handle this.
10691 This covers for the fact that bfd_install_relocation will
10692 subtract the current location (for partial_inplace, PC relative
10693 relocations); see more below. */
10694 #ifndef OBJ_AOUT
10695 if (IS_ELF
10696 #ifdef TE_PE
10697 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10698 #endif
10699 )
10700 value += fixP->fx_where + fixP->fx_frag->fr_address;
10701 #endif
10702 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10703 if (IS_ELF)
10704 {
10705 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10706
10707 if ((sym_seg == seg
10708 || (symbol_section_p (fixP->fx_addsy)
10709 && sym_seg != absolute_section))
10710 && !generic_force_reloc (fixP))
10711 {
10712 /* Yes, we add the values in twice. This is because
10713 bfd_install_relocation subtracts them out again. I think
10714 bfd_install_relocation is broken, but I don't dare change
10715 it. FIXME. */
10716 value += fixP->fx_where + fixP->fx_frag->fr_address;
10717 }
10718 }
10719 #endif
10720 #if defined (OBJ_COFF) && defined (TE_PE)
10721 /* For some reason, the PE format does not store a
10722 section address offset for a PC relative symbol. */
10723 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10724 || S_IS_WEAK (fixP->fx_addsy))
10725 value += md_pcrel_from (fixP);
10726 #endif
10727 }
10728 #if defined (OBJ_COFF) && defined (TE_PE)
10729 if (fixP->fx_addsy != NULL
10730 && S_IS_WEAK (fixP->fx_addsy)
10731 /* PR 16858: Do not modify weak function references. */
10732 && ! fixP->fx_pcrel)
10733 {
10734 #if !defined (TE_PEP)
10735 /* For x86 PE weak function symbols are neither PC-relative
10736 nor do they set S_IS_FUNCTION. So the only reliable way
10737 to detect them is to check the flags of their containing
10738 section. */
10739 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10740 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10741 ;
10742 else
10743 #endif
10744 value -= S_GET_VALUE (fixP->fx_addsy);
10745 }
10746 #endif
10747
10748 /* Fix a few things - the dynamic linker expects certain values here,
10749 and we must not disappoint it. */
10750 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10751 if (IS_ELF && fixP->fx_addsy)
10752 switch (fixP->fx_r_type)
10753 {
10754 case BFD_RELOC_386_PLT32:
10755 case BFD_RELOC_X86_64_PLT32:
10756 /* Make the jump instruction point to the address of the operand.
10757 At runtime we merely add the offset to the actual PLT entry.
10758 NB: Subtract the offset size only for jump instructions. */
10759 if (fixP->fx_pcrel)
10760 value = -4;
10761 break;
10762
10763 case BFD_RELOC_386_TLS_GD:
10764 case BFD_RELOC_386_TLS_LDM:
10765 case BFD_RELOC_386_TLS_IE_32:
10766 case BFD_RELOC_386_TLS_IE:
10767 case BFD_RELOC_386_TLS_GOTIE:
10768 case BFD_RELOC_386_TLS_GOTDESC:
10769 case BFD_RELOC_X86_64_TLSGD:
10770 case BFD_RELOC_X86_64_TLSLD:
10771 case BFD_RELOC_X86_64_GOTTPOFF:
10772 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10773 value = 0; /* Fully resolved at runtime. No addend. */
10774 /* Fallthrough */
10775 case BFD_RELOC_386_TLS_LE:
10776 case BFD_RELOC_386_TLS_LDO_32:
10777 case BFD_RELOC_386_TLS_LE_32:
10778 case BFD_RELOC_X86_64_DTPOFF32:
10779 case BFD_RELOC_X86_64_DTPOFF64:
10780 case BFD_RELOC_X86_64_TPOFF32:
10781 case BFD_RELOC_X86_64_TPOFF64:
10782 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10783 break;
10784
10785 case BFD_RELOC_386_TLS_DESC_CALL:
10786 case BFD_RELOC_X86_64_TLSDESC_CALL:
10787 value = 0; /* Fully resolved at runtime. No addend. */
10788 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10789 fixP->fx_done = 0;
10790 return;
10791
10792 case BFD_RELOC_VTABLE_INHERIT:
10793 case BFD_RELOC_VTABLE_ENTRY:
10794 fixP->fx_done = 0;
10795 return;
10796
10797 default:
10798 break;
10799 }
10800 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10801 *valP = value;
10802 #endif /* !defined (TE_Mach) */
10803
10804 /* Are we finished with this relocation now? */
10805 if (fixP->fx_addsy == NULL)
10806 fixP->fx_done = 1;
10807 #if defined (OBJ_COFF) && defined (TE_PE)
10808 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10809 {
10810 fixP->fx_done = 0;
10811 /* Remember value for tc_gen_reloc. */
10812 fixP->fx_addnumber = value;
10813 /* Clear out the frag for now. */
10814 value = 0;
10815 }
10816 #endif
10817 else if (use_rela_relocations)
10818 {
10819 fixP->fx_no_overflow = 1;
10820 /* Remember value for tc_gen_reloc. */
10821 fixP->fx_addnumber = value;
10822 value = 0;
10823 }
10824
10825 md_number_to_chars (p, value, fixP->fx_size);
10826 }
10827 \f
10828 const char *
10829 md_atof (int type, char *litP, int *sizeP)
10830 {
10831 /* This outputs the LITTLENUMs in REVERSE order;
10832 in accord with the bigendian 386. */
10833 return ieee_md_atof (type, litP, sizeP, FALSE);
10834 }
10835 \f
10836 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10837
10838 static char *
10839 output_invalid (int c)
10840 {
10841 if (ISPRINT (c))
10842 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10843 "'%c'", c);
10844 else
10845 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10846 "(0x%x)", (unsigned char) c);
10847 return output_invalid_buf;
10848 }
10849
10850 /* REG_STRING starts *before* REGISTER_PREFIX. */
10851
10852 static const reg_entry *
10853 parse_real_register (char *reg_string, char **end_op)
10854 {
10855 char *s = reg_string;
10856 char *p;
10857 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10858 const reg_entry *r;
10859
10860 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10861 if (*s == REGISTER_PREFIX)
10862 ++s;
10863
10864 if (is_space_char (*s))
10865 ++s;
10866
10867 p = reg_name_given;
10868 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10869 {
10870 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10871 return (const reg_entry *) NULL;
10872 s++;
10873 }
10874
10875 /* For naked regs, make sure that we are not dealing with an identifier.
10876 This prevents confusing an identifier like `eax_var' with register
10877 `eax'. */
10878 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10879 return (const reg_entry *) NULL;
10880
10881 *end_op = s;
10882
10883 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10884
10885 /* Handle floating point regs, allowing spaces in the (i) part. */
10886 if (r == i386_regtab /* %st is first entry of table */)
10887 {
10888 if (!cpu_arch_flags.bitfield.cpu8087
10889 && !cpu_arch_flags.bitfield.cpu287
10890 && !cpu_arch_flags.bitfield.cpu387)
10891 return (const reg_entry *) NULL;
10892
10893 if (is_space_char (*s))
10894 ++s;
10895 if (*s == '(')
10896 {
10897 ++s;
10898 if (is_space_char (*s))
10899 ++s;
10900 if (*s >= '0' && *s <= '7')
10901 {
10902 int fpr = *s - '0';
10903 ++s;
10904 if (is_space_char (*s))
10905 ++s;
10906 if (*s == ')')
10907 {
10908 *end_op = s + 1;
10909 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10910 know (r);
10911 return r + fpr;
10912 }
10913 }
10914 /* We have "%st(" then garbage. */
10915 return (const reg_entry *) NULL;
10916 }
10917 }
10918
10919 if (r == NULL || allow_pseudo_reg)
10920 return r;
10921
10922 if (operand_type_all_zero (&r->reg_type))
10923 return (const reg_entry *) NULL;
10924
10925 if ((r->reg_type.bitfield.dword
10926 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
10927 || r->reg_type.bitfield.class == RegCR
10928 || r->reg_type.bitfield.class == RegDR
10929 || r->reg_type.bitfield.class == RegTR)
10930 && !cpu_arch_flags.bitfield.cpui386)
10931 return (const reg_entry *) NULL;
10932
10933 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
10934 return (const reg_entry *) NULL;
10935
10936 if (!cpu_arch_flags.bitfield.cpuavx512f)
10937 {
10938 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10939 return (const reg_entry *) NULL;
10940
10941 if (!cpu_arch_flags.bitfield.cpuavx)
10942 {
10943 if (r->reg_type.bitfield.ymmword)
10944 return (const reg_entry *) NULL;
10945
10946 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10947 return (const reg_entry *) NULL;
10948 }
10949 }
10950
10951 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10952 return (const reg_entry *) NULL;
10953
10954 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10955 if (!allow_index_reg && r->reg_num == RegIZ)
10956 return (const reg_entry *) NULL;
10957
10958 /* Upper 16 vector registers are only available with VREX in 64bit
10959 mode, and require EVEX encoding. */
10960 if (r->reg_flags & RegVRex)
10961 {
10962 if (!cpu_arch_flags.bitfield.cpuavx512f
10963 || flag_code != CODE_64BIT)
10964 return (const reg_entry *) NULL;
10965
10966 i.vec_encoding = vex_encoding_evex;
10967 }
10968
10969 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10970 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
10971 && flag_code != CODE_64BIT)
10972 return (const reg_entry *) NULL;
10973
10974 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
10975 && !intel_syntax)
10976 return (const reg_entry *) NULL;
10977
10978 return r;
10979 }
10980
10981 /* REG_STRING starts *before* REGISTER_PREFIX. */
10982
10983 static const reg_entry *
10984 parse_register (char *reg_string, char **end_op)
10985 {
10986 const reg_entry *r;
10987
10988 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10989 r = parse_real_register (reg_string, end_op);
10990 else
10991 r = NULL;
10992 if (!r)
10993 {
10994 char *save = input_line_pointer;
10995 char c;
10996 symbolS *symbolP;
10997
10998 input_line_pointer = reg_string;
10999 c = get_symbol_name (&reg_string);
11000 symbolP = symbol_find (reg_string);
11001 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11002 {
11003 const expressionS *e = symbol_get_value_expression (symbolP);
11004
11005 know (e->X_op == O_register);
11006 know (e->X_add_number >= 0
11007 && (valueT) e->X_add_number < i386_regtab_size);
11008 r = i386_regtab + e->X_add_number;
11009 if ((r->reg_flags & RegVRex))
11010 i.vec_encoding = vex_encoding_evex;
11011 *end_op = input_line_pointer;
11012 }
11013 *input_line_pointer = c;
11014 input_line_pointer = save;
11015 }
11016 return r;
11017 }
11018
11019 int
11020 i386_parse_name (char *name, expressionS *e, char *nextcharP)
11021 {
11022 const reg_entry *r;
11023 char *end = input_line_pointer;
11024
11025 *end = *nextcharP;
11026 r = parse_register (name, &input_line_pointer);
11027 if (r && end <= input_line_pointer)
11028 {
11029 *nextcharP = *input_line_pointer;
11030 *input_line_pointer = 0;
11031 e->X_op = O_register;
11032 e->X_add_number = r - i386_regtab;
11033 return 1;
11034 }
11035 input_line_pointer = end;
11036 *end = 0;
11037 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11038 }
11039
11040 void
11041 md_operand (expressionS *e)
11042 {
11043 char *end;
11044 const reg_entry *r;
11045
11046 switch (*input_line_pointer)
11047 {
11048 case REGISTER_PREFIX:
11049 r = parse_real_register (input_line_pointer, &end);
11050 if (r)
11051 {
11052 e->X_op = O_register;
11053 e->X_add_number = r - i386_regtab;
11054 input_line_pointer = end;
11055 }
11056 break;
11057
11058 case '[':
11059 gas_assert (intel_syntax);
11060 end = input_line_pointer++;
11061 expression (e);
11062 if (*input_line_pointer == ']')
11063 {
11064 ++input_line_pointer;
11065 e->X_op_symbol = make_expr_symbol (e);
11066 e->X_add_symbol = NULL;
11067 e->X_add_number = 0;
11068 e->X_op = O_index;
11069 }
11070 else
11071 {
11072 e->X_op = O_absent;
11073 input_line_pointer = end;
11074 }
11075 break;
11076 }
11077 }
11078
11079 \f
11080 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11081 const char *md_shortopts = "kVQ:sqnO::";
11082 #else
11083 const char *md_shortopts = "qnO::";
11084 #endif
11085
11086 #define OPTION_32 (OPTION_MD_BASE + 0)
11087 #define OPTION_64 (OPTION_MD_BASE + 1)
11088 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11089 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11090 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11091 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11092 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11093 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11094 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11095 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11096 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11097 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11098 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11099 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11100 #define OPTION_X32 (OPTION_MD_BASE + 14)
11101 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11102 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11103 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11104 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11105 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11106 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11107 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11108 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
11109 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
11110 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
11111 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
11112 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
11113
11114 struct option md_longopts[] =
11115 {
11116 {"32", no_argument, NULL, OPTION_32},
11117 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11118 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11119 {"64", no_argument, NULL, OPTION_64},
11120 #endif
11121 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11122 {"x32", no_argument, NULL, OPTION_X32},
11123 {"mshared", no_argument, NULL, OPTION_MSHARED},
11124 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
11125 #endif
11126 {"divide", no_argument, NULL, OPTION_DIVIDE},
11127 {"march", required_argument, NULL, OPTION_MARCH},
11128 {"mtune", required_argument, NULL, OPTION_MTUNE},
11129 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
11130 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
11131 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
11132 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
11133 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
11134 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
11135 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
11136 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
11137 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
11138 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
11139 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
11140 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
11141 # if defined (TE_PE) || defined (TE_PEP)
11142 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
11143 #endif
11144 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
11145 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
11146 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
11147 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
11148 {"mamd64", no_argument, NULL, OPTION_MAMD64},
11149 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
11150 {NULL, no_argument, NULL, 0}
11151 };
11152 size_t md_longopts_size = sizeof (md_longopts);
11153
11154 int
11155 md_parse_option (int c, const char *arg)
11156 {
11157 unsigned int j;
11158 char *arch, *next, *saved;
11159
11160 switch (c)
11161 {
11162 case 'n':
11163 optimize_align_code = 0;
11164 break;
11165
11166 case 'q':
11167 quiet_warnings = 1;
11168 break;
11169
11170 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11171 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
11172 should be emitted or not. FIXME: Not implemented. */
11173 case 'Q':
11174 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
11175 return 0;
11176 break;
11177
11178 /* -V: SVR4 argument to print version ID. */
11179 case 'V':
11180 print_version_id ();
11181 break;
11182
11183 /* -k: Ignore for FreeBSD compatibility. */
11184 case 'k':
11185 break;
11186
11187 case 's':
11188 /* -s: On i386 Solaris, this tells the native assembler to use
11189 .stab instead of .stab.excl. We always use .stab anyhow. */
11190 break;
11191
11192 case OPTION_MSHARED:
11193 shared = 1;
11194 break;
11195
11196 case OPTION_X86_USED_NOTE:
11197 if (strcasecmp (arg, "yes") == 0)
11198 x86_used_note = 1;
11199 else if (strcasecmp (arg, "no") == 0)
11200 x86_used_note = 0;
11201 else
11202 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
11203 break;
11204
11205
11206 #endif
11207 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11208 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11209 case OPTION_64:
11210 {
11211 const char **list, **l;
11212
11213 list = bfd_target_list ();
11214 for (l = list; *l != NULL; l++)
11215 if (CONST_STRNEQ (*l, "elf64-x86-64")
11216 || strcmp (*l, "coff-x86-64") == 0
11217 || strcmp (*l, "pe-x86-64") == 0
11218 || strcmp (*l, "pei-x86-64") == 0
11219 || strcmp (*l, "mach-o-x86-64") == 0)
11220 {
11221 default_arch = "x86_64";
11222 break;
11223 }
11224 if (*l == NULL)
11225 as_fatal (_("no compiled in support for x86_64"));
11226 free (list);
11227 }
11228 break;
11229 #endif
11230
11231 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11232 case OPTION_X32:
11233 if (IS_ELF)
11234 {
11235 const char **list, **l;
11236
11237 list = bfd_target_list ();
11238 for (l = list; *l != NULL; l++)
11239 if (CONST_STRNEQ (*l, "elf32-x86-64"))
11240 {
11241 default_arch = "x86_64:32";
11242 break;
11243 }
11244 if (*l == NULL)
11245 as_fatal (_("no compiled in support for 32bit x86_64"));
11246 free (list);
11247 }
11248 else
11249 as_fatal (_("32bit x86_64 is only supported for ELF"));
11250 break;
11251 #endif
11252
11253 case OPTION_32:
11254 default_arch = "i386";
11255 break;
11256
11257 case OPTION_DIVIDE:
11258 #ifdef SVR4_COMMENT_CHARS
11259 {
11260 char *n, *t;
11261 const char *s;
11262
11263 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
11264 t = n;
11265 for (s = i386_comment_chars; *s != '\0'; s++)
11266 if (*s != '/')
11267 *t++ = *s;
11268 *t = '\0';
11269 i386_comment_chars = n;
11270 }
11271 #endif
11272 break;
11273
11274 case OPTION_MARCH:
11275 saved = xstrdup (arg);
11276 arch = saved;
11277 /* Allow -march=+nosse. */
11278 if (*arch == '+')
11279 arch++;
11280 do
11281 {
11282 if (*arch == '.')
11283 as_fatal (_("invalid -march= option: `%s'"), arg);
11284 next = strchr (arch, '+');
11285 if (next)
11286 *next++ = '\0';
11287 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11288 {
11289 if (strcmp (arch, cpu_arch [j].name) == 0)
11290 {
11291 /* Processor. */
11292 if (! cpu_arch[j].flags.bitfield.cpui386)
11293 continue;
11294
11295 cpu_arch_name = cpu_arch[j].name;
11296 cpu_sub_arch_name = NULL;
11297 cpu_arch_flags = cpu_arch[j].flags;
11298 cpu_arch_isa = cpu_arch[j].type;
11299 cpu_arch_isa_flags = cpu_arch[j].flags;
11300 if (!cpu_arch_tune_set)
11301 {
11302 cpu_arch_tune = cpu_arch_isa;
11303 cpu_arch_tune_flags = cpu_arch_isa_flags;
11304 }
11305 break;
11306 }
11307 else if (*cpu_arch [j].name == '.'
11308 && strcmp (arch, cpu_arch [j].name + 1) == 0)
11309 {
11310 /* ISA extension. */
11311 i386_cpu_flags flags;
11312
11313 flags = cpu_flags_or (cpu_arch_flags,
11314 cpu_arch[j].flags);
11315
11316 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11317 {
11318 if (cpu_sub_arch_name)
11319 {
11320 char *name = cpu_sub_arch_name;
11321 cpu_sub_arch_name = concat (name,
11322 cpu_arch[j].name,
11323 (const char *) NULL);
11324 free (name);
11325 }
11326 else
11327 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
11328 cpu_arch_flags = flags;
11329 cpu_arch_isa_flags = flags;
11330 }
11331 else
11332 cpu_arch_isa_flags
11333 = cpu_flags_or (cpu_arch_isa_flags,
11334 cpu_arch[j].flags);
11335 break;
11336 }
11337 }
11338
11339 if (j >= ARRAY_SIZE (cpu_arch))
11340 {
11341 /* Disable an ISA extension. */
11342 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11343 if (strcmp (arch, cpu_noarch [j].name) == 0)
11344 {
11345 i386_cpu_flags flags;
11346
11347 flags = cpu_flags_and_not (cpu_arch_flags,
11348 cpu_noarch[j].flags);
11349 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
11350 {
11351 if (cpu_sub_arch_name)
11352 {
11353 char *name = cpu_sub_arch_name;
11354 cpu_sub_arch_name = concat (arch,
11355 (const char *) NULL);
11356 free (name);
11357 }
11358 else
11359 cpu_sub_arch_name = xstrdup (arch);
11360 cpu_arch_flags = flags;
11361 cpu_arch_isa_flags = flags;
11362 }
11363 break;
11364 }
11365
11366 if (j >= ARRAY_SIZE (cpu_noarch))
11367 j = ARRAY_SIZE (cpu_arch);
11368 }
11369
11370 if (j >= ARRAY_SIZE (cpu_arch))
11371 as_fatal (_("invalid -march= option: `%s'"), arg);
11372
11373 arch = next;
11374 }
11375 while (next != NULL);
11376 free (saved);
11377 break;
11378
11379 case OPTION_MTUNE:
11380 if (*arg == '.')
11381 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11382 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11383 {
11384 if (strcmp (arg, cpu_arch [j].name) == 0)
11385 {
11386 cpu_arch_tune_set = 1;
11387 cpu_arch_tune = cpu_arch [j].type;
11388 cpu_arch_tune_flags = cpu_arch[j].flags;
11389 break;
11390 }
11391 }
11392 if (j >= ARRAY_SIZE (cpu_arch))
11393 as_fatal (_("invalid -mtune= option: `%s'"), arg);
11394 break;
11395
11396 case OPTION_MMNEMONIC:
11397 if (strcasecmp (arg, "att") == 0)
11398 intel_mnemonic = 0;
11399 else if (strcasecmp (arg, "intel") == 0)
11400 intel_mnemonic = 1;
11401 else
11402 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
11403 break;
11404
11405 case OPTION_MSYNTAX:
11406 if (strcasecmp (arg, "att") == 0)
11407 intel_syntax = 0;
11408 else if (strcasecmp (arg, "intel") == 0)
11409 intel_syntax = 1;
11410 else
11411 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
11412 break;
11413
11414 case OPTION_MINDEX_REG:
11415 allow_index_reg = 1;
11416 break;
11417
11418 case OPTION_MNAKED_REG:
11419 allow_naked_reg = 1;
11420 break;
11421
11422 case OPTION_MSSE2AVX:
11423 sse2avx = 1;
11424 break;
11425
11426 case OPTION_MSSE_CHECK:
11427 if (strcasecmp (arg, "error") == 0)
11428 sse_check = check_error;
11429 else if (strcasecmp (arg, "warning") == 0)
11430 sse_check = check_warning;
11431 else if (strcasecmp (arg, "none") == 0)
11432 sse_check = check_none;
11433 else
11434 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
11435 break;
11436
11437 case OPTION_MOPERAND_CHECK:
11438 if (strcasecmp (arg, "error") == 0)
11439 operand_check = check_error;
11440 else if (strcasecmp (arg, "warning") == 0)
11441 operand_check = check_warning;
11442 else if (strcasecmp (arg, "none") == 0)
11443 operand_check = check_none;
11444 else
11445 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
11446 break;
11447
11448 case OPTION_MAVXSCALAR:
11449 if (strcasecmp (arg, "128") == 0)
11450 avxscalar = vex128;
11451 else if (strcasecmp (arg, "256") == 0)
11452 avxscalar = vex256;
11453 else
11454 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
11455 break;
11456
11457 case OPTION_MVEXWIG:
11458 if (strcmp (arg, "0") == 0)
11459 vexwig = vexw0;
11460 else if (strcmp (arg, "1") == 0)
11461 vexwig = vexw1;
11462 else
11463 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
11464 break;
11465
11466 case OPTION_MADD_BND_PREFIX:
11467 add_bnd_prefix = 1;
11468 break;
11469
11470 case OPTION_MEVEXLIG:
11471 if (strcmp (arg, "128") == 0)
11472 evexlig = evexl128;
11473 else if (strcmp (arg, "256") == 0)
11474 evexlig = evexl256;
11475 else if (strcmp (arg, "512") == 0)
11476 evexlig = evexl512;
11477 else
11478 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
11479 break;
11480
11481 case OPTION_MEVEXRCIG:
11482 if (strcmp (arg, "rne") == 0)
11483 evexrcig = rne;
11484 else if (strcmp (arg, "rd") == 0)
11485 evexrcig = rd;
11486 else if (strcmp (arg, "ru") == 0)
11487 evexrcig = ru;
11488 else if (strcmp (arg, "rz") == 0)
11489 evexrcig = rz;
11490 else
11491 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
11492 break;
11493
11494 case OPTION_MEVEXWIG:
11495 if (strcmp (arg, "0") == 0)
11496 evexwig = evexw0;
11497 else if (strcmp (arg, "1") == 0)
11498 evexwig = evexw1;
11499 else
11500 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
11501 break;
11502
11503 # if defined (TE_PE) || defined (TE_PEP)
11504 case OPTION_MBIG_OBJ:
11505 use_big_obj = 1;
11506 break;
11507 #endif
11508
11509 case OPTION_MOMIT_LOCK_PREFIX:
11510 if (strcasecmp (arg, "yes") == 0)
11511 omit_lock_prefix = 1;
11512 else if (strcasecmp (arg, "no") == 0)
11513 omit_lock_prefix = 0;
11514 else
11515 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
11516 break;
11517
11518 case OPTION_MFENCE_AS_LOCK_ADD:
11519 if (strcasecmp (arg, "yes") == 0)
11520 avoid_fence = 1;
11521 else if (strcasecmp (arg, "no") == 0)
11522 avoid_fence = 0;
11523 else
11524 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
11525 break;
11526
11527 case OPTION_MRELAX_RELOCATIONS:
11528 if (strcasecmp (arg, "yes") == 0)
11529 generate_relax_relocations = 1;
11530 else if (strcasecmp (arg, "no") == 0)
11531 generate_relax_relocations = 0;
11532 else
11533 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
11534 break;
11535
11536 case OPTION_MAMD64:
11537 intel64 = 0;
11538 break;
11539
11540 case OPTION_MINTEL64:
11541 intel64 = 1;
11542 break;
11543
11544 case 'O':
11545 if (arg == NULL)
11546 {
11547 optimize = 1;
11548 /* Turn off -Os. */
11549 optimize_for_space = 0;
11550 }
11551 else if (*arg == 's')
11552 {
11553 optimize_for_space = 1;
11554 /* Turn on all encoding optimizations. */
11555 optimize = INT_MAX;
11556 }
11557 else
11558 {
11559 optimize = atoi (arg);
11560 /* Turn off -Os. */
11561 optimize_for_space = 0;
11562 }
11563 break;
11564
11565 default:
11566 return 0;
11567 }
11568 return 1;
11569 }
11570
11571 #define MESSAGE_TEMPLATE \
11572 " "
11573
11574 static char *
11575 output_message (FILE *stream, char *p, char *message, char *start,
11576 int *left_p, const char *name, int len)
11577 {
11578 int size = sizeof (MESSAGE_TEMPLATE);
11579 int left = *left_p;
11580
11581 /* Reserve 2 spaces for ", " or ",\0" */
11582 left -= len + 2;
11583
11584 /* Check if there is any room. */
11585 if (left >= 0)
11586 {
11587 if (p != start)
11588 {
11589 *p++ = ',';
11590 *p++ = ' ';
11591 }
11592 p = mempcpy (p, name, len);
11593 }
11594 else
11595 {
11596 /* Output the current message now and start a new one. */
11597 *p++ = ',';
11598 *p = '\0';
11599 fprintf (stream, "%s\n", message);
11600 p = start;
11601 left = size - (start - message) - len - 2;
11602
11603 gas_assert (left >= 0);
11604
11605 p = mempcpy (p, name, len);
11606 }
11607
11608 *left_p = left;
11609 return p;
11610 }
11611
11612 static void
11613 show_arch (FILE *stream, int ext, int check)
11614 {
11615 static char message[] = MESSAGE_TEMPLATE;
11616 char *start = message + 27;
11617 char *p;
11618 int size = sizeof (MESSAGE_TEMPLATE);
11619 int left;
11620 const char *name;
11621 int len;
11622 unsigned int j;
11623
11624 p = start;
11625 left = size - (start - message);
11626 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11627 {
11628 /* Should it be skipped? */
11629 if (cpu_arch [j].skip)
11630 continue;
11631
11632 name = cpu_arch [j].name;
11633 len = cpu_arch [j].len;
11634 if (*name == '.')
11635 {
11636 /* It is an extension. Skip if we aren't asked to show it. */
11637 if (ext)
11638 {
11639 name++;
11640 len--;
11641 }
11642 else
11643 continue;
11644 }
11645 else if (ext)
11646 {
11647 /* It is an processor. Skip if we show only extension. */
11648 continue;
11649 }
11650 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11651 {
11652 /* It is an impossible processor - skip. */
11653 continue;
11654 }
11655
11656 p = output_message (stream, p, message, start, &left, name, len);
11657 }
11658
11659 /* Display disabled extensions. */
11660 if (ext)
11661 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11662 {
11663 name = cpu_noarch [j].name;
11664 len = cpu_noarch [j].len;
11665 p = output_message (stream, p, message, start, &left, name,
11666 len);
11667 }
11668
11669 *p = '\0';
11670 fprintf (stream, "%s\n", message);
11671 }
11672
11673 void
11674 md_show_usage (FILE *stream)
11675 {
11676 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11677 fprintf (stream, _("\
11678 -Qy, -Qn ignored\n\
11679 -V print assembler version number\n\
11680 -k ignored\n"));
11681 #endif
11682 fprintf (stream, _("\
11683 -n Do not optimize code alignment\n\
11684 -q quieten some warnings\n"));
11685 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11686 fprintf (stream, _("\
11687 -s ignored\n"));
11688 #endif
11689 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11690 || defined (TE_PE) || defined (TE_PEP))
11691 fprintf (stream, _("\
11692 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11693 #endif
11694 #ifdef SVR4_COMMENT_CHARS
11695 fprintf (stream, _("\
11696 --divide do not treat `/' as a comment character\n"));
11697 #else
11698 fprintf (stream, _("\
11699 --divide ignored\n"));
11700 #endif
11701 fprintf (stream, _("\
11702 -march=CPU[,+EXTENSION...]\n\
11703 generate code for CPU and EXTENSION, CPU is one of:\n"));
11704 show_arch (stream, 0, 1);
11705 fprintf (stream, _("\
11706 EXTENSION is combination of:\n"));
11707 show_arch (stream, 1, 0);
11708 fprintf (stream, _("\
11709 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11710 show_arch (stream, 0, 0);
11711 fprintf (stream, _("\
11712 -msse2avx encode SSE instructions with VEX prefix\n"));
11713 fprintf (stream, _("\
11714 -msse-check=[none|error|warning] (default: warning)\n\
11715 check SSE instructions\n"));
11716 fprintf (stream, _("\
11717 -moperand-check=[none|error|warning] (default: warning)\n\
11718 check operand combinations for validity\n"));
11719 fprintf (stream, _("\
11720 -mavxscalar=[128|256] (default: 128)\n\
11721 encode scalar AVX instructions with specific vector\n\
11722 length\n"));
11723 fprintf (stream, _("\
11724 -mvexwig=[0|1] (default: 0)\n\
11725 encode VEX instructions with specific VEX.W value\n\
11726 for VEX.W bit ignored instructions\n"));
11727 fprintf (stream, _("\
11728 -mevexlig=[128|256|512] (default: 128)\n\
11729 encode scalar EVEX instructions with specific vector\n\
11730 length\n"));
11731 fprintf (stream, _("\
11732 -mevexwig=[0|1] (default: 0)\n\
11733 encode EVEX instructions with specific EVEX.W value\n\
11734 for EVEX.W bit ignored instructions\n"));
11735 fprintf (stream, _("\
11736 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
11737 encode EVEX instructions with specific EVEX.RC value\n\
11738 for SAE-only ignored instructions\n"));
11739 fprintf (stream, _("\
11740 -mmnemonic=[att|intel] "));
11741 if (SYSV386_COMPAT)
11742 fprintf (stream, _("(default: att)\n"));
11743 else
11744 fprintf (stream, _("(default: intel)\n"));
11745 fprintf (stream, _("\
11746 use AT&T/Intel mnemonic\n"));
11747 fprintf (stream, _("\
11748 -msyntax=[att|intel] (default: att)\n\
11749 use AT&T/Intel syntax\n"));
11750 fprintf (stream, _("\
11751 -mindex-reg support pseudo index registers\n"));
11752 fprintf (stream, _("\
11753 -mnaked-reg don't require `%%' prefix for registers\n"));
11754 fprintf (stream, _("\
11755 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11756 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11757 fprintf (stream, _("\
11758 -mshared disable branch optimization for shared code\n"));
11759 fprintf (stream, _("\
11760 -mx86-used-note=[no|yes] "));
11761 if (DEFAULT_X86_USED_NOTE)
11762 fprintf (stream, _("(default: yes)\n"));
11763 else
11764 fprintf (stream, _("(default: no)\n"));
11765 fprintf (stream, _("\
11766 generate x86 used ISA and feature properties\n"));
11767 #endif
11768 #if defined (TE_PE) || defined (TE_PEP)
11769 fprintf (stream, _("\
11770 -mbig-obj generate big object files\n"));
11771 #endif
11772 fprintf (stream, _("\
11773 -momit-lock-prefix=[no|yes] (default: no)\n\
11774 strip all lock prefixes\n"));
11775 fprintf (stream, _("\
11776 -mfence-as-lock-add=[no|yes] (default: no)\n\
11777 encode lfence, mfence and sfence as\n\
11778 lock addl $0x0, (%%{re}sp)\n"));
11779 fprintf (stream, _("\
11780 -mrelax-relocations=[no|yes] "));
11781 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
11782 fprintf (stream, _("(default: yes)\n"));
11783 else
11784 fprintf (stream, _("(default: no)\n"));
11785 fprintf (stream, _("\
11786 generate relax relocations\n"));
11787 fprintf (stream, _("\
11788 -mamd64 accept only AMD64 ISA [default]\n"));
11789 fprintf (stream, _("\
11790 -mintel64 accept only Intel64 ISA\n"));
11791 }
11792
11793 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11794 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11795 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11796
11797 /* Pick the target format to use. */
11798
11799 const char *
11800 i386_target_format (void)
11801 {
11802 if (!strncmp (default_arch, "x86_64", 6))
11803 {
11804 update_code_flag (CODE_64BIT, 1);
11805 if (default_arch[6] == '\0')
11806 x86_elf_abi = X86_64_ABI;
11807 else
11808 x86_elf_abi = X86_64_X32_ABI;
11809 }
11810 else if (!strcmp (default_arch, "i386"))
11811 update_code_flag (CODE_32BIT, 1);
11812 else if (!strcmp (default_arch, "iamcu"))
11813 {
11814 update_code_flag (CODE_32BIT, 1);
11815 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11816 {
11817 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11818 cpu_arch_name = "iamcu";
11819 cpu_sub_arch_name = NULL;
11820 cpu_arch_flags = iamcu_flags;
11821 cpu_arch_isa = PROCESSOR_IAMCU;
11822 cpu_arch_isa_flags = iamcu_flags;
11823 if (!cpu_arch_tune_set)
11824 {
11825 cpu_arch_tune = cpu_arch_isa;
11826 cpu_arch_tune_flags = cpu_arch_isa_flags;
11827 }
11828 }
11829 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11830 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11831 cpu_arch_name);
11832 }
11833 else
11834 as_fatal (_("unknown architecture"));
11835
11836 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11837 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11838 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11839 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11840
11841 switch (OUTPUT_FLAVOR)
11842 {
11843 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11844 case bfd_target_aout_flavour:
11845 return AOUT_TARGET_FORMAT;
11846 #endif
11847 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11848 # if defined (TE_PE) || defined (TE_PEP)
11849 case bfd_target_coff_flavour:
11850 if (flag_code == CODE_64BIT)
11851 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11852 else
11853 return "pe-i386";
11854 # elif defined (TE_GO32)
11855 case bfd_target_coff_flavour:
11856 return "coff-go32";
11857 # else
11858 case bfd_target_coff_flavour:
11859 return "coff-i386";
11860 # endif
11861 #endif
11862 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11863 case bfd_target_elf_flavour:
11864 {
11865 const char *format;
11866
11867 switch (x86_elf_abi)
11868 {
11869 default:
11870 format = ELF_TARGET_FORMAT;
11871 break;
11872 case X86_64_ABI:
11873 use_rela_relocations = 1;
11874 object_64bit = 1;
11875 format = ELF_TARGET_FORMAT64;
11876 break;
11877 case X86_64_X32_ABI:
11878 use_rela_relocations = 1;
11879 object_64bit = 1;
11880 disallow_64bit_reloc = 1;
11881 format = ELF_TARGET_FORMAT32;
11882 break;
11883 }
11884 if (cpu_arch_isa == PROCESSOR_L1OM)
11885 {
11886 if (x86_elf_abi != X86_64_ABI)
11887 as_fatal (_("Intel L1OM is 64bit only"));
11888 return ELF_TARGET_L1OM_FORMAT;
11889 }
11890 else if (cpu_arch_isa == PROCESSOR_K1OM)
11891 {
11892 if (x86_elf_abi != X86_64_ABI)
11893 as_fatal (_("Intel K1OM is 64bit only"));
11894 return ELF_TARGET_K1OM_FORMAT;
11895 }
11896 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11897 {
11898 if (x86_elf_abi != I386_ABI)
11899 as_fatal (_("Intel MCU is 32bit only"));
11900 return ELF_TARGET_IAMCU_FORMAT;
11901 }
11902 else
11903 return format;
11904 }
11905 #endif
11906 #if defined (OBJ_MACH_O)
11907 case bfd_target_mach_o_flavour:
11908 if (flag_code == CODE_64BIT)
11909 {
11910 use_rela_relocations = 1;
11911 object_64bit = 1;
11912 return "mach-o-x86-64";
11913 }
11914 else
11915 return "mach-o-i386";
11916 #endif
11917 default:
11918 abort ();
11919 return NULL;
11920 }
11921 }
11922
11923 #endif /* OBJ_MAYBE_ more than one */
11924 \f
11925 symbolS *
11926 md_undefined_symbol (char *name)
11927 {
11928 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11929 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11930 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11931 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11932 {
11933 if (!GOT_symbol)
11934 {
11935 if (symbol_find (name))
11936 as_bad (_("GOT already in symbol table"));
11937 GOT_symbol = symbol_new (name, undefined_section,
11938 (valueT) 0, &zero_address_frag);
11939 };
11940 return GOT_symbol;
11941 }
11942 return 0;
11943 }
11944
11945 /* Round up a section size to the appropriate boundary. */
11946
11947 valueT
11948 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11949 {
11950 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11951 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11952 {
11953 /* For a.out, force the section size to be aligned. If we don't do
11954 this, BFD will align it for us, but it will not write out the
11955 final bytes of the section. This may be a bug in BFD, but it is
11956 easier to fix it here since that is how the other a.out targets
11957 work. */
11958 int align;
11959
11960 align = bfd_section_alignment (segment);
11961 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11962 }
11963 #endif
11964
11965 return size;
11966 }
11967
11968 /* On the i386, PC-relative offsets are relative to the start of the
11969 next instruction. That is, the address of the offset, plus its
11970 size, since the offset is always the last part of the insn. */
11971
11972 long
11973 md_pcrel_from (fixS *fixP)
11974 {
11975 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11976 }
11977
11978 #ifndef I386COFF
11979
11980 static void
11981 s_bss (int ignore ATTRIBUTE_UNUSED)
11982 {
11983 int temp;
11984
11985 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11986 if (IS_ELF)
11987 obj_elf_section_change_hook ();
11988 #endif
11989 temp = get_absolute_expression ();
11990 subseg_set (bss_section, (subsegT) temp);
11991 demand_empty_rest_of_line ();
11992 }
11993
11994 #endif
11995
11996 void
11997 i386_validate_fix (fixS *fixp)
11998 {
11999 if (fixp->fx_subsy)
12000 {
12001 if (fixp->fx_subsy == GOT_symbol)
12002 {
12003 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
12004 {
12005 if (!object_64bit)
12006 abort ();
12007 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12008 if (fixp->fx_tcbit2)
12009 fixp->fx_r_type = (fixp->fx_tcbit
12010 ? BFD_RELOC_X86_64_REX_GOTPCRELX
12011 : BFD_RELOC_X86_64_GOTPCRELX);
12012 else
12013 #endif
12014 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
12015 }
12016 else
12017 {
12018 if (!object_64bit)
12019 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
12020 else
12021 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
12022 }
12023 fixp->fx_subsy = 0;
12024 }
12025 }
12026 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12027 else if (!object_64bit)
12028 {
12029 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
12030 && fixp->fx_tcbit2)
12031 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
12032 }
12033 #endif
12034 }
12035
12036 arelent *
12037 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
12038 {
12039 arelent *rel;
12040 bfd_reloc_code_real_type code;
12041
12042 switch (fixp->fx_r_type)
12043 {
12044 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12045 case BFD_RELOC_SIZE32:
12046 case BFD_RELOC_SIZE64:
12047 if (S_IS_DEFINED (fixp->fx_addsy)
12048 && !S_IS_EXTERNAL (fixp->fx_addsy))
12049 {
12050 /* Resolve size relocation against local symbol to size of
12051 the symbol plus addend. */
12052 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
12053 if (fixp->fx_r_type == BFD_RELOC_SIZE32
12054 && !fits_in_unsigned_long (value))
12055 as_bad_where (fixp->fx_file, fixp->fx_line,
12056 _("symbol size computation overflow"));
12057 fixp->fx_addsy = NULL;
12058 fixp->fx_subsy = NULL;
12059 md_apply_fix (fixp, (valueT *) &value, NULL);
12060 return NULL;
12061 }
12062 #endif
12063 /* Fall through. */
12064
12065 case BFD_RELOC_X86_64_PLT32:
12066 case BFD_RELOC_X86_64_GOT32:
12067 case BFD_RELOC_X86_64_GOTPCREL:
12068 case BFD_RELOC_X86_64_GOTPCRELX:
12069 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12070 case BFD_RELOC_386_PLT32:
12071 case BFD_RELOC_386_GOT32:
12072 case BFD_RELOC_386_GOT32X:
12073 case BFD_RELOC_386_GOTOFF:
12074 case BFD_RELOC_386_GOTPC:
12075 case BFD_RELOC_386_TLS_GD:
12076 case BFD_RELOC_386_TLS_LDM:
12077 case BFD_RELOC_386_TLS_LDO_32:
12078 case BFD_RELOC_386_TLS_IE_32:
12079 case BFD_RELOC_386_TLS_IE:
12080 case BFD_RELOC_386_TLS_GOTIE:
12081 case BFD_RELOC_386_TLS_LE_32:
12082 case BFD_RELOC_386_TLS_LE:
12083 case BFD_RELOC_386_TLS_GOTDESC:
12084 case BFD_RELOC_386_TLS_DESC_CALL:
12085 case BFD_RELOC_X86_64_TLSGD:
12086 case BFD_RELOC_X86_64_TLSLD:
12087 case BFD_RELOC_X86_64_DTPOFF32:
12088 case BFD_RELOC_X86_64_DTPOFF64:
12089 case BFD_RELOC_X86_64_GOTTPOFF:
12090 case BFD_RELOC_X86_64_TPOFF32:
12091 case BFD_RELOC_X86_64_TPOFF64:
12092 case BFD_RELOC_X86_64_GOTOFF64:
12093 case BFD_RELOC_X86_64_GOTPC32:
12094 case BFD_RELOC_X86_64_GOT64:
12095 case BFD_RELOC_X86_64_GOTPCREL64:
12096 case BFD_RELOC_X86_64_GOTPC64:
12097 case BFD_RELOC_X86_64_GOTPLT64:
12098 case BFD_RELOC_X86_64_PLTOFF64:
12099 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12100 case BFD_RELOC_X86_64_TLSDESC_CALL:
12101 case BFD_RELOC_RVA:
12102 case BFD_RELOC_VTABLE_ENTRY:
12103 case BFD_RELOC_VTABLE_INHERIT:
12104 #ifdef TE_PE
12105 case BFD_RELOC_32_SECREL:
12106 #endif
12107 code = fixp->fx_r_type;
12108 break;
12109 case BFD_RELOC_X86_64_32S:
12110 if (!fixp->fx_pcrel)
12111 {
12112 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
12113 code = fixp->fx_r_type;
12114 break;
12115 }
12116 /* Fall through. */
12117 default:
12118 if (fixp->fx_pcrel)
12119 {
12120 switch (fixp->fx_size)
12121 {
12122 default:
12123 as_bad_where (fixp->fx_file, fixp->fx_line,
12124 _("can not do %d byte pc-relative relocation"),
12125 fixp->fx_size);
12126 code = BFD_RELOC_32_PCREL;
12127 break;
12128 case 1: code = BFD_RELOC_8_PCREL; break;
12129 case 2: code = BFD_RELOC_16_PCREL; break;
12130 case 4: code = BFD_RELOC_32_PCREL; break;
12131 #ifdef BFD64
12132 case 8: code = BFD_RELOC_64_PCREL; break;
12133 #endif
12134 }
12135 }
12136 else
12137 {
12138 switch (fixp->fx_size)
12139 {
12140 default:
12141 as_bad_where (fixp->fx_file, fixp->fx_line,
12142 _("can not do %d byte relocation"),
12143 fixp->fx_size);
12144 code = BFD_RELOC_32;
12145 break;
12146 case 1: code = BFD_RELOC_8; break;
12147 case 2: code = BFD_RELOC_16; break;
12148 case 4: code = BFD_RELOC_32; break;
12149 #ifdef BFD64
12150 case 8: code = BFD_RELOC_64; break;
12151 #endif
12152 }
12153 }
12154 break;
12155 }
12156
12157 if ((code == BFD_RELOC_32
12158 || code == BFD_RELOC_32_PCREL
12159 || code == BFD_RELOC_X86_64_32S)
12160 && GOT_symbol
12161 && fixp->fx_addsy == GOT_symbol)
12162 {
12163 if (!object_64bit)
12164 code = BFD_RELOC_386_GOTPC;
12165 else
12166 code = BFD_RELOC_X86_64_GOTPC32;
12167 }
12168 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
12169 && GOT_symbol
12170 && fixp->fx_addsy == GOT_symbol)
12171 {
12172 code = BFD_RELOC_X86_64_GOTPC64;
12173 }
12174
12175 rel = XNEW (arelent);
12176 rel->sym_ptr_ptr = XNEW (asymbol *);
12177 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
12178
12179 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
12180
12181 if (!use_rela_relocations)
12182 {
12183 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
12184 vtable entry to be used in the relocation's section offset. */
12185 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
12186 rel->address = fixp->fx_offset;
12187 #if defined (OBJ_COFF) && defined (TE_PE)
12188 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
12189 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
12190 else
12191 #endif
12192 rel->addend = 0;
12193 }
12194 /* Use the rela in 64bit mode. */
12195 else
12196 {
12197 if (disallow_64bit_reloc)
12198 switch (code)
12199 {
12200 case BFD_RELOC_X86_64_DTPOFF64:
12201 case BFD_RELOC_X86_64_TPOFF64:
12202 case BFD_RELOC_64_PCREL:
12203 case BFD_RELOC_X86_64_GOTOFF64:
12204 case BFD_RELOC_X86_64_GOT64:
12205 case BFD_RELOC_X86_64_GOTPCREL64:
12206 case BFD_RELOC_X86_64_GOTPC64:
12207 case BFD_RELOC_X86_64_GOTPLT64:
12208 case BFD_RELOC_X86_64_PLTOFF64:
12209 as_bad_where (fixp->fx_file, fixp->fx_line,
12210 _("cannot represent relocation type %s in x32 mode"),
12211 bfd_get_reloc_code_name (code));
12212 break;
12213 default:
12214 break;
12215 }
12216
12217 if (!fixp->fx_pcrel)
12218 rel->addend = fixp->fx_offset;
12219 else
12220 switch (code)
12221 {
12222 case BFD_RELOC_X86_64_PLT32:
12223 case BFD_RELOC_X86_64_GOT32:
12224 case BFD_RELOC_X86_64_GOTPCREL:
12225 case BFD_RELOC_X86_64_GOTPCRELX:
12226 case BFD_RELOC_X86_64_REX_GOTPCRELX:
12227 case BFD_RELOC_X86_64_TLSGD:
12228 case BFD_RELOC_X86_64_TLSLD:
12229 case BFD_RELOC_X86_64_GOTTPOFF:
12230 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12231 case BFD_RELOC_X86_64_TLSDESC_CALL:
12232 rel->addend = fixp->fx_offset - fixp->fx_size;
12233 break;
12234 default:
12235 rel->addend = (section->vma
12236 - fixp->fx_size
12237 + fixp->fx_addnumber
12238 + md_pcrel_from (fixp));
12239 break;
12240 }
12241 }
12242
12243 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
12244 if (rel->howto == NULL)
12245 {
12246 as_bad_where (fixp->fx_file, fixp->fx_line,
12247 _("cannot represent relocation type %s"),
12248 bfd_get_reloc_code_name (code));
12249 /* Set howto to a garbage value so that we can keep going. */
12250 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
12251 gas_assert (rel->howto != NULL);
12252 }
12253
12254 return rel;
12255 }
12256
12257 #include "tc-i386-intel.c"
12258
12259 void
12260 tc_x86_parse_to_dw2regnum (expressionS *exp)
12261 {
12262 int saved_naked_reg;
12263 char saved_register_dot;
12264
12265 saved_naked_reg = allow_naked_reg;
12266 allow_naked_reg = 1;
12267 saved_register_dot = register_chars['.'];
12268 register_chars['.'] = '.';
12269 allow_pseudo_reg = 1;
12270 expression_and_evaluate (exp);
12271 allow_pseudo_reg = 0;
12272 register_chars['.'] = saved_register_dot;
12273 allow_naked_reg = saved_naked_reg;
12274
12275 if (exp->X_op == O_register && exp->X_add_number >= 0)
12276 {
12277 if ((addressT) exp->X_add_number < i386_regtab_size)
12278 {
12279 exp->X_op = O_constant;
12280 exp->X_add_number = i386_regtab[exp->X_add_number]
12281 .dw2_regnum[flag_code >> 1];
12282 }
12283 else
12284 exp->X_op = O_illegal;
12285 }
12286 }
12287
12288 void
12289 tc_x86_frame_initial_instructions (void)
12290 {
12291 static unsigned int sp_regno[2];
12292
12293 if (!sp_regno[flag_code >> 1])
12294 {
12295 char *saved_input = input_line_pointer;
12296 char sp[][4] = {"esp", "rsp"};
12297 expressionS exp;
12298
12299 input_line_pointer = sp[flag_code >> 1];
12300 tc_x86_parse_to_dw2regnum (&exp);
12301 gas_assert (exp.X_op == O_constant);
12302 sp_regno[flag_code >> 1] = exp.X_add_number;
12303 input_line_pointer = saved_input;
12304 }
12305
12306 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
12307 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
12308 }
12309
12310 int
12311 x86_dwarf2_addr_size (void)
12312 {
12313 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12314 if (x86_elf_abi == X86_64_X32_ABI)
12315 return 4;
12316 #endif
12317 return bfd_arch_bits_per_address (stdoutput) / 8;
12318 }
12319
12320 int
12321 i386_elf_section_type (const char *str, size_t len)
12322 {
12323 if (flag_code == CODE_64BIT
12324 && len == sizeof ("unwind") - 1
12325 && strncmp (str, "unwind", 6) == 0)
12326 return SHT_X86_64_UNWIND;
12327
12328 return -1;
12329 }
12330
12331 #ifdef TE_SOLARIS
12332 void
12333 i386_solaris_fix_up_eh_frame (segT sec)
12334 {
12335 if (flag_code == CODE_64BIT)
12336 elf_section_type (sec) = SHT_X86_64_UNWIND;
12337 }
12338 #endif
12339
12340 #ifdef TE_PE
12341 void
12342 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
12343 {
12344 expressionS exp;
12345
12346 exp.X_op = O_secrel;
12347 exp.X_add_symbol = symbol;
12348 exp.X_add_number = 0;
12349 emit_expr (&exp, size);
12350 }
12351 #endif
12352
12353 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12354 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
12355
12356 bfd_vma
12357 x86_64_section_letter (int letter, const char **ptr_msg)
12358 {
12359 if (flag_code == CODE_64BIT)
12360 {
12361 if (letter == 'l')
12362 return SHF_X86_64_LARGE;
12363
12364 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
12365 }
12366 else
12367 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
12368 return -1;
12369 }
12370
12371 bfd_vma
12372 x86_64_section_word (char *str, size_t len)
12373 {
12374 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
12375 return SHF_X86_64_LARGE;
12376
12377 return -1;
12378 }
12379
12380 static void
12381 handle_large_common (int small ATTRIBUTE_UNUSED)
12382 {
12383 if (flag_code != CODE_64BIT)
12384 {
12385 s_comm_internal (0, elf_common_parse);
12386 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
12387 }
12388 else
12389 {
12390 static segT lbss_section;
12391 asection *saved_com_section_ptr = elf_com_section_ptr;
12392 asection *saved_bss_section = bss_section;
12393
12394 if (lbss_section == NULL)
12395 {
12396 flagword applicable;
12397 segT seg = now_seg;
12398 subsegT subseg = now_subseg;
12399
12400 /* The .lbss section is for local .largecomm symbols. */
12401 lbss_section = subseg_new (".lbss", 0);
12402 applicable = bfd_applicable_section_flags (stdoutput);
12403 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
12404 seg_info (lbss_section)->bss = 1;
12405
12406 subseg_set (seg, subseg);
12407 }
12408
12409 elf_com_section_ptr = &_bfd_elf_large_com_section;
12410 bss_section = lbss_section;
12411
12412 s_comm_internal (0, elf_common_parse);
12413
12414 elf_com_section_ptr = saved_com_section_ptr;
12415 bss_section = saved_bss_section;
12416 }
12417 }
12418 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.266116 seconds and 5 git commands to generate.